1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_sync_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_find_vma || 551 func_id == BPF_FUNC_loop || 552 func_id == BPF_FUNC_user_ringbuf_drain; 553 } 554 555 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 556 { 557 return func_id == BPF_FUNC_timer_set_callback; 558 } 559 560 static bool is_callback_calling_function(enum bpf_func_id func_id) 561 { 562 return is_sync_callback_calling_function(func_id) || 563 is_async_callback_calling_function(func_id); 564 } 565 566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 567 { 568 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 569 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 570 } 571 572 static bool is_storage_get_function(enum bpf_func_id func_id) 573 { 574 return func_id == BPF_FUNC_sk_storage_get || 575 func_id == BPF_FUNC_inode_storage_get || 576 func_id == BPF_FUNC_task_storage_get || 577 func_id == BPF_FUNC_cgrp_storage_get; 578 } 579 580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 581 const struct bpf_map *map) 582 { 583 int ref_obj_uses = 0; 584 585 if (is_ptr_cast_function(func_id)) 586 ref_obj_uses++; 587 if (is_acquire_function(func_id, map)) 588 ref_obj_uses++; 589 if (is_dynptr_ref_function(func_id)) 590 ref_obj_uses++; 591 592 return ref_obj_uses > 1; 593 } 594 595 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 596 { 597 return BPF_CLASS(insn->code) == BPF_STX && 598 BPF_MODE(insn->code) == BPF_ATOMIC && 599 insn->imm == BPF_CMPXCHG; 600 } 601 602 /* string representation of 'enum bpf_reg_type' 603 * 604 * Note that reg_type_str() can not appear more than once in a single verbose() 605 * statement. 606 */ 607 static const char *reg_type_str(struct bpf_verifier_env *env, 608 enum bpf_reg_type type) 609 { 610 char postfix[16] = {0}, prefix[64] = {0}; 611 static const char * const str[] = { 612 [NOT_INIT] = "?", 613 [SCALAR_VALUE] = "scalar", 614 [PTR_TO_CTX] = "ctx", 615 [CONST_PTR_TO_MAP] = "map_ptr", 616 [PTR_TO_MAP_VALUE] = "map_value", 617 [PTR_TO_STACK] = "fp", 618 [PTR_TO_PACKET] = "pkt", 619 [PTR_TO_PACKET_META] = "pkt_meta", 620 [PTR_TO_PACKET_END] = "pkt_end", 621 [PTR_TO_FLOW_KEYS] = "flow_keys", 622 [PTR_TO_SOCKET] = "sock", 623 [PTR_TO_SOCK_COMMON] = "sock_common", 624 [PTR_TO_TCP_SOCK] = "tcp_sock", 625 [PTR_TO_TP_BUFFER] = "tp_buffer", 626 [PTR_TO_XDP_SOCK] = "xdp_sock", 627 [PTR_TO_BTF_ID] = "ptr_", 628 [PTR_TO_MEM] = "mem", 629 [PTR_TO_BUF] = "buf", 630 [PTR_TO_FUNC] = "func", 631 [PTR_TO_MAP_KEY] = "map_key", 632 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 633 }; 634 635 if (type & PTR_MAYBE_NULL) { 636 if (base_type(type) == PTR_TO_BTF_ID) 637 strncpy(postfix, "or_null_", 16); 638 else 639 strncpy(postfix, "_or_null", 16); 640 } 641 642 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 643 type & MEM_RDONLY ? "rdonly_" : "", 644 type & MEM_RINGBUF ? "ringbuf_" : "", 645 type & MEM_USER ? "user_" : "", 646 type & MEM_PERCPU ? "percpu_" : "", 647 type & MEM_RCU ? "rcu_" : "", 648 type & PTR_UNTRUSTED ? "untrusted_" : "", 649 type & PTR_TRUSTED ? "trusted_" : "" 650 ); 651 652 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 653 prefix, str[base_type(type)], postfix); 654 return env->tmp_str_buf; 655 } 656 657 static char slot_type_char[] = { 658 [STACK_INVALID] = '?', 659 [STACK_SPILL] = 'r', 660 [STACK_MISC] = 'm', 661 [STACK_ZERO] = '0', 662 [STACK_DYNPTR] = 'd', 663 [STACK_ITER] = 'i', 664 }; 665 666 static void print_liveness(struct bpf_verifier_env *env, 667 enum bpf_reg_liveness live) 668 { 669 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 670 verbose(env, "_"); 671 if (live & REG_LIVE_READ) 672 verbose(env, "r"); 673 if (live & REG_LIVE_WRITTEN) 674 verbose(env, "w"); 675 if (live & REG_LIVE_DONE) 676 verbose(env, "D"); 677 } 678 679 static int __get_spi(s32 off) 680 { 681 return (-off - 1) / BPF_REG_SIZE; 682 } 683 684 static struct bpf_func_state *func(struct bpf_verifier_env *env, 685 const struct bpf_reg_state *reg) 686 { 687 struct bpf_verifier_state *cur = env->cur_state; 688 689 return cur->frame[reg->frameno]; 690 } 691 692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 693 { 694 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 695 696 /* We need to check that slots between [spi - nr_slots + 1, spi] are 697 * within [0, allocated_stack). 698 * 699 * Please note that the spi grows downwards. For example, a dynptr 700 * takes the size of two stack slots; the first slot will be at 701 * spi and the second slot will be at spi - 1. 702 */ 703 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 704 } 705 706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 707 const char *obj_kind, int nr_slots) 708 { 709 int off, spi; 710 711 if (!tnum_is_const(reg->var_off)) { 712 verbose(env, "%s has to be at a constant offset\n", obj_kind); 713 return -EINVAL; 714 } 715 716 off = reg->off + reg->var_off.value; 717 if (off % BPF_REG_SIZE) { 718 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 719 return -EINVAL; 720 } 721 722 spi = __get_spi(off); 723 if (spi + 1 < nr_slots) { 724 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 725 return -EINVAL; 726 } 727 728 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 729 return -ERANGE; 730 return spi; 731 } 732 733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 734 { 735 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 736 } 737 738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 739 { 740 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 741 } 742 743 static const char *btf_type_name(const struct btf *btf, u32 id) 744 { 745 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 746 } 747 748 static const char *dynptr_type_str(enum bpf_dynptr_type type) 749 { 750 switch (type) { 751 case BPF_DYNPTR_TYPE_LOCAL: 752 return "local"; 753 case BPF_DYNPTR_TYPE_RINGBUF: 754 return "ringbuf"; 755 case BPF_DYNPTR_TYPE_SKB: 756 return "skb"; 757 case BPF_DYNPTR_TYPE_XDP: 758 return "xdp"; 759 case BPF_DYNPTR_TYPE_INVALID: 760 return "<invalid>"; 761 default: 762 WARN_ONCE(1, "unknown dynptr type %d\n", type); 763 return "<unknown>"; 764 } 765 } 766 767 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 768 { 769 if (!btf || btf_id == 0) 770 return "<invalid>"; 771 772 /* we already validated that type is valid and has conforming name */ 773 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 774 } 775 776 static const char *iter_state_str(enum bpf_iter_state state) 777 { 778 switch (state) { 779 case BPF_ITER_STATE_ACTIVE: 780 return "active"; 781 case BPF_ITER_STATE_DRAINED: 782 return "drained"; 783 case BPF_ITER_STATE_INVALID: 784 return "<invalid>"; 785 default: 786 WARN_ONCE(1, "unknown iter state %d\n", state); 787 return "<unknown>"; 788 } 789 } 790 791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 792 { 793 env->scratched_regs |= 1U << regno; 794 } 795 796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 797 { 798 env->scratched_stack_slots |= 1ULL << spi; 799 } 800 801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 802 { 803 return (env->scratched_regs >> regno) & 1; 804 } 805 806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 807 { 808 return (env->scratched_stack_slots >> regno) & 1; 809 } 810 811 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 812 { 813 return env->scratched_regs || env->scratched_stack_slots; 814 } 815 816 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 817 { 818 env->scratched_regs = 0U; 819 env->scratched_stack_slots = 0ULL; 820 } 821 822 /* Used for printing the entire verifier state. */ 823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 824 { 825 env->scratched_regs = ~0U; 826 env->scratched_stack_slots = ~0ULL; 827 } 828 829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 830 { 831 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 832 case DYNPTR_TYPE_LOCAL: 833 return BPF_DYNPTR_TYPE_LOCAL; 834 case DYNPTR_TYPE_RINGBUF: 835 return BPF_DYNPTR_TYPE_RINGBUF; 836 case DYNPTR_TYPE_SKB: 837 return BPF_DYNPTR_TYPE_SKB; 838 case DYNPTR_TYPE_XDP: 839 return BPF_DYNPTR_TYPE_XDP; 840 default: 841 return BPF_DYNPTR_TYPE_INVALID; 842 } 843 } 844 845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 846 { 847 switch (type) { 848 case BPF_DYNPTR_TYPE_LOCAL: 849 return DYNPTR_TYPE_LOCAL; 850 case BPF_DYNPTR_TYPE_RINGBUF: 851 return DYNPTR_TYPE_RINGBUF; 852 case BPF_DYNPTR_TYPE_SKB: 853 return DYNPTR_TYPE_SKB; 854 case BPF_DYNPTR_TYPE_XDP: 855 return DYNPTR_TYPE_XDP; 856 default: 857 return 0; 858 } 859 } 860 861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 862 { 863 return type == BPF_DYNPTR_TYPE_RINGBUF; 864 } 865 866 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 867 enum bpf_dynptr_type type, 868 bool first_slot, int dynptr_id); 869 870 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 871 struct bpf_reg_state *reg); 872 873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 874 struct bpf_reg_state *sreg1, 875 struct bpf_reg_state *sreg2, 876 enum bpf_dynptr_type type) 877 { 878 int id = ++env->id_gen; 879 880 __mark_dynptr_reg(sreg1, type, true, id); 881 __mark_dynptr_reg(sreg2, type, false, id); 882 } 883 884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 885 struct bpf_reg_state *reg, 886 enum bpf_dynptr_type type) 887 { 888 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 889 } 890 891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 892 struct bpf_func_state *state, int spi); 893 894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 895 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 896 { 897 struct bpf_func_state *state = func(env, reg); 898 enum bpf_dynptr_type type; 899 int spi, i, err; 900 901 spi = dynptr_get_spi(env, reg); 902 if (spi < 0) 903 return spi; 904 905 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 906 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 907 * to ensure that for the following example: 908 * [d1][d1][d2][d2] 909 * spi 3 2 1 0 910 * So marking spi = 2 should lead to destruction of both d1 and d2. In 911 * case they do belong to same dynptr, second call won't see slot_type 912 * as STACK_DYNPTR and will simply skip destruction. 913 */ 914 err = destroy_if_dynptr_stack_slot(env, state, spi); 915 if (err) 916 return err; 917 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 918 if (err) 919 return err; 920 921 for (i = 0; i < BPF_REG_SIZE; i++) { 922 state->stack[spi].slot_type[i] = STACK_DYNPTR; 923 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 924 } 925 926 type = arg_to_dynptr_type(arg_type); 927 if (type == BPF_DYNPTR_TYPE_INVALID) 928 return -EINVAL; 929 930 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 931 &state->stack[spi - 1].spilled_ptr, type); 932 933 if (dynptr_type_refcounted(type)) { 934 /* The id is used to track proper releasing */ 935 int id; 936 937 if (clone_ref_obj_id) 938 id = clone_ref_obj_id; 939 else 940 id = acquire_reference_state(env, insn_idx); 941 942 if (id < 0) 943 return id; 944 945 state->stack[spi].spilled_ptr.ref_obj_id = id; 946 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 947 } 948 949 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 950 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 951 952 return 0; 953 } 954 955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 956 { 957 int i; 958 959 for (i = 0; i < BPF_REG_SIZE; i++) { 960 state->stack[spi].slot_type[i] = STACK_INVALID; 961 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 962 } 963 964 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 965 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 966 967 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 968 * 969 * While we don't allow reading STACK_INVALID, it is still possible to 970 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 971 * helpers or insns can do partial read of that part without failing, 972 * but check_stack_range_initialized, check_stack_read_var_off, and 973 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 974 * the slot conservatively. Hence we need to prevent those liveness 975 * marking walks. 976 * 977 * This was not a problem before because STACK_INVALID is only set by 978 * default (where the default reg state has its reg->parent as NULL), or 979 * in clean_live_states after REG_LIVE_DONE (at which point 980 * mark_reg_read won't walk reg->parent chain), but not randomly during 981 * verifier state exploration (like we did above). Hence, for our case 982 * parentage chain will still be live (i.e. reg->parent may be 983 * non-NULL), while earlier reg->parent was NULL, so we need 984 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 985 * done later on reads or by mark_dynptr_read as well to unnecessary 986 * mark registers in verifier state. 987 */ 988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 989 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 990 } 991 992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 993 { 994 struct bpf_func_state *state = func(env, reg); 995 int spi, ref_obj_id, i; 996 997 spi = dynptr_get_spi(env, reg); 998 if (spi < 0) 999 return spi; 1000 1001 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1002 invalidate_dynptr(env, state, spi); 1003 return 0; 1004 } 1005 1006 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 1007 1008 /* If the dynptr has a ref_obj_id, then we need to invalidate 1009 * two things: 1010 * 1011 * 1) Any dynptrs with a matching ref_obj_id (clones) 1012 * 2) Any slices derived from this dynptr. 1013 */ 1014 1015 /* Invalidate any slices associated with this dynptr */ 1016 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1017 1018 /* Invalidate any dynptr clones */ 1019 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1020 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1021 continue; 1022 1023 /* it should always be the case that if the ref obj id 1024 * matches then the stack slot also belongs to a 1025 * dynptr 1026 */ 1027 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1028 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1029 return -EFAULT; 1030 } 1031 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1032 invalidate_dynptr(env, state, i); 1033 } 1034 1035 return 0; 1036 } 1037 1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1039 struct bpf_reg_state *reg); 1040 1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1042 { 1043 if (!env->allow_ptr_leaks) 1044 __mark_reg_not_init(env, reg); 1045 else 1046 __mark_reg_unknown(env, reg); 1047 } 1048 1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1050 struct bpf_func_state *state, int spi) 1051 { 1052 struct bpf_func_state *fstate; 1053 struct bpf_reg_state *dreg; 1054 int i, dynptr_id; 1055 1056 /* We always ensure that STACK_DYNPTR is never set partially, 1057 * hence just checking for slot_type[0] is enough. This is 1058 * different for STACK_SPILL, where it may be only set for 1059 * 1 byte, so code has to use is_spilled_reg. 1060 */ 1061 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1062 return 0; 1063 1064 /* Reposition spi to first slot */ 1065 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1066 spi = spi + 1; 1067 1068 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1069 verbose(env, "cannot overwrite referenced dynptr\n"); 1070 return -EINVAL; 1071 } 1072 1073 mark_stack_slot_scratched(env, spi); 1074 mark_stack_slot_scratched(env, spi - 1); 1075 1076 /* Writing partially to one dynptr stack slot destroys both. */ 1077 for (i = 0; i < BPF_REG_SIZE; i++) { 1078 state->stack[spi].slot_type[i] = STACK_INVALID; 1079 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1080 } 1081 1082 dynptr_id = state->stack[spi].spilled_ptr.id; 1083 /* Invalidate any slices associated with this dynptr */ 1084 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1085 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1086 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1087 continue; 1088 if (dreg->dynptr_id == dynptr_id) 1089 mark_reg_invalid(env, dreg); 1090 })); 1091 1092 /* Do not release reference state, we are destroying dynptr on stack, 1093 * not using some helper to release it. Just reset register. 1094 */ 1095 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1096 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1097 1098 /* Same reason as unmark_stack_slots_dynptr above */ 1099 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1100 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1101 1102 return 0; 1103 } 1104 1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1106 { 1107 int spi; 1108 1109 if (reg->type == CONST_PTR_TO_DYNPTR) 1110 return false; 1111 1112 spi = dynptr_get_spi(env, reg); 1113 1114 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1115 * error because this just means the stack state hasn't been updated yet. 1116 * We will do check_mem_access to check and update stack bounds later. 1117 */ 1118 if (spi < 0 && spi != -ERANGE) 1119 return false; 1120 1121 /* We don't need to check if the stack slots are marked by previous 1122 * dynptr initializations because we allow overwriting existing unreferenced 1123 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1124 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1125 * touching are completely destructed before we reinitialize them for a new 1126 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1127 * instead of delaying it until the end where the user will get "Unreleased 1128 * reference" error. 1129 */ 1130 return true; 1131 } 1132 1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1134 { 1135 struct bpf_func_state *state = func(env, reg); 1136 int i, spi; 1137 1138 /* This already represents first slot of initialized bpf_dynptr. 1139 * 1140 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1141 * check_func_arg_reg_off's logic, so we don't need to check its 1142 * offset and alignment. 1143 */ 1144 if (reg->type == CONST_PTR_TO_DYNPTR) 1145 return true; 1146 1147 spi = dynptr_get_spi(env, reg); 1148 if (spi < 0) 1149 return false; 1150 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1151 return false; 1152 1153 for (i = 0; i < BPF_REG_SIZE; i++) { 1154 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1155 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1156 return false; 1157 } 1158 1159 return true; 1160 } 1161 1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1163 enum bpf_arg_type arg_type) 1164 { 1165 struct bpf_func_state *state = func(env, reg); 1166 enum bpf_dynptr_type dynptr_type; 1167 int spi; 1168 1169 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1170 if (arg_type == ARG_PTR_TO_DYNPTR) 1171 return true; 1172 1173 dynptr_type = arg_to_dynptr_type(arg_type); 1174 if (reg->type == CONST_PTR_TO_DYNPTR) { 1175 return reg->dynptr.type == dynptr_type; 1176 } else { 1177 spi = dynptr_get_spi(env, reg); 1178 if (spi < 0) 1179 return false; 1180 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1181 } 1182 } 1183 1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1185 1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1187 struct bpf_reg_state *reg, int insn_idx, 1188 struct btf *btf, u32 btf_id, int nr_slots) 1189 { 1190 struct bpf_func_state *state = func(env, reg); 1191 int spi, i, j, id; 1192 1193 spi = iter_get_spi(env, reg, nr_slots); 1194 if (spi < 0) 1195 return spi; 1196 1197 id = acquire_reference_state(env, insn_idx); 1198 if (id < 0) 1199 return id; 1200 1201 for (i = 0; i < nr_slots; i++) { 1202 struct bpf_stack_state *slot = &state->stack[spi - i]; 1203 struct bpf_reg_state *st = &slot->spilled_ptr; 1204 1205 __mark_reg_known_zero(st); 1206 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1207 st->live |= REG_LIVE_WRITTEN; 1208 st->ref_obj_id = i == 0 ? id : 0; 1209 st->iter.btf = btf; 1210 st->iter.btf_id = btf_id; 1211 st->iter.state = BPF_ITER_STATE_ACTIVE; 1212 st->iter.depth = 0; 1213 1214 for (j = 0; j < BPF_REG_SIZE; j++) 1215 slot->slot_type[j] = STACK_ITER; 1216 1217 mark_stack_slot_scratched(env, spi - i); 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1224 struct bpf_reg_state *reg, int nr_slots) 1225 { 1226 struct bpf_func_state *state = func(env, reg); 1227 int spi, i, j; 1228 1229 spi = iter_get_spi(env, reg, nr_slots); 1230 if (spi < 0) 1231 return spi; 1232 1233 for (i = 0; i < nr_slots; i++) { 1234 struct bpf_stack_state *slot = &state->stack[spi - i]; 1235 struct bpf_reg_state *st = &slot->spilled_ptr; 1236 1237 if (i == 0) 1238 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1239 1240 __mark_reg_not_init(env, st); 1241 1242 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1243 st->live |= REG_LIVE_WRITTEN; 1244 1245 for (j = 0; j < BPF_REG_SIZE; j++) 1246 slot->slot_type[j] = STACK_INVALID; 1247 1248 mark_stack_slot_scratched(env, spi - i); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1255 struct bpf_reg_state *reg, int nr_slots) 1256 { 1257 struct bpf_func_state *state = func(env, reg); 1258 int spi, i, j; 1259 1260 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1261 * will do check_mem_access to check and update stack bounds later, so 1262 * return true for that case. 1263 */ 1264 spi = iter_get_spi(env, reg, nr_slots); 1265 if (spi == -ERANGE) 1266 return true; 1267 if (spi < 0) 1268 return false; 1269 1270 for (i = 0; i < nr_slots; i++) { 1271 struct bpf_stack_state *slot = &state->stack[spi - i]; 1272 1273 for (j = 0; j < BPF_REG_SIZE; j++) 1274 if (slot->slot_type[j] == STACK_ITER) 1275 return false; 1276 } 1277 1278 return true; 1279 } 1280 1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1282 struct btf *btf, u32 btf_id, int nr_slots) 1283 { 1284 struct bpf_func_state *state = func(env, reg); 1285 int spi, i, j; 1286 1287 spi = iter_get_spi(env, reg, nr_slots); 1288 if (spi < 0) 1289 return false; 1290 1291 for (i = 0; i < nr_slots; i++) { 1292 struct bpf_stack_state *slot = &state->stack[spi - i]; 1293 struct bpf_reg_state *st = &slot->spilled_ptr; 1294 1295 /* only main (first) slot has ref_obj_id set */ 1296 if (i == 0 && !st->ref_obj_id) 1297 return false; 1298 if (i != 0 && st->ref_obj_id) 1299 return false; 1300 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1301 return false; 1302 1303 for (j = 0; j < BPF_REG_SIZE; j++) 1304 if (slot->slot_type[j] != STACK_ITER) 1305 return false; 1306 } 1307 1308 return true; 1309 } 1310 1311 /* Check if given stack slot is "special": 1312 * - spilled register state (STACK_SPILL); 1313 * - dynptr state (STACK_DYNPTR); 1314 * - iter state (STACK_ITER). 1315 */ 1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1317 { 1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1319 1320 switch (type) { 1321 case STACK_SPILL: 1322 case STACK_DYNPTR: 1323 case STACK_ITER: 1324 return true; 1325 case STACK_INVALID: 1326 case STACK_MISC: 1327 case STACK_ZERO: 1328 return false; 1329 default: 1330 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1331 return true; 1332 } 1333 } 1334 1335 /* The reg state of a pointer or a bounded scalar was saved when 1336 * it was spilled to the stack. 1337 */ 1338 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1339 { 1340 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1341 } 1342 1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1344 { 1345 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1346 stack->spilled_ptr.type == SCALAR_VALUE; 1347 } 1348 1349 static void scrub_spilled_slot(u8 *stype) 1350 { 1351 if (*stype != STACK_INVALID) 1352 *stype = STACK_MISC; 1353 } 1354 1355 static void print_verifier_state(struct bpf_verifier_env *env, 1356 const struct bpf_func_state *state, 1357 bool print_all) 1358 { 1359 const struct bpf_reg_state *reg; 1360 enum bpf_reg_type t; 1361 int i; 1362 1363 if (state->frameno) 1364 verbose(env, " frame%d:", state->frameno); 1365 for (i = 0; i < MAX_BPF_REG; i++) { 1366 reg = &state->regs[i]; 1367 t = reg->type; 1368 if (t == NOT_INIT) 1369 continue; 1370 if (!print_all && !reg_scratched(env, i)) 1371 continue; 1372 verbose(env, " R%d", i); 1373 print_liveness(env, reg->live); 1374 verbose(env, "="); 1375 if (t == SCALAR_VALUE && reg->precise) 1376 verbose(env, "P"); 1377 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1378 tnum_is_const(reg->var_off)) { 1379 /* reg->off should be 0 for SCALAR_VALUE */ 1380 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1381 verbose(env, "%lld", reg->var_off.value + reg->off); 1382 } else { 1383 const char *sep = ""; 1384 1385 verbose(env, "%s", reg_type_str(env, t)); 1386 if (base_type(t) == PTR_TO_BTF_ID) 1387 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1388 verbose(env, "("); 1389 /* 1390 * _a stands for append, was shortened to avoid multiline statements below. 1391 * This macro is used to output a comma separated list of attributes. 1392 */ 1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1394 1395 if (reg->id) 1396 verbose_a("id=%d", reg->id); 1397 if (reg->ref_obj_id) 1398 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1399 if (type_is_non_owning_ref(reg->type)) 1400 verbose_a("%s", "non_own_ref"); 1401 if (t != SCALAR_VALUE) 1402 verbose_a("off=%d", reg->off); 1403 if (type_is_pkt_pointer(t)) 1404 verbose_a("r=%d", reg->range); 1405 else if (base_type(t) == CONST_PTR_TO_MAP || 1406 base_type(t) == PTR_TO_MAP_KEY || 1407 base_type(t) == PTR_TO_MAP_VALUE) 1408 verbose_a("ks=%d,vs=%d", 1409 reg->map_ptr->key_size, 1410 reg->map_ptr->value_size); 1411 if (tnum_is_const(reg->var_off)) { 1412 /* Typically an immediate SCALAR_VALUE, but 1413 * could be a pointer whose offset is too big 1414 * for reg->off 1415 */ 1416 verbose_a("imm=%llx", reg->var_off.value); 1417 } else { 1418 if (reg->smin_value != reg->umin_value && 1419 reg->smin_value != S64_MIN) 1420 verbose_a("smin=%lld", (long long)reg->smin_value); 1421 if (reg->smax_value != reg->umax_value && 1422 reg->smax_value != S64_MAX) 1423 verbose_a("smax=%lld", (long long)reg->smax_value); 1424 if (reg->umin_value != 0) 1425 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1426 if (reg->umax_value != U64_MAX) 1427 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1428 if (!tnum_is_unknown(reg->var_off)) { 1429 char tn_buf[48]; 1430 1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1432 verbose_a("var_off=%s", tn_buf); 1433 } 1434 if (reg->s32_min_value != reg->smin_value && 1435 reg->s32_min_value != S32_MIN) 1436 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1437 if (reg->s32_max_value != reg->smax_value && 1438 reg->s32_max_value != S32_MAX) 1439 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1440 if (reg->u32_min_value != reg->umin_value && 1441 reg->u32_min_value != U32_MIN) 1442 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1443 if (reg->u32_max_value != reg->umax_value && 1444 reg->u32_max_value != U32_MAX) 1445 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1446 } 1447 #undef verbose_a 1448 1449 verbose(env, ")"); 1450 } 1451 } 1452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1453 char types_buf[BPF_REG_SIZE + 1]; 1454 bool valid = false; 1455 int j; 1456 1457 for (j = 0; j < BPF_REG_SIZE; j++) { 1458 if (state->stack[i].slot_type[j] != STACK_INVALID) 1459 valid = true; 1460 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1461 } 1462 types_buf[BPF_REG_SIZE] = 0; 1463 if (!valid) 1464 continue; 1465 if (!print_all && !stack_slot_scratched(env, i)) 1466 continue; 1467 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1468 case STACK_SPILL: 1469 reg = &state->stack[i].spilled_ptr; 1470 t = reg->type; 1471 1472 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1473 print_liveness(env, reg->live); 1474 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1475 if (t == SCALAR_VALUE && reg->precise) 1476 verbose(env, "P"); 1477 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1478 verbose(env, "%lld", reg->var_off.value + reg->off); 1479 break; 1480 case STACK_DYNPTR: 1481 i += BPF_DYNPTR_NR_SLOTS - 1; 1482 reg = &state->stack[i].spilled_ptr; 1483 1484 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1485 print_liveness(env, reg->live); 1486 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1487 if (reg->ref_obj_id) 1488 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1489 break; 1490 case STACK_ITER: 1491 /* only main slot has ref_obj_id set; skip others */ 1492 reg = &state->stack[i].spilled_ptr; 1493 if (!reg->ref_obj_id) 1494 continue; 1495 1496 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1497 print_liveness(env, reg->live); 1498 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1499 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1500 reg->ref_obj_id, iter_state_str(reg->iter.state), 1501 reg->iter.depth); 1502 break; 1503 case STACK_MISC: 1504 case STACK_ZERO: 1505 default: 1506 reg = &state->stack[i].spilled_ptr; 1507 1508 for (j = 0; j < BPF_REG_SIZE; j++) 1509 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1510 types_buf[BPF_REG_SIZE] = 0; 1511 1512 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1513 print_liveness(env, reg->live); 1514 verbose(env, "=%s", types_buf); 1515 break; 1516 } 1517 } 1518 if (state->acquired_refs && state->refs[0].id) { 1519 verbose(env, " refs=%d", state->refs[0].id); 1520 for (i = 1; i < state->acquired_refs; i++) 1521 if (state->refs[i].id) 1522 verbose(env, ",%d", state->refs[i].id); 1523 } 1524 if (state->in_callback_fn) 1525 verbose(env, " cb"); 1526 if (state->in_async_callback_fn) 1527 verbose(env, " async_cb"); 1528 verbose(env, "\n"); 1529 if (!print_all) 1530 mark_verifier_state_clean(env); 1531 } 1532 1533 static inline u32 vlog_alignment(u32 pos) 1534 { 1535 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1536 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1537 } 1538 1539 static void print_insn_state(struct bpf_verifier_env *env, 1540 const struct bpf_func_state *state) 1541 { 1542 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1543 /* remove new line character */ 1544 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1545 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1546 } else { 1547 verbose(env, "%d:", env->insn_idx); 1548 } 1549 print_verifier_state(env, state, false); 1550 } 1551 1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1553 * small to hold src. This is different from krealloc since we don't want to preserve 1554 * the contents of dst. 1555 * 1556 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1557 * not be allocated. 1558 */ 1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1560 { 1561 size_t alloc_bytes; 1562 void *orig = dst; 1563 size_t bytes; 1564 1565 if (ZERO_OR_NULL_PTR(src)) 1566 goto out; 1567 1568 if (unlikely(check_mul_overflow(n, size, &bytes))) 1569 return NULL; 1570 1571 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1572 dst = krealloc(orig, alloc_bytes, flags); 1573 if (!dst) { 1574 kfree(orig); 1575 return NULL; 1576 } 1577 1578 memcpy(dst, src, bytes); 1579 out: 1580 return dst ? dst : ZERO_SIZE_PTR; 1581 } 1582 1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1584 * small to hold new_n items. new items are zeroed out if the array grows. 1585 * 1586 * Contrary to krealloc_array, does not free arr if new_n is zero. 1587 */ 1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1589 { 1590 size_t alloc_size; 1591 void *new_arr; 1592 1593 if (!new_n || old_n == new_n) 1594 goto out; 1595 1596 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1597 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1598 if (!new_arr) { 1599 kfree(arr); 1600 return NULL; 1601 } 1602 arr = new_arr; 1603 1604 if (new_n > old_n) 1605 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1606 1607 out: 1608 return arr ? arr : ZERO_SIZE_PTR; 1609 } 1610 1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1612 { 1613 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1614 sizeof(struct bpf_reference_state), GFP_KERNEL); 1615 if (!dst->refs) 1616 return -ENOMEM; 1617 1618 dst->acquired_refs = src->acquired_refs; 1619 return 0; 1620 } 1621 1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1623 { 1624 size_t n = src->allocated_stack / BPF_REG_SIZE; 1625 1626 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1627 GFP_KERNEL); 1628 if (!dst->stack) 1629 return -ENOMEM; 1630 1631 dst->allocated_stack = src->allocated_stack; 1632 return 0; 1633 } 1634 1635 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1636 { 1637 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1638 sizeof(struct bpf_reference_state)); 1639 if (!state->refs) 1640 return -ENOMEM; 1641 1642 state->acquired_refs = n; 1643 return 0; 1644 } 1645 1646 /* Possibly update state->allocated_stack to be at least size bytes. Also 1647 * possibly update the function's high-water mark in its bpf_subprog_info. 1648 */ 1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1650 { 1651 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1652 1653 if (old_n >= n) 1654 return 0; 1655 1656 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1657 if (!state->stack) 1658 return -ENOMEM; 1659 1660 state->allocated_stack = size; 1661 1662 /* update known max for given subprogram */ 1663 if (env->subprog_info[state->subprogno].stack_depth < size) 1664 env->subprog_info[state->subprogno].stack_depth = size; 1665 1666 return 0; 1667 } 1668 1669 /* Acquire a pointer id from the env and update the state->refs to include 1670 * this new pointer reference. 1671 * On success, returns a valid pointer id to associate with the register 1672 * On failure, returns a negative errno. 1673 */ 1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1675 { 1676 struct bpf_func_state *state = cur_func(env); 1677 int new_ofs = state->acquired_refs; 1678 int id, err; 1679 1680 err = resize_reference_state(state, state->acquired_refs + 1); 1681 if (err) 1682 return err; 1683 id = ++env->id_gen; 1684 state->refs[new_ofs].id = id; 1685 state->refs[new_ofs].insn_idx = insn_idx; 1686 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1687 1688 return id; 1689 } 1690 1691 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1693 { 1694 int i, last_idx; 1695 1696 last_idx = state->acquired_refs - 1; 1697 for (i = 0; i < state->acquired_refs; i++) { 1698 if (state->refs[i].id == ptr_id) { 1699 /* Cannot release caller references in callbacks */ 1700 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1701 return -EINVAL; 1702 if (last_idx && i != last_idx) 1703 memcpy(&state->refs[i], &state->refs[last_idx], 1704 sizeof(*state->refs)); 1705 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1706 state->acquired_refs--; 1707 return 0; 1708 } 1709 } 1710 return -EINVAL; 1711 } 1712 1713 static void free_func_state(struct bpf_func_state *state) 1714 { 1715 if (!state) 1716 return; 1717 kfree(state->refs); 1718 kfree(state->stack); 1719 kfree(state); 1720 } 1721 1722 static void clear_jmp_history(struct bpf_verifier_state *state) 1723 { 1724 kfree(state->jmp_history); 1725 state->jmp_history = NULL; 1726 state->jmp_history_cnt = 0; 1727 } 1728 1729 static void free_verifier_state(struct bpf_verifier_state *state, 1730 bool free_self) 1731 { 1732 int i; 1733 1734 for (i = 0; i <= state->curframe; i++) { 1735 free_func_state(state->frame[i]); 1736 state->frame[i] = NULL; 1737 } 1738 clear_jmp_history(state); 1739 if (free_self) 1740 kfree(state); 1741 } 1742 1743 /* copy verifier state from src to dst growing dst stack space 1744 * when necessary to accommodate larger src stack 1745 */ 1746 static int copy_func_state(struct bpf_func_state *dst, 1747 const struct bpf_func_state *src) 1748 { 1749 int err; 1750 1751 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1752 err = copy_reference_state(dst, src); 1753 if (err) 1754 return err; 1755 return copy_stack_state(dst, src); 1756 } 1757 1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1759 const struct bpf_verifier_state *src) 1760 { 1761 struct bpf_func_state *dst; 1762 int i, err; 1763 1764 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1765 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1766 GFP_USER); 1767 if (!dst_state->jmp_history) 1768 return -ENOMEM; 1769 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1770 1771 /* if dst has more stack frames then src frame, free them */ 1772 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1773 free_func_state(dst_state->frame[i]); 1774 dst_state->frame[i] = NULL; 1775 } 1776 dst_state->speculative = src->speculative; 1777 dst_state->active_rcu_lock = src->active_rcu_lock; 1778 dst_state->curframe = src->curframe; 1779 dst_state->active_lock.ptr = src->active_lock.ptr; 1780 dst_state->active_lock.id = src->active_lock.id; 1781 dst_state->branches = src->branches; 1782 dst_state->parent = src->parent; 1783 dst_state->first_insn_idx = src->first_insn_idx; 1784 dst_state->last_insn_idx = src->last_insn_idx; 1785 dst_state->dfs_depth = src->dfs_depth; 1786 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1787 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1788 for (i = 0; i <= src->curframe; i++) { 1789 dst = dst_state->frame[i]; 1790 if (!dst) { 1791 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1792 if (!dst) 1793 return -ENOMEM; 1794 dst_state->frame[i] = dst; 1795 } 1796 err = copy_func_state(dst, src->frame[i]); 1797 if (err) 1798 return err; 1799 } 1800 return 0; 1801 } 1802 1803 static u32 state_htab_size(struct bpf_verifier_env *env) 1804 { 1805 return env->prog->len; 1806 } 1807 1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1809 { 1810 struct bpf_verifier_state *cur = env->cur_state; 1811 struct bpf_func_state *state = cur->frame[cur->curframe]; 1812 1813 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1814 } 1815 1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1817 { 1818 int fr; 1819 1820 if (a->curframe != b->curframe) 1821 return false; 1822 1823 for (fr = a->curframe; fr >= 0; fr--) 1824 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1825 return false; 1826 1827 return true; 1828 } 1829 1830 /* Open coded iterators allow back-edges in the state graph in order to 1831 * check unbounded loops that iterators. 1832 * 1833 * In is_state_visited() it is necessary to know if explored states are 1834 * part of some loops in order to decide whether non-exact states 1835 * comparison could be used: 1836 * - non-exact states comparison establishes sub-state relation and uses 1837 * read and precision marks to do so, these marks are propagated from 1838 * children states and thus are not guaranteed to be final in a loop; 1839 * - exact states comparison just checks if current and explored states 1840 * are identical (and thus form a back-edge). 1841 * 1842 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1843 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1844 * algorithm for loop structure detection and gives an overview of 1845 * relevant terminology. It also has helpful illustrations. 1846 * 1847 * [1] https://api.semanticscholar.org/CorpusID:15784067 1848 * 1849 * We use a similar algorithm but because loop nested structure is 1850 * irrelevant for verifier ours is significantly simpler and resembles 1851 * strongly connected components algorithm from Sedgewick's textbook. 1852 * 1853 * Define topmost loop entry as a first node of the loop traversed in a 1854 * depth first search starting from initial state. The goal of the loop 1855 * tracking algorithm is to associate topmost loop entries with states 1856 * derived from these entries. 1857 * 1858 * For each step in the DFS states traversal algorithm needs to identify 1859 * the following situations: 1860 * 1861 * initial initial initial 1862 * | | | 1863 * V V V 1864 * ... ... .---------> hdr 1865 * | | | | 1866 * V V | V 1867 * cur .-> succ | .------... 1868 * | | | | | | 1869 * V | V | V V 1870 * succ '-- cur | ... ... 1871 * | | | 1872 * | V V 1873 * | succ <- cur 1874 * | | 1875 * | V 1876 * | ... 1877 * | | 1878 * '----' 1879 * 1880 * (A) successor state of cur (B) successor state of cur or it's entry 1881 * not yet traversed are in current DFS path, thus cur and succ 1882 * are members of the same outermost loop 1883 * 1884 * initial initial 1885 * | | 1886 * V V 1887 * ... ... 1888 * | | 1889 * V V 1890 * .------... .------... 1891 * | | | | 1892 * V V V V 1893 * .-> hdr ... ... ... 1894 * | | | | | 1895 * | V V V V 1896 * | succ <- cur succ <- cur 1897 * | | | 1898 * | V V 1899 * | ... ... 1900 * | | | 1901 * '----' exit 1902 * 1903 * (C) successor state of cur is a part of some loop but this loop 1904 * does not include cur or successor state is not in a loop at all. 1905 * 1906 * Algorithm could be described as the following python code: 1907 * 1908 * traversed = set() # Set of traversed nodes 1909 * entries = {} # Mapping from node to loop entry 1910 * depths = {} # Depth level assigned to graph node 1911 * path = set() # Current DFS path 1912 * 1913 * # Find outermost loop entry known for n 1914 * def get_loop_entry(n): 1915 * h = entries.get(n, None) 1916 * while h in entries and entries[h] != h: 1917 * h = entries[h] 1918 * return h 1919 * 1920 * # Update n's loop entry if h's outermost entry comes 1921 * # before n's outermost entry in current DFS path. 1922 * def update_loop_entry(n, h): 1923 * n1 = get_loop_entry(n) or n 1924 * h1 = get_loop_entry(h) or h 1925 * if h1 in path and depths[h1] <= depths[n1]: 1926 * entries[n] = h1 1927 * 1928 * def dfs(n, depth): 1929 * traversed.add(n) 1930 * path.add(n) 1931 * depths[n] = depth 1932 * for succ in G.successors(n): 1933 * if succ not in traversed: 1934 * # Case A: explore succ and update cur's loop entry 1935 * # only if succ's entry is in current DFS path. 1936 * dfs(succ, depth + 1) 1937 * h = get_loop_entry(succ) 1938 * update_loop_entry(n, h) 1939 * else: 1940 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1941 * update_loop_entry(n, succ) 1942 * path.remove(n) 1943 * 1944 * To adapt this algorithm for use with verifier: 1945 * - use st->branch == 0 as a signal that DFS of succ had been finished 1946 * and cur's loop entry has to be updated (case A), handle this in 1947 * update_branch_counts(); 1948 * - use st->branch > 0 as a signal that st is in the current DFS path; 1949 * - handle cases B and C in is_state_visited(); 1950 * - update topmost loop entry for intermediate states in get_loop_entry(). 1951 */ 1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1953 { 1954 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1955 1956 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1957 topmost = topmost->loop_entry; 1958 /* Update loop entries for intermediate states to avoid this 1959 * traversal in future get_loop_entry() calls. 1960 */ 1961 while (st && st->loop_entry != topmost) { 1962 old = st->loop_entry; 1963 st->loop_entry = topmost; 1964 st = old; 1965 } 1966 return topmost; 1967 } 1968 1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1970 { 1971 struct bpf_verifier_state *cur1, *hdr1; 1972 1973 cur1 = get_loop_entry(cur) ?: cur; 1974 hdr1 = get_loop_entry(hdr) ?: hdr; 1975 /* The head1->branches check decides between cases B and C in 1976 * comment for get_loop_entry(). If hdr1->branches == 0 then 1977 * head's topmost loop entry is not in current DFS path, 1978 * hence 'cur' and 'hdr' are not in the same loop and there is 1979 * no need to update cur->loop_entry. 1980 */ 1981 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1982 cur->loop_entry = hdr; 1983 hdr->used_as_loop_entry = true; 1984 } 1985 } 1986 1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1988 { 1989 while (st) { 1990 u32 br = --st->branches; 1991 1992 /* br == 0 signals that DFS exploration for 'st' is finished, 1993 * thus it is necessary to update parent's loop entry if it 1994 * turned out that st is a part of some loop. 1995 * This is a part of 'case A' in get_loop_entry() comment. 1996 */ 1997 if (br == 0 && st->parent && st->loop_entry) 1998 update_loop_entry(st->parent, st->loop_entry); 1999 2000 /* WARN_ON(br > 1) technically makes sense here, 2001 * but see comment in push_stack(), hence: 2002 */ 2003 WARN_ONCE((int)br < 0, 2004 "BUG update_branch_counts:branches_to_explore=%d\n", 2005 br); 2006 if (br) 2007 break; 2008 st = st->parent; 2009 } 2010 } 2011 2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2013 int *insn_idx, bool pop_log) 2014 { 2015 struct bpf_verifier_state *cur = env->cur_state; 2016 struct bpf_verifier_stack_elem *elem, *head = env->head; 2017 int err; 2018 2019 if (env->head == NULL) 2020 return -ENOENT; 2021 2022 if (cur) { 2023 err = copy_verifier_state(cur, &head->st); 2024 if (err) 2025 return err; 2026 } 2027 if (pop_log) 2028 bpf_vlog_reset(&env->log, head->log_pos); 2029 if (insn_idx) 2030 *insn_idx = head->insn_idx; 2031 if (prev_insn_idx) 2032 *prev_insn_idx = head->prev_insn_idx; 2033 elem = head->next; 2034 free_verifier_state(&head->st, false); 2035 kfree(head); 2036 env->head = elem; 2037 env->stack_size--; 2038 return 0; 2039 } 2040 2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2042 int insn_idx, int prev_insn_idx, 2043 bool speculative) 2044 { 2045 struct bpf_verifier_state *cur = env->cur_state; 2046 struct bpf_verifier_stack_elem *elem; 2047 int err; 2048 2049 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2050 if (!elem) 2051 goto err; 2052 2053 elem->insn_idx = insn_idx; 2054 elem->prev_insn_idx = prev_insn_idx; 2055 elem->next = env->head; 2056 elem->log_pos = env->log.end_pos; 2057 env->head = elem; 2058 env->stack_size++; 2059 err = copy_verifier_state(&elem->st, cur); 2060 if (err) 2061 goto err; 2062 elem->st.speculative |= speculative; 2063 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2064 verbose(env, "The sequence of %d jumps is too complex.\n", 2065 env->stack_size); 2066 goto err; 2067 } 2068 if (elem->st.parent) { 2069 ++elem->st.parent->branches; 2070 /* WARN_ON(branches > 2) technically makes sense here, 2071 * but 2072 * 1. speculative states will bump 'branches' for non-branch 2073 * instructions 2074 * 2. is_state_visited() heuristics may decide not to create 2075 * a new state for a sequence of branches and all such current 2076 * and cloned states will be pointing to a single parent state 2077 * which might have large 'branches' count. 2078 */ 2079 } 2080 return &elem->st; 2081 err: 2082 free_verifier_state(env->cur_state, true); 2083 env->cur_state = NULL; 2084 /* pop all elements and return */ 2085 while (!pop_stack(env, NULL, NULL, false)); 2086 return NULL; 2087 } 2088 2089 #define CALLER_SAVED_REGS 6 2090 static const int caller_saved[CALLER_SAVED_REGS] = { 2091 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2092 }; 2093 2094 /* This helper doesn't clear reg->id */ 2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2096 { 2097 reg->var_off = tnum_const(imm); 2098 reg->smin_value = (s64)imm; 2099 reg->smax_value = (s64)imm; 2100 reg->umin_value = imm; 2101 reg->umax_value = imm; 2102 2103 reg->s32_min_value = (s32)imm; 2104 reg->s32_max_value = (s32)imm; 2105 reg->u32_min_value = (u32)imm; 2106 reg->u32_max_value = (u32)imm; 2107 } 2108 2109 /* Mark the unknown part of a register (variable offset or scalar value) as 2110 * known to have the value @imm. 2111 */ 2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2113 { 2114 /* Clear off and union(map_ptr, range) */ 2115 memset(((u8 *)reg) + sizeof(reg->type), 0, 2116 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2117 reg->id = 0; 2118 reg->ref_obj_id = 0; 2119 ___mark_reg_known(reg, imm); 2120 } 2121 2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2123 { 2124 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2125 reg->s32_min_value = (s32)imm; 2126 reg->s32_max_value = (s32)imm; 2127 reg->u32_min_value = (u32)imm; 2128 reg->u32_max_value = (u32)imm; 2129 } 2130 2131 /* Mark the 'variable offset' part of a register as zero. This should be 2132 * used only on registers holding a pointer type. 2133 */ 2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2135 { 2136 __mark_reg_known(reg, 0); 2137 } 2138 2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 2140 { 2141 __mark_reg_known(reg, 0); 2142 reg->type = SCALAR_VALUE; 2143 } 2144 2145 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2146 struct bpf_reg_state *regs, u32 regno) 2147 { 2148 if (WARN_ON(regno >= MAX_BPF_REG)) { 2149 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2150 /* Something bad happened, let's kill all regs */ 2151 for (regno = 0; regno < MAX_BPF_REG; regno++) 2152 __mark_reg_not_init(env, regs + regno); 2153 return; 2154 } 2155 __mark_reg_known_zero(regs + regno); 2156 } 2157 2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2159 bool first_slot, int dynptr_id) 2160 { 2161 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2162 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2163 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2164 */ 2165 __mark_reg_known_zero(reg); 2166 reg->type = CONST_PTR_TO_DYNPTR; 2167 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2168 reg->id = dynptr_id; 2169 reg->dynptr.type = type; 2170 reg->dynptr.first_slot = first_slot; 2171 } 2172 2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2174 { 2175 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2176 const struct bpf_map *map = reg->map_ptr; 2177 2178 if (map->inner_map_meta) { 2179 reg->type = CONST_PTR_TO_MAP; 2180 reg->map_ptr = map->inner_map_meta; 2181 /* transfer reg's id which is unique for every map_lookup_elem 2182 * as UID of the inner map. 2183 */ 2184 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2185 reg->map_uid = reg->id; 2186 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2187 reg->type = PTR_TO_XDP_SOCK; 2188 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2189 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2190 reg->type = PTR_TO_SOCKET; 2191 } else { 2192 reg->type = PTR_TO_MAP_VALUE; 2193 } 2194 return; 2195 } 2196 2197 reg->type &= ~PTR_MAYBE_NULL; 2198 } 2199 2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2201 struct btf_field_graph_root *ds_head) 2202 { 2203 __mark_reg_known_zero(®s[regno]); 2204 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2205 regs[regno].btf = ds_head->btf; 2206 regs[regno].btf_id = ds_head->value_btf_id; 2207 regs[regno].off = ds_head->node_offset; 2208 } 2209 2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2211 { 2212 return type_is_pkt_pointer(reg->type); 2213 } 2214 2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2216 { 2217 return reg_is_pkt_pointer(reg) || 2218 reg->type == PTR_TO_PACKET_END; 2219 } 2220 2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2222 { 2223 return base_type(reg->type) == PTR_TO_MEM && 2224 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2225 } 2226 2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2229 enum bpf_reg_type which) 2230 { 2231 /* The register can already have a range from prior markings. 2232 * This is fine as long as it hasn't been advanced from its 2233 * origin. 2234 */ 2235 return reg->type == which && 2236 reg->id == 0 && 2237 reg->off == 0 && 2238 tnum_equals_const(reg->var_off, 0); 2239 } 2240 2241 /* Reset the min/max bounds of a register */ 2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2243 { 2244 reg->smin_value = S64_MIN; 2245 reg->smax_value = S64_MAX; 2246 reg->umin_value = 0; 2247 reg->umax_value = U64_MAX; 2248 2249 reg->s32_min_value = S32_MIN; 2250 reg->s32_max_value = S32_MAX; 2251 reg->u32_min_value = 0; 2252 reg->u32_max_value = U32_MAX; 2253 } 2254 2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2256 { 2257 reg->smin_value = S64_MIN; 2258 reg->smax_value = S64_MAX; 2259 reg->umin_value = 0; 2260 reg->umax_value = U64_MAX; 2261 } 2262 2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2264 { 2265 reg->s32_min_value = S32_MIN; 2266 reg->s32_max_value = S32_MAX; 2267 reg->u32_min_value = 0; 2268 reg->u32_max_value = U32_MAX; 2269 } 2270 2271 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2272 { 2273 struct tnum var32_off = tnum_subreg(reg->var_off); 2274 2275 /* min signed is max(sign bit) | min(other bits) */ 2276 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2277 var32_off.value | (var32_off.mask & S32_MIN)); 2278 /* max signed is min(sign bit) | max(other bits) */ 2279 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2280 var32_off.value | (var32_off.mask & S32_MAX)); 2281 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2282 reg->u32_max_value = min(reg->u32_max_value, 2283 (u32)(var32_off.value | var32_off.mask)); 2284 } 2285 2286 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2287 { 2288 /* min signed is max(sign bit) | min(other bits) */ 2289 reg->smin_value = max_t(s64, reg->smin_value, 2290 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2291 /* max signed is min(sign bit) | max(other bits) */ 2292 reg->smax_value = min_t(s64, reg->smax_value, 2293 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2294 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2295 reg->umax_value = min(reg->umax_value, 2296 reg->var_off.value | reg->var_off.mask); 2297 } 2298 2299 static void __update_reg_bounds(struct bpf_reg_state *reg) 2300 { 2301 __update_reg32_bounds(reg); 2302 __update_reg64_bounds(reg); 2303 } 2304 2305 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2307 { 2308 /* Learn sign from signed bounds. 2309 * If we cannot cross the sign boundary, then signed and unsigned bounds 2310 * are the same, so combine. This works even in the negative case, e.g. 2311 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2312 */ 2313 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2314 reg->s32_min_value = reg->u32_min_value = 2315 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2316 reg->s32_max_value = reg->u32_max_value = 2317 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2318 return; 2319 } 2320 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2321 * boundary, so we must be careful. 2322 */ 2323 if ((s32)reg->u32_max_value >= 0) { 2324 /* Positive. We can't learn anything from the smin, but smax 2325 * is positive, hence safe. 2326 */ 2327 reg->s32_min_value = reg->u32_min_value; 2328 reg->s32_max_value = reg->u32_max_value = 2329 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2330 } else if ((s32)reg->u32_min_value < 0) { 2331 /* Negative. We can't learn anything from the smax, but smin 2332 * is negative, hence safe. 2333 */ 2334 reg->s32_min_value = reg->u32_min_value = 2335 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2336 reg->s32_max_value = reg->u32_max_value; 2337 } 2338 } 2339 2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2341 { 2342 /* Learn sign from signed bounds. 2343 * If we cannot cross the sign boundary, then signed and unsigned bounds 2344 * are the same, so combine. This works even in the negative case, e.g. 2345 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2346 */ 2347 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2348 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2349 reg->umin_value); 2350 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2351 reg->umax_value); 2352 return; 2353 } 2354 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2355 * boundary, so we must be careful. 2356 */ 2357 if ((s64)reg->umax_value >= 0) { 2358 /* Positive. We can't learn anything from the smin, but smax 2359 * is positive, hence safe. 2360 */ 2361 reg->smin_value = reg->umin_value; 2362 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2363 reg->umax_value); 2364 } else if ((s64)reg->umin_value < 0) { 2365 /* Negative. We can't learn anything from the smax, but smin 2366 * is negative, hence safe. 2367 */ 2368 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2369 reg->umin_value); 2370 reg->smax_value = reg->umax_value; 2371 } 2372 } 2373 2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2375 { 2376 __reg32_deduce_bounds(reg); 2377 __reg64_deduce_bounds(reg); 2378 } 2379 2380 /* Attempts to improve var_off based on unsigned min/max information */ 2381 static void __reg_bound_offset(struct bpf_reg_state *reg) 2382 { 2383 struct tnum var64_off = tnum_intersect(reg->var_off, 2384 tnum_range(reg->umin_value, 2385 reg->umax_value)); 2386 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2387 tnum_range(reg->u32_min_value, 2388 reg->u32_max_value)); 2389 2390 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2391 } 2392 2393 static void reg_bounds_sync(struct bpf_reg_state *reg) 2394 { 2395 /* We might have learned new bounds from the var_off. */ 2396 __update_reg_bounds(reg); 2397 /* We might have learned something about the sign bit. */ 2398 __reg_deduce_bounds(reg); 2399 /* We might have learned some bits from the bounds. */ 2400 __reg_bound_offset(reg); 2401 /* Intersecting with the old var_off might have improved our bounds 2402 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2403 * then new var_off is (0; 0x7f...fc) which improves our umax. 2404 */ 2405 __update_reg_bounds(reg); 2406 } 2407 2408 static bool __reg32_bound_s64(s32 a) 2409 { 2410 return a >= 0 && a <= S32_MAX; 2411 } 2412 2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2414 { 2415 reg->umin_value = reg->u32_min_value; 2416 reg->umax_value = reg->u32_max_value; 2417 2418 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2419 * be positive otherwise set to worse case bounds and refine later 2420 * from tnum. 2421 */ 2422 if (__reg32_bound_s64(reg->s32_min_value) && 2423 __reg32_bound_s64(reg->s32_max_value)) { 2424 reg->smin_value = reg->s32_min_value; 2425 reg->smax_value = reg->s32_max_value; 2426 } else { 2427 reg->smin_value = 0; 2428 reg->smax_value = U32_MAX; 2429 } 2430 } 2431 2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2433 { 2434 /* special case when 64-bit register has upper 32-bit register 2435 * zeroed. Typically happens after zext or <<32, >>32 sequence 2436 * allowing us to use 32-bit bounds directly, 2437 */ 2438 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2439 __reg_assign_32_into_64(reg); 2440 } else { 2441 /* Otherwise the best we can do is push lower 32bit known and 2442 * unknown bits into register (var_off set from jmp logic) 2443 * then learn as much as possible from the 64-bit tnum 2444 * known and unknown bits. The previous smin/smax bounds are 2445 * invalid here because of jmp32 compare so mark them unknown 2446 * so they do not impact tnum bounds calculation. 2447 */ 2448 __mark_reg64_unbounded(reg); 2449 } 2450 reg_bounds_sync(reg); 2451 } 2452 2453 static bool __reg64_bound_s32(s64 a) 2454 { 2455 return a >= S32_MIN && a <= S32_MAX; 2456 } 2457 2458 static bool __reg64_bound_u32(u64 a) 2459 { 2460 return a >= U32_MIN && a <= U32_MAX; 2461 } 2462 2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2464 { 2465 __mark_reg32_unbounded(reg); 2466 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2467 reg->s32_min_value = (s32)reg->smin_value; 2468 reg->s32_max_value = (s32)reg->smax_value; 2469 } 2470 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2471 reg->u32_min_value = (u32)reg->umin_value; 2472 reg->u32_max_value = (u32)reg->umax_value; 2473 } 2474 reg_bounds_sync(reg); 2475 } 2476 2477 /* Mark a register as having a completely unknown (scalar) value. */ 2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2479 struct bpf_reg_state *reg) 2480 { 2481 /* 2482 * Clear type, off, and union(map_ptr, range) and 2483 * padding between 'type' and union 2484 */ 2485 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2486 reg->type = SCALAR_VALUE; 2487 reg->id = 0; 2488 reg->ref_obj_id = 0; 2489 reg->var_off = tnum_unknown; 2490 reg->frameno = 0; 2491 reg->precise = !env->bpf_capable; 2492 __mark_reg_unbounded(reg); 2493 } 2494 2495 static void mark_reg_unknown(struct bpf_verifier_env *env, 2496 struct bpf_reg_state *regs, u32 regno) 2497 { 2498 if (WARN_ON(regno >= MAX_BPF_REG)) { 2499 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2500 /* Something bad happened, let's kill all regs except FP */ 2501 for (regno = 0; regno < BPF_REG_FP; regno++) 2502 __mark_reg_not_init(env, regs + regno); 2503 return; 2504 } 2505 __mark_reg_unknown(env, regs + regno); 2506 } 2507 2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2509 struct bpf_reg_state *reg) 2510 { 2511 __mark_reg_unknown(env, reg); 2512 reg->type = NOT_INIT; 2513 } 2514 2515 static void mark_reg_not_init(struct bpf_verifier_env *env, 2516 struct bpf_reg_state *regs, u32 regno) 2517 { 2518 if (WARN_ON(regno >= MAX_BPF_REG)) { 2519 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2520 /* Something bad happened, let's kill all regs except FP */ 2521 for (regno = 0; regno < BPF_REG_FP; regno++) 2522 __mark_reg_not_init(env, regs + regno); 2523 return; 2524 } 2525 __mark_reg_not_init(env, regs + regno); 2526 } 2527 2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2529 struct bpf_reg_state *regs, u32 regno, 2530 enum bpf_reg_type reg_type, 2531 struct btf *btf, u32 btf_id, 2532 enum bpf_type_flag flag) 2533 { 2534 if (reg_type == SCALAR_VALUE) { 2535 mark_reg_unknown(env, regs, regno); 2536 return; 2537 } 2538 mark_reg_known_zero(env, regs, regno); 2539 regs[regno].type = PTR_TO_BTF_ID | flag; 2540 regs[regno].btf = btf; 2541 regs[regno].btf_id = btf_id; 2542 if (type_may_be_null(flag)) 2543 regs[regno].id = ++env->id_gen; 2544 } 2545 2546 #define DEF_NOT_SUBREG (0) 2547 static void init_reg_state(struct bpf_verifier_env *env, 2548 struct bpf_func_state *state) 2549 { 2550 struct bpf_reg_state *regs = state->regs; 2551 int i; 2552 2553 for (i = 0; i < MAX_BPF_REG; i++) { 2554 mark_reg_not_init(env, regs, i); 2555 regs[i].live = REG_LIVE_NONE; 2556 regs[i].parent = NULL; 2557 regs[i].subreg_def = DEF_NOT_SUBREG; 2558 } 2559 2560 /* frame pointer */ 2561 regs[BPF_REG_FP].type = PTR_TO_STACK; 2562 mark_reg_known_zero(env, regs, BPF_REG_FP); 2563 regs[BPF_REG_FP].frameno = state->frameno; 2564 } 2565 2566 #define BPF_MAIN_FUNC (-1) 2567 static void init_func_state(struct bpf_verifier_env *env, 2568 struct bpf_func_state *state, 2569 int callsite, int frameno, int subprogno) 2570 { 2571 state->callsite = callsite; 2572 state->frameno = frameno; 2573 state->subprogno = subprogno; 2574 state->callback_ret_range = tnum_range(0, 0); 2575 init_reg_state(env, state); 2576 mark_verifier_state_scratched(env); 2577 } 2578 2579 /* Similar to push_stack(), but for async callbacks */ 2580 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2581 int insn_idx, int prev_insn_idx, 2582 int subprog) 2583 { 2584 struct bpf_verifier_stack_elem *elem; 2585 struct bpf_func_state *frame; 2586 2587 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2588 if (!elem) 2589 goto err; 2590 2591 elem->insn_idx = insn_idx; 2592 elem->prev_insn_idx = prev_insn_idx; 2593 elem->next = env->head; 2594 elem->log_pos = env->log.end_pos; 2595 env->head = elem; 2596 env->stack_size++; 2597 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2598 verbose(env, 2599 "The sequence of %d jumps is too complex for async cb.\n", 2600 env->stack_size); 2601 goto err; 2602 } 2603 /* Unlike push_stack() do not copy_verifier_state(). 2604 * The caller state doesn't matter. 2605 * This is async callback. It starts in a fresh stack. 2606 * Initialize it similar to do_check_common(). 2607 */ 2608 elem->st.branches = 1; 2609 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2610 if (!frame) 2611 goto err; 2612 init_func_state(env, frame, 2613 BPF_MAIN_FUNC /* callsite */, 2614 0 /* frameno within this callchain */, 2615 subprog /* subprog number within this prog */); 2616 elem->st.frame[0] = frame; 2617 return &elem->st; 2618 err: 2619 free_verifier_state(env->cur_state, true); 2620 env->cur_state = NULL; 2621 /* pop all elements and return */ 2622 while (!pop_stack(env, NULL, NULL, false)); 2623 return NULL; 2624 } 2625 2626 2627 enum reg_arg_type { 2628 SRC_OP, /* register is used as source operand */ 2629 DST_OP, /* register is used as destination operand */ 2630 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2631 }; 2632 2633 static int cmp_subprogs(const void *a, const void *b) 2634 { 2635 return ((struct bpf_subprog_info *)a)->start - 2636 ((struct bpf_subprog_info *)b)->start; 2637 } 2638 2639 static int find_subprog(struct bpf_verifier_env *env, int off) 2640 { 2641 struct bpf_subprog_info *p; 2642 2643 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2644 sizeof(env->subprog_info[0]), cmp_subprogs); 2645 if (!p) 2646 return -ENOENT; 2647 return p - env->subprog_info; 2648 2649 } 2650 2651 static int add_subprog(struct bpf_verifier_env *env, int off) 2652 { 2653 int insn_cnt = env->prog->len; 2654 int ret; 2655 2656 if (off >= insn_cnt || off < 0) { 2657 verbose(env, "call to invalid destination\n"); 2658 return -EINVAL; 2659 } 2660 ret = find_subprog(env, off); 2661 if (ret >= 0) 2662 return ret; 2663 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2664 verbose(env, "too many subprograms\n"); 2665 return -E2BIG; 2666 } 2667 /* determine subprog starts. The end is one before the next starts */ 2668 env->subprog_info[env->subprog_cnt++].start = off; 2669 sort(env->subprog_info, env->subprog_cnt, 2670 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2671 return env->subprog_cnt - 1; 2672 } 2673 2674 #define MAX_KFUNC_DESCS 256 2675 #define MAX_KFUNC_BTFS 256 2676 2677 struct bpf_kfunc_desc { 2678 struct btf_func_model func_model; 2679 u32 func_id; 2680 s32 imm; 2681 u16 offset; 2682 unsigned long addr; 2683 }; 2684 2685 struct bpf_kfunc_btf { 2686 struct btf *btf; 2687 struct module *module; 2688 u16 offset; 2689 }; 2690 2691 struct bpf_kfunc_desc_tab { 2692 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2693 * verification. JITs do lookups by bpf_insn, where func_id may not be 2694 * available, therefore at the end of verification do_misc_fixups() 2695 * sorts this by imm and offset. 2696 */ 2697 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2698 u32 nr_descs; 2699 }; 2700 2701 struct bpf_kfunc_btf_tab { 2702 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2703 u32 nr_descs; 2704 }; 2705 2706 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2707 { 2708 const struct bpf_kfunc_desc *d0 = a; 2709 const struct bpf_kfunc_desc *d1 = b; 2710 2711 /* func_id is not greater than BTF_MAX_TYPE */ 2712 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2713 } 2714 2715 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2716 { 2717 const struct bpf_kfunc_btf *d0 = a; 2718 const struct bpf_kfunc_btf *d1 = b; 2719 2720 return d0->offset - d1->offset; 2721 } 2722 2723 static const struct bpf_kfunc_desc * 2724 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2725 { 2726 struct bpf_kfunc_desc desc = { 2727 .func_id = func_id, 2728 .offset = offset, 2729 }; 2730 struct bpf_kfunc_desc_tab *tab; 2731 2732 tab = prog->aux->kfunc_tab; 2733 return bsearch(&desc, tab->descs, tab->nr_descs, 2734 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2735 } 2736 2737 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2738 u16 btf_fd_idx, u8 **func_addr) 2739 { 2740 const struct bpf_kfunc_desc *desc; 2741 2742 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2743 if (!desc) 2744 return -EFAULT; 2745 2746 *func_addr = (u8 *)desc->addr; 2747 return 0; 2748 } 2749 2750 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2751 s16 offset) 2752 { 2753 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2754 struct bpf_kfunc_btf_tab *tab; 2755 struct bpf_kfunc_btf *b; 2756 struct module *mod; 2757 struct btf *btf; 2758 int btf_fd; 2759 2760 tab = env->prog->aux->kfunc_btf_tab; 2761 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2762 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2763 if (!b) { 2764 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2765 verbose(env, "too many different module BTFs\n"); 2766 return ERR_PTR(-E2BIG); 2767 } 2768 2769 if (bpfptr_is_null(env->fd_array)) { 2770 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2771 return ERR_PTR(-EPROTO); 2772 } 2773 2774 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2775 offset * sizeof(btf_fd), 2776 sizeof(btf_fd))) 2777 return ERR_PTR(-EFAULT); 2778 2779 btf = btf_get_by_fd(btf_fd); 2780 if (IS_ERR(btf)) { 2781 verbose(env, "invalid module BTF fd specified\n"); 2782 return btf; 2783 } 2784 2785 if (!btf_is_module(btf)) { 2786 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2787 btf_put(btf); 2788 return ERR_PTR(-EINVAL); 2789 } 2790 2791 mod = btf_try_get_module(btf); 2792 if (!mod) { 2793 btf_put(btf); 2794 return ERR_PTR(-ENXIO); 2795 } 2796 2797 b = &tab->descs[tab->nr_descs++]; 2798 b->btf = btf; 2799 b->module = mod; 2800 b->offset = offset; 2801 2802 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2803 kfunc_btf_cmp_by_off, NULL); 2804 } 2805 return b->btf; 2806 } 2807 2808 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2809 { 2810 if (!tab) 2811 return; 2812 2813 while (tab->nr_descs--) { 2814 module_put(tab->descs[tab->nr_descs].module); 2815 btf_put(tab->descs[tab->nr_descs].btf); 2816 } 2817 kfree(tab); 2818 } 2819 2820 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2821 { 2822 if (offset) { 2823 if (offset < 0) { 2824 /* In the future, this can be allowed to increase limit 2825 * of fd index into fd_array, interpreted as u16. 2826 */ 2827 verbose(env, "negative offset disallowed for kernel module function call\n"); 2828 return ERR_PTR(-EINVAL); 2829 } 2830 2831 return __find_kfunc_desc_btf(env, offset); 2832 } 2833 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2834 } 2835 2836 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2837 { 2838 const struct btf_type *func, *func_proto; 2839 struct bpf_kfunc_btf_tab *btf_tab; 2840 struct bpf_kfunc_desc_tab *tab; 2841 struct bpf_prog_aux *prog_aux; 2842 struct bpf_kfunc_desc *desc; 2843 const char *func_name; 2844 struct btf *desc_btf; 2845 unsigned long call_imm; 2846 unsigned long addr; 2847 int err; 2848 2849 prog_aux = env->prog->aux; 2850 tab = prog_aux->kfunc_tab; 2851 btf_tab = prog_aux->kfunc_btf_tab; 2852 if (!tab) { 2853 if (!btf_vmlinux) { 2854 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2855 return -ENOTSUPP; 2856 } 2857 2858 if (!env->prog->jit_requested) { 2859 verbose(env, "JIT is required for calling kernel function\n"); 2860 return -ENOTSUPP; 2861 } 2862 2863 if (!bpf_jit_supports_kfunc_call()) { 2864 verbose(env, "JIT does not support calling kernel function\n"); 2865 return -ENOTSUPP; 2866 } 2867 2868 if (!env->prog->gpl_compatible) { 2869 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2870 return -EINVAL; 2871 } 2872 2873 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2874 if (!tab) 2875 return -ENOMEM; 2876 prog_aux->kfunc_tab = tab; 2877 } 2878 2879 /* func_id == 0 is always invalid, but instead of returning an error, be 2880 * conservative and wait until the code elimination pass before returning 2881 * error, so that invalid calls that get pruned out can be in BPF programs 2882 * loaded from userspace. It is also required that offset be untouched 2883 * for such calls. 2884 */ 2885 if (!func_id && !offset) 2886 return 0; 2887 2888 if (!btf_tab && offset) { 2889 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2890 if (!btf_tab) 2891 return -ENOMEM; 2892 prog_aux->kfunc_btf_tab = btf_tab; 2893 } 2894 2895 desc_btf = find_kfunc_desc_btf(env, offset); 2896 if (IS_ERR(desc_btf)) { 2897 verbose(env, "failed to find BTF for kernel function\n"); 2898 return PTR_ERR(desc_btf); 2899 } 2900 2901 if (find_kfunc_desc(env->prog, func_id, offset)) 2902 return 0; 2903 2904 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2905 verbose(env, "too many different kernel function calls\n"); 2906 return -E2BIG; 2907 } 2908 2909 func = btf_type_by_id(desc_btf, func_id); 2910 if (!func || !btf_type_is_func(func)) { 2911 verbose(env, "kernel btf_id %u is not a function\n", 2912 func_id); 2913 return -EINVAL; 2914 } 2915 func_proto = btf_type_by_id(desc_btf, func->type); 2916 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2917 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2918 func_id); 2919 return -EINVAL; 2920 } 2921 2922 func_name = btf_name_by_offset(desc_btf, func->name_off); 2923 addr = kallsyms_lookup_name(func_name); 2924 if (!addr) { 2925 verbose(env, "cannot find address for kernel function %s\n", 2926 func_name); 2927 return -EINVAL; 2928 } 2929 specialize_kfunc(env, func_id, offset, &addr); 2930 2931 if (bpf_jit_supports_far_kfunc_call()) { 2932 call_imm = func_id; 2933 } else { 2934 call_imm = BPF_CALL_IMM(addr); 2935 /* Check whether the relative offset overflows desc->imm */ 2936 if ((unsigned long)(s32)call_imm != call_imm) { 2937 verbose(env, "address of kernel function %s is out of range\n", 2938 func_name); 2939 return -EINVAL; 2940 } 2941 } 2942 2943 if (bpf_dev_bound_kfunc_id(func_id)) { 2944 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2945 if (err) 2946 return err; 2947 } 2948 2949 desc = &tab->descs[tab->nr_descs++]; 2950 desc->func_id = func_id; 2951 desc->imm = call_imm; 2952 desc->offset = offset; 2953 desc->addr = addr; 2954 err = btf_distill_func_proto(&env->log, desc_btf, 2955 func_proto, func_name, 2956 &desc->func_model); 2957 if (!err) 2958 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2959 kfunc_desc_cmp_by_id_off, NULL); 2960 return err; 2961 } 2962 2963 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2964 { 2965 const struct bpf_kfunc_desc *d0 = a; 2966 const struct bpf_kfunc_desc *d1 = b; 2967 2968 if (d0->imm != d1->imm) 2969 return d0->imm < d1->imm ? -1 : 1; 2970 if (d0->offset != d1->offset) 2971 return d0->offset < d1->offset ? -1 : 1; 2972 return 0; 2973 } 2974 2975 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2976 { 2977 struct bpf_kfunc_desc_tab *tab; 2978 2979 tab = prog->aux->kfunc_tab; 2980 if (!tab) 2981 return; 2982 2983 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2984 kfunc_desc_cmp_by_imm_off, NULL); 2985 } 2986 2987 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2988 { 2989 return !!prog->aux->kfunc_tab; 2990 } 2991 2992 const struct btf_func_model * 2993 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2994 const struct bpf_insn *insn) 2995 { 2996 const struct bpf_kfunc_desc desc = { 2997 .imm = insn->imm, 2998 .offset = insn->off, 2999 }; 3000 const struct bpf_kfunc_desc *res; 3001 struct bpf_kfunc_desc_tab *tab; 3002 3003 tab = prog->aux->kfunc_tab; 3004 res = bsearch(&desc, tab->descs, tab->nr_descs, 3005 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3006 3007 return res ? &res->func_model : NULL; 3008 } 3009 3010 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3011 { 3012 struct bpf_subprog_info *subprog = env->subprog_info; 3013 struct bpf_insn *insn = env->prog->insnsi; 3014 int i, ret, insn_cnt = env->prog->len; 3015 3016 /* Add entry function. */ 3017 ret = add_subprog(env, 0); 3018 if (ret) 3019 return ret; 3020 3021 for (i = 0; i < insn_cnt; i++, insn++) { 3022 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3023 !bpf_pseudo_kfunc_call(insn)) 3024 continue; 3025 3026 if (!env->bpf_capable) { 3027 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3028 return -EPERM; 3029 } 3030 3031 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3032 ret = add_subprog(env, i + insn->imm + 1); 3033 else 3034 ret = add_kfunc_call(env, insn->imm, insn->off); 3035 3036 if (ret < 0) 3037 return ret; 3038 } 3039 3040 /* Add a fake 'exit' subprog which could simplify subprog iteration 3041 * logic. 'subprog_cnt' should not be increased. 3042 */ 3043 subprog[env->subprog_cnt].start = insn_cnt; 3044 3045 if (env->log.level & BPF_LOG_LEVEL2) 3046 for (i = 0; i < env->subprog_cnt; i++) 3047 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3048 3049 return 0; 3050 } 3051 3052 static int check_subprogs(struct bpf_verifier_env *env) 3053 { 3054 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3055 struct bpf_subprog_info *subprog = env->subprog_info; 3056 struct bpf_insn *insn = env->prog->insnsi; 3057 int insn_cnt = env->prog->len; 3058 3059 /* now check that all jumps are within the same subprog */ 3060 subprog_start = subprog[cur_subprog].start; 3061 subprog_end = subprog[cur_subprog + 1].start; 3062 for (i = 0; i < insn_cnt; i++) { 3063 u8 code = insn[i].code; 3064 3065 if (code == (BPF_JMP | BPF_CALL) && 3066 insn[i].src_reg == 0 && 3067 insn[i].imm == BPF_FUNC_tail_call) { 3068 subprog[cur_subprog].has_tail_call = true; 3069 subprog[cur_subprog].tail_call_reachable = true; 3070 } 3071 if (BPF_CLASS(code) == BPF_LD && 3072 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3073 subprog[cur_subprog].has_ld_abs = true; 3074 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3075 goto next; 3076 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3077 goto next; 3078 if (code == (BPF_JMP32 | BPF_JA)) 3079 off = i + insn[i].imm + 1; 3080 else 3081 off = i + insn[i].off + 1; 3082 if (off < subprog_start || off >= subprog_end) { 3083 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3084 return -EINVAL; 3085 } 3086 next: 3087 if (i == subprog_end - 1) { 3088 /* to avoid fall-through from one subprog into another 3089 * the last insn of the subprog should be either exit 3090 * or unconditional jump back 3091 */ 3092 if (code != (BPF_JMP | BPF_EXIT) && 3093 code != (BPF_JMP32 | BPF_JA) && 3094 code != (BPF_JMP | BPF_JA)) { 3095 verbose(env, "last insn is not an exit or jmp\n"); 3096 return -EINVAL; 3097 } 3098 subprog_start = subprog_end; 3099 cur_subprog++; 3100 if (cur_subprog < env->subprog_cnt) 3101 subprog_end = subprog[cur_subprog + 1].start; 3102 } 3103 } 3104 return 0; 3105 } 3106 3107 /* Parentage chain of this register (or stack slot) should take care of all 3108 * issues like callee-saved registers, stack slot allocation time, etc. 3109 */ 3110 static int mark_reg_read(struct bpf_verifier_env *env, 3111 const struct bpf_reg_state *state, 3112 struct bpf_reg_state *parent, u8 flag) 3113 { 3114 bool writes = parent == state->parent; /* Observe write marks */ 3115 int cnt = 0; 3116 3117 while (parent) { 3118 /* if read wasn't screened by an earlier write ... */ 3119 if (writes && state->live & REG_LIVE_WRITTEN) 3120 break; 3121 if (parent->live & REG_LIVE_DONE) { 3122 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3123 reg_type_str(env, parent->type), 3124 parent->var_off.value, parent->off); 3125 return -EFAULT; 3126 } 3127 /* The first condition is more likely to be true than the 3128 * second, checked it first. 3129 */ 3130 if ((parent->live & REG_LIVE_READ) == flag || 3131 parent->live & REG_LIVE_READ64) 3132 /* The parentage chain never changes and 3133 * this parent was already marked as LIVE_READ. 3134 * There is no need to keep walking the chain again and 3135 * keep re-marking all parents as LIVE_READ. 3136 * This case happens when the same register is read 3137 * multiple times without writes into it in-between. 3138 * Also, if parent has the stronger REG_LIVE_READ64 set, 3139 * then no need to set the weak REG_LIVE_READ32. 3140 */ 3141 break; 3142 /* ... then we depend on parent's value */ 3143 parent->live |= flag; 3144 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3145 if (flag == REG_LIVE_READ64) 3146 parent->live &= ~REG_LIVE_READ32; 3147 state = parent; 3148 parent = state->parent; 3149 writes = true; 3150 cnt++; 3151 } 3152 3153 if (env->longest_mark_read_walk < cnt) 3154 env->longest_mark_read_walk = cnt; 3155 return 0; 3156 } 3157 3158 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3159 { 3160 struct bpf_func_state *state = func(env, reg); 3161 int spi, ret; 3162 3163 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3164 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3165 * check_kfunc_call. 3166 */ 3167 if (reg->type == CONST_PTR_TO_DYNPTR) 3168 return 0; 3169 spi = dynptr_get_spi(env, reg); 3170 if (spi < 0) 3171 return spi; 3172 /* Caller ensures dynptr is valid and initialized, which means spi is in 3173 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3174 * read. 3175 */ 3176 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3177 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3178 if (ret) 3179 return ret; 3180 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3181 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3182 } 3183 3184 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3185 int spi, int nr_slots) 3186 { 3187 struct bpf_func_state *state = func(env, reg); 3188 int err, i; 3189 3190 for (i = 0; i < nr_slots; i++) { 3191 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3192 3193 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3194 if (err) 3195 return err; 3196 3197 mark_stack_slot_scratched(env, spi - i); 3198 } 3199 3200 return 0; 3201 } 3202 3203 /* This function is supposed to be used by the following 32-bit optimization 3204 * code only. It returns TRUE if the source or destination register operates 3205 * on 64-bit, otherwise return FALSE. 