1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_timer_set_callback || 551 func_id == BPF_FUNC_find_vma || 552 func_id == BPF_FUNC_loop || 553 func_id == BPF_FUNC_user_ringbuf_drain; 554 } 555 556 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 557 { 558 return func_id == BPF_FUNC_timer_set_callback; 559 } 560 561 static bool is_storage_get_function(enum bpf_func_id func_id) 562 { 563 return func_id == BPF_FUNC_sk_storage_get || 564 func_id == BPF_FUNC_inode_storage_get || 565 func_id == BPF_FUNC_task_storage_get || 566 func_id == BPF_FUNC_cgrp_storage_get; 567 } 568 569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 570 const struct bpf_map *map) 571 { 572 int ref_obj_uses = 0; 573 574 if (is_ptr_cast_function(func_id)) 575 ref_obj_uses++; 576 if (is_acquire_function(func_id, map)) 577 ref_obj_uses++; 578 if (is_dynptr_ref_function(func_id)) 579 ref_obj_uses++; 580 581 return ref_obj_uses > 1; 582 } 583 584 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 585 { 586 return BPF_CLASS(insn->code) == BPF_STX && 587 BPF_MODE(insn->code) == BPF_ATOMIC && 588 insn->imm == BPF_CMPXCHG; 589 } 590 591 /* string representation of 'enum bpf_reg_type' 592 * 593 * Note that reg_type_str() can not appear more than once in a single verbose() 594 * statement. 595 */ 596 static const char *reg_type_str(struct bpf_verifier_env *env, 597 enum bpf_reg_type type) 598 { 599 char postfix[16] = {0}, prefix[64] = {0}; 600 static const char * const str[] = { 601 [NOT_INIT] = "?", 602 [SCALAR_VALUE] = "scalar", 603 [PTR_TO_CTX] = "ctx", 604 [CONST_PTR_TO_MAP] = "map_ptr", 605 [PTR_TO_MAP_VALUE] = "map_value", 606 [PTR_TO_STACK] = "fp", 607 [PTR_TO_PACKET] = "pkt", 608 [PTR_TO_PACKET_META] = "pkt_meta", 609 [PTR_TO_PACKET_END] = "pkt_end", 610 [PTR_TO_FLOW_KEYS] = "flow_keys", 611 [PTR_TO_SOCKET] = "sock", 612 [PTR_TO_SOCK_COMMON] = "sock_common", 613 [PTR_TO_TCP_SOCK] = "tcp_sock", 614 [PTR_TO_TP_BUFFER] = "tp_buffer", 615 [PTR_TO_XDP_SOCK] = "xdp_sock", 616 [PTR_TO_BTF_ID] = "ptr_", 617 [PTR_TO_MEM] = "mem", 618 [PTR_TO_BUF] = "buf", 619 [PTR_TO_FUNC] = "func", 620 [PTR_TO_MAP_KEY] = "map_key", 621 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 622 }; 623 624 if (type & PTR_MAYBE_NULL) { 625 if (base_type(type) == PTR_TO_BTF_ID) 626 strncpy(postfix, "or_null_", 16); 627 else 628 strncpy(postfix, "_or_null", 16); 629 } 630 631 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 632 type & MEM_RDONLY ? "rdonly_" : "", 633 type & MEM_RINGBUF ? "ringbuf_" : "", 634 type & MEM_USER ? "user_" : "", 635 type & MEM_PERCPU ? "percpu_" : "", 636 type & MEM_RCU ? "rcu_" : "", 637 type & PTR_UNTRUSTED ? "untrusted_" : "", 638 type & PTR_TRUSTED ? "trusted_" : "" 639 ); 640 641 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 642 prefix, str[base_type(type)], postfix); 643 return env->tmp_str_buf; 644 } 645 646 static char slot_type_char[] = { 647 [STACK_INVALID] = '?', 648 [STACK_SPILL] = 'r', 649 [STACK_MISC] = 'm', 650 [STACK_ZERO] = '0', 651 [STACK_DYNPTR] = 'd', 652 [STACK_ITER] = 'i', 653 }; 654 655 static void print_liveness(struct bpf_verifier_env *env, 656 enum bpf_reg_liveness live) 657 { 658 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 659 verbose(env, "_"); 660 if (live & REG_LIVE_READ) 661 verbose(env, "r"); 662 if (live & REG_LIVE_WRITTEN) 663 verbose(env, "w"); 664 if (live & REG_LIVE_DONE) 665 verbose(env, "D"); 666 } 667 668 static int __get_spi(s32 off) 669 { 670 return (-off - 1) / BPF_REG_SIZE; 671 } 672 673 static struct bpf_func_state *func(struct bpf_verifier_env *env, 674 const struct bpf_reg_state *reg) 675 { 676 struct bpf_verifier_state *cur = env->cur_state; 677 678 return cur->frame[reg->frameno]; 679 } 680 681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 682 { 683 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 684 685 /* We need to check that slots between [spi - nr_slots + 1, spi] are 686 * within [0, allocated_stack). 687 * 688 * Please note that the spi grows downwards. For example, a dynptr 689 * takes the size of two stack slots; the first slot will be at 690 * spi and the second slot will be at spi - 1. 691 */ 692 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 693 } 694 695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 696 const char *obj_kind, int nr_slots) 697 { 698 int off, spi; 699 700 if (!tnum_is_const(reg->var_off)) { 701 verbose(env, "%s has to be at a constant offset\n", obj_kind); 702 return -EINVAL; 703 } 704 705 off = reg->off + reg->var_off.value; 706 if (off % BPF_REG_SIZE) { 707 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 708 return -EINVAL; 709 } 710 711 spi = __get_spi(off); 712 if (spi + 1 < nr_slots) { 713 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 714 return -EINVAL; 715 } 716 717 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 718 return -ERANGE; 719 return spi; 720 } 721 722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 723 { 724 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 725 } 726 727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 728 { 729 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 730 } 731 732 static const char *btf_type_name(const struct btf *btf, u32 id) 733 { 734 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 735 } 736 737 static const char *dynptr_type_str(enum bpf_dynptr_type type) 738 { 739 switch (type) { 740 case BPF_DYNPTR_TYPE_LOCAL: 741 return "local"; 742 case BPF_DYNPTR_TYPE_RINGBUF: 743 return "ringbuf"; 744 case BPF_DYNPTR_TYPE_SKB: 745 return "skb"; 746 case BPF_DYNPTR_TYPE_XDP: 747 return "xdp"; 748 case BPF_DYNPTR_TYPE_INVALID: 749 return "<invalid>"; 750 default: 751 WARN_ONCE(1, "unknown dynptr type %d\n", type); 752 return "<unknown>"; 753 } 754 } 755 756 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 757 { 758 if (!btf || btf_id == 0) 759 return "<invalid>"; 760 761 /* we already validated that type is valid and has conforming name */ 762 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 763 } 764 765 static const char *iter_state_str(enum bpf_iter_state state) 766 { 767 switch (state) { 768 case BPF_ITER_STATE_ACTIVE: 769 return "active"; 770 case BPF_ITER_STATE_DRAINED: 771 return "drained"; 772 case BPF_ITER_STATE_INVALID: 773 return "<invalid>"; 774 default: 775 WARN_ONCE(1, "unknown iter state %d\n", state); 776 return "<unknown>"; 777 } 778 } 779 780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 781 { 782 env->scratched_regs |= 1U << regno; 783 } 784 785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 786 { 787 env->scratched_stack_slots |= 1ULL << spi; 788 } 789 790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 791 { 792 return (env->scratched_regs >> regno) & 1; 793 } 794 795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 796 { 797 return (env->scratched_stack_slots >> regno) & 1; 798 } 799 800 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 801 { 802 return env->scratched_regs || env->scratched_stack_slots; 803 } 804 805 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 806 { 807 env->scratched_regs = 0U; 808 env->scratched_stack_slots = 0ULL; 809 } 810 811 /* Used for printing the entire verifier state. */ 812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 813 { 814 env->scratched_regs = ~0U; 815 env->scratched_stack_slots = ~0ULL; 816 } 817 818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 819 { 820 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 821 case DYNPTR_TYPE_LOCAL: 822 return BPF_DYNPTR_TYPE_LOCAL; 823 case DYNPTR_TYPE_RINGBUF: 824 return BPF_DYNPTR_TYPE_RINGBUF; 825 case DYNPTR_TYPE_SKB: 826 return BPF_DYNPTR_TYPE_SKB; 827 case DYNPTR_TYPE_XDP: 828 return BPF_DYNPTR_TYPE_XDP; 829 default: 830 return BPF_DYNPTR_TYPE_INVALID; 831 } 832 } 833 834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 835 { 836 switch (type) { 837 case BPF_DYNPTR_TYPE_LOCAL: 838 return DYNPTR_TYPE_LOCAL; 839 case BPF_DYNPTR_TYPE_RINGBUF: 840 return DYNPTR_TYPE_RINGBUF; 841 case BPF_DYNPTR_TYPE_SKB: 842 return DYNPTR_TYPE_SKB; 843 case BPF_DYNPTR_TYPE_XDP: 844 return DYNPTR_TYPE_XDP; 845 default: 846 return 0; 847 } 848 } 849 850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 851 { 852 return type == BPF_DYNPTR_TYPE_RINGBUF; 853 } 854 855 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 856 enum bpf_dynptr_type type, 857 bool first_slot, int dynptr_id); 858 859 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 860 struct bpf_reg_state *reg); 861 862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 863 struct bpf_reg_state *sreg1, 864 struct bpf_reg_state *sreg2, 865 enum bpf_dynptr_type type) 866 { 867 int id = ++env->id_gen; 868 869 __mark_dynptr_reg(sreg1, type, true, id); 870 __mark_dynptr_reg(sreg2, type, false, id); 871 } 872 873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 874 struct bpf_reg_state *reg, 875 enum bpf_dynptr_type type) 876 { 877 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 878 } 879 880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 881 struct bpf_func_state *state, int spi); 882 883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 884 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 885 { 886 struct bpf_func_state *state = func(env, reg); 887 enum bpf_dynptr_type type; 888 int spi, i, err; 889 890 spi = dynptr_get_spi(env, reg); 891 if (spi < 0) 892 return spi; 893 894 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 895 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 896 * to ensure that for the following example: 897 * [d1][d1][d2][d2] 898 * spi 3 2 1 0 899 * So marking spi = 2 should lead to destruction of both d1 and d2. In 900 * case they do belong to same dynptr, second call won't see slot_type 901 * as STACK_DYNPTR and will simply skip destruction. 902 */ 903 err = destroy_if_dynptr_stack_slot(env, state, spi); 904 if (err) 905 return err; 906 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 907 if (err) 908 return err; 909 910 for (i = 0; i < BPF_REG_SIZE; i++) { 911 state->stack[spi].slot_type[i] = STACK_DYNPTR; 912 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 913 } 914 915 type = arg_to_dynptr_type(arg_type); 916 if (type == BPF_DYNPTR_TYPE_INVALID) 917 return -EINVAL; 918 919 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 920 &state->stack[spi - 1].spilled_ptr, type); 921 922 if (dynptr_type_refcounted(type)) { 923 /* The id is used to track proper releasing */ 924 int id; 925 926 if (clone_ref_obj_id) 927 id = clone_ref_obj_id; 928 else 929 id = acquire_reference_state(env, insn_idx); 930 931 if (id < 0) 932 return id; 933 934 state->stack[spi].spilled_ptr.ref_obj_id = id; 935 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 936 } 937 938 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 939 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 940 941 return 0; 942 } 943 944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 945 { 946 int i; 947 948 for (i = 0; i < BPF_REG_SIZE; i++) { 949 state->stack[spi].slot_type[i] = STACK_INVALID; 950 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 951 } 952 953 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 954 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 955 956 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 957 * 958 * While we don't allow reading STACK_INVALID, it is still possible to 959 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 960 * helpers or insns can do partial read of that part without failing, 961 * but check_stack_range_initialized, check_stack_read_var_off, and 962 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 963 * the slot conservatively. Hence we need to prevent those liveness 964 * marking walks. 965 * 966 * This was not a problem before because STACK_INVALID is only set by 967 * default (where the default reg state has its reg->parent as NULL), or 968 * in clean_live_states after REG_LIVE_DONE (at which point 969 * mark_reg_read won't walk reg->parent chain), but not randomly during 970 * verifier state exploration (like we did above). Hence, for our case 971 * parentage chain will still be live (i.e. reg->parent may be 972 * non-NULL), while earlier reg->parent was NULL, so we need 973 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 974 * done later on reads or by mark_dynptr_read as well to unnecessary 975 * mark registers in verifier state. 976 */ 977 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 978 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 979 } 980 981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 982 { 983 struct bpf_func_state *state = func(env, reg); 984 int spi, ref_obj_id, i; 985 986 spi = dynptr_get_spi(env, reg); 987 if (spi < 0) 988 return spi; 989 990 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 991 invalidate_dynptr(env, state, spi); 992 return 0; 993 } 994 995 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 996 997 /* If the dynptr has a ref_obj_id, then we need to invalidate 998 * two things: 999 * 1000 * 1) Any dynptrs with a matching ref_obj_id (clones) 1001 * 2) Any slices derived from this dynptr. 1002 */ 1003 1004 /* Invalidate any slices associated with this dynptr */ 1005 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1006 1007 /* Invalidate any dynptr clones */ 1008 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1009 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1010 continue; 1011 1012 /* it should always be the case that if the ref obj id 1013 * matches then the stack slot also belongs to a 1014 * dynptr 1015 */ 1016 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1017 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1018 return -EFAULT; 1019 } 1020 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1021 invalidate_dynptr(env, state, i); 1022 } 1023 1024 return 0; 1025 } 1026 1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1028 struct bpf_reg_state *reg); 1029 1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1031 { 1032 if (!env->allow_ptr_leaks) 1033 __mark_reg_not_init(env, reg); 1034 else 1035 __mark_reg_unknown(env, reg); 1036 } 1037 1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1039 struct bpf_func_state *state, int spi) 1040 { 1041 struct bpf_func_state *fstate; 1042 struct bpf_reg_state *dreg; 1043 int i, dynptr_id; 1044 1045 /* We always ensure that STACK_DYNPTR is never set partially, 1046 * hence just checking for slot_type[0] is enough. This is 1047 * different for STACK_SPILL, where it may be only set for 1048 * 1 byte, so code has to use is_spilled_reg. 1049 */ 1050 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1051 return 0; 1052 1053 /* Reposition spi to first slot */ 1054 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1055 spi = spi + 1; 1056 1057 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1058 verbose(env, "cannot overwrite referenced dynptr\n"); 1059 return -EINVAL; 1060 } 1061 1062 mark_stack_slot_scratched(env, spi); 1063 mark_stack_slot_scratched(env, spi - 1); 1064 1065 /* Writing partially to one dynptr stack slot destroys both. */ 1066 for (i = 0; i < BPF_REG_SIZE; i++) { 1067 state->stack[spi].slot_type[i] = STACK_INVALID; 1068 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1069 } 1070 1071 dynptr_id = state->stack[spi].spilled_ptr.id; 1072 /* Invalidate any slices associated with this dynptr */ 1073 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1074 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1075 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1076 continue; 1077 if (dreg->dynptr_id == dynptr_id) 1078 mark_reg_invalid(env, dreg); 1079 })); 1080 1081 /* Do not release reference state, we are destroying dynptr on stack, 1082 * not using some helper to release it. Just reset register. 1083 */ 1084 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1085 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1086 1087 /* Same reason as unmark_stack_slots_dynptr above */ 1088 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1089 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1090 1091 return 0; 1092 } 1093 1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1095 { 1096 int spi; 1097 1098 if (reg->type == CONST_PTR_TO_DYNPTR) 1099 return false; 1100 1101 spi = dynptr_get_spi(env, reg); 1102 1103 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1104 * error because this just means the stack state hasn't been updated yet. 1105 * We will do check_mem_access to check and update stack bounds later. 1106 */ 1107 if (spi < 0 && spi != -ERANGE) 1108 return false; 1109 1110 /* We don't need to check if the stack slots are marked by previous 1111 * dynptr initializations because we allow overwriting existing unreferenced 1112 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1113 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1114 * touching are completely destructed before we reinitialize them for a new 1115 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1116 * instead of delaying it until the end where the user will get "Unreleased 1117 * reference" error. 1118 */ 1119 return true; 1120 } 1121 1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1123 { 1124 struct bpf_func_state *state = func(env, reg); 1125 int i, spi; 1126 1127 /* This already represents first slot of initialized bpf_dynptr. 1128 * 1129 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1130 * check_func_arg_reg_off's logic, so we don't need to check its 1131 * offset and alignment. 1132 */ 1133 if (reg->type == CONST_PTR_TO_DYNPTR) 1134 return true; 1135 1136 spi = dynptr_get_spi(env, reg); 1137 if (spi < 0) 1138 return false; 1139 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1140 return false; 1141 1142 for (i = 0; i < BPF_REG_SIZE; i++) { 1143 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1144 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1145 return false; 1146 } 1147 1148 return true; 1149 } 1150 1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1152 enum bpf_arg_type arg_type) 1153 { 1154 struct bpf_func_state *state = func(env, reg); 1155 enum bpf_dynptr_type dynptr_type; 1156 int spi; 1157 1158 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1159 if (arg_type == ARG_PTR_TO_DYNPTR) 1160 return true; 1161 1162 dynptr_type = arg_to_dynptr_type(arg_type); 1163 if (reg->type == CONST_PTR_TO_DYNPTR) { 1164 return reg->dynptr.type == dynptr_type; 1165 } else { 1166 spi = dynptr_get_spi(env, reg); 1167 if (spi < 0) 1168 return false; 1169 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1170 } 1171 } 1172 1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1174 1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1176 struct bpf_reg_state *reg, int insn_idx, 1177 struct btf *btf, u32 btf_id, int nr_slots) 1178 { 1179 struct bpf_func_state *state = func(env, reg); 1180 int spi, i, j, id; 1181 1182 spi = iter_get_spi(env, reg, nr_slots); 1183 if (spi < 0) 1184 return spi; 1185 1186 id = acquire_reference_state(env, insn_idx); 1187 if (id < 0) 1188 return id; 1189 1190 for (i = 0; i < nr_slots; i++) { 1191 struct bpf_stack_state *slot = &state->stack[spi - i]; 1192 struct bpf_reg_state *st = &slot->spilled_ptr; 1193 1194 __mark_reg_known_zero(st); 1195 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1196 st->live |= REG_LIVE_WRITTEN; 1197 st->ref_obj_id = i == 0 ? id : 0; 1198 st->iter.btf = btf; 1199 st->iter.btf_id = btf_id; 1200 st->iter.state = BPF_ITER_STATE_ACTIVE; 1201 st->iter.depth = 0; 1202 1203 for (j = 0; j < BPF_REG_SIZE; j++) 1204 slot->slot_type[j] = STACK_ITER; 1205 1206 mark_stack_slot_scratched(env, spi - i); 1207 } 1208 1209 return 0; 1210 } 1211 1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1213 struct bpf_reg_state *reg, int nr_slots) 1214 { 1215 struct bpf_func_state *state = func(env, reg); 1216 int spi, i, j; 1217 1218 spi = iter_get_spi(env, reg, nr_slots); 1219 if (spi < 0) 1220 return spi; 1221 1222 for (i = 0; i < nr_slots; i++) { 1223 struct bpf_stack_state *slot = &state->stack[spi - i]; 1224 struct bpf_reg_state *st = &slot->spilled_ptr; 1225 1226 if (i == 0) 1227 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1228 1229 __mark_reg_not_init(env, st); 1230 1231 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1232 st->live |= REG_LIVE_WRITTEN; 1233 1234 for (j = 0; j < BPF_REG_SIZE; j++) 1235 slot->slot_type[j] = STACK_INVALID; 1236 1237 mark_stack_slot_scratched(env, spi - i); 1238 } 1239 1240 return 0; 1241 } 1242 1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1244 struct bpf_reg_state *reg, int nr_slots) 1245 { 1246 struct bpf_func_state *state = func(env, reg); 1247 int spi, i, j; 1248 1249 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1250 * will do check_mem_access to check and update stack bounds later, so 1251 * return true for that case. 1252 */ 1253 spi = iter_get_spi(env, reg, nr_slots); 1254 if (spi == -ERANGE) 1255 return true; 1256 if (spi < 0) 1257 return false; 1258 1259 for (i = 0; i < nr_slots; i++) { 1260 struct bpf_stack_state *slot = &state->stack[spi - i]; 1261 1262 for (j = 0; j < BPF_REG_SIZE; j++) 1263 if (slot->slot_type[j] == STACK_ITER) 1264 return false; 1265 } 1266 1267 return true; 1268 } 1269 1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1271 struct btf *btf, u32 btf_id, int nr_slots) 1272 { 1273 struct bpf_func_state *state = func(env, reg); 1274 int spi, i, j; 1275 1276 spi = iter_get_spi(env, reg, nr_slots); 1277 if (spi < 0) 1278 return false; 1279 1280 for (i = 0; i < nr_slots; i++) { 1281 struct bpf_stack_state *slot = &state->stack[spi - i]; 1282 struct bpf_reg_state *st = &slot->spilled_ptr; 1283 1284 /* only main (first) slot has ref_obj_id set */ 1285 if (i == 0 && !st->ref_obj_id) 1286 return false; 1287 if (i != 0 && st->ref_obj_id) 1288 return false; 1289 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1290 return false; 1291 1292 for (j = 0; j < BPF_REG_SIZE; j++) 1293 if (slot->slot_type[j] != STACK_ITER) 1294 return false; 1295 } 1296 1297 return true; 1298 } 1299 1300 /* Check if given stack slot is "special": 1301 * - spilled register state (STACK_SPILL); 1302 * - dynptr state (STACK_DYNPTR); 1303 * - iter state (STACK_ITER). 1304 */ 1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1306 { 1307 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1308 1309 switch (type) { 1310 case STACK_SPILL: 1311 case STACK_DYNPTR: 1312 case STACK_ITER: 1313 return true; 1314 case STACK_INVALID: 1315 case STACK_MISC: 1316 case STACK_ZERO: 1317 return false; 1318 default: 1319 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1320 return true; 1321 } 1322 } 1323 1324 /* The reg state of a pointer or a bounded scalar was saved when 1325 * it was spilled to the stack. 1326 */ 1327 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1328 { 1329 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1330 } 1331 1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1333 { 1334 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1335 stack->spilled_ptr.type == SCALAR_VALUE; 1336 } 1337 1338 static void scrub_spilled_slot(u8 *stype) 1339 { 1340 if (*stype != STACK_INVALID) 1341 *stype = STACK_MISC; 1342 } 1343 1344 static void print_verifier_state(struct bpf_verifier_env *env, 1345 const struct bpf_func_state *state, 1346 bool print_all) 1347 { 1348 const struct bpf_reg_state *reg; 1349 enum bpf_reg_type t; 1350 int i; 1351 1352 if (state->frameno) 1353 verbose(env, " frame%d:", state->frameno); 1354 for (i = 0; i < MAX_BPF_REG; i++) { 1355 reg = &state->regs[i]; 1356 t = reg->type; 1357 if (t == NOT_INIT) 1358 continue; 1359 if (!print_all && !reg_scratched(env, i)) 1360 continue; 1361 verbose(env, " R%d", i); 1362 print_liveness(env, reg->live); 1363 verbose(env, "="); 1364 if (t == SCALAR_VALUE && reg->precise) 1365 verbose(env, "P"); 1366 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1367 tnum_is_const(reg->var_off)) { 1368 /* reg->off should be 0 for SCALAR_VALUE */ 1369 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1370 verbose(env, "%lld", reg->var_off.value + reg->off); 1371 } else { 1372 const char *sep = ""; 1373 1374 verbose(env, "%s", reg_type_str(env, t)); 1375 if (base_type(t) == PTR_TO_BTF_ID) 1376 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1377 verbose(env, "("); 1378 /* 1379 * _a stands for append, was shortened to avoid multiline statements below. 1380 * This macro is used to output a comma separated list of attributes. 1381 */ 1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1383 1384 if (reg->id) 1385 verbose_a("id=%d", reg->id); 1386 if (reg->ref_obj_id) 1387 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1388 if (type_is_non_owning_ref(reg->type)) 1389 verbose_a("%s", "non_own_ref"); 1390 if (t != SCALAR_VALUE) 1391 verbose_a("off=%d", reg->off); 1392 if (type_is_pkt_pointer(t)) 1393 verbose_a("r=%d", reg->range); 1394 else if (base_type(t) == CONST_PTR_TO_MAP || 1395 base_type(t) == PTR_TO_MAP_KEY || 1396 base_type(t) == PTR_TO_MAP_VALUE) 1397 verbose_a("ks=%d,vs=%d", 1398 reg->map_ptr->key_size, 1399 reg->map_ptr->value_size); 1400 if (tnum_is_const(reg->var_off)) { 1401 /* Typically an immediate SCALAR_VALUE, but 1402 * could be a pointer whose offset is too big 1403 * for reg->off 1404 */ 1405 verbose_a("imm=%llx", reg->var_off.value); 1406 } else { 1407 if (reg->smin_value != reg->umin_value && 1408 reg->smin_value != S64_MIN) 1409 verbose_a("smin=%lld", (long long)reg->smin_value); 1410 if (reg->smax_value != reg->umax_value && 1411 reg->smax_value != S64_MAX) 1412 verbose_a("smax=%lld", (long long)reg->smax_value); 1413 if (reg->umin_value != 0) 1414 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1415 if (reg->umax_value != U64_MAX) 1416 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1417 if (!tnum_is_unknown(reg->var_off)) { 1418 char tn_buf[48]; 1419 1420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1421 verbose_a("var_off=%s", tn_buf); 1422 } 1423 if (reg->s32_min_value != reg->smin_value && 1424 reg->s32_min_value != S32_MIN) 1425 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1426 if (reg->s32_max_value != reg->smax_value && 1427 reg->s32_max_value != S32_MAX) 1428 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1429 if (reg->u32_min_value != reg->umin_value && 1430 reg->u32_min_value != U32_MIN) 1431 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1432 if (reg->u32_max_value != reg->umax_value && 1433 reg->u32_max_value != U32_MAX) 1434 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1435 } 1436 #undef verbose_a 1437 1438 verbose(env, ")"); 1439 } 1440 } 1441 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1442 char types_buf[BPF_REG_SIZE + 1]; 1443 bool valid = false; 1444 int j; 1445 1446 for (j = 0; j < BPF_REG_SIZE; j++) { 1447 if (state->stack[i].slot_type[j] != STACK_INVALID) 1448 valid = true; 1449 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1450 } 1451 types_buf[BPF_REG_SIZE] = 0; 1452 if (!valid) 1453 continue; 1454 if (!print_all && !stack_slot_scratched(env, i)) 1455 continue; 1456 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1457 case STACK_SPILL: 1458 reg = &state->stack[i].spilled_ptr; 1459 t = reg->type; 1460 1461 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1462 print_liveness(env, reg->live); 1463 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1464 if (t == SCALAR_VALUE && reg->precise) 1465 verbose(env, "P"); 1466 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1467 verbose(env, "%lld", reg->var_off.value + reg->off); 1468 break; 1469 case STACK_DYNPTR: 1470 i += BPF_DYNPTR_NR_SLOTS - 1; 1471 reg = &state->stack[i].spilled_ptr; 1472 1473 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1474 print_liveness(env, reg->live); 1475 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1476 if (reg->ref_obj_id) 1477 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1478 break; 1479 case STACK_ITER: 1480 /* only main slot has ref_obj_id set; skip others */ 1481 reg = &state->stack[i].spilled_ptr; 1482 if (!reg->ref_obj_id) 1483 continue; 1484 1485 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1486 print_liveness(env, reg->live); 1487 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1488 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1489 reg->ref_obj_id, iter_state_str(reg->iter.state), 1490 reg->iter.depth); 1491 break; 1492 case STACK_MISC: 1493 case STACK_ZERO: 1494 default: 1495 reg = &state->stack[i].spilled_ptr; 1496 1497 for (j = 0; j < BPF_REG_SIZE; j++) 1498 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1499 types_buf[BPF_REG_SIZE] = 0; 1500 1501 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1502 print_liveness(env, reg->live); 1503 verbose(env, "=%s", types_buf); 1504 break; 1505 } 1506 } 1507 if (state->acquired_refs && state->refs[0].id) { 1508 verbose(env, " refs=%d", state->refs[0].id); 1509 for (i = 1; i < state->acquired_refs; i++) 1510 if (state->refs[i].id) 1511 verbose(env, ",%d", state->refs[i].id); 1512 } 1513 if (state->in_callback_fn) 1514 verbose(env, " cb"); 1515 if (state->in_async_callback_fn) 1516 verbose(env, " async_cb"); 1517 verbose(env, "\n"); 1518 mark_verifier_state_clean(env); 1519 } 1520 1521 static inline u32 vlog_alignment(u32 pos) 1522 { 1523 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1524 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1525 } 1526 1527 static void print_insn_state(struct bpf_verifier_env *env, 1528 const struct bpf_func_state *state) 1529 { 1530 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1531 /* remove new line character */ 1532 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1533 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1534 } else { 1535 verbose(env, "%d:", env->insn_idx); 1536 } 1537 print_verifier_state(env, state, false); 1538 } 1539 1540 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1541 * small to hold src. This is different from krealloc since we don't want to preserve 1542 * the contents of dst. 1543 * 1544 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1545 * not be allocated. 1546 */ 1547 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1548 { 1549 size_t alloc_bytes; 1550 void *orig = dst; 1551 size_t bytes; 1552 1553 if (ZERO_OR_NULL_PTR(src)) 1554 goto out; 1555 1556 if (unlikely(check_mul_overflow(n, size, &bytes))) 1557 return NULL; 1558 1559 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1560 dst = krealloc(orig, alloc_bytes, flags); 1561 if (!dst) { 1562 kfree(orig); 1563 return NULL; 1564 } 1565 1566 memcpy(dst, src, bytes); 1567 out: 1568 return dst ? dst : ZERO_SIZE_PTR; 1569 } 1570 1571 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1572 * small to hold new_n items. new items are zeroed out if the array grows. 1573 * 1574 * Contrary to krealloc_array, does not free arr if new_n is zero. 1575 */ 1576 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1577 { 1578 size_t alloc_size; 1579 void *new_arr; 1580 1581 if (!new_n || old_n == new_n) 1582 goto out; 1583 1584 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1585 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1586 if (!new_arr) { 1587 kfree(arr); 1588 return NULL; 1589 } 1590 arr = new_arr; 1591 1592 if (new_n > old_n) 1593 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1594 1595 out: 1596 return arr ? arr : ZERO_SIZE_PTR; 1597 } 1598 1599 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1600 { 1601 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1602 sizeof(struct bpf_reference_state), GFP_KERNEL); 1603 if (!dst->refs) 1604 return -ENOMEM; 1605 1606 dst->acquired_refs = src->acquired_refs; 1607 return 0; 1608 } 1609 1610 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1611 { 1612 size_t n = src->allocated_stack / BPF_REG_SIZE; 1613 1614 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1615 GFP_KERNEL); 1616 if (!dst->stack) 1617 return -ENOMEM; 1618 1619 dst->allocated_stack = src->allocated_stack; 1620 return 0; 1621 } 1622 1623 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1624 { 1625 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1626 sizeof(struct bpf_reference_state)); 1627 if (!state->refs) 1628 return -ENOMEM; 1629 1630 state->acquired_refs = n; 1631 return 0; 1632 } 1633 1634 static int grow_stack_state(struct bpf_func_state *state, int size) 1635 { 1636 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1637 1638 if (old_n >= n) 1639 return 0; 1640 1641 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1642 if (!state->stack) 1643 return -ENOMEM; 1644 1645 state->allocated_stack = size; 1646 return 0; 1647 } 1648 1649 /* Acquire a pointer id from the env and update the state->refs to include 1650 * this new pointer reference. 1651 * On success, returns a valid pointer id to associate with the register 1652 * On failure, returns a negative errno. 1653 */ 1654 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1655 { 1656 struct bpf_func_state *state = cur_func(env); 1657 int new_ofs = state->acquired_refs; 1658 int id, err; 1659 1660 err = resize_reference_state(state, state->acquired_refs + 1); 1661 if (err) 1662 return err; 1663 id = ++env->id_gen; 1664 state->refs[new_ofs].id = id; 1665 state->refs[new_ofs].insn_idx = insn_idx; 1666 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1667 1668 return id; 1669 } 1670 1671 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1672 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1673 { 1674 int i, last_idx; 1675 1676 last_idx = state->acquired_refs - 1; 1677 for (i = 0; i < state->acquired_refs; i++) { 1678 if (state->refs[i].id == ptr_id) { 1679 /* Cannot release caller references in callbacks */ 1680 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1681 return -EINVAL; 1682 if (last_idx && i != last_idx) 1683 memcpy(&state->refs[i], &state->refs[last_idx], 1684 sizeof(*state->refs)); 1685 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1686 state->acquired_refs--; 1687 return 0; 1688 } 1689 } 1690 return -EINVAL; 1691 } 1692 1693 static void free_func_state(struct bpf_func_state *state) 1694 { 1695 if (!state) 1696 return; 1697 kfree(state->refs); 1698 kfree(state->stack); 1699 kfree(state); 1700 } 1701 1702 static void clear_jmp_history(struct bpf_verifier_state *state) 1703 { 1704 kfree(state->jmp_history); 1705 state->jmp_history = NULL; 1706 state->jmp_history_cnt = 0; 1707 } 1708 1709 static void free_verifier_state(struct bpf_verifier_state *state, 1710 bool free_self) 1711 { 1712 int i; 1713 1714 for (i = 0; i <= state->curframe; i++) { 1715 free_func_state(state->frame[i]); 1716 state->frame[i] = NULL; 1717 } 1718 clear_jmp_history(state); 1719 if (free_self) 1720 kfree(state); 1721 } 1722 1723 /* copy verifier state from src to dst growing dst stack space 1724 * when necessary to accommodate larger src stack 1725 */ 1726 static int copy_func_state(struct bpf_func_state *dst, 1727 const struct bpf_func_state *src) 1728 { 1729 int err; 1730 1731 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1732 err = copy_reference_state(dst, src); 1733 if (err) 1734 return err; 1735 return copy_stack_state(dst, src); 1736 } 1737 1738 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1739 const struct bpf_verifier_state *src) 1740 { 1741 struct bpf_func_state *dst; 1742 int i, err; 1743 1744 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1745 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1746 GFP_USER); 1747 if (!dst_state->jmp_history) 1748 return -ENOMEM; 1749 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1750 1751 /* if dst has more stack frames then src frame, free them */ 1752 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1753 free_func_state(dst_state->frame[i]); 1754 dst_state->frame[i] = NULL; 1755 } 1756 dst_state->speculative = src->speculative; 1757 dst_state->active_rcu_lock = src->active_rcu_lock; 1758 dst_state->curframe = src->curframe; 1759 dst_state->active_lock.ptr = src->active_lock.ptr; 1760 dst_state->active_lock.id = src->active_lock.id; 1761 dst_state->branches = src->branches; 1762 dst_state->parent = src->parent; 1763 dst_state->first_insn_idx = src->first_insn_idx; 1764 dst_state->last_insn_idx = src->last_insn_idx; 1765 for (i = 0; i <= src->curframe; i++) { 1766 dst = dst_state->frame[i]; 1767 if (!dst) { 1768 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1769 if (!dst) 1770 return -ENOMEM; 1771 dst_state->frame[i] = dst; 1772 } 1773 err = copy_func_state(dst, src->frame[i]); 1774 if (err) 1775 return err; 1776 } 1777 return 0; 1778 } 1779 1780 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1781 { 1782 while (st) { 1783 u32 br = --st->branches; 1784 1785 /* WARN_ON(br > 1) technically makes sense here, 1786 * but see comment in push_stack(), hence: 1787 */ 1788 WARN_ONCE((int)br < 0, 1789 "BUG update_branch_counts:branches_to_explore=%d\n", 1790 br); 1791 if (br) 1792 break; 1793 st = st->parent; 1794 } 1795 } 1796 1797 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1798 int *insn_idx, bool pop_log) 1799 { 1800 struct bpf_verifier_state *cur = env->cur_state; 1801 struct bpf_verifier_stack_elem *elem, *head = env->head; 1802 int err; 1803 1804 if (env->head == NULL) 1805 return -ENOENT; 1806 1807 if (cur) { 1808 err = copy_verifier_state(cur, &head->st); 1809 if (err) 1810 return err; 1811 } 1812 if (pop_log) 1813 bpf_vlog_reset(&env->log, head->log_pos); 1814 if (insn_idx) 1815 *insn_idx = head->insn_idx; 1816 if (prev_insn_idx) 1817 *prev_insn_idx = head->prev_insn_idx; 1818 elem = head->next; 1819 free_verifier_state(&head->st, false); 1820 kfree(head); 1821 env->head = elem; 1822 env->stack_size--; 1823 return 0; 1824 } 1825 1826 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1827 int insn_idx, int prev_insn_idx, 1828 bool speculative) 1829 { 1830 struct bpf_verifier_state *cur = env->cur_state; 1831 struct bpf_verifier_stack_elem *elem; 1832 int err; 1833 1834 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1835 if (!elem) 1836 goto err; 1837 1838 elem->insn_idx = insn_idx; 1839 elem->prev_insn_idx = prev_insn_idx; 1840 elem->next = env->head; 1841 elem->log_pos = env->log.end_pos; 1842 env->head = elem; 1843 env->stack_size++; 1844 err = copy_verifier_state(&elem->st, cur); 1845 if (err) 1846 goto err; 1847 elem->st.speculative |= speculative; 1848 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1849 verbose(env, "The sequence of %d jumps is too complex.\n", 1850 env->stack_size); 1851 goto err; 1852 } 1853 if (elem->st.parent) { 1854 ++elem->st.parent->branches; 1855 /* WARN_ON(branches > 2) technically makes sense here, 1856 * but 1857 * 1. speculative states will bump 'branches' for non-branch 1858 * instructions 1859 * 2. is_state_visited() heuristics may decide not to create 1860 * a new state for a sequence of branches and all such current 1861 * and cloned states will be pointing to a single parent state 1862 * which might have large 'branches' count. 1863 */ 1864 } 1865 return &elem->st; 1866 err: 1867 free_verifier_state(env->cur_state, true); 1868 env->cur_state = NULL; 1869 /* pop all elements and return */ 1870 while (!pop_stack(env, NULL, NULL, false)); 1871 return NULL; 1872 } 1873 1874 #define CALLER_SAVED_REGS 6 1875 static const int caller_saved[CALLER_SAVED_REGS] = { 1876 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1877 }; 1878 1879 /* This helper doesn't clear reg->id */ 1880 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1881 { 1882 reg->var_off = tnum_const(imm); 1883 reg->smin_value = (s64)imm; 1884 reg->smax_value = (s64)imm; 1885 reg->umin_value = imm; 1886 reg->umax_value = imm; 1887 1888 reg->s32_min_value = (s32)imm; 1889 reg->s32_max_value = (s32)imm; 1890 reg->u32_min_value = (u32)imm; 1891 reg->u32_max_value = (u32)imm; 1892 } 1893 1894 /* Mark the unknown part of a register (variable offset or scalar value) as 1895 * known to have the value @imm. 1896 */ 1897 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1898 { 1899 /* Clear off and union(map_ptr, range) */ 1900 memset(((u8 *)reg) + sizeof(reg->type), 0, 1901 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1902 reg->id = 0; 1903 reg->ref_obj_id = 0; 1904 ___mark_reg_known(reg, imm); 1905 } 1906 1907 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1908 { 1909 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1910 reg->s32_min_value = (s32)imm; 1911 reg->s32_max_value = (s32)imm; 1912 reg->u32_min_value = (u32)imm; 1913 reg->u32_max_value = (u32)imm; 1914 } 1915 1916 /* Mark the 'variable offset' part of a register as zero. This should be 1917 * used only on registers holding a pointer type. 1918 */ 1919 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1920 { 1921 __mark_reg_known(reg, 0); 1922 } 1923 1924 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1925 { 1926 __mark_reg_known(reg, 0); 1927 reg->type = SCALAR_VALUE; 1928 } 1929 1930 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1931 struct bpf_reg_state *regs, u32 regno) 1932 { 1933 if (WARN_ON(regno >= MAX_BPF_REG)) { 1934 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1935 /* Something bad happened, let's kill all regs */ 1936 for (regno = 0; regno < MAX_BPF_REG; regno++) 1937 __mark_reg_not_init(env, regs + regno); 1938 return; 1939 } 1940 __mark_reg_known_zero(regs + regno); 1941 } 1942 1943 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1944 bool first_slot, int dynptr_id) 1945 { 1946 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1947 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1948 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1949 */ 1950 __mark_reg_known_zero(reg); 1951 reg->type = CONST_PTR_TO_DYNPTR; 1952 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1953 reg->id = dynptr_id; 1954 reg->dynptr.type = type; 1955 reg->dynptr.first_slot = first_slot; 1956 } 1957 1958 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1959 { 1960 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1961 const struct bpf_map *map = reg->map_ptr; 1962 1963 if (map->inner_map_meta) { 1964 reg->type = CONST_PTR_TO_MAP; 1965 reg->map_ptr = map->inner_map_meta; 1966 /* transfer reg's id which is unique for every map_lookup_elem 1967 * as UID of the inner map. 1968 */ 1969 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1970 reg->map_uid = reg->id; 1971 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1972 reg->type = PTR_TO_XDP_SOCK; 1973 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1974 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1975 reg->type = PTR_TO_SOCKET; 1976 } else { 1977 reg->type = PTR_TO_MAP_VALUE; 1978 } 1979 return; 1980 } 1981 1982 reg->type &= ~PTR_MAYBE_NULL; 1983 } 1984 1985 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1986 struct btf_field_graph_root *ds_head) 1987 { 1988 __mark_reg_known_zero(®s[regno]); 1989 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1990 regs[regno].btf = ds_head->btf; 1991 regs[regno].btf_id = ds_head->value_btf_id; 1992 regs[regno].off = ds_head->node_offset; 1993 } 1994 1995 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1996 { 1997 return type_is_pkt_pointer(reg->type); 1998 } 1999 2000 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2001 { 2002 return reg_is_pkt_pointer(reg) || 2003 reg->type == PTR_TO_PACKET_END; 2004 } 2005 2006 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2007 { 2008 return base_type(reg->type) == PTR_TO_MEM && 2009 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2010 } 2011 2012 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2013 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2014 enum bpf_reg_type which) 2015 { 2016 /* The register can already have a range from prior markings. 2017 * This is fine as long as it hasn't been advanced from its 2018 * origin. 2019 */ 2020 return reg->type == which && 2021 reg->id == 0 && 2022 reg->off == 0 && 2023 tnum_equals_const(reg->var_off, 0); 2024 } 2025 2026 /* Reset the min/max bounds of a register */ 2027 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2028 { 2029 reg->smin_value = S64_MIN; 2030 reg->smax_value = S64_MAX; 2031 reg->umin_value = 0; 2032 reg->umax_value = U64_MAX; 2033 2034 reg->s32_min_value = S32_MIN; 2035 reg->s32_max_value = S32_MAX; 2036 reg->u32_min_value = 0; 2037 reg->u32_max_value = U32_MAX; 2038 } 2039 2040 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2041 { 2042 reg->smin_value = S64_MIN; 2043 reg->smax_value = S64_MAX; 2044 reg->umin_value = 0; 2045 reg->umax_value = U64_MAX; 2046 } 2047 2048 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2049 { 2050 reg->s32_min_value = S32_MIN; 2051 reg->s32_max_value = S32_MAX; 2052 reg->u32_min_value = 0; 2053 reg->u32_max_value = U32_MAX; 2054 } 2055 2056 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2057 { 2058 struct tnum var32_off = tnum_subreg(reg->var_off); 2059 2060 /* min signed is max(sign bit) | min(other bits) */ 2061 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2062 var32_off.value | (var32_off.mask & S32_MIN)); 2063 /* max signed is min(sign bit) | max(other bits) */ 2064 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2065 var32_off.value | (var32_off.mask & S32_MAX)); 2066 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2067 reg->u32_max_value = min(reg->u32_max_value, 2068 (u32)(var32_off.value | var32_off.mask)); 2069 } 2070 2071 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2072 { 2073 /* min signed is max(sign bit) | min(other bits) */ 2074 reg->smin_value = max_t(s64, reg->smin_value, 2075 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2076 /* max signed is min(sign bit) | max(other bits) */ 2077 reg->smax_value = min_t(s64, reg->smax_value, 2078 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2079 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2080 reg->umax_value = min(reg->umax_value, 2081 reg->var_off.value | reg->var_off.mask); 2082 } 2083 2084 static void __update_reg_bounds(struct bpf_reg_state *reg) 2085 { 2086 __update_reg32_bounds(reg); 2087 __update_reg64_bounds(reg); 2088 } 2089 2090 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2091 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2092 { 2093 /* Learn sign from signed bounds. 2094 * If we cannot cross the sign boundary, then signed and unsigned bounds 2095 * are the same, so combine. This works even in the negative case, e.g. 2096 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2097 */ 2098 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2099 reg->s32_min_value = reg->u32_min_value = 2100 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2101 reg->s32_max_value = reg->u32_max_value = 2102 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2103 return; 2104 } 2105 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2106 * boundary, so we must be careful. 2107 */ 2108 if ((s32)reg->u32_max_value >= 0) { 2109 /* Positive. We can't learn anything from the smin, but smax 2110 * is positive, hence safe. 2111 */ 2112 reg->s32_min_value = reg->u32_min_value; 2113 reg->s32_max_value = reg->u32_max_value = 2114 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2115 } else if ((s32)reg->u32_min_value < 0) { 2116 /* Negative. We can't learn anything from the smax, but smin 2117 * is negative, hence safe. 2118 */ 2119 reg->s32_min_value = reg->u32_min_value = 2120 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2121 reg->s32_max_value = reg->u32_max_value; 2122 } 2123 } 2124 2125 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2126 { 2127 /* Learn sign from signed bounds. 2128 * If we cannot cross the sign boundary, then signed and unsigned bounds 2129 * are the same, so combine. This works even in the negative case, e.g. 2130 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2131 */ 2132 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2133 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2134 reg->umin_value); 2135 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2136 reg->umax_value); 2137 return; 2138 } 2139 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2140 * boundary, so we must be careful. 2141 */ 2142 if ((s64)reg->umax_value >= 0) { 2143 /* Positive. We can't learn anything from the smin, but smax 2144 * is positive, hence safe. 2145 */ 2146 reg->smin_value = reg->umin_value; 2147 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2148 reg->umax_value); 2149 } else if ((s64)reg->umin_value < 0) { 2150 /* Negative. We can't learn anything from the smax, but smin 2151 * is negative, hence safe. 2152 */ 2153 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2154 reg->umin_value); 2155 reg->smax_value = reg->umax_value; 2156 } 2157 } 2158 2159 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2160 { 2161 __reg32_deduce_bounds(reg); 2162 __reg64_deduce_bounds(reg); 2163 } 2164 2165 /* Attempts to improve var_off based on unsigned min/max information */ 2166 static void __reg_bound_offset(struct bpf_reg_state *reg) 2167 { 2168 struct tnum var64_off = tnum_intersect(reg->var_off, 2169 tnum_range(reg->umin_value, 2170 reg->umax_value)); 2171 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2172 tnum_range(reg->u32_min_value, 2173 reg->u32_max_value)); 2174 2175 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2176 } 2177 2178 static void reg_bounds_sync(struct bpf_reg_state *reg) 2179 { 2180 /* We might have learned new bounds from the var_off. */ 2181 __update_reg_bounds(reg); 2182 /* We might have learned something about the sign bit. */ 2183 __reg_deduce_bounds(reg); 2184 /* We might have learned some bits from the bounds. */ 2185 __reg_bound_offset(reg); 2186 /* Intersecting with the old var_off might have improved our bounds 2187 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2188 * then new var_off is (0; 0x7f...fc) which improves our umax. 2189 */ 2190 __update_reg_bounds(reg); 2191 } 2192 2193 static bool __reg32_bound_s64(s32 a) 2194 { 2195 return a >= 0 && a <= S32_MAX; 2196 } 2197 2198 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2199 { 2200 reg->umin_value = reg->u32_min_value; 2201 reg->umax_value = reg->u32_max_value; 2202 2203 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2204 * be positive otherwise set to worse case bounds and refine later 2205 * from tnum. 2206 */ 2207 if (__reg32_bound_s64(reg->s32_min_value) && 2208 __reg32_bound_s64(reg->s32_max_value)) { 2209 reg->smin_value = reg->s32_min_value; 2210 reg->smax_value = reg->s32_max_value; 2211 } else { 2212 reg->smin_value = 0; 2213 reg->smax_value = U32_MAX; 2214 } 2215 } 2216 2217 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2218 { 2219 /* special case when 64-bit register has upper 32-bit register 2220 * zeroed. Typically happens after zext or <<32, >>32 sequence 2221 * allowing us to use 32-bit bounds directly, 2222 */ 2223 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2224 __reg_assign_32_into_64(reg); 2225 } else { 2226 /* Otherwise the best we can do is push lower 32bit known and 2227 * unknown bits into register (var_off set from jmp logic) 2228 * then learn as much as possible from the 64-bit tnum 2229 * known and unknown bits. The previous smin/smax bounds are 2230 * invalid here because of jmp32 compare so mark them unknown 2231 * so they do not impact tnum bounds calculation. 2232 */ 2233 __mark_reg64_unbounded(reg); 2234 } 2235 reg_bounds_sync(reg); 2236 } 2237 2238 static bool __reg64_bound_s32(s64 a) 2239 { 2240 return a >= S32_MIN && a <= S32_MAX; 2241 } 2242 2243 static bool __reg64_bound_u32(u64 a) 2244 { 2245 return a >= U32_MIN && a <= U32_MAX; 2246 } 2247 2248 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2249 { 2250 __mark_reg32_unbounded(reg); 2251 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2252 reg->s32_min_value = (s32)reg->smin_value; 2253 reg->s32_max_value = (s32)reg->smax_value; 2254 } 2255 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2256 reg->u32_min_value = (u32)reg->umin_value; 2257 reg->u32_max_value = (u32)reg->umax_value; 2258 } 2259 reg_bounds_sync(reg); 2260 } 2261 2262 /* Mark a register as having a completely unknown (scalar) value. */ 2263 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2264 struct bpf_reg_state *reg) 2265 { 2266 /* 2267 * Clear type, off, and union(map_ptr, range) and 2268 * padding between 'type' and union 2269 */ 2270 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2271 reg->type = SCALAR_VALUE; 2272 reg->id = 0; 2273 reg->ref_obj_id = 0; 2274 reg->var_off = tnum_unknown; 2275 reg->frameno = 0; 2276 reg->precise = !env->bpf_capable; 2277 __mark_reg_unbounded(reg); 2278 } 2279 2280 static void mark_reg_unknown(struct bpf_verifier_env *env, 2281 struct bpf_reg_state *regs, u32 regno) 2282 { 2283 if (WARN_ON(regno >= MAX_BPF_REG)) { 2284 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2285 /* Something bad happened, let's kill all regs except FP */ 2286 for (regno = 0; regno < BPF_REG_FP; regno++) 2287 __mark_reg_not_init(env, regs + regno); 2288 return; 2289 } 2290 __mark_reg_unknown(env, regs + regno); 2291 } 2292 2293 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2294 struct bpf_reg_state *reg) 2295 { 2296 __mark_reg_unknown(env, reg); 2297 reg->type = NOT_INIT; 2298 } 2299 2300 static void mark_reg_not_init(struct bpf_verifier_env *env, 2301 struct bpf_reg_state *regs, u32 regno) 2302 { 2303 if (WARN_ON(regno >= MAX_BPF_REG)) { 2304 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2305 /* Something bad happened, let's kill all regs except FP */ 2306 for (regno = 0; regno < BPF_REG_FP; regno++) 2307 __mark_reg_not_init(env, regs + regno); 2308 return; 2309 } 2310 __mark_reg_not_init(env, regs + regno); 2311 } 2312 2313 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2314 struct bpf_reg_state *regs, u32 regno, 2315 enum bpf_reg_type reg_type, 2316 struct btf *btf, u32 btf_id, 2317 enum bpf_type_flag flag) 2318 { 2319 if (reg_type == SCALAR_VALUE) { 2320 mark_reg_unknown(env, regs, regno); 2321 return; 2322 } 2323 mark_reg_known_zero(env, regs, regno); 2324 regs[regno].type = PTR_TO_BTF_ID | flag; 2325 regs[regno].btf = btf; 2326 regs[regno].btf_id = btf_id; 2327 } 2328 2329 #define DEF_NOT_SUBREG (0) 2330 static void init_reg_state(struct bpf_verifier_env *env, 2331 struct bpf_func_state *state) 2332 { 2333 struct bpf_reg_state *regs = state->regs; 2334 int i; 2335 2336 for (i = 0; i < MAX_BPF_REG; i++) { 2337 mark_reg_not_init(env, regs, i); 2338 regs[i].live = REG_LIVE_NONE; 2339 regs[i].parent = NULL; 2340 regs[i].subreg_def = DEF_NOT_SUBREG; 2341 } 2342 2343 /* frame pointer */ 2344 regs[BPF_REG_FP].type = PTR_TO_STACK; 2345 mark_reg_known_zero(env, regs, BPF_REG_FP); 2346 regs[BPF_REG_FP].frameno = state->frameno; 2347 } 2348 2349 #define BPF_MAIN_FUNC (-1) 2350 static void init_func_state(struct bpf_verifier_env *env, 2351 struct bpf_func_state *state, 2352 int callsite, int frameno, int subprogno) 2353 { 2354 state->callsite = callsite; 2355 state->frameno = frameno; 2356 state->subprogno = subprogno; 2357 state->callback_ret_range = tnum_range(0, 0); 2358 init_reg_state(env, state); 2359 mark_verifier_state_scratched(env); 2360 } 2361 2362 /* Similar to push_stack(), but for async callbacks */ 2363 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2364 int insn_idx, int prev_insn_idx, 2365 int subprog) 2366 { 2367 struct bpf_verifier_stack_elem *elem; 2368 struct bpf_func_state *frame; 2369 2370 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2371 if (!elem) 2372 goto err; 2373 2374 elem->insn_idx = insn_idx; 2375 elem->prev_insn_idx = prev_insn_idx; 2376 elem->next = env->head; 2377 elem->log_pos = env->log.end_pos; 2378 env->head = elem; 2379 env->stack_size++; 2380 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2381 verbose(env, 2382 "The sequence of %d jumps is too complex for async cb.\n", 2383 env->stack_size); 2384 goto err; 2385 } 2386 /* Unlike push_stack() do not copy_verifier_state(). 2387 * The caller state doesn't matter. 2388 * This is async callback. It starts in a fresh stack. 2389 * Initialize it similar to do_check_common(). 2390 */ 2391 elem->st.branches = 1; 2392 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2393 if (!frame) 2394 goto err; 2395 init_func_state(env, frame, 2396 BPF_MAIN_FUNC /* callsite */, 2397 0 /* frameno within this callchain */, 2398 subprog /* subprog number within this prog */); 2399 elem->st.frame[0] = frame; 2400 return &elem->st; 2401 err: 2402 free_verifier_state(env->cur_state, true); 2403 env->cur_state = NULL; 2404 /* pop all elements and return */ 2405 while (!pop_stack(env, NULL, NULL, false)); 2406 return NULL; 2407 } 2408 2409 2410 enum reg_arg_type { 2411 SRC_OP, /* register is used as source operand */ 2412 DST_OP, /* register is used as destination operand */ 2413 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2414 }; 2415 2416 static int cmp_subprogs(const void *a, const void *b) 2417 { 2418 return ((struct bpf_subprog_info *)a)->start - 2419 ((struct bpf_subprog_info *)b)->start; 2420 } 2421 2422 static int find_subprog(struct bpf_verifier_env *env, int off) 2423 { 2424 struct bpf_subprog_info *p; 2425 2426 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2427 sizeof(env->subprog_info[0]), cmp_subprogs); 2428 if (!p) 2429 return -ENOENT; 2430 return p - env->subprog_info; 2431 2432 } 2433 2434 static int add_subprog(struct bpf_verifier_env *env, int off) 2435 { 2436 int insn_cnt = env->prog->len; 2437 int ret; 2438 2439 if (off >= insn_cnt || off < 0) { 2440 verbose(env, "call to invalid destination\n"); 2441 return -EINVAL; 2442 } 2443 ret = find_subprog(env, off); 2444 if (ret >= 0) 2445 return ret; 2446 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2447 verbose(env, "too many subprograms\n"); 2448 return -E2BIG; 2449 } 2450 /* determine subprog starts. The end is one before the next starts */ 2451 env->subprog_info[env->subprog_cnt++].start = off; 2452 sort(env->subprog_info, env->subprog_cnt, 2453 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2454 return env->subprog_cnt - 1; 2455 } 2456 2457 #define MAX_KFUNC_DESCS 256 2458 #define MAX_KFUNC_BTFS 256 2459 2460 struct bpf_kfunc_desc { 2461 struct btf_func_model func_model; 2462 u32 func_id; 2463 s32 imm; 2464 u16 offset; 2465 unsigned long addr; 2466 }; 2467 2468 struct bpf_kfunc_btf { 2469 struct btf *btf; 2470 struct module *module; 2471 u16 offset; 2472 }; 2473 2474 struct bpf_kfunc_desc_tab { 2475 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2476 * verification. JITs do lookups by bpf_insn, where func_id may not be 2477 * available, therefore at the end of verification do_misc_fixups() 2478 * sorts this by imm and offset. 2479 */ 2480 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2481 u32 nr_descs; 2482 }; 2483 2484 struct bpf_kfunc_btf_tab { 2485 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2486 u32 nr_descs; 2487 }; 2488 2489 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2490 { 2491 const struct bpf_kfunc_desc *d0 = a; 2492 const struct bpf_kfunc_desc *d1 = b; 2493 2494 /* func_id is not greater than BTF_MAX_TYPE */ 2495 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2496 } 2497 2498 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2499 { 2500 const struct bpf_kfunc_btf *d0 = a; 2501 const struct bpf_kfunc_btf *d1 = b; 2502 2503 return d0->offset - d1->offset; 2504 } 2505 2506 static const struct bpf_kfunc_desc * 2507 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2508 { 2509 struct bpf_kfunc_desc desc = { 2510 .func_id = func_id, 2511 .offset = offset, 2512 }; 2513 struct bpf_kfunc_desc_tab *tab; 2514 2515 tab = prog->aux->kfunc_tab; 2516 return bsearch(&desc, tab->descs, tab->nr_descs, 2517 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2518 } 2519 2520 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2521 u16 btf_fd_idx, u8 **func_addr) 2522 { 2523 const struct bpf_kfunc_desc *desc; 2524 2525 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2526 if (!desc) 2527 return -EFAULT; 2528 2529 *func_addr = (u8 *)desc->addr; 2530 return 0; 2531 } 2532 2533 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2534 s16 offset) 2535 { 2536 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2537 struct bpf_kfunc_btf_tab *tab; 2538 struct bpf_kfunc_btf *b; 2539 struct module *mod; 2540 struct btf *btf; 2541 int btf_fd; 2542 2543 tab = env->prog->aux->kfunc_btf_tab; 2544 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2545 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2546 if (!b) { 2547 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2548 verbose(env, "too many different module BTFs\n"); 2549 return ERR_PTR(-E2BIG); 2550 } 2551 2552 if (bpfptr_is_null(env->fd_array)) { 2553 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2554 return ERR_PTR(-EPROTO); 2555 } 2556 2557 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2558 offset * sizeof(btf_fd), 2559 sizeof(btf_fd))) 2560 return ERR_PTR(-EFAULT); 2561 2562 btf = btf_get_by_fd(btf_fd); 2563 if (IS_ERR(btf)) { 2564 verbose(env, "invalid module BTF fd specified\n"); 2565 return btf; 2566 } 2567 2568 if (!btf_is_module(btf)) { 2569 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2570 btf_put(btf); 2571 return ERR_PTR(-EINVAL); 2572 } 2573 2574 mod = btf_try_get_module(btf); 2575 if (!mod) { 2576 btf_put(btf); 2577 return ERR_PTR(-ENXIO); 2578 } 2579 2580 b = &tab->descs[tab->nr_descs++]; 2581 b->btf = btf; 2582 b->module = mod; 2583 b->offset = offset; 2584 2585 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2586 kfunc_btf_cmp_by_off, NULL); 2587 } 2588 return b->btf; 2589 } 2590 2591 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2592 { 2593 if (!tab) 2594 return; 2595 2596 while (tab->nr_descs--) { 2597 module_put(tab->descs[tab->nr_descs].module); 2598 btf_put(tab->descs[tab->nr_descs].btf); 2599 } 2600 kfree(tab); 2601 } 2602 2603 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2604 { 2605 if (offset) { 2606 if (offset < 0) { 2607 /* In the future, this can be allowed to increase limit 2608 * of fd index into fd_array, interpreted as u16. 2609 */ 2610 verbose(env, "negative offset disallowed for kernel module function call\n"); 2611 return ERR_PTR(-EINVAL); 2612 } 2613 2614 return __find_kfunc_desc_btf(env, offset); 2615 } 2616 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2617 } 2618 2619 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2620 { 2621 const struct btf_type *func, *func_proto; 2622 struct bpf_kfunc_btf_tab *btf_tab; 2623 struct bpf_kfunc_desc_tab *tab; 2624 struct bpf_prog_aux *prog_aux; 2625 struct bpf_kfunc_desc *desc; 2626 const char *func_name; 2627 struct btf *desc_btf; 2628 unsigned long call_imm; 2629 unsigned long addr; 2630 int err; 2631 2632 prog_aux = env->prog->aux; 2633 tab = prog_aux->kfunc_tab; 2634 btf_tab = prog_aux->kfunc_btf_tab; 2635 if (!tab) { 2636 if (!btf_vmlinux) { 2637 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2638 return -ENOTSUPP; 2639 } 2640 2641 if (!env->prog->jit_requested) { 2642 verbose(env, "JIT is required for calling kernel function\n"); 2643 return -ENOTSUPP; 2644 } 2645 2646 if (!bpf_jit_supports_kfunc_call()) { 2647 verbose(env, "JIT does not support calling kernel function\n"); 2648 return -ENOTSUPP; 2649 } 2650 2651 if (!env->prog->gpl_compatible) { 2652 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2653 return -EINVAL; 2654 } 2655 2656 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2657 if (!tab) 2658 return -ENOMEM; 2659 prog_aux->kfunc_tab = tab; 2660 } 2661 2662 /* func_id == 0 is always invalid, but instead of returning an error, be 2663 * conservative and wait until the code elimination pass before returning 2664 * error, so that invalid calls that get pruned out can be in BPF programs 2665 * loaded from userspace. It is also required that offset be untouched 2666 * for such calls. 2667 */ 2668 if (!func_id && !offset) 2669 return 0; 2670 2671 if (!btf_tab && offset) { 2672 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2673 if (!btf_tab) 2674 return -ENOMEM; 2675 prog_aux->kfunc_btf_tab = btf_tab; 2676 } 2677 2678 desc_btf = find_kfunc_desc_btf(env, offset); 2679 if (IS_ERR(desc_btf)) { 2680 verbose(env, "failed to find BTF for kernel function\n"); 2681 return PTR_ERR(desc_btf); 2682 } 2683 2684 if (find_kfunc_desc(env->prog, func_id, offset)) 2685 return 0; 2686 2687 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2688 verbose(env, "too many different kernel function calls\n"); 2689 return -E2BIG; 2690 } 2691 2692 func = btf_type_by_id(desc_btf, func_id); 2693 if (!func || !btf_type_is_func(func)) { 2694 verbose(env, "kernel btf_id %u is not a function\n", 2695 func_id); 2696 return -EINVAL; 2697 } 2698 func_proto = btf_type_by_id(desc_btf, func->type); 2699 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2700 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2701 func_id); 2702 return -EINVAL; 2703 } 2704 2705 func_name = btf_name_by_offset(desc_btf, func->name_off); 2706 addr = kallsyms_lookup_name(func_name); 2707 if (!addr) { 2708 verbose(env, "cannot find address for kernel function %s\n", 2709 func_name); 2710 return -EINVAL; 2711 } 2712 specialize_kfunc(env, func_id, offset, &addr); 2713 2714 if (bpf_jit_supports_far_kfunc_call()) { 2715 call_imm = func_id; 2716 } else { 2717 call_imm = BPF_CALL_IMM(addr); 2718 /* Check whether the relative offset overflows desc->imm */ 2719 if ((unsigned long)(s32)call_imm != call_imm) { 2720 verbose(env, "address of kernel function %s is out of range\n", 2721 func_name); 2722 return -EINVAL; 2723 } 2724 } 2725 2726 if (bpf_dev_bound_kfunc_id(func_id)) { 2727 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2728 if (err) 2729 return err; 2730 } 2731 2732 desc = &tab->descs[tab->nr_descs++]; 2733 desc->func_id = func_id; 2734 desc->imm = call_imm; 2735 desc->offset = offset; 2736 desc->addr = addr; 2737 err = btf_distill_func_proto(&env->log, desc_btf, 2738 func_proto, func_name, 2739 &desc->func_model); 2740 if (!err) 2741 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2742 kfunc_desc_cmp_by_id_off, NULL); 2743 return err; 2744 } 2745 2746 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2747 { 2748 const struct bpf_kfunc_desc *d0 = a; 2749 const struct bpf_kfunc_desc *d1 = b; 2750 2751 if (d0->imm != d1->imm) 2752 return d0->imm < d1->imm ? -1 : 1; 2753 if (d0->offset != d1->offset) 2754 return d0->offset < d1->offset ? -1 : 1; 2755 return 0; 2756 } 2757 2758 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2759 { 2760 struct bpf_kfunc_desc_tab *tab; 2761 2762 tab = prog->aux->kfunc_tab; 2763 if (!tab) 2764 return; 2765 2766 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2767 kfunc_desc_cmp_by_imm_off, NULL); 2768 } 2769 2770 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2771 { 2772 return !!prog->aux->kfunc_tab; 2773 } 2774 2775 const struct btf_func_model * 2776 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2777 const struct bpf_insn *insn) 2778 { 2779 const struct bpf_kfunc_desc desc = { 2780 .imm = insn->imm, 2781 .offset = insn->off, 2782 }; 2783 const struct bpf_kfunc_desc *res; 2784 struct bpf_kfunc_desc_tab *tab; 2785 2786 tab = prog->aux->kfunc_tab; 2787 res = bsearch(&desc, tab->descs, tab->nr_descs, 2788 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 2789 2790 return res ? &res->func_model : NULL; 2791 } 2792 2793 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2794 { 2795 struct bpf_subprog_info *subprog = env->subprog_info; 2796 struct bpf_insn *insn = env->prog->insnsi; 2797 int i, ret, insn_cnt = env->prog->len; 2798 2799 /* Add entry function. */ 2800 ret = add_subprog(env, 0); 2801 if (ret) 2802 return ret; 2803 2804 for (i = 0; i < insn_cnt; i++, insn++) { 2805 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2806 !bpf_pseudo_kfunc_call(insn)) 2807 continue; 2808 2809 if (!env->bpf_capable) { 2810 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2811 return -EPERM; 2812 } 2813 2814 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2815 ret = add_subprog(env, i + insn->imm + 1); 2816 else 2817 ret = add_kfunc_call(env, insn->imm, insn->off); 2818 2819 if (ret < 0) 2820 return ret; 2821 } 2822 2823 /* Add a fake 'exit' subprog which could simplify subprog iteration 2824 * logic. 'subprog_cnt' should not be increased. 2825 */ 2826 subprog[env->subprog_cnt].start = insn_cnt; 2827 2828 if (env->log.level & BPF_LOG_LEVEL2) 2829 for (i = 0; i < env->subprog_cnt; i++) 2830 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2831 2832 return 0; 2833 } 2834 2835 static int check_subprogs(struct bpf_verifier_env *env) 2836 { 2837 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2838 struct bpf_subprog_info *subprog = env->subprog_info; 2839 struct bpf_insn *insn = env->prog->insnsi; 2840 int insn_cnt = env->prog->len; 2841 2842 /* now check that all jumps are within the same subprog */ 2843 subprog_start = subprog[cur_subprog].start; 2844 subprog_end = subprog[cur_subprog + 1].start; 2845 for (i = 0; i < insn_cnt; i++) { 2846 u8 code = insn[i].code; 2847 2848 if (code == (BPF_JMP | BPF_CALL) && 2849 insn[i].src_reg == 0 && 2850 insn[i].imm == BPF_FUNC_tail_call) 2851 subprog[cur_subprog].has_tail_call = true; 2852 if (BPF_CLASS(code) == BPF_LD && 2853 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2854 subprog[cur_subprog].has_ld_abs = true; 2855 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2856 goto next; 2857 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2858 goto next; 2859 if (code == (BPF_JMP32 | BPF_JA)) 2860 off = i + insn[i].imm + 1; 2861 else 2862 off = i + insn[i].off + 1; 2863 if (off < subprog_start || off >= subprog_end) { 2864 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2865 return -EINVAL; 2866 } 2867 next: 2868 if (i == subprog_end - 1) { 2869 /* to avoid fall-through from one subprog into another 2870 * the last insn of the subprog should be either exit 2871 * or unconditional jump back 2872 */ 2873 if (code != (BPF_JMP | BPF_EXIT) && 2874 code != (BPF_JMP32 | BPF_JA) && 2875 code != (BPF_JMP | BPF_JA)) { 2876 verbose(env, "last insn is not an exit or jmp\n"); 2877 return -EINVAL; 2878 } 2879 subprog_start = subprog_end; 2880 cur_subprog++; 2881 if (cur_subprog < env->subprog_cnt) 2882 subprog_end = subprog[cur_subprog + 1].start; 2883 } 2884 } 2885 return 0; 2886 } 2887 2888 /* Parentage chain of this register (or stack slot) should take care of all 2889 * issues like callee-saved registers, stack slot allocation time, etc. 2890 */ 2891 static int mark_reg_read(struct bpf_verifier_env *env, 2892 const struct bpf_reg_state *state, 2893 struct bpf_reg_state *parent, u8 flag) 2894 { 2895 bool writes = parent == state->parent; /* Observe write marks */ 2896 int cnt = 0; 2897 2898 while (parent) { 2899 /* if read wasn't screened by an earlier write ... */ 2900 if (writes && state->live & REG_LIVE_WRITTEN) 2901 break; 2902 if (parent->live & REG_LIVE_DONE) { 2903 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2904 reg_type_str(env, parent->type), 2905 parent->var_off.value, parent->off); 2906 return -EFAULT; 2907 } 2908 /* The first condition is more likely to be true than the 2909 * second, checked it first. 2910 */ 2911 if ((parent->live & REG_LIVE_READ) == flag || 2912 parent->live & REG_LIVE_READ64) 2913 /* The parentage chain never changes and 2914 * this parent was already marked as LIVE_READ. 2915 * There is no need to keep walking the chain again and 2916 * keep re-marking all parents as LIVE_READ. 2917 * This case happens when the same register is read 2918 * multiple times without writes into it in-between. 2919 * Also, if parent has the stronger REG_LIVE_READ64 set, 2920 * then no need to set the weak REG_LIVE_READ32. 2921 */ 2922 break; 2923 /* ... then we depend on parent's value */ 2924 parent->live |= flag; 2925 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2926 if (flag == REG_LIVE_READ64) 2927 parent->live &= ~REG_LIVE_READ32; 2928 state = parent; 2929 parent = state->parent; 2930 writes = true; 2931 cnt++; 2932 } 2933 2934 if (env->longest_mark_read_walk < cnt) 2935 env->longest_mark_read_walk = cnt; 2936 return 0; 2937 } 2938 2939 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2940 { 2941 struct bpf_func_state *state = func(env, reg); 2942 int spi, ret; 2943 2944 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2945 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2946 * check_kfunc_call. 2947 */ 2948 if (reg->type == CONST_PTR_TO_DYNPTR) 2949 return 0; 2950 spi = dynptr_get_spi(env, reg); 2951 if (spi < 0) 2952 return spi; 2953 /* Caller ensures dynptr is valid and initialized, which means spi is in 2954 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2955 * read. 2956 */ 2957 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2958 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2959 if (ret) 2960 return ret; 2961 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2962 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2963 } 2964 2965 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 2966 int spi, int nr_slots) 2967 { 2968 struct bpf_func_state *state = func(env, reg); 2969 int err, i; 2970 2971 for (i = 0; i < nr_slots; i++) { 2972 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 2973 2974 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 2975 if (err) 2976 return err; 2977 2978 mark_stack_slot_scratched(env, spi - i); 2979 } 2980 2981 return 0; 2982 } 2983 2984 /* This function is supposed to be used by the following 32-bit optimization 2985 * code only. It returns TRUE if the source or destination register operates 2986 * on 64-bit, otherwise return FALSE. 2987 */ 2988 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2989 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2990 { 2991 u8 code, class, op; 2992 2993 code = insn->code; 2994 class = BPF_CLASS(code); 2995 op = BPF_OP(code); 2996 if (class == BPF_JMP) { 2997 /* BPF_EXIT for "main" will reach here. Return TRUE 2998 * conservatively. 2999 */ 3000 if (op == BPF_EXIT) 3001 return true; 3002 if (op == BPF_CALL) { 3003 /* BPF to BPF call will reach here because of marking 3004 * caller saved clobber with DST_OP_NO_MARK for which we 3005 * don't care the register def because they are anyway 3006 * marked as NOT_INIT already. 3007 */ 3008 if (insn->src_reg == BPF_PSEUDO_CALL) 3009 return false; 3010 /* Helper call will reach here because of arg type 3011 * check, conservatively return TRUE. 3012 */ 3013 if (t == SRC_OP) 3014 return true; 3015 3016 return false; 3017 } 3018 } 3019 3020 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3021 return false; 3022 3023 if (class == BPF_ALU64 || class == BPF_JMP || 3024 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3025 return true; 3026 3027 if (class == BPF_ALU || class == BPF_JMP32) 3028 return false; 3029 3030 if (class == BPF_LDX) { 3031 if (t != SRC_OP) 3032 return BPF_SIZE(code) == BPF_DW; 3033 /* LDX source must be ptr. */ 3034 return true; 3035 } 3036 3037 if (class == BPF_STX) { 3038 /* BPF_STX (including atomic variants) has multiple source 3039 * operands, one of which is a ptr. Check whether the caller is 3040 * asking about it. 3041 */ 3042 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3043 return true; 3044 return BPF_SIZE(code) == BPF_DW; 3045 } 3046 3047 if (class == BPF_LD) { 3048 u8 mode = BPF_MODE(code); 3049 3050 /* LD_IMM64 */ 3051 if (mode == BPF_IMM) 3052 return true; 3053 3054 /* Both LD_IND and LD_ABS return 32-bit data. */ 3055 if (t != SRC_OP) 3056 return false; 3057 3058 /* Implicit ctx ptr. */ 3059 if (regno == BPF_REG_6) 3060 return true; 3061 3062 /* Explicit source could be any width. */ 3063 return true; 3064 } 3065 3066 if (class == BPF_ST) 3067 /* The only source register for BPF_ST is a ptr. */ 3068 return true; 3069 3070 /* Conservatively return true at default. */ 3071 return true; 3072 } 3073 3074 /* Return the regno defined by the insn, or -1. */ 3075 static int insn_def_regno(const struct bpf_insn *insn) 3076 { 3077 switch (BPF_CLASS(insn->code)) { 3078 case BPF_JMP: 3079 case BPF_JMP32: 3080 case BPF_ST: 3081 return -1; 3082 case BPF_STX: 3083 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3084 (insn->imm & BPF_FETCH)) { 3085 if (insn->imm == BPF_CMPXCHG) 3086 return BPF_REG_0; 3087 else 3088 return insn->src_reg; 3089 } else { 3090 return -1; 3091 } 3092 default: 3093 return insn->dst_reg; 3094 } 3095 } 3096 3097 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3098 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3099 { 3100 int dst_reg = insn_def_regno(insn); 3101 3102 if (dst_reg == -1) 3103 return false; 3104 3105 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3106 } 3107 3108 static void mark_insn_zext(struct bpf_verifier_env *env, 3109 struct bpf_reg_state *reg) 3110 { 3111 s32 def_idx = reg->subreg_def; 3112 3113 if (def_idx == DEF_NOT_SUBREG) 3114 return; 3115 3116 env->insn_aux_data[def_idx - 1].zext_dst = true; 3117 /* The dst will be zero extended, so won't be sub-register anymore. */ 3118 reg->subreg_def = DEF_NOT_SUBREG; 3119 } 3120 3121 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3122 enum reg_arg_type t) 3123 { 3124 struct bpf_verifier_state *vstate = env->cur_state; 3125 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3126 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3127 struct bpf_reg_state *reg, *regs = state->regs; 3128 bool rw64; 3129 3130 if (regno >= MAX_BPF_REG) { 3131 verbose(env, "R%d is invalid\n", regno); 3132 return -EINVAL; 3133 } 3134 3135 mark_reg_scratched(env, regno); 3136 3137 reg = ®s[regno]; 3138 rw64 = is_reg64(env, insn, regno, reg, t); 3139 if (t == SRC_OP) { 3140 /* check whether register used as source operand can be read */ 3141 if (reg->type == NOT_INIT) { 3142 verbose(env, "R%d !read_ok\n", regno); 3143 return -EACCES; 3144 } 3145 /* We don't need to worry about FP liveness because it's read-only */ 3146 if (regno == BPF_REG_FP) 3147 return 0; 3148 3149 if (rw64) 3150 mark_insn_zext(env, reg); 3151 3152 return mark_reg_read(env, reg, reg->parent, 3153 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3154 } else { 3155 /* check whether register used as dest operand can be written to */ 3156 if (regno == BPF_REG_FP) { 3157 verbose(env, "frame pointer is read only\n"); 3158 return -EACCES; 3159 } 3160 reg->live |= REG_LIVE_WRITTEN; 3161 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3162 if (t == DST_OP) 3163 mark_reg_unknown(env, regs, regno); 3164 } 3165 return 0; 3166 } 3167 3168 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3169 { 3170 env->insn_aux_data[idx].jmp_point = true; 3171 } 3172 3173 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3174 { 3175 return env->insn_aux_data[insn_idx].jmp_point; 3176 } 3177 3178 /* for any branch, call, exit record the history of jmps in the given state */ 3179 static int push_jmp_history(struct bpf_verifier_env *env, 3180 struct bpf_verifier_state *cur) 3181 { 3182 u32 cnt = cur->jmp_history_cnt; 3183 struct bpf_idx_pair *p; 3184 size_t alloc_size; 3185 3186 if (!is_jmp_point(env, env->insn_idx)) 3187 return 0; 3188 3189 cnt++; 3190 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3191 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3192 if (!p) 3193 return -ENOMEM; 3194 p[cnt - 1].idx = env->insn_idx; 3195 p[cnt - 1].prev_idx = env->prev_insn_idx; 3196 cur->jmp_history = p; 3197 cur->jmp_history_cnt = cnt; 3198 return 0; 3199 } 3200 3201 /* Backtrack one insn at a time. If idx is not at the top of recorded 3202 * history then previous instruction came from straight line execution. 