1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #define BPF_LINK_TYPE(_id, _name) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 #undef BPF_LINK_TYPE 38 }; 39 40 /* bpf_check() is a static code analyzer that walks eBPF program 41 * instruction by instruction and updates register/stack state. 42 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 43 * 44 * The first pass is depth-first-search to check that the program is a DAG. 45 * It rejects the following programs: 46 * - larger than BPF_MAXINSNS insns 47 * - if loop is present (detected via back-edge) 48 * - unreachable insns exist (shouldn't be a forest. program = one function) 49 * - out of bounds or malformed jumps 50 * The second pass is all possible path descent from the 1st insn. 51 * Since it's analyzing all paths through the program, the length of the 52 * analysis is limited to 64k insn, which may be hit even if total number of 53 * insn is less then 4K, but there are too many branches that change stack/regs. 54 * Number of 'branches to be analyzed' is limited to 1k 55 * 56 * On entry to each instruction, each register has a type, and the instruction 57 * changes the types of the registers depending on instruction semantics. 58 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 59 * copied to R1. 60 * 61 * All registers are 64-bit. 62 * R0 - return register 63 * R1-R5 argument passing registers 64 * R6-R9 callee saved registers 65 * R10 - frame pointer read-only 66 * 67 * At the start of BPF program the register R1 contains a pointer to bpf_context 68 * and has type PTR_TO_CTX. 69 * 70 * Verifier tracks arithmetic operations on pointers in case: 71 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 72 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 73 * 1st insn copies R10 (which has FRAME_PTR) type into R1 74 * and 2nd arithmetic instruction is pattern matched to recognize 75 * that it wants to construct a pointer to some element within stack. 76 * So after 2nd insn, the register R1 has type PTR_TO_STACK 77 * (and -20 constant is saved for further stack bounds checking). 78 * Meaning that this reg is a pointer to stack plus known immediate constant. 79 * 80 * Most of the time the registers have SCALAR_VALUE type, which 81 * means the register has some value, but it's not a valid pointer. 82 * (like pointer plus pointer becomes SCALAR_VALUE type) 83 * 84 * When verifier sees load or store instructions the type of base register 85 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 86 * four pointer types recognized by check_mem_access() function. 87 * 88 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 89 * and the range of [ptr, ptr + map's value_size) is accessible. 90 * 91 * registers used to pass values to function calls are checked against 92 * function argument constraints. 93 * 94 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 95 * It means that the register type passed to this function must be 96 * PTR_TO_STACK and it will be used inside the function as 97 * 'pointer to map element key' 98 * 99 * For example the argument constraints for bpf_map_lookup_elem(): 100 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 101 * .arg1_type = ARG_CONST_MAP_PTR, 102 * .arg2_type = ARG_PTR_TO_MAP_KEY, 103 * 104 * ret_type says that this function returns 'pointer to map elem value or null' 105 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 106 * 2nd argument should be a pointer to stack, which will be used inside 107 * the helper function as a pointer to map element key. 108 * 109 * On the kernel side the helper function looks like: 110 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 111 * { 112 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 113 * void *key = (void *) (unsigned long) r2; 114 * void *value; 115 * 116 * here kernel can access 'key' and 'map' pointers safely, knowing that 117 * [key, key + map->key_size) bytes are valid and were initialized on 118 * the stack of eBPF program. 119 * } 120 * 121 * Corresponding eBPF program may look like: 122 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 123 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 124 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 125 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 126 * here verifier looks at prototype of map_lookup_elem() and sees: 127 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 128 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 129 * 130 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 131 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 132 * and were initialized prior to this call. 133 * If it's ok, then verifier allows this BPF_CALL insn and looks at 134 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 135 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 136 * returns either pointer to map value or NULL. 137 * 138 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 139 * insn, the register holding that pointer in the true branch changes state to 140 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 141 * branch. See check_cond_jmp_op(). 142 * 143 * After the call R0 is set to return type of the function and registers R1-R5 144 * are set to NOT_INIT to indicate that they are no longer readable. 145 * 146 * The following reference types represent a potential reference to a kernel 147 * resource which, after first being allocated, must be checked and freed by 148 * the BPF program: 149 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 150 * 151 * When the verifier sees a helper call return a reference type, it allocates a 152 * pointer id for the reference and stores it in the current function state. 153 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 154 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 155 * passes through a NULL-check conditional. For the branch wherein the state is 156 * changed to CONST_IMM, the verifier releases the reference. 157 * 158 * For each helper function that allocates a reference, such as 159 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 160 * bpf_sk_release(). When a reference type passes into the release function, 161 * the verifier also releases the reference. If any unchecked or unreleased 162 * reference remains at the end of the program, the verifier rejects it. 163 */ 164 165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 166 struct bpf_verifier_stack_elem { 167 /* verifer state is 'st' 168 * before processing instruction 'insn_idx' 169 * and after processing instruction 'prev_insn_idx' 170 */ 171 struct bpf_verifier_state st; 172 int insn_idx; 173 int prev_insn_idx; 174 struct bpf_verifier_stack_elem *next; 175 /* length of verifier log at the time this state was pushed on stack */ 176 u32 log_pos; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_KEY_POISON (1ULL << 63) 183 #define BPF_MAP_KEY_SEEN (1ULL << 62) 184 185 #define BPF_MAP_PTR_UNPRIV 1UL 186 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 187 POISON_POINTER_DELTA)) 188 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 189 190 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 191 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 192 193 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 194 { 195 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 196 } 197 198 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 199 { 200 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 201 } 202 203 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 204 const struct bpf_map *map, bool unpriv) 205 { 206 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 207 unpriv |= bpf_map_ptr_unpriv(aux); 208 aux->map_ptr_state = (unsigned long)map | 209 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 210 } 211 212 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 213 { 214 return aux->map_key_state & BPF_MAP_KEY_POISON; 215 } 216 217 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 218 { 219 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 220 } 221 222 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 223 { 224 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 225 } 226 227 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 228 { 229 bool poisoned = bpf_map_key_poisoned(aux); 230 231 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 232 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 233 } 234 235 static bool bpf_pseudo_call(const struct bpf_insn *insn) 236 { 237 return insn->code == (BPF_JMP | BPF_CALL) && 238 insn->src_reg == BPF_PSEUDO_CALL; 239 } 240 241 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 242 { 243 return insn->code == (BPF_JMP | BPF_CALL) && 244 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 245 } 246 247 struct bpf_call_arg_meta { 248 struct bpf_map *map_ptr; 249 bool raw_mode; 250 bool pkt_access; 251 u8 release_regno; 252 int regno; 253 int access_size; 254 int mem_size; 255 u64 msize_max_value; 256 int ref_obj_id; 257 int map_uid; 258 int func_id; 259 struct btf *btf; 260 u32 btf_id; 261 struct btf *ret_btf; 262 u32 ret_btf_id; 263 u32 subprogno; 264 struct bpf_map_value_off_desc *kptr_off_desc; 265 u8 uninit_dynptr_regno; 266 }; 267 268 struct btf *btf_vmlinux; 269 270 static DEFINE_MUTEX(bpf_verifier_lock); 271 272 static const struct bpf_line_info * 273 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 274 { 275 const struct bpf_line_info *linfo; 276 const struct bpf_prog *prog; 277 u32 i, nr_linfo; 278 279 prog = env->prog; 280 nr_linfo = prog->aux->nr_linfo; 281 282 if (!nr_linfo || insn_off >= prog->len) 283 return NULL; 284 285 linfo = prog->aux->linfo; 286 for (i = 1; i < nr_linfo; i++) 287 if (insn_off < linfo[i].insn_off) 288 break; 289 290 return &linfo[i - 1]; 291 } 292 293 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 294 va_list args) 295 { 296 unsigned int n; 297 298 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 299 300 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 301 "verifier log line truncated - local buffer too short\n"); 302 303 if (log->level == BPF_LOG_KERNEL) { 304 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 305 306 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 307 return; 308 } 309 310 n = min(log->len_total - log->len_used - 1, n); 311 log->kbuf[n] = '\0'; 312 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 313 log->len_used += n; 314 else 315 log->ubuf = NULL; 316 } 317 318 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 319 { 320 char zero = 0; 321 322 if (!bpf_verifier_log_needed(log)) 323 return; 324 325 log->len_used = new_pos; 326 if (put_user(zero, log->ubuf + new_pos)) 327 log->ubuf = NULL; 328 } 329 330 /* log_level controls verbosity level of eBPF verifier. 331 * bpf_verifier_log_write() is used to dump the verification trace to the log, 332 * so the user can figure out what's wrong with the program 333 */ 334 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 335 const char *fmt, ...) 336 { 337 va_list args; 338 339 if (!bpf_verifier_log_needed(&env->log)) 340 return; 341 342 va_start(args, fmt); 343 bpf_verifier_vlog(&env->log, fmt, args); 344 va_end(args); 345 } 346 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 347 348 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 349 { 350 struct bpf_verifier_env *env = private_data; 351 va_list args; 352 353 if (!bpf_verifier_log_needed(&env->log)) 354 return; 355 356 va_start(args, fmt); 357 bpf_verifier_vlog(&env->log, fmt, args); 358 va_end(args); 359 } 360 361 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 362 const char *fmt, ...) 363 { 364 va_list args; 365 366 if (!bpf_verifier_log_needed(log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool reg_type_not_null(enum bpf_reg_type type) 444 { 445 return type == PTR_TO_SOCKET || 446 type == PTR_TO_TCP_SOCK || 447 type == PTR_TO_MAP_VALUE || 448 type == PTR_TO_MAP_KEY || 449 type == PTR_TO_SOCK_COMMON; 450 } 451 452 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 453 { 454 return reg->type == PTR_TO_MAP_VALUE && 455 map_value_has_spin_lock(reg->map_ptr); 456 } 457 458 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 459 { 460 type = base_type(type); 461 return type == PTR_TO_SOCKET || type == PTR_TO_TCP_SOCK || 462 type == PTR_TO_MEM || type == PTR_TO_BTF_ID; 463 } 464 465 static bool type_is_rdonly_mem(u32 type) 466 { 467 return type & MEM_RDONLY; 468 } 469 470 static bool type_may_be_null(u32 type) 471 { 472 return type & PTR_MAYBE_NULL; 473 } 474 475 static bool is_acquire_function(enum bpf_func_id func_id, 476 const struct bpf_map *map) 477 { 478 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 479 480 if (func_id == BPF_FUNC_sk_lookup_tcp || 481 func_id == BPF_FUNC_sk_lookup_udp || 482 func_id == BPF_FUNC_skc_lookup_tcp || 483 func_id == BPF_FUNC_ringbuf_reserve || 484 func_id == BPF_FUNC_kptr_xchg) 485 return true; 486 487 if (func_id == BPF_FUNC_map_lookup_elem && 488 (map_type == BPF_MAP_TYPE_SOCKMAP || 489 map_type == BPF_MAP_TYPE_SOCKHASH)) 490 return true; 491 492 return false; 493 } 494 495 static bool is_ptr_cast_function(enum bpf_func_id func_id) 496 { 497 return func_id == BPF_FUNC_tcp_sock || 498 func_id == BPF_FUNC_sk_fullsock || 499 func_id == BPF_FUNC_skc_to_tcp_sock || 500 func_id == BPF_FUNC_skc_to_tcp6_sock || 501 func_id == BPF_FUNC_skc_to_udp6_sock || 502 func_id == BPF_FUNC_skc_to_mptcp_sock || 503 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 504 func_id == BPF_FUNC_skc_to_tcp_request_sock; 505 } 506 507 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 508 { 509 return func_id == BPF_FUNC_dynptr_data; 510 } 511 512 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 513 const struct bpf_map *map) 514 { 515 int ref_obj_uses = 0; 516 517 if (is_ptr_cast_function(func_id)) 518 ref_obj_uses++; 519 if (is_acquire_function(func_id, map)) 520 ref_obj_uses++; 521 if (is_dynptr_ref_function(func_id)) 522 ref_obj_uses++; 523 524 return ref_obj_uses > 1; 525 } 526 527 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 528 { 529 return BPF_CLASS(insn->code) == BPF_STX && 530 BPF_MODE(insn->code) == BPF_ATOMIC && 531 insn->imm == BPF_CMPXCHG; 532 } 533 534 /* string representation of 'enum bpf_reg_type' 535 * 536 * Note that reg_type_str() can not appear more than once in a single verbose() 537 * statement. 538 */ 539 static const char *reg_type_str(struct bpf_verifier_env *env, 540 enum bpf_reg_type type) 541 { 542 char postfix[16] = {0}, prefix[32] = {0}; 543 static const char * const str[] = { 544 [NOT_INIT] = "?", 545 [SCALAR_VALUE] = "scalar", 546 [PTR_TO_CTX] = "ctx", 547 [CONST_PTR_TO_MAP] = "map_ptr", 548 [PTR_TO_MAP_VALUE] = "map_value", 549 [PTR_TO_STACK] = "fp", 550 [PTR_TO_PACKET] = "pkt", 551 [PTR_TO_PACKET_META] = "pkt_meta", 552 [PTR_TO_PACKET_END] = "pkt_end", 553 [PTR_TO_FLOW_KEYS] = "flow_keys", 554 [PTR_TO_SOCKET] = "sock", 555 [PTR_TO_SOCK_COMMON] = "sock_common", 556 [PTR_TO_TCP_SOCK] = "tcp_sock", 557 [PTR_TO_TP_BUFFER] = "tp_buffer", 558 [PTR_TO_XDP_SOCK] = "xdp_sock", 559 [PTR_TO_BTF_ID] = "ptr_", 560 [PTR_TO_MEM] = "mem", 561 [PTR_TO_BUF] = "buf", 562 [PTR_TO_FUNC] = "func", 563 [PTR_TO_MAP_KEY] = "map_key", 564 }; 565 566 if (type & PTR_MAYBE_NULL) { 567 if (base_type(type) == PTR_TO_BTF_ID) 568 strncpy(postfix, "or_null_", 16); 569 else 570 strncpy(postfix, "_or_null", 16); 571 } 572 573 if (type & MEM_RDONLY) 574 strncpy(prefix, "rdonly_", 32); 575 if (type & MEM_ALLOC) 576 strncpy(prefix, "alloc_", 32); 577 if (type & MEM_USER) 578 strncpy(prefix, "user_", 32); 579 if (type & MEM_PERCPU) 580 strncpy(prefix, "percpu_", 32); 581 if (type & PTR_UNTRUSTED) 582 strncpy(prefix, "untrusted_", 32); 583 584 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 585 prefix, str[base_type(type)], postfix); 586 return env->type_str_buf; 587 } 588 589 static char slot_type_char[] = { 590 [STACK_INVALID] = '?', 591 [STACK_SPILL] = 'r', 592 [STACK_MISC] = 'm', 593 [STACK_ZERO] = '0', 594 [STACK_DYNPTR] = 'd', 595 }; 596 597 static void print_liveness(struct bpf_verifier_env *env, 598 enum bpf_reg_liveness live) 599 { 600 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 601 verbose(env, "_"); 602 if (live & REG_LIVE_READ) 603 verbose(env, "r"); 604 if (live & REG_LIVE_WRITTEN) 605 verbose(env, "w"); 606 if (live & REG_LIVE_DONE) 607 verbose(env, "D"); 608 } 609 610 static int get_spi(s32 off) 611 { 612 return (-off - 1) / BPF_REG_SIZE; 613 } 614 615 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 616 { 617 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 618 619 /* We need to check that slots between [spi - nr_slots + 1, spi] are 620 * within [0, allocated_stack). 621 * 622 * Please note that the spi grows downwards. For example, a dynptr 623 * takes the size of two stack slots; the first slot will be at 624 * spi and the second slot will be at spi - 1. 625 */ 626 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 627 } 628 629 static struct bpf_func_state *func(struct bpf_verifier_env *env, 630 const struct bpf_reg_state *reg) 631 { 632 struct bpf_verifier_state *cur = env->cur_state; 633 634 return cur->frame[reg->frameno]; 635 } 636 637 static const char *kernel_type_name(const struct btf* btf, u32 id) 638 { 639 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 640 } 641 642 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 643 { 644 env->scratched_regs |= 1U << regno; 645 } 646 647 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 648 { 649 env->scratched_stack_slots |= 1ULL << spi; 650 } 651 652 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 653 { 654 return (env->scratched_regs >> regno) & 1; 655 } 656 657 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 658 { 659 return (env->scratched_stack_slots >> regno) & 1; 660 } 661 662 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 663 { 664 return env->scratched_regs || env->scratched_stack_slots; 665 } 666 667 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 668 { 669 env->scratched_regs = 0U; 670 env->scratched_stack_slots = 0ULL; 671 } 672 673 /* Used for printing the entire verifier state. */ 674 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 675 { 676 env->scratched_regs = ~0U; 677 env->scratched_stack_slots = ~0ULL; 678 } 679 680 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 681 { 682 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 683 case DYNPTR_TYPE_LOCAL: 684 return BPF_DYNPTR_TYPE_LOCAL; 685 case DYNPTR_TYPE_RINGBUF: 686 return BPF_DYNPTR_TYPE_RINGBUF; 687 default: 688 return BPF_DYNPTR_TYPE_INVALID; 689 } 690 } 691 692 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 693 { 694 return type == BPF_DYNPTR_TYPE_RINGBUF; 695 } 696 697 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 698 enum bpf_arg_type arg_type, int insn_idx) 699 { 700 struct bpf_func_state *state = func(env, reg); 701 enum bpf_dynptr_type type; 702 int spi, i, id; 703 704 spi = get_spi(reg->off); 705 706 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 707 return -EINVAL; 708 709 for (i = 0; i < BPF_REG_SIZE; i++) { 710 state->stack[spi].slot_type[i] = STACK_DYNPTR; 711 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 712 } 713 714 type = arg_to_dynptr_type(arg_type); 715 if (type == BPF_DYNPTR_TYPE_INVALID) 716 return -EINVAL; 717 718 state->stack[spi].spilled_ptr.dynptr.first_slot = true; 719 state->stack[spi].spilled_ptr.dynptr.type = type; 720 state->stack[spi - 1].spilled_ptr.dynptr.type = type; 721 722 if (dynptr_type_refcounted(type)) { 723 /* The id is used to track proper releasing */ 724 id = acquire_reference_state(env, insn_idx); 725 if (id < 0) 726 return id; 727 728 state->stack[spi].spilled_ptr.id = id; 729 state->stack[spi - 1].spilled_ptr.id = id; 730 } 731 732 return 0; 733 } 734 735 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 736 { 737 struct bpf_func_state *state = func(env, reg); 738 int spi, i; 739 740 spi = get_spi(reg->off); 741 742 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 743 return -EINVAL; 744 745 for (i = 0; i < BPF_REG_SIZE; i++) { 746 state->stack[spi].slot_type[i] = STACK_INVALID; 747 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 748 } 749 750 /* Invalidate any slices associated with this dynptr */ 751 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 752 release_reference(env, state->stack[spi].spilled_ptr.id); 753 state->stack[spi].spilled_ptr.id = 0; 754 state->stack[spi - 1].spilled_ptr.id = 0; 755 } 756 757 state->stack[spi].spilled_ptr.dynptr.first_slot = false; 758 state->stack[spi].spilled_ptr.dynptr.type = 0; 759 state->stack[spi - 1].spilled_ptr.dynptr.type = 0; 760 761 return 0; 762 } 763 764 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 765 { 766 struct bpf_func_state *state = func(env, reg); 767 int spi = get_spi(reg->off); 768 int i; 769 770 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS)) 771 return true; 772 773 for (i = 0; i < BPF_REG_SIZE; i++) { 774 if (state->stack[spi].slot_type[i] == STACK_DYNPTR || 775 state->stack[spi - 1].slot_type[i] == STACK_DYNPTR) 776 return false; 777 } 778 779 return true; 780 } 781 782 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 783 enum bpf_arg_type arg_type) 784 { 785 struct bpf_func_state *state = func(env, reg); 786 int spi = get_spi(reg->off); 787 int i; 788 789 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 790 !state->stack[spi].spilled_ptr.dynptr.first_slot) 791 return false; 792 793 for (i = 0; i < BPF_REG_SIZE; i++) { 794 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 795 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 796 return false; 797 } 798 799 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 800 if (arg_type == ARG_PTR_TO_DYNPTR) 801 return true; 802 803 return state->stack[spi].spilled_ptr.dynptr.type == arg_to_dynptr_type(arg_type); 804 } 805 806 /* The reg state of a pointer or a bounded scalar was saved when 807 * it was spilled to the stack. 808 */ 809 static bool is_spilled_reg(const struct bpf_stack_state *stack) 810 { 811 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 812 } 813 814 static void scrub_spilled_slot(u8 *stype) 815 { 816 if (*stype != STACK_INVALID) 817 *stype = STACK_MISC; 818 } 819 820 static void print_verifier_state(struct bpf_verifier_env *env, 821 const struct bpf_func_state *state, 822 bool print_all) 823 { 824 const struct bpf_reg_state *reg; 825 enum bpf_reg_type t; 826 int i; 827 828 if (state->frameno) 829 verbose(env, " frame%d:", state->frameno); 830 for (i = 0; i < MAX_BPF_REG; i++) { 831 reg = &state->regs[i]; 832 t = reg->type; 833 if (t == NOT_INIT) 834 continue; 835 if (!print_all && !reg_scratched(env, i)) 836 continue; 837 verbose(env, " R%d", i); 838 print_liveness(env, reg->live); 839 verbose(env, "="); 840 if (t == SCALAR_VALUE && reg->precise) 841 verbose(env, "P"); 842 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 843 tnum_is_const(reg->var_off)) { 844 /* reg->off should be 0 for SCALAR_VALUE */ 845 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 846 verbose(env, "%lld", reg->var_off.value + reg->off); 847 } else { 848 const char *sep = ""; 849 850 verbose(env, "%s", reg_type_str(env, t)); 851 if (base_type(t) == PTR_TO_BTF_ID) 852 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 853 verbose(env, "("); 854 /* 855 * _a stands for append, was shortened to avoid multiline statements below. 856 * This macro is used to output a comma separated list of attributes. 857 */ 858 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 859 860 if (reg->id) 861 verbose_a("id=%d", reg->id); 862 if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id) 863 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 864 if (t != SCALAR_VALUE) 865 verbose_a("off=%d", reg->off); 866 if (type_is_pkt_pointer(t)) 867 verbose_a("r=%d", reg->range); 868 else if (base_type(t) == CONST_PTR_TO_MAP || 869 base_type(t) == PTR_TO_MAP_KEY || 870 base_type(t) == PTR_TO_MAP_VALUE) 871 verbose_a("ks=%d,vs=%d", 872 reg->map_ptr->key_size, 873 reg->map_ptr->value_size); 874 if (tnum_is_const(reg->var_off)) { 875 /* Typically an immediate SCALAR_VALUE, but 876 * could be a pointer whose offset is too big 877 * for reg->off 878 */ 879 verbose_a("imm=%llx", reg->var_off.value); 880 } else { 881 if (reg->smin_value != reg->umin_value && 882 reg->smin_value != S64_MIN) 883 verbose_a("smin=%lld", (long long)reg->smin_value); 884 if (reg->smax_value != reg->umax_value && 885 reg->smax_value != S64_MAX) 886 verbose_a("smax=%lld", (long long)reg->smax_value); 887 if (reg->umin_value != 0) 888 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 889 if (reg->umax_value != U64_MAX) 890 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 891 if (!tnum_is_unknown(reg->var_off)) { 892 char tn_buf[48]; 893 894 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 895 verbose_a("var_off=%s", tn_buf); 896 } 897 if (reg->s32_min_value != reg->smin_value && 898 reg->s32_min_value != S32_MIN) 899 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 900 if (reg->s32_max_value != reg->smax_value && 901 reg->s32_max_value != S32_MAX) 902 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 903 if (reg->u32_min_value != reg->umin_value && 904 reg->u32_min_value != U32_MIN) 905 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 906 if (reg->u32_max_value != reg->umax_value && 907 reg->u32_max_value != U32_MAX) 908 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 909 } 910 #undef verbose_a 911 912 verbose(env, ")"); 913 } 914 } 915 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 916 char types_buf[BPF_REG_SIZE + 1]; 917 bool valid = false; 918 int j; 919 920 for (j = 0; j < BPF_REG_SIZE; j++) { 921 if (state->stack[i].slot_type[j] != STACK_INVALID) 922 valid = true; 923 types_buf[j] = slot_type_char[ 924 state->stack[i].slot_type[j]]; 925 } 926 types_buf[BPF_REG_SIZE] = 0; 927 if (!valid) 928 continue; 929 if (!print_all && !stack_slot_scratched(env, i)) 930 continue; 931 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 932 print_liveness(env, state->stack[i].spilled_ptr.live); 933 if (is_spilled_reg(&state->stack[i])) { 934 reg = &state->stack[i].spilled_ptr; 935 t = reg->type; 936 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 937 if (t == SCALAR_VALUE && reg->precise) 938 verbose(env, "P"); 939 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 940 verbose(env, "%lld", reg->var_off.value + reg->off); 941 } else { 942 verbose(env, "=%s", types_buf); 943 } 944 } 945 if (state->acquired_refs && state->refs[0].id) { 946 verbose(env, " refs=%d", state->refs[0].id); 947 for (i = 1; i < state->acquired_refs; i++) 948 if (state->refs[i].id) 949 verbose(env, ",%d", state->refs[i].id); 950 } 951 if (state->in_callback_fn) 952 verbose(env, " cb"); 953 if (state->in_async_callback_fn) 954 verbose(env, " async_cb"); 955 verbose(env, "\n"); 956 mark_verifier_state_clean(env); 957 } 958 959 static inline u32 vlog_alignment(u32 pos) 960 { 961 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 962 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 963 } 964 965 static void print_insn_state(struct bpf_verifier_env *env, 966 const struct bpf_func_state *state) 967 { 968 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 969 /* remove new line character */ 970 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 971 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 972 } else { 973 verbose(env, "%d:", env->insn_idx); 974 } 975 print_verifier_state(env, state, false); 976 } 977 978 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 979 * small to hold src. This is different from krealloc since we don't want to preserve 980 * the contents of dst. 981 * 982 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 983 * not be allocated. 984 */ 985 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 986 { 987 size_t bytes; 988 989 if (ZERO_OR_NULL_PTR(src)) 990 goto out; 991 992 if (unlikely(check_mul_overflow(n, size, &bytes))) 993 return NULL; 994 995 if (ksize(dst) < bytes) { 996 kfree(dst); 997 dst = kmalloc_track_caller(bytes, flags); 998 if (!dst) 999 return NULL; 1000 } 1001 1002 memcpy(dst, src, bytes); 1003 out: 1004 return dst ? dst : ZERO_SIZE_PTR; 1005 } 1006 1007 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1008 * small to hold new_n items. new items are zeroed out if the array grows. 1009 * 1010 * Contrary to krealloc_array, does not free arr if new_n is zero. 1011 */ 1012 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1013 { 1014 if (!new_n || old_n == new_n) 1015 goto out; 1016 1017 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 1018 if (!arr) 1019 return NULL; 1020 1021 if (new_n > old_n) 1022 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1023 1024 out: 1025 return arr ? arr : ZERO_SIZE_PTR; 1026 } 1027 1028 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1029 { 1030 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1031 sizeof(struct bpf_reference_state), GFP_KERNEL); 1032 if (!dst->refs) 1033 return -ENOMEM; 1034 1035 dst->acquired_refs = src->acquired_refs; 1036 return 0; 1037 } 1038 1039 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1040 { 1041 size_t n = src->allocated_stack / BPF_REG_SIZE; 1042 1043 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1044 GFP_KERNEL); 1045 if (!dst->stack) 1046 return -ENOMEM; 1047 1048 dst->allocated_stack = src->allocated_stack; 1049 return 0; 1050 } 1051 1052 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1053 { 1054 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1055 sizeof(struct bpf_reference_state)); 1056 if (!state->refs) 1057 return -ENOMEM; 1058 1059 state->acquired_refs = n; 1060 return 0; 1061 } 1062 1063 static int grow_stack_state(struct bpf_func_state *state, int size) 1064 { 1065 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1066 1067 if (old_n >= n) 1068 return 0; 1069 1070 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1071 if (!state->stack) 1072 return -ENOMEM; 1073 1074 state->allocated_stack = size; 1075 return 0; 1076 } 1077 1078 /* Acquire a pointer id from the env and update the state->refs to include 1079 * this new pointer reference. 