3206 */ 3207 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3208 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3209 { 3210 u8 code, class, op; 3211 3212 code = insn->code; 3213 class = BPF_CLASS(code); 3214 op = BPF_OP(code); 3215 if (class == BPF_JMP) { 3216 /* BPF_EXIT for "main" will reach here. Return TRUE 3217 * conservatively. 3218 */ 3219 if (op == BPF_EXIT) 3220 return true; 3221 if (op == BPF_CALL) { 3222 /* BPF to BPF call will reach here because of marking 3223 * caller saved clobber with DST_OP_NO_MARK for which we 3224 * don't care the register def because they are anyway 3225 * marked as NOT_INIT already. 3226 */ 3227 if (insn->src_reg == BPF_PSEUDO_CALL) 3228 return false; 3229 /* Helper call will reach here because of arg type 3230 * check, conservatively return TRUE. 3231 */ 3232 if (t == SRC_OP) 3233 return true; 3234 3235 return false; 3236 } 3237 } 3238 3239 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3240 return false; 3241 3242 if (class == BPF_ALU64 || class == BPF_JMP || 3243 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3244 return true; 3245 3246 if (class == BPF_ALU || class == BPF_JMP32) 3247 return false; 3248 3249 if (class == BPF_LDX) { 3250 if (t != SRC_OP) 3251 return BPF_SIZE(code) == BPF_DW; 3252 /* LDX source must be ptr. */ 3253 return true; 3254 } 3255 3256 if (class == BPF_STX) { 3257 /* BPF_STX (including atomic variants) has multiple source 3258 * operands, one of which is a ptr. Check whether the caller is 3259 * asking about it. 3260 */ 3261 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3262 return true; 3263 return BPF_SIZE(code) == BPF_DW; 3264 } 3265 3266 if (class == BPF_LD) { 3267 u8 mode = BPF_MODE(code); 3268 3269 /* LD_IMM64 */ 3270 if (mode == BPF_IMM) 3271 return true; 3272 3273 /* Both LD_IND and LD_ABS return 32-bit data. */ 3274 if (t != SRC_OP) 3275 return false; 3276 3277 /* Implicit ctx ptr. */ 3278 if (regno == BPF_REG_6) 3279 return true; 3280 3281 /* Explicit source could be any width. */ 3282 return true; 3283 } 3284 3285 if (class == BPF_ST) 3286 /* The only source register for BPF_ST is a ptr. */ 3287 return true; 3288 3289 /* Conservatively return true at default. */ 3290 return true; 3291 } 3292 3293 /* Return the regno defined by the insn, or -1. */ 3294 static int insn_def_regno(const struct bpf_insn *insn) 3295 { 3296 switch (BPF_CLASS(insn->code)) { 3297 case BPF_JMP: 3298 case BPF_JMP32: 3299 case BPF_ST: 3300 return -1; 3301 case BPF_STX: 3302 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3303 (insn->imm & BPF_FETCH)) { 3304 if (insn->imm == BPF_CMPXCHG) 3305 return BPF_REG_0; 3306 else 3307 return insn->src_reg; 3308 } else { 3309 return -1; 3310 } 3311 default: 3312 return insn->dst_reg; 3313 } 3314 } 3315 3316 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3317 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3318 { 3319 int dst_reg = insn_def_regno(insn); 3320 3321 if (dst_reg == -1) 3322 return false; 3323 3324 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3325 } 3326 3327 static void mark_insn_zext(struct bpf_verifier_env *env, 3328 struct bpf_reg_state *reg) 3329 { 3330 s32 def_idx = reg->subreg_def; 3331 3332 if (def_idx == DEF_NOT_SUBREG) 3333 return; 3334 3335 env->insn_aux_data[def_idx - 1].zext_dst = true; 3336 /* The dst will be zero extended, so won't be sub-register anymore. */ 3337 reg->subreg_def = DEF_NOT_SUBREG; 3338 } 3339 3340 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3341 enum reg_arg_type t) 3342 { 3343 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3344 struct bpf_reg_state *reg; 3345 bool rw64; 3346 3347 if (regno >= MAX_BPF_REG) { 3348 verbose(env, "R%d is invalid\n", regno); 3349 return -EINVAL; 3350 } 3351 3352 mark_reg_scratched(env, regno); 3353 3354 reg = ®s[regno]; 3355 rw64 = is_reg64(env, insn, regno, reg, t); 3356 if (t == SRC_OP) { 3357 /* check whether register used as source operand can be read */ 3358 if (reg->type == NOT_INIT) { 3359 verbose(env, "R%d !read_ok\n", regno); 3360 return -EACCES; 3361 } 3362 /* We don't need to worry about FP liveness because it's read-only */ 3363 if (regno == BPF_REG_FP) 3364 return 0; 3365 3366 if (rw64) 3367 mark_insn_zext(env, reg); 3368 3369 return mark_reg_read(env, reg, reg->parent, 3370 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3371 } else { 3372 /* check whether register used as dest operand can be written to */ 3373 if (regno == BPF_REG_FP) { 3374 verbose(env, "frame pointer is read only\n"); 3375 return -EACCES; 3376 } 3377 reg->live |= REG_LIVE_WRITTEN; 3378 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3379 if (t == DST_OP) 3380 mark_reg_unknown(env, regs, regno); 3381 } 3382 return 0; 3383 } 3384 3385 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3386 enum reg_arg_type t) 3387 { 3388 struct bpf_verifier_state *vstate = env->cur_state; 3389 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3390 3391 return __check_reg_arg(env, state->regs, regno, t); 3392 } 3393 3394 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3395 { 3396 env->insn_aux_data[idx].jmp_point = true; 3397 } 3398 3399 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3400 { 3401 return env->insn_aux_data[insn_idx].jmp_point; 3402 } 3403 3404 /* for any branch, call, exit record the history of jmps in the given state */ 3405 static int push_jmp_history(struct bpf_verifier_env *env, 3406 struct bpf_verifier_state *cur) 3407 { 3408 u32 cnt = cur->jmp_history_cnt; 3409 struct bpf_idx_pair *p; 3410 size_t alloc_size; 3411 3412 if (!is_jmp_point(env, env->insn_idx)) 3413 return 0; 3414 3415 cnt++; 3416 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3417 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3418 if (!p) 3419 return -ENOMEM; 3420 p[cnt - 1].idx = env->insn_idx; 3421 p[cnt - 1].prev_idx = env->prev_insn_idx; 3422 cur->jmp_history = p; 3423 cur->jmp_history_cnt = cnt; 3424 return 0; 3425 } 3426 3427 /* Backtrack one insn at a time. If idx is not at the top of recorded 3428 * history then previous instruction came from straight line execution. 3429 * Return -ENOENT if we exhausted all instructions within given state. 3430 * 3431 * It's legal to have a bit of a looping with the same starting and ending 3432 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3433 * instruction index is the same as state's first_idx doesn't mean we are 3434 * done. If there is still some jump history left, we should keep going. We 3435 * need to take into account that we might have a jump history between given 3436 * state's parent and itself, due to checkpointing. In this case, we'll have 3437 * history entry recording a jump from last instruction of parent state and 3438 * first instruction of given state. 3439 */ 3440 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3441 u32 *history) 3442 { 3443 u32 cnt = *history; 3444 3445 if (i == st->first_insn_idx) { 3446 if (cnt == 0) 3447 return -ENOENT; 3448 if (cnt == 1 && st->jmp_history[0].idx == i) 3449 return -ENOENT; 3450 } 3451 3452 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3453 i = st->jmp_history[cnt - 1].prev_idx; 3454 (*history)--; 3455 } else { 3456 i--; 3457 } 3458 return i; 3459 } 3460 3461 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3462 { 3463 const struct btf_type *func; 3464 struct btf *desc_btf; 3465 3466 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3467 return NULL; 3468 3469 desc_btf = find_kfunc_desc_btf(data, insn->off); 3470 if (IS_ERR(desc_btf)) 3471 return "<error>"; 3472 3473 func = btf_type_by_id(desc_btf, insn->imm); 3474 return btf_name_by_offset(desc_btf, func->name_off); 3475 } 3476 3477 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3478 { 3479 bt->frame = frame; 3480 } 3481 3482 static inline void bt_reset(struct backtrack_state *bt) 3483 { 3484 struct bpf_verifier_env *env = bt->env; 3485 3486 memset(bt, 0, sizeof(*bt)); 3487 bt->env = env; 3488 } 3489 3490 static inline u32 bt_empty(struct backtrack_state *bt) 3491 { 3492 u64 mask = 0; 3493 int i; 3494 3495 for (i = 0; i <= bt->frame; i++) 3496 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3497 3498 return mask == 0; 3499 } 3500 3501 static inline int bt_subprog_enter(struct backtrack_state *bt) 3502 { 3503 if (bt->frame == MAX_CALL_FRAMES - 1) { 3504 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3505 WARN_ONCE(1, "verifier backtracking bug"); 3506 return -EFAULT; 3507 } 3508 bt->frame++; 3509 return 0; 3510 } 3511 3512 static inline int bt_subprog_exit(struct backtrack_state *bt) 3513 { 3514 if (bt->frame == 0) { 3515 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3516 WARN_ONCE(1, "verifier backtracking bug"); 3517 return -EFAULT; 3518 } 3519 bt->frame--; 3520 return 0; 3521 } 3522 3523 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3524 { 3525 bt->reg_masks[frame] |= 1 << reg; 3526 } 3527 3528 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3529 { 3530 bt->reg_masks[frame] &= ~(1 << reg); 3531 } 3532 3533 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3534 { 3535 bt_set_frame_reg(bt, bt->frame, reg); 3536 } 3537 3538 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3539 { 3540 bt_clear_frame_reg(bt, bt->frame, reg); 3541 } 3542 3543 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3544 { 3545 bt->stack_masks[frame] |= 1ull << slot; 3546 } 3547 3548 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3549 { 3550 bt->stack_masks[frame] &= ~(1ull << slot); 3551 } 3552 3553 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3554 { 3555 bt_set_frame_slot(bt, bt->frame, slot); 3556 } 3557 3558 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3559 { 3560 bt_clear_frame_slot(bt, bt->frame, slot); 3561 } 3562 3563 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3564 { 3565 return bt->reg_masks[frame]; 3566 } 3567 3568 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3569 { 3570 return bt->reg_masks[bt->frame]; 3571 } 3572 3573 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3574 { 3575 return bt->stack_masks[frame]; 3576 } 3577 3578 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3579 { 3580 return bt->stack_masks[bt->frame]; 3581 } 3582 3583 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3584 { 3585 return bt->reg_masks[bt->frame] & (1 << reg); 3586 } 3587 3588 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3589 { 3590 return bt->stack_masks[bt->frame] & (1ull << slot); 3591 } 3592 3593 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3594 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3595 { 3596 DECLARE_BITMAP(mask, 64); 3597 bool first = true; 3598 int i, n; 3599 3600 buf[0] = '\0'; 3601 3602 bitmap_from_u64(mask, reg_mask); 3603 for_each_set_bit(i, mask, 32) { 3604 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3605 first = false; 3606 buf += n; 3607 buf_sz -= n; 3608 if (buf_sz < 0) 3609 break; 3610 } 3611 } 3612 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3613 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3614 { 3615 DECLARE_BITMAP(mask, 64); 3616 bool first = true; 3617 int i, n; 3618 3619 buf[0] = '\0'; 3620 3621 bitmap_from_u64(mask, stack_mask); 3622 for_each_set_bit(i, mask, 64) { 3623 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3624 first = false; 3625 buf += n; 3626 buf_sz -= n; 3627 if (buf_sz < 0) 3628 break; 3629 } 3630 } 3631 3632 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3633 3634 /* For given verifier state backtrack_insn() is called from the last insn to 3635 * the first insn. Its purpose is to compute a bitmask of registers and 3636 * stack slots that needs precision in the parent verifier state. 3637 * 3638 * @idx is an index of the instruction we are currently processing; 3639 * @subseq_idx is an index of the subsequent instruction that: 3640 * - *would be* executed next, if jump history is viewed in forward order; 3641 * - *was* processed previously during backtracking. 3642 */ 3643 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3644 struct backtrack_state *bt) 3645 { 3646 const struct bpf_insn_cbs cbs = { 3647 .cb_call = disasm_kfunc_name, 3648 .cb_print = verbose, 3649 .private_data = env, 3650 }; 3651 struct bpf_insn *insn = env->prog->insnsi + idx; 3652 u8 class = BPF_CLASS(insn->code); 3653 u8 opcode = BPF_OP(insn->code); 3654 u8 mode = BPF_MODE(insn->code); 3655 u32 dreg = insn->dst_reg; 3656 u32 sreg = insn->src_reg; 3657 u32 spi, i; 3658 3659 if (insn->code == 0) 3660 return 0; 3661 if (env->log.level & BPF_LOG_LEVEL2) { 3662 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3663 verbose(env, "mark_precise: frame%d: regs=%s ", 3664 bt->frame, env->tmp_str_buf); 3665 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3666 verbose(env, "stack=%s before ", env->tmp_str_buf); 3667 verbose(env, "%d: ", idx); 3668 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3669 } 3670 3671 if (class == BPF_ALU || class == BPF_ALU64) { 3672 if (!bt_is_reg_set(bt, dreg)) 3673 return 0; 3674 if (opcode == BPF_END || opcode == BPF_NEG) { 3675 /* sreg is reserved and unused 3676 * dreg still need precision before this insn 3677 */ 3678 return 0; 3679 } else if (opcode == BPF_MOV) { 3680 if (BPF_SRC(insn->code) == BPF_X) { 3681 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3682 * dreg needs precision after this insn 3683 * sreg needs precision before this insn 3684 */ 3685 bt_clear_reg(bt, dreg); 3686 if (sreg != BPF_REG_FP) 3687 bt_set_reg(bt, sreg); 3688 } else { 3689 /* dreg = K 3690 * dreg needs precision after this insn. 3691 * Corresponding register is already marked 3692 * as precise=true in this verifier state. 3693 * No further markings in parent are necessary 3694 */ 3695 bt_clear_reg(bt, dreg); 3696 } 3697 } else { 3698 if (BPF_SRC(insn->code) == BPF_X) { 3699 /* dreg += sreg 3700 * both dreg and sreg need precision 3701 * before this insn 3702 */ 3703 if (sreg != BPF_REG_FP) 3704 bt_set_reg(bt, sreg); 3705 } /* else dreg += K 3706 * dreg still needs precision before this insn 3707 */ 3708 } 3709 } else if (class == BPF_LDX) { 3710 if (!bt_is_reg_set(bt, dreg)) 3711 return 0; 3712 bt_clear_reg(bt, dreg); 3713 3714 /* scalars can only be spilled into stack w/o losing precision. 3715 * Load from any other memory can be zero extended. 3716 * The desire to keep that precision is already indicated 3717 * by 'precise' mark in corresponding register of this state. 3718 * No further tracking necessary. 3719 */ 3720 if (insn->src_reg != BPF_REG_FP) 3721 return 0; 3722 3723 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3724 * that [fp - off] slot contains scalar that needs to be 3725 * tracked with precision 3726 */ 3727 spi = (-insn->off - 1) / BPF_REG_SIZE; 3728 if (spi >= 64) { 3729 verbose(env, "BUG spi %d\n", spi); 3730 WARN_ONCE(1, "verifier backtracking bug"); 3731 return -EFAULT; 3732 } 3733 bt_set_slot(bt, spi); 3734 } else if (class == BPF_STX || class == BPF_ST) { 3735 if (bt_is_reg_set(bt, dreg)) 3736 /* stx & st shouldn't be using _scalar_ dst_reg 3737 * to access memory. It means backtracking 3738 * encountered a case of pointer subtraction. 3739 */ 3740 return -ENOTSUPP; 3741 /* scalars can only be spilled into stack */ 3742 if (insn->dst_reg != BPF_REG_FP) 3743 return 0; 3744 spi = (-insn->off - 1) / BPF_REG_SIZE; 3745 if (spi >= 64) { 3746 verbose(env, "BUG spi %d\n", spi); 3747 WARN_ONCE(1, "verifier backtracking bug"); 3748 return -EFAULT; 3749 } 3750 if (!bt_is_slot_set(bt, spi)) 3751 return 0; 3752 bt_clear_slot(bt, spi); 3753 if (class == BPF_STX) 3754 bt_set_reg(bt, sreg); 3755 } else if (class == BPF_JMP || class == BPF_JMP32) { 3756 if (bpf_pseudo_call(insn)) { 3757 int subprog_insn_idx, subprog; 3758 3759 subprog_insn_idx = idx + insn->imm + 1; 3760 subprog = find_subprog(env, subprog_insn_idx); 3761 if (subprog < 0) 3762 return -EFAULT; 3763 3764 if (subprog_is_global(env, subprog)) { 3765 /* check that jump history doesn't have any 3766 * extra instructions from subprog; the next 3767 * instruction after call to global subprog 3768 * should be literally next instruction in 3769 * caller program 3770 */ 3771 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3772 /* r1-r5 are invalidated after subprog call, 3773 * so for global func call it shouldn't be set 3774 * anymore 3775 */ 3776 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3777 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3778 WARN_ONCE(1, "verifier backtracking bug"); 3779 return -EFAULT; 3780 } 3781 /* global subprog always sets R0 */ 3782 bt_clear_reg(bt, BPF_REG_0); 3783 return 0; 3784 } else { 3785 /* static subprog call instruction, which 3786 * means that we are exiting current subprog, 3787 * so only r1-r5 could be still requested as 3788 * precise, r0 and r6-r10 or any stack slot in 3789 * the current frame should be zero by now 3790 */ 3791 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3792 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3793 WARN_ONCE(1, "verifier backtracking bug"); 3794 return -EFAULT; 3795 } 3796 /* we don't track register spills perfectly, 3797 * so fallback to force-precise instead of failing */ 3798 if (bt_stack_mask(bt) != 0) 3799 return -ENOTSUPP; 3800 /* propagate r1-r5 to the caller */ 3801 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3802 if (bt_is_reg_set(bt, i)) { 3803 bt_clear_reg(bt, i); 3804 bt_set_frame_reg(bt, bt->frame - 1, i); 3805 } 3806 } 3807 if (bt_subprog_exit(bt)) 3808 return -EFAULT; 3809 return 0; 3810 } 3811 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3812 /* exit from callback subprog to callback-calling helper or 3813 * kfunc call. Use idx/subseq_idx check to discern it from 3814 * straight line code backtracking. 3815 * Unlike the subprog call handling above, we shouldn't 3816 * propagate precision of r1-r5 (if any requested), as they are 3817 * not actually arguments passed directly to callback subprogs 3818 */ 3819 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3820 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3821 WARN_ONCE(1, "verifier backtracking bug"); 3822 return -EFAULT; 3823 } 3824 if (bt_stack_mask(bt) != 0) 3825 return -ENOTSUPP; 3826 /* clear r1-r5 in callback subprog's mask */ 3827 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3828 bt_clear_reg(bt, i); 3829 if (bt_subprog_exit(bt)) 3830 return -EFAULT; 3831 return 0; 3832 } else if (opcode == BPF_CALL) { 3833 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3834 * catch this error later. Make backtracking conservative 3835 * with ENOTSUPP. 3836 */ 3837 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3838 return -ENOTSUPP; 3839 /* regular helper call sets R0 */ 3840 bt_clear_reg(bt, BPF_REG_0); 3841 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3842 /* if backtracing was looking for registers R1-R5 3843 * they should have been found already. 3844 */ 3845 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3846 WARN_ONCE(1, "verifier backtracking bug"); 3847 return -EFAULT; 3848 } 3849 } else if (opcode == BPF_EXIT) { 3850 bool r0_precise; 3851 3852 /* Backtracking to a nested function call, 'idx' is a part of 3853 * the inner frame 'subseq_idx' is a part of the outer frame. 3854 * In case of a regular function call, instructions giving 3855 * precision to registers R1-R5 should have been found already. 3856 * In case of a callback, it is ok to have R1-R5 marked for 3857 * backtracking, as these registers are set by the function 3858 * invoking callback. 3859 */ 3860 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3861 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3862 bt_clear_reg(bt, i); 3863 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3864 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3865 WARN_ONCE(1, "verifier backtracking bug"); 3866 return -EFAULT; 3867 } 3868 3869 /* BPF_EXIT in subprog or callback always returns 3870 * right after the call instruction, so by checking 3871 * whether the instruction at subseq_idx-1 is subprog 3872 * call or not we can distinguish actual exit from 3873 * *subprog* from exit from *callback*. In the former 3874 * case, we need to propagate r0 precision, if 3875 * necessary. In the former we never do that. 3876 */ 3877 r0_precise = subseq_idx - 1 >= 0 && 3878 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3879 bt_is_reg_set(bt, BPF_REG_0); 3880 3881 bt_clear_reg(bt, BPF_REG_0); 3882 if (bt_subprog_enter(bt)) 3883 return -EFAULT; 3884 3885 if (r0_precise) 3886 bt_set_reg(bt, BPF_REG_0); 3887 /* r6-r9 and stack slots will stay set in caller frame 3888 * bitmasks until we return back from callee(s) 3889 */ 3890 return 0; 3891 } else if (BPF_SRC(insn->code) == BPF_X) { 3892 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3893 return 0; 3894 /* dreg <cond> sreg 3895 * Both dreg and sreg need precision before 3896 * this insn. If only sreg was marked precise 3897 * before it would be equally necessary to 3898 * propagate it to dreg. 3899 */ 3900 bt_set_reg(bt, dreg); 3901 bt_set_reg(bt, sreg); 3902 /* else dreg <cond> K 3903 * Only dreg still needs precision before 3904 * this insn, so for the K-based conditional 3905 * there is nothing new to be marked. 3906 */ 3907 } 3908 } else if (class == BPF_LD) { 3909 if (!bt_is_reg_set(bt, dreg)) 3910 return 0; 3911 bt_clear_reg(bt, dreg); 3912 /* It's ld_imm64 or ld_abs or ld_ind. 3913 * For ld_imm64 no further tracking of precision 3914 * into parent is necessary 3915 */ 3916 if (mode == BPF_IND || mode == BPF_ABS) 3917 /* to be analyzed */ 3918 return -ENOTSUPP; 3919 } 3920 return 0; 3921 } 3922 3923 /* the scalar precision tracking algorithm: 3924 * . at the start all registers have precise=false. 3925 * . scalar ranges are tracked as normal through alu and jmp insns. 3926 * . once precise value of the scalar register is used in: 3927 * . ptr + scalar alu 3928 * . if (scalar cond K|scalar) 3929 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3930 * backtrack through the verifier states and mark all registers and 3931 * stack slots with spilled constants that these scalar regisers 3932 * should be precise. 3933 * . during state pruning two registers (or spilled stack slots) 3934 * are equivalent if both are not precise. 3935 * 3936 * Note the verifier cannot simply walk register parentage chain, 3937 * since many different registers and stack slots could have been 3938 * used to compute single precise scalar. 3939 * 3940 * The approach of starting with precise=true for all registers and then 3941 * backtrack to mark a register as not precise when the verifier detects 3942 * that program doesn't care about specific value (e.g., when helper 3943 * takes register as ARG_ANYTHING parameter) is not safe. 3944 * 3945 * It's ok to walk single parentage chain of the verifier states. 3946 * It's possible that this backtracking will go all the way till 1st insn. 3947 * All other branches will be explored for needing precision later. 3948 * 3949 * The backtracking needs to deal with cases like: 3950 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3951 * r9 -= r8 3952 * r5 = r9 3953 * if r5 > 0x79f goto pc+7 3954 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3955 * r5 += 1 3956 * ... 3957 * call bpf_perf_event_output#25 3958 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3959 * 3960 * and this case: 3961 * r6 = 1 3962 * call foo // uses callee's r6 inside to compute r0 3963 * r0 += r6 3964 * if r0 == 0 goto 3965 * 3966 * to track above reg_mask/stack_mask needs to be independent for each frame. 3967 * 3968 * Also if parent's curframe > frame where backtracking started, 3969 * the verifier need to mark registers in both frames, otherwise callees 3970 * may incorrectly prune callers. This is similar to 3971 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3972 * 3973 * For now backtracking falls back into conservative marking. 3974 */ 3975 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3976 struct bpf_verifier_state *st) 3977 { 3978 struct bpf_func_state *func; 3979 struct bpf_reg_state *reg; 3980 int i, j; 3981 3982 if (env->log.level & BPF_LOG_LEVEL2) { 3983 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3984 st->curframe); 3985 } 3986 3987 /* big hammer: mark all scalars precise in this path. 3988 * pop_stack may still get !precise scalars. 3989 * We also skip current state and go straight to first parent state, 3990 * because precision markings in current non-checkpointed state are 3991 * not needed. See why in the comment in __mark_chain_precision below. 3992 */ 3993 for (st = st->parent; st; st = st->parent) { 3994 for (i = 0; i <= st->curframe; i++) { 3995 func = st->frame[i]; 3996 for (j = 0; j < BPF_REG_FP; j++) { 3997 reg = &func->regs[j]; 3998 if (reg->type != SCALAR_VALUE || reg->precise) 3999 continue; 4000 reg->precise = true; 4001 if (env->log.level & BPF_LOG_LEVEL2) { 4002 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 4003 i, j); 4004 } 4005 } 4006 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4007 if (!is_spilled_reg(&func->stack[j])) 4008 continue; 4009 reg = &func->stack[j].spilled_ptr; 4010 if (reg->type != SCALAR_VALUE || reg->precise) 4011 continue; 4012 reg->precise = true; 4013 if (env->log.level & BPF_LOG_LEVEL2) { 4014 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4015 i, -(j + 1) * 8); 4016 } 4017 } 4018 } 4019 } 4020 } 4021 4022 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4023 { 4024 struct bpf_func_state *func; 4025 struct bpf_reg_state *reg; 4026 int i, j; 4027 4028 for (i = 0; i <= st->curframe; i++) { 4029 func = st->frame[i]; 4030 for (j = 0; j < BPF_REG_FP; j++) { 4031 reg = &func->regs[j]; 4032 if (reg->type != SCALAR_VALUE) 4033 continue; 4034 reg->precise = false; 4035 } 4036 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4037 if (!is_spilled_reg(&func->stack[j])) 4038 continue; 4039 reg = &func->stack[j].spilled_ptr; 4040 if (reg->type != SCALAR_VALUE) 4041 continue; 4042 reg->precise = false; 4043 } 4044 } 4045 } 4046 4047 static bool idset_contains(struct bpf_idset *s, u32 id) 4048 { 4049 u32 i; 4050 4051 for (i = 0; i < s->count; ++i) 4052 if (s->ids[i] == id) 4053 return true; 4054 4055 return false; 4056 } 4057 4058 static int idset_push(struct bpf_idset *s, u32 id) 4059 { 4060 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 4061 return -EFAULT; 4062 s->ids[s->count++] = id; 4063 return 0; 4064 } 4065 4066 static void idset_reset(struct bpf_idset *s) 4067 { 4068 s->count = 0; 4069 } 4070 4071 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 4072 * Mark all registers with these IDs as precise. 4073 */ 4074 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4075 { 4076 struct bpf_idset *precise_ids = &env->idset_scratch; 4077 struct backtrack_state *bt = &env->bt; 4078 struct bpf_func_state *func; 4079 struct bpf_reg_state *reg; 4080 DECLARE_BITMAP(mask, 64); 4081 int i, fr; 4082 4083 idset_reset(precise_ids); 4084 4085 for (fr = bt->frame; fr >= 0; fr--) { 4086 func = st->frame[fr]; 4087 4088 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4089 for_each_set_bit(i, mask, 32) { 4090 reg = &func->regs[i]; 4091 if (!reg->id || reg->type != SCALAR_VALUE) 4092 continue; 4093 if (idset_push(precise_ids, reg->id)) 4094 return -EFAULT; 4095 } 4096 4097 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4098 for_each_set_bit(i, mask, 64) { 4099 if (i >= func->allocated_stack / BPF_REG_SIZE) 4100 break; 4101 if (!is_spilled_scalar_reg(&func->stack[i])) 4102 continue; 4103 reg = &func->stack[i].spilled_ptr; 4104 if (!reg->id) 4105 continue; 4106 if (idset_push(precise_ids, reg->id)) 4107 return -EFAULT; 4108 } 4109 } 4110 4111 for (fr = 0; fr <= st->curframe; ++fr) { 4112 func = st->frame[fr]; 4113 4114 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4115 reg = &func->regs[i]; 4116 if (!reg->id) 4117 continue; 4118 if (!idset_contains(precise_ids, reg->id)) 4119 continue; 4120 bt_set_frame_reg(bt, fr, i); 4121 } 4122 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4123 if (!is_spilled_scalar_reg(&func->stack[i])) 4124 continue; 4125 reg = &func->stack[i].spilled_ptr; 4126 if (!reg->id) 4127 continue; 4128 if (!idset_contains(precise_ids, reg->id)) 4129 continue; 4130 bt_set_frame_slot(bt, fr, i); 4131 } 4132 } 4133 4134 return 0; 4135 } 4136 4137 /* 4138 * __mark_chain_precision() backtracks BPF program instruction sequence and 4139 * chain of verifier states making sure that register *regno* (if regno >= 0) 4140 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4141 * SCALARS, as well as any other registers and slots that contribute to 4142 * a tracked state of given registers/stack slots, depending on specific BPF 4143 * assembly instructions (see backtrack_insns() for exact instruction handling 4144 * logic). This backtracking relies on recorded jmp_history and is able to 4145 * traverse entire chain of parent states. This process ends only when all the 4146 * necessary registers/slots and their transitive dependencies are marked as 4147 * precise. 4148 * 4149 * One important and subtle aspect is that precise marks *do not matter* in 4150 * the currently verified state (current state). It is important to understand 4151 * why this is the case. 4152 * 4153 * First, note that current state is the state that is not yet "checkpointed", 4154 * i.e., it is not yet put into env->explored_states, and it has no children 4155 * states as well. It's ephemeral, and can end up either a) being discarded if 4156 * compatible explored state is found at some point or BPF_EXIT instruction is 4157 * reached or b) checkpointed and put into env->explored_states, branching out 4158 * into one or more children states. 4159 * 4160 * In the former case, precise markings in current state are completely 4161 * ignored by state comparison code (see regsafe() for details). Only 4162 * checkpointed ("old") state precise markings are important, and if old 4163 * state's register/slot is precise, regsafe() assumes current state's 4164 * register/slot as precise and checks value ranges exactly and precisely. If 4165 * states turn out to be compatible, current state's necessary precise 4166 * markings and any required parent states' precise markings are enforced 4167 * after the fact with propagate_precision() logic, after the fact. But it's 4168 * important to realize that in this case, even after marking current state 4169 * registers/slots as precise, we immediately discard current state. So what 4170 * actually matters is any of the precise markings propagated into current 4171 * state's parent states, which are always checkpointed (due to b) case above). 4172 * As such, for scenario a) it doesn't matter if current state has precise 4173 * markings set or not. 4174 * 4175 * Now, for the scenario b), checkpointing and forking into child(ren) 4176 * state(s). Note that before current state gets to checkpointing step, any 4177 * processed instruction always assumes precise SCALAR register/slot 4178 * knowledge: if precise value or range is useful to prune jump branch, BPF 4179 * verifier takes this opportunity enthusiastically. Similarly, when 4180 * register's value is used to calculate offset or memory address, exact 4181 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4182 * what we mentioned above about state comparison ignoring precise markings 4183 * during state comparison, BPF verifier ignores and also assumes precise 4184 * markings *at will* during instruction verification process. But as verifier 4185 * assumes precision, it also propagates any precision dependencies across 4186 * parent states, which are not yet finalized, so can be further restricted 4187 * based on new knowledge gained from restrictions enforced by their children 4188 * states. This is so that once those parent states are finalized, i.e., when 4189 * they have no more active children state, state comparison logic in 4190 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4191 * required for correctness. 4192 * 4193 * To build a bit more intuition, note also that once a state is checkpointed, 4194 * the path we took to get to that state is not important. This is crucial 4195 * property for state pruning. When state is checkpointed and finalized at 4196 * some instruction index, it can be correctly and safely used to "short 4197 * circuit" any *compatible* state that reaches exactly the same instruction 4198 * index. I.e., if we jumped to that instruction from a completely different 4199 * code path than original finalized state was derived from, it doesn't 4200 * matter, current state can be discarded because from that instruction 4201 * forward having a compatible state will ensure we will safely reach the 4202 * exit. States describe preconditions for further exploration, but completely 4203 * forget the history of how we got here. 4204 * 4205 * This also means that even if we needed precise SCALAR range to get to 4206 * finalized state, but from that point forward *that same* SCALAR register is 4207 * never used in a precise context (i.e., it's precise value is not needed for 4208 * correctness), it's correct and safe to mark such register as "imprecise" 4209 * (i.e., precise marking set to false). This is what we rely on when we do 4210 * not set precise marking in current state. If no child state requires 4211 * precision for any given SCALAR register, it's safe to dictate that it can 4212 * be imprecise. If any child state does require this register to be precise, 4213 * we'll mark it precise later retroactively during precise markings 4214 * propagation from child state to parent states. 4215 * 4216 * Skipping precise marking setting in current state is a mild version of 4217 * relying on the above observation. But we can utilize this property even 4218 * more aggressively by proactively forgetting any precise marking in the 4219 * current state (which we inherited from the parent state), right before we 4220 * checkpoint it and branch off into new child state. This is done by 4221 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4222 * finalized states which help in short circuiting more future states. 4223 */ 4224 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4225 { 4226 struct backtrack_state *bt = &env->bt; 4227 struct bpf_verifier_state *st = env->cur_state; 4228 int first_idx = st->first_insn_idx; 4229 int last_idx = env->insn_idx; 4230 int subseq_idx = -1; 4231 struct bpf_func_state *func; 4232 struct bpf_reg_state *reg; 4233 bool skip_first = true; 4234 int i, fr, err; 4235 4236 if (!env->bpf_capable) 4237 return 0; 4238 4239 /* set frame number from which we are starting to backtrack */ 4240 bt_init(bt, env->cur_state->curframe); 4241 4242 /* Do sanity checks against current state of register and/or stack 4243 * slot, but don't set precise flag in current state, as precision 4244 * tracking in the current state is unnecessary. 4245 */ 4246 func = st->frame[bt->frame]; 4247 if (regno >= 0) { 4248 reg = &func->regs[regno]; 4249 if (reg->type != SCALAR_VALUE) { 4250 WARN_ONCE(1, "backtracing misuse"); 4251 return -EFAULT; 4252 } 4253 bt_set_reg(bt, regno); 4254 } 4255 4256 if (bt_empty(bt)) 4257 return 0; 4258 4259 for (;;) { 4260 DECLARE_BITMAP(mask, 64); 4261 u32 history = st->jmp_history_cnt; 4262 4263 if (env->log.level & BPF_LOG_LEVEL2) { 4264 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4265 bt->frame, last_idx, first_idx, subseq_idx); 4266 } 4267 4268 /* If some register with scalar ID is marked as precise, 4269 * make sure that all registers sharing this ID are also precise. 4270 * This is needed to estimate effect of find_equal_scalars(). 4271 * Do this at the last instruction of each state, 4272 * bpf_reg_state::id fields are valid for these instructions. 4273 * 4274 * Allows to track precision in situation like below: 4275 * 4276 * r2 = unknown value 4277 * ... 4278 * --- state #0 --- 4279 * ... 4280 * r1 = r2 // r1 and r2 now share the same ID 4281 * ... 4282 * --- state #1 {r1.id = A, r2.id = A} --- 4283 * ... 4284 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4285 * ... 4286 * --- state #2 {r1.id = A, r2.id = A} --- 4287 * r3 = r10 4288 * r3 += r1 // need to mark both r1 and r2 4289 */ 4290 if (mark_precise_scalar_ids(env, st)) 4291 return -EFAULT; 4292 4293 if (last_idx < 0) { 4294 /* we are at the entry into subprog, which 4295 * is expected for global funcs, but only if 4296 * requested precise registers are R1-R5 4297 * (which are global func's input arguments) 4298 */ 4299 if (st->curframe == 0 && 4300 st->frame[0]->subprogno > 0 && 4301 st->frame[0]->callsite == BPF_MAIN_FUNC && 4302 bt_stack_mask(bt) == 0 && 4303 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4304 bitmap_from_u64(mask, bt_reg_mask(bt)); 4305 for_each_set_bit(i, mask, 32) { 4306 reg = &st->frame[0]->regs[i]; 4307 bt_clear_reg(bt, i); 4308 if (reg->type == SCALAR_VALUE) 4309 reg->precise = true; 4310 } 4311 return 0; 4312 } 4313 4314 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4315 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4316 WARN_ONCE(1, "verifier backtracking bug"); 4317 return -EFAULT; 4318 } 4319 4320 for (i = last_idx;;) { 4321 if (skip_first) { 4322 err = 0; 4323 skip_first = false; 4324 } else { 4325 err = backtrack_insn(env, i, subseq_idx, bt); 4326 } 4327 if (err == -ENOTSUPP) { 4328 mark_all_scalars_precise(env, env->cur_state); 4329 bt_reset(bt); 4330 return 0; 4331 } else if (err) { 4332 return err; 4333 } 4334 if (bt_empty(bt)) 4335 /* Found assignment(s) into tracked register in this state. 4336 * Since this state is already marked, just return. 4337 * Nothing to be tracked further in the parent state. 4338 */ 4339 return 0; 4340 subseq_idx = i; 4341 i = get_prev_insn_idx(st, i, &history); 4342 if (i == -ENOENT) 4343 break; 4344 if (i >= env->prog->len) { 4345 /* This can happen if backtracking reached insn 0 4346 * and there are still reg_mask or stack_mask 4347 * to backtrack. 4348 * It means the backtracking missed the spot where 4349 * particular register was initialized with a constant. 4350 */ 4351 verbose(env, "BUG backtracking idx %d\n", i); 4352 WARN_ONCE(1, "verifier backtracking bug"); 4353 return -EFAULT; 4354 } 4355 } 4356 st = st->parent; 4357 if (!st) 4358 break; 4359 4360 for (fr = bt->frame; fr >= 0; fr--) { 4361 func = st->frame[fr]; 4362 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4363 for_each_set_bit(i, mask, 32) { 4364 reg = &func->regs[i]; 4365 if (reg->type != SCALAR_VALUE) { 4366 bt_clear_frame_reg(bt, fr, i); 4367 continue; 4368 } 4369 if (reg->precise) 4370 bt_clear_frame_reg(bt, fr, i); 4371 else 4372 reg->precise = true; 4373 } 4374 4375 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4376 for_each_set_bit(i, mask, 64) { 4377 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4378 /* the sequence of instructions: 4379 * 2: (bf) r3 = r10 4380 * 3: (7b) *(u64 *)(r3 -8) = r0 4381 * 4: (79) r4 = *(u64 *)(r10 -8) 4382 * doesn't contain jmps. It's backtracked 4383 * as a single block. 4384 * During backtracking insn 3 is not recognized as 4385 * stack access, so at the end of backtracking 4386 * stack slot fp-8 is still marked in stack_mask. 4387 * However the parent state may not have accessed 4388 * fp-8 and it's "unallocated" stack space. 4389 * In such case fallback to conservative. 4390 */ 4391 mark_all_scalars_precise(env, env->cur_state); 4392 bt_reset(bt); 4393 return 0; 4394 } 4395 4396 if (!is_spilled_scalar_reg(&func->stack[i])) { 4397 bt_clear_frame_slot(bt, fr, i); 4398 continue; 4399 } 4400 reg = &func->stack[i].spilled_ptr; 4401 if (reg->precise) 4402 bt_clear_frame_slot(bt, fr, i); 4403 else 4404 reg->precise = true; 4405 } 4406 if (env->log.level & BPF_LOG_LEVEL2) { 4407 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4408 bt_frame_reg_mask(bt, fr)); 4409 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4410 fr, env->tmp_str_buf); 4411 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4412 bt_frame_stack_mask(bt, fr)); 4413 verbose(env, "stack=%s: ", env->tmp_str_buf); 4414 print_verifier_state(env, func, true); 4415 } 4416 } 4417 4418 if (bt_empty(bt)) 4419 return 0; 4420 4421 subseq_idx = first_idx; 4422 last_idx = st->last_insn_idx; 4423 first_idx = st->first_insn_idx; 4424 } 4425 4426 /* if we still have requested precise regs or slots, we missed 4427 * something (e.g., stack access through non-r10 register), so 4428 * fallback to marking all precise 4429 */ 4430 if (!bt_empty(bt)) { 4431 mark_all_scalars_precise(env, env->cur_state); 4432 bt_reset(bt); 4433 } 4434 4435 return 0; 4436 } 4437 4438 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4439 { 4440 return __mark_chain_precision(env, regno); 4441 } 4442 4443 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4444 * desired reg and stack masks across all relevant frames 4445 */ 4446 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4447 { 4448 return __mark_chain_precision(env, -1); 4449 } 4450 4451 static bool is_spillable_regtype(enum bpf_reg_type type) 4452 { 4453 switch (base_type(type)) { 4454 case PTR_TO_MAP_VALUE: 4455 case PTR_TO_STACK: 4456 case PTR_TO_CTX: 4457 case PTR_TO_PACKET: 4458 case PTR_TO_PACKET_META: 4459 case PTR_TO_PACKET_END: 4460 case PTR_TO_FLOW_KEYS: 4461 case CONST_PTR_TO_MAP: 4462 case PTR_TO_SOCKET: 4463 case PTR_TO_SOCK_COMMON: 4464 case PTR_TO_TCP_SOCK: 4465 case PTR_TO_XDP_SOCK: 4466 case PTR_TO_BTF_ID: 4467 case PTR_TO_BUF: 4468 case PTR_TO_MEM: 4469 case PTR_TO_FUNC: 4470 case PTR_TO_MAP_KEY: 4471 return true; 4472 default: 4473 return false; 4474 } 4475 } 4476 4477 /* Does this register contain a constant zero? */ 4478 static bool register_is_null(struct bpf_reg_state *reg) 4479 { 4480 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4481 } 4482 4483 static bool register_is_const(struct bpf_reg_state *reg) 4484 { 4485 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4486 } 4487 4488 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4489 { 4490 return tnum_is_unknown(reg->var_off) && 4491 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4492 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4493 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4494 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4495 } 4496 4497 static bool register_is_bounded(struct bpf_reg_state *reg) 4498 { 4499 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4500 } 4501 4502 static bool __is_pointer_value(bool allow_ptr_leaks, 4503 const struct bpf_reg_state *reg) 4504 { 4505 if (allow_ptr_leaks) 4506 return false; 4507 4508 return reg->type != SCALAR_VALUE; 4509 } 4510 4511 /* Copy src state preserving dst->parent and dst->live fields */ 4512 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4513 { 4514 struct bpf_reg_state *parent = dst->parent; 4515 enum bpf_reg_liveness live = dst->live; 4516 4517 *dst = *src; 4518 dst->parent = parent; 4519 dst->live = live; 4520 } 4521 4522 static void save_register_state(struct bpf_func_state *state, 4523 int spi, struct bpf_reg_state *reg, 4524 int size) 4525 { 4526 int i; 4527 4528 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4529 if (size == BPF_REG_SIZE) 4530 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4531 4532 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4533 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4534 4535 /* size < 8 bytes spill */ 4536 for (; i; i--) 4537 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4538 } 4539 4540 static bool is_bpf_st_mem(struct bpf_insn *insn) 4541 { 4542 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4543 } 4544 4545 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4546 * stack boundary and alignment are checked in check_mem_access() 4547 */ 4548 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4549 /* stack frame we're writing to */ 4550 struct bpf_func_state *state, 4551 int off, int size, int value_regno, 4552 int insn_idx) 4553 { 4554 struct bpf_func_state *cur; /* state of the current function */ 4555 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4556 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4557 struct bpf_reg_state *reg = NULL; 4558 u32 dst_reg = insn->dst_reg; 4559 4560 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4561 * so it's aligned access and [off, off + size) are within stack limits 4562 */ 4563 if (!env->allow_ptr_leaks && 4564 is_spilled_reg(&state->stack[spi]) && 4565 size != BPF_REG_SIZE) { 4566 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4567 return -EACCES; 4568 } 4569 4570 cur = env->cur_state->frame[env->cur_state->curframe]; 4571 if (value_regno >= 0) 4572 reg = &cur->regs[value_regno]; 4573 if (!env->bypass_spec_v4) { 4574 bool sanitize = reg && is_spillable_regtype(reg->type); 4575 4576 for (i = 0; i < size; i++) { 4577 u8 type = state->stack[spi].slot_type[i]; 4578 4579 if (type != STACK_MISC && type != STACK_ZERO) { 4580 sanitize = true; 4581 break; 4582 } 4583 } 4584 4585 if (sanitize) 4586 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4587 } 4588 4589 err = destroy_if_dynptr_stack_slot(env, state, spi); 4590 if (err) 4591 return err; 4592 4593 mark_stack_slot_scratched(env, spi); 4594 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4595 !register_is_null(reg) && env->bpf_capable) { 4596 if (dst_reg != BPF_REG_FP) { 4597 /* The backtracking logic can only recognize explicit 4598 * stack slot address like [fp - 8]. Other spill of 4599 * scalar via different register has to be conservative. 4600 * Backtrack from here and mark all registers as precise 4601 * that contributed into 'reg' being a constant. 4602 */ 4603 err = mark_chain_precision(env, value_regno); 4604 if (err) 4605 return err; 4606 } 4607 save_register_state(state, spi, reg, size); 4608 /* Break the relation on a narrowing spill. */ 4609 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4610 state->stack[spi].spilled_ptr.id = 0; 4611 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4612 insn->imm != 0 && env->bpf_capable) { 4613 struct bpf_reg_state fake_reg = {}; 4614 4615 __mark_reg_known(&fake_reg, insn->imm); 4616 fake_reg.type = SCALAR_VALUE; 4617 save_register_state(state, spi, &fake_reg, size); 4618 } else if (reg && is_spillable_regtype(reg->type)) { 4619 /* register containing pointer is being spilled into stack */ 4620 if (size != BPF_REG_SIZE) { 4621 verbose_linfo(env, insn_idx, "; "); 4622 verbose(env, "invalid size of register spill\n"); 4623 return -EACCES; 4624 } 4625 if (state != cur && reg->type == PTR_TO_STACK) { 4626 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4627 return -EINVAL; 4628 } 4629 save_register_state(state, spi, reg, size); 4630 } else { 4631 u8 type = STACK_MISC; 4632 4633 /* regular write of data into stack destroys any spilled ptr */ 4634 state->stack[spi].spilled_ptr.type = NOT_INIT; 4635 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4636 if (is_stack_slot_special(&state->stack[spi])) 4637 for (i = 0; i < BPF_REG_SIZE; i++) 4638 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4639 4640 /* only mark the slot as written if all 8 bytes were written 4641 * otherwise read propagation may incorrectly stop too soon 4642 * when stack slots are partially written. 4643 * This heuristic means that read propagation will be 4644 * conservative, since it will add reg_live_read marks 4645 * to stack slots all the way to first state when programs 4646 * writes+reads less than 8 bytes 4647 */ 4648 if (size == BPF_REG_SIZE) 4649 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4650 4651 /* when we zero initialize stack slots mark them as such */ 4652 if ((reg && register_is_null(reg)) || 4653 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4654 /* backtracking doesn't work for STACK_ZERO yet. */ 4655 err = mark_chain_precision(env, value_regno); 4656 if (err) 4657 return err; 4658 type = STACK_ZERO; 4659 } 4660 4661 /* Mark slots affected by this stack write. */ 4662 for (i = 0; i < size; i++) 4663 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4664 type; 4665 } 4666 return 0; 4667 } 4668 4669 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4670 * known to contain a variable offset. 4671 * This function checks whether the write is permitted and conservatively 4672 * tracks the effects of the write, considering that each stack slot in the 4673 * dynamic range is potentially written to. 4674 * 4675 * 'off' includes 'regno->off'. 4676 * 'value_regno' can be -1, meaning that an unknown value is being written to 4677 * the stack. 4678 * 4679 * Spilled pointers in range are not marked as written because we don't know 4680 * what's going to be actually written. This means that read propagation for 4681 * future reads cannot be terminated by this write. 4682 * 4683 * For privileged programs, uninitialized stack slots are considered 4684 * initialized by this write (even though we don't know exactly what offsets 4685 * are going to be written to). The idea is that we don't want the verifier to 4686 * reject future reads that access slots written to through variable offsets. 4687 */ 4688 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4689 /* func where register points to */ 4690 struct bpf_func_state *state, 4691 int ptr_regno, int off, int size, 4692 int value_regno, int insn_idx) 4693 { 4694 struct bpf_func_state *cur; /* state of the current function */ 4695 int min_off, max_off; 4696 int i, err; 4697 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4698 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4699 bool writing_zero = false; 4700 /* set if the fact that we're writing a zero is used to let any 4701 * stack slots remain STACK_ZERO 4702 */ 4703 bool zero_used = false; 4704 4705 cur = env->cur_state->frame[env->cur_state->curframe]; 4706 ptr_reg = &cur->regs[ptr_regno]; 4707 min_off = ptr_reg->smin_value + off; 4708 max_off = ptr_reg->smax_value + off + size; 4709 if (value_regno >= 0) 4710 value_reg = &cur->regs[value_regno]; 4711 if ((value_reg && register_is_null(value_reg)) || 4712 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4713 writing_zero = true; 4714 4715 for (i = min_off; i < max_off; i++) { 4716 int spi; 4717 4718 spi = __get_spi(i); 4719 err = destroy_if_dynptr_stack_slot(env, state, spi); 4720 if (err) 4721 return err; 4722 } 4723 4724 /* Variable offset writes destroy any spilled pointers in range. */ 4725 for (i = min_off; i < max_off; i++) { 4726 u8 new_type, *stype; 4727 int slot, spi; 4728 4729 slot = -i - 1; 4730 spi = slot / BPF_REG_SIZE; 4731 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4732 mark_stack_slot_scratched(env, spi); 4733 4734 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4735 /* Reject the write if range we may write to has not 4736 * been initialized beforehand. If we didn't reject 4737 * here, the ptr status would be erased below (even 4738 * though not all slots are actually overwritten), 4739 * possibly opening the door to leaks. 4740 * 4741 * We do however catch STACK_INVALID case below, and 4742 * only allow reading possibly uninitialized memory 4743 * later for CAP_PERFMON, as the write may not happen to 4744 * that slot. 4745 */ 4746 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4747 insn_idx, i); 4748 return -EINVAL; 4749 } 4750 4751 /* Erase all spilled pointers. */ 4752 state->stack[spi].spilled_ptr.type = NOT_INIT; 4753 4754 /* Update the slot type. */ 4755 new_type = STACK_MISC; 4756 if (writing_zero && *stype == STACK_ZERO) { 4757 new_type = STACK_ZERO; 4758 zero_used = true; 4759 } 4760 /* If the slot is STACK_INVALID, we check whether it's OK to 4761 * pretend that it will be initialized by this write. The slot 4762 * might not actually be written to, and so if we mark it as 4763 * initialized future reads might leak uninitialized memory. 4764 * For privileged programs, we will accept such reads to slots 4765 * that may or may not be written because, if we're reject 4766 * them, the error would be too confusing. 4767 */ 4768 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4769 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4770 insn_idx, i); 4771 return -EINVAL; 4772 } 4773 *stype = new_type; 4774 } 4775 if (zero_used) { 4776 /* backtracking doesn't work for STACK_ZERO yet. */ 4777 err = mark_chain_precision(env, value_regno); 4778 if (err) 4779 return err; 4780 } 4781 return 0; 4782 } 4783 4784 /* When register 'dst_regno' is assigned some values from stack[min_off, 4785 * max_off), we set the register's type according to the types of the 4786 * respective stack slots. If all the stack values are known to be zeros, then 4787 * so is the destination reg. Otherwise, the register is considered to be 4788 * SCALAR. This function does not deal with register filling; the caller must 4789 * ensure that all spilled registers in the stack range have been marked as 4790 * read. 4791 */ 4792 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4793 /* func where src register points to */ 4794 struct bpf_func_state *ptr_state, 4795 int min_off, int max_off, int dst_regno) 4796 { 4797 struct bpf_verifier_state *vstate = env->cur_state; 4798 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4799 int i, slot, spi; 4800 u8 *stype; 4801 int zeros = 0; 4802 4803 for (i = min_off; i < max_off; i++) { 4804 slot = -i - 1; 4805 spi = slot / BPF_REG_SIZE; 4806 mark_stack_slot_scratched(env, spi); 4807 stype = ptr_state->stack[spi].slot_type; 4808 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4809 break; 4810 zeros++; 4811 } 4812 if (zeros == max_off - min_off) { 4813 /* any access_size read into register is zero extended, 4814 * so the whole register == const_zero 4815 */ 4816 __mark_reg_const_zero(&state->regs[dst_regno]); 4817 /* backtracking doesn't support STACK_ZERO yet, 4818 * so mark it precise here, so that later 4819 * backtracking can stop here. 4820 * Backtracking may not need this if this register 4821 * doesn't participate in pointer adjustment. 4822 * Forward propagation of precise flag is not 4823 * necessary either. This mark is only to stop 4824 * backtracking. Any register that contributed 4825 * to const 0 was marked precise before spill. 4826 */ 4827 state->regs[dst_regno].precise = true; 4828 } else { 4829 /* have read misc data from the stack */ 4830 mark_reg_unknown(env, state->regs, dst_regno); 4831 } 4832 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4833 } 4834 4835 /* Read the stack at 'off' and put the results into the register indicated by 4836 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4837 * spilled reg. 4838 * 4839 * 'dst_regno' can be -1, meaning that the read value is not going to a 4840 * register. 4841 * 4842 * The access is assumed to be within the current stack bounds. 4843 */ 4844 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4845 /* func where src register points to */ 4846 struct bpf_func_state *reg_state, 4847 int off, int size, int dst_regno) 4848 { 4849 struct bpf_verifier_state *vstate = env->cur_state; 4850 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4851 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4852 struct bpf_reg_state *reg; 4853 u8 *stype, type; 4854 4855 stype = reg_state->stack[spi].slot_type; 4856 reg = ®_state->stack[spi].spilled_ptr; 4857 4858 mark_stack_slot_scratched(env, spi); 4859 4860 if (is_spilled_reg(®_state->stack[spi])) { 4861 u8 spill_size = 1; 4862 4863 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4864 spill_size++; 4865 4866 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4867 if (reg->type != SCALAR_VALUE) { 4868 verbose_linfo(env, env->insn_idx, "; "); 4869 verbose(env, "invalid size of register fill\n"); 4870 return -EACCES; 4871 } 4872 4873 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4874 if (dst_regno < 0) 4875 return 0; 4876 4877 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4878 /* The earlier check_reg_arg() has decided the 4879 * subreg_def for this insn. Save it first. 4880 */ 4881 s32 subreg_def = state->regs[dst_regno].subreg_def; 4882 4883 copy_register_state(&state->regs[dst_regno], reg); 4884 state->regs[dst_regno].subreg_def = subreg_def; 4885 } else { 4886 for (i = 0; i < size; i++) { 4887 type = stype[(slot - i) % BPF_REG_SIZE]; 4888 if (type == STACK_SPILL) 4889 continue; 4890 if (type == STACK_MISC) 4891 continue; 4892 if (type == STACK_INVALID && env->allow_uninit_stack) 4893 continue; 4894 verbose(env, "invalid read from stack off %d+%d size %d\n", 4895 off, i, size); 4896 return -EACCES; 4897 } 4898 mark_reg_unknown(env, state->regs, dst_regno); 4899 } 4900 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4901 return 0; 4902 } 4903 4904 if (dst_regno >= 0) { 4905 /* restore register state from stack */ 4906 copy_register_state(&state->regs[dst_regno], reg); 4907 /* mark reg as written since spilled pointer state likely 4908 * has its liveness marks cleared by is_state_visited() 4909 * which resets stack/reg liveness for state transitions 4910 */ 4911 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4912 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4913 /* If dst_regno==-1, the caller is asking us whether 4914 * it is acceptable to use this value as a SCALAR_VALUE 4915 * (e.g. for XADD). 4916 * We must not allow unprivileged callers to do that 4917 * with spilled pointers. 4918 */ 4919 verbose(env, "leaking pointer from stack off %d\n", 4920 off); 4921 return -EACCES; 4922 } 4923 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4924 } else { 4925 for (i = 0; i < size; i++) { 4926 type = stype[(slot - i) % BPF_REG_SIZE]; 4927 if (type == STACK_MISC) 4928 continue; 4929 if (type == STACK_ZERO) 4930 continue; 4931 if (type == STACK_INVALID && env->allow_uninit_stack) 4932 continue; 4933 verbose(env, "invalid read from stack off %d+%d size %d\n", 4934 off, i, size); 4935 return -EACCES; 4936 } 4937 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4938 if (dst_regno >= 0) 4939 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4940 } 4941 return 0; 4942 } 4943 4944 enum bpf_access_src { 4945 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4946 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4947 }; 4948 4949 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4950 int regno, int off, int access_size, 4951 bool zero_size_allowed, 4952 enum bpf_access_src type, 4953 struct bpf_call_arg_meta *meta); 4954 4955 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4956 { 4957 return cur_regs(env) + regno; 4958 } 4959 4960 /* Read the stack at 'ptr_regno + off' and put the result into the register 4961 * 'dst_regno'. 4962 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4963 * but not its variable offset. 4964 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4965 * 4966 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4967 * filling registers (i.e. reads of spilled register cannot be detected when 4968 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4969 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4970 * offset; for a fixed offset check_stack_read_fixed_off should be used 4971 * instead. 4972 */ 4973 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4974 int ptr_regno, int off, int size, int dst_regno) 4975 { 4976 /* The state of the source register. */ 4977 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4978 struct bpf_func_state *ptr_state = func(env, reg); 4979 int err; 4980 int min_off, max_off; 4981 4982 /* Note that we pass a NULL meta, so raw access will not be permitted. 4983 */ 4984 err = check_stack_range_initialized(env, ptr_regno, off, size, 4985 false, ACCESS_DIRECT, NULL); 4986 if (err) 4987 return err; 4988 4989 min_off = reg->smin_value + off; 4990 max_off = reg->smax_value + off; 4991 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4992 return 0; 4993 } 4994 4995 /* check_stack_read dispatches to check_stack_read_fixed_off or 4996 * check_stack_read_var_off. 4997 * 4998 * The caller must ensure that the offset falls within the allocated stack 4999 * bounds. 5000 * 5001 * 'dst_regno' is a register which will receive the value from the stack. It 5002 * can be -1, meaning that the read value is not going to a register. 5003 */ 5004 static int check_stack_read(struct bpf_verifier_env *env, 5005 int ptr_regno, int off, int size, 5006 int dst_regno) 5007 { 5008 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5009 struct bpf_func_state *state = func(env, reg); 5010 int err; 5011 /* Some accesses are only permitted with a static offset. */ 5012 bool var_off = !tnum_is_const(reg->var_off); 5013 5014 /* The offset is required to be static when reads don't go to a 5015 * register, in order to not leak pointers (see 5016 * check_stack_read_fixed_off). 5017 */ 5018 if (dst_regno < 0 && var_off) { 5019 char tn_buf[48]; 5020 5021 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5022 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5023 tn_buf, off, size); 5024 return -EACCES; 5025 } 5026 /* Variable offset is prohibited for unprivileged mode for simplicity 5027 * since it requires corresponding support in Spectre masking for stack 5028 * ALU. See also retrieve_ptr_limit(). The check in 5029 * check_stack_access_for_ptr_arithmetic() called by 5030 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5031 * with variable offsets, therefore no check is required here. Further, 5032 * just checking it here would be insufficient as speculative stack 5033 * writes could still lead to unsafe speculative behaviour. 5034 */ 5035 if (!var_off) { 5036 off += reg->var_off.value; 5037 err = check_stack_read_fixed_off(env, state, off, size, 5038 dst_regno); 5039 } else { 5040 /* Variable offset stack reads need more conservative handling 5041 * than fixed offset ones. Note that dst_regno >= 0 on this 5042 * branch. 5043 */ 5044 err = check_stack_read_var_off(env, ptr_regno, off, size, 5045 dst_regno); 5046 } 5047 return err; 5048 } 5049 5050 5051 /* check_stack_write dispatches to check_stack_write_fixed_off or 5052 * check_stack_write_var_off. 5053 * 5054 * 'ptr_regno' is the register used as a pointer into the stack. 5055 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5056 * 'value_regno' is the register whose value we're writing to the stack. It can 5057 * be -1, meaning that we're not writing from a register. 5058 * 5059 * The caller must ensure that the offset falls within the maximum stack size. 5060 */ 5061 static int check_stack_write(struct bpf_verifier_env *env, 5062 int ptr_regno, int off, int size, 5063 int value_regno, int insn_idx) 5064 { 5065 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5066 struct bpf_func_state *state = func(env, reg); 5067 int err; 5068 5069 if (tnum_is_const(reg->var_off)) { 5070 off += reg->var_off.value; 5071 err = check_stack_write_fixed_off(env, state, off, size, 5072 value_regno, insn_idx); 5073 } else { 5074 /* Variable offset stack reads need more conservative handling 5075 * than fixed offset ones. 5076 */ 5077 err = check_stack_write_var_off(env, state, 5078 ptr_regno, off, size, 5079 value_regno, insn_idx); 5080 } 5081 return err; 5082 } 5083 5084 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5085 int off, int size, enum bpf_access_type type) 5086 { 5087 struct bpf_reg_state *regs = cur_regs(env); 5088 struct bpf_map *map = regs[regno].map_ptr; 5089 u32 cap = bpf_map_flags_to_cap(map); 5090 5091 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5092 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5093 map->value_size, off, size); 5094 return -EACCES; 5095 } 5096 5097 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5098 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5099 map->value_size, off, size); 5100 return -EACCES; 5101 } 5102 5103 return 0; 5104 } 5105 5106 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5107 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5108 int off, int size, u32 mem_size, 5109 bool zero_size_allowed) 5110 { 5111 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5112 struct bpf_reg_state *reg; 5113 5114 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5115 return 0; 5116 5117 reg = &cur_regs(env)[regno]; 5118 switch (reg->type) { 5119 case PTR_TO_MAP_KEY: 5120 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5121 mem_size, off, size); 5122 break; 5123 case PTR_TO_MAP_VALUE: 5124 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5125 mem_size, off, size); 5126 break; 5127 case PTR_TO_PACKET: 5128 case PTR_TO_PACKET_META: 5129 case PTR_TO_PACKET_END: 5130 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5131 off, size, regno, reg->id, off, mem_size); 5132 break; 5133 case PTR_TO_MEM: 5134 default: 5135 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5136 mem_size, off, size); 5137 } 5138 5139 return -EACCES; 5140 } 5141 5142 /* check read/write into a memory region with possible variable offset */ 5143 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5144 int off, int size, u32 mem_size, 5145 bool zero_size_allowed) 5146 { 5147 struct bpf_verifier_state *vstate = env->cur_state; 5148 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5149 struct bpf_reg_state *reg = &state->regs[regno]; 5150 int err; 5151 5152 /* We may have adjusted the register pointing to memory region, so we 5153 * need to try adding each of min_value and max_value to off 5154 * to make sure our theoretical access will be safe. 5155 * 5156 * The minimum value is only important with signed 5157 * comparisons where we can't assume the floor of a 5158 * value is 0. If we are using signed variables for our 5159 * index'es we need to make sure that whatever we use 5160 * will have a set floor within our range. 5161 */ 5162 if (reg->smin_value < 0 && 5163 (reg->smin_value == S64_MIN || 5164 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5165 reg->smin_value + off < 0)) { 5166 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5167 regno); 5168 return -EACCES; 5169 } 5170 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5171 mem_size, zero_size_allowed); 5172 if (err) { 5173 verbose(env, "R%d min value is outside of the allowed memory range\n", 5174 regno); 5175 return err; 5176 } 5177 5178 /* If we haven't set a max value then we need to bail since we can't be 5179 * sure we won't do bad things. 5180 * If reg->umax_value + off could overflow, treat that as unbounded too. 5181 */ 5182 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5183 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5184 regno); 5185 return -EACCES; 5186 } 5187 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5188 mem_size, zero_size_allowed); 5189 if (err) { 5190 verbose(env, "R%d max value is outside of the allowed memory range\n", 5191 regno); 5192 return err; 5193 } 5194 5195 return 0; 5196 } 5197 5198 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5199 const struct bpf_reg_state *reg, int regno, 5200 bool fixed_off_ok) 5201 { 5202 /* Access to this pointer-typed register or passing it to a helper 5203 * is only allowed in its original, unmodified form. 5204 */ 5205 5206 if (reg->off < 0) { 5207 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5208 reg_type_str(env, reg->type), regno, reg->off); 5209 return -EACCES; 5210 } 5211 5212 if (!fixed_off_ok && reg->off) { 5213 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5214 reg_type_str(env, reg->type), regno, reg->off); 5215 return -EACCES; 5216 } 5217 5218 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5219 char tn_buf[48]; 5220 5221 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5222 verbose(env, "variable %s access var_off=%s disallowed\n", 5223 reg_type_str(env, reg->type), tn_buf); 5224 return -EACCES; 5225 } 5226 5227 return 0; 5228 } 5229 5230 int check_ptr_off_reg(struct bpf_verifier_env *env, 5231 const struct bpf_reg_state *reg, int regno) 5232 { 5233 return __check_ptr_off_reg(env, reg, regno, false); 5234 } 5235 5236 static int map_kptr_match_type(struct bpf_verifier_env *env, 5237 struct btf_field *kptr_field, 5238 struct bpf_reg_state *reg, u32 regno) 5239 { 5240 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5241 int perm_flags; 5242 const char *reg_name = ""; 5243 5244 if (btf_is_kernel(reg->btf)) { 5245 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5246 5247 /* Only unreferenced case accepts untrusted pointers */ 5248 if (kptr_field->type == BPF_KPTR_UNREF) 5249 perm_flags |= PTR_UNTRUSTED; 5250 } else { 5251 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5252 } 5253 5254 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5255 goto bad_type; 5256 5257 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5258 reg_name = btf_type_name(reg->btf, reg->btf_id); 5259 5260 /* For ref_ptr case, release function check should ensure we get one 5261 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5262 * normal store of unreferenced kptr, we must ensure var_off is zero. 5263 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5264 * reg->off and reg->ref_obj_id are not needed here. 5265 */ 5266 if (__check_ptr_off_reg(env, reg, regno, true)) 5267 return -EACCES; 5268 5269 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5270 * we also need to take into account the reg->off. 5271 * 5272 * We want to support cases like: 5273 * 5274 * struct foo { 5275 * struct bar br; 5276 * struct baz bz; 5277 * }; 5278 * 5279 * struct foo *v; 5280 * v = func(); // PTR_TO_BTF_ID 5281 * val->foo = v; // reg->off is zero, btf and btf_id match type 5282 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5283 * // first member type of struct after comparison fails 5284 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5285 * // to match type 5286 * 5287 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5288 * is zero. We must also ensure that btf_struct_ids_match does not walk 5289 * the struct to match type against first member of struct, i.e. reject 5290 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5291 * strict mode to true for type match. 5292 */ 5293 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5294 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5295 kptr_field->type == BPF_KPTR_REF)) 5296 goto bad_type; 5297 return 0; 5298 bad_type: 5299 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5300 reg_type_str(env, reg->type), reg_name); 5301 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5302 if (kptr_field->type == BPF_KPTR_UNREF) 5303 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5304 targ_name); 5305 else 5306 verbose(env, "\n"); 5307 return -EINVAL; 5308 } 5309 5310 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5311 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5312 */ 5313 static bool in_rcu_cs(struct bpf_verifier_env *env) 5314 { 5315 return env->cur_state->active_rcu_lock || 5316 env->cur_state->active_lock.ptr || 5317 !env->prog->aux->sleepable; 5318 } 5319 5320 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5321 BTF_SET_START(rcu_protected_types) 5322 BTF_ID(struct, prog_test_ref_kfunc) 5323 BTF_ID(struct, cgroup) 5324 BTF_ID(struct, bpf_cpumask) 5325 BTF_ID(struct, task_struct) 5326 BTF_SET_END(rcu_protected_types) 5327 5328 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5329 { 5330 if (!btf_is_kernel(btf)) 5331 return false; 5332 return btf_id_set_contains(&rcu_protected_types, btf_id); 5333 } 5334 5335 static bool rcu_safe_kptr(const struct btf_field *field) 5336 { 5337 const struct btf_field_kptr *kptr = &field->kptr; 5338 5339 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5340 } 5341 5342 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5343 int value_regno, int insn_idx, 5344 struct btf_field *kptr_field) 5345 { 5346 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5347 int class = BPF_CLASS(insn->code); 5348 struct bpf_reg_state *val_reg; 5349 5350 /* Things we already checked for in check_map_access and caller: 5351 * - Reject cases where variable offset may touch kptr 5352 * - size of access (must be BPF_DW) 5353 * - tnum_is_const(reg->var_off) 5354 * - kptr_field->offset == off + reg->var_off.value 5355 */ 5356 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5357 if (BPF_MODE(insn->code) != BPF_MEM) { 5358 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5359 return -EACCES; 5360 } 5361 5362 /* We only allow loading referenced kptr, since it will be marked as 5363 * untrusted, similar to unreferenced kptr. 5364 */ 5365 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5366 verbose(env, "store to referenced kptr disallowed\n"); 5367 return -EACCES; 5368 } 5369 5370 if (class == BPF_LDX) { 5371 val_reg = reg_state(env, value_regno); 5372 /* We can simply mark the value_regno receiving the pointer 5373 * value from map as PTR_TO_BTF_ID, with the correct type. 5374 */ 5375 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5376 kptr_field->kptr.btf_id, 5377 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5378 PTR_MAYBE_NULL | MEM_RCU : 5379 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5380 } else if (class == BPF_STX) { 5381 val_reg = reg_state(env, value_regno); 5382 if (!register_is_null(val_reg) && 5383 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5384 return -EACCES; 5385 } else if (class == BPF_ST) { 5386 if (insn->imm) { 5387 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5388 kptr_field->offset); 5389 return -EACCES; 5390 } 5391 } else { 5392 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5393 return -EACCES; 5394 } 5395 return 0; 5396 } 5397 5398 /* check read/write into a map element with possible variable offset */ 5399 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5400 int off, int size, bool zero_size_allowed, 5401 enum bpf_access_src src) 5402 { 5403 struct bpf_verifier_state *vstate = env->cur_state; 5404 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5405 struct bpf_reg_state *reg = &state->regs[regno]; 5406 struct bpf_map *map = reg->map_ptr; 5407 struct btf_record *rec; 5408 int err, i; 5409 5410 err = check_mem_region_access(env, regno, off, size, map->value_size, 5411 zero_size_allowed); 5412 if (err) 5413 return err; 5414 5415 if (IS_ERR_OR_NULL(map->record)) 5416 return 0; 5417 rec = map->record; 5418 for (i = 0; i < rec->cnt; i++) { 5419 struct btf_field *field = &rec->fields[i]; 5420 u32 p = field->offset; 5421 5422 /* If any part of a field can be touched by load/store, reject 5423 * this program. To check that [x1, x2) overlaps with [y1, y2), 5424 * it is sufficient to check x1 < y2 && y1 < x2. 5425 */ 5426 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5427 p < reg->umax_value + off + size) { 5428 switch (field->type) { 5429 case BPF_KPTR_UNREF: 5430 case BPF_KPTR_REF: 5431 if (src != ACCESS_DIRECT) { 5432 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5433 return -EACCES; 5434 } 5435 if (!tnum_is_const(reg->var_off)) { 5436 verbose(env, "kptr access cannot have variable offset\n"); 5437 return -EACCES; 5438 } 5439 if (p != off + reg->var_off.value) { 5440 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5441 p, off + reg->var_off.value); 5442 return -EACCES; 5443 } 5444 if (size != bpf_size_to_bytes(BPF_DW)) { 5445 verbose(env, "kptr access size must be BPF_DW\n"); 5446 return -EACCES; 5447 } 5448 break; 5449 default: 5450 verbose(env, "%s cannot be accessed directly by load/store\n", 5451 btf_field_type_name(field->type)); 5452 return -EACCES; 5453 } 5454 } 5455 } 5456 return 0; 5457 } 5458 5459 #define MAX_PACKET_OFF 0xffff 5460 5461 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5462 const struct bpf_call_arg_meta *meta, 5463 enum bpf_access_type t) 5464 { 5465 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5466 5467 switch (prog_type) { 5468 /* Program types only with direct read access go here! */ 5469 case BPF_PROG_TYPE_LWT_IN: 5470 case BPF_PROG_TYPE_LWT_OUT: 5471 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5472 case BPF_PROG_TYPE_SK_REUSEPORT: 5473 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5474 case BPF_PROG_TYPE_CGROUP_SKB: 5475 if (t == BPF_WRITE) 5476 return false; 5477 fallthrough; 5478 5479 /* Program types with direct read + write access go here! */ 5480 case BPF_PROG_TYPE_SCHED_CLS: 5481 case BPF_PROG_TYPE_SCHED_ACT: 5482 case BPF_PROG_TYPE_XDP: 5483 case BPF_PROG_TYPE_LWT_XMIT: 5484 case BPF_PROG_TYPE_SK_SKB: 5485 case BPF_PROG_TYPE_SK_MSG: 5486 if (meta) 5487 return meta->pkt_access; 5488 5489 env->seen_direct_write = true; 5490 return true; 5491 5492 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5493 if (t == BPF_WRITE) 5494 env->seen_direct_write = true; 5495 5496 return true; 5497 5498 default: 5499 return false; 5500 } 5501 } 5502 5503 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5504 int size, bool zero_size_allowed) 5505 { 5506 struct bpf_reg_state *regs = cur_regs(env); 5507 struct bpf_reg_state *reg = ®s[regno]; 5508 int err; 5509 5510 /* We may have added a variable offset to the packet pointer; but any 5511 * reg->range we have comes after that. We are only checking the fixed 5512 * offset. 5513 */ 5514 5515 /* We don't allow negative numbers, because we aren't tracking enough 5516 * detail to prove they're safe. 5517 */ 5518 if (reg->smin_value < 0) { 5519 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5520 regno); 5521 return -EACCES; 5522 } 5523 5524 err = reg->range < 0 ? -EINVAL : 5525 __check_mem_access(env, regno, off, size, reg->range, 5526 zero_size_allowed); 5527 if (err) { 5528 verbose(env, "R%d offset is outside of the packet\n", regno); 5529 return err; 5530 } 5531 5532 /* __check_mem_access has made sure "off + size - 1" is within u16. 5533 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5534 * otherwise find_good_pkt_pointers would have refused to set range info 5535 * that __check_mem_access would have rejected this pkt access. 5536 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5537 */ 5538 env->prog->aux->max_pkt_offset = 5539 max_t(u32, env->prog->aux->max_pkt_offset, 5540 off + reg->umax_value + size - 1); 5541 5542 return err; 5543 } 5544 5545 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5546 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5547 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5548 struct btf **btf, u32 *btf_id) 5549 { 5550 struct bpf_insn_access_aux info = { 5551 .reg_type = *reg_type, 5552 .log = &env->log, 5553 }; 5554 5555 if (env->ops->is_valid_access && 5556 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5557 /* A non zero info.ctx_field_size indicates that this field is a 5558 * candidate for later verifier transformation to load the whole 5559 * field and then apply a mask when accessed with a narrower 5560 * access than actual ctx access size. A zero info.ctx_field_size 5561 * will only allow for whole field access and rejects any other 5562 * type of narrower access. 