3203 */ 3204 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3205 u32 *history) 3206 { 3207 u32 cnt = *history; 3208 3209 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3210 i = st->jmp_history[cnt - 1].prev_idx; 3211 (*history)--; 3212 } else { 3213 i--; 3214 } 3215 return i; 3216 } 3217 3218 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3219 { 3220 const struct btf_type *func; 3221 struct btf *desc_btf; 3222 3223 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3224 return NULL; 3225 3226 desc_btf = find_kfunc_desc_btf(data, insn->off); 3227 if (IS_ERR(desc_btf)) 3228 return "<error>"; 3229 3230 func = btf_type_by_id(desc_btf, insn->imm); 3231 return btf_name_by_offset(desc_btf, func->name_off); 3232 } 3233 3234 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3235 { 3236 bt->frame = frame; 3237 } 3238 3239 static inline void bt_reset(struct backtrack_state *bt) 3240 { 3241 struct bpf_verifier_env *env = bt->env; 3242 3243 memset(bt, 0, sizeof(*bt)); 3244 bt->env = env; 3245 } 3246 3247 static inline u32 bt_empty(struct backtrack_state *bt) 3248 { 3249 u64 mask = 0; 3250 int i; 3251 3252 for (i = 0; i <= bt->frame; i++) 3253 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3254 3255 return mask == 0; 3256 } 3257 3258 static inline int bt_subprog_enter(struct backtrack_state *bt) 3259 { 3260 if (bt->frame == MAX_CALL_FRAMES - 1) { 3261 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3262 WARN_ONCE(1, "verifier backtracking bug"); 3263 return -EFAULT; 3264 } 3265 bt->frame++; 3266 return 0; 3267 } 3268 3269 static inline int bt_subprog_exit(struct backtrack_state *bt) 3270 { 3271 if (bt->frame == 0) { 3272 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3273 WARN_ONCE(1, "verifier backtracking bug"); 3274 return -EFAULT; 3275 } 3276 bt->frame--; 3277 return 0; 3278 } 3279 3280 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3281 { 3282 bt->reg_masks[frame] |= 1 << reg; 3283 } 3284 3285 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3286 { 3287 bt->reg_masks[frame] &= ~(1 << reg); 3288 } 3289 3290 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3291 { 3292 bt_set_frame_reg(bt, bt->frame, reg); 3293 } 3294 3295 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3296 { 3297 bt_clear_frame_reg(bt, bt->frame, reg); 3298 } 3299 3300 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3301 { 3302 bt->stack_masks[frame] |= 1ull << slot; 3303 } 3304 3305 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3306 { 3307 bt->stack_masks[frame] &= ~(1ull << slot); 3308 } 3309 3310 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3311 { 3312 bt_set_frame_slot(bt, bt->frame, slot); 3313 } 3314 3315 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3316 { 3317 bt_clear_frame_slot(bt, bt->frame, slot); 3318 } 3319 3320 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3321 { 3322 return bt->reg_masks[frame]; 3323 } 3324 3325 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3326 { 3327 return bt->reg_masks[bt->frame]; 3328 } 3329 3330 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3331 { 3332 return bt->stack_masks[frame]; 3333 } 3334 3335 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3336 { 3337 return bt->stack_masks[bt->frame]; 3338 } 3339 3340 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3341 { 3342 return bt->reg_masks[bt->frame] & (1 << reg); 3343 } 3344 3345 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3346 { 3347 return bt->stack_masks[bt->frame] & (1ull << slot); 3348 } 3349 3350 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3351 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3352 { 3353 DECLARE_BITMAP(mask, 64); 3354 bool first = true; 3355 int i, n; 3356 3357 buf[0] = '\0'; 3358 3359 bitmap_from_u64(mask, reg_mask); 3360 for_each_set_bit(i, mask, 32) { 3361 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3362 first = false; 3363 buf += n; 3364 buf_sz -= n; 3365 if (buf_sz < 0) 3366 break; 3367 } 3368 } 3369 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3370 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3371 { 3372 DECLARE_BITMAP(mask, 64); 3373 bool first = true; 3374 int i, n; 3375 3376 buf[0] = '\0'; 3377 3378 bitmap_from_u64(mask, stack_mask); 3379 for_each_set_bit(i, mask, 64) { 3380 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3381 first = false; 3382 buf += n; 3383 buf_sz -= n; 3384 if (buf_sz < 0) 3385 break; 3386 } 3387 } 3388 3389 /* For given verifier state backtrack_insn() is called from the last insn to 3390 * the first insn. Its purpose is to compute a bitmask of registers and 3391 * stack slots that needs precision in the parent verifier state. 3392 * 3393 * @idx is an index of the instruction we are currently processing; 3394 * @subseq_idx is an index of the subsequent instruction that: 3395 * - *would be* executed next, if jump history is viewed in forward order; 3396 * - *was* processed previously during backtracking. 3397 */ 3398 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3399 struct backtrack_state *bt) 3400 { 3401 const struct bpf_insn_cbs cbs = { 3402 .cb_call = disasm_kfunc_name, 3403 .cb_print = verbose, 3404 .private_data = env, 3405 }; 3406 struct bpf_insn *insn = env->prog->insnsi + idx; 3407 u8 class = BPF_CLASS(insn->code); 3408 u8 opcode = BPF_OP(insn->code); 3409 u8 mode = BPF_MODE(insn->code); 3410 u32 dreg = insn->dst_reg; 3411 u32 sreg = insn->src_reg; 3412 u32 spi, i; 3413 3414 if (insn->code == 0) 3415 return 0; 3416 if (env->log.level & BPF_LOG_LEVEL2) { 3417 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3418 verbose(env, "mark_precise: frame%d: regs=%s ", 3419 bt->frame, env->tmp_str_buf); 3420 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3421 verbose(env, "stack=%s before ", env->tmp_str_buf); 3422 verbose(env, "%d: ", idx); 3423 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3424 } 3425 3426 if (class == BPF_ALU || class == BPF_ALU64) { 3427 if (!bt_is_reg_set(bt, dreg)) 3428 return 0; 3429 if (opcode == BPF_MOV) { 3430 if (BPF_SRC(insn->code) == BPF_X) { 3431 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3432 * dreg needs precision after this insn 3433 * sreg needs precision before this insn 3434 */ 3435 bt_clear_reg(bt, dreg); 3436 bt_set_reg(bt, sreg); 3437 } else { 3438 /* dreg = K 3439 * dreg needs precision after this insn. 3440 * Corresponding register is already marked 3441 * as precise=true in this verifier state. 3442 * No further markings in parent are necessary 3443 */ 3444 bt_clear_reg(bt, dreg); 3445 } 3446 } else { 3447 if (BPF_SRC(insn->code) == BPF_X) { 3448 /* dreg += sreg 3449 * both dreg and sreg need precision 3450 * before this insn 3451 */ 3452 bt_set_reg(bt, sreg); 3453 } /* else dreg += K 3454 * dreg still needs precision before this insn 3455 */ 3456 } 3457 } else if (class == BPF_LDX) { 3458 if (!bt_is_reg_set(bt, dreg)) 3459 return 0; 3460 bt_clear_reg(bt, dreg); 3461 3462 /* scalars can only be spilled into stack w/o losing precision. 3463 * Load from any other memory can be zero extended. 3464 * The desire to keep that precision is already indicated 3465 * by 'precise' mark in corresponding register of this state. 3466 * No further tracking necessary. 3467 */ 3468 if (insn->src_reg != BPF_REG_FP) 3469 return 0; 3470 3471 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3472 * that [fp - off] slot contains scalar that needs to be 3473 * tracked with precision 3474 */ 3475 spi = (-insn->off - 1) / BPF_REG_SIZE; 3476 if (spi >= 64) { 3477 verbose(env, "BUG spi %d\n", spi); 3478 WARN_ONCE(1, "verifier backtracking bug"); 3479 return -EFAULT; 3480 } 3481 bt_set_slot(bt, spi); 3482 } else if (class == BPF_STX || class == BPF_ST) { 3483 if (bt_is_reg_set(bt, dreg)) 3484 /* stx & st shouldn't be using _scalar_ dst_reg 3485 * to access memory. It means backtracking 3486 * encountered a case of pointer subtraction. 3487 */ 3488 return -ENOTSUPP; 3489 /* scalars can only be spilled into stack */ 3490 if (insn->dst_reg != BPF_REG_FP) 3491 return 0; 3492 spi = (-insn->off - 1) / BPF_REG_SIZE; 3493 if (spi >= 64) { 3494 verbose(env, "BUG spi %d\n", spi); 3495 WARN_ONCE(1, "verifier backtracking bug"); 3496 return -EFAULT; 3497 } 3498 if (!bt_is_slot_set(bt, spi)) 3499 return 0; 3500 bt_clear_slot(bt, spi); 3501 if (class == BPF_STX) 3502 bt_set_reg(bt, sreg); 3503 } else if (class == BPF_JMP || class == BPF_JMP32) { 3504 if (bpf_pseudo_call(insn)) { 3505 int subprog_insn_idx, subprog; 3506 3507 subprog_insn_idx = idx + insn->imm + 1; 3508 subprog = find_subprog(env, subprog_insn_idx); 3509 if (subprog < 0) 3510 return -EFAULT; 3511 3512 if (subprog_is_global(env, subprog)) { 3513 /* check that jump history doesn't have any 3514 * extra instructions from subprog; the next 3515 * instruction after call to global subprog 3516 * should be literally next instruction in 3517 * caller program 3518 */ 3519 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3520 /* r1-r5 are invalidated after subprog call, 3521 * so for global func call it shouldn't be set 3522 * anymore 3523 */ 3524 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3525 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3526 WARN_ONCE(1, "verifier backtracking bug"); 3527 return -EFAULT; 3528 } 3529 /* global subprog always sets R0 */ 3530 bt_clear_reg(bt, BPF_REG_0); 3531 return 0; 3532 } else { 3533 /* static subprog call instruction, which 3534 * means that we are exiting current subprog, 3535 * so only r1-r5 could be still requested as 3536 * precise, r0 and r6-r10 or any stack slot in 3537 * the current frame should be zero by now 3538 */ 3539 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3540 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3541 WARN_ONCE(1, "verifier backtracking bug"); 3542 return -EFAULT; 3543 } 3544 /* we don't track register spills perfectly, 3545 * so fallback to force-precise instead of failing */ 3546 if (bt_stack_mask(bt) != 0) 3547 return -ENOTSUPP; 3548 /* propagate r1-r5 to the caller */ 3549 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3550 if (bt_is_reg_set(bt, i)) { 3551 bt_clear_reg(bt, i); 3552 bt_set_frame_reg(bt, bt->frame - 1, i); 3553 } 3554 } 3555 if (bt_subprog_exit(bt)) 3556 return -EFAULT; 3557 return 0; 3558 } 3559 } else if ((bpf_helper_call(insn) && 3560 is_callback_calling_function(insn->imm) && 3561 !is_async_callback_calling_function(insn->imm)) || 3562 (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) { 3563 /* callback-calling helper or kfunc call, which means 3564 * we are exiting from subprog, but unlike the subprog 3565 * call handling above, we shouldn't propagate 3566 * precision of r1-r5 (if any requested), as they are 3567 * not actually arguments passed directly to callback 3568 * subprogs 3569 */ 3570 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3571 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3572 WARN_ONCE(1, "verifier backtracking bug"); 3573 return -EFAULT; 3574 } 3575 if (bt_stack_mask(bt) != 0) 3576 return -ENOTSUPP; 3577 /* clear r1-r5 in callback subprog's mask */ 3578 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3579 bt_clear_reg(bt, i); 3580 if (bt_subprog_exit(bt)) 3581 return -EFAULT; 3582 return 0; 3583 } else if (opcode == BPF_CALL) { 3584 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3585 * catch this error later. Make backtracking conservative 3586 * with ENOTSUPP. 3587 */ 3588 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3589 return -ENOTSUPP; 3590 /* regular helper call sets R0 */ 3591 bt_clear_reg(bt, BPF_REG_0); 3592 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3593 /* if backtracing was looking for registers R1-R5 3594 * they should have been found already. 3595 */ 3596 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3597 WARN_ONCE(1, "verifier backtracking bug"); 3598 return -EFAULT; 3599 } 3600 } else if (opcode == BPF_EXIT) { 3601 bool r0_precise; 3602 3603 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3604 /* if backtracing was looking for registers R1-R5 3605 * they should have been found already. 3606 */ 3607 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3608 WARN_ONCE(1, "verifier backtracking bug"); 3609 return -EFAULT; 3610 } 3611 3612 /* BPF_EXIT in subprog or callback always returns 3613 * right after the call instruction, so by checking 3614 * whether the instruction at subseq_idx-1 is subprog 3615 * call or not we can distinguish actual exit from 3616 * *subprog* from exit from *callback*. In the former 3617 * case, we need to propagate r0 precision, if 3618 * necessary. In the former we never do that. 3619 */ 3620 r0_precise = subseq_idx - 1 >= 0 && 3621 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3622 bt_is_reg_set(bt, BPF_REG_0); 3623 3624 bt_clear_reg(bt, BPF_REG_0); 3625 if (bt_subprog_enter(bt)) 3626 return -EFAULT; 3627 3628 if (r0_precise) 3629 bt_set_reg(bt, BPF_REG_0); 3630 /* r6-r9 and stack slots will stay set in caller frame 3631 * bitmasks until we return back from callee(s) 3632 */ 3633 return 0; 3634 } else if (BPF_SRC(insn->code) == BPF_X) { 3635 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3636 return 0; 3637 /* dreg <cond> sreg 3638 * Both dreg and sreg need precision before 3639 * this insn. If only sreg was marked precise 3640 * before it would be equally necessary to 3641 * propagate it to dreg. 3642 */ 3643 bt_set_reg(bt, dreg); 3644 bt_set_reg(bt, sreg); 3645 /* else dreg <cond> K 3646 * Only dreg still needs precision before 3647 * this insn, so for the K-based conditional 3648 * there is nothing new to be marked. 3649 */ 3650 } 3651 } else if (class == BPF_LD) { 3652 if (!bt_is_reg_set(bt, dreg)) 3653 return 0; 3654 bt_clear_reg(bt, dreg); 3655 /* It's ld_imm64 or ld_abs or ld_ind. 3656 * For ld_imm64 no further tracking of precision 3657 * into parent is necessary 3658 */ 3659 if (mode == BPF_IND || mode == BPF_ABS) 3660 /* to be analyzed */ 3661 return -ENOTSUPP; 3662 } 3663 return 0; 3664 } 3665 3666 /* the scalar precision tracking algorithm: 3667 * . at the start all registers have precise=false. 3668 * . scalar ranges are tracked as normal through alu and jmp insns. 3669 * . once precise value of the scalar register is used in: 3670 * . ptr + scalar alu 3671 * . if (scalar cond K|scalar) 3672 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3673 * backtrack through the verifier states and mark all registers and 3674 * stack slots with spilled constants that these scalar regisers 3675 * should be precise. 3676 * . during state pruning two registers (or spilled stack slots) 3677 * are equivalent if both are not precise. 3678 * 3679 * Note the verifier cannot simply walk register parentage chain, 3680 * since many different registers and stack slots could have been 3681 * used to compute single precise scalar. 3682 * 3683 * The approach of starting with precise=true for all registers and then 3684 * backtrack to mark a register as not precise when the verifier detects 3685 * that program doesn't care about specific value (e.g., when helper 3686 * takes register as ARG_ANYTHING parameter) is not safe. 3687 * 3688 * It's ok to walk single parentage chain of the verifier states. 3689 * It's possible that this backtracking will go all the way till 1st insn. 3690 * All other branches will be explored for needing precision later. 3691 * 3692 * The backtracking needs to deal with cases like: 3693 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3694 * r9 -= r8 3695 * r5 = r9 3696 * if r5 > 0x79f goto pc+7 3697 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3698 * r5 += 1 3699 * ... 3700 * call bpf_perf_event_output#25 3701 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3702 * 3703 * and this case: 3704 * r6 = 1 3705 * call foo // uses callee's r6 inside to compute r0 3706 * r0 += r6 3707 * if r0 == 0 goto 3708 * 3709 * to track above reg_mask/stack_mask needs to be independent for each frame. 3710 * 3711 * Also if parent's curframe > frame where backtracking started, 3712 * the verifier need to mark registers in both frames, otherwise callees 3713 * may incorrectly prune callers. This is similar to 3714 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3715 * 3716 * For now backtracking falls back into conservative marking. 3717 */ 3718 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3719 struct bpf_verifier_state *st) 3720 { 3721 struct bpf_func_state *func; 3722 struct bpf_reg_state *reg; 3723 int i, j; 3724 3725 if (env->log.level & BPF_LOG_LEVEL2) { 3726 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3727 st->curframe); 3728 } 3729 3730 /* big hammer: mark all scalars precise in this path. 3731 * pop_stack may still get !precise scalars. 3732 * We also skip current state and go straight to first parent state, 3733 * because precision markings in current non-checkpointed state are 3734 * not needed. See why in the comment in __mark_chain_precision below. 3735 */ 3736 for (st = st->parent; st; st = st->parent) { 3737 for (i = 0; i <= st->curframe; i++) { 3738 func = st->frame[i]; 3739 for (j = 0; j < BPF_REG_FP; j++) { 3740 reg = &func->regs[j]; 3741 if (reg->type != SCALAR_VALUE || reg->precise) 3742 continue; 3743 reg->precise = true; 3744 if (env->log.level & BPF_LOG_LEVEL2) { 3745 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3746 i, j); 3747 } 3748 } 3749 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3750 if (!is_spilled_reg(&func->stack[j])) 3751 continue; 3752 reg = &func->stack[j].spilled_ptr; 3753 if (reg->type != SCALAR_VALUE || reg->precise) 3754 continue; 3755 reg->precise = true; 3756 if (env->log.level & BPF_LOG_LEVEL2) { 3757 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 3758 i, -(j + 1) * 8); 3759 } 3760 } 3761 } 3762 } 3763 } 3764 3765 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3766 { 3767 struct bpf_func_state *func; 3768 struct bpf_reg_state *reg; 3769 int i, j; 3770 3771 for (i = 0; i <= st->curframe; i++) { 3772 func = st->frame[i]; 3773 for (j = 0; j < BPF_REG_FP; j++) { 3774 reg = &func->regs[j]; 3775 if (reg->type != SCALAR_VALUE) 3776 continue; 3777 reg->precise = false; 3778 } 3779 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3780 if (!is_spilled_reg(&func->stack[j])) 3781 continue; 3782 reg = &func->stack[j].spilled_ptr; 3783 if (reg->type != SCALAR_VALUE) 3784 continue; 3785 reg->precise = false; 3786 } 3787 } 3788 } 3789 3790 static bool idset_contains(struct bpf_idset *s, u32 id) 3791 { 3792 u32 i; 3793 3794 for (i = 0; i < s->count; ++i) 3795 if (s->ids[i] == id) 3796 return true; 3797 3798 return false; 3799 } 3800 3801 static int idset_push(struct bpf_idset *s, u32 id) 3802 { 3803 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 3804 return -EFAULT; 3805 s->ids[s->count++] = id; 3806 return 0; 3807 } 3808 3809 static void idset_reset(struct bpf_idset *s) 3810 { 3811 s->count = 0; 3812 } 3813 3814 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 3815 * Mark all registers with these IDs as precise. 3816 */ 3817 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3818 { 3819 struct bpf_idset *precise_ids = &env->idset_scratch; 3820 struct backtrack_state *bt = &env->bt; 3821 struct bpf_func_state *func; 3822 struct bpf_reg_state *reg; 3823 DECLARE_BITMAP(mask, 64); 3824 int i, fr; 3825 3826 idset_reset(precise_ids); 3827 3828 for (fr = bt->frame; fr >= 0; fr--) { 3829 func = st->frame[fr]; 3830 3831 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 3832 for_each_set_bit(i, mask, 32) { 3833 reg = &func->regs[i]; 3834 if (!reg->id || reg->type != SCALAR_VALUE) 3835 continue; 3836 if (idset_push(precise_ids, reg->id)) 3837 return -EFAULT; 3838 } 3839 3840 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 3841 for_each_set_bit(i, mask, 64) { 3842 if (i >= func->allocated_stack / BPF_REG_SIZE) 3843 break; 3844 if (!is_spilled_scalar_reg(&func->stack[i])) 3845 continue; 3846 reg = &func->stack[i].spilled_ptr; 3847 if (!reg->id) 3848 continue; 3849 if (idset_push(precise_ids, reg->id)) 3850 return -EFAULT; 3851 } 3852 } 3853 3854 for (fr = 0; fr <= st->curframe; ++fr) { 3855 func = st->frame[fr]; 3856 3857 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 3858 reg = &func->regs[i]; 3859 if (!reg->id) 3860 continue; 3861 if (!idset_contains(precise_ids, reg->id)) 3862 continue; 3863 bt_set_frame_reg(bt, fr, i); 3864 } 3865 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 3866 if (!is_spilled_scalar_reg(&func->stack[i])) 3867 continue; 3868 reg = &func->stack[i].spilled_ptr; 3869 if (!reg->id) 3870 continue; 3871 if (!idset_contains(precise_ids, reg->id)) 3872 continue; 3873 bt_set_frame_slot(bt, fr, i); 3874 } 3875 } 3876 3877 return 0; 3878 } 3879 3880 /* 3881 * __mark_chain_precision() backtracks BPF program instruction sequence and 3882 * chain of verifier states making sure that register *regno* (if regno >= 0) 3883 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3884 * SCALARS, as well as any other registers and slots that contribute to 3885 * a tracked state of given registers/stack slots, depending on specific BPF 3886 * assembly instructions (see backtrack_insns() for exact instruction handling 3887 * logic). This backtracking relies on recorded jmp_history and is able to 3888 * traverse entire chain of parent states. This process ends only when all the 3889 * necessary registers/slots and their transitive dependencies are marked as 3890 * precise. 3891 * 3892 * One important and subtle aspect is that precise marks *do not matter* in 3893 * the currently verified state (current state). It is important to understand 3894 * why this is the case. 3895 * 3896 * First, note that current state is the state that is not yet "checkpointed", 3897 * i.e., it is not yet put into env->explored_states, and it has no children 3898 * states as well. It's ephemeral, and can end up either a) being discarded if 3899 * compatible explored state is found at some point or BPF_EXIT instruction is 3900 * reached or b) checkpointed and put into env->explored_states, branching out 3901 * into one or more children states. 3902 * 3903 * In the former case, precise markings in current state are completely 3904 * ignored by state comparison code (see regsafe() for details). Only 3905 * checkpointed ("old") state precise markings are important, and if old 3906 * state's register/slot is precise, regsafe() assumes current state's 3907 * register/slot as precise and checks value ranges exactly and precisely. If 3908 * states turn out to be compatible, current state's necessary precise 3909 * markings and any required parent states' precise markings are enforced 3910 * after the fact with propagate_precision() logic, after the fact. But it's 3911 * important to realize that in this case, even after marking current state 3912 * registers/slots as precise, we immediately discard current state. So what 3913 * actually matters is any of the precise markings propagated into current 3914 * state's parent states, which are always checkpointed (due to b) case above). 3915 * As such, for scenario a) it doesn't matter if current state has precise 3916 * markings set or not. 3917 * 3918 * Now, for the scenario b), checkpointing and forking into child(ren) 3919 * state(s). Note that before current state gets to checkpointing step, any 3920 * processed instruction always assumes precise SCALAR register/slot 3921 * knowledge: if precise value or range is useful to prune jump branch, BPF 3922 * verifier takes this opportunity enthusiastically. Similarly, when 3923 * register's value is used to calculate offset or memory address, exact 3924 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3925 * what we mentioned above about state comparison ignoring precise markings 3926 * during state comparison, BPF verifier ignores and also assumes precise 3927 * markings *at will* during instruction verification process. But as verifier 3928 * assumes precision, it also propagates any precision dependencies across 3929 * parent states, which are not yet finalized, so can be further restricted 3930 * based on new knowledge gained from restrictions enforced by their children 3931 * states. This is so that once those parent states are finalized, i.e., when 3932 * they have no more active children state, state comparison logic in 3933 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3934 * required for correctness. 3935 * 3936 * To build a bit more intuition, note also that once a state is checkpointed, 3937 * the path we took to get to that state is not important. This is crucial 3938 * property for state pruning. When state is checkpointed and finalized at 3939 * some instruction index, it can be correctly and safely used to "short 3940 * circuit" any *compatible* state that reaches exactly the same instruction 3941 * index. I.e., if we jumped to that instruction from a completely different 3942 * code path than original finalized state was derived from, it doesn't 3943 * matter, current state can be discarded because from that instruction 3944 * forward having a compatible state will ensure we will safely reach the 3945 * exit. States describe preconditions for further exploration, but completely 3946 * forget the history of how we got here. 3947 * 3948 * This also means that even if we needed precise SCALAR range to get to 3949 * finalized state, but from that point forward *that same* SCALAR register is 3950 * never used in a precise context (i.e., it's precise value is not needed for 3951 * correctness), it's correct and safe to mark such register as "imprecise" 3952 * (i.e., precise marking set to false). This is what we rely on when we do 3953 * not set precise marking in current state. If no child state requires 3954 * precision for any given SCALAR register, it's safe to dictate that it can 3955 * be imprecise. If any child state does require this register to be precise, 3956 * we'll mark it precise later retroactively during precise markings 3957 * propagation from child state to parent states. 3958 * 3959 * Skipping precise marking setting in current state is a mild version of 3960 * relying on the above observation. But we can utilize this property even 3961 * more aggressively by proactively forgetting any precise marking in the 3962 * current state (which we inherited from the parent state), right before we 3963 * checkpoint it and branch off into new child state. This is done by 3964 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3965 * finalized states which help in short circuiting more future states. 3966 */ 3967 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 3968 { 3969 struct backtrack_state *bt = &env->bt; 3970 struct bpf_verifier_state *st = env->cur_state; 3971 int first_idx = st->first_insn_idx; 3972 int last_idx = env->insn_idx; 3973 int subseq_idx = -1; 3974 struct bpf_func_state *func; 3975 struct bpf_reg_state *reg; 3976 bool skip_first = true; 3977 int i, fr, err; 3978 3979 if (!env->bpf_capable) 3980 return 0; 3981 3982 /* set frame number from which we are starting to backtrack */ 3983 bt_init(bt, env->cur_state->curframe); 3984 3985 /* Do sanity checks against current state of register and/or stack 3986 * slot, but don't set precise flag in current state, as precision 3987 * tracking in the current state is unnecessary. 3988 */ 3989 func = st->frame[bt->frame]; 3990 if (regno >= 0) { 3991 reg = &func->regs[regno]; 3992 if (reg->type != SCALAR_VALUE) { 3993 WARN_ONCE(1, "backtracing misuse"); 3994 return -EFAULT; 3995 } 3996 bt_set_reg(bt, regno); 3997 } 3998 3999 if (bt_empty(bt)) 4000 return 0; 4001 4002 for (;;) { 4003 DECLARE_BITMAP(mask, 64); 4004 u32 history = st->jmp_history_cnt; 4005 4006 if (env->log.level & BPF_LOG_LEVEL2) { 4007 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4008 bt->frame, last_idx, first_idx, subseq_idx); 4009 } 4010 4011 /* If some register with scalar ID is marked as precise, 4012 * make sure that all registers sharing this ID are also precise. 4013 * This is needed to estimate effect of find_equal_scalars(). 4014 * Do this at the last instruction of each state, 4015 * bpf_reg_state::id fields are valid for these instructions. 4016 * 4017 * Allows to track precision in situation like below: 4018 * 4019 * r2 = unknown value 4020 * ... 4021 * --- state #0 --- 4022 * ... 4023 * r1 = r2 // r1 and r2 now share the same ID 4024 * ... 4025 * --- state #1 {r1.id = A, r2.id = A} --- 4026 * ... 4027 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4028 * ... 4029 * --- state #2 {r1.id = A, r2.id = A} --- 4030 * r3 = r10 4031 * r3 += r1 // need to mark both r1 and r2 4032 */ 4033 if (mark_precise_scalar_ids(env, st)) 4034 return -EFAULT; 4035 4036 if (last_idx < 0) { 4037 /* we are at the entry into subprog, which 4038 * is expected for global funcs, but only if 4039 * requested precise registers are R1-R5 4040 * (which are global func's input arguments) 4041 */ 4042 if (st->curframe == 0 && 4043 st->frame[0]->subprogno > 0 && 4044 st->frame[0]->callsite == BPF_MAIN_FUNC && 4045 bt_stack_mask(bt) == 0 && 4046 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4047 bitmap_from_u64(mask, bt_reg_mask(bt)); 4048 for_each_set_bit(i, mask, 32) { 4049 reg = &st->frame[0]->regs[i]; 4050 bt_clear_reg(bt, i); 4051 if (reg->type == SCALAR_VALUE) 4052 reg->precise = true; 4053 } 4054 return 0; 4055 } 4056 4057 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4058 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4059 WARN_ONCE(1, "verifier backtracking bug"); 4060 return -EFAULT; 4061 } 4062 4063 for (i = last_idx;;) { 4064 if (skip_first) { 4065 err = 0; 4066 skip_first = false; 4067 } else { 4068 err = backtrack_insn(env, i, subseq_idx, bt); 4069 } 4070 if (err == -ENOTSUPP) { 4071 mark_all_scalars_precise(env, env->cur_state); 4072 bt_reset(bt); 4073 return 0; 4074 } else if (err) { 4075 return err; 4076 } 4077 if (bt_empty(bt)) 4078 /* Found assignment(s) into tracked register in this state. 4079 * Since this state is already marked, just return. 4080 * Nothing to be tracked further in the parent state. 4081 */ 4082 return 0; 4083 if (i == first_idx) 4084 break; 4085 subseq_idx = i; 4086 i = get_prev_insn_idx(st, i, &history); 4087 if (i >= env->prog->len) { 4088 /* This can happen if backtracking reached insn 0 4089 * and there are still reg_mask or stack_mask 4090 * to backtrack. 4091 * It means the backtracking missed the spot where 4092 * particular register was initialized with a constant. 4093 */ 4094 verbose(env, "BUG backtracking idx %d\n", i); 4095 WARN_ONCE(1, "verifier backtracking bug"); 4096 return -EFAULT; 4097 } 4098 } 4099 st = st->parent; 4100 if (!st) 4101 break; 4102 4103 for (fr = bt->frame; fr >= 0; fr--) { 4104 func = st->frame[fr]; 4105 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4106 for_each_set_bit(i, mask, 32) { 4107 reg = &func->regs[i]; 4108 if (reg->type != SCALAR_VALUE) { 4109 bt_clear_frame_reg(bt, fr, i); 4110 continue; 4111 } 4112 if (reg->precise) 4113 bt_clear_frame_reg(bt, fr, i); 4114 else 4115 reg->precise = true; 4116 } 4117 4118 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4119 for_each_set_bit(i, mask, 64) { 4120 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4121 /* the sequence of instructions: 4122 * 2: (bf) r3 = r10 4123 * 3: (7b) *(u64 *)(r3 -8) = r0 4124 * 4: (79) r4 = *(u64 *)(r10 -8) 4125 * doesn't contain jmps. It's backtracked 4126 * as a single block. 4127 * During backtracking insn 3 is not recognized as 4128 * stack access, so at the end of backtracking 4129 * stack slot fp-8 is still marked in stack_mask. 4130 * However the parent state may not have accessed 4131 * fp-8 and it's "unallocated" stack space. 4132 * In such case fallback to conservative. 4133 */ 4134 mark_all_scalars_precise(env, env->cur_state); 4135 bt_reset(bt); 4136 return 0; 4137 } 4138 4139 if (!is_spilled_scalar_reg(&func->stack[i])) { 4140 bt_clear_frame_slot(bt, fr, i); 4141 continue; 4142 } 4143 reg = &func->stack[i].spilled_ptr; 4144 if (reg->precise) 4145 bt_clear_frame_slot(bt, fr, i); 4146 else 4147 reg->precise = true; 4148 } 4149 if (env->log.level & BPF_LOG_LEVEL2) { 4150 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4151 bt_frame_reg_mask(bt, fr)); 4152 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4153 fr, env->tmp_str_buf); 4154 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4155 bt_frame_stack_mask(bt, fr)); 4156 verbose(env, "stack=%s: ", env->tmp_str_buf); 4157 print_verifier_state(env, func, true); 4158 } 4159 } 4160 4161 if (bt_empty(bt)) 4162 return 0; 4163 4164 subseq_idx = first_idx; 4165 last_idx = st->last_insn_idx; 4166 first_idx = st->first_insn_idx; 4167 } 4168 4169 /* if we still have requested precise regs or slots, we missed 4170 * something (e.g., stack access through non-r10 register), so 4171 * fallback to marking all precise 4172 */ 4173 if (!bt_empty(bt)) { 4174 mark_all_scalars_precise(env, env->cur_state); 4175 bt_reset(bt); 4176 } 4177 4178 return 0; 4179 } 4180 4181 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4182 { 4183 return __mark_chain_precision(env, regno); 4184 } 4185 4186 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4187 * desired reg and stack masks across all relevant frames 4188 */ 4189 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4190 { 4191 return __mark_chain_precision(env, -1); 4192 } 4193 4194 static bool is_spillable_regtype(enum bpf_reg_type type) 4195 { 4196 switch (base_type(type)) { 4197 case PTR_TO_MAP_VALUE: 4198 case PTR_TO_STACK: 4199 case PTR_TO_CTX: 4200 case PTR_TO_PACKET: 4201 case PTR_TO_PACKET_META: 4202 case PTR_TO_PACKET_END: 4203 case PTR_TO_FLOW_KEYS: 4204 case CONST_PTR_TO_MAP: 4205 case PTR_TO_SOCKET: 4206 case PTR_TO_SOCK_COMMON: 4207 case PTR_TO_TCP_SOCK: 4208 case PTR_TO_XDP_SOCK: 4209 case PTR_TO_BTF_ID: 4210 case PTR_TO_BUF: 4211 case PTR_TO_MEM: 4212 case PTR_TO_FUNC: 4213 case PTR_TO_MAP_KEY: 4214 return true; 4215 default: 4216 return false; 4217 } 4218 } 4219 4220 /* Does this register contain a constant zero? */ 4221 static bool register_is_null(struct bpf_reg_state *reg) 4222 { 4223 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4224 } 4225 4226 static bool register_is_const(struct bpf_reg_state *reg) 4227 { 4228 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4229 } 4230 4231 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4232 { 4233 return tnum_is_unknown(reg->var_off) && 4234 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4235 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4236 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4237 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4238 } 4239 4240 static bool register_is_bounded(struct bpf_reg_state *reg) 4241 { 4242 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4243 } 4244 4245 static bool __is_pointer_value(bool allow_ptr_leaks, 4246 const struct bpf_reg_state *reg) 4247 { 4248 if (allow_ptr_leaks) 4249 return false; 4250 4251 return reg->type != SCALAR_VALUE; 4252 } 4253 4254 /* Copy src state preserving dst->parent and dst->live fields */ 4255 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4256 { 4257 struct bpf_reg_state *parent = dst->parent; 4258 enum bpf_reg_liveness live = dst->live; 4259 4260 *dst = *src; 4261 dst->parent = parent; 4262 dst->live = live; 4263 } 4264 4265 static void save_register_state(struct bpf_func_state *state, 4266 int spi, struct bpf_reg_state *reg, 4267 int size) 4268 { 4269 int i; 4270 4271 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4272 if (size == BPF_REG_SIZE) 4273 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4274 4275 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4276 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4277 4278 /* size < 8 bytes spill */ 4279 for (; i; i--) 4280 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4281 } 4282 4283 static bool is_bpf_st_mem(struct bpf_insn *insn) 4284 { 4285 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4286 } 4287 4288 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4289 * stack boundary and alignment are checked in check_mem_access() 4290 */ 4291 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4292 /* stack frame we're writing to */ 4293 struct bpf_func_state *state, 4294 int off, int size, int value_regno, 4295 int insn_idx) 4296 { 4297 struct bpf_func_state *cur; /* state of the current function */ 4298 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4299 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4300 struct bpf_reg_state *reg = NULL; 4301 u32 dst_reg = insn->dst_reg; 4302 4303 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 4304 if (err) 4305 return err; 4306 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4307 * so it's aligned access and [off, off + size) are within stack limits 4308 */ 4309 if (!env->allow_ptr_leaks && 4310 state->stack[spi].slot_type[0] == STACK_SPILL && 4311 size != BPF_REG_SIZE) { 4312 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4313 return -EACCES; 4314 } 4315 4316 cur = env->cur_state->frame[env->cur_state->curframe]; 4317 if (value_regno >= 0) 4318 reg = &cur->regs[value_regno]; 4319 if (!env->bypass_spec_v4) { 4320 bool sanitize = reg && is_spillable_regtype(reg->type); 4321 4322 for (i = 0; i < size; i++) { 4323 u8 type = state->stack[spi].slot_type[i]; 4324 4325 if (type != STACK_MISC && type != STACK_ZERO) { 4326 sanitize = true; 4327 break; 4328 } 4329 } 4330 4331 if (sanitize) 4332 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4333 } 4334 4335 err = destroy_if_dynptr_stack_slot(env, state, spi); 4336 if (err) 4337 return err; 4338 4339 mark_stack_slot_scratched(env, spi); 4340 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4341 !register_is_null(reg) && env->bpf_capable) { 4342 if (dst_reg != BPF_REG_FP) { 4343 /* The backtracking logic can only recognize explicit 4344 * stack slot address like [fp - 8]. Other spill of 4345 * scalar via different register has to be conservative. 4346 * Backtrack from here and mark all registers as precise 4347 * that contributed into 'reg' being a constant. 4348 */ 4349 err = mark_chain_precision(env, value_regno); 4350 if (err) 4351 return err; 4352 } 4353 save_register_state(state, spi, reg, size); 4354 /* Break the relation on a narrowing spill. */ 4355 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4356 state->stack[spi].spilled_ptr.id = 0; 4357 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4358 insn->imm != 0 && env->bpf_capable) { 4359 struct bpf_reg_state fake_reg = {}; 4360 4361 __mark_reg_known(&fake_reg, (u32)insn->imm); 4362 fake_reg.type = SCALAR_VALUE; 4363 save_register_state(state, spi, &fake_reg, size); 4364 } else if (reg && is_spillable_regtype(reg->type)) { 4365 /* register containing pointer is being spilled into stack */ 4366 if (size != BPF_REG_SIZE) { 4367 verbose_linfo(env, insn_idx, "; "); 4368 verbose(env, "invalid size of register spill\n"); 4369 return -EACCES; 4370 } 4371 if (state != cur && reg->type == PTR_TO_STACK) { 4372 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4373 return -EINVAL; 4374 } 4375 save_register_state(state, spi, reg, size); 4376 } else { 4377 u8 type = STACK_MISC; 4378 4379 /* regular write of data into stack destroys any spilled ptr */ 4380 state->stack[spi].spilled_ptr.type = NOT_INIT; 4381 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4382 if (is_stack_slot_special(&state->stack[spi])) 4383 for (i = 0; i < BPF_REG_SIZE; i++) 4384 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4385 4386 /* only mark the slot as written if all 8 bytes were written 4387 * otherwise read propagation may incorrectly stop too soon 4388 * when stack slots are partially written. 4389 * This heuristic means that read propagation will be 4390 * conservative, since it will add reg_live_read marks 4391 * to stack slots all the way to first state when programs 4392 * writes+reads less than 8 bytes 4393 */ 4394 if (size == BPF_REG_SIZE) 4395 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4396 4397 /* when we zero initialize stack slots mark them as such */ 4398 if ((reg && register_is_null(reg)) || 4399 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4400 /* backtracking doesn't work for STACK_ZERO yet. */ 4401 err = mark_chain_precision(env, value_regno); 4402 if (err) 4403 return err; 4404 type = STACK_ZERO; 4405 } 4406 4407 /* Mark slots affected by this stack write. */ 4408 for (i = 0; i < size; i++) 4409 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4410 type; 4411 } 4412 return 0; 4413 } 4414 4415 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4416 * known to contain a variable offset. 4417 * This function checks whether the write is permitted and conservatively 4418 * tracks the effects of the write, considering that each stack slot in the 4419 * dynamic range is potentially written to. 4420 * 4421 * 'off' includes 'regno->off'. 4422 * 'value_regno' can be -1, meaning that an unknown value is being written to 4423 * the stack. 4424 * 4425 * Spilled pointers in range are not marked as written because we don't know 4426 * what's going to be actually written. This means that read propagation for 4427 * future reads cannot be terminated by this write. 4428 * 4429 * For privileged programs, uninitialized stack slots are considered 4430 * initialized by this write (even though we don't know exactly what offsets 4431 * are going to be written to). The idea is that we don't want the verifier to 4432 * reject future reads that access slots written to through variable offsets. 4433 */ 4434 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4435 /* func where register points to */ 4436 struct bpf_func_state *state, 4437 int ptr_regno, int off, int size, 4438 int value_regno, int insn_idx) 4439 { 4440 struct bpf_func_state *cur; /* state of the current function */ 4441 int min_off, max_off; 4442 int i, err; 4443 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4444 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4445 bool writing_zero = false; 4446 /* set if the fact that we're writing a zero is used to let any 4447 * stack slots remain STACK_ZERO 4448 */ 4449 bool zero_used = false; 4450 4451 cur = env->cur_state->frame[env->cur_state->curframe]; 4452 ptr_reg = &cur->regs[ptr_regno]; 4453 min_off = ptr_reg->smin_value + off; 4454 max_off = ptr_reg->smax_value + off + size; 4455 if (value_regno >= 0) 4456 value_reg = &cur->regs[value_regno]; 4457 if ((value_reg && register_is_null(value_reg)) || 4458 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4459 writing_zero = true; 4460 4461 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 4462 if (err) 4463 return err; 4464 4465 for (i = min_off; i < max_off; i++) { 4466 int spi; 4467 4468 spi = __get_spi(i); 4469 err = destroy_if_dynptr_stack_slot(env, state, spi); 4470 if (err) 4471 return err; 4472 } 4473 4474 /* Variable offset writes destroy any spilled pointers in range. */ 4475 for (i = min_off; i < max_off; i++) { 4476 u8 new_type, *stype; 4477 int slot, spi; 4478 4479 slot = -i - 1; 4480 spi = slot / BPF_REG_SIZE; 4481 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4482 mark_stack_slot_scratched(env, spi); 4483 4484 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4485 /* Reject the write if range we may write to has not 4486 * been initialized beforehand. If we didn't reject 4487 * here, the ptr status would be erased below (even 4488 * though not all slots are actually overwritten), 4489 * possibly opening the door to leaks. 4490 * 4491 * We do however catch STACK_INVALID case below, and 4492 * only allow reading possibly uninitialized memory 4493 * later for CAP_PERFMON, as the write may not happen to 4494 * that slot. 4495 */ 4496 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4497 insn_idx, i); 4498 return -EINVAL; 4499 } 4500 4501 /* Erase all spilled pointers. */ 4502 state->stack[spi].spilled_ptr.type = NOT_INIT; 4503 4504 /* Update the slot type. */ 4505 new_type = STACK_MISC; 4506 if (writing_zero && *stype == STACK_ZERO) { 4507 new_type = STACK_ZERO; 4508 zero_used = true; 4509 } 4510 /* If the slot is STACK_INVALID, we check whether it's OK to 4511 * pretend that it will be initialized by this write. The slot 4512 * might not actually be written to, and so if we mark it as 4513 * initialized future reads might leak uninitialized memory. 4514 * For privileged programs, we will accept such reads to slots 4515 * that may or may not be written because, if we're reject 4516 * them, the error would be too confusing. 4517 */ 4518 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4519 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4520 insn_idx, i); 4521 return -EINVAL; 4522 } 4523 *stype = new_type; 4524 } 4525 if (zero_used) { 4526 /* backtracking doesn't work for STACK_ZERO yet. */ 4527 err = mark_chain_precision(env, value_regno); 4528 if (err) 4529 return err; 4530 } 4531 return 0; 4532 } 4533 4534 /* When register 'dst_regno' is assigned some values from stack[min_off, 4535 * max_off), we set the register's type according to the types of the 4536 * respective stack slots. If all the stack values are known to be zeros, then 4537 * so is the destination reg. Otherwise, the register is considered to be 4538 * SCALAR. This function does not deal with register filling; the caller must 4539 * ensure that all spilled registers in the stack range have been marked as 4540 * read. 4541 */ 4542 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4543 /* func where src register points to */ 4544 struct bpf_func_state *ptr_state, 4545 int min_off, int max_off, int dst_regno) 4546 { 4547 struct bpf_verifier_state *vstate = env->cur_state; 4548 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4549 int i, slot, spi; 4550 u8 *stype; 4551 int zeros = 0; 4552 4553 for (i = min_off; i < max_off; i++) { 4554 slot = -i - 1; 4555 spi = slot / BPF_REG_SIZE; 4556 mark_stack_slot_scratched(env, spi); 4557 stype = ptr_state->stack[spi].slot_type; 4558 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4559 break; 4560 zeros++; 4561 } 4562 if (zeros == max_off - min_off) { 4563 /* any access_size read into register is zero extended, 4564 * so the whole register == const_zero 4565 */ 4566 __mark_reg_const_zero(&state->regs[dst_regno]); 4567 /* backtracking doesn't support STACK_ZERO yet, 4568 * so mark it precise here, so that later 4569 * backtracking can stop here. 4570 * Backtracking may not need this if this register 4571 * doesn't participate in pointer adjustment. 4572 * Forward propagation of precise flag is not 4573 * necessary either. This mark is only to stop 4574 * backtracking. Any register that contributed 4575 * to const 0 was marked precise before spill. 4576 */ 4577 state->regs[dst_regno].precise = true; 4578 } else { 4579 /* have read misc data from the stack */ 4580 mark_reg_unknown(env, state->regs, dst_regno); 4581 } 4582 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4583 } 4584 4585 /* Read the stack at 'off' and put the results into the register indicated by 4586 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4587 * spilled reg. 4588 * 4589 * 'dst_regno' can be -1, meaning that the read value is not going to a 4590 * register. 4591 * 4592 * The access is assumed to be within the current stack bounds. 4593 */ 4594 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4595 /* func where src register points to */ 4596 struct bpf_func_state *reg_state, 4597 int off, int size, int dst_regno) 4598 { 4599 struct bpf_verifier_state *vstate = env->cur_state; 4600 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4601 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4602 struct bpf_reg_state *reg; 4603 u8 *stype, type; 4604 4605 stype = reg_state->stack[spi].slot_type; 4606 reg = ®_state->stack[spi].spilled_ptr; 4607 4608 mark_stack_slot_scratched(env, spi); 4609 4610 if (is_spilled_reg(®_state->stack[spi])) { 4611 u8 spill_size = 1; 4612 4613 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4614 spill_size++; 4615 4616 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4617 if (reg->type != SCALAR_VALUE) { 4618 verbose_linfo(env, env->insn_idx, "; "); 4619 verbose(env, "invalid size of register fill\n"); 4620 return -EACCES; 4621 } 4622 4623 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4624 if (dst_regno < 0) 4625 return 0; 4626 4627 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4628 /* The earlier check_reg_arg() has decided the 4629 * subreg_def for this insn. Save it first. 4630 */ 4631 s32 subreg_def = state->regs[dst_regno].subreg_def; 4632 4633 copy_register_state(&state->regs[dst_regno], reg); 4634 state->regs[dst_regno].subreg_def = subreg_def; 4635 } else { 4636 for (i = 0; i < size; i++) { 4637 type = stype[(slot - i) % BPF_REG_SIZE]; 4638 if (type == STACK_SPILL) 4639 continue; 4640 if (type == STACK_MISC) 4641 continue; 4642 if (type == STACK_INVALID && env->allow_uninit_stack) 4643 continue; 4644 verbose(env, "invalid read from stack off %d+%d size %d\n", 4645 off, i, size); 4646 return -EACCES; 4647 } 4648 mark_reg_unknown(env, state->regs, dst_regno); 4649 } 4650 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4651 return 0; 4652 } 4653 4654 if (dst_regno >= 0) { 4655 /* restore register state from stack */ 4656 copy_register_state(&state->regs[dst_regno], reg); 4657 /* mark reg as written since spilled pointer state likely 4658 * has its liveness marks cleared by is_state_visited() 4659 * which resets stack/reg liveness for state transitions 4660 */ 4661 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4662 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4663 /* If dst_regno==-1, the caller is asking us whether 4664 * it is acceptable to use this value as a SCALAR_VALUE 4665 * (e.g. for XADD). 4666 * We must not allow unprivileged callers to do that 4667 * with spilled pointers. 4668 */ 4669 verbose(env, "leaking pointer from stack off %d\n", 4670 off); 4671 return -EACCES; 4672 } 4673 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4674 } else { 4675 for (i = 0; i < size; i++) { 4676 type = stype[(slot - i) % BPF_REG_SIZE]; 4677 if (type == STACK_MISC) 4678 continue; 4679 if (type == STACK_ZERO) 4680 continue; 4681 if (type == STACK_INVALID && env->allow_uninit_stack) 4682 continue; 4683 verbose(env, "invalid read from stack off %d+%d size %d\n", 4684 off, i, size); 4685 return -EACCES; 4686 } 4687 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4688 if (dst_regno >= 0) 4689 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4690 } 4691 return 0; 4692 } 4693 4694 enum bpf_access_src { 4695 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4696 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4697 }; 4698 4699 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4700 int regno, int off, int access_size, 4701 bool zero_size_allowed, 4702 enum bpf_access_src type, 4703 struct bpf_call_arg_meta *meta); 4704 4705 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4706 { 4707 return cur_regs(env) + regno; 4708 } 4709 4710 /* Read the stack at 'ptr_regno + off' and put the result into the register 4711 * 'dst_regno'. 4712 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4713 * but not its variable offset. 4714 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4715 * 4716 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4717 * filling registers (i.e. reads of spilled register cannot be detected when 4718 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4719 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4720 * offset; for a fixed offset check_stack_read_fixed_off should be used 4721 * instead. 4722 */ 4723 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4724 int ptr_regno, int off, int size, int dst_regno) 4725 { 4726 /* The state of the source register. */ 4727 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4728 struct bpf_func_state *ptr_state = func(env, reg); 4729 int err; 4730 int min_off, max_off; 4731 4732 /* Note that we pass a NULL meta, so raw access will not be permitted. 4733 */ 4734 err = check_stack_range_initialized(env, ptr_regno, off, size, 4735 false, ACCESS_DIRECT, NULL); 4736 if (err) 4737 return err; 4738 4739 min_off = reg->smin_value + off; 4740 max_off = reg->smax_value + off; 4741 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4742 return 0; 4743 } 4744 4745 /* check_stack_read dispatches to check_stack_read_fixed_off or 4746 * check_stack_read_var_off. 4747 * 4748 * The caller must ensure that the offset falls within the allocated stack 4749 * bounds. 4750 * 4751 * 'dst_regno' is a register which will receive the value from the stack. It 4752 * can be -1, meaning that the read value is not going to a register. 4753 */ 4754 static int check_stack_read(struct bpf_verifier_env *env, 4755 int ptr_regno, int off, int size, 4756 int dst_regno) 4757 { 4758 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4759 struct bpf_func_state *state = func(env, reg); 4760 int err; 4761 /* Some accesses are only permitted with a static offset. */ 4762 bool var_off = !tnum_is_const(reg->var_off); 4763 4764 /* The offset is required to be static when reads don't go to a 4765 * register, in order to not leak pointers (see 4766 * check_stack_read_fixed_off). 4767 */ 4768 if (dst_regno < 0 && var_off) { 4769 char tn_buf[48]; 4770 4771 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4772 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 4773 tn_buf, off, size); 4774 return -EACCES; 4775 } 4776 /* Variable offset is prohibited for unprivileged mode for simplicity 4777 * since it requires corresponding support in Spectre masking for stack 4778 * ALU. See also retrieve_ptr_limit(). The check in 4779 * check_stack_access_for_ptr_arithmetic() called by 4780 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 4781 * with variable offsets, therefore no check is required here. Further, 4782 * just checking it here would be insufficient as speculative stack 4783 * writes could still lead to unsafe speculative behaviour. 4784 */ 4785 if (!var_off) { 4786 off += reg->var_off.value; 4787 err = check_stack_read_fixed_off(env, state, off, size, 4788 dst_regno); 4789 } else { 4790 /* Variable offset stack reads need more conservative handling 4791 * than fixed offset ones. Note that dst_regno >= 0 on this 4792 * branch. 4793 */ 4794 err = check_stack_read_var_off(env, ptr_regno, off, size, 4795 dst_regno); 4796 } 4797 return err; 4798 } 4799 4800 4801 /* check_stack_write dispatches to check_stack_write_fixed_off or 4802 * check_stack_write_var_off. 4803 * 4804 * 'ptr_regno' is the register used as a pointer into the stack. 4805 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 4806 * 'value_regno' is the register whose value we're writing to the stack. It can 4807 * be -1, meaning that we're not writing from a register. 4808 * 4809 * The caller must ensure that the offset falls within the maximum stack size. 4810 */ 4811 static int check_stack_write(struct bpf_verifier_env *env, 4812 int ptr_regno, int off, int size, 4813 int value_regno, int insn_idx) 4814 { 4815 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4816 struct bpf_func_state *state = func(env, reg); 4817 int err; 4818 4819 if (tnum_is_const(reg->var_off)) { 4820 off += reg->var_off.value; 4821 err = check_stack_write_fixed_off(env, state, off, size, 4822 value_regno, insn_idx); 4823 } else { 4824 /* Variable offset stack reads need more conservative handling 4825 * than fixed offset ones. 4826 */ 4827 err = check_stack_write_var_off(env, state, 4828 ptr_regno, off, size, 4829 value_regno, insn_idx); 4830 } 4831 return err; 4832 } 4833 4834 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4835 int off, int size, enum bpf_access_type type) 4836 { 4837 struct bpf_reg_state *regs = cur_regs(env); 4838 struct bpf_map *map = regs[regno].map_ptr; 4839 u32 cap = bpf_map_flags_to_cap(map); 4840 4841 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4842 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4843 map->value_size, off, size); 4844 return -EACCES; 4845 } 4846 4847 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4848 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4849 map->value_size, off, size); 4850 return -EACCES; 4851 } 4852 4853 return 0; 4854 } 4855 4856 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4857 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4858 int off, int size, u32 mem_size, 4859 bool zero_size_allowed) 4860 { 4861 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4862 struct bpf_reg_state *reg; 4863 4864 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4865 return 0; 4866 4867 reg = &cur_regs(env)[regno]; 4868 switch (reg->type) { 4869 case PTR_TO_MAP_KEY: 4870 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4871 mem_size, off, size); 4872 break; 4873 case PTR_TO_MAP_VALUE: 4874 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4875 mem_size, off, size); 4876 break; 4877 case PTR_TO_PACKET: 4878 case PTR_TO_PACKET_META: 4879 case PTR_TO_PACKET_END: 4880 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4881 off, size, regno, reg->id, off, mem_size); 4882 break; 4883 case PTR_TO_MEM: 4884 default: 4885 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4886 mem_size, off, size); 4887 } 4888 4889 return -EACCES; 4890 } 4891 4892 /* check read/write into a memory region with possible variable offset */ 4893 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4894 int off, int size, u32 mem_size, 4895 bool zero_size_allowed) 4896 { 4897 struct bpf_verifier_state *vstate = env->cur_state; 4898 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4899 struct bpf_reg_state *reg = &state->regs[regno]; 4900 int err; 4901 4902 /* We may have adjusted the register pointing to memory region, so we 4903 * need to try adding each of min_value and max_value to off 4904 * to make sure our theoretical access will be safe. 4905 * 4906 * The minimum value is only important with signed 4907 * comparisons where we can't assume the floor of a 4908 * value is 0. If we are using signed variables for our 4909 * index'es we need to make sure that whatever we use 4910 * will have a set floor within our range. 4911 */ 4912 if (reg->smin_value < 0 && 4913 (reg->smin_value == S64_MIN || 4914 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4915 reg->smin_value + off < 0)) { 4916 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4917 regno); 4918 return -EACCES; 4919 } 4920 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4921 mem_size, zero_size_allowed); 4922 if (err) { 4923 verbose(env, "R%d min value is outside of the allowed memory range\n", 4924 regno); 4925 return err; 4926 } 4927 4928 /* If we haven't set a max value then we need to bail since we can't be 4929 * sure we won't do bad things. 4930 * If reg->umax_value + off could overflow, treat that as unbounded too. 4931 */ 4932 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4933 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4934 regno); 4935 return -EACCES; 4936 } 4937 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4938 mem_size, zero_size_allowed); 4939 if (err) { 4940 verbose(env, "R%d max value is outside of the allowed memory range\n", 4941 regno); 4942 return err; 4943 } 4944 4945 return 0; 4946 } 4947 4948 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4949 const struct bpf_reg_state *reg, int regno, 4950 bool fixed_off_ok) 4951 { 4952 /* Access to this pointer-typed register or passing it to a helper 4953 * is only allowed in its original, unmodified form. 4954 */ 4955 4956 if (reg->off < 0) { 4957 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4958 reg_type_str(env, reg->type), regno, reg->off); 4959 return -EACCES; 4960 } 4961 4962 if (!fixed_off_ok && reg->off) { 4963 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4964 reg_type_str(env, reg->type), regno, reg->off); 4965 return -EACCES; 4966 } 4967 4968 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4969 char tn_buf[48]; 4970 4971 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4972 verbose(env, "variable %s access var_off=%s disallowed\n", 4973 reg_type_str(env, reg->type), tn_buf); 4974 return -EACCES; 4975 } 4976 4977 return 0; 4978 } 4979 4980 int check_ptr_off_reg(struct bpf_verifier_env *env, 4981 const struct bpf_reg_state *reg, int regno) 4982 { 4983 return __check_ptr_off_reg(env, reg, regno, false); 4984 } 4985 4986 static int map_kptr_match_type(struct bpf_verifier_env *env, 4987 struct btf_field *kptr_field, 4988 struct bpf_reg_state *reg, u32 regno) 4989 { 4990 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4991 int perm_flags; 4992 const char *reg_name = ""; 4993 4994 if (btf_is_kernel(reg->btf)) { 4995 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 4996 4997 /* Only unreferenced case accepts untrusted pointers */ 4998 if (kptr_field->type == BPF_KPTR_UNREF) 4999 perm_flags |= PTR_UNTRUSTED; 5000 } else { 5001 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5002 } 5003 5004 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5005 goto bad_type; 5006 5007 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5008 reg_name = btf_type_name(reg->btf, reg->btf_id); 5009 5010 /* For ref_ptr case, release function check should ensure we get one 5011 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5012 * normal store of unreferenced kptr, we must ensure var_off is zero. 5013 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5014 * reg->off and reg->ref_obj_id are not needed here. 5015 */ 5016 if (__check_ptr_off_reg(env, reg, regno, true)) 5017 return -EACCES; 5018 5019 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5020 * we also need to take into account the reg->off. 5021 * 5022 * We want to support cases like: 5023 * 5024 * struct foo { 5025 * struct bar br; 5026 * struct baz bz; 5027 * }; 5028 * 5029 * struct foo *v; 5030 * v = func(); // PTR_TO_BTF_ID 5031 * val->foo = v; // reg->off is zero, btf and btf_id match type 5032 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5033 * // first member type of struct after comparison fails 5034 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5035 * // to match type 5036 * 5037 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5038 * is zero. We must also ensure that btf_struct_ids_match does not walk 5039 * the struct to match type against first member of struct, i.e. reject 5040 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5041 * strict mode to true for type match. 5042 */ 5043 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5044 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5045 kptr_field->type == BPF_KPTR_REF)) 5046 goto bad_type; 5047 return 0; 5048 bad_type: 5049 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5050 reg_type_str(env, reg->type), reg_name); 5051 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5052 if (kptr_field->type == BPF_KPTR_UNREF) 5053 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5054 targ_name); 5055 else 5056 verbose(env, "\n"); 5057 return -EINVAL; 5058 } 5059 5060 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5061 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5062 */ 5063 static bool in_rcu_cs(struct bpf_verifier_env *env) 5064 { 5065 return env->cur_state->active_rcu_lock || 5066 env->cur_state->active_lock.ptr || 5067 !env->prog->aux->sleepable; 5068 } 5069 5070 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5071 BTF_SET_START(rcu_protected_types) 5072 BTF_ID(struct, prog_test_ref_kfunc) 5073 BTF_ID(struct, cgroup) 5074 BTF_ID(struct, bpf_cpumask) 5075 BTF_ID(struct, task_struct) 5076 BTF_SET_END(rcu_protected_types) 5077 5078 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5079 { 5080 if (!btf_is_kernel(btf)) 5081 return false; 5082 return btf_id_set_contains(&rcu_protected_types, btf_id); 5083 } 5084 5085 static bool rcu_safe_kptr(const struct btf_field *field) 5086 { 5087 const struct btf_field_kptr *kptr = &field->kptr; 5088 5089 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5090 } 5091 5092 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5093 int value_regno, int insn_idx, 5094 struct btf_field *kptr_field) 5095 { 5096 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5097 int class = BPF_CLASS(insn->code); 5098 struct bpf_reg_state *val_reg; 5099 5100 /* Things we already checked for in check_map_access and caller: 5101 * - Reject cases where variable offset may touch kptr 5102 * - size of access (must be BPF_DW) 5103 * - tnum_is_const(reg->var_off) 5104 * - kptr_field->offset == off + reg->var_off.value 5105 */ 5106 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5107 if (BPF_MODE(insn->code) != BPF_MEM) { 5108 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5109 return -EACCES; 5110 } 5111 5112 /* We only allow loading referenced kptr, since it will be marked as 5113 * untrusted, similar to unreferenced kptr. 5114 */ 5115 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5116 verbose(env, "store to referenced kptr disallowed\n"); 5117 return -EACCES; 5118 } 5119 5120 if (class == BPF_LDX) { 5121 val_reg = reg_state(env, value_regno); 5122 /* We can simply mark the value_regno receiving the pointer 5123 * value from map as PTR_TO_BTF_ID, with the correct type. 5124 */ 5125 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5126 kptr_field->kptr.btf_id, 5127 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5128 PTR_MAYBE_NULL | MEM_RCU : 5129 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5130 /* For mark_ptr_or_null_reg */ 5131 val_reg->id = ++env->id_gen; 5132 } else if (class == BPF_STX) { 5133 val_reg = reg_state(env, value_regno); 5134 if (!register_is_null(val_reg) && 5135 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5136 return -EACCES; 5137 } else if (class == BPF_ST) { 5138 if (insn->imm) { 5139 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5140 kptr_field->offset); 5141 return -EACCES; 5142 } 5143 } else { 5144 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5145 return -EACCES; 5146 } 5147 return 0; 5148 } 5149 5150 /* check read/write into a map element with possible variable offset */ 5151 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5152 int off, int size, bool zero_size_allowed, 5153 enum bpf_access_src src) 5154 { 5155 struct bpf_verifier_state *vstate = env->cur_state; 5156 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5157 struct bpf_reg_state *reg = &state->regs[regno]; 5158 struct bpf_map *map = reg->map_ptr; 5159 struct btf_record *rec; 5160 int err, i; 5161 5162 err = check_mem_region_access(env, regno, off, size, map->value_size, 5163 zero_size_allowed); 5164 if (err) 5165 return err; 5166 5167 if (IS_ERR_OR_NULL(map->record)) 5168 return 0; 5169 rec = map->record; 5170 for (i = 0; i < rec->cnt; i++) { 5171 struct btf_field *field = &rec->fields[i]; 5172 u32 p = field->offset; 5173 5174 /* If any part of a field can be touched by load/store, reject 5175 * this program. To check that [x1, x2) overlaps with [y1, y2), 5176 * it is sufficient to check x1 < y2 && y1 < x2. 5177 */ 5178 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5179 p < reg->umax_value + off + size) { 5180 switch (field->type) { 5181 case BPF_KPTR_UNREF: 5182 case BPF_KPTR_REF: 5183 if (src != ACCESS_DIRECT) { 5184 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5185 return -EACCES; 5186 } 5187 if (!tnum_is_const(reg->var_off)) { 5188 verbose(env, "kptr access cannot have variable offset\n"); 5189 return -EACCES; 5190 } 5191 if (p != off + reg->var_off.value) { 5192 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5193 p, off + reg->var_off.value); 5194 return -EACCES; 5195 } 5196 if (size != bpf_size_to_bytes(BPF_DW)) { 5197 verbose(env, "kptr access size must be BPF_DW\n"); 5198 return -EACCES; 5199 } 5200 break; 5201 default: 5202 verbose(env, "%s cannot be accessed directly by load/store\n", 5203 btf_field_type_name(field->type)); 5204 return -EACCES; 5205 } 5206 } 5207 } 5208 return 0; 5209 } 5210 5211 #define MAX_PACKET_OFF 0xffff 5212 5213 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5214 const struct bpf_call_arg_meta *meta, 5215 enum bpf_access_type t) 5216 { 5217 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5218 5219 switch (prog_type) { 5220 /* Program types only with direct read access go here! */ 5221 case BPF_PROG_TYPE_LWT_IN: 5222 case BPF_PROG_TYPE_LWT_OUT: 5223 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5224 case BPF_PROG_TYPE_SK_REUSEPORT: 5225 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5226 case BPF_PROG_TYPE_CGROUP_SKB: 5227 if (t == BPF_WRITE) 5228 return false; 5229 fallthrough; 5230 5231 /* Program types with direct read + write access go here! */ 5232 case BPF_PROG_TYPE_SCHED_CLS: 5233 case BPF_PROG_TYPE_SCHED_ACT: 5234 case BPF_PROG_TYPE_XDP: 5235 case BPF_PROG_TYPE_LWT_XMIT: 5236 case BPF_PROG_TYPE_SK_SKB: 5237 case BPF_PROG_TYPE_SK_MSG: 5238 if (meta) 5239 return meta->pkt_access; 5240 5241 env->seen_direct_write = true; 5242 return true; 5243 5244 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5245 if (t == BPF_WRITE) 5246 env->seen_direct_write = true; 5247 5248 return true; 5249 5250 default: 5251 return false; 5252 } 5253 } 5254 5255 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5256 int size, bool zero_size_allowed) 5257 { 5258 struct bpf_reg_state *regs = cur_regs(env); 5259 struct bpf_reg_state *reg = ®s[regno]; 5260 int err; 5261 5262 /* We may have added a variable offset to the packet pointer; but any 5263 * reg->range we have comes after that. We are only checking the fixed 5264 * offset. 5265 */ 5266 5267 /* We don't allow negative numbers, because we aren't tracking enough 5268 * detail to prove they're safe. 5269 */ 5270 if (reg->smin_value < 0) { 5271 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5272 regno); 5273 return -EACCES; 5274 } 5275 5276 err = reg->range < 0 ? -EINVAL : 5277 __check_mem_access(env, regno, off, size, reg->range, 5278 zero_size_allowed); 5279 if (err) { 5280 verbose(env, "R%d offset is outside of the packet\n", regno); 5281 return err; 5282 } 5283 5284 /* __check_mem_access has made sure "off + size - 1" is within u16. 5285 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5286 * otherwise find_good_pkt_pointers would have refused to set range info 5287 * that __check_mem_access would have rejected this pkt access. 5288 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5289 */ 5290 env->prog->aux->max_pkt_offset = 5291 max_t(u32, env->prog->aux->max_pkt_offset, 5292 off + reg->umax_value + size - 1); 5293 5294 return err; 5295 } 5296 5297 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5298 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5299 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5300 struct btf **btf, u32 *btf_id) 5301 { 5302 struct bpf_insn_access_aux info = { 5303 .reg_type = *reg_type, 5304 .log = &env->log, 5305 }; 5306 5307 if (env->ops->is_valid_access && 5308 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5309 /* A non zero info.ctx_field_size indicates that this field is a 5310 * candidate for later verifier transformation to load the whole 5311 * field and then apply a mask when accessed with a narrower 5312 * access than actual ctx access size. A zero info.ctx_field_size 5313 * will only allow for whole field access and rejects any other 5314 * type of narrower access. 5315 */ 5316 *reg_type = info.reg_type; 5317 5318 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5319 *btf = info.btf; 5320 *btf_id = info.btf_id; 5321 } else { 5322 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5323 } 5324 /* remember the offset of last byte accessed in ctx */ 5325 if (env->prog->aux->max_ctx_offset < off + size) 5326 env->prog->aux->max_ctx_offset = off + size; 5327 return 0; 5328 } 5329 5330 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5331 return -EACCES; 5332 } 5333 5334 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5335 int size) 5336 { 5337 if (size < 0 || off < 0 || 5338 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5339 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5340 off, size); 5341 return -EACCES; 5342 } 5343 return 0; 5344 } 5345 5346 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5347 u32 regno, int off, int size, 5348 enum bpf_access_type t) 5349 { 5350 struct bpf_reg_state *regs = cur_regs(env); 5351 struct bpf_reg_state *reg = ®s[regno]; 5352 struct bpf_insn_access_aux info = {}; 5353 bool valid; 5354 5355 if (reg->smin_value < 0) { 5356 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5357 regno); 5358 return -EACCES; 5359 } 5360 5361 switch (reg->type) { 5362 case PTR_TO_SOCK_COMMON: 5363 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5364 break; 5365 case PTR_TO_SOCKET: 5366 valid = bpf_sock_is_valid_access(off, size, t, &info); 5367 break; 5368 case PTR_TO_TCP_SOCK: 5369 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5370 break; 5371 case PTR_TO_XDP_SOCK: 5372 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5373 break; 5374 default: 5375 valid = false; 5376 } 5377 5378 5379 if (valid) { 5380 env->insn_aux_data[insn_idx].ctx_field_size = 5381 info.ctx_field_size; 5382 return 0; 5383 } 5384 5385 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5386 regno, reg_type_str(env, reg->type), off, size); 5387 5388 return -EACCES; 5389 } 5390 5391 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5392 { 5393 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5394 } 5395 5396 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5397 { 5398 const struct bpf_reg_state *reg = reg_state(env, regno); 5399 5400 return reg->type == PTR_TO_CTX; 5401 } 5402 5403 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5404 { 5405 const struct bpf_reg_state *reg = reg_state(env, regno); 5406 5407 return type_is_sk_pointer(reg->type); 5408 } 5409 5410 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5411 { 5412 const struct bpf_reg_state *reg = reg_state(env, regno); 5413 5414 return type_is_pkt_pointer(reg->type); 5415 } 5416 5417 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5418 { 5419 const struct bpf_reg_state *reg = reg_state(env, regno); 5420 5421 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5422 return reg->type == PTR_TO_FLOW_KEYS; 5423 } 5424 5425 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5426 #ifdef CONFIG_NET 5427 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5428 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5429 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5430 #endif 5431 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5432 }; 5433 5434 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5435 { 5436 /* A referenced register is always trusted. */ 5437 if (reg->ref_obj_id) 5438 return true; 5439 5440 /* Types listed in the reg2btf_ids are always trusted */ 5441 if (reg2btf_ids[base_type(reg->type)]) 5442 return true; 5443 5444 /* If a register is not referenced, it is trusted if it has the 5445 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5446 * other type modifiers may be safe, but we elect to take an opt-in 5447 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5448 * not. 5449 * 5450 * Eventually, we should make PTR_TRUSTED the single source of truth 5451 * for whether a register is trusted. 