1080 * On success, returns a valid pointer id to associate with the register 1081 * On failure, returns a negative errno. 1082 */ 1083 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1084 { 1085 struct bpf_func_state *state = cur_func(env); 1086 int new_ofs = state->acquired_refs; 1087 int id, err; 1088 1089 err = resize_reference_state(state, state->acquired_refs + 1); 1090 if (err) 1091 return err; 1092 id = ++env->id_gen; 1093 state->refs[new_ofs].id = id; 1094 state->refs[new_ofs].insn_idx = insn_idx; 1095 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1096 1097 return id; 1098 } 1099 1100 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1101 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1102 { 1103 int i, last_idx; 1104 1105 last_idx = state->acquired_refs - 1; 1106 for (i = 0; i < state->acquired_refs; i++) { 1107 if (state->refs[i].id == ptr_id) { 1108 /* Cannot release caller references in callbacks */ 1109 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1110 return -EINVAL; 1111 if (last_idx && i != last_idx) 1112 memcpy(&state->refs[i], &state->refs[last_idx], 1113 sizeof(*state->refs)); 1114 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1115 state->acquired_refs--; 1116 return 0; 1117 } 1118 } 1119 return -EINVAL; 1120 } 1121 1122 static void free_func_state(struct bpf_func_state *state) 1123 { 1124 if (!state) 1125 return; 1126 kfree(state->refs); 1127 kfree(state->stack); 1128 kfree(state); 1129 } 1130 1131 static void clear_jmp_history(struct bpf_verifier_state *state) 1132 { 1133 kfree(state->jmp_history); 1134 state->jmp_history = NULL; 1135 state->jmp_history_cnt = 0; 1136 } 1137 1138 static void free_verifier_state(struct bpf_verifier_state *state, 1139 bool free_self) 1140 { 1141 int i; 1142 1143 for (i = 0; i <= state->curframe; i++) { 1144 free_func_state(state->frame[i]); 1145 state->frame[i] = NULL; 1146 } 1147 clear_jmp_history(state); 1148 if (free_self) 1149 kfree(state); 1150 } 1151 1152 /* copy verifier state from src to dst growing dst stack space 1153 * when necessary to accommodate larger src stack 1154 */ 1155 static int copy_func_state(struct bpf_func_state *dst, 1156 const struct bpf_func_state *src) 1157 { 1158 int err; 1159 1160 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1161 err = copy_reference_state(dst, src); 1162 if (err) 1163 return err; 1164 return copy_stack_state(dst, src); 1165 } 1166 1167 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1168 const struct bpf_verifier_state *src) 1169 { 1170 struct bpf_func_state *dst; 1171 int i, err; 1172 1173 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1174 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1175 GFP_USER); 1176 if (!dst_state->jmp_history) 1177 return -ENOMEM; 1178 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1179 1180 /* if dst has more stack frames then src frame, free them */ 1181 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1182 free_func_state(dst_state->frame[i]); 1183 dst_state->frame[i] = NULL; 1184 } 1185 dst_state->speculative = src->speculative; 1186 dst_state->curframe = src->curframe; 1187 dst_state->active_spin_lock = src->active_spin_lock; 1188 dst_state->branches = src->branches; 1189 dst_state->parent = src->parent; 1190 dst_state->first_insn_idx = src->first_insn_idx; 1191 dst_state->last_insn_idx = src->last_insn_idx; 1192 for (i = 0; i <= src->curframe; i++) { 1193 dst = dst_state->frame[i]; 1194 if (!dst) { 1195 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1196 if (!dst) 1197 return -ENOMEM; 1198 dst_state->frame[i] = dst; 1199 } 1200 err = copy_func_state(dst, src->frame[i]); 1201 if (err) 1202 return err; 1203 } 1204 return 0; 1205 } 1206 1207 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1208 { 1209 while (st) { 1210 u32 br = --st->branches; 1211 1212 /* WARN_ON(br > 1) technically makes sense here, 1213 * but see comment in push_stack(), hence: 1214 */ 1215 WARN_ONCE((int)br < 0, 1216 "BUG update_branch_counts:branches_to_explore=%d\n", 1217 br); 1218 if (br) 1219 break; 1220 st = st->parent; 1221 } 1222 } 1223 1224 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1225 int *insn_idx, bool pop_log) 1226 { 1227 struct bpf_verifier_state *cur = env->cur_state; 1228 struct bpf_verifier_stack_elem *elem, *head = env->head; 1229 int err; 1230 1231 if (env->head == NULL) 1232 return -ENOENT; 1233 1234 if (cur) { 1235 err = copy_verifier_state(cur, &head->st); 1236 if (err) 1237 return err; 1238 } 1239 if (pop_log) 1240 bpf_vlog_reset(&env->log, head->log_pos); 1241 if (insn_idx) 1242 *insn_idx = head->insn_idx; 1243 if (prev_insn_idx) 1244 *prev_insn_idx = head->prev_insn_idx; 1245 elem = head->next; 1246 free_verifier_state(&head->st, false); 1247 kfree(head); 1248 env->head = elem; 1249 env->stack_size--; 1250 return 0; 1251 } 1252 1253 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1254 int insn_idx, int prev_insn_idx, 1255 bool speculative) 1256 { 1257 struct bpf_verifier_state *cur = env->cur_state; 1258 struct bpf_verifier_stack_elem *elem; 1259 int err; 1260 1261 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1262 if (!elem) 1263 goto err; 1264 1265 elem->insn_idx = insn_idx; 1266 elem->prev_insn_idx = prev_insn_idx; 1267 elem->next = env->head; 1268 elem->log_pos = env->log.len_used; 1269 env->head = elem; 1270 env->stack_size++; 1271 err = copy_verifier_state(&elem->st, cur); 1272 if (err) 1273 goto err; 1274 elem->st.speculative |= speculative; 1275 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1276 verbose(env, "The sequence of %d jumps is too complex.\n", 1277 env->stack_size); 1278 goto err; 1279 } 1280 if (elem->st.parent) { 1281 ++elem->st.parent->branches; 1282 /* WARN_ON(branches > 2) technically makes sense here, 1283 * but 1284 * 1. speculative states will bump 'branches' for non-branch 1285 * instructions 1286 * 2. is_state_visited() heuristics may decide not to create 1287 * a new state for a sequence of branches and all such current 1288 * and cloned states will be pointing to a single parent state 1289 * which might have large 'branches' count. 1290 */ 1291 } 1292 return &elem->st; 1293 err: 1294 free_verifier_state(env->cur_state, true); 1295 env->cur_state = NULL; 1296 /* pop all elements and return */ 1297 while (!pop_stack(env, NULL, NULL, false)); 1298 return NULL; 1299 } 1300 1301 #define CALLER_SAVED_REGS 6 1302 static const int caller_saved[CALLER_SAVED_REGS] = { 1303 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1304 }; 1305 1306 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1307 struct bpf_reg_state *reg); 1308 1309 /* This helper doesn't clear reg->id */ 1310 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1311 { 1312 reg->var_off = tnum_const(imm); 1313 reg->smin_value = (s64)imm; 1314 reg->smax_value = (s64)imm; 1315 reg->umin_value = imm; 1316 reg->umax_value = imm; 1317 1318 reg->s32_min_value = (s32)imm; 1319 reg->s32_max_value = (s32)imm; 1320 reg->u32_min_value = (u32)imm; 1321 reg->u32_max_value = (u32)imm; 1322 } 1323 1324 /* Mark the unknown part of a register (variable offset or scalar value) as 1325 * known to have the value @imm. 1326 */ 1327 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1328 { 1329 /* Clear id, off, and union(map_ptr, range) */ 1330 memset(((u8 *)reg) + sizeof(reg->type), 0, 1331 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1332 ___mark_reg_known(reg, imm); 1333 } 1334 1335 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1336 { 1337 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1338 reg->s32_min_value = (s32)imm; 1339 reg->s32_max_value = (s32)imm; 1340 reg->u32_min_value = (u32)imm; 1341 reg->u32_max_value = (u32)imm; 1342 } 1343 1344 /* Mark the 'variable offset' part of a register as zero. This should be 1345 * used only on registers holding a pointer type. 1346 */ 1347 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1348 { 1349 __mark_reg_known(reg, 0); 1350 } 1351 1352 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1353 { 1354 __mark_reg_known(reg, 0); 1355 reg->type = SCALAR_VALUE; 1356 } 1357 1358 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1359 struct bpf_reg_state *regs, u32 regno) 1360 { 1361 if (WARN_ON(regno >= MAX_BPF_REG)) { 1362 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1363 /* Something bad happened, let's kill all regs */ 1364 for (regno = 0; regno < MAX_BPF_REG; regno++) 1365 __mark_reg_not_init(env, regs + regno); 1366 return; 1367 } 1368 __mark_reg_known_zero(regs + regno); 1369 } 1370 1371 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1372 { 1373 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1374 const struct bpf_map *map = reg->map_ptr; 1375 1376 if (map->inner_map_meta) { 1377 reg->type = CONST_PTR_TO_MAP; 1378 reg->map_ptr = map->inner_map_meta; 1379 /* transfer reg's id which is unique for every map_lookup_elem 1380 * as UID of the inner map. 1381 */ 1382 if (map_value_has_timer(map->inner_map_meta)) 1383 reg->map_uid = reg->id; 1384 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1385 reg->type = PTR_TO_XDP_SOCK; 1386 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1387 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1388 reg->type = PTR_TO_SOCKET; 1389 } else { 1390 reg->type = PTR_TO_MAP_VALUE; 1391 } 1392 return; 1393 } 1394 1395 reg->type &= ~PTR_MAYBE_NULL; 1396 } 1397 1398 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1399 { 1400 return type_is_pkt_pointer(reg->type); 1401 } 1402 1403 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1404 { 1405 return reg_is_pkt_pointer(reg) || 1406 reg->type == PTR_TO_PACKET_END; 1407 } 1408 1409 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1410 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1411 enum bpf_reg_type which) 1412 { 1413 /* The register can already have a range from prior markings. 1414 * This is fine as long as it hasn't been advanced from its 1415 * origin. 1416 */ 1417 return reg->type == which && 1418 reg->id == 0 && 1419 reg->off == 0 && 1420 tnum_equals_const(reg->var_off, 0); 1421 } 1422 1423 /* Reset the min/max bounds of a register */ 1424 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1425 { 1426 reg->smin_value = S64_MIN; 1427 reg->smax_value = S64_MAX; 1428 reg->umin_value = 0; 1429 reg->umax_value = U64_MAX; 1430 1431 reg->s32_min_value = S32_MIN; 1432 reg->s32_max_value = S32_MAX; 1433 reg->u32_min_value = 0; 1434 reg->u32_max_value = U32_MAX; 1435 } 1436 1437 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1438 { 1439 reg->smin_value = S64_MIN; 1440 reg->smax_value = S64_MAX; 1441 reg->umin_value = 0; 1442 reg->umax_value = U64_MAX; 1443 } 1444 1445 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1446 { 1447 reg->s32_min_value = S32_MIN; 1448 reg->s32_max_value = S32_MAX; 1449 reg->u32_min_value = 0; 1450 reg->u32_max_value = U32_MAX; 1451 } 1452 1453 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1454 { 1455 struct tnum var32_off = tnum_subreg(reg->var_off); 1456 1457 /* min signed is max(sign bit) | min(other bits) */ 1458 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1459 var32_off.value | (var32_off.mask & S32_MIN)); 1460 /* max signed is min(sign bit) | max(other bits) */ 1461 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1462 var32_off.value | (var32_off.mask & S32_MAX)); 1463 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1464 reg->u32_max_value = min(reg->u32_max_value, 1465 (u32)(var32_off.value | var32_off.mask)); 1466 } 1467 1468 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1469 { 1470 /* min signed is max(sign bit) | min(other bits) */ 1471 reg->smin_value = max_t(s64, reg->smin_value, 1472 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1473 /* max signed is min(sign bit) | max(other bits) */ 1474 reg->smax_value = min_t(s64, reg->smax_value, 1475 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1476 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1477 reg->umax_value = min(reg->umax_value, 1478 reg->var_off.value | reg->var_off.mask); 1479 } 1480 1481 static void __update_reg_bounds(struct bpf_reg_state *reg) 1482 { 1483 __update_reg32_bounds(reg); 1484 __update_reg64_bounds(reg); 1485 } 1486 1487 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1488 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1489 { 1490 /* Learn sign from signed bounds. 1491 * If we cannot cross the sign boundary, then signed and unsigned bounds 1492 * are the same, so combine. This works even in the negative case, e.g. 1493 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1494 */ 1495 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1496 reg->s32_min_value = reg->u32_min_value = 1497 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1498 reg->s32_max_value = reg->u32_max_value = 1499 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1500 return; 1501 } 1502 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1503 * boundary, so we must be careful. 1504 */ 1505 if ((s32)reg->u32_max_value >= 0) { 1506 /* Positive. We can't learn anything from the smin, but smax 1507 * is positive, hence safe. 1508 */ 1509 reg->s32_min_value = reg->u32_min_value; 1510 reg->s32_max_value = reg->u32_max_value = 1511 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1512 } else if ((s32)reg->u32_min_value < 0) { 1513 /* Negative. We can't learn anything from the smax, but smin 1514 * is negative, hence safe. 1515 */ 1516 reg->s32_min_value = reg->u32_min_value = 1517 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1518 reg->s32_max_value = reg->u32_max_value; 1519 } 1520 } 1521 1522 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1523 { 1524 /* Learn sign from signed bounds. 1525 * If we cannot cross the sign boundary, then signed and unsigned bounds 1526 * are the same, so combine. This works even in the negative case, e.g. 1527 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1528 */ 1529 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1530 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1531 reg->umin_value); 1532 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1533 reg->umax_value); 1534 return; 1535 } 1536 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1537 * boundary, so we must be careful. 1538 */ 1539 if ((s64)reg->umax_value >= 0) { 1540 /* Positive. We can't learn anything from the smin, but smax 1541 * is positive, hence safe. 1542 */ 1543 reg->smin_value = reg->umin_value; 1544 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1545 reg->umax_value); 1546 } else if ((s64)reg->umin_value < 0) { 1547 /* Negative. We can't learn anything from the smax, but smin 1548 * is negative, hence safe. 1549 */ 1550 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1551 reg->umin_value); 1552 reg->smax_value = reg->umax_value; 1553 } 1554 } 1555 1556 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1557 { 1558 __reg32_deduce_bounds(reg); 1559 __reg64_deduce_bounds(reg); 1560 } 1561 1562 /* Attempts to improve var_off based on unsigned min/max information */ 1563 static void __reg_bound_offset(struct bpf_reg_state *reg) 1564 { 1565 struct tnum var64_off = tnum_intersect(reg->var_off, 1566 tnum_range(reg->umin_value, 1567 reg->umax_value)); 1568 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1569 tnum_range(reg->u32_min_value, 1570 reg->u32_max_value)); 1571 1572 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1573 } 1574 1575 static void reg_bounds_sync(struct bpf_reg_state *reg) 1576 { 1577 /* We might have learned new bounds from the var_off. */ 1578 __update_reg_bounds(reg); 1579 /* We might have learned something about the sign bit. */ 1580 __reg_deduce_bounds(reg); 1581 /* We might have learned some bits from the bounds. */ 1582 __reg_bound_offset(reg); 1583 /* Intersecting with the old var_off might have improved our bounds 1584 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1585 * then new var_off is (0; 0x7f...fc) which improves our umax. 1586 */ 1587 __update_reg_bounds(reg); 1588 } 1589 1590 static bool __reg32_bound_s64(s32 a) 1591 { 1592 return a >= 0 && a <= S32_MAX; 1593 } 1594 1595 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1596 { 1597 reg->umin_value = reg->u32_min_value; 1598 reg->umax_value = reg->u32_max_value; 1599 1600 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1601 * be positive otherwise set to worse case bounds and refine later 1602 * from tnum. 1603 */ 1604 if (__reg32_bound_s64(reg->s32_min_value) && 1605 __reg32_bound_s64(reg->s32_max_value)) { 1606 reg->smin_value = reg->s32_min_value; 1607 reg->smax_value = reg->s32_max_value; 1608 } else { 1609 reg->smin_value = 0; 1610 reg->smax_value = U32_MAX; 1611 } 1612 } 1613 1614 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1615 { 1616 /* special case when 64-bit register has upper 32-bit register 1617 * zeroed. Typically happens after zext or <<32, >>32 sequence 1618 * allowing us to use 32-bit bounds directly, 1619 */ 1620 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1621 __reg_assign_32_into_64(reg); 1622 } else { 1623 /* Otherwise the best we can do is push lower 32bit known and 1624 * unknown bits into register (var_off set from jmp logic) 1625 * then learn as much as possible from the 64-bit tnum 1626 * known and unknown bits. The previous smin/smax bounds are 1627 * invalid here because of jmp32 compare so mark them unknown 1628 * so they do not impact tnum bounds calculation. 1629 */ 1630 __mark_reg64_unbounded(reg); 1631 } 1632 reg_bounds_sync(reg); 1633 } 1634 1635 static bool __reg64_bound_s32(s64 a) 1636 { 1637 return a >= S32_MIN && a <= S32_MAX; 1638 } 1639 1640 static bool __reg64_bound_u32(u64 a) 1641 { 1642 return a >= U32_MIN && a <= U32_MAX; 1643 } 1644 1645 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1646 { 1647 __mark_reg32_unbounded(reg); 1648 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1649 reg->s32_min_value = (s32)reg->smin_value; 1650 reg->s32_max_value = (s32)reg->smax_value; 1651 } 1652 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1653 reg->u32_min_value = (u32)reg->umin_value; 1654 reg->u32_max_value = (u32)reg->umax_value; 1655 } 1656 reg_bounds_sync(reg); 1657 } 1658 1659 /* Mark a register as having a completely unknown (scalar) value. */ 1660 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1661 struct bpf_reg_state *reg) 1662 { 1663 /* 1664 * Clear type, id, off, and union(map_ptr, range) and 1665 * padding between 'type' and union 1666 */ 1667 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1668 reg->type = SCALAR_VALUE; 1669 reg->var_off = tnum_unknown; 1670 reg->frameno = 0; 1671 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1672 __mark_reg_unbounded(reg); 1673 } 1674 1675 static void mark_reg_unknown(struct bpf_verifier_env *env, 1676 struct bpf_reg_state *regs, u32 regno) 1677 { 1678 if (WARN_ON(regno >= MAX_BPF_REG)) { 1679 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1680 /* Something bad happened, let's kill all regs except FP */ 1681 for (regno = 0; regno < BPF_REG_FP; regno++) 1682 __mark_reg_not_init(env, regs + regno); 1683 return; 1684 } 1685 __mark_reg_unknown(env, regs + regno); 1686 } 1687 1688 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1689 struct bpf_reg_state *reg) 1690 { 1691 __mark_reg_unknown(env, reg); 1692 reg->type = NOT_INIT; 1693 } 1694 1695 static void mark_reg_not_init(struct bpf_verifier_env *env, 1696 struct bpf_reg_state *regs, u32 regno) 1697 { 1698 if (WARN_ON(regno >= MAX_BPF_REG)) { 1699 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1700 /* Something bad happened, let's kill all regs except FP */ 1701 for (regno = 0; regno < BPF_REG_FP; regno++) 1702 __mark_reg_not_init(env, regs + regno); 1703 return; 1704 } 1705 __mark_reg_not_init(env, regs + regno); 1706 } 1707 1708 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1709 struct bpf_reg_state *regs, u32 regno, 1710 enum bpf_reg_type reg_type, 1711 struct btf *btf, u32 btf_id, 1712 enum bpf_type_flag flag) 1713 { 1714 if (reg_type == SCALAR_VALUE) { 1715 mark_reg_unknown(env, regs, regno); 1716 return; 1717 } 1718 mark_reg_known_zero(env, regs, regno); 1719 regs[regno].type = PTR_TO_BTF_ID | flag; 1720 regs[regno].btf = btf; 1721 regs[regno].btf_id = btf_id; 1722 } 1723 1724 #define DEF_NOT_SUBREG (0) 1725 static void init_reg_state(struct bpf_verifier_env *env, 1726 struct bpf_func_state *state) 1727 { 1728 struct bpf_reg_state *regs = state->regs; 1729 int i; 1730 1731 for (i = 0; i < MAX_BPF_REG; i++) { 1732 mark_reg_not_init(env, regs, i); 1733 regs[i].live = REG_LIVE_NONE; 1734 regs[i].parent = NULL; 1735 regs[i].subreg_def = DEF_NOT_SUBREG; 1736 } 1737 1738 /* frame pointer */ 1739 regs[BPF_REG_FP].type = PTR_TO_STACK; 1740 mark_reg_known_zero(env, regs, BPF_REG_FP); 1741 regs[BPF_REG_FP].frameno = state->frameno; 1742 } 1743 1744 #define BPF_MAIN_FUNC (-1) 1745 static void init_func_state(struct bpf_verifier_env *env, 1746 struct bpf_func_state *state, 1747 int callsite, int frameno, int subprogno) 1748 { 1749 state->callsite = callsite; 1750 state->frameno = frameno; 1751 state->subprogno = subprogno; 1752 init_reg_state(env, state); 1753 mark_verifier_state_scratched(env); 1754 } 1755 1756 /* Similar to push_stack(), but for async callbacks */ 1757 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1758 int insn_idx, int prev_insn_idx, 1759 int subprog) 1760 { 1761 struct bpf_verifier_stack_elem *elem; 1762 struct bpf_func_state *frame; 1763 1764 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1765 if (!elem) 1766 goto err; 1767 1768 elem->insn_idx = insn_idx; 1769 elem->prev_insn_idx = prev_insn_idx; 1770 elem->next = env->head; 1771 elem->log_pos = env->log.len_used; 1772 env->head = elem; 1773 env->stack_size++; 1774 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1775 verbose(env, 1776 "The sequence of %d jumps is too complex for async cb.\n", 1777 env->stack_size); 1778 goto err; 1779 } 1780 /* Unlike push_stack() do not copy_verifier_state(). 1781 * The caller state doesn't matter. 1782 * This is async callback. It starts in a fresh stack. 1783 * Initialize it similar to do_check_common(). 1784 */ 1785 elem->st.branches = 1; 1786 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1787 if (!frame) 1788 goto err; 1789 init_func_state(env, frame, 1790 BPF_MAIN_FUNC /* callsite */, 1791 0 /* frameno within this callchain */, 1792 subprog /* subprog number within this prog */); 1793 elem->st.frame[0] = frame; 1794 return &elem->st; 1795 err: 1796 free_verifier_state(env->cur_state, true); 1797 env->cur_state = NULL; 1798 /* pop all elements and return */ 1799 while (!pop_stack(env, NULL, NULL, false)); 1800 return NULL; 1801 } 1802 1803 1804 enum reg_arg_type { 1805 SRC_OP, /* register is used as source operand */ 1806 DST_OP, /* register is used as destination operand */ 1807 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1808 }; 1809 1810 static int cmp_subprogs(const void *a, const void *b) 1811 { 1812 return ((struct bpf_subprog_info *)a)->start - 1813 ((struct bpf_subprog_info *)b)->start; 1814 } 1815 1816 static int find_subprog(struct bpf_verifier_env *env, int off) 1817 { 1818 struct bpf_subprog_info *p; 1819 1820 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1821 sizeof(env->subprog_info[0]), cmp_subprogs); 1822 if (!p) 1823 return -ENOENT; 1824 return p - env->subprog_info; 1825 1826 } 1827 1828 static int add_subprog(struct bpf_verifier_env *env, int off) 1829 { 1830 int insn_cnt = env->prog->len; 1831 int ret; 1832 1833 if (off >= insn_cnt || off < 0) { 1834 verbose(env, "call to invalid destination\n"); 1835 return -EINVAL; 1836 } 1837 ret = find_subprog(env, off); 1838 if (ret >= 0) 1839 return ret; 1840 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1841 verbose(env, "too many subprograms\n"); 1842 return -E2BIG; 1843 } 1844 /* determine subprog starts. The end is one before the next starts */ 1845 env->subprog_info[env->subprog_cnt++].start = off; 1846 sort(env->subprog_info, env->subprog_cnt, 1847 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1848 return env->subprog_cnt - 1; 1849 } 1850 1851 #define MAX_KFUNC_DESCS 256 1852 #define MAX_KFUNC_BTFS 256 1853 1854 struct bpf_kfunc_desc { 1855 struct btf_func_model func_model; 1856 u32 func_id; 1857 s32 imm; 1858 u16 offset; 1859 }; 1860 1861 struct bpf_kfunc_btf { 1862 struct btf *btf; 1863 struct module *module; 1864 u16 offset; 1865 }; 1866 1867 struct bpf_kfunc_desc_tab { 1868 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1869 u32 nr_descs; 1870 }; 1871 1872 struct bpf_kfunc_btf_tab { 1873 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1874 u32 nr_descs; 1875 }; 1876 1877 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1878 { 1879 const struct bpf_kfunc_desc *d0 = a; 1880 const struct bpf_kfunc_desc *d1 = b; 1881 1882 /* func_id is not greater than BTF_MAX_TYPE */ 1883 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1884 } 1885 1886 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1887 { 1888 const struct bpf_kfunc_btf *d0 = a; 1889 const struct bpf_kfunc_btf *d1 = b; 1890 1891 return d0->offset - d1->offset; 1892 } 1893 1894 static const struct bpf_kfunc_desc * 1895 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1896 { 1897 struct bpf_kfunc_desc desc = { 1898 .func_id = func_id, 1899 .offset = offset, 1900 }; 1901 struct bpf_kfunc_desc_tab *tab; 1902 1903 tab = prog->aux->kfunc_tab; 1904 return bsearch(&desc, tab->descs, tab->nr_descs, 1905 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1906 } 1907 1908 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1909 s16 offset) 1910 { 1911 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1912 struct bpf_kfunc_btf_tab *tab; 1913 struct bpf_kfunc_btf *b; 1914 struct module *mod; 1915 struct btf *btf; 1916 int btf_fd; 1917 1918 tab = env->prog->aux->kfunc_btf_tab; 1919 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1920 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1921 if (!b) { 1922 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1923 verbose(env, "too many different module BTFs\n"); 1924 return ERR_PTR(-E2BIG); 1925 } 1926 1927 if (bpfptr_is_null(env->fd_array)) { 1928 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1929 return ERR_PTR(-EPROTO); 1930 } 1931 1932 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1933 offset * sizeof(btf_fd), 1934 sizeof(btf_fd))) 1935 return ERR_PTR(-EFAULT); 1936 1937 btf = btf_get_by_fd(btf_fd); 1938 if (IS_ERR(btf)) { 1939 verbose(env, "invalid module BTF fd specified\n"); 1940 return btf; 1941 } 1942 1943 if (!btf_is_module(btf)) { 1944 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1945 btf_put(btf); 1946 return ERR_PTR(-EINVAL); 1947 } 1948 1949 mod = btf_try_get_module(btf); 1950 if (!mod) { 1951 btf_put(btf); 1952 return ERR_PTR(-ENXIO); 1953 } 1954 1955 b = &tab->descs[tab->nr_descs++]; 1956 b->btf = btf; 1957 b->module = mod; 1958 b->offset = offset; 1959 1960 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1961 kfunc_btf_cmp_by_off, NULL); 1962 } 1963 return b->btf; 1964 } 1965 1966 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1967 { 1968 if (!tab) 1969 return; 1970 1971 while (tab->nr_descs--) { 1972 module_put(tab->descs[tab->nr_descs].module); 1973 btf_put(tab->descs[tab->nr_descs].btf); 1974 } 1975 kfree(tab); 1976 } 1977 1978 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 1979 { 1980 if (offset) { 1981 if (offset < 0) { 1982 /* In the future, this can be allowed to increase limit 1983 * of fd index into fd_array, interpreted as u16. 1984 */ 1985 verbose(env, "negative offset disallowed for kernel module function call\n"); 1986 return ERR_PTR(-EINVAL); 1987 } 1988 1989 return __find_kfunc_desc_btf(env, offset); 1990 } 1991 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1992 } 1993 1994 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1995 { 1996 const struct btf_type *func, *func_proto; 1997 struct bpf_kfunc_btf_tab *btf_tab; 1998 struct bpf_kfunc_desc_tab *tab; 1999 struct bpf_prog_aux *prog_aux; 2000 struct bpf_kfunc_desc *desc; 2001 const char *func_name; 2002 struct btf *desc_btf; 2003 unsigned long call_imm; 2004 unsigned long addr; 2005 int err; 2006 2007 prog_aux = env->prog->aux; 2008 tab = prog_aux->kfunc_tab; 2009 btf_tab = prog_aux->kfunc_btf_tab; 2010 if (!tab) { 2011 if (!btf_vmlinux) { 2012 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2013 return -ENOTSUPP; 2014 } 2015 2016 if (!env->prog->jit_requested) { 2017 verbose(env, "JIT is required for calling kernel function\n"); 2018 return -ENOTSUPP; 2019 } 2020 2021 if (!bpf_jit_supports_kfunc_call()) { 2022 verbose(env, "JIT does not support calling kernel function\n"); 2023 return -ENOTSUPP; 2024 } 2025 2026 if (!env->prog->gpl_compatible) { 2027 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2028 return -EINVAL; 2029 } 2030 2031 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2032 if (!tab) 2033 return -ENOMEM; 2034 prog_aux->kfunc_tab = tab; 2035 } 2036 2037 /* func_id == 0 is always invalid, but instead of returning an error, be 2038 * conservative and wait until the code elimination pass before returning 2039 * error, so that invalid calls that get pruned out can be in BPF programs 2040 * loaded from userspace. It is also required that offset be untouched 2041 * for such calls. 