5563 */ 5564 *reg_type = info.reg_type; 5565 5566 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5567 *btf = info.btf; 5568 *btf_id = info.btf_id; 5569 } else { 5570 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5571 } 5572 /* remember the offset of last byte accessed in ctx */ 5573 if (env->prog->aux->max_ctx_offset < off + size) 5574 env->prog->aux->max_ctx_offset = off + size; 5575 return 0; 5576 } 5577 5578 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5579 return -EACCES; 5580 } 5581 5582 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5583 int size) 5584 { 5585 if (size < 0 || off < 0 || 5586 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5587 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5588 off, size); 5589 return -EACCES; 5590 } 5591 return 0; 5592 } 5593 5594 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5595 u32 regno, int off, int size, 5596 enum bpf_access_type t) 5597 { 5598 struct bpf_reg_state *regs = cur_regs(env); 5599 struct bpf_reg_state *reg = ®s[regno]; 5600 struct bpf_insn_access_aux info = {}; 5601 bool valid; 5602 5603 if (reg->smin_value < 0) { 5604 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5605 regno); 5606 return -EACCES; 5607 } 5608 5609 switch (reg->type) { 5610 case PTR_TO_SOCK_COMMON: 5611 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5612 break; 5613 case PTR_TO_SOCKET: 5614 valid = bpf_sock_is_valid_access(off, size, t, &info); 5615 break; 5616 case PTR_TO_TCP_SOCK: 5617 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5618 break; 5619 case PTR_TO_XDP_SOCK: 5620 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5621 break; 5622 default: 5623 valid = false; 5624 } 5625 5626 5627 if (valid) { 5628 env->insn_aux_data[insn_idx].ctx_field_size = 5629 info.ctx_field_size; 5630 return 0; 5631 } 5632 5633 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5634 regno, reg_type_str(env, reg->type), off, size); 5635 5636 return -EACCES; 5637 } 5638 5639 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5640 { 5641 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5642 } 5643 5644 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5645 { 5646 const struct bpf_reg_state *reg = reg_state(env, regno); 5647 5648 return reg->type == PTR_TO_CTX; 5649 } 5650 5651 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5652 { 5653 const struct bpf_reg_state *reg = reg_state(env, regno); 5654 5655 return type_is_sk_pointer(reg->type); 5656 } 5657 5658 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5659 { 5660 const struct bpf_reg_state *reg = reg_state(env, regno); 5661 5662 return type_is_pkt_pointer(reg->type); 5663 } 5664 5665 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5666 { 5667 const struct bpf_reg_state *reg = reg_state(env, regno); 5668 5669 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5670 return reg->type == PTR_TO_FLOW_KEYS; 5671 } 5672 5673 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5674 #ifdef CONFIG_NET 5675 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5676 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5677 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5678 #endif 5679 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5680 }; 5681 5682 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5683 { 5684 /* A referenced register is always trusted. */ 5685 if (reg->ref_obj_id) 5686 return true; 5687 5688 /* Types listed in the reg2btf_ids are always trusted */ 5689 if (reg2btf_ids[base_type(reg->type)] && 5690 !bpf_type_has_unsafe_modifiers(reg->type)) 5691 return true; 5692 5693 /* If a register is not referenced, it is trusted if it has the 5694 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5695 * other type modifiers may be safe, but we elect to take an opt-in 5696 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5697 * not. 5698 * 5699 * Eventually, we should make PTR_TRUSTED the single source of truth 5700 * for whether a register is trusted. 5701 */ 5702 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5703 !bpf_type_has_unsafe_modifiers(reg->type); 5704 } 5705 5706 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5707 { 5708 return reg->type & MEM_RCU; 5709 } 5710 5711 static void clear_trusted_flags(enum bpf_type_flag *flag) 5712 { 5713 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5714 } 5715 5716 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5717 const struct bpf_reg_state *reg, 5718 int off, int size, bool strict) 5719 { 5720 struct tnum reg_off; 5721 int ip_align; 5722 5723 /* Byte size accesses are always allowed. */ 5724 if (!strict || size == 1) 5725 return 0; 5726 5727 /* For platforms that do not have a Kconfig enabling 5728 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5729 * NET_IP_ALIGN is universally set to '2'. And on platforms 5730 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5731 * to this code only in strict mode where we want to emulate 5732 * the NET_IP_ALIGN==2 checking. Therefore use an 5733 * unconditional IP align value of '2'. 5734 */ 5735 ip_align = 2; 5736 5737 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5738 if (!tnum_is_aligned(reg_off, size)) { 5739 char tn_buf[48]; 5740 5741 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5742 verbose(env, 5743 "misaligned packet access off %d+%s+%d+%d size %d\n", 5744 ip_align, tn_buf, reg->off, off, size); 5745 return -EACCES; 5746 } 5747 5748 return 0; 5749 } 5750 5751 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5752 const struct bpf_reg_state *reg, 5753 const char *pointer_desc, 5754 int off, int size, bool strict) 5755 { 5756 struct tnum reg_off; 5757 5758 /* Byte size accesses are always allowed. */ 5759 if (!strict || size == 1) 5760 return 0; 5761 5762 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5763 if (!tnum_is_aligned(reg_off, size)) { 5764 char tn_buf[48]; 5765 5766 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5767 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5768 pointer_desc, tn_buf, reg->off, off, size); 5769 return -EACCES; 5770 } 5771 5772 return 0; 5773 } 5774 5775 static int check_ptr_alignment(struct bpf_verifier_env *env, 5776 const struct bpf_reg_state *reg, int off, 5777 int size, bool strict_alignment_once) 5778 { 5779 bool strict = env->strict_alignment || strict_alignment_once; 5780 const char *pointer_desc = ""; 5781 5782 switch (reg->type) { 5783 case PTR_TO_PACKET: 5784 case PTR_TO_PACKET_META: 5785 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5786 * right in front, treat it the very same way. 5787 */ 5788 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5789 case PTR_TO_FLOW_KEYS: 5790 pointer_desc = "flow keys "; 5791 break; 5792 case PTR_TO_MAP_KEY: 5793 pointer_desc = "key "; 5794 break; 5795 case PTR_TO_MAP_VALUE: 5796 pointer_desc = "value "; 5797 break; 5798 case PTR_TO_CTX: 5799 pointer_desc = "context "; 5800 break; 5801 case PTR_TO_STACK: 5802 pointer_desc = "stack "; 5803 /* The stack spill tracking logic in check_stack_write_fixed_off() 5804 * and check_stack_read_fixed_off() relies on stack accesses being 5805 * aligned. 5806 */ 5807 strict = true; 5808 break; 5809 case PTR_TO_SOCKET: 5810 pointer_desc = "sock "; 5811 break; 5812 case PTR_TO_SOCK_COMMON: 5813 pointer_desc = "sock_common "; 5814 break; 5815 case PTR_TO_TCP_SOCK: 5816 pointer_desc = "tcp_sock "; 5817 break; 5818 case PTR_TO_XDP_SOCK: 5819 pointer_desc = "xdp_sock "; 5820 break; 5821 default: 5822 break; 5823 } 5824 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5825 strict); 5826 } 5827 5828 /* starting from main bpf function walk all instructions of the function 5829 * and recursively walk all callees that given function can call. 5830 * Ignore jump and exit insns. 5831 * Since recursion is prevented by check_cfg() this algorithm 5832 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5833 */ 5834 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5835 { 5836 struct bpf_subprog_info *subprog = env->subprog_info; 5837 struct bpf_insn *insn = env->prog->insnsi; 5838 int depth = 0, frame = 0, i, subprog_end; 5839 bool tail_call_reachable = false; 5840 int ret_insn[MAX_CALL_FRAMES]; 5841 int ret_prog[MAX_CALL_FRAMES]; 5842 int j; 5843 5844 i = subprog[idx].start; 5845 process_func: 5846 /* protect against potential stack overflow that might happen when 5847 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5848 * depth for such case down to 256 so that the worst case scenario 5849 * would result in 8k stack size (32 which is tailcall limit * 256 = 5850 * 8k). 5851 * 5852 * To get the idea what might happen, see an example: 5853 * func1 -> sub rsp, 128 5854 * subfunc1 -> sub rsp, 256 5855 * tailcall1 -> add rsp, 256 5856 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5857 * subfunc2 -> sub rsp, 64 5858 * subfunc22 -> sub rsp, 128 5859 * tailcall2 -> add rsp, 128 5860 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5861 * 5862 * tailcall will unwind the current stack frame but it will not get rid 5863 * of caller's stack as shown on the example above. 5864 */ 5865 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5866 verbose(env, 5867 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5868 depth); 5869 return -EACCES; 5870 } 5871 /* round up to 32-bytes, since this is granularity 5872 * of interpreter stack size 5873 */ 5874 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5875 if (depth > MAX_BPF_STACK) { 5876 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5877 frame + 1, depth); 5878 return -EACCES; 5879 } 5880 continue_func: 5881 subprog_end = subprog[idx + 1].start; 5882 for (; i < subprog_end; i++) { 5883 int next_insn, sidx; 5884 5885 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5886 continue; 5887 /* remember insn and function to return to */ 5888 ret_insn[frame] = i + 1; 5889 ret_prog[frame] = idx; 5890 5891 /* find the callee */ 5892 next_insn = i + insn[i].imm + 1; 5893 sidx = find_subprog(env, next_insn); 5894 if (sidx < 0) { 5895 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5896 next_insn); 5897 return -EFAULT; 5898 } 5899 if (subprog[sidx].is_async_cb) { 5900 if (subprog[sidx].has_tail_call) { 5901 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5902 return -EFAULT; 5903 } 5904 /* async callbacks don't increase bpf prog stack size unless called directly */ 5905 if (!bpf_pseudo_call(insn + i)) 5906 continue; 5907 } 5908 i = next_insn; 5909 idx = sidx; 5910 5911 if (subprog[idx].has_tail_call) 5912 tail_call_reachable = true; 5913 5914 frame++; 5915 if (frame >= MAX_CALL_FRAMES) { 5916 verbose(env, "the call stack of %d frames is too deep !\n", 5917 frame); 5918 return -E2BIG; 5919 } 5920 goto process_func; 5921 } 5922 /* if tail call got detected across bpf2bpf calls then mark each of the 5923 * currently present subprog frames as tail call reachable subprogs; 5924 * this info will be utilized by JIT so that we will be preserving the 5925 * tail call counter throughout bpf2bpf calls combined with tailcalls 5926 */ 5927 if (tail_call_reachable) 5928 for (j = 0; j < frame; j++) 5929 subprog[ret_prog[j]].tail_call_reachable = true; 5930 if (subprog[0].tail_call_reachable) 5931 env->prog->aux->tail_call_reachable = true; 5932 5933 /* end of for() loop means the last insn of the 'subprog' 5934 * was reached. Doesn't matter whether it was JA or EXIT 5935 */ 5936 if (frame == 0) 5937 return 0; 5938 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5939 frame--; 5940 i = ret_insn[frame]; 5941 idx = ret_prog[frame]; 5942 goto continue_func; 5943 } 5944 5945 static int check_max_stack_depth(struct bpf_verifier_env *env) 5946 { 5947 struct bpf_subprog_info *si = env->subprog_info; 5948 int ret; 5949 5950 for (int i = 0; i < env->subprog_cnt; i++) { 5951 if (!i || si[i].is_async_cb) { 5952 ret = check_max_stack_depth_subprog(env, i); 5953 if (ret < 0) 5954 return ret; 5955 } 5956 continue; 5957 } 5958 return 0; 5959 } 5960 5961 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5962 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5963 const struct bpf_insn *insn, int idx) 5964 { 5965 int start = idx + insn->imm + 1, subprog; 5966 5967 subprog = find_subprog(env, start); 5968 if (subprog < 0) { 5969 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5970 start); 5971 return -EFAULT; 5972 } 5973 return env->subprog_info[subprog].stack_depth; 5974 } 5975 #endif 5976 5977 static int __check_buffer_access(struct bpf_verifier_env *env, 5978 const char *buf_info, 5979 const struct bpf_reg_state *reg, 5980 int regno, int off, int size) 5981 { 5982 if (off < 0) { 5983 verbose(env, 5984 "R%d invalid %s buffer access: off=%d, size=%d\n", 5985 regno, buf_info, off, size); 5986 return -EACCES; 5987 } 5988 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5989 char tn_buf[48]; 5990 5991 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5992 verbose(env, 5993 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5994 regno, off, tn_buf); 5995 return -EACCES; 5996 } 5997 5998 return 0; 5999 } 6000 6001 static int check_tp_buffer_access(struct bpf_verifier_env *env, 6002 const struct bpf_reg_state *reg, 6003 int regno, int off, int size) 6004 { 6005 int err; 6006 6007 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6008 if (err) 6009 return err; 6010 6011 if (off + size > env->prog->aux->max_tp_access) 6012 env->prog->aux->max_tp_access = off + size; 6013 6014 return 0; 6015 } 6016 6017 static int check_buffer_access(struct bpf_verifier_env *env, 6018 const struct bpf_reg_state *reg, 6019 int regno, int off, int size, 6020 bool zero_size_allowed, 6021 u32 *max_access) 6022 { 6023 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6024 int err; 6025 6026 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6027 if (err) 6028 return err; 6029 6030 if (off + size > *max_access) 6031 *max_access = off + size; 6032 6033 return 0; 6034 } 6035 6036 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6037 static void zext_32_to_64(struct bpf_reg_state *reg) 6038 { 6039 reg->var_off = tnum_subreg(reg->var_off); 6040 __reg_assign_32_into_64(reg); 6041 } 6042 6043 /* truncate register to smaller size (in bytes) 6044 * must be called with size < BPF_REG_SIZE 6045 */ 6046 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6047 { 6048 u64 mask; 6049 6050 /* clear high bits in bit representation */ 6051 reg->var_off = tnum_cast(reg->var_off, size); 6052 6053 /* fix arithmetic bounds */ 6054 mask = ((u64)1 << (size * 8)) - 1; 6055 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6056 reg->umin_value &= mask; 6057 reg->umax_value &= mask; 6058 } else { 6059 reg->umin_value = 0; 6060 reg->umax_value = mask; 6061 } 6062 reg->smin_value = reg->umin_value; 6063 reg->smax_value = reg->umax_value; 6064 6065 /* If size is smaller than 32bit register the 32bit register 6066 * values are also truncated so we push 64-bit bounds into 6067 * 32-bit bounds. Above were truncated < 32-bits already. 6068 */ 6069 if (size >= 4) 6070 return; 6071 __reg_combine_64_into_32(reg); 6072 } 6073 6074 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6075 { 6076 if (size == 1) { 6077 reg->smin_value = reg->s32_min_value = S8_MIN; 6078 reg->smax_value = reg->s32_max_value = S8_MAX; 6079 } else if (size == 2) { 6080 reg->smin_value = reg->s32_min_value = S16_MIN; 6081 reg->smax_value = reg->s32_max_value = S16_MAX; 6082 } else { 6083 /* size == 4 */ 6084 reg->smin_value = reg->s32_min_value = S32_MIN; 6085 reg->smax_value = reg->s32_max_value = S32_MAX; 6086 } 6087 reg->umin_value = reg->u32_min_value = 0; 6088 reg->umax_value = U64_MAX; 6089 reg->u32_max_value = U32_MAX; 6090 reg->var_off = tnum_unknown; 6091 } 6092 6093 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6094 { 6095 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6096 u64 top_smax_value, top_smin_value; 6097 u64 num_bits = size * 8; 6098 6099 if (tnum_is_const(reg->var_off)) { 6100 u64_cval = reg->var_off.value; 6101 if (size == 1) 6102 reg->var_off = tnum_const((s8)u64_cval); 6103 else if (size == 2) 6104 reg->var_off = tnum_const((s16)u64_cval); 6105 else 6106 /* size == 4 */ 6107 reg->var_off = tnum_const((s32)u64_cval); 6108 6109 u64_cval = reg->var_off.value; 6110 reg->smax_value = reg->smin_value = u64_cval; 6111 reg->umax_value = reg->umin_value = u64_cval; 6112 reg->s32_max_value = reg->s32_min_value = u64_cval; 6113 reg->u32_max_value = reg->u32_min_value = u64_cval; 6114 return; 6115 } 6116 6117 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6118 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6119 6120 if (top_smax_value != top_smin_value) 6121 goto out; 6122 6123 /* find the s64_min and s64_min after sign extension */ 6124 if (size == 1) { 6125 init_s64_max = (s8)reg->smax_value; 6126 init_s64_min = (s8)reg->smin_value; 6127 } else if (size == 2) { 6128 init_s64_max = (s16)reg->smax_value; 6129 init_s64_min = (s16)reg->smin_value; 6130 } else { 6131 init_s64_max = (s32)reg->smax_value; 6132 init_s64_min = (s32)reg->smin_value; 6133 } 6134 6135 s64_max = max(init_s64_max, init_s64_min); 6136 s64_min = min(init_s64_max, init_s64_min); 6137 6138 /* both of s64_max/s64_min positive or negative */ 6139 if ((s64_max >= 0) == (s64_min >= 0)) { 6140 reg->smin_value = reg->s32_min_value = s64_min; 6141 reg->smax_value = reg->s32_max_value = s64_max; 6142 reg->umin_value = reg->u32_min_value = s64_min; 6143 reg->umax_value = reg->u32_max_value = s64_max; 6144 reg->var_off = tnum_range(s64_min, s64_max); 6145 return; 6146 } 6147 6148 out: 6149 set_sext64_default_val(reg, size); 6150 } 6151 6152 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6153 { 6154 if (size == 1) { 6155 reg->s32_min_value = S8_MIN; 6156 reg->s32_max_value = S8_MAX; 6157 } else { 6158 /* size == 2 */ 6159 reg->s32_min_value = S16_MIN; 6160 reg->s32_max_value = S16_MAX; 6161 } 6162 reg->u32_min_value = 0; 6163 reg->u32_max_value = U32_MAX; 6164 reg->var_off = tnum_subreg(tnum_unknown); 6165 } 6166 6167 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6168 { 6169 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6170 u32 top_smax_value, top_smin_value; 6171 u32 num_bits = size * 8; 6172 6173 if (tnum_is_const(reg->var_off)) { 6174 u32_val = reg->var_off.value; 6175 if (size == 1) 6176 reg->var_off = tnum_const((s8)u32_val); 6177 else 6178 reg->var_off = tnum_const((s16)u32_val); 6179 6180 u32_val = reg->var_off.value; 6181 reg->s32_min_value = reg->s32_max_value = u32_val; 6182 reg->u32_min_value = reg->u32_max_value = u32_val; 6183 return; 6184 } 6185 6186 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6187 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6188 6189 if (top_smax_value != top_smin_value) 6190 goto out; 6191 6192 /* find the s32_min and s32_min after sign extension */ 6193 if (size == 1) { 6194 init_s32_max = (s8)reg->s32_max_value; 6195 init_s32_min = (s8)reg->s32_min_value; 6196 } else { 6197 /* size == 2 */ 6198 init_s32_max = (s16)reg->s32_max_value; 6199 init_s32_min = (s16)reg->s32_min_value; 6200 } 6201 s32_max = max(init_s32_max, init_s32_min); 6202 s32_min = min(init_s32_max, init_s32_min); 6203 6204 if ((s32_min >= 0) == (s32_max >= 0)) { 6205 reg->s32_min_value = s32_min; 6206 reg->s32_max_value = s32_max; 6207 reg->u32_min_value = (u32)s32_min; 6208 reg->u32_max_value = (u32)s32_max; 6209 reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max)); 6210 return; 6211 } 6212 6213 out: 6214 set_sext32_default_val(reg, size); 6215 } 6216 6217 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6218 { 6219 /* A map is considered read-only if the following condition are true: 6220 * 6221 * 1) BPF program side cannot change any of the map content. The 6222 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6223 * and was set at map creation time. 6224 * 2) The map value(s) have been initialized from user space by a 6225 * loader and then "frozen", such that no new map update/delete 6226 * operations from syscall side are possible for the rest of 6227 * the map's lifetime from that point onwards. 6228 * 3) Any parallel/pending map update/delete operations from syscall 6229 * side have been completed. Only after that point, it's safe to 6230 * assume that map value(s) are immutable. 6231 */ 6232 return (map->map_flags & BPF_F_RDONLY_PROG) && 6233 READ_ONCE(map->frozen) && 6234 !bpf_map_write_active(map); 6235 } 6236 6237 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6238 bool is_ldsx) 6239 { 6240 void *ptr; 6241 u64 addr; 6242 int err; 6243 6244 err = map->ops->map_direct_value_addr(map, &addr, off); 6245 if (err) 6246 return err; 6247 ptr = (void *)(long)addr + off; 6248 6249 switch (size) { 6250 case sizeof(u8): 6251 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6252 break; 6253 case sizeof(u16): 6254 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6255 break; 6256 case sizeof(u32): 6257 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6258 break; 6259 case sizeof(u64): 6260 *val = *(u64 *)ptr; 6261 break; 6262 default: 6263 return -EINVAL; 6264 } 6265 return 0; 6266 } 6267 6268 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6269 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6270 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6271 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type) __PASTE(__type, __safe_trusted_or_null) 6272 6273 /* 6274 * Allow list few fields as RCU trusted or full trusted. 6275 * This logic doesn't allow mix tagging and will be removed once GCC supports 6276 * btf_type_tag. 6277 */ 6278 6279 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6280 BTF_TYPE_SAFE_RCU(struct task_struct) { 6281 const cpumask_t *cpus_ptr; 6282 struct css_set __rcu *cgroups; 6283 struct task_struct __rcu *real_parent; 6284 struct task_struct *group_leader; 6285 }; 6286 6287 BTF_TYPE_SAFE_RCU(struct cgroup) { 6288 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6289 struct kernfs_node *kn; 6290 }; 6291 6292 BTF_TYPE_SAFE_RCU(struct css_set) { 6293 struct cgroup *dfl_cgrp; 6294 }; 6295 6296 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6297 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6298 struct file __rcu *exe_file; 6299 }; 6300 6301 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6302 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6303 */ 6304 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6305 struct sock *sk; 6306 }; 6307 6308 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6309 struct sock *sk; 6310 }; 6311 6312 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6313 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6314 struct seq_file *seq; 6315 }; 6316 6317 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6318 struct bpf_iter_meta *meta; 6319 struct task_struct *task; 6320 }; 6321 6322 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6323 struct file *file; 6324 }; 6325 6326 BTF_TYPE_SAFE_TRUSTED(struct file) { 6327 struct inode *f_inode; 6328 }; 6329 6330 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6331 /* no negative dentry-s in places where bpf can see it */ 6332 struct inode *d_inode; 6333 }; 6334 6335 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) { 6336 struct sock *sk; 6337 }; 6338 6339 static bool type_is_rcu(struct bpf_verifier_env *env, 6340 struct bpf_reg_state *reg, 6341 const char *field_name, u32 btf_id) 6342 { 6343 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6344 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6345 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6346 6347 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6348 } 6349 6350 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6351 struct bpf_reg_state *reg, 6352 const char *field_name, u32 btf_id) 6353 { 6354 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6355 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6356 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6357 6358 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6359 } 6360 6361 static bool type_is_trusted(struct bpf_verifier_env *env, 6362 struct bpf_reg_state *reg, 6363 const char *field_name, u32 btf_id) 6364 { 6365 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6366 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6367 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6368 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6369 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6370 6371 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6372 } 6373 6374 static bool type_is_trusted_or_null(struct bpf_verifier_env *env, 6375 struct bpf_reg_state *reg, 6376 const char *field_name, u32 btf_id) 6377 { 6378 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket)); 6379 6380 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, 6381 "__safe_trusted_or_null"); 6382 } 6383 6384 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6385 struct bpf_reg_state *regs, 6386 int regno, int off, int size, 6387 enum bpf_access_type atype, 6388 int value_regno) 6389 { 6390 struct bpf_reg_state *reg = regs + regno; 6391 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6392 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6393 const char *field_name = NULL; 6394 enum bpf_type_flag flag = 0; 6395 u32 btf_id = 0; 6396 int ret; 6397 6398 if (!env->allow_ptr_leaks) { 6399 verbose(env, 6400 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6401 tname); 6402 return -EPERM; 6403 } 6404 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6405 verbose(env, 6406 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6407 tname); 6408 return -EINVAL; 6409 } 6410 if (off < 0) { 6411 verbose(env, 6412 "R%d is ptr_%s invalid negative access: off=%d\n", 6413 regno, tname, off); 6414 return -EACCES; 6415 } 6416 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6417 char tn_buf[48]; 6418 6419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6420 verbose(env, 6421 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6422 regno, tname, off, tn_buf); 6423 return -EACCES; 6424 } 6425 6426 if (reg->type & MEM_USER) { 6427 verbose(env, 6428 "R%d is ptr_%s access user memory: off=%d\n", 6429 regno, tname, off); 6430 return -EACCES; 6431 } 6432 6433 if (reg->type & MEM_PERCPU) { 6434 verbose(env, 6435 "R%d is ptr_%s access percpu memory: off=%d\n", 6436 regno, tname, off); 6437 return -EACCES; 6438 } 6439 6440 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6441 if (!btf_is_kernel(reg->btf)) { 6442 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6443 return -EFAULT; 6444 } 6445 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6446 } else { 6447 /* Writes are permitted with default btf_struct_access for 6448 * program allocated objects (which always have ref_obj_id > 0), 6449 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6450 */ 6451 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6452 verbose(env, "only read is supported\n"); 6453 return -EACCES; 6454 } 6455 6456 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6457 !reg->ref_obj_id) { 6458 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6459 return -EFAULT; 6460 } 6461 6462 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6463 } 6464 6465 if (ret < 0) 6466 return ret; 6467 6468 if (ret != PTR_TO_BTF_ID) { 6469 /* just mark; */ 6470 6471 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6472 /* If this is an untrusted pointer, all pointers formed by walking it 6473 * also inherit the untrusted flag. 6474 */ 6475 flag = PTR_UNTRUSTED; 6476 6477 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6478 /* By default any pointer obtained from walking a trusted pointer is no 6479 * longer trusted, unless the field being accessed has explicitly been 6480 * marked as inheriting its parent's state of trust (either full or RCU). 6481 * For example: 6482 * 'cgroups' pointer is untrusted if task->cgroups dereference 6483 * happened in a sleepable program outside of bpf_rcu_read_lock() 6484 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6485 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6486 * 6487 * A regular RCU-protected pointer with __rcu tag can also be deemed 6488 * trusted if we are in an RCU CS. Such pointer can be NULL. 6489 */ 6490 if (type_is_trusted(env, reg, field_name, btf_id)) { 6491 flag |= PTR_TRUSTED; 6492 } else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) { 6493 flag |= PTR_TRUSTED | PTR_MAYBE_NULL; 6494 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6495 if (type_is_rcu(env, reg, field_name, btf_id)) { 6496 /* ignore __rcu tag and mark it MEM_RCU */ 6497 flag |= MEM_RCU; 6498 } else if (flag & MEM_RCU || 6499 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6500 /* __rcu tagged pointers can be NULL */ 6501 flag |= MEM_RCU | PTR_MAYBE_NULL; 6502 6503 /* We always trust them */ 6504 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6505 flag & PTR_UNTRUSTED) 6506 flag &= ~PTR_UNTRUSTED; 6507 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6508 /* keep as-is */ 6509 } else { 6510 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6511 clear_trusted_flags(&flag); 6512 } 6513 } else { 6514 /* 6515 * If not in RCU CS or MEM_RCU pointer can be NULL then 6516 * aggressively mark as untrusted otherwise such 6517 * pointers will be plain PTR_TO_BTF_ID without flags 6518 * and will be allowed to be passed into helpers for 6519 * compat reasons. 6520 */ 6521 flag = PTR_UNTRUSTED; 6522 } 6523 } else { 6524 /* Old compat. Deprecated */ 6525 clear_trusted_flags(&flag); 6526 } 6527 6528 if (atype == BPF_READ && value_regno >= 0) 6529 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6530 6531 return 0; 6532 } 6533 6534 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6535 struct bpf_reg_state *regs, 6536 int regno, int off, int size, 6537 enum bpf_access_type atype, 6538 int value_regno) 6539 { 6540 struct bpf_reg_state *reg = regs + regno; 6541 struct bpf_map *map = reg->map_ptr; 6542 struct bpf_reg_state map_reg; 6543 enum bpf_type_flag flag = 0; 6544 const struct btf_type *t; 6545 const char *tname; 6546 u32 btf_id; 6547 int ret; 6548 6549 if (!btf_vmlinux) { 6550 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6551 return -ENOTSUPP; 6552 } 6553 6554 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6555 verbose(env, "map_ptr access not supported for map type %d\n", 6556 map->map_type); 6557 return -ENOTSUPP; 6558 } 6559 6560 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6561 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6562 6563 if (!env->allow_ptr_leaks) { 6564 verbose(env, 6565 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6566 tname); 6567 return -EPERM; 6568 } 6569 6570 if (off < 0) { 6571 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6572 regno, tname, off); 6573 return -EACCES; 6574 } 6575 6576 if (atype != BPF_READ) { 6577 verbose(env, "only read from %s is supported\n", tname); 6578 return -EACCES; 6579 } 6580 6581 /* Simulate access to a PTR_TO_BTF_ID */ 6582 memset(&map_reg, 0, sizeof(map_reg)); 6583 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6584 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6585 if (ret < 0) 6586 return ret; 6587 6588 if (value_regno >= 0) 6589 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6590 6591 return 0; 6592 } 6593 6594 /* Check that the stack access at the given offset is within bounds. The 6595 * maximum valid offset is -1. 6596 * 6597 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6598 * -state->allocated_stack for reads. 6599 */ 6600 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6601 s64 off, 6602 struct bpf_func_state *state, 6603 enum bpf_access_type t) 6604 { 6605 int min_valid_off; 6606 6607 if (t == BPF_WRITE || env->allow_uninit_stack) 6608 min_valid_off = -MAX_BPF_STACK; 6609 else 6610 min_valid_off = -state->allocated_stack; 6611 6612 if (off < min_valid_off || off > -1) 6613 return -EACCES; 6614 return 0; 6615 } 6616 6617 /* Check that the stack access at 'regno + off' falls within the maximum stack 6618 * bounds. 6619 * 6620 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6621 */ 6622 static int check_stack_access_within_bounds( 6623 struct bpf_verifier_env *env, 6624 int regno, int off, int access_size, 6625 enum bpf_access_src src, enum bpf_access_type type) 6626 { 6627 struct bpf_reg_state *regs = cur_regs(env); 6628 struct bpf_reg_state *reg = regs + regno; 6629 struct bpf_func_state *state = func(env, reg); 6630 s64 min_off, max_off; 6631 int err; 6632 char *err_extra; 6633 6634 if (src == ACCESS_HELPER) 6635 /* We don't know if helpers are reading or writing (or both). */ 6636 err_extra = " indirect access to"; 6637 else if (type == BPF_READ) 6638 err_extra = " read from"; 6639 else 6640 err_extra = " write to"; 6641 6642 if (tnum_is_const(reg->var_off)) { 6643 min_off = (s64)reg->var_off.value + off; 6644 max_off = min_off + access_size; 6645 } else { 6646 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6647 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6648 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6649 err_extra, regno); 6650 return -EACCES; 6651 } 6652 min_off = reg->smin_value + off; 6653 max_off = reg->smax_value + off + access_size; 6654 } 6655 6656 err = check_stack_slot_within_bounds(env, min_off, state, type); 6657 if (!err && max_off > 0) 6658 err = -EINVAL; /* out of stack access into non-negative offsets */ 6659 if (!err && access_size < 0) 6660 /* access_size should not be negative (or overflow an int); others checks 6661 * along the way should have prevented such an access. 6662 */ 6663 err = -EFAULT; /* invalid negative access size; integer overflow? */ 6664 6665 if (err) { 6666 if (tnum_is_const(reg->var_off)) { 6667 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6668 err_extra, regno, off, access_size); 6669 } else { 6670 char tn_buf[48]; 6671 6672 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6673 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6674 err_extra, regno, tn_buf, access_size); 6675 } 6676 return err; 6677 } 6678 6679 return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE)); 6680 } 6681 6682 /* check whether memory at (regno + off) is accessible for t = (read | write) 6683 * if t==write, value_regno is a register which value is stored into memory 6684 * if t==read, value_regno is a register which will receive the value from memory 6685 * if t==write && value_regno==-1, some unknown value is stored into memory 6686 * if t==read && value_regno==-1, don't care what we read from memory 6687 */ 6688 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6689 int off, int bpf_size, enum bpf_access_type t, 6690 int value_regno, bool strict_alignment_once, bool is_ldsx) 6691 { 6692 struct bpf_reg_state *regs = cur_regs(env); 6693 struct bpf_reg_state *reg = regs + regno; 6694 int size, err = 0; 6695 6696 size = bpf_size_to_bytes(bpf_size); 6697 if (size < 0) 6698 return size; 6699 6700 /* alignment checks will add in reg->off themselves */ 6701 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6702 if (err) 6703 return err; 6704 6705 /* for access checks, reg->off is just part of off */ 6706 off += reg->off; 6707 6708 if (reg->type == PTR_TO_MAP_KEY) { 6709 if (t == BPF_WRITE) { 6710 verbose(env, "write to change key R%d not allowed\n", regno); 6711 return -EACCES; 6712 } 6713 6714 err = check_mem_region_access(env, regno, off, size, 6715 reg->map_ptr->key_size, false); 6716 if (err) 6717 return err; 6718 if (value_regno >= 0) 6719 mark_reg_unknown(env, regs, value_regno); 6720 } else if (reg->type == PTR_TO_MAP_VALUE) { 6721 struct btf_field *kptr_field = NULL; 6722 6723 if (t == BPF_WRITE && value_regno >= 0 && 6724 is_pointer_value(env, value_regno)) { 6725 verbose(env, "R%d leaks addr into map\n", value_regno); 6726 return -EACCES; 6727 } 6728 err = check_map_access_type(env, regno, off, size, t); 6729 if (err) 6730 return err; 6731 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6732 if (err) 6733 return err; 6734 if (tnum_is_const(reg->var_off)) 6735 kptr_field = btf_record_find(reg->map_ptr->record, 6736 off + reg->var_off.value, BPF_KPTR); 6737 if (kptr_field) { 6738 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6739 } else if (t == BPF_READ && value_regno >= 0) { 6740 struct bpf_map *map = reg->map_ptr; 6741 6742 /* if map is read-only, track its contents as scalars */ 6743 if (tnum_is_const(reg->var_off) && 6744 bpf_map_is_rdonly(map) && 6745 map->ops->map_direct_value_addr) { 6746 int map_off = off + reg->var_off.value; 6747 u64 val = 0; 6748 6749 err = bpf_map_direct_read(map, map_off, size, 6750 &val, is_ldsx); 6751 if (err) 6752 return err; 6753 6754 regs[value_regno].type = SCALAR_VALUE; 6755 __mark_reg_known(®s[value_regno], val); 6756 } else { 6757 mark_reg_unknown(env, regs, value_regno); 6758 } 6759 } 6760 } else if (base_type(reg->type) == PTR_TO_MEM) { 6761 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6762 6763 if (type_may_be_null(reg->type)) { 6764 verbose(env, "R%d invalid mem access '%s'\n", regno, 6765 reg_type_str(env, reg->type)); 6766 return -EACCES; 6767 } 6768 6769 if (t == BPF_WRITE && rdonly_mem) { 6770 verbose(env, "R%d cannot write into %s\n", 6771 regno, reg_type_str(env, reg->type)); 6772 return -EACCES; 6773 } 6774 6775 if (t == BPF_WRITE && value_regno >= 0 && 6776 is_pointer_value(env, value_regno)) { 6777 verbose(env, "R%d leaks addr into mem\n", value_regno); 6778 return -EACCES; 6779 } 6780 6781 err = check_mem_region_access(env, regno, off, size, 6782 reg->mem_size, false); 6783 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6784 mark_reg_unknown(env, regs, value_regno); 6785 } else if (reg->type == PTR_TO_CTX) { 6786 enum bpf_reg_type reg_type = SCALAR_VALUE; 6787 struct btf *btf = NULL; 6788 u32 btf_id = 0; 6789 6790 if (t == BPF_WRITE && value_regno >= 0 && 6791 is_pointer_value(env, value_regno)) { 6792 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6793 return -EACCES; 6794 } 6795 6796 err = check_ptr_off_reg(env, reg, regno); 6797 if (err < 0) 6798 return err; 6799 6800 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6801 &btf_id); 6802 if (err) 6803 verbose_linfo(env, insn_idx, "; "); 6804 if (!err && t == BPF_READ && value_regno >= 0) { 6805 /* ctx access returns either a scalar, or a 6806 * PTR_TO_PACKET[_META,_END]. In the latter 6807 * case, we know the offset is zero. 6808 */ 6809 if (reg_type == SCALAR_VALUE) { 6810 mark_reg_unknown(env, regs, value_regno); 6811 } else { 6812 mark_reg_known_zero(env, regs, 6813 value_regno); 6814 if (type_may_be_null(reg_type)) 6815 regs[value_regno].id = ++env->id_gen; 6816 /* A load of ctx field could have different 6817 * actual load size with the one encoded in the 6818 * insn. When the dst is PTR, it is for sure not 6819 * a sub-register. 6820 */ 6821 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6822 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6823 regs[value_regno].btf = btf; 6824 regs[value_regno].btf_id = btf_id; 6825 } 6826 } 6827 regs[value_regno].type = reg_type; 6828 } 6829 6830 } else if (reg->type == PTR_TO_STACK) { 6831 /* Basic bounds checks. */ 6832 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6833 if (err) 6834 return err; 6835 6836 if (t == BPF_READ) 6837 err = check_stack_read(env, regno, off, size, 6838 value_regno); 6839 else 6840 err = check_stack_write(env, regno, off, size, 6841 value_regno, insn_idx); 6842 } else if (reg_is_pkt_pointer(reg)) { 6843 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6844 verbose(env, "cannot write into packet\n"); 6845 return -EACCES; 6846 } 6847 if (t == BPF_WRITE && value_regno >= 0 && 6848 is_pointer_value(env, value_regno)) { 6849 verbose(env, "R%d leaks addr into packet\n", 6850 value_regno); 6851 return -EACCES; 6852 } 6853 err = check_packet_access(env, regno, off, size, false); 6854 if (!err && t == BPF_READ && value_regno >= 0) 6855 mark_reg_unknown(env, regs, value_regno); 6856 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6857 if (t == BPF_WRITE && value_regno >= 0 && 6858 is_pointer_value(env, value_regno)) { 6859 verbose(env, "R%d leaks addr into flow keys\n", 6860 value_regno); 6861 return -EACCES; 6862 } 6863 6864 err = check_flow_keys_access(env, off, size); 6865 if (!err && t == BPF_READ && value_regno >= 0) 6866 mark_reg_unknown(env, regs, value_regno); 6867 } else if (type_is_sk_pointer(reg->type)) { 6868 if (t == BPF_WRITE) { 6869 verbose(env, "R%d cannot write into %s\n", 6870 regno, reg_type_str(env, reg->type)); 6871 return -EACCES; 6872 } 6873 err = check_sock_access(env, insn_idx, regno, off, size, t); 6874 if (!err && value_regno >= 0) 6875 mark_reg_unknown(env, regs, value_regno); 6876 } else if (reg->type == PTR_TO_TP_BUFFER) { 6877 err = check_tp_buffer_access(env, reg, regno, off, size); 6878 if (!err && t == BPF_READ && value_regno >= 0) 6879 mark_reg_unknown(env, regs, value_regno); 6880 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6881 !type_may_be_null(reg->type)) { 6882 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6883 value_regno); 6884 } else if (reg->type == CONST_PTR_TO_MAP) { 6885 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6886 value_regno); 6887 } else if (base_type(reg->type) == PTR_TO_BUF) { 6888 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6889 u32 *max_access; 6890 6891 if (rdonly_mem) { 6892 if (t == BPF_WRITE) { 6893 verbose(env, "R%d cannot write into %s\n", 6894 regno, reg_type_str(env, reg->type)); 6895 return -EACCES; 6896 } 6897 max_access = &env->prog->aux->max_rdonly_access; 6898 } else { 6899 max_access = &env->prog->aux->max_rdwr_access; 6900 } 6901 6902 err = check_buffer_access(env, reg, regno, off, size, false, 6903 max_access); 6904 6905 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6906 mark_reg_unknown(env, regs, value_regno); 6907 } else { 6908 verbose(env, "R%d invalid mem access '%s'\n", regno, 6909 reg_type_str(env, reg->type)); 6910 return -EACCES; 6911 } 6912 6913 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6914 regs[value_regno].type == SCALAR_VALUE) { 6915 if (!is_ldsx) 6916 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6917 coerce_reg_to_size(®s[value_regno], size); 6918 else 6919 coerce_reg_to_size_sx(®s[value_regno], size); 6920 } 6921 return err; 6922 } 6923 6924 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6925 { 6926 int load_reg; 6927 int err; 6928 6929 switch (insn->imm) { 6930 case BPF_ADD: 6931 case BPF_ADD | BPF_FETCH: 6932 case BPF_AND: 6933 case BPF_AND | BPF_FETCH: 6934 case BPF_OR: 6935 case BPF_OR | BPF_FETCH: 6936 case BPF_XOR: 6937 case BPF_XOR | BPF_FETCH: 6938 case BPF_XCHG: 6939 case BPF_CMPXCHG: 6940 break; 6941 default: 6942 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6943 return -EINVAL; 6944 } 6945 6946 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6947 verbose(env, "invalid atomic operand size\n"); 6948 return -EINVAL; 6949 } 6950 6951 /* check src1 operand */ 6952 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6953 if (err) 6954 return err; 6955 6956 /* check src2 operand */ 6957 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6958 if (err) 6959 return err; 6960 6961 if (insn->imm == BPF_CMPXCHG) { 6962 /* Check comparison of R0 with memory location */ 6963 const u32 aux_reg = BPF_REG_0; 6964 6965 err = check_reg_arg(env, aux_reg, SRC_OP); 6966 if (err) 6967 return err; 6968 6969 if (is_pointer_value(env, aux_reg)) { 6970 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6971 return -EACCES; 6972 } 6973 } 6974 6975 if (is_pointer_value(env, insn->src_reg)) { 6976 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6977 return -EACCES; 6978 } 6979 6980 if (is_ctx_reg(env, insn->dst_reg) || 6981 is_pkt_reg(env, insn->dst_reg) || 6982 is_flow_key_reg(env, insn->dst_reg) || 6983 is_sk_reg(env, insn->dst_reg)) { 6984 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6985 insn->dst_reg, 6986 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6987 return -EACCES; 6988 } 6989 6990 if (insn->imm & BPF_FETCH) { 6991 if (insn->imm == BPF_CMPXCHG) 6992 load_reg = BPF_REG_0; 6993 else 6994 load_reg = insn->src_reg; 6995 6996 /* check and record load of old value */ 6997 err = check_reg_arg(env, load_reg, DST_OP); 6998 if (err) 6999 return err; 7000 } else { 7001 /* This instruction accesses a memory location but doesn't 7002 * actually load it into a register. 7003 */ 7004 load_reg = -1; 7005 } 7006 7007 /* Check whether we can read the memory, with second call for fetch 7008 * case to simulate the register fill. 7009 */ 7010 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7011 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 7012 if (!err && load_reg >= 0) 7013 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7014 BPF_SIZE(insn->code), BPF_READ, load_reg, 7015 true, false); 7016 if (err) 7017 return err; 7018 7019 /* Check whether we can write into the same memory. */ 7020 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7021 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7022 if (err) 7023 return err; 7024 7025 return 0; 7026 } 7027 7028 /* When register 'regno' is used to read the stack (either directly or through 7029 * a helper function) make sure that it's within stack boundary and, depending 7030 * on the access type and privileges, that all elements of the stack are 7031 * initialized. 7032 * 7033 * 'off' includes 'regno->off', but not its dynamic part (if any). 7034 * 7035 * All registers that have been spilled on the stack in the slots within the 7036 * read offsets are marked as read. 7037 */ 7038 static int check_stack_range_initialized( 7039 struct bpf_verifier_env *env, int regno, int off, 7040 int access_size, bool zero_size_allowed, 7041 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7042 { 7043 struct bpf_reg_state *reg = reg_state(env, regno); 7044 struct bpf_func_state *state = func(env, reg); 7045 int err, min_off, max_off, i, j, slot, spi; 7046 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7047 enum bpf_access_type bounds_check_type; 7048 /* Some accesses can write anything into the stack, others are 7049 * read-only. 7050 */ 7051 bool clobber = false; 7052 7053 if (access_size == 0 && !zero_size_allowed) { 7054 verbose(env, "invalid zero-sized read\n"); 7055 return -EACCES; 7056 } 7057 7058 if (type == ACCESS_HELPER) { 7059 /* The bounds checks for writes are more permissive than for 7060 * reads. However, if raw_mode is not set, we'll do extra 7061 * checks below. 7062 */ 7063 bounds_check_type = BPF_WRITE; 7064 clobber = true; 7065 } else { 7066 bounds_check_type = BPF_READ; 7067 } 7068 err = check_stack_access_within_bounds(env, regno, off, access_size, 7069 type, bounds_check_type); 7070 if (err) 7071 return err; 7072 7073 7074 if (tnum_is_const(reg->var_off)) { 7075 min_off = max_off = reg->var_off.value + off; 7076 } else { 7077 /* Variable offset is prohibited for unprivileged mode for 7078 * simplicity since it requires corresponding support in 7079 * Spectre masking for stack ALU. 7080 * See also retrieve_ptr_limit(). 7081 */ 7082 if (!env->bypass_spec_v1) { 7083 char tn_buf[48]; 7084 7085 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7086 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7087 regno, err_extra, tn_buf); 7088 return -EACCES; 7089 } 7090 /* Only initialized buffer on stack is allowed to be accessed 7091 * with variable offset. With uninitialized buffer it's hard to 7092 * guarantee that whole memory is marked as initialized on 7093 * helper return since specific bounds are unknown what may 7094 * cause uninitialized stack leaking. 7095 */ 7096 if (meta && meta->raw_mode) 7097 meta = NULL; 7098 7099 min_off = reg->smin_value + off; 7100 max_off = reg->smax_value + off; 7101 } 7102 7103 if (meta && meta->raw_mode) { 7104 /* Ensure we won't be overwriting dynptrs when simulating byte 7105 * by byte access in check_helper_call using meta.access_size. 7106 * This would be a problem if we have a helper in the future 7107 * which takes: 7108 * 7109 * helper(uninit_mem, len, dynptr) 7110 * 7111 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7112 * may end up writing to dynptr itself when touching memory from 7113 * arg 1. This can be relaxed on a case by case basis for known 7114 * safe cases, but reject due to the possibilitiy of aliasing by 7115 * default. 7116 */ 7117 for (i = min_off; i < max_off + access_size; i++) { 7118 int stack_off = -i - 1; 7119 7120 spi = __get_spi(i); 7121 /* raw_mode may write past allocated_stack */ 7122 if (state->allocated_stack <= stack_off) 7123 continue; 7124 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7125 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7126 return -EACCES; 7127 } 7128 } 7129 meta->access_size = access_size; 7130 meta->regno = regno; 7131 return 0; 7132 } 7133 7134 for (i = min_off; i < max_off + access_size; i++) { 7135 u8 *stype; 7136 7137 slot = -i - 1; 7138 spi = slot / BPF_REG_SIZE; 7139 if (state->allocated_stack <= slot) { 7140 verbose(env, "verifier bug: allocated_stack too small"); 7141 return -EFAULT; 7142 } 7143 7144 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7145 if (*stype == STACK_MISC) 7146 goto mark; 7147 if ((*stype == STACK_ZERO) || 7148 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7149 if (clobber) { 7150 /* helper can write anything into the stack */ 7151 *stype = STACK_MISC; 7152 } 7153 goto mark; 7154 } 7155 7156 if (is_spilled_reg(&state->stack[spi]) && 7157 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7158 env->allow_ptr_leaks)) { 7159 if (clobber) { 7160 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7161 for (j = 0; j < BPF_REG_SIZE; j++) 7162 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7163 } 7164 goto mark; 7165 } 7166 7167 if (tnum_is_const(reg->var_off)) { 7168 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7169 err_extra, regno, min_off, i - min_off, access_size); 7170 } else { 7171 char tn_buf[48]; 7172 7173 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7174 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7175 err_extra, regno, tn_buf, i - min_off, access_size); 7176 } 7177 return -EACCES; 7178 mark: 7179 /* reading any byte out of 8-byte 'spill_slot' will cause 7180 * the whole slot to be marked as 'read' 7181 */ 7182 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7183 state->stack[spi].spilled_ptr.parent, 7184 REG_LIVE_READ64); 7185 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7186 * be sure that whether stack slot is written to or not. Hence, 7187 * we must still conservatively propagate reads upwards even if 7188 * helper may write to the entire memory range. 7189 */ 7190 } 7191 return 0; 7192 } 7193 7194 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7195 int access_size, bool zero_size_allowed, 7196 struct bpf_call_arg_meta *meta) 7197 { 7198 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7199 u32 *max_access; 7200 7201 switch (base_type(reg->type)) { 7202 case PTR_TO_PACKET: 7203 case PTR_TO_PACKET_META: 7204 return check_packet_access(env, regno, reg->off, access_size, 7205 zero_size_allowed); 7206 case PTR_TO_MAP_KEY: 7207 if (meta && meta->raw_mode) { 7208 verbose(env, "R%d cannot write into %s\n", regno, 7209 reg_type_str(env, reg->type)); 7210 return -EACCES; 7211 } 7212 return check_mem_region_access(env, regno, reg->off, access_size, 7213 reg->map_ptr->key_size, false); 7214 case PTR_TO_MAP_VALUE: 7215 if (check_map_access_type(env, regno, reg->off, access_size, 7216 meta && meta->raw_mode ? BPF_WRITE : 7217 BPF_READ)) 7218 return -EACCES; 7219 return check_map_access(env, regno, reg->off, access_size, 7220 zero_size_allowed, ACCESS_HELPER); 7221 case PTR_TO_MEM: 7222 if (type_is_rdonly_mem(reg->type)) { 7223 if (meta && meta->raw_mode) { 7224 verbose(env, "R%d cannot write into %s\n", regno, 7225 reg_type_str(env, reg->type)); 7226 return -EACCES; 7227 } 7228 } 7229 return check_mem_region_access(env, regno, reg->off, 7230 access_size, reg->mem_size, 7231 zero_size_allowed); 7232 case PTR_TO_BUF: 7233 if (type_is_rdonly_mem(reg->type)) { 7234 if (meta && meta->raw_mode) { 7235 verbose(env, "R%d cannot write into %s\n", regno, 7236 reg_type_str(env, reg->type)); 7237 return -EACCES; 7238 } 7239 7240 max_access = &env->prog->aux->max_rdonly_access; 7241 } else { 7242 max_access = &env->prog->aux->max_rdwr_access; 7243 } 7244 return check_buffer_access(env, reg, regno, reg->off, 7245 access_size, zero_size_allowed, 7246 max_access); 7247 case PTR_TO_STACK: 7248 return check_stack_range_initialized( 7249 env, 7250 regno, reg->off, access_size, 7251 zero_size_allowed, ACCESS_HELPER, meta); 7252 case PTR_TO_BTF_ID: 7253 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7254 access_size, BPF_READ, -1); 7255 case PTR_TO_CTX: 7256 /* in case the function doesn't know how to access the context, 7257 * (because we are in a program of type SYSCALL for example), we 7258 * can not statically check its size. 7259 * Dynamically check it now. 7260 */ 7261 if (!env->ops->convert_ctx_access) { 7262 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7263 int offset = access_size - 1; 7264 7265 /* Allow zero-byte read from PTR_TO_CTX */ 7266 if (access_size == 0) 7267 return zero_size_allowed ? 0 : -EACCES; 7268 7269 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7270 atype, -1, false, false); 7271 } 7272 7273 fallthrough; 7274 default: /* scalar_value or invalid ptr */ 7275 /* Allow zero-byte read from NULL, regardless of pointer type */ 7276 if (zero_size_allowed && access_size == 0 && 7277 register_is_null(reg)) 7278 return 0; 7279 7280 verbose(env, "R%d type=%s ", regno, 7281 reg_type_str(env, reg->type)); 7282 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7283 return -EACCES; 7284 } 7285 } 7286 7287 static int check_mem_size_reg(struct bpf_verifier_env *env, 7288 struct bpf_reg_state *reg, u32 regno, 7289 bool zero_size_allowed, 7290 struct bpf_call_arg_meta *meta) 7291 { 7292 int err; 7293 7294 /* This is used to refine r0 return value bounds for helpers 7295 * that enforce this value as an upper bound on return values. 7296 * See do_refine_retval_range() for helpers that can refine 7297 * the return value. C type of helper is u32 so we pull register 7298 * bound from umax_value however, if negative verifier errors 7299 * out. Only upper bounds can be learned because retval is an 7300 * int type and negative retvals are allowed. 7301 */ 7302 meta->msize_max_value = reg->umax_value; 7303 7304 /* The register is SCALAR_VALUE; the access check 7305 * happens using its boundaries. 7306 */ 7307 if (!tnum_is_const(reg->var_off)) 7308 /* For unprivileged variable accesses, disable raw 7309 * mode so that the program is required to 7310 * initialize all the memory that the helper could 7311 * just partially fill up. 7312 */ 7313 meta = NULL; 7314 7315 if (reg->smin_value < 0) { 7316 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7317 regno); 7318 return -EACCES; 7319 } 7320 7321 if (reg->umin_value == 0) { 7322 err = check_helper_mem_access(env, regno - 1, 0, 7323 zero_size_allowed, 7324 meta); 7325 if (err) 7326 return err; 7327 } 7328 7329 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7330 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7331 regno); 7332 return -EACCES; 7333 } 7334 err = check_helper_mem_access(env, regno - 1, 7335 reg->umax_value, 7336 zero_size_allowed, meta); 7337 if (!err) 7338 err = mark_chain_precision(env, regno); 7339 return err; 7340 } 7341 7342 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7343 u32 regno, u32 mem_size) 7344 { 7345 bool may_be_null = type_may_be_null(reg->type); 7346 struct bpf_reg_state saved_reg; 7347 struct bpf_call_arg_meta meta; 7348 int err; 7349 7350 if (register_is_null(reg)) 7351 return 0; 7352 7353 memset(&meta, 0, sizeof(meta)); 7354 /* Assuming that the register contains a value check if the memory 7355 * access is safe. Temporarily save and restore the register's state as 7356 * the conversion shouldn't be visible to a caller. 7357 */ 7358 if (may_be_null) { 7359 saved_reg = *reg; 7360 mark_ptr_not_null_reg(reg); 7361 } 7362 7363 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7364 /* Check access for BPF_WRITE */ 7365 meta.raw_mode = true; 7366 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7367 7368 if (may_be_null) 7369 *reg = saved_reg; 7370 7371 return err; 7372 } 7373 7374 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7375 u32 regno) 7376 { 7377 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7378 bool may_be_null = type_may_be_null(mem_reg->type); 7379 struct bpf_reg_state saved_reg; 7380 struct bpf_call_arg_meta meta; 7381 int err; 7382 7383 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7384 7385 memset(&meta, 0, sizeof(meta)); 7386 7387 if (may_be_null) { 7388 saved_reg = *mem_reg; 7389 mark_ptr_not_null_reg(mem_reg); 7390 } 7391 7392 err = check_mem_size_reg(env, reg, regno, true, &meta); 7393 /* Check access for BPF_WRITE */ 7394 meta.raw_mode = true; 7395 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7396 7397 if (may_be_null) 7398 *mem_reg = saved_reg; 7399 return err; 7400 } 7401 7402 /* Implementation details: 7403 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7404 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7405 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7406 * Two separate bpf_obj_new will also have different reg->id. 7407 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7408 * clears reg->id after value_or_null->value transition, since the verifier only 7409 * cares about the range of access to valid map value pointer and doesn't care 7410 * about actual address of the map element. 7411 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7412 * reg->id > 0 after value_or_null->value transition. By doing so 7413 * two bpf_map_lookups will be considered two different pointers that 7414 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7415 * returned from bpf_obj_new. 7416 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7417 * dead-locks. 7418 * Since only one bpf_spin_lock is allowed the checks are simpler than 7419 * reg_is_refcounted() logic. The verifier needs to remember only 7420 * one spin_lock instead of array of acquired_refs. 7421 * cur_state->active_lock remembers which map value element or allocated 7422 * object got locked and clears it after bpf_spin_unlock. 7423 */ 7424 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7425 bool is_lock) 7426 { 7427 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7428 struct bpf_verifier_state *cur = env->cur_state; 7429 bool is_const = tnum_is_const(reg->var_off); 7430 u64 val = reg->var_off.value; 7431 struct bpf_map *map = NULL; 7432 struct btf *btf = NULL; 7433 struct btf_record *rec; 7434 7435 if (!is_const) { 7436 verbose(env, 7437 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7438 regno); 7439 return -EINVAL; 7440 } 7441 if (reg->type == PTR_TO_MAP_VALUE) { 7442 map = reg->map_ptr; 7443 if (!map->btf) { 7444 verbose(env, 7445 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7446 map->name); 7447 return -EINVAL; 7448 } 7449 } else { 7450 btf = reg->btf; 7451 } 7452 7453 rec = reg_btf_record(reg); 7454 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7455 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7456 map ? map->name : "kptr"); 7457 return -EINVAL; 7458 } 7459 if (rec->spin_lock_off != val + reg->off) { 7460 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7461 val + reg->off, rec->spin_lock_off); 7462 return -EINVAL; 7463 } 7464 if (is_lock) { 7465 if (cur->active_lock.ptr) { 7466 verbose(env, 7467 "Locking two bpf_spin_locks are not allowed\n"); 7468 return -EINVAL; 7469 } 7470 if (map) 7471 cur->active_lock.ptr = map; 7472 else 7473 cur->active_lock.ptr = btf; 7474 cur->active_lock.id = reg->id; 7475 } else { 7476 void *ptr; 7477 7478 if (map) 7479 ptr = map; 7480 else 7481 ptr = btf; 7482 7483 if (!cur->active_lock.ptr) { 7484 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7485 return -EINVAL; 7486 } 7487 if (cur->active_lock.ptr != ptr || 7488 cur->active_lock.id != reg->id) { 7489 verbose(env, "bpf_spin_unlock of different lock\n"); 7490 return -EINVAL; 7491 } 7492 7493 invalidate_non_owning_refs(env); 7494 7495 cur->active_lock.ptr = NULL; 7496 cur->active_lock.id = 0; 7497 } 7498 return 0; 7499 } 7500 7501 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7502 struct bpf_call_arg_meta *meta) 7503 { 7504 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7505 bool is_const = tnum_is_const(reg->var_off); 7506 struct bpf_map *map = reg->map_ptr; 7507 u64 val = reg->var_off.value; 7508 7509 if (!is_const) { 7510 verbose(env, 7511 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7512 regno); 7513 return -EINVAL; 7514 } 7515 if (!map->btf) { 7516 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7517 map->name); 7518 return -EINVAL; 7519 } 7520 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7521 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7522 return -EINVAL; 7523 } 7524 if (map->record->timer_off != val + reg->off) { 7525 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7526 val + reg->off, map->record->timer_off); 7527 return -EINVAL; 7528 } 7529 if (meta->map_ptr) { 7530 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7531 return -EFAULT; 7532 } 7533 meta->map_uid = reg->map_uid; 7534 meta->map_ptr = map; 7535 return 0; 7536 } 7537 7538 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7539 struct bpf_call_arg_meta *meta) 7540 { 7541 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7542 struct bpf_map *map_ptr = reg->map_ptr; 7543 struct btf_field *kptr_field; 7544 u32 kptr_off; 7545 7546 if (!tnum_is_const(reg->var_off)) { 7547 verbose(env, 7548 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7549 regno); 7550 return -EINVAL; 7551 } 7552 if (!map_ptr->btf) { 7553 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7554 map_ptr->name); 7555 return -EINVAL; 7556 } 7557 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7558 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7559 return -EINVAL; 7560 } 7561 7562 meta->map_ptr = map_ptr; 7563 kptr_off = reg->off + reg->var_off.value; 7564 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7565 if (!kptr_field) { 7566 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7567 return -EACCES; 7568 } 7569 if (kptr_field->type != BPF_KPTR_REF) { 7570 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7571 return -EACCES; 7572 } 7573 meta->kptr_field = kptr_field; 7574 return 0; 7575 } 7576 7577 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7578 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7579 * 7580 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7581 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7582 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7583 * 7584 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7585 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7586 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7587 * mutate the view of the dynptr and also possibly destroy it. In the latter 7588 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7589 * memory that dynptr points to. 7590 * 7591 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7592 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7593 * readonly dynptr view yet, hence only the first case is tracked and checked. 7594 * 7595 * This is consistent with how C applies the const modifier to a struct object, 7596 * where the pointer itself inside bpf_dynptr becomes const but not what it 7597 * points to. 7598 * 7599 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7600 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7601 */ 7602 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7603 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7604 { 7605 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7606 int err; 7607 7608 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7609 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7610 */ 7611 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7612 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7613 return -EFAULT; 7614 } 7615 7616 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7617 * constructing a mutable bpf_dynptr object. 7618 * 7619 * Currently, this is only possible with PTR_TO_STACK 7620 * pointing to a region of at least 16 bytes which doesn't 7621 * contain an existing bpf_dynptr. 7622 * 7623 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7624 * mutated or destroyed. However, the memory it points to 7625 * may be mutated. 7626 * 7627 * None - Points to a initialized dynptr that can be mutated and 7628 * destroyed, including mutation of the memory it points 7629 * to. 7630 */ 7631 if (arg_type & MEM_UNINIT) { 7632 int i; 7633 7634 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7635 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7636 return -EINVAL; 7637 } 7638 7639 /* we write BPF_DW bits (8 bytes) at a time */ 7640 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7641 err = check_mem_access(env, insn_idx, regno, 7642 i, BPF_DW, BPF_WRITE, -1, false, false); 7643 if (err) 7644 return err; 7645 } 7646 7647 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7648 } else /* MEM_RDONLY and None case from above */ { 7649 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7650 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7651 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7652 return -EINVAL; 7653 } 7654 7655 if (!is_dynptr_reg_valid_init(env, reg)) { 7656 verbose(env, 7657 "Expected an initialized dynptr as arg #%d\n", 7658 regno); 7659 return -EINVAL; 7660 } 7661 7662 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7663 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7664 verbose(env, 7665 "Expected a dynptr of type %s as arg #%d\n", 7666 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7667 return -EINVAL; 7668 } 7669 7670 err = mark_dynptr_read(env, reg); 7671 } 7672 return err; 7673 } 7674 7675 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7676 { 7677 struct bpf_func_state *state = func(env, reg); 7678 7679 return state->stack[spi].spilled_ptr.ref_obj_id; 7680 } 7681 7682 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7683 { 7684 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7685 } 7686 7687 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7688 { 7689 return meta->kfunc_flags & KF_ITER_NEW; 7690 } 7691 7692 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7693 { 7694 return meta->kfunc_flags & KF_ITER_NEXT; 7695 } 7696 7697 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7698 { 7699 return meta->kfunc_flags & KF_ITER_DESTROY; 7700 } 7701 7702 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7703 { 7704 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7705 * kfunc is iter state pointer 7706 */ 7707 return arg == 0 && is_iter_kfunc(meta); 7708 } 7709 7710 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7711 struct bpf_kfunc_call_arg_meta *meta) 7712 { 7713 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7714 const struct btf_type *t; 7715 const struct btf_param *arg; 7716 int spi, err, i, nr_slots; 7717 u32 btf_id; 7718 7719 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7720 arg = &btf_params(meta->func_proto)[0]; 7721 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7722 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7723 nr_slots = t->size / BPF_REG_SIZE; 7724 7725 if (is_iter_new_kfunc(meta)) { 7726 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7727 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7728 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7729 iter_type_str(meta->btf, btf_id), regno); 7730 return -EINVAL; 7731 } 7732 7733 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7734 err = check_mem_access(env, insn_idx, regno, 7735 i, BPF_DW, BPF_WRITE, -1, false, false); 7736 if (err) 7737 return err; 7738 } 7739 7740 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7741 if (err) 7742 return err; 7743 } else { 7744 /* iter_next() or iter_destroy() expect initialized iter state*/ 7745 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7746 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7747 iter_type_str(meta->btf, btf_id), regno); 7748 return -EINVAL; 7749 } 7750 7751 spi = iter_get_spi(env, reg, nr_slots); 7752 if (spi < 0) 7753 return spi; 7754 7755 err = mark_iter_read(env, reg, spi, nr_slots); 7756 if (err) 7757 return err; 7758 7759 /* remember meta->iter info for process_iter_next_call() */ 7760 meta->iter.spi = spi; 7761 meta->iter.frameno = reg->frameno; 7762 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7763 7764 if (is_iter_destroy_kfunc(meta)) { 7765 err = unmark_stack_slots_iter(env, reg, nr_slots); 7766 if (err) 7767 return err; 7768 } 7769 } 7770 7771 return 0; 7772 } 7773 7774 /* Look for a previous loop entry at insn_idx: nearest parent state 7775 * stopped at insn_idx with callsites matching those in cur->frame. 7776 */ 7777 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7778 struct bpf_verifier_state *cur, 7779 int insn_idx) 7780 { 7781 struct bpf_verifier_state_list *sl; 7782 struct bpf_verifier_state *st; 7783 7784 /* Explored states are pushed in stack order, most recent states come first */ 7785 sl = *explored_state(env, insn_idx); 7786 for (; sl; sl = sl->next) { 7787 /* If st->branches != 0 state is a part of current DFS verification path, 7788 * hence cur & st for a loop. 7789 */ 7790 st = &sl->state; 7791 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7792 st->dfs_depth < cur->dfs_depth) 7793 return st; 7794 } 7795 7796 return NULL; 7797 } 7798 7799 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7800 static bool regs_exact(const struct bpf_reg_state *rold, 7801 const struct bpf_reg_state *rcur, 7802 struct bpf_idmap *idmap); 7803 7804 static void maybe_widen_reg(struct bpf_verifier_env *env, 7805 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7806 struct bpf_idmap *idmap) 7807 { 7808 if (rold->type != SCALAR_VALUE) 7809 return; 7810 if (rold->type != rcur->type) 7811 return; 7812 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7813 return; 7814 __mark_reg_unknown(env, rcur); 7815 } 7816 7817 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7818 struct bpf_verifier_state *old, 7819 struct bpf_verifier_state *cur) 7820 { 7821 struct bpf_func_state *fold, *fcur; 7822 int i, fr; 7823 7824 reset_idmap_scratch(env); 7825 for (fr = old->curframe; fr >= 0; fr--) { 7826 fold = old->frame[fr]; 7827 fcur = cur->frame[fr]; 7828 7829 for (i = 0; i < MAX_BPF_REG; i++) 7830 maybe_widen_reg(env, 7831 &fold->regs[i], 7832 &fcur->regs[i], 7833 &env->idmap_scratch); 7834 7835 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7836 if (!is_spilled_reg(&fold->stack[i]) || 7837 !is_spilled_reg(&fcur->stack[i])) 7838 continue; 7839 7840 maybe_widen_reg(env, 7841 &fold->stack[i].spilled_ptr, 7842 &fcur->stack[i].spilled_ptr, 7843 &env->idmap_scratch); 7844 } 7845 } 7846 return 0; 7847 } 7848 7849 /* process_iter_next_call() is called when verifier gets to iterator's next 7850 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7851 * to it as just "iter_next()" in comments below. 7852 * 7853 * BPF verifier relies on a crucial contract for any iter_next() 7854 * implementation: it should *eventually* return NULL, and once that happens 7855 * it should keep returning NULL. That is, once iterator exhausts elements to 7856 * iterate, it should never reset or spuriously return new elements. 7857 * 7858 * With the assumption of such contract, process_iter_next_call() simulates 7859 * a fork in the verifier state to validate loop logic correctness and safety 7860 * without having to simulate infinite amount of iterations. 7861 * 7862 * In current state, we first assume that iter_next() returned NULL and 7863 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7864 * conditions we should not form an infinite loop and should eventually reach 7865 * exit. 7866 * 7867 * Besides that, we also fork current state and enqueue it for later 7868 * verification. In a forked state we keep iterator state as ACTIVE 7869 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7870 * also bump iteration depth to prevent erroneous infinite loop detection 7871 * later on (see iter_active_depths_differ() comment for details). In this 7872 * state we assume that we'll eventually loop back to another iter_next() 7873 * calls (it could be in exactly same location or in some other instruction, 7874 * it doesn't matter, we don't make any unnecessary assumptions about this, 7875 * everything revolves around iterator state in a stack slot, not which 7876 * instruction is calling iter_next()). When that happens, we either will come 7877 * to iter_next() with equivalent state and can conclude that next iteration 7878 * will proceed in exactly the same way as we just verified, so it's safe to 7879 * assume that loop converges. If not, we'll go on another iteration 7880 * simulation with a different input state, until all possible starting states 7881 * are validated or we reach maximum number of instructions limit. 7882 * 7883 * This way, we will either exhaustively discover all possible input states 7884 * that iterator loop can start with and eventually will converge, or we'll 7885 * effectively regress into bounded loop simulation logic and either reach 7886 * maximum number of instructions if loop is not provably convergent, or there 7887 * is some statically known limit on number of iterations (e.g., if there is 7888 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7889 * 7890 * Iteration convergence logic in is_state_visited() relies on exact 7891 * states comparison, which ignores read and precision marks. 7892 * This is necessary because read and precision marks are not finalized 7893 * while in the loop. Exact comparison might preclude convergence for 7894 * simple programs like below: 7895 * 7896 * i = 0; 7897 * while(iter_next(&it)) 7898 * i++; 7899 * 7900 * At each iteration step i++ would produce a new distinct state and 7901 * eventually instruction processing limit would be reached. 7902 * 7903 * To avoid such behavior speculatively forget (widen) range for 7904 * imprecise scalar registers, if those registers were not precise at the 7905 * end of the previous iteration and do not match exactly. 7906 * 7907 * This is a conservative heuristic that allows to verify wide range of programs, 7908 * however it precludes verification of programs that conjure an 7909 * imprecise value on the first loop iteration and use it as precise on a second. 7910 * For example, the following safe program would fail to verify: 7911 * 7912 * struct bpf_num_iter it; 7913 * int arr[10]; 7914 * int i = 0, a = 0; 7915 * bpf_iter_num_new(&it, 0, 10); 7916 * while (bpf_iter_num_next(&it)) { 7917 * if (a == 0) { 7918 * a = 1; 7919 * i = 7; // Because i changed verifier would forget 7920 * // it's range on second loop entry. 7921 * } else { 7922 * arr[i] = 42; // This would fail to verify. 7923 * } 7924 * } 7925 * bpf_iter_num_destroy(&it); 7926 */ 7927 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7928 struct bpf_kfunc_call_arg_meta *meta) 7929 { 7930 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 7931 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7932 struct bpf_reg_state *cur_iter, *queued_iter; 7933 int iter_frameno = meta->iter.frameno; 7934 int iter_spi = meta->iter.spi; 7935 7936 BTF_TYPE_EMIT(struct bpf_iter); 7937 7938 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7939 7940 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7941 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7942 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7943 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7944 return -EFAULT; 7945 } 7946 7947 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7948 /* Because iter_next() call is a checkpoint is_state_visitied() 7949 * should guarantee parent state with same call sites and insn_idx. 7950 */ 7951 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 7952 !same_callsites(cur_st->parent, cur_st)) { 7953 verbose(env, "bug: bad parent state for iter next call"); 7954 return -EFAULT; 7955 } 7956 /* Note cur_st->parent in the call below, it is necessary to skip 7957 * checkpoint created for cur_st by is_state_visited() 7958 * right at this instruction. 7959 */ 7960 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 7961 /* branch out active iter state */ 7962 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7963 if (!queued_st) 7964 return -ENOMEM; 7965 7966 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7967 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7968 queued_iter->iter.depth++; 7969 if (prev_st) 7970 widen_imprecise_scalars(env, prev_st, queued_st); 7971 7972 queued_fr = queued_st->frame[queued_st->curframe]; 7973 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7974 } 7975 7976 /* switch to DRAINED state, but keep the depth unchanged */ 7977 /* mark current iter state as drained and assume returned NULL */ 7978 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7979 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7980 7981 return 0; 7982 } 7983 7984 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7985 { 7986 return type == ARG_CONST_SIZE || 7987 type == ARG_CONST_SIZE_OR_ZERO; 7988 } 7989 7990 static bool arg_type_is_release(enum bpf_arg_type type) 7991 { 7992 return type & OBJ_RELEASE; 7993 } 7994 7995 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7996 { 7997 return base_type(type) == ARG_PTR_TO_DYNPTR; 7998 } 7999 8000 static int int_ptr_type_to_size(enum bpf_arg_type type) 8001 { 8002 if (type == ARG_PTR_TO_INT) 8003 return sizeof(u32); 8004 else if (type == ARG_PTR_TO_LONG) 8005 return sizeof(u64); 8006 8007 return -EINVAL; 8008 } 8009 8010 static int resolve_map_arg_type(struct bpf_verifier_env *env, 8011 const struct bpf_call_arg_meta *meta, 8012 enum bpf_arg_type *arg_type) 8013 { 8014 if (!meta->map_ptr) { 8015 /* kernel subsystem misconfigured verifier */ 8016 verbose(env, "invalid map_ptr to access map->type\n"); 8017 return -EACCES; 8018 } 8019 8020 switch (meta->map_ptr->map_type) { 8021 case BPF_MAP_TYPE_SOCKMAP: 8022 case BPF_MAP_TYPE_SOCKHASH: 8023 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8024 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8025 } else { 8026 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8027 return -EINVAL; 8028 } 8029 break; 8030 case BPF_MAP_TYPE_BLOOM_FILTER: 8031 if (meta->func_id == BPF_FUNC_map_peek_elem) 8032 *arg_type = ARG_PTR_TO_MAP_VALUE; 8033 break; 8034 default: 8035 break; 8036 } 8037 return 0; 8038 } 8039 8040 struct bpf_reg_types { 8041 const enum bpf_reg_type types[10]; 8042 u32 *btf_id; 8043 }; 8044 8045 static const struct bpf_reg_types sock_types = { 8046 .types = { 8047 PTR_TO_SOCK_COMMON, 8048 PTR_TO_SOCKET, 8049 PTR_TO_TCP_SOCK, 8050 PTR_TO_XDP_SOCK, 8051 }, 8052 }; 8053 8054 #ifdef CONFIG_NET 8055 static const struct bpf_reg_types btf_id_sock_common_types = { 8056 .types = { 8057 PTR_TO_SOCK_COMMON, 8058 PTR_TO_SOCKET, 8059 PTR_TO_TCP_SOCK, 8060 PTR_TO_XDP_SOCK, 8061 PTR_TO_BTF_ID, 8062 PTR_TO_BTF_ID | PTR_TRUSTED, 8063 }, 8064 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8065 }; 8066 #endif 8067 8068 static const struct bpf_reg_types mem_types = { 8069 .types = { 8070 PTR_TO_STACK, 8071 PTR_TO_PACKET, 8072 PTR_TO_PACKET_META, 8073 PTR_TO_MAP_KEY, 8074 PTR_TO_MAP_VALUE, 8075 PTR_TO_MEM, 8076 PTR_TO_MEM | MEM_RINGBUF, 8077 PTR_TO_BUF, 8078 PTR_TO_BTF_ID | PTR_TRUSTED, 8079 }, 8080 }; 8081 8082 static const struct bpf_reg_types int_ptr_types = { 8083 .types = { 8084 PTR_TO_STACK, 8085 PTR_TO_PACKET, 8086 PTR_TO_PACKET_META, 8087 PTR_TO_MAP_KEY, 8088 PTR_TO_MAP_VALUE, 8089 }, 8090 }; 8091 8092 static const struct bpf_reg_types spin_lock_types = { 8093 .types = { 8094 PTR_TO_MAP_VALUE, 8095 PTR_TO_BTF_ID | MEM_ALLOC, 8096 } 8097 }; 8098 8099 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8100 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8101 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8102 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8103 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8104 static const struct bpf_reg_types btf_ptr_types = { 8105 .types = { 8106 PTR_TO_BTF_ID, 8107 PTR_TO_BTF_ID | PTR_TRUSTED, 8108 PTR_TO_BTF_ID | MEM_RCU, 8109 }, 8110 }; 8111 static const struct bpf_reg_types percpu_btf_ptr_types = { 8112 .types = { 8113 PTR_TO_BTF_ID | MEM_PERCPU, 8114 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8115 } 8116 }; 8117 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8118 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8119 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8120 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8121 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8122 static const struct bpf_reg_types dynptr_types = { 8123 .types = { 8124 PTR_TO_STACK, 8125 CONST_PTR_TO_DYNPTR, 8126 } 8127 }; 8128 8129 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8130 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8131 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8132 [ARG_CONST_SIZE] = &scalar_types, 8133 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8134 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8135 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8136 [ARG_PTR_TO_CTX] = &context_types, 8137 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8138 #ifdef CONFIG_NET 8139 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8140 #endif 8141 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8142 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8143 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8144 [ARG_PTR_TO_MEM] = &mem_types, 8145 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8146 [ARG_PTR_TO_INT] = &int_ptr_types, 8147 [ARG_PTR_TO_LONG] = &int_ptr_types, 8148 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8149 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8150 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8151 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8152 [ARG_PTR_TO_TIMER] = &timer_types, 8153 [ARG_PTR_TO_KPTR] = &kptr_types, 8154 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8155 }; 8156 8157 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8158 enum bpf_arg_type arg_type, 8159 const u32 *arg_btf_id, 8160 struct bpf_call_arg_meta *meta) 8161 { 8162 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8163 enum bpf_reg_type expected, type = reg->type; 8164 const struct bpf_reg_types *compatible; 8165 int i, j; 8166 8167 compatible = compatible_reg_types[base_type(arg_type)]; 8168 if (!compatible) { 8169 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8170 return -EFAULT; 8171 } 8172 8173 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8174 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8175 * 8176 * Same for MAYBE_NULL: 8177 * 8178 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8179 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8180 * 8181 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8182 * 8183 * Therefore we fold these flags depending on the arg_type before comparison. 