5452 */ 5453 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5454 !bpf_type_has_unsafe_modifiers(reg->type); 5455 } 5456 5457 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5458 { 5459 return reg->type & MEM_RCU; 5460 } 5461 5462 static void clear_trusted_flags(enum bpf_type_flag *flag) 5463 { 5464 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5465 } 5466 5467 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5468 const struct bpf_reg_state *reg, 5469 int off, int size, bool strict) 5470 { 5471 struct tnum reg_off; 5472 int ip_align; 5473 5474 /* Byte size accesses are always allowed. */ 5475 if (!strict || size == 1) 5476 return 0; 5477 5478 /* For platforms that do not have a Kconfig enabling 5479 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5480 * NET_IP_ALIGN is universally set to '2'. And on platforms 5481 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5482 * to this code only in strict mode where we want to emulate 5483 * the NET_IP_ALIGN==2 checking. Therefore use an 5484 * unconditional IP align value of '2'. 5485 */ 5486 ip_align = 2; 5487 5488 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5489 if (!tnum_is_aligned(reg_off, size)) { 5490 char tn_buf[48]; 5491 5492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5493 verbose(env, 5494 "misaligned packet access off %d+%s+%d+%d size %d\n", 5495 ip_align, tn_buf, reg->off, off, size); 5496 return -EACCES; 5497 } 5498 5499 return 0; 5500 } 5501 5502 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5503 const struct bpf_reg_state *reg, 5504 const char *pointer_desc, 5505 int off, int size, bool strict) 5506 { 5507 struct tnum reg_off; 5508 5509 /* Byte size accesses are always allowed. */ 5510 if (!strict || size == 1) 5511 return 0; 5512 5513 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5514 if (!tnum_is_aligned(reg_off, size)) { 5515 char tn_buf[48]; 5516 5517 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5518 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5519 pointer_desc, tn_buf, reg->off, off, size); 5520 return -EACCES; 5521 } 5522 5523 return 0; 5524 } 5525 5526 static int check_ptr_alignment(struct bpf_verifier_env *env, 5527 const struct bpf_reg_state *reg, int off, 5528 int size, bool strict_alignment_once) 5529 { 5530 bool strict = env->strict_alignment || strict_alignment_once; 5531 const char *pointer_desc = ""; 5532 5533 switch (reg->type) { 5534 case PTR_TO_PACKET: 5535 case PTR_TO_PACKET_META: 5536 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5537 * right in front, treat it the very same way. 5538 */ 5539 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5540 case PTR_TO_FLOW_KEYS: 5541 pointer_desc = "flow keys "; 5542 break; 5543 case PTR_TO_MAP_KEY: 5544 pointer_desc = "key "; 5545 break; 5546 case PTR_TO_MAP_VALUE: 5547 pointer_desc = "value "; 5548 break; 5549 case PTR_TO_CTX: 5550 pointer_desc = "context "; 5551 break; 5552 case PTR_TO_STACK: 5553 pointer_desc = "stack "; 5554 /* The stack spill tracking logic in check_stack_write_fixed_off() 5555 * and check_stack_read_fixed_off() relies on stack accesses being 5556 * aligned. 5557 */ 5558 strict = true; 5559 break; 5560 case PTR_TO_SOCKET: 5561 pointer_desc = "sock "; 5562 break; 5563 case PTR_TO_SOCK_COMMON: 5564 pointer_desc = "sock_common "; 5565 break; 5566 case PTR_TO_TCP_SOCK: 5567 pointer_desc = "tcp_sock "; 5568 break; 5569 case PTR_TO_XDP_SOCK: 5570 pointer_desc = "xdp_sock "; 5571 break; 5572 default: 5573 break; 5574 } 5575 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5576 strict); 5577 } 5578 5579 static int update_stack_depth(struct bpf_verifier_env *env, 5580 const struct bpf_func_state *func, 5581 int off) 5582 { 5583 u16 stack = env->subprog_info[func->subprogno].stack_depth; 5584 5585 if (stack >= -off) 5586 return 0; 5587 5588 /* update known max for given subprogram */ 5589 env->subprog_info[func->subprogno].stack_depth = -off; 5590 return 0; 5591 } 5592 5593 /* starting from main bpf function walk all instructions of the function 5594 * and recursively walk all callees that given function can call. 5595 * Ignore jump and exit insns. 5596 * Since recursion is prevented by check_cfg() this algorithm 5597 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5598 */ 5599 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5600 { 5601 struct bpf_subprog_info *subprog = env->subprog_info; 5602 struct bpf_insn *insn = env->prog->insnsi; 5603 int depth = 0, frame = 0, i, subprog_end; 5604 bool tail_call_reachable = false; 5605 int ret_insn[MAX_CALL_FRAMES]; 5606 int ret_prog[MAX_CALL_FRAMES]; 5607 int j; 5608 5609 i = subprog[idx].start; 5610 process_func: 5611 /* protect against potential stack overflow that might happen when 5612 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5613 * depth for such case down to 256 so that the worst case scenario 5614 * would result in 8k stack size (32 which is tailcall limit * 256 = 5615 * 8k). 5616 * 5617 * To get the idea what might happen, see an example: 5618 * func1 -> sub rsp, 128 5619 * subfunc1 -> sub rsp, 256 5620 * tailcall1 -> add rsp, 256 5621 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5622 * subfunc2 -> sub rsp, 64 5623 * subfunc22 -> sub rsp, 128 5624 * tailcall2 -> add rsp, 128 5625 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5626 * 5627 * tailcall will unwind the current stack frame but it will not get rid 5628 * of caller's stack as shown on the example above. 5629 */ 5630 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5631 verbose(env, 5632 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5633 depth); 5634 return -EACCES; 5635 } 5636 /* round up to 32-bytes, since this is granularity 5637 * of interpreter stack size 5638 */ 5639 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5640 if (depth > MAX_BPF_STACK) { 5641 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5642 frame + 1, depth); 5643 return -EACCES; 5644 } 5645 continue_func: 5646 subprog_end = subprog[idx + 1].start; 5647 for (; i < subprog_end; i++) { 5648 int next_insn, sidx; 5649 5650 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5651 continue; 5652 /* remember insn and function to return to */ 5653 ret_insn[frame] = i + 1; 5654 ret_prog[frame] = idx; 5655 5656 /* find the callee */ 5657 next_insn = i + insn[i].imm + 1; 5658 sidx = find_subprog(env, next_insn); 5659 if (sidx < 0) { 5660 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5661 next_insn); 5662 return -EFAULT; 5663 } 5664 if (subprog[sidx].is_async_cb) { 5665 if (subprog[sidx].has_tail_call) { 5666 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5667 return -EFAULT; 5668 } 5669 /* async callbacks don't increase bpf prog stack size unless called directly */ 5670 if (!bpf_pseudo_call(insn + i)) 5671 continue; 5672 } 5673 i = next_insn; 5674 idx = sidx; 5675 5676 if (subprog[idx].has_tail_call) 5677 tail_call_reachable = true; 5678 5679 frame++; 5680 if (frame >= MAX_CALL_FRAMES) { 5681 verbose(env, "the call stack of %d frames is too deep !\n", 5682 frame); 5683 return -E2BIG; 5684 } 5685 goto process_func; 5686 } 5687 /* if tail call got detected across bpf2bpf calls then mark each of the 5688 * currently present subprog frames as tail call reachable subprogs; 5689 * this info will be utilized by JIT so that we will be preserving the 5690 * tail call counter throughout bpf2bpf calls combined with tailcalls 5691 */ 5692 if (tail_call_reachable) 5693 for (j = 0; j < frame; j++) 5694 subprog[ret_prog[j]].tail_call_reachable = true; 5695 if (subprog[0].tail_call_reachable) 5696 env->prog->aux->tail_call_reachable = true; 5697 5698 /* end of for() loop means the last insn of the 'subprog' 5699 * was reached. Doesn't matter whether it was JA or EXIT 5700 */ 5701 if (frame == 0) 5702 return 0; 5703 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5704 frame--; 5705 i = ret_insn[frame]; 5706 idx = ret_prog[frame]; 5707 goto continue_func; 5708 } 5709 5710 static int check_max_stack_depth(struct bpf_verifier_env *env) 5711 { 5712 struct bpf_subprog_info *si = env->subprog_info; 5713 int ret; 5714 5715 for (int i = 0; i < env->subprog_cnt; i++) { 5716 if (!i || si[i].is_async_cb) { 5717 ret = check_max_stack_depth_subprog(env, i); 5718 if (ret < 0) 5719 return ret; 5720 } 5721 continue; 5722 } 5723 return 0; 5724 } 5725 5726 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5727 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5728 const struct bpf_insn *insn, int idx) 5729 { 5730 int start = idx + insn->imm + 1, subprog; 5731 5732 subprog = find_subprog(env, start); 5733 if (subprog < 0) { 5734 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5735 start); 5736 return -EFAULT; 5737 } 5738 return env->subprog_info[subprog].stack_depth; 5739 } 5740 #endif 5741 5742 static int __check_buffer_access(struct bpf_verifier_env *env, 5743 const char *buf_info, 5744 const struct bpf_reg_state *reg, 5745 int regno, int off, int size) 5746 { 5747 if (off < 0) { 5748 verbose(env, 5749 "R%d invalid %s buffer access: off=%d, size=%d\n", 5750 regno, buf_info, off, size); 5751 return -EACCES; 5752 } 5753 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5754 char tn_buf[48]; 5755 5756 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5757 verbose(env, 5758 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5759 regno, off, tn_buf); 5760 return -EACCES; 5761 } 5762 5763 return 0; 5764 } 5765 5766 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5767 const struct bpf_reg_state *reg, 5768 int regno, int off, int size) 5769 { 5770 int err; 5771 5772 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 5773 if (err) 5774 return err; 5775 5776 if (off + size > env->prog->aux->max_tp_access) 5777 env->prog->aux->max_tp_access = off + size; 5778 5779 return 0; 5780 } 5781 5782 static int check_buffer_access(struct bpf_verifier_env *env, 5783 const struct bpf_reg_state *reg, 5784 int regno, int off, int size, 5785 bool zero_size_allowed, 5786 u32 *max_access) 5787 { 5788 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 5789 int err; 5790 5791 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 5792 if (err) 5793 return err; 5794 5795 if (off + size > *max_access) 5796 *max_access = off + size; 5797 5798 return 0; 5799 } 5800 5801 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 5802 static void zext_32_to_64(struct bpf_reg_state *reg) 5803 { 5804 reg->var_off = tnum_subreg(reg->var_off); 5805 __reg_assign_32_into_64(reg); 5806 } 5807 5808 /* truncate register to smaller size (in bytes) 5809 * must be called with size < BPF_REG_SIZE 5810 */ 5811 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 5812 { 5813 u64 mask; 5814 5815 /* clear high bits in bit representation */ 5816 reg->var_off = tnum_cast(reg->var_off, size); 5817 5818 /* fix arithmetic bounds */ 5819 mask = ((u64)1 << (size * 8)) - 1; 5820 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 5821 reg->umin_value &= mask; 5822 reg->umax_value &= mask; 5823 } else { 5824 reg->umin_value = 0; 5825 reg->umax_value = mask; 5826 } 5827 reg->smin_value = reg->umin_value; 5828 reg->smax_value = reg->umax_value; 5829 5830 /* If size is smaller than 32bit register the 32bit register 5831 * values are also truncated so we push 64-bit bounds into 5832 * 32-bit bounds. Above were truncated < 32-bits already. 5833 */ 5834 if (size >= 4) 5835 return; 5836 __reg_combine_64_into_32(reg); 5837 } 5838 5839 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 5840 { 5841 if (size == 1) { 5842 reg->smin_value = reg->s32_min_value = S8_MIN; 5843 reg->smax_value = reg->s32_max_value = S8_MAX; 5844 } else if (size == 2) { 5845 reg->smin_value = reg->s32_min_value = S16_MIN; 5846 reg->smax_value = reg->s32_max_value = S16_MAX; 5847 } else { 5848 /* size == 4 */ 5849 reg->smin_value = reg->s32_min_value = S32_MIN; 5850 reg->smax_value = reg->s32_max_value = S32_MAX; 5851 } 5852 reg->umin_value = reg->u32_min_value = 0; 5853 reg->umax_value = U64_MAX; 5854 reg->u32_max_value = U32_MAX; 5855 reg->var_off = tnum_unknown; 5856 } 5857 5858 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 5859 { 5860 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 5861 u64 top_smax_value, top_smin_value; 5862 u64 num_bits = size * 8; 5863 5864 if (tnum_is_const(reg->var_off)) { 5865 u64_cval = reg->var_off.value; 5866 if (size == 1) 5867 reg->var_off = tnum_const((s8)u64_cval); 5868 else if (size == 2) 5869 reg->var_off = tnum_const((s16)u64_cval); 5870 else 5871 /* size == 4 */ 5872 reg->var_off = tnum_const((s32)u64_cval); 5873 5874 u64_cval = reg->var_off.value; 5875 reg->smax_value = reg->smin_value = u64_cval; 5876 reg->umax_value = reg->umin_value = u64_cval; 5877 reg->s32_max_value = reg->s32_min_value = u64_cval; 5878 reg->u32_max_value = reg->u32_min_value = u64_cval; 5879 return; 5880 } 5881 5882 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 5883 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 5884 5885 if (top_smax_value != top_smin_value) 5886 goto out; 5887 5888 /* find the s64_min and s64_min after sign extension */ 5889 if (size == 1) { 5890 init_s64_max = (s8)reg->smax_value; 5891 init_s64_min = (s8)reg->smin_value; 5892 } else if (size == 2) { 5893 init_s64_max = (s16)reg->smax_value; 5894 init_s64_min = (s16)reg->smin_value; 5895 } else { 5896 init_s64_max = (s32)reg->smax_value; 5897 init_s64_min = (s32)reg->smin_value; 5898 } 5899 5900 s64_max = max(init_s64_max, init_s64_min); 5901 s64_min = min(init_s64_max, init_s64_min); 5902 5903 /* both of s64_max/s64_min positive or negative */ 5904 if ((s64_max >= 0) == (s64_min >= 0)) { 5905 reg->smin_value = reg->s32_min_value = s64_min; 5906 reg->smax_value = reg->s32_max_value = s64_max; 5907 reg->umin_value = reg->u32_min_value = s64_min; 5908 reg->umax_value = reg->u32_max_value = s64_max; 5909 reg->var_off = tnum_range(s64_min, s64_max); 5910 return; 5911 } 5912 5913 out: 5914 set_sext64_default_val(reg, size); 5915 } 5916 5917 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 5918 { 5919 if (size == 1) { 5920 reg->s32_min_value = S8_MIN; 5921 reg->s32_max_value = S8_MAX; 5922 } else { 5923 /* size == 2 */ 5924 reg->s32_min_value = S16_MIN; 5925 reg->s32_max_value = S16_MAX; 5926 } 5927 reg->u32_min_value = 0; 5928 reg->u32_max_value = U32_MAX; 5929 } 5930 5931 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 5932 { 5933 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 5934 u32 top_smax_value, top_smin_value; 5935 u32 num_bits = size * 8; 5936 5937 if (tnum_is_const(reg->var_off)) { 5938 u32_val = reg->var_off.value; 5939 if (size == 1) 5940 reg->var_off = tnum_const((s8)u32_val); 5941 else 5942 reg->var_off = tnum_const((s16)u32_val); 5943 5944 u32_val = reg->var_off.value; 5945 reg->s32_min_value = reg->s32_max_value = u32_val; 5946 reg->u32_min_value = reg->u32_max_value = u32_val; 5947 return; 5948 } 5949 5950 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 5951 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 5952 5953 if (top_smax_value != top_smin_value) 5954 goto out; 5955 5956 /* find the s32_min and s32_min after sign extension */ 5957 if (size == 1) { 5958 init_s32_max = (s8)reg->s32_max_value; 5959 init_s32_min = (s8)reg->s32_min_value; 5960 } else { 5961 /* size == 2 */ 5962 init_s32_max = (s16)reg->s32_max_value; 5963 init_s32_min = (s16)reg->s32_min_value; 5964 } 5965 s32_max = max(init_s32_max, init_s32_min); 5966 s32_min = min(init_s32_max, init_s32_min); 5967 5968 if ((s32_min >= 0) == (s32_max >= 0)) { 5969 reg->s32_min_value = s32_min; 5970 reg->s32_max_value = s32_max; 5971 reg->u32_min_value = (u32)s32_min; 5972 reg->u32_max_value = (u32)s32_max; 5973 return; 5974 } 5975 5976 out: 5977 set_sext32_default_val(reg, size); 5978 } 5979 5980 static bool bpf_map_is_rdonly(const struct bpf_map *map) 5981 { 5982 /* A map is considered read-only if the following condition are true: 5983 * 5984 * 1) BPF program side cannot change any of the map content. The 5985 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 5986 * and was set at map creation time. 5987 * 2) The map value(s) have been initialized from user space by a 5988 * loader and then "frozen", such that no new map update/delete 5989 * operations from syscall side are possible for the rest of 5990 * the map's lifetime from that point onwards. 5991 * 3) Any parallel/pending map update/delete operations from syscall 5992 * side have been completed. Only after that point, it's safe to 5993 * assume that map value(s) are immutable. 5994 */ 5995 return (map->map_flags & BPF_F_RDONLY_PROG) && 5996 READ_ONCE(map->frozen) && 5997 !bpf_map_write_active(map); 5998 } 5999 6000 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6001 bool is_ldsx) 6002 { 6003 void *ptr; 6004 u64 addr; 6005 int err; 6006 6007 err = map->ops->map_direct_value_addr(map, &addr, off); 6008 if (err) 6009 return err; 6010 ptr = (void *)(long)addr + off; 6011 6012 switch (size) { 6013 case sizeof(u8): 6014 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6015 break; 6016 case sizeof(u16): 6017 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6018 break; 6019 case sizeof(u32): 6020 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6021 break; 6022 case sizeof(u64): 6023 *val = *(u64 *)ptr; 6024 break; 6025 default: 6026 return -EINVAL; 6027 } 6028 return 0; 6029 } 6030 6031 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6032 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6033 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6034 6035 /* 6036 * Allow list few fields as RCU trusted or full trusted. 6037 * This logic doesn't allow mix tagging and will be removed once GCC supports 6038 * btf_type_tag. 6039 */ 6040 6041 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6042 BTF_TYPE_SAFE_RCU(struct task_struct) { 6043 const cpumask_t *cpus_ptr; 6044 struct css_set __rcu *cgroups; 6045 struct task_struct __rcu *real_parent; 6046 struct task_struct *group_leader; 6047 }; 6048 6049 BTF_TYPE_SAFE_RCU(struct cgroup) { 6050 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6051 struct kernfs_node *kn; 6052 }; 6053 6054 BTF_TYPE_SAFE_RCU(struct css_set) { 6055 struct cgroup *dfl_cgrp; 6056 }; 6057 6058 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6059 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6060 struct file __rcu *exe_file; 6061 }; 6062 6063 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6064 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6065 */ 6066 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6067 struct sock *sk; 6068 }; 6069 6070 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6071 struct sock *sk; 6072 }; 6073 6074 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6075 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6076 struct seq_file *seq; 6077 }; 6078 6079 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6080 struct bpf_iter_meta *meta; 6081 struct task_struct *task; 6082 }; 6083 6084 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6085 struct file *file; 6086 }; 6087 6088 BTF_TYPE_SAFE_TRUSTED(struct file) { 6089 struct inode *f_inode; 6090 }; 6091 6092 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6093 /* no negative dentry-s in places where bpf can see it */ 6094 struct inode *d_inode; 6095 }; 6096 6097 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6098 struct sock *sk; 6099 }; 6100 6101 static bool type_is_rcu(struct bpf_verifier_env *env, 6102 struct bpf_reg_state *reg, 6103 const char *field_name, u32 btf_id) 6104 { 6105 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6106 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6107 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6108 6109 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6110 } 6111 6112 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6113 struct bpf_reg_state *reg, 6114 const char *field_name, u32 btf_id) 6115 { 6116 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6117 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6118 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6119 6120 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6121 } 6122 6123 static bool type_is_trusted(struct bpf_verifier_env *env, 6124 struct bpf_reg_state *reg, 6125 const char *field_name, u32 btf_id) 6126 { 6127 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6128 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6129 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6130 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6131 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6132 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6133 6134 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6135 } 6136 6137 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6138 struct bpf_reg_state *regs, 6139 int regno, int off, int size, 6140 enum bpf_access_type atype, 6141 int value_regno) 6142 { 6143 struct bpf_reg_state *reg = regs + regno; 6144 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6145 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6146 const char *field_name = NULL; 6147 enum bpf_type_flag flag = 0; 6148 u32 btf_id = 0; 6149 int ret; 6150 6151 if (!env->allow_ptr_leaks) { 6152 verbose(env, 6153 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6154 tname); 6155 return -EPERM; 6156 } 6157 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6158 verbose(env, 6159 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6160 tname); 6161 return -EINVAL; 6162 } 6163 if (off < 0) { 6164 verbose(env, 6165 "R%d is ptr_%s invalid negative access: off=%d\n", 6166 regno, tname, off); 6167 return -EACCES; 6168 } 6169 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6170 char tn_buf[48]; 6171 6172 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6173 verbose(env, 6174 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6175 regno, tname, off, tn_buf); 6176 return -EACCES; 6177 } 6178 6179 if (reg->type & MEM_USER) { 6180 verbose(env, 6181 "R%d is ptr_%s access user memory: off=%d\n", 6182 regno, tname, off); 6183 return -EACCES; 6184 } 6185 6186 if (reg->type & MEM_PERCPU) { 6187 verbose(env, 6188 "R%d is ptr_%s access percpu memory: off=%d\n", 6189 regno, tname, off); 6190 return -EACCES; 6191 } 6192 6193 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6194 if (!btf_is_kernel(reg->btf)) { 6195 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6196 return -EFAULT; 6197 } 6198 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6199 } else { 6200 /* Writes are permitted with default btf_struct_access for 6201 * program allocated objects (which always have ref_obj_id > 0), 6202 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6203 */ 6204 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6205 verbose(env, "only read is supported\n"); 6206 return -EACCES; 6207 } 6208 6209 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6210 !reg->ref_obj_id) { 6211 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6212 return -EFAULT; 6213 } 6214 6215 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6216 } 6217 6218 if (ret < 0) 6219 return ret; 6220 6221 if (ret != PTR_TO_BTF_ID) { 6222 /* just mark; */ 6223 6224 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6225 /* If this is an untrusted pointer, all pointers formed by walking it 6226 * also inherit the untrusted flag. 6227 */ 6228 flag = PTR_UNTRUSTED; 6229 6230 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6231 /* By default any pointer obtained from walking a trusted pointer is no 6232 * longer trusted, unless the field being accessed has explicitly been 6233 * marked as inheriting its parent's state of trust (either full or RCU). 6234 * For example: 6235 * 'cgroups' pointer is untrusted if task->cgroups dereference 6236 * happened in a sleepable program outside of bpf_rcu_read_lock() 6237 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6238 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6239 * 6240 * A regular RCU-protected pointer with __rcu tag can also be deemed 6241 * trusted if we are in an RCU CS. Such pointer can be NULL. 6242 */ 6243 if (type_is_trusted(env, reg, field_name, btf_id)) { 6244 flag |= PTR_TRUSTED; 6245 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6246 if (type_is_rcu(env, reg, field_name, btf_id)) { 6247 /* ignore __rcu tag and mark it MEM_RCU */ 6248 flag |= MEM_RCU; 6249 } else if (flag & MEM_RCU || 6250 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6251 /* __rcu tagged pointers can be NULL */ 6252 flag |= MEM_RCU | PTR_MAYBE_NULL; 6253 6254 /* We always trust them */ 6255 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6256 flag & PTR_UNTRUSTED) 6257 flag &= ~PTR_UNTRUSTED; 6258 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6259 /* keep as-is */ 6260 } else { 6261 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6262 clear_trusted_flags(&flag); 6263 } 6264 } else { 6265 /* 6266 * If not in RCU CS or MEM_RCU pointer can be NULL then 6267 * aggressively mark as untrusted otherwise such 6268 * pointers will be plain PTR_TO_BTF_ID without flags 6269 * and will be allowed to be passed into helpers for 6270 * compat reasons. 6271 */ 6272 flag = PTR_UNTRUSTED; 6273 } 6274 } else { 6275 /* Old compat. Deprecated */ 6276 clear_trusted_flags(&flag); 6277 } 6278 6279 if (atype == BPF_READ && value_regno >= 0) 6280 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6281 6282 return 0; 6283 } 6284 6285 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6286 struct bpf_reg_state *regs, 6287 int regno, int off, int size, 6288 enum bpf_access_type atype, 6289 int value_regno) 6290 { 6291 struct bpf_reg_state *reg = regs + regno; 6292 struct bpf_map *map = reg->map_ptr; 6293 struct bpf_reg_state map_reg; 6294 enum bpf_type_flag flag = 0; 6295 const struct btf_type *t; 6296 const char *tname; 6297 u32 btf_id; 6298 int ret; 6299 6300 if (!btf_vmlinux) { 6301 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6302 return -ENOTSUPP; 6303 } 6304 6305 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6306 verbose(env, "map_ptr access not supported for map type %d\n", 6307 map->map_type); 6308 return -ENOTSUPP; 6309 } 6310 6311 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6312 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6313 6314 if (!env->allow_ptr_leaks) { 6315 verbose(env, 6316 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6317 tname); 6318 return -EPERM; 6319 } 6320 6321 if (off < 0) { 6322 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6323 regno, tname, off); 6324 return -EACCES; 6325 } 6326 6327 if (atype != BPF_READ) { 6328 verbose(env, "only read from %s is supported\n", tname); 6329 return -EACCES; 6330 } 6331 6332 /* Simulate access to a PTR_TO_BTF_ID */ 6333 memset(&map_reg, 0, sizeof(map_reg)); 6334 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6335 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6336 if (ret < 0) 6337 return ret; 6338 6339 if (value_regno >= 0) 6340 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6341 6342 return 0; 6343 } 6344 6345 /* Check that the stack access at the given offset is within bounds. The 6346 * maximum valid offset is -1. 6347 * 6348 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6349 * -state->allocated_stack for reads. 6350 */ 6351 static int check_stack_slot_within_bounds(int off, 6352 struct bpf_func_state *state, 6353 enum bpf_access_type t) 6354 { 6355 int min_valid_off; 6356 6357 if (t == BPF_WRITE) 6358 min_valid_off = -MAX_BPF_STACK; 6359 else 6360 min_valid_off = -state->allocated_stack; 6361 6362 if (off < min_valid_off || off > -1) 6363 return -EACCES; 6364 return 0; 6365 } 6366 6367 /* Check that the stack access at 'regno + off' falls within the maximum stack 6368 * bounds. 6369 * 6370 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6371 */ 6372 static int check_stack_access_within_bounds( 6373 struct bpf_verifier_env *env, 6374 int regno, int off, int access_size, 6375 enum bpf_access_src src, enum bpf_access_type type) 6376 { 6377 struct bpf_reg_state *regs = cur_regs(env); 6378 struct bpf_reg_state *reg = regs + regno; 6379 struct bpf_func_state *state = func(env, reg); 6380 int min_off, max_off; 6381 int err; 6382 char *err_extra; 6383 6384 if (src == ACCESS_HELPER) 6385 /* We don't know if helpers are reading or writing (or both). */ 6386 err_extra = " indirect access to"; 6387 else if (type == BPF_READ) 6388 err_extra = " read from"; 6389 else 6390 err_extra = " write to"; 6391 6392 if (tnum_is_const(reg->var_off)) { 6393 min_off = reg->var_off.value + off; 6394 if (access_size > 0) 6395 max_off = min_off + access_size - 1; 6396 else 6397 max_off = min_off; 6398 } else { 6399 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6400 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6401 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6402 err_extra, regno); 6403 return -EACCES; 6404 } 6405 min_off = reg->smin_value + off; 6406 if (access_size > 0) 6407 max_off = reg->smax_value + off + access_size - 1; 6408 else 6409 max_off = min_off; 6410 } 6411 6412 err = check_stack_slot_within_bounds(min_off, state, type); 6413 if (!err) 6414 err = check_stack_slot_within_bounds(max_off, state, type); 6415 6416 if (err) { 6417 if (tnum_is_const(reg->var_off)) { 6418 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6419 err_extra, regno, off, access_size); 6420 } else { 6421 char tn_buf[48]; 6422 6423 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6424 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6425 err_extra, regno, tn_buf, access_size); 6426 } 6427 } 6428 return err; 6429 } 6430 6431 /* check whether memory at (regno + off) is accessible for t = (read | write) 6432 * if t==write, value_regno is a register which value is stored into memory 6433 * if t==read, value_regno is a register which will receive the value from memory 6434 * if t==write && value_regno==-1, some unknown value is stored into memory 6435 * if t==read && value_regno==-1, don't care what we read from memory 6436 */ 6437 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6438 int off, int bpf_size, enum bpf_access_type t, 6439 int value_regno, bool strict_alignment_once, bool is_ldsx) 6440 { 6441 struct bpf_reg_state *regs = cur_regs(env); 6442 struct bpf_reg_state *reg = regs + regno; 6443 struct bpf_func_state *state; 6444 int size, err = 0; 6445 6446 size = bpf_size_to_bytes(bpf_size); 6447 if (size < 0) 6448 return size; 6449 6450 /* alignment checks will add in reg->off themselves */ 6451 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6452 if (err) 6453 return err; 6454 6455 /* for access checks, reg->off is just part of off */ 6456 off += reg->off; 6457 6458 if (reg->type == PTR_TO_MAP_KEY) { 6459 if (t == BPF_WRITE) { 6460 verbose(env, "write to change key R%d not allowed\n", regno); 6461 return -EACCES; 6462 } 6463 6464 err = check_mem_region_access(env, regno, off, size, 6465 reg->map_ptr->key_size, false); 6466 if (err) 6467 return err; 6468 if (value_regno >= 0) 6469 mark_reg_unknown(env, regs, value_regno); 6470 } else if (reg->type == PTR_TO_MAP_VALUE) { 6471 struct btf_field *kptr_field = NULL; 6472 6473 if (t == BPF_WRITE && value_regno >= 0 && 6474 is_pointer_value(env, value_regno)) { 6475 verbose(env, "R%d leaks addr into map\n", value_regno); 6476 return -EACCES; 6477 } 6478 err = check_map_access_type(env, regno, off, size, t); 6479 if (err) 6480 return err; 6481 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6482 if (err) 6483 return err; 6484 if (tnum_is_const(reg->var_off)) 6485 kptr_field = btf_record_find(reg->map_ptr->record, 6486 off + reg->var_off.value, BPF_KPTR); 6487 if (kptr_field) { 6488 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6489 } else if (t == BPF_READ && value_regno >= 0) { 6490 struct bpf_map *map = reg->map_ptr; 6491 6492 /* if map is read-only, track its contents as scalars */ 6493 if (tnum_is_const(reg->var_off) && 6494 bpf_map_is_rdonly(map) && 6495 map->ops->map_direct_value_addr) { 6496 int map_off = off + reg->var_off.value; 6497 u64 val = 0; 6498 6499 err = bpf_map_direct_read(map, map_off, size, 6500 &val, is_ldsx); 6501 if (err) 6502 return err; 6503 6504 regs[value_regno].type = SCALAR_VALUE; 6505 __mark_reg_known(®s[value_regno], val); 6506 } else { 6507 mark_reg_unknown(env, regs, value_regno); 6508 } 6509 } 6510 } else if (base_type(reg->type) == PTR_TO_MEM) { 6511 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6512 6513 if (type_may_be_null(reg->type)) { 6514 verbose(env, "R%d invalid mem access '%s'\n", regno, 6515 reg_type_str(env, reg->type)); 6516 return -EACCES; 6517 } 6518 6519 if (t == BPF_WRITE && rdonly_mem) { 6520 verbose(env, "R%d cannot write into %s\n", 6521 regno, reg_type_str(env, reg->type)); 6522 return -EACCES; 6523 } 6524 6525 if (t == BPF_WRITE && value_regno >= 0 && 6526 is_pointer_value(env, value_regno)) { 6527 verbose(env, "R%d leaks addr into mem\n", value_regno); 6528 return -EACCES; 6529 } 6530 6531 err = check_mem_region_access(env, regno, off, size, 6532 reg->mem_size, false); 6533 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6534 mark_reg_unknown(env, regs, value_regno); 6535 } else if (reg->type == PTR_TO_CTX) { 6536 enum bpf_reg_type reg_type = SCALAR_VALUE; 6537 struct btf *btf = NULL; 6538 u32 btf_id = 0; 6539 6540 if (t == BPF_WRITE && value_regno >= 0 && 6541 is_pointer_value(env, value_regno)) { 6542 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6543 return -EACCES; 6544 } 6545 6546 err = check_ptr_off_reg(env, reg, regno); 6547 if (err < 0) 6548 return err; 6549 6550 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6551 &btf_id); 6552 if (err) 6553 verbose_linfo(env, insn_idx, "; "); 6554 if (!err && t == BPF_READ && value_regno >= 0) { 6555 /* ctx access returns either a scalar, or a 6556 * PTR_TO_PACKET[_META,_END]. In the latter 6557 * case, we know the offset is zero. 6558 */ 6559 if (reg_type == SCALAR_VALUE) { 6560 mark_reg_unknown(env, regs, value_regno); 6561 } else { 6562 mark_reg_known_zero(env, regs, 6563 value_regno); 6564 if (type_may_be_null(reg_type)) 6565 regs[value_regno].id = ++env->id_gen; 6566 /* A load of ctx field could have different 6567 * actual load size with the one encoded in the 6568 * insn. When the dst is PTR, it is for sure not 6569 * a sub-register. 6570 */ 6571 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6572 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6573 regs[value_regno].btf = btf; 6574 regs[value_regno].btf_id = btf_id; 6575 } 6576 } 6577 regs[value_regno].type = reg_type; 6578 } 6579 6580 } else if (reg->type == PTR_TO_STACK) { 6581 /* Basic bounds checks. */ 6582 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6583 if (err) 6584 return err; 6585 6586 state = func(env, reg); 6587 err = update_stack_depth(env, state, off); 6588 if (err) 6589 return err; 6590 6591 if (t == BPF_READ) 6592 err = check_stack_read(env, regno, off, size, 6593 value_regno); 6594 else 6595 err = check_stack_write(env, regno, off, size, 6596 value_regno, insn_idx); 6597 } else if (reg_is_pkt_pointer(reg)) { 6598 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6599 verbose(env, "cannot write into packet\n"); 6600 return -EACCES; 6601 } 6602 if (t == BPF_WRITE && value_regno >= 0 && 6603 is_pointer_value(env, value_regno)) { 6604 verbose(env, "R%d leaks addr into packet\n", 6605 value_regno); 6606 return -EACCES; 6607 } 6608 err = check_packet_access(env, regno, off, size, false); 6609 if (!err && t == BPF_READ && value_regno >= 0) 6610 mark_reg_unknown(env, regs, value_regno); 6611 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6612 if (t == BPF_WRITE && value_regno >= 0 && 6613 is_pointer_value(env, value_regno)) { 6614 verbose(env, "R%d leaks addr into flow keys\n", 6615 value_regno); 6616 return -EACCES; 6617 } 6618 6619 err = check_flow_keys_access(env, off, size); 6620 if (!err && t == BPF_READ && value_regno >= 0) 6621 mark_reg_unknown(env, regs, value_regno); 6622 } else if (type_is_sk_pointer(reg->type)) { 6623 if (t == BPF_WRITE) { 6624 verbose(env, "R%d cannot write into %s\n", 6625 regno, reg_type_str(env, reg->type)); 6626 return -EACCES; 6627 } 6628 err = check_sock_access(env, insn_idx, regno, off, size, t); 6629 if (!err && value_regno >= 0) 6630 mark_reg_unknown(env, regs, value_regno); 6631 } else if (reg->type == PTR_TO_TP_BUFFER) { 6632 err = check_tp_buffer_access(env, reg, regno, off, size); 6633 if (!err && t == BPF_READ && value_regno >= 0) 6634 mark_reg_unknown(env, regs, value_regno); 6635 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6636 !type_may_be_null(reg->type)) { 6637 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6638 value_regno); 6639 } else if (reg->type == CONST_PTR_TO_MAP) { 6640 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6641 value_regno); 6642 } else if (base_type(reg->type) == PTR_TO_BUF) { 6643 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6644 u32 *max_access; 6645 6646 if (rdonly_mem) { 6647 if (t == BPF_WRITE) { 6648 verbose(env, "R%d cannot write into %s\n", 6649 regno, reg_type_str(env, reg->type)); 6650 return -EACCES; 6651 } 6652 max_access = &env->prog->aux->max_rdonly_access; 6653 } else { 6654 max_access = &env->prog->aux->max_rdwr_access; 6655 } 6656 6657 err = check_buffer_access(env, reg, regno, off, size, false, 6658 max_access); 6659 6660 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6661 mark_reg_unknown(env, regs, value_regno); 6662 } else { 6663 verbose(env, "R%d invalid mem access '%s'\n", regno, 6664 reg_type_str(env, reg->type)); 6665 return -EACCES; 6666 } 6667 6668 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6669 regs[value_regno].type == SCALAR_VALUE) { 6670 if (!is_ldsx) 6671 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6672 coerce_reg_to_size(®s[value_regno], size); 6673 else 6674 coerce_reg_to_size_sx(®s[value_regno], size); 6675 } 6676 return err; 6677 } 6678 6679 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6680 { 6681 int load_reg; 6682 int err; 6683 6684 switch (insn->imm) { 6685 case BPF_ADD: 6686 case BPF_ADD | BPF_FETCH: 6687 case BPF_AND: 6688 case BPF_AND | BPF_FETCH: 6689 case BPF_OR: 6690 case BPF_OR | BPF_FETCH: 6691 case BPF_XOR: 6692 case BPF_XOR | BPF_FETCH: 6693 case BPF_XCHG: 6694 case BPF_CMPXCHG: 6695 break; 6696 default: 6697 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6698 return -EINVAL; 6699 } 6700 6701 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6702 verbose(env, "invalid atomic operand size\n"); 6703 return -EINVAL; 6704 } 6705 6706 /* check src1 operand */ 6707 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6708 if (err) 6709 return err; 6710 6711 /* check src2 operand */ 6712 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6713 if (err) 6714 return err; 6715 6716 if (insn->imm == BPF_CMPXCHG) { 6717 /* Check comparison of R0 with memory location */ 6718 const u32 aux_reg = BPF_REG_0; 6719 6720 err = check_reg_arg(env, aux_reg, SRC_OP); 6721 if (err) 6722 return err; 6723 6724 if (is_pointer_value(env, aux_reg)) { 6725 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6726 return -EACCES; 6727 } 6728 } 6729 6730 if (is_pointer_value(env, insn->src_reg)) { 6731 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6732 return -EACCES; 6733 } 6734 6735 if (is_ctx_reg(env, insn->dst_reg) || 6736 is_pkt_reg(env, insn->dst_reg) || 6737 is_flow_key_reg(env, insn->dst_reg) || 6738 is_sk_reg(env, insn->dst_reg)) { 6739 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6740 insn->dst_reg, 6741 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6742 return -EACCES; 6743 } 6744 6745 if (insn->imm & BPF_FETCH) { 6746 if (insn->imm == BPF_CMPXCHG) 6747 load_reg = BPF_REG_0; 6748 else 6749 load_reg = insn->src_reg; 6750 6751 /* check and record load of old value */ 6752 err = check_reg_arg(env, load_reg, DST_OP); 6753 if (err) 6754 return err; 6755 } else { 6756 /* This instruction accesses a memory location but doesn't 6757 * actually load it into a register. 6758 */ 6759 load_reg = -1; 6760 } 6761 6762 /* Check whether we can read the memory, with second call for fetch 6763 * case to simulate the register fill. 6764 */ 6765 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6766 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 6767 if (!err && load_reg >= 0) 6768 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6769 BPF_SIZE(insn->code), BPF_READ, load_reg, 6770 true, false); 6771 if (err) 6772 return err; 6773 6774 /* Check whether we can write into the same memory. */ 6775 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6776 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 6777 if (err) 6778 return err; 6779 6780 return 0; 6781 } 6782 6783 /* When register 'regno' is used to read the stack (either directly or through 6784 * a helper function) make sure that it's within stack boundary and, depending 6785 * on the access type, that all elements of the stack are initialized. 6786 * 6787 * 'off' includes 'regno->off', but not its dynamic part (if any). 6788 * 6789 * All registers that have been spilled on the stack in the slots within the 6790 * read offsets are marked as read. 6791 */ 6792 static int check_stack_range_initialized( 6793 struct bpf_verifier_env *env, int regno, int off, 6794 int access_size, bool zero_size_allowed, 6795 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 6796 { 6797 struct bpf_reg_state *reg = reg_state(env, regno); 6798 struct bpf_func_state *state = func(env, reg); 6799 int err, min_off, max_off, i, j, slot, spi; 6800 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 6801 enum bpf_access_type bounds_check_type; 6802 /* Some accesses can write anything into the stack, others are 6803 * read-only. 6804 */ 6805 bool clobber = false; 6806 6807 if (access_size == 0 && !zero_size_allowed) { 6808 verbose(env, "invalid zero-sized read\n"); 6809 return -EACCES; 6810 } 6811 6812 if (type == ACCESS_HELPER) { 6813 /* The bounds checks for writes are more permissive than for 6814 * reads. However, if raw_mode is not set, we'll do extra 6815 * checks below. 6816 */ 6817 bounds_check_type = BPF_WRITE; 6818 clobber = true; 6819 } else { 6820 bounds_check_type = BPF_READ; 6821 } 6822 err = check_stack_access_within_bounds(env, regno, off, access_size, 6823 type, bounds_check_type); 6824 if (err) 6825 return err; 6826 6827 6828 if (tnum_is_const(reg->var_off)) { 6829 min_off = max_off = reg->var_off.value + off; 6830 } else { 6831 /* Variable offset is prohibited for unprivileged mode for 6832 * simplicity since it requires corresponding support in 6833 * Spectre masking for stack ALU. 6834 * See also retrieve_ptr_limit(). 6835 */ 6836 if (!env->bypass_spec_v1) { 6837 char tn_buf[48]; 6838 6839 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6840 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 6841 regno, err_extra, tn_buf); 6842 return -EACCES; 6843 } 6844 /* Only initialized buffer on stack is allowed to be accessed 6845 * with variable offset. With uninitialized buffer it's hard to 6846 * guarantee that whole memory is marked as initialized on 6847 * helper return since specific bounds are unknown what may 6848 * cause uninitialized stack leaking. 6849 */ 6850 if (meta && meta->raw_mode) 6851 meta = NULL; 6852 6853 min_off = reg->smin_value + off; 6854 max_off = reg->smax_value + off; 6855 } 6856 6857 if (meta && meta->raw_mode) { 6858 /* Ensure we won't be overwriting dynptrs when simulating byte 6859 * by byte access in check_helper_call using meta.access_size. 6860 * This would be a problem if we have a helper in the future 6861 * which takes: 6862 * 6863 * helper(uninit_mem, len, dynptr) 6864 * 6865 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 6866 * may end up writing to dynptr itself when touching memory from 6867 * arg 1. This can be relaxed on a case by case basis for known 6868 * safe cases, but reject due to the possibilitiy of aliasing by 6869 * default. 6870 */ 6871 for (i = min_off; i < max_off + access_size; i++) { 6872 int stack_off = -i - 1; 6873 6874 spi = __get_spi(i); 6875 /* raw_mode may write past allocated_stack */ 6876 if (state->allocated_stack <= stack_off) 6877 continue; 6878 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 6879 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 6880 return -EACCES; 6881 } 6882 } 6883 meta->access_size = access_size; 6884 meta->regno = regno; 6885 return 0; 6886 } 6887 6888 for (i = min_off; i < max_off + access_size; i++) { 6889 u8 *stype; 6890 6891 slot = -i - 1; 6892 spi = slot / BPF_REG_SIZE; 6893 if (state->allocated_stack <= slot) 6894 goto err; 6895 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 6896 if (*stype == STACK_MISC) 6897 goto mark; 6898 if ((*stype == STACK_ZERO) || 6899 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 6900 if (clobber) { 6901 /* helper can write anything into the stack */ 6902 *stype = STACK_MISC; 6903 } 6904 goto mark; 6905 } 6906 6907 if (is_spilled_reg(&state->stack[spi]) && 6908 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 6909 env->allow_ptr_leaks)) { 6910 if (clobber) { 6911 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 6912 for (j = 0; j < BPF_REG_SIZE; j++) 6913 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 6914 } 6915 goto mark; 6916 } 6917 6918 err: 6919 if (tnum_is_const(reg->var_off)) { 6920 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 6921 err_extra, regno, min_off, i - min_off, access_size); 6922 } else { 6923 char tn_buf[48]; 6924 6925 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6926 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 6927 err_extra, regno, tn_buf, i - min_off, access_size); 6928 } 6929 return -EACCES; 6930 mark: 6931 /* reading any byte out of 8-byte 'spill_slot' will cause 6932 * the whole slot to be marked as 'read' 6933 */ 6934 mark_reg_read(env, &state->stack[spi].spilled_ptr, 6935 state->stack[spi].spilled_ptr.parent, 6936 REG_LIVE_READ64); 6937 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 6938 * be sure that whether stack slot is written to or not. Hence, 6939 * we must still conservatively propagate reads upwards even if 6940 * helper may write to the entire memory range. 6941 */ 6942 } 6943 return update_stack_depth(env, state, min_off); 6944 } 6945 6946 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 6947 int access_size, bool zero_size_allowed, 6948 struct bpf_call_arg_meta *meta) 6949 { 6950 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6951 u32 *max_access; 6952 6953 switch (base_type(reg->type)) { 6954 case PTR_TO_PACKET: 6955 case PTR_TO_PACKET_META: 6956 return check_packet_access(env, regno, reg->off, access_size, 6957 zero_size_allowed); 6958 case PTR_TO_MAP_KEY: 6959 if (meta && meta->raw_mode) { 6960 verbose(env, "R%d cannot write into %s\n", regno, 6961 reg_type_str(env, reg->type)); 6962 return -EACCES; 6963 } 6964 return check_mem_region_access(env, regno, reg->off, access_size, 6965 reg->map_ptr->key_size, false); 6966 case PTR_TO_MAP_VALUE: 6967 if (check_map_access_type(env, regno, reg->off, access_size, 6968 meta && meta->raw_mode ? BPF_WRITE : 6969 BPF_READ)) 6970 return -EACCES; 6971 return check_map_access(env, regno, reg->off, access_size, 6972 zero_size_allowed, ACCESS_HELPER); 6973 case PTR_TO_MEM: 6974 if (type_is_rdonly_mem(reg->type)) { 6975 if (meta && meta->raw_mode) { 6976 verbose(env, "R%d cannot write into %s\n", regno, 6977 reg_type_str(env, reg->type)); 6978 return -EACCES; 6979 } 6980 } 6981 return check_mem_region_access(env, regno, reg->off, 6982 access_size, reg->mem_size, 6983 zero_size_allowed); 6984 case PTR_TO_BUF: 6985 if (type_is_rdonly_mem(reg->type)) { 6986 if (meta && meta->raw_mode) { 6987 verbose(env, "R%d cannot write into %s\n", regno, 6988 reg_type_str(env, reg->type)); 6989 return -EACCES; 6990 } 6991 6992 max_access = &env->prog->aux->max_rdonly_access; 6993 } else { 6994 max_access = &env->prog->aux->max_rdwr_access; 6995 } 6996 return check_buffer_access(env, reg, regno, reg->off, 6997 access_size, zero_size_allowed, 6998 max_access); 6999 case PTR_TO_STACK: 7000 return check_stack_range_initialized( 7001 env, 7002 regno, reg->off, access_size, 7003 zero_size_allowed, ACCESS_HELPER, meta); 7004 case PTR_TO_BTF_ID: 7005 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7006 access_size, BPF_READ, -1); 7007 case PTR_TO_CTX: 7008 /* in case the function doesn't know how to access the context, 7009 * (because we are in a program of type SYSCALL for example), we 7010 * can not statically check its size. 7011 * Dynamically check it now. 7012 */ 7013 if (!env->ops->convert_ctx_access) { 7014 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7015 int offset = access_size - 1; 7016 7017 /* Allow zero-byte read from PTR_TO_CTX */ 7018 if (access_size == 0) 7019 return zero_size_allowed ? 0 : -EACCES; 7020 7021 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7022 atype, -1, false, false); 7023 } 7024 7025 fallthrough; 7026 default: /* scalar_value or invalid ptr */ 7027 /* Allow zero-byte read from NULL, regardless of pointer type */ 7028 if (zero_size_allowed && access_size == 0 && 7029 register_is_null(reg)) 7030 return 0; 7031 7032 verbose(env, "R%d type=%s ", regno, 7033 reg_type_str(env, reg->type)); 7034 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7035 return -EACCES; 7036 } 7037 } 7038 7039 static int check_mem_size_reg(struct bpf_verifier_env *env, 7040 struct bpf_reg_state *reg, u32 regno, 7041 bool zero_size_allowed, 7042 struct bpf_call_arg_meta *meta) 7043 { 7044 int err; 7045 7046 /* This is used to refine r0 return value bounds for helpers 7047 * that enforce this value as an upper bound on return values. 7048 * See do_refine_retval_range() for helpers that can refine 7049 * the return value. C type of helper is u32 so we pull register 7050 * bound from umax_value however, if negative verifier errors 7051 * out. Only upper bounds can be learned because retval is an 7052 * int type and negative retvals are allowed. 7053 */ 7054 meta->msize_max_value = reg->umax_value; 7055 7056 /* The register is SCALAR_VALUE; the access check 7057 * happens using its boundaries. 7058 */ 7059 if (!tnum_is_const(reg->var_off)) 7060 /* For unprivileged variable accesses, disable raw 7061 * mode so that the program is required to 7062 * initialize all the memory that the helper could 7063 * just partially fill up. 7064 */ 7065 meta = NULL; 7066 7067 if (reg->smin_value < 0) { 7068 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7069 regno); 7070 return -EACCES; 7071 } 7072 7073 if (reg->umin_value == 0) { 7074 err = check_helper_mem_access(env, regno - 1, 0, 7075 zero_size_allowed, 7076 meta); 7077 if (err) 7078 return err; 7079 } 7080 7081 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7082 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7083 regno); 7084 return -EACCES; 7085 } 7086 err = check_helper_mem_access(env, regno - 1, 7087 reg->umax_value, 7088 zero_size_allowed, meta); 7089 if (!err) 7090 err = mark_chain_precision(env, regno); 7091 return err; 7092 } 7093 7094 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7095 u32 regno, u32 mem_size) 7096 { 7097 bool may_be_null = type_may_be_null(reg->type); 7098 struct bpf_reg_state saved_reg; 7099 struct bpf_call_arg_meta meta; 7100 int err; 7101 7102 if (register_is_null(reg)) 7103 return 0; 7104 7105 memset(&meta, 0, sizeof(meta)); 7106 /* Assuming that the register contains a value check if the memory 7107 * access is safe. Temporarily save and restore the register's state as 7108 * the conversion shouldn't be visible to a caller. 7109 */ 7110 if (may_be_null) { 7111 saved_reg = *reg; 7112 mark_ptr_not_null_reg(reg); 7113 } 7114 7115 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7116 /* Check access for BPF_WRITE */ 7117 meta.raw_mode = true; 7118 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7119 7120 if (may_be_null) 7121 *reg = saved_reg; 7122 7123 return err; 7124 } 7125 7126 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7127 u32 regno) 7128 { 7129 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7130 bool may_be_null = type_may_be_null(mem_reg->type); 7131 struct bpf_reg_state saved_reg; 7132 struct bpf_call_arg_meta meta; 7133 int err; 7134 7135 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7136 7137 memset(&meta, 0, sizeof(meta)); 7138 7139 if (may_be_null) { 7140 saved_reg = *mem_reg; 7141 mark_ptr_not_null_reg(mem_reg); 7142 } 7143 7144 err = check_mem_size_reg(env, reg, regno, true, &meta); 7145 /* Check access for BPF_WRITE */ 7146 meta.raw_mode = true; 7147 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7148 7149 if (may_be_null) 7150 *mem_reg = saved_reg; 7151 return err; 7152 } 7153 7154 /* Implementation details: 7155 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7156 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7157 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7158 * Two separate bpf_obj_new will also have different reg->id. 7159 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7160 * clears reg->id after value_or_null->value transition, since the verifier only 7161 * cares about the range of access to valid map value pointer and doesn't care 7162 * about actual address of the map element. 7163 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7164 * reg->id > 0 after value_or_null->value transition. By doing so 7165 * two bpf_map_lookups will be considered two different pointers that 7166 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7167 * returned from bpf_obj_new. 7168 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7169 * dead-locks. 7170 * Since only one bpf_spin_lock is allowed the checks are simpler than 7171 * reg_is_refcounted() logic. The verifier needs to remember only 7172 * one spin_lock instead of array of acquired_refs. 7173 * cur_state->active_lock remembers which map value element or allocated 7174 * object got locked and clears it after bpf_spin_unlock. 7175 */ 7176 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7177 bool is_lock) 7178 { 7179 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7180 struct bpf_verifier_state *cur = env->cur_state; 7181 bool is_const = tnum_is_const(reg->var_off); 7182 u64 val = reg->var_off.value; 7183 struct bpf_map *map = NULL; 7184 struct btf *btf = NULL; 7185 struct btf_record *rec; 7186 7187 if (!is_const) { 7188 verbose(env, 7189 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7190 regno); 7191 return -EINVAL; 7192 } 7193 if (reg->type == PTR_TO_MAP_VALUE) { 7194 map = reg->map_ptr; 7195 if (!map->btf) { 7196 verbose(env, 7197 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7198 map->name); 7199 return -EINVAL; 7200 } 7201 } else { 7202 btf = reg->btf; 7203 } 7204 7205 rec = reg_btf_record(reg); 7206 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7207 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7208 map ? map->name : "kptr"); 7209 return -EINVAL; 7210 } 7211 if (rec->spin_lock_off != val + reg->off) { 7212 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7213 val + reg->off, rec->spin_lock_off); 7214 return -EINVAL; 7215 } 7216 if (is_lock) { 7217 if (cur->active_lock.ptr) { 7218 verbose(env, 7219 "Locking two bpf_spin_locks are not allowed\n"); 7220 return -EINVAL; 7221 } 7222 if (map) 7223 cur->active_lock.ptr = map; 7224 else 7225 cur->active_lock.ptr = btf; 7226 cur->active_lock.id = reg->id; 7227 } else { 7228 void *ptr; 7229 7230 if (map) 7231 ptr = map; 7232 else 7233 ptr = btf; 7234 7235 if (!cur->active_lock.ptr) { 7236 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7237 return -EINVAL; 7238 } 7239 if (cur->active_lock.ptr != ptr || 7240 cur->active_lock.id != reg->id) { 7241 verbose(env, "bpf_spin_unlock of different lock\n"); 7242 return -EINVAL; 7243 } 7244 7245 invalidate_non_owning_refs(env); 7246 7247 cur->active_lock.ptr = NULL; 7248 cur->active_lock.id = 0; 7249 } 7250 return 0; 7251 } 7252 7253 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7254 struct bpf_call_arg_meta *meta) 7255 { 7256 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7257 bool is_const = tnum_is_const(reg->var_off); 7258 struct bpf_map *map = reg->map_ptr; 7259 u64 val = reg->var_off.value; 7260 7261 if (!is_const) { 7262 verbose(env, 7263 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7264 regno); 7265 return -EINVAL; 7266 } 7267 if (!map->btf) { 7268 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7269 map->name); 7270 return -EINVAL; 7271 } 7272 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7273 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7274 return -EINVAL; 7275 } 7276 if (map->record->timer_off != val + reg->off) { 7277 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7278 val + reg->off, map->record->timer_off); 7279 return -EINVAL; 7280 } 7281 if (meta->map_ptr) { 7282 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7283 return -EFAULT; 7284 } 7285 meta->map_uid = reg->map_uid; 7286 meta->map_ptr = map; 7287 return 0; 7288 } 7289 7290 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7291 struct bpf_call_arg_meta *meta) 7292 { 7293 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7294 struct bpf_map *map_ptr = reg->map_ptr; 7295 struct btf_field *kptr_field; 7296 u32 kptr_off; 7297 7298 if (!tnum_is_const(reg->var_off)) { 7299 verbose(env, 7300 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7301 regno); 7302 return -EINVAL; 7303 } 7304 if (!map_ptr->btf) { 7305 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7306 map_ptr->name); 7307 return -EINVAL; 7308 } 7309 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7310 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7311 return -EINVAL; 7312 } 7313 7314 meta->map_ptr = map_ptr; 7315 kptr_off = reg->off + reg->var_off.value; 7316 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7317 if (!kptr_field) { 7318 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7319 return -EACCES; 7320 } 7321 if (kptr_field->type != BPF_KPTR_REF) { 7322 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7323 return -EACCES; 7324 } 7325 meta->kptr_field = kptr_field; 7326 return 0; 7327 } 7328 7329 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7330 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7331 * 7332 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7333 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7334 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7335 * 7336 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7337 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7338 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7339 * mutate the view of the dynptr and also possibly destroy it. In the latter 7340 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7341 * memory that dynptr points to. 7342 * 7343 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7344 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7345 * readonly dynptr view yet, hence only the first case is tracked and checked. 7346 * 7347 * This is consistent with how C applies the const modifier to a struct object, 7348 * where the pointer itself inside bpf_dynptr becomes const but not what it 7349 * points to. 7350 * 7351 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7352 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7353 */ 7354 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7355 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7356 { 7357 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7358 int err; 7359 7360 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7361 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7362 */ 7363 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7364 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7365 return -EFAULT; 7366 } 7367 7368 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7369 * constructing a mutable bpf_dynptr object. 7370 * 7371 * Currently, this is only possible with PTR_TO_STACK 7372 * pointing to a region of at least 16 bytes which doesn't 7373 * contain an existing bpf_dynptr. 7374 * 7375 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7376 * mutated or destroyed. However, the memory it points to 7377 * may be mutated. 7378 * 7379 * None - Points to a initialized dynptr that can be mutated and 7380 * destroyed, including mutation of the memory it points 7381 * to. 7382 */ 7383 if (arg_type & MEM_UNINIT) { 7384 int i; 7385 7386 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7387 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7388 return -EINVAL; 7389 } 7390 7391 /* we write BPF_DW bits (8 bytes) at a time */ 7392 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7393 err = check_mem_access(env, insn_idx, regno, 7394 i, BPF_DW, BPF_WRITE, -1, false, false); 7395 if (err) 7396 return err; 7397 } 7398 7399 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7400 } else /* MEM_RDONLY and None case from above */ { 7401 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7402 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7403 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7404 return -EINVAL; 7405 } 7406 7407 if (!is_dynptr_reg_valid_init(env, reg)) { 7408 verbose(env, 7409 "Expected an initialized dynptr as arg #%d\n", 7410 regno); 7411 return -EINVAL; 7412 } 7413 7414 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7415 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7416 verbose(env, 7417 "Expected a dynptr of type %s as arg #%d\n", 7418 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7419 return -EINVAL; 7420 } 7421 7422 err = mark_dynptr_read(env, reg); 7423 } 7424 return err; 7425 } 7426 7427 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7428 { 7429 struct bpf_func_state *state = func(env, reg); 7430 7431 return state->stack[spi].spilled_ptr.ref_obj_id; 7432 } 7433 7434 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7435 { 7436 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7437 } 7438 7439 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7440 { 7441 return meta->kfunc_flags & KF_ITER_NEW; 7442 } 7443 7444 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7445 { 7446 return meta->kfunc_flags & KF_ITER_NEXT; 7447 } 7448 7449 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7450 { 7451 return meta->kfunc_flags & KF_ITER_DESTROY; 7452 } 7453 7454 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7455 { 7456 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7457 * kfunc is iter state pointer 7458 */ 7459 return arg == 0 && is_iter_kfunc(meta); 7460 } 7461 7462 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7463 struct bpf_kfunc_call_arg_meta *meta) 7464 { 7465 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7466 const struct btf_type *t; 7467 const struct btf_param *arg; 7468 int spi, err, i, nr_slots; 7469 u32 btf_id; 7470 7471 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7472 arg = &btf_params(meta->func_proto)[0]; 7473 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7474 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7475 nr_slots = t->size / BPF_REG_SIZE; 7476 7477 if (is_iter_new_kfunc(meta)) { 7478 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7479 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7480 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7481 iter_type_str(meta->btf, btf_id), regno); 7482 return -EINVAL; 7483 } 7484 7485 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7486 err = check_mem_access(env, insn_idx, regno, 7487 i, BPF_DW, BPF_WRITE, -1, false, false); 7488 if (err) 7489 return err; 7490 } 7491 7492 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7493 if (err) 7494 return err; 7495 } else { 7496 /* iter_next() or iter_destroy() expect initialized iter state*/ 7497 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7498 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7499 iter_type_str(meta->btf, btf_id), regno); 7500 return -EINVAL; 7501 } 7502 7503 spi = iter_get_spi(env, reg, nr_slots); 7504 if (spi < 0) 7505 return spi; 7506 7507 err = mark_iter_read(env, reg, spi, nr_slots); 7508 if (err) 7509 return err; 7510 7511 /* remember meta->iter info for process_iter_next_call() */ 7512 meta->iter.spi = spi; 7513 meta->iter.frameno = reg->frameno; 7514 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7515 7516 if (is_iter_destroy_kfunc(meta)) { 7517 err = unmark_stack_slots_iter(env, reg, nr_slots); 7518 if (err) 7519 return err; 7520 } 7521 } 7522 7523 return 0; 7524 } 7525 7526 /* process_iter_next_call() is called when verifier gets to iterator's next 7527 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7528 * to it as just "iter_next()" in comments below. 7529 * 7530 * BPF verifier relies on a crucial contract for any iter_next() 7531 * implementation: it should *eventually* return NULL, and once that happens 7532 * it should keep returning NULL. That is, once iterator exhausts elements to 7533 * iterate, it should never reset or spuriously return new elements. 7534 * 7535 * With the assumption of such contract, process_iter_next_call() simulates 7536 * a fork in the verifier state to validate loop logic correctness and safety 7537 * without having to simulate infinite amount of iterations. 7538 * 7539 * In current state, we first assume that iter_next() returned NULL and 7540 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7541 * conditions we should not form an infinite loop and should eventually reach 7542 * exit. 7543 * 7544 * Besides that, we also fork current state and enqueue it for later 7545 * verification. In a forked state we keep iterator state as ACTIVE 7546 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7547 * also bump iteration depth to prevent erroneous infinite loop detection 7548 * later on (see iter_active_depths_differ() comment for details). In this 7549 * state we assume that we'll eventually loop back to another iter_next() 7550 * calls (it could be in exactly same location or in some other instruction, 7551 * it doesn't matter, we don't make any unnecessary assumptions about this, 7552 * everything revolves around iterator state in a stack slot, not which 7553 * instruction is calling iter_next()). When that happens, we either will come 7554 * to iter_next() with equivalent state and can conclude that next iteration 7555 * will proceed in exactly the same way as we just verified, so it's safe to 7556 * assume that loop converges. If not, we'll go on another iteration 7557 * simulation with a different input state, until all possible starting states 7558 * are validated or we reach maximum number of instructions limit. 7559 * 7560 * This way, we will either exhaustively discover all possible input states 7561 * that iterator loop can start with and eventually will converge, or we'll 7562 * effectively regress into bounded loop simulation logic and either reach 7563 * maximum number of instructions if loop is not provably convergent, or there 7564 * is some statically known limit on number of iterations (e.g., if there is 7565 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7566 * 7567 * One very subtle but very important aspect is that we *always* simulate NULL 7568 * condition first (as the current state) before we simulate non-NULL case. 7569 * This has to do with intricacies of scalar precision tracking. By simulating 7570 * "exit condition" of iter_next() returning NULL first, we make sure all the 7571 * relevant precision marks *that will be set **after** we exit iterator loop* 7572 * are propagated backwards to common parent state of NULL and non-NULL 7573 * branches. Thanks to that, state equivalence checks done later in forked 7574 * state, when reaching iter_next() for ACTIVE iterator, can assume that 7575 * precision marks are finalized and won't change. Because simulating another 7576 * ACTIVE iterator iteration won't change them (because given same input 7577 * states we'll end up with exactly same output states which we are currently 7578 * comparing; and verification after the loop already propagated back what 7579 * needs to be **additionally** tracked as precise). It's subtle, grok 7580 * precision tracking for more intuitive understanding. 7581 */ 7582 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7583 struct bpf_kfunc_call_arg_meta *meta) 7584 { 7585 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st; 7586 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7587 struct bpf_reg_state *cur_iter, *queued_iter; 7588 int iter_frameno = meta->iter.frameno; 7589 int iter_spi = meta->iter.spi; 7590 7591 BTF_TYPE_EMIT(struct bpf_iter); 7592 7593 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7594 7595 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7596 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7597 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7598 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7599 return -EFAULT; 7600 } 7601 7602 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7603 /* branch out active iter state */ 7604 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7605 if (!queued_st) 7606 return -ENOMEM; 7607 7608 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7609 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7610 queued_iter->iter.depth++; 7611 7612 queued_fr = queued_st->frame[queued_st->curframe]; 7613 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7614 } 7615 7616 /* switch to DRAINED state, but keep the depth unchanged */ 7617 /* mark current iter state as drained and assume returned NULL */ 7618 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7619 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7620 7621 return 0; 7622 } 7623 7624 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7625 { 7626 return type == ARG_CONST_SIZE || 7627 type == ARG_CONST_SIZE_OR_ZERO; 7628 } 7629 7630 static bool arg_type_is_release(enum bpf_arg_type type) 7631 { 7632 return type & OBJ_RELEASE; 7633 } 7634 7635 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7636 { 7637 return base_type(type) == ARG_PTR_TO_DYNPTR; 7638 } 7639 7640 static int int_ptr_type_to_size(enum bpf_arg_type type) 7641 { 7642 if (type == ARG_PTR_TO_INT) 7643 return sizeof(u32); 7644 else if (type == ARG_PTR_TO_LONG) 7645 return sizeof(u64); 7646 7647 return -EINVAL; 7648 } 7649 7650 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7651 const struct bpf_call_arg_meta *meta, 7652 enum bpf_arg_type *arg_type) 7653 { 7654 if (!meta->map_ptr) { 7655 /* kernel subsystem misconfigured verifier */ 7656 verbose(env, "invalid map_ptr to access map->type\n"); 7657 return -EACCES; 7658 } 7659 7660 switch (meta->map_ptr->map_type) { 7661 case BPF_MAP_TYPE_SOCKMAP: 7662 case BPF_MAP_TYPE_SOCKHASH: 7663 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 7664 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 7665 } else { 7666 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 7667 return -EINVAL; 7668 } 7669 break; 7670 case BPF_MAP_TYPE_BLOOM_FILTER: 7671 if (meta->func_id == BPF_FUNC_map_peek_elem) 7672 *arg_type = ARG_PTR_TO_MAP_VALUE; 7673 break; 7674 default: 7675 break; 7676 } 7677 return 0; 7678 } 7679 7680 struct bpf_reg_types { 7681 const enum bpf_reg_type types[10]; 7682 u32 *btf_id; 7683 }; 7684 7685 static const struct bpf_reg_types sock_types = { 7686 .types = { 7687 PTR_TO_SOCK_COMMON, 7688 PTR_TO_SOCKET, 7689 PTR_TO_TCP_SOCK, 7690 PTR_TO_XDP_SOCK, 7691 }, 7692 }; 7693 7694 #ifdef CONFIG_NET 7695 static const struct bpf_reg_types btf_id_sock_common_types = { 7696 .types = { 7697 PTR_TO_SOCK_COMMON, 7698 PTR_TO_SOCKET, 7699 PTR_TO_TCP_SOCK, 7700 PTR_TO_XDP_SOCK, 7701 PTR_TO_BTF_ID, 7702 PTR_TO_BTF_ID | PTR_TRUSTED, 7703 }, 7704 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 7705 }; 7706 #endif 7707 7708 static const struct bpf_reg_types mem_types = { 7709 .types = { 7710 PTR_TO_STACK, 7711 PTR_TO_PACKET, 7712 PTR_TO_PACKET_META, 7713 PTR_TO_MAP_KEY, 7714 PTR_TO_MAP_VALUE, 7715 PTR_TO_MEM, 7716 PTR_TO_MEM | MEM_RINGBUF, 7717 PTR_TO_BUF, 7718 PTR_TO_BTF_ID | PTR_TRUSTED, 7719 }, 7720 }; 7721 7722 static const struct bpf_reg_types int_ptr_types = { 7723 .types = { 7724 PTR_TO_STACK, 7725 PTR_TO_PACKET, 7726 PTR_TO_PACKET_META, 7727 PTR_TO_MAP_KEY, 7728 PTR_TO_MAP_VALUE, 7729 }, 7730 }; 7731 7732 static const struct bpf_reg_types spin_lock_types = { 7733 .types = { 7734 PTR_TO_MAP_VALUE, 7735 PTR_TO_BTF_ID | MEM_ALLOC, 7736 } 7737 }; 7738 7739 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 7740 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 7741 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 7742 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 7743 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 7744 static const struct bpf_reg_types btf_ptr_types = { 7745 .types = { 7746 PTR_TO_BTF_ID, 7747 PTR_TO_BTF_ID | PTR_TRUSTED, 7748 PTR_TO_BTF_ID | MEM_RCU, 7749 }, 7750 }; 7751 static const struct bpf_reg_types percpu_btf_ptr_types = { 7752 .types = { 7753 PTR_TO_BTF_ID | MEM_PERCPU, 7754 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 7755 } 7756 }; 7757 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 7758 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 7759 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7760 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 7761 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 7762 static const struct bpf_reg_types dynptr_types = { 7763 .types = { 7764 PTR_TO_STACK, 7765 CONST_PTR_TO_DYNPTR, 7766 } 7767 }; 7768 7769 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 7770 [ARG_PTR_TO_MAP_KEY] = &mem_types, 7771 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 7772 [ARG_CONST_SIZE] = &scalar_types, 7773 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 7774 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 7775 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 7776 [ARG_PTR_TO_CTX] = &context_types, 7777 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 7778 #ifdef CONFIG_NET 7779 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 7780 #endif 7781 [ARG_PTR_TO_SOCKET] = &fullsock_types, 7782 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 7783 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 7784 [ARG_PTR_TO_MEM] = &mem_types, 7785 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 7786 [ARG_PTR_TO_INT] = &int_ptr_types, 7787 [ARG_PTR_TO_LONG] = &int_ptr_types, 7788 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 7789 [ARG_PTR_TO_FUNC] = &func_ptr_types, 7790 [ARG_PTR_TO_STACK] = &stack_ptr_types, 7791 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 7792 [ARG_PTR_TO_TIMER] = &timer_types, 7793 [ARG_PTR_TO_KPTR] = &kptr_types, 7794 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 7795 }; 7796 7797 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 7798 enum bpf_arg_type arg_type, 7799 const u32 *arg_btf_id, 7800 struct bpf_call_arg_meta *meta) 7801 { 7802 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7803 enum bpf_reg_type expected, type = reg->type; 7804 const struct bpf_reg_types *compatible; 7805 int i, j; 7806 7807 compatible = compatible_reg_types[base_type(arg_type)]; 7808 if (!compatible) { 7809 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 7810 return -EFAULT; 7811 } 7812 7813 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 7814 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 7815 * 7816 * Same for MAYBE_NULL: 7817 * 7818 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 7819 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 7820 * 7821 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 7822 * 7823 * Therefore we fold these flags depending on the arg_type before comparison. 7824 */ 7825 if (arg_type & MEM_RDONLY) 7826 type &= ~MEM_RDONLY; 7827 if (arg_type & PTR_MAYBE_NULL) 7828 type &= ~PTR_MAYBE_NULL; 7829 if (base_type(arg_type) == ARG_PTR_TO_MEM) 7830 type &= ~DYNPTR_TYPE_FLAG_MASK; 7831 7832 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 7833 type &= ~MEM_ALLOC; 7834 7835 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 7836 expected = compatible->types[i]; 7837 if (expected == NOT_INIT) 7838 break; 7839 7840 if (type == expected) 7841 goto found; 7842 } 7843 7844 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 7845 for (j = 0; j + 1 < i; j++) 7846 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 7847 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 7848 return -EACCES; 7849 7850 found: 7851 if (base_type(reg->type) != PTR_TO_BTF_ID) 7852 return 0; 7853 7854 if (compatible == &mem_types) { 7855 if (!(arg_type & MEM_RDONLY)) { 7856 verbose(env, 7857 "%s() may write into memory pointed by R%d type=%s\n", 7858 func_id_name(meta->func_id), 7859 regno, reg_type_str(env, reg->type)); 7860 return -EACCES; 7861 } 7862 return 0; 7863 } 7864 7865 switch ((int)reg->type) { 7866 case PTR_TO_BTF_ID: 7867 case PTR_TO_BTF_ID | PTR_TRUSTED: 7868 case PTR_TO_BTF_ID | MEM_RCU: 7869 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 7870 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 7871 { 7872 /* For bpf_sk_release, it needs to match against first member 7873 * 'struct sock_common', hence make an exception for it. This 7874 * allows bpf_sk_release to work for multiple socket types. 