2042 */ 2043 if (!func_id && !offset) 2044 return 0; 2045 2046 if (!btf_tab && offset) { 2047 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2048 if (!btf_tab) 2049 return -ENOMEM; 2050 prog_aux->kfunc_btf_tab = btf_tab; 2051 } 2052 2053 desc_btf = find_kfunc_desc_btf(env, offset); 2054 if (IS_ERR(desc_btf)) { 2055 verbose(env, "failed to find BTF for kernel function\n"); 2056 return PTR_ERR(desc_btf); 2057 } 2058 2059 if (find_kfunc_desc(env->prog, func_id, offset)) 2060 return 0; 2061 2062 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2063 verbose(env, "too many different kernel function calls\n"); 2064 return -E2BIG; 2065 } 2066 2067 func = btf_type_by_id(desc_btf, func_id); 2068 if (!func || !btf_type_is_func(func)) { 2069 verbose(env, "kernel btf_id %u is not a function\n", 2070 func_id); 2071 return -EINVAL; 2072 } 2073 func_proto = btf_type_by_id(desc_btf, func->type); 2074 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2075 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2076 func_id); 2077 return -EINVAL; 2078 } 2079 2080 func_name = btf_name_by_offset(desc_btf, func->name_off); 2081 addr = kallsyms_lookup_name(func_name); 2082 if (!addr) { 2083 verbose(env, "cannot find address for kernel function %s\n", 2084 func_name); 2085 return -EINVAL; 2086 } 2087 2088 call_imm = BPF_CALL_IMM(addr); 2089 /* Check whether or not the relative offset overflows desc->imm */ 2090 if ((unsigned long)(s32)call_imm != call_imm) { 2091 verbose(env, "address of kernel function %s is out of range\n", 2092 func_name); 2093 return -EINVAL; 2094 } 2095 2096 desc = &tab->descs[tab->nr_descs++]; 2097 desc->func_id = func_id; 2098 desc->imm = call_imm; 2099 desc->offset = offset; 2100 err = btf_distill_func_proto(&env->log, desc_btf, 2101 func_proto, func_name, 2102 &desc->func_model); 2103 if (!err) 2104 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2105 kfunc_desc_cmp_by_id_off, NULL); 2106 return err; 2107 } 2108 2109 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2110 { 2111 const struct bpf_kfunc_desc *d0 = a; 2112 const struct bpf_kfunc_desc *d1 = b; 2113 2114 if (d0->imm > d1->imm) 2115 return 1; 2116 else if (d0->imm < d1->imm) 2117 return -1; 2118 return 0; 2119 } 2120 2121 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2122 { 2123 struct bpf_kfunc_desc_tab *tab; 2124 2125 tab = prog->aux->kfunc_tab; 2126 if (!tab) 2127 return; 2128 2129 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2130 kfunc_desc_cmp_by_imm, NULL); 2131 } 2132 2133 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2134 { 2135 return !!prog->aux->kfunc_tab; 2136 } 2137 2138 const struct btf_func_model * 2139 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2140 const struct bpf_insn *insn) 2141 { 2142 const struct bpf_kfunc_desc desc = { 2143 .imm = insn->imm, 2144 }; 2145 const struct bpf_kfunc_desc *res; 2146 struct bpf_kfunc_desc_tab *tab; 2147 2148 tab = prog->aux->kfunc_tab; 2149 res = bsearch(&desc, tab->descs, tab->nr_descs, 2150 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2151 2152 return res ? &res->func_model : NULL; 2153 } 2154 2155 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2156 { 2157 struct bpf_subprog_info *subprog = env->subprog_info; 2158 struct bpf_insn *insn = env->prog->insnsi; 2159 int i, ret, insn_cnt = env->prog->len; 2160 2161 /* Add entry function. */ 2162 ret = add_subprog(env, 0); 2163 if (ret) 2164 return ret; 2165 2166 for (i = 0; i < insn_cnt; i++, insn++) { 2167 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2168 !bpf_pseudo_kfunc_call(insn)) 2169 continue; 2170 2171 if (!env->bpf_capable) { 2172 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2173 return -EPERM; 2174 } 2175 2176 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2177 ret = add_subprog(env, i + insn->imm + 1); 2178 else 2179 ret = add_kfunc_call(env, insn->imm, insn->off); 2180 2181 if (ret < 0) 2182 return ret; 2183 } 2184 2185 /* Add a fake 'exit' subprog which could simplify subprog iteration 2186 * logic. 'subprog_cnt' should not be increased. 2187 */ 2188 subprog[env->subprog_cnt].start = insn_cnt; 2189 2190 if (env->log.level & BPF_LOG_LEVEL2) 2191 for (i = 0; i < env->subprog_cnt; i++) 2192 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2193 2194 return 0; 2195 } 2196 2197 static int check_subprogs(struct bpf_verifier_env *env) 2198 { 2199 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2200 struct bpf_subprog_info *subprog = env->subprog_info; 2201 struct bpf_insn *insn = env->prog->insnsi; 2202 int insn_cnt = env->prog->len; 2203 2204 /* now check that all jumps are within the same subprog */ 2205 subprog_start = subprog[cur_subprog].start; 2206 subprog_end = subprog[cur_subprog + 1].start; 2207 for (i = 0; i < insn_cnt; i++) { 2208 u8 code = insn[i].code; 2209 2210 if (code == (BPF_JMP | BPF_CALL) && 2211 insn[i].imm == BPF_FUNC_tail_call && 2212 insn[i].src_reg != BPF_PSEUDO_CALL) 2213 subprog[cur_subprog].has_tail_call = true; 2214 if (BPF_CLASS(code) == BPF_LD && 2215 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2216 subprog[cur_subprog].has_ld_abs = true; 2217 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2218 goto next; 2219 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2220 goto next; 2221 off = i + insn[i].off + 1; 2222 if (off < subprog_start || off >= subprog_end) { 2223 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2224 return -EINVAL; 2225 } 2226 next: 2227 if (i == subprog_end - 1) { 2228 /* to avoid fall-through from one subprog into another 2229 * the last insn of the subprog should be either exit 2230 * or unconditional jump back 2231 */ 2232 if (code != (BPF_JMP | BPF_EXIT) && 2233 code != (BPF_JMP | BPF_JA)) { 2234 verbose(env, "last insn is not an exit or jmp\n"); 2235 return -EINVAL; 2236 } 2237 subprog_start = subprog_end; 2238 cur_subprog++; 2239 if (cur_subprog < env->subprog_cnt) 2240 subprog_end = subprog[cur_subprog + 1].start; 2241 } 2242 } 2243 return 0; 2244 } 2245 2246 /* Parentage chain of this register (or stack slot) should take care of all 2247 * issues like callee-saved registers, stack slot allocation time, etc. 2248 */ 2249 static int mark_reg_read(struct bpf_verifier_env *env, 2250 const struct bpf_reg_state *state, 2251 struct bpf_reg_state *parent, u8 flag) 2252 { 2253 bool writes = parent == state->parent; /* Observe write marks */ 2254 int cnt = 0; 2255 2256 while (parent) { 2257 /* if read wasn't screened by an earlier write ... */ 2258 if (writes && state->live & REG_LIVE_WRITTEN) 2259 break; 2260 if (parent->live & REG_LIVE_DONE) { 2261 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2262 reg_type_str(env, parent->type), 2263 parent->var_off.value, parent->off); 2264 return -EFAULT; 2265 } 2266 /* The first condition is more likely to be true than the 2267 * second, checked it first. 2268 */ 2269 if ((parent->live & REG_LIVE_READ) == flag || 2270 parent->live & REG_LIVE_READ64) 2271 /* The parentage chain never changes and 2272 * this parent was already marked as LIVE_READ. 2273 * There is no need to keep walking the chain again and 2274 * keep re-marking all parents as LIVE_READ. 2275 * This case happens when the same register is read 2276 * multiple times without writes into it in-between. 2277 * Also, if parent has the stronger REG_LIVE_READ64 set, 2278 * then no need to set the weak REG_LIVE_READ32. 2279 */ 2280 break; 2281 /* ... then we depend on parent's value */ 2282 parent->live |= flag; 2283 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2284 if (flag == REG_LIVE_READ64) 2285 parent->live &= ~REG_LIVE_READ32; 2286 state = parent; 2287 parent = state->parent; 2288 writes = true; 2289 cnt++; 2290 } 2291 2292 if (env->longest_mark_read_walk < cnt) 2293 env->longest_mark_read_walk = cnt; 2294 return 0; 2295 } 2296 2297 /* This function is supposed to be used by the following 32-bit optimization 2298 * code only. It returns TRUE if the source or destination register operates 2299 * on 64-bit, otherwise return FALSE. 2300 */ 2301 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2302 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2303 { 2304 u8 code, class, op; 2305 2306 code = insn->code; 2307 class = BPF_CLASS(code); 2308 op = BPF_OP(code); 2309 if (class == BPF_JMP) { 2310 /* BPF_EXIT for "main" will reach here. Return TRUE 2311 * conservatively. 2312 */ 2313 if (op == BPF_EXIT) 2314 return true; 2315 if (op == BPF_CALL) { 2316 /* BPF to BPF call will reach here because of marking 2317 * caller saved clobber with DST_OP_NO_MARK for which we 2318 * don't care the register def because they are anyway 2319 * marked as NOT_INIT already. 2320 */ 2321 if (insn->src_reg == BPF_PSEUDO_CALL) 2322 return false; 2323 /* Helper call will reach here because of arg type 2324 * check, conservatively return TRUE. 2325 */ 2326 if (t == SRC_OP) 2327 return true; 2328 2329 return false; 2330 } 2331 } 2332 2333 if (class == BPF_ALU64 || class == BPF_JMP || 2334 /* BPF_END always use BPF_ALU class. */ 2335 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2336 return true; 2337 2338 if (class == BPF_ALU || class == BPF_JMP32) 2339 return false; 2340 2341 if (class == BPF_LDX) { 2342 if (t != SRC_OP) 2343 return BPF_SIZE(code) == BPF_DW; 2344 /* LDX source must be ptr. */ 2345 return true; 2346 } 2347 2348 if (class == BPF_STX) { 2349 /* BPF_STX (including atomic variants) has multiple source 2350 * operands, one of which is a ptr. Check whether the caller is 2351 * asking about it. 2352 */ 2353 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2354 return true; 2355 return BPF_SIZE(code) == BPF_DW; 2356 } 2357 2358 if (class == BPF_LD) { 2359 u8 mode = BPF_MODE(code); 2360 2361 /* LD_IMM64 */ 2362 if (mode == BPF_IMM) 2363 return true; 2364 2365 /* Both LD_IND and LD_ABS return 32-bit data. */ 2366 if (t != SRC_OP) 2367 return false; 2368 2369 /* Implicit ctx ptr. */ 2370 if (regno == BPF_REG_6) 2371 return true; 2372 2373 /* Explicit source could be any width. */ 2374 return true; 2375 } 2376 2377 if (class == BPF_ST) 2378 /* The only source register for BPF_ST is a ptr. */ 2379 return true; 2380 2381 /* Conservatively return true at default. */ 2382 return true; 2383 } 2384 2385 /* Return the regno defined by the insn, or -1. */ 2386 static int insn_def_regno(const struct bpf_insn *insn) 2387 { 2388 switch (BPF_CLASS(insn->code)) { 2389 case BPF_JMP: 2390 case BPF_JMP32: 2391 case BPF_ST: 2392 return -1; 2393 case BPF_STX: 2394 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2395 (insn->imm & BPF_FETCH)) { 2396 if (insn->imm == BPF_CMPXCHG) 2397 return BPF_REG_0; 2398 else 2399 return insn->src_reg; 2400 } else { 2401 return -1; 2402 } 2403 default: 2404 return insn->dst_reg; 2405 } 2406 } 2407 2408 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2409 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2410 { 2411 int dst_reg = insn_def_regno(insn); 2412 2413 if (dst_reg == -1) 2414 return false; 2415 2416 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2417 } 2418 2419 static void mark_insn_zext(struct bpf_verifier_env *env, 2420 struct bpf_reg_state *reg) 2421 { 2422 s32 def_idx = reg->subreg_def; 2423 2424 if (def_idx == DEF_NOT_SUBREG) 2425 return; 2426 2427 env->insn_aux_data[def_idx - 1].zext_dst = true; 2428 /* The dst will be zero extended, so won't be sub-register anymore. */ 2429 reg->subreg_def = DEF_NOT_SUBREG; 2430 } 2431 2432 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2433 enum reg_arg_type t) 2434 { 2435 struct bpf_verifier_state *vstate = env->cur_state; 2436 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2437 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2438 struct bpf_reg_state *reg, *regs = state->regs; 2439 bool rw64; 2440 2441 if (regno >= MAX_BPF_REG) { 2442 verbose(env, "R%d is invalid\n", regno); 2443 return -EINVAL; 2444 } 2445 2446 mark_reg_scratched(env, regno); 2447 2448 reg = ®s[regno]; 2449 rw64 = is_reg64(env, insn, regno, reg, t); 2450 if (t == SRC_OP) { 2451 /* check whether register used as source operand can be read */ 2452 if (reg->type == NOT_INIT) { 2453 verbose(env, "R%d !read_ok\n", regno); 2454 return -EACCES; 2455 } 2456 /* We don't need to worry about FP liveness because it's read-only */ 2457 if (regno == BPF_REG_FP) 2458 return 0; 2459 2460 if (rw64) 2461 mark_insn_zext(env, reg); 2462 2463 return mark_reg_read(env, reg, reg->parent, 2464 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2465 } else { 2466 /* check whether register used as dest operand can be written to */ 2467 if (regno == BPF_REG_FP) { 2468 verbose(env, "frame pointer is read only\n"); 2469 return -EACCES; 2470 } 2471 reg->live |= REG_LIVE_WRITTEN; 2472 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2473 if (t == DST_OP) 2474 mark_reg_unknown(env, regs, regno); 2475 } 2476 return 0; 2477 } 2478 2479 /* for any branch, call, exit record the history of jmps in the given state */ 2480 static int push_jmp_history(struct bpf_verifier_env *env, 2481 struct bpf_verifier_state *cur) 2482 { 2483 u32 cnt = cur->jmp_history_cnt; 2484 struct bpf_idx_pair *p; 2485 2486 cnt++; 2487 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2488 if (!p) 2489 return -ENOMEM; 2490 p[cnt - 1].idx = env->insn_idx; 2491 p[cnt - 1].prev_idx = env->prev_insn_idx; 2492 cur->jmp_history = p; 2493 cur->jmp_history_cnt = cnt; 2494 return 0; 2495 } 2496 2497 /* Backtrack one insn at a time. If idx is not at the top of recorded 2498 * history then previous instruction came from straight line execution. 2499 */ 2500 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2501 u32 *history) 2502 { 2503 u32 cnt = *history; 2504 2505 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2506 i = st->jmp_history[cnt - 1].prev_idx; 2507 (*history)--; 2508 } else { 2509 i--; 2510 } 2511 return i; 2512 } 2513 2514 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2515 { 2516 const struct btf_type *func; 2517 struct btf *desc_btf; 2518 2519 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2520 return NULL; 2521 2522 desc_btf = find_kfunc_desc_btf(data, insn->off); 2523 if (IS_ERR(desc_btf)) 2524 return "<error>"; 2525 2526 func = btf_type_by_id(desc_btf, insn->imm); 2527 return btf_name_by_offset(desc_btf, func->name_off); 2528 } 2529 2530 /* For given verifier state backtrack_insn() is called from the last insn to 2531 * the first insn. Its purpose is to compute a bitmask of registers and 2532 * stack slots that needs precision in the parent verifier state. 2533 */ 2534 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2535 u32 *reg_mask, u64 *stack_mask) 2536 { 2537 const struct bpf_insn_cbs cbs = { 2538 .cb_call = disasm_kfunc_name, 2539 .cb_print = verbose, 2540 .private_data = env, 2541 }; 2542 struct bpf_insn *insn = env->prog->insnsi + idx; 2543 u8 class = BPF_CLASS(insn->code); 2544 u8 opcode = BPF_OP(insn->code); 2545 u8 mode = BPF_MODE(insn->code); 2546 u32 dreg = 1u << insn->dst_reg; 2547 u32 sreg = 1u << insn->src_reg; 2548 u32 spi; 2549 2550 if (insn->code == 0) 2551 return 0; 2552 if (env->log.level & BPF_LOG_LEVEL2) { 2553 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2554 verbose(env, "%d: ", idx); 2555 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2556 } 2557 2558 if (class == BPF_ALU || class == BPF_ALU64) { 2559 if (!(*reg_mask & dreg)) 2560 return 0; 2561 if (opcode == BPF_MOV) { 2562 if (BPF_SRC(insn->code) == BPF_X) { 2563 /* dreg = sreg 2564 * dreg needs precision after this insn 2565 * sreg needs precision before this insn 2566 */ 2567 *reg_mask &= ~dreg; 2568 *reg_mask |= sreg; 2569 } else { 2570 /* dreg = K 2571 * dreg needs precision after this insn. 2572 * Corresponding register is already marked 2573 * as precise=true in this verifier state. 2574 * No further markings in parent are necessary 2575 */ 2576 *reg_mask &= ~dreg; 2577 } 2578 } else { 2579 if (BPF_SRC(insn->code) == BPF_X) { 2580 /* dreg += sreg 2581 * both dreg and sreg need precision 2582 * before this insn 2583 */ 2584 *reg_mask |= sreg; 2585 } /* else dreg += K 2586 * dreg still needs precision before this insn 2587 */ 2588 } 2589 } else if (class == BPF_LDX) { 2590 if (!(*reg_mask & dreg)) 2591 return 0; 2592 *reg_mask &= ~dreg; 2593 2594 /* scalars can only be spilled into stack w/o losing precision. 2595 * Load from any other memory can be zero extended. 2596 * The desire to keep that precision is already indicated 2597 * by 'precise' mark in corresponding register of this state. 2598 * No further tracking necessary. 2599 */ 2600 if (insn->src_reg != BPF_REG_FP) 2601 return 0; 2602 2603 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2604 * that [fp - off] slot contains scalar that needs to be 2605 * tracked with precision 2606 */ 2607 spi = (-insn->off - 1) / BPF_REG_SIZE; 2608 if (spi >= 64) { 2609 verbose(env, "BUG spi %d\n", spi); 2610 WARN_ONCE(1, "verifier backtracking bug"); 2611 return -EFAULT; 2612 } 2613 *stack_mask |= 1ull << spi; 2614 } else if (class == BPF_STX || class == BPF_ST) { 2615 if (*reg_mask & dreg) 2616 /* stx & st shouldn't be using _scalar_ dst_reg 2617 * to access memory. It means backtracking 2618 * encountered a case of pointer subtraction. 2619 */ 2620 return -ENOTSUPP; 2621 /* scalars can only be spilled into stack */ 2622 if (insn->dst_reg != BPF_REG_FP) 2623 return 0; 2624 spi = (-insn->off - 1) / BPF_REG_SIZE; 2625 if (spi >= 64) { 2626 verbose(env, "BUG spi %d\n", spi); 2627 WARN_ONCE(1, "verifier backtracking bug"); 2628 return -EFAULT; 2629 } 2630 if (!(*stack_mask & (1ull << spi))) 2631 return 0; 2632 *stack_mask &= ~(1ull << spi); 2633 if (class == BPF_STX) 2634 *reg_mask |= sreg; 2635 } else if (class == BPF_JMP || class == BPF_JMP32) { 2636 if (opcode == BPF_CALL) { 2637 if (insn->src_reg == BPF_PSEUDO_CALL) 2638 return -ENOTSUPP; 2639 /* regular helper call sets R0 */ 2640 *reg_mask &= ~1; 2641 if (*reg_mask & 0x3f) { 2642 /* if backtracing was looking for registers R1-R5 2643 * they should have been found already. 2644 */ 2645 verbose(env, "BUG regs %x\n", *reg_mask); 2646 WARN_ONCE(1, "verifier backtracking bug"); 2647 return -EFAULT; 2648 } 2649 } else if (opcode == BPF_EXIT) { 2650 return -ENOTSUPP; 2651 } 2652 } else if (class == BPF_LD) { 2653 if (!(*reg_mask & dreg)) 2654 return 0; 2655 *reg_mask &= ~dreg; 2656 /* It's ld_imm64 or ld_abs or ld_ind. 2657 * For ld_imm64 no further tracking of precision 2658 * into parent is necessary 2659 */ 2660 if (mode == BPF_IND || mode == BPF_ABS) 2661 /* to be analyzed */ 2662 return -ENOTSUPP; 2663 } 2664 return 0; 2665 } 2666 2667 /* the scalar precision tracking algorithm: 2668 * . at the start all registers have precise=false. 2669 * . scalar ranges are tracked as normal through alu and jmp insns. 2670 * . once precise value of the scalar register is used in: 2671 * . ptr + scalar alu 2672 * . if (scalar cond K|scalar) 2673 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2674 * backtrack through the verifier states and mark all registers and 2675 * stack slots with spilled constants that these scalar regisers 2676 * should be precise. 2677 * . during state pruning two registers (or spilled stack slots) 2678 * are equivalent if both are not precise. 2679 * 2680 * Note the verifier cannot simply walk register parentage chain, 2681 * since many different registers and stack slots could have been 2682 * used to compute single precise scalar. 2683 * 2684 * The approach of starting with precise=true for all registers and then 2685 * backtrack to mark a register as not precise when the verifier detects 2686 * that program doesn't care about specific value (e.g., when helper 2687 * takes register as ARG_ANYTHING parameter) is not safe. 2688 * 2689 * It's ok to walk single parentage chain of the verifier states. 2690 * It's possible that this backtracking will go all the way till 1st insn. 2691 * All other branches will be explored for needing precision later. 2692 * 2693 * The backtracking needs to deal with cases like: 2694 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2695 * r9 -= r8 2696 * r5 = r9 2697 * if r5 > 0x79f goto pc+7 2698 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2699 * r5 += 1 2700 * ... 2701 * call bpf_perf_event_output#25 2702 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2703 * 2704 * and this case: 2705 * r6 = 1 2706 * call foo // uses callee's r6 inside to compute r0 2707 * r0 += r6 2708 * if r0 == 0 goto 2709 * 2710 * to track above reg_mask/stack_mask needs to be independent for each frame. 2711 * 2712 * Also if parent's curframe > frame where backtracking started, 2713 * the verifier need to mark registers in both frames, otherwise callees 2714 * may incorrectly prune callers. This is similar to 2715 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2716 * 2717 * For now backtracking falls back into conservative marking. 2718 */ 2719 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2720 struct bpf_verifier_state *st) 2721 { 2722 struct bpf_func_state *func; 2723 struct bpf_reg_state *reg; 2724 int i, j; 2725 2726 /* big hammer: mark all scalars precise in this path. 2727 * pop_stack may still get !precise scalars. 2728 */ 2729 for (; st; st = st->parent) 2730 for (i = 0; i <= st->curframe; i++) { 2731 func = st->frame[i]; 2732 for (j = 0; j < BPF_REG_FP; j++) { 2733 reg = &func->regs[j]; 2734 if (reg->type != SCALAR_VALUE) 2735 continue; 2736 reg->precise = true; 2737 } 2738 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2739 if (!is_spilled_reg(&func->stack[j])) 2740 continue; 2741 reg = &func->stack[j].spilled_ptr; 2742 if (reg->type != SCALAR_VALUE) 2743 continue; 2744 reg->precise = true; 2745 } 2746 } 2747 } 2748 2749 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2750 int spi) 2751 { 2752 struct bpf_verifier_state *st = env->cur_state; 2753 int first_idx = st->first_insn_idx; 2754 int last_idx = env->insn_idx; 2755 struct bpf_func_state *func; 2756 struct bpf_reg_state *reg; 2757 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2758 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2759 bool skip_first = true; 2760 bool new_marks = false; 2761 int i, err; 2762 2763 if (!env->bpf_capable) 2764 return 0; 2765 2766 func = st->frame[st->curframe]; 2767 if (regno >= 0) { 2768 reg = &func->regs[regno]; 2769 if (reg->type != SCALAR_VALUE) { 2770 WARN_ONCE(1, "backtracing misuse"); 2771 return -EFAULT; 2772 } 2773 if (!reg->precise) 2774 new_marks = true; 2775 else 2776 reg_mask = 0; 2777 reg->precise = true; 2778 } 2779 2780 while (spi >= 0) { 2781 if (!is_spilled_reg(&func->stack[spi])) { 2782 stack_mask = 0; 2783 break; 2784 } 2785 reg = &func->stack[spi].spilled_ptr; 2786 if (reg->type != SCALAR_VALUE) { 2787 stack_mask = 0; 2788 break; 2789 } 2790 if (!reg->precise) 2791 new_marks = true; 2792 else 2793 stack_mask = 0; 2794 reg->precise = true; 2795 break; 2796 } 2797 2798 if (!new_marks) 2799 return 0; 2800 if (!reg_mask && !stack_mask) 2801 return 0; 2802 for (;;) { 2803 DECLARE_BITMAP(mask, 64); 2804 u32 history = st->jmp_history_cnt; 2805 2806 if (env->log.level & BPF_LOG_LEVEL2) 2807 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2808 for (i = last_idx;;) { 2809 if (skip_first) { 2810 err = 0; 2811 skip_first = false; 2812 } else { 2813 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2814 } 2815 if (err == -ENOTSUPP) { 2816 mark_all_scalars_precise(env, st); 2817 return 0; 2818 } else if (err) { 2819 return err; 2820 } 2821 if (!reg_mask && !stack_mask) 2822 /* Found assignment(s) into tracked register in this state. 2823 * Since this state is already marked, just return. 2824 * Nothing to be tracked further in the parent state. 2825 */ 2826 return 0; 2827 if (i == first_idx) 2828 break; 2829 i = get_prev_insn_idx(st, i, &history); 2830 if (i >= env->prog->len) { 2831 /* This can happen if backtracking reached insn 0 2832 * and there are still reg_mask or stack_mask 2833 * to backtrack. 2834 * It means the backtracking missed the spot where 2835 * particular register was initialized with a constant. 2836 */ 2837 verbose(env, "BUG backtracking idx %d\n", i); 2838 WARN_ONCE(1, "verifier backtracking bug"); 2839 return -EFAULT; 2840 } 2841 } 2842 st = st->parent; 2843 if (!st) 2844 break; 2845 2846 new_marks = false; 2847 func = st->frame[st->curframe]; 2848 bitmap_from_u64(mask, reg_mask); 2849 for_each_set_bit(i, mask, 32) { 2850 reg = &func->regs[i]; 2851 if (reg->type != SCALAR_VALUE) { 2852 reg_mask &= ~(1u << i); 2853 continue; 2854 } 2855 if (!reg->precise) 2856 new_marks = true; 2857 reg->precise = true; 2858 } 2859 2860 bitmap_from_u64(mask, stack_mask); 2861 for_each_set_bit(i, mask, 64) { 2862 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2863 /* the sequence of instructions: 2864 * 2: (bf) r3 = r10 2865 * 3: (7b) *(u64 *)(r3 -8) = r0 2866 * 4: (79) r4 = *(u64 *)(r10 -8) 2867 * doesn't contain jmps. It's backtracked 2868 * as a single block. 2869 * During backtracking insn 3 is not recognized as 2870 * stack access, so at the end of backtracking 2871 * stack slot fp-8 is still marked in stack_mask. 2872 * However the parent state may not have accessed 2873 * fp-8 and it's "unallocated" stack space. 2874 * In such case fallback to conservative. 2875 */ 2876 mark_all_scalars_precise(env, st); 2877 return 0; 2878 } 2879 2880 if (!is_spilled_reg(&func->stack[i])) { 2881 stack_mask &= ~(1ull << i); 2882 continue; 2883 } 2884 reg = &func->stack[i].spilled_ptr; 2885 if (reg->type != SCALAR_VALUE) { 2886 stack_mask &= ~(1ull << i); 2887 continue; 2888 } 2889 if (!reg->precise) 2890 new_marks = true; 2891 reg->precise = true; 2892 } 2893 if (env->log.level & BPF_LOG_LEVEL2) { 2894 verbose(env, "parent %s regs=%x stack=%llx marks:", 2895 new_marks ? "didn't have" : "already had", 2896 reg_mask, stack_mask); 2897 print_verifier_state(env, func, true); 2898 } 2899 2900 if (!reg_mask && !stack_mask) 2901 break; 2902 if (!new_marks) 2903 break; 2904 2905 last_idx = st->last_insn_idx; 2906 first_idx = st->first_insn_idx; 2907 } 2908 return 0; 2909 } 2910 2911 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2912 { 2913 return __mark_chain_precision(env, regno, -1); 2914 } 2915 2916 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2917 { 2918 return __mark_chain_precision(env, -1, spi); 2919 } 2920 2921 static bool is_spillable_regtype(enum bpf_reg_type type) 2922 { 2923 switch (base_type(type)) { 2924 case PTR_TO_MAP_VALUE: 2925 case PTR_TO_STACK: 2926 case PTR_TO_CTX: 2927 case PTR_TO_PACKET: 2928 case PTR_TO_PACKET_META: 2929 case PTR_TO_PACKET_END: 2930 case PTR_TO_FLOW_KEYS: 2931 case CONST_PTR_TO_MAP: 2932 case PTR_TO_SOCKET: 2933 case PTR_TO_SOCK_COMMON: 2934 case PTR_TO_TCP_SOCK: 2935 case PTR_TO_XDP_SOCK: 2936 case PTR_TO_BTF_ID: 2937 case PTR_TO_BUF: 2938 case PTR_TO_MEM: 2939 case PTR_TO_FUNC: 2940 case PTR_TO_MAP_KEY: 2941 return true; 2942 default: 2943 return false; 2944 } 2945 } 2946 2947 /* Does this register contain a constant zero? */ 2948 static bool register_is_null(struct bpf_reg_state *reg) 2949 { 2950 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2951 } 2952 2953 static bool register_is_const(struct bpf_reg_state *reg) 2954 { 2955 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2956 } 2957 2958 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2959 { 2960 return tnum_is_unknown(reg->var_off) && 2961 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2962 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2963 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2964 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2965 } 2966 2967 static bool register_is_bounded(struct bpf_reg_state *reg) 2968 { 2969 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2970 } 2971 2972 static bool __is_pointer_value(bool allow_ptr_leaks, 2973 const struct bpf_reg_state *reg) 2974 { 2975 if (allow_ptr_leaks) 2976 return false; 2977 2978 return reg->type != SCALAR_VALUE; 2979 } 2980 2981 static void save_register_state(struct bpf_func_state *state, 2982 int spi, struct bpf_reg_state *reg, 2983 int size) 2984 { 2985 int i; 2986 2987 state->stack[spi].spilled_ptr = *reg; 2988 if (size == BPF_REG_SIZE) 2989 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2990 2991 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2992 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2993 2994 /* size < 8 bytes spill */ 2995 for (; i; i--) 2996 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2997 } 2998 2999 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3000 * stack boundary and alignment are checked in check_mem_access() 3001 */ 3002 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3003 /* stack frame we're writing to */ 3004 struct bpf_func_state *state, 3005 int off, int size, int value_regno, 3006 int insn_idx) 3007 { 3008 struct bpf_func_state *cur; /* state of the current function */ 3009 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3010 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 3011 struct bpf_reg_state *reg = NULL; 3012 3013 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3014 if (err) 3015 return err; 3016 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3017 * so it's aligned access and [off, off + size) are within stack limits 3018 */ 3019 if (!env->allow_ptr_leaks && 3020 state->stack[spi].slot_type[0] == STACK_SPILL && 3021 size != BPF_REG_SIZE) { 3022 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3023 return -EACCES; 3024 } 3025 3026 cur = env->cur_state->frame[env->cur_state->curframe]; 3027 if (value_regno >= 0) 3028 reg = &cur->regs[value_regno]; 3029 if (!env->bypass_spec_v4) { 3030 bool sanitize = reg && is_spillable_regtype(reg->type); 3031 3032 for (i = 0; i < size; i++) { 3033 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 3034 sanitize = true; 3035 break; 3036 } 3037 } 3038 3039 if (sanitize) 3040 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3041 } 3042 3043 mark_stack_slot_scratched(env, spi); 3044 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3045 !register_is_null(reg) && env->bpf_capable) { 3046 if (dst_reg != BPF_REG_FP) { 3047 /* The backtracking logic can only recognize explicit 3048 * stack slot address like [fp - 8]. Other spill of 3049 * scalar via different register has to be conservative. 