8184 */ 8185 if (arg_type & MEM_RDONLY) 8186 type &= ~MEM_RDONLY; 8187 if (arg_type & PTR_MAYBE_NULL) 8188 type &= ~PTR_MAYBE_NULL; 8189 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8190 type &= ~DYNPTR_TYPE_FLAG_MASK; 8191 8192 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 8193 type &= ~MEM_ALLOC; 8194 8195 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8196 expected = compatible->types[i]; 8197 if (expected == NOT_INIT) 8198 break; 8199 8200 if (type == expected) 8201 goto found; 8202 } 8203 8204 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8205 for (j = 0; j + 1 < i; j++) 8206 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8207 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8208 return -EACCES; 8209 8210 found: 8211 if (base_type(reg->type) != PTR_TO_BTF_ID) 8212 return 0; 8213 8214 if (compatible == &mem_types) { 8215 if (!(arg_type & MEM_RDONLY)) { 8216 verbose(env, 8217 "%s() may write into memory pointed by R%d type=%s\n", 8218 func_id_name(meta->func_id), 8219 regno, reg_type_str(env, reg->type)); 8220 return -EACCES; 8221 } 8222 return 0; 8223 } 8224 8225 switch ((int)reg->type) { 8226 case PTR_TO_BTF_ID: 8227 case PTR_TO_BTF_ID | PTR_TRUSTED: 8228 case PTR_TO_BTF_ID | MEM_RCU: 8229 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8230 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8231 { 8232 /* For bpf_sk_release, it needs to match against first member 8233 * 'struct sock_common', hence make an exception for it. This 8234 * allows bpf_sk_release to work for multiple socket types. 8235 */ 8236 bool strict_type_match = arg_type_is_release(arg_type) && 8237 meta->func_id != BPF_FUNC_sk_release; 8238 8239 if (type_may_be_null(reg->type) && 8240 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8241 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8242 return -EACCES; 8243 } 8244 8245 if (!arg_btf_id) { 8246 if (!compatible->btf_id) { 8247 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8248 return -EFAULT; 8249 } 8250 arg_btf_id = compatible->btf_id; 8251 } 8252 8253 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8254 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8255 return -EACCES; 8256 } else { 8257 if (arg_btf_id == BPF_PTR_POISON) { 8258 verbose(env, "verifier internal error:"); 8259 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8260 regno); 8261 return -EACCES; 8262 } 8263 8264 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8265 btf_vmlinux, *arg_btf_id, 8266 strict_type_match)) { 8267 verbose(env, "R%d is of type %s but %s is expected\n", 8268 regno, btf_type_name(reg->btf, reg->btf_id), 8269 btf_type_name(btf_vmlinux, *arg_btf_id)); 8270 return -EACCES; 8271 } 8272 } 8273 break; 8274 } 8275 case PTR_TO_BTF_ID | MEM_ALLOC: 8276 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8277 meta->func_id != BPF_FUNC_kptr_xchg) { 8278 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8279 return -EFAULT; 8280 } 8281 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8282 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8283 return -EACCES; 8284 } 8285 break; 8286 case PTR_TO_BTF_ID | MEM_PERCPU: 8287 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8288 /* Handled by helper specific checks */ 8289 break; 8290 default: 8291 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8292 return -EFAULT; 8293 } 8294 return 0; 8295 } 8296 8297 static struct btf_field * 8298 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8299 { 8300 struct btf_field *field; 8301 struct btf_record *rec; 8302 8303 rec = reg_btf_record(reg); 8304 if (!rec) 8305 return NULL; 8306 8307 field = btf_record_find(rec, off, fields); 8308 if (!field) 8309 return NULL; 8310 8311 return field; 8312 } 8313 8314 int check_func_arg_reg_off(struct bpf_verifier_env *env, 8315 const struct bpf_reg_state *reg, int regno, 8316 enum bpf_arg_type arg_type) 8317 { 8318 u32 type = reg->type; 8319 8320 /* When referenced register is passed to release function, its fixed 8321 * offset must be 0. 8322 * 8323 * We will check arg_type_is_release reg has ref_obj_id when storing 8324 * meta->release_regno. 8325 */ 8326 if (arg_type_is_release(arg_type)) { 8327 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8328 * may not directly point to the object being released, but to 8329 * dynptr pointing to such object, which might be at some offset 8330 * on the stack. In that case, we simply to fallback to the 8331 * default handling. 8332 */ 8333 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8334 return 0; 8335 8336 /* Doing check_ptr_off_reg check for the offset will catch this 8337 * because fixed_off_ok is false, but checking here allows us 8338 * to give the user a better error message. 8339 */ 8340 if (reg->off) { 8341 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8342 regno); 8343 return -EINVAL; 8344 } 8345 return __check_ptr_off_reg(env, reg, regno, false); 8346 } 8347 8348 switch (type) { 8349 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8350 case PTR_TO_STACK: 8351 case PTR_TO_PACKET: 8352 case PTR_TO_PACKET_META: 8353 case PTR_TO_MAP_KEY: 8354 case PTR_TO_MAP_VALUE: 8355 case PTR_TO_MEM: 8356 case PTR_TO_MEM | MEM_RDONLY: 8357 case PTR_TO_MEM | MEM_RINGBUF: 8358 case PTR_TO_BUF: 8359 case PTR_TO_BUF | MEM_RDONLY: 8360 case SCALAR_VALUE: 8361 return 0; 8362 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8363 * fixed offset. 8364 */ 8365 case PTR_TO_BTF_ID: 8366 case PTR_TO_BTF_ID | MEM_ALLOC: 8367 case PTR_TO_BTF_ID | PTR_TRUSTED: 8368 case PTR_TO_BTF_ID | MEM_RCU: 8369 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8370 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8371 /* When referenced PTR_TO_BTF_ID is passed to release function, 8372 * its fixed offset must be 0. In the other cases, fixed offset 8373 * can be non-zero. This was already checked above. So pass 8374 * fixed_off_ok as true to allow fixed offset for all other 8375 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8376 * still need to do checks instead of returning. 8377 */ 8378 return __check_ptr_off_reg(env, reg, regno, true); 8379 default: 8380 return __check_ptr_off_reg(env, reg, regno, false); 8381 } 8382 } 8383 8384 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8385 const struct bpf_func_proto *fn, 8386 struct bpf_reg_state *regs) 8387 { 8388 struct bpf_reg_state *state = NULL; 8389 int i; 8390 8391 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8392 if (arg_type_is_dynptr(fn->arg_type[i])) { 8393 if (state) { 8394 verbose(env, "verifier internal error: multiple dynptr args\n"); 8395 return NULL; 8396 } 8397 state = ®s[BPF_REG_1 + i]; 8398 } 8399 8400 if (!state) 8401 verbose(env, "verifier internal error: no dynptr arg found\n"); 8402 8403 return state; 8404 } 8405 8406 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8407 { 8408 struct bpf_func_state *state = func(env, reg); 8409 int spi; 8410 8411 if (reg->type == CONST_PTR_TO_DYNPTR) 8412 return reg->id; 8413 spi = dynptr_get_spi(env, reg); 8414 if (spi < 0) 8415 return spi; 8416 return state->stack[spi].spilled_ptr.id; 8417 } 8418 8419 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8420 { 8421 struct bpf_func_state *state = func(env, reg); 8422 int spi; 8423 8424 if (reg->type == CONST_PTR_TO_DYNPTR) 8425 return reg->ref_obj_id; 8426 spi = dynptr_get_spi(env, reg); 8427 if (spi < 0) 8428 return spi; 8429 return state->stack[spi].spilled_ptr.ref_obj_id; 8430 } 8431 8432 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8433 struct bpf_reg_state *reg) 8434 { 8435 struct bpf_func_state *state = func(env, reg); 8436 int spi; 8437 8438 if (reg->type == CONST_PTR_TO_DYNPTR) 8439 return reg->dynptr.type; 8440 8441 spi = __get_spi(reg->off); 8442 if (spi < 0) { 8443 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8444 return BPF_DYNPTR_TYPE_INVALID; 8445 } 8446 8447 return state->stack[spi].spilled_ptr.dynptr.type; 8448 } 8449 8450 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8451 struct bpf_call_arg_meta *meta, 8452 const struct bpf_func_proto *fn, 8453 int insn_idx) 8454 { 8455 u32 regno = BPF_REG_1 + arg; 8456 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8457 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8458 enum bpf_reg_type type = reg->type; 8459 u32 *arg_btf_id = NULL; 8460 int err = 0; 8461 8462 if (arg_type == ARG_DONTCARE) 8463 return 0; 8464 8465 err = check_reg_arg(env, regno, SRC_OP); 8466 if (err) 8467 return err; 8468 8469 if (arg_type == ARG_ANYTHING) { 8470 if (is_pointer_value(env, regno)) { 8471 verbose(env, "R%d leaks addr into helper function\n", 8472 regno); 8473 return -EACCES; 8474 } 8475 return 0; 8476 } 8477 8478 if (type_is_pkt_pointer(type) && 8479 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8480 verbose(env, "helper access to the packet is not allowed\n"); 8481 return -EACCES; 8482 } 8483 8484 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8485 err = resolve_map_arg_type(env, meta, &arg_type); 8486 if (err) 8487 return err; 8488 } 8489 8490 if (register_is_null(reg) && type_may_be_null(arg_type)) 8491 /* A NULL register has a SCALAR_VALUE type, so skip 8492 * type checking. 8493 */ 8494 goto skip_type_check; 8495 8496 /* arg_btf_id and arg_size are in a union. */ 8497 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8498 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8499 arg_btf_id = fn->arg_btf_id[arg]; 8500 8501 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8502 if (err) 8503 return err; 8504 8505 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8506 if (err) 8507 return err; 8508 8509 skip_type_check: 8510 if (arg_type_is_release(arg_type)) { 8511 if (arg_type_is_dynptr(arg_type)) { 8512 struct bpf_func_state *state = func(env, reg); 8513 int spi; 8514 8515 /* Only dynptr created on stack can be released, thus 8516 * the get_spi and stack state checks for spilled_ptr 8517 * should only be done before process_dynptr_func for 8518 * PTR_TO_STACK. 8519 */ 8520 if (reg->type == PTR_TO_STACK) { 8521 spi = dynptr_get_spi(env, reg); 8522 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8523 verbose(env, "arg %d is an unacquired reference\n", regno); 8524 return -EINVAL; 8525 } 8526 } else { 8527 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8528 return -EINVAL; 8529 } 8530 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8531 verbose(env, "R%d must be referenced when passed to release function\n", 8532 regno); 8533 return -EINVAL; 8534 } 8535 if (meta->release_regno) { 8536 verbose(env, "verifier internal error: more than one release argument\n"); 8537 return -EFAULT; 8538 } 8539 meta->release_regno = regno; 8540 } 8541 8542 if (reg->ref_obj_id) { 8543 if (meta->ref_obj_id) { 8544 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8545 regno, reg->ref_obj_id, 8546 meta->ref_obj_id); 8547 return -EFAULT; 8548 } 8549 meta->ref_obj_id = reg->ref_obj_id; 8550 } 8551 8552 switch (base_type(arg_type)) { 8553 case ARG_CONST_MAP_PTR: 8554 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8555 if (meta->map_ptr) { 8556 /* Use map_uid (which is unique id of inner map) to reject: 8557 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8558 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8559 * if (inner_map1 && inner_map2) { 8560 * timer = bpf_map_lookup_elem(inner_map1); 8561 * if (timer) 8562 * // mismatch would have been allowed 8563 * bpf_timer_init(timer, inner_map2); 8564 * } 8565 * 8566 * Comparing map_ptr is enough to distinguish normal and outer maps. 8567 */ 8568 if (meta->map_ptr != reg->map_ptr || 8569 meta->map_uid != reg->map_uid) { 8570 verbose(env, 8571 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8572 meta->map_uid, reg->map_uid); 8573 return -EINVAL; 8574 } 8575 } 8576 meta->map_ptr = reg->map_ptr; 8577 meta->map_uid = reg->map_uid; 8578 break; 8579 case ARG_PTR_TO_MAP_KEY: 8580 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8581 * check that [key, key + map->key_size) are within 8582 * stack limits and initialized 8583 */ 8584 if (!meta->map_ptr) { 8585 /* in function declaration map_ptr must come before 8586 * map_key, so that it's verified and known before 8587 * we have to check map_key here. Otherwise it means 8588 * that kernel subsystem misconfigured verifier 8589 */ 8590 verbose(env, "invalid map_ptr to access map->key\n"); 8591 return -EACCES; 8592 } 8593 err = check_helper_mem_access(env, regno, 8594 meta->map_ptr->key_size, false, 8595 NULL); 8596 break; 8597 case ARG_PTR_TO_MAP_VALUE: 8598 if (type_may_be_null(arg_type) && register_is_null(reg)) 8599 return 0; 8600 8601 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8602 * check [value, value + map->value_size) validity 8603 */ 8604 if (!meta->map_ptr) { 8605 /* kernel subsystem misconfigured verifier */ 8606 verbose(env, "invalid map_ptr to access map->value\n"); 8607 return -EACCES; 8608 } 8609 meta->raw_mode = arg_type & MEM_UNINIT; 8610 err = check_helper_mem_access(env, regno, 8611 meta->map_ptr->value_size, false, 8612 meta); 8613 break; 8614 case ARG_PTR_TO_PERCPU_BTF_ID: 8615 if (!reg->btf_id) { 8616 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8617 return -EACCES; 8618 } 8619 meta->ret_btf = reg->btf; 8620 meta->ret_btf_id = reg->btf_id; 8621 break; 8622 case ARG_PTR_TO_SPIN_LOCK: 8623 if (in_rbtree_lock_required_cb(env)) { 8624 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8625 return -EACCES; 8626 } 8627 if (meta->func_id == BPF_FUNC_spin_lock) { 8628 err = process_spin_lock(env, regno, true); 8629 if (err) 8630 return err; 8631 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8632 err = process_spin_lock(env, regno, false); 8633 if (err) 8634 return err; 8635 } else { 8636 verbose(env, "verifier internal error\n"); 8637 return -EFAULT; 8638 } 8639 break; 8640 case ARG_PTR_TO_TIMER: 8641 err = process_timer_func(env, regno, meta); 8642 if (err) 8643 return err; 8644 break; 8645 case ARG_PTR_TO_FUNC: 8646 meta->subprogno = reg->subprogno; 8647 break; 8648 case ARG_PTR_TO_MEM: 8649 /* The access to this pointer is only checked when we hit the 8650 * next is_mem_size argument below. 8651 */ 8652 meta->raw_mode = arg_type & MEM_UNINIT; 8653 if (arg_type & MEM_FIXED_SIZE) { 8654 err = check_helper_mem_access(env, regno, 8655 fn->arg_size[arg], false, 8656 meta); 8657 } 8658 break; 8659 case ARG_CONST_SIZE: 8660 err = check_mem_size_reg(env, reg, regno, false, meta); 8661 break; 8662 case ARG_CONST_SIZE_OR_ZERO: 8663 err = check_mem_size_reg(env, reg, regno, true, meta); 8664 break; 8665 case ARG_PTR_TO_DYNPTR: 8666 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8667 if (err) 8668 return err; 8669 break; 8670 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8671 if (!tnum_is_const(reg->var_off)) { 8672 verbose(env, "R%d is not a known constant'\n", 8673 regno); 8674 return -EACCES; 8675 } 8676 meta->mem_size = reg->var_off.value; 8677 err = mark_chain_precision(env, regno); 8678 if (err) 8679 return err; 8680 break; 8681 case ARG_PTR_TO_INT: 8682 case ARG_PTR_TO_LONG: 8683 { 8684 int size = int_ptr_type_to_size(arg_type); 8685 8686 err = check_helper_mem_access(env, regno, size, false, meta); 8687 if (err) 8688 return err; 8689 err = check_ptr_alignment(env, reg, 0, size, true); 8690 break; 8691 } 8692 case ARG_PTR_TO_CONST_STR: 8693 { 8694 struct bpf_map *map = reg->map_ptr; 8695 int map_off; 8696 u64 map_addr; 8697 char *str_ptr; 8698 8699 if (!bpf_map_is_rdonly(map)) { 8700 verbose(env, "R%d does not point to a readonly map'\n", regno); 8701 return -EACCES; 8702 } 8703 8704 if (!tnum_is_const(reg->var_off)) { 8705 verbose(env, "R%d is not a constant address'\n", regno); 8706 return -EACCES; 8707 } 8708 8709 if (!map->ops->map_direct_value_addr) { 8710 verbose(env, "no direct value access support for this map type\n"); 8711 return -EACCES; 8712 } 8713 8714 err = check_map_access(env, regno, reg->off, 8715 map->value_size - reg->off, false, 8716 ACCESS_HELPER); 8717 if (err) 8718 return err; 8719 8720 map_off = reg->off + reg->var_off.value; 8721 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8722 if (err) { 8723 verbose(env, "direct value access on string failed\n"); 8724 return err; 8725 } 8726 8727 str_ptr = (char *)(long)(map_addr); 8728 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8729 verbose(env, "string is not zero-terminated\n"); 8730 return -EINVAL; 8731 } 8732 break; 8733 } 8734 case ARG_PTR_TO_KPTR: 8735 err = process_kptr_func(env, regno, meta); 8736 if (err) 8737 return err; 8738 break; 8739 } 8740 8741 return err; 8742 } 8743 8744 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8745 { 8746 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8747 enum bpf_prog_type type = resolve_prog_type(env->prog); 8748 8749 if (func_id != BPF_FUNC_map_update_elem && 8750 func_id != BPF_FUNC_map_delete_elem) 8751 return false; 8752 8753 /* It's not possible to get access to a locked struct sock in these 8754 * contexts, so updating is safe. 8755 */ 8756 switch (type) { 8757 case BPF_PROG_TYPE_TRACING: 8758 if (eatype == BPF_TRACE_ITER) 8759 return true; 8760 break; 8761 case BPF_PROG_TYPE_SOCK_OPS: 8762 /* map_update allowed only via dedicated helpers with event type checks */ 8763 if (func_id == BPF_FUNC_map_delete_elem) 8764 return true; 8765 break; 8766 case BPF_PROG_TYPE_SOCKET_FILTER: 8767 case BPF_PROG_TYPE_SCHED_CLS: 8768 case BPF_PROG_TYPE_SCHED_ACT: 8769 case BPF_PROG_TYPE_XDP: 8770 case BPF_PROG_TYPE_SK_REUSEPORT: 8771 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8772 case BPF_PROG_TYPE_SK_LOOKUP: 8773 return true; 8774 default: 8775 break; 8776 } 8777 8778 verbose(env, "cannot update sockmap in this context\n"); 8779 return false; 8780 } 8781 8782 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8783 { 8784 return env->prog->jit_requested && 8785 bpf_jit_supports_subprog_tailcalls(); 8786 } 8787 8788 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8789 struct bpf_map *map, int func_id) 8790 { 8791 if (!map) 8792 return 0; 8793 8794 /* We need a two way check, first is from map perspective ... */ 8795 switch (map->map_type) { 8796 case BPF_MAP_TYPE_PROG_ARRAY: 8797 if (func_id != BPF_FUNC_tail_call) 8798 goto error; 8799 break; 8800 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8801 if (func_id != BPF_FUNC_perf_event_read && 8802 func_id != BPF_FUNC_perf_event_output && 8803 func_id != BPF_FUNC_skb_output && 8804 func_id != BPF_FUNC_perf_event_read_value && 8805 func_id != BPF_FUNC_xdp_output) 8806 goto error; 8807 break; 8808 case BPF_MAP_TYPE_RINGBUF: 8809 if (func_id != BPF_FUNC_ringbuf_output && 8810 func_id != BPF_FUNC_ringbuf_reserve && 8811 func_id != BPF_FUNC_ringbuf_query && 8812 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8813 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8814 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8815 goto error; 8816 break; 8817 case BPF_MAP_TYPE_USER_RINGBUF: 8818 if (func_id != BPF_FUNC_user_ringbuf_drain) 8819 goto error; 8820 break; 8821 case BPF_MAP_TYPE_STACK_TRACE: 8822 if (func_id != BPF_FUNC_get_stackid) 8823 goto error; 8824 break; 8825 case BPF_MAP_TYPE_CGROUP_ARRAY: 8826 if (func_id != BPF_FUNC_skb_under_cgroup && 8827 func_id != BPF_FUNC_current_task_under_cgroup) 8828 goto error; 8829 break; 8830 case BPF_MAP_TYPE_CGROUP_STORAGE: 8831 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8832 if (func_id != BPF_FUNC_get_local_storage) 8833 goto error; 8834 break; 8835 case BPF_MAP_TYPE_DEVMAP: 8836 case BPF_MAP_TYPE_DEVMAP_HASH: 8837 if (func_id != BPF_FUNC_redirect_map && 8838 func_id != BPF_FUNC_map_lookup_elem) 8839 goto error; 8840 break; 8841 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8842 * appear. 8843 */ 8844 case BPF_MAP_TYPE_CPUMAP: 8845 if (func_id != BPF_FUNC_redirect_map) 8846 goto error; 8847 break; 8848 case BPF_MAP_TYPE_XSKMAP: 8849 if (func_id != BPF_FUNC_redirect_map && 8850 func_id != BPF_FUNC_map_lookup_elem) 8851 goto error; 8852 break; 8853 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8854 case BPF_MAP_TYPE_HASH_OF_MAPS: 8855 if (func_id != BPF_FUNC_map_lookup_elem) 8856 goto error; 8857 break; 8858 case BPF_MAP_TYPE_SOCKMAP: 8859 if (func_id != BPF_FUNC_sk_redirect_map && 8860 func_id != BPF_FUNC_sock_map_update && 8861 func_id != BPF_FUNC_msg_redirect_map && 8862 func_id != BPF_FUNC_sk_select_reuseport && 8863 func_id != BPF_FUNC_map_lookup_elem && 8864 !may_update_sockmap(env, func_id)) 8865 goto error; 8866 break; 8867 case BPF_MAP_TYPE_SOCKHASH: 8868 if (func_id != BPF_FUNC_sk_redirect_hash && 8869 func_id != BPF_FUNC_sock_hash_update && 8870 func_id != BPF_FUNC_msg_redirect_hash && 8871 func_id != BPF_FUNC_sk_select_reuseport && 8872 func_id != BPF_FUNC_map_lookup_elem && 8873 !may_update_sockmap(env, func_id)) 8874 goto error; 8875 break; 8876 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8877 if (func_id != BPF_FUNC_sk_select_reuseport) 8878 goto error; 8879 break; 8880 case BPF_MAP_TYPE_QUEUE: 8881 case BPF_MAP_TYPE_STACK: 8882 if (func_id != BPF_FUNC_map_peek_elem && 8883 func_id != BPF_FUNC_map_pop_elem && 8884 func_id != BPF_FUNC_map_push_elem) 8885 goto error; 8886 break; 8887 case BPF_MAP_TYPE_SK_STORAGE: 8888 if (func_id != BPF_FUNC_sk_storage_get && 8889 func_id != BPF_FUNC_sk_storage_delete && 8890 func_id != BPF_FUNC_kptr_xchg) 8891 goto error; 8892 break; 8893 case BPF_MAP_TYPE_INODE_STORAGE: 8894 if (func_id != BPF_FUNC_inode_storage_get && 8895 func_id != BPF_FUNC_inode_storage_delete && 8896 func_id != BPF_FUNC_kptr_xchg) 8897 goto error; 8898 break; 8899 case BPF_MAP_TYPE_TASK_STORAGE: 8900 if (func_id != BPF_FUNC_task_storage_get && 8901 func_id != BPF_FUNC_task_storage_delete && 8902 func_id != BPF_FUNC_kptr_xchg) 8903 goto error; 8904 break; 8905 case BPF_MAP_TYPE_CGRP_STORAGE: 8906 if (func_id != BPF_FUNC_cgrp_storage_get && 8907 func_id != BPF_FUNC_cgrp_storage_delete && 8908 func_id != BPF_FUNC_kptr_xchg) 8909 goto error; 8910 break; 8911 case BPF_MAP_TYPE_BLOOM_FILTER: 8912 if (func_id != BPF_FUNC_map_peek_elem && 8913 func_id != BPF_FUNC_map_push_elem) 8914 goto error; 8915 break; 8916 default: 8917 break; 8918 } 8919 8920 /* ... and second from the function itself. */ 8921 switch (func_id) { 8922 case BPF_FUNC_tail_call: 8923 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8924 goto error; 8925 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8926 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8927 return -EINVAL; 8928 } 8929 break; 8930 case BPF_FUNC_perf_event_read: 8931 case BPF_FUNC_perf_event_output: 8932 case BPF_FUNC_perf_event_read_value: 8933 case BPF_FUNC_skb_output: 8934 case BPF_FUNC_xdp_output: 8935 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8936 goto error; 8937 break; 8938 case BPF_FUNC_ringbuf_output: 8939 case BPF_FUNC_ringbuf_reserve: 8940 case BPF_FUNC_ringbuf_query: 8941 case BPF_FUNC_ringbuf_reserve_dynptr: 8942 case BPF_FUNC_ringbuf_submit_dynptr: 8943 case BPF_FUNC_ringbuf_discard_dynptr: 8944 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8945 goto error; 8946 break; 8947 case BPF_FUNC_user_ringbuf_drain: 8948 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8949 goto error; 8950 break; 8951 case BPF_FUNC_get_stackid: 8952 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8953 goto error; 8954 break; 8955 case BPF_FUNC_current_task_under_cgroup: 8956 case BPF_FUNC_skb_under_cgroup: 8957 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8958 goto error; 8959 break; 8960 case BPF_FUNC_redirect_map: 8961 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8962 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8963 map->map_type != BPF_MAP_TYPE_CPUMAP && 8964 map->map_type != BPF_MAP_TYPE_XSKMAP) 8965 goto error; 8966 break; 8967 case BPF_FUNC_sk_redirect_map: 8968 case BPF_FUNC_msg_redirect_map: 8969 case BPF_FUNC_sock_map_update: 8970 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8971 goto error; 8972 break; 8973 case BPF_FUNC_sk_redirect_hash: 8974 case BPF_FUNC_msg_redirect_hash: 8975 case BPF_FUNC_sock_hash_update: 8976 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8977 goto error; 8978 break; 8979 case BPF_FUNC_get_local_storage: 8980 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8981 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8982 goto error; 8983 break; 8984 case BPF_FUNC_sk_select_reuseport: 8985 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8986 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8987 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8988 goto error; 8989 break; 8990 case BPF_FUNC_map_pop_elem: 8991 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8992 map->map_type != BPF_MAP_TYPE_STACK) 8993 goto error; 8994 break; 8995 case BPF_FUNC_map_peek_elem: 8996 case BPF_FUNC_map_push_elem: 8997 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8998 map->map_type != BPF_MAP_TYPE_STACK && 8999 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 9000 goto error; 9001 break; 9002 case BPF_FUNC_map_lookup_percpu_elem: 9003 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 9004 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9005 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 9006 goto error; 9007 break; 9008 case BPF_FUNC_sk_storage_get: 9009 case BPF_FUNC_sk_storage_delete: 9010 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 9011 goto error; 9012 break; 9013 case BPF_FUNC_inode_storage_get: 9014 case BPF_FUNC_inode_storage_delete: 9015 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 9016 goto error; 9017 break; 9018 case BPF_FUNC_task_storage_get: 9019 case BPF_FUNC_task_storage_delete: 9020 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9021 goto error; 9022 break; 9023 case BPF_FUNC_cgrp_storage_get: 9024 case BPF_FUNC_cgrp_storage_delete: 9025 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9026 goto error; 9027 break; 9028 default: 9029 break; 9030 } 9031 9032 return 0; 9033 error: 9034 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9035 map->map_type, func_id_name(func_id), func_id); 9036 return -EINVAL; 9037 } 9038 9039 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9040 { 9041 int count = 0; 9042 9043 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 9044 count++; 9045 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 9046 count++; 9047 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 9048 count++; 9049 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 9050 count++; 9051 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 9052 count++; 9053 9054 /* We only support one arg being in raw mode at the moment, 9055 * which is sufficient for the helper functions we have 9056 * right now. 9057 */ 9058 return count <= 1; 9059 } 9060 9061 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9062 { 9063 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9064 bool has_size = fn->arg_size[arg] != 0; 9065 bool is_next_size = false; 9066 9067 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9068 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9069 9070 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9071 return is_next_size; 9072 9073 return has_size == is_next_size || is_next_size == is_fixed; 9074 } 9075 9076 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9077 { 9078 /* bpf_xxx(..., buf, len) call will access 'len' 9079 * bytes from memory 'buf'. Both arg types need 9080 * to be paired, so make sure there's no buggy 9081 * helper function specification. 9082 */ 9083 if (arg_type_is_mem_size(fn->arg1_type) || 9084 check_args_pair_invalid(fn, 0) || 9085 check_args_pair_invalid(fn, 1) || 9086 check_args_pair_invalid(fn, 2) || 9087 check_args_pair_invalid(fn, 3) || 9088 check_args_pair_invalid(fn, 4)) 9089 return false; 9090 9091 return true; 9092 } 9093 9094 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9095 { 9096 int i; 9097 9098 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9099 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9100 return !!fn->arg_btf_id[i]; 9101 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9102 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9103 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9104 /* arg_btf_id and arg_size are in a union. */ 9105 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9106 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9107 return false; 9108 } 9109 9110 return true; 9111 } 9112 9113 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9114 { 9115 return check_raw_mode_ok(fn) && 9116 check_arg_pair_ok(fn) && 9117 check_btf_id_ok(fn) ? 0 : -EINVAL; 9118 } 9119 9120 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9121 * are now invalid, so turn them into unknown SCALAR_VALUE. 9122 * 9123 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9124 * since these slices point to packet data. 9125 */ 9126 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9127 { 9128 struct bpf_func_state *state; 9129 struct bpf_reg_state *reg; 9130 9131 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9132 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9133 mark_reg_invalid(env, reg); 9134 })); 9135 } 9136 9137 enum { 9138 AT_PKT_END = -1, 9139 BEYOND_PKT_END = -2, 9140 }; 9141 9142 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9143 { 9144 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9145 struct bpf_reg_state *reg = &state->regs[regn]; 9146 9147 if (reg->type != PTR_TO_PACKET) 9148 /* PTR_TO_PACKET_META is not supported yet */ 9149 return; 9150 9151 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9152 * How far beyond pkt_end it goes is unknown. 9153 * if (!range_open) it's the case of pkt >= pkt_end 9154 * if (range_open) it's the case of pkt > pkt_end 9155 * hence this pointer is at least 1 byte bigger than pkt_end 9156 */ 9157 if (range_open) 9158 reg->range = BEYOND_PKT_END; 9159 else 9160 reg->range = AT_PKT_END; 9161 } 9162 9163 /* The pointer with the specified id has released its reference to kernel 9164 * resources. Identify all copies of the same pointer and clear the reference. 9165 */ 9166 static int release_reference(struct bpf_verifier_env *env, 9167 int ref_obj_id) 9168 { 9169 struct bpf_func_state *state; 9170 struct bpf_reg_state *reg; 9171 int err; 9172 9173 err = release_reference_state(cur_func(env), ref_obj_id); 9174 if (err) 9175 return err; 9176 9177 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9178 if (reg->ref_obj_id == ref_obj_id) 9179 mark_reg_invalid(env, reg); 9180 })); 9181 9182 return 0; 9183 } 9184 9185 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9186 { 9187 struct bpf_func_state *unused; 9188 struct bpf_reg_state *reg; 9189 9190 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9191 if (type_is_non_owning_ref(reg->type)) 9192 mark_reg_invalid(env, reg); 9193 })); 9194 } 9195 9196 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9197 struct bpf_reg_state *regs) 9198 { 9199 int i; 9200 9201 /* after the call registers r0 - r5 were scratched */ 9202 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9203 mark_reg_not_init(env, regs, caller_saved[i]); 9204 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9205 } 9206 } 9207 9208 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9209 struct bpf_func_state *caller, 9210 struct bpf_func_state *callee, 9211 int insn_idx); 9212 9213 static int set_callee_state(struct bpf_verifier_env *env, 9214 struct bpf_func_state *caller, 9215 struct bpf_func_state *callee, int insn_idx); 9216 9217 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9218 set_callee_state_fn set_callee_state_cb, 9219 struct bpf_verifier_state *state) 9220 { 9221 struct bpf_func_state *caller, *callee; 9222 int err; 9223 9224 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9225 verbose(env, "the call stack of %d frames is too deep\n", 9226 state->curframe + 2); 9227 return -E2BIG; 9228 } 9229 9230 if (state->frame[state->curframe + 1]) { 9231 verbose(env, "verifier bug. Frame %d already allocated\n", 9232 state->curframe + 1); 9233 return -EFAULT; 9234 } 9235 9236 caller = state->frame[state->curframe]; 9237 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9238 if (!callee) 9239 return -ENOMEM; 9240 state->frame[state->curframe + 1] = callee; 9241 9242 /* callee cannot access r0, r6 - r9 for reading and has to write 9243 * into its own stack before reading from it. 9244 * callee can read/write into caller's stack 9245 */ 9246 init_func_state(env, callee, 9247 /* remember the callsite, it will be used by bpf_exit */ 9248 callsite, 9249 state->curframe + 1 /* frameno within this callchain */, 9250 subprog /* subprog number within this prog */); 9251 /* Transfer references to the callee */ 9252 err = copy_reference_state(callee, caller); 9253 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9254 if (err) 9255 goto err_out; 9256 9257 /* only increment it after check_reg_arg() finished */ 9258 state->curframe++; 9259 9260 return 0; 9261 9262 err_out: 9263 free_func_state(callee); 9264 state->frame[state->curframe + 1] = NULL; 9265 return err; 9266 } 9267 9268 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9269 int insn_idx, int subprog, 9270 set_callee_state_fn set_callee_state_cb) 9271 { 9272 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9273 struct bpf_func_state *caller, *callee; 9274 int err; 9275 9276 caller = state->frame[state->curframe]; 9277 err = btf_check_subprog_call(env, subprog, caller->regs); 9278 if (err == -EFAULT) 9279 return err; 9280 9281 /* set_callee_state is used for direct subprog calls, but we are 9282 * interested in validating only BPF helpers that can call subprogs as 9283 * callbacks 9284 */ 9285 if (bpf_pseudo_kfunc_call(insn) && 9286 !is_sync_callback_calling_kfunc(insn->imm)) { 9287 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9288 func_id_name(insn->imm), insn->imm); 9289 return -EFAULT; 9290 } else if (!bpf_pseudo_kfunc_call(insn) && 9291 !is_callback_calling_function(insn->imm)) { /* helper */ 9292 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9293 func_id_name(insn->imm), insn->imm); 9294 return -EFAULT; 9295 } 9296 9297 if (insn->code == (BPF_JMP | BPF_CALL) && 9298 insn->src_reg == 0 && 9299 insn->imm == BPF_FUNC_timer_set_callback) { 9300 struct bpf_verifier_state *async_cb; 9301 9302 /* there is no real recursion here. timer callbacks are async */ 9303 env->subprog_info[subprog].is_async_cb = true; 9304 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9305 insn_idx, subprog); 9306 if (!async_cb) 9307 return -EFAULT; 9308 callee = async_cb->frame[0]; 9309 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9310 9311 /* Convert bpf_timer_set_callback() args into timer callback args */ 9312 err = set_callee_state_cb(env, caller, callee, insn_idx); 9313 if (err) 9314 return err; 9315 9316 return 0; 9317 } 9318 9319 /* for callback functions enqueue entry to callback and 9320 * proceed with next instruction within current frame. 9321 */ 9322 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9323 if (!callback_state) 9324 return -ENOMEM; 9325 9326 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9327 callback_state); 9328 if (err) 9329 return err; 9330 9331 callback_state->callback_unroll_depth++; 9332 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9333 caller->callback_depth = 0; 9334 return 0; 9335 } 9336 9337 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9338 int *insn_idx) 9339 { 9340 struct bpf_verifier_state *state = env->cur_state; 9341 struct bpf_func_state *caller; 9342 int err, subprog, target_insn; 9343 9344 target_insn = *insn_idx + insn->imm + 1; 9345 subprog = find_subprog(env, target_insn); 9346 if (subprog < 0) { 9347 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9348 return -EFAULT; 9349 } 9350 9351 caller = state->frame[state->curframe]; 9352 err = btf_check_subprog_call(env, subprog, caller->regs); 9353 if (err == -EFAULT) 9354 return err; 9355 if (subprog_is_global(env, subprog)) { 9356 if (err) { 9357 verbose(env, "Caller passes invalid args into func#%d\n", subprog); 9358 return err; 9359 } 9360 9361 if (env->log.level & BPF_LOG_LEVEL) 9362 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog); 9363 clear_caller_saved_regs(env, caller->regs); 9364 9365 /* All global functions return a 64-bit SCALAR_VALUE */ 9366 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9367 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9368 9369 /* continue with next insn after call */ 9370 return 0; 9371 } 9372 9373 /* for regular function entry setup new frame and continue 9374 * from that frame. 9375 */ 9376 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9377 if (err) 9378 return err; 9379 9380 clear_caller_saved_regs(env, caller->regs); 9381 9382 /* and go analyze first insn of the callee */ 9383 *insn_idx = env->subprog_info[subprog].start - 1; 9384 9385 if (env->log.level & BPF_LOG_LEVEL) { 9386 verbose(env, "caller:\n"); 9387 print_verifier_state(env, caller, true); 9388 verbose(env, "callee:\n"); 9389 print_verifier_state(env, state->frame[state->curframe], true); 9390 } 9391 9392 return 0; 9393 } 9394 9395 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9396 struct bpf_func_state *caller, 9397 struct bpf_func_state *callee) 9398 { 9399 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9400 * void *callback_ctx, u64 flags); 9401 * callback_fn(struct bpf_map *map, void *key, void *value, 9402 * void *callback_ctx); 9403 */ 9404 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9405 9406 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9407 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9408 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9409 9410 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9411 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9412 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9413 9414 /* pointer to stack or null */ 9415 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9416 9417 /* unused */ 9418 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9419 return 0; 9420 } 9421 9422 static int set_callee_state(struct bpf_verifier_env *env, 9423 struct bpf_func_state *caller, 9424 struct bpf_func_state *callee, int insn_idx) 9425 { 9426 int i; 9427 9428 /* copy r1 - r5 args that callee can access. The copy includes parent 9429 * pointers, which connects us up to the liveness chain 9430 */ 9431 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9432 callee->regs[i] = caller->regs[i]; 9433 return 0; 9434 } 9435 9436 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9437 struct bpf_func_state *caller, 9438 struct bpf_func_state *callee, 9439 int insn_idx) 9440 { 9441 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9442 struct bpf_map *map; 9443 int err; 9444 9445 if (bpf_map_ptr_poisoned(insn_aux)) { 9446 verbose(env, "tail_call abusing map_ptr\n"); 9447 return -EINVAL; 9448 } 9449 9450 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9451 if (!map->ops->map_set_for_each_callback_args || 9452 !map->ops->map_for_each_callback) { 9453 verbose(env, "callback function not allowed for map\n"); 9454 return -ENOTSUPP; 9455 } 9456 9457 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9458 if (err) 9459 return err; 9460 9461 callee->in_callback_fn = true; 9462 callee->callback_ret_range = tnum_range(0, 1); 9463 return 0; 9464 } 9465 9466 static int set_loop_callback_state(struct bpf_verifier_env *env, 9467 struct bpf_func_state *caller, 9468 struct bpf_func_state *callee, 9469 int insn_idx) 9470 { 9471 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9472 * u64 flags); 9473 * callback_fn(u32 index, void *callback_ctx); 9474 */ 9475 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9476 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9477 9478 /* unused */ 9479 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9480 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9481 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9482 9483 callee->in_callback_fn = true; 9484 callee->callback_ret_range = tnum_range(0, 1); 9485 return 0; 9486 } 9487 9488 static int set_timer_callback_state(struct bpf_verifier_env *env, 9489 struct bpf_func_state *caller, 9490 struct bpf_func_state *callee, 9491 int insn_idx) 9492 { 9493 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9494 9495 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9496 * callback_fn(struct bpf_map *map, void *key, void *value); 9497 */ 9498 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9499 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9500 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9501 9502 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9503 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9504 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9505 9506 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9507 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9508 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9509 9510 /* unused */ 9511 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9512 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9513 callee->in_async_callback_fn = true; 9514 callee->callback_ret_range = tnum_range(0, 1); 9515 return 0; 9516 } 9517 9518 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9519 struct bpf_func_state *caller, 9520 struct bpf_func_state *callee, 9521 int insn_idx) 9522 { 9523 /* bpf_find_vma(struct task_struct *task, u64 addr, 9524 * void *callback_fn, void *callback_ctx, u64 flags) 9525 * (callback_fn)(struct task_struct *task, 9526 * struct vm_area_struct *vma, void *callback_ctx); 9527 */ 9528 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9529 9530 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9531 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9532 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9533 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9534 9535 /* pointer to stack or null */ 9536 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9537 9538 /* unused */ 9539 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9540 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9541 callee->in_callback_fn = true; 9542 callee->callback_ret_range = tnum_range(0, 1); 9543 return 0; 9544 } 9545 9546 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9547 struct bpf_func_state *caller, 9548 struct bpf_func_state *callee, 9549 int insn_idx) 9550 { 9551 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9552 * callback_ctx, u64 flags); 9553 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9554 */ 9555 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9556 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9557 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9558 9559 /* unused */ 9560 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9561 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9562 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9563 9564 callee->in_callback_fn = true; 9565 callee->callback_ret_range = tnum_range(0, 1); 9566 return 0; 9567 } 9568 9569 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9570 struct bpf_func_state *caller, 9571 struct bpf_func_state *callee, 9572 int insn_idx) 9573 { 9574 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9575 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9576 * 9577 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9578 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9579 * by this point, so look at 'root' 9580 */ 9581 struct btf_field *field; 9582 9583 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9584 BPF_RB_ROOT); 9585 if (!field || !field->graph_root.value_btf_id) 9586 return -EFAULT; 9587 9588 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9589 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9590 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9591 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9592 9593 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9594 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9595 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9596 callee->in_callback_fn = true; 9597 callee->callback_ret_range = tnum_range(0, 1); 9598 return 0; 9599 } 9600 9601 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9602 9603 /* Are we currently verifying the callback for a rbtree helper that must 9604 * be called with lock held? If so, no need to complain about unreleased 9605 * lock 9606 */ 9607 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9608 { 9609 struct bpf_verifier_state *state = env->cur_state; 9610 struct bpf_insn *insn = env->prog->insnsi; 9611 struct bpf_func_state *callee; 9612 int kfunc_btf_id; 9613 9614 if (!state->curframe) 9615 return false; 9616 9617 callee = state->frame[state->curframe]; 9618 9619 if (!callee->in_callback_fn) 9620 return false; 9621 9622 kfunc_btf_id = insn[callee->callsite].imm; 9623 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9624 } 9625 9626 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9627 { 9628 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9629 struct bpf_func_state *caller, *callee; 9630 struct bpf_reg_state *r0; 9631 bool in_callback_fn; 9632 int err; 9633 9634 callee = state->frame[state->curframe]; 9635 r0 = &callee->regs[BPF_REG_0]; 9636 if (r0->type == PTR_TO_STACK) { 9637 /* technically it's ok to return caller's stack pointer 9638 * (or caller's caller's pointer) back to the caller, 9639 * since these pointers are valid. Only current stack 9640 * pointer will be invalid as soon as function exits, 9641 * but let's be conservative 9642 */ 9643 verbose(env, "cannot return stack pointer to the caller\n"); 9644 return -EINVAL; 9645 } 9646 9647 caller = state->frame[state->curframe - 1]; 9648 if (callee->in_callback_fn) { 9649 /* enforce R0 return value range [0, 1]. */ 9650 struct tnum range = callee->callback_ret_range; 9651 9652 if (r0->type != SCALAR_VALUE) { 9653 verbose(env, "R0 not a scalar value\n"); 9654 return -EACCES; 9655 } 9656 9657 /* we are going to rely on register's precise value */ 9658 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 9659 err = err ?: mark_chain_precision(env, BPF_REG_0); 9660 if (err) 9661 return err; 9662 9663 if (!tnum_in(range, r0->var_off)) { 9664 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9665 return -EINVAL; 9666 } 9667 if (!calls_callback(env, callee->callsite)) { 9668 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9669 *insn_idx, callee->callsite); 9670 return -EFAULT; 9671 } 9672 } else { 9673 /* return to the caller whatever r0 had in the callee */ 9674 caller->regs[BPF_REG_0] = *r0; 9675 } 9676 9677 /* callback_fn frame should have released its own additions to parent's 9678 * reference state at this point, or check_reference_leak would 9679 * complain, hence it must be the same as the caller. There is no need 9680 * to copy it back. 9681 */ 9682 if (!callee->in_callback_fn) { 9683 /* Transfer references to the caller */ 9684 err = copy_reference_state(caller, callee); 9685 if (err) 9686 return err; 9687 } 9688 9689 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9690 * there function call logic would reschedule callback visit. If iteration 9691 * converges is_state_visited() would prune that visit eventually. 9692 */ 9693 in_callback_fn = callee->in_callback_fn; 9694 if (in_callback_fn) 9695 *insn_idx = callee->callsite; 9696 else 9697 *insn_idx = callee->callsite + 1; 9698 9699 if (env->log.level & BPF_LOG_LEVEL) { 9700 verbose(env, "returning from callee:\n"); 9701 print_verifier_state(env, callee, true); 9702 verbose(env, "to caller at %d:\n", *insn_idx); 9703 print_verifier_state(env, caller, true); 9704 } 9705 /* clear everything in the callee */ 9706 free_func_state(callee); 9707 state->frame[state->curframe--] = NULL; 9708 9709 /* for callbacks widen imprecise scalars to make programs like below verify: 9710 * 9711 * struct ctx { int i; } 9712 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9713 * ... 9714 * struct ctx = { .i = 0; } 9715 * bpf_loop(100, cb, &ctx, 0); 9716 * 9717 * This is similar to what is done in process_iter_next_call() for open 9718 * coded iterators. 9719 */ 9720 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9721 if (prev_st) { 9722 err = widen_imprecise_scalars(env, prev_st, state); 9723 if (err) 9724 return err; 9725 } 9726 return 0; 9727 } 9728 9729 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9730 int func_id, 9731 struct bpf_call_arg_meta *meta) 9732 { 9733 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9734 9735 if (ret_type != RET_INTEGER) 9736 return; 9737 9738 switch (func_id) { 9739 case BPF_FUNC_get_stack: 9740 case BPF_FUNC_get_task_stack: 9741 case BPF_FUNC_probe_read_str: 9742 case BPF_FUNC_probe_read_kernel_str: 9743 case BPF_FUNC_probe_read_user_str: 9744 ret_reg->smax_value = meta->msize_max_value; 9745 ret_reg->s32_max_value = meta->msize_max_value; 9746 ret_reg->smin_value = -MAX_ERRNO; 9747 ret_reg->s32_min_value = -MAX_ERRNO; 9748 reg_bounds_sync(ret_reg); 9749 break; 9750 case BPF_FUNC_get_smp_processor_id: 9751 ret_reg->umax_value = nr_cpu_ids - 1; 9752 ret_reg->u32_max_value = nr_cpu_ids - 1; 9753 ret_reg->smax_value = nr_cpu_ids - 1; 9754 ret_reg->s32_max_value = nr_cpu_ids - 1; 9755 ret_reg->umin_value = 0; 9756 ret_reg->u32_min_value = 0; 9757 ret_reg->smin_value = 0; 9758 ret_reg->s32_min_value = 0; 9759 reg_bounds_sync(ret_reg); 9760 break; 9761 } 9762 } 9763 9764 static int 9765 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9766 int func_id, int insn_idx) 9767 { 9768 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9769 struct bpf_map *map = meta->map_ptr; 9770 9771 if (func_id != BPF_FUNC_tail_call && 9772 func_id != BPF_FUNC_map_lookup_elem && 9773 func_id != BPF_FUNC_map_update_elem && 9774 func_id != BPF_FUNC_map_delete_elem && 9775 func_id != BPF_FUNC_map_push_elem && 9776 func_id != BPF_FUNC_map_pop_elem && 9777 func_id != BPF_FUNC_map_peek_elem && 9778 func_id != BPF_FUNC_for_each_map_elem && 9779 func_id != BPF_FUNC_redirect_map && 9780 func_id != BPF_FUNC_map_lookup_percpu_elem) 9781 return 0; 9782 9783 if (map == NULL) { 9784 verbose(env, "kernel subsystem misconfigured verifier\n"); 9785 return -EINVAL; 9786 } 9787 9788 /* In case of read-only, some additional restrictions 9789 * need to be applied in order to prevent altering the 9790 * state of the map from program side. 9791 */ 9792 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9793 (func_id == BPF_FUNC_map_delete_elem || 9794 func_id == BPF_FUNC_map_update_elem || 9795 func_id == BPF_FUNC_map_push_elem || 9796 func_id == BPF_FUNC_map_pop_elem)) { 9797 verbose(env, "write into map forbidden\n"); 9798 return -EACCES; 9799 } 9800 9801 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9802 bpf_map_ptr_store(aux, meta->map_ptr, 9803 !meta->map_ptr->bypass_spec_v1); 9804 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9805 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9806 !meta->map_ptr->bypass_spec_v1); 9807 return 0; 9808 } 9809 9810 static int 9811 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9812 int func_id, int insn_idx) 9813 { 9814 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9815 struct bpf_reg_state *regs = cur_regs(env), *reg; 9816 struct bpf_map *map = meta->map_ptr; 9817 u64 val, max; 9818 int err; 9819 9820 if (func_id != BPF_FUNC_tail_call) 9821 return 0; 9822 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9823 verbose(env, "kernel subsystem misconfigured verifier\n"); 9824 return -EINVAL; 9825 } 9826 9827 reg = ®s[BPF_REG_3]; 9828 val = reg->var_off.value; 9829 max = map->max_entries; 9830 9831 if (!(register_is_const(reg) && val < max)) { 9832 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9833 return 0; 9834 } 9835 9836 err = mark_chain_precision(env, BPF_REG_3); 9837 if (err) 9838 return err; 9839 if (bpf_map_key_unseen(aux)) 9840 bpf_map_key_store(aux, val); 9841 else if (!bpf_map_key_poisoned(aux) && 9842 bpf_map_key_immediate(aux) != val) 9843 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9844 return 0; 9845 } 9846 9847 static int check_reference_leak(struct bpf_verifier_env *env) 9848 { 9849 struct bpf_func_state *state = cur_func(env); 9850 bool refs_lingering = false; 9851 int i; 9852 9853 if (state->frameno && !state->in_callback_fn) 9854 return 0; 9855 9856 for (i = 0; i < state->acquired_refs; i++) { 9857 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9858 continue; 9859 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9860 state->refs[i].id, state->refs[i].insn_idx); 9861 refs_lingering = true; 9862 } 9863 return refs_lingering ? -EINVAL : 0; 9864 } 9865 9866 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9867 struct bpf_reg_state *regs) 9868 { 9869 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9870 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9871 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9872 struct bpf_bprintf_data data = {}; 9873 int err, fmt_map_off, num_args; 9874 u64 fmt_addr; 9875 char *fmt; 9876 9877 /* data must be an array of u64 */ 9878 if (data_len_reg->var_off.value % 8) 9879 return -EINVAL; 9880 num_args = data_len_reg->var_off.value / 8; 9881 9882 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9883 * and map_direct_value_addr is set. 9884 */ 9885 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9886 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9887 fmt_map_off); 9888 if (err) { 9889 verbose(env, "verifier bug\n"); 9890 return -EFAULT; 9891 } 9892 fmt = (char *)(long)fmt_addr + fmt_map_off; 9893 9894 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9895 * can focus on validating the format specifiers. 9896 */ 9897 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9898 if (err < 0) 9899 verbose(env, "Invalid format string\n"); 9900 9901 return err; 9902 } 9903 9904 static int check_get_func_ip(struct bpf_verifier_env *env) 9905 { 9906 enum bpf_prog_type type = resolve_prog_type(env->prog); 9907 int func_id = BPF_FUNC_get_func_ip; 9908 9909 if (type == BPF_PROG_TYPE_TRACING) { 9910 if (!bpf_prog_has_trampoline(env->prog)) { 9911 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9912 func_id_name(func_id), func_id); 9913 return -ENOTSUPP; 9914 } 9915 return 0; 9916 } else if (type == BPF_PROG_TYPE_KPROBE) { 9917 return 0; 9918 } 9919 9920 verbose(env, "func %s#%d not supported for program type %d\n", 9921 func_id_name(func_id), func_id, type); 9922 return -ENOTSUPP; 9923 } 9924 9925 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9926 { 9927 return &env->insn_aux_data[env->insn_idx]; 9928 } 9929 9930 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9931 { 9932 struct bpf_reg_state *regs = cur_regs(env); 9933 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9934 bool reg_is_null = register_is_null(reg); 9935 9936 if (reg_is_null) 9937 mark_chain_precision(env, BPF_REG_4); 9938 9939 return reg_is_null; 9940 } 9941 9942 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9943 { 9944 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9945 9946 if (!state->initialized) { 9947 state->initialized = 1; 9948 state->fit_for_inline = loop_flag_is_zero(env); 9949 state->callback_subprogno = subprogno; 9950 return; 9951 } 9952 9953 if (!state->fit_for_inline) 9954 return; 9955 9956 state->fit_for_inline = (loop_flag_is_zero(env) && 9957 state->callback_subprogno == subprogno); 9958 } 9959 9960 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9961 int *insn_idx_p) 9962 { 9963 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9964 const struct bpf_func_proto *fn = NULL; 9965 enum bpf_return_type ret_type; 9966 enum bpf_type_flag ret_flag; 9967 struct bpf_reg_state *regs; 9968 struct bpf_call_arg_meta meta; 9969 int insn_idx = *insn_idx_p; 9970 bool changes_data; 9971 int i, err, func_id; 9972 9973 /* find function prototype */ 9974 func_id = insn->imm; 9975 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9976 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9977 func_id); 9978 return -EINVAL; 9979 } 9980 9981 if (env->ops->get_func_proto) 9982 fn = env->ops->get_func_proto(func_id, env->prog); 9983 if (!fn) { 9984 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9985 func_id); 9986 return -EINVAL; 9987 } 9988 9989 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9990 if (!env->prog->gpl_compatible && fn->gpl_only) { 9991 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9992 return -EINVAL; 9993 } 9994 9995 if (fn->allowed && !fn->allowed(env->prog)) { 9996 verbose(env, "helper call is not allowed in probe\n"); 9997 return -EINVAL; 9998 } 9999 10000 if (!env->prog->aux->sleepable && fn->might_sleep) { 10001 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 10002 return -EINVAL; 10003 } 10004 10005 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 10006 changes_data = bpf_helper_changes_pkt_data(fn->func); 10007 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 10008 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 10009 func_id_name(func_id), func_id); 10010 return -EINVAL; 10011 } 10012 10013 memset(&meta, 0, sizeof(meta)); 10014 meta.pkt_access = fn->pkt_access; 10015 10016 err = check_func_proto(fn, func_id); 10017 if (err) { 10018 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 10019 func_id_name(func_id), func_id); 10020 return err; 10021 } 10022 10023 if (env->cur_state->active_rcu_lock) { 10024 if (fn->might_sleep) { 10025 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10026 func_id_name(func_id), func_id); 10027 return -EINVAL; 10028 } 10029 10030 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 10031 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10032 } 10033 10034 meta.func_id = func_id; 10035 /* check args */ 10036 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10037 err = check_func_arg(env, i, &meta, fn, insn_idx); 10038 if (err) 10039 return err; 10040 } 10041 10042 err = record_func_map(env, &meta, func_id, insn_idx); 10043 if (err) 10044 return err; 10045 10046 err = record_func_key(env, &meta, func_id, insn_idx); 10047 if (err) 10048 return err; 10049 10050 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10051 * is inferred from register state. 10052 */ 10053 for (i = 0; i < meta.access_size; i++) { 10054 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10055 BPF_WRITE, -1, false, false); 10056 if (err) 10057 return err; 10058 } 10059 10060 regs = cur_regs(env); 10061 10062 if (meta.release_regno) { 10063 err = -EINVAL; 10064 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10065 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10066 * is safe to do directly. 10067 */ 10068 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10069 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10070 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10071 return -EFAULT; 10072 } 10073 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10074 } else if (meta.ref_obj_id) { 10075 err = release_reference(env, meta.ref_obj_id); 10076 } else if (register_is_null(®s[meta.release_regno])) { 10077 /* meta.ref_obj_id can only be 0 if register that is meant to be 10078 * released is NULL, which must be > R0. 10079 */ 10080 err = 0; 10081 } 10082 if (err) { 10083 verbose(env, "func %s#%d reference has not been acquired before\n", 10084 func_id_name(func_id), func_id); 10085 return err; 10086 } 10087 } 10088 10089 switch (func_id) { 10090 case BPF_FUNC_tail_call: 10091 err = check_reference_leak(env); 10092 if (err) { 10093 verbose(env, "tail_call would lead to reference leak\n"); 10094 return err; 10095 } 10096 break; 10097 case BPF_FUNC_get_local_storage: 10098 /* check that flags argument in get_local_storage(map, flags) is 0, 10099 * this is required because get_local_storage() can't return an error. 10100 */ 10101 if (!register_is_null(®s[BPF_REG_2])) { 10102 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10103 return -EINVAL; 10104 } 10105 break; 10106 case BPF_FUNC_for_each_map_elem: 10107 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10108 set_map_elem_callback_state); 10109 break; 10110 case BPF_FUNC_timer_set_callback: 10111 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10112 set_timer_callback_state); 10113 break; 10114 case BPF_FUNC_find_vma: 10115 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10116 set_find_vma_callback_state); 10117 break; 10118 case BPF_FUNC_snprintf: 10119 err = check_bpf_snprintf_call(env, regs); 10120 break; 10121 case BPF_FUNC_loop: 10122 update_loop_inline_state(env, meta.subprogno); 10123 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10124 * is finished, thus mark it precise. 10125 */ 10126 err = mark_chain_precision(env, BPF_REG_1); 10127 if (err) 10128 return err; 10129 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10130 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10131 set_loop_callback_state); 10132 } else { 10133 cur_func(env)->callback_depth = 0; 10134 if (env->log.level & BPF_LOG_LEVEL2) 10135 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10136 env->cur_state->curframe); 10137 } 10138 break; 10139 case BPF_FUNC_dynptr_from_mem: 10140 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10141 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10142 reg_type_str(env, regs[BPF_REG_1].type)); 10143 return -EACCES; 10144 } 10145 break; 10146 case BPF_FUNC_set_retval: 10147 if (prog_type == BPF_PROG_TYPE_LSM && 10148 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10149 if (!env->prog->aux->attach_func_proto->type) { 10150 /* Make sure programs that attach to void 10151 * hooks don't try to modify return value. 10152 */ 10153 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10154 return -EINVAL; 10155 } 10156 } 10157 break; 10158 case BPF_FUNC_dynptr_data: 10159 { 10160 struct bpf_reg_state *reg; 10161 int id, ref_obj_id; 10162 10163 reg = get_dynptr_arg_reg(env, fn, regs); 10164 if (!reg) 10165 return -EFAULT; 10166 10167 10168 if (meta.dynptr_id) { 10169 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10170 return -EFAULT; 10171 } 10172 if (meta.ref_obj_id) { 10173 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10174 return -EFAULT; 10175 } 10176 10177 id = dynptr_id(env, reg); 10178 if (id < 0) { 10179 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10180 return id; 10181 } 10182 10183 ref_obj_id = dynptr_ref_obj_id(env, reg); 10184 if (ref_obj_id < 0) { 10185 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10186 return ref_obj_id; 10187 } 10188 10189 meta.dynptr_id = id; 10190 meta.ref_obj_id = ref_obj_id; 10191 10192 break; 10193 } 10194 case BPF_FUNC_dynptr_write: 10195 { 10196 enum bpf_dynptr_type dynptr_type; 10197 struct bpf_reg_state *reg; 10198 10199 reg = get_dynptr_arg_reg(env, fn, regs); 10200 if (!reg) 10201 return -EFAULT; 10202 10203 dynptr_type = dynptr_get_type(env, reg); 10204 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10205 return -EFAULT; 10206 10207 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10208 /* this will trigger clear_all_pkt_pointers(), which will 10209 * invalidate all dynptr slices associated with the skb 10210 */ 10211 changes_data = true; 10212 10213 break; 10214 } 10215 case BPF_FUNC_user_ringbuf_drain: 10216 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10217 set_user_ringbuf_callback_state); 10218 break; 10219 } 10220 10221 if (err) 10222 return err; 10223 10224 /* reset caller saved regs */ 10225 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10226 mark_reg_not_init(env, regs, caller_saved[i]); 10227 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10228 } 10229 10230 /* helper call returns 64-bit value. */ 10231 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10232 10233 /* update return register (already marked as written above) */ 10234 ret_type = fn->ret_type; 10235 ret_flag = type_flag(ret_type); 10236 10237 switch (base_type(ret_type)) { 10238 case RET_INTEGER: 10239 /* sets type to SCALAR_VALUE */ 10240 mark_reg_unknown(env, regs, BPF_REG_0); 10241 break; 10242 case RET_VOID: 10243 regs[BPF_REG_0].type = NOT_INIT; 10244 break; 10245 case RET_PTR_TO_MAP_VALUE: 10246 /* There is no offset yet applied, variable or fixed */ 10247 mark_reg_known_zero(env, regs, BPF_REG_0); 10248 /* remember map_ptr, so that check_map_access() 10249 * can check 'value_size' boundary of memory access 10250 * to map element returned from bpf_map_lookup_elem() 10251 */ 10252 if (meta.map_ptr == NULL) { 10253 verbose(env, 10254 "kernel subsystem misconfigured verifier\n"); 10255 return -EINVAL; 10256 } 10257 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10258 regs[BPF_REG_0].map_uid = meta.map_uid; 10259 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10260 if (!type_may_be_null(ret_type) && 10261 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10262 regs[BPF_REG_0].id = ++env->id_gen; 10263 } 10264 break; 10265 case RET_PTR_TO_SOCKET: 10266 mark_reg_known_zero(env, regs, BPF_REG_0); 10267 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10268 break; 10269 case RET_PTR_TO_SOCK_COMMON: 10270 mark_reg_known_zero(env, regs, BPF_REG_0); 10271 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10272 break; 10273 case RET_PTR_TO_TCP_SOCK: 10274 mark_reg_known_zero(env, regs, BPF_REG_0); 10275 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10276 break; 10277 case RET_PTR_TO_MEM: 10278 mark_reg_known_zero(env, regs, BPF_REG_0); 10279 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10280 regs[BPF_REG_0].mem_size = meta.mem_size; 10281 break; 10282 case RET_PTR_TO_MEM_OR_BTF_ID: 10283 { 10284 const struct btf_type *t; 10285 10286 mark_reg_known_zero(env, regs, BPF_REG_0); 10287 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10288 if (!btf_type_is_struct(t)) { 10289 u32 tsize; 10290 const struct btf_type *ret; 10291 const char *tname; 10292 10293 /* resolve the type size of ksym. */ 10294 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10295 if (IS_ERR(ret)) { 10296 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10297 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10298 tname, PTR_ERR(ret)); 10299 return -EINVAL; 10300 } 10301 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10302 regs[BPF_REG_0].mem_size = tsize; 10303 } else { 10304 /* MEM_RDONLY may be carried from ret_flag, but it 10305 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10306 * it will confuse the check of PTR_TO_BTF_ID in 10307 * check_mem_access(). 10308 */ 10309 ret_flag &= ~MEM_RDONLY; 10310 10311 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10312 regs[BPF_REG_0].btf = meta.ret_btf; 10313 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10314 } 10315 break; 10316 } 10317 case RET_PTR_TO_BTF_ID: 10318 { 10319 struct btf *ret_btf; 10320 int ret_btf_id; 10321 10322 mark_reg_known_zero(env, regs, BPF_REG_0); 10323 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10324 if (func_id == BPF_FUNC_kptr_xchg) { 10325 ret_btf = meta.kptr_field->kptr.btf; 10326 ret_btf_id = meta.kptr_field->kptr.btf_id; 10327 if (!btf_is_kernel(ret_btf)) 10328 regs[BPF_REG_0].type |= MEM_ALLOC; 10329 } else { 10330 if (fn->ret_btf_id == BPF_PTR_POISON) { 10331 verbose(env, "verifier internal error:"); 10332 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10333 func_id_name(func_id)); 10334 return -EINVAL; 10335 } 10336 ret_btf = btf_vmlinux; 10337 ret_btf_id = *fn->ret_btf_id; 10338 } 10339 if (ret_btf_id == 0) { 10340 verbose(env, "invalid return type %u of func %s#%d\n", 10341 base_type(ret_type), func_id_name(func_id), 10342 func_id); 10343 return -EINVAL; 10344 } 10345 regs[BPF_REG_0].btf = ret_btf; 10346 regs[BPF_REG_0].btf_id = ret_btf_id; 10347 break; 10348 } 10349 default: 10350 verbose(env, "unknown return type %u of func %s#%d\n", 10351 base_type(ret_type), func_id_name(func_id), func_id); 10352 return -EINVAL; 10353 } 10354 10355 if (type_may_be_null(regs[BPF_REG_0].type)) 10356 regs[BPF_REG_0].id = ++env->id_gen; 10357 10358 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10359 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10360 func_id_name(func_id), func_id); 10361 return -EFAULT; 10362 } 10363 10364 if (is_dynptr_ref_function(func_id)) 10365 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10366 10367 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10368 /* For release_reference() */ 10369 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10370 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10371 int id = acquire_reference_state(env, insn_idx); 10372 10373 if (id < 0) 10374 return id; 10375 /* For mark_ptr_or_null_reg() */ 10376 regs[BPF_REG_0].id = id; 10377 /* For release_reference() */ 10378 regs[BPF_REG_0].ref_obj_id = id; 10379 } 10380 10381 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 10382 10383 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10384 if (err) 10385 return err; 10386 10387 if ((func_id == BPF_FUNC_get_stack || 10388 func_id == BPF_FUNC_get_task_stack) && 10389 !env->prog->has_callchain_buf) { 10390 const char *err_str; 10391 10392 #ifdef CONFIG_PERF_EVENTS 10393 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10394 err_str = "cannot get callchain buffer for func %s#%d\n"; 10395 #else 10396 err = -ENOTSUPP; 10397 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10398 #endif 10399 if (err) { 10400 verbose(env, err_str, func_id_name(func_id), func_id); 10401 return err; 10402 } 10403 10404 env->prog->has_callchain_buf = true; 10405 } 10406 10407 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10408 env->prog->call_get_stack = true; 10409 10410 if (func_id == BPF_FUNC_get_func_ip) { 10411 if (check_get_func_ip(env)) 10412 return -ENOTSUPP; 10413 env->prog->call_get_func_ip = true; 10414 } 10415 10416 if (changes_data) 10417 clear_all_pkt_pointers(env); 10418 return 0; 10419 } 10420 10421 /* mark_btf_func_reg_size() is used when the reg size is determined by 10422 * the BTF func_proto's return value size and argument. 10423 */ 10424 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10425 size_t reg_size) 10426 { 10427 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10428 10429 if (regno == BPF_REG_0) { 10430 /* Function return value */ 10431 reg->live |= REG_LIVE_WRITTEN; 10432 reg->subreg_def = reg_size == sizeof(u64) ? 