7875 */ 7876 bool strict_type_match = arg_type_is_release(arg_type) && 7877 meta->func_id != BPF_FUNC_sk_release; 7878 7879 if (type_may_be_null(reg->type) && 7880 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 7881 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 7882 return -EACCES; 7883 } 7884 7885 if (!arg_btf_id) { 7886 if (!compatible->btf_id) { 7887 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 7888 return -EFAULT; 7889 } 7890 arg_btf_id = compatible->btf_id; 7891 } 7892 7893 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7894 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7895 return -EACCES; 7896 } else { 7897 if (arg_btf_id == BPF_PTR_POISON) { 7898 verbose(env, "verifier internal error:"); 7899 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 7900 regno); 7901 return -EACCES; 7902 } 7903 7904 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 7905 btf_vmlinux, *arg_btf_id, 7906 strict_type_match)) { 7907 verbose(env, "R%d is of type %s but %s is expected\n", 7908 regno, btf_type_name(reg->btf, reg->btf_id), 7909 btf_type_name(btf_vmlinux, *arg_btf_id)); 7910 return -EACCES; 7911 } 7912 } 7913 break; 7914 } 7915 case PTR_TO_BTF_ID | MEM_ALLOC: 7916 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 7917 meta->func_id != BPF_FUNC_kptr_xchg) { 7918 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 7919 return -EFAULT; 7920 } 7921 if (meta->func_id == BPF_FUNC_kptr_xchg) { 7922 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 7923 return -EACCES; 7924 } 7925 break; 7926 case PTR_TO_BTF_ID | MEM_PERCPU: 7927 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 7928 /* Handled by helper specific checks */ 7929 break; 7930 default: 7931 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 7932 return -EFAULT; 7933 } 7934 return 0; 7935 } 7936 7937 static struct btf_field * 7938 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 7939 { 7940 struct btf_field *field; 7941 struct btf_record *rec; 7942 7943 rec = reg_btf_record(reg); 7944 if (!rec) 7945 return NULL; 7946 7947 field = btf_record_find(rec, off, fields); 7948 if (!field) 7949 return NULL; 7950 7951 return field; 7952 } 7953 7954 int check_func_arg_reg_off(struct bpf_verifier_env *env, 7955 const struct bpf_reg_state *reg, int regno, 7956 enum bpf_arg_type arg_type) 7957 { 7958 u32 type = reg->type; 7959 7960 /* When referenced register is passed to release function, its fixed 7961 * offset must be 0. 7962 * 7963 * We will check arg_type_is_release reg has ref_obj_id when storing 7964 * meta->release_regno. 7965 */ 7966 if (arg_type_is_release(arg_type)) { 7967 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 7968 * may not directly point to the object being released, but to 7969 * dynptr pointing to such object, which might be at some offset 7970 * on the stack. In that case, we simply to fallback to the 7971 * default handling. 7972 */ 7973 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 7974 return 0; 7975 7976 /* Doing check_ptr_off_reg check for the offset will catch this 7977 * because fixed_off_ok is false, but checking here allows us 7978 * to give the user a better error message. 7979 */ 7980 if (reg->off) { 7981 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 7982 regno); 7983 return -EINVAL; 7984 } 7985 return __check_ptr_off_reg(env, reg, regno, false); 7986 } 7987 7988 switch (type) { 7989 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 7990 case PTR_TO_STACK: 7991 case PTR_TO_PACKET: 7992 case PTR_TO_PACKET_META: 7993 case PTR_TO_MAP_KEY: 7994 case PTR_TO_MAP_VALUE: 7995 case PTR_TO_MEM: 7996 case PTR_TO_MEM | MEM_RDONLY: 7997 case PTR_TO_MEM | MEM_RINGBUF: 7998 case PTR_TO_BUF: 7999 case PTR_TO_BUF | MEM_RDONLY: 8000 case SCALAR_VALUE: 8001 return 0; 8002 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8003 * fixed offset. 8004 */ 8005 case PTR_TO_BTF_ID: 8006 case PTR_TO_BTF_ID | MEM_ALLOC: 8007 case PTR_TO_BTF_ID | PTR_TRUSTED: 8008 case PTR_TO_BTF_ID | MEM_RCU: 8009 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8010 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8011 /* When referenced PTR_TO_BTF_ID is passed to release function, 8012 * its fixed offset must be 0. In the other cases, fixed offset 8013 * can be non-zero. This was already checked above. So pass 8014 * fixed_off_ok as true to allow fixed offset for all other 8015 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8016 * still need to do checks instead of returning. 8017 */ 8018 return __check_ptr_off_reg(env, reg, regno, true); 8019 default: 8020 return __check_ptr_off_reg(env, reg, regno, false); 8021 } 8022 } 8023 8024 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8025 const struct bpf_func_proto *fn, 8026 struct bpf_reg_state *regs) 8027 { 8028 struct bpf_reg_state *state = NULL; 8029 int i; 8030 8031 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8032 if (arg_type_is_dynptr(fn->arg_type[i])) { 8033 if (state) { 8034 verbose(env, "verifier internal error: multiple dynptr args\n"); 8035 return NULL; 8036 } 8037 state = ®s[BPF_REG_1 + i]; 8038 } 8039 8040 if (!state) 8041 verbose(env, "verifier internal error: no dynptr arg found\n"); 8042 8043 return state; 8044 } 8045 8046 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8047 { 8048 struct bpf_func_state *state = func(env, reg); 8049 int spi; 8050 8051 if (reg->type == CONST_PTR_TO_DYNPTR) 8052 return reg->id; 8053 spi = dynptr_get_spi(env, reg); 8054 if (spi < 0) 8055 return spi; 8056 return state->stack[spi].spilled_ptr.id; 8057 } 8058 8059 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8060 { 8061 struct bpf_func_state *state = func(env, reg); 8062 int spi; 8063 8064 if (reg->type == CONST_PTR_TO_DYNPTR) 8065 return reg->ref_obj_id; 8066 spi = dynptr_get_spi(env, reg); 8067 if (spi < 0) 8068 return spi; 8069 return state->stack[spi].spilled_ptr.ref_obj_id; 8070 } 8071 8072 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8073 struct bpf_reg_state *reg) 8074 { 8075 struct bpf_func_state *state = func(env, reg); 8076 int spi; 8077 8078 if (reg->type == CONST_PTR_TO_DYNPTR) 8079 return reg->dynptr.type; 8080 8081 spi = __get_spi(reg->off); 8082 if (spi < 0) { 8083 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8084 return BPF_DYNPTR_TYPE_INVALID; 8085 } 8086 8087 return state->stack[spi].spilled_ptr.dynptr.type; 8088 } 8089 8090 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8091 struct bpf_call_arg_meta *meta, 8092 const struct bpf_func_proto *fn, 8093 int insn_idx) 8094 { 8095 u32 regno = BPF_REG_1 + arg; 8096 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8097 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8098 enum bpf_reg_type type = reg->type; 8099 u32 *arg_btf_id = NULL; 8100 int err = 0; 8101 8102 if (arg_type == ARG_DONTCARE) 8103 return 0; 8104 8105 err = check_reg_arg(env, regno, SRC_OP); 8106 if (err) 8107 return err; 8108 8109 if (arg_type == ARG_ANYTHING) { 8110 if (is_pointer_value(env, regno)) { 8111 verbose(env, "R%d leaks addr into helper function\n", 8112 regno); 8113 return -EACCES; 8114 } 8115 return 0; 8116 } 8117 8118 if (type_is_pkt_pointer(type) && 8119 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8120 verbose(env, "helper access to the packet is not allowed\n"); 8121 return -EACCES; 8122 } 8123 8124 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8125 err = resolve_map_arg_type(env, meta, &arg_type); 8126 if (err) 8127 return err; 8128 } 8129 8130 if (register_is_null(reg) && type_may_be_null(arg_type)) 8131 /* A NULL register has a SCALAR_VALUE type, so skip 8132 * type checking. 8133 */ 8134 goto skip_type_check; 8135 8136 /* arg_btf_id and arg_size are in a union. */ 8137 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8138 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8139 arg_btf_id = fn->arg_btf_id[arg]; 8140 8141 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8142 if (err) 8143 return err; 8144 8145 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8146 if (err) 8147 return err; 8148 8149 skip_type_check: 8150 if (arg_type_is_release(arg_type)) { 8151 if (arg_type_is_dynptr(arg_type)) { 8152 struct bpf_func_state *state = func(env, reg); 8153 int spi; 8154 8155 /* Only dynptr created on stack can be released, thus 8156 * the get_spi and stack state checks for spilled_ptr 8157 * should only be done before process_dynptr_func for 8158 * PTR_TO_STACK. 8159 */ 8160 if (reg->type == PTR_TO_STACK) { 8161 spi = dynptr_get_spi(env, reg); 8162 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8163 verbose(env, "arg %d is an unacquired reference\n", regno); 8164 return -EINVAL; 8165 } 8166 } else { 8167 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8168 return -EINVAL; 8169 } 8170 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8171 verbose(env, "R%d must be referenced when passed to release function\n", 8172 regno); 8173 return -EINVAL; 8174 } 8175 if (meta->release_regno) { 8176 verbose(env, "verifier internal error: more than one release argument\n"); 8177 return -EFAULT; 8178 } 8179 meta->release_regno = regno; 8180 } 8181 8182 if (reg->ref_obj_id) { 8183 if (meta->ref_obj_id) { 8184 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8185 regno, reg->ref_obj_id, 8186 meta->ref_obj_id); 8187 return -EFAULT; 8188 } 8189 meta->ref_obj_id = reg->ref_obj_id; 8190 } 8191 8192 switch (base_type(arg_type)) { 8193 case ARG_CONST_MAP_PTR: 8194 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8195 if (meta->map_ptr) { 8196 /* Use map_uid (which is unique id of inner map) to reject: 8197 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8198 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8199 * if (inner_map1 && inner_map2) { 8200 * timer = bpf_map_lookup_elem(inner_map1); 8201 * if (timer) 8202 * // mismatch would have been allowed 8203 * bpf_timer_init(timer, inner_map2); 8204 * } 8205 * 8206 * Comparing map_ptr is enough to distinguish normal and outer maps. 8207 */ 8208 if (meta->map_ptr != reg->map_ptr || 8209 meta->map_uid != reg->map_uid) { 8210 verbose(env, 8211 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8212 meta->map_uid, reg->map_uid); 8213 return -EINVAL; 8214 } 8215 } 8216 meta->map_ptr = reg->map_ptr; 8217 meta->map_uid = reg->map_uid; 8218 break; 8219 case ARG_PTR_TO_MAP_KEY: 8220 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8221 * check that [key, key + map->key_size) are within 8222 * stack limits and initialized 8223 */ 8224 if (!meta->map_ptr) { 8225 /* in function declaration map_ptr must come before 8226 * map_key, so that it's verified and known before 8227 * we have to check map_key here. Otherwise it means 8228 * that kernel subsystem misconfigured verifier 8229 */ 8230 verbose(env, "invalid map_ptr to access map->key\n"); 8231 return -EACCES; 8232 } 8233 err = check_helper_mem_access(env, regno, 8234 meta->map_ptr->key_size, false, 8235 NULL); 8236 break; 8237 case ARG_PTR_TO_MAP_VALUE: 8238 if (type_may_be_null(arg_type) && register_is_null(reg)) 8239 return 0; 8240 8241 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8242 * check [value, value + map->value_size) validity 8243 */ 8244 if (!meta->map_ptr) { 8245 /* kernel subsystem misconfigured verifier */ 8246 verbose(env, "invalid map_ptr to access map->value\n"); 8247 return -EACCES; 8248 } 8249 meta->raw_mode = arg_type & MEM_UNINIT; 8250 err = check_helper_mem_access(env, regno, 8251 meta->map_ptr->value_size, false, 8252 meta); 8253 break; 8254 case ARG_PTR_TO_PERCPU_BTF_ID: 8255 if (!reg->btf_id) { 8256 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8257 return -EACCES; 8258 } 8259 meta->ret_btf = reg->btf; 8260 meta->ret_btf_id = reg->btf_id; 8261 break; 8262 case ARG_PTR_TO_SPIN_LOCK: 8263 if (in_rbtree_lock_required_cb(env)) { 8264 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8265 return -EACCES; 8266 } 8267 if (meta->func_id == BPF_FUNC_spin_lock) { 8268 err = process_spin_lock(env, regno, true); 8269 if (err) 8270 return err; 8271 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8272 err = process_spin_lock(env, regno, false); 8273 if (err) 8274 return err; 8275 } else { 8276 verbose(env, "verifier internal error\n"); 8277 return -EFAULT; 8278 } 8279 break; 8280 case ARG_PTR_TO_TIMER: 8281 err = process_timer_func(env, regno, meta); 8282 if (err) 8283 return err; 8284 break; 8285 case ARG_PTR_TO_FUNC: 8286 meta->subprogno = reg->subprogno; 8287 break; 8288 case ARG_PTR_TO_MEM: 8289 /* The access to this pointer is only checked when we hit the 8290 * next is_mem_size argument below. 8291 */ 8292 meta->raw_mode = arg_type & MEM_UNINIT; 8293 if (arg_type & MEM_FIXED_SIZE) { 8294 err = check_helper_mem_access(env, regno, 8295 fn->arg_size[arg], false, 8296 meta); 8297 } 8298 break; 8299 case ARG_CONST_SIZE: 8300 err = check_mem_size_reg(env, reg, regno, false, meta); 8301 break; 8302 case ARG_CONST_SIZE_OR_ZERO: 8303 err = check_mem_size_reg(env, reg, regno, true, meta); 8304 break; 8305 case ARG_PTR_TO_DYNPTR: 8306 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8307 if (err) 8308 return err; 8309 break; 8310 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8311 if (!tnum_is_const(reg->var_off)) { 8312 verbose(env, "R%d is not a known constant'\n", 8313 regno); 8314 return -EACCES; 8315 } 8316 meta->mem_size = reg->var_off.value; 8317 err = mark_chain_precision(env, regno); 8318 if (err) 8319 return err; 8320 break; 8321 case ARG_PTR_TO_INT: 8322 case ARG_PTR_TO_LONG: 8323 { 8324 int size = int_ptr_type_to_size(arg_type); 8325 8326 err = check_helper_mem_access(env, regno, size, false, meta); 8327 if (err) 8328 return err; 8329 err = check_ptr_alignment(env, reg, 0, size, true); 8330 break; 8331 } 8332 case ARG_PTR_TO_CONST_STR: 8333 { 8334 struct bpf_map *map = reg->map_ptr; 8335 int map_off; 8336 u64 map_addr; 8337 char *str_ptr; 8338 8339 if (!bpf_map_is_rdonly(map)) { 8340 verbose(env, "R%d does not point to a readonly map'\n", regno); 8341 return -EACCES; 8342 } 8343 8344 if (!tnum_is_const(reg->var_off)) { 8345 verbose(env, "R%d is not a constant address'\n", regno); 8346 return -EACCES; 8347 } 8348 8349 if (!map->ops->map_direct_value_addr) { 8350 verbose(env, "no direct value access support for this map type\n"); 8351 return -EACCES; 8352 } 8353 8354 err = check_map_access(env, regno, reg->off, 8355 map->value_size - reg->off, false, 8356 ACCESS_HELPER); 8357 if (err) 8358 return err; 8359 8360 map_off = reg->off + reg->var_off.value; 8361 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8362 if (err) { 8363 verbose(env, "direct value access on string failed\n"); 8364 return err; 8365 } 8366 8367 str_ptr = (char *)(long)(map_addr); 8368 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8369 verbose(env, "string is not zero-terminated\n"); 8370 return -EINVAL; 8371 } 8372 break; 8373 } 8374 case ARG_PTR_TO_KPTR: 8375 err = process_kptr_func(env, regno, meta); 8376 if (err) 8377 return err; 8378 break; 8379 } 8380 8381 return err; 8382 } 8383 8384 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8385 { 8386 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8387 enum bpf_prog_type type = resolve_prog_type(env->prog); 8388 8389 if (func_id != BPF_FUNC_map_update_elem) 8390 return false; 8391 8392 /* It's not possible to get access to a locked struct sock in these 8393 * contexts, so updating is safe. 8394 */ 8395 switch (type) { 8396 case BPF_PROG_TYPE_TRACING: 8397 if (eatype == BPF_TRACE_ITER) 8398 return true; 8399 break; 8400 case BPF_PROG_TYPE_SOCKET_FILTER: 8401 case BPF_PROG_TYPE_SCHED_CLS: 8402 case BPF_PROG_TYPE_SCHED_ACT: 8403 case BPF_PROG_TYPE_XDP: 8404 case BPF_PROG_TYPE_SK_REUSEPORT: 8405 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8406 case BPF_PROG_TYPE_SK_LOOKUP: 8407 return true; 8408 default: 8409 break; 8410 } 8411 8412 verbose(env, "cannot update sockmap in this context\n"); 8413 return false; 8414 } 8415 8416 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8417 { 8418 return env->prog->jit_requested && 8419 bpf_jit_supports_subprog_tailcalls(); 8420 } 8421 8422 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8423 struct bpf_map *map, int func_id) 8424 { 8425 if (!map) 8426 return 0; 8427 8428 /* We need a two way check, first is from map perspective ... */ 8429 switch (map->map_type) { 8430 case BPF_MAP_TYPE_PROG_ARRAY: 8431 if (func_id != BPF_FUNC_tail_call) 8432 goto error; 8433 break; 8434 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8435 if (func_id != BPF_FUNC_perf_event_read && 8436 func_id != BPF_FUNC_perf_event_output && 8437 func_id != BPF_FUNC_skb_output && 8438 func_id != BPF_FUNC_perf_event_read_value && 8439 func_id != BPF_FUNC_xdp_output) 8440 goto error; 8441 break; 8442 case BPF_MAP_TYPE_RINGBUF: 8443 if (func_id != BPF_FUNC_ringbuf_output && 8444 func_id != BPF_FUNC_ringbuf_reserve && 8445 func_id != BPF_FUNC_ringbuf_query && 8446 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8447 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8448 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8449 goto error; 8450 break; 8451 case BPF_MAP_TYPE_USER_RINGBUF: 8452 if (func_id != BPF_FUNC_user_ringbuf_drain) 8453 goto error; 8454 break; 8455 case BPF_MAP_TYPE_STACK_TRACE: 8456 if (func_id != BPF_FUNC_get_stackid) 8457 goto error; 8458 break; 8459 case BPF_MAP_TYPE_CGROUP_ARRAY: 8460 if (func_id != BPF_FUNC_skb_under_cgroup && 8461 func_id != BPF_FUNC_current_task_under_cgroup) 8462 goto error; 8463 break; 8464 case BPF_MAP_TYPE_CGROUP_STORAGE: 8465 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8466 if (func_id != BPF_FUNC_get_local_storage) 8467 goto error; 8468 break; 8469 case BPF_MAP_TYPE_DEVMAP: 8470 case BPF_MAP_TYPE_DEVMAP_HASH: 8471 if (func_id != BPF_FUNC_redirect_map && 8472 func_id != BPF_FUNC_map_lookup_elem) 8473 goto error; 8474 break; 8475 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8476 * appear. 8477 */ 8478 case BPF_MAP_TYPE_CPUMAP: 8479 if (func_id != BPF_FUNC_redirect_map) 8480 goto error; 8481 break; 8482 case BPF_MAP_TYPE_XSKMAP: 8483 if (func_id != BPF_FUNC_redirect_map && 8484 func_id != BPF_FUNC_map_lookup_elem) 8485 goto error; 8486 break; 8487 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8488 case BPF_MAP_TYPE_HASH_OF_MAPS: 8489 if (func_id != BPF_FUNC_map_lookup_elem) 8490 goto error; 8491 break; 8492 case BPF_MAP_TYPE_SOCKMAP: 8493 if (func_id != BPF_FUNC_sk_redirect_map && 8494 func_id != BPF_FUNC_sock_map_update && 8495 func_id != BPF_FUNC_map_delete_elem && 8496 func_id != BPF_FUNC_msg_redirect_map && 8497 func_id != BPF_FUNC_sk_select_reuseport && 8498 func_id != BPF_FUNC_map_lookup_elem && 8499 !may_update_sockmap(env, func_id)) 8500 goto error; 8501 break; 8502 case BPF_MAP_TYPE_SOCKHASH: 8503 if (func_id != BPF_FUNC_sk_redirect_hash && 8504 func_id != BPF_FUNC_sock_hash_update && 8505 func_id != BPF_FUNC_map_delete_elem && 8506 func_id != BPF_FUNC_msg_redirect_hash && 8507 func_id != BPF_FUNC_sk_select_reuseport && 8508 func_id != BPF_FUNC_map_lookup_elem && 8509 !may_update_sockmap(env, func_id)) 8510 goto error; 8511 break; 8512 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8513 if (func_id != BPF_FUNC_sk_select_reuseport) 8514 goto error; 8515 break; 8516 case BPF_MAP_TYPE_QUEUE: 8517 case BPF_MAP_TYPE_STACK: 8518 if (func_id != BPF_FUNC_map_peek_elem && 8519 func_id != BPF_FUNC_map_pop_elem && 8520 func_id != BPF_FUNC_map_push_elem) 8521 goto error; 8522 break; 8523 case BPF_MAP_TYPE_SK_STORAGE: 8524 if (func_id != BPF_FUNC_sk_storage_get && 8525 func_id != BPF_FUNC_sk_storage_delete && 8526 func_id != BPF_FUNC_kptr_xchg) 8527 goto error; 8528 break; 8529 case BPF_MAP_TYPE_INODE_STORAGE: 8530 if (func_id != BPF_FUNC_inode_storage_get && 8531 func_id != BPF_FUNC_inode_storage_delete && 8532 func_id != BPF_FUNC_kptr_xchg) 8533 goto error; 8534 break; 8535 case BPF_MAP_TYPE_TASK_STORAGE: 8536 if (func_id != BPF_FUNC_task_storage_get && 8537 func_id != BPF_FUNC_task_storage_delete && 8538 func_id != BPF_FUNC_kptr_xchg) 8539 goto error; 8540 break; 8541 case BPF_MAP_TYPE_CGRP_STORAGE: 8542 if (func_id != BPF_FUNC_cgrp_storage_get && 8543 func_id != BPF_FUNC_cgrp_storage_delete && 8544 func_id != BPF_FUNC_kptr_xchg) 8545 goto error; 8546 break; 8547 case BPF_MAP_TYPE_BLOOM_FILTER: 8548 if (func_id != BPF_FUNC_map_peek_elem && 8549 func_id != BPF_FUNC_map_push_elem) 8550 goto error; 8551 break; 8552 default: 8553 break; 8554 } 8555 8556 /* ... and second from the function itself. */ 8557 switch (func_id) { 8558 case BPF_FUNC_tail_call: 8559 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8560 goto error; 8561 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8562 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8563 return -EINVAL; 8564 } 8565 break; 8566 case BPF_FUNC_perf_event_read: 8567 case BPF_FUNC_perf_event_output: 8568 case BPF_FUNC_perf_event_read_value: 8569 case BPF_FUNC_skb_output: 8570 case BPF_FUNC_xdp_output: 8571 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8572 goto error; 8573 break; 8574 case BPF_FUNC_ringbuf_output: 8575 case BPF_FUNC_ringbuf_reserve: 8576 case BPF_FUNC_ringbuf_query: 8577 case BPF_FUNC_ringbuf_reserve_dynptr: 8578 case BPF_FUNC_ringbuf_submit_dynptr: 8579 case BPF_FUNC_ringbuf_discard_dynptr: 8580 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8581 goto error; 8582 break; 8583 case BPF_FUNC_user_ringbuf_drain: 8584 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8585 goto error; 8586 break; 8587 case BPF_FUNC_get_stackid: 8588 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8589 goto error; 8590 break; 8591 case BPF_FUNC_current_task_under_cgroup: 8592 case BPF_FUNC_skb_under_cgroup: 8593 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8594 goto error; 8595 break; 8596 case BPF_FUNC_redirect_map: 8597 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8598 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8599 map->map_type != BPF_MAP_TYPE_CPUMAP && 8600 map->map_type != BPF_MAP_TYPE_XSKMAP) 8601 goto error; 8602 break; 8603 case BPF_FUNC_sk_redirect_map: 8604 case BPF_FUNC_msg_redirect_map: 8605 case BPF_FUNC_sock_map_update: 8606 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8607 goto error; 8608 break; 8609 case BPF_FUNC_sk_redirect_hash: 8610 case BPF_FUNC_msg_redirect_hash: 8611 case BPF_FUNC_sock_hash_update: 8612 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8613 goto error; 8614 break; 8615 case BPF_FUNC_get_local_storage: 8616 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8617 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8618 goto error; 8619 break; 8620 case BPF_FUNC_sk_select_reuseport: 8621 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8622 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8623 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8624 goto error; 8625 break; 8626 case BPF_FUNC_map_pop_elem: 8627 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8628 map->map_type != BPF_MAP_TYPE_STACK) 8629 goto error; 8630 break; 8631 case BPF_FUNC_map_peek_elem: 8632 case BPF_FUNC_map_push_elem: 8633 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8634 map->map_type != BPF_MAP_TYPE_STACK && 8635 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8636 goto error; 8637 break; 8638 case BPF_FUNC_map_lookup_percpu_elem: 8639 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8640 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8641 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8642 goto error; 8643 break; 8644 case BPF_FUNC_sk_storage_get: 8645 case BPF_FUNC_sk_storage_delete: 8646 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8647 goto error; 8648 break; 8649 case BPF_FUNC_inode_storage_get: 8650 case BPF_FUNC_inode_storage_delete: 8651 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8652 goto error; 8653 break; 8654 case BPF_FUNC_task_storage_get: 8655 case BPF_FUNC_task_storage_delete: 8656 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8657 goto error; 8658 break; 8659 case BPF_FUNC_cgrp_storage_get: 8660 case BPF_FUNC_cgrp_storage_delete: 8661 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8662 goto error; 8663 break; 8664 default: 8665 break; 8666 } 8667 8668 return 0; 8669 error: 8670 verbose(env, "cannot pass map_type %d into func %s#%d\n", 8671 map->map_type, func_id_name(func_id), func_id); 8672 return -EINVAL; 8673 } 8674 8675 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 8676 { 8677 int count = 0; 8678 8679 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 8680 count++; 8681 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 8682 count++; 8683 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 8684 count++; 8685 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 8686 count++; 8687 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 8688 count++; 8689 8690 /* We only support one arg being in raw mode at the moment, 8691 * which is sufficient for the helper functions we have 8692 * right now. 8693 */ 8694 return count <= 1; 8695 } 8696 8697 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 8698 { 8699 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 8700 bool has_size = fn->arg_size[arg] != 0; 8701 bool is_next_size = false; 8702 8703 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 8704 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 8705 8706 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 8707 return is_next_size; 8708 8709 return has_size == is_next_size || is_next_size == is_fixed; 8710 } 8711 8712 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 8713 { 8714 /* bpf_xxx(..., buf, len) call will access 'len' 8715 * bytes from memory 'buf'. Both arg types need 8716 * to be paired, so make sure there's no buggy 8717 * helper function specification. 8718 */ 8719 if (arg_type_is_mem_size(fn->arg1_type) || 8720 check_args_pair_invalid(fn, 0) || 8721 check_args_pair_invalid(fn, 1) || 8722 check_args_pair_invalid(fn, 2) || 8723 check_args_pair_invalid(fn, 3) || 8724 check_args_pair_invalid(fn, 4)) 8725 return false; 8726 8727 return true; 8728 } 8729 8730 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 8731 { 8732 int i; 8733 8734 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 8735 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 8736 return !!fn->arg_btf_id[i]; 8737 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 8738 return fn->arg_btf_id[i] == BPF_PTR_POISON; 8739 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 8740 /* arg_btf_id and arg_size are in a union. */ 8741 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 8742 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 8743 return false; 8744 } 8745 8746 return true; 8747 } 8748 8749 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 8750 { 8751 return check_raw_mode_ok(fn) && 8752 check_arg_pair_ok(fn) && 8753 check_btf_id_ok(fn) ? 0 : -EINVAL; 8754 } 8755 8756 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 8757 * are now invalid, so turn them into unknown SCALAR_VALUE. 8758 * 8759 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 8760 * since these slices point to packet data. 8761 */ 8762 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 8763 { 8764 struct bpf_func_state *state; 8765 struct bpf_reg_state *reg; 8766 8767 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8768 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 8769 mark_reg_invalid(env, reg); 8770 })); 8771 } 8772 8773 enum { 8774 AT_PKT_END = -1, 8775 BEYOND_PKT_END = -2, 8776 }; 8777 8778 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 8779 { 8780 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8781 struct bpf_reg_state *reg = &state->regs[regn]; 8782 8783 if (reg->type != PTR_TO_PACKET) 8784 /* PTR_TO_PACKET_META is not supported yet */ 8785 return; 8786 8787 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 8788 * How far beyond pkt_end it goes is unknown. 8789 * if (!range_open) it's the case of pkt >= pkt_end 8790 * if (range_open) it's the case of pkt > pkt_end 8791 * hence this pointer is at least 1 byte bigger than pkt_end 8792 */ 8793 if (range_open) 8794 reg->range = BEYOND_PKT_END; 8795 else 8796 reg->range = AT_PKT_END; 8797 } 8798 8799 /* The pointer with the specified id has released its reference to kernel 8800 * resources. Identify all copies of the same pointer and clear the reference. 8801 */ 8802 static int release_reference(struct bpf_verifier_env *env, 8803 int ref_obj_id) 8804 { 8805 struct bpf_func_state *state; 8806 struct bpf_reg_state *reg; 8807 int err; 8808 8809 err = release_reference_state(cur_func(env), ref_obj_id); 8810 if (err) 8811 return err; 8812 8813 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 8814 if (reg->ref_obj_id == ref_obj_id) 8815 mark_reg_invalid(env, reg); 8816 })); 8817 8818 return 0; 8819 } 8820 8821 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 8822 { 8823 struct bpf_func_state *unused; 8824 struct bpf_reg_state *reg; 8825 8826 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 8827 if (type_is_non_owning_ref(reg->type)) 8828 mark_reg_invalid(env, reg); 8829 })); 8830 } 8831 8832 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 8833 struct bpf_reg_state *regs) 8834 { 8835 int i; 8836 8837 /* after the call registers r0 - r5 were scratched */ 8838 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8839 mark_reg_not_init(env, regs, caller_saved[i]); 8840 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8841 } 8842 } 8843 8844 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 8845 struct bpf_func_state *caller, 8846 struct bpf_func_state *callee, 8847 int insn_idx); 8848 8849 static int set_callee_state(struct bpf_verifier_env *env, 8850 struct bpf_func_state *caller, 8851 struct bpf_func_state *callee, int insn_idx); 8852 8853 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8854 int *insn_idx, int subprog, 8855 set_callee_state_fn set_callee_state_cb) 8856 { 8857 struct bpf_verifier_state *state = env->cur_state; 8858 struct bpf_func_state *caller, *callee; 8859 int err; 8860 8861 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 8862 verbose(env, "the call stack of %d frames is too deep\n", 8863 state->curframe + 2); 8864 return -E2BIG; 8865 } 8866 8867 caller = state->frame[state->curframe]; 8868 if (state->frame[state->curframe + 1]) { 8869 verbose(env, "verifier bug. Frame %d already allocated\n", 8870 state->curframe + 1); 8871 return -EFAULT; 8872 } 8873 8874 err = btf_check_subprog_call(env, subprog, caller->regs); 8875 if (err == -EFAULT) 8876 return err; 8877 if (subprog_is_global(env, subprog)) { 8878 if (err) { 8879 verbose(env, "Caller passes invalid args into func#%d\n", 8880 subprog); 8881 return err; 8882 } else { 8883 if (env->log.level & BPF_LOG_LEVEL) 8884 verbose(env, 8885 "Func#%d is global and valid. Skipping.\n", 8886 subprog); 8887 clear_caller_saved_regs(env, caller->regs); 8888 8889 /* All global functions return a 64-bit SCALAR_VALUE */ 8890 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8891 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8892 8893 /* continue with next insn after call */ 8894 return 0; 8895 } 8896 } 8897 8898 /* set_callee_state is used for direct subprog calls, but we are 8899 * interested in validating only BPF helpers that can call subprogs as 8900 * callbacks 8901 */ 8902 if (set_callee_state_cb != set_callee_state) { 8903 if (bpf_pseudo_kfunc_call(insn) && 8904 !is_callback_calling_kfunc(insn->imm)) { 8905 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 8906 func_id_name(insn->imm), insn->imm); 8907 return -EFAULT; 8908 } else if (!bpf_pseudo_kfunc_call(insn) && 8909 !is_callback_calling_function(insn->imm)) { /* helper */ 8910 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 8911 func_id_name(insn->imm), insn->imm); 8912 return -EFAULT; 8913 } 8914 } 8915 8916 if (insn->code == (BPF_JMP | BPF_CALL) && 8917 insn->src_reg == 0 && 8918 insn->imm == BPF_FUNC_timer_set_callback) { 8919 struct bpf_verifier_state *async_cb; 8920 8921 /* there is no real recursion here. timer callbacks are async */ 8922 env->subprog_info[subprog].is_async_cb = true; 8923 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 8924 *insn_idx, subprog); 8925 if (!async_cb) 8926 return -EFAULT; 8927 callee = async_cb->frame[0]; 8928 callee->async_entry_cnt = caller->async_entry_cnt + 1; 8929 8930 /* Convert bpf_timer_set_callback() args into timer callback args */ 8931 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8932 if (err) 8933 return err; 8934 8935 clear_caller_saved_regs(env, caller->regs); 8936 mark_reg_unknown(env, caller->regs, BPF_REG_0); 8937 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8938 /* continue with next insn after call */ 8939 return 0; 8940 } 8941 8942 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 8943 if (!callee) 8944 return -ENOMEM; 8945 state->frame[state->curframe + 1] = callee; 8946 8947 /* callee cannot access r0, r6 - r9 for reading and has to write 8948 * into its own stack before reading from it. 8949 * callee can read/write into caller's stack 8950 */ 8951 init_func_state(env, callee, 8952 /* remember the callsite, it will be used by bpf_exit */ 8953 *insn_idx /* callsite */, 8954 state->curframe + 1 /* frameno within this callchain */, 8955 subprog /* subprog number within this prog */); 8956 8957 /* Transfer references to the callee */ 8958 err = copy_reference_state(callee, caller); 8959 if (err) 8960 goto err_out; 8961 8962 err = set_callee_state_cb(env, caller, callee, *insn_idx); 8963 if (err) 8964 goto err_out; 8965 8966 clear_caller_saved_regs(env, caller->regs); 8967 8968 /* only increment it after check_reg_arg() finished */ 8969 state->curframe++; 8970 8971 /* and go analyze first insn of the callee */ 8972 *insn_idx = env->subprog_info[subprog].start - 1; 8973 8974 if (env->log.level & BPF_LOG_LEVEL) { 8975 verbose(env, "caller:\n"); 8976 print_verifier_state(env, caller, true); 8977 verbose(env, "callee:\n"); 8978 print_verifier_state(env, callee, true); 8979 } 8980 return 0; 8981 8982 err_out: 8983 free_func_state(callee); 8984 state->frame[state->curframe + 1] = NULL; 8985 return err; 8986 } 8987 8988 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 8989 struct bpf_func_state *caller, 8990 struct bpf_func_state *callee) 8991 { 8992 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 8993 * void *callback_ctx, u64 flags); 8994 * callback_fn(struct bpf_map *map, void *key, void *value, 8995 * void *callback_ctx); 8996 */ 8997 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 8998 8999 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9000 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9001 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9002 9003 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9004 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9005 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9006 9007 /* pointer to stack or null */ 9008 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9009 9010 /* unused */ 9011 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9012 return 0; 9013 } 9014 9015 static int set_callee_state(struct bpf_verifier_env *env, 9016 struct bpf_func_state *caller, 9017 struct bpf_func_state *callee, int insn_idx) 9018 { 9019 int i; 9020 9021 /* copy r1 - r5 args that callee can access. The copy includes parent 9022 * pointers, which connects us up to the liveness chain 9023 */ 9024 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9025 callee->regs[i] = caller->regs[i]; 9026 return 0; 9027 } 9028 9029 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9030 int *insn_idx) 9031 { 9032 int subprog, target_insn; 9033 9034 target_insn = *insn_idx + insn->imm + 1; 9035 subprog = find_subprog(env, target_insn); 9036 if (subprog < 0) { 9037 verbose(env, "verifier bug. No program starts at insn %d\n", 9038 target_insn); 9039 return -EFAULT; 9040 } 9041 9042 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 9043 } 9044 9045 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9046 struct bpf_func_state *caller, 9047 struct bpf_func_state *callee, 9048 int insn_idx) 9049 { 9050 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9051 struct bpf_map *map; 9052 int err; 9053 9054 if (bpf_map_ptr_poisoned(insn_aux)) { 9055 verbose(env, "tail_call abusing map_ptr\n"); 9056 return -EINVAL; 9057 } 9058 9059 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9060 if (!map->ops->map_set_for_each_callback_args || 9061 !map->ops->map_for_each_callback) { 9062 verbose(env, "callback function not allowed for map\n"); 9063 return -ENOTSUPP; 9064 } 9065 9066 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9067 if (err) 9068 return err; 9069 9070 callee->in_callback_fn = true; 9071 callee->callback_ret_range = tnum_range(0, 1); 9072 return 0; 9073 } 9074 9075 static int set_loop_callback_state(struct bpf_verifier_env *env, 9076 struct bpf_func_state *caller, 9077 struct bpf_func_state *callee, 9078 int insn_idx) 9079 { 9080 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9081 * u64 flags); 9082 * callback_fn(u32 index, void *callback_ctx); 9083 */ 9084 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9085 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9086 9087 /* unused */ 9088 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9089 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9090 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9091 9092 callee->in_callback_fn = true; 9093 callee->callback_ret_range = tnum_range(0, 1); 9094 return 0; 9095 } 9096 9097 static int set_timer_callback_state(struct bpf_verifier_env *env, 9098 struct bpf_func_state *caller, 9099 struct bpf_func_state *callee, 9100 int insn_idx) 9101 { 9102 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9103 9104 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9105 * callback_fn(struct bpf_map *map, void *key, void *value); 9106 */ 9107 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9108 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9109 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9110 9111 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9112 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9113 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9114 9115 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9116 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9117 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9118 9119 /* unused */ 9120 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9121 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9122 callee->in_async_callback_fn = true; 9123 callee->callback_ret_range = tnum_range(0, 1); 9124 return 0; 9125 } 9126 9127 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9128 struct bpf_func_state *caller, 9129 struct bpf_func_state *callee, 9130 int insn_idx) 9131 { 9132 /* bpf_find_vma(struct task_struct *task, u64 addr, 9133 * void *callback_fn, void *callback_ctx, u64 flags) 9134 * (callback_fn)(struct task_struct *task, 9135 * struct vm_area_struct *vma, void *callback_ctx); 9136 */ 9137 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9138 9139 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9140 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9141 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9142 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9143 9144 /* pointer to stack or null */ 9145 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9146 9147 /* unused */ 9148 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9149 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9150 callee->in_callback_fn = true; 9151 callee->callback_ret_range = tnum_range(0, 1); 9152 return 0; 9153 } 9154 9155 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9156 struct bpf_func_state *caller, 9157 struct bpf_func_state *callee, 9158 int insn_idx) 9159 { 9160 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9161 * callback_ctx, u64 flags); 9162 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9163 */ 9164 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9165 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9166 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9167 9168 /* unused */ 9169 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9170 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9171 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9172 9173 callee->in_callback_fn = true; 9174 callee->callback_ret_range = tnum_range(0, 1); 9175 return 0; 9176 } 9177 9178 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9179 struct bpf_func_state *caller, 9180 struct bpf_func_state *callee, 9181 int insn_idx) 9182 { 9183 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9184 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9185 * 9186 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9187 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9188 * by this point, so look at 'root' 9189 */ 9190 struct btf_field *field; 9191 9192 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9193 BPF_RB_ROOT); 9194 if (!field || !field->graph_root.value_btf_id) 9195 return -EFAULT; 9196 9197 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9198 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9199 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9200 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9201 9202 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9203 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9204 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9205 callee->in_callback_fn = true; 9206 callee->callback_ret_range = tnum_range(0, 1); 9207 return 0; 9208 } 9209 9210 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9211 9212 /* Are we currently verifying the callback for a rbtree helper that must 9213 * be called with lock held? If so, no need to complain about unreleased 9214 * lock 9215 */ 9216 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9217 { 9218 struct bpf_verifier_state *state = env->cur_state; 9219 struct bpf_insn *insn = env->prog->insnsi; 9220 struct bpf_func_state *callee; 9221 int kfunc_btf_id; 9222 9223 if (!state->curframe) 9224 return false; 9225 9226 callee = state->frame[state->curframe]; 9227 9228 if (!callee->in_callback_fn) 9229 return false; 9230 9231 kfunc_btf_id = insn[callee->callsite].imm; 9232 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9233 } 9234 9235 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9236 { 9237 struct bpf_verifier_state *state = env->cur_state; 9238 struct bpf_func_state *caller, *callee; 9239 struct bpf_reg_state *r0; 9240 int err; 9241 9242 callee = state->frame[state->curframe]; 9243 r0 = &callee->regs[BPF_REG_0]; 9244 if (r0->type == PTR_TO_STACK) { 9245 /* technically it's ok to return caller's stack pointer 9246 * (or caller's caller's pointer) back to the caller, 9247 * since these pointers are valid. Only current stack 9248 * pointer will be invalid as soon as function exits, 9249 * but let's be conservative 9250 */ 9251 verbose(env, "cannot return stack pointer to the caller\n"); 9252 return -EINVAL; 9253 } 9254 9255 caller = state->frame[state->curframe - 1]; 9256 if (callee->in_callback_fn) { 9257 /* enforce R0 return value range [0, 1]. */ 9258 struct tnum range = callee->callback_ret_range; 9259 9260 if (r0->type != SCALAR_VALUE) { 9261 verbose(env, "R0 not a scalar value\n"); 9262 return -EACCES; 9263 } 9264 if (!tnum_in(range, r0->var_off)) { 9265 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9266 return -EINVAL; 9267 } 9268 } else { 9269 /* return to the caller whatever r0 had in the callee */ 9270 caller->regs[BPF_REG_0] = *r0; 9271 } 9272 9273 /* callback_fn frame should have released its own additions to parent's 9274 * reference state at this point, or check_reference_leak would 9275 * complain, hence it must be the same as the caller. There is no need 9276 * to copy it back. 9277 */ 9278 if (!callee->in_callback_fn) { 9279 /* Transfer references to the caller */ 9280 err = copy_reference_state(caller, callee); 9281 if (err) 9282 return err; 9283 } 9284 9285 *insn_idx = callee->callsite + 1; 9286 if (env->log.level & BPF_LOG_LEVEL) { 9287 verbose(env, "returning from callee:\n"); 9288 print_verifier_state(env, callee, true); 9289 verbose(env, "to caller at %d:\n", *insn_idx); 9290 print_verifier_state(env, caller, true); 9291 } 9292 /* clear everything in the callee */ 9293 free_func_state(callee); 9294 state->frame[state->curframe--] = NULL; 9295 return 0; 9296 } 9297 9298 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9299 int func_id, 9300 struct bpf_call_arg_meta *meta) 9301 { 9302 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9303 9304 if (ret_type != RET_INTEGER) 9305 return; 9306 9307 switch (func_id) { 9308 case BPF_FUNC_get_stack: 9309 case BPF_FUNC_get_task_stack: 9310 case BPF_FUNC_probe_read_str: 9311 case BPF_FUNC_probe_read_kernel_str: 9312 case BPF_FUNC_probe_read_user_str: 9313 ret_reg->smax_value = meta->msize_max_value; 9314 ret_reg->s32_max_value = meta->msize_max_value; 9315 ret_reg->smin_value = -MAX_ERRNO; 9316 ret_reg->s32_min_value = -MAX_ERRNO; 9317 reg_bounds_sync(ret_reg); 9318 break; 9319 case BPF_FUNC_get_smp_processor_id: 9320 ret_reg->umax_value = nr_cpu_ids - 1; 9321 ret_reg->u32_max_value = nr_cpu_ids - 1; 9322 ret_reg->smax_value = nr_cpu_ids - 1; 9323 ret_reg->s32_max_value = nr_cpu_ids - 1; 9324 ret_reg->umin_value = 0; 9325 ret_reg->u32_min_value = 0; 9326 ret_reg->smin_value = 0; 9327 ret_reg->s32_min_value = 0; 9328 reg_bounds_sync(ret_reg); 9329 break; 9330 } 9331 } 9332 9333 static int 9334 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9335 int func_id, int insn_idx) 9336 { 9337 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9338 struct bpf_map *map = meta->map_ptr; 9339 9340 if (func_id != BPF_FUNC_tail_call && 9341 func_id != BPF_FUNC_map_lookup_elem && 9342 func_id != BPF_FUNC_map_update_elem && 9343 func_id != BPF_FUNC_map_delete_elem && 9344 func_id != BPF_FUNC_map_push_elem && 9345 func_id != BPF_FUNC_map_pop_elem && 9346 func_id != BPF_FUNC_map_peek_elem && 9347 func_id != BPF_FUNC_for_each_map_elem && 9348 func_id != BPF_FUNC_redirect_map && 9349 func_id != BPF_FUNC_map_lookup_percpu_elem) 9350 return 0; 9351 9352 if (map == NULL) { 9353 verbose(env, "kernel subsystem misconfigured verifier\n"); 9354 return -EINVAL; 9355 } 9356 9357 /* In case of read-only, some additional restrictions 9358 * need to be applied in order to prevent altering the 9359 * state of the map from program side. 9360 */ 9361 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9362 (func_id == BPF_FUNC_map_delete_elem || 9363 func_id == BPF_FUNC_map_update_elem || 9364 func_id == BPF_FUNC_map_push_elem || 9365 func_id == BPF_FUNC_map_pop_elem)) { 9366 verbose(env, "write into map forbidden\n"); 9367 return -EACCES; 9368 } 9369 9370 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9371 bpf_map_ptr_store(aux, meta->map_ptr, 9372 !meta->map_ptr->bypass_spec_v1); 9373 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9374 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9375 !meta->map_ptr->bypass_spec_v1); 9376 return 0; 9377 } 9378 9379 static int 9380 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9381 int func_id, int insn_idx) 9382 { 9383 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9384 struct bpf_reg_state *regs = cur_regs(env), *reg; 9385 struct bpf_map *map = meta->map_ptr; 9386 u64 val, max; 9387 int err; 9388 9389 if (func_id != BPF_FUNC_tail_call) 9390 return 0; 9391 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9392 verbose(env, "kernel subsystem misconfigured verifier\n"); 9393 return -EINVAL; 9394 } 9395 9396 reg = ®s[BPF_REG_3]; 9397 val = reg->var_off.value; 9398 max = map->max_entries; 9399 9400 if (!(register_is_const(reg) && val < max)) { 9401 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9402 return 0; 9403 } 9404 9405 err = mark_chain_precision(env, BPF_REG_3); 9406 if (err) 9407 return err; 9408 if (bpf_map_key_unseen(aux)) 9409 bpf_map_key_store(aux, val); 9410 else if (!bpf_map_key_poisoned(aux) && 9411 bpf_map_key_immediate(aux) != val) 9412 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9413 return 0; 9414 } 9415 9416 static int check_reference_leak(struct bpf_verifier_env *env) 9417 { 9418 struct bpf_func_state *state = cur_func(env); 9419 bool refs_lingering = false; 9420 int i; 9421 9422 if (state->frameno && !state->in_callback_fn) 9423 return 0; 9424 9425 for (i = 0; i < state->acquired_refs; i++) { 9426 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9427 continue; 9428 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9429 state->refs[i].id, state->refs[i].insn_idx); 9430 refs_lingering = true; 9431 } 9432 return refs_lingering ? -EINVAL : 0; 9433 } 9434 9435 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9436 struct bpf_reg_state *regs) 9437 { 9438 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9439 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9440 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9441 struct bpf_bprintf_data data = {}; 9442 int err, fmt_map_off, num_args; 9443 u64 fmt_addr; 9444 char *fmt; 9445 9446 /* data must be an array of u64 */ 9447 if (data_len_reg->var_off.value % 8) 9448 return -EINVAL; 9449 num_args = data_len_reg->var_off.value / 8; 9450 9451 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9452 * and map_direct_value_addr is set. 9453 */ 9454 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9455 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9456 fmt_map_off); 9457 if (err) { 9458 verbose(env, "verifier bug\n"); 9459 return -EFAULT; 9460 } 9461 fmt = (char *)(long)fmt_addr + fmt_map_off; 9462 9463 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9464 * can focus on validating the format specifiers. 9465 */ 9466 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9467 if (err < 0) 9468 verbose(env, "Invalid format string\n"); 9469 9470 return err; 9471 } 9472 9473 static int check_get_func_ip(struct bpf_verifier_env *env) 9474 { 9475 enum bpf_prog_type type = resolve_prog_type(env->prog); 9476 int func_id = BPF_FUNC_get_func_ip; 9477 9478 if (type == BPF_PROG_TYPE_TRACING) { 9479 if (!bpf_prog_has_trampoline(env->prog)) { 9480 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9481 func_id_name(func_id), func_id); 9482 return -ENOTSUPP; 9483 } 9484 return 0; 9485 } else if (type == BPF_PROG_TYPE_KPROBE) { 9486 return 0; 9487 } 9488 9489 verbose(env, "func %s#%d not supported for program type %d\n", 9490 func_id_name(func_id), func_id, type); 9491 return -ENOTSUPP; 9492 } 9493 9494 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9495 { 9496 return &env->insn_aux_data[env->insn_idx]; 9497 } 9498 9499 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9500 { 9501 struct bpf_reg_state *regs = cur_regs(env); 9502 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9503 bool reg_is_null = register_is_null(reg); 9504 9505 if (reg_is_null) 9506 mark_chain_precision(env, BPF_REG_4); 9507 9508 return reg_is_null; 9509 } 9510 9511 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9512 { 9513 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9514 9515 if (!state->initialized) { 9516 state->initialized = 1; 9517 state->fit_for_inline = loop_flag_is_zero(env); 9518 state->callback_subprogno = subprogno; 9519 return; 9520 } 9521 9522 if (!state->fit_for_inline) 9523 return; 9524 9525 state->fit_for_inline = (loop_flag_is_zero(env) && 9526 state->callback_subprogno == subprogno); 9527 } 9528 9529 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9530 int *insn_idx_p) 9531 { 9532 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9533 const struct bpf_func_proto *fn = NULL; 9534 enum bpf_return_type ret_type; 9535 enum bpf_type_flag ret_flag; 9536 struct bpf_reg_state *regs; 9537 struct bpf_call_arg_meta meta; 9538 int insn_idx = *insn_idx_p; 9539 bool changes_data; 9540 int i, err, func_id; 9541 9542 /* find function prototype */ 9543 func_id = insn->imm; 9544 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9545 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9546 func_id); 9547 return -EINVAL; 9548 } 9549 9550 if (env->ops->get_func_proto) 9551 fn = env->ops->get_func_proto(func_id, env->prog); 9552 if (!fn) { 9553 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9554 func_id); 9555 return -EINVAL; 9556 } 9557 9558 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9559 if (!env->prog->gpl_compatible && fn->gpl_only) { 9560 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9561 return -EINVAL; 9562 } 9563 9564 if (fn->allowed && !fn->allowed(env->prog)) { 9565 verbose(env, "helper call is not allowed in probe\n"); 9566 return -EINVAL; 9567 } 9568 9569 if (!env->prog->aux->sleepable && fn->might_sleep) { 9570 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9571 return -EINVAL; 9572 } 9573 9574 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9575 changes_data = bpf_helper_changes_pkt_data(fn->func); 9576 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9577 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9578 func_id_name(func_id), func_id); 9579 return -EINVAL; 9580 } 9581 9582 memset(&meta, 0, sizeof(meta)); 9583 meta.pkt_access = fn->pkt_access; 9584 9585 err = check_func_proto(fn, func_id); 9586 if (err) { 9587 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9588 func_id_name(func_id), func_id); 9589 return err; 9590 } 9591 9592 if (env->cur_state->active_rcu_lock) { 9593 if (fn->might_sleep) { 9594 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9595 func_id_name(func_id), func_id); 9596 return -EINVAL; 9597 } 9598 9599 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 9600 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 9601 } 9602 9603 meta.func_id = func_id; 9604 /* check args */ 9605 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 9606 err = check_func_arg(env, i, &meta, fn, insn_idx); 9607 if (err) 9608 return err; 9609 } 9610 9611 err = record_func_map(env, &meta, func_id, insn_idx); 9612 if (err) 9613 return err; 9614 9615 err = record_func_key(env, &meta, func_id, insn_idx); 9616 if (err) 9617 return err; 9618 9619 /* Mark slots with STACK_MISC in case of raw mode, stack offset 9620 * is inferred from register state. 9621 */ 9622 for (i = 0; i < meta.access_size; i++) { 9623 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 9624 BPF_WRITE, -1, false, false); 9625 if (err) 9626 return err; 9627 } 9628 9629 regs = cur_regs(env); 9630 9631 if (meta.release_regno) { 9632 err = -EINVAL; 9633 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 9634 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 9635 * is safe to do directly. 9636 */ 9637 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 9638 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 9639 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 9640 return -EFAULT; 9641 } 9642 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 9643 } else if (meta.ref_obj_id) { 9644 err = release_reference(env, meta.ref_obj_id); 9645 } else if (register_is_null(®s[meta.release_regno])) { 9646 /* meta.ref_obj_id can only be 0 if register that is meant to be 9647 * released is NULL, which must be > R0. 9648 */ 9649 err = 0; 9650 } 9651 if (err) { 9652 verbose(env, "func %s#%d reference has not been acquired before\n", 9653 func_id_name(func_id), func_id); 9654 return err; 9655 } 9656 } 9657 9658 switch (func_id) { 9659 case BPF_FUNC_tail_call: 9660 err = check_reference_leak(env); 9661 if (err) { 9662 verbose(env, "tail_call would lead to reference leak\n"); 9663 return err; 9664 } 9665 break; 9666 case BPF_FUNC_get_local_storage: 9667 /* check that flags argument in get_local_storage(map, flags) is 0, 9668 * this is required because get_local_storage() can't return an error. 9669 */ 9670 if (!register_is_null(®s[BPF_REG_2])) { 9671 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 9672 return -EINVAL; 9673 } 9674 break; 9675 case BPF_FUNC_for_each_map_elem: 9676 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9677 set_map_elem_callback_state); 9678 break; 9679 case BPF_FUNC_timer_set_callback: 9680 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9681 set_timer_callback_state); 9682 break; 9683 case BPF_FUNC_find_vma: 9684 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9685 set_find_vma_callback_state); 9686 break; 9687 case BPF_FUNC_snprintf: 9688 err = check_bpf_snprintf_call(env, regs); 9689 break; 9690 case BPF_FUNC_loop: 9691 update_loop_inline_state(env, meta.subprogno); 9692 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9693 set_loop_callback_state); 9694 break; 9695 case BPF_FUNC_dynptr_from_mem: 9696 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 9697 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 9698 reg_type_str(env, regs[BPF_REG_1].type)); 9699 return -EACCES; 9700 } 9701 break; 9702 case BPF_FUNC_set_retval: 9703 if (prog_type == BPF_PROG_TYPE_LSM && 9704 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 9705 if (!env->prog->aux->attach_func_proto->type) { 9706 /* Make sure programs that attach to void 9707 * hooks don't try to modify return value. 9708 */ 9709 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 9710 return -EINVAL; 9711 } 9712 } 9713 break; 9714 case BPF_FUNC_dynptr_data: 9715 { 9716 struct bpf_reg_state *reg; 9717 int id, ref_obj_id; 9718 9719 reg = get_dynptr_arg_reg(env, fn, regs); 9720 if (!reg) 9721 return -EFAULT; 9722 9723 9724 if (meta.dynptr_id) { 9725 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 9726 return -EFAULT; 9727 } 9728 if (meta.ref_obj_id) { 9729 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 9730 return -EFAULT; 9731 } 9732 9733 id = dynptr_id(env, reg); 9734 if (id < 0) { 9735 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 9736 return id; 9737 } 9738 9739 ref_obj_id = dynptr_ref_obj_id(env, reg); 9740 if (ref_obj_id < 0) { 9741 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 9742 return ref_obj_id; 9743 } 9744 9745 meta.dynptr_id = id; 9746 meta.ref_obj_id = ref_obj_id; 9747 9748 break; 9749 } 9750 case BPF_FUNC_dynptr_write: 9751 { 9752 enum bpf_dynptr_type dynptr_type; 9753 struct bpf_reg_state *reg; 9754 9755 reg = get_dynptr_arg_reg(env, fn, regs); 9756 if (!reg) 9757 return -EFAULT; 9758 9759 dynptr_type = dynptr_get_type(env, reg); 9760 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 9761 return -EFAULT; 9762 9763 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 9764 /* this will trigger clear_all_pkt_pointers(), which will 9765 * invalidate all dynptr slices associated with the skb 9766 */ 9767 changes_data = true; 9768 9769 break; 9770 } 9771 case BPF_FUNC_user_ringbuf_drain: 9772 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9773 set_user_ringbuf_callback_state); 9774 break; 9775 } 9776 9777 if (err) 9778 return err; 9779 9780 /* reset caller saved regs */ 9781 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9782 mark_reg_not_init(env, regs, caller_saved[i]); 9783 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9784 } 9785 9786 /* helper call returns 64-bit value. */ 9787 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9788 9789 /* update return register (already marked as written above) */ 9790 ret_type = fn->ret_type; 9791 ret_flag = type_flag(ret_type); 9792 9793 switch (base_type(ret_type)) { 9794 case RET_INTEGER: 9795 /* sets type to SCALAR_VALUE */ 9796 mark_reg_unknown(env, regs, BPF_REG_0); 9797 break; 9798 case RET_VOID: 9799 regs[BPF_REG_0].type = NOT_INIT; 9800 break; 9801 case RET_PTR_TO_MAP_VALUE: 9802 /* There is no offset yet applied, variable or fixed */ 9803 mark_reg_known_zero(env, regs, BPF_REG_0); 9804 /* remember map_ptr, so that check_map_access() 9805 * can check 'value_size' boundary of memory access 9806 * to map element returned from bpf_map_lookup_elem() 9807 */ 9808 if (meta.map_ptr == NULL) { 9809 verbose(env, 9810 "kernel subsystem misconfigured verifier\n"); 9811 return -EINVAL; 9812 } 9813 regs[BPF_REG_0].map_ptr = meta.map_ptr; 9814 regs[BPF_REG_0].map_uid = meta.map_uid; 9815 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 9816 if (!type_may_be_null(ret_type) && 9817 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 9818 regs[BPF_REG_0].id = ++env->id_gen; 9819 } 9820 break; 9821 case RET_PTR_TO_SOCKET: 9822 mark_reg_known_zero(env, regs, BPF_REG_0); 9823 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 9824 break; 9825 case RET_PTR_TO_SOCK_COMMON: 9826 mark_reg_known_zero(env, regs, BPF_REG_0); 9827 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 9828 break; 9829 case RET_PTR_TO_TCP_SOCK: 9830 mark_reg_known_zero(env, regs, BPF_REG_0); 9831 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 9832 break; 9833 case RET_PTR_TO_MEM: 9834 mark_reg_known_zero(env, regs, BPF_REG_0); 9835 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9836 regs[BPF_REG_0].mem_size = meta.mem_size; 9837 break; 9838 case RET_PTR_TO_MEM_OR_BTF_ID: 9839 { 9840 const struct btf_type *t; 9841 9842 mark_reg_known_zero(env, regs, BPF_REG_0); 9843 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 9844 if (!btf_type_is_struct(t)) { 9845 u32 tsize; 9846 const struct btf_type *ret; 9847 const char *tname; 9848 9849 /* resolve the type size of ksym. */ 9850 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 9851 if (IS_ERR(ret)) { 9852 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 9853 verbose(env, "unable to resolve the size of type '%s': %ld\n", 9854 tname, PTR_ERR(ret)); 9855 return -EINVAL; 9856 } 9857 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 9858 regs[BPF_REG_0].mem_size = tsize; 9859 } else { 9860 /* MEM_RDONLY may be carried from ret_flag, but it 9861 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 9862 * it will confuse the check of PTR_TO_BTF_ID in 9863 * check_mem_access(). 9864 */ 9865 ret_flag &= ~MEM_RDONLY; 9866 9867 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9868 regs[BPF_REG_0].btf = meta.ret_btf; 9869 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9870 } 9871 break; 9872 } 9873 case RET_PTR_TO_BTF_ID: 9874 { 9875 struct btf *ret_btf; 9876 int ret_btf_id; 9877 9878 mark_reg_known_zero(env, regs, BPF_REG_0); 9879 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 9880 if (func_id == BPF_FUNC_kptr_xchg) { 9881 ret_btf = meta.kptr_field->kptr.btf; 9882 ret_btf_id = meta.kptr_field->kptr.btf_id; 9883 if (!btf_is_kernel(ret_btf)) 9884 regs[BPF_REG_0].type |= MEM_ALLOC; 9885 } else { 9886 if (fn->ret_btf_id == BPF_PTR_POISON) { 9887 verbose(env, "verifier internal error:"); 9888 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 9889 func_id_name(func_id)); 9890 return -EINVAL; 9891 } 9892 ret_btf = btf_vmlinux; 9893 ret_btf_id = *fn->ret_btf_id; 9894 } 9895 if (ret_btf_id == 0) { 9896 verbose(env, "invalid return type %u of func %s#%d\n", 9897 base_type(ret_type), func_id_name(func_id), 9898 func_id); 9899 return -EINVAL; 9900 } 9901 regs[BPF_REG_0].btf = ret_btf; 9902 regs[BPF_REG_0].btf_id = ret_btf_id; 9903 break; 9904 } 9905 default: 9906 verbose(env, "unknown return type %u of func %s#%d\n", 9907 base_type(ret_type), func_id_name(func_id), func_id); 9908 return -EINVAL; 9909 } 9910 9911 if (type_may_be_null(regs[BPF_REG_0].type)) 9912 regs[BPF_REG_0].id = ++env->id_gen; 9913 9914 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 9915 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 9916 func_id_name(func_id), func_id); 9917 return -EFAULT; 9918 } 9919 9920 if (is_dynptr_ref_function(func_id)) 9921 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 9922 9923 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 9924 /* For release_reference() */ 9925 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 9926 } else if (is_acquire_function(func_id, meta.map_ptr)) { 9927 int id = acquire_reference_state(env, insn_idx); 9928 9929 if (id < 0) 9930 return id; 9931 /* For mark_ptr_or_null_reg() */ 9932 regs[BPF_REG_0].id = id; 9933 /* For release_reference() */ 9934 regs[BPF_REG_0].ref_obj_id = id; 9935 } 9936 9937 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 9938 9939 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 9940 if (err) 9941 return err; 9942 9943 if ((func_id == BPF_FUNC_get_stack || 9944 func_id == BPF_FUNC_get_task_stack) && 9945 !env->prog->has_callchain_buf) { 9946 const char *err_str; 9947 9948 #ifdef CONFIG_PERF_EVENTS 9949 err = get_callchain_buffers(sysctl_perf_event_max_stack); 9950 err_str = "cannot get callchain buffer for func %s#%d\n"; 9951 #else 9952 err = -ENOTSUPP; 9953 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 9954 #endif 9955 if (err) { 9956 verbose(env, err_str, func_id_name(func_id), func_id); 9957 return err; 9958 } 9959 9960 env->prog->has_callchain_buf = true; 9961 } 9962 9963 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 9964 env->prog->call_get_stack = true; 9965 9966 if (func_id == BPF_FUNC_get_func_ip) { 9967 if (check_get_func_ip(env)) 9968 return -ENOTSUPP; 9969 env->prog->call_get_func_ip = true; 9970 } 9971 9972 if (changes_data) 9973 clear_all_pkt_pointers(env); 9974 return 0; 9975 } 9976 9977 /* mark_btf_func_reg_size() is used when the reg size is determined by 9978 * the BTF func_proto's return value size and argument. 9979 */ 9980 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 9981 size_t reg_size) 9982 { 9983 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 9984 9985 if (regno == BPF_REG_0) { 9986 /* Function return value */ 9987 reg->live |= REG_LIVE_WRITTEN; 9988 reg->subreg_def = reg_size == sizeof(u64) ? 9989 DEF_NOT_SUBREG : env->insn_idx + 1; 9990 } else { 9991 /* Function argument */ 9992 if (reg_size == sizeof(u64)) { 9993 mark_insn_zext(env, reg); 9994 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 9995 } else { 9996 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 9997 } 9998 } 9999 } 10000 10001 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10002 { 10003 return meta->kfunc_flags & KF_ACQUIRE; 10004 } 10005 10006 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10007 { 10008 return meta->kfunc_flags & KF_RELEASE; 10009 } 10010 10011 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10012 { 10013 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10014 } 10015 10016 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10017 { 10018 return meta->kfunc_flags & KF_SLEEPABLE; 10019 } 10020 10021 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10022 { 10023 return meta->kfunc_flags & KF_DESTRUCTIVE; 10024 } 10025 10026 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10027 { 10028 return meta->kfunc_flags & KF_RCU; 10029 } 10030 10031 static bool __kfunc_param_match_suffix(const struct btf *btf, 10032 const struct btf_param *arg, 10033 const char *suffix) 10034 { 10035 int suffix_len = strlen(suffix), len; 10036 const char *param_name; 10037 10038 /* In the future, this can be ported to use BTF tagging */ 10039 param_name = btf_name_by_offset(btf, arg->name_off); 10040 if (str_is_empty(param_name)) 10041 return false; 10042 len = strlen(param_name); 10043 if (len < suffix_len) 10044 return false; 10045 param_name += len - suffix_len; 10046 return !strncmp(param_name, suffix, suffix_len); 10047 } 10048 10049 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10050 const struct btf_param *arg, 10051 const struct bpf_reg_state *reg) 10052 { 10053 const struct btf_type *t; 10054 10055 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10056 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10057 return false; 10058 10059 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10060 } 10061 10062 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10063 const struct btf_param *arg, 10064 const struct bpf_reg_state *reg) 10065 { 10066 const struct btf_type *t; 10067 10068 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10069 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10070 return false; 10071 10072 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10073 } 10074 10075 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10076 { 10077 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10078 } 10079 10080 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10081 { 10082 return __kfunc_param_match_suffix(btf, arg, "__k"); 10083 } 10084 10085 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10086 { 10087 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10088 } 10089 10090 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10091 { 10092 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10093 } 10094 10095 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10096 { 10097 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10098 } 10099 10100 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10101 { 10102 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10103 } 10104 10105 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10106 const struct btf_param *arg, 10107 const char *name) 10108 { 10109 int len, target_len = strlen(name); 10110 const char *param_name; 10111 10112 param_name = btf_name_by_offset(btf, arg->name_off); 10113 if (str_is_empty(param_name)) 10114 return false; 10115 len = strlen(param_name); 10116 if (len != target_len) 10117 return false; 10118 if (strcmp(param_name, name)) 10119 return false; 10120 10121 return true; 10122 } 10123 10124 enum { 10125 KF_ARG_DYNPTR_ID, 10126 KF_ARG_LIST_HEAD_ID, 10127 KF_ARG_LIST_NODE_ID, 10128 KF_ARG_RB_ROOT_ID, 10129 KF_ARG_RB_NODE_ID, 10130 }; 10131 10132 BTF_ID_LIST(kf_arg_btf_ids) 10133 BTF_ID(struct, bpf_dynptr_kern) 10134 BTF_ID(struct, bpf_list_head) 10135 BTF_ID(struct, bpf_list_node) 10136 BTF_ID(struct, bpf_rb_root) 10137 BTF_ID(struct, bpf_rb_node) 10138 10139 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10140 const struct btf_param *arg, int type) 10141 { 10142 const struct btf_type *t; 10143 u32 res_id; 10144 10145 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10146 if (!t) 10147 return false; 10148 if (!btf_type_is_ptr(t)) 10149 return false; 10150 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10151 if (!t) 10152 return false; 10153 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10154 } 10155 10156 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10157 { 10158 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10159 } 10160 10161 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10162 { 10163 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10164 } 10165 10166 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10167 { 10168 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10169 } 10170 10171 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10172 { 10173 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10174 } 10175 10176 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10177 { 10178 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10179 } 10180 10181 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10182 const struct btf_param *arg) 10183 { 10184 const struct btf_type *t; 10185 10186 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10187 if (!t) 10188 return false; 10189 10190 return true; 10191 } 10192 10193 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10194 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10195 const struct btf *btf, 10196 const struct btf_type *t, int rec) 10197 { 10198 const struct btf_type *member_type; 10199 const struct btf_member *member; 10200 u32 i; 10201 10202 if (!btf_type_is_struct(t)) 10203 return false; 10204 10205 for_each_member(i, t, member) { 10206 const struct btf_array *array; 10207 10208 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10209 if (btf_type_is_struct(member_type)) { 10210 if (rec >= 3) { 10211 verbose(env, "max struct nesting depth exceeded\n"); 10212 return false; 10213 } 10214 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10215 return false; 10216 continue; 10217 } 10218 if (btf_type_is_array(member_type)) { 10219 array = btf_array(member_type); 10220 if (!array->nelems) 10221 return false; 10222 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10223 if (!btf_type_is_scalar(member_type)) 10224 return false; 10225 continue; 10226 } 10227 if (!btf_type_is_scalar(member_type)) 10228 return false; 10229 } 10230 return true; 10231 } 10232 10233 enum kfunc_ptr_arg_type { 10234 KF_ARG_PTR_TO_CTX, 10235 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10236 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10237 KF_ARG_PTR_TO_DYNPTR, 10238 KF_ARG_PTR_TO_ITER, 10239 KF_ARG_PTR_TO_LIST_HEAD, 10240 KF_ARG_PTR_TO_LIST_NODE, 10241 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10242 KF_ARG_PTR_TO_MEM, 10243 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10244 KF_ARG_PTR_TO_CALLBACK, 10245 KF_ARG_PTR_TO_RB_ROOT, 10246 KF_ARG_PTR_TO_RB_NODE, 10247 }; 10248 10249 enum special_kfunc_type { 10250 KF_bpf_obj_new_impl, 10251 KF_bpf_obj_drop_impl, 10252 KF_bpf_refcount_acquire_impl, 10253 KF_bpf_list_push_front_impl, 10254 KF_bpf_list_push_back_impl, 10255 KF_bpf_list_pop_front, 10256 KF_bpf_list_pop_back, 10257 KF_bpf_cast_to_kern_ctx, 10258 KF_bpf_rdonly_cast, 10259 KF_bpf_rcu_read_lock, 10260 KF_bpf_rcu_read_unlock, 10261 KF_bpf_rbtree_remove, 10262 KF_bpf_rbtree_add_impl, 10263 KF_bpf_rbtree_first, 10264 KF_bpf_dynptr_from_skb, 10265 KF_bpf_dynptr_from_xdp, 10266 KF_bpf_dynptr_slice, 10267 KF_bpf_dynptr_slice_rdwr, 10268 KF_bpf_dynptr_clone, 10269 }; 10270 10271 BTF_SET_START(special_kfunc_set) 10272 BTF_ID(func, bpf_obj_new_impl) 10273 BTF_ID(func, bpf_obj_drop_impl) 10274 BTF_ID(func, bpf_refcount_acquire_impl) 10275 BTF_ID(func, bpf_list_push_front_impl) 10276 BTF_ID(func, bpf_list_push_back_impl) 10277 BTF_ID(func, bpf_list_pop_front) 10278 BTF_ID(func, bpf_list_pop_back) 10279 BTF_ID(func, bpf_cast_to_kern_ctx) 10280 BTF_ID(func, bpf_rdonly_cast) 10281 BTF_ID(func, bpf_rbtree_remove) 10282 BTF_ID(func, bpf_rbtree_add_impl) 10283 BTF_ID(func, bpf_rbtree_first) 10284 BTF_ID(func, bpf_dynptr_from_skb) 10285 BTF_ID(func, bpf_dynptr_from_xdp) 10286 BTF_ID(func, bpf_dynptr_slice) 10287 BTF_ID(func, bpf_dynptr_slice_rdwr) 10288 BTF_ID(func, bpf_dynptr_clone) 10289 BTF_SET_END(special_kfunc_set) 10290 10291 BTF_ID_LIST(special_kfunc_list) 10292 BTF_ID(func, bpf_obj_new_impl) 10293 BTF_ID(func, bpf_obj_drop_impl) 10294 BTF_ID(func, bpf_refcount_acquire_impl) 10295 BTF_ID(func, bpf_list_push_front_impl) 10296 BTF_ID(func, bpf_list_push_back_impl) 10297 BTF_ID(func, bpf_list_pop_front) 10298 BTF_ID(func, bpf_list_pop_back) 10299 BTF_ID(func, bpf_cast_to_kern_ctx) 10300 BTF_ID(func, bpf_rdonly_cast) 10301 BTF_ID(func, bpf_rcu_read_lock) 10302 BTF_ID(func, bpf_rcu_read_unlock) 10303 BTF_ID(func, bpf_rbtree_remove) 10304 BTF_ID(func, bpf_rbtree_add_impl) 10305 BTF_ID(func, bpf_rbtree_first) 10306 BTF_ID(func, bpf_dynptr_from_skb) 10307 BTF_ID(func, bpf_dynptr_from_xdp) 10308 BTF_ID(func, bpf_dynptr_slice) 10309 BTF_ID(func, bpf_dynptr_slice_rdwr) 10310 BTF_ID(func, bpf_dynptr_clone) 10311 10312 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10313 { 10314 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10315 meta->arg_owning_ref) { 10316 return false; 10317 } 10318 10319 return meta->kfunc_flags & KF_RET_NULL; 10320 } 10321 10322 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10323 { 10324 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10325 } 10326 10327 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10328 { 10329 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10330 } 10331 10332 static enum kfunc_ptr_arg_type 10333 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10334 struct bpf_kfunc_call_arg_meta *meta, 10335 const struct btf_type *t, const struct btf_type *ref_t, 10336 const char *ref_tname, const struct btf_param *args, 10337 int argno, int nargs) 10338 { 10339 u32 regno = argno + 1; 10340 struct bpf_reg_state *regs = cur_regs(env); 10341 struct bpf_reg_state *reg = ®s[regno]; 10342 bool arg_mem_size = false; 10343 10344 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10345 return KF_ARG_PTR_TO_CTX; 10346 10347 /* In this function, we verify the kfunc's BTF as per the argument type, 10348 * leaving the rest of the verification with respect to the register 10349 * type to our caller. When a set of conditions hold in the BTF type of 10350 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10351 */ 10352 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10353 return KF_ARG_PTR_TO_CTX; 10354 10355 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10356 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10357 10358 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10359 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10360 10361 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10362 return KF_ARG_PTR_TO_DYNPTR; 10363 10364 if (is_kfunc_arg_iter(meta, argno)) 10365 return KF_ARG_PTR_TO_ITER; 10366 10367 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10368 return KF_ARG_PTR_TO_LIST_HEAD; 10369 10370 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10371 return KF_ARG_PTR_TO_LIST_NODE; 10372 10373 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10374 return KF_ARG_PTR_TO_RB_ROOT; 10375 10376 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10377 return KF_ARG_PTR_TO_RB_NODE; 10378 10379 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10380 if (!btf_type_is_struct(ref_t)) { 10381 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10382 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10383 return -EINVAL; 10384 } 10385 return KF_ARG_PTR_TO_BTF_ID; 10386 } 10387 10388 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10389 return KF_ARG_PTR_TO_CALLBACK; 10390 10391 10392 if (argno + 1 < nargs && 10393 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10394 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10395 arg_mem_size = true; 10396 10397 /* This is the catch all argument type of register types supported by 10398 * check_helper_mem_access. However, we only allow when argument type is 10399 * pointer to scalar, or struct composed (recursively) of scalars. When 10400 * arg_mem_size is true, the pointer can be void *. 