3050 * Backtrack from here and mark all registers as precise 3051 * that contributed into 'reg' being a constant. 3052 */ 3053 err = mark_chain_precision(env, value_regno); 3054 if (err) 3055 return err; 3056 } 3057 save_register_state(state, spi, reg, size); 3058 } else if (reg && is_spillable_regtype(reg->type)) { 3059 /* register containing pointer is being spilled into stack */ 3060 if (size != BPF_REG_SIZE) { 3061 verbose_linfo(env, insn_idx, "; "); 3062 verbose(env, "invalid size of register spill\n"); 3063 return -EACCES; 3064 } 3065 if (state != cur && reg->type == PTR_TO_STACK) { 3066 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3067 return -EINVAL; 3068 } 3069 save_register_state(state, spi, reg, size); 3070 } else { 3071 u8 type = STACK_MISC; 3072 3073 /* regular write of data into stack destroys any spilled ptr */ 3074 state->stack[spi].spilled_ptr.type = NOT_INIT; 3075 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3076 if (is_spilled_reg(&state->stack[spi])) 3077 for (i = 0; i < BPF_REG_SIZE; i++) 3078 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3079 3080 /* only mark the slot as written if all 8 bytes were written 3081 * otherwise read propagation may incorrectly stop too soon 3082 * when stack slots are partially written. 3083 * This heuristic means that read propagation will be 3084 * conservative, since it will add reg_live_read marks 3085 * to stack slots all the way to first state when programs 3086 * writes+reads less than 8 bytes 3087 */ 3088 if (size == BPF_REG_SIZE) 3089 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3090 3091 /* when we zero initialize stack slots mark them as such */ 3092 if (reg && register_is_null(reg)) { 3093 /* backtracking doesn't work for STACK_ZERO yet. */ 3094 err = mark_chain_precision(env, value_regno); 3095 if (err) 3096 return err; 3097 type = STACK_ZERO; 3098 } 3099 3100 /* Mark slots affected by this stack write. */ 3101 for (i = 0; i < size; i++) 3102 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3103 type; 3104 } 3105 return 0; 3106 } 3107 3108 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3109 * known to contain a variable offset. 3110 * This function checks whether the write is permitted and conservatively 3111 * tracks the effects of the write, considering that each stack slot in the 3112 * dynamic range is potentially written to. 3113 * 3114 * 'off' includes 'regno->off'. 3115 * 'value_regno' can be -1, meaning that an unknown value is being written to 3116 * the stack. 3117 * 3118 * Spilled pointers in range are not marked as written because we don't know 3119 * what's going to be actually written. This means that read propagation for 3120 * future reads cannot be terminated by this write. 3121 * 3122 * For privileged programs, uninitialized stack slots are considered 3123 * initialized by this write (even though we don't know exactly what offsets 3124 * are going to be written to). The idea is that we don't want the verifier to 3125 * reject future reads that access slots written to through variable offsets. 3126 */ 3127 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3128 /* func where register points to */ 3129 struct bpf_func_state *state, 3130 int ptr_regno, int off, int size, 3131 int value_regno, int insn_idx) 3132 { 3133 struct bpf_func_state *cur; /* state of the current function */ 3134 int min_off, max_off; 3135 int i, err; 3136 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3137 bool writing_zero = false; 3138 /* set if the fact that we're writing a zero is used to let any 3139 * stack slots remain STACK_ZERO 3140 */ 3141 bool zero_used = false; 3142 3143 cur = env->cur_state->frame[env->cur_state->curframe]; 3144 ptr_reg = &cur->regs[ptr_regno]; 3145 min_off = ptr_reg->smin_value + off; 3146 max_off = ptr_reg->smax_value + off + size; 3147 if (value_regno >= 0) 3148 value_reg = &cur->regs[value_regno]; 3149 if (value_reg && register_is_null(value_reg)) 3150 writing_zero = true; 3151 3152 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3153 if (err) 3154 return err; 3155 3156 3157 /* Variable offset writes destroy any spilled pointers in range. */ 3158 for (i = min_off; i < max_off; i++) { 3159 u8 new_type, *stype; 3160 int slot, spi; 3161 3162 slot = -i - 1; 3163 spi = slot / BPF_REG_SIZE; 3164 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3165 mark_stack_slot_scratched(env, spi); 3166 3167 if (!env->allow_ptr_leaks 3168 && *stype != NOT_INIT 3169 && *stype != SCALAR_VALUE) { 3170 /* Reject the write if there's are spilled pointers in 3171 * range. If we didn't reject here, the ptr status 3172 * would be erased below (even though not all slots are 3173 * actually overwritten), possibly opening the door to 3174 * leaks. 3175 */ 3176 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3177 insn_idx, i); 3178 return -EINVAL; 3179 } 3180 3181 /* Erase all spilled pointers. */ 3182 state->stack[spi].spilled_ptr.type = NOT_INIT; 3183 3184 /* Update the slot type. */ 3185 new_type = STACK_MISC; 3186 if (writing_zero && *stype == STACK_ZERO) { 3187 new_type = STACK_ZERO; 3188 zero_used = true; 3189 } 3190 /* If the slot is STACK_INVALID, we check whether it's OK to 3191 * pretend that it will be initialized by this write. The slot 3192 * might not actually be written to, and so if we mark it as 3193 * initialized future reads might leak uninitialized memory. 3194 * For privileged programs, we will accept such reads to slots 3195 * that may or may not be written because, if we're reject 3196 * them, the error would be too confusing. 3197 */ 3198 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3199 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3200 insn_idx, i); 3201 return -EINVAL; 3202 } 3203 *stype = new_type; 3204 } 3205 if (zero_used) { 3206 /* backtracking doesn't work for STACK_ZERO yet. */ 3207 err = mark_chain_precision(env, value_regno); 3208 if (err) 3209 return err; 3210 } 3211 return 0; 3212 } 3213 3214 /* When register 'dst_regno' is assigned some values from stack[min_off, 3215 * max_off), we set the register's type according to the types of the 3216 * respective stack slots. If all the stack values are known to be zeros, then 3217 * so is the destination reg. Otherwise, the register is considered to be 3218 * SCALAR. This function does not deal with register filling; the caller must 3219 * ensure that all spilled registers in the stack range have been marked as 3220 * read. 3221 */ 3222 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3223 /* func where src register points to */ 3224 struct bpf_func_state *ptr_state, 3225 int min_off, int max_off, int dst_regno) 3226 { 3227 struct bpf_verifier_state *vstate = env->cur_state; 3228 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3229 int i, slot, spi; 3230 u8 *stype; 3231 int zeros = 0; 3232 3233 for (i = min_off; i < max_off; i++) { 3234 slot = -i - 1; 3235 spi = slot / BPF_REG_SIZE; 3236 stype = ptr_state->stack[spi].slot_type; 3237 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3238 break; 3239 zeros++; 3240 } 3241 if (zeros == max_off - min_off) { 3242 /* any access_size read into register is zero extended, 3243 * so the whole register == const_zero 3244 */ 3245 __mark_reg_const_zero(&state->regs[dst_regno]); 3246 /* backtracking doesn't support STACK_ZERO yet, 3247 * so mark it precise here, so that later 3248 * backtracking can stop here. 3249 * Backtracking may not need this if this register 3250 * doesn't participate in pointer adjustment. 3251 * Forward propagation of precise flag is not 3252 * necessary either. This mark is only to stop 3253 * backtracking. Any register that contributed 3254 * to const 0 was marked precise before spill. 3255 */ 3256 state->regs[dst_regno].precise = true; 3257 } else { 3258 /* have read misc data from the stack */ 3259 mark_reg_unknown(env, state->regs, dst_regno); 3260 } 3261 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3262 } 3263 3264 /* Read the stack at 'off' and put the results into the register indicated by 3265 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3266 * spilled reg. 3267 * 3268 * 'dst_regno' can be -1, meaning that the read value is not going to a 3269 * register. 3270 * 3271 * The access is assumed to be within the current stack bounds. 3272 */ 3273 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3274 /* func where src register points to */ 3275 struct bpf_func_state *reg_state, 3276 int off, int size, int dst_regno) 3277 { 3278 struct bpf_verifier_state *vstate = env->cur_state; 3279 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3280 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3281 struct bpf_reg_state *reg; 3282 u8 *stype, type; 3283 3284 stype = reg_state->stack[spi].slot_type; 3285 reg = ®_state->stack[spi].spilled_ptr; 3286 3287 if (is_spilled_reg(®_state->stack[spi])) { 3288 u8 spill_size = 1; 3289 3290 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3291 spill_size++; 3292 3293 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3294 if (reg->type != SCALAR_VALUE) { 3295 verbose_linfo(env, env->insn_idx, "; "); 3296 verbose(env, "invalid size of register fill\n"); 3297 return -EACCES; 3298 } 3299 3300 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3301 if (dst_regno < 0) 3302 return 0; 3303 3304 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3305 /* The earlier check_reg_arg() has decided the 3306 * subreg_def for this insn. Save it first. 3307 */ 3308 s32 subreg_def = state->regs[dst_regno].subreg_def; 3309 3310 state->regs[dst_regno] = *reg; 3311 state->regs[dst_regno].subreg_def = subreg_def; 3312 } else { 3313 for (i = 0; i < size; i++) { 3314 type = stype[(slot - i) % BPF_REG_SIZE]; 3315 if (type == STACK_SPILL) 3316 continue; 3317 if (type == STACK_MISC) 3318 continue; 3319 verbose(env, "invalid read from stack off %d+%d size %d\n", 3320 off, i, size); 3321 return -EACCES; 3322 } 3323 mark_reg_unknown(env, state->regs, dst_regno); 3324 } 3325 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3326 return 0; 3327 } 3328 3329 if (dst_regno >= 0) { 3330 /* restore register state from stack */ 3331 state->regs[dst_regno] = *reg; 3332 /* mark reg as written since spilled pointer state likely 3333 * has its liveness marks cleared by is_state_visited() 3334 * which resets stack/reg liveness for state transitions 3335 */ 3336 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3337 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3338 /* If dst_regno==-1, the caller is asking us whether 3339 * it is acceptable to use this value as a SCALAR_VALUE 3340 * (e.g. for XADD). 3341 * We must not allow unprivileged callers to do that 3342 * with spilled pointers. 3343 */ 3344 verbose(env, "leaking pointer from stack off %d\n", 3345 off); 3346 return -EACCES; 3347 } 3348 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3349 } else { 3350 for (i = 0; i < size; i++) { 3351 type = stype[(slot - i) % BPF_REG_SIZE]; 3352 if (type == STACK_MISC) 3353 continue; 3354 if (type == STACK_ZERO) 3355 continue; 3356 verbose(env, "invalid read from stack off %d+%d size %d\n", 3357 off, i, size); 3358 return -EACCES; 3359 } 3360 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3361 if (dst_regno >= 0) 3362 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3363 } 3364 return 0; 3365 } 3366 3367 enum bpf_access_src { 3368 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3369 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3370 }; 3371 3372 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3373 int regno, int off, int access_size, 3374 bool zero_size_allowed, 3375 enum bpf_access_src type, 3376 struct bpf_call_arg_meta *meta); 3377 3378 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3379 { 3380 return cur_regs(env) + regno; 3381 } 3382 3383 /* Read the stack at 'ptr_regno + off' and put the result into the register 3384 * 'dst_regno'. 3385 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3386 * but not its variable offset. 3387 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3388 * 3389 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3390 * filling registers (i.e. reads of spilled register cannot be detected when 3391 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3392 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3393 * offset; for a fixed offset check_stack_read_fixed_off should be used 3394 * instead. 3395 */ 3396 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3397 int ptr_regno, int off, int size, int dst_regno) 3398 { 3399 /* The state of the source register. */ 3400 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3401 struct bpf_func_state *ptr_state = func(env, reg); 3402 int err; 3403 int min_off, max_off; 3404 3405 /* Note that we pass a NULL meta, so raw access will not be permitted. 3406 */ 3407 err = check_stack_range_initialized(env, ptr_regno, off, size, 3408 false, ACCESS_DIRECT, NULL); 3409 if (err) 3410 return err; 3411 3412 min_off = reg->smin_value + off; 3413 max_off = reg->smax_value + off; 3414 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3415 return 0; 3416 } 3417 3418 /* check_stack_read dispatches to check_stack_read_fixed_off or 3419 * check_stack_read_var_off. 3420 * 3421 * The caller must ensure that the offset falls within the allocated stack 3422 * bounds. 3423 * 3424 * 'dst_regno' is a register which will receive the value from the stack. It 3425 * can be -1, meaning that the read value is not going to a register. 3426 */ 3427 static int check_stack_read(struct bpf_verifier_env *env, 3428 int ptr_regno, int off, int size, 3429 int dst_regno) 3430 { 3431 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3432 struct bpf_func_state *state = func(env, reg); 3433 int err; 3434 /* Some accesses are only permitted with a static offset. */ 3435 bool var_off = !tnum_is_const(reg->var_off); 3436 3437 /* The offset is required to be static when reads don't go to a 3438 * register, in order to not leak pointers (see 3439 * check_stack_read_fixed_off). 3440 */ 3441 if (dst_regno < 0 && var_off) { 3442 char tn_buf[48]; 3443 3444 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3445 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3446 tn_buf, off, size); 3447 return -EACCES; 3448 } 3449 /* Variable offset is prohibited for unprivileged mode for simplicity 3450 * since it requires corresponding support in Spectre masking for stack 3451 * ALU. See also retrieve_ptr_limit(). 3452 */ 3453 if (!env->bypass_spec_v1 && var_off) { 3454 char tn_buf[48]; 3455 3456 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3457 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3458 ptr_regno, tn_buf); 3459 return -EACCES; 3460 } 3461 3462 if (!var_off) { 3463 off += reg->var_off.value; 3464 err = check_stack_read_fixed_off(env, state, off, size, 3465 dst_regno); 3466 } else { 3467 /* Variable offset stack reads need more conservative handling 3468 * than fixed offset ones. Note that dst_regno >= 0 on this 3469 * branch. 3470 */ 3471 err = check_stack_read_var_off(env, ptr_regno, off, size, 3472 dst_regno); 3473 } 3474 return err; 3475 } 3476 3477 3478 /* check_stack_write dispatches to check_stack_write_fixed_off or 3479 * check_stack_write_var_off. 3480 * 3481 * 'ptr_regno' is the register used as a pointer into the stack. 3482 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3483 * 'value_regno' is the register whose value we're writing to the stack. It can 3484 * be -1, meaning that we're not writing from a register. 3485 * 3486 * The caller must ensure that the offset falls within the maximum stack size. 3487 */ 3488 static int check_stack_write(struct bpf_verifier_env *env, 3489 int ptr_regno, int off, int size, 3490 int value_regno, int insn_idx) 3491 { 3492 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3493 struct bpf_func_state *state = func(env, reg); 3494 int err; 3495 3496 if (tnum_is_const(reg->var_off)) { 3497 off += reg->var_off.value; 3498 err = check_stack_write_fixed_off(env, state, off, size, 3499 value_regno, insn_idx); 3500 } else { 3501 /* Variable offset stack reads need more conservative handling 3502 * than fixed offset ones. 3503 */ 3504 err = check_stack_write_var_off(env, state, 3505 ptr_regno, off, size, 3506 value_regno, insn_idx); 3507 } 3508 return err; 3509 } 3510 3511 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3512 int off, int size, enum bpf_access_type type) 3513 { 3514 struct bpf_reg_state *regs = cur_regs(env); 3515 struct bpf_map *map = regs[regno].map_ptr; 3516 u32 cap = bpf_map_flags_to_cap(map); 3517 3518 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3519 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3520 map->value_size, off, size); 3521 return -EACCES; 3522 } 3523 3524 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3525 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3526 map->value_size, off, size); 3527 return -EACCES; 3528 } 3529 3530 return 0; 3531 } 3532 3533 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3534 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3535 int off, int size, u32 mem_size, 3536 bool zero_size_allowed) 3537 { 3538 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3539 struct bpf_reg_state *reg; 3540 3541 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3542 return 0; 3543 3544 reg = &cur_regs(env)[regno]; 3545 switch (reg->type) { 3546 case PTR_TO_MAP_KEY: 3547 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3548 mem_size, off, size); 3549 break; 3550 case PTR_TO_MAP_VALUE: 3551 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3552 mem_size, off, size); 3553 break; 3554 case PTR_TO_PACKET: 3555 case PTR_TO_PACKET_META: 3556 case PTR_TO_PACKET_END: 3557 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3558 off, size, regno, reg->id, off, mem_size); 3559 break; 3560 case PTR_TO_MEM: 3561 default: 3562 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3563 mem_size, off, size); 3564 } 3565 3566 return -EACCES; 3567 } 3568 3569 /* check read/write into a memory region with possible variable offset */ 3570 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3571 int off, int size, u32 mem_size, 3572 bool zero_size_allowed) 3573 { 3574 struct bpf_verifier_state *vstate = env->cur_state; 3575 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3576 struct bpf_reg_state *reg = &state->regs[regno]; 3577 int err; 3578 3579 /* We may have adjusted the register pointing to memory region, so we 3580 * need to try adding each of min_value and max_value to off 3581 * to make sure our theoretical access will be safe. 3582 * 3583 * The minimum value is only important with signed 3584 * comparisons where we can't assume the floor of a 3585 * value is 0. If we are using signed variables for our 3586 * index'es we need to make sure that whatever we use 3587 * will have a set floor within our range. 3588 */ 3589 if (reg->smin_value < 0 && 3590 (reg->smin_value == S64_MIN || 3591 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3592 reg->smin_value + off < 0)) { 3593 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3594 regno); 3595 return -EACCES; 3596 } 3597 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3598 mem_size, zero_size_allowed); 3599 if (err) { 3600 verbose(env, "R%d min value is outside of the allowed memory range\n", 3601 regno); 3602 return err; 3603 } 3604 3605 /* If we haven't set a max value then we need to bail since we can't be 3606 * sure we won't do bad things. 3607 * If reg->umax_value + off could overflow, treat that as unbounded too. 3608 */ 3609 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3610 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3611 regno); 3612 return -EACCES; 3613 } 3614 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3615 mem_size, zero_size_allowed); 3616 if (err) { 3617 verbose(env, "R%d max value is outside of the allowed memory range\n", 3618 regno); 3619 return err; 3620 } 3621 3622 return 0; 3623 } 3624 3625 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3626 const struct bpf_reg_state *reg, int regno, 3627 bool fixed_off_ok) 3628 { 3629 /* Access to this pointer-typed register or passing it to a helper 3630 * is only allowed in its original, unmodified form. 3631 */ 3632 3633 if (reg->off < 0) { 3634 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 3635 reg_type_str(env, reg->type), regno, reg->off); 3636 return -EACCES; 3637 } 3638 3639 if (!fixed_off_ok && reg->off) { 3640 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3641 reg_type_str(env, reg->type), regno, reg->off); 3642 return -EACCES; 3643 } 3644 3645 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3646 char tn_buf[48]; 3647 3648 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3649 verbose(env, "variable %s access var_off=%s disallowed\n", 3650 reg_type_str(env, reg->type), tn_buf); 3651 return -EACCES; 3652 } 3653 3654 return 0; 3655 } 3656 3657 int check_ptr_off_reg(struct bpf_verifier_env *env, 3658 const struct bpf_reg_state *reg, int regno) 3659 { 3660 return __check_ptr_off_reg(env, reg, regno, false); 3661 } 3662 3663 static int map_kptr_match_type(struct bpf_verifier_env *env, 3664 struct bpf_map_value_off_desc *off_desc, 3665 struct bpf_reg_state *reg, u32 regno) 3666 { 3667 const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id); 3668 int perm_flags = PTR_MAYBE_NULL; 3669 const char *reg_name = ""; 3670 3671 /* Only unreferenced case accepts untrusted pointers */ 3672 if (off_desc->type == BPF_KPTR_UNREF) 3673 perm_flags |= PTR_UNTRUSTED; 3674 3675 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 3676 goto bad_type; 3677 3678 if (!btf_is_kernel(reg->btf)) { 3679 verbose(env, "R%d must point to kernel BTF\n", regno); 3680 return -EINVAL; 3681 } 3682 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 3683 reg_name = kernel_type_name(reg->btf, reg->btf_id); 3684 3685 /* For ref_ptr case, release function check should ensure we get one 3686 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 3687 * normal store of unreferenced kptr, we must ensure var_off is zero. 3688 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 3689 * reg->off and reg->ref_obj_id are not needed here. 3690 */ 3691 if (__check_ptr_off_reg(env, reg, regno, true)) 3692 return -EACCES; 3693 3694 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 3695 * we also need to take into account the reg->off. 3696 * 3697 * We want to support cases like: 3698 * 3699 * struct foo { 3700 * struct bar br; 3701 * struct baz bz; 3702 * }; 3703 * 3704 * struct foo *v; 3705 * v = func(); // PTR_TO_BTF_ID 3706 * val->foo = v; // reg->off is zero, btf and btf_id match type 3707 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 3708 * // first member type of struct after comparison fails 3709 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 3710 * // to match type 3711 * 3712 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 3713 * is zero. We must also ensure that btf_struct_ids_match does not walk 3714 * the struct to match type against first member of struct, i.e. reject 3715 * second case from above. Hence, when type is BPF_KPTR_REF, we set 3716 * strict mode to true for type match. 3717 */ 3718 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 3719 off_desc->kptr.btf, off_desc->kptr.btf_id, 3720 off_desc->type == BPF_KPTR_REF)) 3721 goto bad_type; 3722 return 0; 3723 bad_type: 3724 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 3725 reg_type_str(env, reg->type), reg_name); 3726 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 3727 if (off_desc->type == BPF_KPTR_UNREF) 3728 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 3729 targ_name); 3730 else 3731 verbose(env, "\n"); 3732 return -EINVAL; 3733 } 3734 3735 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 3736 int value_regno, int insn_idx, 3737 struct bpf_map_value_off_desc *off_desc) 3738 { 3739 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3740 int class = BPF_CLASS(insn->code); 3741 struct bpf_reg_state *val_reg; 3742 3743 /* Things we already checked for in check_map_access and caller: 3744 * - Reject cases where variable offset may touch kptr 3745 * - size of access (must be BPF_DW) 3746 * - tnum_is_const(reg->var_off) 3747 * - off_desc->offset == off + reg->var_off.value 3748 */ 3749 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 3750 if (BPF_MODE(insn->code) != BPF_MEM) { 3751 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 3752 return -EACCES; 3753 } 3754 3755 /* We only allow loading referenced kptr, since it will be marked as 3756 * untrusted, similar to unreferenced kptr. 3757 */ 3758 if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) { 3759 verbose(env, "store to referenced kptr disallowed\n"); 3760 return -EACCES; 3761 } 3762 3763 if (class == BPF_LDX) { 3764 val_reg = reg_state(env, value_regno); 3765 /* We can simply mark the value_regno receiving the pointer 3766 * value from map as PTR_TO_BTF_ID, with the correct type. 3767 */ 3768 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf, 3769 off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 3770 /* For mark_ptr_or_null_reg */ 3771 val_reg->id = ++env->id_gen; 3772 } else if (class == BPF_STX) { 3773 val_reg = reg_state(env, value_regno); 3774 if (!register_is_null(val_reg) && 3775 map_kptr_match_type(env, off_desc, val_reg, value_regno)) 3776 return -EACCES; 3777 } else if (class == BPF_ST) { 3778 if (insn->imm) { 3779 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 3780 off_desc->offset); 3781 return -EACCES; 3782 } 3783 } else { 3784 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 3785 return -EACCES; 3786 } 3787 return 0; 3788 } 3789 3790 /* check read/write into a map element with possible variable offset */ 3791 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3792 int off, int size, bool zero_size_allowed, 3793 enum bpf_access_src src) 3794 { 3795 struct bpf_verifier_state *vstate = env->cur_state; 3796 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3797 struct bpf_reg_state *reg = &state->regs[regno]; 3798 struct bpf_map *map = reg->map_ptr; 3799 int err; 3800 3801 err = check_mem_region_access(env, regno, off, size, map->value_size, 3802 zero_size_allowed); 3803 if (err) 3804 return err; 3805 3806 if (map_value_has_spin_lock(map)) { 3807 u32 lock = map->spin_lock_off; 3808 3809 /* if any part of struct bpf_spin_lock can be touched by 3810 * load/store reject this program. 3811 * To check that [x1, x2) overlaps with [y1, y2) 3812 * it is sufficient to check x1 < y2 && y1 < x2. 3813 */ 3814 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3815 lock < reg->umax_value + off + size) { 3816 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3817 return -EACCES; 3818 } 3819 } 3820 if (map_value_has_timer(map)) { 3821 u32 t = map->timer_off; 3822 3823 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3824 t < reg->umax_value + off + size) { 3825 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3826 return -EACCES; 3827 } 3828 } 3829 if (map_value_has_kptrs(map)) { 3830 struct bpf_map_value_off *tab = map->kptr_off_tab; 3831 int i; 3832 3833 for (i = 0; i < tab->nr_off; i++) { 3834 u32 p = tab->off[i].offset; 3835 3836 if (reg->smin_value + off < p + sizeof(u64) && 3837 p < reg->umax_value + off + size) { 3838 if (src != ACCESS_DIRECT) { 3839 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 3840 return -EACCES; 3841 } 3842 if (!tnum_is_const(reg->var_off)) { 3843 verbose(env, "kptr access cannot have variable offset\n"); 3844 return -EACCES; 3845 } 3846 if (p != off + reg->var_off.value) { 3847 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 3848 p, off + reg->var_off.value); 3849 return -EACCES; 3850 } 3851 if (size != bpf_size_to_bytes(BPF_DW)) { 3852 verbose(env, "kptr access size must be BPF_DW\n"); 3853 return -EACCES; 3854 } 3855 break; 3856 } 3857 } 3858 } 3859 return err; 3860 } 3861 3862 #define MAX_PACKET_OFF 0xffff 3863 3864 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3865 const struct bpf_call_arg_meta *meta, 3866 enum bpf_access_type t) 3867 { 3868 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3869 3870 switch (prog_type) { 3871 /* Program types only with direct read access go here! */ 3872 case BPF_PROG_TYPE_LWT_IN: 3873 case BPF_PROG_TYPE_LWT_OUT: 3874 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3875 case BPF_PROG_TYPE_SK_REUSEPORT: 3876 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3877 case BPF_PROG_TYPE_CGROUP_SKB: 3878 if (t == BPF_WRITE) 3879 return false; 3880 fallthrough; 3881 3882 /* Program types with direct read + write access go here! */ 3883 case BPF_PROG_TYPE_SCHED_CLS: 3884 case BPF_PROG_TYPE_SCHED_ACT: 3885 case BPF_PROG_TYPE_XDP: 3886 case BPF_PROG_TYPE_LWT_XMIT: 3887 case BPF_PROG_TYPE_SK_SKB: 3888 case BPF_PROG_TYPE_SK_MSG: 3889 if (meta) 3890 return meta->pkt_access; 3891 3892 env->seen_direct_write = true; 3893 return true; 3894 3895 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3896 if (t == BPF_WRITE) 3897 env->seen_direct_write = true; 3898 3899 return true; 3900 3901 default: 3902 return false; 3903 } 3904 } 3905 3906 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3907 int size, bool zero_size_allowed) 3908 { 3909 struct bpf_reg_state *regs = cur_regs(env); 3910 struct bpf_reg_state *reg = ®s[regno]; 3911 int err; 3912 3913 /* We may have added a variable offset to the packet pointer; but any 3914 * reg->range we have comes after that. We are only checking the fixed 3915 * offset. 