10433 DEF_NOT_SUBREG : env->insn_idx + 1; 10434 } else { 10435 /* Function argument */ 10436 if (reg_size == sizeof(u64)) { 10437 mark_insn_zext(env, reg); 10438 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10439 } else { 10440 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10441 } 10442 } 10443 } 10444 10445 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10446 { 10447 return meta->kfunc_flags & KF_ACQUIRE; 10448 } 10449 10450 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10451 { 10452 return meta->kfunc_flags & KF_RELEASE; 10453 } 10454 10455 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10456 { 10457 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10458 } 10459 10460 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10461 { 10462 return meta->kfunc_flags & KF_SLEEPABLE; 10463 } 10464 10465 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10466 { 10467 return meta->kfunc_flags & KF_DESTRUCTIVE; 10468 } 10469 10470 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10471 { 10472 return meta->kfunc_flags & KF_RCU; 10473 } 10474 10475 static bool __kfunc_param_match_suffix(const struct btf *btf, 10476 const struct btf_param *arg, 10477 const char *suffix) 10478 { 10479 int suffix_len = strlen(suffix), len; 10480 const char *param_name; 10481 10482 /* In the future, this can be ported to use BTF tagging */ 10483 param_name = btf_name_by_offset(btf, arg->name_off); 10484 if (str_is_empty(param_name)) 10485 return false; 10486 len = strlen(param_name); 10487 if (len < suffix_len) 10488 return false; 10489 param_name += len - suffix_len; 10490 return !strncmp(param_name, suffix, suffix_len); 10491 } 10492 10493 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10494 const struct btf_param *arg, 10495 const struct bpf_reg_state *reg) 10496 { 10497 const struct btf_type *t; 10498 10499 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10500 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10501 return false; 10502 10503 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10504 } 10505 10506 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10507 const struct btf_param *arg, 10508 const struct bpf_reg_state *reg) 10509 { 10510 const struct btf_type *t; 10511 10512 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10513 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10514 return false; 10515 10516 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10517 } 10518 10519 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10520 { 10521 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10522 } 10523 10524 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10525 { 10526 return __kfunc_param_match_suffix(btf, arg, "__k"); 10527 } 10528 10529 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10530 { 10531 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10532 } 10533 10534 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10535 { 10536 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10537 } 10538 10539 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10540 { 10541 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10542 } 10543 10544 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10545 { 10546 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10547 } 10548 10549 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10550 const struct btf_param *arg, 10551 const char *name) 10552 { 10553 int len, target_len = strlen(name); 10554 const char *param_name; 10555 10556 param_name = btf_name_by_offset(btf, arg->name_off); 10557 if (str_is_empty(param_name)) 10558 return false; 10559 len = strlen(param_name); 10560 if (len != target_len) 10561 return false; 10562 if (strcmp(param_name, name)) 10563 return false; 10564 10565 return true; 10566 } 10567 10568 enum { 10569 KF_ARG_DYNPTR_ID, 10570 KF_ARG_LIST_HEAD_ID, 10571 KF_ARG_LIST_NODE_ID, 10572 KF_ARG_RB_ROOT_ID, 10573 KF_ARG_RB_NODE_ID, 10574 }; 10575 10576 BTF_ID_LIST(kf_arg_btf_ids) 10577 BTF_ID(struct, bpf_dynptr_kern) 10578 BTF_ID(struct, bpf_list_head) 10579 BTF_ID(struct, bpf_list_node) 10580 BTF_ID(struct, bpf_rb_root) 10581 BTF_ID(struct, bpf_rb_node) 10582 10583 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10584 const struct btf_param *arg, int type) 10585 { 10586 const struct btf_type *t; 10587 u32 res_id; 10588 10589 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10590 if (!t) 10591 return false; 10592 if (!btf_type_is_ptr(t)) 10593 return false; 10594 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10595 if (!t) 10596 return false; 10597 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10598 } 10599 10600 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10601 { 10602 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10603 } 10604 10605 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10606 { 10607 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10608 } 10609 10610 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10611 { 10612 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10613 } 10614 10615 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10616 { 10617 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10618 } 10619 10620 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10621 { 10622 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10623 } 10624 10625 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10626 const struct btf_param *arg) 10627 { 10628 const struct btf_type *t; 10629 10630 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10631 if (!t) 10632 return false; 10633 10634 return true; 10635 } 10636 10637 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10638 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10639 const struct btf *btf, 10640 const struct btf_type *t, int rec) 10641 { 10642 const struct btf_type *member_type; 10643 const struct btf_member *member; 10644 u32 i; 10645 10646 if (!btf_type_is_struct(t)) 10647 return false; 10648 10649 for_each_member(i, t, member) { 10650 const struct btf_array *array; 10651 10652 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10653 if (btf_type_is_struct(member_type)) { 10654 if (rec >= 3) { 10655 verbose(env, "max struct nesting depth exceeded\n"); 10656 return false; 10657 } 10658 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10659 return false; 10660 continue; 10661 } 10662 if (btf_type_is_array(member_type)) { 10663 array = btf_array(member_type); 10664 if (!array->nelems) 10665 return false; 10666 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10667 if (!btf_type_is_scalar(member_type)) 10668 return false; 10669 continue; 10670 } 10671 if (!btf_type_is_scalar(member_type)) 10672 return false; 10673 } 10674 return true; 10675 } 10676 10677 enum kfunc_ptr_arg_type { 10678 KF_ARG_PTR_TO_CTX, 10679 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10680 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10681 KF_ARG_PTR_TO_DYNPTR, 10682 KF_ARG_PTR_TO_ITER, 10683 KF_ARG_PTR_TO_LIST_HEAD, 10684 KF_ARG_PTR_TO_LIST_NODE, 10685 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10686 KF_ARG_PTR_TO_MEM, 10687 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10688 KF_ARG_PTR_TO_CALLBACK, 10689 KF_ARG_PTR_TO_RB_ROOT, 10690 KF_ARG_PTR_TO_RB_NODE, 10691 }; 10692 10693 enum special_kfunc_type { 10694 KF_bpf_obj_new_impl, 10695 KF_bpf_obj_drop_impl, 10696 KF_bpf_refcount_acquire_impl, 10697 KF_bpf_list_push_front_impl, 10698 KF_bpf_list_push_back_impl, 10699 KF_bpf_list_pop_front, 10700 KF_bpf_list_pop_back, 10701 KF_bpf_cast_to_kern_ctx, 10702 KF_bpf_rdonly_cast, 10703 KF_bpf_rcu_read_lock, 10704 KF_bpf_rcu_read_unlock, 10705 KF_bpf_rbtree_remove, 10706 KF_bpf_rbtree_add_impl, 10707 KF_bpf_rbtree_first, 10708 KF_bpf_dynptr_from_skb, 10709 KF_bpf_dynptr_from_xdp, 10710 KF_bpf_dynptr_slice, 10711 KF_bpf_dynptr_slice_rdwr, 10712 KF_bpf_dynptr_clone, 10713 }; 10714 10715 BTF_SET_START(special_kfunc_set) 10716 BTF_ID(func, bpf_obj_new_impl) 10717 BTF_ID(func, bpf_obj_drop_impl) 10718 BTF_ID(func, bpf_refcount_acquire_impl) 10719 BTF_ID(func, bpf_list_push_front_impl) 10720 BTF_ID(func, bpf_list_push_back_impl) 10721 BTF_ID(func, bpf_list_pop_front) 10722 BTF_ID(func, bpf_list_pop_back) 10723 BTF_ID(func, bpf_cast_to_kern_ctx) 10724 BTF_ID(func, bpf_rdonly_cast) 10725 BTF_ID(func, bpf_rbtree_remove) 10726 BTF_ID(func, bpf_rbtree_add_impl) 10727 BTF_ID(func, bpf_rbtree_first) 10728 BTF_ID(func, bpf_dynptr_from_skb) 10729 BTF_ID(func, bpf_dynptr_from_xdp) 10730 BTF_ID(func, bpf_dynptr_slice) 10731 BTF_ID(func, bpf_dynptr_slice_rdwr) 10732 BTF_ID(func, bpf_dynptr_clone) 10733 BTF_SET_END(special_kfunc_set) 10734 10735 BTF_ID_LIST(special_kfunc_list) 10736 BTF_ID(func, bpf_obj_new_impl) 10737 BTF_ID(func, bpf_obj_drop_impl) 10738 BTF_ID(func, bpf_refcount_acquire_impl) 10739 BTF_ID(func, bpf_list_push_front_impl) 10740 BTF_ID(func, bpf_list_push_back_impl) 10741 BTF_ID(func, bpf_list_pop_front) 10742 BTF_ID(func, bpf_list_pop_back) 10743 BTF_ID(func, bpf_cast_to_kern_ctx) 10744 BTF_ID(func, bpf_rdonly_cast) 10745 BTF_ID(func, bpf_rcu_read_lock) 10746 BTF_ID(func, bpf_rcu_read_unlock) 10747 BTF_ID(func, bpf_rbtree_remove) 10748 BTF_ID(func, bpf_rbtree_add_impl) 10749 BTF_ID(func, bpf_rbtree_first) 10750 BTF_ID(func, bpf_dynptr_from_skb) 10751 BTF_ID(func, bpf_dynptr_from_xdp) 10752 BTF_ID(func, bpf_dynptr_slice) 10753 BTF_ID(func, bpf_dynptr_slice_rdwr) 10754 BTF_ID(func, bpf_dynptr_clone) 10755 10756 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10757 { 10758 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10759 meta->arg_owning_ref) { 10760 return false; 10761 } 10762 10763 return meta->kfunc_flags & KF_RET_NULL; 10764 } 10765 10766 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10767 { 10768 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10769 } 10770 10771 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10772 { 10773 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10774 } 10775 10776 static enum kfunc_ptr_arg_type 10777 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10778 struct bpf_kfunc_call_arg_meta *meta, 10779 const struct btf_type *t, const struct btf_type *ref_t, 10780 const char *ref_tname, const struct btf_param *args, 10781 int argno, int nargs) 10782 { 10783 u32 regno = argno + 1; 10784 struct bpf_reg_state *regs = cur_regs(env); 10785 struct bpf_reg_state *reg = ®s[regno]; 10786 bool arg_mem_size = false; 10787 10788 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10789 return KF_ARG_PTR_TO_CTX; 10790 10791 /* In this function, we verify the kfunc's BTF as per the argument type, 10792 * leaving the rest of the verification with respect to the register 10793 * type to our caller. When a set of conditions hold in the BTF type of 10794 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10795 */ 10796 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10797 return KF_ARG_PTR_TO_CTX; 10798 10799 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10800 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10801 10802 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10803 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10804 10805 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10806 return KF_ARG_PTR_TO_DYNPTR; 10807 10808 if (is_kfunc_arg_iter(meta, argno)) 10809 return KF_ARG_PTR_TO_ITER; 10810 10811 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10812 return KF_ARG_PTR_TO_LIST_HEAD; 10813 10814 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10815 return KF_ARG_PTR_TO_LIST_NODE; 10816 10817 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10818 return KF_ARG_PTR_TO_RB_ROOT; 10819 10820 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10821 return KF_ARG_PTR_TO_RB_NODE; 10822 10823 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10824 if (!btf_type_is_struct(ref_t)) { 10825 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10826 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10827 return -EINVAL; 10828 } 10829 return KF_ARG_PTR_TO_BTF_ID; 10830 } 10831 10832 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10833 return KF_ARG_PTR_TO_CALLBACK; 10834 10835 10836 if (argno + 1 < nargs && 10837 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10838 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10839 arg_mem_size = true; 10840 10841 /* This is the catch all argument type of register types supported by 10842 * check_helper_mem_access. However, we only allow when argument type is 10843 * pointer to scalar, or struct composed (recursively) of scalars. When 10844 * arg_mem_size is true, the pointer can be void *. 10845 */ 10846 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10847 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10848 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10849 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10850 return -EINVAL; 10851 } 10852 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10853 } 10854 10855 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10856 struct bpf_reg_state *reg, 10857 const struct btf_type *ref_t, 10858 const char *ref_tname, u32 ref_id, 10859 struct bpf_kfunc_call_arg_meta *meta, 10860 int argno) 10861 { 10862 const struct btf_type *reg_ref_t; 10863 bool strict_type_match = false; 10864 const struct btf *reg_btf; 10865 const char *reg_ref_tname; 10866 u32 reg_ref_id; 10867 10868 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10869 reg_btf = reg->btf; 10870 reg_ref_id = reg->btf_id; 10871 } else { 10872 reg_btf = btf_vmlinux; 10873 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10874 } 10875 10876 /* Enforce strict type matching for calls to kfuncs that are acquiring 10877 * or releasing a reference, or are no-cast aliases. We do _not_ 10878 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10879 * as we want to enable BPF programs to pass types that are bitwise 10880 * equivalent without forcing them to explicitly cast with something 10881 * like bpf_cast_to_kern_ctx(). 10882 * 10883 * For example, say we had a type like the following: 10884 * 10885 * struct bpf_cpumask { 10886 * cpumask_t cpumask; 10887 * refcount_t usage; 10888 * }; 10889 * 10890 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10891 * to a struct cpumask, so it would be safe to pass a struct 10892 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10893 * 10894 * The philosophy here is similar to how we allow scalars of different 10895 * types to be passed to kfuncs as long as the size is the same. The 10896 * only difference here is that we're simply allowing 10897 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10898 * resolve types. 10899 */ 10900 if (is_kfunc_acquire(meta) || 10901 (is_kfunc_release(meta) && reg->ref_obj_id) || 10902 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10903 strict_type_match = true; 10904 10905 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10906 10907 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10908 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10909 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10910 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10911 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10912 btf_type_str(reg_ref_t), reg_ref_tname); 10913 return -EINVAL; 10914 } 10915 return 0; 10916 } 10917 10918 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10919 { 10920 struct bpf_verifier_state *state = env->cur_state; 10921 struct btf_record *rec = reg_btf_record(reg); 10922 10923 if (!state->active_lock.ptr) { 10924 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10925 return -EFAULT; 10926 } 10927 10928 if (type_flag(reg->type) & NON_OWN_REF) { 10929 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10930 return -EFAULT; 10931 } 10932 10933 reg->type |= NON_OWN_REF; 10934 if (rec->refcount_off >= 0) 10935 reg->type |= MEM_RCU; 10936 10937 return 0; 10938 } 10939 10940 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10941 { 10942 struct bpf_func_state *state, *unused; 10943 struct bpf_reg_state *reg; 10944 int i; 10945 10946 state = cur_func(env); 10947 10948 if (!ref_obj_id) { 10949 verbose(env, "verifier internal error: ref_obj_id is zero for " 10950 "owning -> non-owning conversion\n"); 10951 return -EFAULT; 10952 } 10953 10954 for (i = 0; i < state->acquired_refs; i++) { 10955 if (state->refs[i].id != ref_obj_id) 10956 continue; 10957 10958 /* Clear ref_obj_id here so release_reference doesn't clobber 10959 * the whole reg 10960 */ 10961 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10962 if (reg->ref_obj_id == ref_obj_id) { 10963 reg->ref_obj_id = 0; 10964 ref_set_non_owning(env, reg); 10965 } 10966 })); 10967 return 0; 10968 } 10969 10970 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10971 return -EFAULT; 10972 } 10973 10974 /* Implementation details: 10975 * 10976 * Each register points to some region of memory, which we define as an 10977 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10978 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10979 * allocation. The lock and the data it protects are colocated in the same 10980 * memory region. 10981 * 10982 * Hence, everytime a register holds a pointer value pointing to such 10983 * allocation, the verifier preserves a unique reg->id for it. 10984 * 10985 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10986 * bpf_spin_lock is called. 10987 * 10988 * To enable this, lock state in the verifier captures two values: 10989 * active_lock.ptr = Register's type specific pointer 10990 * active_lock.id = A unique ID for each register pointer value 10991 * 10992 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10993 * supported register types. 10994 * 10995 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10996 * allocated objects is the reg->btf pointer. 10997 * 10998 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10999 * can establish the provenance of the map value statically for each distinct 11000 * lookup into such maps. They always contain a single map value hence unique 11001 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 11002 * 11003 * So, in case of global variables, they use array maps with max_entries = 1, 11004 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 11005 * into the same map value as max_entries is 1, as described above). 11006 * 11007 * In case of inner map lookups, the inner map pointer has same map_ptr as the 11008 * outer map pointer (in verifier context), but each lookup into an inner map 11009 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 11010 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 11011 * will get different reg->id assigned to each lookup, hence different 11012 * active_lock.id. 11013 * 11014 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 11015 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 11016 * returned from bpf_obj_new. Each allocation receives a new reg->id. 11017 */ 11018 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 11019 { 11020 void *ptr; 11021 u32 id; 11022 11023 switch ((int)reg->type) { 11024 case PTR_TO_MAP_VALUE: 11025 ptr = reg->map_ptr; 11026 break; 11027 case PTR_TO_BTF_ID | MEM_ALLOC: 11028 ptr = reg->btf; 11029 break; 11030 default: 11031 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11032 return -EFAULT; 11033 } 11034 id = reg->id; 11035 11036 if (!env->cur_state->active_lock.ptr) 11037 return -EINVAL; 11038 if (env->cur_state->active_lock.ptr != ptr || 11039 env->cur_state->active_lock.id != id) { 11040 verbose(env, "held lock and object are not in the same allocation\n"); 11041 return -EINVAL; 11042 } 11043 return 0; 11044 } 11045 11046 static bool is_bpf_list_api_kfunc(u32 btf_id) 11047 { 11048 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11049 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11050 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11051 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11052 } 11053 11054 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11055 { 11056 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11057 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11058 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11059 } 11060 11061 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11062 { 11063 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11064 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11065 } 11066 11067 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11068 { 11069 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11070 } 11071 11072 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11073 { 11074 return is_bpf_rbtree_api_kfunc(btf_id); 11075 } 11076 11077 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11078 enum btf_field_type head_field_type, 11079 u32 kfunc_btf_id) 11080 { 11081 bool ret; 11082 11083 switch (head_field_type) { 11084 case BPF_LIST_HEAD: 11085 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11086 break; 11087 case BPF_RB_ROOT: 11088 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11089 break; 11090 default: 11091 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11092 btf_field_type_name(head_field_type)); 11093 return false; 11094 } 11095 11096 if (!ret) 11097 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11098 btf_field_type_name(head_field_type)); 11099 return ret; 11100 } 11101 11102 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11103 enum btf_field_type node_field_type, 11104 u32 kfunc_btf_id) 11105 { 11106 bool ret; 11107 11108 switch (node_field_type) { 11109 case BPF_LIST_NODE: 11110 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11111 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11112 break; 11113 case BPF_RB_NODE: 11114 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11115 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11116 break; 11117 default: 11118 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11119 btf_field_type_name(node_field_type)); 11120 return false; 11121 } 11122 11123 if (!ret) 11124 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11125 btf_field_type_name(node_field_type)); 11126 return ret; 11127 } 11128 11129 static int 11130 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11131 struct bpf_reg_state *reg, u32 regno, 11132 struct bpf_kfunc_call_arg_meta *meta, 11133 enum btf_field_type head_field_type, 11134 struct btf_field **head_field) 11135 { 11136 const char *head_type_name; 11137 struct btf_field *field; 11138 struct btf_record *rec; 11139 u32 head_off; 11140 11141 if (meta->btf != btf_vmlinux) { 11142 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11143 return -EFAULT; 11144 } 11145 11146 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11147 return -EFAULT; 11148 11149 head_type_name = btf_field_type_name(head_field_type); 11150 if (!tnum_is_const(reg->var_off)) { 11151 verbose(env, 11152 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11153 regno, head_type_name); 11154 return -EINVAL; 11155 } 11156 11157 rec = reg_btf_record(reg); 11158 head_off = reg->off + reg->var_off.value; 11159 field = btf_record_find(rec, head_off, head_field_type); 11160 if (!field) { 11161 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11162 return -EINVAL; 11163 } 11164 11165 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11166 if (check_reg_allocation_locked(env, reg)) { 11167 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11168 rec->spin_lock_off, head_type_name); 11169 return -EINVAL; 11170 } 11171 11172 if (*head_field) { 11173 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11174 return -EFAULT; 11175 } 11176 *head_field = field; 11177 return 0; 11178 } 11179 11180 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11181 struct bpf_reg_state *reg, u32 regno, 11182 struct bpf_kfunc_call_arg_meta *meta) 11183 { 11184 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11185 &meta->arg_list_head.field); 11186 } 11187 11188 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11189 struct bpf_reg_state *reg, u32 regno, 11190 struct bpf_kfunc_call_arg_meta *meta) 11191 { 11192 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11193 &meta->arg_rbtree_root.field); 11194 } 11195 11196 static int 11197 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11198 struct bpf_reg_state *reg, u32 regno, 11199 struct bpf_kfunc_call_arg_meta *meta, 11200 enum btf_field_type head_field_type, 11201 enum btf_field_type node_field_type, 11202 struct btf_field **node_field) 11203 { 11204 const char *node_type_name; 11205 const struct btf_type *et, *t; 11206 struct btf_field *field; 11207 u32 node_off; 11208 11209 if (meta->btf != btf_vmlinux) { 11210 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11211 return -EFAULT; 11212 } 11213 11214 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11215 return -EFAULT; 11216 11217 node_type_name = btf_field_type_name(node_field_type); 11218 if (!tnum_is_const(reg->var_off)) { 11219 verbose(env, 11220 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11221 regno, node_type_name); 11222 return -EINVAL; 11223 } 11224 11225 node_off = reg->off + reg->var_off.value; 11226 field = reg_find_field_offset(reg, node_off, node_field_type); 11227 if (!field || field->offset != node_off) { 11228 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11229 return -EINVAL; 11230 } 11231 11232 field = *node_field; 11233 11234 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11235 t = btf_type_by_id(reg->btf, reg->btf_id); 11236 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11237 field->graph_root.value_btf_id, true)) { 11238 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11239 "in struct %s, but arg is at offset=%d in struct %s\n", 11240 btf_field_type_name(head_field_type), 11241 btf_field_type_name(node_field_type), 11242 field->graph_root.node_offset, 11243 btf_name_by_offset(field->graph_root.btf, et->name_off), 11244 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11245 return -EINVAL; 11246 } 11247 meta->arg_btf = reg->btf; 11248 meta->arg_btf_id = reg->btf_id; 11249 11250 if (node_off != field->graph_root.node_offset) { 11251 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11252 node_off, btf_field_type_name(node_field_type), 11253 field->graph_root.node_offset, 11254 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11255 return -EINVAL; 11256 } 11257 11258 return 0; 11259 } 11260 11261 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11262 struct bpf_reg_state *reg, u32 regno, 11263 struct bpf_kfunc_call_arg_meta *meta) 11264 { 11265 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11266 BPF_LIST_HEAD, BPF_LIST_NODE, 11267 &meta->arg_list_head.field); 11268 } 11269 11270 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11271 struct bpf_reg_state *reg, u32 regno, 11272 struct bpf_kfunc_call_arg_meta *meta) 11273 { 11274 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11275 BPF_RB_ROOT, BPF_RB_NODE, 11276 &meta->arg_rbtree_root.field); 11277 } 11278 11279 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11280 int insn_idx) 11281 { 11282 const char *func_name = meta->func_name, *ref_tname; 11283 const struct btf *btf = meta->btf; 11284 const struct btf_param *args; 11285 struct btf_record *rec; 11286 u32 i, nargs; 11287 int ret; 11288 11289 args = (const struct btf_param *)(meta->func_proto + 1); 11290 nargs = btf_type_vlen(meta->func_proto); 11291 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11292 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11293 MAX_BPF_FUNC_REG_ARGS); 11294 return -EINVAL; 11295 } 11296 11297 /* Check that BTF function arguments match actual types that the 11298 * verifier sees. 11299 */ 11300 for (i = 0; i < nargs; i++) { 11301 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11302 const struct btf_type *t, *ref_t, *resolve_ret; 11303 enum bpf_arg_type arg_type = ARG_DONTCARE; 11304 u32 regno = i + 1, ref_id, type_size; 11305 bool is_ret_buf_sz = false; 11306 int kf_arg_type; 11307 11308 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11309 11310 if (is_kfunc_arg_ignore(btf, &args[i])) 11311 continue; 11312 11313 if (btf_type_is_scalar(t)) { 11314 if (reg->type != SCALAR_VALUE) { 11315 verbose(env, "R%d is not a scalar\n", regno); 11316 return -EINVAL; 11317 } 11318 11319 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11320 if (meta->arg_constant.found) { 11321 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11322 return -EFAULT; 11323 } 11324 if (!tnum_is_const(reg->var_off)) { 11325 verbose(env, "R%d must be a known constant\n", regno); 11326 return -EINVAL; 11327 } 11328 ret = mark_chain_precision(env, regno); 11329 if (ret < 0) 11330 return ret; 11331 meta->arg_constant.found = true; 11332 meta->arg_constant.value = reg->var_off.value; 11333 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11334 meta->r0_rdonly = true; 11335 is_ret_buf_sz = true; 11336 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11337 is_ret_buf_sz = true; 11338 } 11339 11340 if (is_ret_buf_sz) { 11341 if (meta->r0_size) { 11342 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11343 return -EINVAL; 11344 } 11345 11346 if (!tnum_is_const(reg->var_off)) { 11347 verbose(env, "R%d is not a const\n", regno); 11348 return -EINVAL; 11349 } 11350 11351 meta->r0_size = reg->var_off.value; 11352 ret = mark_chain_precision(env, regno); 11353 if (ret) 11354 return ret; 11355 } 11356 continue; 11357 } 11358 11359 if (!btf_type_is_ptr(t)) { 11360 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11361 return -EINVAL; 11362 } 11363 11364 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11365 (register_is_null(reg) || type_may_be_null(reg->type))) { 11366 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11367 return -EACCES; 11368 } 11369 11370 if (reg->ref_obj_id) { 11371 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11372 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11373 regno, reg->ref_obj_id, 11374 meta->ref_obj_id); 11375 return -EFAULT; 11376 } 11377 meta->ref_obj_id = reg->ref_obj_id; 11378 if (is_kfunc_release(meta)) 11379 meta->release_regno = regno; 11380 } 11381 11382 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11383 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11384 11385 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11386 if (kf_arg_type < 0) 11387 return kf_arg_type; 11388 11389 switch (kf_arg_type) { 11390 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11391 case KF_ARG_PTR_TO_BTF_ID: 11392 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11393 break; 11394 11395 if (!is_trusted_reg(reg)) { 11396 if (!is_kfunc_rcu(meta)) { 11397 verbose(env, "R%d must be referenced or trusted\n", regno); 11398 return -EINVAL; 11399 } 11400 if (!is_rcu_reg(reg)) { 11401 verbose(env, "R%d must be a rcu pointer\n", regno); 11402 return -EINVAL; 11403 } 11404 } 11405 11406 fallthrough; 11407 case KF_ARG_PTR_TO_CTX: 11408 /* Trusted arguments have the same offset checks as release arguments */ 11409 arg_type |= OBJ_RELEASE; 11410 break; 11411 case KF_ARG_PTR_TO_DYNPTR: 11412 case KF_ARG_PTR_TO_ITER: 11413 case KF_ARG_PTR_TO_LIST_HEAD: 11414 case KF_ARG_PTR_TO_LIST_NODE: 11415 case KF_ARG_PTR_TO_RB_ROOT: 11416 case KF_ARG_PTR_TO_RB_NODE: 11417 case KF_ARG_PTR_TO_MEM: 11418 case KF_ARG_PTR_TO_MEM_SIZE: 11419 case KF_ARG_PTR_TO_CALLBACK: 11420 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11421 /* Trusted by default */ 11422 break; 11423 default: 11424 WARN_ON_ONCE(1); 11425 return -EFAULT; 11426 } 11427 11428 if (is_kfunc_release(meta) && reg->ref_obj_id) 11429 arg_type |= OBJ_RELEASE; 11430 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11431 if (ret < 0) 11432 return ret; 11433 11434 switch (kf_arg_type) { 11435 case KF_ARG_PTR_TO_CTX: 11436 if (reg->type != PTR_TO_CTX) { 11437 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11438 return -EINVAL; 11439 } 11440 11441 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11442 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11443 if (ret < 0) 11444 return -EINVAL; 11445 meta->ret_btf_id = ret; 11446 } 11447 break; 11448 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11449 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11450 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11451 return -EINVAL; 11452 } 11453 if (!reg->ref_obj_id) { 11454 verbose(env, "allocated object must be referenced\n"); 11455 return -EINVAL; 11456 } 11457 if (meta->btf == btf_vmlinux && 11458 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11459 meta->arg_btf = reg->btf; 11460 meta->arg_btf_id = reg->btf_id; 11461 } 11462 break; 11463 case KF_ARG_PTR_TO_DYNPTR: 11464 { 11465 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11466 int clone_ref_obj_id = 0; 11467 11468 if (reg->type != PTR_TO_STACK && 11469 reg->type != CONST_PTR_TO_DYNPTR) { 11470 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11471 return -EINVAL; 11472 } 11473 11474 if (reg->type == CONST_PTR_TO_DYNPTR) 11475 dynptr_arg_type |= MEM_RDONLY; 11476 11477 if (is_kfunc_arg_uninit(btf, &args[i])) 11478 dynptr_arg_type |= MEM_UNINIT; 11479 11480 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11481 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11482 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11483 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11484 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11485 (dynptr_arg_type & MEM_UNINIT)) { 11486 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11487 11488 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11489 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11490 return -EFAULT; 11491 } 11492 11493 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11494 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11495 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11496 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11497 return -EFAULT; 11498 } 11499 } 11500 11501 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11502 if (ret < 0) 11503 return ret; 11504 11505 if (!(dynptr_arg_type & MEM_UNINIT)) { 11506 int id = dynptr_id(env, reg); 11507 11508 if (id < 0) { 11509 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11510 return id; 11511 } 11512 meta->initialized_dynptr.id = id; 11513 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11514 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11515 } 11516 11517 break; 11518 } 11519 case KF_ARG_PTR_TO_ITER: 11520 ret = process_iter_arg(env, regno, insn_idx, meta); 11521 if (ret < 0) 11522 return ret; 11523 break; 11524 case KF_ARG_PTR_TO_LIST_HEAD: 11525 if (reg->type != PTR_TO_MAP_VALUE && 11526 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11527 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11528 return -EINVAL; 11529 } 11530 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11531 verbose(env, "allocated object must be referenced\n"); 11532 return -EINVAL; 11533 } 11534 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11535 if (ret < 0) 11536 return ret; 11537 break; 11538 case KF_ARG_PTR_TO_RB_ROOT: 11539 if (reg->type != PTR_TO_MAP_VALUE && 11540 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11541 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11542 return -EINVAL; 11543 } 11544 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11545 verbose(env, "allocated object must be referenced\n"); 11546 return -EINVAL; 11547 } 11548 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11549 if (ret < 0) 11550 return ret; 11551 break; 11552 case KF_ARG_PTR_TO_LIST_NODE: 11553 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11554 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11555 return -EINVAL; 11556 } 11557 if (!reg->ref_obj_id) { 11558 verbose(env, "allocated object must be referenced\n"); 11559 return -EINVAL; 11560 } 11561 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11562 if (ret < 0) 11563 return ret; 11564 break; 11565 case KF_ARG_PTR_TO_RB_NODE: 11566 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11567 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11568 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11569 return -EINVAL; 11570 } 11571 if (in_rbtree_lock_required_cb(env)) { 11572 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11573 return -EINVAL; 11574 } 11575 } else { 11576 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11577 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11578 return -EINVAL; 11579 } 11580 if (!reg->ref_obj_id) { 11581 verbose(env, "allocated object must be referenced\n"); 11582 return -EINVAL; 11583 } 11584 } 11585 11586 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11587 if (ret < 0) 11588 return ret; 11589 break; 11590 case KF_ARG_PTR_TO_BTF_ID: 11591 /* Only base_type is checked, further checks are done here */ 11592 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11593 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11594 !reg2btf_ids[base_type(reg->type)]) { 11595 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11596 verbose(env, "expected %s or socket\n", 11597 reg_type_str(env, base_type(reg->type) | 11598 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11599 return -EINVAL; 11600 } 11601 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11602 if (ret < 0) 11603 return ret; 11604 break; 11605 case KF_ARG_PTR_TO_MEM: 11606 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11607 if (IS_ERR(resolve_ret)) { 11608 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11609 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11610 return -EINVAL; 11611 } 11612 ret = check_mem_reg(env, reg, regno, type_size); 11613 if (ret < 0) 11614 return ret; 11615 break; 11616 case KF_ARG_PTR_TO_MEM_SIZE: 11617 { 11618 struct bpf_reg_state *buff_reg = ®s[regno]; 11619 const struct btf_param *buff_arg = &args[i]; 11620 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11621 const struct btf_param *size_arg = &args[i + 1]; 11622 11623 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11624 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11625 if (ret < 0) { 11626 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11627 return ret; 11628 } 11629 } 11630 11631 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11632 if (meta->arg_constant.found) { 11633 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11634 return -EFAULT; 11635 } 11636 if (!tnum_is_const(size_reg->var_off)) { 11637 verbose(env, "R%d must be a known constant\n", regno + 1); 11638 return -EINVAL; 11639 } 11640 meta->arg_constant.found = true; 11641 meta->arg_constant.value = size_reg->var_off.value; 11642 } 11643 11644 /* Skip next '__sz' or '__szk' argument */ 11645 i++; 11646 break; 11647 } 11648 case KF_ARG_PTR_TO_CALLBACK: 11649 if (reg->type != PTR_TO_FUNC) { 11650 verbose(env, "arg%d expected pointer to func\n", i); 11651 return -EINVAL; 11652 } 11653 meta->subprogno = reg->subprogno; 11654 break; 11655 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11656 if (!type_is_ptr_alloc_obj(reg->type)) { 11657 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11658 return -EINVAL; 11659 } 11660 if (!type_is_non_owning_ref(reg->type)) 11661 meta->arg_owning_ref = true; 11662 11663 rec = reg_btf_record(reg); 11664 if (!rec) { 11665 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11666 return -EFAULT; 11667 } 11668 11669 if (rec->refcount_off < 0) { 11670 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11671 return -EINVAL; 11672 } 11673 11674 meta->arg_btf = reg->btf; 11675 meta->arg_btf_id = reg->btf_id; 11676 break; 11677 } 11678 } 11679 11680 if (is_kfunc_release(meta) && !meta->release_regno) { 11681 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11682 func_name); 11683 return -EINVAL; 11684 } 11685 11686 return 0; 11687 } 11688 11689 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11690 struct bpf_insn *insn, 11691 struct bpf_kfunc_call_arg_meta *meta, 11692 const char **kfunc_name) 11693 { 11694 const struct btf_type *func, *func_proto; 11695 u32 func_id, *kfunc_flags; 11696 const char *func_name; 11697 struct btf *desc_btf; 11698 11699 if (kfunc_name) 11700 *kfunc_name = NULL; 11701 11702 if (!insn->imm) 11703 return -EINVAL; 11704 11705 desc_btf = find_kfunc_desc_btf(env, insn->off); 11706 if (IS_ERR(desc_btf)) 11707 return PTR_ERR(desc_btf); 11708 11709 func_id = insn->imm; 11710 func = btf_type_by_id(desc_btf, func_id); 11711 func_name = btf_name_by_offset(desc_btf, func->name_off); 11712 if (kfunc_name) 11713 *kfunc_name = func_name; 11714 func_proto = btf_type_by_id(desc_btf, func->type); 11715 11716 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11717 if (!kfunc_flags) { 11718 return -EACCES; 11719 } 11720 11721 memset(meta, 0, sizeof(*meta)); 11722 meta->btf = desc_btf; 11723 meta->func_id = func_id; 11724 meta->kfunc_flags = *kfunc_flags; 11725 meta->func_proto = func_proto; 11726 meta->func_name = func_name; 11727 11728 return 0; 11729 } 11730 11731 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11732 int *insn_idx_p) 11733 { 11734 const struct btf_type *t, *ptr_type; 11735 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11736 struct bpf_reg_state *regs = cur_regs(env); 11737 const char *func_name, *ptr_type_name; 11738 bool sleepable, rcu_lock, rcu_unlock; 11739 struct bpf_kfunc_call_arg_meta meta; 11740 struct bpf_insn_aux_data *insn_aux; 11741 int err, insn_idx = *insn_idx_p; 11742 const struct btf_param *args; 11743 const struct btf_type *ret_t; 11744 struct btf *desc_btf; 11745 11746 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11747 if (!insn->imm) 11748 return 0; 11749 11750 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11751 if (err == -EACCES && func_name) 11752 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11753 if (err) 11754 return err; 11755 desc_btf = meta.btf; 11756 insn_aux = &env->insn_aux_data[insn_idx]; 11757 11758 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11759 11760 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11761 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11762 return -EACCES; 11763 } 11764 11765 sleepable = is_kfunc_sleepable(&meta); 11766 if (sleepable && !env->prog->aux->sleepable) { 11767 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11768 return -EACCES; 11769 } 11770 11771 /* Check the arguments */ 11772 err = check_kfunc_args(env, &meta, insn_idx); 11773 if (err < 0) 11774 return err; 11775 11776 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11777 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11778 set_rbtree_add_callback_state); 11779 if (err) { 11780 verbose(env, "kfunc %s#%d failed callback verification\n", 11781 func_name, meta.func_id); 11782 return err; 11783 } 11784 } 11785 11786 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11787 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11788 11789 if (env->cur_state->active_rcu_lock) { 11790 struct bpf_func_state *state; 11791 struct bpf_reg_state *reg; 11792 11793 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11794 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11795 return -EACCES; 11796 } 11797 11798 if (rcu_lock) { 11799 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11800 return -EINVAL; 11801 } else if (rcu_unlock) { 11802 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11803 if (reg->type & MEM_RCU) { 11804 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11805 reg->type |= PTR_UNTRUSTED; 11806 } 11807 })); 11808 env->cur_state->active_rcu_lock = false; 11809 } else if (sleepable) { 11810 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11811 return -EACCES; 11812 } 11813 } else if (rcu_lock) { 11814 env->cur_state->active_rcu_lock = true; 11815 } else if (rcu_unlock) { 11816 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11817 return -EINVAL; 11818 } 11819 11820 /* In case of release function, we get register number of refcounted 11821 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11822 */ 11823 if (meta.release_regno) { 11824 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11825 if (err) { 11826 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11827 func_name, meta.func_id); 11828 return err; 11829 } 11830 } 11831 11832 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11833 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11834 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11835 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11836 insn_aux->insert_off = regs[BPF_REG_2].off; 11837 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11838 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11839 if (err) { 11840 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11841 func_name, meta.func_id); 11842 return err; 11843 } 11844 11845 err = release_reference(env, release_ref_obj_id); 11846 if (err) { 11847 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11848 func_name, meta.func_id); 11849 return err; 11850 } 11851 } 11852 11853 for (i = 0; i < CALLER_SAVED_REGS; i++) 11854 mark_reg_not_init(env, regs, caller_saved[i]); 11855 11856 /* Check return type */ 11857 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11858 11859 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11860 /* Only exception is bpf_obj_new_impl */ 11861 if (meta.btf != btf_vmlinux || 11862 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11863 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11864 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11865 return -EINVAL; 11866 } 11867 } 11868 11869 if (btf_type_is_scalar(t)) { 11870 mark_reg_unknown(env, regs, BPF_REG_0); 11871 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11872 } else if (btf_type_is_ptr(t)) { 11873 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11874 11875 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11876 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11877 struct btf *ret_btf; 11878 u32 ret_btf_id; 11879 11880 if (unlikely(!bpf_global_ma_set)) 11881 return -ENOMEM; 11882 11883 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11884 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11885 return -EINVAL; 11886 } 11887 11888 ret_btf = env->prog->aux->btf; 11889 ret_btf_id = meta.arg_constant.value; 11890 11891 /* This may be NULL due to user not supplying a BTF */ 11892 if (!ret_btf) { 11893 verbose(env, "bpf_obj_new requires prog BTF\n"); 11894 return -EINVAL; 11895 } 11896 11897 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11898 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11899 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11900 return -EINVAL; 11901 } 11902 11903 mark_reg_known_zero(env, regs, BPF_REG_0); 11904 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11905 regs[BPF_REG_0].btf = ret_btf; 11906 regs[BPF_REG_0].btf_id = ret_btf_id; 11907 11908 insn_aux->obj_new_size = ret_t->size; 11909 insn_aux->kptr_struct_meta = 11910 btf_find_struct_meta(ret_btf, ret_btf_id); 11911 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11912 mark_reg_known_zero(env, regs, BPF_REG_0); 11913 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11914 regs[BPF_REG_0].btf = meta.arg_btf; 11915 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11916 11917 insn_aux->kptr_struct_meta = 11918 btf_find_struct_meta(meta.arg_btf, 11919 meta.arg_btf_id); 11920 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11921 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11922 struct btf_field *field = meta.arg_list_head.field; 11923 11924 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11925 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11926 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11927 struct btf_field *field = meta.arg_rbtree_root.field; 11928 11929 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11930 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11931 mark_reg_known_zero(env, regs, BPF_REG_0); 11932 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11933 regs[BPF_REG_0].btf = desc_btf; 11934 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11935 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11936 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11937 if (!ret_t || !btf_type_is_struct(ret_t)) { 11938 verbose(env, 11939 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11940 return -EINVAL; 11941 } 11942 11943 mark_reg_known_zero(env, regs, BPF_REG_0); 11944 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11945 regs[BPF_REG_0].btf = desc_btf; 11946 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11947 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11948 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11949 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11950 11951 mark_reg_known_zero(env, regs, BPF_REG_0); 11952 11953 if (!meta.arg_constant.found) { 11954 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11955 return -EFAULT; 11956 } 11957 11958 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11959 11960 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11961 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11962 11963 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11964 regs[BPF_REG_0].type |= MEM_RDONLY; 11965 } else { 11966 /* this will set env->seen_direct_write to true */ 11967 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11968 verbose(env, "the prog does not allow writes to packet data\n"); 11969 return -EINVAL; 11970 } 11971 } 11972 11973 if (!meta.initialized_dynptr.id) { 11974 verbose(env, "verifier internal error: no dynptr id\n"); 11975 return -EFAULT; 11976 } 11977 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11978 11979 /* we don't need to set BPF_REG_0's ref obj id 11980 * because packet slices are not refcounted (see 11981 * dynptr_type_refcounted) 11982 */ 11983 } else { 11984 verbose(env, "kernel function %s unhandled dynamic return type\n", 11985 meta.func_name); 11986 return -EFAULT; 11987 } 11988 } else if (!__btf_type_is_struct(ptr_type)) { 11989 if (!meta.r0_size) { 11990 __u32 sz; 11991 11992 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11993 meta.r0_size = sz; 11994 meta.r0_rdonly = true; 11995 } 11996 } 11997 if (!meta.r0_size) { 11998 ptr_type_name = btf_name_by_offset(desc_btf, 11999 ptr_type->name_off); 12000 verbose(env, 12001 "kernel function %s returns pointer type %s %s is not supported\n", 12002 func_name, 12003 btf_type_str(ptr_type), 12004 ptr_type_name); 12005 return -EINVAL; 12006 } 12007 12008 mark_reg_known_zero(env, regs, BPF_REG_0); 12009 regs[BPF_REG_0].type = PTR_TO_MEM; 12010 regs[BPF_REG_0].mem_size = meta.r0_size; 12011 12012 if (meta.r0_rdonly) 12013 regs[BPF_REG_0].type |= MEM_RDONLY; 12014 12015 /* Ensures we don't access the memory after a release_reference() */ 12016 if (meta.ref_obj_id) 12017 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 12018 } else { 12019 mark_reg_known_zero(env, regs, BPF_REG_0); 12020 regs[BPF_REG_0].btf = desc_btf; 12021 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12022 regs[BPF_REG_0].btf_id = ptr_type_id; 12023 } 12024 12025 if (is_kfunc_ret_null(&meta)) { 12026 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12027 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12028 regs[BPF_REG_0].id = ++env->id_gen; 12029 } 12030 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12031 if (is_kfunc_acquire(&meta)) { 12032 int id = acquire_reference_state(env, insn_idx); 12033 12034 if (id < 0) 12035 return id; 12036 if (is_kfunc_ret_null(&meta)) 12037 regs[BPF_REG_0].id = id; 12038 regs[BPF_REG_0].ref_obj_id = id; 12039 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12040 ref_set_non_owning(env, ®s[BPF_REG_0]); 12041 } 12042 12043 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12044 regs[BPF_REG_0].id = ++env->id_gen; 12045 } else if (btf_type_is_void(t)) { 12046 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12047 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 12048 insn_aux->kptr_struct_meta = 12049 btf_find_struct_meta(meta.arg_btf, 12050 meta.arg_btf_id); 12051 } 12052 } 12053 } 12054 12055 nargs = btf_type_vlen(meta.func_proto); 12056 args = (const struct btf_param *)(meta.func_proto + 1); 12057 for (i = 0; i < nargs; i++) { 12058 u32 regno = i + 1; 12059 12060 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12061 if (btf_type_is_ptr(t)) 12062 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12063 else 12064 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12065 mark_btf_func_reg_size(env, regno, t->size); 12066 } 12067 12068 if (is_iter_next_kfunc(&meta)) { 12069 err = process_iter_next_call(env, insn_idx, &meta); 12070 if (err) 12071 return err; 12072 } 12073 12074 return 0; 12075 } 12076 12077 static bool signed_add_overflows(s64 a, s64 b) 12078 { 12079 /* Do the add in u64, where overflow is well-defined */ 12080 s64 res = (s64)((u64)a + (u64)b); 12081 12082 if (b < 0) 12083 return res > a; 12084 return res < a; 12085 } 12086 12087 static bool signed_add32_overflows(s32 a, s32 b) 12088 { 12089 /* Do the add in u32, where overflow is well-defined */ 12090 s32 res = (s32)((u32)a + (u32)b); 12091 12092 if (b < 0) 12093 return res > a; 12094 return res < a; 12095 } 12096 12097 static bool signed_sub_overflows(s64 a, s64 b) 12098 { 12099 /* Do the sub in u64, where overflow is well-defined */ 12100 s64 res = (s64)((u64)a - (u64)b); 12101 12102 if (b < 0) 12103 return res < a; 12104 return res > a; 12105 } 12106 12107 static bool signed_sub32_overflows(s32 a, s32 b) 12108 { 12109 /* Do the sub in u32, where overflow is well-defined */ 12110 s32 res = (s32)((u32)a - (u32)b); 12111 12112 if (b < 0) 12113 return res < a; 12114 return res > a; 12115 } 12116 12117 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12118 const struct bpf_reg_state *reg, 12119 enum bpf_reg_type type) 12120 { 12121 bool known = tnum_is_const(reg->var_off); 12122 s64 val = reg->var_off.value; 12123 s64 smin = reg->smin_value; 12124 12125 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12126 verbose(env, "math between %s pointer and %lld is not allowed\n", 12127 reg_type_str(env, type), val); 12128 return false; 12129 } 12130 12131 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12132 verbose(env, "%s pointer offset %d is not allowed\n", 12133 reg_type_str(env, type), reg->off); 12134 return false; 12135 } 12136 12137 if (smin == S64_MIN) { 12138 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12139 reg_type_str(env, type)); 12140 return false; 12141 } 12142 12143 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12144 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12145 smin, reg_type_str(env, type)); 12146 return false; 12147 } 12148 12149 return true; 12150 } 12151 12152 enum { 12153 REASON_BOUNDS = -1, 12154 REASON_TYPE = -2, 12155 REASON_PATHS = -3, 12156 REASON_LIMIT = -4, 12157 REASON_STACK = -5, 12158 }; 12159 12160 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12161 u32 *alu_limit, bool mask_to_left) 12162 { 12163 u32 max = 0, ptr_limit = 0; 12164 12165 switch (ptr_reg->type) { 12166 case PTR_TO_STACK: 12167 /* Offset 0 is out-of-bounds, but acceptable start for the 12168 * left direction, see BPF_REG_FP. Also, unknown scalar 12169 * offset where we would need to deal with min/max bounds is 12170 * currently prohibited for unprivileged. 12171 */ 12172 max = MAX_BPF_STACK + mask_to_left; 12173 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12174 break; 12175 case PTR_TO_MAP_VALUE: 12176 max = ptr_reg->map_ptr->value_size; 12177 ptr_limit = (mask_to_left ? 12178 ptr_reg->smin_value : 12179 ptr_reg->umax_value) + ptr_reg->off; 12180 break; 12181 default: 12182 return REASON_TYPE; 12183 } 12184 12185 if (ptr_limit >= max) 12186 return REASON_LIMIT; 12187 *alu_limit = ptr_limit; 12188 return 0; 12189 } 12190 12191 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12192 const struct bpf_insn *insn) 12193 { 12194 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12195 } 12196 12197 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12198 u32 alu_state, u32 alu_limit) 12199 { 12200 /* If we arrived here from different branches with different 12201 * state or limits to sanitize, then this won't work. 12202 */ 12203 if (aux->alu_state && 12204 (aux->alu_state != alu_state || 12205 aux->alu_limit != alu_limit)) 12206 return REASON_PATHS; 12207 12208 /* Corresponding fixup done in do_misc_fixups(). */ 12209 aux->alu_state = alu_state; 12210 aux->alu_limit = alu_limit; 12211 return 0; 12212 } 12213 12214 static int sanitize_val_alu(struct bpf_verifier_env *env, 12215 struct bpf_insn *insn) 12216 { 12217 struct bpf_insn_aux_data *aux = cur_aux(env); 12218 12219 if (can_skip_alu_sanitation(env, insn)) 12220 return 0; 12221 12222 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12223 } 12224 12225 static bool sanitize_needed(u8 opcode) 12226 { 12227 return opcode == BPF_ADD || opcode == BPF_SUB; 12228 } 12229 12230 struct bpf_sanitize_info { 12231 struct bpf_insn_aux_data aux; 12232 bool mask_to_left; 12233 }; 12234 12235 static struct bpf_verifier_state * 12236 sanitize_speculative_path(struct bpf_verifier_env *env, 12237 const struct bpf_insn *insn, 12238 u32 next_idx, u32 curr_idx) 12239 { 12240 struct bpf_verifier_state *branch; 12241 struct bpf_reg_state *regs; 12242 12243 branch = push_stack(env, next_idx, curr_idx, true); 12244 if (branch && insn) { 12245 regs = branch->frame[branch->curframe]->regs; 12246 if (BPF_SRC(insn->code) == BPF_K) { 12247 mark_reg_unknown(env, regs, insn->dst_reg); 12248 } else if (BPF_SRC(insn->code) == BPF_X) { 12249 mark_reg_unknown(env, regs, insn->dst_reg); 12250 mark_reg_unknown(env, regs, insn->src_reg); 12251 } 12252 } 12253 return branch; 12254 } 12255 12256 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12257 struct bpf_insn *insn, 12258 const struct bpf_reg_state *ptr_reg, 12259 const struct bpf_reg_state *off_reg, 12260 struct bpf_reg_state *dst_reg, 12261 struct bpf_sanitize_info *info, 12262 const bool commit_window) 12263 { 12264 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12265 struct bpf_verifier_state *vstate = env->cur_state; 12266 bool off_is_imm = tnum_is_const(off_reg->var_off); 12267 bool off_is_neg = off_reg->smin_value < 0; 12268 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12269 u8 opcode = BPF_OP(insn->code); 12270 u32 alu_state, alu_limit; 12271 struct bpf_reg_state tmp; 12272 bool ret; 12273 int err; 12274 12275 if (can_skip_alu_sanitation(env, insn)) 12276 return 0; 12277 12278 /* We already marked aux for masking from non-speculative 12279 * paths, thus we got here in the first place. We only care 12280 * to explore bad access from here. 12281 */ 12282 if (vstate->speculative) 12283 goto do_sim; 12284 12285 if (!commit_window) { 12286 if (!tnum_is_const(off_reg->var_off) && 12287 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12288 return REASON_BOUNDS; 12289 12290 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12291 (opcode == BPF_SUB && !off_is_neg); 12292 } 12293 12294 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12295 if (err < 0) 12296 return err; 12297 12298 if (commit_window) { 12299 /* In commit phase we narrow the masking window based on 12300 * the observed pointer move after the simulated operation. 12301 */ 12302 alu_state = info->aux.alu_state; 12303 alu_limit = abs(info->aux.alu_limit - alu_limit); 12304 } else { 12305 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12306 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12307 alu_state |= ptr_is_dst_reg ? 12308 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12309 12310 /* Limit pruning on unknown scalars to enable deep search for 12311 * potential masking differences from other program paths. 12312 */ 12313 if (!off_is_imm) 12314 env->explore_alu_limits = true; 12315 } 12316 12317 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12318 if (err < 0) 12319 return err; 12320 do_sim: 12321 /* If we're in commit phase, we're done here given we already 12322 * pushed the truncated dst_reg into the speculative verification 12323 * stack. 12324 * 12325 * Also, when register is a known constant, we rewrite register-based 12326 * operation to immediate-based, and thus do not need masking (and as 12327 * a consequence, do not need to simulate the zero-truncation either). 12328 */ 12329 if (commit_window || off_is_imm) 12330 return 0; 12331 12332 /* Simulate and find potential out-of-bounds access under 12333 * speculative execution from truncation as a result of 12334 * masking when off was not within expected range. If off 12335 * sits in dst, then we temporarily need to move ptr there 12336 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12337 * for cases where we use K-based arithmetic in one direction 12338 * and truncated reg-based in the other in order to explore 12339 * bad access. 12340 */ 12341 if (!ptr_is_dst_reg) { 12342 tmp = *dst_reg; 12343 copy_register_state(dst_reg, ptr_reg); 12344 } 12345 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12346 env->insn_idx); 12347 if (!ptr_is_dst_reg && ret) 12348 *dst_reg = tmp; 12349 return !ret ? REASON_STACK : 0; 12350 } 12351 12352 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12353 { 12354 struct bpf_verifier_state *vstate = env->cur_state; 12355 12356 /* If we simulate paths under speculation, we don't update the 12357 * insn as 'seen' such that when we verify unreachable paths in 12358 * the non-speculative domain, sanitize_dead_code() can still 12359 * rewrite/sanitize them. 12360 */ 12361 if (!vstate->speculative) 12362 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12363 } 12364 12365 static int sanitize_err(struct bpf_verifier_env *env, 12366 const struct bpf_insn *insn, int reason, 12367 const struct bpf_reg_state *off_reg, 12368 const struct bpf_reg_state *dst_reg) 12369 { 12370 static const char *err = "pointer arithmetic with it prohibited for !root"; 12371 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12372 u32 dst = insn->dst_reg, src = insn->src_reg; 12373 12374 switch (reason) { 12375 case REASON_BOUNDS: 12376 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12377 off_reg == dst_reg ? dst : src, err); 12378 break; 12379 case REASON_TYPE: 12380 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12381 off_reg == dst_reg ? src : dst, err); 12382 break; 12383 case REASON_PATHS: 12384 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12385 dst, op, err); 12386 break; 12387 case REASON_LIMIT: 12388 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12389 dst, op, err); 12390 break; 12391 case REASON_STACK: 12392 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12393 dst, err); 12394 break; 12395 default: 12396 verbose(env, "verifier internal error: unknown reason (%d)\n", 12397 reason); 12398 break; 12399 } 12400 12401 return -EACCES; 12402 } 12403 12404 /* check that stack access falls within stack limits and that 'reg' doesn't 12405 * have a variable offset. 12406 * 12407 * Variable offset is prohibited for unprivileged mode for simplicity since it 12408 * requires corresponding support in Spectre masking for stack ALU. See also 12409 * retrieve_ptr_limit(). 12410 * 12411 * 12412 * 'off' includes 'reg->off'. 12413 */ 12414 static int check_stack_access_for_ptr_arithmetic( 12415 struct bpf_verifier_env *env, 12416 int regno, 12417 const struct bpf_reg_state *reg, 12418 int off) 12419 { 12420 if (!tnum_is_const(reg->var_off)) { 12421 char tn_buf[48]; 12422 12423 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12424 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12425 regno, tn_buf, off); 12426 return -EACCES; 12427 } 12428 12429 if (off >= 0 || off < -MAX_BPF_STACK) { 12430 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12431 "prohibited for !root; off=%d\n", regno, off); 12432 return -EACCES; 12433 } 12434 12435 return 0; 12436 } 12437 12438 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12439 const struct bpf_insn *insn, 12440 const struct bpf_reg_state *dst_reg) 12441 { 12442 u32 dst = insn->dst_reg; 12443 12444 /* For unprivileged we require that resulting offset must be in bounds 12445 * in order to be able to sanitize access later on. 12446 */ 12447 if (env->bypass_spec_v1) 12448 return 0; 12449 12450 switch (dst_reg->type) { 12451 case PTR_TO_STACK: 12452 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12453 dst_reg->off + dst_reg->var_off.value)) 12454 return -EACCES; 12455 break; 12456 case PTR_TO_MAP_VALUE: 12457 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12458 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12459 "prohibited for !root\n", dst); 12460 return -EACCES; 12461 } 12462 break; 12463 default: 12464 break; 12465 } 12466 12467 return 0; 12468 } 12469 12470 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12471 * Caller should also handle BPF_MOV case separately. 12472 * If we return -EACCES, caller may want to try again treating pointer as a 12473 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12474 */ 12475 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12476 struct bpf_insn *insn, 12477 const struct bpf_reg_state *ptr_reg, 12478 const struct bpf_reg_state *off_reg) 12479 { 12480 struct bpf_verifier_state *vstate = env->cur_state; 12481 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12482 struct bpf_reg_state *regs = state->regs, *dst_reg; 12483 bool known = tnum_is_const(off_reg->var_off); 12484 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12485 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12486 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12487 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12488 struct bpf_sanitize_info info = {}; 12489 u8 opcode = BPF_OP(insn->code); 12490 u32 dst = insn->dst_reg; 12491 int ret; 12492 12493 dst_reg = ®s[dst]; 12494 12495 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12496 smin_val > smax_val || umin_val > umax_val) { 12497 /* Taint dst register if offset had invalid bounds derived from 12498 * e.g. dead branches. 12499 */ 12500 __mark_reg_unknown(env, dst_reg); 12501 return 0; 12502 } 12503 12504 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12505 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12506 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12507 __mark_reg_unknown(env, dst_reg); 12508 return 0; 12509 } 12510 12511 verbose(env, 12512 "R%d 32-bit pointer arithmetic prohibited\n", 12513 dst); 12514 return -EACCES; 12515 } 12516 12517 if (ptr_reg->type & PTR_MAYBE_NULL) { 12518 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12519 dst, reg_type_str(env, ptr_reg->type)); 12520 return -EACCES; 12521 } 12522 12523 switch (base_type(ptr_reg->type)) { 12524 case PTR_TO_FLOW_KEYS: 12525 if (known) 12526 break; 12527 fallthrough; 12528 case CONST_PTR_TO_MAP: 12529 /* smin_val represents the known value */ 12530 if (known && smin_val == 0 && opcode == BPF_ADD) 12531 break; 12532 fallthrough; 12533 case PTR_TO_PACKET_END: 12534 case PTR_TO_SOCKET: 12535 case PTR_TO_SOCK_COMMON: 12536 case PTR_TO_TCP_SOCK: 12537 case PTR_TO_XDP_SOCK: 12538 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12539 dst, reg_type_str(env, ptr_reg->type)); 12540 return -EACCES; 12541 default: 12542 break; 12543 } 12544 12545 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12546 * The id may be overwritten later if we create a new variable offset. 12547 */ 12548 dst_reg->type = ptr_reg->type; 12549 dst_reg->id = ptr_reg->id; 12550 12551 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12552 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12553 return -EINVAL; 12554 12555 /* pointer types do not carry 32-bit bounds at the moment. */ 12556 __mark_reg32_unbounded(dst_reg); 12557 12558 if (sanitize_needed(opcode)) { 12559 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12560 &info, false); 12561 if (ret < 0) 12562 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12563 } 12564 12565 switch (opcode) { 12566 case BPF_ADD: 12567 /* We can take a fixed offset as long as it doesn't overflow 12568 * the s32 'off' field 12569 */ 12570 if (known && (ptr_reg->off + smin_val == 12571 (s64)(s32)(ptr_reg->off + smin_val))) { 12572 /* pointer += K. Accumulate it into fixed offset */ 12573 dst_reg->smin_value = smin_ptr; 12574 dst_reg->smax_value = smax_ptr; 12575 dst_reg->umin_value = umin_ptr; 12576 dst_reg->umax_value = umax_ptr; 12577 dst_reg->var_off = ptr_reg->var_off; 12578 dst_reg->off = ptr_reg->off + smin_val; 12579 dst_reg->raw = ptr_reg->raw; 12580 break; 12581 } 12582 /* A new variable offset is created. Note that off_reg->off 12583 * == 0, since it's a scalar. 12584 * dst_reg gets the pointer type and since some positive 12585 * integer value was added to the pointer, give it a new 'id' 12586 * if it's a PTR_TO_PACKET. 12587 * this creates a new 'base' pointer, off_reg (variable) gets 12588 * added into the variable offset, and we copy the fixed offset 12589 * from ptr_reg. 12590 */ 12591 if (signed_add_overflows(smin_ptr, smin_val) || 12592 signed_add_overflows(smax_ptr, smax_val)) { 12593 dst_reg->smin_value = S64_MIN; 12594 dst_reg->smax_value = S64_MAX; 12595 } else { 12596 dst_reg->smin_value = smin_ptr + smin_val; 12597 dst_reg->smax_value = smax_ptr + smax_val; 12598 } 12599 if (umin_ptr + umin_val < umin_ptr || 12600 umax_ptr + umax_val < umax_ptr) { 12601 dst_reg->umin_value = 0; 12602 dst_reg->umax_value = U64_MAX; 12603 } else { 12604 dst_reg->umin_value = umin_ptr + umin_val; 12605 dst_reg->umax_value = umax_ptr + umax_val; 12606 } 12607 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12608 dst_reg->off = ptr_reg->off; 12609 dst_reg->raw = ptr_reg->raw; 12610 if (reg_is_pkt_pointer(ptr_reg)) { 12611 dst_reg->id = ++env->id_gen; 12612 /* something was added to pkt_ptr, set range to zero */ 12613 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12614 } 12615 break; 12616 case BPF_SUB: 12617 if (dst_reg == off_reg) { 12618 /* scalar -= pointer. Creates an unknown scalar */ 12619 verbose(env, "R%d tried to subtract pointer from scalar\n", 12620 dst); 12621 return -EACCES; 12622 } 12623 /* We don't allow subtraction from FP, because (according to 12624 * test_verifier.c test "invalid fp arithmetic", JITs might not 12625 * be able to deal with it. 12626 */ 12627 if (ptr_reg->type == PTR_TO_STACK) { 12628 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12629 dst); 12630 return -EACCES; 12631 } 12632 if (known && (ptr_reg->off - smin_val == 12633 (s64)(s32)(ptr_reg->off - smin_val))) { 12634 /* pointer -= K. Subtract it from fixed offset */ 12635 dst_reg->smin_value = smin_ptr; 12636 dst_reg->smax_value = smax_ptr; 12637 dst_reg->umin_value = umin_ptr; 12638 dst_reg->umax_value = umax_ptr; 12639 dst_reg->var_off = ptr_reg->var_off; 12640 dst_reg->id = ptr_reg->id; 12641 dst_reg->off = ptr_reg->off - smin_val; 12642 dst_reg->raw = ptr_reg->raw; 12643 break; 12644 } 12645 /* A new variable offset is created. If the subtrahend is known 12646 * nonnegative, then any reg->range we had before is still good. 12647 */ 12648 if (signed_sub_overflows(smin_ptr, smax_val) || 12649 signed_sub_overflows(smax_ptr, smin_val)) { 12650 /* Overflow possible, we know nothing */ 12651 dst_reg->smin_value = S64_MIN; 12652 dst_reg->smax_value = S64_MAX; 12653 } else { 12654 dst_reg->smin_value = smin_ptr - smax_val; 12655 dst_reg->smax_value = smax_ptr - smin_val; 12656 } 12657 if (umin_ptr < umax_val) { 12658 /* Overflow possible, we know nothing */ 12659 dst_reg->umin_value = 0; 12660 dst_reg->umax_value = U64_MAX; 12661 } else { 12662 /* Cannot overflow (as long as bounds are consistent) */ 12663 dst_reg->umin_value = umin_ptr - umax_val; 12664 dst_reg->umax_value = umax_ptr - umin_val; 12665 } 12666 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12667 dst_reg->off = ptr_reg->off; 12668 dst_reg->raw = ptr_reg->raw; 12669 if (reg_is_pkt_pointer(ptr_reg)) { 12670 dst_reg->id = ++env->id_gen; 12671 /* something was added to pkt_ptr, set range to zero */ 12672 if (smin_val < 0) 12673 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12674 } 12675 break; 12676 case BPF_AND: 12677 case BPF_OR: 12678 case BPF_XOR: 12679 /* bitwise ops on pointers are troublesome, prohibit. */ 12680 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12681 dst, bpf_alu_string[opcode >> 4]); 12682 return -EACCES; 12683 default: 12684 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12685 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12686 dst, bpf_alu_string[opcode >> 4]); 12687 return -EACCES; 12688 } 12689 12690 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12691 return -EINVAL; 12692 reg_bounds_sync(dst_reg); 12693 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12694 return -EACCES; 12695 if (sanitize_needed(opcode)) { 12696 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12697 &info, true); 12698 if (ret < 0) 12699 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12700 } 12701 12702 return 0; 12703 } 12704 12705 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12706 struct bpf_reg_state *src_reg) 12707 { 12708 s32 smin_val = src_reg->s32_min_value; 12709 s32 smax_val = src_reg->s32_max_value; 12710 u32 umin_val = src_reg->u32_min_value; 12711 u32 umax_val = src_reg->u32_max_value; 12712 12713 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12714 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12715 dst_reg->s32_min_value = S32_MIN; 12716 dst_reg->s32_max_value = S32_MAX; 12717 } else { 12718 dst_reg->s32_min_value += smin_val; 12719 dst_reg->s32_max_value += smax_val; 12720 } 12721 if (dst_reg->u32_min_value + umin_val < umin_val || 12722 dst_reg->u32_max_value + umax_val < umax_val) { 12723 dst_reg->u32_min_value = 0; 12724 dst_reg->u32_max_value = U32_MAX; 12725 } else { 12726 dst_reg->u32_min_value += umin_val; 12727 dst_reg->u32_max_value += umax_val; 12728 } 12729 } 12730 12731 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12732 struct bpf_reg_state *src_reg) 12733 { 12734 s64 smin_val = src_reg->smin_value; 12735 s64 smax_val = src_reg->smax_value; 12736 u64 umin_val = src_reg->umin_value; 12737 u64 umax_val = src_reg->umax_value; 12738 12739 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12740 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12741 dst_reg->smin_value = S64_MIN; 12742 dst_reg->smax_value = S64_MAX; 12743 } else { 12744 dst_reg->smin_value += smin_val; 12745 dst_reg->smax_value += smax_val; 12746 } 12747 if (dst_reg->umin_value + umin_val < umin_val || 12748 dst_reg->umax_value + umax_val < umax_val) { 12749 dst_reg->umin_value = 0; 12750 dst_reg->umax_value = U64_MAX; 12751 } else { 12752 dst_reg->umin_value += umin_val; 12753 dst_reg->umax_value += umax_val; 12754 } 12755 } 12756 12757 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12758 struct bpf_reg_state *src_reg) 12759 { 12760 s32 smin_val = src_reg->s32_min_value; 12761 s32 smax_val = src_reg->s32_max_value; 12762 u32 umin_val = src_reg->u32_min_value; 12763 u32 umax_val = src_reg->u32_max_value; 12764 12765 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12766 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12767 /* Overflow possible, we know nothing */ 12768 dst_reg->s32_min_value = S32_MIN; 12769 dst_reg->s32_max_value = S32_MAX; 12770 } else { 12771 dst_reg->s32_min_value -= smax_val; 12772 dst_reg->s32_max_value -= smin_val; 12773 } 12774 if (dst_reg->u32_min_value < umax_val) { 12775 /* Overflow possible, we know nothing */ 12776 dst_reg->u32_min_value = 0; 12777 dst_reg->u32_max_value = U32_MAX; 12778 } else { 12779 /* Cannot overflow (as long as bounds are consistent) */ 12780 dst_reg->u32_min_value -= umax_val; 12781 dst_reg->u32_max_value -= umin_val; 12782 } 12783 } 12784 12785 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12786 struct bpf_reg_state *src_reg) 12787 { 12788 s64 smin_val = src_reg->smin_value; 12789 s64 smax_val = src_reg->smax_value; 12790 u64 umin_val = src_reg->umin_value; 12791 u64 umax_val = src_reg->umax_value; 12792 12793 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12794 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12795 /* Overflow possible, we know nothing */ 12796 dst_reg->smin_value = S64_MIN; 12797 dst_reg->smax_value = S64_MAX; 12798 } else { 12799 dst_reg->smin_value -= smax_val; 12800 dst_reg->smax_value -= smin_val; 12801 } 12802 if (dst_reg->umin_value < umax_val) { 12803 /* Overflow possible, we know nothing */ 12804 dst_reg->umin_value = 0; 12805 dst_reg->umax_value = U64_MAX; 12806 } else { 12807 /* Cannot overflow (as long as bounds are consistent) */ 12808 dst_reg->umin_value -= umax_val; 12809 dst_reg->umax_value -= umin_val; 12810 } 12811 } 12812 12813 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12814 struct bpf_reg_state *src_reg) 12815 { 12816 s32 smin_val = src_reg->s32_min_value; 12817 u32 umin_val = src_reg->u32_min_value; 12818 u32 umax_val = src_reg->u32_max_value; 12819 12820 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12821 /* Ain't nobody got time to multiply that sign */ 12822 __mark_reg32_unbounded(dst_reg); 12823 return; 12824 } 12825 /* Both values are positive, so we can work with unsigned and 12826 * copy the result to signed (unless it exceeds S32_MAX). 12827 */ 12828 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12829 /* Potential overflow, we know nothing */ 12830 __mark_reg32_unbounded(dst_reg); 12831 return; 12832 } 12833 dst_reg->u32_min_value *= umin_val; 12834 dst_reg->u32_max_value *= umax_val; 12835 if (dst_reg->u32_max_value > S32_MAX) { 12836 /* Overflow possible, we know nothing */ 12837 dst_reg->s32_min_value = S32_MIN; 12838 dst_reg->s32_max_value = S32_MAX; 12839 } else { 12840 dst_reg->s32_min_value = dst_reg->u32_min_value; 12841 dst_reg->s32_max_value = dst_reg->u32_max_value; 12842 } 12843 } 12844 12845 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12846 struct bpf_reg_state *src_reg) 12847 { 12848 s64 smin_val = src_reg->smin_value; 12849 u64 umin_val = src_reg->umin_value; 12850 u64 umax_val = src_reg->umax_value; 12851 12852 if (smin_val < 0 || dst_reg->smin_value < 0) { 12853 /* Ain't nobody got time to multiply that sign */ 12854 __mark_reg64_unbounded(dst_reg); 12855 return; 12856 } 12857 /* Both values are positive, so we can work with unsigned and 12858 * copy the result to signed (unless it exceeds S64_MAX). 12859 */ 12860 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12861 /* Potential overflow, we know nothing */ 12862 __mark_reg64_unbounded(dst_reg); 12863 return; 12864 } 12865 dst_reg->umin_value *= umin_val; 12866 dst_reg->umax_value *= umax_val; 12867 if (dst_reg->umax_value > S64_MAX) { 12868 /* Overflow possible, we know nothing */ 12869 dst_reg->smin_value = S64_MIN; 12870 dst_reg->smax_value = S64_MAX; 12871 } else { 12872 dst_reg->smin_value = dst_reg->umin_value; 12873 dst_reg->smax_value = dst_reg->umax_value; 12874 } 12875 } 12876 12877 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12878 struct bpf_reg_state *src_reg) 12879 { 12880 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12881 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12882 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12883 s32 smin_val = src_reg->s32_min_value; 12884 u32 umax_val = src_reg->u32_max_value; 12885 12886 if (src_known && dst_known) { 12887 __mark_reg32_known(dst_reg, var32_off.value); 12888 return; 12889 } 12890 12891 /* We get our minimum from the var_off, since that's inherently 12892 * bitwise. Our maximum is the minimum of the operands' maxima. 12893 */ 12894 dst_reg->u32_min_value = var32_off.value; 12895 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12896 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12897 /* Lose signed bounds when ANDing negative numbers, 12898 * ain't nobody got time for that. 12899 */ 12900 dst_reg->s32_min_value = S32_MIN; 12901 dst_reg->s32_max_value = S32_MAX; 12902 } else { 12903 /* ANDing two positives gives a positive, so safe to 12904 * cast result into s64. 12905 */ 12906 dst_reg->s32_min_value = dst_reg->u32_min_value; 12907 dst_reg->s32_max_value = dst_reg->u32_max_value; 12908 } 12909 } 12910 12911 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12912 struct bpf_reg_state *src_reg) 12913 { 12914 bool src_known = tnum_is_const(src_reg->var_off); 12915 bool dst_known = tnum_is_const(dst_reg->var_off); 12916 s64 smin_val = src_reg->smin_value; 12917 u64 umax_val = src_reg->umax_value; 12918 12919 if (src_known && dst_known) { 12920 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12921 return; 12922 } 12923 12924 /* We get our minimum from the var_off, since that's inherently 12925 * bitwise. Our maximum is the minimum of the operands' maxima. 12926 */ 12927 dst_reg->umin_value = dst_reg->var_off.value; 12928 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12929 if (dst_reg->smin_value < 0 || smin_val < 0) { 12930 /* Lose signed bounds when ANDing negative numbers, 12931 * ain't nobody got time for that. 12932 */ 12933 dst_reg->smin_value = S64_MIN; 12934 dst_reg->smax_value = S64_MAX; 12935 } else { 12936 /* ANDing two positives gives a positive, so safe to 12937 * cast result into s64. 12938 */ 12939 dst_reg->smin_value = dst_reg->umin_value; 12940 dst_reg->smax_value = dst_reg->umax_value; 12941 } 12942 /* We may learn something more from the var_off */ 12943 __update_reg_bounds(dst_reg); 12944 } 12945 12946 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12947 struct bpf_reg_state *src_reg) 12948 { 12949 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12950 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12951 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12952 s32 smin_val = src_reg->s32_min_value; 12953 u32 umin_val = src_reg->u32_min_value; 12954 12955 if (src_known && dst_known) { 12956 __mark_reg32_known(dst_reg, var32_off.value); 12957 return; 12958 } 12959 12960 /* We get our maximum from the var_off, and our minimum is the 12961 * maximum of the operands' minima 12962 */ 12963 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12964 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12965 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12966 /* Lose signed bounds when ORing negative numbers, 12967 * ain't nobody got time for that. 12968 */ 12969 dst_reg->s32_min_value = S32_MIN; 12970 dst_reg->s32_max_value = S32_MAX; 12971 } else { 12972 /* ORing two positives gives a positive, so safe to 12973 * cast result into s64. 12974 */ 12975 dst_reg->s32_min_value = dst_reg->u32_min_value; 12976 dst_reg->s32_max_value = dst_reg->u32_max_value; 12977 } 12978 } 12979 12980 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12981 struct bpf_reg_state *src_reg) 12982 { 12983 bool src_known = tnum_is_const(src_reg->var_off); 12984 bool dst_known = tnum_is_const(dst_reg->var_off); 12985 s64 smin_val = src_reg->smin_value; 12986 u64 umin_val = src_reg->umin_value; 12987 12988 if (src_known && dst_known) { 12989 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12990 return; 12991 } 12992 12993 /* We get our maximum from the var_off, and our minimum is the 12994 * maximum of the operands' minima 12995 */ 12996 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12997 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12998 if (dst_reg->smin_value < 0 || smin_val < 0) { 12999 /* Lose signed bounds when ORing negative numbers, 13000 * ain't nobody got time for that. 13001 */ 13002 dst_reg->smin_value = S64_MIN; 13003 dst_reg->smax_value = S64_MAX; 13004 } else { 13005 /* ORing two positives gives a positive, so safe to 13006 * cast result into s64. 13007 */ 13008 dst_reg->smin_value = dst_reg->umin_value; 13009 dst_reg->smax_value = dst_reg->umax_value; 13010 } 13011 /* We may learn something more from the var_off */ 13012 __update_reg_bounds(dst_reg); 13013 } 13014 13015 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 13016 struct bpf_reg_state *src_reg) 13017 { 13018 bool src_known = tnum_subreg_is_const(src_reg->var_off); 13019 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 13020 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13021 s32 smin_val = src_reg->s32_min_value; 13022 13023 if (src_known && dst_known) { 13024 __mark_reg32_known(dst_reg, var32_off.value); 13025 return; 13026 } 13027 13028 /* We get both minimum and maximum from the var32_off. */ 13029 dst_reg->u32_min_value = var32_off.value; 13030 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13031 13032 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 13033 /* XORing two positive sign numbers gives a positive, 13034 * so safe to cast u32 result into s32. 13035 */ 13036 dst_reg->s32_min_value = dst_reg->u32_min_value; 13037 dst_reg->s32_max_value = dst_reg->u32_max_value; 13038 } else { 13039 dst_reg->s32_min_value = S32_MIN; 13040 dst_reg->s32_max_value = S32_MAX; 13041 } 13042 } 13043 13044 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13045 struct bpf_reg_state *src_reg) 13046 { 13047 bool src_known = tnum_is_const(src_reg->var_off); 13048 bool dst_known = tnum_is_const(dst_reg->var_off); 13049 s64 smin_val = src_reg->smin_value; 13050 13051 if (src_known && dst_known) { 13052 /* dst_reg->var_off.value has been updated earlier */ 13053 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13054 return; 13055 } 13056 13057 /* We get both minimum and maximum from the var_off. */ 13058 dst_reg->umin_value = dst_reg->var_off.value; 13059 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13060 13061 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 13062 /* XORing two positive sign numbers gives a positive, 13063 * so safe to cast u64 result into s64. 