10401 */ 10402 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10403 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10404 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10405 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10406 return -EINVAL; 10407 } 10408 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10409 } 10410 10411 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10412 struct bpf_reg_state *reg, 10413 const struct btf_type *ref_t, 10414 const char *ref_tname, u32 ref_id, 10415 struct bpf_kfunc_call_arg_meta *meta, 10416 int argno) 10417 { 10418 const struct btf_type *reg_ref_t; 10419 bool strict_type_match = false; 10420 const struct btf *reg_btf; 10421 const char *reg_ref_tname; 10422 u32 reg_ref_id; 10423 10424 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10425 reg_btf = reg->btf; 10426 reg_ref_id = reg->btf_id; 10427 } else { 10428 reg_btf = btf_vmlinux; 10429 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10430 } 10431 10432 /* Enforce strict type matching for calls to kfuncs that are acquiring 10433 * or releasing a reference, or are no-cast aliases. We do _not_ 10434 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10435 * as we want to enable BPF programs to pass types that are bitwise 10436 * equivalent without forcing them to explicitly cast with something 10437 * like bpf_cast_to_kern_ctx(). 10438 * 10439 * For example, say we had a type like the following: 10440 * 10441 * struct bpf_cpumask { 10442 * cpumask_t cpumask; 10443 * refcount_t usage; 10444 * }; 10445 * 10446 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10447 * to a struct cpumask, so it would be safe to pass a struct 10448 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10449 * 10450 * The philosophy here is similar to how we allow scalars of different 10451 * types to be passed to kfuncs as long as the size is the same. The 10452 * only difference here is that we're simply allowing 10453 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10454 * resolve types. 10455 */ 10456 if (is_kfunc_acquire(meta) || 10457 (is_kfunc_release(meta) && reg->ref_obj_id) || 10458 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10459 strict_type_match = true; 10460 10461 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10462 10463 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10464 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10465 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10466 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10467 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10468 btf_type_str(reg_ref_t), reg_ref_tname); 10469 return -EINVAL; 10470 } 10471 return 0; 10472 } 10473 10474 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10475 { 10476 struct bpf_verifier_state *state = env->cur_state; 10477 struct btf_record *rec = reg_btf_record(reg); 10478 10479 if (!state->active_lock.ptr) { 10480 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10481 return -EFAULT; 10482 } 10483 10484 if (type_flag(reg->type) & NON_OWN_REF) { 10485 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10486 return -EFAULT; 10487 } 10488 10489 reg->type |= NON_OWN_REF; 10490 if (rec->refcount_off >= 0) 10491 reg->type |= MEM_RCU; 10492 10493 return 0; 10494 } 10495 10496 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10497 { 10498 struct bpf_func_state *state, *unused; 10499 struct bpf_reg_state *reg; 10500 int i; 10501 10502 state = cur_func(env); 10503 10504 if (!ref_obj_id) { 10505 verbose(env, "verifier internal error: ref_obj_id is zero for " 10506 "owning -> non-owning conversion\n"); 10507 return -EFAULT; 10508 } 10509 10510 for (i = 0; i < state->acquired_refs; i++) { 10511 if (state->refs[i].id != ref_obj_id) 10512 continue; 10513 10514 /* Clear ref_obj_id here so release_reference doesn't clobber 10515 * the whole reg 10516 */ 10517 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10518 if (reg->ref_obj_id == ref_obj_id) { 10519 reg->ref_obj_id = 0; 10520 ref_set_non_owning(env, reg); 10521 } 10522 })); 10523 return 0; 10524 } 10525 10526 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10527 return -EFAULT; 10528 } 10529 10530 /* Implementation details: 10531 * 10532 * Each register points to some region of memory, which we define as an 10533 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10534 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10535 * allocation. The lock and the data it protects are colocated in the same 10536 * memory region. 10537 * 10538 * Hence, everytime a register holds a pointer value pointing to such 10539 * allocation, the verifier preserves a unique reg->id for it. 10540 * 10541 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10542 * bpf_spin_lock is called. 10543 * 10544 * To enable this, lock state in the verifier captures two values: 10545 * active_lock.ptr = Register's type specific pointer 10546 * active_lock.id = A unique ID for each register pointer value 10547 * 10548 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10549 * supported register types. 10550 * 10551 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10552 * allocated objects is the reg->btf pointer. 10553 * 10554 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10555 * can establish the provenance of the map value statically for each distinct 10556 * lookup into such maps. They always contain a single map value hence unique 10557 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10558 * 10559 * So, in case of global variables, they use array maps with max_entries = 1, 10560 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10561 * into the same map value as max_entries is 1, as described above). 10562 * 10563 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10564 * outer map pointer (in verifier context), but each lookup into an inner map 10565 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10566 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10567 * will get different reg->id assigned to each lookup, hence different 10568 * active_lock.id. 10569 * 10570 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10571 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10572 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10573 */ 10574 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10575 { 10576 void *ptr; 10577 u32 id; 10578 10579 switch ((int)reg->type) { 10580 case PTR_TO_MAP_VALUE: 10581 ptr = reg->map_ptr; 10582 break; 10583 case PTR_TO_BTF_ID | MEM_ALLOC: 10584 ptr = reg->btf; 10585 break; 10586 default: 10587 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 10588 return -EFAULT; 10589 } 10590 id = reg->id; 10591 10592 if (!env->cur_state->active_lock.ptr) 10593 return -EINVAL; 10594 if (env->cur_state->active_lock.ptr != ptr || 10595 env->cur_state->active_lock.id != id) { 10596 verbose(env, "held lock and object are not in the same allocation\n"); 10597 return -EINVAL; 10598 } 10599 return 0; 10600 } 10601 10602 static bool is_bpf_list_api_kfunc(u32 btf_id) 10603 { 10604 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10605 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 10606 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 10607 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 10608 } 10609 10610 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 10611 { 10612 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 10613 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10614 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 10615 } 10616 10617 static bool is_bpf_graph_api_kfunc(u32 btf_id) 10618 { 10619 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 10620 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 10621 } 10622 10623 static bool is_callback_calling_kfunc(u32 btf_id) 10624 { 10625 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 10626 } 10627 10628 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 10629 { 10630 return is_bpf_rbtree_api_kfunc(btf_id); 10631 } 10632 10633 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 10634 enum btf_field_type head_field_type, 10635 u32 kfunc_btf_id) 10636 { 10637 bool ret; 10638 10639 switch (head_field_type) { 10640 case BPF_LIST_HEAD: 10641 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 10642 break; 10643 case BPF_RB_ROOT: 10644 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 10645 break; 10646 default: 10647 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 10648 btf_field_type_name(head_field_type)); 10649 return false; 10650 } 10651 10652 if (!ret) 10653 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 10654 btf_field_type_name(head_field_type)); 10655 return ret; 10656 } 10657 10658 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 10659 enum btf_field_type node_field_type, 10660 u32 kfunc_btf_id) 10661 { 10662 bool ret; 10663 10664 switch (node_field_type) { 10665 case BPF_LIST_NODE: 10666 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 10667 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 10668 break; 10669 case BPF_RB_NODE: 10670 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 10671 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 10672 break; 10673 default: 10674 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 10675 btf_field_type_name(node_field_type)); 10676 return false; 10677 } 10678 10679 if (!ret) 10680 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 10681 btf_field_type_name(node_field_type)); 10682 return ret; 10683 } 10684 10685 static int 10686 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 10687 struct bpf_reg_state *reg, u32 regno, 10688 struct bpf_kfunc_call_arg_meta *meta, 10689 enum btf_field_type head_field_type, 10690 struct btf_field **head_field) 10691 { 10692 const char *head_type_name; 10693 struct btf_field *field; 10694 struct btf_record *rec; 10695 u32 head_off; 10696 10697 if (meta->btf != btf_vmlinux) { 10698 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10699 return -EFAULT; 10700 } 10701 10702 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 10703 return -EFAULT; 10704 10705 head_type_name = btf_field_type_name(head_field_type); 10706 if (!tnum_is_const(reg->var_off)) { 10707 verbose(env, 10708 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10709 regno, head_type_name); 10710 return -EINVAL; 10711 } 10712 10713 rec = reg_btf_record(reg); 10714 head_off = reg->off + reg->var_off.value; 10715 field = btf_record_find(rec, head_off, head_field_type); 10716 if (!field) { 10717 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 10718 return -EINVAL; 10719 } 10720 10721 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 10722 if (check_reg_allocation_locked(env, reg)) { 10723 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 10724 rec->spin_lock_off, head_type_name); 10725 return -EINVAL; 10726 } 10727 10728 if (*head_field) { 10729 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 10730 return -EFAULT; 10731 } 10732 *head_field = field; 10733 return 0; 10734 } 10735 10736 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 10737 struct bpf_reg_state *reg, u32 regno, 10738 struct bpf_kfunc_call_arg_meta *meta) 10739 { 10740 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 10741 &meta->arg_list_head.field); 10742 } 10743 10744 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 10745 struct bpf_reg_state *reg, u32 regno, 10746 struct bpf_kfunc_call_arg_meta *meta) 10747 { 10748 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 10749 &meta->arg_rbtree_root.field); 10750 } 10751 10752 static int 10753 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 10754 struct bpf_reg_state *reg, u32 regno, 10755 struct bpf_kfunc_call_arg_meta *meta, 10756 enum btf_field_type head_field_type, 10757 enum btf_field_type node_field_type, 10758 struct btf_field **node_field) 10759 { 10760 const char *node_type_name; 10761 const struct btf_type *et, *t; 10762 struct btf_field *field; 10763 u32 node_off; 10764 10765 if (meta->btf != btf_vmlinux) { 10766 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 10767 return -EFAULT; 10768 } 10769 10770 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 10771 return -EFAULT; 10772 10773 node_type_name = btf_field_type_name(node_field_type); 10774 if (!tnum_is_const(reg->var_off)) { 10775 verbose(env, 10776 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 10777 regno, node_type_name); 10778 return -EINVAL; 10779 } 10780 10781 node_off = reg->off + reg->var_off.value; 10782 field = reg_find_field_offset(reg, node_off, node_field_type); 10783 if (!field || field->offset != node_off) { 10784 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 10785 return -EINVAL; 10786 } 10787 10788 field = *node_field; 10789 10790 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 10791 t = btf_type_by_id(reg->btf, reg->btf_id); 10792 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 10793 field->graph_root.value_btf_id, true)) { 10794 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 10795 "in struct %s, but arg is at offset=%d in struct %s\n", 10796 btf_field_type_name(head_field_type), 10797 btf_field_type_name(node_field_type), 10798 field->graph_root.node_offset, 10799 btf_name_by_offset(field->graph_root.btf, et->name_off), 10800 node_off, btf_name_by_offset(reg->btf, t->name_off)); 10801 return -EINVAL; 10802 } 10803 meta->arg_btf = reg->btf; 10804 meta->arg_btf_id = reg->btf_id; 10805 10806 if (node_off != field->graph_root.node_offset) { 10807 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 10808 node_off, btf_field_type_name(node_field_type), 10809 field->graph_root.node_offset, 10810 btf_name_by_offset(field->graph_root.btf, et->name_off)); 10811 return -EINVAL; 10812 } 10813 10814 return 0; 10815 } 10816 10817 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 10818 struct bpf_reg_state *reg, u32 regno, 10819 struct bpf_kfunc_call_arg_meta *meta) 10820 { 10821 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10822 BPF_LIST_HEAD, BPF_LIST_NODE, 10823 &meta->arg_list_head.field); 10824 } 10825 10826 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 10827 struct bpf_reg_state *reg, u32 regno, 10828 struct bpf_kfunc_call_arg_meta *meta) 10829 { 10830 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 10831 BPF_RB_ROOT, BPF_RB_NODE, 10832 &meta->arg_rbtree_root.field); 10833 } 10834 10835 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 10836 int insn_idx) 10837 { 10838 const char *func_name = meta->func_name, *ref_tname; 10839 const struct btf *btf = meta->btf; 10840 const struct btf_param *args; 10841 struct btf_record *rec; 10842 u32 i, nargs; 10843 int ret; 10844 10845 args = (const struct btf_param *)(meta->func_proto + 1); 10846 nargs = btf_type_vlen(meta->func_proto); 10847 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 10848 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 10849 MAX_BPF_FUNC_REG_ARGS); 10850 return -EINVAL; 10851 } 10852 10853 /* Check that BTF function arguments match actual types that the 10854 * verifier sees. 10855 */ 10856 for (i = 0; i < nargs; i++) { 10857 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 10858 const struct btf_type *t, *ref_t, *resolve_ret; 10859 enum bpf_arg_type arg_type = ARG_DONTCARE; 10860 u32 regno = i + 1, ref_id, type_size; 10861 bool is_ret_buf_sz = false; 10862 int kf_arg_type; 10863 10864 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 10865 10866 if (is_kfunc_arg_ignore(btf, &args[i])) 10867 continue; 10868 10869 if (btf_type_is_scalar(t)) { 10870 if (reg->type != SCALAR_VALUE) { 10871 verbose(env, "R%d is not a scalar\n", regno); 10872 return -EINVAL; 10873 } 10874 10875 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 10876 if (meta->arg_constant.found) { 10877 verbose(env, "verifier internal error: only one constant argument permitted\n"); 10878 return -EFAULT; 10879 } 10880 if (!tnum_is_const(reg->var_off)) { 10881 verbose(env, "R%d must be a known constant\n", regno); 10882 return -EINVAL; 10883 } 10884 ret = mark_chain_precision(env, regno); 10885 if (ret < 0) 10886 return ret; 10887 meta->arg_constant.found = true; 10888 meta->arg_constant.value = reg->var_off.value; 10889 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 10890 meta->r0_rdonly = true; 10891 is_ret_buf_sz = true; 10892 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 10893 is_ret_buf_sz = true; 10894 } 10895 10896 if (is_ret_buf_sz) { 10897 if (meta->r0_size) { 10898 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 10899 return -EINVAL; 10900 } 10901 10902 if (!tnum_is_const(reg->var_off)) { 10903 verbose(env, "R%d is not a const\n", regno); 10904 return -EINVAL; 10905 } 10906 10907 meta->r0_size = reg->var_off.value; 10908 ret = mark_chain_precision(env, regno); 10909 if (ret) 10910 return ret; 10911 } 10912 continue; 10913 } 10914 10915 if (!btf_type_is_ptr(t)) { 10916 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 10917 return -EINVAL; 10918 } 10919 10920 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 10921 (register_is_null(reg) || type_may_be_null(reg->type))) { 10922 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 10923 return -EACCES; 10924 } 10925 10926 if (reg->ref_obj_id) { 10927 if (is_kfunc_release(meta) && meta->ref_obj_id) { 10928 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 10929 regno, reg->ref_obj_id, 10930 meta->ref_obj_id); 10931 return -EFAULT; 10932 } 10933 meta->ref_obj_id = reg->ref_obj_id; 10934 if (is_kfunc_release(meta)) 10935 meta->release_regno = regno; 10936 } 10937 10938 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 10939 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 10940 10941 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 10942 if (kf_arg_type < 0) 10943 return kf_arg_type; 10944 10945 switch (kf_arg_type) { 10946 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 10947 case KF_ARG_PTR_TO_BTF_ID: 10948 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 10949 break; 10950 10951 if (!is_trusted_reg(reg)) { 10952 if (!is_kfunc_rcu(meta)) { 10953 verbose(env, "R%d must be referenced or trusted\n", regno); 10954 return -EINVAL; 10955 } 10956 if (!is_rcu_reg(reg)) { 10957 verbose(env, "R%d must be a rcu pointer\n", regno); 10958 return -EINVAL; 10959 } 10960 } 10961 10962 fallthrough; 10963 case KF_ARG_PTR_TO_CTX: 10964 /* Trusted arguments have the same offset checks as release arguments */ 10965 arg_type |= OBJ_RELEASE; 10966 break; 10967 case KF_ARG_PTR_TO_DYNPTR: 10968 case KF_ARG_PTR_TO_ITER: 10969 case KF_ARG_PTR_TO_LIST_HEAD: 10970 case KF_ARG_PTR_TO_LIST_NODE: 10971 case KF_ARG_PTR_TO_RB_ROOT: 10972 case KF_ARG_PTR_TO_RB_NODE: 10973 case KF_ARG_PTR_TO_MEM: 10974 case KF_ARG_PTR_TO_MEM_SIZE: 10975 case KF_ARG_PTR_TO_CALLBACK: 10976 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 10977 /* Trusted by default */ 10978 break; 10979 default: 10980 WARN_ON_ONCE(1); 10981 return -EFAULT; 10982 } 10983 10984 if (is_kfunc_release(meta) && reg->ref_obj_id) 10985 arg_type |= OBJ_RELEASE; 10986 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 10987 if (ret < 0) 10988 return ret; 10989 10990 switch (kf_arg_type) { 10991 case KF_ARG_PTR_TO_CTX: 10992 if (reg->type != PTR_TO_CTX) { 10993 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 10994 return -EINVAL; 10995 } 10996 10997 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 10998 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 10999 if (ret < 0) 11000 return -EINVAL; 11001 meta->ret_btf_id = ret; 11002 } 11003 break; 11004 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11005 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11006 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11007 return -EINVAL; 11008 } 11009 if (!reg->ref_obj_id) { 11010 verbose(env, "allocated object must be referenced\n"); 11011 return -EINVAL; 11012 } 11013 if (meta->btf == btf_vmlinux && 11014 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11015 meta->arg_btf = reg->btf; 11016 meta->arg_btf_id = reg->btf_id; 11017 } 11018 break; 11019 case KF_ARG_PTR_TO_DYNPTR: 11020 { 11021 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11022 int clone_ref_obj_id = 0; 11023 11024 if (reg->type != PTR_TO_STACK && 11025 reg->type != CONST_PTR_TO_DYNPTR) { 11026 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11027 return -EINVAL; 11028 } 11029 11030 if (reg->type == CONST_PTR_TO_DYNPTR) 11031 dynptr_arg_type |= MEM_RDONLY; 11032 11033 if (is_kfunc_arg_uninit(btf, &args[i])) 11034 dynptr_arg_type |= MEM_UNINIT; 11035 11036 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11037 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11038 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11039 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11040 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11041 (dynptr_arg_type & MEM_UNINIT)) { 11042 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11043 11044 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11045 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11046 return -EFAULT; 11047 } 11048 11049 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11050 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11051 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11052 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11053 return -EFAULT; 11054 } 11055 } 11056 11057 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11058 if (ret < 0) 11059 return ret; 11060 11061 if (!(dynptr_arg_type & MEM_UNINIT)) { 11062 int id = dynptr_id(env, reg); 11063 11064 if (id < 0) { 11065 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11066 return id; 11067 } 11068 meta->initialized_dynptr.id = id; 11069 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11070 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11071 } 11072 11073 break; 11074 } 11075 case KF_ARG_PTR_TO_ITER: 11076 ret = process_iter_arg(env, regno, insn_idx, meta); 11077 if (ret < 0) 11078 return ret; 11079 break; 11080 case KF_ARG_PTR_TO_LIST_HEAD: 11081 if (reg->type != PTR_TO_MAP_VALUE && 11082 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11083 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11084 return -EINVAL; 11085 } 11086 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11087 verbose(env, "allocated object must be referenced\n"); 11088 return -EINVAL; 11089 } 11090 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11091 if (ret < 0) 11092 return ret; 11093 break; 11094 case KF_ARG_PTR_TO_RB_ROOT: 11095 if (reg->type != PTR_TO_MAP_VALUE && 11096 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11097 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11098 return -EINVAL; 11099 } 11100 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11101 verbose(env, "allocated object must be referenced\n"); 11102 return -EINVAL; 11103 } 11104 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11105 if (ret < 0) 11106 return ret; 11107 break; 11108 case KF_ARG_PTR_TO_LIST_NODE: 11109 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11110 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11111 return -EINVAL; 11112 } 11113 if (!reg->ref_obj_id) { 11114 verbose(env, "allocated object must be referenced\n"); 11115 return -EINVAL; 11116 } 11117 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11118 if (ret < 0) 11119 return ret; 11120 break; 11121 case KF_ARG_PTR_TO_RB_NODE: 11122 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11123 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11124 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11125 return -EINVAL; 11126 } 11127 if (in_rbtree_lock_required_cb(env)) { 11128 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11129 return -EINVAL; 11130 } 11131 } else { 11132 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11133 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11134 return -EINVAL; 11135 } 11136 if (!reg->ref_obj_id) { 11137 verbose(env, "allocated object must be referenced\n"); 11138 return -EINVAL; 11139 } 11140 } 11141 11142 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11143 if (ret < 0) 11144 return ret; 11145 break; 11146 case KF_ARG_PTR_TO_BTF_ID: 11147 /* Only base_type is checked, further checks are done here */ 11148 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11149 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11150 !reg2btf_ids[base_type(reg->type)]) { 11151 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11152 verbose(env, "expected %s or socket\n", 11153 reg_type_str(env, base_type(reg->type) | 11154 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11155 return -EINVAL; 11156 } 11157 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11158 if (ret < 0) 11159 return ret; 11160 break; 11161 case KF_ARG_PTR_TO_MEM: 11162 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11163 if (IS_ERR(resolve_ret)) { 11164 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11165 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11166 return -EINVAL; 11167 } 11168 ret = check_mem_reg(env, reg, regno, type_size); 11169 if (ret < 0) 11170 return ret; 11171 break; 11172 case KF_ARG_PTR_TO_MEM_SIZE: 11173 { 11174 struct bpf_reg_state *buff_reg = ®s[regno]; 11175 const struct btf_param *buff_arg = &args[i]; 11176 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11177 const struct btf_param *size_arg = &args[i + 1]; 11178 11179 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11180 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11181 if (ret < 0) { 11182 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11183 return ret; 11184 } 11185 } 11186 11187 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11188 if (meta->arg_constant.found) { 11189 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11190 return -EFAULT; 11191 } 11192 if (!tnum_is_const(size_reg->var_off)) { 11193 verbose(env, "R%d must be a known constant\n", regno + 1); 11194 return -EINVAL; 11195 } 11196 meta->arg_constant.found = true; 11197 meta->arg_constant.value = size_reg->var_off.value; 11198 } 11199 11200 /* Skip next '__sz' or '__szk' argument */ 11201 i++; 11202 break; 11203 } 11204 case KF_ARG_PTR_TO_CALLBACK: 11205 if (reg->type != PTR_TO_FUNC) { 11206 verbose(env, "arg%d expected pointer to func\n", i); 11207 return -EINVAL; 11208 } 11209 meta->subprogno = reg->subprogno; 11210 break; 11211 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11212 if (!type_is_ptr_alloc_obj(reg->type)) { 11213 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11214 return -EINVAL; 11215 } 11216 if (!type_is_non_owning_ref(reg->type)) 11217 meta->arg_owning_ref = true; 11218 11219 rec = reg_btf_record(reg); 11220 if (!rec) { 11221 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11222 return -EFAULT; 11223 } 11224 11225 if (rec->refcount_off < 0) { 11226 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11227 return -EINVAL; 11228 } 11229 11230 meta->arg_btf = reg->btf; 11231 meta->arg_btf_id = reg->btf_id; 11232 break; 11233 } 11234 } 11235 11236 if (is_kfunc_release(meta) && !meta->release_regno) { 11237 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11238 func_name); 11239 return -EINVAL; 11240 } 11241 11242 return 0; 11243 } 11244 11245 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11246 struct bpf_insn *insn, 11247 struct bpf_kfunc_call_arg_meta *meta, 11248 const char **kfunc_name) 11249 { 11250 const struct btf_type *func, *func_proto; 11251 u32 func_id, *kfunc_flags; 11252 const char *func_name; 11253 struct btf *desc_btf; 11254 11255 if (kfunc_name) 11256 *kfunc_name = NULL; 11257 11258 if (!insn->imm) 11259 return -EINVAL; 11260 11261 desc_btf = find_kfunc_desc_btf(env, insn->off); 11262 if (IS_ERR(desc_btf)) 11263 return PTR_ERR(desc_btf); 11264 11265 func_id = insn->imm; 11266 func = btf_type_by_id(desc_btf, func_id); 11267 func_name = btf_name_by_offset(desc_btf, func->name_off); 11268 if (kfunc_name) 11269 *kfunc_name = func_name; 11270 func_proto = btf_type_by_id(desc_btf, func->type); 11271 11272 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11273 if (!kfunc_flags) { 11274 return -EACCES; 11275 } 11276 11277 memset(meta, 0, sizeof(*meta)); 11278 meta->btf = desc_btf; 11279 meta->func_id = func_id; 11280 meta->kfunc_flags = *kfunc_flags; 11281 meta->func_proto = func_proto; 11282 meta->func_name = func_name; 11283 11284 return 0; 11285 } 11286 11287 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11288 int *insn_idx_p) 11289 { 11290 const struct btf_type *t, *ptr_type; 11291 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11292 struct bpf_reg_state *regs = cur_regs(env); 11293 const char *func_name, *ptr_type_name; 11294 bool sleepable, rcu_lock, rcu_unlock; 11295 struct bpf_kfunc_call_arg_meta meta; 11296 struct bpf_insn_aux_data *insn_aux; 11297 int err, insn_idx = *insn_idx_p; 11298 const struct btf_param *args; 11299 const struct btf_type *ret_t; 11300 struct btf *desc_btf; 11301 11302 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11303 if (!insn->imm) 11304 return 0; 11305 11306 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11307 if (err == -EACCES && func_name) 11308 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11309 if (err) 11310 return err; 11311 desc_btf = meta.btf; 11312 insn_aux = &env->insn_aux_data[insn_idx]; 11313 11314 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11315 11316 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11317 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11318 return -EACCES; 11319 } 11320 11321 sleepable = is_kfunc_sleepable(&meta); 11322 if (sleepable && !env->prog->aux->sleepable) { 11323 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11324 return -EACCES; 11325 } 11326 11327 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11328 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11329 11330 if (env->cur_state->active_rcu_lock) { 11331 struct bpf_func_state *state; 11332 struct bpf_reg_state *reg; 11333 11334 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11335 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11336 return -EACCES; 11337 } 11338 11339 if (rcu_lock) { 11340 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11341 return -EINVAL; 11342 } else if (rcu_unlock) { 11343 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11344 if (reg->type & MEM_RCU) { 11345 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11346 reg->type |= PTR_UNTRUSTED; 11347 } 11348 })); 11349 env->cur_state->active_rcu_lock = false; 11350 } else if (sleepable) { 11351 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11352 return -EACCES; 11353 } 11354 } else if (rcu_lock) { 11355 env->cur_state->active_rcu_lock = true; 11356 } else if (rcu_unlock) { 11357 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11358 return -EINVAL; 11359 } 11360 11361 /* Check the arguments */ 11362 err = check_kfunc_args(env, &meta, insn_idx); 11363 if (err < 0) 11364 return err; 11365 /* In case of release function, we get register number of refcounted 11366 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11367 */ 11368 if (meta.release_regno) { 11369 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11370 if (err) { 11371 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11372 func_name, meta.func_id); 11373 return err; 11374 } 11375 } 11376 11377 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11378 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11379 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11380 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11381 insn_aux->insert_off = regs[BPF_REG_2].off; 11382 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11383 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11384 if (err) { 11385 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11386 func_name, meta.func_id); 11387 return err; 11388 } 11389 11390 err = release_reference(env, release_ref_obj_id); 11391 if (err) { 11392 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11393 func_name, meta.func_id); 11394 return err; 11395 } 11396 } 11397 11398 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11399 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 11400 set_rbtree_add_callback_state); 11401 if (err) { 11402 verbose(env, "kfunc %s#%d failed callback verification\n", 11403 func_name, meta.func_id); 11404 return err; 11405 } 11406 } 11407 11408 for (i = 0; i < CALLER_SAVED_REGS; i++) 11409 mark_reg_not_init(env, regs, caller_saved[i]); 11410 11411 /* Check return type */ 11412 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11413 11414 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11415 /* Only exception is bpf_obj_new_impl */ 11416 if (meta.btf != btf_vmlinux || 11417 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11418 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11419 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11420 return -EINVAL; 11421 } 11422 } 11423 11424 if (btf_type_is_scalar(t)) { 11425 mark_reg_unknown(env, regs, BPF_REG_0); 11426 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11427 } else if (btf_type_is_ptr(t)) { 11428 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11429 11430 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11431 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11432 struct btf *ret_btf; 11433 u32 ret_btf_id; 11434 11435 if (unlikely(!bpf_global_ma_set)) 11436 return -ENOMEM; 11437 11438 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11439 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11440 return -EINVAL; 11441 } 11442 11443 ret_btf = env->prog->aux->btf; 11444 ret_btf_id = meta.arg_constant.value; 11445 11446 /* This may be NULL due to user not supplying a BTF */ 11447 if (!ret_btf) { 11448 verbose(env, "bpf_obj_new requires prog BTF\n"); 11449 return -EINVAL; 11450 } 11451 11452 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11453 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11454 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11455 return -EINVAL; 11456 } 11457 11458 mark_reg_known_zero(env, regs, BPF_REG_0); 11459 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11460 regs[BPF_REG_0].btf = ret_btf; 11461 regs[BPF_REG_0].btf_id = ret_btf_id; 11462 11463 insn_aux->obj_new_size = ret_t->size; 11464 insn_aux->kptr_struct_meta = 11465 btf_find_struct_meta(ret_btf, ret_btf_id); 11466 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11467 mark_reg_known_zero(env, regs, BPF_REG_0); 11468 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11469 regs[BPF_REG_0].btf = meta.arg_btf; 11470 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11471 11472 insn_aux->kptr_struct_meta = 11473 btf_find_struct_meta(meta.arg_btf, 11474 meta.arg_btf_id); 11475 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11476 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11477 struct btf_field *field = meta.arg_list_head.field; 11478 11479 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11480 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11481 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11482 struct btf_field *field = meta.arg_rbtree_root.field; 11483 11484 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11485 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11486 mark_reg_known_zero(env, regs, BPF_REG_0); 11487 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11488 regs[BPF_REG_0].btf = desc_btf; 11489 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11490 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11491 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11492 if (!ret_t || !btf_type_is_struct(ret_t)) { 11493 verbose(env, 11494 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11495 return -EINVAL; 11496 } 11497 11498 mark_reg_known_zero(env, regs, BPF_REG_0); 11499 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11500 regs[BPF_REG_0].btf = desc_btf; 11501 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11502 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11503 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11504 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11505 11506 mark_reg_known_zero(env, regs, BPF_REG_0); 11507 11508 if (!meta.arg_constant.found) { 11509 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11510 return -EFAULT; 11511 } 11512 11513 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11514 11515 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11516 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11517 11518 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11519 regs[BPF_REG_0].type |= MEM_RDONLY; 11520 } else { 11521 /* this will set env->seen_direct_write to true */ 11522 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11523 verbose(env, "the prog does not allow writes to packet data\n"); 11524 return -EINVAL; 11525 } 11526 } 11527 11528 if (!meta.initialized_dynptr.id) { 11529 verbose(env, "verifier internal error: no dynptr id\n"); 11530 return -EFAULT; 11531 } 11532 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11533 11534 /* we don't need to set BPF_REG_0's ref obj id 11535 * because packet slices are not refcounted (see 11536 * dynptr_type_refcounted) 11537 */ 11538 } else { 11539 verbose(env, "kernel function %s unhandled dynamic return type\n", 11540 meta.func_name); 11541 return -EFAULT; 11542 } 11543 } else if (!__btf_type_is_struct(ptr_type)) { 11544 if (!meta.r0_size) { 11545 __u32 sz; 11546 11547 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11548 meta.r0_size = sz; 11549 meta.r0_rdonly = true; 11550 } 11551 } 11552 if (!meta.r0_size) { 11553 ptr_type_name = btf_name_by_offset(desc_btf, 11554 ptr_type->name_off); 11555 verbose(env, 11556 "kernel function %s returns pointer type %s %s is not supported\n", 11557 func_name, 11558 btf_type_str(ptr_type), 11559 ptr_type_name); 11560 return -EINVAL; 11561 } 11562 11563 mark_reg_known_zero(env, regs, BPF_REG_0); 11564 regs[BPF_REG_0].type = PTR_TO_MEM; 11565 regs[BPF_REG_0].mem_size = meta.r0_size; 11566 11567 if (meta.r0_rdonly) 11568 regs[BPF_REG_0].type |= MEM_RDONLY; 11569 11570 /* Ensures we don't access the memory after a release_reference() */ 11571 if (meta.ref_obj_id) 11572 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11573 } else { 11574 mark_reg_known_zero(env, regs, BPF_REG_0); 11575 regs[BPF_REG_0].btf = desc_btf; 11576 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11577 regs[BPF_REG_0].btf_id = ptr_type_id; 11578 } 11579 11580 if (is_kfunc_ret_null(&meta)) { 11581 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11582 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 11583 regs[BPF_REG_0].id = ++env->id_gen; 11584 } 11585 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 11586 if (is_kfunc_acquire(&meta)) { 11587 int id = acquire_reference_state(env, insn_idx); 11588 11589 if (id < 0) 11590 return id; 11591 if (is_kfunc_ret_null(&meta)) 11592 regs[BPF_REG_0].id = id; 11593 regs[BPF_REG_0].ref_obj_id = id; 11594 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11595 ref_set_non_owning(env, ®s[BPF_REG_0]); 11596 } 11597 11598 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 11599 regs[BPF_REG_0].id = ++env->id_gen; 11600 } else if (btf_type_is_void(t)) { 11601 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11602 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11603 insn_aux->kptr_struct_meta = 11604 btf_find_struct_meta(meta.arg_btf, 11605 meta.arg_btf_id); 11606 } 11607 } 11608 } 11609 11610 nargs = btf_type_vlen(meta.func_proto); 11611 args = (const struct btf_param *)(meta.func_proto + 1); 11612 for (i = 0; i < nargs; i++) { 11613 u32 regno = i + 1; 11614 11615 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 11616 if (btf_type_is_ptr(t)) 11617 mark_btf_func_reg_size(env, regno, sizeof(void *)); 11618 else 11619 /* scalar. ensured by btf_check_kfunc_arg_match() */ 11620 mark_btf_func_reg_size(env, regno, t->size); 11621 } 11622 11623 if (is_iter_next_kfunc(&meta)) { 11624 err = process_iter_next_call(env, insn_idx, &meta); 11625 if (err) 11626 return err; 11627 } 11628 11629 return 0; 11630 } 11631 11632 static bool signed_add_overflows(s64 a, s64 b) 11633 { 11634 /* Do the add in u64, where overflow is well-defined */ 11635 s64 res = (s64)((u64)a + (u64)b); 11636 11637 if (b < 0) 11638 return res > a; 11639 return res < a; 11640 } 11641 11642 static bool signed_add32_overflows(s32 a, s32 b) 11643 { 11644 /* Do the add in u32, where overflow is well-defined */ 11645 s32 res = (s32)((u32)a + (u32)b); 11646 11647 if (b < 0) 11648 return res > a; 11649 return res < a; 11650 } 11651 11652 static bool signed_sub_overflows(s64 a, s64 b) 11653 { 11654 /* Do the sub in u64, where overflow is well-defined */ 11655 s64 res = (s64)((u64)a - (u64)b); 11656 11657 if (b < 0) 11658 return res < a; 11659 return res > a; 11660 } 11661 11662 static bool signed_sub32_overflows(s32 a, s32 b) 11663 { 11664 /* Do the sub in u32, where overflow is well-defined */ 11665 s32 res = (s32)((u32)a - (u32)b); 11666 11667 if (b < 0) 11668 return res < a; 11669 return res > a; 11670 } 11671 11672 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 11673 const struct bpf_reg_state *reg, 11674 enum bpf_reg_type type) 11675 { 11676 bool known = tnum_is_const(reg->var_off); 11677 s64 val = reg->var_off.value; 11678 s64 smin = reg->smin_value; 11679 11680 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 11681 verbose(env, "math between %s pointer and %lld is not allowed\n", 11682 reg_type_str(env, type), val); 11683 return false; 11684 } 11685 11686 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 11687 verbose(env, "%s pointer offset %d is not allowed\n", 11688 reg_type_str(env, type), reg->off); 11689 return false; 11690 } 11691 11692 if (smin == S64_MIN) { 11693 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 11694 reg_type_str(env, type)); 11695 return false; 11696 } 11697 11698 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 11699 verbose(env, "value %lld makes %s pointer be out of bounds\n", 11700 smin, reg_type_str(env, type)); 11701 return false; 11702 } 11703 11704 return true; 11705 } 11706 11707 enum { 11708 REASON_BOUNDS = -1, 11709 REASON_TYPE = -2, 11710 REASON_PATHS = -3, 11711 REASON_LIMIT = -4, 11712 REASON_STACK = -5, 11713 }; 11714 11715 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 11716 u32 *alu_limit, bool mask_to_left) 11717 { 11718 u32 max = 0, ptr_limit = 0; 11719 11720 switch (ptr_reg->type) { 11721 case PTR_TO_STACK: 11722 /* Offset 0 is out-of-bounds, but acceptable start for the 11723 * left direction, see BPF_REG_FP. Also, unknown scalar 11724 * offset where we would need to deal with min/max bounds is 11725 * currently prohibited for unprivileged. 11726 */ 11727 max = MAX_BPF_STACK + mask_to_left; 11728 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 11729 break; 11730 case PTR_TO_MAP_VALUE: 11731 max = ptr_reg->map_ptr->value_size; 11732 ptr_limit = (mask_to_left ? 11733 ptr_reg->smin_value : 11734 ptr_reg->umax_value) + ptr_reg->off; 11735 break; 11736 default: 11737 return REASON_TYPE; 11738 } 11739 11740 if (ptr_limit >= max) 11741 return REASON_LIMIT; 11742 *alu_limit = ptr_limit; 11743 return 0; 11744 } 11745 11746 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 11747 const struct bpf_insn *insn) 11748 { 11749 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 11750 } 11751 11752 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 11753 u32 alu_state, u32 alu_limit) 11754 { 11755 /* If we arrived here from different branches with different 11756 * state or limits to sanitize, then this won't work. 11757 */ 11758 if (aux->alu_state && 11759 (aux->alu_state != alu_state || 11760 aux->alu_limit != alu_limit)) 11761 return REASON_PATHS; 11762 11763 /* Corresponding fixup done in do_misc_fixups(). */ 11764 aux->alu_state = alu_state; 11765 aux->alu_limit = alu_limit; 11766 return 0; 11767 } 11768 11769 static int sanitize_val_alu(struct bpf_verifier_env *env, 11770 struct bpf_insn *insn) 11771 { 11772 struct bpf_insn_aux_data *aux = cur_aux(env); 11773 11774 if (can_skip_alu_sanitation(env, insn)) 11775 return 0; 11776 11777 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 11778 } 11779 11780 static bool sanitize_needed(u8 opcode) 11781 { 11782 return opcode == BPF_ADD || opcode == BPF_SUB; 11783 } 11784 11785 struct bpf_sanitize_info { 11786 struct bpf_insn_aux_data aux; 11787 bool mask_to_left; 11788 }; 11789 11790 static struct bpf_verifier_state * 11791 sanitize_speculative_path(struct bpf_verifier_env *env, 11792 const struct bpf_insn *insn, 11793 u32 next_idx, u32 curr_idx) 11794 { 11795 struct bpf_verifier_state *branch; 11796 struct bpf_reg_state *regs; 11797 11798 branch = push_stack(env, next_idx, curr_idx, true); 11799 if (branch && insn) { 11800 regs = branch->frame[branch->curframe]->regs; 11801 if (BPF_SRC(insn->code) == BPF_K) { 11802 mark_reg_unknown(env, regs, insn->dst_reg); 11803 } else if (BPF_SRC(insn->code) == BPF_X) { 11804 mark_reg_unknown(env, regs, insn->dst_reg); 11805 mark_reg_unknown(env, regs, insn->src_reg); 11806 } 11807 } 11808 return branch; 11809 } 11810 11811 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 11812 struct bpf_insn *insn, 11813 const struct bpf_reg_state *ptr_reg, 11814 const struct bpf_reg_state *off_reg, 11815 struct bpf_reg_state *dst_reg, 11816 struct bpf_sanitize_info *info, 11817 const bool commit_window) 11818 { 11819 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 11820 struct bpf_verifier_state *vstate = env->cur_state; 11821 bool off_is_imm = tnum_is_const(off_reg->var_off); 11822 bool off_is_neg = off_reg->smin_value < 0; 11823 bool ptr_is_dst_reg = ptr_reg == dst_reg; 11824 u8 opcode = BPF_OP(insn->code); 11825 u32 alu_state, alu_limit; 11826 struct bpf_reg_state tmp; 11827 bool ret; 11828 int err; 11829 11830 if (can_skip_alu_sanitation(env, insn)) 11831 return 0; 11832 11833 /* We already marked aux for masking from non-speculative 11834 * paths, thus we got here in the first place. We only care 11835 * to explore bad access from here. 11836 */ 11837 if (vstate->speculative) 11838 goto do_sim; 11839 11840 if (!commit_window) { 11841 if (!tnum_is_const(off_reg->var_off) && 11842 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 11843 return REASON_BOUNDS; 11844 11845 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 11846 (opcode == BPF_SUB && !off_is_neg); 11847 } 11848 11849 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 11850 if (err < 0) 11851 return err; 11852 11853 if (commit_window) { 11854 /* In commit phase we narrow the masking window based on 11855 * the observed pointer move after the simulated operation. 11856 */ 11857 alu_state = info->aux.alu_state; 11858 alu_limit = abs(info->aux.alu_limit - alu_limit); 11859 } else { 11860 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 11861 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 11862 alu_state |= ptr_is_dst_reg ? 11863 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 11864 11865 /* Limit pruning on unknown scalars to enable deep search for 11866 * potential masking differences from other program paths. 11867 */ 11868 if (!off_is_imm) 11869 env->explore_alu_limits = true; 11870 } 11871 11872 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 11873 if (err < 0) 11874 return err; 11875 do_sim: 11876 /* If we're in commit phase, we're done here given we already 11877 * pushed the truncated dst_reg into the speculative verification 11878 * stack. 11879 * 11880 * Also, when register is a known constant, we rewrite register-based 11881 * operation to immediate-based, and thus do not need masking (and as 11882 * a consequence, do not need to simulate the zero-truncation either). 11883 */ 11884 if (commit_window || off_is_imm) 11885 return 0; 11886 11887 /* Simulate and find potential out-of-bounds access under 11888 * speculative execution from truncation as a result of 11889 * masking when off was not within expected range. If off 11890 * sits in dst, then we temporarily need to move ptr there 11891 * to simulate dst (== 0) +/-= ptr. Needed, for example, 11892 * for cases where we use K-based arithmetic in one direction 11893 * and truncated reg-based in the other in order to explore 11894 * bad access. 11895 */ 11896 if (!ptr_is_dst_reg) { 11897 tmp = *dst_reg; 11898 copy_register_state(dst_reg, ptr_reg); 11899 } 11900 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 11901 env->insn_idx); 11902 if (!ptr_is_dst_reg && ret) 11903 *dst_reg = tmp; 11904 return !ret ? REASON_STACK : 0; 11905 } 11906 11907 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 11908 { 11909 struct bpf_verifier_state *vstate = env->cur_state; 11910 11911 /* If we simulate paths under speculation, we don't update the 11912 * insn as 'seen' such that when we verify unreachable paths in 11913 * the non-speculative domain, sanitize_dead_code() can still 11914 * rewrite/sanitize them. 11915 */ 11916 if (!vstate->speculative) 11917 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 11918 } 11919 11920 static int sanitize_err(struct bpf_verifier_env *env, 11921 const struct bpf_insn *insn, int reason, 11922 const struct bpf_reg_state *off_reg, 11923 const struct bpf_reg_state *dst_reg) 11924 { 11925 static const char *err = "pointer arithmetic with it prohibited for !root"; 11926 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 11927 u32 dst = insn->dst_reg, src = insn->src_reg; 11928 11929 switch (reason) { 11930 case REASON_BOUNDS: 11931 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 11932 off_reg == dst_reg ? dst : src, err); 11933 break; 11934 case REASON_TYPE: 11935 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 11936 off_reg == dst_reg ? src : dst, err); 11937 break; 11938 case REASON_PATHS: 11939 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 11940 dst, op, err); 11941 break; 11942 case REASON_LIMIT: 11943 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 11944 dst, op, err); 11945 break; 11946 case REASON_STACK: 11947 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 11948 dst, err); 11949 break; 11950 default: 11951 verbose(env, "verifier internal error: unknown reason (%d)\n", 11952 reason); 11953 break; 11954 } 11955 11956 return -EACCES; 11957 } 11958 11959 /* check that stack access falls within stack limits and that 'reg' doesn't 11960 * have a variable offset. 11961 * 11962 * Variable offset is prohibited for unprivileged mode for simplicity since it 11963 * requires corresponding support in Spectre masking for stack ALU. See also 11964 * retrieve_ptr_limit(). 11965 * 11966 * 11967 * 'off' includes 'reg->off'. 11968 */ 11969 static int check_stack_access_for_ptr_arithmetic( 11970 struct bpf_verifier_env *env, 11971 int regno, 11972 const struct bpf_reg_state *reg, 11973 int off) 11974 { 11975 if (!tnum_is_const(reg->var_off)) { 11976 char tn_buf[48]; 11977 11978 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 11979 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 11980 regno, tn_buf, off); 11981 return -EACCES; 11982 } 11983 11984 if (off >= 0 || off < -MAX_BPF_STACK) { 11985 verbose(env, "R%d stack pointer arithmetic goes out of range, " 11986 "prohibited for !root; off=%d\n", regno, off); 11987 return -EACCES; 11988 } 11989 11990 return 0; 11991 } 11992 11993 static int sanitize_check_bounds(struct bpf_verifier_env *env, 11994 const struct bpf_insn *insn, 11995 const struct bpf_reg_state *dst_reg) 11996 { 11997 u32 dst = insn->dst_reg; 11998 11999 /* For unprivileged we require that resulting offset must be in bounds 12000 * in order to be able to sanitize access later on. 12001 */ 12002 if (env->bypass_spec_v1) 12003 return 0; 12004 12005 switch (dst_reg->type) { 12006 case PTR_TO_STACK: 12007 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12008 dst_reg->off + dst_reg->var_off.value)) 12009 return -EACCES; 12010 break; 12011 case PTR_TO_MAP_VALUE: 12012 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12013 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12014 "prohibited for !root\n", dst); 12015 return -EACCES; 12016 } 12017 break; 12018 default: 12019 break; 12020 } 12021 12022 return 0; 12023 } 12024 12025 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12026 * Caller should also handle BPF_MOV case separately. 12027 * If we return -EACCES, caller may want to try again treating pointer as a 12028 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12029 */ 12030 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12031 struct bpf_insn *insn, 12032 const struct bpf_reg_state *ptr_reg, 12033 const struct bpf_reg_state *off_reg) 12034 { 12035 struct bpf_verifier_state *vstate = env->cur_state; 12036 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12037 struct bpf_reg_state *regs = state->regs, *dst_reg; 12038 bool known = tnum_is_const(off_reg->var_off); 12039 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12040 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12041 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12042 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12043 struct bpf_sanitize_info info = {}; 12044 u8 opcode = BPF_OP(insn->code); 12045 u32 dst = insn->dst_reg; 12046 int ret; 12047 12048 dst_reg = ®s[dst]; 12049 12050 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12051 smin_val > smax_val || umin_val > umax_val) { 12052 /* Taint dst register if offset had invalid bounds derived from 12053 * e.g. dead branches. 12054 */ 12055 __mark_reg_unknown(env, dst_reg); 12056 return 0; 12057 } 12058 12059 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12060 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12061 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12062 __mark_reg_unknown(env, dst_reg); 12063 return 0; 12064 } 12065 12066 verbose(env, 12067 "R%d 32-bit pointer arithmetic prohibited\n", 12068 dst); 12069 return -EACCES; 12070 } 12071 12072 if (ptr_reg->type & PTR_MAYBE_NULL) { 12073 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12074 dst, reg_type_str(env, ptr_reg->type)); 12075 return -EACCES; 12076 } 12077 12078 switch (base_type(ptr_reg->type)) { 12079 case CONST_PTR_TO_MAP: 12080 /* smin_val represents the known value */ 12081 if (known && smin_val == 0 && opcode == BPF_ADD) 12082 break; 12083 fallthrough; 12084 case PTR_TO_PACKET_END: 12085 case PTR_TO_SOCKET: 12086 case PTR_TO_SOCK_COMMON: 12087 case PTR_TO_TCP_SOCK: 12088 case PTR_TO_XDP_SOCK: 12089 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12090 dst, reg_type_str(env, ptr_reg->type)); 12091 return -EACCES; 12092 default: 12093 break; 12094 } 12095 12096 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12097 * The id may be overwritten later if we create a new variable offset. 12098 */ 12099 dst_reg->type = ptr_reg->type; 12100 dst_reg->id = ptr_reg->id; 12101 12102 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12103 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12104 return -EINVAL; 12105 12106 /* pointer types do not carry 32-bit bounds at the moment. */ 12107 __mark_reg32_unbounded(dst_reg); 12108 12109 if (sanitize_needed(opcode)) { 12110 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12111 &info, false); 12112 if (ret < 0) 12113 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12114 } 12115 12116 switch (opcode) { 12117 case BPF_ADD: 12118 /* We can take a fixed offset as long as it doesn't overflow 12119 * the s32 'off' field 12120 */ 12121 if (known && (ptr_reg->off + smin_val == 12122 (s64)(s32)(ptr_reg->off + smin_val))) { 12123 /* pointer += K. Accumulate it into fixed offset */ 12124 dst_reg->smin_value = smin_ptr; 12125 dst_reg->smax_value = smax_ptr; 12126 dst_reg->umin_value = umin_ptr; 12127 dst_reg->umax_value = umax_ptr; 12128 dst_reg->var_off = ptr_reg->var_off; 12129 dst_reg->off = ptr_reg->off + smin_val; 12130 dst_reg->raw = ptr_reg->raw; 12131 break; 12132 } 12133 /* A new variable offset is created. Note that off_reg->off 12134 * == 0, since it's a scalar. 12135 * dst_reg gets the pointer type and since some positive 12136 * integer value was added to the pointer, give it a new 'id' 12137 * if it's a PTR_TO_PACKET. 12138 * this creates a new 'base' pointer, off_reg (variable) gets 12139 * added into the variable offset, and we copy the fixed offset 12140 * from ptr_reg. 12141 */ 12142 if (signed_add_overflows(smin_ptr, smin_val) || 12143 signed_add_overflows(smax_ptr, smax_val)) { 12144 dst_reg->smin_value = S64_MIN; 12145 dst_reg->smax_value = S64_MAX; 12146 } else { 12147 dst_reg->smin_value = smin_ptr + smin_val; 12148 dst_reg->smax_value = smax_ptr + smax_val; 12149 } 12150 if (umin_ptr + umin_val < umin_ptr || 12151 umax_ptr + umax_val < umax_ptr) { 12152 dst_reg->umin_value = 0; 12153 dst_reg->umax_value = U64_MAX; 12154 } else { 12155 dst_reg->umin_value = umin_ptr + umin_val; 12156 dst_reg->umax_value = umax_ptr + umax_val; 12157 } 12158 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12159 dst_reg->off = ptr_reg->off; 12160 dst_reg->raw = ptr_reg->raw; 12161 if (reg_is_pkt_pointer(ptr_reg)) { 12162 dst_reg->id = ++env->id_gen; 12163 /* something was added to pkt_ptr, set range to zero */ 12164 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12165 } 12166 break; 12167 case BPF_SUB: 12168 if (dst_reg == off_reg) { 12169 /* scalar -= pointer. Creates an unknown scalar */ 12170 verbose(env, "R%d tried to subtract pointer from scalar\n", 12171 dst); 12172 return -EACCES; 12173 } 12174 /* We don't allow subtraction from FP, because (according to 12175 * test_verifier.c test "invalid fp arithmetic", JITs might not 12176 * be able to deal with it. 12177 */ 12178 if (ptr_reg->type == PTR_TO_STACK) { 12179 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12180 dst); 12181 return -EACCES; 12182 } 12183 if (known && (ptr_reg->off - smin_val == 12184 (s64)(s32)(ptr_reg->off - smin_val))) { 12185 /* pointer -= K. Subtract it from fixed offset */ 12186 dst_reg->smin_value = smin_ptr; 12187 dst_reg->smax_value = smax_ptr; 12188 dst_reg->umin_value = umin_ptr; 12189 dst_reg->umax_value = umax_ptr; 12190 dst_reg->var_off = ptr_reg->var_off; 12191 dst_reg->id = ptr_reg->id; 12192 dst_reg->off = ptr_reg->off - smin_val; 12193 dst_reg->raw = ptr_reg->raw; 12194 break; 12195 } 12196 /* A new variable offset is created. If the subtrahend is known 12197 * nonnegative, then any reg->range we had before is still good. 12198 */ 12199 if (signed_sub_overflows(smin_ptr, smax_val) || 12200 signed_sub_overflows(smax_ptr, smin_val)) { 12201 /* Overflow possible, we know nothing */ 12202 dst_reg->smin_value = S64_MIN; 12203 dst_reg->smax_value = S64_MAX; 12204 } else { 12205 dst_reg->smin_value = smin_ptr - smax_val; 12206 dst_reg->smax_value = smax_ptr - smin_val; 12207 } 12208 if (umin_ptr < umax_val) { 12209 /* Overflow possible, we know nothing */ 12210 dst_reg->umin_value = 0; 12211 dst_reg->umax_value = U64_MAX; 12212 } else { 12213 /* Cannot overflow (as long as bounds are consistent) */ 12214 dst_reg->umin_value = umin_ptr - umax_val; 12215 dst_reg->umax_value = umax_ptr - umin_val; 12216 } 12217 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12218 dst_reg->off = ptr_reg->off; 12219 dst_reg->raw = ptr_reg->raw; 12220 if (reg_is_pkt_pointer(ptr_reg)) { 12221 dst_reg->id = ++env->id_gen; 12222 /* something was added to pkt_ptr, set range to zero */ 12223 if (smin_val < 0) 12224 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12225 } 12226 break; 12227 case BPF_AND: 12228 case BPF_OR: 12229 case BPF_XOR: 12230 /* bitwise ops on pointers are troublesome, prohibit. */ 12231 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12232 dst, bpf_alu_string[opcode >> 4]); 12233 return -EACCES; 12234 default: 12235 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12236 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12237 dst, bpf_alu_string[opcode >> 4]); 12238 return -EACCES; 12239 } 12240 12241 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12242 return -EINVAL; 12243 reg_bounds_sync(dst_reg); 12244 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12245 return -EACCES; 12246 if (sanitize_needed(opcode)) { 12247 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12248 &info, true); 12249 if (ret < 0) 12250 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12251 } 12252 12253 return 0; 12254 } 12255 12256 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12257 struct bpf_reg_state *src_reg) 12258 { 12259 s32 smin_val = src_reg->s32_min_value; 12260 s32 smax_val = src_reg->s32_max_value; 12261 u32 umin_val = src_reg->u32_min_value; 12262 u32 umax_val = src_reg->u32_max_value; 12263 12264 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12265 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12266 dst_reg->s32_min_value = S32_MIN; 12267 dst_reg->s32_max_value = S32_MAX; 12268 } else { 12269 dst_reg->s32_min_value += smin_val; 12270 dst_reg->s32_max_value += smax_val; 12271 } 12272 if (dst_reg->u32_min_value + umin_val < umin_val || 12273 dst_reg->u32_max_value + umax_val < umax_val) { 12274 dst_reg->u32_min_value = 0; 12275 dst_reg->u32_max_value = U32_MAX; 12276 } else { 12277 dst_reg->u32_min_value += umin_val; 12278 dst_reg->u32_max_value += umax_val; 12279 } 12280 } 12281 12282 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12283 struct bpf_reg_state *src_reg) 12284 { 12285 s64 smin_val = src_reg->smin_value; 12286 s64 smax_val = src_reg->smax_value; 12287 u64 umin_val = src_reg->umin_value; 12288 u64 umax_val = src_reg->umax_value; 12289 12290 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12291 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12292 dst_reg->smin_value = S64_MIN; 12293 dst_reg->smax_value = S64_MAX; 12294 } else { 12295 dst_reg->smin_value += smin_val; 12296 dst_reg->smax_value += smax_val; 12297 } 12298 if (dst_reg->umin_value + umin_val < umin_val || 12299 dst_reg->umax_value + umax_val < umax_val) { 12300 dst_reg->umin_value = 0; 12301 dst_reg->umax_value = U64_MAX; 12302 } else { 12303 dst_reg->umin_value += umin_val; 12304 dst_reg->umax_value += umax_val; 12305 } 12306 } 12307 12308 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12309 struct bpf_reg_state *src_reg) 12310 { 12311 s32 smin_val = src_reg->s32_min_value; 12312 s32 smax_val = src_reg->s32_max_value; 12313 u32 umin_val = src_reg->u32_min_value; 12314 u32 umax_val = src_reg->u32_max_value; 12315 12316 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12317 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12318 /* Overflow possible, we know nothing */ 12319 dst_reg->s32_min_value = S32_MIN; 12320 dst_reg->s32_max_value = S32_MAX; 12321 } else { 12322 dst_reg->s32_min_value -= smax_val; 12323 dst_reg->s32_max_value -= smin_val; 12324 } 12325 if (dst_reg->u32_min_value < umax_val) { 12326 /* Overflow possible, we know nothing */ 12327 dst_reg->u32_min_value = 0; 12328 dst_reg->u32_max_value = U32_MAX; 12329 } else { 12330 /* Cannot overflow (as long as bounds are consistent) */ 12331 dst_reg->u32_min_value -= umax_val; 12332 dst_reg->u32_max_value -= umin_val; 12333 } 12334 } 12335 12336 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12337 struct bpf_reg_state *src_reg) 12338 { 12339 s64 smin_val = src_reg->smin_value; 12340 s64 smax_val = src_reg->smax_value; 12341 u64 umin_val = src_reg->umin_value; 12342 u64 umax_val = src_reg->umax_value; 12343 12344 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12345 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12346 /* Overflow possible, we know nothing */ 12347 dst_reg->smin_value = S64_MIN; 12348 dst_reg->smax_value = S64_MAX; 12349 } else { 12350 dst_reg->smin_value -= smax_val; 12351 dst_reg->smax_value -= smin_val; 12352 } 12353 if (dst_reg->umin_value < umax_val) { 12354 /* Overflow possible, we know nothing */ 12355 dst_reg->umin_value = 0; 12356 dst_reg->umax_value = U64_MAX; 12357 } else { 12358 /* Cannot overflow (as long as bounds are consistent) */ 12359 dst_reg->umin_value -= umax_val; 12360 dst_reg->umax_value -= umin_val; 12361 } 12362 } 12363 12364 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12365 struct bpf_reg_state *src_reg) 12366 { 12367 s32 smin_val = src_reg->s32_min_value; 12368 u32 umin_val = src_reg->u32_min_value; 12369 u32 umax_val = src_reg->u32_max_value; 12370 12371 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12372 /* Ain't nobody got time to multiply that sign */ 12373 __mark_reg32_unbounded(dst_reg); 12374 return; 12375 } 12376 /* Both values are positive, so we can work with unsigned and 12377 * copy the result to signed (unless it exceeds S32_MAX). 12378 */ 12379 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12380 /* Potential overflow, we know nothing */ 12381 __mark_reg32_unbounded(dst_reg); 12382 return; 12383 } 12384 dst_reg->u32_min_value *= umin_val; 12385 dst_reg->u32_max_value *= umax_val; 12386 if (dst_reg->u32_max_value > S32_MAX) { 12387 /* Overflow possible, we know nothing */ 12388 dst_reg->s32_min_value = S32_MIN; 12389 dst_reg->s32_max_value = S32_MAX; 12390 } else { 12391 dst_reg->s32_min_value = dst_reg->u32_min_value; 12392 dst_reg->s32_max_value = dst_reg->u32_max_value; 12393 } 12394 } 12395 12396 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12397 struct bpf_reg_state *src_reg) 12398 { 12399 s64 smin_val = src_reg->smin_value; 12400 u64 umin_val = src_reg->umin_value; 12401 u64 umax_val = src_reg->umax_value; 12402 12403 if (smin_val < 0 || dst_reg->smin_value < 0) { 12404 /* Ain't nobody got time to multiply that sign */ 12405 __mark_reg64_unbounded(dst_reg); 12406 return; 12407 } 12408 /* Both values are positive, so we can work with unsigned and 12409 * copy the result to signed (unless it exceeds S64_MAX). 12410 */ 12411 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12412 /* Potential overflow, we know nothing */ 12413 __mark_reg64_unbounded(dst_reg); 12414 return; 12415 } 12416 dst_reg->umin_value *= umin_val; 12417 dst_reg->umax_value *= umax_val; 12418 if (dst_reg->umax_value > S64_MAX) { 12419 /* Overflow possible, we know nothing */ 12420 dst_reg->smin_value = S64_MIN; 12421 dst_reg->smax_value = S64_MAX; 12422 } else { 12423 dst_reg->smin_value = dst_reg->umin_value; 12424 dst_reg->smax_value = dst_reg->umax_value; 12425 } 12426 } 12427 12428 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12429 struct bpf_reg_state *src_reg) 12430 { 12431 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12432 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12433 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12434 s32 smin_val = src_reg->s32_min_value; 12435 u32 umax_val = src_reg->u32_max_value; 12436 12437 if (src_known && dst_known) { 12438 __mark_reg32_known(dst_reg, var32_off.value); 12439 return; 12440 } 12441 12442 /* We get our minimum from the var_off, since that's inherently 12443 * bitwise. Our maximum is the minimum of the operands' maxima. 12444 */ 12445 dst_reg->u32_min_value = var32_off.value; 12446 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12447 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12448 /* Lose signed bounds when ANDing negative numbers, 12449 * ain't nobody got time for that. 12450 */ 12451 dst_reg->s32_min_value = S32_MIN; 12452 dst_reg->s32_max_value = S32_MAX; 12453 } else { 12454 /* ANDing two positives gives a positive, so safe to 12455 * cast result into s64. 12456 */ 12457 dst_reg->s32_min_value = dst_reg->u32_min_value; 12458 dst_reg->s32_max_value = dst_reg->u32_max_value; 12459 } 12460 } 12461 12462 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12463 struct bpf_reg_state *src_reg) 12464 { 12465 bool src_known = tnum_is_const(src_reg->var_off); 12466 bool dst_known = tnum_is_const(dst_reg->var_off); 12467 s64 smin_val = src_reg->smin_value; 12468 u64 umax_val = src_reg->umax_value; 12469 12470 if (src_known && dst_known) { 12471 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12472 return; 12473 } 12474 12475 /* We get our minimum from the var_off, since that's inherently 12476 * bitwise. Our maximum is the minimum of the operands' maxima. 12477 */ 12478 dst_reg->umin_value = dst_reg->var_off.value; 12479 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12480 if (dst_reg->smin_value < 0 || smin_val < 0) { 12481 /* Lose signed bounds when ANDing negative numbers, 12482 * ain't nobody got time for that. 12483 */ 12484 dst_reg->smin_value = S64_MIN; 12485 dst_reg->smax_value = S64_MAX; 12486 } else { 12487 /* ANDing two positives gives a positive, so safe to 12488 * cast result into s64. 12489 */ 12490 dst_reg->smin_value = dst_reg->umin_value; 12491 dst_reg->smax_value = dst_reg->umax_value; 12492 } 12493 /* We may learn something more from the var_off */ 12494 __update_reg_bounds(dst_reg); 12495 } 12496 12497 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12498 struct bpf_reg_state *src_reg) 12499 { 12500 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12501 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12502 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12503 s32 smin_val = src_reg->s32_min_value; 12504 u32 umin_val = src_reg->u32_min_value; 12505 12506 if (src_known && dst_known) { 12507 __mark_reg32_known(dst_reg, var32_off.value); 12508 return; 12509 } 12510 12511 /* We get our maximum from the var_off, and our minimum is the 12512 * maximum of the operands' minima 12513 */ 12514 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12515 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12516 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12517 /* Lose signed bounds when ORing negative numbers, 12518 * ain't nobody got time for that. 12519 */ 12520 dst_reg->s32_min_value = S32_MIN; 12521 dst_reg->s32_max_value = S32_MAX; 12522 } else { 12523 /* ORing two positives gives a positive, so safe to 12524 * cast result into s64. 12525 */ 12526 dst_reg->s32_min_value = dst_reg->u32_min_value; 12527 dst_reg->s32_max_value = dst_reg->u32_max_value; 12528 } 12529 } 12530 12531 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12532 struct bpf_reg_state *src_reg) 12533 { 12534 bool src_known = tnum_is_const(src_reg->var_off); 12535 bool dst_known = tnum_is_const(dst_reg->var_off); 12536 s64 smin_val = src_reg->smin_value; 12537 u64 umin_val = src_reg->umin_value; 12538 12539 if (src_known && dst_known) { 12540 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12541 return; 12542 } 12543 12544 /* We get our maximum from the var_off, and our minimum is the 12545 * maximum of the operands' minima 12546 */ 12547 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12548 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12549 if (dst_reg->smin_value < 0 || smin_val < 0) { 12550 /* Lose signed bounds when ORing negative numbers, 12551 * ain't nobody got time for that. 12552 */ 12553 dst_reg->smin_value = S64_MIN; 12554 dst_reg->smax_value = S64_MAX; 12555 } else { 12556 /* ORing two positives gives a positive, so safe to 12557 * cast result into s64. 12558 */ 12559 dst_reg->smin_value = dst_reg->umin_value; 12560 dst_reg->smax_value = dst_reg->umax_value; 12561 } 12562 /* We may learn something more from the var_off */ 12563 __update_reg_bounds(dst_reg); 12564 } 12565 12566 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12567 struct bpf_reg_state *src_reg) 12568 { 12569 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12570 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12571 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12572 s32 smin_val = src_reg->s32_min_value; 12573 12574 if (src_known && dst_known) { 12575 __mark_reg32_known(dst_reg, var32_off.value); 12576 return; 12577 } 12578 12579 /* We get both minimum and maximum from the var32_off. */ 12580 dst_reg->u32_min_value = var32_off.value; 12581 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12582 12583 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 12584 /* XORing two positive sign numbers gives a positive, 12585 * so safe to cast u32 result into s32. 12586 */ 12587 dst_reg->s32_min_value = dst_reg->u32_min_value; 12588 dst_reg->s32_max_value = dst_reg->u32_max_value; 12589 } else { 12590 dst_reg->s32_min_value = S32_MIN; 12591 dst_reg->s32_max_value = S32_MAX; 12592 } 12593 } 12594 12595 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 12596 struct bpf_reg_state *src_reg) 12597 { 12598 bool src_known = tnum_is_const(src_reg->var_off); 12599 bool dst_known = tnum_is_const(dst_reg->var_off); 12600 s64 smin_val = src_reg->smin_value; 12601 12602 if (src_known && dst_known) { 12603 /* dst_reg->var_off.value has been updated earlier */ 12604 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12605 return; 12606 } 12607 12608 /* We get both minimum and maximum from the var_off. */ 12609 dst_reg->umin_value = dst_reg->var_off.value; 12610 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12611 12612 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 12613 /* XORing two positive sign numbers gives a positive, 12614 * so safe to cast u64 result into s64. 12615 */ 12616 dst_reg->smin_value = dst_reg->umin_value; 12617 dst_reg->smax_value = dst_reg->umax_value; 12618 } else { 12619 dst_reg->smin_value = S64_MIN; 12620 dst_reg->smax_value = S64_MAX; 12621 } 12622 12623 __update_reg_bounds(dst_reg); 12624 } 12625 12626 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12627 u64 umin_val, u64 umax_val) 12628 { 12629 /* We lose all sign bit information (except what we can pick 12630 * up from var_off) 12631 */ 12632 dst_reg->s32_min_value = S32_MIN; 12633 dst_reg->s32_max_value = S32_MAX; 12634 /* If we might shift our top bit out, then we know nothing */ 12635 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 12636 dst_reg->u32_min_value = 0; 12637 dst_reg->u32_max_value = U32_MAX; 12638 } else { 12639 dst_reg->u32_min_value <<= umin_val; 12640 dst_reg->u32_max_value <<= umax_val; 12641 } 12642 } 12643 12644 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 12645 struct bpf_reg_state *src_reg) 12646 { 12647 u32 umax_val = src_reg->u32_max_value; 12648 u32 umin_val = src_reg->u32_min_value; 12649 /* u32 alu operation will zext upper bits */ 12650 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12651 12652 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12653 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 12654 /* Not required but being careful mark reg64 bounds as unknown so 12655 * that we are forced to pick them up from tnum and zext later and 12656 * if some path skips this step we are still safe. 12657 */ 12658 __mark_reg64_unbounded(dst_reg); 12659 __update_reg32_bounds(dst_reg); 12660 } 12661 12662 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 12663 u64 umin_val, u64 umax_val) 12664 { 12665 /* Special case <<32 because it is a common compiler pattern to sign 12666 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 12667 * positive we know this shift will also be positive so we can track 12668 * bounds correctly. Otherwise we lose all sign bit information except 12669 * what we can pick up from var_off. Perhaps we can generalize this 12670 * later to shifts of any length. 12671 */ 12672 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 12673 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 12674 else 12675 dst_reg->smax_value = S64_MAX; 12676 12677 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 12678 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 12679 else 12680 dst_reg->smin_value = S64_MIN; 12681 12682 /* If we might shift our top bit out, then we know nothing */ 12683 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 12684 dst_reg->umin_value = 0; 12685 dst_reg->umax_value = U64_MAX; 12686 } else { 12687 dst_reg->umin_value <<= umin_val; 12688 dst_reg->umax_value <<= umax_val; 12689 } 12690 } 12691 12692 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 12693 struct bpf_reg_state *src_reg) 12694 { 12695 u64 umax_val = src_reg->umax_value; 12696 u64 umin_val = src_reg->umin_value; 12697 12698 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 12699 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 12700 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 12701 12702 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 12703 /* We may learn something more from the var_off */ 12704 __update_reg_bounds(dst_reg); 12705 } 12706 12707 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 12708 struct bpf_reg_state *src_reg) 12709 { 12710 struct tnum subreg = tnum_subreg(dst_reg->var_off); 12711 u32 umax_val = src_reg->u32_max_value; 12712 u32 umin_val = src_reg->u32_min_value; 12713 12714 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12715 * be negative, then either: 12716 * 1) src_reg might be zero, so the sign bit of the result is 12717 * unknown, so we lose our signed bounds 12718 * 2) it's known negative, thus the unsigned bounds capture the 12719 * signed bounds 12720 * 3) the signed bounds cross zero, so they tell us nothing 12721 * about the result 12722 * If the value in dst_reg is known nonnegative, then again the 12723 * unsigned bounds capture the signed bounds. 