3916 */ 3917 3918 /* We don't allow negative numbers, because we aren't tracking enough 3919 * detail to prove they're safe. 3920 */ 3921 if (reg->smin_value < 0) { 3922 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3923 regno); 3924 return -EACCES; 3925 } 3926 3927 err = reg->range < 0 ? -EINVAL : 3928 __check_mem_access(env, regno, off, size, reg->range, 3929 zero_size_allowed); 3930 if (err) { 3931 verbose(env, "R%d offset is outside of the packet\n", regno); 3932 return err; 3933 } 3934 3935 /* __check_mem_access has made sure "off + size - 1" is within u16. 3936 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3937 * otherwise find_good_pkt_pointers would have refused to set range info 3938 * that __check_mem_access would have rejected this pkt access. 3939 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3940 */ 3941 env->prog->aux->max_pkt_offset = 3942 max_t(u32, env->prog->aux->max_pkt_offset, 3943 off + reg->umax_value + size - 1); 3944 3945 return err; 3946 } 3947 3948 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3949 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3950 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3951 struct btf **btf, u32 *btf_id) 3952 { 3953 struct bpf_insn_access_aux info = { 3954 .reg_type = *reg_type, 3955 .log = &env->log, 3956 }; 3957 3958 if (env->ops->is_valid_access && 3959 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3960 /* A non zero info.ctx_field_size indicates that this field is a 3961 * candidate for later verifier transformation to load the whole 3962 * field and then apply a mask when accessed with a narrower 3963 * access than actual ctx access size. A zero info.ctx_field_size 3964 * will only allow for whole field access and rejects any other 3965 * type of narrower access. 3966 */ 3967 *reg_type = info.reg_type; 3968 3969 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3970 *btf = info.btf; 3971 *btf_id = info.btf_id; 3972 } else { 3973 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3974 } 3975 /* remember the offset of last byte accessed in ctx */ 3976 if (env->prog->aux->max_ctx_offset < off + size) 3977 env->prog->aux->max_ctx_offset = off + size; 3978 return 0; 3979 } 3980 3981 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3982 return -EACCES; 3983 } 3984 3985 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3986 int size) 3987 { 3988 if (size < 0 || off < 0 || 3989 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3990 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3991 off, size); 3992 return -EACCES; 3993 } 3994 return 0; 3995 } 3996 3997 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3998 u32 regno, int off, int size, 3999 enum bpf_access_type t) 4000 { 4001 struct bpf_reg_state *regs = cur_regs(env); 4002 struct bpf_reg_state *reg = ®s[regno]; 4003 struct bpf_insn_access_aux info = {}; 4004 bool valid; 4005 4006 if (reg->smin_value < 0) { 4007 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4008 regno); 4009 return -EACCES; 4010 } 4011 4012 switch (reg->type) { 4013 case PTR_TO_SOCK_COMMON: 4014 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4015 break; 4016 case PTR_TO_SOCKET: 4017 valid = bpf_sock_is_valid_access(off, size, t, &info); 4018 break; 4019 case PTR_TO_TCP_SOCK: 4020 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4021 break; 4022 case PTR_TO_XDP_SOCK: 4023 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4024 break; 4025 default: 4026 valid = false; 4027 } 4028 4029 4030 if (valid) { 4031 env->insn_aux_data[insn_idx].ctx_field_size = 4032 info.ctx_field_size; 4033 return 0; 4034 } 4035 4036 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4037 regno, reg_type_str(env, reg->type), off, size); 4038 4039 return -EACCES; 4040 } 4041 4042 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4043 { 4044 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4045 } 4046 4047 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4048 { 4049 const struct bpf_reg_state *reg = reg_state(env, regno); 4050 4051 return reg->type == PTR_TO_CTX; 4052 } 4053 4054 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4055 { 4056 const struct bpf_reg_state *reg = reg_state(env, regno); 4057 4058 return type_is_sk_pointer(reg->type); 4059 } 4060 4061 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4062 { 4063 const struct bpf_reg_state *reg = reg_state(env, regno); 4064 4065 return type_is_pkt_pointer(reg->type); 4066 } 4067 4068 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4069 { 4070 const struct bpf_reg_state *reg = reg_state(env, regno); 4071 4072 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4073 return reg->type == PTR_TO_FLOW_KEYS; 4074 } 4075 4076 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4077 const struct bpf_reg_state *reg, 4078 int off, int size, bool strict) 4079 { 4080 struct tnum reg_off; 4081 int ip_align; 4082 4083 /* Byte size accesses are always allowed. */ 4084 if (!strict || size == 1) 4085 return 0; 4086 4087 /* For platforms that do not have a Kconfig enabling 4088 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4089 * NET_IP_ALIGN is universally set to '2'. And on platforms 4090 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4091 * to this code only in strict mode where we want to emulate 4092 * the NET_IP_ALIGN==2 checking. Therefore use an 4093 * unconditional IP align value of '2'. 4094 */ 4095 ip_align = 2; 4096 4097 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4098 if (!tnum_is_aligned(reg_off, size)) { 4099 char tn_buf[48]; 4100 4101 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4102 verbose(env, 4103 "misaligned packet access off %d+%s+%d+%d size %d\n", 4104 ip_align, tn_buf, reg->off, off, size); 4105 return -EACCES; 4106 } 4107 4108 return 0; 4109 } 4110 4111 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4112 const struct bpf_reg_state *reg, 4113 const char *pointer_desc, 4114 int off, int size, bool strict) 4115 { 4116 struct tnum reg_off; 4117 4118 /* Byte size accesses are always allowed. */ 4119 if (!strict || size == 1) 4120 return 0; 4121 4122 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4123 if (!tnum_is_aligned(reg_off, size)) { 4124 char tn_buf[48]; 4125 4126 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4127 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4128 pointer_desc, tn_buf, reg->off, off, size); 4129 return -EACCES; 4130 } 4131 4132 return 0; 4133 } 4134 4135 static int check_ptr_alignment(struct bpf_verifier_env *env, 4136 const struct bpf_reg_state *reg, int off, 4137 int size, bool strict_alignment_once) 4138 { 4139 bool strict = env->strict_alignment || strict_alignment_once; 4140 const char *pointer_desc = ""; 4141 4142 switch (reg->type) { 4143 case PTR_TO_PACKET: 4144 case PTR_TO_PACKET_META: 4145 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4146 * right in front, treat it the very same way. 4147 */ 4148 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4149 case PTR_TO_FLOW_KEYS: 4150 pointer_desc = "flow keys "; 4151 break; 4152 case PTR_TO_MAP_KEY: 4153 pointer_desc = "key "; 4154 break; 4155 case PTR_TO_MAP_VALUE: 4156 pointer_desc = "value "; 4157 break; 4158 case PTR_TO_CTX: 4159 pointer_desc = "context "; 4160 break; 4161 case PTR_TO_STACK: 4162 pointer_desc = "stack "; 4163 /* The stack spill tracking logic in check_stack_write_fixed_off() 4164 * and check_stack_read_fixed_off() relies on stack accesses being 4165 * aligned. 4166 */ 4167 strict = true; 4168 break; 4169 case PTR_TO_SOCKET: 4170 pointer_desc = "sock "; 4171 break; 4172 case PTR_TO_SOCK_COMMON: 4173 pointer_desc = "sock_common "; 4174 break; 4175 case PTR_TO_TCP_SOCK: 4176 pointer_desc = "tcp_sock "; 4177 break; 4178 case PTR_TO_XDP_SOCK: 4179 pointer_desc = "xdp_sock "; 4180 break; 4181 default: 4182 break; 4183 } 4184 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4185 strict); 4186 } 4187 4188 static int update_stack_depth(struct bpf_verifier_env *env, 4189 const struct bpf_func_state *func, 4190 int off) 4191 { 4192 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4193 4194 if (stack >= -off) 4195 return 0; 4196 4197 /* update known max for given subprogram */ 4198 env->subprog_info[func->subprogno].stack_depth = -off; 4199 return 0; 4200 } 4201 4202 /* starting from main bpf function walk all instructions of the function 4203 * and recursively walk all callees that given function can call. 4204 * Ignore jump and exit insns. 4205 * Since recursion is prevented by check_cfg() this algorithm 4206 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4207 */ 4208 static int check_max_stack_depth(struct bpf_verifier_env *env) 4209 { 4210 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4211 struct bpf_subprog_info *subprog = env->subprog_info; 4212 struct bpf_insn *insn = env->prog->insnsi; 4213 bool tail_call_reachable = false; 4214 int ret_insn[MAX_CALL_FRAMES]; 4215 int ret_prog[MAX_CALL_FRAMES]; 4216 int j; 4217 4218 process_func: 4219 /* protect against potential stack overflow that might happen when 4220 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4221 * depth for such case down to 256 so that the worst case scenario 4222 * would result in 8k stack size (32 which is tailcall limit * 256 = 4223 * 8k). 4224 * 4225 * To get the idea what might happen, see an example: 4226 * func1 -> sub rsp, 128 4227 * subfunc1 -> sub rsp, 256 4228 * tailcall1 -> add rsp, 256 4229 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4230 * subfunc2 -> sub rsp, 64 4231 * subfunc22 -> sub rsp, 128 4232 * tailcall2 -> add rsp, 128 4233 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4234 * 4235 * tailcall will unwind the current stack frame but it will not get rid 4236 * of caller's stack as shown on the example above. 4237 */ 4238 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4239 verbose(env, 4240 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4241 depth); 4242 return -EACCES; 4243 } 4244 /* round up to 32-bytes, since this is granularity 4245 * of interpreter stack size 4246 */ 4247 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4248 if (depth > MAX_BPF_STACK) { 4249 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4250 frame + 1, depth); 4251 return -EACCES; 4252 } 4253 continue_func: 4254 subprog_end = subprog[idx + 1].start; 4255 for (; i < subprog_end; i++) { 4256 int next_insn; 4257 4258 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4259 continue; 4260 /* remember insn and function to return to */ 4261 ret_insn[frame] = i + 1; 4262 ret_prog[frame] = idx; 4263 4264 /* find the callee */ 4265 next_insn = i + insn[i].imm + 1; 4266 idx = find_subprog(env, next_insn); 4267 if (idx < 0) { 4268 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4269 next_insn); 4270 return -EFAULT; 4271 } 4272 if (subprog[idx].is_async_cb) { 4273 if (subprog[idx].has_tail_call) { 4274 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4275 return -EFAULT; 4276 } 4277 /* async callbacks don't increase bpf prog stack size */ 4278 continue; 4279 } 4280 i = next_insn; 4281 4282 if (subprog[idx].has_tail_call) 4283 tail_call_reachable = true; 4284 4285 frame++; 4286 if (frame >= MAX_CALL_FRAMES) { 4287 verbose(env, "the call stack of %d frames is too deep !\n", 4288 frame); 4289 return -E2BIG; 4290 } 4291 goto process_func; 4292 } 4293 /* if tail call got detected across bpf2bpf calls then mark each of the 4294 * currently present subprog frames as tail call reachable subprogs; 4295 * this info will be utilized by JIT so that we will be preserving the 4296 * tail call counter throughout bpf2bpf calls combined with tailcalls 4297 */ 4298 if (tail_call_reachable) 4299 for (j = 0; j < frame; j++) 4300 subprog[ret_prog[j]].tail_call_reachable = true; 4301 if (subprog[0].tail_call_reachable) 4302 env->prog->aux->tail_call_reachable = true; 4303 4304 /* end of for() loop means the last insn of the 'subprog' 4305 * was reached. Doesn't matter whether it was JA or EXIT 4306 */ 4307 if (frame == 0) 4308 return 0; 4309 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4310 frame--; 4311 i = ret_insn[frame]; 4312 idx = ret_prog[frame]; 4313 goto continue_func; 4314 } 4315 4316 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4317 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4318 const struct bpf_insn *insn, int idx) 4319 { 4320 int start = idx + insn->imm + 1, subprog; 4321 4322 subprog = find_subprog(env, start); 4323 if (subprog < 0) { 4324 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4325 start); 4326 return -EFAULT; 4327 } 4328 return env->subprog_info[subprog].stack_depth; 4329 } 4330 #endif 4331 4332 static int __check_buffer_access(struct bpf_verifier_env *env, 4333 const char *buf_info, 4334 const struct bpf_reg_state *reg, 4335 int regno, int off, int size) 4336 { 4337 if (off < 0) { 4338 verbose(env, 4339 "R%d invalid %s buffer access: off=%d, size=%d\n", 4340 regno, buf_info, off, size); 4341 return -EACCES; 4342 } 4343 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4344 char tn_buf[48]; 4345 4346 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4347 verbose(env, 4348 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4349 regno, off, tn_buf); 4350 return -EACCES; 4351 } 4352 4353 return 0; 4354 } 4355 4356 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4357 const struct bpf_reg_state *reg, 4358 int regno, int off, int size) 4359 { 4360 int err; 4361 4362 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4363 if (err) 4364 return err; 4365 4366 if (off + size > env->prog->aux->max_tp_access) 4367 env->prog->aux->max_tp_access = off + size; 4368 4369 return 0; 4370 } 4371 4372 static int check_buffer_access(struct bpf_verifier_env *env, 4373 const struct bpf_reg_state *reg, 4374 int regno, int off, int size, 4375 bool zero_size_allowed, 4376 u32 *max_access) 4377 { 4378 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4379 int err; 4380 4381 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4382 if (err) 4383 return err; 4384 4385 if (off + size > *max_access) 4386 *max_access = off + size; 4387 4388 return 0; 4389 } 4390 4391 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4392 static void zext_32_to_64(struct bpf_reg_state *reg) 4393 { 4394 reg->var_off = tnum_subreg(reg->var_off); 4395 __reg_assign_32_into_64(reg); 4396 } 4397 4398 /* truncate register to smaller size (in bytes) 4399 * must be called with size < BPF_REG_SIZE 4400 */ 4401 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4402 { 4403 u64 mask; 4404 4405 /* clear high bits in bit representation */ 4406 reg->var_off = tnum_cast(reg->var_off, size); 4407 4408 /* fix arithmetic bounds */ 4409 mask = ((u64)1 << (size * 8)) - 1; 4410 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4411 reg->umin_value &= mask; 4412 reg->umax_value &= mask; 4413 } else { 4414 reg->umin_value = 0; 4415 reg->umax_value = mask; 4416 } 4417 reg->smin_value = reg->umin_value; 4418 reg->smax_value = reg->umax_value; 4419 4420 /* If size is smaller than 32bit register the 32bit register 4421 * values are also truncated so we push 64-bit bounds into 4422 * 32-bit bounds. Above were truncated < 32-bits already. 4423 */ 4424 if (size >= 4) 4425 return; 4426 __reg_combine_64_into_32(reg); 4427 } 4428 4429 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4430 { 4431 /* A map is considered read-only if the following condition are true: 4432 * 4433 * 1) BPF program side cannot change any of the map content. The 4434 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4435 * and was set at map creation time. 4436 * 2) The map value(s) have been initialized from user space by a 4437 * loader and then "frozen", such that no new map update/delete 4438 * operations from syscall side are possible for the rest of 4439 * the map's lifetime from that point onwards. 4440 * 3) Any parallel/pending map update/delete operations from syscall 4441 * side have been completed. Only after that point, it's safe to 4442 * assume that map value(s) are immutable. 4443 */ 4444 return (map->map_flags & BPF_F_RDONLY_PROG) && 4445 READ_ONCE(map->frozen) && 4446 !bpf_map_write_active(map); 4447 } 4448 4449 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4450 { 4451 void *ptr; 4452 u64 addr; 4453 int err; 4454 4455 err = map->ops->map_direct_value_addr(map, &addr, off); 4456 if (err) 4457 return err; 4458 ptr = (void *)(long)addr + off; 4459 4460 switch (size) { 4461 case sizeof(u8): 4462 *val = (u64)*(u8 *)ptr; 4463 break; 4464 case sizeof(u16): 4465 *val = (u64)*(u16 *)ptr; 4466 break; 4467 case sizeof(u32): 4468 *val = (u64)*(u32 *)ptr; 4469 break; 4470 case sizeof(u64): 4471 *val = *(u64 *)ptr; 4472 break; 4473 default: 4474 return -EINVAL; 4475 } 4476 return 0; 4477 } 4478 4479 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4480 struct bpf_reg_state *regs, 4481 int regno, int off, int size, 4482 enum bpf_access_type atype, 4483 int value_regno) 4484 { 4485 struct bpf_reg_state *reg = regs + regno; 4486 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4487 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4488 enum bpf_type_flag flag = 0; 4489 u32 btf_id; 4490 int ret; 4491 4492 if (off < 0) { 4493 verbose(env, 4494 "R%d is ptr_%s invalid negative access: off=%d\n", 4495 regno, tname, off); 4496 return -EACCES; 4497 } 4498 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4499 char tn_buf[48]; 4500 4501 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4502 verbose(env, 4503 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4504 regno, tname, off, tn_buf); 4505 return -EACCES; 4506 } 4507 4508 if (reg->type & MEM_USER) { 4509 verbose(env, 4510 "R%d is ptr_%s access user memory: off=%d\n", 4511 regno, tname, off); 4512 return -EACCES; 4513 } 4514 4515 if (reg->type & MEM_PERCPU) { 4516 verbose(env, 4517 "R%d is ptr_%s access percpu memory: off=%d\n", 4518 regno, tname, off); 4519 return -EACCES; 4520 } 4521 4522 if (env->ops->btf_struct_access) { 4523 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4524 off, size, atype, &btf_id, &flag); 4525 } else { 4526 if (atype != BPF_READ) { 4527 verbose(env, "only read is supported\n"); 4528 return -EACCES; 4529 } 4530 4531 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4532 atype, &btf_id, &flag); 4533 } 4534 4535 if (ret < 0) 4536 return ret; 4537 4538 /* If this is an untrusted pointer, all pointers formed by walking it 4539 * also inherit the untrusted flag. 4540 */ 4541 if (type_flag(reg->type) & PTR_UNTRUSTED) 4542 flag |= PTR_UNTRUSTED; 4543 4544 if (atype == BPF_READ && value_regno >= 0) 4545 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 4546 4547 return 0; 4548 } 4549 4550 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4551 struct bpf_reg_state *regs, 4552 int regno, int off, int size, 4553 enum bpf_access_type atype, 4554 int value_regno) 4555 { 4556 struct bpf_reg_state *reg = regs + regno; 4557 struct bpf_map *map = reg->map_ptr; 4558 enum bpf_type_flag flag = 0; 4559 const struct btf_type *t; 4560 const char *tname; 4561 u32 btf_id; 4562 int ret; 4563 4564 if (!btf_vmlinux) { 4565 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4566 return -ENOTSUPP; 4567 } 4568 4569 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4570 verbose(env, "map_ptr access not supported for map type %d\n", 4571 map->map_type); 4572 return -ENOTSUPP; 4573 } 4574 4575 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4576 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4577 4578 if (!env->allow_ptr_to_map_access) { 4579 verbose(env, 4580 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4581 tname); 4582 return -EPERM; 4583 } 4584 4585 if (off < 0) { 4586 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4587 regno, tname, off); 4588 return -EACCES; 4589 } 4590 4591 if (atype != BPF_READ) { 4592 verbose(env, "only read from %s is supported\n", tname); 4593 return -EACCES; 4594 } 4595 4596 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag); 4597 if (ret < 0) 4598 return ret; 4599 4600 if (value_regno >= 0) 4601 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 4602 4603 return 0; 4604 } 4605 4606 /* Check that the stack access at the given offset is within bounds. The 4607 * maximum valid offset is -1. 4608 * 4609 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4610 * -state->allocated_stack for reads. 4611 */ 4612 static int check_stack_slot_within_bounds(int off, 4613 struct bpf_func_state *state, 4614 enum bpf_access_type t) 4615 { 4616 int min_valid_off; 4617 4618 if (t == BPF_WRITE) 4619 min_valid_off = -MAX_BPF_STACK; 4620 else 4621 min_valid_off = -state->allocated_stack; 4622 4623 if (off < min_valid_off || off > -1) 4624 return -EACCES; 4625 return 0; 4626 } 4627 4628 /* Check that the stack access at 'regno + off' falls within the maximum stack 4629 * bounds. 4630 * 4631 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4632 */ 4633 static int check_stack_access_within_bounds( 4634 struct bpf_verifier_env *env, 4635 int regno, int off, int access_size, 4636 enum bpf_access_src src, enum bpf_access_type type) 4637 { 4638 struct bpf_reg_state *regs = cur_regs(env); 4639 struct bpf_reg_state *reg = regs + regno; 4640 struct bpf_func_state *state = func(env, reg); 4641 int min_off, max_off; 4642 int err; 4643 char *err_extra; 4644 4645 if (src == ACCESS_HELPER) 4646 /* We don't know if helpers are reading or writing (or both). */ 4647 err_extra = " indirect access to"; 4648 else if (type == BPF_READ) 4649 err_extra = " read from"; 4650 else 4651 err_extra = " write to"; 4652 4653 if (tnum_is_const(reg->var_off)) { 4654 min_off = reg->var_off.value + off; 4655 if (access_size > 0) 4656 max_off = min_off + access_size - 1; 4657 else 4658 max_off = min_off; 4659 } else { 4660 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4661 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4662 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4663 err_extra, regno); 4664 return -EACCES; 4665 } 4666 min_off = reg->smin_value + off; 4667 if (access_size > 0) 4668 max_off = reg->smax_value + off + access_size - 1; 4669 else 4670 max_off = min_off; 4671 } 4672 4673 err = check_stack_slot_within_bounds(min_off, state, type); 4674 if (!err) 4675 err = check_stack_slot_within_bounds(max_off, state, type); 4676 4677 if (err) { 4678 if (tnum_is_const(reg->var_off)) { 4679 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4680 err_extra, regno, off, access_size); 4681 } else { 4682 char tn_buf[48]; 4683 4684 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4685 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4686 err_extra, regno, tn_buf, access_size); 4687 } 4688 } 4689 return err; 4690 } 4691 4692 /* check whether memory at (regno + off) is accessible for t = (read | write) 4693 * if t==write, value_regno is a register which value is stored into memory 4694 * if t==read, value_regno is a register which will receive the value from memory 4695 * if t==write && value_regno==-1, some unknown value is stored into memory 4696 * if t==read && value_regno==-1, don't care what we read from memory 4697 */ 4698 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4699 int off, int bpf_size, enum bpf_access_type t, 4700 int value_regno, bool strict_alignment_once) 4701 { 4702 struct bpf_reg_state *regs = cur_regs(env); 4703 struct bpf_reg_state *reg = regs + regno; 4704 struct bpf_func_state *state; 4705 int size, err = 0; 4706 4707 size = bpf_size_to_bytes(bpf_size); 4708 if (size < 0) 4709 return size; 4710 4711 /* alignment checks will add in reg->off themselves */ 4712 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4713 if (err) 4714 return err; 4715 4716 /* for access checks, reg->off is just part of off */ 4717 off += reg->off; 4718 4719 if (reg->type == PTR_TO_MAP_KEY) { 4720 if (t == BPF_WRITE) { 4721 verbose(env, "write to change key R%d not allowed\n", regno); 4722 return -EACCES; 4723 } 4724 4725 err = check_mem_region_access(env, regno, off, size, 4726 reg->map_ptr->key_size, false); 4727 if (err) 4728 return err; 4729 if (value_regno >= 0) 4730 mark_reg_unknown(env, regs, value_regno); 4731 } else if (reg->type == PTR_TO_MAP_VALUE) { 4732 struct bpf_map_value_off_desc *kptr_off_desc = NULL; 4733 4734 if (t == BPF_WRITE && value_regno >= 0 && 4735 is_pointer_value(env, value_regno)) { 4736 verbose(env, "R%d leaks addr into map\n", value_regno); 4737 return -EACCES; 4738 } 4739 err = check_map_access_type(env, regno, off, size, t); 4740 if (err) 4741 return err; 4742 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 4743 if (err) 4744 return err; 4745 if (tnum_is_const(reg->var_off)) 4746 kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr, 4747 off + reg->var_off.value); 4748 if (kptr_off_desc) { 4749 err = check_map_kptr_access(env, regno, value_regno, insn_idx, 4750 kptr_off_desc); 4751 } else if (t == BPF_READ && value_regno >= 0) { 4752 struct bpf_map *map = reg->map_ptr; 4753 4754 /* if map is read-only, track its contents as scalars */ 4755 if (tnum_is_const(reg->var_off) && 4756 bpf_map_is_rdonly(map) && 4757 map->ops->map_direct_value_addr) { 4758 int map_off = off + reg->var_off.value; 4759 u64 val = 0; 4760 4761 err = bpf_map_direct_read(map, map_off, size, 4762 &val); 4763 if (err) 4764 return err; 4765 4766 regs[value_regno].type = SCALAR_VALUE; 4767 __mark_reg_known(®s[value_regno], val); 4768 } else { 4769 mark_reg_unknown(env, regs, value_regno); 4770 } 4771 } 4772 } else if (base_type(reg->type) == PTR_TO_MEM) { 4773 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4774 4775 if (type_may_be_null(reg->type)) { 4776 verbose(env, "R%d invalid mem access '%s'\n", regno, 4777 reg_type_str(env, reg->type)); 4778 return -EACCES; 4779 } 4780 4781 if (t == BPF_WRITE && rdonly_mem) { 4782 verbose(env, "R%d cannot write into %s\n", 4783 regno, reg_type_str(env, reg->type)); 4784 return -EACCES; 4785 } 4786 4787 if (t == BPF_WRITE && value_regno >= 0 && 4788 is_pointer_value(env, value_regno)) { 4789 verbose(env, "R%d leaks addr into mem\n", value_regno); 4790 return -EACCES; 4791 } 4792 4793 err = check_mem_region_access(env, regno, off, size, 4794 reg->mem_size, false); 4795 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4796 mark_reg_unknown(env, regs, value_regno); 4797 } else if (reg->type == PTR_TO_CTX) { 4798 enum bpf_reg_type reg_type = SCALAR_VALUE; 4799 struct btf *btf = NULL; 4800 u32 btf_id = 0; 4801 4802 if (t == BPF_WRITE && value_regno >= 0 && 4803 is_pointer_value(env, value_regno)) { 4804 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4805 return -EACCES; 4806 } 4807 4808 err = check_ptr_off_reg(env, reg, regno); 4809 if (err < 0) 4810 return err; 4811 4812 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 4813 &btf_id); 4814 if (err) 4815 verbose_linfo(env, insn_idx, "; "); 4816 if (!err && t == BPF_READ && value_regno >= 0) { 4817 /* ctx access returns either a scalar, or a 4818 * PTR_TO_PACKET[_META,_END]. In the latter 4819 * case, we know the offset is zero. 4820 */ 4821 if (reg_type == SCALAR_VALUE) { 4822 mark_reg_unknown(env, regs, value_regno); 4823 } else { 4824 mark_reg_known_zero(env, regs, 4825 value_regno); 4826 if (type_may_be_null(reg_type)) 4827 regs[value_regno].id = ++env->id_gen; 4828 /* A load of ctx field could have different 4829 * actual load size with the one encoded in the 4830 * insn. When the dst is PTR, it is for sure not 4831 * a sub-register. 