13064 */ 13065 dst_reg->smin_value = dst_reg->umin_value; 13066 dst_reg->smax_value = dst_reg->umax_value; 13067 } else { 13068 dst_reg->smin_value = S64_MIN; 13069 dst_reg->smax_value = S64_MAX; 13070 } 13071 13072 __update_reg_bounds(dst_reg); 13073 } 13074 13075 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13076 u64 umin_val, u64 umax_val) 13077 { 13078 /* We lose all sign bit information (except what we can pick 13079 * up from var_off) 13080 */ 13081 dst_reg->s32_min_value = S32_MIN; 13082 dst_reg->s32_max_value = S32_MAX; 13083 /* If we might shift our top bit out, then we know nothing */ 13084 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13085 dst_reg->u32_min_value = 0; 13086 dst_reg->u32_max_value = U32_MAX; 13087 } else { 13088 dst_reg->u32_min_value <<= umin_val; 13089 dst_reg->u32_max_value <<= umax_val; 13090 } 13091 } 13092 13093 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13094 struct bpf_reg_state *src_reg) 13095 { 13096 u32 umax_val = src_reg->u32_max_value; 13097 u32 umin_val = src_reg->u32_min_value; 13098 /* u32 alu operation will zext upper bits */ 13099 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13100 13101 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13102 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13103 /* Not required but being careful mark reg64 bounds as unknown so 13104 * that we are forced to pick them up from tnum and zext later and 13105 * if some path skips this step we are still safe. 13106 */ 13107 __mark_reg64_unbounded(dst_reg); 13108 __update_reg32_bounds(dst_reg); 13109 } 13110 13111 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13112 u64 umin_val, u64 umax_val) 13113 { 13114 /* Special case <<32 because it is a common compiler pattern to sign 13115 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13116 * positive we know this shift will also be positive so we can track 13117 * bounds correctly. Otherwise we lose all sign bit information except 13118 * what we can pick up from var_off. Perhaps we can generalize this 13119 * later to shifts of any length. 13120 */ 13121 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13122 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13123 else 13124 dst_reg->smax_value = S64_MAX; 13125 13126 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13127 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13128 else 13129 dst_reg->smin_value = S64_MIN; 13130 13131 /* If we might shift our top bit out, then we know nothing */ 13132 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13133 dst_reg->umin_value = 0; 13134 dst_reg->umax_value = U64_MAX; 13135 } else { 13136 dst_reg->umin_value <<= umin_val; 13137 dst_reg->umax_value <<= umax_val; 13138 } 13139 } 13140 13141 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13142 struct bpf_reg_state *src_reg) 13143 { 13144 u64 umax_val = src_reg->umax_value; 13145 u64 umin_val = src_reg->umin_value; 13146 13147 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13148 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13149 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13150 13151 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13152 /* We may learn something more from the var_off */ 13153 __update_reg_bounds(dst_reg); 13154 } 13155 13156 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13157 struct bpf_reg_state *src_reg) 13158 { 13159 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13160 u32 umax_val = src_reg->u32_max_value; 13161 u32 umin_val = src_reg->u32_min_value; 13162 13163 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13164 * be negative, then either: 13165 * 1) src_reg might be zero, so the sign bit of the result is 13166 * unknown, so we lose our signed bounds 13167 * 2) it's known negative, thus the unsigned bounds capture the 13168 * signed bounds 13169 * 3) the signed bounds cross zero, so they tell us nothing 13170 * about the result 13171 * If the value in dst_reg is known nonnegative, then again the 13172 * unsigned bounds capture the signed bounds. 13173 * Thus, in all cases it suffices to blow away our signed bounds 13174 * and rely on inferring new ones from the unsigned bounds and 13175 * var_off of the result. 13176 */ 13177 dst_reg->s32_min_value = S32_MIN; 13178 dst_reg->s32_max_value = S32_MAX; 13179 13180 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13181 dst_reg->u32_min_value >>= umax_val; 13182 dst_reg->u32_max_value >>= umin_val; 13183 13184 __mark_reg64_unbounded(dst_reg); 13185 __update_reg32_bounds(dst_reg); 13186 } 13187 13188 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13189 struct bpf_reg_state *src_reg) 13190 { 13191 u64 umax_val = src_reg->umax_value; 13192 u64 umin_val = src_reg->umin_value; 13193 13194 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13195 * be negative, then either: 13196 * 1) src_reg might be zero, so the sign bit of the result is 13197 * unknown, so we lose our signed bounds 13198 * 2) it's known negative, thus the unsigned bounds capture the 13199 * signed bounds 13200 * 3) the signed bounds cross zero, so they tell us nothing 13201 * about the result 13202 * If the value in dst_reg is known nonnegative, then again the 13203 * unsigned bounds capture the signed bounds. 13204 * Thus, in all cases it suffices to blow away our signed bounds 13205 * and rely on inferring new ones from the unsigned bounds and 13206 * var_off of the result. 13207 */ 13208 dst_reg->smin_value = S64_MIN; 13209 dst_reg->smax_value = S64_MAX; 13210 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13211 dst_reg->umin_value >>= umax_val; 13212 dst_reg->umax_value >>= umin_val; 13213 13214 /* Its not easy to operate on alu32 bounds here because it depends 13215 * on bits being shifted in. Take easy way out and mark unbounded 13216 * so we can recalculate later from tnum. 13217 */ 13218 __mark_reg32_unbounded(dst_reg); 13219 __update_reg_bounds(dst_reg); 13220 } 13221 13222 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13223 struct bpf_reg_state *src_reg) 13224 { 13225 u64 umin_val = src_reg->u32_min_value; 13226 13227 /* Upon reaching here, src_known is true and 13228 * umax_val is equal to umin_val. 13229 */ 13230 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13231 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13232 13233 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13234 13235 /* blow away the dst_reg umin_value/umax_value and rely on 13236 * dst_reg var_off to refine the result. 13237 */ 13238 dst_reg->u32_min_value = 0; 13239 dst_reg->u32_max_value = U32_MAX; 13240 13241 __mark_reg64_unbounded(dst_reg); 13242 __update_reg32_bounds(dst_reg); 13243 } 13244 13245 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13246 struct bpf_reg_state *src_reg) 13247 { 13248 u64 umin_val = src_reg->umin_value; 13249 13250 /* Upon reaching here, src_known is true and umax_val is equal 13251 * to umin_val. 13252 */ 13253 dst_reg->smin_value >>= umin_val; 13254 dst_reg->smax_value >>= umin_val; 13255 13256 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13257 13258 /* blow away the dst_reg umin_value/umax_value and rely on 13259 * dst_reg var_off to refine the result. 13260 */ 13261 dst_reg->umin_value = 0; 13262 dst_reg->umax_value = U64_MAX; 13263 13264 /* Its not easy to operate on alu32 bounds here because it depends 13265 * on bits being shifted in from upper 32-bits. Take easy way out 13266 * and mark unbounded so we can recalculate later from tnum. 13267 */ 13268 __mark_reg32_unbounded(dst_reg); 13269 __update_reg_bounds(dst_reg); 13270 } 13271 13272 /* WARNING: This function does calculations on 64-bit values, but the actual 13273 * execution may occur on 32-bit values. Therefore, things like bitshifts 13274 * need extra checks in the 32-bit case. 13275 */ 13276 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13277 struct bpf_insn *insn, 13278 struct bpf_reg_state *dst_reg, 13279 struct bpf_reg_state src_reg) 13280 { 13281 struct bpf_reg_state *regs = cur_regs(env); 13282 u8 opcode = BPF_OP(insn->code); 13283 bool src_known; 13284 s64 smin_val, smax_val; 13285 u64 umin_val, umax_val; 13286 s32 s32_min_val, s32_max_val; 13287 u32 u32_min_val, u32_max_val; 13288 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13289 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13290 int ret; 13291 13292 smin_val = src_reg.smin_value; 13293 smax_val = src_reg.smax_value; 13294 umin_val = src_reg.umin_value; 13295 umax_val = src_reg.umax_value; 13296 13297 s32_min_val = src_reg.s32_min_value; 13298 s32_max_val = src_reg.s32_max_value; 13299 u32_min_val = src_reg.u32_min_value; 13300 u32_max_val = src_reg.u32_max_value; 13301 13302 if (alu32) { 13303 src_known = tnum_subreg_is_const(src_reg.var_off); 13304 if ((src_known && 13305 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13306 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13307 /* Taint dst register if offset had invalid bounds 13308 * derived from e.g. dead branches. 13309 */ 13310 __mark_reg_unknown(env, dst_reg); 13311 return 0; 13312 } 13313 } else { 13314 src_known = tnum_is_const(src_reg.var_off); 13315 if ((src_known && 13316 (smin_val != smax_val || umin_val != umax_val)) || 13317 smin_val > smax_val || umin_val > umax_val) { 13318 /* Taint dst register if offset had invalid bounds 13319 * derived from e.g. dead branches. 13320 */ 13321 __mark_reg_unknown(env, dst_reg); 13322 return 0; 13323 } 13324 } 13325 13326 if (!src_known && 13327 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13328 __mark_reg_unknown(env, dst_reg); 13329 return 0; 13330 } 13331 13332 if (sanitize_needed(opcode)) { 13333 ret = sanitize_val_alu(env, insn); 13334 if (ret < 0) 13335 return sanitize_err(env, insn, ret, NULL, NULL); 13336 } 13337 13338 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13339 * There are two classes of instructions: The first class we track both 13340 * alu32 and alu64 sign/unsigned bounds independently this provides the 13341 * greatest amount of precision when alu operations are mixed with jmp32 13342 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13343 * and BPF_OR. This is possible because these ops have fairly easy to 13344 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13345 * See alu32 verifier tests for examples. The second class of 13346 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13347 * with regards to tracking sign/unsigned bounds because the bits may 13348 * cross subreg boundaries in the alu64 case. When this happens we mark 13349 * the reg unbounded in the subreg bound space and use the resulting 13350 * tnum to calculate an approximation of the sign/unsigned bounds. 13351 */ 13352 switch (opcode) { 13353 case BPF_ADD: 13354 scalar32_min_max_add(dst_reg, &src_reg); 13355 scalar_min_max_add(dst_reg, &src_reg); 13356 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13357 break; 13358 case BPF_SUB: 13359 scalar32_min_max_sub(dst_reg, &src_reg); 13360 scalar_min_max_sub(dst_reg, &src_reg); 13361 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13362 break; 13363 case BPF_MUL: 13364 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13365 scalar32_min_max_mul(dst_reg, &src_reg); 13366 scalar_min_max_mul(dst_reg, &src_reg); 13367 break; 13368 case BPF_AND: 13369 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13370 scalar32_min_max_and(dst_reg, &src_reg); 13371 scalar_min_max_and(dst_reg, &src_reg); 13372 break; 13373 case BPF_OR: 13374 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13375 scalar32_min_max_or(dst_reg, &src_reg); 13376 scalar_min_max_or(dst_reg, &src_reg); 13377 break; 13378 case BPF_XOR: 13379 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13380 scalar32_min_max_xor(dst_reg, &src_reg); 13381 scalar_min_max_xor(dst_reg, &src_reg); 13382 break; 13383 case BPF_LSH: 13384 if (umax_val >= insn_bitness) { 13385 /* Shifts greater than 31 or 63 are undefined. 13386 * This includes shifts by a negative number. 13387 */ 13388 mark_reg_unknown(env, regs, insn->dst_reg); 13389 break; 13390 } 13391 if (alu32) 13392 scalar32_min_max_lsh(dst_reg, &src_reg); 13393 else 13394 scalar_min_max_lsh(dst_reg, &src_reg); 13395 break; 13396 case BPF_RSH: 13397 if (umax_val >= insn_bitness) { 13398 /* Shifts greater than 31 or 63 are undefined. 13399 * This includes shifts by a negative number. 13400 */ 13401 mark_reg_unknown(env, regs, insn->dst_reg); 13402 break; 13403 } 13404 if (alu32) 13405 scalar32_min_max_rsh(dst_reg, &src_reg); 13406 else 13407 scalar_min_max_rsh(dst_reg, &src_reg); 13408 break; 13409 case BPF_ARSH: 13410 if (umax_val >= insn_bitness) { 13411 /* Shifts greater than 31 or 63 are undefined. 13412 * This includes shifts by a negative number. 13413 */ 13414 mark_reg_unknown(env, regs, insn->dst_reg); 13415 break; 13416 } 13417 if (alu32) 13418 scalar32_min_max_arsh(dst_reg, &src_reg); 13419 else 13420 scalar_min_max_arsh(dst_reg, &src_reg); 13421 break; 13422 default: 13423 mark_reg_unknown(env, regs, insn->dst_reg); 13424 break; 13425 } 13426 13427 /* ALU32 ops are zero extended into 64bit register */ 13428 if (alu32) 13429 zext_32_to_64(dst_reg); 13430 reg_bounds_sync(dst_reg); 13431 return 0; 13432 } 13433 13434 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13435 * and var_off. 13436 */ 13437 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13438 struct bpf_insn *insn) 13439 { 13440 struct bpf_verifier_state *vstate = env->cur_state; 13441 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13442 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13443 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13444 u8 opcode = BPF_OP(insn->code); 13445 int err; 13446 13447 dst_reg = ®s[insn->dst_reg]; 13448 src_reg = NULL; 13449 if (dst_reg->type != SCALAR_VALUE) 13450 ptr_reg = dst_reg; 13451 else 13452 /* Make sure ID is cleared otherwise dst_reg min/max could be 13453 * incorrectly propagated into other registers by find_equal_scalars() 13454 */ 13455 dst_reg->id = 0; 13456 if (BPF_SRC(insn->code) == BPF_X) { 13457 src_reg = ®s[insn->src_reg]; 13458 if (src_reg->type != SCALAR_VALUE) { 13459 if (dst_reg->type != SCALAR_VALUE) { 13460 /* Combining two pointers by any ALU op yields 13461 * an arbitrary scalar. Disallow all math except 13462 * pointer subtraction 13463 */ 13464 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13465 mark_reg_unknown(env, regs, insn->dst_reg); 13466 return 0; 13467 } 13468 verbose(env, "R%d pointer %s pointer prohibited\n", 13469 insn->dst_reg, 13470 bpf_alu_string[opcode >> 4]); 13471 return -EACCES; 13472 } else { 13473 /* scalar += pointer 13474 * This is legal, but we have to reverse our 13475 * src/dest handling in computing the range 13476 */ 13477 err = mark_chain_precision(env, insn->dst_reg); 13478 if (err) 13479 return err; 13480 return adjust_ptr_min_max_vals(env, insn, 13481 src_reg, dst_reg); 13482 } 13483 } else if (ptr_reg) { 13484 /* pointer += scalar */ 13485 err = mark_chain_precision(env, insn->src_reg); 13486 if (err) 13487 return err; 13488 return adjust_ptr_min_max_vals(env, insn, 13489 dst_reg, src_reg); 13490 } else if (dst_reg->precise) { 13491 /* if dst_reg is precise, src_reg should be precise as well */ 13492 err = mark_chain_precision(env, insn->src_reg); 13493 if (err) 13494 return err; 13495 } 13496 } else { 13497 /* Pretend the src is a reg with a known value, since we only 13498 * need to be able to read from this state. 13499 */ 13500 off_reg.type = SCALAR_VALUE; 13501 __mark_reg_known(&off_reg, insn->imm); 13502 src_reg = &off_reg; 13503 if (ptr_reg) /* pointer += K */ 13504 return adjust_ptr_min_max_vals(env, insn, 13505 ptr_reg, src_reg); 13506 } 13507 13508 /* Got here implies adding two SCALAR_VALUEs */ 13509 if (WARN_ON_ONCE(ptr_reg)) { 13510 print_verifier_state(env, state, true); 13511 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13512 return -EINVAL; 13513 } 13514 if (WARN_ON(!src_reg)) { 13515 print_verifier_state(env, state, true); 13516 verbose(env, "verifier internal error: no src_reg\n"); 13517 return -EINVAL; 13518 } 13519 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13520 } 13521 13522 /* check validity of 32-bit and 64-bit arithmetic operations */ 13523 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13524 { 13525 struct bpf_reg_state *regs = cur_regs(env); 13526 u8 opcode = BPF_OP(insn->code); 13527 int err; 13528 13529 if (opcode == BPF_END || opcode == BPF_NEG) { 13530 if (opcode == BPF_NEG) { 13531 if (BPF_SRC(insn->code) != BPF_K || 13532 insn->src_reg != BPF_REG_0 || 13533 insn->off != 0 || insn->imm != 0) { 13534 verbose(env, "BPF_NEG uses reserved fields\n"); 13535 return -EINVAL; 13536 } 13537 } else { 13538 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13539 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13540 (BPF_CLASS(insn->code) == BPF_ALU64 && 13541 BPF_SRC(insn->code) != BPF_TO_LE)) { 13542 verbose(env, "BPF_END uses reserved fields\n"); 13543 return -EINVAL; 13544 } 13545 } 13546 13547 /* check src operand */ 13548 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13549 if (err) 13550 return err; 13551 13552 if (is_pointer_value(env, insn->dst_reg)) { 13553 verbose(env, "R%d pointer arithmetic prohibited\n", 13554 insn->dst_reg); 13555 return -EACCES; 13556 } 13557 13558 /* check dest operand */ 13559 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13560 if (err) 13561 return err; 13562 13563 } else if (opcode == BPF_MOV) { 13564 13565 if (BPF_SRC(insn->code) == BPF_X) { 13566 if (insn->imm != 0) { 13567 verbose(env, "BPF_MOV uses reserved fields\n"); 13568 return -EINVAL; 13569 } 13570 13571 if (BPF_CLASS(insn->code) == BPF_ALU) { 13572 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13573 verbose(env, "BPF_MOV uses reserved fields\n"); 13574 return -EINVAL; 13575 } 13576 } else { 13577 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13578 insn->off != 32) { 13579 verbose(env, "BPF_MOV uses reserved fields\n"); 13580 return -EINVAL; 13581 } 13582 } 13583 13584 /* check src operand */ 13585 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13586 if (err) 13587 return err; 13588 } else { 13589 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13590 verbose(env, "BPF_MOV uses reserved fields\n"); 13591 return -EINVAL; 13592 } 13593 } 13594 13595 /* check dest operand, mark as required later */ 13596 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13597 if (err) 13598 return err; 13599 13600 if (BPF_SRC(insn->code) == BPF_X) { 13601 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13602 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13603 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13604 !tnum_is_const(src_reg->var_off); 13605 13606 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13607 if (insn->off == 0) { 13608 /* case: R1 = R2 13609 * copy register state to dest reg 13610 */ 13611 if (need_id) 13612 /* Assign src and dst registers the same ID 13613 * that will be used by find_equal_scalars() 13614 * to propagate min/max range. 13615 */ 13616 src_reg->id = ++env->id_gen; 13617 copy_register_state(dst_reg, src_reg); 13618 dst_reg->live |= REG_LIVE_WRITTEN; 13619 dst_reg->subreg_def = DEF_NOT_SUBREG; 13620 } else { 13621 /* case: R1 = (s8, s16 s32)R2 */ 13622 if (is_pointer_value(env, insn->src_reg)) { 13623 verbose(env, 13624 "R%d sign-extension part of pointer\n", 13625 insn->src_reg); 13626 return -EACCES; 13627 } else if (src_reg->type == SCALAR_VALUE) { 13628 bool no_sext; 13629 13630 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13631 if (no_sext && need_id) 13632 src_reg->id = ++env->id_gen; 13633 copy_register_state(dst_reg, src_reg); 13634 if (!no_sext) 13635 dst_reg->id = 0; 13636 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13637 dst_reg->live |= REG_LIVE_WRITTEN; 13638 dst_reg->subreg_def = DEF_NOT_SUBREG; 13639 } else { 13640 mark_reg_unknown(env, regs, insn->dst_reg); 13641 } 13642 } 13643 } else { 13644 /* R1 = (u32) R2 */ 13645 if (is_pointer_value(env, insn->src_reg)) { 13646 verbose(env, 13647 "R%d partial copy of pointer\n", 13648 insn->src_reg); 13649 return -EACCES; 13650 } else if (src_reg->type == SCALAR_VALUE) { 13651 if (insn->off == 0) { 13652 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13653 13654 if (is_src_reg_u32 && need_id) 13655 src_reg->id = ++env->id_gen; 13656 copy_register_state(dst_reg, src_reg); 13657 /* Make sure ID is cleared if src_reg is not in u32 13658 * range otherwise dst_reg min/max could be incorrectly 13659 * propagated into src_reg by find_equal_scalars() 13660 */ 13661 if (!is_src_reg_u32) 13662 dst_reg->id = 0; 13663 dst_reg->live |= REG_LIVE_WRITTEN; 13664 dst_reg->subreg_def = env->insn_idx + 1; 13665 } else { 13666 /* case: W1 = (s8, s16)W2 */ 13667 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13668 13669 if (no_sext && need_id) 13670 src_reg->id = ++env->id_gen; 13671 copy_register_state(dst_reg, src_reg); 13672 if (!no_sext) 13673 dst_reg->id = 0; 13674 dst_reg->live |= REG_LIVE_WRITTEN; 13675 dst_reg->subreg_def = env->insn_idx + 1; 13676 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13677 } 13678 } else { 13679 mark_reg_unknown(env, regs, 13680 insn->dst_reg); 13681 } 13682 zext_32_to_64(dst_reg); 13683 reg_bounds_sync(dst_reg); 13684 } 13685 } else { 13686 /* case: R = imm 13687 * remember the value we stored into this reg 13688 */ 13689 /* clear any state __mark_reg_known doesn't set */ 13690 mark_reg_unknown(env, regs, insn->dst_reg); 13691 regs[insn->dst_reg].type = SCALAR_VALUE; 13692 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13693 __mark_reg_known(regs + insn->dst_reg, 13694 insn->imm); 13695 } else { 13696 __mark_reg_known(regs + insn->dst_reg, 13697 (u32)insn->imm); 13698 } 13699 } 13700 13701 } else if (opcode > BPF_END) { 13702 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13703 return -EINVAL; 13704 13705 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13706 13707 if (BPF_SRC(insn->code) == BPF_X) { 13708 if (insn->imm != 0 || insn->off > 1 || 13709 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13710 verbose(env, "BPF_ALU uses reserved fields\n"); 13711 return -EINVAL; 13712 } 13713 /* check src1 operand */ 13714 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13715 if (err) 13716 return err; 13717 } else { 13718 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13719 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13720 verbose(env, "BPF_ALU uses reserved fields\n"); 13721 return -EINVAL; 13722 } 13723 } 13724 13725 /* check src2 operand */ 13726 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13727 if (err) 13728 return err; 13729 13730 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13731 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13732 verbose(env, "div by zero\n"); 13733 return -EINVAL; 13734 } 13735 13736 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13737 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13738 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13739 13740 if (insn->imm < 0 || insn->imm >= size) { 13741 verbose(env, "invalid shift %d\n", insn->imm); 13742 return -EINVAL; 13743 } 13744 } 13745 13746 /* check dest operand */ 13747 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13748 if (err) 13749 return err; 13750 13751 return adjust_reg_min_max_vals(env, insn); 13752 } 13753 13754 return 0; 13755 } 13756 13757 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13758 struct bpf_reg_state *dst_reg, 13759 enum bpf_reg_type type, 13760 bool range_right_open) 13761 { 13762 struct bpf_func_state *state; 13763 struct bpf_reg_state *reg; 13764 int new_range; 13765 13766 if (dst_reg->off < 0 || 13767 (dst_reg->off == 0 && range_right_open)) 13768 /* This doesn't give us any range */ 13769 return; 13770 13771 if (dst_reg->umax_value > MAX_PACKET_OFF || 13772 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13773 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13774 * than pkt_end, but that's because it's also less than pkt. 13775 */ 13776 return; 13777 13778 new_range = dst_reg->off; 13779 if (range_right_open) 13780 new_range++; 13781 13782 /* Examples for register markings: 13783 * 13784 * pkt_data in dst register: 13785 * 13786 * r2 = r3; 13787 * r2 += 8; 13788 * if (r2 > pkt_end) goto <handle exception> 13789 * <access okay> 13790 * 13791 * r2 = r3; 13792 * r2 += 8; 13793 * if (r2 < pkt_end) goto <access okay> 13794 * <handle exception> 13795 * 13796 * Where: 13797 * r2 == dst_reg, pkt_end == src_reg 13798 * r2=pkt(id=n,off=8,r=0) 13799 * r3=pkt(id=n,off=0,r=0) 13800 * 13801 * pkt_data in src register: 13802 * 13803 * r2 = r3; 13804 * r2 += 8; 13805 * if (pkt_end >= r2) goto <access okay> 13806 * <handle exception> 13807 * 13808 * r2 = r3; 13809 * r2 += 8; 13810 * if (pkt_end <= r2) goto <handle exception> 13811 * <access okay> 13812 * 13813 * Where: 13814 * pkt_end == dst_reg, r2 == src_reg 13815 * r2=pkt(id=n,off=8,r=0) 13816 * r3=pkt(id=n,off=0,r=0) 13817 * 13818 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13819 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13820 * and [r3, r3 + 8-1) respectively is safe to access depending on 13821 * the check. 13822 */ 13823 13824 /* If our ids match, then we must have the same max_value. And we 13825 * don't care about the other reg's fixed offset, since if it's too big 13826 * the range won't allow anything. 13827 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13828 */ 13829 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13830 if (reg->type == type && reg->id == dst_reg->id) 13831 /* keep the maximum range already checked */ 13832 reg->range = max(reg->range, new_range); 13833 })); 13834 } 13835 13836 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13837 { 13838 struct tnum subreg = tnum_subreg(reg->var_off); 13839 s32 sval = (s32)val; 13840 13841 switch (opcode) { 13842 case BPF_JEQ: 13843 if (tnum_is_const(subreg)) 13844 return !!tnum_equals_const(subreg, val); 13845 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13846 return 0; 13847 break; 13848 case BPF_JNE: 13849 if (tnum_is_const(subreg)) 13850 return !tnum_equals_const(subreg, val); 13851 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13852 return 1; 13853 break; 13854 case BPF_JSET: 13855 if ((~subreg.mask & subreg.value) & val) 13856 return 1; 13857 if (!((subreg.mask | subreg.value) & val)) 13858 return 0; 13859 break; 13860 case BPF_JGT: 13861 if (reg->u32_min_value > val) 13862 return 1; 13863 else if (reg->u32_max_value <= val) 13864 return 0; 13865 break; 13866 case BPF_JSGT: 13867 if (reg->s32_min_value > sval) 13868 return 1; 13869 else if (reg->s32_max_value <= sval) 13870 return 0; 13871 break; 13872 case BPF_JLT: 13873 if (reg->u32_max_value < val) 13874 return 1; 13875 else if (reg->u32_min_value >= val) 13876 return 0; 13877 break; 13878 case BPF_JSLT: 13879 if (reg->s32_max_value < sval) 13880 return 1; 13881 else if (reg->s32_min_value >= sval) 13882 return 0; 13883 break; 13884 case BPF_JGE: 13885 if (reg->u32_min_value >= val) 13886 return 1; 13887 else if (reg->u32_max_value < val) 13888 return 0; 13889 break; 13890 case BPF_JSGE: 13891 if (reg->s32_min_value >= sval) 13892 return 1; 13893 else if (reg->s32_max_value < sval) 13894 return 0; 13895 break; 13896 case BPF_JLE: 13897 if (reg->u32_max_value <= val) 13898 return 1; 13899 else if (reg->u32_min_value > val) 13900 return 0; 13901 break; 13902 case BPF_JSLE: 13903 if (reg->s32_max_value <= sval) 13904 return 1; 13905 else if (reg->s32_min_value > sval) 13906 return 0; 13907 break; 13908 } 13909 13910 return -1; 13911 } 13912 13913 13914 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13915 { 13916 s64 sval = (s64)val; 13917 13918 switch (opcode) { 13919 case BPF_JEQ: 13920 if (tnum_is_const(reg->var_off)) 13921 return !!tnum_equals_const(reg->var_off, val); 13922 else if (val < reg->umin_value || val > reg->umax_value) 13923 return 0; 13924 break; 13925 case BPF_JNE: 13926 if (tnum_is_const(reg->var_off)) 13927 return !tnum_equals_const(reg->var_off, val); 13928 else if (val < reg->umin_value || val > reg->umax_value) 13929 return 1; 13930 break; 13931 case BPF_JSET: 13932 if ((~reg->var_off.mask & reg->var_off.value) & val) 13933 return 1; 13934 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13935 return 0; 13936 break; 13937 case BPF_JGT: 13938 if (reg->umin_value > val) 13939 return 1; 13940 else if (reg->umax_value <= val) 13941 return 0; 13942 break; 13943 case BPF_JSGT: 13944 if (reg->smin_value > sval) 13945 return 1; 13946 else if (reg->smax_value <= sval) 13947 return 0; 13948 break; 13949 case BPF_JLT: 13950 if (reg->umax_value < val) 13951 return 1; 13952 else if (reg->umin_value >= val) 13953 return 0; 13954 break; 13955 case BPF_JSLT: 13956 if (reg->smax_value < sval) 13957 return 1; 13958 else if (reg->smin_value >= sval) 13959 return 0; 13960 break; 13961 case BPF_JGE: 13962 if (reg->umin_value >= val) 13963 return 1; 13964 else if (reg->umax_value < val) 13965 return 0; 13966 break; 13967 case BPF_JSGE: 13968 if (reg->smin_value >= sval) 13969 return 1; 13970 else if (reg->smax_value < sval) 13971 return 0; 13972 break; 13973 case BPF_JLE: 13974 if (reg->umax_value <= val) 13975 return 1; 13976 else if (reg->umin_value > val) 13977 return 0; 13978 break; 13979 case BPF_JSLE: 13980 if (reg->smax_value <= sval) 13981 return 1; 13982 else if (reg->smin_value > sval) 13983 return 0; 13984 break; 13985 } 13986 13987 return -1; 13988 } 13989 13990 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13991 * and return: 13992 * 1 - branch will be taken and "goto target" will be executed 13993 * 0 - branch will not be taken and fall-through to next insn 13994 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13995 * range [0,10] 13996 */ 13997 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13998 bool is_jmp32) 13999 { 14000 if (__is_pointer_value(false, reg)) { 14001 if (!reg_not_null(reg)) 14002 return -1; 14003 14004 /* If pointer is valid tests against zero will fail so we can 14005 * use this to direct branch taken. 14006 */ 14007 if (val != 0) 14008 return -1; 14009 14010 switch (opcode) { 14011 case BPF_JEQ: 14012 return 0; 14013 case BPF_JNE: 14014 return 1; 14015 default: 14016 return -1; 14017 } 14018 } 14019 14020 if (is_jmp32) 14021 return is_branch32_taken(reg, val, opcode); 14022 return is_branch64_taken(reg, val, opcode); 14023 } 14024 14025 static int flip_opcode(u32 opcode) 14026 { 14027 /* How can we transform "a <op> b" into "b <op> a"? */ 14028 static const u8 opcode_flip[16] = { 14029 /* these stay the same */ 14030 [BPF_JEQ >> 4] = BPF_JEQ, 14031 [BPF_JNE >> 4] = BPF_JNE, 14032 [BPF_JSET >> 4] = BPF_JSET, 14033 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14034 [BPF_JGE >> 4] = BPF_JLE, 14035 [BPF_JGT >> 4] = BPF_JLT, 14036 [BPF_JLE >> 4] = BPF_JGE, 14037 [BPF_JLT >> 4] = BPF_JGT, 14038 [BPF_JSGE >> 4] = BPF_JSLE, 14039 [BPF_JSGT >> 4] = BPF_JSLT, 14040 [BPF_JSLE >> 4] = BPF_JSGE, 14041 [BPF_JSLT >> 4] = BPF_JSGT 14042 }; 14043 return opcode_flip[opcode >> 4]; 14044 } 14045 14046 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14047 struct bpf_reg_state *src_reg, 14048 u8 opcode) 14049 { 14050 struct bpf_reg_state *pkt; 14051 14052 if (src_reg->type == PTR_TO_PACKET_END) { 14053 pkt = dst_reg; 14054 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14055 pkt = src_reg; 14056 opcode = flip_opcode(opcode); 14057 } else { 14058 return -1; 14059 } 14060 14061 if (pkt->range >= 0) 14062 return -1; 14063 14064 switch (opcode) { 14065 case BPF_JLE: 14066 /* pkt <= pkt_end */ 14067 fallthrough; 14068 case BPF_JGT: 14069 /* pkt > pkt_end */ 14070 if (pkt->range == BEYOND_PKT_END) 14071 /* pkt has at last one extra byte beyond pkt_end */ 14072 return opcode == BPF_JGT; 14073 break; 14074 case BPF_JLT: 14075 /* pkt < pkt_end */ 14076 fallthrough; 14077 case BPF_JGE: 14078 /* pkt >= pkt_end */ 14079 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14080 return opcode == BPF_JGE; 14081 break; 14082 } 14083 return -1; 14084 } 14085 14086 /* Adjusts the register min/max values in the case that the dst_reg is the 14087 * variable register that we are working on, and src_reg is a constant or we're 14088 * simply doing a BPF_K check. 14089 * In JEQ/JNE cases we also adjust the var_off values. 14090 */ 14091 static void reg_set_min_max(struct bpf_reg_state *true_reg, 14092 struct bpf_reg_state *false_reg, 14093 u64 val, u32 val32, 14094 u8 opcode, bool is_jmp32) 14095 { 14096 struct tnum false_32off = tnum_subreg(false_reg->var_off); 14097 struct tnum false_64off = false_reg->var_off; 14098 struct tnum true_32off = tnum_subreg(true_reg->var_off); 14099 struct tnum true_64off = true_reg->var_off; 14100 s64 sval = (s64)val; 14101 s32 sval32 = (s32)val32; 14102 14103 /* If the dst_reg is a pointer, we can't learn anything about its 14104 * variable offset from the compare (unless src_reg were a pointer into 14105 * the same object, but we don't bother with that. 14106 * Since false_reg and true_reg have the same type by construction, we 14107 * only need to check one of them for pointerness. 14108 */ 14109 if (__is_pointer_value(false, false_reg)) 14110 return; 14111 14112 switch (opcode) { 14113 /* JEQ/JNE comparison doesn't change the register equivalence. 14114 * 14115 * r1 = r2; 14116 * if (r1 == 42) goto label; 14117 * ... 14118 * label: // here both r1 and r2 are known to be 42. 14119 * 14120 * Hence when marking register as known preserve it's ID. 14121 */ 14122 case BPF_JEQ: 14123 if (is_jmp32) { 14124 __mark_reg32_known(true_reg, val32); 14125 true_32off = tnum_subreg(true_reg->var_off); 14126 } else { 14127 ___mark_reg_known(true_reg, val); 14128 true_64off = true_reg->var_off; 14129 } 14130 break; 14131 case BPF_JNE: 14132 if (is_jmp32) { 14133 __mark_reg32_known(false_reg, val32); 14134 false_32off = tnum_subreg(false_reg->var_off); 14135 } else { 14136 ___mark_reg_known(false_reg, val); 14137 false_64off = false_reg->var_off; 14138 } 14139 break; 14140 case BPF_JSET: 14141 if (is_jmp32) { 14142 false_32off = tnum_and(false_32off, tnum_const(~val32)); 14143 if (is_power_of_2(val32)) 14144 true_32off = tnum_or(true_32off, 14145 tnum_const(val32)); 14146 } else { 14147 false_64off = tnum_and(false_64off, tnum_const(~val)); 14148 if (is_power_of_2(val)) 14149 true_64off = tnum_or(true_64off, 14150 tnum_const(val)); 14151 } 14152 break; 14153 case BPF_JGE: 14154 case BPF_JGT: 14155 { 14156 if (is_jmp32) { 14157 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 14158 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 14159 14160 false_reg->u32_max_value = min(false_reg->u32_max_value, 14161 false_umax); 14162 true_reg->u32_min_value = max(true_reg->u32_min_value, 14163 true_umin); 14164 } else { 14165 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 14166 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 14167 14168 false_reg->umax_value = min(false_reg->umax_value, false_umax); 14169 true_reg->umin_value = max(true_reg->umin_value, true_umin); 14170 } 14171 break; 14172 } 14173 case BPF_JSGE: 14174 case BPF_JSGT: 14175 { 14176 if (is_jmp32) { 14177 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 14178 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 14179 14180 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 14181 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 14182 } else { 14183 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 14184 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 14185 14186 false_reg->smax_value = min(false_reg->smax_value, false_smax); 14187 true_reg->smin_value = max(true_reg->smin_value, true_smin); 14188 } 14189 break; 14190 } 14191 case BPF_JLE: 14192 case BPF_JLT: 14193 { 14194 if (is_jmp32) { 14195 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 14196 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 14197 14198 false_reg->u32_min_value = max(false_reg->u32_min_value, 14199 false_umin); 14200 true_reg->u32_max_value = min(true_reg->u32_max_value, 14201 true_umax); 14202 } else { 14203 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 14204 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 14205 14206 false_reg->umin_value = max(false_reg->umin_value, false_umin); 14207 true_reg->umax_value = min(true_reg->umax_value, true_umax); 14208 } 14209 break; 14210 } 14211 case BPF_JSLE: 14212 case BPF_JSLT: 14213 { 14214 if (is_jmp32) { 14215 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 14216 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 14217 14218 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 14219 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 14220 } else { 14221 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 14222 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 14223 14224 false_reg->smin_value = max(false_reg->smin_value, false_smin); 14225 true_reg->smax_value = min(true_reg->smax_value, true_smax); 14226 } 14227 break; 14228 } 14229 default: 14230 return; 14231 } 14232 14233 if (is_jmp32) { 14234 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 14235 tnum_subreg(false_32off)); 14236 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 14237 tnum_subreg(true_32off)); 14238 __reg_combine_32_into_64(false_reg); 14239 __reg_combine_32_into_64(true_reg); 14240 } else { 14241 false_reg->var_off = false_64off; 14242 true_reg->var_off = true_64off; 14243 __reg_combine_64_into_32(false_reg); 14244 __reg_combine_64_into_32(true_reg); 14245 } 14246 } 14247 14248 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 14249 * the variable reg. 14250 */ 14251 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 14252 struct bpf_reg_state *false_reg, 14253 u64 val, u32 val32, 14254 u8 opcode, bool is_jmp32) 14255 { 14256 opcode = flip_opcode(opcode); 14257 /* This uses zero as "not present in table"; luckily the zero opcode, 14258 * BPF_JA, can't get here. 14259 */ 14260 if (opcode) 14261 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 14262 } 14263 14264 /* Regs are known to be equal, so intersect their min/max/var_off */ 14265 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 14266 struct bpf_reg_state *dst_reg) 14267 { 14268 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 14269 dst_reg->umin_value); 14270 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 14271 dst_reg->umax_value); 14272 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 14273 dst_reg->smin_value); 14274 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 14275 dst_reg->smax_value); 14276 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 14277 dst_reg->var_off); 14278 reg_bounds_sync(src_reg); 14279 reg_bounds_sync(dst_reg); 14280 } 14281 14282 static void reg_combine_min_max(struct bpf_reg_state *true_src, 14283 struct bpf_reg_state *true_dst, 14284 struct bpf_reg_state *false_src, 14285 struct bpf_reg_state *false_dst, 14286 u8 opcode) 14287 { 14288 switch (opcode) { 14289 case BPF_JEQ: 14290 __reg_combine_min_max(true_src, true_dst); 14291 break; 14292 case BPF_JNE: 14293 __reg_combine_min_max(false_src, false_dst); 14294 break; 14295 } 14296 } 14297 14298 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14299 struct bpf_reg_state *reg, u32 id, 14300 bool is_null) 14301 { 14302 if (type_may_be_null(reg->type) && reg->id == id && 14303 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14304 /* Old offset (both fixed and variable parts) should have been 14305 * known-zero, because we don't allow pointer arithmetic on 14306 * pointers that might be NULL. If we see this happening, don't 14307 * convert the register. 14308 * 14309 * But in some cases, some helpers that return local kptrs 14310 * advance offset for the returned pointer. In those cases, it 14311 * is fine to expect to see reg->off. 14312 */ 14313 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14314 return; 14315 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14316 WARN_ON_ONCE(reg->off)) 14317 return; 14318 14319 if (is_null) { 14320 reg->type = SCALAR_VALUE; 14321 /* We don't need id and ref_obj_id from this point 14322 * onwards anymore, thus we should better reset it, 14323 * so that state pruning has chances to take effect. 14324 */ 14325 reg->id = 0; 14326 reg->ref_obj_id = 0; 14327 14328 return; 14329 } 14330 14331 mark_ptr_not_null_reg(reg); 14332 14333 if (!reg_may_point_to_spin_lock(reg)) { 14334 /* For not-NULL ptr, reg->ref_obj_id will be reset 14335 * in release_reference(). 14336 * 14337 * reg->id is still used by spin_lock ptr. Other 14338 * than spin_lock ptr type, reg->id can be reset. 14339 */ 14340 reg->id = 0; 14341 } 14342 } 14343 } 14344 14345 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14346 * be folded together at some point. 14347 */ 14348 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14349 bool is_null) 14350 { 14351 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14352 struct bpf_reg_state *regs = state->regs, *reg; 14353 u32 ref_obj_id = regs[regno].ref_obj_id; 14354 u32 id = regs[regno].id; 14355 14356 if (ref_obj_id && ref_obj_id == id && is_null) 14357 /* regs[regno] is in the " == NULL" branch. 14358 * No one could have freed the reference state before 14359 * doing the NULL check. 14360 */ 14361 WARN_ON_ONCE(release_reference_state(state, id)); 14362 14363 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14364 mark_ptr_or_null_reg(state, reg, id, is_null); 14365 })); 14366 } 14367 14368 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14369 struct bpf_reg_state *dst_reg, 14370 struct bpf_reg_state *src_reg, 14371 struct bpf_verifier_state *this_branch, 14372 struct bpf_verifier_state *other_branch) 14373 { 14374 if (BPF_SRC(insn->code) != BPF_X) 14375 return false; 14376 14377 /* Pointers are always 64-bit. */ 14378 if (BPF_CLASS(insn->code) == BPF_JMP32) 14379 return false; 14380 14381 switch (BPF_OP(insn->code)) { 14382 case BPF_JGT: 14383 if ((dst_reg->type == PTR_TO_PACKET && 14384 src_reg->type == PTR_TO_PACKET_END) || 14385 (dst_reg->type == PTR_TO_PACKET_META && 14386 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14387 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 14388 find_good_pkt_pointers(this_branch, dst_reg, 14389 dst_reg->type, false); 14390 mark_pkt_end(other_branch, insn->dst_reg, true); 14391 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14392 src_reg->type == PTR_TO_PACKET) || 14393 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14394 src_reg->type == PTR_TO_PACKET_META)) { 14395 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 14396 find_good_pkt_pointers(other_branch, src_reg, 14397 src_reg->type, true); 14398 mark_pkt_end(this_branch, insn->src_reg, false); 14399 } else { 14400 return false; 14401 } 14402 break; 14403 case BPF_JLT: 14404 if ((dst_reg->type == PTR_TO_PACKET && 14405 src_reg->type == PTR_TO_PACKET_END) || 14406 (dst_reg->type == PTR_TO_PACKET_META && 14407 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14408 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 14409 find_good_pkt_pointers(other_branch, dst_reg, 14410 dst_reg->type, true); 14411 mark_pkt_end(this_branch, insn->dst_reg, false); 14412 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14413 src_reg->type == PTR_TO_PACKET) || 14414 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14415 src_reg->type == PTR_TO_PACKET_META)) { 14416 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 14417 find_good_pkt_pointers(this_branch, src_reg, 14418 src_reg->type, false); 14419 mark_pkt_end(other_branch, insn->src_reg, true); 14420 } else { 14421 return false; 14422 } 14423 break; 14424 case BPF_JGE: 14425 if ((dst_reg->type == PTR_TO_PACKET && 14426 src_reg->type == PTR_TO_PACKET_END) || 14427 (dst_reg->type == PTR_TO_PACKET_META && 14428 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14429 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14430 find_good_pkt_pointers(this_branch, dst_reg, 14431 dst_reg->type, true); 14432 mark_pkt_end(other_branch, insn->dst_reg, false); 14433 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14434 src_reg->type == PTR_TO_PACKET) || 14435 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14436 src_reg->type == PTR_TO_PACKET_META)) { 14437 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14438 find_good_pkt_pointers(other_branch, src_reg, 14439 src_reg->type, false); 14440 mark_pkt_end(this_branch, insn->src_reg, true); 14441 } else { 14442 return false; 14443 } 14444 break; 14445 case BPF_JLE: 14446 if ((dst_reg->type == PTR_TO_PACKET && 14447 src_reg->type == PTR_TO_PACKET_END) || 14448 (dst_reg->type == PTR_TO_PACKET_META && 14449 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14450 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14451 find_good_pkt_pointers(other_branch, dst_reg, 14452 dst_reg->type, false); 14453 mark_pkt_end(this_branch, insn->dst_reg, true); 14454 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14455 src_reg->type == PTR_TO_PACKET) || 14456 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14457 src_reg->type == PTR_TO_PACKET_META)) { 14458 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14459 find_good_pkt_pointers(this_branch, src_reg, 14460 src_reg->type, true); 14461 mark_pkt_end(other_branch, insn->src_reg, false); 14462 } else { 14463 return false; 14464 } 14465 break; 14466 default: 14467 return false; 14468 } 14469 14470 return true; 14471 } 14472 14473 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14474 struct bpf_reg_state *known_reg) 14475 { 14476 struct bpf_func_state *state; 14477 struct bpf_reg_state *reg; 14478 14479 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14480 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14481 copy_register_state(reg, known_reg); 14482 })); 14483 } 14484 14485 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14486 struct bpf_insn *insn, int *insn_idx) 14487 { 14488 struct bpf_verifier_state *this_branch = env->cur_state; 14489 struct bpf_verifier_state *other_branch; 14490 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14491 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14492 struct bpf_reg_state *eq_branch_regs; 14493 u8 opcode = BPF_OP(insn->code); 14494 bool is_jmp32; 14495 int pred = -1; 14496 int err; 14497 14498 /* Only conditional jumps are expected to reach here. */ 14499 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14500 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14501 return -EINVAL; 14502 } 14503 14504 /* check src2 operand */ 14505 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14506 if (err) 14507 return err; 14508 14509 dst_reg = ®s[insn->dst_reg]; 14510 if (BPF_SRC(insn->code) == BPF_X) { 14511 if (insn->imm != 0) { 14512 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14513 return -EINVAL; 14514 } 14515 14516 /* check src1 operand */ 14517 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14518 if (err) 14519 return err; 14520 14521 src_reg = ®s[insn->src_reg]; 14522 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14523 is_pointer_value(env, insn->src_reg)) { 14524 verbose(env, "R%d pointer comparison prohibited\n", 14525 insn->src_reg); 14526 return -EACCES; 14527 } 14528 } else { 14529 if (insn->src_reg != BPF_REG_0) { 14530 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14531 return -EINVAL; 14532 } 14533 } 14534 14535 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14536 14537 if (BPF_SRC(insn->code) == BPF_K) { 14538 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14539 } else if (src_reg->type == SCALAR_VALUE && 14540 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14541 pred = is_branch_taken(dst_reg, 14542 tnum_subreg(src_reg->var_off).value, 14543 opcode, 14544 is_jmp32); 14545 } else if (src_reg->type == SCALAR_VALUE && 14546 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14547 pred = is_branch_taken(dst_reg, 14548 src_reg->var_off.value, 14549 opcode, 14550 is_jmp32); 14551 } else if (dst_reg->type == SCALAR_VALUE && 14552 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14553 pred = is_branch_taken(src_reg, 14554 tnum_subreg(dst_reg->var_off).value, 14555 flip_opcode(opcode), 14556 is_jmp32); 14557 } else if (dst_reg->type == SCALAR_VALUE && 14558 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14559 pred = is_branch_taken(src_reg, 14560 dst_reg->var_off.value, 14561 flip_opcode(opcode), 14562 is_jmp32); 14563 } else if (reg_is_pkt_pointer_any(dst_reg) && 14564 reg_is_pkt_pointer_any(src_reg) && 14565 !is_jmp32) { 14566 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14567 } 14568 14569 if (pred >= 0) { 14570 /* If we get here with a dst_reg pointer type it is because 14571 * above is_branch_taken() special cased the 0 comparison. 14572 */ 14573 if (!__is_pointer_value(false, dst_reg)) 14574 err = mark_chain_precision(env, insn->dst_reg); 14575 if (BPF_SRC(insn->code) == BPF_X && !err && 14576 !__is_pointer_value(false, src_reg)) 14577 err = mark_chain_precision(env, insn->src_reg); 14578 if (err) 14579 return err; 14580 } 14581 14582 if (pred == 1) { 14583 /* Only follow the goto, ignore fall-through. If needed, push 14584 * the fall-through branch for simulation under speculative 14585 * execution. 14586 */ 14587 if (!env->bypass_spec_v1 && 14588 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14589 *insn_idx)) 14590 return -EFAULT; 14591 if (env->log.level & BPF_LOG_LEVEL) 14592 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14593 *insn_idx += insn->off; 14594 return 0; 14595 } else if (pred == 0) { 14596 /* Only follow the fall-through branch, since that's where the 14597 * program will go. If needed, push the goto branch for 14598 * simulation under speculative execution. 14599 */ 14600 if (!env->bypass_spec_v1 && 14601 !sanitize_speculative_path(env, insn, 14602 *insn_idx + insn->off + 1, 14603 *insn_idx)) 14604 return -EFAULT; 14605 if (env->log.level & BPF_LOG_LEVEL) 14606 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14607 return 0; 14608 } 14609 14610 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14611 false); 14612 if (!other_branch) 14613 return -EFAULT; 14614 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14615 14616 /* detect if we are comparing against a constant value so we can adjust 14617 * our min/max values for our dst register. 14618 * this is only legit if both are scalars (or pointers to the same 14619 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14620 * because otherwise the different base pointers mean the offsets aren't 14621 * comparable. 14622 */ 14623 if (BPF_SRC(insn->code) == BPF_X) { 14624 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14625 14626 if (dst_reg->type == SCALAR_VALUE && 14627 src_reg->type == SCALAR_VALUE) { 14628 if (tnum_is_const(src_reg->var_off) || 14629 (is_jmp32 && 14630 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14631 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14632 dst_reg, 14633 src_reg->var_off.value, 14634 tnum_subreg(src_reg->var_off).value, 14635 opcode, is_jmp32); 14636 else if (tnum_is_const(dst_reg->var_off) || 14637 (is_jmp32 && 14638 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14639 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14640 src_reg, 14641 dst_reg->var_off.value, 14642 tnum_subreg(dst_reg->var_off).value, 14643 opcode, is_jmp32); 14644 else if (!is_jmp32 && 14645 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14646 /* Comparing for equality, we can combine knowledge */ 14647 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14648 &other_branch_regs[insn->dst_reg], 14649 src_reg, dst_reg, opcode); 14650 if (src_reg->id && 14651 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14652 find_equal_scalars(this_branch, src_reg); 14653 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14654 } 14655 14656 } 14657 } else if (dst_reg->type == SCALAR_VALUE) { 14658 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14659 dst_reg, insn->imm, (u32)insn->imm, 14660 opcode, is_jmp32); 14661 } 14662 14663 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14664 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14665 find_equal_scalars(this_branch, dst_reg); 14666 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14667 } 14668 14669 /* if one pointer register is compared to another pointer 14670 * register check if PTR_MAYBE_NULL could be lifted. 14671 * E.g. register A - maybe null 14672 * register B - not null 14673 * for JNE A, B, ... - A is not null in the false branch; 14674 * for JEQ A, B, ... - A is not null in the true branch. 14675 * 14676 * Since PTR_TO_BTF_ID points to a kernel struct that does 14677 * not need to be null checked by the BPF program, i.e., 14678 * could be null even without PTR_MAYBE_NULL marking, so 14679 * only propagate nullness when neither reg is that type. 14680 */ 14681 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14682 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14683 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14684 base_type(src_reg->type) != PTR_TO_BTF_ID && 14685 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14686 eq_branch_regs = NULL; 14687 switch (opcode) { 14688 case BPF_JEQ: 14689 eq_branch_regs = other_branch_regs; 14690 break; 14691 case BPF_JNE: 14692 eq_branch_regs = regs; 14693 break; 14694 default: 14695 /* do nothing */ 14696 break; 14697 } 14698 if (eq_branch_regs) { 14699 if (type_may_be_null(src_reg->type)) 14700 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14701 else 14702 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14703 } 14704 } 14705 14706 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14707 * NOTE: these optimizations below are related with pointer comparison 14708 * which will never be JMP32. 14709 */ 14710 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14711 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14712 type_may_be_null(dst_reg->type)) { 14713 /* Mark all identical registers in each branch as either 14714 * safe or unknown depending R == 0 or R != 0 conditional. 14715 */ 14716 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14717 opcode == BPF_JNE); 14718 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14719 opcode == BPF_JEQ); 14720 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14721 this_branch, other_branch) && 14722 is_pointer_value(env, insn->dst_reg)) { 14723 verbose(env, "R%d pointer comparison prohibited\n", 14724 insn->dst_reg); 14725 return -EACCES; 14726 } 14727 if (env->log.level & BPF_LOG_LEVEL) 14728 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14729 return 0; 14730 } 14731 14732 /* verify BPF_LD_IMM64 instruction */ 14733 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14734 { 14735 struct bpf_insn_aux_data *aux = cur_aux(env); 14736 struct bpf_reg_state *regs = cur_regs(env); 14737 struct bpf_reg_state *dst_reg; 14738 struct bpf_map *map; 14739 int err; 14740 14741 if (BPF_SIZE(insn->code) != BPF_DW) { 14742 verbose(env, "invalid BPF_LD_IMM insn\n"); 14743 return -EINVAL; 14744 } 14745 if (insn->off != 0) { 14746 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14747 return -EINVAL; 14748 } 14749 14750 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14751 if (err) 14752 return err; 14753 14754 dst_reg = ®s[insn->dst_reg]; 14755 if (insn->src_reg == 0) { 14756 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14757 14758 dst_reg->type = SCALAR_VALUE; 14759 __mark_reg_known(®s[insn->dst_reg], imm); 14760 return 0; 14761 } 14762 14763 /* All special src_reg cases are listed below. From this point onwards 14764 * we either succeed and assign a corresponding dst_reg->type after 14765 * zeroing the offset, or fail and reject the program. 14766 */ 14767 mark_reg_known_zero(env, regs, insn->dst_reg); 14768 14769 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14770 dst_reg->type = aux->btf_var.reg_type; 14771 switch (base_type(dst_reg->type)) { 14772 case PTR_TO_MEM: 14773 dst_reg->mem_size = aux->btf_var.mem_size; 14774 break; 14775 case PTR_TO_BTF_ID: 14776 dst_reg->btf = aux->btf_var.btf; 14777 dst_reg->btf_id = aux->btf_var.btf_id; 14778 break; 14779 default: 14780 verbose(env, "bpf verifier is misconfigured\n"); 14781 return -EFAULT; 14782 } 14783 return 0; 14784 } 14785 14786 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14787 struct bpf_prog_aux *aux = env->prog->aux; 14788 u32 subprogno = find_subprog(env, 14789 env->insn_idx + insn->imm + 1); 14790 14791 if (!aux->func_info) { 14792 verbose(env, "missing btf func_info\n"); 14793 return -EINVAL; 14794 } 14795 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14796 verbose(env, "callback function not static\n"); 14797 return -EINVAL; 14798 } 14799 14800 dst_reg->type = PTR_TO_FUNC; 14801 dst_reg->subprogno = subprogno; 14802 return 0; 14803 } 14804 14805 map = env->used_maps[aux->map_index]; 14806 dst_reg->map_ptr = map; 14807 14808 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14809 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14810 dst_reg->type = PTR_TO_MAP_VALUE; 14811 dst_reg->off = aux->map_off; 14812 WARN_ON_ONCE(map->max_entries != 1); 14813 /* We want reg->id to be same (0) as map_value is not distinct */ 14814 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14815 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14816 dst_reg->type = CONST_PTR_TO_MAP; 14817 } else { 14818 verbose(env, "bpf verifier is misconfigured\n"); 14819 return -EINVAL; 14820 } 14821 14822 return 0; 14823 } 14824 14825 static bool may_access_skb(enum bpf_prog_type type) 14826 { 14827 switch (type) { 14828 case BPF_PROG_TYPE_SOCKET_FILTER: 14829 case BPF_PROG_TYPE_SCHED_CLS: 14830 case BPF_PROG_TYPE_SCHED_ACT: 14831 return true; 14832 default: 14833 return false; 14834 } 14835 } 14836 14837 /* verify safety of LD_ABS|LD_IND instructions: 14838 * - they can only appear in the programs where ctx == skb 14839 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14840 * preserve R6-R9, and store return value into R0 14841 * 14842 * Implicit input: 14843 * ctx == skb == R6 == CTX 14844 * 14845 * Explicit input: 14846 * SRC == any register 14847 * IMM == 32-bit immediate 14848 * 14849 * Output: 14850 * R0 - 8/16/32-bit skb data converted to cpu endianness 14851 */ 14852 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14853 { 14854 struct bpf_reg_state *regs = cur_regs(env); 14855 static const int ctx_reg = BPF_REG_6; 14856 u8 mode = BPF_MODE(insn->code); 14857 int i, err; 14858 14859 if (!may_access_skb(resolve_prog_type(env->prog))) { 14860 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14861 return -EINVAL; 14862 } 14863 14864 if (!env->ops->gen_ld_abs) { 14865 verbose(env, "bpf verifier is misconfigured\n"); 14866 return -EINVAL; 14867 } 14868 14869 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14870 BPF_SIZE(insn->code) == BPF_DW || 14871 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14872 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14873 return -EINVAL; 14874 } 14875 14876 /* check whether implicit source operand (register R6) is readable */ 14877 err = check_reg_arg(env, ctx_reg, SRC_OP); 14878 if (err) 14879 return err; 14880 14881 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14882 * gen_ld_abs() may terminate the program at runtime, leading to 14883 * reference leak. 14884 */ 14885 err = check_reference_leak(env); 14886 if (err) { 14887 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14888 return err; 14889 } 14890 14891 if (env->cur_state->active_lock.ptr) { 14892 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14893 return -EINVAL; 14894 } 14895 14896 if (env->cur_state->active_rcu_lock) { 14897 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14898 return -EINVAL; 14899 } 14900 14901 if (regs[ctx_reg].type != PTR_TO_CTX) { 14902 verbose(env, 14903 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14904 return -EINVAL; 14905 } 14906 14907 if (mode == BPF_IND) { 14908 /* check explicit source operand */ 14909 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14910 if (err) 14911 return err; 14912 } 14913 14914 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14915 if (err < 0) 14916 return err; 14917 14918 /* reset caller saved regs to unreadable */ 14919 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14920 mark_reg_not_init(env, regs, caller_saved[i]); 14921 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14922 } 14923 14924 /* mark destination R0 register as readable, since it contains 14925 * the value fetched from the packet. 14926 * Already marked as written above. 14927 */ 14928 mark_reg_unknown(env, regs, BPF_REG_0); 14929 /* ld_abs load up to 32-bit skb data. */ 14930 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14931 return 0; 14932 } 14933 14934 static int check_return_code(struct bpf_verifier_env *env) 14935 { 14936 struct tnum enforce_attach_type_range = tnum_unknown; 14937 const struct bpf_prog *prog = env->prog; 14938 struct bpf_reg_state *reg; 14939 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 14940 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14941 int err; 14942 struct bpf_func_state *frame = env->cur_state->frame[0]; 14943 const bool is_subprog = frame->subprogno; 14944 14945 /* LSM and struct_ops func-ptr's return type could be "void" */ 14946 if (!is_subprog) { 14947 switch (prog_type) { 14948 case BPF_PROG_TYPE_LSM: 14949 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14950 /* See below, can be 0 or 0-1 depending on hook. */ 14951 break; 14952 fallthrough; 14953 case BPF_PROG_TYPE_STRUCT_OPS: 14954 if (!prog->aux->attach_func_proto->type) 14955 return 0; 14956 break; 14957 default: 14958 break; 14959 } 14960 } 14961 14962 /* eBPF calling convention is such that R0 is used 14963 * to return the value from eBPF program. 14964 * Make sure that it's readable at this time 14965 * of bpf_exit, which means that program wrote 14966 * something into it earlier 14967 */ 14968 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14969 if (err) 14970 return err; 14971 14972 if (is_pointer_value(env, BPF_REG_0)) { 14973 verbose(env, "R0 leaks addr as return value\n"); 14974 return -EACCES; 14975 } 14976 14977 reg = cur_regs(env) + BPF_REG_0; 14978 14979 if (frame->in_async_callback_fn) { 14980 /* enforce return zero from async callbacks like timer */ 14981 if (reg->type != SCALAR_VALUE) { 14982 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14983 reg_type_str(env, reg->type)); 14984 return -EINVAL; 14985 } 14986 14987 if (!tnum_in(const_0, reg->var_off)) { 14988 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 14989 return -EINVAL; 14990 } 14991 return 0; 14992 } 14993 14994 if (is_subprog) { 14995 if (reg->type != SCALAR_VALUE) { 14996 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14997 reg_type_str(env, reg->type)); 14998 return -EINVAL; 14999 } 15000 return 0; 15001 } 15002 15003 switch (prog_type) { 15004 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 15005 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 15006 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 15007 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 15008 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 15009 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 15010 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 15011 range = tnum_range(1, 1); 15012 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 15013 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 15014 range = tnum_range(0, 3); 15015 break; 15016 case BPF_PROG_TYPE_CGROUP_SKB: 15017 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 15018 range = tnum_range(0, 3); 15019 enforce_attach_type_range = tnum_range(2, 3); 15020 } 15021 break; 15022 case BPF_PROG_TYPE_CGROUP_SOCK: 15023 case BPF_PROG_TYPE_SOCK_OPS: 15024 case BPF_PROG_TYPE_CGROUP_DEVICE: 15025 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15026 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15027 break; 15028 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15029 if (!env->prog->aux->attach_btf_id) 15030 return 0; 15031 range = tnum_const(0); 15032 break; 15033 case BPF_PROG_TYPE_TRACING: 15034 switch (env->prog->expected_attach_type) { 15035 case BPF_TRACE_FENTRY: 15036 case BPF_TRACE_FEXIT: 15037 range = tnum_const(0); 15038 break; 15039 case BPF_TRACE_RAW_TP: 15040 case BPF_MODIFY_RETURN: 15041 return 0; 15042 case BPF_TRACE_ITER: 15043 break; 15044 default: 15045 return -ENOTSUPP; 15046 } 15047 break; 15048 case BPF_PROG_TYPE_SK_LOOKUP: 15049 range = tnum_range(SK_DROP, SK_PASS); 15050 break; 15051 15052 case BPF_PROG_TYPE_LSM: 15053 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15054 /* Regular BPF_PROG_TYPE_LSM programs can return 15055 * any value. 15056 */ 15057 return 0; 15058 } 15059 if (!env->prog->aux->attach_func_proto->type) { 15060 /* Make sure programs that attach to void 15061 * hooks don't try to modify return value. 15062 */ 15063 range = tnum_range(1, 1); 15064 } 15065 break; 15066 15067 case BPF_PROG_TYPE_NETFILTER: 15068 range = tnum_range(NF_DROP, NF_ACCEPT); 15069 break; 15070 case BPF_PROG_TYPE_EXT: 15071 /* freplace program can return anything as its return value 15072 * depends on the to-be-replaced kernel func or bpf program. 15073 */ 15074 default: 15075 return 0; 15076 } 15077 15078 if (reg->type != SCALAR_VALUE) { 15079 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 15080 reg_type_str(env, reg->type)); 15081 return -EINVAL; 15082 } 15083 15084 if (!tnum_in(range, reg->var_off)) { 15085 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 15086 if (prog->expected_attach_type == BPF_LSM_CGROUP && 15087 prog_type == BPF_PROG_TYPE_LSM && 15088 !prog->aux->attach_func_proto->type) 15089 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15090 return -EINVAL; 15091 } 15092 15093 if (!tnum_is_unknown(enforce_attach_type_range) && 15094 tnum_in(enforce_attach_type_range, reg->var_off)) 15095 env->prog->enforce_expected_attach_type = 1; 15096 return 0; 15097 } 15098 15099 /* non-recursive DFS pseudo code 15100 * 1 procedure DFS-iterative(G,v): 15101 * 2 label v as discovered 15102 * 3 let S be a stack 15103 * 4 S.push(v) 15104 * 5 while S is not empty 15105 * 6 t <- S.peek() 15106 * 7 if t is what we're looking for: 15107 * 8 return t 15108 * 9 for all edges e in G.adjacentEdges(t) do 15109 * 10 if edge e is already labelled 15110 * 11 continue with the next edge 15111 * 12 w <- G.adjacentVertex(t,e) 15112 * 13 if vertex w is not discovered and not explored 15113 * 14 label e as tree-edge 15114 * 15 label w as discovered 15115 * 16 S.push(w) 15116 * 17 continue at 5 15117 * 18 else if vertex w is discovered 15118 * 19 label e as back-edge 15119 * 20 else 15120 * 21 // vertex w is explored 15121 * 22 label e as forward- or cross-edge 15122 * 23 label t as explored 15123 * 24 S.pop() 15124 * 15125 * convention: 15126 * 0x10 - discovered 15127 * 0x11 - discovered and fall-through edge labelled 15128 * 0x12 - discovered and fall-through and branch edges labelled 15129 * 0x20 - explored 15130 */ 15131 15132 enum { 15133 DISCOVERED = 0x10, 15134 EXPLORED = 0x20, 15135 FALLTHROUGH = 1, 15136 BRANCH = 2, 15137 }; 15138 15139 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15140 { 15141 env->insn_aux_data[idx].prune_point = true; 15142 } 15143 15144 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15145 { 15146 return env->insn_aux_data[insn_idx].prune_point; 15147 } 15148 15149 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15150 { 15151 env->insn_aux_data[idx].force_checkpoint = true; 15152 } 15153 15154 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15155 { 15156 return env->insn_aux_data[insn_idx].force_checkpoint; 15157 } 15158 15159 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15160 { 15161 env->insn_aux_data[idx].calls_callback = true; 15162 } 15163 15164 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15165 { 15166 return env->insn_aux_data[insn_idx].calls_callback; 15167 } 15168 15169 enum { 15170 DONE_EXPLORING = 0, 15171 KEEP_EXPLORING = 1, 15172 }; 15173 15174 /* t, w, e - match pseudo-code above: 15175 * t - index of current instruction 15176 * w - next instruction 15177 * e - edge 15178 */ 15179 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15180 { 15181 int *insn_stack = env->cfg.insn_stack; 15182 int *insn_state = env->cfg.insn_state; 15183 15184 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15185 return DONE_EXPLORING; 15186 15187 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15188 return DONE_EXPLORING; 15189 15190 if (w < 0 || w >= env->prog->len) { 15191 verbose_linfo(env, t, "%d: ", t); 15192 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15193 return -EINVAL; 15194 } 15195 15196 if (e == BRANCH) { 15197 /* mark branch target for state pruning */ 15198 mark_prune_point(env, w); 15199 mark_jmp_point(env, w); 15200 } 15201 15202 if (insn_state[w] == 0) { 15203 /* tree-edge */ 15204 insn_state[t] = DISCOVERED | e; 15205 insn_state[w] = DISCOVERED; 15206 if (env->cfg.cur_stack >= env->prog->len) 15207 return -E2BIG; 15208 insn_stack[env->cfg.cur_stack++] = w; 15209 return KEEP_EXPLORING; 15210 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15211 if (env->bpf_capable) 15212 return DONE_EXPLORING; 15213 verbose_linfo(env, t, "%d: ", t); 15214 verbose_linfo(env, w, "%d: ", w); 15215 verbose(env, "back-edge from insn %d to %d\n", t, w); 15216 return -EINVAL; 15217 } else if (insn_state[w] == EXPLORED) { 15218 /* forward- or cross-edge */ 15219 insn_state[t] = DISCOVERED | e; 15220 } else { 15221 verbose(env, "insn state internal bug\n"); 15222 return -EFAULT; 15223 } 15224 return DONE_EXPLORING; 15225 } 15226 15227 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15228 struct bpf_verifier_env *env, 15229 bool visit_callee) 15230 { 15231 int ret, insn_sz; 15232 15233 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15234 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15235 if (ret) 15236 return ret; 15237 15238 mark_prune_point(env, t + insn_sz); 15239 /* when we exit from subprog, we need to record non-linear history */ 15240 mark_jmp_point(env, t + insn_sz); 15241 15242 if (visit_callee) { 15243 mark_prune_point(env, t); 15244 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15245 } 15246 return ret; 15247 } 15248 15249 /* Visits the instruction at index t and returns one of the following: 15250 * < 0 - an error occurred 15251 * DONE_EXPLORING - the instruction was fully explored 15252 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15253 */ 15254 static int visit_insn(int t, struct bpf_verifier_env *env) 15255 { 15256 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15257 int ret, off, insn_sz; 15258 15259 if (bpf_pseudo_func(insn)) 15260 return visit_func_call_insn(t, insns, env, true); 15261 15262 /* All non-branch instructions have a single fall-through edge. */ 15263 if (BPF_CLASS(insn->code) != BPF_JMP && 15264 BPF_CLASS(insn->code) != BPF_JMP32) { 15265 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15266 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15267 } 15268 15269 switch (BPF_OP(insn->code)) { 15270 case BPF_EXIT: 15271 return DONE_EXPLORING; 15272 15273 case BPF_CALL: 15274 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 15275 /* Mark this call insn as a prune point to trigger 15276 * is_state_visited() check before call itself is 15277 * processed by __check_func_call(). Otherwise new 15278 * async state will be pushed for further exploration. 15279 */ 15280 mark_prune_point(env, t); 15281 /* For functions that invoke callbacks it is not known how many times 15282 * callback would be called. Verifier models callback calling functions 15283 * by repeatedly visiting callback bodies and returning to origin call 15284 * instruction. 15285 * In order to stop such iteration verifier needs to identify when a 15286 * state identical some state from a previous iteration is reached. 15287 * Check below forces creation of checkpoint before callback calling 15288 * instruction to allow search for such identical states. 15289 */ 15290 if (is_sync_callback_calling_insn(insn)) { 15291 mark_calls_callback(env, t); 15292 mark_force_checkpoint(env, t); 15293 mark_prune_point(env, t); 15294 mark_jmp_point(env, t); 15295 } 15296 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15297 struct bpf_kfunc_call_arg_meta meta; 15298 15299 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15300 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15301 mark_prune_point(env, t); 15302 /* Checking and saving state checkpoints at iter_next() call 15303 * is crucial for fast convergence of open-coded iterator loop 15304 * logic, so we need to force it. If we don't do that, 15305 * is_state_visited() might skip saving a checkpoint, causing 15306 * unnecessarily long sequence of not checkpointed 15307 * instructions and jumps, leading to exhaustion of jump 15308 * history buffer, and potentially other undesired outcomes. 15309 * It is expected that with correct open-coded iterators 15310 * convergence will happen quickly, so we don't run a risk of 15311 * exhausting memory. 15312 */ 15313 mark_force_checkpoint(env, t); 15314 } 15315 } 15316 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15317 15318 case BPF_JA: 15319 if (BPF_SRC(insn->code) != BPF_K) 15320 return -EINVAL; 15321 15322 if (BPF_CLASS(insn->code) == BPF_JMP) 15323 off = insn->off; 15324 else 15325 off = insn->imm; 15326 15327 /* unconditional jump with single edge */ 15328 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15329 if (ret) 15330 return ret; 15331 15332 mark_prune_point(env, t + off + 1); 15333 mark_jmp_point(env, t + off + 1); 15334 15335 return ret; 15336 15337 default: 15338 /* conditional jump with two edges */ 15339 mark_prune_point(env, t); 15340 15341 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15342 if (ret) 15343 return ret; 15344 15345 return push_insn(t, t + insn->off + 1, BRANCH, env); 15346 } 15347 } 15348 15349 /* non-recursive depth-first-search to detect loops in BPF program 15350 * loop == back-edge in directed graph 15351 */ 15352 static int check_cfg(struct bpf_verifier_env *env) 15353 { 15354 int insn_cnt = env->prog->len; 15355 int *insn_stack, *insn_state; 15356 int ret = 0; 15357 int i; 15358 15359 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15360 if (!insn_state) 15361 return -ENOMEM; 15362 15363 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15364 if (!insn_stack) { 15365 kvfree(insn_state); 15366 return -ENOMEM; 15367 } 15368 15369 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15370 insn_stack[0] = 0; /* 0 is the first instruction */ 15371 env->cfg.cur_stack = 1; 15372 15373 while (env->cfg.cur_stack > 0) { 15374 int t = insn_stack[env->cfg.cur_stack - 1]; 15375 15376 ret = visit_insn(t, env); 15377 switch (ret) { 15378 case DONE_EXPLORING: 15379 insn_state[t] = EXPLORED; 15380 env->cfg.cur_stack--; 15381 break; 15382 case KEEP_EXPLORING: 15383 break; 15384 default: 15385 if (ret > 0) { 15386 verbose(env, "visit_insn internal bug\n"); 15387 ret = -EFAULT; 15388 } 15389 goto err_free; 15390 } 15391 } 15392 15393 if (env->cfg.cur_stack < 0) { 15394 verbose(env, "pop stack internal bug\n"); 15395 ret = -EFAULT; 15396 goto err_free; 15397 } 15398 15399 for (i = 0; i < insn_cnt; i++) { 15400 struct bpf_insn *insn = &env->prog->insnsi[i]; 15401 15402 if (insn_state[i] != EXPLORED) { 15403 verbose(env, "unreachable insn %d\n", i); 15404 ret = -EINVAL; 15405 goto err_free; 15406 } 15407 if (bpf_is_ldimm64(insn)) { 15408 if (insn_state[i + 1] != 0) { 15409 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 15410 ret = -EINVAL; 15411 goto err_free; 15412 } 15413 i++; /* skip second half of ldimm64 */ 15414 } 15415 } 15416 ret = 0; /* cfg looks good */ 15417 15418 err_free: 15419 kvfree(insn_state); 15420 kvfree(insn_stack); 15421 env->cfg.insn_state = env->cfg.insn_stack = NULL; 15422 return ret; 15423 } 15424 15425 static int check_abnormal_return(struct bpf_verifier_env *env) 15426 { 15427 int i; 15428 15429 for (i = 1; i < env->subprog_cnt; i++) { 15430 if (env->subprog_info[i].has_ld_abs) { 15431 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 15432 return -EINVAL; 15433 } 15434 if (env->subprog_info[i].has_tail_call) { 15435 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15436 return -EINVAL; 15437 } 15438 } 15439 return 0; 15440 } 15441 15442 /* The minimum supported BTF func info size */ 15443 #define MIN_BPF_FUNCINFO_SIZE 8 15444 #define MAX_FUNCINFO_REC_SIZE 252 15445 15446 static int check_btf_func(struct bpf_verifier_env *env, 15447 const union bpf_attr *attr, 15448 bpfptr_t uattr) 15449 { 15450 const struct btf_type *type, *func_proto, *ret_type; 15451 u32 i, nfuncs, urec_size, min_size; 15452 u32 krec_size = sizeof(struct bpf_func_info); 15453 struct bpf_func_info *krecord; 15454 struct bpf_func_info_aux *info_aux = NULL; 15455 struct bpf_prog *prog; 15456 const struct btf *btf; 15457 bpfptr_t urecord; 15458 u32 prev_offset = 0; 15459 bool scalar_return; 15460 int ret = -ENOMEM; 15461 15462 nfuncs = attr->func_info_cnt; 15463 if (!nfuncs) { 15464 if (check_abnormal_return(env)) 15465 return -EINVAL; 15466 return 0; 15467 } 15468 15469 if (nfuncs != env->subprog_cnt) { 15470 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15471 return -EINVAL; 15472 } 15473 15474 urec_size = attr->func_info_rec_size; 15475 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15476 urec_size > MAX_FUNCINFO_REC_SIZE || 15477 urec_size % sizeof(u32)) { 15478 verbose(env, "invalid func info rec size %u\n", urec_size); 15479 return -EINVAL; 15480 } 15481 15482 prog = env->prog; 15483 btf = prog->aux->btf; 15484 15485 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15486 min_size = min_t(u32, krec_size, urec_size); 15487 15488 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15489 if (!krecord) 15490 return -ENOMEM; 15491 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15492 if (!info_aux) 15493 goto err_free; 15494 15495 for (i = 0; i < nfuncs; i++) { 15496 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15497 if (ret) { 15498 if (ret == -E2BIG) { 15499 verbose(env, "nonzero tailing record in func info"); 15500 /* set the size kernel expects so loader can zero 15501 * out the rest of the record. 15502 */ 15503 if (copy_to_bpfptr_offset(uattr, 15504 offsetof(union bpf_attr, func_info_rec_size), 15505 &min_size, sizeof(min_size))) 15506 ret = -EFAULT; 15507 } 15508 goto err_free; 15509 } 15510 15511 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15512 ret = -EFAULT; 15513 goto err_free; 15514 } 15515 15516 /* check insn_off */ 15517 ret = -EINVAL; 15518 if (i == 0) { 15519 if (krecord[i].insn_off) { 15520 verbose(env, 15521 "nonzero insn_off %u for the first func info record", 15522 krecord[i].insn_off); 15523 goto err_free; 15524 } 15525 } else if (krecord[i].insn_off <= prev_offset) { 15526 verbose(env, 15527 "same or smaller insn offset (%u) than previous func info record (%u)", 15528 krecord[i].insn_off, prev_offset); 15529 goto err_free; 15530 } 15531 15532 if (env->subprog_info[i].start != krecord[i].insn_off) { 15533 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15534 goto err_free; 15535 } 15536 15537 /* check type_id */ 15538 type = btf_type_by_id(btf, krecord[i].type_id); 15539 if (!type || !btf_type_is_func(type)) { 15540 verbose(env, "invalid type id %d in func info", 15541 krecord[i].type_id); 15542 goto err_free; 15543 } 15544 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15545 15546 func_proto = btf_type_by_id(btf, type->type); 15547 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15548 /* btf_func_check() already verified it during BTF load */ 15549 goto err_free; 15550 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15551 scalar_return = 15552 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15553 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15554 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15555 goto err_free; 15556 } 15557 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15558 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15559 goto err_free; 15560 } 15561 15562 prev_offset = krecord[i].insn_off; 15563 bpfptr_add(&urecord, urec_size); 15564 } 15565 15566 prog->aux->func_info = krecord; 15567 prog->aux->func_info_cnt = nfuncs; 15568 prog->aux->func_info_aux = info_aux; 15569 return 0; 15570 15571 err_free: 15572 kvfree(krecord); 15573 kfree(info_aux); 15574 return ret; 15575 } 15576 15577 static void adjust_btf_func(struct bpf_verifier_env *env) 15578 { 15579 struct bpf_prog_aux *aux = env->prog->aux; 15580 int i; 15581 15582 if (!aux->func_info) 15583 return; 15584 15585 for (i = 0; i < env->subprog_cnt; i++) 15586 aux->func_info[i].insn_off = env->subprog_info[i].start; 15587 } 15588 15589 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15590 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15591 15592 static int check_btf_line(struct bpf_verifier_env *env, 15593 const union bpf_attr *attr, 15594 bpfptr_t uattr) 15595 { 15596 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15597 struct bpf_subprog_info *sub; 15598 struct bpf_line_info *linfo; 15599 struct bpf_prog *prog; 15600 const struct btf *btf; 15601 bpfptr_t ulinfo; 15602 int err; 15603 15604 nr_linfo = attr->line_info_cnt; 15605 if (!nr_linfo) 15606 return 0; 15607 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15608 return -EINVAL; 15609 15610 rec_size = attr->line_info_rec_size; 15611 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15612 rec_size > MAX_LINEINFO_REC_SIZE || 15613 rec_size & (sizeof(u32) - 1)) 15614 return -EINVAL; 15615 15616 /* Need to zero it in case the userspace may 15617 * pass in a smaller bpf_line_info object. 