12724 * Thus, in all cases it suffices to blow away our signed bounds 12725 * and rely on inferring new ones from the unsigned bounds and 12726 * var_off of the result. 12727 */ 12728 dst_reg->s32_min_value = S32_MIN; 12729 dst_reg->s32_max_value = S32_MAX; 12730 12731 dst_reg->var_off = tnum_rshift(subreg, umin_val); 12732 dst_reg->u32_min_value >>= umax_val; 12733 dst_reg->u32_max_value >>= umin_val; 12734 12735 __mark_reg64_unbounded(dst_reg); 12736 __update_reg32_bounds(dst_reg); 12737 } 12738 12739 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 12740 struct bpf_reg_state *src_reg) 12741 { 12742 u64 umax_val = src_reg->umax_value; 12743 u64 umin_val = src_reg->umin_value; 12744 12745 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 12746 * be negative, then either: 12747 * 1) src_reg might be zero, so the sign bit of the result is 12748 * unknown, so we lose our signed bounds 12749 * 2) it's known negative, thus the unsigned bounds capture the 12750 * signed bounds 12751 * 3) the signed bounds cross zero, so they tell us nothing 12752 * about the result 12753 * If the value in dst_reg is known nonnegative, then again the 12754 * unsigned bounds capture the signed bounds. 12755 * Thus, in all cases it suffices to blow away our signed bounds 12756 * and rely on inferring new ones from the unsigned bounds and 12757 * var_off of the result. 12758 */ 12759 dst_reg->smin_value = S64_MIN; 12760 dst_reg->smax_value = S64_MAX; 12761 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 12762 dst_reg->umin_value >>= umax_val; 12763 dst_reg->umax_value >>= umin_val; 12764 12765 /* Its not easy to operate on alu32 bounds here because it depends 12766 * on bits being shifted in. Take easy way out and mark unbounded 12767 * so we can recalculate later from tnum. 12768 */ 12769 __mark_reg32_unbounded(dst_reg); 12770 __update_reg_bounds(dst_reg); 12771 } 12772 12773 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 12774 struct bpf_reg_state *src_reg) 12775 { 12776 u64 umin_val = src_reg->u32_min_value; 12777 12778 /* Upon reaching here, src_known is true and 12779 * umax_val is equal to umin_val. 12780 */ 12781 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 12782 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 12783 12784 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 12785 12786 /* blow away the dst_reg umin_value/umax_value and rely on 12787 * dst_reg var_off to refine the result. 12788 */ 12789 dst_reg->u32_min_value = 0; 12790 dst_reg->u32_max_value = U32_MAX; 12791 12792 __mark_reg64_unbounded(dst_reg); 12793 __update_reg32_bounds(dst_reg); 12794 } 12795 12796 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 12797 struct bpf_reg_state *src_reg) 12798 { 12799 u64 umin_val = src_reg->umin_value; 12800 12801 /* Upon reaching here, src_known is true and umax_val is equal 12802 * to umin_val. 12803 */ 12804 dst_reg->smin_value >>= umin_val; 12805 dst_reg->smax_value >>= umin_val; 12806 12807 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 12808 12809 /* blow away the dst_reg umin_value/umax_value and rely on 12810 * dst_reg var_off to refine the result. 12811 */ 12812 dst_reg->umin_value = 0; 12813 dst_reg->umax_value = U64_MAX; 12814 12815 /* Its not easy to operate on alu32 bounds here because it depends 12816 * on bits being shifted in from upper 32-bits. Take easy way out 12817 * and mark unbounded so we can recalculate later from tnum. 12818 */ 12819 __mark_reg32_unbounded(dst_reg); 12820 __update_reg_bounds(dst_reg); 12821 } 12822 12823 /* WARNING: This function does calculations on 64-bit values, but the actual 12824 * execution may occur on 32-bit values. Therefore, things like bitshifts 12825 * need extra checks in the 32-bit case. 12826 */ 12827 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 12828 struct bpf_insn *insn, 12829 struct bpf_reg_state *dst_reg, 12830 struct bpf_reg_state src_reg) 12831 { 12832 struct bpf_reg_state *regs = cur_regs(env); 12833 u8 opcode = BPF_OP(insn->code); 12834 bool src_known; 12835 s64 smin_val, smax_val; 12836 u64 umin_val, umax_val; 12837 s32 s32_min_val, s32_max_val; 12838 u32 u32_min_val, u32_max_val; 12839 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 12840 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 12841 int ret; 12842 12843 smin_val = src_reg.smin_value; 12844 smax_val = src_reg.smax_value; 12845 umin_val = src_reg.umin_value; 12846 umax_val = src_reg.umax_value; 12847 12848 s32_min_val = src_reg.s32_min_value; 12849 s32_max_val = src_reg.s32_max_value; 12850 u32_min_val = src_reg.u32_min_value; 12851 u32_max_val = src_reg.u32_max_value; 12852 12853 if (alu32) { 12854 src_known = tnum_subreg_is_const(src_reg.var_off); 12855 if ((src_known && 12856 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 12857 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 12858 /* Taint dst register if offset had invalid bounds 12859 * derived from e.g. dead branches. 12860 */ 12861 __mark_reg_unknown(env, dst_reg); 12862 return 0; 12863 } 12864 } else { 12865 src_known = tnum_is_const(src_reg.var_off); 12866 if ((src_known && 12867 (smin_val != smax_val || umin_val != umax_val)) || 12868 smin_val > smax_val || umin_val > umax_val) { 12869 /* Taint dst register if offset had invalid bounds 12870 * derived from e.g. dead branches. 12871 */ 12872 __mark_reg_unknown(env, dst_reg); 12873 return 0; 12874 } 12875 } 12876 12877 if (!src_known && 12878 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 12879 __mark_reg_unknown(env, dst_reg); 12880 return 0; 12881 } 12882 12883 if (sanitize_needed(opcode)) { 12884 ret = sanitize_val_alu(env, insn); 12885 if (ret < 0) 12886 return sanitize_err(env, insn, ret, NULL, NULL); 12887 } 12888 12889 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 12890 * There are two classes of instructions: The first class we track both 12891 * alu32 and alu64 sign/unsigned bounds independently this provides the 12892 * greatest amount of precision when alu operations are mixed with jmp32 12893 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 12894 * and BPF_OR. This is possible because these ops have fairly easy to 12895 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 12896 * See alu32 verifier tests for examples. The second class of 12897 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 12898 * with regards to tracking sign/unsigned bounds because the bits may 12899 * cross subreg boundaries in the alu64 case. When this happens we mark 12900 * the reg unbounded in the subreg bound space and use the resulting 12901 * tnum to calculate an approximation of the sign/unsigned bounds. 12902 */ 12903 switch (opcode) { 12904 case BPF_ADD: 12905 scalar32_min_max_add(dst_reg, &src_reg); 12906 scalar_min_max_add(dst_reg, &src_reg); 12907 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 12908 break; 12909 case BPF_SUB: 12910 scalar32_min_max_sub(dst_reg, &src_reg); 12911 scalar_min_max_sub(dst_reg, &src_reg); 12912 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 12913 break; 12914 case BPF_MUL: 12915 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 12916 scalar32_min_max_mul(dst_reg, &src_reg); 12917 scalar_min_max_mul(dst_reg, &src_reg); 12918 break; 12919 case BPF_AND: 12920 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 12921 scalar32_min_max_and(dst_reg, &src_reg); 12922 scalar_min_max_and(dst_reg, &src_reg); 12923 break; 12924 case BPF_OR: 12925 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 12926 scalar32_min_max_or(dst_reg, &src_reg); 12927 scalar_min_max_or(dst_reg, &src_reg); 12928 break; 12929 case BPF_XOR: 12930 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 12931 scalar32_min_max_xor(dst_reg, &src_reg); 12932 scalar_min_max_xor(dst_reg, &src_reg); 12933 break; 12934 case BPF_LSH: 12935 if (umax_val >= insn_bitness) { 12936 /* Shifts greater than 31 or 63 are undefined. 12937 * This includes shifts by a negative number. 12938 */ 12939 mark_reg_unknown(env, regs, insn->dst_reg); 12940 break; 12941 } 12942 if (alu32) 12943 scalar32_min_max_lsh(dst_reg, &src_reg); 12944 else 12945 scalar_min_max_lsh(dst_reg, &src_reg); 12946 break; 12947 case BPF_RSH: 12948 if (umax_val >= insn_bitness) { 12949 /* Shifts greater than 31 or 63 are undefined. 12950 * This includes shifts by a negative number. 12951 */ 12952 mark_reg_unknown(env, regs, insn->dst_reg); 12953 break; 12954 } 12955 if (alu32) 12956 scalar32_min_max_rsh(dst_reg, &src_reg); 12957 else 12958 scalar_min_max_rsh(dst_reg, &src_reg); 12959 break; 12960 case BPF_ARSH: 12961 if (umax_val >= insn_bitness) { 12962 /* Shifts greater than 31 or 63 are undefined. 12963 * This includes shifts by a negative number. 12964 */ 12965 mark_reg_unknown(env, regs, insn->dst_reg); 12966 break; 12967 } 12968 if (alu32) 12969 scalar32_min_max_arsh(dst_reg, &src_reg); 12970 else 12971 scalar_min_max_arsh(dst_reg, &src_reg); 12972 break; 12973 default: 12974 mark_reg_unknown(env, regs, insn->dst_reg); 12975 break; 12976 } 12977 12978 /* ALU32 ops are zero extended into 64bit register */ 12979 if (alu32) 12980 zext_32_to_64(dst_reg); 12981 reg_bounds_sync(dst_reg); 12982 return 0; 12983 } 12984 12985 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 12986 * and var_off. 12987 */ 12988 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 12989 struct bpf_insn *insn) 12990 { 12991 struct bpf_verifier_state *vstate = env->cur_state; 12992 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12993 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 12994 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 12995 u8 opcode = BPF_OP(insn->code); 12996 int err; 12997 12998 dst_reg = ®s[insn->dst_reg]; 12999 src_reg = NULL; 13000 if (dst_reg->type != SCALAR_VALUE) 13001 ptr_reg = dst_reg; 13002 else 13003 /* Make sure ID is cleared otherwise dst_reg min/max could be 13004 * incorrectly propagated into other registers by find_equal_scalars() 13005 */ 13006 dst_reg->id = 0; 13007 if (BPF_SRC(insn->code) == BPF_X) { 13008 src_reg = ®s[insn->src_reg]; 13009 if (src_reg->type != SCALAR_VALUE) { 13010 if (dst_reg->type != SCALAR_VALUE) { 13011 /* Combining two pointers by any ALU op yields 13012 * an arbitrary scalar. Disallow all math except 13013 * pointer subtraction 13014 */ 13015 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13016 mark_reg_unknown(env, regs, insn->dst_reg); 13017 return 0; 13018 } 13019 verbose(env, "R%d pointer %s pointer prohibited\n", 13020 insn->dst_reg, 13021 bpf_alu_string[opcode >> 4]); 13022 return -EACCES; 13023 } else { 13024 /* scalar += pointer 13025 * This is legal, but we have to reverse our 13026 * src/dest handling in computing the range 13027 */ 13028 err = mark_chain_precision(env, insn->dst_reg); 13029 if (err) 13030 return err; 13031 return adjust_ptr_min_max_vals(env, insn, 13032 src_reg, dst_reg); 13033 } 13034 } else if (ptr_reg) { 13035 /* pointer += scalar */ 13036 err = mark_chain_precision(env, insn->src_reg); 13037 if (err) 13038 return err; 13039 return adjust_ptr_min_max_vals(env, insn, 13040 dst_reg, src_reg); 13041 } else if (dst_reg->precise) { 13042 /* if dst_reg is precise, src_reg should be precise as well */ 13043 err = mark_chain_precision(env, insn->src_reg); 13044 if (err) 13045 return err; 13046 } 13047 } else { 13048 /* Pretend the src is a reg with a known value, since we only 13049 * need to be able to read from this state. 13050 */ 13051 off_reg.type = SCALAR_VALUE; 13052 __mark_reg_known(&off_reg, insn->imm); 13053 src_reg = &off_reg; 13054 if (ptr_reg) /* pointer += K */ 13055 return adjust_ptr_min_max_vals(env, insn, 13056 ptr_reg, src_reg); 13057 } 13058 13059 /* Got here implies adding two SCALAR_VALUEs */ 13060 if (WARN_ON_ONCE(ptr_reg)) { 13061 print_verifier_state(env, state, true); 13062 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13063 return -EINVAL; 13064 } 13065 if (WARN_ON(!src_reg)) { 13066 print_verifier_state(env, state, true); 13067 verbose(env, "verifier internal error: no src_reg\n"); 13068 return -EINVAL; 13069 } 13070 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13071 } 13072 13073 /* check validity of 32-bit and 64-bit arithmetic operations */ 13074 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13075 { 13076 struct bpf_reg_state *regs = cur_regs(env); 13077 u8 opcode = BPF_OP(insn->code); 13078 int err; 13079 13080 if (opcode == BPF_END || opcode == BPF_NEG) { 13081 if (opcode == BPF_NEG) { 13082 if (BPF_SRC(insn->code) != BPF_K || 13083 insn->src_reg != BPF_REG_0 || 13084 insn->off != 0 || insn->imm != 0) { 13085 verbose(env, "BPF_NEG uses reserved fields\n"); 13086 return -EINVAL; 13087 } 13088 } else { 13089 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13090 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13091 (BPF_CLASS(insn->code) == BPF_ALU64 && 13092 BPF_SRC(insn->code) != BPF_TO_LE)) { 13093 verbose(env, "BPF_END uses reserved fields\n"); 13094 return -EINVAL; 13095 } 13096 } 13097 13098 /* check src operand */ 13099 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13100 if (err) 13101 return err; 13102 13103 if (is_pointer_value(env, insn->dst_reg)) { 13104 verbose(env, "R%d pointer arithmetic prohibited\n", 13105 insn->dst_reg); 13106 return -EACCES; 13107 } 13108 13109 /* check dest operand */ 13110 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13111 if (err) 13112 return err; 13113 13114 } else if (opcode == BPF_MOV) { 13115 13116 if (BPF_SRC(insn->code) == BPF_X) { 13117 if (insn->imm != 0) { 13118 verbose(env, "BPF_MOV uses reserved fields\n"); 13119 return -EINVAL; 13120 } 13121 13122 if (BPF_CLASS(insn->code) == BPF_ALU) { 13123 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13124 verbose(env, "BPF_MOV uses reserved fields\n"); 13125 return -EINVAL; 13126 } 13127 } else { 13128 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13129 insn->off != 32) { 13130 verbose(env, "BPF_MOV uses reserved fields\n"); 13131 return -EINVAL; 13132 } 13133 } 13134 13135 /* check src operand */ 13136 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13137 if (err) 13138 return err; 13139 } else { 13140 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13141 verbose(env, "BPF_MOV uses reserved fields\n"); 13142 return -EINVAL; 13143 } 13144 } 13145 13146 /* check dest operand, mark as required later */ 13147 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13148 if (err) 13149 return err; 13150 13151 if (BPF_SRC(insn->code) == BPF_X) { 13152 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13153 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13154 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13155 !tnum_is_const(src_reg->var_off); 13156 13157 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13158 if (insn->off == 0) { 13159 /* case: R1 = R2 13160 * copy register state to dest reg 13161 */ 13162 if (need_id) 13163 /* Assign src and dst registers the same ID 13164 * that will be used by find_equal_scalars() 13165 * to propagate min/max range. 13166 */ 13167 src_reg->id = ++env->id_gen; 13168 copy_register_state(dst_reg, src_reg); 13169 dst_reg->live |= REG_LIVE_WRITTEN; 13170 dst_reg->subreg_def = DEF_NOT_SUBREG; 13171 } else { 13172 /* case: R1 = (s8, s16 s32)R2 */ 13173 if (is_pointer_value(env, insn->src_reg)) { 13174 verbose(env, 13175 "R%d sign-extension part of pointer\n", 13176 insn->src_reg); 13177 return -EACCES; 13178 } else if (src_reg->type == SCALAR_VALUE) { 13179 bool no_sext; 13180 13181 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13182 if (no_sext && need_id) 13183 src_reg->id = ++env->id_gen; 13184 copy_register_state(dst_reg, src_reg); 13185 if (!no_sext) 13186 dst_reg->id = 0; 13187 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13188 dst_reg->live |= REG_LIVE_WRITTEN; 13189 dst_reg->subreg_def = DEF_NOT_SUBREG; 13190 } else { 13191 mark_reg_unknown(env, regs, insn->dst_reg); 13192 } 13193 } 13194 } else { 13195 /* R1 = (u32) R2 */ 13196 if (is_pointer_value(env, insn->src_reg)) { 13197 verbose(env, 13198 "R%d partial copy of pointer\n", 13199 insn->src_reg); 13200 return -EACCES; 13201 } else if (src_reg->type == SCALAR_VALUE) { 13202 if (insn->off == 0) { 13203 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13204 13205 if (is_src_reg_u32 && need_id) 13206 src_reg->id = ++env->id_gen; 13207 copy_register_state(dst_reg, src_reg); 13208 /* Make sure ID is cleared if src_reg is not in u32 13209 * range otherwise dst_reg min/max could be incorrectly 13210 * propagated into src_reg by find_equal_scalars() 13211 */ 13212 if (!is_src_reg_u32) 13213 dst_reg->id = 0; 13214 dst_reg->live |= REG_LIVE_WRITTEN; 13215 dst_reg->subreg_def = env->insn_idx + 1; 13216 } else { 13217 /* case: W1 = (s8, s16)W2 */ 13218 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13219 13220 if (no_sext && need_id) 13221 src_reg->id = ++env->id_gen; 13222 copy_register_state(dst_reg, src_reg); 13223 if (!no_sext) 13224 dst_reg->id = 0; 13225 dst_reg->live |= REG_LIVE_WRITTEN; 13226 dst_reg->subreg_def = env->insn_idx + 1; 13227 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13228 } 13229 } else { 13230 mark_reg_unknown(env, regs, 13231 insn->dst_reg); 13232 } 13233 zext_32_to_64(dst_reg); 13234 reg_bounds_sync(dst_reg); 13235 } 13236 } else { 13237 /* case: R = imm 13238 * remember the value we stored into this reg 13239 */ 13240 /* clear any state __mark_reg_known doesn't set */ 13241 mark_reg_unknown(env, regs, insn->dst_reg); 13242 regs[insn->dst_reg].type = SCALAR_VALUE; 13243 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13244 __mark_reg_known(regs + insn->dst_reg, 13245 insn->imm); 13246 } else { 13247 __mark_reg_known(regs + insn->dst_reg, 13248 (u32)insn->imm); 13249 } 13250 } 13251 13252 } else if (opcode > BPF_END) { 13253 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13254 return -EINVAL; 13255 13256 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13257 13258 if (BPF_SRC(insn->code) == BPF_X) { 13259 if (insn->imm != 0 || insn->off > 1 || 13260 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13261 verbose(env, "BPF_ALU uses reserved fields\n"); 13262 return -EINVAL; 13263 } 13264 /* check src1 operand */ 13265 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13266 if (err) 13267 return err; 13268 } else { 13269 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13270 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13271 verbose(env, "BPF_ALU uses reserved fields\n"); 13272 return -EINVAL; 13273 } 13274 } 13275 13276 /* check src2 operand */ 13277 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13278 if (err) 13279 return err; 13280 13281 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13282 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13283 verbose(env, "div by zero\n"); 13284 return -EINVAL; 13285 } 13286 13287 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13288 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13289 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13290 13291 if (insn->imm < 0 || insn->imm >= size) { 13292 verbose(env, "invalid shift %d\n", insn->imm); 13293 return -EINVAL; 13294 } 13295 } 13296 13297 /* check dest operand */ 13298 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13299 if (err) 13300 return err; 13301 13302 return adjust_reg_min_max_vals(env, insn); 13303 } 13304 13305 return 0; 13306 } 13307 13308 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13309 struct bpf_reg_state *dst_reg, 13310 enum bpf_reg_type type, 13311 bool range_right_open) 13312 { 13313 struct bpf_func_state *state; 13314 struct bpf_reg_state *reg; 13315 int new_range; 13316 13317 if (dst_reg->off < 0 || 13318 (dst_reg->off == 0 && range_right_open)) 13319 /* This doesn't give us any range */ 13320 return; 13321 13322 if (dst_reg->umax_value > MAX_PACKET_OFF || 13323 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13324 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13325 * than pkt_end, but that's because it's also less than pkt. 13326 */ 13327 return; 13328 13329 new_range = dst_reg->off; 13330 if (range_right_open) 13331 new_range++; 13332 13333 /* Examples for register markings: 13334 * 13335 * pkt_data in dst register: 13336 * 13337 * r2 = r3; 13338 * r2 += 8; 13339 * if (r2 > pkt_end) goto <handle exception> 13340 * <access okay> 13341 * 13342 * r2 = r3; 13343 * r2 += 8; 13344 * if (r2 < pkt_end) goto <access okay> 13345 * <handle exception> 13346 * 13347 * Where: 13348 * r2 == dst_reg, pkt_end == src_reg 13349 * r2=pkt(id=n,off=8,r=0) 13350 * r3=pkt(id=n,off=0,r=0) 13351 * 13352 * pkt_data in src register: 13353 * 13354 * r2 = r3; 13355 * r2 += 8; 13356 * if (pkt_end >= r2) goto <access okay> 13357 * <handle exception> 13358 * 13359 * r2 = r3; 13360 * r2 += 8; 13361 * if (pkt_end <= r2) goto <handle exception> 13362 * <access okay> 13363 * 13364 * Where: 13365 * pkt_end == dst_reg, r2 == src_reg 13366 * r2=pkt(id=n,off=8,r=0) 13367 * r3=pkt(id=n,off=0,r=0) 13368 * 13369 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13370 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13371 * and [r3, r3 + 8-1) respectively is safe to access depending on 13372 * the check. 13373 */ 13374 13375 /* If our ids match, then we must have the same max_value. And we 13376 * don't care about the other reg's fixed offset, since if it's too big 13377 * the range won't allow anything. 13378 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13379 */ 13380 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13381 if (reg->type == type && reg->id == dst_reg->id) 13382 /* keep the maximum range already checked */ 13383 reg->range = max(reg->range, new_range); 13384 })); 13385 } 13386 13387 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13388 { 13389 struct tnum subreg = tnum_subreg(reg->var_off); 13390 s32 sval = (s32)val; 13391 13392 switch (opcode) { 13393 case BPF_JEQ: 13394 if (tnum_is_const(subreg)) 13395 return !!tnum_equals_const(subreg, val); 13396 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13397 return 0; 13398 break; 13399 case BPF_JNE: 13400 if (tnum_is_const(subreg)) 13401 return !tnum_equals_const(subreg, val); 13402 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13403 return 1; 13404 break; 13405 case BPF_JSET: 13406 if ((~subreg.mask & subreg.value) & val) 13407 return 1; 13408 if (!((subreg.mask | subreg.value) & val)) 13409 return 0; 13410 break; 13411 case BPF_JGT: 13412 if (reg->u32_min_value > val) 13413 return 1; 13414 else if (reg->u32_max_value <= val) 13415 return 0; 13416 break; 13417 case BPF_JSGT: 13418 if (reg->s32_min_value > sval) 13419 return 1; 13420 else if (reg->s32_max_value <= sval) 13421 return 0; 13422 break; 13423 case BPF_JLT: 13424 if (reg->u32_max_value < val) 13425 return 1; 13426 else if (reg->u32_min_value >= val) 13427 return 0; 13428 break; 13429 case BPF_JSLT: 13430 if (reg->s32_max_value < sval) 13431 return 1; 13432 else if (reg->s32_min_value >= sval) 13433 return 0; 13434 break; 13435 case BPF_JGE: 13436 if (reg->u32_min_value >= val) 13437 return 1; 13438 else if (reg->u32_max_value < val) 13439 return 0; 13440 break; 13441 case BPF_JSGE: 13442 if (reg->s32_min_value >= sval) 13443 return 1; 13444 else if (reg->s32_max_value < sval) 13445 return 0; 13446 break; 13447 case BPF_JLE: 13448 if (reg->u32_max_value <= val) 13449 return 1; 13450 else if (reg->u32_min_value > val) 13451 return 0; 13452 break; 13453 case BPF_JSLE: 13454 if (reg->s32_max_value <= sval) 13455 return 1; 13456 else if (reg->s32_min_value > sval) 13457 return 0; 13458 break; 13459 } 13460 13461 return -1; 13462 } 13463 13464 13465 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13466 { 13467 s64 sval = (s64)val; 13468 13469 switch (opcode) { 13470 case BPF_JEQ: 13471 if (tnum_is_const(reg->var_off)) 13472 return !!tnum_equals_const(reg->var_off, val); 13473 else if (val < reg->umin_value || val > reg->umax_value) 13474 return 0; 13475 break; 13476 case BPF_JNE: 13477 if (tnum_is_const(reg->var_off)) 13478 return !tnum_equals_const(reg->var_off, val); 13479 else if (val < reg->umin_value || val > reg->umax_value) 13480 return 1; 13481 break; 13482 case BPF_JSET: 13483 if ((~reg->var_off.mask & reg->var_off.value) & val) 13484 return 1; 13485 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13486 return 0; 13487 break; 13488 case BPF_JGT: 13489 if (reg->umin_value > val) 13490 return 1; 13491 else if (reg->umax_value <= val) 13492 return 0; 13493 break; 13494 case BPF_JSGT: 13495 if (reg->smin_value > sval) 13496 return 1; 13497 else if (reg->smax_value <= sval) 13498 return 0; 13499 break; 13500 case BPF_JLT: 13501 if (reg->umax_value < val) 13502 return 1; 13503 else if (reg->umin_value >= val) 13504 return 0; 13505 break; 13506 case BPF_JSLT: 13507 if (reg->smax_value < sval) 13508 return 1; 13509 else if (reg->smin_value >= sval) 13510 return 0; 13511 break; 13512 case BPF_JGE: 13513 if (reg->umin_value >= val) 13514 return 1; 13515 else if (reg->umax_value < val) 13516 return 0; 13517 break; 13518 case BPF_JSGE: 13519 if (reg->smin_value >= sval) 13520 return 1; 13521 else if (reg->smax_value < sval) 13522 return 0; 13523 break; 13524 case BPF_JLE: 13525 if (reg->umax_value <= val) 13526 return 1; 13527 else if (reg->umin_value > val) 13528 return 0; 13529 break; 13530 case BPF_JSLE: 13531 if (reg->smax_value <= sval) 13532 return 1; 13533 else if (reg->smin_value > sval) 13534 return 0; 13535 break; 13536 } 13537 13538 return -1; 13539 } 13540 13541 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13542 * and return: 13543 * 1 - branch will be taken and "goto target" will be executed 13544 * 0 - branch will not be taken and fall-through to next insn 13545 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13546 * range [0,10] 13547 */ 13548 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13549 bool is_jmp32) 13550 { 13551 if (__is_pointer_value(false, reg)) { 13552 if (!reg_not_null(reg)) 13553 return -1; 13554 13555 /* If pointer is valid tests against zero will fail so we can 13556 * use this to direct branch taken. 13557 */ 13558 if (val != 0) 13559 return -1; 13560 13561 switch (opcode) { 13562 case BPF_JEQ: 13563 return 0; 13564 case BPF_JNE: 13565 return 1; 13566 default: 13567 return -1; 13568 } 13569 } 13570 13571 if (is_jmp32) 13572 return is_branch32_taken(reg, val, opcode); 13573 return is_branch64_taken(reg, val, opcode); 13574 } 13575 13576 static int flip_opcode(u32 opcode) 13577 { 13578 /* How can we transform "a <op> b" into "b <op> a"? */ 13579 static const u8 opcode_flip[16] = { 13580 /* these stay the same */ 13581 [BPF_JEQ >> 4] = BPF_JEQ, 13582 [BPF_JNE >> 4] = BPF_JNE, 13583 [BPF_JSET >> 4] = BPF_JSET, 13584 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 13585 [BPF_JGE >> 4] = BPF_JLE, 13586 [BPF_JGT >> 4] = BPF_JLT, 13587 [BPF_JLE >> 4] = BPF_JGE, 13588 [BPF_JLT >> 4] = BPF_JGT, 13589 [BPF_JSGE >> 4] = BPF_JSLE, 13590 [BPF_JSGT >> 4] = BPF_JSLT, 13591 [BPF_JSLE >> 4] = BPF_JSGE, 13592 [BPF_JSLT >> 4] = BPF_JSGT 13593 }; 13594 return opcode_flip[opcode >> 4]; 13595 } 13596 13597 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 13598 struct bpf_reg_state *src_reg, 13599 u8 opcode) 13600 { 13601 struct bpf_reg_state *pkt; 13602 13603 if (src_reg->type == PTR_TO_PACKET_END) { 13604 pkt = dst_reg; 13605 } else if (dst_reg->type == PTR_TO_PACKET_END) { 13606 pkt = src_reg; 13607 opcode = flip_opcode(opcode); 13608 } else { 13609 return -1; 13610 } 13611 13612 if (pkt->range >= 0) 13613 return -1; 13614 13615 switch (opcode) { 13616 case BPF_JLE: 13617 /* pkt <= pkt_end */ 13618 fallthrough; 13619 case BPF_JGT: 13620 /* pkt > pkt_end */ 13621 if (pkt->range == BEYOND_PKT_END) 13622 /* pkt has at last one extra byte beyond pkt_end */ 13623 return opcode == BPF_JGT; 13624 break; 13625 case BPF_JLT: 13626 /* pkt < pkt_end */ 13627 fallthrough; 13628 case BPF_JGE: 13629 /* pkt >= pkt_end */ 13630 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 13631 return opcode == BPF_JGE; 13632 break; 13633 } 13634 return -1; 13635 } 13636 13637 /* Adjusts the register min/max values in the case that the dst_reg is the 13638 * variable register that we are working on, and src_reg is a constant or we're 13639 * simply doing a BPF_K check. 13640 * In JEQ/JNE cases we also adjust the var_off values. 13641 */ 13642 static void reg_set_min_max(struct bpf_reg_state *true_reg, 13643 struct bpf_reg_state *false_reg, 13644 u64 val, u32 val32, 13645 u8 opcode, bool is_jmp32) 13646 { 13647 struct tnum false_32off = tnum_subreg(false_reg->var_off); 13648 struct tnum false_64off = false_reg->var_off; 13649 struct tnum true_32off = tnum_subreg(true_reg->var_off); 13650 struct tnum true_64off = true_reg->var_off; 13651 s64 sval = (s64)val; 13652 s32 sval32 = (s32)val32; 13653 13654 /* If the dst_reg is a pointer, we can't learn anything about its 13655 * variable offset from the compare (unless src_reg were a pointer into 13656 * the same object, but we don't bother with that. 13657 * Since false_reg and true_reg have the same type by construction, we 13658 * only need to check one of them for pointerness. 13659 */ 13660 if (__is_pointer_value(false, false_reg)) 13661 return; 13662 13663 switch (opcode) { 13664 /* JEQ/JNE comparison doesn't change the register equivalence. 13665 * 13666 * r1 = r2; 13667 * if (r1 == 42) goto label; 13668 * ... 13669 * label: // here both r1 and r2 are known to be 42. 13670 * 13671 * Hence when marking register as known preserve it's ID. 13672 */ 13673 case BPF_JEQ: 13674 if (is_jmp32) { 13675 __mark_reg32_known(true_reg, val32); 13676 true_32off = tnum_subreg(true_reg->var_off); 13677 } else { 13678 ___mark_reg_known(true_reg, val); 13679 true_64off = true_reg->var_off; 13680 } 13681 break; 13682 case BPF_JNE: 13683 if (is_jmp32) { 13684 __mark_reg32_known(false_reg, val32); 13685 false_32off = tnum_subreg(false_reg->var_off); 13686 } else { 13687 ___mark_reg_known(false_reg, val); 13688 false_64off = false_reg->var_off; 13689 } 13690 break; 13691 case BPF_JSET: 13692 if (is_jmp32) { 13693 false_32off = tnum_and(false_32off, tnum_const(~val32)); 13694 if (is_power_of_2(val32)) 13695 true_32off = tnum_or(true_32off, 13696 tnum_const(val32)); 13697 } else { 13698 false_64off = tnum_and(false_64off, tnum_const(~val)); 13699 if (is_power_of_2(val)) 13700 true_64off = tnum_or(true_64off, 13701 tnum_const(val)); 13702 } 13703 break; 13704 case BPF_JGE: 13705 case BPF_JGT: 13706 { 13707 if (is_jmp32) { 13708 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 13709 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 13710 13711 false_reg->u32_max_value = min(false_reg->u32_max_value, 13712 false_umax); 13713 true_reg->u32_min_value = max(true_reg->u32_min_value, 13714 true_umin); 13715 } else { 13716 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 13717 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 13718 13719 false_reg->umax_value = min(false_reg->umax_value, false_umax); 13720 true_reg->umin_value = max(true_reg->umin_value, true_umin); 13721 } 13722 break; 13723 } 13724 case BPF_JSGE: 13725 case BPF_JSGT: 13726 { 13727 if (is_jmp32) { 13728 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 13729 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 13730 13731 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 13732 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 13733 } else { 13734 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 13735 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 13736 13737 false_reg->smax_value = min(false_reg->smax_value, false_smax); 13738 true_reg->smin_value = max(true_reg->smin_value, true_smin); 13739 } 13740 break; 13741 } 13742 case BPF_JLE: 13743 case BPF_JLT: 13744 { 13745 if (is_jmp32) { 13746 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 13747 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 13748 13749 false_reg->u32_min_value = max(false_reg->u32_min_value, 13750 false_umin); 13751 true_reg->u32_max_value = min(true_reg->u32_max_value, 13752 true_umax); 13753 } else { 13754 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 13755 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 13756 13757 false_reg->umin_value = max(false_reg->umin_value, false_umin); 13758 true_reg->umax_value = min(true_reg->umax_value, true_umax); 13759 } 13760 break; 13761 } 13762 case BPF_JSLE: 13763 case BPF_JSLT: 13764 { 13765 if (is_jmp32) { 13766 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 13767 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 13768 13769 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 13770 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 13771 } else { 13772 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 13773 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 13774 13775 false_reg->smin_value = max(false_reg->smin_value, false_smin); 13776 true_reg->smax_value = min(true_reg->smax_value, true_smax); 13777 } 13778 break; 13779 } 13780 default: 13781 return; 13782 } 13783 13784 if (is_jmp32) { 13785 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 13786 tnum_subreg(false_32off)); 13787 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 13788 tnum_subreg(true_32off)); 13789 __reg_combine_32_into_64(false_reg); 13790 __reg_combine_32_into_64(true_reg); 13791 } else { 13792 false_reg->var_off = false_64off; 13793 true_reg->var_off = true_64off; 13794 __reg_combine_64_into_32(false_reg); 13795 __reg_combine_64_into_32(true_reg); 13796 } 13797 } 13798 13799 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 13800 * the variable reg. 13801 */ 13802 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 13803 struct bpf_reg_state *false_reg, 13804 u64 val, u32 val32, 13805 u8 opcode, bool is_jmp32) 13806 { 13807 opcode = flip_opcode(opcode); 13808 /* This uses zero as "not present in table"; luckily the zero opcode, 13809 * BPF_JA, can't get here. 13810 */ 13811 if (opcode) 13812 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 13813 } 13814 13815 /* Regs are known to be equal, so intersect their min/max/var_off */ 13816 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 13817 struct bpf_reg_state *dst_reg) 13818 { 13819 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 13820 dst_reg->umin_value); 13821 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 13822 dst_reg->umax_value); 13823 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 13824 dst_reg->smin_value); 13825 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 13826 dst_reg->smax_value); 13827 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 13828 dst_reg->var_off); 13829 reg_bounds_sync(src_reg); 13830 reg_bounds_sync(dst_reg); 13831 } 13832 13833 static void reg_combine_min_max(struct bpf_reg_state *true_src, 13834 struct bpf_reg_state *true_dst, 13835 struct bpf_reg_state *false_src, 13836 struct bpf_reg_state *false_dst, 13837 u8 opcode) 13838 { 13839 switch (opcode) { 13840 case BPF_JEQ: 13841 __reg_combine_min_max(true_src, true_dst); 13842 break; 13843 case BPF_JNE: 13844 __reg_combine_min_max(false_src, false_dst); 13845 break; 13846 } 13847 } 13848 13849 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 13850 struct bpf_reg_state *reg, u32 id, 13851 bool is_null) 13852 { 13853 if (type_may_be_null(reg->type) && reg->id == id && 13854 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 13855 /* Old offset (both fixed and variable parts) should have been 13856 * known-zero, because we don't allow pointer arithmetic on 13857 * pointers that might be NULL. If we see this happening, don't 13858 * convert the register. 13859 * 13860 * But in some cases, some helpers that return local kptrs 13861 * advance offset for the returned pointer. In those cases, it 13862 * is fine to expect to see reg->off. 13863 */ 13864 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 13865 return; 13866 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 13867 WARN_ON_ONCE(reg->off)) 13868 return; 13869 13870 if (is_null) { 13871 reg->type = SCALAR_VALUE; 13872 /* We don't need id and ref_obj_id from this point 13873 * onwards anymore, thus we should better reset it, 13874 * so that state pruning has chances to take effect. 13875 */ 13876 reg->id = 0; 13877 reg->ref_obj_id = 0; 13878 13879 return; 13880 } 13881 13882 mark_ptr_not_null_reg(reg); 13883 13884 if (!reg_may_point_to_spin_lock(reg)) { 13885 /* For not-NULL ptr, reg->ref_obj_id will be reset 13886 * in release_reference(). 13887 * 13888 * reg->id is still used by spin_lock ptr. Other 13889 * than spin_lock ptr type, reg->id can be reset. 13890 */ 13891 reg->id = 0; 13892 } 13893 } 13894 } 13895 13896 /* The logic is similar to find_good_pkt_pointers(), both could eventually 13897 * be folded together at some point. 13898 */ 13899 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 13900 bool is_null) 13901 { 13902 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13903 struct bpf_reg_state *regs = state->regs, *reg; 13904 u32 ref_obj_id = regs[regno].ref_obj_id; 13905 u32 id = regs[regno].id; 13906 13907 if (ref_obj_id && ref_obj_id == id && is_null) 13908 /* regs[regno] is in the " == NULL" branch. 13909 * No one could have freed the reference state before 13910 * doing the NULL check. 13911 */ 13912 WARN_ON_ONCE(release_reference_state(state, id)); 13913 13914 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13915 mark_ptr_or_null_reg(state, reg, id, is_null); 13916 })); 13917 } 13918 13919 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 13920 struct bpf_reg_state *dst_reg, 13921 struct bpf_reg_state *src_reg, 13922 struct bpf_verifier_state *this_branch, 13923 struct bpf_verifier_state *other_branch) 13924 { 13925 if (BPF_SRC(insn->code) != BPF_X) 13926 return false; 13927 13928 /* Pointers are always 64-bit. */ 13929 if (BPF_CLASS(insn->code) == BPF_JMP32) 13930 return false; 13931 13932 switch (BPF_OP(insn->code)) { 13933 case BPF_JGT: 13934 if ((dst_reg->type == PTR_TO_PACKET && 13935 src_reg->type == PTR_TO_PACKET_END) || 13936 (dst_reg->type == PTR_TO_PACKET_META && 13937 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13938 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 13939 find_good_pkt_pointers(this_branch, dst_reg, 13940 dst_reg->type, false); 13941 mark_pkt_end(other_branch, insn->dst_reg, true); 13942 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13943 src_reg->type == PTR_TO_PACKET) || 13944 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13945 src_reg->type == PTR_TO_PACKET_META)) { 13946 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 13947 find_good_pkt_pointers(other_branch, src_reg, 13948 src_reg->type, true); 13949 mark_pkt_end(this_branch, insn->src_reg, false); 13950 } else { 13951 return false; 13952 } 13953 break; 13954 case BPF_JLT: 13955 if ((dst_reg->type == PTR_TO_PACKET && 13956 src_reg->type == PTR_TO_PACKET_END) || 13957 (dst_reg->type == PTR_TO_PACKET_META && 13958 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13959 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 13960 find_good_pkt_pointers(other_branch, dst_reg, 13961 dst_reg->type, true); 13962 mark_pkt_end(this_branch, insn->dst_reg, false); 13963 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13964 src_reg->type == PTR_TO_PACKET) || 13965 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13966 src_reg->type == PTR_TO_PACKET_META)) { 13967 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 13968 find_good_pkt_pointers(this_branch, src_reg, 13969 src_reg->type, false); 13970 mark_pkt_end(other_branch, insn->src_reg, true); 13971 } else { 13972 return false; 13973 } 13974 break; 13975 case BPF_JGE: 13976 if ((dst_reg->type == PTR_TO_PACKET && 13977 src_reg->type == PTR_TO_PACKET_END) || 13978 (dst_reg->type == PTR_TO_PACKET_META && 13979 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 13980 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 13981 find_good_pkt_pointers(this_branch, dst_reg, 13982 dst_reg->type, true); 13983 mark_pkt_end(other_branch, insn->dst_reg, false); 13984 } else if ((dst_reg->type == PTR_TO_PACKET_END && 13985 src_reg->type == PTR_TO_PACKET) || 13986 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 13987 src_reg->type == PTR_TO_PACKET_META)) { 13988 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 13989 find_good_pkt_pointers(other_branch, src_reg, 13990 src_reg->type, false); 13991 mark_pkt_end(this_branch, insn->src_reg, true); 13992 } else { 13993 return false; 13994 } 13995 break; 13996 case BPF_JLE: 13997 if ((dst_reg->type == PTR_TO_PACKET && 13998 src_reg->type == PTR_TO_PACKET_END) || 13999 (dst_reg->type == PTR_TO_PACKET_META && 14000 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14001 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14002 find_good_pkt_pointers(other_branch, dst_reg, 14003 dst_reg->type, false); 14004 mark_pkt_end(this_branch, insn->dst_reg, true); 14005 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14006 src_reg->type == PTR_TO_PACKET) || 14007 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14008 src_reg->type == PTR_TO_PACKET_META)) { 14009 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14010 find_good_pkt_pointers(this_branch, src_reg, 14011 src_reg->type, true); 14012 mark_pkt_end(other_branch, insn->src_reg, false); 14013 } else { 14014 return false; 14015 } 14016 break; 14017 default: 14018 return false; 14019 } 14020 14021 return true; 14022 } 14023 14024 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14025 struct bpf_reg_state *known_reg) 14026 { 14027 struct bpf_func_state *state; 14028 struct bpf_reg_state *reg; 14029 14030 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14031 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14032 copy_register_state(reg, known_reg); 14033 })); 14034 } 14035 14036 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14037 struct bpf_insn *insn, int *insn_idx) 14038 { 14039 struct bpf_verifier_state *this_branch = env->cur_state; 14040 struct bpf_verifier_state *other_branch; 14041 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14042 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14043 struct bpf_reg_state *eq_branch_regs; 14044 u8 opcode = BPF_OP(insn->code); 14045 bool is_jmp32; 14046 int pred = -1; 14047 int err; 14048 14049 /* Only conditional jumps are expected to reach here. */ 14050 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14051 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14052 return -EINVAL; 14053 } 14054 14055 /* check src2 operand */ 14056 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14057 if (err) 14058 return err; 14059 14060 dst_reg = ®s[insn->dst_reg]; 14061 if (BPF_SRC(insn->code) == BPF_X) { 14062 if (insn->imm != 0) { 14063 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14064 return -EINVAL; 14065 } 14066 14067 /* check src1 operand */ 14068 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14069 if (err) 14070 return err; 14071 14072 src_reg = ®s[insn->src_reg]; 14073 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14074 is_pointer_value(env, insn->src_reg)) { 14075 verbose(env, "R%d pointer comparison prohibited\n", 14076 insn->src_reg); 14077 return -EACCES; 14078 } 14079 } else { 14080 if (insn->src_reg != BPF_REG_0) { 14081 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14082 return -EINVAL; 14083 } 14084 } 14085 14086 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14087 14088 if (BPF_SRC(insn->code) == BPF_K) { 14089 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14090 } else if (src_reg->type == SCALAR_VALUE && 14091 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14092 pred = is_branch_taken(dst_reg, 14093 tnum_subreg(src_reg->var_off).value, 14094 opcode, 14095 is_jmp32); 14096 } else if (src_reg->type == SCALAR_VALUE && 14097 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14098 pred = is_branch_taken(dst_reg, 14099 src_reg->var_off.value, 14100 opcode, 14101 is_jmp32); 14102 } else if (dst_reg->type == SCALAR_VALUE && 14103 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14104 pred = is_branch_taken(src_reg, 14105 tnum_subreg(dst_reg->var_off).value, 14106 flip_opcode(opcode), 14107 is_jmp32); 14108 } else if (dst_reg->type == SCALAR_VALUE && 14109 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14110 pred = is_branch_taken(src_reg, 14111 dst_reg->var_off.value, 14112 flip_opcode(opcode), 14113 is_jmp32); 14114 } else if (reg_is_pkt_pointer_any(dst_reg) && 14115 reg_is_pkt_pointer_any(src_reg) && 14116 !is_jmp32) { 14117 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14118 } 14119 14120 if (pred >= 0) { 14121 /* If we get here with a dst_reg pointer type it is because 14122 * above is_branch_taken() special cased the 0 comparison. 14123 */ 14124 if (!__is_pointer_value(false, dst_reg)) 14125 err = mark_chain_precision(env, insn->dst_reg); 14126 if (BPF_SRC(insn->code) == BPF_X && !err && 14127 !__is_pointer_value(false, src_reg)) 14128 err = mark_chain_precision(env, insn->src_reg); 14129 if (err) 14130 return err; 14131 } 14132 14133 if (pred == 1) { 14134 /* Only follow the goto, ignore fall-through. If needed, push 14135 * the fall-through branch for simulation under speculative 14136 * execution. 14137 */ 14138 if (!env->bypass_spec_v1 && 14139 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14140 *insn_idx)) 14141 return -EFAULT; 14142 *insn_idx += insn->off; 14143 return 0; 14144 } else if (pred == 0) { 14145 /* Only follow the fall-through branch, since that's where the 14146 * program will go. If needed, push the goto branch for 14147 * simulation under speculative execution. 14148 */ 14149 if (!env->bypass_spec_v1 && 14150 !sanitize_speculative_path(env, insn, 14151 *insn_idx + insn->off + 1, 14152 *insn_idx)) 14153 return -EFAULT; 14154 return 0; 14155 } 14156 14157 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14158 false); 14159 if (!other_branch) 14160 return -EFAULT; 14161 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14162 14163 /* detect if we are comparing against a constant value so we can adjust 14164 * our min/max values for our dst register. 14165 * this is only legit if both are scalars (or pointers to the same 14166 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14167 * because otherwise the different base pointers mean the offsets aren't 14168 * comparable. 14169 */ 14170 if (BPF_SRC(insn->code) == BPF_X) { 14171 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14172 14173 if (dst_reg->type == SCALAR_VALUE && 14174 src_reg->type == SCALAR_VALUE) { 14175 if (tnum_is_const(src_reg->var_off) || 14176 (is_jmp32 && 14177 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14178 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14179 dst_reg, 14180 src_reg->var_off.value, 14181 tnum_subreg(src_reg->var_off).value, 14182 opcode, is_jmp32); 14183 else if (tnum_is_const(dst_reg->var_off) || 14184 (is_jmp32 && 14185 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14186 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14187 src_reg, 14188 dst_reg->var_off.value, 14189 tnum_subreg(dst_reg->var_off).value, 14190 opcode, is_jmp32); 14191 else if (!is_jmp32 && 14192 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14193 /* Comparing for equality, we can combine knowledge */ 14194 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14195 &other_branch_regs[insn->dst_reg], 14196 src_reg, dst_reg, opcode); 14197 if (src_reg->id && 14198 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14199 find_equal_scalars(this_branch, src_reg); 14200 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14201 } 14202 14203 } 14204 } else if (dst_reg->type == SCALAR_VALUE) { 14205 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14206 dst_reg, insn->imm, (u32)insn->imm, 14207 opcode, is_jmp32); 14208 } 14209 14210 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14211 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14212 find_equal_scalars(this_branch, dst_reg); 14213 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14214 } 14215 14216 /* if one pointer register is compared to another pointer 14217 * register check if PTR_MAYBE_NULL could be lifted. 14218 * E.g. register A - maybe null 14219 * register B - not null 14220 * for JNE A, B, ... - A is not null in the false branch; 14221 * for JEQ A, B, ... - A is not null in the true branch. 14222 * 14223 * Since PTR_TO_BTF_ID points to a kernel struct that does 14224 * not need to be null checked by the BPF program, i.e., 14225 * could be null even without PTR_MAYBE_NULL marking, so 14226 * only propagate nullness when neither reg is that type. 14227 */ 14228 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14229 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14230 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14231 base_type(src_reg->type) != PTR_TO_BTF_ID && 14232 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14233 eq_branch_regs = NULL; 14234 switch (opcode) { 14235 case BPF_JEQ: 14236 eq_branch_regs = other_branch_regs; 14237 break; 14238 case BPF_JNE: 14239 eq_branch_regs = regs; 14240 break; 14241 default: 14242 /* do nothing */ 14243 break; 14244 } 14245 if (eq_branch_regs) { 14246 if (type_may_be_null(src_reg->type)) 14247 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14248 else 14249 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14250 } 14251 } 14252 14253 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14254 * NOTE: these optimizations below are related with pointer comparison 14255 * which will never be JMP32. 14256 */ 14257 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14258 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14259 type_may_be_null(dst_reg->type)) { 14260 /* Mark all identical registers in each branch as either 14261 * safe or unknown depending R == 0 or R != 0 conditional. 14262 */ 14263 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14264 opcode == BPF_JNE); 14265 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14266 opcode == BPF_JEQ); 14267 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14268 this_branch, other_branch) && 14269 is_pointer_value(env, insn->dst_reg)) { 14270 verbose(env, "R%d pointer comparison prohibited\n", 14271 insn->dst_reg); 14272 return -EACCES; 14273 } 14274 if (env->log.level & BPF_LOG_LEVEL) 14275 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14276 return 0; 14277 } 14278 14279 /* verify BPF_LD_IMM64 instruction */ 14280 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14281 { 14282 struct bpf_insn_aux_data *aux = cur_aux(env); 14283 struct bpf_reg_state *regs = cur_regs(env); 14284 struct bpf_reg_state *dst_reg; 14285 struct bpf_map *map; 14286 int err; 14287 14288 if (BPF_SIZE(insn->code) != BPF_DW) { 14289 verbose(env, "invalid BPF_LD_IMM insn\n"); 14290 return -EINVAL; 14291 } 14292 if (insn->off != 0) { 14293 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14294 return -EINVAL; 14295 } 14296 14297 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14298 if (err) 14299 return err; 14300 14301 dst_reg = ®s[insn->dst_reg]; 14302 if (insn->src_reg == 0) { 14303 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14304 14305 dst_reg->type = SCALAR_VALUE; 14306 __mark_reg_known(®s[insn->dst_reg], imm); 14307 return 0; 14308 } 14309 14310 /* All special src_reg cases are listed below. From this point onwards 14311 * we either succeed and assign a corresponding dst_reg->type after 14312 * zeroing the offset, or fail and reject the program. 14313 */ 14314 mark_reg_known_zero(env, regs, insn->dst_reg); 14315 14316 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14317 dst_reg->type = aux->btf_var.reg_type; 14318 switch (base_type(dst_reg->type)) { 14319 case PTR_TO_MEM: 14320 dst_reg->mem_size = aux->btf_var.mem_size; 14321 break; 14322 case PTR_TO_BTF_ID: 14323 dst_reg->btf = aux->btf_var.btf; 14324 dst_reg->btf_id = aux->btf_var.btf_id; 14325 break; 14326 default: 14327 verbose(env, "bpf verifier is misconfigured\n"); 14328 return -EFAULT; 14329 } 14330 return 0; 14331 } 14332 14333 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14334 struct bpf_prog_aux *aux = env->prog->aux; 14335 u32 subprogno = find_subprog(env, 14336 env->insn_idx + insn->imm + 1); 14337 14338 if (!aux->func_info) { 14339 verbose(env, "missing btf func_info\n"); 14340 return -EINVAL; 14341 } 14342 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14343 verbose(env, "callback function not static\n"); 14344 return -EINVAL; 14345 } 14346 14347 dst_reg->type = PTR_TO_FUNC; 14348 dst_reg->subprogno = subprogno; 14349 return 0; 14350 } 14351 14352 map = env->used_maps[aux->map_index]; 14353 dst_reg->map_ptr = map; 14354 14355 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14356 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14357 dst_reg->type = PTR_TO_MAP_VALUE; 14358 dst_reg->off = aux->map_off; 14359 WARN_ON_ONCE(map->max_entries != 1); 14360 /* We want reg->id to be same (0) as map_value is not distinct */ 14361 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14362 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14363 dst_reg->type = CONST_PTR_TO_MAP; 14364 } else { 14365 verbose(env, "bpf verifier is misconfigured\n"); 14366 return -EINVAL; 14367 } 14368 14369 return 0; 14370 } 14371 14372 static bool may_access_skb(enum bpf_prog_type type) 14373 { 14374 switch (type) { 14375 case BPF_PROG_TYPE_SOCKET_FILTER: 14376 case BPF_PROG_TYPE_SCHED_CLS: 14377 case BPF_PROG_TYPE_SCHED_ACT: 14378 return true; 14379 default: 14380 return false; 14381 } 14382 } 14383 14384 /* verify safety of LD_ABS|LD_IND instructions: 14385 * - they can only appear in the programs where ctx == skb 14386 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14387 * preserve R6-R9, and store return value into R0 14388 * 14389 * Implicit input: 14390 * ctx == skb == R6 == CTX 14391 * 14392 * Explicit input: 14393 * SRC == any register 14394 * IMM == 32-bit immediate 14395 * 14396 * Output: 14397 * R0 - 8/16/32-bit skb data converted to cpu endianness 14398 */ 14399 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14400 { 14401 struct bpf_reg_state *regs = cur_regs(env); 14402 static const int ctx_reg = BPF_REG_6; 14403 u8 mode = BPF_MODE(insn->code); 14404 int i, err; 14405 14406 if (!may_access_skb(resolve_prog_type(env->prog))) { 14407 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14408 return -EINVAL; 14409 } 14410 14411 if (!env->ops->gen_ld_abs) { 14412 verbose(env, "bpf verifier is misconfigured\n"); 14413 return -EINVAL; 14414 } 14415 14416 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14417 BPF_SIZE(insn->code) == BPF_DW || 14418 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14419 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14420 return -EINVAL; 14421 } 14422 14423 /* check whether implicit source operand (register R6) is readable */ 14424 err = check_reg_arg(env, ctx_reg, SRC_OP); 14425 if (err) 14426 return err; 14427 14428 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14429 * gen_ld_abs() may terminate the program at runtime, leading to 14430 * reference leak. 14431 */ 14432 err = check_reference_leak(env); 14433 if (err) { 14434 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14435 return err; 14436 } 14437 14438 if (env->cur_state->active_lock.ptr) { 14439 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14440 return -EINVAL; 14441 } 14442 14443 if (env->cur_state->active_rcu_lock) { 14444 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14445 return -EINVAL; 14446 } 14447 14448 if (regs[ctx_reg].type != PTR_TO_CTX) { 14449 verbose(env, 14450 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14451 return -EINVAL; 14452 } 14453 14454 if (mode == BPF_IND) { 14455 /* check explicit source operand */ 14456 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14457 if (err) 14458 return err; 14459 } 14460 14461 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14462 if (err < 0) 14463 return err; 14464 14465 /* reset caller saved regs to unreadable */ 14466 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14467 mark_reg_not_init(env, regs, caller_saved[i]); 14468 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14469 } 14470 14471 /* mark destination R0 register as readable, since it contains 14472 * the value fetched from the packet. 14473 * Already marked as written above. 14474 */ 14475 mark_reg_unknown(env, regs, BPF_REG_0); 14476 /* ld_abs load up to 32-bit skb data. */ 14477 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14478 return 0; 14479 } 14480 14481 static int check_return_code(struct bpf_verifier_env *env) 14482 { 14483 struct tnum enforce_attach_type_range = tnum_unknown; 14484 const struct bpf_prog *prog = env->prog; 14485 struct bpf_reg_state *reg; 14486 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 14487 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14488 int err; 14489 struct bpf_func_state *frame = env->cur_state->frame[0]; 14490 const bool is_subprog = frame->subprogno; 14491 14492 /* LSM and struct_ops func-ptr's return type could be "void" */ 14493 if (!is_subprog) { 14494 switch (prog_type) { 14495 case BPF_PROG_TYPE_LSM: 14496 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14497 /* See below, can be 0 or 0-1 depending on hook. */ 14498 break; 14499 fallthrough; 14500 case BPF_PROG_TYPE_STRUCT_OPS: 14501 if (!prog->aux->attach_func_proto->type) 14502 return 0; 14503 break; 14504 default: 14505 break; 14506 } 14507 } 14508 14509 /* eBPF calling convention is such that R0 is used 14510 * to return the value from eBPF program. 14511 * Make sure that it's readable at this time 14512 * of bpf_exit, which means that program wrote 14513 * something into it earlier 14514 */ 14515 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14516 if (err) 14517 return err; 14518 14519 if (is_pointer_value(env, BPF_REG_0)) { 14520 verbose(env, "R0 leaks addr as return value\n"); 14521 return -EACCES; 14522 } 14523 14524 reg = cur_regs(env) + BPF_REG_0; 14525 14526 if (frame->in_async_callback_fn) { 14527 /* enforce return zero from async callbacks like timer */ 14528 if (reg->type != SCALAR_VALUE) { 14529 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14530 reg_type_str(env, reg->type)); 14531 return -EINVAL; 14532 } 14533 14534 if (!tnum_in(const_0, reg->var_off)) { 14535 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 14536 return -EINVAL; 14537 } 14538 return 0; 14539 } 14540 14541 if (is_subprog) { 14542 if (reg->type != SCALAR_VALUE) { 14543 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14544 reg_type_str(env, reg->type)); 14545 return -EINVAL; 14546 } 14547 return 0; 14548 } 14549 14550 switch (prog_type) { 14551 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14552 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14553 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14554 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14555 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14556 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14557 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14558 range = tnum_range(1, 1); 14559 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14560 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14561 range = tnum_range(0, 3); 14562 break; 14563 case BPF_PROG_TYPE_CGROUP_SKB: 14564 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14565 range = tnum_range(0, 3); 14566 enforce_attach_type_range = tnum_range(2, 3); 14567 } 14568 break; 14569 case BPF_PROG_TYPE_CGROUP_SOCK: 14570 case BPF_PROG_TYPE_SOCK_OPS: 14571 case BPF_PROG_TYPE_CGROUP_DEVICE: 14572 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14573 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14574 break; 14575 case BPF_PROG_TYPE_RAW_TRACEPOINT: 14576 if (!env->prog->aux->attach_btf_id) 14577 return 0; 14578 range = tnum_const(0); 14579 break; 14580 case BPF_PROG_TYPE_TRACING: 14581 switch (env->prog->expected_attach_type) { 14582 case BPF_TRACE_FENTRY: 14583 case BPF_TRACE_FEXIT: 14584 range = tnum_const(0); 14585 break; 14586 case BPF_TRACE_RAW_TP: 14587 case BPF_MODIFY_RETURN: 14588 return 0; 14589 case BPF_TRACE_ITER: 14590 break; 14591 default: 14592 return -ENOTSUPP; 14593 } 14594 break; 14595 case BPF_PROG_TYPE_SK_LOOKUP: 14596 range = tnum_range(SK_DROP, SK_PASS); 14597 break; 14598 14599 case BPF_PROG_TYPE_LSM: 14600 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 14601 /* Regular BPF_PROG_TYPE_LSM programs can return 14602 * any value. 14603 */ 14604 return 0; 14605 } 14606 if (!env->prog->aux->attach_func_proto->type) { 14607 /* Make sure programs that attach to void 14608 * hooks don't try to modify return value. 14609 */ 14610 range = tnum_range(1, 1); 14611 } 14612 break; 14613 14614 case BPF_PROG_TYPE_NETFILTER: 14615 range = tnum_range(NF_DROP, NF_ACCEPT); 14616 break; 14617 case BPF_PROG_TYPE_EXT: 14618 /* freplace program can return anything as its return value 14619 * depends on the to-be-replaced kernel func or bpf program. 14620 */ 14621 default: 14622 return 0; 14623 } 14624 14625 if (reg->type != SCALAR_VALUE) { 14626 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 14627 reg_type_str(env, reg->type)); 14628 return -EINVAL; 14629 } 14630 14631 if (!tnum_in(range, reg->var_off)) { 14632 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 14633 if (prog->expected_attach_type == BPF_LSM_CGROUP && 14634 prog_type == BPF_PROG_TYPE_LSM && 14635 !prog->aux->attach_func_proto->type) 14636 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 14637 return -EINVAL; 14638 } 14639 14640 if (!tnum_is_unknown(enforce_attach_type_range) && 14641 tnum_in(enforce_attach_type_range, reg->var_off)) 14642 env->prog->enforce_expected_attach_type = 1; 14643 return 0; 14644 } 14645 14646 /* non-recursive DFS pseudo code 14647 * 1 procedure DFS-iterative(G,v): 14648 * 2 label v as discovered 14649 * 3 let S be a stack 14650 * 4 S.push(v) 14651 * 5 while S is not empty 14652 * 6 t <- S.peek() 14653 * 7 if t is what we're looking for: 14654 * 8 return t 14655 * 9 for all edges e in G.adjacentEdges(t) do 14656 * 10 if edge e is already labelled 14657 * 11 continue with the next edge 14658 * 12 w <- G.adjacentVertex(t,e) 14659 * 13 if vertex w is not discovered and not explored 14660 * 14 label e as tree-edge 14661 * 15 label w as discovered 14662 * 16 S.push(w) 14663 * 17 continue at 5 14664 * 18 else if vertex w is discovered 14665 * 19 label e as back-edge 14666 * 20 else 14667 * 21 // vertex w is explored 14668 * 22 label e as forward- or cross-edge 14669 * 23 label t as explored 14670 * 24 S.pop() 14671 * 14672 * convention: 14673 * 0x10 - discovered 14674 * 0x11 - discovered and fall-through edge labelled 14675 * 0x12 - discovered and fall-through and branch edges labelled 14676 * 0x20 - explored 14677 */ 14678 14679 enum { 14680 DISCOVERED = 0x10, 14681 EXPLORED = 0x20, 14682 FALLTHROUGH = 1, 14683 BRANCH = 2, 14684 }; 14685 14686 static u32 state_htab_size(struct bpf_verifier_env *env) 14687 { 14688 return env->prog->len; 14689 } 14690 14691 static struct bpf_verifier_state_list **explored_state( 14692 struct bpf_verifier_env *env, 14693 int idx) 14694 { 14695 struct bpf_verifier_state *cur = env->cur_state; 14696 struct bpf_func_state *state = cur->frame[cur->curframe]; 14697 14698 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 14699 } 14700 14701 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 14702 { 14703 env->insn_aux_data[idx].prune_point = true; 14704 } 14705 14706 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 14707 { 14708 return env->insn_aux_data[insn_idx].prune_point; 14709 } 14710 14711 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 14712 { 14713 env->insn_aux_data[idx].force_checkpoint = true; 14714 } 14715 14716 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 14717 { 14718 return env->insn_aux_data[insn_idx].force_checkpoint; 14719 } 14720 14721 14722 enum { 14723 DONE_EXPLORING = 0, 14724 KEEP_EXPLORING = 1, 14725 }; 14726 14727 /* t, w, e - match pseudo-code above: 14728 * t - index of current instruction 14729 * w - next instruction 14730 * e - edge 14731 */ 14732 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 14733 bool loop_ok) 14734 { 14735 int *insn_stack = env->cfg.insn_stack; 14736 int *insn_state = env->cfg.insn_state; 14737 14738 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 14739 return DONE_EXPLORING; 14740 14741 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 14742 return DONE_EXPLORING; 14743 14744 if (w < 0 || w >= env->prog->len) { 14745 verbose_linfo(env, t, "%d: ", t); 14746 verbose(env, "jump out of range from insn %d to %d\n", t, w); 14747 return -EINVAL; 14748 } 14749 14750 if (e == BRANCH) { 14751 /* mark branch target for state pruning */ 14752 mark_prune_point(env, w); 14753 mark_jmp_point(env, w); 14754 } 14755 14756 if (insn_state[w] == 0) { 14757 /* tree-edge */ 14758 insn_state[t] = DISCOVERED | e; 14759 insn_state[w] = DISCOVERED; 14760 if (env->cfg.cur_stack >= env->prog->len) 14761 return -E2BIG; 14762 insn_stack[env->cfg.cur_stack++] = w; 14763 return KEEP_EXPLORING; 14764 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 14765 if (loop_ok && env->bpf_capable) 14766 return DONE_EXPLORING; 14767 verbose_linfo(env, t, "%d: ", t); 14768 verbose_linfo(env, w, "%d: ", w); 14769 verbose(env, "back-edge from insn %d to %d\n", t, w); 14770 return -EINVAL; 14771 } else if (insn_state[w] == EXPLORED) { 14772 /* forward- or cross-edge */ 14773 insn_state[t] = DISCOVERED | e; 14774 } else { 14775 verbose(env, "insn state internal bug\n"); 14776 return -EFAULT; 14777 } 14778 return DONE_EXPLORING; 14779 } 14780 14781 static int visit_func_call_insn(int t, struct bpf_insn *insns, 14782 struct bpf_verifier_env *env, 14783 bool visit_callee) 14784 { 14785 int ret; 14786 14787 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 14788 if (ret) 14789 return ret; 14790 14791 mark_prune_point(env, t + 1); 14792 /* when we exit from subprog, we need to record non-linear history */ 14793 mark_jmp_point(env, t + 1); 14794 14795 if (visit_callee) { 14796 mark_prune_point(env, t); 14797 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 14798 /* It's ok to allow recursion from CFG point of 14799 * view. __check_func_call() will do the actual 14800 * check. 14801 */ 14802 bpf_pseudo_func(insns + t)); 14803 } 14804 return ret; 14805 } 14806 14807 /* Visits the instruction at index t and returns one of the following: 14808 * < 0 - an error occurred 14809 * DONE_EXPLORING - the instruction was fully explored 14810 * KEEP_EXPLORING - there is still work to be done before it is fully explored 14811 */ 14812 static int visit_insn(int t, struct bpf_verifier_env *env) 14813 { 14814 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 14815 int ret, off; 14816 14817 if (bpf_pseudo_func(insn)) 14818 return visit_func_call_insn(t, insns, env, true); 14819 14820 /* All non-branch instructions have a single fall-through edge. */ 14821 if (BPF_CLASS(insn->code) != BPF_JMP && 14822 BPF_CLASS(insn->code) != BPF_JMP32) 14823 return push_insn(t, t + 1, FALLTHROUGH, env, false); 14824 14825 switch (BPF_OP(insn->code)) { 14826 case BPF_EXIT: 14827 return DONE_EXPLORING; 14828 14829 case BPF_CALL: 14830 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 14831 /* Mark this call insn as a prune point to trigger 14832 * is_state_visited() check before call itself is 14833 * processed by __check_func_call(). Otherwise new 14834 * async state will be pushed for further exploration. 14835 */ 14836 mark_prune_point(env, t); 14837 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 14838 struct bpf_kfunc_call_arg_meta meta; 14839 14840 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 14841 if (ret == 0 && is_iter_next_kfunc(&meta)) { 14842 mark_prune_point(env, t); 14843 /* Checking and saving state checkpoints at iter_next() call 14844 * is crucial for fast convergence of open-coded iterator loop 14845 * logic, so we need to force it. If we don't do that, 14846 * is_state_visited() might skip saving a checkpoint, causing 14847 * unnecessarily long sequence of not checkpointed 14848 * instructions and jumps, leading to exhaustion of jump 14849 * history buffer, and potentially other undesired outcomes. 14850 * It is expected that with correct open-coded iterators 14851 * convergence will happen quickly, so we don't run a risk of 14852 * exhausting memory. 14853 */ 14854 mark_force_checkpoint(env, t); 14855 } 14856 } 14857 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 14858 14859 case BPF_JA: 14860 if (BPF_SRC(insn->code) != BPF_K) 14861 return -EINVAL; 14862 14863 if (BPF_CLASS(insn->code) == BPF_JMP) 14864 off = insn->off; 14865 else 14866 off = insn->imm; 14867 14868 /* unconditional jump with single edge */ 14869 ret = push_insn(t, t + off + 1, FALLTHROUGH, env, 14870 true); 14871 if (ret) 14872 return ret; 14873 14874 mark_prune_point(env, t + off + 1); 14875 mark_jmp_point(env, t + off + 1); 14876 14877 return ret; 14878 14879 default: 14880 /* conditional jump with two edges */ 14881 mark_prune_point(env, t); 14882 14883 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 14884 if (ret) 14885 return ret; 14886 14887 return push_insn(t, t + insn->off + 1, BRANCH, env, true); 14888 } 14889 } 14890 14891 /* non-recursive depth-first-search to detect loops in BPF program 14892 * loop == back-edge in directed graph 14893 */ 14894 static int check_cfg(struct bpf_verifier_env *env) 14895 { 14896 int insn_cnt = env->prog->len; 14897 int *insn_stack, *insn_state; 14898 int ret = 0; 14899 int i; 14900 14901 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14902 if (!insn_state) 14903 return -ENOMEM; 14904 14905 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 14906 if (!insn_stack) { 14907 kvfree(insn_state); 14908 return -ENOMEM; 14909 } 14910 14911 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 14912 insn_stack[0] = 0; /* 0 is the first instruction */ 14913 env->cfg.cur_stack = 1; 14914 14915 while (env->cfg.cur_stack > 0) { 14916 int t = insn_stack[env->cfg.cur_stack - 1]; 14917 14918 ret = visit_insn(t, env); 14919 switch (ret) { 14920 case DONE_EXPLORING: 14921 insn_state[t] = EXPLORED; 14922 env->cfg.cur_stack--; 14923 break; 14924 case KEEP_EXPLORING: 14925 break; 14926 default: 14927 if (ret > 0) { 14928 verbose(env, "visit_insn internal bug\n"); 14929 ret = -EFAULT; 14930 } 14931 goto err_free; 14932 } 14933 } 14934 14935 if (env->cfg.cur_stack < 0) { 14936 verbose(env, "pop stack internal bug\n"); 14937 ret = -EFAULT; 14938 goto err_free; 14939 } 14940 14941 for (i = 0; i < insn_cnt; i++) { 14942 if (insn_state[i] != EXPLORED) { 14943 verbose(env, "unreachable insn %d\n", i); 14944 ret = -EINVAL; 14945 goto err_free; 14946 } 14947 } 14948 ret = 0; /* cfg looks good */ 14949 14950 err_free: 14951 kvfree(insn_state); 14952 kvfree(insn_stack); 14953 env->cfg.insn_state = env->cfg.insn_stack = NULL; 14954 return ret; 14955 } 14956 14957 static int check_abnormal_return(struct bpf_verifier_env *env) 14958 { 14959 int i; 14960 14961 for (i = 1; i < env->subprog_cnt; i++) { 14962 if (env->subprog_info[i].has_ld_abs) { 14963 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 14964 return -EINVAL; 14965 } 14966 if (env->subprog_info[i].has_tail_call) { 14967 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 14968 return -EINVAL; 14969 } 14970 } 14971 return 0; 14972 } 14973 14974 /* The minimum supported BTF func info size */ 14975 #define MIN_BPF_FUNCINFO_SIZE 8 14976 #define MAX_FUNCINFO_REC_SIZE 252 14977 14978 static int check_btf_func(struct bpf_verifier_env *env, 14979 const union bpf_attr *attr, 14980 bpfptr_t uattr) 14981 { 14982 const struct btf_type *type, *func_proto, *ret_type; 14983 u32 i, nfuncs, urec_size, min_size; 14984 u32 krec_size = sizeof(struct bpf_func_info); 14985 struct bpf_func_info *krecord; 14986 struct bpf_func_info_aux *info_aux = NULL; 14987 struct bpf_prog *prog; 14988 const struct btf *btf; 14989 bpfptr_t urecord; 14990 u32 prev_offset = 0; 14991 bool scalar_return; 14992 int ret = -ENOMEM; 14993 14994 nfuncs = attr->func_info_cnt; 14995 if (!nfuncs) { 14996 if (check_abnormal_return(env)) 14997 return -EINVAL; 14998 return 0; 14999 } 15000 15001 if (nfuncs != env->subprog_cnt) { 15002 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15003 return -EINVAL; 15004 } 15005 15006 urec_size = attr->func_info_rec_size; 15007 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15008 urec_size > MAX_FUNCINFO_REC_SIZE || 15009 urec_size % sizeof(u32)) { 15010 verbose(env, "invalid func info rec size %u\n", urec_size); 15011 return -EINVAL; 15012 } 15013 15014 prog = env->prog; 15015 btf = prog->aux->btf; 15016 15017 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15018 min_size = min_t(u32, krec_size, urec_size); 15019 15020 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15021 if (!krecord) 15022 return -ENOMEM; 15023 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15024 if (!info_aux) 15025 goto err_free; 15026 15027 for (i = 0; i < nfuncs; i++) { 15028 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15029 if (ret) { 15030 if (ret == -E2BIG) { 15031 verbose(env, "nonzero tailing record in func info"); 15032 /* set the size kernel expects so loader can zero 15033 * out the rest of the record. 15034 */ 15035 if (copy_to_bpfptr_offset(uattr, 15036 offsetof(union bpf_attr, func_info_rec_size), 15037 &min_size, sizeof(min_size))) 15038 ret = -EFAULT; 15039 } 15040 goto err_free; 15041 } 15042 15043 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15044 ret = -EFAULT; 15045 goto err_free; 15046 } 15047 15048 /* check insn_off */ 15049 ret = -EINVAL; 15050 if (i == 0) { 15051 if (krecord[i].insn_off) { 15052 verbose(env, 15053 "nonzero insn_off %u for the first func info record", 15054 krecord[i].insn_off); 15055 goto err_free; 15056 } 15057 } else if (krecord[i].insn_off <= prev_offset) { 15058 verbose(env, 15059 "same or smaller insn offset (%u) than previous func info record (%u)", 15060 krecord[i].insn_off, prev_offset); 15061 goto err_free; 15062 } 15063 15064 if (env->subprog_info[i].start != krecord[i].insn_off) { 15065 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15066 goto err_free; 15067 } 15068 15069 /* check type_id */ 15070 type = btf_type_by_id(btf, krecord[i].type_id); 15071 if (!type || !btf_type_is_func(type)) { 15072 verbose(env, "invalid type id %d in func info", 15073 krecord[i].type_id); 15074 goto err_free; 15075 } 15076 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15077 15078 func_proto = btf_type_by_id(btf, type->type); 15079 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15080 /* btf_func_check() already verified it during BTF load */ 15081 goto err_free; 15082 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15083 scalar_return = 15084 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15085 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15086 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15087 goto err_free; 15088 } 15089 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15090 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15091 goto err_free; 15092 } 15093 15094 prev_offset = krecord[i].insn_off; 15095 bpfptr_add(&urecord, urec_size); 15096 } 15097 15098 prog->aux->func_info = krecord; 15099 prog->aux->func_info_cnt = nfuncs; 15100 prog->aux->func_info_aux = info_aux; 15101 return 0; 15102 15103 err_free: 15104 kvfree(krecord); 15105 kfree(info_aux); 15106 return ret; 15107 } 15108 15109 static void adjust_btf_func(struct bpf_verifier_env *env) 15110 { 15111 struct bpf_prog_aux *aux = env->prog->aux; 15112 int i; 15113 15114 if (!aux->func_info) 15115 return; 15116 15117 for (i = 0; i < env->subprog_cnt; i++) 15118 aux->func_info[i].insn_off = env->subprog_info[i].start; 15119 } 15120 15121 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15122 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15123 15124 static int check_btf_line(struct bpf_verifier_env *env, 15125 const union bpf_attr *attr, 15126 bpfptr_t uattr) 15127 { 15128 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15129 struct bpf_subprog_info *sub; 15130 struct bpf_line_info *linfo; 15131 struct bpf_prog *prog; 15132 const struct btf *btf; 15133 bpfptr_t ulinfo; 15134 int err; 15135 15136 nr_linfo = attr->line_info_cnt; 15137 if (!nr_linfo) 15138 return 0; 15139 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15140 return -EINVAL; 15141 15142 rec_size = attr->line_info_rec_size; 15143 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15144 rec_size > MAX_LINEINFO_REC_SIZE || 15145 rec_size & (sizeof(u32) - 1)) 15146 return -EINVAL; 15147 15148 /* Need to zero it in case the userspace may 15149 * pass in a smaller bpf_line_info object. 