4832 */ 4833 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4834 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4835 regs[value_regno].btf = btf; 4836 regs[value_regno].btf_id = btf_id; 4837 } 4838 } 4839 regs[value_regno].type = reg_type; 4840 } 4841 4842 } else if (reg->type == PTR_TO_STACK) { 4843 /* Basic bounds checks. */ 4844 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4845 if (err) 4846 return err; 4847 4848 state = func(env, reg); 4849 err = update_stack_depth(env, state, off); 4850 if (err) 4851 return err; 4852 4853 if (t == BPF_READ) 4854 err = check_stack_read(env, regno, off, size, 4855 value_regno); 4856 else 4857 err = check_stack_write(env, regno, off, size, 4858 value_regno, insn_idx); 4859 } else if (reg_is_pkt_pointer(reg)) { 4860 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4861 verbose(env, "cannot write into packet\n"); 4862 return -EACCES; 4863 } 4864 if (t == BPF_WRITE && value_regno >= 0 && 4865 is_pointer_value(env, value_regno)) { 4866 verbose(env, "R%d leaks addr into packet\n", 4867 value_regno); 4868 return -EACCES; 4869 } 4870 err = check_packet_access(env, regno, off, size, false); 4871 if (!err && t == BPF_READ && value_regno >= 0) 4872 mark_reg_unknown(env, regs, value_regno); 4873 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4874 if (t == BPF_WRITE && value_regno >= 0 && 4875 is_pointer_value(env, value_regno)) { 4876 verbose(env, "R%d leaks addr into flow keys\n", 4877 value_regno); 4878 return -EACCES; 4879 } 4880 4881 err = check_flow_keys_access(env, off, size); 4882 if (!err && t == BPF_READ && value_regno >= 0) 4883 mark_reg_unknown(env, regs, value_regno); 4884 } else if (type_is_sk_pointer(reg->type)) { 4885 if (t == BPF_WRITE) { 4886 verbose(env, "R%d cannot write into %s\n", 4887 regno, reg_type_str(env, reg->type)); 4888 return -EACCES; 4889 } 4890 err = check_sock_access(env, insn_idx, regno, off, size, t); 4891 if (!err && value_regno >= 0) 4892 mark_reg_unknown(env, regs, value_regno); 4893 } else if (reg->type == PTR_TO_TP_BUFFER) { 4894 err = check_tp_buffer_access(env, reg, regno, off, size); 4895 if (!err && t == BPF_READ && value_regno >= 0) 4896 mark_reg_unknown(env, regs, value_regno); 4897 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 4898 !type_may_be_null(reg->type)) { 4899 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4900 value_regno); 4901 } else if (reg->type == CONST_PTR_TO_MAP) { 4902 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4903 value_regno); 4904 } else if (base_type(reg->type) == PTR_TO_BUF) { 4905 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4906 u32 *max_access; 4907 4908 if (rdonly_mem) { 4909 if (t == BPF_WRITE) { 4910 verbose(env, "R%d cannot write into %s\n", 4911 regno, reg_type_str(env, reg->type)); 4912 return -EACCES; 4913 } 4914 max_access = &env->prog->aux->max_rdonly_access; 4915 } else { 4916 max_access = &env->prog->aux->max_rdwr_access; 4917 } 4918 4919 err = check_buffer_access(env, reg, regno, off, size, false, 4920 max_access); 4921 4922 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4923 mark_reg_unknown(env, regs, value_regno); 4924 } else { 4925 verbose(env, "R%d invalid mem access '%s'\n", regno, 4926 reg_type_str(env, reg->type)); 4927 return -EACCES; 4928 } 4929 4930 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4931 regs[value_regno].type == SCALAR_VALUE) { 4932 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4933 coerce_reg_to_size(®s[value_regno], size); 4934 } 4935 return err; 4936 } 4937 4938 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4939 { 4940 int load_reg; 4941 int err; 4942 4943 switch (insn->imm) { 4944 case BPF_ADD: 4945 case BPF_ADD | BPF_FETCH: 4946 case BPF_AND: 4947 case BPF_AND | BPF_FETCH: 4948 case BPF_OR: 4949 case BPF_OR | BPF_FETCH: 4950 case BPF_XOR: 4951 case BPF_XOR | BPF_FETCH: 4952 case BPF_XCHG: 4953 case BPF_CMPXCHG: 4954 break; 4955 default: 4956 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4957 return -EINVAL; 4958 } 4959 4960 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4961 verbose(env, "invalid atomic operand size\n"); 4962 return -EINVAL; 4963 } 4964 4965 /* check src1 operand */ 4966 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4967 if (err) 4968 return err; 4969 4970 /* check src2 operand */ 4971 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4972 if (err) 4973 return err; 4974 4975 if (insn->imm == BPF_CMPXCHG) { 4976 /* Check comparison of R0 with memory location */ 4977 const u32 aux_reg = BPF_REG_0; 4978 4979 err = check_reg_arg(env, aux_reg, SRC_OP); 4980 if (err) 4981 return err; 4982 4983 if (is_pointer_value(env, aux_reg)) { 4984 verbose(env, "R%d leaks addr into mem\n", aux_reg); 4985 return -EACCES; 4986 } 4987 } 4988 4989 if (is_pointer_value(env, insn->src_reg)) { 4990 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4991 return -EACCES; 4992 } 4993 4994 if (is_ctx_reg(env, insn->dst_reg) || 4995 is_pkt_reg(env, insn->dst_reg) || 4996 is_flow_key_reg(env, insn->dst_reg) || 4997 is_sk_reg(env, insn->dst_reg)) { 4998 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4999 insn->dst_reg, 5000 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5001 return -EACCES; 5002 } 5003 5004 if (insn->imm & BPF_FETCH) { 5005 if (insn->imm == BPF_CMPXCHG) 5006 load_reg = BPF_REG_0; 5007 else 5008 load_reg = insn->src_reg; 5009 5010 /* check and record load of old value */ 5011 err = check_reg_arg(env, load_reg, DST_OP); 5012 if (err) 5013 return err; 5014 } else { 5015 /* This instruction accesses a memory location but doesn't 5016 * actually load it into a register. 5017 */ 5018 load_reg = -1; 5019 } 5020 5021 /* Check whether we can read the memory, with second call for fetch 5022 * case to simulate the register fill. 5023 */ 5024 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5025 BPF_SIZE(insn->code), BPF_READ, -1, true); 5026 if (!err && load_reg >= 0) 5027 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5028 BPF_SIZE(insn->code), BPF_READ, load_reg, 5029 true); 5030 if (err) 5031 return err; 5032 5033 /* Check whether we can write into the same memory. */ 5034 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5035 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5036 if (err) 5037 return err; 5038 5039 return 0; 5040 } 5041 5042 /* When register 'regno' is used to read the stack (either directly or through 5043 * a helper function) make sure that it's within stack boundary and, depending 5044 * on the access type, that all elements of the stack are initialized. 5045 * 5046 * 'off' includes 'regno->off', but not its dynamic part (if any). 5047 * 5048 * All registers that have been spilled on the stack in the slots within the 5049 * read offsets are marked as read. 5050 */ 5051 static int check_stack_range_initialized( 5052 struct bpf_verifier_env *env, int regno, int off, 5053 int access_size, bool zero_size_allowed, 5054 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5055 { 5056 struct bpf_reg_state *reg = reg_state(env, regno); 5057 struct bpf_func_state *state = func(env, reg); 5058 int err, min_off, max_off, i, j, slot, spi; 5059 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5060 enum bpf_access_type bounds_check_type; 5061 /* Some accesses can write anything into the stack, others are 5062 * read-only. 5063 */ 5064 bool clobber = false; 5065 5066 if (access_size == 0 && !zero_size_allowed) { 5067 verbose(env, "invalid zero-sized read\n"); 5068 return -EACCES; 5069 } 5070 5071 if (type == ACCESS_HELPER) { 5072 /* The bounds checks for writes are more permissive than for 5073 * reads. However, if raw_mode is not set, we'll do extra 5074 * checks below. 5075 */ 5076 bounds_check_type = BPF_WRITE; 5077 clobber = true; 5078 } else { 5079 bounds_check_type = BPF_READ; 5080 } 5081 err = check_stack_access_within_bounds(env, regno, off, access_size, 5082 type, bounds_check_type); 5083 if (err) 5084 return err; 5085 5086 5087 if (tnum_is_const(reg->var_off)) { 5088 min_off = max_off = reg->var_off.value + off; 5089 } else { 5090 /* Variable offset is prohibited for unprivileged mode for 5091 * simplicity since it requires corresponding support in 5092 * Spectre masking for stack ALU. 5093 * See also retrieve_ptr_limit(). 5094 */ 5095 if (!env->bypass_spec_v1) { 5096 char tn_buf[48]; 5097 5098 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5099 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5100 regno, err_extra, tn_buf); 5101 return -EACCES; 5102 } 5103 /* Only initialized buffer on stack is allowed to be accessed 5104 * with variable offset. With uninitialized buffer it's hard to 5105 * guarantee that whole memory is marked as initialized on 5106 * helper return since specific bounds are unknown what may 5107 * cause uninitialized stack leaking. 5108 */ 5109 if (meta && meta->raw_mode) 5110 meta = NULL; 5111 5112 min_off = reg->smin_value + off; 5113 max_off = reg->smax_value + off; 5114 } 5115 5116 if (meta && meta->raw_mode) { 5117 meta->access_size = access_size; 5118 meta->regno = regno; 5119 return 0; 5120 } 5121 5122 for (i = min_off; i < max_off + access_size; i++) { 5123 u8 *stype; 5124 5125 slot = -i - 1; 5126 spi = slot / BPF_REG_SIZE; 5127 if (state->allocated_stack <= slot) 5128 goto err; 5129 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5130 if (*stype == STACK_MISC) 5131 goto mark; 5132 if (*stype == STACK_ZERO) { 5133 if (clobber) { 5134 /* helper can write anything into the stack */ 5135 *stype = STACK_MISC; 5136 } 5137 goto mark; 5138 } 5139 5140 if (is_spilled_reg(&state->stack[spi]) && 5141 base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID) 5142 goto mark; 5143 5144 if (is_spilled_reg(&state->stack[spi]) && 5145 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5146 env->allow_ptr_leaks)) { 5147 if (clobber) { 5148 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5149 for (j = 0; j < BPF_REG_SIZE; j++) 5150 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5151 } 5152 goto mark; 5153 } 5154 5155 err: 5156 if (tnum_is_const(reg->var_off)) { 5157 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5158 err_extra, regno, min_off, i - min_off, access_size); 5159 } else { 5160 char tn_buf[48]; 5161 5162 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5163 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5164 err_extra, regno, tn_buf, i - min_off, access_size); 5165 } 5166 return -EACCES; 5167 mark: 5168 /* reading any byte out of 8-byte 'spill_slot' will cause 5169 * the whole slot to be marked as 'read' 5170 */ 5171 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5172 state->stack[spi].spilled_ptr.parent, 5173 REG_LIVE_READ64); 5174 } 5175 return update_stack_depth(env, state, min_off); 5176 } 5177 5178 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5179 int access_size, bool zero_size_allowed, 5180 struct bpf_call_arg_meta *meta) 5181 { 5182 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5183 u32 *max_access; 5184 5185 switch (base_type(reg->type)) { 5186 case PTR_TO_PACKET: 5187 case PTR_TO_PACKET_META: 5188 return check_packet_access(env, regno, reg->off, access_size, 5189 zero_size_allowed); 5190 case PTR_TO_MAP_KEY: 5191 if (meta && meta->raw_mode) { 5192 verbose(env, "R%d cannot write into %s\n", regno, 5193 reg_type_str(env, reg->type)); 5194 return -EACCES; 5195 } 5196 return check_mem_region_access(env, regno, reg->off, access_size, 5197 reg->map_ptr->key_size, false); 5198 case PTR_TO_MAP_VALUE: 5199 if (check_map_access_type(env, regno, reg->off, access_size, 5200 meta && meta->raw_mode ? BPF_WRITE : 5201 BPF_READ)) 5202 return -EACCES; 5203 return check_map_access(env, regno, reg->off, access_size, 5204 zero_size_allowed, ACCESS_HELPER); 5205 case PTR_TO_MEM: 5206 if (type_is_rdonly_mem(reg->type)) { 5207 if (meta && meta->raw_mode) { 5208 verbose(env, "R%d cannot write into %s\n", regno, 5209 reg_type_str(env, reg->type)); 5210 return -EACCES; 5211 } 5212 } 5213 return check_mem_region_access(env, regno, reg->off, 5214 access_size, reg->mem_size, 5215 zero_size_allowed); 5216 case PTR_TO_BUF: 5217 if (type_is_rdonly_mem(reg->type)) { 5218 if (meta && meta->raw_mode) { 5219 verbose(env, "R%d cannot write into %s\n", regno, 5220 reg_type_str(env, reg->type)); 5221 return -EACCES; 5222 } 5223 5224 max_access = &env->prog->aux->max_rdonly_access; 5225 } else { 5226 max_access = &env->prog->aux->max_rdwr_access; 5227 } 5228 return check_buffer_access(env, reg, regno, reg->off, 5229 access_size, zero_size_allowed, 5230 max_access); 5231 case PTR_TO_STACK: 5232 return check_stack_range_initialized( 5233 env, 5234 regno, reg->off, access_size, 5235 zero_size_allowed, ACCESS_HELPER, meta); 5236 default: /* scalar_value or invalid ptr */ 5237 /* Allow zero-byte read from NULL, regardless of pointer type */ 5238 if (zero_size_allowed && access_size == 0 && 5239 register_is_null(reg)) 5240 return 0; 5241 5242 verbose(env, "R%d type=%s ", regno, 5243 reg_type_str(env, reg->type)); 5244 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5245 return -EACCES; 5246 } 5247 } 5248 5249 static int check_mem_size_reg(struct bpf_verifier_env *env, 5250 struct bpf_reg_state *reg, u32 regno, 5251 bool zero_size_allowed, 5252 struct bpf_call_arg_meta *meta) 5253 { 5254 int err; 5255 5256 /* This is used to refine r0 return value bounds for helpers 5257 * that enforce this value as an upper bound on return values. 5258 * See do_refine_retval_range() for helpers that can refine 5259 * the return value. C type of helper is u32 so we pull register 5260 * bound from umax_value however, if negative verifier errors 5261 * out. Only upper bounds can be learned because retval is an 5262 * int type and negative retvals are allowed. 5263 */ 5264 meta->msize_max_value = reg->umax_value; 5265 5266 /* The register is SCALAR_VALUE; the access check 5267 * happens using its boundaries. 5268 */ 5269 if (!tnum_is_const(reg->var_off)) 5270 /* For unprivileged variable accesses, disable raw 5271 * mode so that the program is required to 5272 * initialize all the memory that the helper could 5273 * just partially fill up. 5274 */ 5275 meta = NULL; 5276 5277 if (reg->smin_value < 0) { 5278 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5279 regno); 5280 return -EACCES; 5281 } 5282 5283 if (reg->umin_value == 0) { 5284 err = check_helper_mem_access(env, regno - 1, 0, 5285 zero_size_allowed, 5286 meta); 5287 if (err) 5288 return err; 5289 } 5290 5291 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5292 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5293 regno); 5294 return -EACCES; 5295 } 5296 err = check_helper_mem_access(env, regno - 1, 5297 reg->umax_value, 5298 zero_size_allowed, meta); 5299 if (!err) 5300 err = mark_chain_precision(env, regno); 5301 return err; 5302 } 5303 5304 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5305 u32 regno, u32 mem_size) 5306 { 5307 bool may_be_null = type_may_be_null(reg->type); 5308 struct bpf_reg_state saved_reg; 5309 struct bpf_call_arg_meta meta; 5310 int err; 5311 5312 if (register_is_null(reg)) 5313 return 0; 5314 5315 memset(&meta, 0, sizeof(meta)); 5316 /* Assuming that the register contains a value check if the memory 5317 * access is safe. Temporarily save and restore the register's state as 5318 * the conversion shouldn't be visible to a caller. 5319 */ 5320 if (may_be_null) { 5321 saved_reg = *reg; 5322 mark_ptr_not_null_reg(reg); 5323 } 5324 5325 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5326 /* Check access for BPF_WRITE */ 5327 meta.raw_mode = true; 5328 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5329 5330 if (may_be_null) 5331 *reg = saved_reg; 5332 5333 return err; 5334 } 5335 5336 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5337 u32 regno) 5338 { 5339 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5340 bool may_be_null = type_may_be_null(mem_reg->type); 5341 struct bpf_reg_state saved_reg; 5342 struct bpf_call_arg_meta meta; 5343 int err; 5344 5345 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5346 5347 memset(&meta, 0, sizeof(meta)); 5348 5349 if (may_be_null) { 5350 saved_reg = *mem_reg; 5351 mark_ptr_not_null_reg(mem_reg); 5352 } 5353 5354 err = check_mem_size_reg(env, reg, regno, true, &meta); 5355 /* Check access for BPF_WRITE */ 5356 meta.raw_mode = true; 5357 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 5358 5359 if (may_be_null) 5360 *mem_reg = saved_reg; 5361 return err; 5362 } 5363 5364 /* Implementation details: 5365 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 5366 * Two bpf_map_lookups (even with the same key) will have different reg->id. 5367 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 5368 * value_or_null->value transition, since the verifier only cares about 5369 * the range of access to valid map value pointer and doesn't care about actual 5370 * address of the map element. 5371 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 5372 * reg->id > 0 after value_or_null->value transition. By doing so 5373 * two bpf_map_lookups will be considered two different pointers that 5374 * point to different bpf_spin_locks. 5375 * The verifier allows taking only one bpf_spin_lock at a time to avoid 5376 * dead-locks. 5377 * Since only one bpf_spin_lock is allowed the checks are simpler than 5378 * reg_is_refcounted() logic. The verifier needs to remember only 5379 * one spin_lock instead of array of acquired_refs. 5380 * cur_state->active_spin_lock remembers which map value element got locked 5381 * and clears it after bpf_spin_unlock. 5382 */ 5383 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 5384 bool is_lock) 5385 { 5386 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5387 struct bpf_verifier_state *cur = env->cur_state; 5388 bool is_const = tnum_is_const(reg->var_off); 5389 struct bpf_map *map = reg->map_ptr; 5390 u64 val = reg->var_off.value; 5391 5392 if (!is_const) { 5393 verbose(env, 5394 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 5395 regno); 5396 return -EINVAL; 5397 } 5398 if (!map->btf) { 5399 verbose(env, 5400 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 5401 map->name); 5402 return -EINVAL; 5403 } 5404 if (!map_value_has_spin_lock(map)) { 5405 if (map->spin_lock_off == -E2BIG) 5406 verbose(env, 5407 "map '%s' has more than one 'struct bpf_spin_lock'\n", 5408 map->name); 5409 else if (map->spin_lock_off == -ENOENT) 5410 verbose(env, 5411 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 5412 map->name); 5413 else 5414 verbose(env, 5415 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 5416 map->name); 5417 return -EINVAL; 5418 } 5419 if (map->spin_lock_off != val + reg->off) { 5420 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 5421 val + reg->off); 5422 return -EINVAL; 5423 } 5424 if (is_lock) { 5425 if (cur->active_spin_lock) { 5426 verbose(env, 5427 "Locking two bpf_spin_locks are not allowed\n"); 5428 return -EINVAL; 5429 } 5430 cur->active_spin_lock = reg->id; 5431 } else { 5432 if (!cur->active_spin_lock) { 5433 verbose(env, "bpf_spin_unlock without taking a lock\n"); 5434 return -EINVAL; 5435 } 5436 if (cur->active_spin_lock != reg->id) { 5437 verbose(env, "bpf_spin_unlock of different lock\n"); 5438 return -EINVAL; 5439 } 5440 cur->active_spin_lock = 0; 5441 } 5442 return 0; 5443 } 5444 5445 static int process_timer_func(struct bpf_verifier_env *env, int regno, 5446 struct bpf_call_arg_meta *meta) 5447 { 5448 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5449 bool is_const = tnum_is_const(reg->var_off); 5450 struct bpf_map *map = reg->map_ptr; 5451 u64 val = reg->var_off.value; 5452 5453 if (!is_const) { 5454 verbose(env, 5455 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 5456 regno); 5457 return -EINVAL; 5458 } 5459 if (!map->btf) { 5460 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5461 map->name); 5462 return -EINVAL; 5463 } 5464 if (!map_value_has_timer(map)) { 5465 if (map->timer_off == -E2BIG) 5466 verbose(env, 5467 "map '%s' has more than one 'struct bpf_timer'\n", 5468 map->name); 5469 else if (map->timer_off == -ENOENT) 5470 verbose(env, 5471 "map '%s' doesn't have 'struct bpf_timer'\n", 5472 map->name); 5473 else 5474 verbose(env, 5475 "map '%s' is not a struct type or bpf_timer is mangled\n", 5476 map->name); 5477 return -EINVAL; 5478 } 5479 if (map->timer_off != val + reg->off) { 5480 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5481 val + reg->off, map->timer_off); 5482 return -EINVAL; 5483 } 5484 if (meta->map_ptr) { 5485 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5486 return -EFAULT; 5487 } 5488 meta->map_uid = reg->map_uid; 5489 meta->map_ptr = map; 5490 return 0; 5491 } 5492 5493 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 5494 struct bpf_call_arg_meta *meta) 5495 { 5496 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5497 struct bpf_map_value_off_desc *off_desc; 5498 struct bpf_map *map_ptr = reg->map_ptr; 5499 u32 kptr_off; 5500 int ret; 5501 5502 if (!tnum_is_const(reg->var_off)) { 5503 verbose(env, 5504 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 5505 regno); 5506 return -EINVAL; 5507 } 5508 if (!map_ptr->btf) { 5509 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 5510 map_ptr->name); 5511 return -EINVAL; 5512 } 5513 if (!map_value_has_kptrs(map_ptr)) { 5514 ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab); 5515 if (ret == -E2BIG) 5516 verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name, 5517 BPF_MAP_VALUE_OFF_MAX); 5518 else if (ret == -EEXIST) 5519 verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name); 5520 else 5521 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 5522 return -EINVAL; 5523 } 5524 5525 meta->map_ptr = map_ptr; 5526 kptr_off = reg->off + reg->var_off.value; 5527 off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off); 5528 if (!off_desc) { 5529 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 5530 return -EACCES; 5531 } 5532 if (off_desc->type != BPF_KPTR_REF) { 5533 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 5534 return -EACCES; 5535 } 5536 meta->kptr_off_desc = off_desc; 5537 return 0; 5538 } 5539 5540 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5541 { 5542 return type == ARG_CONST_SIZE || 5543 type == ARG_CONST_SIZE_OR_ZERO; 5544 } 5545 5546 static bool arg_type_is_release(enum bpf_arg_type type) 5547 { 5548 return type & OBJ_RELEASE; 5549 } 5550 5551 static bool arg_type_is_dynptr(enum bpf_arg_type type) 5552 { 5553 return base_type(type) == ARG_PTR_TO_DYNPTR; 5554 } 5555 5556 static int int_ptr_type_to_size(enum bpf_arg_type type) 5557 { 5558 if (type == ARG_PTR_TO_INT) 5559 return sizeof(u32); 5560 else if (type == ARG_PTR_TO_LONG) 5561 return sizeof(u64); 5562 5563 return -EINVAL; 5564 } 5565 5566 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5567 const struct bpf_call_arg_meta *meta, 5568 enum bpf_arg_type *arg_type) 5569 { 5570 if (!meta->map_ptr) { 5571 /* kernel subsystem misconfigured verifier */ 5572 verbose(env, "invalid map_ptr to access map->type\n"); 5573 return -EACCES; 5574 } 5575 5576 switch (meta->map_ptr->map_type) { 5577 case BPF_MAP_TYPE_SOCKMAP: 5578 case BPF_MAP_TYPE_SOCKHASH: 5579 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5580 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5581 } else { 5582 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5583 return -EINVAL; 5584 } 5585 break; 5586 case BPF_MAP_TYPE_BLOOM_FILTER: 5587 if (meta->func_id == BPF_FUNC_map_peek_elem) 5588 *arg_type = ARG_PTR_TO_MAP_VALUE; 5589 break; 5590 default: 5591 break; 5592 } 5593 return 0; 5594 } 5595 5596 struct bpf_reg_types { 5597 const enum bpf_reg_type types[10]; 5598 u32 *btf_id; 5599 }; 5600 5601 static const struct bpf_reg_types map_key_value_types = { 5602 .types = { 5603 PTR_TO_STACK, 5604 PTR_TO_PACKET, 5605 PTR_TO_PACKET_META, 5606 PTR_TO_MAP_KEY, 5607 PTR_TO_MAP_VALUE, 5608 }, 5609 }; 5610 5611 static const struct bpf_reg_types sock_types = { 5612 .types = { 5613 PTR_TO_SOCK_COMMON, 5614 PTR_TO_SOCKET, 5615 PTR_TO_TCP_SOCK, 5616 PTR_TO_XDP_SOCK, 5617 }, 5618 }; 5619 5620 #ifdef CONFIG_NET 5621 static const struct bpf_reg_types btf_id_sock_common_types = { 5622 .types = { 5623 PTR_TO_SOCK_COMMON, 5624 PTR_TO_SOCKET, 5625 PTR_TO_TCP_SOCK, 5626 PTR_TO_XDP_SOCK, 5627 PTR_TO_BTF_ID, 5628 }, 5629 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5630 }; 5631 #endif 5632 5633 static const struct bpf_reg_types mem_types = { 5634 .types = { 5635 PTR_TO_STACK, 5636 PTR_TO_PACKET, 5637 PTR_TO_PACKET_META, 5638 PTR_TO_MAP_KEY, 5639 PTR_TO_MAP_VALUE, 5640 PTR_TO_MEM, 5641 PTR_TO_MEM | MEM_ALLOC, 5642 PTR_TO_BUF, 5643 }, 5644 }; 5645 5646 static const struct bpf_reg_types int_ptr_types = { 5647 .types = { 5648 PTR_TO_STACK, 5649 PTR_TO_PACKET, 5650 PTR_TO_PACKET_META, 5651 PTR_TO_MAP_KEY, 5652 PTR_TO_MAP_VALUE, 5653 }, 5654 }; 5655 5656 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5657 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5658 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5659 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5660 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5661 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5662 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5663 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } }; 5664 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5665 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5666 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5667 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5668 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5669 5670 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5671 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5672 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5673 [ARG_CONST_SIZE] = &scalar_types, 5674 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5675 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5676 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5677 [ARG_PTR_TO_CTX] = &context_types, 5678 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5679 #ifdef CONFIG_NET 5680 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5681 #endif 5682 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5683 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5684 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5685 [ARG_PTR_TO_MEM] = &mem_types, 5686 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5687 [ARG_PTR_TO_INT] = &int_ptr_types, 5688 [ARG_PTR_TO_LONG] = &int_ptr_types, 5689 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5690 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5691 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5692 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5693 [ARG_PTR_TO_TIMER] = &timer_types, 5694 [ARG_PTR_TO_KPTR] = &kptr_types, 5695 [ARG_PTR_TO_DYNPTR] = &stack_ptr_types, 5696 }; 5697 5698 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5699 enum bpf_arg_type arg_type, 5700 const u32 *arg_btf_id, 5701 struct bpf_call_arg_meta *meta) 5702 { 5703 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5704 enum bpf_reg_type expected, type = reg->type; 5705 const struct bpf_reg_types *compatible; 5706 int i, j; 5707 5708 compatible = compatible_reg_types[base_type(arg_type)]; 5709 if (!compatible) { 5710 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5711 return -EFAULT; 5712 } 5713 5714 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5715 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5716 * 5717 * Same for MAYBE_NULL: 5718 * 5719 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5720 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5721 * 5722 * Therefore we fold these flags depending on the arg_type before comparison. 5723 */ 5724 if (arg_type & MEM_RDONLY) 5725 type &= ~MEM_RDONLY; 5726 if (arg_type & PTR_MAYBE_NULL) 5727 type &= ~PTR_MAYBE_NULL; 5728 5729 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5730 expected = compatible->types[i]; 5731 if (expected == NOT_INIT) 5732 break; 5733 5734 if (type == expected) 5735 goto found; 5736 } 5737 5738 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5739 for (j = 0; j + 1 < i; j++) 5740 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5741 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5742 return -EACCES; 5743 5744 found: 5745 if (reg->type == PTR_TO_BTF_ID) { 5746 /* For bpf_sk_release, it needs to match against first member 5747 * 'struct sock_common', hence make an exception for it. This 5748 * allows bpf_sk_release to work for multiple socket types. 5749 */ 5750 bool strict_type_match = arg_type_is_release(arg_type) && 5751 meta->func_id != BPF_FUNC_sk_release; 5752 5753 if (!arg_btf_id) { 5754 if (!compatible->btf_id) { 5755 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5756 return -EFAULT; 5757 } 5758 arg_btf_id = compatible->btf_id; 5759 } 5760 5761 if (meta->func_id == BPF_FUNC_kptr_xchg) { 5762 if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno)) 5763 return -EACCES; 5764 } else if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5765 btf_vmlinux, *arg_btf_id, 5766 strict_type_match)) { 5767 verbose(env, "R%d is of type %s but %s is expected\n", 5768 regno, kernel_type_name(reg->btf, reg->btf_id), 5769 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5770 return -EACCES; 5771 } 5772 } 5773 5774 return 0; 5775 } 5776 5777 int check_func_arg_reg_off(struct bpf_verifier_env *env, 5778 const struct bpf_reg_state *reg, int regno, 5779 enum bpf_arg_type arg_type) 5780 { 5781 enum bpf_reg_type type = reg->type; 5782 bool fixed_off_ok = false; 5783 5784 switch ((u32)type) { 5785 /* Pointer types where reg offset is explicitly allowed: */ 5786 case PTR_TO_STACK: 5787 if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) { 5788 verbose(env, "cannot pass in dynptr at an offset\n"); 5789 return -EINVAL; 5790 } 5791 fallthrough; 5792 case PTR_TO_PACKET: 5793 case PTR_TO_PACKET_META: 5794 case PTR_TO_MAP_KEY: 5795 case PTR_TO_MAP_VALUE: 5796 case PTR_TO_MEM: 5797 case PTR_TO_MEM | MEM_RDONLY: 5798 case PTR_TO_MEM | MEM_ALLOC: 5799 case PTR_TO_BUF: 5800 case PTR_TO_BUF | MEM_RDONLY: 5801 case SCALAR_VALUE: 5802 /* Some of the argument types nevertheless require a 5803 * zero register offset. 5804 */ 5805 if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM) 5806 return 0; 5807 break; 5808 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 5809 * fixed offset. 5810 */ 5811 case PTR_TO_BTF_ID: 5812 /* When referenced PTR_TO_BTF_ID is passed to release function, 5813 * it's fixed offset must be 0. In the other cases, fixed offset 5814 * can be non-zero. 5815 */ 5816 if (arg_type_is_release(arg_type) && reg->off) { 5817 verbose(env, "R%d must have zero offset when passed to release func\n", 5818 regno); 5819 return -EINVAL; 5820 } 5821 /* For arg is release pointer, fixed_off_ok must be false, but 5822 * we already checked and rejected reg->off != 0 above, so set 5823 * to true to allow fixed offset for all other cases. 5824 */ 5825 fixed_off_ok = true; 5826 break; 5827 default: 5828 break; 5829 } 5830 return __check_ptr_off_reg(env, reg, regno, fixed_off_ok); 5831 } 5832 5833 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 5834 { 5835 struct bpf_func_state *state = func(env, reg); 5836 int spi = get_spi(reg->off); 5837 5838 return state->stack[spi].spilled_ptr.id; 5839 } 5840 5841 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5842 struct bpf_call_arg_meta *meta, 5843 const struct bpf_func_proto *fn) 5844 { 5845 u32 regno = BPF_REG_1 + arg; 5846 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5847 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5848 enum bpf_reg_type type = reg->type; 5849 u32 *arg_btf_id = NULL; 5850 int err = 0; 5851 5852 if (arg_type == ARG_DONTCARE) 5853 return 0; 5854 5855 err = check_reg_arg(env, regno, SRC_OP); 5856 if (err) 5857 return err; 5858 5859 if (arg_type == ARG_ANYTHING) { 5860 if (is_pointer_value(env, regno)) { 5861 verbose(env, "R%d leaks addr into helper function\n", 5862 regno); 5863 return -EACCES; 5864 } 5865 return 0; 5866 } 5867 5868 if (type_is_pkt_pointer(type) && 5869 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5870 verbose(env, "helper access to the packet is not allowed\n"); 5871 return -EACCES; 5872 } 5873 5874 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 5875 err = resolve_map_arg_type(env, meta, &arg_type); 5876 if (err) 5877 return err; 5878 } 5879 5880 if (register_is_null(reg) && type_may_be_null(arg_type)) 5881 /* A NULL register has a SCALAR_VALUE type, so skip 5882 * type checking. 