15618 */ 15619 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15620 GFP_KERNEL | __GFP_NOWARN); 15621 if (!linfo) 15622 return -ENOMEM; 15623 15624 prog = env->prog; 15625 btf = prog->aux->btf; 15626 15627 s = 0; 15628 sub = env->subprog_info; 15629 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15630 expected_size = sizeof(struct bpf_line_info); 15631 ncopy = min_t(u32, expected_size, rec_size); 15632 for (i = 0; i < nr_linfo; i++) { 15633 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15634 if (err) { 15635 if (err == -E2BIG) { 15636 verbose(env, "nonzero tailing record in line_info"); 15637 if (copy_to_bpfptr_offset(uattr, 15638 offsetof(union bpf_attr, line_info_rec_size), 15639 &expected_size, sizeof(expected_size))) 15640 err = -EFAULT; 15641 } 15642 goto err_free; 15643 } 15644 15645 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15646 err = -EFAULT; 15647 goto err_free; 15648 } 15649 15650 /* 15651 * Check insn_off to ensure 15652 * 1) strictly increasing AND 15653 * 2) bounded by prog->len 15654 * 15655 * The linfo[0].insn_off == 0 check logically falls into 15656 * the later "missing bpf_line_info for func..." case 15657 * because the first linfo[0].insn_off must be the 15658 * first sub also and the first sub must have 15659 * subprog_info[0].start == 0. 15660 */ 15661 if ((i && linfo[i].insn_off <= prev_offset) || 15662 linfo[i].insn_off >= prog->len) { 15663 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15664 i, linfo[i].insn_off, prev_offset, 15665 prog->len); 15666 err = -EINVAL; 15667 goto err_free; 15668 } 15669 15670 if (!prog->insnsi[linfo[i].insn_off].code) { 15671 verbose(env, 15672 "Invalid insn code at line_info[%u].insn_off\n", 15673 i); 15674 err = -EINVAL; 15675 goto err_free; 15676 } 15677 15678 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15679 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15680 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15681 err = -EINVAL; 15682 goto err_free; 15683 } 15684 15685 if (s != env->subprog_cnt) { 15686 if (linfo[i].insn_off == sub[s].start) { 15687 sub[s].linfo_idx = i; 15688 s++; 15689 } else if (sub[s].start < linfo[i].insn_off) { 15690 verbose(env, "missing bpf_line_info for func#%u\n", s); 15691 err = -EINVAL; 15692 goto err_free; 15693 } 15694 } 15695 15696 prev_offset = linfo[i].insn_off; 15697 bpfptr_add(&ulinfo, rec_size); 15698 } 15699 15700 if (s != env->subprog_cnt) { 15701 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15702 env->subprog_cnt - s, s); 15703 err = -EINVAL; 15704 goto err_free; 15705 } 15706 15707 prog->aux->linfo = linfo; 15708 prog->aux->nr_linfo = nr_linfo; 15709 15710 return 0; 15711 15712 err_free: 15713 kvfree(linfo); 15714 return err; 15715 } 15716 15717 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15718 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15719 15720 static int check_core_relo(struct bpf_verifier_env *env, 15721 const union bpf_attr *attr, 15722 bpfptr_t uattr) 15723 { 15724 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15725 struct bpf_core_relo core_relo = {}; 15726 struct bpf_prog *prog = env->prog; 15727 const struct btf *btf = prog->aux->btf; 15728 struct bpf_core_ctx ctx = { 15729 .log = &env->log, 15730 .btf = btf, 15731 }; 15732 bpfptr_t u_core_relo; 15733 int err; 15734 15735 nr_core_relo = attr->core_relo_cnt; 15736 if (!nr_core_relo) 15737 return 0; 15738 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15739 return -EINVAL; 15740 15741 rec_size = attr->core_relo_rec_size; 15742 if (rec_size < MIN_CORE_RELO_SIZE || 15743 rec_size > MAX_CORE_RELO_SIZE || 15744 rec_size % sizeof(u32)) 15745 return -EINVAL; 15746 15747 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15748 expected_size = sizeof(struct bpf_core_relo); 15749 ncopy = min_t(u32, expected_size, rec_size); 15750 15751 /* Unlike func_info and line_info, copy and apply each CO-RE 15752 * relocation record one at a time. 15753 */ 15754 for (i = 0; i < nr_core_relo; i++) { 15755 /* future proofing when sizeof(bpf_core_relo) changes */ 15756 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15757 if (err) { 15758 if (err == -E2BIG) { 15759 verbose(env, "nonzero tailing record in core_relo"); 15760 if (copy_to_bpfptr_offset(uattr, 15761 offsetof(union bpf_attr, core_relo_rec_size), 15762 &expected_size, sizeof(expected_size))) 15763 err = -EFAULT; 15764 } 15765 break; 15766 } 15767 15768 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15769 err = -EFAULT; 15770 break; 15771 } 15772 15773 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15774 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15775 i, core_relo.insn_off, prog->len); 15776 err = -EINVAL; 15777 break; 15778 } 15779 15780 err = bpf_core_apply(&ctx, &core_relo, i, 15781 &prog->insnsi[core_relo.insn_off / 8]); 15782 if (err) 15783 break; 15784 bpfptr_add(&u_core_relo, rec_size); 15785 } 15786 return err; 15787 } 15788 15789 static int check_btf_info(struct bpf_verifier_env *env, 15790 const union bpf_attr *attr, 15791 bpfptr_t uattr) 15792 { 15793 struct btf *btf; 15794 int err; 15795 15796 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15797 if (check_abnormal_return(env)) 15798 return -EINVAL; 15799 return 0; 15800 } 15801 15802 btf = btf_get_by_fd(attr->prog_btf_fd); 15803 if (IS_ERR(btf)) 15804 return PTR_ERR(btf); 15805 if (btf_is_kernel(btf)) { 15806 btf_put(btf); 15807 return -EACCES; 15808 } 15809 env->prog->aux->btf = btf; 15810 15811 err = check_btf_func(env, attr, uattr); 15812 if (err) 15813 return err; 15814 15815 err = check_btf_line(env, attr, uattr); 15816 if (err) 15817 return err; 15818 15819 err = check_core_relo(env, attr, uattr); 15820 if (err) 15821 return err; 15822 15823 return 0; 15824 } 15825 15826 /* check %cur's range satisfies %old's */ 15827 static bool range_within(struct bpf_reg_state *old, 15828 struct bpf_reg_state *cur) 15829 { 15830 return old->umin_value <= cur->umin_value && 15831 old->umax_value >= cur->umax_value && 15832 old->smin_value <= cur->smin_value && 15833 old->smax_value >= cur->smax_value && 15834 old->u32_min_value <= cur->u32_min_value && 15835 old->u32_max_value >= cur->u32_max_value && 15836 old->s32_min_value <= cur->s32_min_value && 15837 old->s32_max_value >= cur->s32_max_value; 15838 } 15839 15840 /* If in the old state two registers had the same id, then they need to have 15841 * the same id in the new state as well. But that id could be different from 15842 * the old state, so we need to track the mapping from old to new ids. 15843 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15844 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15845 * regs with a different old id could still have new id 9, we don't care about 15846 * that. 15847 * So we look through our idmap to see if this old id has been seen before. If 15848 * so, we require the new id to match; otherwise, we add the id pair to the map. 15849 */ 15850 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15851 { 15852 struct bpf_id_pair *map = idmap->map; 15853 unsigned int i; 15854 15855 /* either both IDs should be set or both should be zero */ 15856 if (!!old_id != !!cur_id) 15857 return false; 15858 15859 if (old_id == 0) /* cur_id == 0 as well */ 15860 return true; 15861 15862 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15863 if (!map[i].old) { 15864 /* Reached an empty slot; haven't seen this id before */ 15865 map[i].old = old_id; 15866 map[i].cur = cur_id; 15867 return true; 15868 } 15869 if (map[i].old == old_id) 15870 return map[i].cur == cur_id; 15871 if (map[i].cur == cur_id) 15872 return false; 15873 } 15874 /* We ran out of idmap slots, which should be impossible */ 15875 WARN_ON_ONCE(1); 15876 return false; 15877 } 15878 15879 /* Similar to check_ids(), but allocate a unique temporary ID 15880 * for 'old_id' or 'cur_id' of zero. 15881 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15882 */ 15883 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15884 { 15885 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15886 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15887 15888 return check_ids(old_id, cur_id, idmap); 15889 } 15890 15891 static void clean_func_state(struct bpf_verifier_env *env, 15892 struct bpf_func_state *st) 15893 { 15894 enum bpf_reg_liveness live; 15895 int i, j; 15896 15897 for (i = 0; i < BPF_REG_FP; i++) { 15898 live = st->regs[i].live; 15899 /* liveness must not touch this register anymore */ 15900 st->regs[i].live |= REG_LIVE_DONE; 15901 if (!(live & REG_LIVE_READ)) 15902 /* since the register is unused, clear its state 15903 * to make further comparison simpler 15904 */ 15905 __mark_reg_not_init(env, &st->regs[i]); 15906 } 15907 15908 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15909 live = st->stack[i].spilled_ptr.live; 15910 /* liveness must not touch this stack slot anymore */ 15911 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15912 if (!(live & REG_LIVE_READ)) { 15913 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15914 for (j = 0; j < BPF_REG_SIZE; j++) 15915 st->stack[i].slot_type[j] = STACK_INVALID; 15916 } 15917 } 15918 } 15919 15920 static void clean_verifier_state(struct bpf_verifier_env *env, 15921 struct bpf_verifier_state *st) 15922 { 15923 int i; 15924 15925 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15926 /* all regs in this state in all frames were already marked */ 15927 return; 15928 15929 for (i = 0; i <= st->curframe; i++) 15930 clean_func_state(env, st->frame[i]); 15931 } 15932 15933 /* the parentage chains form a tree. 15934 * the verifier states are added to state lists at given insn and 15935 * pushed into state stack for future exploration. 15936 * when the verifier reaches bpf_exit insn some of the verifer states 15937 * stored in the state lists have their final liveness state already, 15938 * but a lot of states will get revised from liveness point of view when 15939 * the verifier explores other branches. 15940 * Example: 15941 * 1: r0 = 1 15942 * 2: if r1 == 100 goto pc+1 15943 * 3: r0 = 2 15944 * 4: exit 15945 * when the verifier reaches exit insn the register r0 in the state list of 15946 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15947 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15948 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15949 * 15950 * Since the verifier pushes the branch states as it sees them while exploring 15951 * the program the condition of walking the branch instruction for the second 15952 * time means that all states below this branch were already explored and 15953 * their final liveness marks are already propagated. 15954 * Hence when the verifier completes the search of state list in is_state_visited() 15955 * we can call this clean_live_states() function to mark all liveness states 15956 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15957 * will not be used. 15958 * This function also clears the registers and stack for states that !READ 15959 * to simplify state merging. 15960 * 15961 * Important note here that walking the same branch instruction in the callee 15962 * doesn't meant that the states are DONE. The verifier has to compare 15963 * the callsites 15964 */ 15965 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15966 struct bpf_verifier_state *cur) 15967 { 15968 struct bpf_verifier_state_list *sl; 15969 15970 sl = *explored_state(env, insn); 15971 while (sl) { 15972 if (sl->state.branches) 15973 goto next; 15974 if (sl->state.insn_idx != insn || 15975 !same_callsites(&sl->state, cur)) 15976 goto next; 15977 clean_verifier_state(env, &sl->state); 15978 next: 15979 sl = sl->next; 15980 } 15981 } 15982 15983 static bool regs_exact(const struct bpf_reg_state *rold, 15984 const struct bpf_reg_state *rcur, 15985 struct bpf_idmap *idmap) 15986 { 15987 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15988 check_ids(rold->id, rcur->id, idmap) && 15989 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15990 } 15991 15992 /* Returns true if (rold safe implies rcur safe) */ 15993 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15994 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) 15995 { 15996 if (exact) 15997 return regs_exact(rold, rcur, idmap); 15998 15999 if (!(rold->live & REG_LIVE_READ)) 16000 /* explored state didn't use this */ 16001 return true; 16002 if (rold->type == NOT_INIT) 16003 /* explored state can't have used this */ 16004 return true; 16005 if (rcur->type == NOT_INIT) 16006 return false; 16007 16008 /* Enforce that register types have to match exactly, including their 16009 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 16010 * rule. 16011 * 16012 * One can make a point that using a pointer register as unbounded 16013 * SCALAR would be technically acceptable, but this could lead to 16014 * pointer leaks because scalars are allowed to leak while pointers 16015 * are not. We could make this safe in special cases if root is 16016 * calling us, but it's probably not worth the hassle. 16017 * 16018 * Also, register types that are *not* MAYBE_NULL could technically be 16019 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 16020 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 16021 * to the same map). 16022 * However, if the old MAYBE_NULL register then got NULL checked, 16023 * doing so could have affected others with the same id, and we can't 16024 * check for that because we lost the id when we converted to 16025 * a non-MAYBE_NULL variant. 16026 * So, as a general rule we don't allow mixing MAYBE_NULL and 16027 * non-MAYBE_NULL registers as well. 16028 */ 16029 if (rold->type != rcur->type) 16030 return false; 16031 16032 switch (base_type(rold->type)) { 16033 case SCALAR_VALUE: 16034 if (env->explore_alu_limits) { 16035 /* explore_alu_limits disables tnum_in() and range_within() 16036 * logic and requires everything to be strict 16037 */ 16038 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16039 check_scalar_ids(rold->id, rcur->id, idmap); 16040 } 16041 if (!rold->precise) 16042 return true; 16043 /* Why check_ids() for scalar registers? 16044 * 16045 * Consider the following BPF code: 16046 * 1: r6 = ... unbound scalar, ID=a ... 16047 * 2: r7 = ... unbound scalar, ID=b ... 16048 * 3: if (r6 > r7) goto +1 16049 * 4: r6 = r7 16050 * 5: if (r6 > X) goto ... 16051 * 6: ... memory operation using r7 ... 16052 * 16053 * First verification path is [1-6]: 16054 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16055 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16056 * r7 <= X, because r6 and r7 share same id. 16057 * Next verification path is [1-4, 6]. 16058 * 16059 * Instruction (6) would be reached in two states: 16060 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16061 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16062 * 16063 * Use check_ids() to distinguish these states. 16064 * --- 16065 * Also verify that new value satisfies old value range knowledge. 16066 */ 16067 return range_within(rold, rcur) && 16068 tnum_in(rold->var_off, rcur->var_off) && 16069 check_scalar_ids(rold->id, rcur->id, idmap); 16070 case PTR_TO_MAP_KEY: 16071 case PTR_TO_MAP_VALUE: 16072 case PTR_TO_MEM: 16073 case PTR_TO_BUF: 16074 case PTR_TO_TP_BUFFER: 16075 /* If the new min/max/var_off satisfy the old ones and 16076 * everything else matches, we are OK. 16077 */ 16078 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16079 range_within(rold, rcur) && 16080 tnum_in(rold->var_off, rcur->var_off) && 16081 check_ids(rold->id, rcur->id, idmap) && 16082 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16083 case PTR_TO_PACKET_META: 16084 case PTR_TO_PACKET: 16085 /* We must have at least as much range as the old ptr 16086 * did, so that any accesses which were safe before are 16087 * still safe. This is true even if old range < old off, 16088 * since someone could have accessed through (ptr - k), or 16089 * even done ptr -= k in a register, to get a safe access. 16090 */ 16091 if (rold->range > rcur->range) 16092 return false; 16093 /* If the offsets don't match, we can't trust our alignment; 16094 * nor can we be sure that we won't fall out of range. 16095 */ 16096 if (rold->off != rcur->off) 16097 return false; 16098 /* id relations must be preserved */ 16099 if (!check_ids(rold->id, rcur->id, idmap)) 16100 return false; 16101 /* new val must satisfy old val knowledge */ 16102 return range_within(rold, rcur) && 16103 tnum_in(rold->var_off, rcur->var_off); 16104 case PTR_TO_STACK: 16105 /* two stack pointers are equal only if they're pointing to 16106 * the same stack frame, since fp-8 in foo != fp-8 in bar 16107 */ 16108 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16109 default: 16110 return regs_exact(rold, rcur, idmap); 16111 } 16112 } 16113 16114 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16115 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) 16116 { 16117 int i, spi; 16118 16119 /* walk slots of the explored stack and ignore any additional 16120 * slots in the current stack, since explored(safe) state 16121 * didn't use them 16122 */ 16123 for (i = 0; i < old->allocated_stack; i++) { 16124 struct bpf_reg_state *old_reg, *cur_reg; 16125 16126 spi = i / BPF_REG_SIZE; 16127 16128 if (exact && 16129 (i >= cur->allocated_stack || 16130 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16131 cur->stack[spi].slot_type[i % BPF_REG_SIZE])) 16132 return false; 16133 16134 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { 16135 i += BPF_REG_SIZE - 1; 16136 /* explored state didn't use this */ 16137 continue; 16138 } 16139 16140 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16141 continue; 16142 16143 if (env->allow_uninit_stack && 16144 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16145 continue; 16146 16147 /* explored stack has more populated slots than current stack 16148 * and these slots were used 16149 */ 16150 if (i >= cur->allocated_stack) 16151 return false; 16152 16153 /* if old state was safe with misc data in the stack 16154 * it will be safe with zero-initialized stack. 16155 * The opposite is not true 16156 */ 16157 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16158 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16159 continue; 16160 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16161 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16162 /* Ex: old explored (safe) state has STACK_SPILL in 16163 * this stack slot, but current has STACK_MISC -> 16164 * this verifier states are not equivalent, 16165 * return false to continue verification of this path 16166 */ 16167 return false; 16168 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16169 continue; 16170 /* Both old and cur are having same slot_type */ 16171 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16172 case STACK_SPILL: 16173 /* when explored and current stack slot are both storing 16174 * spilled registers, check that stored pointers types 16175 * are the same as well. 16176 * Ex: explored safe path could have stored 16177 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16178 * but current path has stored: 16179 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16180 * such verifier states are not equivalent. 16181 * return false to continue verification of this path 16182 */ 16183 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16184 &cur->stack[spi].spilled_ptr, idmap, exact)) 16185 return false; 16186 break; 16187 case STACK_DYNPTR: 16188 old_reg = &old->stack[spi].spilled_ptr; 16189 cur_reg = &cur->stack[spi].spilled_ptr; 16190 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16191 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16192 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16193 return false; 16194 break; 16195 case STACK_ITER: 16196 old_reg = &old->stack[spi].spilled_ptr; 16197 cur_reg = &cur->stack[spi].spilled_ptr; 16198 /* iter.depth is not compared between states as it 16199 * doesn't matter for correctness and would otherwise 16200 * prevent convergence; we maintain it only to prevent 16201 * infinite loop check triggering, see 16202 * iter_active_depths_differ() 16203 */ 16204 if (old_reg->iter.btf != cur_reg->iter.btf || 16205 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16206 old_reg->iter.state != cur_reg->iter.state || 16207 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16208 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16209 return false; 16210 break; 16211 case STACK_MISC: 16212 case STACK_ZERO: 16213 case STACK_INVALID: 16214 continue; 16215 /* Ensure that new unhandled slot types return false by default */ 16216 default: 16217 return false; 16218 } 16219 } 16220 return true; 16221 } 16222 16223 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16224 struct bpf_idmap *idmap) 16225 { 16226 int i; 16227 16228 if (old->acquired_refs != cur->acquired_refs) 16229 return false; 16230 16231 for (i = 0; i < old->acquired_refs; i++) { 16232 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16233 return false; 16234 } 16235 16236 return true; 16237 } 16238 16239 /* compare two verifier states 16240 * 16241 * all states stored in state_list are known to be valid, since 16242 * verifier reached 'bpf_exit' instruction through them 16243 * 16244 * this function is called when verifier exploring different branches of 16245 * execution popped from the state stack. If it sees an old state that has 16246 * more strict register state and more strict stack state then this execution 16247 * branch doesn't need to be explored further, since verifier already 16248 * concluded that more strict state leads to valid finish. 16249 * 16250 * Therefore two states are equivalent if register state is more conservative 16251 * and explored stack state is more conservative than the current one. 16252 * Example: 16253 * explored current 16254 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16255 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16256 * 16257 * In other words if current stack state (one being explored) has more 16258 * valid slots than old one that already passed validation, it means 16259 * the verifier can stop exploring and conclude that current state is valid too 16260 * 16261 * Similarly with registers. If explored state has register type as invalid 16262 * whereas register type in current state is meaningful, it means that 16263 * the current state will reach 'bpf_exit' instruction safely 16264 */ 16265 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 16266 struct bpf_func_state *cur, bool exact) 16267 { 16268 int i; 16269 16270 if (old->callback_depth > cur->callback_depth) 16271 return false; 16272 16273 for (i = 0; i < MAX_BPF_REG; i++) 16274 if (!regsafe(env, &old->regs[i], &cur->regs[i], 16275 &env->idmap_scratch, exact)) 16276 return false; 16277 16278 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 16279 return false; 16280 16281 if (!refsafe(old, cur, &env->idmap_scratch)) 16282 return false; 16283 16284 return true; 16285 } 16286 16287 static void reset_idmap_scratch(struct bpf_verifier_env *env) 16288 { 16289 env->idmap_scratch.tmp_id_gen = env->id_gen; 16290 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 16291 } 16292 16293 static bool states_equal(struct bpf_verifier_env *env, 16294 struct bpf_verifier_state *old, 16295 struct bpf_verifier_state *cur, 16296 bool exact) 16297 { 16298 int i; 16299 16300 if (old->curframe != cur->curframe) 16301 return false; 16302 16303 reset_idmap_scratch(env); 16304 16305 /* Verification state from speculative execution simulation 16306 * must never prune a non-speculative execution one. 16307 */ 16308 if (old->speculative && !cur->speculative) 16309 return false; 16310 16311 if (old->active_lock.ptr != cur->active_lock.ptr) 16312 return false; 16313 16314 /* Old and cur active_lock's have to be either both present 16315 * or both absent. 16316 */ 16317 if (!!old->active_lock.id != !!cur->active_lock.id) 16318 return false; 16319 16320 if (old->active_lock.id && 16321 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 16322 return false; 16323 16324 if (old->active_rcu_lock != cur->active_rcu_lock) 16325 return false; 16326 16327 /* for states to be equal callsites have to be the same 16328 * and all frame states need to be equivalent 16329 */ 16330 for (i = 0; i <= old->curframe; i++) { 16331 if (old->frame[i]->callsite != cur->frame[i]->callsite) 16332 return false; 16333 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 16334 return false; 16335 } 16336 return true; 16337 } 16338 16339 /* Return 0 if no propagation happened. Return negative error code if error 16340 * happened. Otherwise, return the propagated bit. 16341 */ 16342 static int propagate_liveness_reg(struct bpf_verifier_env *env, 16343 struct bpf_reg_state *reg, 16344 struct bpf_reg_state *parent_reg) 16345 { 16346 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 16347 u8 flag = reg->live & REG_LIVE_READ; 16348 int err; 16349 16350 /* When comes here, read flags of PARENT_REG or REG could be any of 16351 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 16352 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 16353 */ 16354 if (parent_flag == REG_LIVE_READ64 || 16355 /* Or if there is no read flag from REG. */ 16356 !flag || 16357 /* Or if the read flag from REG is the same as PARENT_REG. */ 16358 parent_flag == flag) 16359 return 0; 16360 16361 err = mark_reg_read(env, reg, parent_reg, flag); 16362 if (err) 16363 return err; 16364 16365 return flag; 16366 } 16367 16368 /* A write screens off any subsequent reads; but write marks come from the 16369 * straight-line code between a state and its parent. When we arrive at an 16370 * equivalent state (jump target or such) we didn't arrive by the straight-line 16371 * code, so read marks in the state must propagate to the parent regardless 16372 * of the state's write marks. That's what 'parent == state->parent' comparison 16373 * in mark_reg_read() is for. 16374 */ 16375 static int propagate_liveness(struct bpf_verifier_env *env, 16376 const struct bpf_verifier_state *vstate, 16377 struct bpf_verifier_state *vparent) 16378 { 16379 struct bpf_reg_state *state_reg, *parent_reg; 16380 struct bpf_func_state *state, *parent; 16381 int i, frame, err = 0; 16382 16383 if (vparent->curframe != vstate->curframe) { 16384 WARN(1, "propagate_live: parent frame %d current frame %d\n", 16385 vparent->curframe, vstate->curframe); 16386 return -EFAULT; 16387 } 16388 /* Propagate read liveness of registers... */ 16389 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 16390 for (frame = 0; frame <= vstate->curframe; frame++) { 16391 parent = vparent->frame[frame]; 16392 state = vstate->frame[frame]; 16393 parent_reg = parent->regs; 16394 state_reg = state->regs; 16395 /* We don't need to worry about FP liveness, it's read-only */ 16396 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 16397 err = propagate_liveness_reg(env, &state_reg[i], 16398 &parent_reg[i]); 16399 if (err < 0) 16400 return err; 16401 if (err == REG_LIVE_READ64) 16402 mark_insn_zext(env, &parent_reg[i]); 16403 } 16404 16405 /* Propagate stack slots. */ 16406 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 16407 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 16408 parent_reg = &parent->stack[i].spilled_ptr; 16409 state_reg = &state->stack[i].spilled_ptr; 16410 err = propagate_liveness_reg(env, state_reg, 16411 parent_reg); 16412 if (err < 0) 16413 return err; 16414 } 16415 } 16416 return 0; 16417 } 16418 16419 /* find precise scalars in the previous equivalent state and 16420 * propagate them into the current state 16421 */ 16422 static int propagate_precision(struct bpf_verifier_env *env, 16423 const struct bpf_verifier_state *old) 16424 { 16425 struct bpf_reg_state *state_reg; 16426 struct bpf_func_state *state; 16427 int i, err = 0, fr; 16428 bool first; 16429 16430 for (fr = old->curframe; fr >= 0; fr--) { 16431 state = old->frame[fr]; 16432 state_reg = state->regs; 16433 first = true; 16434 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 16435 if (state_reg->type != SCALAR_VALUE || 16436 !state_reg->precise || 16437 !(state_reg->live & REG_LIVE_READ)) 16438 continue; 16439 if (env->log.level & BPF_LOG_LEVEL2) { 16440 if (first) 16441 verbose(env, "frame %d: propagating r%d", fr, i); 16442 else 16443 verbose(env, ",r%d", i); 16444 } 16445 bt_set_frame_reg(&env->bt, fr, i); 16446 first = false; 16447 } 16448 16449 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16450 if (!is_spilled_reg(&state->stack[i])) 16451 continue; 16452 state_reg = &state->stack[i].spilled_ptr; 16453 if (state_reg->type != SCALAR_VALUE || 16454 !state_reg->precise || 16455 !(state_reg->live & REG_LIVE_READ)) 16456 continue; 16457 if (env->log.level & BPF_LOG_LEVEL2) { 16458 if (first) 16459 verbose(env, "frame %d: propagating fp%d", 16460 fr, (-i - 1) * BPF_REG_SIZE); 16461 else 16462 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16463 } 16464 bt_set_frame_slot(&env->bt, fr, i); 16465 first = false; 16466 } 16467 if (!first) 16468 verbose(env, "\n"); 16469 } 16470 16471 err = mark_chain_precision_batch(env); 16472 if (err < 0) 16473 return err; 16474 16475 return 0; 16476 } 16477 16478 static bool states_maybe_looping(struct bpf_verifier_state *old, 16479 struct bpf_verifier_state *cur) 16480 { 16481 struct bpf_func_state *fold, *fcur; 16482 int i, fr = cur->curframe; 16483 16484 if (old->curframe != fr) 16485 return false; 16486 16487 fold = old->frame[fr]; 16488 fcur = cur->frame[fr]; 16489 for (i = 0; i < MAX_BPF_REG; i++) 16490 if (memcmp(&fold->regs[i], &fcur->regs[i], 16491 offsetof(struct bpf_reg_state, parent))) 16492 return false; 16493 return true; 16494 } 16495 16496 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16497 { 16498 return env->insn_aux_data[insn_idx].is_iter_next; 16499 } 16500 16501 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16502 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16503 * states to match, which otherwise would look like an infinite loop. So while 16504 * iter_next() calls are taken care of, we still need to be careful and 16505 * prevent erroneous and too eager declaration of "ininite loop", when 16506 * iterators are involved. 16507 * 16508 * Here's a situation in pseudo-BPF assembly form: 16509 * 16510 * 0: again: ; set up iter_next() call args 16511 * 1: r1 = &it ; <CHECKPOINT HERE> 16512 * 2: call bpf_iter_num_next ; this is iter_next() call 16513 * 3: if r0 == 0 goto done 16514 * 4: ... something useful here ... 16515 * 5: goto again ; another iteration 16516 * 6: done: 16517 * 7: r1 = &it 16518 * 8: call bpf_iter_num_destroy ; clean up iter state 16519 * 9: exit 16520 * 16521 * This is a typical loop. Let's assume that we have a prune point at 1:, 16522 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16523 * again`, assuming other heuristics don't get in a way). 16524 * 16525 * When we first time come to 1:, let's say we have some state X. We proceed 16526 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16527 * Now we come back to validate that forked ACTIVE state. We proceed through 16528 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16529 * are converging. But the problem is that we don't know that yet, as this 16530 * convergence has to happen at iter_next() call site only. So if nothing is 16531 * done, at 1: verifier will use bounded loop logic and declare infinite 16532 * looping (and would be *technically* correct, if not for iterator's 16533 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16534 * don't want that. So what we do in process_iter_next_call() when we go on 16535 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16536 * a different iteration. So when we suspect an infinite loop, we additionally 16537 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16538 * pretend we are not looping and wait for next iter_next() call. 16539 * 16540 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16541 * loop, because that would actually mean infinite loop, as DRAINED state is 16542 * "sticky", and so we'll keep returning into the same instruction with the 16543 * same state (at least in one of possible code paths). 16544 * 16545 * This approach allows to keep infinite loop heuristic even in the face of 16546 * active iterator. E.g., C snippet below is and will be detected as 16547 * inifintely looping: 16548 * 16549 * struct bpf_iter_num it; 16550 * int *p, x; 16551 * 16552 * bpf_iter_num_new(&it, 0, 10); 16553 * while ((p = bpf_iter_num_next(&t))) { 16554 * x = p; 16555 * while (x--) {} // <<-- infinite loop here 16556 * } 16557 * 16558 */ 16559 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16560 { 16561 struct bpf_reg_state *slot, *cur_slot; 16562 struct bpf_func_state *state; 16563 int i, fr; 16564 16565 for (fr = old->curframe; fr >= 0; fr--) { 16566 state = old->frame[fr]; 16567 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16568 if (state->stack[i].slot_type[0] != STACK_ITER) 16569 continue; 16570 16571 slot = &state->stack[i].spilled_ptr; 16572 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16573 continue; 16574 16575 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16576 if (cur_slot->iter.depth != slot->iter.depth) 16577 return true; 16578 } 16579 } 16580 return false; 16581 } 16582 16583 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16584 { 16585 struct bpf_verifier_state_list *new_sl; 16586 struct bpf_verifier_state_list *sl, **pprev; 16587 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 16588 int i, j, n, err, states_cnt = 0; 16589 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16590 bool add_new_state = force_new_state; 16591 bool force_exact; 16592 16593 /* bpf progs typically have pruning point every 4 instructions 16594 * http://vger.kernel.org/bpfconf2019.html#session-1 16595 * Do not add new state for future pruning if the verifier hasn't seen 16596 * at least 2 jumps and at least 8 instructions. 16597 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16598 * In tests that amounts to up to 50% reduction into total verifier 16599 * memory consumption and 20% verifier time speedup. 16600 */ 16601 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16602 env->insn_processed - env->prev_insn_processed >= 8) 16603 add_new_state = true; 16604 16605 pprev = explored_state(env, insn_idx); 16606 sl = *pprev; 16607 16608 clean_live_states(env, insn_idx, cur); 16609 16610 while (sl) { 16611 states_cnt++; 16612 if (sl->state.insn_idx != insn_idx) 16613 goto next; 16614 16615 if (sl->state.branches) { 16616 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16617 16618 if (frame->in_async_callback_fn && 16619 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16620 /* Different async_entry_cnt means that the verifier is 16621 * processing another entry into async callback. 16622 * Seeing the same state is not an indication of infinite 16623 * loop or infinite recursion. 16624 * But finding the same state doesn't mean that it's safe 16625 * to stop processing the current state. The previous state 16626 * hasn't yet reached bpf_exit, since state.branches > 0. 16627 * Checking in_async_callback_fn alone is not enough either. 16628 * Since the verifier still needs to catch infinite loops 16629 * inside async callbacks. 16630 */ 16631 goto skip_inf_loop_check; 16632 } 16633 /* BPF open-coded iterators loop detection is special. 16634 * states_maybe_looping() logic is too simplistic in detecting 16635 * states that *might* be equivalent, because it doesn't know 16636 * about ID remapping, so don't even perform it. 16637 * See process_iter_next_call() and iter_active_depths_differ() 16638 * for overview of the logic. When current and one of parent 16639 * states are detected as equivalent, it's a good thing: we prove 16640 * convergence and can stop simulating further iterations. 16641 * It's safe to assume that iterator loop will finish, taking into 16642 * account iter_next() contract of eventually returning 16643 * sticky NULL result. 16644 * 16645 * Note, that states have to be compared exactly in this case because 16646 * read and precision marks might not be finalized inside the loop. 16647 * E.g. as in the program below: 16648 * 16649 * 1. r7 = -16 16650 * 2. r6 = bpf_get_prandom_u32() 16651 * 3. while (bpf_iter_num_next(&fp[-8])) { 16652 * 4. if (r6 != 42) { 16653 * 5. r7 = -32 16654 * 6. r6 = bpf_get_prandom_u32() 16655 * 7. continue 16656 * 8. } 16657 * 9. r0 = r10 16658 * 10. r0 += r7 16659 * 11. r8 = *(u64 *)(r0 + 0) 16660 * 12. r6 = bpf_get_prandom_u32() 16661 * 13. } 16662 * 16663 * Here verifier would first visit path 1-3, create a checkpoint at 3 16664 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 16665 * not have read or precision mark for r7 yet, thus inexact states 16666 * comparison would discard current state with r7=-32 16667 * => unsafe memory access at 11 would not be caught. 16668 */ 16669 if (is_iter_next_insn(env, insn_idx)) { 16670 if (states_equal(env, &sl->state, cur, true)) { 16671 struct bpf_func_state *cur_frame; 16672 struct bpf_reg_state *iter_state, *iter_reg; 16673 int spi; 16674 16675 cur_frame = cur->frame[cur->curframe]; 16676 /* btf_check_iter_kfuncs() enforces that 16677 * iter state pointer is always the first arg 16678 */ 16679 iter_reg = &cur_frame->regs[BPF_REG_1]; 16680 /* current state is valid due to states_equal(), 16681 * so we can assume valid iter and reg state, 16682 * no need for extra (re-)validations 16683 */ 16684 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16685 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16686 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 16687 update_loop_entry(cur, &sl->state); 16688 goto hit; 16689 } 16690 } 16691 goto skip_inf_loop_check; 16692 } 16693 if (calls_callback(env, insn_idx)) { 16694 if (states_equal(env, &sl->state, cur, true)) 16695 goto hit; 16696 goto skip_inf_loop_check; 16697 } 16698 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16699 if (states_maybe_looping(&sl->state, cur) && 16700 states_equal(env, &sl->state, cur, false) && 16701 !iter_active_depths_differ(&sl->state, cur) && 16702 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 16703 verbose_linfo(env, insn_idx, "; "); 16704 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16705 verbose(env, "cur state:"); 16706 print_verifier_state(env, cur->frame[cur->curframe], true); 16707 verbose(env, "old state:"); 16708 print_verifier_state(env, sl->state.frame[cur->curframe], true); 16709 return -EINVAL; 16710 } 16711 /* if the verifier is processing a loop, avoid adding new state 16712 * too often, since different loop iterations have distinct 16713 * states and may not help future pruning. 16714 * This threshold shouldn't be too low to make sure that 16715 * a loop with large bound will be rejected quickly. 16716 * The most abusive loop will be: 16717 * r1 += 1 16718 * if r1 < 1000000 goto pc-2 16719 * 1M insn_procssed limit / 100 == 10k peak states. 16720 * This threshold shouldn't be too high either, since states 16721 * at the end of the loop are likely to be useful in pruning. 16722 */ 16723 skip_inf_loop_check: 16724 if (!force_new_state && 16725 env->jmps_processed - env->prev_jmps_processed < 20 && 16726 env->insn_processed - env->prev_insn_processed < 100) 16727 add_new_state = false; 16728 goto miss; 16729 } 16730 /* If sl->state is a part of a loop and this loop's entry is a part of 16731 * current verification path then states have to be compared exactly. 16732 * 'force_exact' is needed to catch the following case: 16733 * 16734 * initial Here state 'succ' was processed first, 16735 * | it was eventually tracked to produce a 16736 * V state identical to 'hdr'. 16737 * .---------> hdr All branches from 'succ' had been explored 16738 * | | and thus 'succ' has its .branches == 0. 16739 * | V 16740 * | .------... Suppose states 'cur' and 'succ' correspond 16741 * | | | to the same instruction + callsites. 16742 * | V V In such case it is necessary to check 16743 * | ... ... if 'succ' and 'cur' are states_equal(). 16744 * | | | If 'succ' and 'cur' are a part of the 16745 * | V V same loop exact flag has to be set. 16746 * | succ <- cur To check if that is the case, verify 16747 * | | if loop entry of 'succ' is in current 16748 * | V DFS path. 16749 * | ... 16750 * | | 16751 * '----' 16752 * 16753 * Additional details are in the comment before get_loop_entry(). 16754 */ 16755 loop_entry = get_loop_entry(&sl->state); 16756 force_exact = loop_entry && loop_entry->branches > 0; 16757 if (states_equal(env, &sl->state, cur, force_exact)) { 16758 if (force_exact) 16759 update_loop_entry(cur, loop_entry); 16760 hit: 16761 sl->hit_cnt++; 16762 /* reached equivalent register/stack state, 16763 * prune the search. 16764 * Registers read by the continuation are read by us. 16765 * If we have any write marks in env->cur_state, they 16766 * will prevent corresponding reads in the continuation 16767 * from reaching our parent (an explored_state). Our 16768 * own state will get the read marks recorded, but 16769 * they'll be immediately forgotten as we're pruning 16770 * this state and will pop a new one. 16771 */ 16772 err = propagate_liveness(env, &sl->state, cur); 16773 16774 /* if previous state reached the exit with precision and 16775 * current state is equivalent to it (except precsion marks) 16776 * the precision needs to be propagated back in 16777 * the current state. 16778 */ 16779 err = err ? : push_jmp_history(env, cur); 16780 err = err ? : propagate_precision(env, &sl->state); 16781 if (err) 16782 return err; 16783 return 1; 16784 } 16785 miss: 16786 /* when new state is not going to be added do not increase miss count. 16787 * Otherwise several loop iterations will remove the state 16788 * recorded earlier. The goal of these heuristics is to have 16789 * states from some iterations of the loop (some in the beginning 16790 * and some at the end) to help pruning. 16791 */ 16792 if (add_new_state) 16793 sl->miss_cnt++; 16794 /* heuristic to determine whether this state is beneficial 16795 * to keep checking from state equivalence point of view. 16796 * Higher numbers increase max_states_per_insn and verification time, 16797 * but do not meaningfully decrease insn_processed. 16798 * 'n' controls how many times state could miss before eviction. 16799 * Use bigger 'n' for checkpoints because evicting checkpoint states 16800 * too early would hinder iterator convergence. 16801 */ 16802 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 16803 if (sl->miss_cnt > sl->hit_cnt * n + n) { 16804 /* the state is unlikely to be useful. Remove it to 16805 * speed up verification 16806 */ 16807 *pprev = sl->next; 16808 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 16809 !sl->state.used_as_loop_entry) { 16810 u32 br = sl->state.branches; 16811 16812 WARN_ONCE(br, 16813 "BUG live_done but branches_to_explore %d\n", 16814 br); 16815 free_verifier_state(&sl->state, false); 16816 kfree(sl); 16817 env->peak_states--; 16818 } else { 16819 /* cannot free this state, since parentage chain may 16820 * walk it later. Add it for free_list instead to 16821 * be freed at the end of verification 16822 */ 16823 sl->next = env->free_list; 16824 env->free_list = sl; 16825 } 16826 sl = *pprev; 16827 continue; 16828 } 16829 next: 16830 pprev = &sl->next; 16831 sl = *pprev; 16832 } 16833 16834 if (env->max_states_per_insn < states_cnt) 16835 env->max_states_per_insn = states_cnt; 16836 16837 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16838 return 0; 16839 16840 if (!add_new_state) 16841 return 0; 16842 16843 /* There were no equivalent states, remember the current one. 16844 * Technically the current state is not proven to be safe yet, 16845 * but it will either reach outer most bpf_exit (which means it's safe) 16846 * or it will be rejected. When there are no loops the verifier won't be 16847 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16848 * again on the way to bpf_exit. 16849 * When looping the sl->state.branches will be > 0 and this state 16850 * will not be considered for equivalence until branches == 0. 16851 */ 16852 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16853 if (!new_sl) 16854 return -ENOMEM; 16855 env->total_states++; 16856 env->peak_states++; 16857 env->prev_jmps_processed = env->jmps_processed; 16858 env->prev_insn_processed = env->insn_processed; 16859 16860 /* forget precise markings we inherited, see __mark_chain_precision */ 16861 if (env->bpf_capable) 16862 mark_all_scalars_imprecise(env, cur); 16863 16864 /* add new state to the head of linked list */ 16865 new = &new_sl->state; 16866 err = copy_verifier_state(new, cur); 16867 if (err) { 16868 free_verifier_state(new, false); 16869 kfree(new_sl); 16870 return err; 16871 } 16872 new->insn_idx = insn_idx; 16873 WARN_ONCE(new->branches != 1, 16874 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16875 16876 cur->parent = new; 16877 cur->first_insn_idx = insn_idx; 16878 cur->dfs_depth = new->dfs_depth + 1; 16879 clear_jmp_history(cur); 16880 new_sl->next = *explored_state(env, insn_idx); 16881 *explored_state(env, insn_idx) = new_sl; 16882 /* connect new state to parentage chain. Current frame needs all 16883 * registers connected. Only r6 - r9 of the callers are alive (pushed 16884 * to the stack implicitly by JITs) so in callers' frames connect just 16885 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16886 * the state of the call instruction (with WRITTEN set), and r0 comes 16887 * from callee with its full parentage chain, anyway. 16888 */ 16889 /* clear write marks in current state: the writes we did are not writes 16890 * our child did, so they don't screen off its reads from us. 16891 * (There are no read marks in current state, because reads always mark 16892 * their parent and current state never has children yet. Only 16893 * explored_states can get read marks.) 16894 */ 16895 for (j = 0; j <= cur->curframe; j++) { 16896 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16897 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16898 for (i = 0; i < BPF_REG_FP; i++) 16899 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16900 } 16901 16902 /* all stack frames are accessible from callee, clear them all */ 16903 for (j = 0; j <= cur->curframe; j++) { 16904 struct bpf_func_state *frame = cur->frame[j]; 16905 struct bpf_func_state *newframe = new->frame[j]; 16906 16907 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16908 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16909 frame->stack[i].spilled_ptr.parent = 16910 &newframe->stack[i].spilled_ptr; 16911 } 16912 } 16913 return 0; 16914 } 16915 16916 /* Return true if it's OK to have the same insn return a different type. */ 16917 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16918 { 16919 switch (base_type(type)) { 16920 case PTR_TO_CTX: 16921 case PTR_TO_SOCKET: 16922 case PTR_TO_SOCK_COMMON: 16923 case PTR_TO_TCP_SOCK: 16924 case PTR_TO_XDP_SOCK: 16925 case PTR_TO_BTF_ID: 16926 return false; 16927 default: 16928 return true; 16929 } 16930 } 16931 16932 /* If an instruction was previously used with particular pointer types, then we 16933 * need to be careful to avoid cases such as the below, where it may be ok 16934 * for one branch accessing the pointer, but not ok for the other branch: 16935 * 16936 * R1 = sock_ptr 16937 * goto X; 16938 * ... 16939 * R1 = some_other_valid_ptr; 16940 * goto X; 16941 * ... 16942 * R2 = *(u32 *)(R1 + 0); 16943 */ 16944 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16945 { 16946 return src != prev && (!reg_type_mismatch_ok(src) || 16947 !reg_type_mismatch_ok(prev)); 16948 } 16949 16950 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16951 bool allow_trust_missmatch) 16952 { 16953 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16954 16955 if (*prev_type == NOT_INIT) { 16956 /* Saw a valid insn 16957 * dst_reg = *(u32 *)(src_reg + off) 16958 * save type to validate intersecting paths 16959 */ 16960 *prev_type = type; 16961 } else if (reg_type_mismatch(type, *prev_type)) { 16962 /* Abuser program is trying to use the same insn 16963 * dst_reg = *(u32*) (src_reg + off) 16964 * with different pointer types: 16965 * src_reg == ctx in one branch and 16966 * src_reg == stack|map in some other branch. 16967 * Reject it. 16968 */ 16969 if (allow_trust_missmatch && 16970 base_type(type) == PTR_TO_BTF_ID && 16971 base_type(*prev_type) == PTR_TO_BTF_ID) { 16972 /* 16973 * Have to support a use case when one path through 16974 * the program yields TRUSTED pointer while another 16975 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16976 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16977 */ 16978 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16979 } else { 16980 verbose(env, "same insn cannot be used with different pointers\n"); 16981 return -EINVAL; 16982 } 16983 } 16984 16985 return 0; 16986 } 16987 16988 static int do_check(struct bpf_verifier_env *env) 16989 { 16990 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16991 struct bpf_verifier_state *state = env->cur_state; 16992 struct bpf_insn *insns = env->prog->insnsi; 16993 struct bpf_reg_state *regs; 16994 int insn_cnt = env->prog->len; 16995 bool do_print_state = false; 16996 int prev_insn_idx = -1; 16997 16998 for (;;) { 16999 struct bpf_insn *insn; 17000 u8 class; 17001 int err; 17002 17003 env->prev_insn_idx = prev_insn_idx; 17004 if (env->insn_idx >= insn_cnt) { 17005 verbose(env, "invalid insn idx %d insn_cnt %d\n", 17006 env->insn_idx, insn_cnt); 17007 return -EFAULT; 17008 } 17009 17010 insn = &insns[env->insn_idx]; 17011 class = BPF_CLASS(insn->code); 17012 17013 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 17014 verbose(env, 17015 "BPF program is too large. Processed %d insn\n", 17016 env->insn_processed); 17017 return -E2BIG; 17018 } 17019 17020 state->last_insn_idx = env->prev_insn_idx; 17021 17022 if (is_prune_point(env, env->insn_idx)) { 17023 err = is_state_visited(env, env->insn_idx); 17024 if (err < 0) 17025 return err; 17026 if (err == 1) { 17027 /* found equivalent state, can prune the search */ 17028 if (env->log.level & BPF_LOG_LEVEL) { 17029 if (do_print_state) 17030 verbose(env, "\nfrom %d to %d%s: safe\n", 17031 env->prev_insn_idx, env->insn_idx, 17032 env->cur_state->speculative ? 17033 " (speculative execution)" : ""); 17034 else 17035 verbose(env, "%d: safe\n", env->insn_idx); 17036 } 17037 goto process_bpf_exit; 17038 } 17039 } 17040 17041 if (is_jmp_point(env, env->insn_idx)) { 17042 err = push_jmp_history(env, state); 17043 if (err) 17044 return err; 17045 } 17046 17047 if (signal_pending(current)) 17048 return -EAGAIN; 17049 17050 if (need_resched()) 17051 cond_resched(); 17052 17053 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17054 verbose(env, "\nfrom %d to %d%s:", 17055 env->prev_insn_idx, env->insn_idx, 17056 env->cur_state->speculative ? 17057 " (speculative execution)" : ""); 17058 print_verifier_state(env, state->frame[state->curframe], true); 17059 do_print_state = false; 17060 } 17061 17062 if (env->log.level & BPF_LOG_LEVEL) { 17063 const struct bpf_insn_cbs cbs = { 17064 .cb_call = disasm_kfunc_name, 17065 .cb_print = verbose, 17066 .private_data = env, 17067 }; 17068 17069 if (verifier_state_scratched(env)) 17070 print_insn_state(env, state->frame[state->curframe]); 17071 17072 verbose_linfo(env, env->insn_idx, "; "); 17073 env->prev_log_pos = env->log.end_pos; 17074 verbose(env, "%d: ", env->insn_idx); 17075 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17076 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17077 env->prev_log_pos = env->log.end_pos; 17078 } 17079 17080 if (bpf_prog_is_offloaded(env->prog->aux)) { 17081 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17082 env->prev_insn_idx); 17083 if (err) 17084 return err; 17085 } 17086 17087 regs = cur_regs(env); 17088 sanitize_mark_insn_seen(env); 17089 prev_insn_idx = env->insn_idx; 17090 17091 if (class == BPF_ALU || class == BPF_ALU64) { 17092 err = check_alu_op(env, insn); 17093 if (err) 17094 return err; 17095 17096 } else if (class == BPF_LDX) { 17097 enum bpf_reg_type src_reg_type; 17098 17099 /* check for reserved fields is already done */ 17100 17101 /* check src operand */ 17102 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17103 if (err) 17104 return err; 17105 17106 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17107 if (err) 17108 return err; 17109 17110 src_reg_type = regs[insn->src_reg].type; 17111 17112 /* check that memory (src_reg + off) is readable, 17113 * the state of dst_reg will be updated by this func 17114 */ 17115 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17116 insn->off, BPF_SIZE(insn->code), 17117 BPF_READ, insn->dst_reg, false, 17118 BPF_MODE(insn->code) == BPF_MEMSX); 17119 if (err) 17120 return err; 17121 17122 err = save_aux_ptr_type(env, src_reg_type, true); 17123 if (err) 17124 return err; 17125 } else if (class == BPF_STX) { 17126 enum bpf_reg_type dst_reg_type; 17127 17128 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17129 err = check_atomic(env, env->insn_idx, insn); 17130 if (err) 17131 return err; 17132 env->insn_idx++; 17133 continue; 17134 } 17135 17136 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17137 verbose(env, "BPF_STX uses reserved fields\n"); 17138 return -EINVAL; 17139 } 17140 17141 /* check src1 operand */ 17142 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17143 if (err) 17144 return err; 17145 /* check src2 operand */ 17146 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17147 if (err) 17148 return err; 17149 17150 dst_reg_type = regs[insn->dst_reg].type; 17151 17152 /* check that memory (dst_reg + off) is writeable */ 17153 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17154 insn->off, BPF_SIZE(insn->code), 17155 BPF_WRITE, insn->src_reg, false, false); 17156 if (err) 17157 return err; 17158 17159 err = save_aux_ptr_type(env, dst_reg_type, false); 17160 if (err) 17161 return err; 17162 } else if (class == BPF_ST) { 17163 enum bpf_reg_type dst_reg_type; 17164 17165 if (BPF_MODE(insn->code) != BPF_MEM || 17166 insn->src_reg != BPF_REG_0) { 17167 verbose(env, "BPF_ST uses reserved fields\n"); 17168 return -EINVAL; 17169 } 17170 /* check src operand */ 17171 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17172 if (err) 17173 return err; 17174 17175 dst_reg_type = regs[insn->dst_reg].type; 17176 17177 /* check that memory (dst_reg + off) is writeable */ 17178 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17179 insn->off, BPF_SIZE(insn->code), 17180 BPF_WRITE, -1, false, false); 17181 if (err) 17182 return err; 17183 17184 err = save_aux_ptr_type(env, dst_reg_type, false); 17185 if (err) 17186 return err; 17187 } else if (class == BPF_JMP || class == BPF_JMP32) { 17188 u8 opcode = BPF_OP(insn->code); 17189 17190 env->jmps_processed++; 17191 if (opcode == BPF_CALL) { 17192 if (BPF_SRC(insn->code) != BPF_K || 17193 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17194 && insn->off != 0) || 17195 (insn->src_reg != BPF_REG_0 && 17196 insn->src_reg != BPF_PSEUDO_CALL && 17197 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17198 insn->dst_reg != BPF_REG_0 || 17199 class == BPF_JMP32) { 17200 verbose(env, "BPF_CALL uses reserved fields\n"); 17201 return -EINVAL; 17202 } 17203 17204 if (env->cur_state->active_lock.ptr) { 17205 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17206 (insn->src_reg == BPF_PSEUDO_CALL) || 17207 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17208 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17209 verbose(env, "function calls are not allowed while holding a lock\n"); 17210 return -EINVAL; 17211 } 17212 } 17213 if (insn->src_reg == BPF_PSEUDO_CALL) 17214 err = check_func_call(env, insn, &env->insn_idx); 17215 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 17216 err = check_kfunc_call(env, insn, &env->insn_idx); 17217 else 17218 err = check_helper_call(env, insn, &env->insn_idx); 17219 if (err) 17220 return err; 17221 17222 mark_reg_scratched(env, BPF_REG_0); 17223 } else if (opcode == BPF_JA) { 17224 if (BPF_SRC(insn->code) != BPF_K || 17225 insn->src_reg != BPF_REG_0 || 17226 insn->dst_reg != BPF_REG_0 || 17227 (class == BPF_JMP && insn->imm != 0) || 17228 (class == BPF_JMP32 && insn->off != 0)) { 17229 verbose(env, "BPF_JA uses reserved fields\n"); 17230 return -EINVAL; 17231 } 17232 17233 if (class == BPF_JMP) 17234 env->insn_idx += insn->off + 1; 17235 else 17236 env->insn_idx += insn->imm + 1; 17237 continue; 17238 17239 } else if (opcode == BPF_EXIT) { 17240 if (BPF_SRC(insn->code) != BPF_K || 17241 insn->imm != 0 || 17242 insn->src_reg != BPF_REG_0 || 17243 insn->dst_reg != BPF_REG_0 || 17244 class == BPF_JMP32) { 17245 verbose(env, "BPF_EXIT uses reserved fields\n"); 17246 return -EINVAL; 17247 } 17248 17249 if (env->cur_state->active_lock.ptr && 17250 !in_rbtree_lock_required_cb(env)) { 17251 verbose(env, "bpf_spin_unlock is missing\n"); 17252 return -EINVAL; 17253 } 17254 17255 if (env->cur_state->active_rcu_lock && 17256 !in_rbtree_lock_required_cb(env)) { 17257 verbose(env, "bpf_rcu_read_unlock is missing\n"); 17258 return -EINVAL; 17259 } 17260 17261 /* We must do check_reference_leak here before 17262 * prepare_func_exit to handle the case when 17263 * state->curframe > 0, it may be a callback 17264 * function, for which reference_state must 17265 * match caller reference state when it exits. 17266 */ 17267 err = check_reference_leak(env); 17268 if (err) 17269 return err; 17270 17271 if (state->curframe) { 17272 /* exit from nested function */ 17273 err = prepare_func_exit(env, &env->insn_idx); 17274 if (err) 17275 return err; 17276 do_print_state = true; 17277 continue; 17278 } 17279 17280 err = check_return_code(env); 17281 if (err) 17282 return err; 17283 process_bpf_exit: 17284 mark_verifier_state_scratched(env); 17285 update_branch_counts(env, env->cur_state); 17286 err = pop_stack(env, &prev_insn_idx, 17287 &env->insn_idx, pop_log); 17288 if (err < 0) { 17289 if (err != -ENOENT) 17290 return err; 17291 break; 17292 } else { 17293 do_print_state = true; 17294 continue; 17295 } 17296 } else { 17297 err = check_cond_jmp_op(env, insn, &env->insn_idx); 17298 if (err) 17299 return err; 17300 } 17301 } else if (class == BPF_LD) { 17302 u8 mode = BPF_MODE(insn->code); 17303 17304 if (mode == BPF_ABS || mode == BPF_IND) { 17305 err = check_ld_abs(env, insn); 17306 if (err) 17307 return err; 17308 17309 } else if (mode == BPF_IMM) { 17310 err = check_ld_imm(env, insn); 17311 if (err) 17312 return err; 17313 17314 env->insn_idx++; 17315 sanitize_mark_insn_seen(env); 17316 } else { 17317 verbose(env, "invalid BPF_LD mode\n"); 17318 return -EINVAL; 17319 } 17320 } else { 17321 verbose(env, "unknown insn class %d\n", class); 17322 return -EINVAL; 17323 } 17324 17325 env->insn_idx++; 17326 } 17327 17328 return 0; 17329 } 17330 17331 static int find_btf_percpu_datasec(struct btf *btf) 17332 { 17333 const struct btf_type *t; 17334 const char *tname; 17335 int i, n; 17336 17337 /* 17338 * Both vmlinux and module each have their own ".data..percpu" 17339 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 17340 * types to look at only module's own BTF types. 17341 */ 17342 n = btf_nr_types(btf); 17343 if (btf_is_module(btf)) 17344 i = btf_nr_types(btf_vmlinux); 17345 else 17346 i = 1; 17347 17348 for(; i < n; i++) { 17349 t = btf_type_by_id(btf, i); 17350 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 17351 continue; 17352 17353 tname = btf_name_by_offset(btf, t->name_off); 17354 if (!strcmp(tname, ".data..percpu")) 17355 return i; 17356 } 17357 17358 return -ENOENT; 17359 } 17360 17361 /* replace pseudo btf_id with kernel symbol address */ 17362 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 17363 struct bpf_insn *insn, 17364 struct bpf_insn_aux_data *aux) 17365 { 17366 const struct btf_var_secinfo *vsi; 17367 const struct btf_type *datasec; 17368 struct btf_mod_pair *btf_mod; 17369 const struct btf_type *t; 17370 const char *sym_name; 17371 bool percpu = false; 17372 u32 type, id = insn->imm; 17373 struct btf *btf; 17374 s32 datasec_id; 17375 u64 addr; 17376 int i, btf_fd, err; 17377 17378 btf_fd = insn[1].imm; 17379 if (btf_fd) { 17380 btf = btf_get_by_fd(btf_fd); 17381 if (IS_ERR(btf)) { 17382 verbose(env, "invalid module BTF object FD specified.\n"); 17383 return -EINVAL; 17384 } 17385 } else { 17386 if (!btf_vmlinux) { 17387 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 17388 return -EINVAL; 17389 } 17390 btf = btf_vmlinux; 17391 btf_get(btf); 17392 } 17393 17394 t = btf_type_by_id(btf, id); 17395 if (!t) { 17396 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 17397 err = -ENOENT; 17398 goto err_put; 17399 } 17400 17401 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 17402 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 17403 err = -EINVAL; 17404 goto err_put; 17405 } 17406 17407 sym_name = btf_name_by_offset(btf, t->name_off); 17408 addr = kallsyms_lookup_name(sym_name); 17409 if (!addr) { 17410 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 17411 sym_name); 17412 err = -ENOENT; 17413 goto err_put; 17414 } 17415 insn[0].imm = (u32)addr; 17416 insn[1].imm = addr >> 32; 17417 17418 if (btf_type_is_func(t)) { 17419 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17420 aux->btf_var.mem_size = 0; 17421 goto check_btf; 17422 } 17423 17424 datasec_id = find_btf_percpu_datasec(btf); 17425 if (datasec_id > 0) { 17426 datasec = btf_type_by_id(btf, datasec_id); 17427 for_each_vsi(i, datasec, vsi) { 17428 if (vsi->type == id) { 17429 percpu = true; 17430 break; 17431 } 17432 } 17433 } 17434 17435 type = t->type; 17436 t = btf_type_skip_modifiers(btf, type, NULL); 17437 if (percpu) { 17438 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 17439 aux->btf_var.btf = btf; 17440 aux->btf_var.btf_id = type; 17441 } else if (!btf_type_is_struct(t)) { 17442 const struct btf_type *ret; 17443 const char *tname; 17444 u32 tsize; 17445 17446 /* resolve the type size of ksym. */ 17447 ret = btf_resolve_size(btf, t, &tsize); 17448 if (IS_ERR(ret)) { 17449 tname = btf_name_by_offset(btf, t->name_off); 17450 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 17451 tname, PTR_ERR(ret)); 17452 err = -EINVAL; 17453 goto err_put; 17454 } 17455 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17456 aux->btf_var.mem_size = tsize; 17457 } else { 17458 aux->btf_var.reg_type = PTR_TO_BTF_ID; 17459 aux->btf_var.btf = btf; 17460 aux->btf_var.btf_id = type; 17461 } 17462 check_btf: 17463 /* check whether we recorded this BTF (and maybe module) already */ 17464 for (i = 0; i < env->used_btf_cnt; i++) { 17465 if (env->used_btfs[i].btf == btf) { 17466 btf_put(btf); 17467 return 0; 17468 } 17469 } 17470 17471 if (env->used_btf_cnt >= MAX_USED_BTFS) { 17472 err = -E2BIG; 17473 goto err_put; 17474 } 17475 17476 btf_mod = &env->used_btfs[env->used_btf_cnt]; 17477 btf_mod->btf = btf; 17478 btf_mod->module = NULL; 17479 17480 /* if we reference variables from kernel module, bump its refcount */ 17481 if (btf_is_module(btf)) { 17482 btf_mod->module = btf_try_get_module(btf); 17483 if (!btf_mod->module) { 17484 err = -ENXIO; 17485 goto err_put; 17486 } 17487 } 17488 17489 env->used_btf_cnt++; 17490 17491 return 0; 17492 err_put: 17493 btf_put(btf); 17494 return err; 17495 } 17496 17497 static bool is_tracing_prog_type(enum bpf_prog_type type) 17498 { 17499 switch (type) { 17500 case BPF_PROG_TYPE_KPROBE: 17501 case BPF_PROG_TYPE_TRACEPOINT: 17502 case BPF_PROG_TYPE_PERF_EVENT: 17503 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17504 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 17505 return true; 17506 default: 17507 return false; 17508 } 17509 } 17510 17511 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 17512 struct bpf_map *map, 17513 struct bpf_prog *prog) 17514 17515 { 17516 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17517 17518 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 17519 btf_record_has_field(map->record, BPF_RB_ROOT)) { 17520 if (is_tracing_prog_type(prog_type)) { 17521 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 17522 return -EINVAL; 17523 } 17524 } 17525 17526 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17527 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17528 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17529 return -EINVAL; 17530 } 17531 17532 if (is_tracing_prog_type(prog_type)) { 17533 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17534 return -EINVAL; 17535 } 17536 } 17537 17538 if (btf_record_has_field(map->record, BPF_TIMER)) { 17539 if (is_tracing_prog_type(prog_type)) { 17540 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17541 return -EINVAL; 17542 } 17543 } 17544 17545 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17546 !bpf_offload_prog_map_match(prog, map)) { 17547 verbose(env, "offload device mismatch between prog and map\n"); 17548 return -EINVAL; 17549 } 17550 17551 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17552 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17553 return -EINVAL; 17554 } 17555 17556 if (prog->aux->sleepable) 17557 switch (map->map_type) { 17558 case BPF_MAP_TYPE_HASH: 17559 case BPF_MAP_TYPE_LRU_HASH: 17560 case BPF_MAP_TYPE_ARRAY: 17561 case BPF_MAP_TYPE_PERCPU_HASH: 17562 case BPF_MAP_TYPE_PERCPU_ARRAY: 17563 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17564 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17565 case BPF_MAP_TYPE_HASH_OF_MAPS: 17566 case BPF_MAP_TYPE_RINGBUF: 17567 case BPF_MAP_TYPE_USER_RINGBUF: 17568 case BPF_MAP_TYPE_INODE_STORAGE: 17569 case BPF_MAP_TYPE_SK_STORAGE: 17570 case BPF_MAP_TYPE_TASK_STORAGE: 17571 case BPF_MAP_TYPE_CGRP_STORAGE: 17572 break; 17573 default: 17574 verbose(env, 17575 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17576 return -EINVAL; 17577 } 17578 17579 return 0; 17580 } 17581 17582 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17583 { 17584 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17585 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17586 } 17587 17588 /* find and rewrite pseudo imm in ld_imm64 instructions: 17589 * 17590 * 1. if it accesses map FD, replace it with actual map pointer. 17591 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17592 * 17593 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17594 */ 17595 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17596 { 17597 struct bpf_insn *insn = env->prog->insnsi; 17598 int insn_cnt = env->prog->len; 17599 int i, j, err; 17600 17601 err = bpf_prog_calc_tag(env->prog); 17602 if (err) 17603 return err; 17604 17605 for (i = 0; i < insn_cnt; i++, insn++) { 17606 if (BPF_CLASS(insn->code) == BPF_LDX && 17607 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17608 insn->imm != 0)) { 17609 verbose(env, "BPF_LDX uses reserved fields\n"); 17610 return -EINVAL; 17611 } 17612 17613 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17614 struct bpf_insn_aux_data *aux; 17615 struct bpf_map *map; 17616 struct fd f; 17617 u64 addr; 17618 u32 fd; 17619 17620 if (i == insn_cnt - 1 || insn[1].code != 0 || 17621 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17622 insn[1].off != 0) { 17623 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17624 return -EINVAL; 17625 } 17626 17627 if (insn[0].src_reg == 0) 17628 /* valid generic load 64-bit imm */ 17629 goto next_insn; 17630 17631 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17632 aux = &env->insn_aux_data[i]; 17633 err = check_pseudo_btf_id(env, insn, aux); 17634 if (err) 17635 return err; 17636 goto next_insn; 17637 } 17638 17639 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17640 aux = &env->insn_aux_data[i]; 17641 aux->ptr_type = PTR_TO_FUNC; 17642 goto next_insn; 17643 } 17644 17645 /* In final convert_pseudo_ld_imm64() step, this is 17646 * converted into regular 64-bit imm load insn. 17647 */ 17648 switch (insn[0].src_reg) { 17649 case BPF_PSEUDO_MAP_VALUE: 17650 case BPF_PSEUDO_MAP_IDX_VALUE: 17651 break; 17652 case BPF_PSEUDO_MAP_FD: 17653 case BPF_PSEUDO_MAP_IDX: 17654 if (insn[1].imm == 0) 17655 break; 17656 fallthrough; 17657 default: 17658 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17659 return -EINVAL; 17660 } 17661 17662 switch (insn[0].src_reg) { 17663 case BPF_PSEUDO_MAP_IDX_VALUE: 17664 case BPF_PSEUDO_MAP_IDX: 17665 if (bpfptr_is_null(env->fd_array)) { 17666 verbose(env, "fd_idx without fd_array is invalid\n"); 17667 return -EPROTO; 17668 } 17669 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17670 insn[0].imm * sizeof(fd), 17671 sizeof(fd))) 17672 return -EFAULT; 17673 break; 17674 default: 17675 fd = insn[0].imm; 17676 break; 17677 } 17678 17679 f = fdget(fd); 17680 map = __bpf_map_get(f); 17681 if (IS_ERR(map)) { 17682 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 17683 return PTR_ERR(map); 17684 } 17685 17686 err = check_map_prog_compatibility(env, map, env->prog); 17687 if (err) { 17688 fdput(f); 17689 return err; 17690 } 17691 17692 aux = &env->insn_aux_data[i]; 17693 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17694 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17695 addr = (unsigned long)map; 17696 } else { 17697 u32 off = insn[1].imm; 17698 17699 if (off >= BPF_MAX_VAR_OFF) { 17700 verbose(env, "direct value offset of %u is not allowed\n", off); 17701 fdput(f); 17702 return -EINVAL; 17703 } 17704 17705 if (!map->ops->map_direct_value_addr) { 17706 verbose(env, "no direct value access support for this map type\n"); 17707 fdput(f); 17708 return -EINVAL; 17709 } 17710 17711 err = map->ops->map_direct_value_addr(map, &addr, off); 17712 if (err) { 17713 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17714 map->value_size, off); 17715 fdput(f); 17716 return err; 17717 } 17718 17719 aux->map_off = off; 17720 addr += off; 17721 } 17722 17723 insn[0].imm = (u32)addr; 17724 insn[1].imm = addr >> 32; 17725 17726 /* check whether we recorded this map already */ 17727 for (j = 0; j < env->used_map_cnt; j++) { 17728 if (env->used_maps[j] == map) { 17729 aux->map_index = j; 17730 fdput(f); 17731 goto next_insn; 17732 } 17733 } 17734 17735 if (env->used_map_cnt >= MAX_USED_MAPS) { 17736 fdput(f); 17737 return -E2BIG; 17738 } 17739 17740 if (env->prog->aux->sleepable) 17741 atomic64_inc(&map->sleepable_refcnt); 17742 /* hold the map. If the program is rejected by verifier, 17743 * the map will be released by release_maps() or it 17744 * will be used by the valid program until it's unloaded 17745 * and all maps are released in bpf_free_used_maps() 17746 */ 17747 bpf_map_inc(map); 17748 17749 aux->map_index = env->used_map_cnt; 17750 env->used_maps[env->used_map_cnt++] = map; 17751 17752 if (bpf_map_is_cgroup_storage(map) && 17753 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17754 verbose(env, "only one cgroup storage of each type is allowed\n"); 17755 fdput(f); 17756 return -EBUSY; 17757 } 17758 17759 fdput(f); 17760 next_insn: 17761 insn++; 17762 i++; 17763 continue; 17764 } 17765 17766 /* Basic sanity check before we invest more work here. */ 17767 if (!bpf_opcode_in_insntable(insn->code)) { 17768 verbose(env, "unknown opcode %02x\n", insn->code); 17769 return -EINVAL; 17770 } 17771 } 17772 17773 /* now all pseudo BPF_LD_IMM64 instructions load valid 17774 * 'struct bpf_map *' into a register instead of user map_fd. 17775 * These pointers will be used later by verifier to validate map access. 17776 */ 17777 return 0; 17778 } 17779 17780 /* drop refcnt of maps used by the rejected program */ 17781 static void release_maps(struct bpf_verifier_env *env) 17782 { 17783 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17784 env->used_map_cnt); 17785 } 17786 17787 /* drop refcnt of maps used by the rejected program */ 17788 static void release_btfs(struct bpf_verifier_env *env) 17789 { 17790 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17791 env->used_btf_cnt); 17792 } 17793 17794 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17795 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17796 { 17797 struct bpf_insn *insn = env->prog->insnsi; 17798 int insn_cnt = env->prog->len; 17799 int i; 17800 17801 for (i = 0; i < insn_cnt; i++, insn++) { 17802 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17803 continue; 17804 if (insn->src_reg == BPF_PSEUDO_FUNC) 17805 continue; 17806 insn->src_reg = 0; 17807 } 17808 } 17809 17810 /* single env->prog->insni[off] instruction was replaced with the range 17811 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17812 * [0, off) and [off, end) to new locations, so the patched range stays zero 17813 */ 17814 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17815 struct bpf_insn_aux_data *new_data, 17816 struct bpf_prog *new_prog, u32 off, u32 cnt) 17817 { 17818 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17819 struct bpf_insn *insn = new_prog->insnsi; 17820 u32 old_seen = old_data[off].seen; 17821 u32 prog_len; 17822 int i; 17823 17824 /* aux info at OFF always needs adjustment, no matter fast path 17825 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17826 * original insn at old prog. 17827 */ 17828 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17829 17830 if (cnt == 1) 17831 return; 17832 prog_len = new_prog->len; 17833 17834 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17835 memcpy(new_data + off + cnt - 1, old_data + off, 17836 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17837 for (i = off; i < off + cnt - 1; i++) { 17838 /* Expand insni[off]'s seen count to the patched range. */ 17839 new_data[i].seen = old_seen; 17840 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17841 } 17842 env->insn_aux_data = new_data; 17843 vfree(old_data); 17844 } 17845 17846 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17847 { 17848 int i; 17849 17850 if (len == 1) 17851 return; 17852 /* NOTE: fake 'exit' subprog should be updated as well. */ 17853 for (i = 0; i <= env->subprog_cnt; i++) { 17854 if (env->subprog_info[i].start <= off) 17855 continue; 17856 env->subprog_info[i].start += len - 1; 17857 } 17858 } 17859 17860 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17861 { 17862 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17863 int i, sz = prog->aux->size_poke_tab; 17864 struct bpf_jit_poke_descriptor *desc; 17865 17866 for (i = 0; i < sz; i++) { 17867 desc = &tab[i]; 17868 if (desc->insn_idx <= off) 17869 continue; 17870 desc->insn_idx += len - 1; 17871 } 17872 } 17873 17874 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17875 const struct bpf_insn *patch, u32 len) 17876 { 17877 struct bpf_prog *new_prog; 17878 struct bpf_insn_aux_data *new_data = NULL; 17879 17880 if (len > 1) { 17881 new_data = vzalloc(array_size(env->prog->len + len - 1, 17882 sizeof(struct bpf_insn_aux_data))); 17883 if (!new_data) 17884 return NULL; 17885 } 17886 17887 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17888 if (IS_ERR(new_prog)) { 17889 if (PTR_ERR(new_prog) == -ERANGE) 17890 verbose(env, 17891 "insn %d cannot be patched due to 16-bit range\n", 17892 env->insn_aux_data[off].orig_idx); 17893 vfree(new_data); 17894 return NULL; 17895 } 17896 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17897 adjust_subprog_starts(env, off, len); 17898 adjust_poke_descs(new_prog, off, len); 17899 return new_prog; 17900 } 17901 17902 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17903 u32 off, u32 cnt) 17904 { 17905 int i, j; 17906 17907 /* find first prog starting at or after off (first to remove) */ 17908 for (i = 0; i < env->subprog_cnt; i++) 17909 if (env->subprog_info[i].start >= off) 17910 break; 17911 /* find first prog starting at or after off + cnt (first to stay) */ 17912 for (j = i; j < env->subprog_cnt; j++) 17913 if (env->subprog_info[j].start >= off + cnt) 17914 break; 17915 /* if j doesn't start exactly at off + cnt, we are just removing 17916 * the front of previous prog 17917 */ 17918 if (env->subprog_info[j].start != off + cnt) 17919 j--; 17920 17921 if (j > i) { 17922 struct bpf_prog_aux *aux = env->prog->aux; 17923 int move; 17924 17925 /* move fake 'exit' subprog as well */ 17926 move = env->subprog_cnt + 1 - j; 17927 17928 memmove(env->subprog_info + i, 17929 env->subprog_info + j, 17930 sizeof(*env->subprog_info) * move); 17931 env->subprog_cnt -= j - i; 17932 17933 /* remove func_info */ 17934 if (aux->func_info) { 17935 move = aux->func_info_cnt - j; 17936 17937 memmove(aux->func_info + i, 17938 aux->func_info + j, 17939 sizeof(*aux->func_info) * move); 17940 aux->func_info_cnt -= j - i; 17941 /* func_info->insn_off is set after all code rewrites, 17942 * in adjust_btf_func() - no need to adjust 17943 */ 17944 } 17945 } else { 17946 /* convert i from "first prog to remove" to "first to adjust" */ 17947 if (env->subprog_info[i].start == off) 17948 i++; 17949 } 17950 17951 /* update fake 'exit' subprog as well */ 17952 for (; i <= env->subprog_cnt; i++) 17953 env->subprog_info[i].start -= cnt; 17954 17955 return 0; 17956 } 17957 17958 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17959 u32 cnt) 17960 { 17961 struct bpf_prog *prog = env->prog; 17962 u32 i, l_off, l_cnt, nr_linfo; 17963 struct bpf_line_info *linfo; 17964 17965 nr_linfo = prog->aux->nr_linfo; 17966 if (!nr_linfo) 17967 return 0; 17968 17969 linfo = prog->aux->linfo; 17970 17971 /* find first line info to remove, count lines to be removed */ 17972 for (i = 0; i < nr_linfo; i++) 17973 if (linfo[i].insn_off >= off) 17974 break; 17975 17976 l_off = i; 17977 l_cnt = 0; 17978 for (; i < nr_linfo; i++) 17979 if (linfo[i].insn_off < off + cnt) 17980 l_cnt++; 17981 else 17982 break; 17983 17984 /* First live insn doesn't match first live linfo, it needs to "inherit" 17985 * last removed linfo. prog is already modified, so prog->len == off 17986 * means no live instructions after (tail of the program was removed). 