15150 */ 15151 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15152 GFP_KERNEL | __GFP_NOWARN); 15153 if (!linfo) 15154 return -ENOMEM; 15155 15156 prog = env->prog; 15157 btf = prog->aux->btf; 15158 15159 s = 0; 15160 sub = env->subprog_info; 15161 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15162 expected_size = sizeof(struct bpf_line_info); 15163 ncopy = min_t(u32, expected_size, rec_size); 15164 for (i = 0; i < nr_linfo; i++) { 15165 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15166 if (err) { 15167 if (err == -E2BIG) { 15168 verbose(env, "nonzero tailing record in line_info"); 15169 if (copy_to_bpfptr_offset(uattr, 15170 offsetof(union bpf_attr, line_info_rec_size), 15171 &expected_size, sizeof(expected_size))) 15172 err = -EFAULT; 15173 } 15174 goto err_free; 15175 } 15176 15177 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15178 err = -EFAULT; 15179 goto err_free; 15180 } 15181 15182 /* 15183 * Check insn_off to ensure 15184 * 1) strictly increasing AND 15185 * 2) bounded by prog->len 15186 * 15187 * The linfo[0].insn_off == 0 check logically falls into 15188 * the later "missing bpf_line_info for func..." case 15189 * because the first linfo[0].insn_off must be the 15190 * first sub also and the first sub must have 15191 * subprog_info[0].start == 0. 15192 */ 15193 if ((i && linfo[i].insn_off <= prev_offset) || 15194 linfo[i].insn_off >= prog->len) { 15195 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15196 i, linfo[i].insn_off, prev_offset, 15197 prog->len); 15198 err = -EINVAL; 15199 goto err_free; 15200 } 15201 15202 if (!prog->insnsi[linfo[i].insn_off].code) { 15203 verbose(env, 15204 "Invalid insn code at line_info[%u].insn_off\n", 15205 i); 15206 err = -EINVAL; 15207 goto err_free; 15208 } 15209 15210 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15211 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15212 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15213 err = -EINVAL; 15214 goto err_free; 15215 } 15216 15217 if (s != env->subprog_cnt) { 15218 if (linfo[i].insn_off == sub[s].start) { 15219 sub[s].linfo_idx = i; 15220 s++; 15221 } else if (sub[s].start < linfo[i].insn_off) { 15222 verbose(env, "missing bpf_line_info for func#%u\n", s); 15223 err = -EINVAL; 15224 goto err_free; 15225 } 15226 } 15227 15228 prev_offset = linfo[i].insn_off; 15229 bpfptr_add(&ulinfo, rec_size); 15230 } 15231 15232 if (s != env->subprog_cnt) { 15233 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15234 env->subprog_cnt - s, s); 15235 err = -EINVAL; 15236 goto err_free; 15237 } 15238 15239 prog->aux->linfo = linfo; 15240 prog->aux->nr_linfo = nr_linfo; 15241 15242 return 0; 15243 15244 err_free: 15245 kvfree(linfo); 15246 return err; 15247 } 15248 15249 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15250 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15251 15252 static int check_core_relo(struct bpf_verifier_env *env, 15253 const union bpf_attr *attr, 15254 bpfptr_t uattr) 15255 { 15256 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15257 struct bpf_core_relo core_relo = {}; 15258 struct bpf_prog *prog = env->prog; 15259 const struct btf *btf = prog->aux->btf; 15260 struct bpf_core_ctx ctx = { 15261 .log = &env->log, 15262 .btf = btf, 15263 }; 15264 bpfptr_t u_core_relo; 15265 int err; 15266 15267 nr_core_relo = attr->core_relo_cnt; 15268 if (!nr_core_relo) 15269 return 0; 15270 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15271 return -EINVAL; 15272 15273 rec_size = attr->core_relo_rec_size; 15274 if (rec_size < MIN_CORE_RELO_SIZE || 15275 rec_size > MAX_CORE_RELO_SIZE || 15276 rec_size % sizeof(u32)) 15277 return -EINVAL; 15278 15279 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15280 expected_size = sizeof(struct bpf_core_relo); 15281 ncopy = min_t(u32, expected_size, rec_size); 15282 15283 /* Unlike func_info and line_info, copy and apply each CO-RE 15284 * relocation record one at a time. 15285 */ 15286 for (i = 0; i < nr_core_relo; i++) { 15287 /* future proofing when sizeof(bpf_core_relo) changes */ 15288 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15289 if (err) { 15290 if (err == -E2BIG) { 15291 verbose(env, "nonzero tailing record in core_relo"); 15292 if (copy_to_bpfptr_offset(uattr, 15293 offsetof(union bpf_attr, core_relo_rec_size), 15294 &expected_size, sizeof(expected_size))) 15295 err = -EFAULT; 15296 } 15297 break; 15298 } 15299 15300 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15301 err = -EFAULT; 15302 break; 15303 } 15304 15305 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15306 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15307 i, core_relo.insn_off, prog->len); 15308 err = -EINVAL; 15309 break; 15310 } 15311 15312 err = bpf_core_apply(&ctx, &core_relo, i, 15313 &prog->insnsi[core_relo.insn_off / 8]); 15314 if (err) 15315 break; 15316 bpfptr_add(&u_core_relo, rec_size); 15317 } 15318 return err; 15319 } 15320 15321 static int check_btf_info(struct bpf_verifier_env *env, 15322 const union bpf_attr *attr, 15323 bpfptr_t uattr) 15324 { 15325 struct btf *btf; 15326 int err; 15327 15328 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15329 if (check_abnormal_return(env)) 15330 return -EINVAL; 15331 return 0; 15332 } 15333 15334 btf = btf_get_by_fd(attr->prog_btf_fd); 15335 if (IS_ERR(btf)) 15336 return PTR_ERR(btf); 15337 if (btf_is_kernel(btf)) { 15338 btf_put(btf); 15339 return -EACCES; 15340 } 15341 env->prog->aux->btf = btf; 15342 15343 err = check_btf_func(env, attr, uattr); 15344 if (err) 15345 return err; 15346 15347 err = check_btf_line(env, attr, uattr); 15348 if (err) 15349 return err; 15350 15351 err = check_core_relo(env, attr, uattr); 15352 if (err) 15353 return err; 15354 15355 return 0; 15356 } 15357 15358 /* check %cur's range satisfies %old's */ 15359 static bool range_within(struct bpf_reg_state *old, 15360 struct bpf_reg_state *cur) 15361 { 15362 return old->umin_value <= cur->umin_value && 15363 old->umax_value >= cur->umax_value && 15364 old->smin_value <= cur->smin_value && 15365 old->smax_value >= cur->smax_value && 15366 old->u32_min_value <= cur->u32_min_value && 15367 old->u32_max_value >= cur->u32_max_value && 15368 old->s32_min_value <= cur->s32_min_value && 15369 old->s32_max_value >= cur->s32_max_value; 15370 } 15371 15372 /* If in the old state two registers had the same id, then they need to have 15373 * the same id in the new state as well. But that id could be different from 15374 * the old state, so we need to track the mapping from old to new ids. 15375 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15376 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15377 * regs with a different old id could still have new id 9, we don't care about 15378 * that. 15379 * So we look through our idmap to see if this old id has been seen before. If 15380 * so, we require the new id to match; otherwise, we add the id pair to the map. 15381 */ 15382 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15383 { 15384 struct bpf_id_pair *map = idmap->map; 15385 unsigned int i; 15386 15387 /* either both IDs should be set or both should be zero */ 15388 if (!!old_id != !!cur_id) 15389 return false; 15390 15391 if (old_id == 0) /* cur_id == 0 as well */ 15392 return true; 15393 15394 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15395 if (!map[i].old) { 15396 /* Reached an empty slot; haven't seen this id before */ 15397 map[i].old = old_id; 15398 map[i].cur = cur_id; 15399 return true; 15400 } 15401 if (map[i].old == old_id) 15402 return map[i].cur == cur_id; 15403 if (map[i].cur == cur_id) 15404 return false; 15405 } 15406 /* We ran out of idmap slots, which should be impossible */ 15407 WARN_ON_ONCE(1); 15408 return false; 15409 } 15410 15411 /* Similar to check_ids(), but allocate a unique temporary ID 15412 * for 'old_id' or 'cur_id' of zero. 15413 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15414 */ 15415 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15416 { 15417 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15418 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15419 15420 return check_ids(old_id, cur_id, idmap); 15421 } 15422 15423 static void clean_func_state(struct bpf_verifier_env *env, 15424 struct bpf_func_state *st) 15425 { 15426 enum bpf_reg_liveness live; 15427 int i, j; 15428 15429 for (i = 0; i < BPF_REG_FP; i++) { 15430 live = st->regs[i].live; 15431 /* liveness must not touch this register anymore */ 15432 st->regs[i].live |= REG_LIVE_DONE; 15433 if (!(live & REG_LIVE_READ)) 15434 /* since the register is unused, clear its state 15435 * to make further comparison simpler 15436 */ 15437 __mark_reg_not_init(env, &st->regs[i]); 15438 } 15439 15440 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15441 live = st->stack[i].spilled_ptr.live; 15442 /* liveness must not touch this stack slot anymore */ 15443 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15444 if (!(live & REG_LIVE_READ)) { 15445 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15446 for (j = 0; j < BPF_REG_SIZE; j++) 15447 st->stack[i].slot_type[j] = STACK_INVALID; 15448 } 15449 } 15450 } 15451 15452 static void clean_verifier_state(struct bpf_verifier_env *env, 15453 struct bpf_verifier_state *st) 15454 { 15455 int i; 15456 15457 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15458 /* all regs in this state in all frames were already marked */ 15459 return; 15460 15461 for (i = 0; i <= st->curframe; i++) 15462 clean_func_state(env, st->frame[i]); 15463 } 15464 15465 /* the parentage chains form a tree. 15466 * the verifier states are added to state lists at given insn and 15467 * pushed into state stack for future exploration. 15468 * when the verifier reaches bpf_exit insn some of the verifer states 15469 * stored in the state lists have their final liveness state already, 15470 * but a lot of states will get revised from liveness point of view when 15471 * the verifier explores other branches. 15472 * Example: 15473 * 1: r0 = 1 15474 * 2: if r1 == 100 goto pc+1 15475 * 3: r0 = 2 15476 * 4: exit 15477 * when the verifier reaches exit insn the register r0 in the state list of 15478 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15479 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15480 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15481 * 15482 * Since the verifier pushes the branch states as it sees them while exploring 15483 * the program the condition of walking the branch instruction for the second 15484 * time means that all states below this branch were already explored and 15485 * their final liveness marks are already propagated. 15486 * Hence when the verifier completes the search of state list in is_state_visited() 15487 * we can call this clean_live_states() function to mark all liveness states 15488 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15489 * will not be used. 15490 * This function also clears the registers and stack for states that !READ 15491 * to simplify state merging. 15492 * 15493 * Important note here that walking the same branch instruction in the callee 15494 * doesn't meant that the states are DONE. The verifier has to compare 15495 * the callsites 15496 */ 15497 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15498 struct bpf_verifier_state *cur) 15499 { 15500 struct bpf_verifier_state_list *sl; 15501 int i; 15502 15503 sl = *explored_state(env, insn); 15504 while (sl) { 15505 if (sl->state.branches) 15506 goto next; 15507 if (sl->state.insn_idx != insn || 15508 sl->state.curframe != cur->curframe) 15509 goto next; 15510 for (i = 0; i <= cur->curframe; i++) 15511 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 15512 goto next; 15513 clean_verifier_state(env, &sl->state); 15514 next: 15515 sl = sl->next; 15516 } 15517 } 15518 15519 static bool regs_exact(const struct bpf_reg_state *rold, 15520 const struct bpf_reg_state *rcur, 15521 struct bpf_idmap *idmap) 15522 { 15523 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15524 check_ids(rold->id, rcur->id, idmap) && 15525 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15526 } 15527 15528 /* Returns true if (rold safe implies rcur safe) */ 15529 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15530 struct bpf_reg_state *rcur, struct bpf_idmap *idmap) 15531 { 15532 if (!(rold->live & REG_LIVE_READ)) 15533 /* explored state didn't use this */ 15534 return true; 15535 if (rold->type == NOT_INIT) 15536 /* explored state can't have used this */ 15537 return true; 15538 if (rcur->type == NOT_INIT) 15539 return false; 15540 15541 /* Enforce that register types have to match exactly, including their 15542 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15543 * rule. 15544 * 15545 * One can make a point that using a pointer register as unbounded 15546 * SCALAR would be technically acceptable, but this could lead to 15547 * pointer leaks because scalars are allowed to leak while pointers 15548 * are not. We could make this safe in special cases if root is 15549 * calling us, but it's probably not worth the hassle. 15550 * 15551 * Also, register types that are *not* MAYBE_NULL could technically be 15552 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15553 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15554 * to the same map). 15555 * However, if the old MAYBE_NULL register then got NULL checked, 15556 * doing so could have affected others with the same id, and we can't 15557 * check for that because we lost the id when we converted to 15558 * a non-MAYBE_NULL variant. 15559 * So, as a general rule we don't allow mixing MAYBE_NULL and 15560 * non-MAYBE_NULL registers as well. 15561 */ 15562 if (rold->type != rcur->type) 15563 return false; 15564 15565 switch (base_type(rold->type)) { 15566 case SCALAR_VALUE: 15567 if (env->explore_alu_limits) { 15568 /* explore_alu_limits disables tnum_in() and range_within() 15569 * logic and requires everything to be strict 15570 */ 15571 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15572 check_scalar_ids(rold->id, rcur->id, idmap); 15573 } 15574 if (!rold->precise) 15575 return true; 15576 /* Why check_ids() for scalar registers? 15577 * 15578 * Consider the following BPF code: 15579 * 1: r6 = ... unbound scalar, ID=a ... 15580 * 2: r7 = ... unbound scalar, ID=b ... 15581 * 3: if (r6 > r7) goto +1 15582 * 4: r6 = r7 15583 * 5: if (r6 > X) goto ... 15584 * 6: ... memory operation using r7 ... 15585 * 15586 * First verification path is [1-6]: 15587 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 15588 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 15589 * r7 <= X, because r6 and r7 share same id. 15590 * Next verification path is [1-4, 6]. 15591 * 15592 * Instruction (6) would be reached in two states: 15593 * I. r6{.id=b}, r7{.id=b} via path 1-6; 15594 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 15595 * 15596 * Use check_ids() to distinguish these states. 15597 * --- 15598 * Also verify that new value satisfies old value range knowledge. 15599 */ 15600 return range_within(rold, rcur) && 15601 tnum_in(rold->var_off, rcur->var_off) && 15602 check_scalar_ids(rold->id, rcur->id, idmap); 15603 case PTR_TO_MAP_KEY: 15604 case PTR_TO_MAP_VALUE: 15605 case PTR_TO_MEM: 15606 case PTR_TO_BUF: 15607 case PTR_TO_TP_BUFFER: 15608 /* If the new min/max/var_off satisfy the old ones and 15609 * everything else matches, we are OK. 15610 */ 15611 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 15612 range_within(rold, rcur) && 15613 tnum_in(rold->var_off, rcur->var_off) && 15614 check_ids(rold->id, rcur->id, idmap) && 15615 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15616 case PTR_TO_PACKET_META: 15617 case PTR_TO_PACKET: 15618 /* We must have at least as much range as the old ptr 15619 * did, so that any accesses which were safe before are 15620 * still safe. This is true even if old range < old off, 15621 * since someone could have accessed through (ptr - k), or 15622 * even done ptr -= k in a register, to get a safe access. 15623 */ 15624 if (rold->range > rcur->range) 15625 return false; 15626 /* If the offsets don't match, we can't trust our alignment; 15627 * nor can we be sure that we won't fall out of range. 15628 */ 15629 if (rold->off != rcur->off) 15630 return false; 15631 /* id relations must be preserved */ 15632 if (!check_ids(rold->id, rcur->id, idmap)) 15633 return false; 15634 /* new val must satisfy old val knowledge */ 15635 return range_within(rold, rcur) && 15636 tnum_in(rold->var_off, rcur->var_off); 15637 case PTR_TO_STACK: 15638 /* two stack pointers are equal only if they're pointing to 15639 * the same stack frame, since fp-8 in foo != fp-8 in bar 15640 */ 15641 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 15642 default: 15643 return regs_exact(rold, rcur, idmap); 15644 } 15645 } 15646 15647 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 15648 struct bpf_func_state *cur, struct bpf_idmap *idmap) 15649 { 15650 int i, spi; 15651 15652 /* walk slots of the explored stack and ignore any additional 15653 * slots in the current stack, since explored(safe) state 15654 * didn't use them 15655 */ 15656 for (i = 0; i < old->allocated_stack; i++) { 15657 struct bpf_reg_state *old_reg, *cur_reg; 15658 15659 spi = i / BPF_REG_SIZE; 15660 15661 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 15662 i += BPF_REG_SIZE - 1; 15663 /* explored state didn't use this */ 15664 continue; 15665 } 15666 15667 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 15668 continue; 15669 15670 if (env->allow_uninit_stack && 15671 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 15672 continue; 15673 15674 /* explored stack has more populated slots than current stack 15675 * and these slots were used 15676 */ 15677 if (i >= cur->allocated_stack) 15678 return false; 15679 15680 /* if old state was safe with misc data in the stack 15681 * it will be safe with zero-initialized stack. 15682 * The opposite is not true 15683 */ 15684 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 15685 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 15686 continue; 15687 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 15688 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 15689 /* Ex: old explored (safe) state has STACK_SPILL in 15690 * this stack slot, but current has STACK_MISC -> 15691 * this verifier states are not equivalent, 15692 * return false to continue verification of this path 15693 */ 15694 return false; 15695 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 15696 continue; 15697 /* Both old and cur are having same slot_type */ 15698 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 15699 case STACK_SPILL: 15700 /* when explored and current stack slot are both storing 15701 * spilled registers, check that stored pointers types 15702 * are the same as well. 15703 * Ex: explored safe path could have stored 15704 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 15705 * but current path has stored: 15706 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 15707 * such verifier states are not equivalent. 15708 * return false to continue verification of this path 15709 */ 15710 if (!regsafe(env, &old->stack[spi].spilled_ptr, 15711 &cur->stack[spi].spilled_ptr, idmap)) 15712 return false; 15713 break; 15714 case STACK_DYNPTR: 15715 old_reg = &old->stack[spi].spilled_ptr; 15716 cur_reg = &cur->stack[spi].spilled_ptr; 15717 if (old_reg->dynptr.type != cur_reg->dynptr.type || 15718 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 15719 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15720 return false; 15721 break; 15722 case STACK_ITER: 15723 old_reg = &old->stack[spi].spilled_ptr; 15724 cur_reg = &cur->stack[spi].spilled_ptr; 15725 /* iter.depth is not compared between states as it 15726 * doesn't matter for correctness and would otherwise 15727 * prevent convergence; we maintain it only to prevent 15728 * infinite loop check triggering, see 15729 * iter_active_depths_differ() 15730 */ 15731 if (old_reg->iter.btf != cur_reg->iter.btf || 15732 old_reg->iter.btf_id != cur_reg->iter.btf_id || 15733 old_reg->iter.state != cur_reg->iter.state || 15734 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 15735 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 15736 return false; 15737 break; 15738 case STACK_MISC: 15739 case STACK_ZERO: 15740 case STACK_INVALID: 15741 continue; 15742 /* Ensure that new unhandled slot types return false by default */ 15743 default: 15744 return false; 15745 } 15746 } 15747 return true; 15748 } 15749 15750 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 15751 struct bpf_idmap *idmap) 15752 { 15753 int i; 15754 15755 if (old->acquired_refs != cur->acquired_refs) 15756 return false; 15757 15758 for (i = 0; i < old->acquired_refs; i++) { 15759 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 15760 return false; 15761 } 15762 15763 return true; 15764 } 15765 15766 /* compare two verifier states 15767 * 15768 * all states stored in state_list are known to be valid, since 15769 * verifier reached 'bpf_exit' instruction through them 15770 * 15771 * this function is called when verifier exploring different branches of 15772 * execution popped from the state stack. If it sees an old state that has 15773 * more strict register state and more strict stack state then this execution 15774 * branch doesn't need to be explored further, since verifier already 15775 * concluded that more strict state leads to valid finish. 15776 * 15777 * Therefore two states are equivalent if register state is more conservative 15778 * and explored stack state is more conservative than the current one. 15779 * Example: 15780 * explored current 15781 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 15782 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 15783 * 15784 * In other words if current stack state (one being explored) has more 15785 * valid slots than old one that already passed validation, it means 15786 * the verifier can stop exploring and conclude that current state is valid too 15787 * 15788 * Similarly with registers. If explored state has register type as invalid 15789 * whereas register type in current state is meaningful, it means that 15790 * the current state will reach 'bpf_exit' instruction safely 15791 */ 15792 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 15793 struct bpf_func_state *cur) 15794 { 15795 int i; 15796 15797 for (i = 0; i < MAX_BPF_REG; i++) 15798 if (!regsafe(env, &old->regs[i], &cur->regs[i], 15799 &env->idmap_scratch)) 15800 return false; 15801 15802 if (!stacksafe(env, old, cur, &env->idmap_scratch)) 15803 return false; 15804 15805 if (!refsafe(old, cur, &env->idmap_scratch)) 15806 return false; 15807 15808 return true; 15809 } 15810 15811 static bool states_equal(struct bpf_verifier_env *env, 15812 struct bpf_verifier_state *old, 15813 struct bpf_verifier_state *cur) 15814 { 15815 int i; 15816 15817 if (old->curframe != cur->curframe) 15818 return false; 15819 15820 env->idmap_scratch.tmp_id_gen = env->id_gen; 15821 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 15822 15823 /* Verification state from speculative execution simulation 15824 * must never prune a non-speculative execution one. 15825 */ 15826 if (old->speculative && !cur->speculative) 15827 return false; 15828 15829 if (old->active_lock.ptr != cur->active_lock.ptr) 15830 return false; 15831 15832 /* Old and cur active_lock's have to be either both present 15833 * or both absent. 15834 */ 15835 if (!!old->active_lock.id != !!cur->active_lock.id) 15836 return false; 15837 15838 if (old->active_lock.id && 15839 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 15840 return false; 15841 15842 if (old->active_rcu_lock != cur->active_rcu_lock) 15843 return false; 15844 15845 /* for states to be equal callsites have to be the same 15846 * and all frame states need to be equivalent 15847 */ 15848 for (i = 0; i <= old->curframe; i++) { 15849 if (old->frame[i]->callsite != cur->frame[i]->callsite) 15850 return false; 15851 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 15852 return false; 15853 } 15854 return true; 15855 } 15856 15857 /* Return 0 if no propagation happened. Return negative error code if error 15858 * happened. Otherwise, return the propagated bit. 15859 */ 15860 static int propagate_liveness_reg(struct bpf_verifier_env *env, 15861 struct bpf_reg_state *reg, 15862 struct bpf_reg_state *parent_reg) 15863 { 15864 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 15865 u8 flag = reg->live & REG_LIVE_READ; 15866 int err; 15867 15868 /* When comes here, read flags of PARENT_REG or REG could be any of 15869 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 15870 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 15871 */ 15872 if (parent_flag == REG_LIVE_READ64 || 15873 /* Or if there is no read flag from REG. */ 15874 !flag || 15875 /* Or if the read flag from REG is the same as PARENT_REG. */ 15876 parent_flag == flag) 15877 return 0; 15878 15879 err = mark_reg_read(env, reg, parent_reg, flag); 15880 if (err) 15881 return err; 15882 15883 return flag; 15884 } 15885 15886 /* A write screens off any subsequent reads; but write marks come from the 15887 * straight-line code between a state and its parent. When we arrive at an 15888 * equivalent state (jump target or such) we didn't arrive by the straight-line 15889 * code, so read marks in the state must propagate to the parent regardless 15890 * of the state's write marks. That's what 'parent == state->parent' comparison 15891 * in mark_reg_read() is for. 15892 */ 15893 static int propagate_liveness(struct bpf_verifier_env *env, 15894 const struct bpf_verifier_state *vstate, 15895 struct bpf_verifier_state *vparent) 15896 { 15897 struct bpf_reg_state *state_reg, *parent_reg; 15898 struct bpf_func_state *state, *parent; 15899 int i, frame, err = 0; 15900 15901 if (vparent->curframe != vstate->curframe) { 15902 WARN(1, "propagate_live: parent frame %d current frame %d\n", 15903 vparent->curframe, vstate->curframe); 15904 return -EFAULT; 15905 } 15906 /* Propagate read liveness of registers... */ 15907 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 15908 for (frame = 0; frame <= vstate->curframe; frame++) { 15909 parent = vparent->frame[frame]; 15910 state = vstate->frame[frame]; 15911 parent_reg = parent->regs; 15912 state_reg = state->regs; 15913 /* We don't need to worry about FP liveness, it's read-only */ 15914 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 15915 err = propagate_liveness_reg(env, &state_reg[i], 15916 &parent_reg[i]); 15917 if (err < 0) 15918 return err; 15919 if (err == REG_LIVE_READ64) 15920 mark_insn_zext(env, &parent_reg[i]); 15921 } 15922 15923 /* Propagate stack slots. */ 15924 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 15925 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 15926 parent_reg = &parent->stack[i].spilled_ptr; 15927 state_reg = &state->stack[i].spilled_ptr; 15928 err = propagate_liveness_reg(env, state_reg, 15929 parent_reg); 15930 if (err < 0) 15931 return err; 15932 } 15933 } 15934 return 0; 15935 } 15936 15937 /* find precise scalars in the previous equivalent state and 15938 * propagate them into the current state 15939 */ 15940 static int propagate_precision(struct bpf_verifier_env *env, 15941 const struct bpf_verifier_state *old) 15942 { 15943 struct bpf_reg_state *state_reg; 15944 struct bpf_func_state *state; 15945 int i, err = 0, fr; 15946 bool first; 15947 15948 for (fr = old->curframe; fr >= 0; fr--) { 15949 state = old->frame[fr]; 15950 state_reg = state->regs; 15951 first = true; 15952 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 15953 if (state_reg->type != SCALAR_VALUE || 15954 !state_reg->precise || 15955 !(state_reg->live & REG_LIVE_READ)) 15956 continue; 15957 if (env->log.level & BPF_LOG_LEVEL2) { 15958 if (first) 15959 verbose(env, "frame %d: propagating r%d", fr, i); 15960 else 15961 verbose(env, ",r%d", i); 15962 } 15963 bt_set_frame_reg(&env->bt, fr, i); 15964 first = false; 15965 } 15966 15967 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 15968 if (!is_spilled_reg(&state->stack[i])) 15969 continue; 15970 state_reg = &state->stack[i].spilled_ptr; 15971 if (state_reg->type != SCALAR_VALUE || 15972 !state_reg->precise || 15973 !(state_reg->live & REG_LIVE_READ)) 15974 continue; 15975 if (env->log.level & BPF_LOG_LEVEL2) { 15976 if (first) 15977 verbose(env, "frame %d: propagating fp%d", 15978 fr, (-i - 1) * BPF_REG_SIZE); 15979 else 15980 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 15981 } 15982 bt_set_frame_slot(&env->bt, fr, i); 15983 first = false; 15984 } 15985 if (!first) 15986 verbose(env, "\n"); 15987 } 15988 15989 err = mark_chain_precision_batch(env); 15990 if (err < 0) 15991 return err; 15992 15993 return 0; 15994 } 15995 15996 static bool states_maybe_looping(struct bpf_verifier_state *old, 15997 struct bpf_verifier_state *cur) 15998 { 15999 struct bpf_func_state *fold, *fcur; 16000 int i, fr = cur->curframe; 16001 16002 if (old->curframe != fr) 16003 return false; 16004 16005 fold = old->frame[fr]; 16006 fcur = cur->frame[fr]; 16007 for (i = 0; i < MAX_BPF_REG; i++) 16008 if (memcmp(&fold->regs[i], &fcur->regs[i], 16009 offsetof(struct bpf_reg_state, parent))) 16010 return false; 16011 return true; 16012 } 16013 16014 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16015 { 16016 return env->insn_aux_data[insn_idx].is_iter_next; 16017 } 16018 16019 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16020 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16021 * states to match, which otherwise would look like an infinite loop. So while 16022 * iter_next() calls are taken care of, we still need to be careful and 16023 * prevent erroneous and too eager declaration of "ininite loop", when 16024 * iterators are involved. 16025 * 16026 * Here's a situation in pseudo-BPF assembly form: 16027 * 16028 * 0: again: ; set up iter_next() call args 16029 * 1: r1 = &it ; <CHECKPOINT HERE> 16030 * 2: call bpf_iter_num_next ; this is iter_next() call 16031 * 3: if r0 == 0 goto done 16032 * 4: ... something useful here ... 16033 * 5: goto again ; another iteration 16034 * 6: done: 16035 * 7: r1 = &it 16036 * 8: call bpf_iter_num_destroy ; clean up iter state 16037 * 9: exit 16038 * 16039 * This is a typical loop. Let's assume that we have a prune point at 1:, 16040 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16041 * again`, assuming other heuristics don't get in a way). 16042 * 16043 * When we first time come to 1:, let's say we have some state X. We proceed 16044 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16045 * Now we come back to validate that forked ACTIVE state. We proceed through 16046 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16047 * are converging. But the problem is that we don't know that yet, as this 16048 * convergence has to happen at iter_next() call site only. So if nothing is 16049 * done, at 1: verifier will use bounded loop logic and declare infinite 16050 * looping (and would be *technically* correct, if not for iterator's 16051 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16052 * don't want that. So what we do in process_iter_next_call() when we go on 16053 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16054 * a different iteration. So when we suspect an infinite loop, we additionally 16055 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16056 * pretend we are not looping and wait for next iter_next() call. 16057 * 16058 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16059 * loop, because that would actually mean infinite loop, as DRAINED state is 16060 * "sticky", and so we'll keep returning into the same instruction with the 16061 * same state (at least in one of possible code paths). 16062 * 16063 * This approach allows to keep infinite loop heuristic even in the face of 16064 * active iterator. E.g., C snippet below is and will be detected as 16065 * inifintely looping: 16066 * 16067 * struct bpf_iter_num it; 16068 * int *p, x; 16069 * 16070 * bpf_iter_num_new(&it, 0, 10); 16071 * while ((p = bpf_iter_num_next(&t))) { 16072 * x = p; 16073 * while (x--) {} // <<-- infinite loop here 16074 * } 16075 * 16076 */ 16077 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16078 { 16079 struct bpf_reg_state *slot, *cur_slot; 16080 struct bpf_func_state *state; 16081 int i, fr; 16082 16083 for (fr = old->curframe; fr >= 0; fr--) { 16084 state = old->frame[fr]; 16085 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16086 if (state->stack[i].slot_type[0] != STACK_ITER) 16087 continue; 16088 16089 slot = &state->stack[i].spilled_ptr; 16090 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16091 continue; 16092 16093 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16094 if (cur_slot->iter.depth != slot->iter.depth) 16095 return true; 16096 } 16097 } 16098 return false; 16099 } 16100 16101 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16102 { 16103 struct bpf_verifier_state_list *new_sl; 16104 struct bpf_verifier_state_list *sl, **pprev; 16105 struct bpf_verifier_state *cur = env->cur_state, *new; 16106 int i, j, err, states_cnt = 0; 16107 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16108 bool add_new_state = force_new_state; 16109 16110 /* bpf progs typically have pruning point every 4 instructions 16111 * http://vger.kernel.org/bpfconf2019.html#session-1 16112 * Do not add new state for future pruning if the verifier hasn't seen 16113 * at least 2 jumps and at least 8 instructions. 16114 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16115 * In tests that amounts to up to 50% reduction into total verifier 16116 * memory consumption and 20% verifier time speedup. 16117 */ 16118 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16119 env->insn_processed - env->prev_insn_processed >= 8) 16120 add_new_state = true; 16121 16122 pprev = explored_state(env, insn_idx); 16123 sl = *pprev; 16124 16125 clean_live_states(env, insn_idx, cur); 16126 16127 while (sl) { 16128 states_cnt++; 16129 if (sl->state.insn_idx != insn_idx) 16130 goto next; 16131 16132 if (sl->state.branches) { 16133 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16134 16135 if (frame->in_async_callback_fn && 16136 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16137 /* Different async_entry_cnt means that the verifier is 16138 * processing another entry into async callback. 16139 * Seeing the same state is not an indication of infinite 16140 * loop or infinite recursion. 16141 * But finding the same state doesn't mean that it's safe 16142 * to stop processing the current state. The previous state 16143 * hasn't yet reached bpf_exit, since state.branches > 0. 16144 * Checking in_async_callback_fn alone is not enough either. 16145 * Since the verifier still needs to catch infinite loops 16146 * inside async callbacks. 16147 */ 16148 goto skip_inf_loop_check; 16149 } 16150 /* BPF open-coded iterators loop detection is special. 16151 * states_maybe_looping() logic is too simplistic in detecting 16152 * states that *might* be equivalent, because it doesn't know 16153 * about ID remapping, so don't even perform it. 16154 * See process_iter_next_call() and iter_active_depths_differ() 16155 * for overview of the logic. When current and one of parent 16156 * states are detected as equivalent, it's a good thing: we prove 16157 * convergence and can stop simulating further iterations. 16158 * It's safe to assume that iterator loop will finish, taking into 16159 * account iter_next() contract of eventually returning 16160 * sticky NULL result. 16161 */ 16162 if (is_iter_next_insn(env, insn_idx)) { 16163 if (states_equal(env, &sl->state, cur)) { 16164 struct bpf_func_state *cur_frame; 16165 struct bpf_reg_state *iter_state, *iter_reg; 16166 int spi; 16167 16168 cur_frame = cur->frame[cur->curframe]; 16169 /* btf_check_iter_kfuncs() enforces that 16170 * iter state pointer is always the first arg 16171 */ 16172 iter_reg = &cur_frame->regs[BPF_REG_1]; 16173 /* current state is valid due to states_equal(), 16174 * so we can assume valid iter and reg state, 16175 * no need for extra (re-)validations 16176 */ 16177 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16178 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16179 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) 16180 goto hit; 16181 } 16182 goto skip_inf_loop_check; 16183 } 16184 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16185 if (states_maybe_looping(&sl->state, cur) && 16186 states_equal(env, &sl->state, cur) && 16187 !iter_active_depths_differ(&sl->state, cur)) { 16188 verbose_linfo(env, insn_idx, "; "); 16189 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16190 return -EINVAL; 16191 } 16192 /* if the verifier is processing a loop, avoid adding new state 16193 * too often, since different loop iterations have distinct 16194 * states and may not help future pruning. 16195 * This threshold shouldn't be too low to make sure that 16196 * a loop with large bound will be rejected quickly. 16197 * The most abusive loop will be: 16198 * r1 += 1 16199 * if r1 < 1000000 goto pc-2 16200 * 1M insn_procssed limit / 100 == 10k peak states. 16201 * This threshold shouldn't be too high either, since states 16202 * at the end of the loop are likely to be useful in pruning. 16203 */ 16204 skip_inf_loop_check: 16205 if (!force_new_state && 16206 env->jmps_processed - env->prev_jmps_processed < 20 && 16207 env->insn_processed - env->prev_insn_processed < 100) 16208 add_new_state = false; 16209 goto miss; 16210 } 16211 if (states_equal(env, &sl->state, cur)) { 16212 hit: 16213 sl->hit_cnt++; 16214 /* reached equivalent register/stack state, 16215 * prune the search. 16216 * Registers read by the continuation are read by us. 16217 * If we have any write marks in env->cur_state, they 16218 * will prevent corresponding reads in the continuation 16219 * from reaching our parent (an explored_state). Our 16220 * own state will get the read marks recorded, but 16221 * they'll be immediately forgotten as we're pruning 16222 * this state and will pop a new one. 16223 */ 16224 err = propagate_liveness(env, &sl->state, cur); 16225 16226 /* if previous state reached the exit with precision and 16227 * current state is equivalent to it (except precsion marks) 16228 * the precision needs to be propagated back in 16229 * the current state. 16230 */ 16231 err = err ? : push_jmp_history(env, cur); 16232 err = err ? : propagate_precision(env, &sl->state); 16233 if (err) 16234 return err; 16235 return 1; 16236 } 16237 miss: 16238 /* when new state is not going to be added do not increase miss count. 16239 * Otherwise several loop iterations will remove the state 16240 * recorded earlier. The goal of these heuristics is to have 16241 * states from some iterations of the loop (some in the beginning 16242 * and some at the end) to help pruning. 16243 */ 16244 if (add_new_state) 16245 sl->miss_cnt++; 16246 /* heuristic to determine whether this state is beneficial 16247 * to keep checking from state equivalence point of view. 16248 * Higher numbers increase max_states_per_insn and verification time, 16249 * but do not meaningfully decrease insn_processed. 16250 */ 16251 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 16252 /* the state is unlikely to be useful. Remove it to 16253 * speed up verification 16254 */ 16255 *pprev = sl->next; 16256 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 16257 u32 br = sl->state.branches; 16258 16259 WARN_ONCE(br, 16260 "BUG live_done but branches_to_explore %d\n", 16261 br); 16262 free_verifier_state(&sl->state, false); 16263 kfree(sl); 16264 env->peak_states--; 16265 } else { 16266 /* cannot free this state, since parentage chain may 16267 * walk it later. Add it for free_list instead to 16268 * be freed at the end of verification 16269 */ 16270 sl->next = env->free_list; 16271 env->free_list = sl; 16272 } 16273 sl = *pprev; 16274 continue; 16275 } 16276 next: 16277 pprev = &sl->next; 16278 sl = *pprev; 16279 } 16280 16281 if (env->max_states_per_insn < states_cnt) 16282 env->max_states_per_insn = states_cnt; 16283 16284 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16285 return 0; 16286 16287 if (!add_new_state) 16288 return 0; 16289 16290 /* There were no equivalent states, remember the current one. 16291 * Technically the current state is not proven to be safe yet, 16292 * but it will either reach outer most bpf_exit (which means it's safe) 16293 * or it will be rejected. When there are no loops the verifier won't be 16294 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16295 * again on the way to bpf_exit. 16296 * When looping the sl->state.branches will be > 0 and this state 16297 * will not be considered for equivalence until branches == 0. 16298 */ 16299 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16300 if (!new_sl) 16301 return -ENOMEM; 16302 env->total_states++; 16303 env->peak_states++; 16304 env->prev_jmps_processed = env->jmps_processed; 16305 env->prev_insn_processed = env->insn_processed; 16306 16307 /* forget precise markings we inherited, see __mark_chain_precision */ 16308 if (env->bpf_capable) 16309 mark_all_scalars_imprecise(env, cur); 16310 16311 /* add new state to the head of linked list */ 16312 new = &new_sl->state; 16313 err = copy_verifier_state(new, cur); 16314 if (err) { 16315 free_verifier_state(new, false); 16316 kfree(new_sl); 16317 return err; 16318 } 16319 new->insn_idx = insn_idx; 16320 WARN_ONCE(new->branches != 1, 16321 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16322 16323 cur->parent = new; 16324 cur->first_insn_idx = insn_idx; 16325 clear_jmp_history(cur); 16326 new_sl->next = *explored_state(env, insn_idx); 16327 *explored_state(env, insn_idx) = new_sl; 16328 /* connect new state to parentage chain. Current frame needs all 16329 * registers connected. Only r6 - r9 of the callers are alive (pushed 16330 * to the stack implicitly by JITs) so in callers' frames connect just 16331 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16332 * the state of the call instruction (with WRITTEN set), and r0 comes 16333 * from callee with its full parentage chain, anyway. 16334 */ 16335 /* clear write marks in current state: the writes we did are not writes 16336 * our child did, so they don't screen off its reads from us. 16337 * (There are no read marks in current state, because reads always mark 16338 * their parent and current state never has children yet. Only 16339 * explored_states can get read marks.) 16340 */ 16341 for (j = 0; j <= cur->curframe; j++) { 16342 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16343 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16344 for (i = 0; i < BPF_REG_FP; i++) 16345 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16346 } 16347 16348 /* all stack frames are accessible from callee, clear them all */ 16349 for (j = 0; j <= cur->curframe; j++) { 16350 struct bpf_func_state *frame = cur->frame[j]; 16351 struct bpf_func_state *newframe = new->frame[j]; 16352 16353 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16354 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16355 frame->stack[i].spilled_ptr.parent = 16356 &newframe->stack[i].spilled_ptr; 16357 } 16358 } 16359 return 0; 16360 } 16361 16362 /* Return true if it's OK to have the same insn return a different type. */ 16363 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16364 { 16365 switch (base_type(type)) { 16366 case PTR_TO_CTX: 16367 case PTR_TO_SOCKET: 16368 case PTR_TO_SOCK_COMMON: 16369 case PTR_TO_TCP_SOCK: 16370 case PTR_TO_XDP_SOCK: 16371 case PTR_TO_BTF_ID: 16372 return false; 16373 default: 16374 return true; 16375 } 16376 } 16377 16378 /* If an instruction was previously used with particular pointer types, then we 16379 * need to be careful to avoid cases such as the below, where it may be ok 16380 * for one branch accessing the pointer, but not ok for the other branch: 16381 * 16382 * R1 = sock_ptr 16383 * goto X; 16384 * ... 16385 * R1 = some_other_valid_ptr; 16386 * goto X; 16387 * ... 16388 * R2 = *(u32 *)(R1 + 0); 16389 */ 16390 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16391 { 16392 return src != prev && (!reg_type_mismatch_ok(src) || 16393 !reg_type_mismatch_ok(prev)); 16394 } 16395 16396 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16397 bool allow_trust_missmatch) 16398 { 16399 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16400 16401 if (*prev_type == NOT_INIT) { 16402 /* Saw a valid insn 16403 * dst_reg = *(u32 *)(src_reg + off) 16404 * save type to validate intersecting paths 16405 */ 16406 *prev_type = type; 16407 } else if (reg_type_mismatch(type, *prev_type)) { 16408 /* Abuser program is trying to use the same insn 16409 * dst_reg = *(u32*) (src_reg + off) 16410 * with different pointer types: 16411 * src_reg == ctx in one branch and 16412 * src_reg == stack|map in some other branch. 16413 * Reject it. 16414 */ 16415 if (allow_trust_missmatch && 16416 base_type(type) == PTR_TO_BTF_ID && 16417 base_type(*prev_type) == PTR_TO_BTF_ID) { 16418 /* 16419 * Have to support a use case when one path through 16420 * the program yields TRUSTED pointer while another 16421 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16422 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16423 */ 16424 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16425 } else { 16426 verbose(env, "same insn cannot be used with different pointers\n"); 16427 return -EINVAL; 16428 } 16429 } 16430 16431 return 0; 16432 } 16433 16434 static int do_check(struct bpf_verifier_env *env) 16435 { 16436 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16437 struct bpf_verifier_state *state = env->cur_state; 16438 struct bpf_insn *insns = env->prog->insnsi; 16439 struct bpf_reg_state *regs; 16440 int insn_cnt = env->prog->len; 16441 bool do_print_state = false; 16442 int prev_insn_idx = -1; 16443 16444 for (;;) { 16445 struct bpf_insn *insn; 16446 u8 class; 16447 int err; 16448 16449 env->prev_insn_idx = prev_insn_idx; 16450 if (env->insn_idx >= insn_cnt) { 16451 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16452 env->insn_idx, insn_cnt); 16453 return -EFAULT; 16454 } 16455 16456 insn = &insns[env->insn_idx]; 16457 class = BPF_CLASS(insn->code); 16458 16459 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16460 verbose(env, 16461 "BPF program is too large. Processed %d insn\n", 16462 env->insn_processed); 16463 return -E2BIG; 16464 } 16465 16466 state->last_insn_idx = env->prev_insn_idx; 16467 16468 if (is_prune_point(env, env->insn_idx)) { 16469 err = is_state_visited(env, env->insn_idx); 16470 if (err < 0) 16471 return err; 16472 if (err == 1) { 16473 /* found equivalent state, can prune the search */ 16474 if (env->log.level & BPF_LOG_LEVEL) { 16475 if (do_print_state) 16476 verbose(env, "\nfrom %d to %d%s: safe\n", 16477 env->prev_insn_idx, env->insn_idx, 16478 env->cur_state->speculative ? 16479 " (speculative execution)" : ""); 16480 else 16481 verbose(env, "%d: safe\n", env->insn_idx); 16482 } 16483 goto process_bpf_exit; 16484 } 16485 } 16486 16487 if (is_jmp_point(env, env->insn_idx)) { 16488 err = push_jmp_history(env, state); 16489 if (err) 16490 return err; 16491 } 16492 16493 if (signal_pending(current)) 16494 return -EAGAIN; 16495 16496 if (need_resched()) 16497 cond_resched(); 16498 16499 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 16500 verbose(env, "\nfrom %d to %d%s:", 16501 env->prev_insn_idx, env->insn_idx, 16502 env->cur_state->speculative ? 16503 " (speculative execution)" : ""); 16504 print_verifier_state(env, state->frame[state->curframe], true); 16505 do_print_state = false; 16506 } 16507 16508 if (env->log.level & BPF_LOG_LEVEL) { 16509 const struct bpf_insn_cbs cbs = { 16510 .cb_call = disasm_kfunc_name, 16511 .cb_print = verbose, 16512 .private_data = env, 16513 }; 16514 16515 if (verifier_state_scratched(env)) 16516 print_insn_state(env, state->frame[state->curframe]); 16517 16518 verbose_linfo(env, env->insn_idx, "; "); 16519 env->prev_log_pos = env->log.end_pos; 16520 verbose(env, "%d: ", env->insn_idx); 16521 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 16522 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 16523 env->prev_log_pos = env->log.end_pos; 16524 } 16525 16526 if (bpf_prog_is_offloaded(env->prog->aux)) { 16527 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 16528 env->prev_insn_idx); 16529 if (err) 16530 return err; 16531 } 16532 16533 regs = cur_regs(env); 16534 sanitize_mark_insn_seen(env); 16535 prev_insn_idx = env->insn_idx; 16536 16537 if (class == BPF_ALU || class == BPF_ALU64) { 16538 err = check_alu_op(env, insn); 16539 if (err) 16540 return err; 16541 16542 } else if (class == BPF_LDX) { 16543 enum bpf_reg_type src_reg_type; 16544 16545 /* check for reserved fields is already done */ 16546 16547 /* check src operand */ 16548 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16549 if (err) 16550 return err; 16551 16552 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 16553 if (err) 16554 return err; 16555 16556 src_reg_type = regs[insn->src_reg].type; 16557 16558 /* check that memory (src_reg + off) is readable, 16559 * the state of dst_reg will be updated by this func 16560 */ 16561 err = check_mem_access(env, env->insn_idx, insn->src_reg, 16562 insn->off, BPF_SIZE(insn->code), 16563 BPF_READ, insn->dst_reg, false, 16564 BPF_MODE(insn->code) == BPF_MEMSX); 16565 if (err) 16566 return err; 16567 16568 err = save_aux_ptr_type(env, src_reg_type, true); 16569 if (err) 16570 return err; 16571 } else if (class == BPF_STX) { 16572 enum bpf_reg_type dst_reg_type; 16573 16574 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 16575 err = check_atomic(env, env->insn_idx, insn); 16576 if (err) 16577 return err; 16578 env->insn_idx++; 16579 continue; 16580 } 16581 16582 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 16583 verbose(env, "BPF_STX uses reserved fields\n"); 16584 return -EINVAL; 16585 } 16586 16587 /* check src1 operand */ 16588 err = check_reg_arg(env, insn->src_reg, SRC_OP); 16589 if (err) 16590 return err; 16591 /* check src2 operand */ 16592 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16593 if (err) 16594 return err; 16595 16596 dst_reg_type = regs[insn->dst_reg].type; 16597 16598 /* check that memory (dst_reg + off) is writeable */ 16599 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16600 insn->off, BPF_SIZE(insn->code), 16601 BPF_WRITE, insn->src_reg, false, false); 16602 if (err) 16603 return err; 16604 16605 err = save_aux_ptr_type(env, dst_reg_type, false); 16606 if (err) 16607 return err; 16608 } else if (class == BPF_ST) { 16609 enum bpf_reg_type dst_reg_type; 16610 16611 if (BPF_MODE(insn->code) != BPF_MEM || 16612 insn->src_reg != BPF_REG_0) { 16613 verbose(env, "BPF_ST uses reserved fields\n"); 16614 return -EINVAL; 16615 } 16616 /* check src operand */ 16617 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 16618 if (err) 16619 return err; 16620 16621 dst_reg_type = regs[insn->dst_reg].type; 16622 16623 /* check that memory (dst_reg + off) is writeable */ 16624 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 16625 insn->off, BPF_SIZE(insn->code), 16626 BPF_WRITE, -1, false, false); 16627 if (err) 16628 return err; 16629 16630 err = save_aux_ptr_type(env, dst_reg_type, false); 16631 if (err) 16632 return err; 16633 } else if (class == BPF_JMP || class == BPF_JMP32) { 16634 u8 opcode = BPF_OP(insn->code); 16635 16636 env->jmps_processed++; 16637 if (opcode == BPF_CALL) { 16638 if (BPF_SRC(insn->code) != BPF_K || 16639 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 16640 && insn->off != 0) || 16641 (insn->src_reg != BPF_REG_0 && 16642 insn->src_reg != BPF_PSEUDO_CALL && 16643 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 16644 insn->dst_reg != BPF_REG_0 || 16645 class == BPF_JMP32) { 16646 verbose(env, "BPF_CALL uses reserved fields\n"); 16647 return -EINVAL; 16648 } 16649 16650 if (env->cur_state->active_lock.ptr) { 16651 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 16652 (insn->src_reg == BPF_PSEUDO_CALL) || 16653 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 16654 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 16655 verbose(env, "function calls are not allowed while holding a lock\n"); 16656 return -EINVAL; 16657 } 16658 } 16659 if (insn->src_reg == BPF_PSEUDO_CALL) 16660 err = check_func_call(env, insn, &env->insn_idx); 16661 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 16662 err = check_kfunc_call(env, insn, &env->insn_idx); 16663 else 16664 err = check_helper_call(env, insn, &env->insn_idx); 16665 if (err) 16666 return err; 16667 16668 mark_reg_scratched(env, BPF_REG_0); 16669 } else if (opcode == BPF_JA) { 16670 if (BPF_SRC(insn->code) != BPF_K || 16671 insn->src_reg != BPF_REG_0 || 16672 insn->dst_reg != BPF_REG_0 || 16673 (class == BPF_JMP && insn->imm != 0) || 16674 (class == BPF_JMP32 && insn->off != 0)) { 16675 verbose(env, "BPF_JA uses reserved fields\n"); 16676 return -EINVAL; 16677 } 16678 16679 if (class == BPF_JMP) 16680 env->insn_idx += insn->off + 1; 16681 else 16682 env->insn_idx += insn->imm + 1; 16683 continue; 16684 16685 } else if (opcode == BPF_EXIT) { 16686 if (BPF_SRC(insn->code) != BPF_K || 16687 insn->imm != 0 || 16688 insn->src_reg != BPF_REG_0 || 16689 insn->dst_reg != BPF_REG_0 || 16690 class == BPF_JMP32) { 16691 verbose(env, "BPF_EXIT uses reserved fields\n"); 16692 return -EINVAL; 16693 } 16694 16695 if (env->cur_state->active_lock.ptr && 16696 !in_rbtree_lock_required_cb(env)) { 16697 verbose(env, "bpf_spin_unlock is missing\n"); 16698 return -EINVAL; 16699 } 16700 16701 if (env->cur_state->active_rcu_lock && 16702 !in_rbtree_lock_required_cb(env)) { 16703 verbose(env, "bpf_rcu_read_unlock is missing\n"); 16704 return -EINVAL; 16705 } 16706 16707 /* We must do check_reference_leak here before 16708 * prepare_func_exit to handle the case when 16709 * state->curframe > 0, it may be a callback 16710 * function, for which reference_state must 16711 * match caller reference state when it exits. 16712 */ 16713 err = check_reference_leak(env); 16714 if (err) 16715 return err; 16716 16717 if (state->curframe) { 16718 /* exit from nested function */ 16719 err = prepare_func_exit(env, &env->insn_idx); 16720 if (err) 16721 return err; 16722 do_print_state = true; 16723 continue; 16724 } 16725 16726 err = check_return_code(env); 16727 if (err) 16728 return err; 16729 process_bpf_exit: 16730 mark_verifier_state_scratched(env); 16731 update_branch_counts(env, env->cur_state); 16732 err = pop_stack(env, &prev_insn_idx, 16733 &env->insn_idx, pop_log); 16734 if (err < 0) { 16735 if (err != -ENOENT) 16736 return err; 16737 break; 16738 } else { 16739 do_print_state = true; 16740 continue; 16741 } 16742 } else { 16743 err = check_cond_jmp_op(env, insn, &env->insn_idx); 16744 if (err) 16745 return err; 16746 } 16747 } else if (class == BPF_LD) { 16748 u8 mode = BPF_MODE(insn->code); 16749 16750 if (mode == BPF_ABS || mode == BPF_IND) { 16751 err = check_ld_abs(env, insn); 16752 if (err) 16753 return err; 16754 16755 } else if (mode == BPF_IMM) { 16756 err = check_ld_imm(env, insn); 16757 if (err) 16758 return err; 16759 16760 env->insn_idx++; 16761 sanitize_mark_insn_seen(env); 16762 } else { 16763 verbose(env, "invalid BPF_LD mode\n"); 16764 return -EINVAL; 16765 } 16766 } else { 16767 verbose(env, "unknown insn class %d\n", class); 16768 return -EINVAL; 16769 } 16770 16771 env->insn_idx++; 16772 } 16773 16774 return 0; 16775 } 16776 16777 static int find_btf_percpu_datasec(struct btf *btf) 16778 { 16779 const struct btf_type *t; 16780 const char *tname; 16781 int i, n; 16782 16783 /* 16784 * Both vmlinux and module each have their own ".data..percpu" 16785 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 16786 * types to look at only module's own BTF types. 16787 */ 16788 n = btf_nr_types(btf); 16789 if (btf_is_module(btf)) 16790 i = btf_nr_types(btf_vmlinux); 16791 else 16792 i = 1; 16793 16794 for(; i < n; i++) { 16795 t = btf_type_by_id(btf, i); 16796 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 16797 continue; 16798 16799 tname = btf_name_by_offset(btf, t->name_off); 16800 if (!strcmp(tname, ".data..percpu")) 16801 return i; 16802 } 16803 16804 return -ENOENT; 16805 } 16806 16807 /* replace pseudo btf_id with kernel symbol address */ 16808 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 16809 struct bpf_insn *insn, 16810 struct bpf_insn_aux_data *aux) 16811 { 16812 const struct btf_var_secinfo *vsi; 16813 const struct btf_type *datasec; 16814 struct btf_mod_pair *btf_mod; 16815 const struct btf_type *t; 16816 const char *sym_name; 16817 bool percpu = false; 16818 u32 type, id = insn->imm; 16819 struct btf *btf; 16820 s32 datasec_id; 16821 u64 addr; 16822 int i, btf_fd, err; 16823 16824 btf_fd = insn[1].imm; 16825 if (btf_fd) { 16826 btf = btf_get_by_fd(btf_fd); 16827 if (IS_ERR(btf)) { 16828 verbose(env, "invalid module BTF object FD specified.\n"); 16829 return -EINVAL; 16830 } 16831 } else { 16832 if (!btf_vmlinux) { 16833 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 16834 return -EINVAL; 16835 } 16836 btf = btf_vmlinux; 16837 btf_get(btf); 16838 } 16839 16840 t = btf_type_by_id(btf, id); 16841 if (!t) { 16842 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 16843 err = -ENOENT; 16844 goto err_put; 16845 } 16846 16847 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 16848 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 16849 err = -EINVAL; 16850 goto err_put; 16851 } 16852 16853 sym_name = btf_name_by_offset(btf, t->name_off); 16854 addr = kallsyms_lookup_name(sym_name); 16855 if (!addr) { 16856 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 16857 sym_name); 16858 err = -ENOENT; 16859 goto err_put; 16860 } 16861 insn[0].imm = (u32)addr; 16862 insn[1].imm = addr >> 32; 16863 16864 if (btf_type_is_func(t)) { 16865 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16866 aux->btf_var.mem_size = 0; 16867 goto check_btf; 16868 } 16869 16870 datasec_id = find_btf_percpu_datasec(btf); 16871 if (datasec_id > 0) { 16872 datasec = btf_type_by_id(btf, datasec_id); 16873 for_each_vsi(i, datasec, vsi) { 16874 if (vsi->type == id) { 16875 percpu = true; 16876 break; 16877 } 16878 } 16879 } 16880 16881 type = t->type; 16882 t = btf_type_skip_modifiers(btf, type, NULL); 16883 if (percpu) { 16884 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 16885 aux->btf_var.btf = btf; 16886 aux->btf_var.btf_id = type; 16887 } else if (!btf_type_is_struct(t)) { 16888 const struct btf_type *ret; 16889 const char *tname; 16890 u32 tsize; 16891 16892 /* resolve the type size of ksym. */ 16893 ret = btf_resolve_size(btf, t, &tsize); 16894 if (IS_ERR(ret)) { 16895 tname = btf_name_by_offset(btf, t->name_off); 16896 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 16897 tname, PTR_ERR(ret)); 16898 err = -EINVAL; 16899 goto err_put; 16900 } 16901 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 16902 aux->btf_var.mem_size = tsize; 16903 } else { 16904 aux->btf_var.reg_type = PTR_TO_BTF_ID; 16905 aux->btf_var.btf = btf; 16906 aux->btf_var.btf_id = type; 16907 } 16908 check_btf: 16909 /* check whether we recorded this BTF (and maybe module) already */ 16910 for (i = 0; i < env->used_btf_cnt; i++) { 16911 if (env->used_btfs[i].btf == btf) { 16912 btf_put(btf); 16913 return 0; 16914 } 16915 } 16916 16917 if (env->used_btf_cnt >= MAX_USED_BTFS) { 16918 err = -E2BIG; 16919 goto err_put; 16920 } 16921 16922 btf_mod = &env->used_btfs[env->used_btf_cnt]; 16923 btf_mod->btf = btf; 16924 btf_mod->module = NULL; 16925 16926 /* if we reference variables from kernel module, bump its refcount */ 16927 if (btf_is_module(btf)) { 16928 btf_mod->module = btf_try_get_module(btf); 16929 if (!btf_mod->module) { 16930 err = -ENXIO; 16931 goto err_put; 16932 } 16933 } 16934 16935 env->used_btf_cnt++; 16936 16937 return 0; 16938 err_put: 16939 btf_put(btf); 16940 return err; 16941 } 16942 16943 static bool is_tracing_prog_type(enum bpf_prog_type type) 16944 { 16945 switch (type) { 16946 case BPF_PROG_TYPE_KPROBE: 16947 case BPF_PROG_TYPE_TRACEPOINT: 16948 case BPF_PROG_TYPE_PERF_EVENT: 16949 case BPF_PROG_TYPE_RAW_TRACEPOINT: 16950 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 16951 return true; 16952 default: 16953 return false; 16954 } 16955 } 16956 16957 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 16958 struct bpf_map *map, 16959 struct bpf_prog *prog) 16960 16961 { 16962 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16963 16964 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 16965 btf_record_has_field(map->record, BPF_RB_ROOT)) { 16966 if (is_tracing_prog_type(prog_type)) { 16967 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 16968 return -EINVAL; 16969 } 16970 } 16971 16972 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 16973 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 16974 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 16975 return -EINVAL; 16976 } 16977 16978 if (is_tracing_prog_type(prog_type)) { 16979 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 16980 return -EINVAL; 16981 } 16982 } 16983 16984 if (btf_record_has_field(map->record, BPF_TIMER)) { 16985 if (is_tracing_prog_type(prog_type)) { 16986 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 16987 return -EINVAL; 16988 } 16989 } 16990 16991 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 16992 !bpf_offload_prog_map_match(prog, map)) { 16993 verbose(env, "offload device mismatch between prog and map\n"); 16994 return -EINVAL; 16995 } 16996 16997 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 16998 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 16999 return -EINVAL; 17000 } 17001 17002 if (prog->aux->sleepable) 17003 switch (map->map_type) { 17004 case BPF_MAP_TYPE_HASH: 17005 case BPF_MAP_TYPE_LRU_HASH: 17006 case BPF_MAP_TYPE_ARRAY: 17007 case BPF_MAP_TYPE_PERCPU_HASH: 17008 case BPF_MAP_TYPE_PERCPU_ARRAY: 17009 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17010 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17011 case BPF_MAP_TYPE_HASH_OF_MAPS: 17012 case BPF_MAP_TYPE_RINGBUF: 17013 case BPF_MAP_TYPE_USER_RINGBUF: 17014 case BPF_MAP_TYPE_INODE_STORAGE: 17015 case BPF_MAP_TYPE_SK_STORAGE: 17016 case BPF_MAP_TYPE_TASK_STORAGE: 17017 case BPF_MAP_TYPE_CGRP_STORAGE: 17018 break; 17019 default: 17020 verbose(env, 17021 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17022 return -EINVAL; 17023 } 17024 17025 return 0; 17026 } 17027 17028 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17029 { 17030 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17031 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17032 } 17033 17034 /* find and rewrite pseudo imm in ld_imm64 instructions: 17035 * 17036 * 1. if it accesses map FD, replace it with actual map pointer. 17037 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17038 * 17039 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17040 */ 17041 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17042 { 17043 struct bpf_insn *insn = env->prog->insnsi; 17044 int insn_cnt = env->prog->len; 17045 int i, j, err; 17046 17047 err = bpf_prog_calc_tag(env->prog); 17048 if (err) 17049 return err; 17050 17051 for (i = 0; i < insn_cnt; i++, insn++) { 17052 if (BPF_CLASS(insn->code) == BPF_LDX && 17053 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17054 insn->imm != 0)) { 17055 verbose(env, "BPF_LDX uses reserved fields\n"); 17056 return -EINVAL; 17057 } 17058 17059 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17060 struct bpf_insn_aux_data *aux; 17061 struct bpf_map *map; 17062 struct fd f; 17063 u64 addr; 17064 u32 fd; 17065 17066 if (i == insn_cnt - 1 || insn[1].code != 0 || 17067 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17068 insn[1].off != 0) { 17069 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17070 return -EINVAL; 17071 } 17072 17073 if (insn[0].src_reg == 0) 17074 /* valid generic load 64-bit imm */ 17075 goto next_insn; 17076 17077 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17078 aux = &env->insn_aux_data[i]; 17079 err = check_pseudo_btf_id(env, insn, aux); 17080 if (err) 17081 return err; 17082 goto next_insn; 17083 } 17084 17085 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17086 aux = &env->insn_aux_data[i]; 17087 aux->ptr_type = PTR_TO_FUNC; 17088 goto next_insn; 17089 } 17090 17091 /* In final convert_pseudo_ld_imm64() step, this is 17092 * converted into regular 64-bit imm load insn. 17093 */ 17094 switch (insn[0].src_reg) { 17095 case BPF_PSEUDO_MAP_VALUE: 17096 case BPF_PSEUDO_MAP_IDX_VALUE: 17097 break; 17098 case BPF_PSEUDO_MAP_FD: 17099 case BPF_PSEUDO_MAP_IDX: 17100 if (insn[1].imm == 0) 17101 break; 17102 fallthrough; 17103 default: 17104 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17105 return -EINVAL; 17106 } 17107 17108 switch (insn[0].src_reg) { 17109 case BPF_PSEUDO_MAP_IDX_VALUE: 17110 case BPF_PSEUDO_MAP_IDX: 17111 if (bpfptr_is_null(env->fd_array)) { 17112 verbose(env, "fd_idx without fd_array is invalid\n"); 17113 return -EPROTO; 17114 } 17115 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17116 insn[0].imm * sizeof(fd), 17117 sizeof(fd))) 17118 return -EFAULT; 17119 break; 17120 default: 17121 fd = insn[0].imm; 17122 break; 17123 } 17124 17125 f = fdget(fd); 17126 map = __bpf_map_get(f); 17127 if (IS_ERR(map)) { 17128 verbose(env, "fd %d is not pointing to valid bpf_map\n", 17129 insn[0].imm); 17130 return PTR_ERR(map); 17131 } 17132 17133 err = check_map_prog_compatibility(env, map, env->prog); 17134 if (err) { 17135 fdput(f); 17136 return err; 17137 } 17138 17139 aux = &env->insn_aux_data[i]; 17140 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17141 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17142 addr = (unsigned long)map; 17143 } else { 17144 u32 off = insn[1].imm; 17145 17146 if (off >= BPF_MAX_VAR_OFF) { 17147 verbose(env, "direct value offset of %u is not allowed\n", off); 17148 fdput(f); 17149 return -EINVAL; 17150 } 17151 17152 if (!map->ops->map_direct_value_addr) { 17153 verbose(env, "no direct value access support for this map type\n"); 17154 fdput(f); 17155 return -EINVAL; 17156 } 17157 17158 err = map->ops->map_direct_value_addr(map, &addr, off); 17159 if (err) { 17160 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17161 map->value_size, off); 17162 fdput(f); 17163 return err; 17164 } 17165 17166 aux->map_off = off; 17167 addr += off; 17168 } 17169 17170 insn[0].imm = (u32)addr; 17171 insn[1].imm = addr >> 32; 17172 17173 /* check whether we recorded this map already */ 17174 for (j = 0; j < env->used_map_cnt; j++) { 17175 if (env->used_maps[j] == map) { 17176 aux->map_index = j; 17177 fdput(f); 17178 goto next_insn; 17179 } 17180 } 17181 17182 if (env->used_map_cnt >= MAX_USED_MAPS) { 17183 fdput(f); 17184 return -E2BIG; 17185 } 17186 17187 /* hold the map. If the program is rejected by verifier, 17188 * the map will be released by release_maps() or it 17189 * will be used by the valid program until it's unloaded 17190 * and all maps are released in free_used_maps() 17191 */ 17192 bpf_map_inc(map); 17193 17194 aux->map_index = env->used_map_cnt; 17195 env->used_maps[env->used_map_cnt++] = map; 17196 17197 if (bpf_map_is_cgroup_storage(map) && 17198 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17199 verbose(env, "only one cgroup storage of each type is allowed\n"); 17200 fdput(f); 17201 return -EBUSY; 17202 } 17203 17204 fdput(f); 17205 next_insn: 17206 insn++; 17207 i++; 17208 continue; 17209 } 17210 17211 /* Basic sanity check before we invest more work here. */ 17212 if (!bpf_opcode_in_insntable(insn->code)) { 17213 verbose(env, "unknown opcode %02x\n", insn->code); 17214 return -EINVAL; 17215 } 17216 } 17217 17218 /* now all pseudo BPF_LD_IMM64 instructions load valid 17219 * 'struct bpf_map *' into a register instead of user map_fd. 17220 * These pointers will be used later by verifier to validate map access. 17221 */ 17222 return 0; 17223 } 17224 17225 /* drop refcnt of maps used by the rejected program */ 17226 static void release_maps(struct bpf_verifier_env *env) 17227 { 17228 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17229 env->used_map_cnt); 17230 } 17231 17232 /* drop refcnt of maps used by the rejected program */ 17233 static void release_btfs(struct bpf_verifier_env *env) 17234 { 17235 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17236 env->used_btf_cnt); 17237 } 17238 17239 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17240 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17241 { 17242 struct bpf_insn *insn = env->prog->insnsi; 17243 int insn_cnt = env->prog->len; 17244 int i; 17245 17246 for (i = 0; i < insn_cnt; i++, insn++) { 17247 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17248 continue; 17249 if (insn->src_reg == BPF_PSEUDO_FUNC) 17250 continue; 17251 insn->src_reg = 0; 17252 } 17253 } 17254 17255 /* single env->prog->insni[off] instruction was replaced with the range 17256 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17257 * [0, off) and [off, end) to new locations, so the patched range stays zero 17258 */ 17259 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17260 struct bpf_insn_aux_data *new_data, 17261 struct bpf_prog *new_prog, u32 off, u32 cnt) 17262 { 17263 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17264 struct bpf_insn *insn = new_prog->insnsi; 17265 u32 old_seen = old_data[off].seen; 17266 u32 prog_len; 17267 int i; 17268 17269 /* aux info at OFF always needs adjustment, no matter fast path 17270 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17271 * original insn at old prog. 17272 */ 17273 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17274 17275 if (cnt == 1) 17276 return; 17277 prog_len = new_prog->len; 17278 17279 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17280 memcpy(new_data + off + cnt - 1, old_data + off, 17281 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17282 for (i = off; i < off + cnt - 1; i++) { 17283 /* Expand insni[off]'s seen count to the patched range. */ 17284 new_data[i].seen = old_seen; 17285 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17286 } 17287 env->insn_aux_data = new_data; 17288 vfree(old_data); 17289 } 17290 17291 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17292 { 17293 int i; 17294 17295 if (len == 1) 17296 return; 17297 /* NOTE: fake 'exit' subprog should be updated as well. */ 17298 for (i = 0; i <= env->subprog_cnt; i++) { 17299 if (env->subprog_info[i].start <= off) 17300 continue; 17301 env->subprog_info[i].start += len - 1; 17302 } 17303 } 17304 17305 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17306 { 17307 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17308 int i, sz = prog->aux->size_poke_tab; 17309 struct bpf_jit_poke_descriptor *desc; 17310 17311 for (i = 0; i < sz; i++) { 17312 desc = &tab[i]; 17313 if (desc->insn_idx <= off) 17314 continue; 17315 desc->insn_idx += len - 1; 17316 } 17317 } 17318 17319 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17320 const struct bpf_insn *patch, u32 len) 17321 { 17322 struct bpf_prog *new_prog; 17323 struct bpf_insn_aux_data *new_data = NULL; 17324 17325 if (len > 1) { 17326 new_data = vzalloc(array_size(env->prog->len + len - 1, 17327 sizeof(struct bpf_insn_aux_data))); 17328 if (!new_data) 17329 return NULL; 17330 } 17331 17332 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17333 if (IS_ERR(new_prog)) { 17334 if (PTR_ERR(new_prog) == -ERANGE) 17335 verbose(env, 17336 "insn %d cannot be patched due to 16-bit range\n", 17337 env->insn_aux_data[off].orig_idx); 17338 vfree(new_data); 17339 return NULL; 17340 } 17341 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17342 adjust_subprog_starts(env, off, len); 17343 adjust_poke_descs(new_prog, off, len); 17344 return new_prog; 17345 } 17346 17347 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17348 u32 off, u32 cnt) 17349 { 17350 int i, j; 17351 17352 /* find first prog starting at or after off (first to remove) */ 17353 for (i = 0; i < env->subprog_cnt; i++) 17354 if (env->subprog_info[i].start >= off) 17355 break; 17356 /* find first prog starting at or after off + cnt (first to stay) */ 17357 for (j = i; j < env->subprog_cnt; j++) 17358 if (env->subprog_info[j].start >= off + cnt) 17359 break; 17360 /* if j doesn't start exactly at off + cnt, we are just removing 17361 * the front of previous prog 17362 */ 17363 if (env->subprog_info[j].start != off + cnt) 17364 j--; 17365 17366 if (j > i) { 17367 struct bpf_prog_aux *aux = env->prog->aux; 17368 int move; 17369 17370 /* move fake 'exit' subprog as well */ 17371 move = env->subprog_cnt + 1 - j; 17372 17373 memmove(env->subprog_info + i, 17374 env->subprog_info + j, 17375 sizeof(*env->subprog_info) * move); 17376 env->subprog_cnt -= j - i; 17377 17378 /* remove func_info */ 17379 if (aux->func_info) { 17380 move = aux->func_info_cnt - j; 17381 17382 memmove(aux->func_info + i, 17383 aux->func_info + j, 17384 sizeof(*aux->func_info) * move); 17385 aux->func_info_cnt -= j - i; 17386 /* func_info->insn_off is set after all code rewrites, 17387 * in adjust_btf_func() - no need to adjust 17388 */ 17389 } 17390 } else { 17391 /* convert i from "first prog to remove" to "first to adjust" */ 17392 if (env->subprog_info[i].start == off) 17393 i++; 17394 } 17395 17396 /* update fake 'exit' subprog as well */ 17397 for (; i <= env->subprog_cnt; i++) 17398 env->subprog_info[i].start -= cnt; 17399 17400 return 0; 17401 } 17402 17403 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17404 u32 cnt) 17405 { 17406 struct bpf_prog *prog = env->prog; 17407 u32 i, l_off, l_cnt, nr_linfo; 17408 struct bpf_line_info *linfo; 17409 17410 nr_linfo = prog->aux->nr_linfo; 17411 if (!nr_linfo) 17412 return 0; 17413 17414 linfo = prog->aux->linfo; 17415 17416 /* find first line info to remove, count lines to be removed */ 17417 for (i = 0; i < nr_linfo; i++) 17418 if (linfo[i].insn_off >= off) 17419 break; 17420 17421 l_off = i; 17422 l_cnt = 0; 17423 for (; i < nr_linfo; i++) 17424 if (linfo[i].insn_off < off + cnt) 17425 l_cnt++; 17426 else 17427 break; 17428 17429 /* First live insn doesn't match first live linfo, it needs to "inherit" 17430 * last removed linfo. prog is already modified, so prog->len == off 17431 * means no live instructions after (tail of the program was removed). 17432 */ 17433 if (prog->len != off && l_cnt && 17434 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17435 l_cnt--; 17436 linfo[--i].insn_off = off + cnt; 17437 } 17438 17439 /* remove the line info which refer to the removed instructions */ 17440 if (l_cnt) { 17441 memmove(linfo + l_off, linfo + i, 17442 sizeof(*linfo) * (nr_linfo - i)); 17443 17444 prog->aux->nr_linfo -= l_cnt; 17445 nr_linfo = prog->aux->nr_linfo; 17446 } 17447 17448 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17449 for (i = l_off; i < nr_linfo; i++) 17450 linfo[i].insn_off -= cnt; 17451 17452 /* fix up all subprogs (incl. 'exit') which start >= off */ 17453 for (i = 0; i <= env->subprog_cnt; i++) 17454 if (env->subprog_info[i].linfo_idx > l_off) { 17455 /* program may have started in the removed region but 17456 * may not be fully removed 17457 */ 17458 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17459 env->subprog_info[i].linfo_idx -= l_cnt; 17460 else 17461 env->subprog_info[i].linfo_idx = l_off; 17462 } 17463 17464 return 0; 17465 } 17466 17467 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17468 { 17469 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17470 unsigned int orig_prog_len = env->prog->len; 17471 int err; 17472 17473 if (bpf_prog_is_offloaded(env->prog->aux)) 17474 bpf_prog_offload_remove_insns(env, off, cnt); 17475 17476 err = bpf_remove_insns(env->prog, off, cnt); 17477 if (err) 17478 return err; 17479 17480 err = adjust_subprog_starts_after_remove(env, off, cnt); 17481 if (err) 17482 return err; 17483 17484 err = bpf_adj_linfo_after_remove(env, off, cnt); 17485 if (err) 17486 return err; 17487 17488 memmove(aux_data + off, aux_data + off + cnt, 17489 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 17490 17491 return 0; 17492 } 17493 17494 /* The verifier does more data flow analysis than llvm and will not 17495 * explore branches that are dead at run time. Malicious programs can 17496 * have dead code too. Therefore replace all dead at-run-time code 17497 * with 'ja -1'. 17498 * 17499 * Just nops are not optimal, e.g. if they would sit at the end of the 17500 * program and through another bug we would manage to jump there, then 17501 * we'd execute beyond program memory otherwise. Returning exception 17502 * code also wouldn't work since we can have subprogs where the dead 17503 * code could be located. 