17987 */ 17988 if (prog->len != off && l_cnt && 17989 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17990 l_cnt--; 17991 linfo[--i].insn_off = off + cnt; 17992 } 17993 17994 /* remove the line info which refer to the removed instructions */ 17995 if (l_cnt) { 17996 memmove(linfo + l_off, linfo + i, 17997 sizeof(*linfo) * (nr_linfo - i)); 17998 17999 prog->aux->nr_linfo -= l_cnt; 18000 nr_linfo = prog->aux->nr_linfo; 18001 } 18002 18003 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 18004 for (i = l_off; i < nr_linfo; i++) 18005 linfo[i].insn_off -= cnt; 18006 18007 /* fix up all subprogs (incl. 'exit') which start >= off */ 18008 for (i = 0; i <= env->subprog_cnt; i++) 18009 if (env->subprog_info[i].linfo_idx > l_off) { 18010 /* program may have started in the removed region but 18011 * may not be fully removed 18012 */ 18013 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 18014 env->subprog_info[i].linfo_idx -= l_cnt; 18015 else 18016 env->subprog_info[i].linfo_idx = l_off; 18017 } 18018 18019 return 0; 18020 } 18021 18022 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 18023 { 18024 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18025 unsigned int orig_prog_len = env->prog->len; 18026 int err; 18027 18028 if (bpf_prog_is_offloaded(env->prog->aux)) 18029 bpf_prog_offload_remove_insns(env, off, cnt); 18030 18031 err = bpf_remove_insns(env->prog, off, cnt); 18032 if (err) 18033 return err; 18034 18035 err = adjust_subprog_starts_after_remove(env, off, cnt); 18036 if (err) 18037 return err; 18038 18039 err = bpf_adj_linfo_after_remove(env, off, cnt); 18040 if (err) 18041 return err; 18042 18043 memmove(aux_data + off, aux_data + off + cnt, 18044 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18045 18046 return 0; 18047 } 18048 18049 /* The verifier does more data flow analysis than llvm and will not 18050 * explore branches that are dead at run time. Malicious programs can 18051 * have dead code too. Therefore replace all dead at-run-time code 18052 * with 'ja -1'. 18053 * 18054 * Just nops are not optimal, e.g. if they would sit at the end of the 18055 * program and through another bug we would manage to jump there, then 18056 * we'd execute beyond program memory otherwise. Returning exception 18057 * code also wouldn't work since we can have subprogs where the dead 18058 * code could be located. 18059 */ 18060 static void sanitize_dead_code(struct bpf_verifier_env *env) 18061 { 18062 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18063 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18064 struct bpf_insn *insn = env->prog->insnsi; 18065 const int insn_cnt = env->prog->len; 18066 int i; 18067 18068 for (i = 0; i < insn_cnt; i++) { 18069 if (aux_data[i].seen) 18070 continue; 18071 memcpy(insn + i, &trap, sizeof(trap)); 18072 aux_data[i].zext_dst = false; 18073 } 18074 } 18075 18076 static bool insn_is_cond_jump(u8 code) 18077 { 18078 u8 op; 18079 18080 op = BPF_OP(code); 18081 if (BPF_CLASS(code) == BPF_JMP32) 18082 return op != BPF_JA; 18083 18084 if (BPF_CLASS(code) != BPF_JMP) 18085 return false; 18086 18087 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18088 } 18089 18090 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18091 { 18092 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18093 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18094 struct bpf_insn *insn = env->prog->insnsi; 18095 const int insn_cnt = env->prog->len; 18096 int i; 18097 18098 for (i = 0; i < insn_cnt; i++, insn++) { 18099 if (!insn_is_cond_jump(insn->code)) 18100 continue; 18101 18102 if (!aux_data[i + 1].seen) 18103 ja.off = insn->off; 18104 else if (!aux_data[i + 1 + insn->off].seen) 18105 ja.off = 0; 18106 else 18107 continue; 18108 18109 if (bpf_prog_is_offloaded(env->prog->aux)) 18110 bpf_prog_offload_replace_insn(env, i, &ja); 18111 18112 memcpy(insn, &ja, sizeof(ja)); 18113 } 18114 } 18115 18116 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18117 { 18118 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18119 int insn_cnt = env->prog->len; 18120 int i, err; 18121 18122 for (i = 0; i < insn_cnt; i++) { 18123 int j; 18124 18125 j = 0; 18126 while (i + j < insn_cnt && !aux_data[i + j].seen) 18127 j++; 18128 if (!j) 18129 continue; 18130 18131 err = verifier_remove_insns(env, i, j); 18132 if (err) 18133 return err; 18134 insn_cnt = env->prog->len; 18135 } 18136 18137 return 0; 18138 } 18139 18140 static int opt_remove_nops(struct bpf_verifier_env *env) 18141 { 18142 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18143 struct bpf_insn *insn = env->prog->insnsi; 18144 int insn_cnt = env->prog->len; 18145 int i, err; 18146 18147 for (i = 0; i < insn_cnt; i++) { 18148 if (memcmp(&insn[i], &ja, sizeof(ja))) 18149 continue; 18150 18151 err = verifier_remove_insns(env, i, 1); 18152 if (err) 18153 return err; 18154 insn_cnt--; 18155 i--; 18156 } 18157 18158 return 0; 18159 } 18160 18161 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18162 const union bpf_attr *attr) 18163 { 18164 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18165 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18166 int i, patch_len, delta = 0, len = env->prog->len; 18167 struct bpf_insn *insns = env->prog->insnsi; 18168 struct bpf_prog *new_prog; 18169 bool rnd_hi32; 18170 18171 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18172 zext_patch[1] = BPF_ZEXT_REG(0); 18173 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18174 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18175 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18176 for (i = 0; i < len; i++) { 18177 int adj_idx = i + delta; 18178 struct bpf_insn insn; 18179 int load_reg; 18180 18181 insn = insns[adj_idx]; 18182 load_reg = insn_def_regno(&insn); 18183 if (!aux[adj_idx].zext_dst) { 18184 u8 code, class; 18185 u32 imm_rnd; 18186 18187 if (!rnd_hi32) 18188 continue; 18189 18190 code = insn.code; 18191 class = BPF_CLASS(code); 18192 if (load_reg == -1) 18193 continue; 18194 18195 /* NOTE: arg "reg" (the fourth one) is only used for 18196 * BPF_STX + SRC_OP, so it is safe to pass NULL 18197 * here. 18198 */ 18199 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 18200 if (class == BPF_LD && 18201 BPF_MODE(code) == BPF_IMM) 18202 i++; 18203 continue; 18204 } 18205 18206 /* ctx load could be transformed into wider load. */ 18207 if (class == BPF_LDX && 18208 aux[adj_idx].ptr_type == PTR_TO_CTX) 18209 continue; 18210 18211 imm_rnd = get_random_u32(); 18212 rnd_hi32_patch[0] = insn; 18213 rnd_hi32_patch[1].imm = imm_rnd; 18214 rnd_hi32_patch[3].dst_reg = load_reg; 18215 patch = rnd_hi32_patch; 18216 patch_len = 4; 18217 goto apply_patch_buffer; 18218 } 18219 18220 /* Add in an zero-extend instruction if a) the JIT has requested 18221 * it or b) it's a CMPXCHG. 18222 * 18223 * The latter is because: BPF_CMPXCHG always loads a value into 18224 * R0, therefore always zero-extends. However some archs' 18225 * equivalent instruction only does this load when the 18226 * comparison is successful. This detail of CMPXCHG is 18227 * orthogonal to the general zero-extension behaviour of the 18228 * CPU, so it's treated independently of bpf_jit_needs_zext. 18229 */ 18230 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 18231 continue; 18232 18233 /* Zero-extension is done by the caller. */ 18234 if (bpf_pseudo_kfunc_call(&insn)) 18235 continue; 18236 18237 if (WARN_ON(load_reg == -1)) { 18238 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 18239 return -EFAULT; 18240 } 18241 18242 zext_patch[0] = insn; 18243 zext_patch[1].dst_reg = load_reg; 18244 zext_patch[1].src_reg = load_reg; 18245 patch = zext_patch; 18246 patch_len = 2; 18247 apply_patch_buffer: 18248 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 18249 if (!new_prog) 18250 return -ENOMEM; 18251 env->prog = new_prog; 18252 insns = new_prog->insnsi; 18253 aux = env->insn_aux_data; 18254 delta += patch_len - 1; 18255 } 18256 18257 return 0; 18258 } 18259 18260 /* convert load instructions that access fields of a context type into a 18261 * sequence of instructions that access fields of the underlying structure: 18262 * struct __sk_buff -> struct sk_buff 18263 * struct bpf_sock_ops -> struct sock 18264 */ 18265 static int convert_ctx_accesses(struct bpf_verifier_env *env) 18266 { 18267 const struct bpf_verifier_ops *ops = env->ops; 18268 int i, cnt, size, ctx_field_size, delta = 0; 18269 const int insn_cnt = env->prog->len; 18270 struct bpf_insn insn_buf[16], *insn; 18271 u32 target_size, size_default, off; 18272 struct bpf_prog *new_prog; 18273 enum bpf_access_type type; 18274 bool is_narrower_load; 18275 18276 if (ops->gen_prologue || env->seen_direct_write) { 18277 if (!ops->gen_prologue) { 18278 verbose(env, "bpf verifier is misconfigured\n"); 18279 return -EINVAL; 18280 } 18281 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 18282 env->prog); 18283 if (cnt >= ARRAY_SIZE(insn_buf)) { 18284 verbose(env, "bpf verifier is misconfigured\n"); 18285 return -EINVAL; 18286 } else if (cnt) { 18287 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 18288 if (!new_prog) 18289 return -ENOMEM; 18290 18291 env->prog = new_prog; 18292 delta += cnt - 1; 18293 } 18294 } 18295 18296 if (bpf_prog_is_offloaded(env->prog->aux)) 18297 return 0; 18298 18299 insn = env->prog->insnsi + delta; 18300 18301 for (i = 0; i < insn_cnt; i++, insn++) { 18302 bpf_convert_ctx_access_t convert_ctx_access; 18303 u8 mode; 18304 18305 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 18306 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 18307 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 18308 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 18309 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 18310 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 18311 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 18312 type = BPF_READ; 18313 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 18314 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 18315 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 18316 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 18317 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 18318 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 18319 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 18320 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 18321 type = BPF_WRITE; 18322 } else { 18323 continue; 18324 } 18325 18326 if (type == BPF_WRITE && 18327 env->insn_aux_data[i + delta].sanitize_stack_spill) { 18328 struct bpf_insn patch[] = { 18329 *insn, 18330 BPF_ST_NOSPEC(), 18331 }; 18332 18333 cnt = ARRAY_SIZE(patch); 18334 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 18335 if (!new_prog) 18336 return -ENOMEM; 18337 18338 delta += cnt - 1; 18339 env->prog = new_prog; 18340 insn = new_prog->insnsi + i + delta; 18341 continue; 18342 } 18343 18344 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 18345 case PTR_TO_CTX: 18346 if (!ops->convert_ctx_access) 18347 continue; 18348 convert_ctx_access = ops->convert_ctx_access; 18349 break; 18350 case PTR_TO_SOCKET: 18351 case PTR_TO_SOCK_COMMON: 18352 convert_ctx_access = bpf_sock_convert_ctx_access; 18353 break; 18354 case PTR_TO_TCP_SOCK: 18355 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 18356 break; 18357 case PTR_TO_XDP_SOCK: 18358 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 18359 break; 18360 case PTR_TO_BTF_ID: 18361 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 18362 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 18363 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 18364 * be said once it is marked PTR_UNTRUSTED, hence we must handle 18365 * any faults for loads into such types. BPF_WRITE is disallowed 18366 * for this case. 18367 */ 18368 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 18369 if (type == BPF_READ) { 18370 if (BPF_MODE(insn->code) == BPF_MEM) 18371 insn->code = BPF_LDX | BPF_PROBE_MEM | 18372 BPF_SIZE((insn)->code); 18373 else 18374 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 18375 BPF_SIZE((insn)->code); 18376 env->prog->aux->num_exentries++; 18377 } 18378 continue; 18379 default: 18380 continue; 18381 } 18382 18383 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 18384 size = BPF_LDST_BYTES(insn); 18385 mode = BPF_MODE(insn->code); 18386 18387 /* If the read access is a narrower load of the field, 18388 * convert to a 4/8-byte load, to minimum program type specific 18389 * convert_ctx_access changes. If conversion is successful, 18390 * we will apply proper mask to the result. 18391 */ 18392 is_narrower_load = size < ctx_field_size; 18393 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 18394 off = insn->off; 18395 if (is_narrower_load) { 18396 u8 size_code; 18397 18398 if (type == BPF_WRITE) { 18399 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 18400 return -EINVAL; 18401 } 18402 18403 size_code = BPF_H; 18404 if (ctx_field_size == 4) 18405 size_code = BPF_W; 18406 else if (ctx_field_size == 8) 18407 size_code = BPF_DW; 18408 18409 insn->off = off & ~(size_default - 1); 18410 insn->code = BPF_LDX | BPF_MEM | size_code; 18411 } 18412 18413 target_size = 0; 18414 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 18415 &target_size); 18416 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 18417 (ctx_field_size && !target_size)) { 18418 verbose(env, "bpf verifier is misconfigured\n"); 18419 return -EINVAL; 18420 } 18421 18422 if (is_narrower_load && size < target_size) { 18423 u8 shift = bpf_ctx_narrow_access_offset( 18424 off, size, size_default) * 8; 18425 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 18426 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 18427 return -EINVAL; 18428 } 18429 if (ctx_field_size <= 4) { 18430 if (shift) 18431 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 18432 insn->dst_reg, 18433 shift); 18434 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18435 (1 << size * 8) - 1); 18436 } else { 18437 if (shift) 18438 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 18439 insn->dst_reg, 18440 shift); 18441 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18442 (1ULL << size * 8) - 1); 18443 } 18444 } 18445 if (mode == BPF_MEMSX) 18446 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 18447 insn->dst_reg, insn->dst_reg, 18448 size * 8, 0); 18449 18450 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18451 if (!new_prog) 18452 return -ENOMEM; 18453 18454 delta += cnt - 1; 18455 18456 /* keep walking new program and skip insns we just inserted */ 18457 env->prog = new_prog; 18458 insn = new_prog->insnsi + i + delta; 18459 } 18460 18461 return 0; 18462 } 18463 18464 static int jit_subprogs(struct bpf_verifier_env *env) 18465 { 18466 struct bpf_prog *prog = env->prog, **func, *tmp; 18467 int i, j, subprog_start, subprog_end = 0, len, subprog; 18468 struct bpf_map *map_ptr; 18469 struct bpf_insn *insn; 18470 void *old_bpf_func; 18471 int err, num_exentries; 18472 18473 if (env->subprog_cnt <= 1) 18474 return 0; 18475 18476 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18477 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 18478 continue; 18479 18480 /* Upon error here we cannot fall back to interpreter but 18481 * need a hard reject of the program. Thus -EFAULT is 18482 * propagated in any case. 18483 */ 18484 subprog = find_subprog(env, i + insn->imm + 1); 18485 if (subprog < 0) { 18486 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 18487 i + insn->imm + 1); 18488 return -EFAULT; 18489 } 18490 /* temporarily remember subprog id inside insn instead of 18491 * aux_data, since next loop will split up all insns into funcs 18492 */ 18493 insn->off = subprog; 18494 /* remember original imm in case JIT fails and fallback 18495 * to interpreter will be needed 18496 */ 18497 env->insn_aux_data[i].call_imm = insn->imm; 18498 /* point imm to __bpf_call_base+1 from JITs point of view */ 18499 insn->imm = 1; 18500 if (bpf_pseudo_func(insn)) 18501 /* jit (e.g. x86_64) may emit fewer instructions 18502 * if it learns a u32 imm is the same as a u64 imm. 18503 * Force a non zero here. 18504 */ 18505 insn[1].imm = 1; 18506 } 18507 18508 err = bpf_prog_alloc_jited_linfo(prog); 18509 if (err) 18510 goto out_undo_insn; 18511 18512 err = -ENOMEM; 18513 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 18514 if (!func) 18515 goto out_undo_insn; 18516 18517 for (i = 0; i < env->subprog_cnt; i++) { 18518 subprog_start = subprog_end; 18519 subprog_end = env->subprog_info[i + 1].start; 18520 18521 len = subprog_end - subprog_start; 18522 /* bpf_prog_run() doesn't call subprogs directly, 18523 * hence main prog stats include the runtime of subprogs. 18524 * subprogs don't have IDs and not reachable via prog_get_next_id 18525 * func[i]->stats will never be accessed and stays NULL 18526 */ 18527 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18528 if (!func[i]) 18529 goto out_free; 18530 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18531 len * sizeof(struct bpf_insn)); 18532 func[i]->type = prog->type; 18533 func[i]->len = len; 18534 if (bpf_prog_calc_tag(func[i])) 18535 goto out_free; 18536 func[i]->is_func = 1; 18537 func[i]->aux->func_idx = i; 18538 /* Below members will be freed only at prog->aux */ 18539 func[i]->aux->btf = prog->aux->btf; 18540 func[i]->aux->func_info = prog->aux->func_info; 18541 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18542 func[i]->aux->poke_tab = prog->aux->poke_tab; 18543 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18544 18545 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18546 struct bpf_jit_poke_descriptor *poke; 18547 18548 poke = &prog->aux->poke_tab[j]; 18549 if (poke->insn_idx < subprog_end && 18550 poke->insn_idx >= subprog_start) 18551 poke->aux = func[i]->aux; 18552 } 18553 18554 func[i]->aux->name[0] = 'F'; 18555 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18556 func[i]->jit_requested = 1; 18557 func[i]->blinding_requested = prog->blinding_requested; 18558 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18559 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18560 func[i]->aux->linfo = prog->aux->linfo; 18561 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18562 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18563 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18564 num_exentries = 0; 18565 insn = func[i]->insnsi; 18566 for (j = 0; j < func[i]->len; j++, insn++) { 18567 if (BPF_CLASS(insn->code) == BPF_LDX && 18568 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18569 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18570 num_exentries++; 18571 } 18572 func[i]->aux->num_exentries = num_exentries; 18573 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18574 func[i] = bpf_int_jit_compile(func[i]); 18575 if (!func[i]->jited) { 18576 err = -ENOTSUPP; 18577 goto out_free; 18578 } 18579 cond_resched(); 18580 } 18581 18582 /* at this point all bpf functions were successfully JITed 18583 * now populate all bpf_calls with correct addresses and 18584 * run last pass of JIT 18585 */ 18586 for (i = 0; i < env->subprog_cnt; i++) { 18587 insn = func[i]->insnsi; 18588 for (j = 0; j < func[i]->len; j++, insn++) { 18589 if (bpf_pseudo_func(insn)) { 18590 subprog = insn->off; 18591 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18592 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18593 continue; 18594 } 18595 if (!bpf_pseudo_call(insn)) 18596 continue; 18597 subprog = insn->off; 18598 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18599 } 18600 18601 /* we use the aux data to keep a list of the start addresses 18602 * of the JITed images for each function in the program 18603 * 18604 * for some architectures, such as powerpc64, the imm field 18605 * might not be large enough to hold the offset of the start 18606 * address of the callee's JITed image from __bpf_call_base 18607 * 18608 * in such cases, we can lookup the start address of a callee 18609 * by using its subprog id, available from the off field of 18610 * the call instruction, as an index for this list 18611 */ 18612 func[i]->aux->func = func; 18613 func[i]->aux->func_cnt = env->subprog_cnt; 18614 } 18615 for (i = 0; i < env->subprog_cnt; i++) { 18616 old_bpf_func = func[i]->bpf_func; 18617 tmp = bpf_int_jit_compile(func[i]); 18618 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18619 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18620 err = -ENOTSUPP; 18621 goto out_free; 18622 } 18623 cond_resched(); 18624 } 18625 18626 /* finally lock prog and jit images for all functions and 18627 * populate kallsysm. Begin at the first subprogram, since 18628 * bpf_prog_load will add the kallsyms for the main program. 18629 */ 18630 for (i = 1; i < env->subprog_cnt; i++) { 18631 bpf_prog_lock_ro(func[i]); 18632 bpf_prog_kallsyms_add(func[i]); 18633 } 18634 18635 /* Last step: make now unused interpreter insns from main 18636 * prog consistent for later dump requests, so they can 18637 * later look the same as if they were interpreted only. 18638 */ 18639 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18640 if (bpf_pseudo_func(insn)) { 18641 insn[0].imm = env->insn_aux_data[i].call_imm; 18642 insn[1].imm = insn->off; 18643 insn->off = 0; 18644 continue; 18645 } 18646 if (!bpf_pseudo_call(insn)) 18647 continue; 18648 insn->off = env->insn_aux_data[i].call_imm; 18649 subprog = find_subprog(env, i + insn->off + 1); 18650 insn->imm = subprog; 18651 } 18652 18653 prog->jited = 1; 18654 prog->bpf_func = func[0]->bpf_func; 18655 prog->jited_len = func[0]->jited_len; 18656 prog->aux->extable = func[0]->aux->extable; 18657 prog->aux->num_exentries = func[0]->aux->num_exentries; 18658 prog->aux->func = func; 18659 prog->aux->func_cnt = env->subprog_cnt; 18660 bpf_prog_jit_attempt_done(prog); 18661 return 0; 18662 out_free: 18663 /* We failed JIT'ing, so at this point we need to unregister poke 18664 * descriptors from subprogs, so that kernel is not attempting to 18665 * patch it anymore as we're freeing the subprog JIT memory. 18666 */ 18667 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18668 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18669 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18670 } 18671 /* At this point we're guaranteed that poke descriptors are not 18672 * live anymore. We can just unlink its descriptor table as it's 18673 * released with the main prog. 18674 */ 18675 for (i = 0; i < env->subprog_cnt; i++) { 18676 if (!func[i]) 18677 continue; 18678 func[i]->aux->poke_tab = NULL; 18679 bpf_jit_free(func[i]); 18680 } 18681 kfree(func); 18682 out_undo_insn: 18683 /* cleanup main prog to be interpreted */ 18684 prog->jit_requested = 0; 18685 prog->blinding_requested = 0; 18686 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18687 if (!bpf_pseudo_call(insn)) 18688 continue; 18689 insn->off = 0; 18690 insn->imm = env->insn_aux_data[i].call_imm; 18691 } 18692 bpf_prog_jit_attempt_done(prog); 18693 return err; 18694 } 18695 18696 static int fixup_call_args(struct bpf_verifier_env *env) 18697 { 18698 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18699 struct bpf_prog *prog = env->prog; 18700 struct bpf_insn *insn = prog->insnsi; 18701 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18702 int i, depth; 18703 #endif 18704 int err = 0; 18705 18706 if (env->prog->jit_requested && 18707 !bpf_prog_is_offloaded(env->prog->aux)) { 18708 err = jit_subprogs(env); 18709 if (err == 0) 18710 return 0; 18711 if (err == -EFAULT) 18712 return err; 18713 } 18714 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18715 if (has_kfunc_call) { 18716 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18717 return -EINVAL; 18718 } 18719 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18720 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18721 * have to be rejected, since interpreter doesn't support them yet. 18722 */ 18723 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18724 return -EINVAL; 18725 } 18726 for (i = 0; i < prog->len; i++, insn++) { 18727 if (bpf_pseudo_func(insn)) { 18728 /* When JIT fails the progs with callback calls 18729 * have to be rejected, since interpreter doesn't support them yet. 18730 */ 18731 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18732 return -EINVAL; 18733 } 18734 18735 if (!bpf_pseudo_call(insn)) 18736 continue; 18737 depth = get_callee_stack_depth(env, insn, i); 18738 if (depth < 0) 18739 return depth; 18740 bpf_patch_call_args(insn, depth); 18741 } 18742 err = 0; 18743 #endif 18744 return err; 18745 } 18746 18747 /* replace a generic kfunc with a specialized version if necessary */ 18748 static void specialize_kfunc(struct bpf_verifier_env *env, 18749 u32 func_id, u16 offset, unsigned long *addr) 18750 { 18751 struct bpf_prog *prog = env->prog; 18752 bool seen_direct_write; 18753 void *xdp_kfunc; 18754 bool is_rdonly; 18755 18756 if (bpf_dev_bound_kfunc_id(func_id)) { 18757 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18758 if (xdp_kfunc) { 18759 *addr = (unsigned long)xdp_kfunc; 18760 return; 18761 } 18762 /* fallback to default kfunc when not supported by netdev */ 18763 } 18764 18765 if (offset) 18766 return; 18767 18768 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18769 seen_direct_write = env->seen_direct_write; 18770 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18771 18772 if (is_rdonly) 18773 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18774 18775 /* restore env->seen_direct_write to its original value, since 18776 * may_access_direct_pkt_data mutates it 18777 */ 18778 env->seen_direct_write = seen_direct_write; 18779 } 18780 } 18781 18782 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18783 u16 struct_meta_reg, 18784 u16 node_offset_reg, 18785 struct bpf_insn *insn, 18786 struct bpf_insn *insn_buf, 18787 int *cnt) 18788 { 18789 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18790 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18791 18792 insn_buf[0] = addr[0]; 18793 insn_buf[1] = addr[1]; 18794 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18795 insn_buf[3] = *insn; 18796 *cnt = 4; 18797 } 18798 18799 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18800 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18801 { 18802 const struct bpf_kfunc_desc *desc; 18803 18804 if (!insn->imm) { 18805 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18806 return -EINVAL; 18807 } 18808 18809 *cnt = 0; 18810 18811 /* insn->imm has the btf func_id. Replace it with an offset relative to 18812 * __bpf_call_base, unless the JIT needs to call functions that are 18813 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18814 */ 18815 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18816 if (!desc) { 18817 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18818 insn->imm); 18819 return -EFAULT; 18820 } 18821 18822 if (!bpf_jit_supports_far_kfunc_call()) 18823 insn->imm = BPF_CALL_IMM(desc->addr); 18824 if (insn->off) 18825 return 0; 18826 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18827 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18828 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18829 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18830 18831 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18832 insn_buf[1] = addr[0]; 18833 insn_buf[2] = addr[1]; 18834 insn_buf[3] = *insn; 18835 *cnt = 4; 18836 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18837 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18838 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18839 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18840 18841 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18842 !kptr_struct_meta) { 18843 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18844 insn_idx); 18845 return -EFAULT; 18846 } 18847 18848 insn_buf[0] = addr[0]; 18849 insn_buf[1] = addr[1]; 18850 insn_buf[2] = *insn; 18851 *cnt = 3; 18852 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18853 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18854 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18855 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18856 int struct_meta_reg = BPF_REG_3; 18857 int node_offset_reg = BPF_REG_4; 18858 18859 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18860 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18861 struct_meta_reg = BPF_REG_4; 18862 node_offset_reg = BPF_REG_5; 18863 } 18864 18865 if (!kptr_struct_meta) { 18866 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18867 insn_idx); 18868 return -EFAULT; 18869 } 18870 18871 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18872 node_offset_reg, insn, insn_buf, cnt); 18873 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18874 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18875 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18876 *cnt = 1; 18877 } 18878 return 0; 18879 } 18880 18881 /* Do various post-verification rewrites in a single program pass. 18882 * These rewrites simplify JIT and interpreter implementations. 18883 */ 18884 static int do_misc_fixups(struct bpf_verifier_env *env) 18885 { 18886 struct bpf_prog *prog = env->prog; 18887 enum bpf_attach_type eatype = prog->expected_attach_type; 18888 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18889 struct bpf_insn *insn = prog->insnsi; 18890 const struct bpf_func_proto *fn; 18891 const int insn_cnt = prog->len; 18892 const struct bpf_map_ops *ops; 18893 struct bpf_insn_aux_data *aux; 18894 struct bpf_insn insn_buf[16]; 18895 struct bpf_prog *new_prog; 18896 struct bpf_map *map_ptr; 18897 int i, ret, cnt, delta = 0; 18898 18899 for (i = 0; i < insn_cnt; i++, insn++) { 18900 /* Make divide-by-zero exceptions impossible. */ 18901 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18902 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18903 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18904 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18905 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18906 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18907 struct bpf_insn *patchlet; 18908 struct bpf_insn chk_and_div[] = { 18909 /* [R,W]x div 0 -> 0 */ 18910 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18911 BPF_JNE | BPF_K, insn->src_reg, 18912 0, 2, 0), 18913 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18914 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18915 *insn, 18916 }; 18917 struct bpf_insn chk_and_mod[] = { 18918 /* [R,W]x mod 0 -> [R,W]x */ 18919 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18920 BPF_JEQ | BPF_K, insn->src_reg, 18921 0, 1 + (is64 ? 0 : 1), 0), 18922 *insn, 18923 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18924 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18925 }; 18926 18927 patchlet = isdiv ? chk_and_div : chk_and_mod; 18928 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18929 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18930 18931 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18932 if (!new_prog) 18933 return -ENOMEM; 18934 18935 delta += cnt - 1; 18936 env->prog = prog = new_prog; 18937 insn = new_prog->insnsi + i + delta; 18938 continue; 18939 } 18940 18941 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18942 if (BPF_CLASS(insn->code) == BPF_LD && 18943 (BPF_MODE(insn->code) == BPF_ABS || 18944 BPF_MODE(insn->code) == BPF_IND)) { 18945 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18946 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18947 verbose(env, "bpf verifier is misconfigured\n"); 18948 return -EINVAL; 18949 } 18950 18951 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18952 if (!new_prog) 18953 return -ENOMEM; 18954 18955 delta += cnt - 1; 18956 env->prog = prog = new_prog; 18957 insn = new_prog->insnsi + i + delta; 18958 continue; 18959 } 18960 18961 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18962 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18963 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18964 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18965 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18966 struct bpf_insn *patch = &insn_buf[0]; 18967 bool issrc, isneg, isimm; 18968 u32 off_reg; 18969 18970 aux = &env->insn_aux_data[i + delta]; 18971 if (!aux->alu_state || 18972 aux->alu_state == BPF_ALU_NON_POINTER) 18973 continue; 18974 18975 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18976 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18977 BPF_ALU_SANITIZE_SRC; 18978 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18979 18980 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18981 if (isimm) { 18982 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18983 } else { 18984 if (isneg) 18985 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18986 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18987 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18988 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18989 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18990 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18991 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18992 } 18993 if (!issrc) 18994 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18995 insn->src_reg = BPF_REG_AX; 18996 if (isneg) 18997 insn->code = insn->code == code_add ? 18998 code_sub : code_add; 18999 *patch++ = *insn; 19000 if (issrc && isneg && !isimm) 19001 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 19002 cnt = patch - insn_buf; 19003 19004 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19005 if (!new_prog) 19006 return -ENOMEM; 19007 19008 delta += cnt - 1; 19009 env->prog = prog = new_prog; 19010 insn = new_prog->insnsi + i + delta; 19011 continue; 19012 } 19013 19014 if (insn->code != (BPF_JMP | BPF_CALL)) 19015 continue; 19016 if (insn->src_reg == BPF_PSEUDO_CALL) 19017 continue; 19018 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 19019 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 19020 if (ret) 19021 return ret; 19022 if (cnt == 0) 19023 continue; 19024 19025 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19026 if (!new_prog) 19027 return -ENOMEM; 19028 19029 delta += cnt - 1; 19030 env->prog = prog = new_prog; 19031 insn = new_prog->insnsi + i + delta; 19032 continue; 19033 } 19034 19035 if (insn->imm == BPF_FUNC_get_route_realm) 19036 prog->dst_needed = 1; 19037 if (insn->imm == BPF_FUNC_get_prandom_u32) 19038 bpf_user_rnd_init_once(); 19039 if (insn->imm == BPF_FUNC_override_return) 19040 prog->kprobe_override = 1; 19041 if (insn->imm == BPF_FUNC_tail_call) { 19042 /* If we tail call into other programs, we 19043 * cannot make any assumptions since they can 19044 * be replaced dynamically during runtime in 19045 * the program array. 19046 */ 19047 prog->cb_access = 1; 19048 if (!allow_tail_call_in_subprogs(env)) 19049 prog->aux->stack_depth = MAX_BPF_STACK; 19050 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 19051 19052 /* mark bpf_tail_call as different opcode to avoid 19053 * conditional branch in the interpreter for every normal 19054 * call and to prevent accidental JITing by JIT compiler 19055 * that doesn't support bpf_tail_call yet 19056 */ 19057 insn->imm = 0; 19058 insn->code = BPF_JMP | BPF_TAIL_CALL; 19059 19060 aux = &env->insn_aux_data[i + delta]; 19061 if (env->bpf_capable && !prog->blinding_requested && 19062 prog->jit_requested && 19063 !bpf_map_key_poisoned(aux) && 19064 !bpf_map_ptr_poisoned(aux) && 19065 !bpf_map_ptr_unpriv(aux)) { 19066 struct bpf_jit_poke_descriptor desc = { 19067 .reason = BPF_POKE_REASON_TAIL_CALL, 19068 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 19069 .tail_call.key = bpf_map_key_immediate(aux), 19070 .insn_idx = i + delta, 19071 }; 19072 19073 ret = bpf_jit_add_poke_descriptor(prog, &desc); 19074 if (ret < 0) { 19075 verbose(env, "adding tail call poke descriptor failed\n"); 19076 return ret; 19077 } 19078 19079 insn->imm = ret + 1; 19080 continue; 19081 } 19082 19083 if (!bpf_map_ptr_unpriv(aux)) 19084 continue; 19085 19086 /* instead of changing every JIT dealing with tail_call 19087 * emit two extra insns: 19088 * if (index >= max_entries) goto out; 19089 * index &= array->index_mask; 19090 * to avoid out-of-bounds cpu speculation 19091 */ 19092 if (bpf_map_ptr_poisoned(aux)) { 19093 verbose(env, "tail_call abusing map_ptr\n"); 19094 return -EINVAL; 19095 } 19096 19097 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19098 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 19099 map_ptr->max_entries, 2); 19100 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 19101 container_of(map_ptr, 19102 struct bpf_array, 19103 map)->index_mask); 19104 insn_buf[2] = *insn; 19105 cnt = 3; 19106 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19107 if (!new_prog) 19108 return -ENOMEM; 19109 19110 delta += cnt - 1; 19111 env->prog = prog = new_prog; 19112 insn = new_prog->insnsi + i + delta; 19113 continue; 19114 } 19115 19116 if (insn->imm == BPF_FUNC_timer_set_callback) { 19117 /* The verifier will process callback_fn as many times as necessary 19118 * with different maps and the register states prepared by 19119 * set_timer_callback_state will be accurate. 19120 * 19121 * The following use case is valid: 19122 * map1 is shared by prog1, prog2, prog3. 19123 * prog1 calls bpf_timer_init for some map1 elements 19124 * prog2 calls bpf_timer_set_callback for some map1 elements. 19125 * Those that were not bpf_timer_init-ed will return -EINVAL. 19126 * prog3 calls bpf_timer_start for some map1 elements. 19127 * Those that were not both bpf_timer_init-ed and 19128 * bpf_timer_set_callback-ed will return -EINVAL. 19129 */ 19130 struct bpf_insn ld_addrs[2] = { 19131 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 19132 }; 19133 19134 insn_buf[0] = ld_addrs[0]; 19135 insn_buf[1] = ld_addrs[1]; 19136 insn_buf[2] = *insn; 19137 cnt = 3; 19138 19139 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19140 if (!new_prog) 19141 return -ENOMEM; 19142 19143 delta += cnt - 1; 19144 env->prog = prog = new_prog; 19145 insn = new_prog->insnsi + i + delta; 19146 goto patch_call_imm; 19147 } 19148 19149 if (is_storage_get_function(insn->imm)) { 19150 if (!env->prog->aux->sleepable || 19151 env->insn_aux_data[i + delta].storage_get_func_atomic) 19152 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 19153 else 19154 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 19155 insn_buf[1] = *insn; 19156 cnt = 2; 19157 19158 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19159 if (!new_prog) 19160 return -ENOMEM; 19161 19162 delta += cnt - 1; 19163 env->prog = prog = new_prog; 19164 insn = new_prog->insnsi + i + delta; 19165 goto patch_call_imm; 19166 } 19167 19168 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 19169 * and other inlining handlers are currently limited to 64 bit 19170 * only. 19171 */ 19172 if (prog->jit_requested && BITS_PER_LONG == 64 && 19173 (insn->imm == BPF_FUNC_map_lookup_elem || 19174 insn->imm == BPF_FUNC_map_update_elem || 19175 insn->imm == BPF_FUNC_map_delete_elem || 19176 insn->imm == BPF_FUNC_map_push_elem || 19177 insn->imm == BPF_FUNC_map_pop_elem || 19178 insn->imm == BPF_FUNC_map_peek_elem || 19179 insn->imm == BPF_FUNC_redirect_map || 19180 insn->imm == BPF_FUNC_for_each_map_elem || 19181 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 19182 aux = &env->insn_aux_data[i + delta]; 19183 if (bpf_map_ptr_poisoned(aux)) 19184 goto patch_call_imm; 19185 19186 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19187 ops = map_ptr->ops; 19188 if (insn->imm == BPF_FUNC_map_lookup_elem && 19189 ops->map_gen_lookup) { 19190 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 19191 if (cnt == -EOPNOTSUPP) 19192 goto patch_map_ops_generic; 19193 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19194 verbose(env, "bpf verifier is misconfigured\n"); 19195 return -EINVAL; 19196 } 19197 19198 new_prog = bpf_patch_insn_data(env, i + delta, 19199 insn_buf, cnt); 19200 if (!new_prog) 19201 return -ENOMEM; 19202 19203 delta += cnt - 1; 19204 env->prog = prog = new_prog; 19205 insn = new_prog->insnsi + i + delta; 19206 continue; 19207 } 19208 19209 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 19210 (void *(*)(struct bpf_map *map, void *key))NULL)); 19211 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 19212 (long (*)(struct bpf_map *map, void *key))NULL)); 19213 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 19214 (long (*)(struct bpf_map *map, void *key, void *value, 19215 u64 flags))NULL)); 19216 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 19217 (long (*)(struct bpf_map *map, void *value, 19218 u64 flags))NULL)); 19219 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 19220 (long (*)(struct bpf_map *map, void *value))NULL)); 19221 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 19222 (long (*)(struct bpf_map *map, void *value))NULL)); 19223 BUILD_BUG_ON(!__same_type(ops->map_redirect, 19224 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 19225 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 19226 (long (*)(struct bpf_map *map, 19227 bpf_callback_t callback_fn, 19228 void *callback_ctx, 19229 u64 flags))NULL)); 19230 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 19231 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 19232 19233 patch_map_ops_generic: 19234 switch (insn->imm) { 19235 case BPF_FUNC_map_lookup_elem: 19236 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 19237 continue; 19238 case BPF_FUNC_map_update_elem: 19239 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 19240 continue; 19241 case BPF_FUNC_map_delete_elem: 19242 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 19243 continue; 19244 case BPF_FUNC_map_push_elem: 19245 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 19246 continue; 19247 case BPF_FUNC_map_pop_elem: 19248 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 19249 continue; 19250 case BPF_FUNC_map_peek_elem: 19251 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 19252 continue; 19253 case BPF_FUNC_redirect_map: 19254 insn->imm = BPF_CALL_IMM(ops->map_redirect); 19255 continue; 19256 case BPF_FUNC_for_each_map_elem: 19257 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 19258 continue; 19259 case BPF_FUNC_map_lookup_percpu_elem: 19260 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 19261 continue; 19262 } 19263 19264 goto patch_call_imm; 19265 } 19266 19267 /* Implement bpf_jiffies64 inline. */ 19268 if (prog->jit_requested && BITS_PER_LONG == 64 && 19269 insn->imm == BPF_FUNC_jiffies64) { 19270 struct bpf_insn ld_jiffies_addr[2] = { 19271 BPF_LD_IMM64(BPF_REG_0, 19272 (unsigned long)&jiffies), 19273 }; 19274 19275 insn_buf[0] = ld_jiffies_addr[0]; 19276 insn_buf[1] = ld_jiffies_addr[1]; 19277 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 19278 BPF_REG_0, 0); 19279 cnt = 3; 19280 19281 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 19282 cnt); 19283 if (!new_prog) 19284 return -ENOMEM; 19285 19286 delta += cnt - 1; 19287 env->prog = prog = new_prog; 19288 insn = new_prog->insnsi + i + delta; 19289 continue; 19290 } 19291 19292 /* Implement bpf_get_func_arg inline. */ 19293 if (prog_type == BPF_PROG_TYPE_TRACING && 19294 insn->imm == BPF_FUNC_get_func_arg) { 19295 /* Load nr_args from ctx - 8 */ 19296 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19297 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 19298 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 19299 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 19300 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 19301 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19302 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 19303 insn_buf[7] = BPF_JMP_A(1); 19304 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 19305 cnt = 9; 19306 19307 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19308 if (!new_prog) 19309 return -ENOMEM; 19310 19311 delta += cnt - 1; 19312 env->prog = prog = new_prog; 19313 insn = new_prog->insnsi + i + delta; 19314 continue; 19315 } 19316 19317 /* Implement bpf_get_func_ret inline. */ 19318 if (prog_type == BPF_PROG_TYPE_TRACING && 19319 insn->imm == BPF_FUNC_get_func_ret) { 19320 if (eatype == BPF_TRACE_FEXIT || 19321 eatype == BPF_MODIFY_RETURN) { 19322 /* Load nr_args from ctx - 8 */ 19323 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19324 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 19325 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 19326 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19327 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 19328 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 19329 cnt = 6; 19330 } else { 19331 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 19332 cnt = 1; 19333 } 19334 19335 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19336 if (!new_prog) 19337 return -ENOMEM; 19338 19339 delta += cnt - 1; 19340 env->prog = prog = new_prog; 19341 insn = new_prog->insnsi + i + delta; 19342 continue; 19343 } 19344 19345 /* Implement get_func_arg_cnt inline. */ 19346 if (prog_type == BPF_PROG_TYPE_TRACING && 19347 insn->imm == BPF_FUNC_get_func_arg_cnt) { 19348 /* Load nr_args from ctx - 8 */ 19349 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19350 19351 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19352 if (!new_prog) 19353 return -ENOMEM; 19354 19355 env->prog = prog = new_prog; 19356 insn = new_prog->insnsi + i + delta; 19357 continue; 19358 } 19359 19360 /* Implement bpf_get_func_ip inline. */ 19361 if (prog_type == BPF_PROG_TYPE_TRACING && 19362 insn->imm == BPF_FUNC_get_func_ip) { 19363 /* Load IP address from ctx - 16 */ 19364 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 19365 19366 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19367 if (!new_prog) 19368 return -ENOMEM; 19369 19370 env->prog = prog = new_prog; 19371 insn = new_prog->insnsi + i + delta; 19372 continue; 19373 } 19374 19375 patch_call_imm: 19376 fn = env->ops->get_func_proto(insn->imm, env->prog); 19377 /* all functions that have prototype and verifier allowed 19378 * programs to call them, must be real in-kernel functions 19379 */ 19380 if (!fn->func) { 19381 verbose(env, 19382 "kernel subsystem misconfigured func %s#%d\n", 19383 func_id_name(insn->imm), insn->imm); 19384 return -EFAULT; 19385 } 19386 insn->imm = fn->func - __bpf_call_base; 19387 } 19388 19389 /* Since poke tab is now finalized, publish aux to tracker. */ 19390 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19391 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19392 if (!map_ptr->ops->map_poke_track || 19393 !map_ptr->ops->map_poke_untrack || 19394 !map_ptr->ops->map_poke_run) { 19395 verbose(env, "bpf verifier is misconfigured\n"); 19396 return -EINVAL; 19397 } 19398 19399 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 19400 if (ret < 0) { 19401 verbose(env, "tracking tail call prog failed\n"); 19402 return ret; 19403 } 19404 } 19405 19406 sort_kfunc_descs_by_imm_off(env->prog); 19407 19408 return 0; 19409 } 19410 19411 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 19412 int position, 19413 s32 stack_base, 19414 u32 callback_subprogno, 19415 u32 *cnt) 19416 { 19417 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 19418 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 19419 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 19420 int reg_loop_max = BPF_REG_6; 19421 int reg_loop_cnt = BPF_REG_7; 19422 int reg_loop_ctx = BPF_REG_8; 19423 19424 struct bpf_prog *new_prog; 19425 u32 callback_start; 19426 u32 call_insn_offset; 19427 s32 callback_offset; 19428 19429 /* This represents an inlined version of bpf_iter.c:bpf_loop, 19430 * be careful to modify this code in sync. 19431 */ 19432 struct bpf_insn insn_buf[] = { 19433 /* Return error and jump to the end of the patch if 19434 * expected number of iterations is too big. 19435 */ 19436 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 19437 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 19438 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 19439 /* spill R6, R7, R8 to use these as loop vars */ 19440 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 19441 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 19442 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 19443 /* initialize loop vars */ 19444 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 19445 BPF_MOV32_IMM(reg_loop_cnt, 0), 19446 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 19447 /* loop header, 19448 * if reg_loop_cnt >= reg_loop_max skip the loop body 19449 */ 19450 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 19451 /* callback call, 19452 * correct callback offset would be set after patching 19453 */ 19454 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 19455 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 19456 BPF_CALL_REL(0), 19457 /* increment loop counter */ 19458 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 19459 /* jump to loop header if callback returned 0 */ 19460 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 19461 /* return value of bpf_loop, 19462 * set R0 to the number of iterations 19463 */ 19464 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 19465 /* restore original values of R6, R7, R8 */ 19466 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 19467 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 19468 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 19469 }; 19470 19471 *cnt = ARRAY_SIZE(insn_buf); 19472 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 19473 if (!new_prog) 19474 return new_prog; 19475 19476 /* callback start is known only after patching */ 19477 callback_start = env->subprog_info[callback_subprogno].start; 19478 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 19479 call_insn_offset = position + 12; 19480 callback_offset = callback_start - call_insn_offset - 1; 19481 new_prog->insnsi[call_insn_offset].imm = callback_offset; 19482 19483 return new_prog; 19484 } 19485 19486 static bool is_bpf_loop_call(struct bpf_insn *insn) 19487 { 19488 return insn->code == (BPF_JMP | BPF_CALL) && 19489 insn->src_reg == 0 && 19490 insn->imm == BPF_FUNC_loop; 19491 } 19492 19493 /* For all sub-programs in the program (including main) check 19494 * insn_aux_data to see if there are bpf_loop calls that require 19495 * inlining. If such calls are found the calls are replaced with a 19496 * sequence of instructions produced by `inline_bpf_loop` function and 19497 * subprog stack_depth is increased by the size of 3 registers. 19498 * This stack space is used to spill values of the R6, R7, R8. These 19499 * registers are used to store the loop bound, counter and context 19500 * variables. 19501 */ 19502 static int optimize_bpf_loop(struct bpf_verifier_env *env) 19503 { 19504 struct bpf_subprog_info *subprogs = env->subprog_info; 19505 int i, cur_subprog = 0, cnt, delta = 0; 19506 struct bpf_insn *insn = env->prog->insnsi; 19507 int insn_cnt = env->prog->len; 19508 u16 stack_depth = subprogs[cur_subprog].stack_depth; 19509 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19510 u16 stack_depth_extra = 0; 19511 19512 for (i = 0; i < insn_cnt; i++, insn++) { 19513 struct bpf_loop_inline_state *inline_state = 19514 &env->insn_aux_data[i + delta].loop_inline_state; 19515 19516 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 19517 struct bpf_prog *new_prog; 19518 19519 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 19520 new_prog = inline_bpf_loop(env, 19521 i + delta, 19522 -(stack_depth + stack_depth_extra), 19523 inline_state->callback_subprogno, 19524 &cnt); 19525 if (!new_prog) 19526 return -ENOMEM; 19527 19528 delta += cnt - 1; 19529 env->prog = new_prog; 19530 insn = new_prog->insnsi + i + delta; 19531 } 19532 19533 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 19534 subprogs[cur_subprog].stack_depth += stack_depth_extra; 19535 cur_subprog++; 19536 stack_depth = subprogs[cur_subprog].stack_depth; 19537 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19538 stack_depth_extra = 0; 19539 } 19540 } 19541 19542 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19543 19544 return 0; 19545 } 19546 19547 static void free_states(struct bpf_verifier_env *env) 19548 { 19549 struct bpf_verifier_state_list *sl, *sln; 19550 int i; 19551 19552 sl = env->free_list; 19553 while (sl) { 19554 sln = sl->next; 19555 free_verifier_state(&sl->state, false); 19556 kfree(sl); 19557 sl = sln; 19558 } 19559 env->free_list = NULL; 19560 19561 if (!env->explored_states) 19562 return; 19563 19564 for (i = 0; i < state_htab_size(env); i++) { 19565 sl = env->explored_states[i]; 19566 19567 while (sl) { 19568 sln = sl->next; 19569 free_verifier_state(&sl->state, false); 19570 kfree(sl); 19571 sl = sln; 19572 } 19573 env->explored_states[i] = NULL; 19574 } 19575 } 19576 19577 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19578 { 19579 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19580 struct bpf_verifier_state *state; 19581 struct bpf_reg_state *regs; 19582 int ret, i; 19583 19584 env->prev_linfo = NULL; 19585 env->pass_cnt++; 19586 19587 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19588 if (!state) 19589 return -ENOMEM; 19590 state->curframe = 0; 19591 state->speculative = false; 19592 state->branches = 1; 19593 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19594 if (!state->frame[0]) { 19595 kfree(state); 19596 return -ENOMEM; 19597 } 19598 env->cur_state = state; 19599 init_func_state(env, state->frame[0], 19600 BPF_MAIN_FUNC /* callsite */, 19601 0 /* frameno */, 19602 subprog); 19603 state->first_insn_idx = env->subprog_info[subprog].start; 19604 state->last_insn_idx = -1; 19605 19606 regs = state->frame[state->curframe]->regs; 19607 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19608 ret = btf_prepare_func_args(env, subprog, regs); 19609 if (ret) 19610 goto out; 19611 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19612 if (regs[i].type == PTR_TO_CTX) 19613 mark_reg_known_zero(env, regs, i); 19614 else if (regs[i].type == SCALAR_VALUE) 19615 mark_reg_unknown(env, regs, i); 19616 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19617 const u32 mem_size = regs[i].mem_size; 19618 19619 mark_reg_known_zero(env, regs, i); 19620 regs[i].mem_size = mem_size; 19621 regs[i].id = ++env->id_gen; 19622 } 19623 } 19624 } else { 19625 /* 1st arg to a function */ 19626 regs[BPF_REG_1].type = PTR_TO_CTX; 19627 mark_reg_known_zero(env, regs, BPF_REG_1); 19628 ret = btf_check_subprog_arg_match(env, subprog, regs); 19629 if (ret == -EFAULT) 19630 /* unlikely verifier bug. abort. 19631 * ret == 0 and ret < 0 are sadly acceptable for 19632 * main() function due to backward compatibility. 19633 * Like socket filter program may be written as: 19634 * int bpf_prog(struct pt_regs *ctx) 19635 * and never dereference that ctx in the program. 19636 * 'struct pt_regs' is a type mismatch for socket 19637 * filter that should be using 'struct __sk_buff'. 19638 */ 19639 goto out; 19640 } 19641 19642 ret = do_check(env); 19643 out: 19644 /* check for NULL is necessary, since cur_state can be freed inside 19645 * do_check() under memory pressure. 19646 */ 19647 if (env->cur_state) { 19648 free_verifier_state(env->cur_state, true); 19649 env->cur_state = NULL; 19650 } 19651 while (!pop_stack(env, NULL, NULL, false)); 19652 if (!ret && pop_log) 19653 bpf_vlog_reset(&env->log, 0); 19654 free_states(env); 19655 return ret; 19656 } 19657 19658 /* Verify all global functions in a BPF program one by one based on their BTF. 19659 * All global functions must pass verification. Otherwise the whole program is rejected. 19660 * Consider: 19661 * int bar(int); 19662 * int foo(int f) 19663 * { 19664 * return bar(f); 19665 * } 19666 * int bar(int b) 19667 * { 19668 * ... 19669 * } 19670 * foo() will be verified first for R1=any_scalar_value. During verification it 19671 * will be assumed that bar() already verified successfully and call to bar() 19672 * from foo() will be checked for type match only. Later bar() will be verified 19673 * independently to check that it's safe for R1=any_scalar_value. 19674 */ 19675 static int do_check_subprogs(struct bpf_verifier_env *env) 19676 { 19677 struct bpf_prog_aux *aux = env->prog->aux; 19678 int i, ret; 19679 19680 if (!aux->func_info) 19681 return 0; 19682 19683 for (i = 1; i < env->subprog_cnt; i++) { 19684 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19685 continue; 19686 env->insn_idx = env->subprog_info[i].start; 19687 WARN_ON_ONCE(env->insn_idx == 0); 19688 ret = do_check_common(env, i); 19689 if (ret) { 19690 return ret; 19691 } else if (env->log.level & BPF_LOG_LEVEL) { 19692 verbose(env, 19693 "Func#%d is safe for any args that match its prototype\n", 19694 i); 19695 } 19696 } 19697 return 0; 19698 } 19699 19700 static int do_check_main(struct bpf_verifier_env *env) 19701 { 19702 int ret; 19703 19704 env->insn_idx = 0; 19705 ret = do_check_common(env, 0); 19706 if (!ret) 19707 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19708 return ret; 19709 } 19710 19711 19712 static void print_verification_stats(struct bpf_verifier_env *env) 19713 { 19714 int i; 19715 19716 if (env->log.level & BPF_LOG_STATS) { 19717 verbose(env, "verification time %lld usec\n", 19718 div_u64(env->verification_time, 1000)); 19719 verbose(env, "stack depth "); 19720 for (i = 0; i < env->subprog_cnt; i++) { 19721 u32 depth = env->subprog_info[i].stack_depth; 19722 19723 verbose(env, "%d", depth); 19724 if (i + 1 < env->subprog_cnt) 19725 verbose(env, "+"); 19726 } 19727 verbose(env, "\n"); 19728 } 19729 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19730 "total_states %d peak_states %d mark_read %d\n", 19731 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19732 env->max_states_per_insn, env->total_states, 19733 env->peak_states, env->longest_mark_read_walk); 19734 } 19735 19736 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19737 { 19738 const struct btf_type *t, *func_proto; 19739 const struct bpf_struct_ops *st_ops; 19740 const struct btf_member *member; 19741 struct bpf_prog *prog = env->prog; 19742 u32 btf_id, member_idx; 19743 const char *mname; 19744 19745 if (!prog->gpl_compatible) { 19746 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19747 return -EINVAL; 19748 } 19749 19750 btf_id = prog->aux->attach_btf_id; 19751 st_ops = bpf_struct_ops_find(btf_id); 19752 if (!st_ops) { 19753 verbose(env, "attach_btf_id %u is not a supported struct\n", 19754 btf_id); 19755 return -ENOTSUPP; 19756 } 19757 19758 t = st_ops->type; 19759 member_idx = prog->expected_attach_type; 19760 if (member_idx >= btf_type_vlen(t)) { 19761 verbose(env, "attach to invalid member idx %u of struct %s\n", 19762 member_idx, st_ops->name); 19763 return -EINVAL; 19764 } 19765 19766 member = &btf_type_member(t)[member_idx]; 19767 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19768 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19769 NULL); 19770 if (!func_proto) { 19771 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19772 mname, member_idx, st_ops->name); 19773 return -EINVAL; 19774 } 19775 19776 if (st_ops->check_member) { 19777 int err = st_ops->check_member(t, member, prog); 19778 19779 if (err) { 19780 verbose(env, "attach to unsupported member %s of struct %s\n", 19781 mname, st_ops->name); 19782 return err; 19783 } 19784 } 19785 19786 prog->aux->attach_func_proto = func_proto; 19787 prog->aux->attach_func_name = mname; 19788 env->ops = st_ops->verifier_ops; 19789 19790 return 0; 19791 } 19792 #define SECURITY_PREFIX "security_" 19793 19794 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19795 { 19796 if (within_error_injection_list(addr) || 19797 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19798 return 0; 19799 19800 return -EINVAL; 19801 } 19802 19803 /* list of non-sleepable functions that are otherwise on 19804 * ALLOW_ERROR_INJECTION list 19805 */ 19806 BTF_SET_START(btf_non_sleepable_error_inject) 19807 /* Three functions below can be called from sleepable and non-sleepable context. 19808 * Assume non-sleepable from bpf safety point of view. 19809 */ 19810 BTF_ID(func, __filemap_add_folio) 19811 BTF_ID(func, should_fail_alloc_page) 19812 BTF_ID(func, should_failslab) 19813 BTF_SET_END(btf_non_sleepable_error_inject) 19814 19815 static int check_non_sleepable_error_inject(u32 btf_id) 19816 { 19817 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19818 } 19819 19820 int bpf_check_attach_target(struct bpf_verifier_log *log, 19821 const struct bpf_prog *prog, 19822 const struct bpf_prog *tgt_prog, 19823 u32 btf_id, 19824 struct bpf_attach_target_info *tgt_info) 19825 { 19826 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19827 const char prefix[] = "btf_trace_"; 19828 int ret = 0, subprog = -1, i; 19829 const struct btf_type *t; 19830 bool conservative = true; 19831 const char *tname; 19832 struct btf *btf; 19833 long addr = 0; 19834 struct module *mod = NULL; 19835 19836 if (!btf_id) { 19837 bpf_log(log, "Tracing programs must provide btf_id\n"); 19838 return -EINVAL; 19839 } 19840 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19841 if (!btf) { 19842 bpf_log(log, 19843 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19844 return -EINVAL; 19845 } 19846 t = btf_type_by_id(btf, btf_id); 19847 if (!t) { 19848 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19849 return -EINVAL; 19850 } 19851 tname = btf_name_by_offset(btf, t->name_off); 19852 if (!tname) { 19853 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19854 return -EINVAL; 19855 } 19856 if (tgt_prog) { 19857 struct bpf_prog_aux *aux = tgt_prog->aux; 19858 19859 if (bpf_prog_is_dev_bound(prog->aux) && 19860 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19861 bpf_log(log, "Target program bound device mismatch"); 19862 return -EINVAL; 19863 } 19864 19865 for (i = 0; i < aux->func_info_cnt; i++) 19866 if (aux->func_info[i].type_id == btf_id) { 19867 subprog = i; 19868 break; 19869 } 19870 if (subprog == -1) { 19871 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19872 return -EINVAL; 19873 } 19874 conservative = aux->func_info_aux[subprog].unreliable; 19875 if (prog_extension) { 19876 if (conservative) { 19877 bpf_log(log, 19878 "Cannot replace static functions\n"); 19879 return -EINVAL; 19880 } 19881 if (!prog->jit_requested) { 19882 bpf_log(log, 19883 "Extension programs should be JITed\n"); 19884 return -EINVAL; 19885 } 19886 } 19887 if (!tgt_prog->jited) { 19888 bpf_log(log, "Can attach to only JITed progs\n"); 19889 return -EINVAL; 19890 } 19891 if (tgt_prog->type == prog->type) { 19892 /* Cannot fentry/fexit another fentry/fexit program. 19893 * Cannot attach program extension to another extension. 19894 * It's ok to attach fentry/fexit to extension program. 19895 */ 19896 bpf_log(log, "Cannot recursively attach\n"); 19897 return -EINVAL; 19898 } 19899 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19900 prog_extension && 19901 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19902 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19903 /* Program extensions can extend all program types 19904 * except fentry/fexit. The reason is the following. 19905 * The fentry/fexit programs are used for performance 19906 * analysis, stats and can be attached to any program 19907 * type except themselves. When extension program is 19908 * replacing XDP function it is necessary to allow 19909 * performance analysis of all functions. Both original 19910 * XDP program and its program extension. Hence 19911 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19912 * allowed. If extending of fentry/fexit was allowed it 19913 * would be possible to create long call chain 19914 * fentry->extension->fentry->extension beyond 19915 * reasonable stack size. Hence extending fentry is not 19916 * allowed. 19917 */ 19918 bpf_log(log, "Cannot extend fentry/fexit\n"); 19919 return -EINVAL; 19920 } 19921 } else { 19922 if (prog_extension) { 19923 bpf_log(log, "Cannot replace kernel functions\n"); 19924 return -EINVAL; 19925 } 19926 } 19927 19928 switch (prog->expected_attach_type) { 19929 case BPF_TRACE_RAW_TP: 19930 if (tgt_prog) { 19931 bpf_log(log, 19932 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19933 return -EINVAL; 19934 } 19935 if (!btf_type_is_typedef(t)) { 19936 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19937 btf_id); 19938 return -EINVAL; 19939 } 19940 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19941 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19942 btf_id, tname); 19943 return -EINVAL; 19944 } 19945 tname += sizeof(prefix) - 1; 19946 t = btf_type_by_id(btf, t->type); 19947 if (!btf_type_is_ptr(t)) 19948 /* should never happen in valid vmlinux build */ 19949 return -EINVAL; 19950 t = btf_type_by_id(btf, t->type); 19951 if (!btf_type_is_func_proto(t)) 19952 /* should never happen in valid vmlinux build */ 19953 return -EINVAL; 19954 19955 break; 19956 case BPF_TRACE_ITER: 19957 if (!btf_type_is_func(t)) { 19958 bpf_log(log, "attach_btf_id %u is not a function\n", 19959 btf_id); 19960 return -EINVAL; 19961 } 19962 t = btf_type_by_id(btf, t->type); 19963 if (!btf_type_is_func_proto(t)) 19964 return -EINVAL; 19965 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19966 if (ret) 19967 return ret; 19968 break; 19969 default: 19970 if (!prog_extension) 19971 return -EINVAL; 19972 fallthrough; 19973 case BPF_MODIFY_RETURN: 19974 case BPF_LSM_MAC: 19975 case BPF_LSM_CGROUP: 19976 case BPF_TRACE_FENTRY: 19977 case BPF_TRACE_FEXIT: 19978 if (!btf_type_is_func(t)) { 19979 bpf_log(log, "attach_btf_id %u is not a function\n", 19980 btf_id); 19981 return -EINVAL; 19982 } 19983 if (prog_extension && 19984 btf_check_type_match(log, prog, btf, t)) 19985 return -EINVAL; 19986 t = btf_type_by_id(btf, t->type); 19987 if (!btf_type_is_func_proto(t)) 19988 return -EINVAL; 19989 19990 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19991 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19992 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19993 return -EINVAL; 19994 19995 if (tgt_prog && conservative) 19996 t = NULL; 19997 19998 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19999 if (ret < 0) 20000 return ret; 20001 20002 if (tgt_prog) { 20003 if (subprog == 0) 20004 addr = (long) tgt_prog->bpf_func; 20005 else 20006 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 20007 } else { 20008 if (btf_is_module(btf)) { 20009 mod = btf_try_get_module(btf); 20010 if (mod) 20011 addr = find_kallsyms_symbol_value(mod, tname); 20012 else 20013 addr = 0; 20014 } else { 20015 addr = kallsyms_lookup_name(tname); 20016 } 20017 if (!addr) { 20018 module_put(mod); 20019 bpf_log(log, 20020 "The address of function %s cannot be found\n", 20021 tname); 20022 return -ENOENT; 20023 } 20024 } 20025 20026 if (prog->aux->sleepable) { 20027 ret = -EINVAL; 20028 switch (prog->type) { 20029 case BPF_PROG_TYPE_TRACING: 20030 20031 /* fentry/fexit/fmod_ret progs can be sleepable if they are 20032 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 20033 */ 20034 if (!check_non_sleepable_error_inject(btf_id) && 20035 within_error_injection_list(addr)) 20036 ret = 0; 20037 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 20038 * in the fmodret id set with the KF_SLEEPABLE flag. 20039 */ 20040 else { 20041 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 20042 prog); 20043 20044 if (flags && (*flags & KF_SLEEPABLE)) 20045 ret = 0; 20046 } 20047 break; 20048 case BPF_PROG_TYPE_LSM: 20049 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 20050 * Only some of them are sleepable. 20051 */ 20052 if (bpf_lsm_is_sleepable_hook(btf_id)) 20053 ret = 0; 20054 break; 20055 default: 20056 break; 20057 } 20058 if (ret) { 20059 module_put(mod); 20060 bpf_log(log, "%s is not sleepable\n", tname); 20061 return ret; 20062 } 20063 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 20064 if (tgt_prog) { 20065 module_put(mod); 20066 bpf_log(log, "can't modify return codes of BPF programs\n"); 20067 return -EINVAL; 20068 } 20069 ret = -EINVAL; 20070 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 20071 !check_attach_modify_return(addr, tname)) 20072 ret = 0; 20073 if (ret) { 20074 module_put(mod); 20075 bpf_log(log, "%s() is not modifiable\n", tname); 20076 return ret; 20077 } 20078 } 20079 20080 break; 20081 } 20082 tgt_info->tgt_addr = addr; 20083 tgt_info->tgt_name = tname; 20084 tgt_info->tgt_type = t; 20085 tgt_info->tgt_mod = mod; 20086 return 0; 20087 } 20088 20089 BTF_SET_START(btf_id_deny) 20090 BTF_ID_UNUSED 20091 #ifdef CONFIG_SMP 20092 BTF_ID(func, migrate_disable) 20093 BTF_ID(func, migrate_enable) 20094 #endif 20095 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 20096 BTF_ID(func, rcu_read_unlock_strict) 20097 #endif 20098 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 20099 BTF_ID(func, preempt_count_add) 20100 BTF_ID(func, preempt_count_sub) 20101 #endif 20102 #ifdef CONFIG_PREEMPT_RCU 20103 BTF_ID(func, __rcu_read_lock) 20104 BTF_ID(func, __rcu_read_unlock) 20105 #endif 20106 BTF_SET_END(btf_id_deny) 20107 20108 static bool can_be_sleepable(struct bpf_prog *prog) 20109 { 20110 if (prog->type == BPF_PROG_TYPE_TRACING) { 20111 switch (prog->expected_attach_type) { 20112 case BPF_TRACE_FENTRY: 20113 case BPF_TRACE_FEXIT: 20114 case BPF_MODIFY_RETURN: 20115 case BPF_TRACE_ITER: 20116 return true; 20117 default: 20118 return false; 20119 } 20120 } 20121 return prog->type == BPF_PROG_TYPE_LSM || 20122 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 20123 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 20124 } 20125 20126 static int check_attach_btf_id(struct bpf_verifier_env *env) 20127 { 20128 struct bpf_prog *prog = env->prog; 20129 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 20130 struct bpf_attach_target_info tgt_info = {}; 20131 u32 btf_id = prog->aux->attach_btf_id; 20132 struct bpf_trampoline *tr; 20133 int ret; 20134 u64 key; 20135 20136 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 20137 if (prog->aux->sleepable) 20138 /* attach_btf_id checked to be zero already */ 20139 return 0; 20140 verbose(env, "Syscall programs can only be sleepable\n"); 20141 return -EINVAL; 20142 } 20143 20144 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 20145 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 20146 return -EINVAL; 20147 } 20148 20149 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 20150 return check_struct_ops_btf_id(env); 20151 20152 if (prog->type != BPF_PROG_TYPE_TRACING && 20153 prog->type != BPF_PROG_TYPE_LSM && 20154 prog->type != BPF_PROG_TYPE_EXT) 20155 return 0; 20156 20157 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 20158 if (ret) 20159 return ret; 20160 20161 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 20162 /* to make freplace equivalent to their targets, they need to 20163 * inherit env->ops and expected_attach_type for the rest of the 20164 * verification 20165 */ 20166 env->ops = bpf_verifier_ops[tgt_prog->type]; 20167 prog->expected_attach_type = tgt_prog->expected_attach_type; 20168 } 20169 20170 /* store info about the attachment target that will be used later */ 20171 prog->aux->attach_func_proto = tgt_info.tgt_type; 20172 prog->aux->attach_func_name = tgt_info.tgt_name; 20173 prog->aux->mod = tgt_info.tgt_mod; 20174 20175 if (tgt_prog) { 20176 prog->aux->saved_dst_prog_type = tgt_prog->type; 20177 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 20178 } 20179 20180 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 20181 prog->aux->attach_btf_trace = true; 20182 return 0; 20183 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 20184 if (!bpf_iter_prog_supported(prog)) 20185 return -EINVAL; 20186 return 0; 20187 } 20188 20189 if (prog->type == BPF_PROG_TYPE_LSM) { 20190 ret = bpf_lsm_verify_prog(&env->log, prog); 20191 if (ret < 0) 20192 return ret; 20193 } else if (prog->type == BPF_PROG_TYPE_TRACING && 20194 btf_id_set_contains(&btf_id_deny, btf_id)) { 20195 return -EINVAL; 20196 } 20197 20198 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 20199 tr = bpf_trampoline_get(key, &tgt_info); 20200 if (!tr) 20201 return -ENOMEM; 20202 20203 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 20204 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 20205 20206 prog->aux->dst_trampoline = tr; 20207 return 0; 20208 } 20209 20210 struct btf *bpf_get_btf_vmlinux(void) 20211 { 20212 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 20213 mutex_lock(&bpf_verifier_lock); 20214 if (!btf_vmlinux) 20215 btf_vmlinux = btf_parse_vmlinux(); 20216 mutex_unlock(&bpf_verifier_lock); 20217 } 20218 return btf_vmlinux; 20219 } 20220 20221 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 20222 { 20223 u64 start_time = ktime_get_ns(); 20224 struct bpf_verifier_env *env; 20225 int i, len, ret = -EINVAL, err; 20226 u32 log_true_size; 20227 bool is_priv; 20228 20229 /* no program is valid */ 20230 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 20231 return -EINVAL; 20232 20233 /* 'struct bpf_verifier_env' can be global, but since it's not small, 20234 * allocate/free it every time bpf_check() is called 20235 */ 20236 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 20237 if (!env) 20238 return -ENOMEM; 20239 20240 env->bt.env = env; 20241 20242 len = (*prog)->len; 20243 env->insn_aux_data = 20244 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 20245 ret = -ENOMEM; 20246 if (!env->insn_aux_data) 20247 goto err_free_env; 20248 for (i = 0; i < len; i++) 20249 env->insn_aux_data[i].orig_idx = i; 20250 env->prog = *prog; 20251 env->ops = bpf_verifier_ops[env->prog->type]; 20252 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 20253 is_priv = bpf_capable(); 20254 20255 bpf_get_btf_vmlinux(); 20256 20257 /* grab the mutex to protect few globals used by verifier */ 20258 if (!is_priv) 20259 mutex_lock(&bpf_verifier_lock); 20260 20261 /* user could have requested verbose verifier output 20262 * and supplied buffer to store the verification trace 20263 */ 20264 ret = bpf_vlog_init(&env->log, attr->log_level, 20265 (char __user *) (unsigned long) attr->log_buf, 20266 attr->log_size); 20267 if (ret) 20268 goto err_unlock; 20269 20270 mark_verifier_state_clean(env); 20271 20272 if (IS_ERR(btf_vmlinux)) { 20273 /* Either gcc or pahole or kernel are broken. */ 20274 verbose(env, "in-kernel BTF is malformed\n"); 20275 ret = PTR_ERR(btf_vmlinux); 20276 goto skip_full_check; 20277 } 20278 20279 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 20280 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 20281 env->strict_alignment = true; 20282 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 20283 env->strict_alignment = false; 20284 20285 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 20286 env->allow_uninit_stack = bpf_allow_uninit_stack(); 20287 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 20288 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 20289 env->bpf_capable = bpf_capable(); 20290 20291 if (is_priv) 20292 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 20293 20294 env->explored_states = kvcalloc(state_htab_size(env), 20295 sizeof(struct bpf_verifier_state_list *), 20296 GFP_USER); 20297 ret = -ENOMEM; 20298 if (!env->explored_states) 20299 goto skip_full_check; 20300 20301 ret = add_subprog_and_kfunc(env); 20302 if (ret < 0) 20303 goto skip_full_check; 20304 20305 ret = check_subprogs(env); 20306 if (ret < 0) 20307 goto skip_full_check; 20308 20309 ret = check_btf_info(env, attr, uattr); 20310 if (ret < 0) 20311 goto skip_full_check; 20312 20313 ret = check_attach_btf_id(env); 20314 if (ret) 20315 goto skip_full_check; 20316 20317 ret = resolve_pseudo_ldimm64(env); 20318 if (ret < 0) 20319 goto skip_full_check; 20320 20321 if (bpf_prog_is_offloaded(env->prog->aux)) { 20322 ret = bpf_prog_offload_verifier_prep(env->prog); 20323 if (ret) 20324 goto skip_full_check; 20325 } 20326 20327 ret = check_cfg(env); 20328 if (ret < 0) 20329 goto skip_full_check; 20330 20331 ret = do_check_subprogs(env); 20332 ret = ret ?: do_check_main(env); 20333 20334 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 20335 ret = bpf_prog_offload_finalize(env); 20336 20337 skip_full_check: 20338 kvfree(env->explored_states); 20339 20340 if (ret == 0) 20341 ret = check_max_stack_depth(env); 20342 20343 /* instruction rewrites happen after this point */ 20344 if (ret == 0) 20345 ret = optimize_bpf_loop(env); 20346 20347 if (is_priv) { 20348 if (ret == 0) 20349 opt_hard_wire_dead_code_branches(env); 20350 if (ret == 0) 20351 ret = opt_remove_dead_code(env); 20352 if (ret == 0) 20353 ret = opt_remove_nops(env); 20354 } else { 20355 if (ret == 0) 20356 sanitize_dead_code(env); 20357 } 20358 20359 if (ret == 0) 20360 /* program is valid, convert *(u32*)(ctx + off) accesses */ 20361 ret = convert_ctx_accesses(env); 20362 20363 if (ret == 0) 20364 ret = do_misc_fixups(env); 20365 20366 /* do 32-bit optimization after insn patching has done so those patched 20367 * insns could be handled correctly. 20368 */ 20369 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 20370 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 20371 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 20372 : false; 20373 } 20374 20375 if (ret == 0) 20376 ret = fixup_call_args(env); 20377 20378 env->verification_time = ktime_get_ns() - start_time; 20379 print_verification_stats(env); 20380 env->prog->aux->verified_insns = env->insn_processed; 20381 20382 /* preserve original error even if log finalization is successful */ 20383 err = bpf_vlog_finalize(&env->log, &log_true_size); 20384 if (err) 20385 ret = err; 20386 20387 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 20388 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 20389 &log_true_size, sizeof(log_true_size))) { 20390 ret = -EFAULT; 20391 goto err_release_maps; 20392 } 20393 20394 if (ret) 20395 goto err_release_maps; 20396 20397 if (env->used_map_cnt) { 20398 /* if program passed verifier, update used_maps in bpf_prog_info */ 20399 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 20400 sizeof(env->used_maps[0]), 20401 GFP_KERNEL); 20402 20403 if (!env->prog->aux->used_maps) { 20404 ret = -ENOMEM; 20405 goto err_release_maps; 20406 } 20407 20408 memcpy(env->prog->aux->used_maps, env->used_maps, 20409 sizeof(env->used_maps[0]) * env->used_map_cnt); 20410 env->prog->aux->used_map_cnt = env->used_map_cnt; 20411 } 20412 if (env->used_btf_cnt) { 20413 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 20414 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 20415 sizeof(env->used_btfs[0]), 20416 GFP_KERNEL); 20417 if (!env->prog->aux->used_btfs) { 20418 ret = -ENOMEM; 20419 goto err_release_maps; 20420 } 20421 20422 memcpy(env->prog->aux->used_btfs, env->used_btfs, 20423 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 20424 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 20425 } 20426 if (env->used_map_cnt || env->used_btf_cnt) { 20427 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 20428 * bpf_ld_imm64 instructions 20429 */ 20430 convert_pseudo_ld_imm64(env); 20431 } 20432 20433 adjust_btf_func(env); 20434 20435 err_release_maps: 20436 if (!env->prog->aux->used_maps) 20437 /* if we didn't copy map pointers into bpf_prog_info, release 20438 * them now. Otherwise free_used_maps() will release them. 20439 */ 20440 release_maps(env); 20441 if (!env->prog->aux->used_btfs) 20442 release_btfs(env); 20443 20444 /* extension progs temporarily inherit the attach_type of their targets 20445 for verification purposes, so set it back to zero before returning 20446 */ 20447 if (env->prog->type == BPF_PROG_TYPE_EXT) 20448 env->prog->expected_attach_type = 0; 20449 20450 *prog = env->prog; 20451 err_unlock: 20452 if (!is_priv) 20453 mutex_unlock(&bpf_verifier_lock); 20454 vfree(env->insn_aux_data); 20455 err_free_env: 20456 kfree(env); 20457 return ret; 20458 } 20459