17504 */ 17505 static void sanitize_dead_code(struct bpf_verifier_env *env) 17506 { 17507 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17508 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 17509 struct bpf_insn *insn = env->prog->insnsi; 17510 const int insn_cnt = env->prog->len; 17511 int i; 17512 17513 for (i = 0; i < insn_cnt; i++) { 17514 if (aux_data[i].seen) 17515 continue; 17516 memcpy(insn + i, &trap, sizeof(trap)); 17517 aux_data[i].zext_dst = false; 17518 } 17519 } 17520 17521 static bool insn_is_cond_jump(u8 code) 17522 { 17523 u8 op; 17524 17525 op = BPF_OP(code); 17526 if (BPF_CLASS(code) == BPF_JMP32) 17527 return op != BPF_JA; 17528 17529 if (BPF_CLASS(code) != BPF_JMP) 17530 return false; 17531 17532 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 17533 } 17534 17535 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 17536 { 17537 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17538 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17539 struct bpf_insn *insn = env->prog->insnsi; 17540 const int insn_cnt = env->prog->len; 17541 int i; 17542 17543 for (i = 0; i < insn_cnt; i++, insn++) { 17544 if (!insn_is_cond_jump(insn->code)) 17545 continue; 17546 17547 if (!aux_data[i + 1].seen) 17548 ja.off = insn->off; 17549 else if (!aux_data[i + 1 + insn->off].seen) 17550 ja.off = 0; 17551 else 17552 continue; 17553 17554 if (bpf_prog_is_offloaded(env->prog->aux)) 17555 bpf_prog_offload_replace_insn(env, i, &ja); 17556 17557 memcpy(insn, &ja, sizeof(ja)); 17558 } 17559 } 17560 17561 static int opt_remove_dead_code(struct bpf_verifier_env *env) 17562 { 17563 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17564 int insn_cnt = env->prog->len; 17565 int i, err; 17566 17567 for (i = 0; i < insn_cnt; i++) { 17568 int j; 17569 17570 j = 0; 17571 while (i + j < insn_cnt && !aux_data[i + j].seen) 17572 j++; 17573 if (!j) 17574 continue; 17575 17576 err = verifier_remove_insns(env, i, j); 17577 if (err) 17578 return err; 17579 insn_cnt = env->prog->len; 17580 } 17581 17582 return 0; 17583 } 17584 17585 static int opt_remove_nops(struct bpf_verifier_env *env) 17586 { 17587 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 17588 struct bpf_insn *insn = env->prog->insnsi; 17589 int insn_cnt = env->prog->len; 17590 int i, err; 17591 17592 for (i = 0; i < insn_cnt; i++) { 17593 if (memcmp(&insn[i], &ja, sizeof(ja))) 17594 continue; 17595 17596 err = verifier_remove_insns(env, i, 1); 17597 if (err) 17598 return err; 17599 insn_cnt--; 17600 i--; 17601 } 17602 17603 return 0; 17604 } 17605 17606 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 17607 const union bpf_attr *attr) 17608 { 17609 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 17610 struct bpf_insn_aux_data *aux = env->insn_aux_data; 17611 int i, patch_len, delta = 0, len = env->prog->len; 17612 struct bpf_insn *insns = env->prog->insnsi; 17613 struct bpf_prog *new_prog; 17614 bool rnd_hi32; 17615 17616 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 17617 zext_patch[1] = BPF_ZEXT_REG(0); 17618 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 17619 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 17620 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 17621 for (i = 0; i < len; i++) { 17622 int adj_idx = i + delta; 17623 struct bpf_insn insn; 17624 int load_reg; 17625 17626 insn = insns[adj_idx]; 17627 load_reg = insn_def_regno(&insn); 17628 if (!aux[adj_idx].zext_dst) { 17629 u8 code, class; 17630 u32 imm_rnd; 17631 17632 if (!rnd_hi32) 17633 continue; 17634 17635 code = insn.code; 17636 class = BPF_CLASS(code); 17637 if (load_reg == -1) 17638 continue; 17639 17640 /* NOTE: arg "reg" (the fourth one) is only used for 17641 * BPF_STX + SRC_OP, so it is safe to pass NULL 17642 * here. 17643 */ 17644 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 17645 if (class == BPF_LD && 17646 BPF_MODE(code) == BPF_IMM) 17647 i++; 17648 continue; 17649 } 17650 17651 /* ctx load could be transformed into wider load. */ 17652 if (class == BPF_LDX && 17653 aux[adj_idx].ptr_type == PTR_TO_CTX) 17654 continue; 17655 17656 imm_rnd = get_random_u32(); 17657 rnd_hi32_patch[0] = insn; 17658 rnd_hi32_patch[1].imm = imm_rnd; 17659 rnd_hi32_patch[3].dst_reg = load_reg; 17660 patch = rnd_hi32_patch; 17661 patch_len = 4; 17662 goto apply_patch_buffer; 17663 } 17664 17665 /* Add in an zero-extend instruction if a) the JIT has requested 17666 * it or b) it's a CMPXCHG. 17667 * 17668 * The latter is because: BPF_CMPXCHG always loads a value into 17669 * R0, therefore always zero-extends. However some archs' 17670 * equivalent instruction only does this load when the 17671 * comparison is successful. This detail of CMPXCHG is 17672 * orthogonal to the general zero-extension behaviour of the 17673 * CPU, so it's treated independently of bpf_jit_needs_zext. 17674 */ 17675 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 17676 continue; 17677 17678 /* Zero-extension is done by the caller. */ 17679 if (bpf_pseudo_kfunc_call(&insn)) 17680 continue; 17681 17682 if (WARN_ON(load_reg == -1)) { 17683 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 17684 return -EFAULT; 17685 } 17686 17687 zext_patch[0] = insn; 17688 zext_patch[1].dst_reg = load_reg; 17689 zext_patch[1].src_reg = load_reg; 17690 patch = zext_patch; 17691 patch_len = 2; 17692 apply_patch_buffer: 17693 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 17694 if (!new_prog) 17695 return -ENOMEM; 17696 env->prog = new_prog; 17697 insns = new_prog->insnsi; 17698 aux = env->insn_aux_data; 17699 delta += patch_len - 1; 17700 } 17701 17702 return 0; 17703 } 17704 17705 /* convert load instructions that access fields of a context type into a 17706 * sequence of instructions that access fields of the underlying structure: 17707 * struct __sk_buff -> struct sk_buff 17708 * struct bpf_sock_ops -> struct sock 17709 */ 17710 static int convert_ctx_accesses(struct bpf_verifier_env *env) 17711 { 17712 const struct bpf_verifier_ops *ops = env->ops; 17713 int i, cnt, size, ctx_field_size, delta = 0; 17714 const int insn_cnt = env->prog->len; 17715 struct bpf_insn insn_buf[16], *insn; 17716 u32 target_size, size_default, off; 17717 struct bpf_prog *new_prog; 17718 enum bpf_access_type type; 17719 bool is_narrower_load; 17720 17721 if (ops->gen_prologue || env->seen_direct_write) { 17722 if (!ops->gen_prologue) { 17723 verbose(env, "bpf verifier is misconfigured\n"); 17724 return -EINVAL; 17725 } 17726 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 17727 env->prog); 17728 if (cnt >= ARRAY_SIZE(insn_buf)) { 17729 verbose(env, "bpf verifier is misconfigured\n"); 17730 return -EINVAL; 17731 } else if (cnt) { 17732 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 17733 if (!new_prog) 17734 return -ENOMEM; 17735 17736 env->prog = new_prog; 17737 delta += cnt - 1; 17738 } 17739 } 17740 17741 if (bpf_prog_is_offloaded(env->prog->aux)) 17742 return 0; 17743 17744 insn = env->prog->insnsi + delta; 17745 17746 for (i = 0; i < insn_cnt; i++, insn++) { 17747 bpf_convert_ctx_access_t convert_ctx_access; 17748 u8 mode; 17749 17750 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 17751 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 17752 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 17753 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 17754 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 17755 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 17756 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 17757 type = BPF_READ; 17758 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 17759 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 17760 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 17761 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 17762 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 17763 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 17764 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 17765 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 17766 type = BPF_WRITE; 17767 } else { 17768 continue; 17769 } 17770 17771 if (type == BPF_WRITE && 17772 env->insn_aux_data[i + delta].sanitize_stack_spill) { 17773 struct bpf_insn patch[] = { 17774 *insn, 17775 BPF_ST_NOSPEC(), 17776 }; 17777 17778 cnt = ARRAY_SIZE(patch); 17779 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 17780 if (!new_prog) 17781 return -ENOMEM; 17782 17783 delta += cnt - 1; 17784 env->prog = new_prog; 17785 insn = new_prog->insnsi + i + delta; 17786 continue; 17787 } 17788 17789 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 17790 case PTR_TO_CTX: 17791 if (!ops->convert_ctx_access) 17792 continue; 17793 convert_ctx_access = ops->convert_ctx_access; 17794 break; 17795 case PTR_TO_SOCKET: 17796 case PTR_TO_SOCK_COMMON: 17797 convert_ctx_access = bpf_sock_convert_ctx_access; 17798 break; 17799 case PTR_TO_TCP_SOCK: 17800 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 17801 break; 17802 case PTR_TO_XDP_SOCK: 17803 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 17804 break; 17805 case PTR_TO_BTF_ID: 17806 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 17807 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 17808 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 17809 * be said once it is marked PTR_UNTRUSTED, hence we must handle 17810 * any faults for loads into such types. BPF_WRITE is disallowed 17811 * for this case. 17812 */ 17813 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 17814 if (type == BPF_READ) { 17815 if (BPF_MODE(insn->code) == BPF_MEM) 17816 insn->code = BPF_LDX | BPF_PROBE_MEM | 17817 BPF_SIZE((insn)->code); 17818 else 17819 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 17820 BPF_SIZE((insn)->code); 17821 env->prog->aux->num_exentries++; 17822 } 17823 continue; 17824 default: 17825 continue; 17826 } 17827 17828 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 17829 size = BPF_LDST_BYTES(insn); 17830 mode = BPF_MODE(insn->code); 17831 17832 /* If the read access is a narrower load of the field, 17833 * convert to a 4/8-byte load, to minimum program type specific 17834 * convert_ctx_access changes. If conversion is successful, 17835 * we will apply proper mask to the result. 17836 */ 17837 is_narrower_load = size < ctx_field_size; 17838 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 17839 off = insn->off; 17840 if (is_narrower_load) { 17841 u8 size_code; 17842 17843 if (type == BPF_WRITE) { 17844 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 17845 return -EINVAL; 17846 } 17847 17848 size_code = BPF_H; 17849 if (ctx_field_size == 4) 17850 size_code = BPF_W; 17851 else if (ctx_field_size == 8) 17852 size_code = BPF_DW; 17853 17854 insn->off = off & ~(size_default - 1); 17855 insn->code = BPF_LDX | BPF_MEM | size_code; 17856 } 17857 17858 target_size = 0; 17859 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 17860 &target_size); 17861 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 17862 (ctx_field_size && !target_size)) { 17863 verbose(env, "bpf verifier is misconfigured\n"); 17864 return -EINVAL; 17865 } 17866 17867 if (is_narrower_load && size < target_size) { 17868 u8 shift = bpf_ctx_narrow_access_offset( 17869 off, size, size_default) * 8; 17870 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 17871 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 17872 return -EINVAL; 17873 } 17874 if (ctx_field_size <= 4) { 17875 if (shift) 17876 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 17877 insn->dst_reg, 17878 shift); 17879 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17880 (1 << size * 8) - 1); 17881 } else { 17882 if (shift) 17883 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 17884 insn->dst_reg, 17885 shift); 17886 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 17887 (1ULL << size * 8) - 1); 17888 } 17889 } 17890 if (mode == BPF_MEMSX) 17891 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 17892 insn->dst_reg, insn->dst_reg, 17893 size * 8, 0); 17894 17895 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 17896 if (!new_prog) 17897 return -ENOMEM; 17898 17899 delta += cnt - 1; 17900 17901 /* keep walking new program and skip insns we just inserted */ 17902 env->prog = new_prog; 17903 insn = new_prog->insnsi + i + delta; 17904 } 17905 17906 return 0; 17907 } 17908 17909 static int jit_subprogs(struct bpf_verifier_env *env) 17910 { 17911 struct bpf_prog *prog = env->prog, **func, *tmp; 17912 int i, j, subprog_start, subprog_end = 0, len, subprog; 17913 struct bpf_map *map_ptr; 17914 struct bpf_insn *insn; 17915 void *old_bpf_func; 17916 int err, num_exentries; 17917 17918 if (env->subprog_cnt <= 1) 17919 return 0; 17920 17921 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 17922 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 17923 continue; 17924 17925 /* Upon error here we cannot fall back to interpreter but 17926 * need a hard reject of the program. Thus -EFAULT is 17927 * propagated in any case. 17928 */ 17929 subprog = find_subprog(env, i + insn->imm + 1); 17930 if (subprog < 0) { 17931 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 17932 i + insn->imm + 1); 17933 return -EFAULT; 17934 } 17935 /* temporarily remember subprog id inside insn instead of 17936 * aux_data, since next loop will split up all insns into funcs 17937 */ 17938 insn->off = subprog; 17939 /* remember original imm in case JIT fails and fallback 17940 * to interpreter will be needed 17941 */ 17942 env->insn_aux_data[i].call_imm = insn->imm; 17943 /* point imm to __bpf_call_base+1 from JITs point of view */ 17944 insn->imm = 1; 17945 if (bpf_pseudo_func(insn)) 17946 /* jit (e.g. x86_64) may emit fewer instructions 17947 * if it learns a u32 imm is the same as a u64 imm. 17948 * Force a non zero here. 17949 */ 17950 insn[1].imm = 1; 17951 } 17952 17953 err = bpf_prog_alloc_jited_linfo(prog); 17954 if (err) 17955 goto out_undo_insn; 17956 17957 err = -ENOMEM; 17958 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 17959 if (!func) 17960 goto out_undo_insn; 17961 17962 for (i = 0; i < env->subprog_cnt; i++) { 17963 subprog_start = subprog_end; 17964 subprog_end = env->subprog_info[i + 1].start; 17965 17966 len = subprog_end - subprog_start; 17967 /* bpf_prog_run() doesn't call subprogs directly, 17968 * hence main prog stats include the runtime of subprogs. 17969 * subprogs don't have IDs and not reachable via prog_get_next_id 17970 * func[i]->stats will never be accessed and stays NULL 17971 */ 17972 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 17973 if (!func[i]) 17974 goto out_free; 17975 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 17976 len * sizeof(struct bpf_insn)); 17977 func[i]->type = prog->type; 17978 func[i]->len = len; 17979 if (bpf_prog_calc_tag(func[i])) 17980 goto out_free; 17981 func[i]->is_func = 1; 17982 func[i]->aux->func_idx = i; 17983 /* Below members will be freed only at prog->aux */ 17984 func[i]->aux->btf = prog->aux->btf; 17985 func[i]->aux->func_info = prog->aux->func_info; 17986 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 17987 func[i]->aux->poke_tab = prog->aux->poke_tab; 17988 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 17989 17990 for (j = 0; j < prog->aux->size_poke_tab; j++) { 17991 struct bpf_jit_poke_descriptor *poke; 17992 17993 poke = &prog->aux->poke_tab[j]; 17994 if (poke->insn_idx < subprog_end && 17995 poke->insn_idx >= subprog_start) 17996 poke->aux = func[i]->aux; 17997 } 17998 17999 func[i]->aux->name[0] = 'F'; 18000 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18001 func[i]->jit_requested = 1; 18002 func[i]->blinding_requested = prog->blinding_requested; 18003 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18004 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18005 func[i]->aux->linfo = prog->aux->linfo; 18006 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18007 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18008 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18009 num_exentries = 0; 18010 insn = func[i]->insnsi; 18011 for (j = 0; j < func[i]->len; j++, insn++) { 18012 if (BPF_CLASS(insn->code) == BPF_LDX && 18013 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18014 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18015 num_exentries++; 18016 } 18017 func[i]->aux->num_exentries = num_exentries; 18018 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18019 func[i] = bpf_int_jit_compile(func[i]); 18020 if (!func[i]->jited) { 18021 err = -ENOTSUPP; 18022 goto out_free; 18023 } 18024 cond_resched(); 18025 } 18026 18027 /* at this point all bpf functions were successfully JITed 18028 * now populate all bpf_calls with correct addresses and 18029 * run last pass of JIT 18030 */ 18031 for (i = 0; i < env->subprog_cnt; i++) { 18032 insn = func[i]->insnsi; 18033 for (j = 0; j < func[i]->len; j++, insn++) { 18034 if (bpf_pseudo_func(insn)) { 18035 subprog = insn->off; 18036 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18037 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18038 continue; 18039 } 18040 if (!bpf_pseudo_call(insn)) 18041 continue; 18042 subprog = insn->off; 18043 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18044 } 18045 18046 /* we use the aux data to keep a list of the start addresses 18047 * of the JITed images for each function in the program 18048 * 18049 * for some architectures, such as powerpc64, the imm field 18050 * might not be large enough to hold the offset of the start 18051 * address of the callee's JITed image from __bpf_call_base 18052 * 18053 * in such cases, we can lookup the start address of a callee 18054 * by using its subprog id, available from the off field of 18055 * the call instruction, as an index for this list 18056 */ 18057 func[i]->aux->func = func; 18058 func[i]->aux->func_cnt = env->subprog_cnt; 18059 } 18060 for (i = 0; i < env->subprog_cnt; i++) { 18061 old_bpf_func = func[i]->bpf_func; 18062 tmp = bpf_int_jit_compile(func[i]); 18063 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18064 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18065 err = -ENOTSUPP; 18066 goto out_free; 18067 } 18068 cond_resched(); 18069 } 18070 18071 /* finally lock prog and jit images for all functions and 18072 * populate kallsysm. Begin at the first subprogram, since 18073 * bpf_prog_load will add the kallsyms for the main program. 18074 */ 18075 for (i = 1; i < env->subprog_cnt; i++) { 18076 bpf_prog_lock_ro(func[i]); 18077 bpf_prog_kallsyms_add(func[i]); 18078 } 18079 18080 /* Last step: make now unused interpreter insns from main 18081 * prog consistent for later dump requests, so they can 18082 * later look the same as if they were interpreted only. 18083 */ 18084 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18085 if (bpf_pseudo_func(insn)) { 18086 insn[0].imm = env->insn_aux_data[i].call_imm; 18087 insn[1].imm = insn->off; 18088 insn->off = 0; 18089 continue; 18090 } 18091 if (!bpf_pseudo_call(insn)) 18092 continue; 18093 insn->off = env->insn_aux_data[i].call_imm; 18094 subprog = find_subprog(env, i + insn->off + 1); 18095 insn->imm = subprog; 18096 } 18097 18098 prog->jited = 1; 18099 prog->bpf_func = func[0]->bpf_func; 18100 prog->jited_len = func[0]->jited_len; 18101 prog->aux->extable = func[0]->aux->extable; 18102 prog->aux->num_exentries = func[0]->aux->num_exentries; 18103 prog->aux->func = func; 18104 prog->aux->func_cnt = env->subprog_cnt; 18105 bpf_prog_jit_attempt_done(prog); 18106 return 0; 18107 out_free: 18108 /* We failed JIT'ing, so at this point we need to unregister poke 18109 * descriptors from subprogs, so that kernel is not attempting to 18110 * patch it anymore as we're freeing the subprog JIT memory. 18111 */ 18112 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18113 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18114 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18115 } 18116 /* At this point we're guaranteed that poke descriptors are not 18117 * live anymore. We can just unlink its descriptor table as it's 18118 * released with the main prog. 18119 */ 18120 for (i = 0; i < env->subprog_cnt; i++) { 18121 if (!func[i]) 18122 continue; 18123 func[i]->aux->poke_tab = NULL; 18124 bpf_jit_free(func[i]); 18125 } 18126 kfree(func); 18127 out_undo_insn: 18128 /* cleanup main prog to be interpreted */ 18129 prog->jit_requested = 0; 18130 prog->blinding_requested = 0; 18131 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18132 if (!bpf_pseudo_call(insn)) 18133 continue; 18134 insn->off = 0; 18135 insn->imm = env->insn_aux_data[i].call_imm; 18136 } 18137 bpf_prog_jit_attempt_done(prog); 18138 return err; 18139 } 18140 18141 static int fixup_call_args(struct bpf_verifier_env *env) 18142 { 18143 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18144 struct bpf_prog *prog = env->prog; 18145 struct bpf_insn *insn = prog->insnsi; 18146 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18147 int i, depth; 18148 #endif 18149 int err = 0; 18150 18151 if (env->prog->jit_requested && 18152 !bpf_prog_is_offloaded(env->prog->aux)) { 18153 err = jit_subprogs(env); 18154 if (err == 0) 18155 return 0; 18156 if (err == -EFAULT) 18157 return err; 18158 } 18159 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18160 if (has_kfunc_call) { 18161 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18162 return -EINVAL; 18163 } 18164 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18165 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18166 * have to be rejected, since interpreter doesn't support them yet. 18167 */ 18168 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18169 return -EINVAL; 18170 } 18171 for (i = 0; i < prog->len; i++, insn++) { 18172 if (bpf_pseudo_func(insn)) { 18173 /* When JIT fails the progs with callback calls 18174 * have to be rejected, since interpreter doesn't support them yet. 18175 */ 18176 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18177 return -EINVAL; 18178 } 18179 18180 if (!bpf_pseudo_call(insn)) 18181 continue; 18182 depth = get_callee_stack_depth(env, insn, i); 18183 if (depth < 0) 18184 return depth; 18185 bpf_patch_call_args(insn, depth); 18186 } 18187 err = 0; 18188 #endif 18189 return err; 18190 } 18191 18192 /* replace a generic kfunc with a specialized version if necessary */ 18193 static void specialize_kfunc(struct bpf_verifier_env *env, 18194 u32 func_id, u16 offset, unsigned long *addr) 18195 { 18196 struct bpf_prog *prog = env->prog; 18197 bool seen_direct_write; 18198 void *xdp_kfunc; 18199 bool is_rdonly; 18200 18201 if (bpf_dev_bound_kfunc_id(func_id)) { 18202 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18203 if (xdp_kfunc) { 18204 *addr = (unsigned long)xdp_kfunc; 18205 return; 18206 } 18207 /* fallback to default kfunc when not supported by netdev */ 18208 } 18209 18210 if (offset) 18211 return; 18212 18213 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18214 seen_direct_write = env->seen_direct_write; 18215 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18216 18217 if (is_rdonly) 18218 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18219 18220 /* restore env->seen_direct_write to its original value, since 18221 * may_access_direct_pkt_data mutates it 18222 */ 18223 env->seen_direct_write = seen_direct_write; 18224 } 18225 } 18226 18227 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18228 u16 struct_meta_reg, 18229 u16 node_offset_reg, 18230 struct bpf_insn *insn, 18231 struct bpf_insn *insn_buf, 18232 int *cnt) 18233 { 18234 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18235 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18236 18237 insn_buf[0] = addr[0]; 18238 insn_buf[1] = addr[1]; 18239 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18240 insn_buf[3] = *insn; 18241 *cnt = 4; 18242 } 18243 18244 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18245 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18246 { 18247 const struct bpf_kfunc_desc *desc; 18248 18249 if (!insn->imm) { 18250 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18251 return -EINVAL; 18252 } 18253 18254 *cnt = 0; 18255 18256 /* insn->imm has the btf func_id. Replace it with an offset relative to 18257 * __bpf_call_base, unless the JIT needs to call functions that are 18258 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18259 */ 18260 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18261 if (!desc) { 18262 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18263 insn->imm); 18264 return -EFAULT; 18265 } 18266 18267 if (!bpf_jit_supports_far_kfunc_call()) 18268 insn->imm = BPF_CALL_IMM(desc->addr); 18269 if (insn->off) 18270 return 0; 18271 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18272 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18273 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18274 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18275 18276 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18277 insn_buf[1] = addr[0]; 18278 insn_buf[2] = addr[1]; 18279 insn_buf[3] = *insn; 18280 *cnt = 4; 18281 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18282 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18283 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18284 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18285 18286 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18287 !kptr_struct_meta) { 18288 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18289 insn_idx); 18290 return -EFAULT; 18291 } 18292 18293 insn_buf[0] = addr[0]; 18294 insn_buf[1] = addr[1]; 18295 insn_buf[2] = *insn; 18296 *cnt = 3; 18297 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18298 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18299 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18300 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18301 int struct_meta_reg = BPF_REG_3; 18302 int node_offset_reg = BPF_REG_4; 18303 18304 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18305 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18306 struct_meta_reg = BPF_REG_4; 18307 node_offset_reg = BPF_REG_5; 18308 } 18309 18310 if (!kptr_struct_meta) { 18311 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18312 insn_idx); 18313 return -EFAULT; 18314 } 18315 18316 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18317 node_offset_reg, insn, insn_buf, cnt); 18318 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18319 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18320 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18321 *cnt = 1; 18322 } 18323 return 0; 18324 } 18325 18326 /* Do various post-verification rewrites in a single program pass. 18327 * These rewrites simplify JIT and interpreter implementations. 18328 */ 18329 static int do_misc_fixups(struct bpf_verifier_env *env) 18330 { 18331 struct bpf_prog *prog = env->prog; 18332 enum bpf_attach_type eatype = prog->expected_attach_type; 18333 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18334 struct bpf_insn *insn = prog->insnsi; 18335 const struct bpf_func_proto *fn; 18336 const int insn_cnt = prog->len; 18337 const struct bpf_map_ops *ops; 18338 struct bpf_insn_aux_data *aux; 18339 struct bpf_insn insn_buf[16]; 18340 struct bpf_prog *new_prog; 18341 struct bpf_map *map_ptr; 18342 int i, ret, cnt, delta = 0; 18343 18344 for (i = 0; i < insn_cnt; i++, insn++) { 18345 /* Make divide-by-zero exceptions impossible. */ 18346 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18347 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18348 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18349 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18350 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18351 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18352 struct bpf_insn *patchlet; 18353 struct bpf_insn chk_and_div[] = { 18354 /* [R,W]x div 0 -> 0 */ 18355 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18356 BPF_JNE | BPF_K, insn->src_reg, 18357 0, 2, 0), 18358 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18359 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18360 *insn, 18361 }; 18362 struct bpf_insn chk_and_mod[] = { 18363 /* [R,W]x mod 0 -> [R,W]x */ 18364 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18365 BPF_JEQ | BPF_K, insn->src_reg, 18366 0, 1 + (is64 ? 0 : 1), 0), 18367 *insn, 18368 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18369 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18370 }; 18371 18372 patchlet = isdiv ? chk_and_div : chk_and_mod; 18373 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18374 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18375 18376 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18377 if (!new_prog) 18378 return -ENOMEM; 18379 18380 delta += cnt - 1; 18381 env->prog = prog = new_prog; 18382 insn = new_prog->insnsi + i + delta; 18383 continue; 18384 } 18385 18386 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18387 if (BPF_CLASS(insn->code) == BPF_LD && 18388 (BPF_MODE(insn->code) == BPF_ABS || 18389 BPF_MODE(insn->code) == BPF_IND)) { 18390 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18391 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18392 verbose(env, "bpf verifier is misconfigured\n"); 18393 return -EINVAL; 18394 } 18395 18396 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18397 if (!new_prog) 18398 return -ENOMEM; 18399 18400 delta += cnt - 1; 18401 env->prog = prog = new_prog; 18402 insn = new_prog->insnsi + i + delta; 18403 continue; 18404 } 18405 18406 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18407 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18408 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18409 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18410 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18411 struct bpf_insn *patch = &insn_buf[0]; 18412 bool issrc, isneg, isimm; 18413 u32 off_reg; 18414 18415 aux = &env->insn_aux_data[i + delta]; 18416 if (!aux->alu_state || 18417 aux->alu_state == BPF_ALU_NON_POINTER) 18418 continue; 18419 18420 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18421 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18422 BPF_ALU_SANITIZE_SRC; 18423 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18424 18425 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18426 if (isimm) { 18427 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18428 } else { 18429 if (isneg) 18430 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18431 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18432 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18433 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18434 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18435 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18436 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18437 } 18438 if (!issrc) 18439 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18440 insn->src_reg = BPF_REG_AX; 18441 if (isneg) 18442 insn->code = insn->code == code_add ? 18443 code_sub : code_add; 18444 *patch++ = *insn; 18445 if (issrc && isneg && !isimm) 18446 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18447 cnt = patch - insn_buf; 18448 18449 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18450 if (!new_prog) 18451 return -ENOMEM; 18452 18453 delta += cnt - 1; 18454 env->prog = prog = new_prog; 18455 insn = new_prog->insnsi + i + delta; 18456 continue; 18457 } 18458 18459 if (insn->code != (BPF_JMP | BPF_CALL)) 18460 continue; 18461 if (insn->src_reg == BPF_PSEUDO_CALL) 18462 continue; 18463 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18464 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 18465 if (ret) 18466 return ret; 18467 if (cnt == 0) 18468 continue; 18469 18470 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18471 if (!new_prog) 18472 return -ENOMEM; 18473 18474 delta += cnt - 1; 18475 env->prog = prog = new_prog; 18476 insn = new_prog->insnsi + i + delta; 18477 continue; 18478 } 18479 18480 if (insn->imm == BPF_FUNC_get_route_realm) 18481 prog->dst_needed = 1; 18482 if (insn->imm == BPF_FUNC_get_prandom_u32) 18483 bpf_user_rnd_init_once(); 18484 if (insn->imm == BPF_FUNC_override_return) 18485 prog->kprobe_override = 1; 18486 if (insn->imm == BPF_FUNC_tail_call) { 18487 /* If we tail call into other programs, we 18488 * cannot make any assumptions since they can 18489 * be replaced dynamically during runtime in 18490 * the program array. 18491 */ 18492 prog->cb_access = 1; 18493 if (!allow_tail_call_in_subprogs(env)) 18494 prog->aux->stack_depth = MAX_BPF_STACK; 18495 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 18496 18497 /* mark bpf_tail_call as different opcode to avoid 18498 * conditional branch in the interpreter for every normal 18499 * call and to prevent accidental JITing by JIT compiler 18500 * that doesn't support bpf_tail_call yet 18501 */ 18502 insn->imm = 0; 18503 insn->code = BPF_JMP | BPF_TAIL_CALL; 18504 18505 aux = &env->insn_aux_data[i + delta]; 18506 if (env->bpf_capable && !prog->blinding_requested && 18507 prog->jit_requested && 18508 !bpf_map_key_poisoned(aux) && 18509 !bpf_map_ptr_poisoned(aux) && 18510 !bpf_map_ptr_unpriv(aux)) { 18511 struct bpf_jit_poke_descriptor desc = { 18512 .reason = BPF_POKE_REASON_TAIL_CALL, 18513 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 18514 .tail_call.key = bpf_map_key_immediate(aux), 18515 .insn_idx = i + delta, 18516 }; 18517 18518 ret = bpf_jit_add_poke_descriptor(prog, &desc); 18519 if (ret < 0) { 18520 verbose(env, "adding tail call poke descriptor failed\n"); 18521 return ret; 18522 } 18523 18524 insn->imm = ret + 1; 18525 continue; 18526 } 18527 18528 if (!bpf_map_ptr_unpriv(aux)) 18529 continue; 18530 18531 /* instead of changing every JIT dealing with tail_call 18532 * emit two extra insns: 18533 * if (index >= max_entries) goto out; 18534 * index &= array->index_mask; 18535 * to avoid out-of-bounds cpu speculation 18536 */ 18537 if (bpf_map_ptr_poisoned(aux)) { 18538 verbose(env, "tail_call abusing map_ptr\n"); 18539 return -EINVAL; 18540 } 18541 18542 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18543 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 18544 map_ptr->max_entries, 2); 18545 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 18546 container_of(map_ptr, 18547 struct bpf_array, 18548 map)->index_mask); 18549 insn_buf[2] = *insn; 18550 cnt = 3; 18551 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18552 if (!new_prog) 18553 return -ENOMEM; 18554 18555 delta += cnt - 1; 18556 env->prog = prog = new_prog; 18557 insn = new_prog->insnsi + i + delta; 18558 continue; 18559 } 18560 18561 if (insn->imm == BPF_FUNC_timer_set_callback) { 18562 /* The verifier will process callback_fn as many times as necessary 18563 * with different maps and the register states prepared by 18564 * set_timer_callback_state will be accurate. 18565 * 18566 * The following use case is valid: 18567 * map1 is shared by prog1, prog2, prog3. 18568 * prog1 calls bpf_timer_init for some map1 elements 18569 * prog2 calls bpf_timer_set_callback for some map1 elements. 18570 * Those that were not bpf_timer_init-ed will return -EINVAL. 18571 * prog3 calls bpf_timer_start for some map1 elements. 18572 * Those that were not both bpf_timer_init-ed and 18573 * bpf_timer_set_callback-ed will return -EINVAL. 18574 */ 18575 struct bpf_insn ld_addrs[2] = { 18576 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 18577 }; 18578 18579 insn_buf[0] = ld_addrs[0]; 18580 insn_buf[1] = ld_addrs[1]; 18581 insn_buf[2] = *insn; 18582 cnt = 3; 18583 18584 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18585 if (!new_prog) 18586 return -ENOMEM; 18587 18588 delta += cnt - 1; 18589 env->prog = prog = new_prog; 18590 insn = new_prog->insnsi + i + delta; 18591 goto patch_call_imm; 18592 } 18593 18594 if (is_storage_get_function(insn->imm)) { 18595 if (!env->prog->aux->sleepable || 18596 env->insn_aux_data[i + delta].storage_get_func_atomic) 18597 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 18598 else 18599 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 18600 insn_buf[1] = *insn; 18601 cnt = 2; 18602 18603 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18604 if (!new_prog) 18605 return -ENOMEM; 18606 18607 delta += cnt - 1; 18608 env->prog = prog = new_prog; 18609 insn = new_prog->insnsi + i + delta; 18610 goto patch_call_imm; 18611 } 18612 18613 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 18614 * and other inlining handlers are currently limited to 64 bit 18615 * only. 18616 */ 18617 if (prog->jit_requested && BITS_PER_LONG == 64 && 18618 (insn->imm == BPF_FUNC_map_lookup_elem || 18619 insn->imm == BPF_FUNC_map_update_elem || 18620 insn->imm == BPF_FUNC_map_delete_elem || 18621 insn->imm == BPF_FUNC_map_push_elem || 18622 insn->imm == BPF_FUNC_map_pop_elem || 18623 insn->imm == BPF_FUNC_map_peek_elem || 18624 insn->imm == BPF_FUNC_redirect_map || 18625 insn->imm == BPF_FUNC_for_each_map_elem || 18626 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 18627 aux = &env->insn_aux_data[i + delta]; 18628 if (bpf_map_ptr_poisoned(aux)) 18629 goto patch_call_imm; 18630 18631 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 18632 ops = map_ptr->ops; 18633 if (insn->imm == BPF_FUNC_map_lookup_elem && 18634 ops->map_gen_lookup) { 18635 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 18636 if (cnt == -EOPNOTSUPP) 18637 goto patch_map_ops_generic; 18638 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18639 verbose(env, "bpf verifier is misconfigured\n"); 18640 return -EINVAL; 18641 } 18642 18643 new_prog = bpf_patch_insn_data(env, i + delta, 18644 insn_buf, cnt); 18645 if (!new_prog) 18646 return -ENOMEM; 18647 18648 delta += cnt - 1; 18649 env->prog = prog = new_prog; 18650 insn = new_prog->insnsi + i + delta; 18651 continue; 18652 } 18653 18654 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 18655 (void *(*)(struct bpf_map *map, void *key))NULL)); 18656 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 18657 (long (*)(struct bpf_map *map, void *key))NULL)); 18658 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 18659 (long (*)(struct bpf_map *map, void *key, void *value, 18660 u64 flags))NULL)); 18661 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 18662 (long (*)(struct bpf_map *map, void *value, 18663 u64 flags))NULL)); 18664 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 18665 (long (*)(struct bpf_map *map, void *value))NULL)); 18666 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 18667 (long (*)(struct bpf_map *map, void *value))NULL)); 18668 BUILD_BUG_ON(!__same_type(ops->map_redirect, 18669 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 18670 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 18671 (long (*)(struct bpf_map *map, 18672 bpf_callback_t callback_fn, 18673 void *callback_ctx, 18674 u64 flags))NULL)); 18675 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 18676 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 18677 18678 patch_map_ops_generic: 18679 switch (insn->imm) { 18680 case BPF_FUNC_map_lookup_elem: 18681 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 18682 continue; 18683 case BPF_FUNC_map_update_elem: 18684 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 18685 continue; 18686 case BPF_FUNC_map_delete_elem: 18687 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 18688 continue; 18689 case BPF_FUNC_map_push_elem: 18690 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 18691 continue; 18692 case BPF_FUNC_map_pop_elem: 18693 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 18694 continue; 18695 case BPF_FUNC_map_peek_elem: 18696 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 18697 continue; 18698 case BPF_FUNC_redirect_map: 18699 insn->imm = BPF_CALL_IMM(ops->map_redirect); 18700 continue; 18701 case BPF_FUNC_for_each_map_elem: 18702 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 18703 continue; 18704 case BPF_FUNC_map_lookup_percpu_elem: 18705 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 18706 continue; 18707 } 18708 18709 goto patch_call_imm; 18710 } 18711 18712 /* Implement bpf_jiffies64 inline. */ 18713 if (prog->jit_requested && BITS_PER_LONG == 64 && 18714 insn->imm == BPF_FUNC_jiffies64) { 18715 struct bpf_insn ld_jiffies_addr[2] = { 18716 BPF_LD_IMM64(BPF_REG_0, 18717 (unsigned long)&jiffies), 18718 }; 18719 18720 insn_buf[0] = ld_jiffies_addr[0]; 18721 insn_buf[1] = ld_jiffies_addr[1]; 18722 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 18723 BPF_REG_0, 0); 18724 cnt = 3; 18725 18726 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 18727 cnt); 18728 if (!new_prog) 18729 return -ENOMEM; 18730 18731 delta += cnt - 1; 18732 env->prog = prog = new_prog; 18733 insn = new_prog->insnsi + i + delta; 18734 continue; 18735 } 18736 18737 /* Implement bpf_get_func_arg inline. */ 18738 if (prog_type == BPF_PROG_TYPE_TRACING && 18739 insn->imm == BPF_FUNC_get_func_arg) { 18740 /* Load nr_args from ctx - 8 */ 18741 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18742 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 18743 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 18744 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 18745 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 18746 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18747 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 18748 insn_buf[7] = BPF_JMP_A(1); 18749 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 18750 cnt = 9; 18751 18752 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18753 if (!new_prog) 18754 return -ENOMEM; 18755 18756 delta += cnt - 1; 18757 env->prog = prog = new_prog; 18758 insn = new_prog->insnsi + i + delta; 18759 continue; 18760 } 18761 18762 /* Implement bpf_get_func_ret inline. */ 18763 if (prog_type == BPF_PROG_TYPE_TRACING && 18764 insn->imm == BPF_FUNC_get_func_ret) { 18765 if (eatype == BPF_TRACE_FEXIT || 18766 eatype == BPF_MODIFY_RETURN) { 18767 /* Load nr_args from ctx - 8 */ 18768 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18769 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 18770 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 18771 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 18772 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 18773 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 18774 cnt = 6; 18775 } else { 18776 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 18777 cnt = 1; 18778 } 18779 18780 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18781 if (!new_prog) 18782 return -ENOMEM; 18783 18784 delta += cnt - 1; 18785 env->prog = prog = new_prog; 18786 insn = new_prog->insnsi + i + delta; 18787 continue; 18788 } 18789 18790 /* Implement get_func_arg_cnt inline. */ 18791 if (prog_type == BPF_PROG_TYPE_TRACING && 18792 insn->imm == BPF_FUNC_get_func_arg_cnt) { 18793 /* Load nr_args from ctx - 8 */ 18794 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 18795 18796 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18797 if (!new_prog) 18798 return -ENOMEM; 18799 18800 env->prog = prog = new_prog; 18801 insn = new_prog->insnsi + i + delta; 18802 continue; 18803 } 18804 18805 /* Implement bpf_get_func_ip inline. */ 18806 if (prog_type == BPF_PROG_TYPE_TRACING && 18807 insn->imm == BPF_FUNC_get_func_ip) { 18808 /* Load IP address from ctx - 16 */ 18809 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 18810 18811 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 18812 if (!new_prog) 18813 return -ENOMEM; 18814 18815 env->prog = prog = new_prog; 18816 insn = new_prog->insnsi + i + delta; 18817 continue; 18818 } 18819 18820 patch_call_imm: 18821 fn = env->ops->get_func_proto(insn->imm, env->prog); 18822 /* all functions that have prototype and verifier allowed 18823 * programs to call them, must be real in-kernel functions 18824 */ 18825 if (!fn->func) { 18826 verbose(env, 18827 "kernel subsystem misconfigured func %s#%d\n", 18828 func_id_name(insn->imm), insn->imm); 18829 return -EFAULT; 18830 } 18831 insn->imm = fn->func - __bpf_call_base; 18832 } 18833 18834 /* Since poke tab is now finalized, publish aux to tracker. */ 18835 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18836 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18837 if (!map_ptr->ops->map_poke_track || 18838 !map_ptr->ops->map_poke_untrack || 18839 !map_ptr->ops->map_poke_run) { 18840 verbose(env, "bpf verifier is misconfigured\n"); 18841 return -EINVAL; 18842 } 18843 18844 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 18845 if (ret < 0) { 18846 verbose(env, "tracking tail call prog failed\n"); 18847 return ret; 18848 } 18849 } 18850 18851 sort_kfunc_descs_by_imm_off(env->prog); 18852 18853 return 0; 18854 } 18855 18856 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 18857 int position, 18858 s32 stack_base, 18859 u32 callback_subprogno, 18860 u32 *cnt) 18861 { 18862 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 18863 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 18864 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 18865 int reg_loop_max = BPF_REG_6; 18866 int reg_loop_cnt = BPF_REG_7; 18867 int reg_loop_ctx = BPF_REG_8; 18868 18869 struct bpf_prog *new_prog; 18870 u32 callback_start; 18871 u32 call_insn_offset; 18872 s32 callback_offset; 18873 18874 /* This represents an inlined version of bpf_iter.c:bpf_loop, 18875 * be careful to modify this code in sync. 18876 */ 18877 struct bpf_insn insn_buf[] = { 18878 /* Return error and jump to the end of the patch if 18879 * expected number of iterations is too big. 18880 */ 18881 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 18882 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 18883 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 18884 /* spill R6, R7, R8 to use these as loop vars */ 18885 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 18886 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 18887 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 18888 /* initialize loop vars */ 18889 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 18890 BPF_MOV32_IMM(reg_loop_cnt, 0), 18891 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 18892 /* loop header, 18893 * if reg_loop_cnt >= reg_loop_max skip the loop body 18894 */ 18895 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 18896 /* callback call, 18897 * correct callback offset would be set after patching 18898 */ 18899 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 18900 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 18901 BPF_CALL_REL(0), 18902 /* increment loop counter */ 18903 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 18904 /* jump to loop header if callback returned 0 */ 18905 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 18906 /* return value of bpf_loop, 18907 * set R0 to the number of iterations 18908 */ 18909 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 18910 /* restore original values of R6, R7, R8 */ 18911 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 18912 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 18913 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 18914 }; 18915 18916 *cnt = ARRAY_SIZE(insn_buf); 18917 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 18918 if (!new_prog) 18919 return new_prog; 18920 18921 /* callback start is known only after patching */ 18922 callback_start = env->subprog_info[callback_subprogno].start; 18923 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 18924 call_insn_offset = position + 12; 18925 callback_offset = callback_start - call_insn_offset - 1; 18926 new_prog->insnsi[call_insn_offset].imm = callback_offset; 18927 18928 return new_prog; 18929 } 18930 18931 static bool is_bpf_loop_call(struct bpf_insn *insn) 18932 { 18933 return insn->code == (BPF_JMP | BPF_CALL) && 18934 insn->src_reg == 0 && 18935 insn->imm == BPF_FUNC_loop; 18936 } 18937 18938 /* For all sub-programs in the program (including main) check 18939 * insn_aux_data to see if there are bpf_loop calls that require 18940 * inlining. If such calls are found the calls are replaced with a 18941 * sequence of instructions produced by `inline_bpf_loop` function and 18942 * subprog stack_depth is increased by the size of 3 registers. 18943 * This stack space is used to spill values of the R6, R7, R8. These 18944 * registers are used to store the loop bound, counter and context 18945 * variables. 18946 */ 18947 static int optimize_bpf_loop(struct bpf_verifier_env *env) 18948 { 18949 struct bpf_subprog_info *subprogs = env->subprog_info; 18950 int i, cur_subprog = 0, cnt, delta = 0; 18951 struct bpf_insn *insn = env->prog->insnsi; 18952 int insn_cnt = env->prog->len; 18953 u16 stack_depth = subprogs[cur_subprog].stack_depth; 18954 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18955 u16 stack_depth_extra = 0; 18956 18957 for (i = 0; i < insn_cnt; i++, insn++) { 18958 struct bpf_loop_inline_state *inline_state = 18959 &env->insn_aux_data[i + delta].loop_inline_state; 18960 18961 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 18962 struct bpf_prog *new_prog; 18963 18964 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 18965 new_prog = inline_bpf_loop(env, 18966 i + delta, 18967 -(stack_depth + stack_depth_extra), 18968 inline_state->callback_subprogno, 18969 &cnt); 18970 if (!new_prog) 18971 return -ENOMEM; 18972 18973 delta += cnt - 1; 18974 env->prog = new_prog; 18975 insn = new_prog->insnsi + i + delta; 18976 } 18977 18978 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 18979 subprogs[cur_subprog].stack_depth += stack_depth_extra; 18980 cur_subprog++; 18981 stack_depth = subprogs[cur_subprog].stack_depth; 18982 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 18983 stack_depth_extra = 0; 18984 } 18985 } 18986 18987 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 18988 18989 return 0; 18990 } 18991 18992 static void free_states(struct bpf_verifier_env *env) 18993 { 18994 struct bpf_verifier_state_list *sl, *sln; 18995 int i; 18996 18997 sl = env->free_list; 18998 while (sl) { 18999 sln = sl->next; 19000 free_verifier_state(&sl->state, false); 19001 kfree(sl); 19002 sl = sln; 19003 } 19004 env->free_list = NULL; 19005 19006 if (!env->explored_states) 19007 return; 19008 19009 for (i = 0; i < state_htab_size(env); i++) { 19010 sl = env->explored_states[i]; 19011 19012 while (sl) { 19013 sln = sl->next; 19014 free_verifier_state(&sl->state, false); 19015 kfree(sl); 19016 sl = sln; 19017 } 19018 env->explored_states[i] = NULL; 19019 } 19020 } 19021 19022 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19023 { 19024 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19025 struct bpf_verifier_state *state; 19026 struct bpf_reg_state *regs; 19027 int ret, i; 19028 19029 env->prev_linfo = NULL; 19030 env->pass_cnt++; 19031 19032 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19033 if (!state) 19034 return -ENOMEM; 19035 state->curframe = 0; 19036 state->speculative = false; 19037 state->branches = 1; 19038 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19039 if (!state->frame[0]) { 19040 kfree(state); 19041 return -ENOMEM; 19042 } 19043 env->cur_state = state; 19044 init_func_state(env, state->frame[0], 19045 BPF_MAIN_FUNC /* callsite */, 19046 0 /* frameno */, 19047 subprog); 19048 state->first_insn_idx = env->subprog_info[subprog].start; 19049 state->last_insn_idx = -1; 19050 19051 regs = state->frame[state->curframe]->regs; 19052 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19053 ret = btf_prepare_func_args(env, subprog, regs); 19054 if (ret) 19055 goto out; 19056 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19057 if (regs[i].type == PTR_TO_CTX) 19058 mark_reg_known_zero(env, regs, i); 19059 else if (regs[i].type == SCALAR_VALUE) 19060 mark_reg_unknown(env, regs, i); 19061 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19062 const u32 mem_size = regs[i].mem_size; 19063 19064 mark_reg_known_zero(env, regs, i); 19065 regs[i].mem_size = mem_size; 19066 regs[i].id = ++env->id_gen; 19067 } 19068 } 19069 } else { 19070 /* 1st arg to a function */ 19071 regs[BPF_REG_1].type = PTR_TO_CTX; 19072 mark_reg_known_zero(env, regs, BPF_REG_1); 19073 ret = btf_check_subprog_arg_match(env, subprog, regs); 19074 if (ret == -EFAULT) 19075 /* unlikely verifier bug. abort. 19076 * ret == 0 and ret < 0 are sadly acceptable for 19077 * main() function due to backward compatibility. 19078 * Like socket filter program may be written as: 19079 * int bpf_prog(struct pt_regs *ctx) 19080 * and never dereference that ctx in the program. 19081 * 'struct pt_regs' is a type mismatch for socket 19082 * filter that should be using 'struct __sk_buff'. 19083 */ 19084 goto out; 19085 } 19086 19087 ret = do_check(env); 19088 out: 19089 /* check for NULL is necessary, since cur_state can be freed inside 19090 * do_check() under memory pressure. 19091 */ 19092 if (env->cur_state) { 19093 free_verifier_state(env->cur_state, true); 19094 env->cur_state = NULL; 19095 } 19096 while (!pop_stack(env, NULL, NULL, false)); 19097 if (!ret && pop_log) 19098 bpf_vlog_reset(&env->log, 0); 19099 free_states(env); 19100 return ret; 19101 } 19102 19103 /* Verify all global functions in a BPF program one by one based on their BTF. 19104 * All global functions must pass verification. Otherwise the whole program is rejected. 19105 * Consider: 19106 * int bar(int); 19107 * int foo(int f) 19108 * { 19109 * return bar(f); 19110 * } 19111 * int bar(int b) 19112 * { 19113 * ... 19114 * } 19115 * foo() will be verified first for R1=any_scalar_value. During verification it 19116 * will be assumed that bar() already verified successfully and call to bar() 19117 * from foo() will be checked for type match only. Later bar() will be verified 19118 * independently to check that it's safe for R1=any_scalar_value. 19119 */ 19120 static int do_check_subprogs(struct bpf_verifier_env *env) 19121 { 19122 struct bpf_prog_aux *aux = env->prog->aux; 19123 int i, ret; 19124 19125 if (!aux->func_info) 19126 return 0; 19127 19128 for (i = 1; i < env->subprog_cnt; i++) { 19129 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19130 continue; 19131 env->insn_idx = env->subprog_info[i].start; 19132 WARN_ON_ONCE(env->insn_idx == 0); 19133 ret = do_check_common(env, i); 19134 if (ret) { 19135 return ret; 19136 } else if (env->log.level & BPF_LOG_LEVEL) { 19137 verbose(env, 19138 "Func#%d is safe for any args that match its prototype\n", 19139 i); 19140 } 19141 } 19142 return 0; 19143 } 19144 19145 static int do_check_main(struct bpf_verifier_env *env) 19146 { 19147 int ret; 19148 19149 env->insn_idx = 0; 19150 ret = do_check_common(env, 0); 19151 if (!ret) 19152 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19153 return ret; 19154 } 19155 19156 19157 static void print_verification_stats(struct bpf_verifier_env *env) 19158 { 19159 int i; 19160 19161 if (env->log.level & BPF_LOG_STATS) { 19162 verbose(env, "verification time %lld usec\n", 19163 div_u64(env->verification_time, 1000)); 19164 verbose(env, "stack depth "); 19165 for (i = 0; i < env->subprog_cnt; i++) { 19166 u32 depth = env->subprog_info[i].stack_depth; 19167 19168 verbose(env, "%d", depth); 19169 if (i + 1 < env->subprog_cnt) 19170 verbose(env, "+"); 19171 } 19172 verbose(env, "\n"); 19173 } 19174 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19175 "total_states %d peak_states %d mark_read %d\n", 19176 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19177 env->max_states_per_insn, env->total_states, 19178 env->peak_states, env->longest_mark_read_walk); 19179 } 19180 19181 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19182 { 19183 const struct btf_type *t, *func_proto; 19184 const struct bpf_struct_ops *st_ops; 19185 const struct btf_member *member; 19186 struct bpf_prog *prog = env->prog; 19187 u32 btf_id, member_idx; 19188 const char *mname; 19189 19190 if (!prog->gpl_compatible) { 19191 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19192 return -EINVAL; 19193 } 19194 19195 btf_id = prog->aux->attach_btf_id; 19196 st_ops = bpf_struct_ops_find(btf_id); 19197 if (!st_ops) { 19198 verbose(env, "attach_btf_id %u is not a supported struct\n", 19199 btf_id); 19200 return -ENOTSUPP; 19201 } 19202 19203 t = st_ops->type; 19204 member_idx = prog->expected_attach_type; 19205 if (member_idx >= btf_type_vlen(t)) { 19206 verbose(env, "attach to invalid member idx %u of struct %s\n", 19207 member_idx, st_ops->name); 19208 return -EINVAL; 19209 } 19210 19211 member = &btf_type_member(t)[member_idx]; 19212 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19213 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19214 NULL); 19215 if (!func_proto) { 19216 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19217 mname, member_idx, st_ops->name); 19218 return -EINVAL; 19219 } 19220 19221 if (st_ops->check_member) { 19222 int err = st_ops->check_member(t, member, prog); 19223 19224 if (err) { 19225 verbose(env, "attach to unsupported member %s of struct %s\n", 19226 mname, st_ops->name); 19227 return err; 19228 } 19229 } 19230 19231 prog->aux->attach_func_proto = func_proto; 19232 prog->aux->attach_func_name = mname; 19233 env->ops = st_ops->verifier_ops; 19234 19235 return 0; 19236 } 19237 #define SECURITY_PREFIX "security_" 19238 19239 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19240 { 19241 if (within_error_injection_list(addr) || 19242 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19243 return 0; 19244 19245 return -EINVAL; 19246 } 19247 19248 /* list of non-sleepable functions that are otherwise on 19249 * ALLOW_ERROR_INJECTION list 19250 */ 19251 BTF_SET_START(btf_non_sleepable_error_inject) 19252 /* Three functions below can be called from sleepable and non-sleepable context. 19253 * Assume non-sleepable from bpf safety point of view. 19254 */ 19255 BTF_ID(func, __filemap_add_folio) 19256 BTF_ID(func, should_fail_alloc_page) 19257 BTF_ID(func, should_failslab) 19258 BTF_SET_END(btf_non_sleepable_error_inject) 19259 19260 static int check_non_sleepable_error_inject(u32 btf_id) 19261 { 19262 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19263 } 19264 19265 int bpf_check_attach_target(struct bpf_verifier_log *log, 19266 const struct bpf_prog *prog, 19267 const struct bpf_prog *tgt_prog, 19268 u32 btf_id, 19269 struct bpf_attach_target_info *tgt_info) 19270 { 19271 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19272 const char prefix[] = "btf_trace_"; 19273 int ret = 0, subprog = -1, i; 19274 const struct btf_type *t; 19275 bool conservative = true; 19276 const char *tname; 19277 struct btf *btf; 19278 long addr = 0; 19279 struct module *mod = NULL; 19280 19281 if (!btf_id) { 19282 bpf_log(log, "Tracing programs must provide btf_id\n"); 19283 return -EINVAL; 19284 } 19285 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19286 if (!btf) { 19287 bpf_log(log, 19288 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19289 return -EINVAL; 19290 } 19291 t = btf_type_by_id(btf, btf_id); 19292 if (!t) { 19293 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19294 return -EINVAL; 19295 } 19296 tname = btf_name_by_offset(btf, t->name_off); 19297 if (!tname) { 19298 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19299 return -EINVAL; 19300 } 19301 if (tgt_prog) { 19302 struct bpf_prog_aux *aux = tgt_prog->aux; 19303 19304 if (bpf_prog_is_dev_bound(prog->aux) && 19305 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19306 bpf_log(log, "Target program bound device mismatch"); 19307 return -EINVAL; 19308 } 19309 19310 for (i = 0; i < aux->func_info_cnt; i++) 19311 if (aux->func_info[i].type_id == btf_id) { 19312 subprog = i; 19313 break; 19314 } 19315 if (subprog == -1) { 19316 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19317 return -EINVAL; 19318 } 19319 conservative = aux->func_info_aux[subprog].unreliable; 19320 if (prog_extension) { 19321 if (conservative) { 19322 bpf_log(log, 19323 "Cannot replace static functions\n"); 19324 return -EINVAL; 19325 } 19326 if (!prog->jit_requested) { 19327 bpf_log(log, 19328 "Extension programs should be JITed\n"); 19329 return -EINVAL; 19330 } 19331 } 19332 if (!tgt_prog->jited) { 19333 bpf_log(log, "Can attach to only JITed progs\n"); 19334 return -EINVAL; 19335 } 19336 if (tgt_prog->type == prog->type) { 19337 /* Cannot fentry/fexit another fentry/fexit program. 19338 * Cannot attach program extension to another extension. 19339 * It's ok to attach fentry/fexit to extension program. 19340 */ 19341 bpf_log(log, "Cannot recursively attach\n"); 19342 return -EINVAL; 19343 } 19344 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19345 prog_extension && 19346 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19347 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19348 /* Program extensions can extend all program types 19349 * except fentry/fexit. The reason is the following. 19350 * The fentry/fexit programs are used for performance 19351 * analysis, stats and can be attached to any program 19352 * type except themselves. When extension program is 19353 * replacing XDP function it is necessary to allow 19354 * performance analysis of all functions. Both original 19355 * XDP program and its program extension. Hence 19356 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19357 * allowed. If extending of fentry/fexit was allowed it 19358 * would be possible to create long call chain 19359 * fentry->extension->fentry->extension beyond 19360 * reasonable stack size. Hence extending fentry is not 19361 * allowed. 19362 */ 19363 bpf_log(log, "Cannot extend fentry/fexit\n"); 19364 return -EINVAL; 19365 } 19366 } else { 19367 if (prog_extension) { 19368 bpf_log(log, "Cannot replace kernel functions\n"); 19369 return -EINVAL; 19370 } 19371 } 19372 19373 switch (prog->expected_attach_type) { 19374 case BPF_TRACE_RAW_TP: 19375 if (tgt_prog) { 19376 bpf_log(log, 19377 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19378 return -EINVAL; 19379 } 19380 if (!btf_type_is_typedef(t)) { 19381 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19382 btf_id); 19383 return -EINVAL; 19384 } 19385 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19386 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19387 btf_id, tname); 19388 return -EINVAL; 19389 } 19390 tname += sizeof(prefix) - 1; 19391 t = btf_type_by_id(btf, t->type); 19392 if (!btf_type_is_ptr(t)) 19393 /* should never happen in valid vmlinux build */ 19394 return -EINVAL; 19395 t = btf_type_by_id(btf, t->type); 19396 if (!btf_type_is_func_proto(t)) 19397 /* should never happen in valid vmlinux build */ 19398 return -EINVAL; 19399 19400 break; 19401 case BPF_TRACE_ITER: 19402 if (!btf_type_is_func(t)) { 19403 bpf_log(log, "attach_btf_id %u is not a function\n", 19404 btf_id); 19405 return -EINVAL; 19406 } 19407 t = btf_type_by_id(btf, t->type); 19408 if (!btf_type_is_func_proto(t)) 19409 return -EINVAL; 19410 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19411 if (ret) 19412 return ret; 19413 break; 19414 default: 19415 if (!prog_extension) 19416 return -EINVAL; 19417 fallthrough; 19418 case BPF_MODIFY_RETURN: 19419 case BPF_LSM_MAC: 19420 case BPF_LSM_CGROUP: 19421 case BPF_TRACE_FENTRY: 19422 case BPF_TRACE_FEXIT: 19423 if (!btf_type_is_func(t)) { 19424 bpf_log(log, "attach_btf_id %u is not a function\n", 19425 btf_id); 19426 return -EINVAL; 19427 } 19428 if (prog_extension && 19429 btf_check_type_match(log, prog, btf, t)) 19430 return -EINVAL; 19431 t = btf_type_by_id(btf, t->type); 19432 if (!btf_type_is_func_proto(t)) 19433 return -EINVAL; 19434 19435 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19436 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19437 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19438 return -EINVAL; 19439 19440 if (tgt_prog && conservative) 19441 t = NULL; 19442 19443 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19444 if (ret < 0) 19445 return ret; 19446 19447 if (tgt_prog) { 19448 if (subprog == 0) 19449 addr = (long) tgt_prog->bpf_func; 19450 else 19451 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 19452 } else { 19453 if (btf_is_module(btf)) { 19454 mod = btf_try_get_module(btf); 19455 if (mod) 19456 addr = find_kallsyms_symbol_value(mod, tname); 19457 else 19458 addr = 0; 19459 } else { 19460 addr = kallsyms_lookup_name(tname); 19461 } 19462 if (!addr) { 19463 module_put(mod); 19464 bpf_log(log, 19465 "The address of function %s cannot be found\n", 19466 tname); 19467 return -ENOENT; 19468 } 19469 } 19470 19471 if (prog->aux->sleepable) { 19472 ret = -EINVAL; 19473 switch (prog->type) { 19474 case BPF_PROG_TYPE_TRACING: 19475 19476 /* fentry/fexit/fmod_ret progs can be sleepable if they are 19477 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 19478 */ 19479 if (!check_non_sleepable_error_inject(btf_id) && 19480 within_error_injection_list(addr)) 19481 ret = 0; 19482 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 19483 * in the fmodret id set with the KF_SLEEPABLE flag. 19484 */ 19485 else { 19486 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 19487 prog); 19488 19489 if (flags && (*flags & KF_SLEEPABLE)) 19490 ret = 0; 19491 } 19492 break; 19493 case BPF_PROG_TYPE_LSM: 19494 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 19495 * Only some of them are sleepable. 19496 */ 19497 if (bpf_lsm_is_sleepable_hook(btf_id)) 19498 ret = 0; 19499 break; 19500 default: 19501 break; 19502 } 19503 if (ret) { 19504 module_put(mod); 19505 bpf_log(log, "%s is not sleepable\n", tname); 19506 return ret; 19507 } 19508 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 19509 if (tgt_prog) { 19510 module_put(mod); 19511 bpf_log(log, "can't modify return codes of BPF programs\n"); 19512 return -EINVAL; 19513 } 19514 ret = -EINVAL; 19515 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 19516 !check_attach_modify_return(addr, tname)) 19517 ret = 0; 19518 if (ret) { 19519 module_put(mod); 19520 bpf_log(log, "%s() is not modifiable\n", tname); 19521 return ret; 19522 } 19523 } 19524 19525 break; 19526 } 19527 tgt_info->tgt_addr = addr; 19528 tgt_info->tgt_name = tname; 19529 tgt_info->tgt_type = t; 19530 tgt_info->tgt_mod = mod; 19531 return 0; 19532 } 19533 19534 BTF_SET_START(btf_id_deny) 19535 BTF_ID_UNUSED 19536 #ifdef CONFIG_SMP 19537 BTF_ID(func, migrate_disable) 19538 BTF_ID(func, migrate_enable) 19539 #endif 19540 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 19541 BTF_ID(func, rcu_read_unlock_strict) 19542 #endif 19543 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 19544 BTF_ID(func, preempt_count_add) 19545 BTF_ID(func, preempt_count_sub) 19546 #endif 19547 #ifdef CONFIG_PREEMPT_RCU 19548 BTF_ID(func, __rcu_read_lock) 19549 BTF_ID(func, __rcu_read_unlock) 19550 #endif 19551 BTF_SET_END(btf_id_deny) 19552 19553 static bool can_be_sleepable(struct bpf_prog *prog) 19554 { 19555 if (prog->type == BPF_PROG_TYPE_TRACING) { 19556 switch (prog->expected_attach_type) { 19557 case BPF_TRACE_FENTRY: 19558 case BPF_TRACE_FEXIT: 19559 case BPF_MODIFY_RETURN: 19560 case BPF_TRACE_ITER: 19561 return true; 19562 default: 19563 return false; 19564 } 19565 } 19566 return prog->type == BPF_PROG_TYPE_LSM || 19567 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 19568 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 19569 } 19570 19571 static int check_attach_btf_id(struct bpf_verifier_env *env) 19572 { 19573 struct bpf_prog *prog = env->prog; 19574 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 19575 struct bpf_attach_target_info tgt_info = {}; 19576 u32 btf_id = prog->aux->attach_btf_id; 19577 struct bpf_trampoline *tr; 19578 int ret; 19579 u64 key; 19580 19581 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 19582 if (prog->aux->sleepable) 19583 /* attach_btf_id checked to be zero already */ 19584 return 0; 19585 verbose(env, "Syscall programs can only be sleepable\n"); 19586 return -EINVAL; 19587 } 19588 19589 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 19590 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 19591 return -EINVAL; 19592 } 19593 19594 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 19595 return check_struct_ops_btf_id(env); 19596 19597 if (prog->type != BPF_PROG_TYPE_TRACING && 19598 prog->type != BPF_PROG_TYPE_LSM && 19599 prog->type != BPF_PROG_TYPE_EXT) 19600 return 0; 19601 19602 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 19603 if (ret) 19604 return ret; 19605 19606 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 19607 /* to make freplace equivalent to their targets, they need to 19608 * inherit env->ops and expected_attach_type for the rest of the 19609 * verification 19610 */ 19611 env->ops = bpf_verifier_ops[tgt_prog->type]; 19612 prog->expected_attach_type = tgt_prog->expected_attach_type; 19613 } 19614 19615 /* store info about the attachment target that will be used later */ 19616 prog->aux->attach_func_proto = tgt_info.tgt_type; 19617 prog->aux->attach_func_name = tgt_info.tgt_name; 19618 prog->aux->mod = tgt_info.tgt_mod; 19619 19620 if (tgt_prog) { 19621 prog->aux->saved_dst_prog_type = tgt_prog->type; 19622 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 19623 } 19624 19625 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 19626 prog->aux->attach_btf_trace = true; 19627 return 0; 19628 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 19629 if (!bpf_iter_prog_supported(prog)) 19630 return -EINVAL; 19631 return 0; 19632 } 19633 19634 if (prog->type == BPF_PROG_TYPE_LSM) { 19635 ret = bpf_lsm_verify_prog(&env->log, prog); 19636 if (ret < 0) 19637 return ret; 19638 } else if (prog->type == BPF_PROG_TYPE_TRACING && 19639 btf_id_set_contains(&btf_id_deny, btf_id)) { 19640 return -EINVAL; 19641 } 19642 19643 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 19644 tr = bpf_trampoline_get(key, &tgt_info); 19645 if (!tr) 19646 return -ENOMEM; 19647 19648 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 19649 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 19650 19651 prog->aux->dst_trampoline = tr; 19652 return 0; 19653 } 19654 19655 struct btf *bpf_get_btf_vmlinux(void) 19656 { 19657 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 19658 mutex_lock(&bpf_verifier_lock); 19659 if (!btf_vmlinux) 19660 btf_vmlinux = btf_parse_vmlinux(); 19661 mutex_unlock(&bpf_verifier_lock); 19662 } 19663 return btf_vmlinux; 19664 } 19665 19666 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 19667 { 19668 u64 start_time = ktime_get_ns(); 19669 struct bpf_verifier_env *env; 19670 int i, len, ret = -EINVAL, err; 19671 u32 log_true_size; 19672 bool is_priv; 19673 19674 /* no program is valid */ 19675 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 19676 return -EINVAL; 19677 19678 /* 'struct bpf_verifier_env' can be global, but since it's not small, 19679 * allocate/free it every time bpf_check() is called 19680 */ 19681 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 19682 if (!env) 19683 return -ENOMEM; 19684 19685 env->bt.env = env; 19686 19687 len = (*prog)->len; 19688 env->insn_aux_data = 19689 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 19690 ret = -ENOMEM; 19691 if (!env->insn_aux_data) 19692 goto err_free_env; 19693 for (i = 0; i < len; i++) 19694 env->insn_aux_data[i].orig_idx = i; 19695 env->prog = *prog; 19696 env->ops = bpf_verifier_ops[env->prog->type]; 19697 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 19698 is_priv = bpf_capable(); 19699 19700 bpf_get_btf_vmlinux(); 19701 19702 /* grab the mutex to protect few globals used by verifier */ 19703 if (!is_priv) 19704 mutex_lock(&bpf_verifier_lock); 19705 19706 /* user could have requested verbose verifier output 19707 * and supplied buffer to store the verification trace 19708 */ 19709 ret = bpf_vlog_init(&env->log, attr->log_level, 19710 (char __user *) (unsigned long) attr->log_buf, 19711 attr->log_size); 19712 if (ret) 19713 goto err_unlock; 19714 19715 mark_verifier_state_clean(env); 19716 19717 if (IS_ERR(btf_vmlinux)) { 19718 /* Either gcc or pahole or kernel are broken. */ 19719 verbose(env, "in-kernel BTF is malformed\n"); 19720 ret = PTR_ERR(btf_vmlinux); 19721 goto skip_full_check; 19722 } 19723 19724 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 19725 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 19726 env->strict_alignment = true; 19727 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 19728 env->strict_alignment = false; 19729 19730 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 19731 env->allow_uninit_stack = bpf_allow_uninit_stack(); 19732 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 19733 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 19734 env->bpf_capable = bpf_capable(); 19735 19736 if (is_priv) 19737 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 19738 19739 env->explored_states = kvcalloc(state_htab_size(env), 19740 sizeof(struct bpf_verifier_state_list *), 19741 GFP_USER); 19742 ret = -ENOMEM; 19743 if (!env->explored_states) 19744 goto skip_full_check; 19745 19746 ret = add_subprog_and_kfunc(env); 19747 if (ret < 0) 19748 goto skip_full_check; 19749 19750 ret = check_subprogs(env); 19751 if (ret < 0) 19752 goto skip_full_check; 19753 19754 ret = check_btf_info(env, attr, uattr); 19755 if (ret < 0) 19756 goto skip_full_check; 19757 19758 ret = check_attach_btf_id(env); 19759 if (ret) 19760 goto skip_full_check; 19761 19762 ret = resolve_pseudo_ldimm64(env); 19763 if (ret < 0) 19764 goto skip_full_check; 19765 19766 if (bpf_prog_is_offloaded(env->prog->aux)) { 19767 ret = bpf_prog_offload_verifier_prep(env->prog); 19768 if (ret) 19769 goto skip_full_check; 19770 } 19771 19772 ret = check_cfg(env); 19773 if (ret < 0) 19774 goto skip_full_check; 19775 19776 ret = do_check_subprogs(env); 19777 ret = ret ?: do_check_main(env); 19778 19779 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 19780 ret = bpf_prog_offload_finalize(env); 19781 19782 skip_full_check: 19783 kvfree(env->explored_states); 19784 19785 if (ret == 0) 19786 ret = check_max_stack_depth(env); 19787 19788 /* instruction rewrites happen after this point */ 19789 if (ret == 0) 19790 ret = optimize_bpf_loop(env); 19791 19792 if (is_priv) { 19793 if (ret == 0) 19794 opt_hard_wire_dead_code_branches(env); 19795 if (ret == 0) 19796 ret = opt_remove_dead_code(env); 19797 if (ret == 0) 19798 ret = opt_remove_nops(env); 19799 } else { 19800 if (ret == 0) 19801 sanitize_dead_code(env); 19802 } 19803 19804 if (ret == 0) 19805 /* program is valid, convert *(u32*)(ctx + off) accesses */ 19806 ret = convert_ctx_accesses(env); 19807 19808 if (ret == 0) 19809 ret = do_misc_fixups(env); 19810 19811 /* do 32-bit optimization after insn patching has done so those patched 19812 * insns could be handled correctly. 19813 */ 19814 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 19815 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 19816 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 19817 : false; 19818 } 19819 19820 if (ret == 0) 19821 ret = fixup_call_args(env); 19822 19823 env->verification_time = ktime_get_ns() - start_time; 19824 print_verification_stats(env); 19825 env->prog->aux->verified_insns = env->insn_processed; 19826 19827 /* preserve original error even if log finalization is successful */ 19828 err = bpf_vlog_finalize(&env->log, &log_true_size); 19829 if (err) 19830 ret = err; 19831 19832 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 19833 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 19834 &log_true_size, sizeof(log_true_size))) { 19835 ret = -EFAULT; 19836 goto err_release_maps; 19837 } 19838 19839 if (ret) 19840 goto err_release_maps; 19841 19842 if (env->used_map_cnt) { 19843 /* if program passed verifier, update used_maps in bpf_prog_info */ 19844 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 19845 sizeof(env->used_maps[0]), 19846 GFP_KERNEL); 19847 19848 if (!env->prog->aux->used_maps) { 19849 ret = -ENOMEM; 19850 goto err_release_maps; 19851 } 19852 19853 memcpy(env->prog->aux->used_maps, env->used_maps, 19854 sizeof(env->used_maps[0]) * env->used_map_cnt); 19855 env->prog->aux->used_map_cnt = env->used_map_cnt; 19856 } 19857 if (env->used_btf_cnt) { 19858 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 19859 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 19860 sizeof(env->used_btfs[0]), 19861 GFP_KERNEL); 19862 if (!env->prog->aux->used_btfs) { 19863 ret = -ENOMEM; 19864 goto err_release_maps; 19865 } 19866 19867 memcpy(env->prog->aux->used_btfs, env->used_btfs, 19868 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 19869 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 19870 } 19871 if (env->used_map_cnt || env->used_btf_cnt) { 19872 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 19873 * bpf_ld_imm64 instructions 19874 */ 19875 convert_pseudo_ld_imm64(env); 19876 } 19877 19878 adjust_btf_func(env); 19879 19880 err_release_maps: 19881 if (!env->prog->aux->used_maps) 19882 /* if we didn't copy map pointers into bpf_prog_info, release 19883 * them now. Otherwise free_used_maps() will release them. 19884 */ 19885 release_maps(env); 19886 if (!env->prog->aux->used_btfs) 19887 release_btfs(env); 19888 19889 /* extension progs temporarily inherit the attach_type of their targets 19890 for verification purposes, so set it back to zero before returning 19891 */ 19892 if (env->prog->type == BPF_PROG_TYPE_EXT) 19893 env->prog->expected_attach_type = 0; 19894 19895 *prog = env->prog; 19896 err_unlock: 19897 if (!is_priv) 19898 mutex_unlock(&bpf_verifier_lock); 19899 vfree(env->insn_aux_data); 19900 err_free_env: 19901 kfree(env); 19902 return ret; 19903 } 19904