5883 */ 5884 goto skip_type_check; 5885 5886 /* arg_btf_id and arg_size are in a union. */ 5887 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID) 5888 arg_btf_id = fn->arg_btf_id[arg]; 5889 5890 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 5891 if (err) 5892 return err; 5893 5894 err = check_func_arg_reg_off(env, reg, regno, arg_type); 5895 if (err) 5896 return err; 5897 5898 skip_type_check: 5899 if (arg_type_is_release(arg_type)) { 5900 if (arg_type_is_dynptr(arg_type)) { 5901 struct bpf_func_state *state = func(env, reg); 5902 int spi = get_spi(reg->off); 5903 5904 if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) || 5905 !state->stack[spi].spilled_ptr.id) { 5906 verbose(env, "arg %d is an unacquired reference\n", regno); 5907 return -EINVAL; 5908 } 5909 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 5910 verbose(env, "R%d must be referenced when passed to release function\n", 5911 regno); 5912 return -EINVAL; 5913 } 5914 if (meta->release_regno) { 5915 verbose(env, "verifier internal error: more than one release argument\n"); 5916 return -EFAULT; 5917 } 5918 meta->release_regno = regno; 5919 } 5920 5921 if (reg->ref_obj_id) { 5922 if (meta->ref_obj_id) { 5923 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5924 regno, reg->ref_obj_id, 5925 meta->ref_obj_id); 5926 return -EFAULT; 5927 } 5928 meta->ref_obj_id = reg->ref_obj_id; 5929 } 5930 5931 switch (base_type(arg_type)) { 5932 case ARG_CONST_MAP_PTR: 5933 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5934 if (meta->map_ptr) { 5935 /* Use map_uid (which is unique id of inner map) to reject: 5936 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5937 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5938 * if (inner_map1 && inner_map2) { 5939 * timer = bpf_map_lookup_elem(inner_map1); 5940 * if (timer) 5941 * // mismatch would have been allowed 5942 * bpf_timer_init(timer, inner_map2); 5943 * } 5944 * 5945 * Comparing map_ptr is enough to distinguish normal and outer maps. 5946 */ 5947 if (meta->map_ptr != reg->map_ptr || 5948 meta->map_uid != reg->map_uid) { 5949 verbose(env, 5950 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5951 meta->map_uid, reg->map_uid); 5952 return -EINVAL; 5953 } 5954 } 5955 meta->map_ptr = reg->map_ptr; 5956 meta->map_uid = reg->map_uid; 5957 break; 5958 case ARG_PTR_TO_MAP_KEY: 5959 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5960 * check that [key, key + map->key_size) are within 5961 * stack limits and initialized 5962 */ 5963 if (!meta->map_ptr) { 5964 /* in function declaration map_ptr must come before 5965 * map_key, so that it's verified and known before 5966 * we have to check map_key here. Otherwise it means 5967 * that kernel subsystem misconfigured verifier 5968 */ 5969 verbose(env, "invalid map_ptr to access map->key\n"); 5970 return -EACCES; 5971 } 5972 err = check_helper_mem_access(env, regno, 5973 meta->map_ptr->key_size, false, 5974 NULL); 5975 break; 5976 case ARG_PTR_TO_MAP_VALUE: 5977 if (type_may_be_null(arg_type) && register_is_null(reg)) 5978 return 0; 5979 5980 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5981 * check [value, value + map->value_size) validity 5982 */ 5983 if (!meta->map_ptr) { 5984 /* kernel subsystem misconfigured verifier */ 5985 verbose(env, "invalid map_ptr to access map->value\n"); 5986 return -EACCES; 5987 } 5988 meta->raw_mode = arg_type & MEM_UNINIT; 5989 err = check_helper_mem_access(env, regno, 5990 meta->map_ptr->value_size, false, 5991 meta); 5992 break; 5993 case ARG_PTR_TO_PERCPU_BTF_ID: 5994 if (!reg->btf_id) { 5995 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5996 return -EACCES; 5997 } 5998 meta->ret_btf = reg->btf; 5999 meta->ret_btf_id = reg->btf_id; 6000 break; 6001 case ARG_PTR_TO_SPIN_LOCK: 6002 if (meta->func_id == BPF_FUNC_spin_lock) { 6003 if (process_spin_lock(env, regno, true)) 6004 return -EACCES; 6005 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6006 if (process_spin_lock(env, regno, false)) 6007 return -EACCES; 6008 } else { 6009 verbose(env, "verifier internal error\n"); 6010 return -EFAULT; 6011 } 6012 break; 6013 case ARG_PTR_TO_TIMER: 6014 if (process_timer_func(env, regno, meta)) 6015 return -EACCES; 6016 break; 6017 case ARG_PTR_TO_FUNC: 6018 meta->subprogno = reg->subprogno; 6019 break; 6020 case ARG_PTR_TO_MEM: 6021 /* The access to this pointer is only checked when we hit the 6022 * next is_mem_size argument below. 6023 */ 6024 meta->raw_mode = arg_type & MEM_UNINIT; 6025 if (arg_type & MEM_FIXED_SIZE) { 6026 err = check_helper_mem_access(env, regno, 6027 fn->arg_size[arg], false, 6028 meta); 6029 } 6030 break; 6031 case ARG_CONST_SIZE: 6032 err = check_mem_size_reg(env, reg, regno, false, meta); 6033 break; 6034 case ARG_CONST_SIZE_OR_ZERO: 6035 err = check_mem_size_reg(env, reg, regno, true, meta); 6036 break; 6037 case ARG_PTR_TO_DYNPTR: 6038 if (arg_type & MEM_UNINIT) { 6039 if (!is_dynptr_reg_valid_uninit(env, reg)) { 6040 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6041 return -EINVAL; 6042 } 6043 6044 /* We only support one dynptr being uninitialized at the moment, 6045 * which is sufficient for the helper functions we have right now. 6046 */ 6047 if (meta->uninit_dynptr_regno) { 6048 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6049 return -EFAULT; 6050 } 6051 6052 meta->uninit_dynptr_regno = regno; 6053 } else if (!is_dynptr_reg_valid_init(env, reg, arg_type)) { 6054 const char *err_extra = ""; 6055 6056 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6057 case DYNPTR_TYPE_LOCAL: 6058 err_extra = "local "; 6059 break; 6060 case DYNPTR_TYPE_RINGBUF: 6061 err_extra = "ringbuf "; 6062 break; 6063 default: 6064 break; 6065 } 6066 6067 verbose(env, "Expected an initialized %sdynptr as arg #%d\n", 6068 err_extra, arg + 1); 6069 return -EINVAL; 6070 } 6071 break; 6072 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6073 if (!tnum_is_const(reg->var_off)) { 6074 verbose(env, "R%d is not a known constant'\n", 6075 regno); 6076 return -EACCES; 6077 } 6078 meta->mem_size = reg->var_off.value; 6079 err = mark_chain_precision(env, regno); 6080 if (err) 6081 return err; 6082 break; 6083 case ARG_PTR_TO_INT: 6084 case ARG_PTR_TO_LONG: 6085 { 6086 int size = int_ptr_type_to_size(arg_type); 6087 6088 err = check_helper_mem_access(env, regno, size, false, meta); 6089 if (err) 6090 return err; 6091 err = check_ptr_alignment(env, reg, 0, size, true); 6092 break; 6093 } 6094 case ARG_PTR_TO_CONST_STR: 6095 { 6096 struct bpf_map *map = reg->map_ptr; 6097 int map_off; 6098 u64 map_addr; 6099 char *str_ptr; 6100 6101 if (!bpf_map_is_rdonly(map)) { 6102 verbose(env, "R%d does not point to a readonly map'\n", regno); 6103 return -EACCES; 6104 } 6105 6106 if (!tnum_is_const(reg->var_off)) { 6107 verbose(env, "R%d is not a constant address'\n", regno); 6108 return -EACCES; 6109 } 6110 6111 if (!map->ops->map_direct_value_addr) { 6112 verbose(env, "no direct value access support for this map type\n"); 6113 return -EACCES; 6114 } 6115 6116 err = check_map_access(env, regno, reg->off, 6117 map->value_size - reg->off, false, 6118 ACCESS_HELPER); 6119 if (err) 6120 return err; 6121 6122 map_off = reg->off + reg->var_off.value; 6123 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6124 if (err) { 6125 verbose(env, "direct value access on string failed\n"); 6126 return err; 6127 } 6128 6129 str_ptr = (char *)(long)(map_addr); 6130 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6131 verbose(env, "string is not zero-terminated\n"); 6132 return -EINVAL; 6133 } 6134 break; 6135 } 6136 case ARG_PTR_TO_KPTR: 6137 if (process_kptr_func(env, regno, meta)) 6138 return -EACCES; 6139 break; 6140 } 6141 6142 return err; 6143 } 6144 6145 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6146 { 6147 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6148 enum bpf_prog_type type = resolve_prog_type(env->prog); 6149 6150 if (func_id != BPF_FUNC_map_update_elem) 6151 return false; 6152 6153 /* It's not possible to get access to a locked struct sock in these 6154 * contexts, so updating is safe. 6155 */ 6156 switch (type) { 6157 case BPF_PROG_TYPE_TRACING: 6158 if (eatype == BPF_TRACE_ITER) 6159 return true; 6160 break; 6161 case BPF_PROG_TYPE_SOCKET_FILTER: 6162 case BPF_PROG_TYPE_SCHED_CLS: 6163 case BPF_PROG_TYPE_SCHED_ACT: 6164 case BPF_PROG_TYPE_XDP: 6165 case BPF_PROG_TYPE_SK_REUSEPORT: 6166 case BPF_PROG_TYPE_FLOW_DISSECTOR: 6167 case BPF_PROG_TYPE_SK_LOOKUP: 6168 return true; 6169 default: 6170 break; 6171 } 6172 6173 verbose(env, "cannot update sockmap in this context\n"); 6174 return false; 6175 } 6176 6177 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 6178 { 6179 return env->prog->jit_requested && 6180 bpf_jit_supports_subprog_tailcalls(); 6181 } 6182 6183 static int check_map_func_compatibility(struct bpf_verifier_env *env, 6184 struct bpf_map *map, int func_id) 6185 { 6186 if (!map) 6187 return 0; 6188 6189 /* We need a two way check, first is from map perspective ... */ 6190 switch (map->map_type) { 6191 case BPF_MAP_TYPE_PROG_ARRAY: 6192 if (func_id != BPF_FUNC_tail_call) 6193 goto error; 6194 break; 6195 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 6196 if (func_id != BPF_FUNC_perf_event_read && 6197 func_id != BPF_FUNC_perf_event_output && 6198 func_id != BPF_FUNC_skb_output && 6199 func_id != BPF_FUNC_perf_event_read_value && 6200 func_id != BPF_FUNC_xdp_output) 6201 goto error; 6202 break; 6203 case BPF_MAP_TYPE_RINGBUF: 6204 if (func_id != BPF_FUNC_ringbuf_output && 6205 func_id != BPF_FUNC_ringbuf_reserve && 6206 func_id != BPF_FUNC_ringbuf_query && 6207 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 6208 func_id != BPF_FUNC_ringbuf_submit_dynptr && 6209 func_id != BPF_FUNC_ringbuf_discard_dynptr) 6210 goto error; 6211 break; 6212 case BPF_MAP_TYPE_STACK_TRACE: 6213 if (func_id != BPF_FUNC_get_stackid) 6214 goto error; 6215 break; 6216 case BPF_MAP_TYPE_CGROUP_ARRAY: 6217 if (func_id != BPF_FUNC_skb_under_cgroup && 6218 func_id != BPF_FUNC_current_task_under_cgroup) 6219 goto error; 6220 break; 6221 case BPF_MAP_TYPE_CGROUP_STORAGE: 6222 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 6223 if (func_id != BPF_FUNC_get_local_storage) 6224 goto error; 6225 break; 6226 case BPF_MAP_TYPE_DEVMAP: 6227 case BPF_MAP_TYPE_DEVMAP_HASH: 6228 if (func_id != BPF_FUNC_redirect_map && 6229 func_id != BPF_FUNC_map_lookup_elem) 6230 goto error; 6231 break; 6232 /* Restrict bpf side of cpumap and xskmap, open when use-cases 6233 * appear. 6234 */ 6235 case BPF_MAP_TYPE_CPUMAP: 6236 if (func_id != BPF_FUNC_redirect_map) 6237 goto error; 6238 break; 6239 case BPF_MAP_TYPE_XSKMAP: 6240 if (func_id != BPF_FUNC_redirect_map && 6241 func_id != BPF_FUNC_map_lookup_elem) 6242 goto error; 6243 break; 6244 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 6245 case BPF_MAP_TYPE_HASH_OF_MAPS: 6246 if (func_id != BPF_FUNC_map_lookup_elem) 6247 goto error; 6248 break; 6249 case BPF_MAP_TYPE_SOCKMAP: 6250 if (func_id != BPF_FUNC_sk_redirect_map && 6251 func_id != BPF_FUNC_sock_map_update && 6252 func_id != BPF_FUNC_map_delete_elem && 6253 func_id != BPF_FUNC_msg_redirect_map && 6254 func_id != BPF_FUNC_sk_select_reuseport && 6255 func_id != BPF_FUNC_map_lookup_elem && 6256 !may_update_sockmap(env, func_id)) 6257 goto error; 6258 break; 6259 case BPF_MAP_TYPE_SOCKHASH: 6260 if (func_id != BPF_FUNC_sk_redirect_hash && 6261 func_id != BPF_FUNC_sock_hash_update && 6262 func_id != BPF_FUNC_map_delete_elem && 6263 func_id != BPF_FUNC_msg_redirect_hash && 6264 func_id != BPF_FUNC_sk_select_reuseport && 6265 func_id != BPF_FUNC_map_lookup_elem && 6266 !may_update_sockmap(env, func_id)) 6267 goto error; 6268 break; 6269 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 6270 if (func_id != BPF_FUNC_sk_select_reuseport) 6271 goto error; 6272 break; 6273 case BPF_MAP_TYPE_QUEUE: 6274 case BPF_MAP_TYPE_STACK: 6275 if (func_id != BPF_FUNC_map_peek_elem && 6276 func_id != BPF_FUNC_map_pop_elem && 6277 func_id != BPF_FUNC_map_push_elem) 6278 goto error; 6279 break; 6280 case BPF_MAP_TYPE_SK_STORAGE: 6281 if (func_id != BPF_FUNC_sk_storage_get && 6282 func_id != BPF_FUNC_sk_storage_delete) 6283 goto error; 6284 break; 6285 case BPF_MAP_TYPE_INODE_STORAGE: 6286 if (func_id != BPF_FUNC_inode_storage_get && 6287 func_id != BPF_FUNC_inode_storage_delete) 6288 goto error; 6289 break; 6290 case BPF_MAP_TYPE_TASK_STORAGE: 6291 if (func_id != BPF_FUNC_task_storage_get && 6292 func_id != BPF_FUNC_task_storage_delete) 6293 goto error; 6294 break; 6295 case BPF_MAP_TYPE_BLOOM_FILTER: 6296 if (func_id != BPF_FUNC_map_peek_elem && 6297 func_id != BPF_FUNC_map_push_elem) 6298 goto error; 6299 break; 6300 default: 6301 break; 6302 } 6303 6304 /* ... and second from the function itself. */ 6305 switch (func_id) { 6306 case BPF_FUNC_tail_call: 6307 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 6308 goto error; 6309 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 6310 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 6311 return -EINVAL; 6312 } 6313 break; 6314 case BPF_FUNC_perf_event_read: 6315 case BPF_FUNC_perf_event_output: 6316 case BPF_FUNC_perf_event_read_value: 6317 case BPF_FUNC_skb_output: 6318 case BPF_FUNC_xdp_output: 6319 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 6320 goto error; 6321 break; 6322 case BPF_FUNC_ringbuf_output: 6323 case BPF_FUNC_ringbuf_reserve: 6324 case BPF_FUNC_ringbuf_query: 6325 case BPF_FUNC_ringbuf_reserve_dynptr: 6326 case BPF_FUNC_ringbuf_submit_dynptr: 6327 case BPF_FUNC_ringbuf_discard_dynptr: 6328 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 6329 goto error; 6330 break; 6331 case BPF_FUNC_get_stackid: 6332 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 6333 goto error; 6334 break; 6335 case BPF_FUNC_current_task_under_cgroup: 6336 case BPF_FUNC_skb_under_cgroup: 6337 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 6338 goto error; 6339 break; 6340 case BPF_FUNC_redirect_map: 6341 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 6342 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 6343 map->map_type != BPF_MAP_TYPE_CPUMAP && 6344 map->map_type != BPF_MAP_TYPE_XSKMAP) 6345 goto error; 6346 break; 6347 case BPF_FUNC_sk_redirect_map: 6348 case BPF_FUNC_msg_redirect_map: 6349 case BPF_FUNC_sock_map_update: 6350 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 6351 goto error; 6352 break; 6353 case BPF_FUNC_sk_redirect_hash: 6354 case BPF_FUNC_msg_redirect_hash: 6355 case BPF_FUNC_sock_hash_update: 6356 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 6357 goto error; 6358 break; 6359 case BPF_FUNC_get_local_storage: 6360 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 6361 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 6362 goto error; 6363 break; 6364 case BPF_FUNC_sk_select_reuseport: 6365 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 6366 map->map_type != BPF_MAP_TYPE_SOCKMAP && 6367 map->map_type != BPF_MAP_TYPE_SOCKHASH) 6368 goto error; 6369 break; 6370 case BPF_FUNC_map_pop_elem: 6371 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6372 map->map_type != BPF_MAP_TYPE_STACK) 6373 goto error; 6374 break; 6375 case BPF_FUNC_map_peek_elem: 6376 case BPF_FUNC_map_push_elem: 6377 if (map->map_type != BPF_MAP_TYPE_QUEUE && 6378 map->map_type != BPF_MAP_TYPE_STACK && 6379 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 6380 goto error; 6381 break; 6382 case BPF_FUNC_map_lookup_percpu_elem: 6383 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 6384 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6385 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 6386 goto error; 6387 break; 6388 case BPF_FUNC_sk_storage_get: 6389 case BPF_FUNC_sk_storage_delete: 6390 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 6391 goto error; 6392 break; 6393 case BPF_FUNC_inode_storage_get: 6394 case BPF_FUNC_inode_storage_delete: 6395 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 6396 goto error; 6397 break; 6398 case BPF_FUNC_task_storage_get: 6399 case BPF_FUNC_task_storage_delete: 6400 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 6401 goto error; 6402 break; 6403 default: 6404 break; 6405 } 6406 6407 return 0; 6408 error: 6409 verbose(env, "cannot pass map_type %d into func %s#%d\n", 6410 map->map_type, func_id_name(func_id), func_id); 6411 return -EINVAL; 6412 } 6413 6414 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 6415 { 6416 int count = 0; 6417 6418 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 6419 count++; 6420 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 6421 count++; 6422 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 6423 count++; 6424 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 6425 count++; 6426 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 6427 count++; 6428 6429 /* We only support one arg being in raw mode at the moment, 6430 * which is sufficient for the helper functions we have 6431 * right now. 6432 */ 6433 return count <= 1; 6434 } 6435 6436 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 6437 { 6438 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 6439 bool has_size = fn->arg_size[arg] != 0; 6440 bool is_next_size = false; 6441 6442 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 6443 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 6444 6445 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 6446 return is_next_size; 6447 6448 return has_size == is_next_size || is_next_size == is_fixed; 6449 } 6450 6451 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 6452 { 6453 /* bpf_xxx(..., buf, len) call will access 'len' 6454 * bytes from memory 'buf'. Both arg types need 6455 * to be paired, so make sure there's no buggy 6456 * helper function specification. 6457 */ 6458 if (arg_type_is_mem_size(fn->arg1_type) || 6459 check_args_pair_invalid(fn, 0) || 6460 check_args_pair_invalid(fn, 1) || 6461 check_args_pair_invalid(fn, 2) || 6462 check_args_pair_invalid(fn, 3) || 6463 check_args_pair_invalid(fn, 4)) 6464 return false; 6465 6466 return true; 6467 } 6468 6469 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 6470 { 6471 int i; 6472 6473 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 6474 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 6475 return false; 6476 6477 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 6478 /* arg_btf_id and arg_size are in a union. */ 6479 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 6480 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 6481 return false; 6482 } 6483 6484 return true; 6485 } 6486 6487 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 6488 { 6489 return check_raw_mode_ok(fn) && 6490 check_arg_pair_ok(fn) && 6491 check_btf_id_ok(fn) ? 0 : -EINVAL; 6492 } 6493 6494 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 6495 * are now invalid, so turn them into unknown SCALAR_VALUE. 6496 */ 6497 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 6498 struct bpf_func_state *state) 6499 { 6500 struct bpf_reg_state *regs = state->regs, *reg; 6501 int i; 6502 6503 for (i = 0; i < MAX_BPF_REG; i++) 6504 if (reg_is_pkt_pointer_any(®s[i])) 6505 mark_reg_unknown(env, regs, i); 6506 6507 bpf_for_each_spilled_reg(i, state, reg) { 6508 if (!reg) 6509 continue; 6510 if (reg_is_pkt_pointer_any(reg)) 6511 __mark_reg_unknown(env, reg); 6512 } 6513 } 6514 6515 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 6516 { 6517 struct bpf_verifier_state *vstate = env->cur_state; 6518 int i; 6519 6520 for (i = 0; i <= vstate->curframe; i++) 6521 __clear_all_pkt_pointers(env, vstate->frame[i]); 6522 } 6523 6524 enum { 6525 AT_PKT_END = -1, 6526 BEYOND_PKT_END = -2, 6527 }; 6528 6529 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 6530 { 6531 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6532 struct bpf_reg_state *reg = &state->regs[regn]; 6533 6534 if (reg->type != PTR_TO_PACKET) 6535 /* PTR_TO_PACKET_META is not supported yet */ 6536 return; 6537 6538 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 6539 * How far beyond pkt_end it goes is unknown. 6540 * if (!range_open) it's the case of pkt >= pkt_end 6541 * if (range_open) it's the case of pkt > pkt_end 6542 * hence this pointer is at least 1 byte bigger than pkt_end 6543 */ 6544 if (range_open) 6545 reg->range = BEYOND_PKT_END; 6546 else 6547 reg->range = AT_PKT_END; 6548 } 6549 6550 static void release_reg_references(struct bpf_verifier_env *env, 6551 struct bpf_func_state *state, 6552 int ref_obj_id) 6553 { 6554 struct bpf_reg_state *regs = state->regs, *reg; 6555 int i; 6556 6557 for (i = 0; i < MAX_BPF_REG; i++) 6558 if (regs[i].ref_obj_id == ref_obj_id) 6559 mark_reg_unknown(env, regs, i); 6560 6561 bpf_for_each_spilled_reg(i, state, reg) { 6562 if (!reg) 6563 continue; 6564 if (reg->ref_obj_id == ref_obj_id) 6565 __mark_reg_unknown(env, reg); 6566 } 6567 } 6568 6569 /* The pointer with the specified id has released its reference to kernel 6570 * resources. Identify all copies of the same pointer and clear the reference. 6571 */ 6572 static int release_reference(struct bpf_verifier_env *env, 6573 int ref_obj_id) 6574 { 6575 struct bpf_verifier_state *vstate = env->cur_state; 6576 int err; 6577 int i; 6578 6579 err = release_reference_state(cur_func(env), ref_obj_id); 6580 if (err) 6581 return err; 6582 6583 for (i = 0; i <= vstate->curframe; i++) 6584 release_reg_references(env, vstate->frame[i], ref_obj_id); 6585 6586 return 0; 6587 } 6588 6589 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 6590 struct bpf_reg_state *regs) 6591 { 6592 int i; 6593 6594 /* after the call registers r0 - r5 were scratched */ 6595 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6596 mark_reg_not_init(env, regs, caller_saved[i]); 6597 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6598 } 6599 } 6600 6601 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6602 struct bpf_func_state *caller, 6603 struct bpf_func_state *callee, 6604 int insn_idx); 6605 6606 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6607 int *insn_idx, int subprog, 6608 set_callee_state_fn set_callee_state_cb) 6609 { 6610 struct bpf_verifier_state *state = env->cur_state; 6611 struct bpf_func_info_aux *func_info_aux; 6612 struct bpf_func_state *caller, *callee; 6613 int err; 6614 bool is_global = false; 6615 6616 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6617 verbose(env, "the call stack of %d frames is too deep\n", 6618 state->curframe + 2); 6619 return -E2BIG; 6620 } 6621 6622 caller = state->frame[state->curframe]; 6623 if (state->frame[state->curframe + 1]) { 6624 verbose(env, "verifier bug. Frame %d already allocated\n", 6625 state->curframe + 1); 6626 return -EFAULT; 6627 } 6628 6629 func_info_aux = env->prog->aux->func_info_aux; 6630 if (func_info_aux) 6631 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6632 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 6633 if (err == -EFAULT) 6634 return err; 6635 if (is_global) { 6636 if (err) { 6637 verbose(env, "Caller passes invalid args into func#%d\n", 6638 subprog); 6639 return err; 6640 } else { 6641 if (env->log.level & BPF_LOG_LEVEL) 6642 verbose(env, 6643 "Func#%d is global and valid. Skipping.\n", 6644 subprog); 6645 clear_caller_saved_regs(env, caller->regs); 6646 6647 /* All global functions return a 64-bit SCALAR_VALUE */ 6648 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6649 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6650 6651 /* continue with next insn after call */ 6652 return 0; 6653 } 6654 } 6655 6656 if (insn->code == (BPF_JMP | BPF_CALL) && 6657 insn->src_reg == 0 && 6658 insn->imm == BPF_FUNC_timer_set_callback) { 6659 struct bpf_verifier_state *async_cb; 6660 6661 /* there is no real recursion here. timer callbacks are async */ 6662 env->subprog_info[subprog].is_async_cb = true; 6663 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6664 *insn_idx, subprog); 6665 if (!async_cb) 6666 return -EFAULT; 6667 callee = async_cb->frame[0]; 6668 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6669 6670 /* Convert bpf_timer_set_callback() args into timer callback args */ 6671 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6672 if (err) 6673 return err; 6674 6675 clear_caller_saved_regs(env, caller->regs); 6676 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6677 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6678 /* continue with next insn after call */ 6679 return 0; 6680 } 6681 6682 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6683 if (!callee) 6684 return -ENOMEM; 6685 state->frame[state->curframe + 1] = callee; 6686 6687 /* callee cannot access r0, r6 - r9 for reading and has to write 6688 * into its own stack before reading from it. 6689 * callee can read/write into caller's stack 6690 */ 6691 init_func_state(env, callee, 6692 /* remember the callsite, it will be used by bpf_exit */ 6693 *insn_idx /* callsite */, 6694 state->curframe + 1 /* frameno within this callchain */, 6695 subprog /* subprog number within this prog */); 6696 6697 /* Transfer references to the callee */ 6698 err = copy_reference_state(callee, caller); 6699 if (err) 6700 return err; 6701 6702 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6703 if (err) 6704 return err; 6705 6706 clear_caller_saved_regs(env, caller->regs); 6707 6708 /* only increment it after check_reg_arg() finished */ 6709 state->curframe++; 6710 6711 /* and go analyze first insn of the callee */ 6712 *insn_idx = env->subprog_info[subprog].start - 1; 6713 6714 if (env->log.level & BPF_LOG_LEVEL) { 6715 verbose(env, "caller:\n"); 6716 print_verifier_state(env, caller, true); 6717 verbose(env, "callee:\n"); 6718 print_verifier_state(env, callee, true); 6719 } 6720 return 0; 6721 } 6722 6723 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6724 struct bpf_func_state *caller, 6725 struct bpf_func_state *callee) 6726 { 6727 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6728 * void *callback_ctx, u64 flags); 6729 * callback_fn(struct bpf_map *map, void *key, void *value, 6730 * void *callback_ctx); 6731 */ 6732 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6733 6734 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6735 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6736 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6737 6738 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6739 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6740 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6741 6742 /* pointer to stack or null */ 6743 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6744 6745 /* unused */ 6746 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6747 return 0; 6748 } 6749 6750 static int set_callee_state(struct bpf_verifier_env *env, 6751 struct bpf_func_state *caller, 6752 struct bpf_func_state *callee, int insn_idx) 6753 { 6754 int i; 6755 6756 /* copy r1 - r5 args that callee can access. The copy includes parent 6757 * pointers, which connects us up to the liveness chain 6758 */ 6759 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6760 callee->regs[i] = caller->regs[i]; 6761 return 0; 6762 } 6763 6764 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6765 int *insn_idx) 6766 { 6767 int subprog, target_insn; 6768 6769 target_insn = *insn_idx + insn->imm + 1; 6770 subprog = find_subprog(env, target_insn); 6771 if (subprog < 0) { 6772 verbose(env, "verifier bug. No program starts at insn %d\n", 6773 target_insn); 6774 return -EFAULT; 6775 } 6776 6777 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6778 } 6779 6780 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6781 struct bpf_func_state *caller, 6782 struct bpf_func_state *callee, 6783 int insn_idx) 6784 { 6785 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6786 struct bpf_map *map; 6787 int err; 6788 6789 if (bpf_map_ptr_poisoned(insn_aux)) { 6790 verbose(env, "tail_call abusing map_ptr\n"); 6791 return -EINVAL; 6792 } 6793 6794 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6795 if (!map->ops->map_set_for_each_callback_args || 6796 !map->ops->map_for_each_callback) { 6797 verbose(env, "callback function not allowed for map\n"); 6798 return -ENOTSUPP; 6799 } 6800 6801 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6802 if (err) 6803 return err; 6804 6805 callee->in_callback_fn = true; 6806 return 0; 6807 } 6808 6809 static int set_loop_callback_state(struct bpf_verifier_env *env, 6810 struct bpf_func_state *caller, 6811 struct bpf_func_state *callee, 6812 int insn_idx) 6813 { 6814 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6815 * u64 flags); 6816 * callback_fn(u32 index, void *callback_ctx); 6817 */ 6818 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6819 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6820 6821 /* unused */ 6822 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6823 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6824 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6825 6826 callee->in_callback_fn = true; 6827 return 0; 6828 } 6829 6830 static int set_timer_callback_state(struct bpf_verifier_env *env, 6831 struct bpf_func_state *caller, 6832 struct bpf_func_state *callee, 6833 int insn_idx) 6834 { 6835 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6836 6837 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6838 * callback_fn(struct bpf_map *map, void *key, void *value); 6839 */ 6840 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6841 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6842 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6843 6844 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6845 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6846 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6847 6848 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6849 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6850 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6851 6852 /* unused */ 6853 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6854 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6855 callee->in_async_callback_fn = true; 6856 return 0; 6857 } 6858 6859 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6860 struct bpf_func_state *caller, 6861 struct bpf_func_state *callee, 6862 int insn_idx) 6863 { 6864 /* bpf_find_vma(struct task_struct *task, u64 addr, 6865 * void *callback_fn, void *callback_ctx, u64 flags) 6866 * (callback_fn)(struct task_struct *task, 6867 * struct vm_area_struct *vma, void *callback_ctx); 6868 */ 6869 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6870 6871 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6872 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6873 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6874 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6875 6876 /* pointer to stack or null */ 6877 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6878 6879 /* unused */ 6880 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6881 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6882 callee->in_callback_fn = true; 6883 return 0; 6884 } 6885 6886 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6887 { 6888 struct bpf_verifier_state *state = env->cur_state; 6889 struct bpf_func_state *caller, *callee; 6890 struct bpf_reg_state *r0; 6891 int err; 6892 6893 callee = state->frame[state->curframe]; 6894 r0 = &callee->regs[BPF_REG_0]; 6895 if (r0->type == PTR_TO_STACK) { 6896 /* technically it's ok to return caller's stack pointer 6897 * (or caller's caller's pointer) back to the caller, 6898 * since these pointers are valid. Only current stack 6899 * pointer will be invalid as soon as function exits, 6900 * but let's be conservative 6901 */ 6902 verbose(env, "cannot return stack pointer to the caller\n"); 6903 return -EINVAL; 6904 } 6905 6906 state->curframe--; 6907 caller = state->frame[state->curframe]; 6908 if (callee->in_callback_fn) { 6909 /* enforce R0 return value range [0, 1]. */ 6910 struct tnum range = tnum_range(0, 1); 6911 6912 if (r0->type != SCALAR_VALUE) { 6913 verbose(env, "R0 not a scalar value\n"); 6914 return -EACCES; 6915 } 6916 if (!tnum_in(range, r0->var_off)) { 6917 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6918 return -EINVAL; 6919 } 6920 } else { 6921 /* return to the caller whatever r0 had in the callee */ 6922 caller->regs[BPF_REG_0] = *r0; 6923 } 6924 6925 /* callback_fn frame should have released its own additions to parent's 6926 * reference state at this point, or check_reference_leak would 6927 * complain, hence it must be the same as the caller. There is no need 6928 * to copy it back. 6929 */ 6930 if (!callee->in_callback_fn) { 6931 /* Transfer references to the caller */ 6932 err = copy_reference_state(caller, callee); 6933 if (err) 6934 return err; 6935 } 6936 6937 *insn_idx = callee->callsite + 1; 6938 if (env->log.level & BPF_LOG_LEVEL) { 6939 verbose(env, "returning from callee:\n"); 6940 print_verifier_state(env, callee, true); 6941 verbose(env, "to caller at %d:\n", *insn_idx); 6942 print_verifier_state(env, caller, true); 6943 } 6944 /* clear everything in the callee */ 6945 free_func_state(callee); 6946 state->frame[state->curframe + 1] = NULL; 6947 return 0; 6948 } 6949 6950 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6951 int func_id, 6952 struct bpf_call_arg_meta *meta) 6953 { 6954 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6955 6956 if (ret_type != RET_INTEGER || 6957 (func_id != BPF_FUNC_get_stack && 6958 func_id != BPF_FUNC_get_task_stack && 6959 func_id != BPF_FUNC_probe_read_str && 6960 func_id != BPF_FUNC_probe_read_kernel_str && 6961 func_id != BPF_FUNC_probe_read_user_str)) 6962 return; 6963 6964 ret_reg->smax_value = meta->msize_max_value; 6965 ret_reg->s32_max_value = meta->msize_max_value; 6966 ret_reg->smin_value = -MAX_ERRNO; 6967 ret_reg->s32_min_value = -MAX_ERRNO; 6968 reg_bounds_sync(ret_reg); 6969 } 6970 6971 static int 6972 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6973 int func_id, int insn_idx) 6974 { 6975 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6976 struct bpf_map *map = meta->map_ptr; 6977 6978 if (func_id != BPF_FUNC_tail_call && 6979 func_id != BPF_FUNC_map_lookup_elem && 6980 func_id != BPF_FUNC_map_update_elem && 6981 func_id != BPF_FUNC_map_delete_elem && 6982 func_id != BPF_FUNC_map_push_elem && 6983 func_id != BPF_FUNC_map_pop_elem && 6984 func_id != BPF_FUNC_map_peek_elem && 6985 func_id != BPF_FUNC_for_each_map_elem && 6986 func_id != BPF_FUNC_redirect_map && 6987 func_id != BPF_FUNC_map_lookup_percpu_elem) 6988 return 0; 6989 6990 if (map == NULL) { 6991 verbose(env, "kernel subsystem misconfigured verifier\n"); 6992 return -EINVAL; 6993 } 6994 6995 /* In case of read-only, some additional restrictions 6996 * need to be applied in order to prevent altering the 6997 * state of the map from program side. 6998 */ 6999 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7000 (func_id == BPF_FUNC_map_delete_elem || 7001 func_id == BPF_FUNC_map_update_elem || 7002 func_id == BPF_FUNC_map_push_elem || 7003 func_id == BPF_FUNC_map_pop_elem)) { 7004 verbose(env, "write into map forbidden\n"); 7005 return -EACCES; 7006 } 7007 7008 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7009 bpf_map_ptr_store(aux, meta->map_ptr, 7010 !meta->map_ptr->bypass_spec_v1); 7011 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7012 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7013 !meta->map_ptr->bypass_spec_v1); 7014 return 0; 7015 } 7016 7017 static int 7018 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7019 int func_id, int insn_idx) 7020 { 7021 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7022 struct bpf_reg_state *regs = cur_regs(env), *reg; 7023 struct bpf_map *map = meta->map_ptr; 7024 u64 val, max; 7025 int err; 7026 7027 if (func_id != BPF_FUNC_tail_call) 7028 return 0; 7029 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7030 verbose(env, "kernel subsystem misconfigured verifier\n"); 7031 return -EINVAL; 7032 } 7033 7034 reg = ®s[BPF_REG_3]; 7035 val = reg->var_off.value; 7036 max = map->max_entries; 7037 7038 if (!(register_is_const(reg) && val < max)) { 7039 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7040 return 0; 7041 } 7042 7043 err = mark_chain_precision(env, BPF_REG_3); 7044 if (err) 7045 return err; 7046 if (bpf_map_key_unseen(aux)) 7047 bpf_map_key_store(aux, val); 7048 else if (!bpf_map_key_poisoned(aux) && 7049 bpf_map_key_immediate(aux) != val) 7050 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 7051 return 0; 7052 } 7053 7054 static int check_reference_leak(struct bpf_verifier_env *env) 7055 { 7056 struct bpf_func_state *state = cur_func(env); 7057 bool refs_lingering = false; 7058 int i; 7059 7060 if (state->frameno && !state->in_callback_fn) 7061 return 0; 7062 7063 for (i = 0; i < state->acquired_refs; i++) { 7064 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 7065 continue; 7066 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 7067 state->refs[i].id, state->refs[i].insn_idx); 7068 refs_lingering = true; 7069 } 7070 return refs_lingering ? -EINVAL : 0; 7071 } 7072 7073 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 7074 struct bpf_reg_state *regs) 7075 { 7076 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 7077 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 7078 struct bpf_map *fmt_map = fmt_reg->map_ptr; 7079 int err, fmt_map_off, num_args; 7080 u64 fmt_addr; 7081 char *fmt; 7082 7083 /* data must be an array of u64 */ 7084 if (data_len_reg->var_off.value % 8) 7085 return -EINVAL; 7086 num_args = data_len_reg->var_off.value / 8; 7087 7088 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 7089 * and map_direct_value_addr is set. 7090 */ 7091 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 7092 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 7093 fmt_map_off); 7094 if (err) { 7095 verbose(env, "verifier bug\n"); 7096 return -EFAULT; 7097 } 7098 fmt = (char *)(long)fmt_addr + fmt_map_off; 7099 7100 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 7101 * can focus on validating the format specifiers. 7102 */ 7103 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 7104 if (err < 0) 7105 verbose(env, "Invalid format string\n"); 7106 7107 return err; 7108 } 7109 7110 static int check_get_func_ip(struct bpf_verifier_env *env) 7111 { 7112 enum bpf_prog_type type = resolve_prog_type(env->prog); 7113 int func_id = BPF_FUNC_get_func_ip; 7114 7115 if (type == BPF_PROG_TYPE_TRACING) { 7116 if (!bpf_prog_has_trampoline(env->prog)) { 7117 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 7118 func_id_name(func_id), func_id); 7119 return -ENOTSUPP; 7120 } 7121 return 0; 7122 } else if (type == BPF_PROG_TYPE_KPROBE) { 7123 return 0; 7124 } 7125 7126 verbose(env, "func %s#%d not supported for program type %d\n", 7127 func_id_name(func_id), func_id, type); 7128 return -ENOTSUPP; 7129 } 7130 7131 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 7132 { 7133 return &env->insn_aux_data[env->insn_idx]; 7134 } 7135 7136 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 7137 { 7138 struct bpf_reg_state *regs = cur_regs(env); 7139 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 7140 bool reg_is_null = register_is_null(reg); 7141 7142 if (reg_is_null) 7143 mark_chain_precision(env, BPF_REG_4); 7144 7145 return reg_is_null; 7146 } 7147 7148 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 7149 { 7150 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 7151 7152 if (!state->initialized) { 7153 state->initialized = 1; 7154 state->fit_for_inline = loop_flag_is_zero(env); 7155 state->callback_subprogno = subprogno; 7156 return; 7157 } 7158 7159 if (!state->fit_for_inline) 7160 return; 7161 7162 state->fit_for_inline = (loop_flag_is_zero(env) && 7163 state->callback_subprogno == subprogno); 7164 } 7165 7166 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7167 int *insn_idx_p) 7168 { 7169 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7170 const struct bpf_func_proto *fn = NULL; 7171 enum bpf_return_type ret_type; 7172 enum bpf_type_flag ret_flag; 7173 struct bpf_reg_state *regs; 7174 struct bpf_call_arg_meta meta; 7175 int insn_idx = *insn_idx_p; 7176 bool changes_data; 7177 int i, err, func_id; 7178 7179 /* find function prototype */ 7180 func_id = insn->imm; 7181 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 7182 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 7183 func_id); 7184 return -EINVAL; 7185 } 7186 7187 if (env->ops->get_func_proto) 7188 fn = env->ops->get_func_proto(func_id, env->prog); 7189 if (!fn) { 7190 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 7191 func_id); 7192 return -EINVAL; 7193 } 7194 7195 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 7196 if (!env->prog->gpl_compatible && fn->gpl_only) { 7197 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 7198 return -EINVAL; 7199 } 7200 7201 if (fn->allowed && !fn->allowed(env->prog)) { 7202 verbose(env, "helper call is not allowed in probe\n"); 7203 return -EINVAL; 7204 } 7205 7206 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 7207 changes_data = bpf_helper_changes_pkt_data(fn->func); 7208 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 7209 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 7210 func_id_name(func_id), func_id); 7211 return -EINVAL; 7212 } 7213 7214 memset(&meta, 0, sizeof(meta)); 7215 meta.pkt_access = fn->pkt_access; 7216 7217 err = check_func_proto(fn, func_id); 7218 if (err) { 7219 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 7220 func_id_name(func_id), func_id); 7221 return err; 7222 } 7223 7224 meta.func_id = func_id; 7225 /* check args */ 7226 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7227 err = check_func_arg(env, i, &meta, fn); 7228 if (err) 7229 return err; 7230 } 7231 7232 err = record_func_map(env, &meta, func_id, insn_idx); 7233 if (err) 7234 return err; 7235 7236 err = record_func_key(env, &meta, func_id, insn_idx); 7237 if (err) 7238 return err; 7239 7240 /* Mark slots with STACK_MISC in case of raw mode, stack offset 7241 * is inferred from register state. 7242 */ 7243 for (i = 0; i < meta.access_size; i++) { 7244 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 7245 BPF_WRITE, -1, false); 7246 if (err) 7247 return err; 7248 } 7249 7250 regs = cur_regs(env); 7251 7252 if (meta.uninit_dynptr_regno) { 7253 /* we write BPF_DW bits (8 bytes) at a time */ 7254 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7255 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 7256 i, BPF_DW, BPF_WRITE, -1, false); 7257 if (err) 7258 return err; 7259 } 7260 7261 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 7262 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 7263 insn_idx); 7264 if (err) 7265 return err; 7266 } 7267 7268 if (meta.release_regno) { 7269 err = -EINVAL; 7270 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) 7271 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 7272 else if (meta.ref_obj_id) 7273 err = release_reference(env, meta.ref_obj_id); 7274 /* meta.ref_obj_id can only be 0 if register that is meant to be 7275 * released is NULL, which must be > R0. 7276 */ 7277 else if (register_is_null(®s[meta.release_regno])) 7278 err = 0; 7279 if (err) { 7280 verbose(env, "func %s#%d reference has not been acquired before\n", 7281 func_id_name(func_id), func_id); 7282 return err; 7283 } 7284 } 7285 7286 switch (func_id) { 7287 case BPF_FUNC_tail_call: 7288 err = check_reference_leak(env); 7289 if (err) { 7290 verbose(env, "tail_call would lead to reference leak\n"); 7291 return err; 7292 } 7293 break; 7294 case BPF_FUNC_get_local_storage: 7295 /* check that flags argument in get_local_storage(map, flags) is 0, 7296 * this is required because get_local_storage() can't return an error. 7297 */ 7298 if (!register_is_null(®s[BPF_REG_2])) { 7299 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 7300 return -EINVAL; 7301 } 7302 break; 7303 case BPF_FUNC_for_each_map_elem: 7304 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7305 set_map_elem_callback_state); 7306 break; 7307 case BPF_FUNC_timer_set_callback: 7308 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7309 set_timer_callback_state); 7310 break; 7311 case BPF_FUNC_find_vma: 7312 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7313 set_find_vma_callback_state); 7314 break; 7315 case BPF_FUNC_snprintf: 7316 err = check_bpf_snprintf_call(env, regs); 7317 break; 7318 case BPF_FUNC_loop: 7319 update_loop_inline_state(env, meta.subprogno); 7320 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 7321 set_loop_callback_state); 7322 break; 7323 case BPF_FUNC_dynptr_from_mem: 7324 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 7325 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 7326 reg_type_str(env, regs[BPF_REG_1].type)); 7327 return -EACCES; 7328 } 7329 break; 7330 case BPF_FUNC_set_retval: 7331 if (prog_type == BPF_PROG_TYPE_LSM && 7332 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 7333 if (!env->prog->aux->attach_func_proto->type) { 7334 /* Make sure programs that attach to void 7335 * hooks don't try to modify return value. 7336 */ 7337 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 7338 return -EINVAL; 7339 } 7340 } 7341 break; 7342 case BPF_FUNC_dynptr_data: 7343 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 7344 if (arg_type_is_dynptr(fn->arg_type[i])) { 7345 if (meta.ref_obj_id) { 7346 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 7347 return -EFAULT; 7348 } 7349 /* Find the id of the dynptr we're tracking the reference of */ 7350 meta.ref_obj_id = stack_slot_get_id(env, ®s[BPF_REG_1 + i]); 7351 break; 7352 } 7353 } 7354 if (i == MAX_BPF_FUNC_REG_ARGS) { 7355 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 7356 return -EFAULT; 7357 } 7358 break; 7359 } 7360 7361 if (err) 7362 return err; 7363 7364 /* reset caller saved regs */ 7365 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7366 mark_reg_not_init(env, regs, caller_saved[i]); 7367 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7368 } 7369 7370 /* helper call returns 64-bit value. */ 7371 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7372 7373 /* update return register (already marked as written above) */ 7374 ret_type = fn->ret_type; 7375 ret_flag = type_flag(ret_type); 7376 7377 switch (base_type(ret_type)) { 7378 case RET_INTEGER: 7379 /* sets type to SCALAR_VALUE */ 7380 mark_reg_unknown(env, regs, BPF_REG_0); 7381 break; 7382 case RET_VOID: 7383 regs[BPF_REG_0].type = NOT_INIT; 7384 break; 7385 case RET_PTR_TO_MAP_VALUE: 7386 /* There is no offset yet applied, variable or fixed */ 7387 mark_reg_known_zero(env, regs, BPF_REG_0); 7388 /* remember map_ptr, so that check_map_access() 7389 * can check 'value_size' boundary of memory access 7390 * to map element returned from bpf_map_lookup_elem() 7391 */ 7392 if (meta.map_ptr == NULL) { 7393 verbose(env, 7394 "kernel subsystem misconfigured verifier\n"); 7395 return -EINVAL; 7396 } 7397 regs[BPF_REG_0].map_ptr = meta.map_ptr; 7398 regs[BPF_REG_0].map_uid = meta.map_uid; 7399 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 7400 if (!type_may_be_null(ret_type) && 7401 map_value_has_spin_lock(meta.map_ptr)) { 7402 regs[BPF_REG_0].id = ++env->id_gen; 7403 } 7404 break; 7405 case RET_PTR_TO_SOCKET: 7406 mark_reg_known_zero(env, regs, BPF_REG_0); 7407 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 7408 break; 7409 case RET_PTR_TO_SOCK_COMMON: 7410 mark_reg_known_zero(env, regs, BPF_REG_0); 7411 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 7412 break; 7413 case RET_PTR_TO_TCP_SOCK: 7414 mark_reg_known_zero(env, regs, BPF_REG_0); 7415 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 7416 break; 7417 case RET_PTR_TO_ALLOC_MEM: 7418 mark_reg_known_zero(env, regs, BPF_REG_0); 7419 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7420 regs[BPF_REG_0].mem_size = meta.mem_size; 7421 break; 7422 case RET_PTR_TO_MEM_OR_BTF_ID: 7423 { 7424 const struct btf_type *t; 7425 7426 mark_reg_known_zero(env, regs, BPF_REG_0); 7427 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 7428 if (!btf_type_is_struct(t)) { 7429 u32 tsize; 7430 const struct btf_type *ret; 7431 const char *tname; 7432 7433 /* resolve the type size of ksym. */ 7434 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 7435 if (IS_ERR(ret)) { 7436 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 7437 verbose(env, "unable to resolve the size of type '%s': %ld\n", 7438 tname, PTR_ERR(ret)); 7439 return -EINVAL; 7440 } 7441 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 7442 regs[BPF_REG_0].mem_size = tsize; 7443 } else { 7444 /* MEM_RDONLY may be carried from ret_flag, but it 7445 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 7446 * it will confuse the check of PTR_TO_BTF_ID in 7447 * check_mem_access(). 7448 */ 7449 ret_flag &= ~MEM_RDONLY; 7450 7451 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7452 regs[BPF_REG_0].btf = meta.ret_btf; 7453 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 7454 } 7455 break; 7456 } 7457 case RET_PTR_TO_BTF_ID: 7458 { 7459 struct btf *ret_btf; 7460 int ret_btf_id; 7461 7462 mark_reg_known_zero(env, regs, BPF_REG_0); 7463 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 7464 if (func_id == BPF_FUNC_kptr_xchg) { 7465 ret_btf = meta.kptr_off_desc->kptr.btf; 7466 ret_btf_id = meta.kptr_off_desc->kptr.btf_id; 7467 } else { 7468 ret_btf = btf_vmlinux; 7469 ret_btf_id = *fn->ret_btf_id; 7470 } 7471 if (ret_btf_id == 0) { 7472 verbose(env, "invalid return type %u of func %s#%d\n", 7473 base_type(ret_type), func_id_name(func_id), 7474 func_id); 7475 return -EINVAL; 7476 } 7477 regs[BPF_REG_0].btf = ret_btf; 7478 regs[BPF_REG_0].btf_id = ret_btf_id; 7479 break; 7480 } 7481 default: 7482 verbose(env, "unknown return type %u of func %s#%d\n", 7483 base_type(ret_type), func_id_name(func_id), func_id); 7484 return -EINVAL; 7485 } 7486 7487 if (type_may_be_null(regs[BPF_REG_0].type)) 7488 regs[BPF_REG_0].id = ++env->id_gen; 7489 7490 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 7491 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 7492 func_id_name(func_id), func_id); 7493 return -EFAULT; 7494 } 7495 7496 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 7497 /* For release_reference() */ 7498 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 7499 } else if (is_acquire_function(func_id, meta.map_ptr)) { 7500 int id = acquire_reference_state(env, insn_idx); 7501 7502 if (id < 0) 7503 return id; 7504 /* For mark_ptr_or_null_reg() */ 7505 regs[BPF_REG_0].id = id; 7506 /* For release_reference() */ 7507 regs[BPF_REG_0].ref_obj_id = id; 7508 } 7509 7510 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 7511 7512 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 7513 if (err) 7514 return err; 7515 7516 if ((func_id == BPF_FUNC_get_stack || 7517 func_id == BPF_FUNC_get_task_stack) && 7518 !env->prog->has_callchain_buf) { 7519 const char *err_str; 7520 7521 #ifdef CONFIG_PERF_EVENTS 7522 err = get_callchain_buffers(sysctl_perf_event_max_stack); 7523 err_str = "cannot get callchain buffer for func %s#%d\n"; 7524 #else 7525 err = -ENOTSUPP; 7526 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 7527 #endif 7528 if (err) { 7529 verbose(env, err_str, func_id_name(func_id), func_id); 7530 return err; 7531 } 7532 7533 env->prog->has_callchain_buf = true; 7534 } 7535 7536 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 7537 env->prog->call_get_stack = true; 7538 7539 if (func_id == BPF_FUNC_get_func_ip) { 7540 if (check_get_func_ip(env)) 7541 return -ENOTSUPP; 7542 env->prog->call_get_func_ip = true; 7543 } 7544 7545 if (changes_data) 7546 clear_all_pkt_pointers(env); 7547 return 0; 7548 } 7549 7550 /* mark_btf_func_reg_size() is used when the reg size is determined by 7551 * the BTF func_proto's return value size and argument. 7552 */ 7553 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 7554 size_t reg_size) 7555 { 7556 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 7557 7558 if (regno == BPF_REG_0) { 7559 /* Function return value */ 7560 reg->live |= REG_LIVE_WRITTEN; 7561 reg->subreg_def = reg_size == sizeof(u64) ? 7562 DEF_NOT_SUBREG : env->insn_idx + 1; 7563 } else { 7564 /* Function argument */ 7565 if (reg_size == sizeof(u64)) { 7566 mark_insn_zext(env, reg); 7567 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 7568 } else { 7569 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 7570 } 7571 } 7572 } 7573 7574 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7575 int *insn_idx_p) 7576 { 7577 const struct btf_type *t, *func, *func_proto, *ptr_type; 7578 struct bpf_reg_state *regs = cur_regs(env); 7579 const char *func_name, *ptr_type_name; 7580 u32 i, nargs, func_id, ptr_type_id; 7581 int err, insn_idx = *insn_idx_p; 7582 const struct btf_param *args; 7583 struct btf *desc_btf; 7584 u32 *kfunc_flags; 7585 bool acq; 7586 7587 /* skip for now, but return error when we find this in fixup_kfunc_call */ 7588 if (!insn->imm) 7589 return 0; 7590 7591 desc_btf = find_kfunc_desc_btf(env, insn->off); 7592 if (IS_ERR(desc_btf)) 7593 return PTR_ERR(desc_btf); 7594 7595 func_id = insn->imm; 7596 func = btf_type_by_id(desc_btf, func_id); 7597 func_name = btf_name_by_offset(desc_btf, func->name_off); 7598 func_proto = btf_type_by_id(desc_btf, func->type); 7599 7600 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 7601 if (!kfunc_flags) { 7602 verbose(env, "calling kernel function %s is not allowed\n", 7603 func_name); 7604 return -EACCES; 7605 } 7606 if (*kfunc_flags & KF_DESTRUCTIVE && !capable(CAP_SYS_BOOT)) { 7607 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capabilities\n"); 7608 return -EACCES; 7609 } 7610 7611 acq = *kfunc_flags & KF_ACQUIRE; 7612 7613 /* Check the arguments */ 7614 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, *kfunc_flags); 7615 if (err < 0) 7616 return err; 7617 /* In case of release function, we get register number of refcounted 7618 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now 7619 */ 7620 if (err) { 7621 err = release_reference(env, regs[err].ref_obj_id); 7622 if (err) { 7623 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 7624 func_name, func_id); 7625 return err; 7626 } 7627 } 7628 7629 for (i = 0; i < CALLER_SAVED_REGS; i++) 7630 mark_reg_not_init(env, regs, caller_saved[i]); 7631 7632 /* Check return type */ 7633 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 7634 7635 if (acq && !btf_type_is_ptr(t)) { 7636 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 7637 return -EINVAL; 7638 } 7639 7640 if (btf_type_is_scalar(t)) { 7641 mark_reg_unknown(env, regs, BPF_REG_0); 7642 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 7643 } else if (btf_type_is_ptr(t)) { 7644 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 7645 &ptr_type_id); 7646 if (!btf_type_is_struct(ptr_type)) { 7647 ptr_type_name = btf_name_by_offset(desc_btf, 7648 ptr_type->name_off); 7649 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 7650 func_name, btf_type_str(ptr_type), 7651 ptr_type_name); 7652 return -EINVAL; 7653 } 7654 mark_reg_known_zero(env, regs, BPF_REG_0); 7655 regs[BPF_REG_0].btf = desc_btf; 7656 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 7657 regs[BPF_REG_0].btf_id = ptr_type_id; 7658 if (*kfunc_flags & KF_RET_NULL) { 7659 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 7660 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 7661 regs[BPF_REG_0].id = ++env->id_gen; 7662 } 7663 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 7664 if (acq) { 7665 int id = acquire_reference_state(env, insn_idx); 7666 7667 if (id < 0) 7668 return id; 7669 regs[BPF_REG_0].id = id; 7670 regs[BPF_REG_0].ref_obj_id = id; 7671 } 7672 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 7673 7674 nargs = btf_type_vlen(func_proto); 7675 args = (const struct btf_param *)(func_proto + 1); 7676 for (i = 0; i < nargs; i++) { 7677 u32 regno = i + 1; 7678 7679 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 7680 if (btf_type_is_ptr(t)) 7681 mark_btf_func_reg_size(env, regno, sizeof(void *)); 7682 else 7683 /* scalar. ensured by btf_check_kfunc_arg_match() */ 7684 mark_btf_func_reg_size(env, regno, t->size); 7685 } 7686 7687 return 0; 7688 } 7689 7690 static bool signed_add_overflows(s64 a, s64 b) 7691 { 7692 /* Do the add in u64, where overflow is well-defined */ 7693 s64 res = (s64)((u64)a + (u64)b); 7694 7695 if (b < 0) 7696 return res > a; 7697 return res < a; 7698 } 7699 7700 static bool signed_add32_overflows(s32 a, s32 b) 7701 { 7702 /* Do the add in u32, where overflow is well-defined */ 7703 s32 res = (s32)((u32)a + (u32)b); 7704 7705 if (b < 0) 7706 return res > a; 7707 return res < a; 7708 } 7709 7710 static bool signed_sub_overflows(s64 a, s64 b) 7711 { 7712 /* Do the sub in u64, where overflow is well-defined */ 7713 s64 res = (s64)((u64)a - (u64)b); 7714 7715 if (b < 0) 7716 return res < a; 7717 return res > a; 7718 } 7719 7720 static bool signed_sub32_overflows(s32 a, s32 b) 7721 { 7722 /* Do the sub in u32, where overflow is well-defined */ 7723 s32 res = (s32)((u32)a - (u32)b); 7724 7725 if (b < 0) 7726 return res < a; 7727 return res > a; 7728 } 7729 7730 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 7731 const struct bpf_reg_state *reg, 7732 enum bpf_reg_type type) 7733 { 7734 bool known = tnum_is_const(reg->var_off); 7735 s64 val = reg->var_off.value; 7736 s64 smin = reg->smin_value; 7737 7738 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 7739 verbose(env, "math between %s pointer and %lld is not allowed\n", 7740 reg_type_str(env, type), val); 7741 return false; 7742 } 7743 7744 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 7745 verbose(env, "%s pointer offset %d is not allowed\n", 7746 reg_type_str(env, type), reg->off); 7747 return false; 7748 } 7749 7750 if (smin == S64_MIN) { 7751 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 7752 reg_type_str(env, type)); 7753 return false; 7754 } 7755 7756 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 7757 verbose(env, "value %lld makes %s pointer be out of bounds\n", 7758 smin, reg_type_str(env, type)); 7759 return false; 7760 } 7761 7762 return true; 7763 } 7764 7765 enum { 7766 REASON_BOUNDS = -1, 7767 REASON_TYPE = -2, 7768 REASON_PATHS = -3, 7769 REASON_LIMIT = -4, 7770 REASON_STACK = -5, 7771 }; 7772 7773 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 7774 u32 *alu_limit, bool mask_to_left) 7775 { 7776 u32 max = 0, ptr_limit = 0; 7777 7778 switch (ptr_reg->type) { 7779 case PTR_TO_STACK: 7780 /* Offset 0 is out-of-bounds, but acceptable start for the 7781 * left direction, see BPF_REG_FP. Also, unknown scalar 7782 * offset where we would need to deal with min/max bounds is 7783 * currently prohibited for unprivileged. 7784 */ 7785 max = MAX_BPF_STACK + mask_to_left; 7786 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 7787 break; 7788 case PTR_TO_MAP_VALUE: 7789 max = ptr_reg->map_ptr->value_size; 7790 ptr_limit = (mask_to_left ? 7791 ptr_reg->smin_value : 7792 ptr_reg->umax_value) + ptr_reg->off; 7793 break; 7794 default: 7795 return REASON_TYPE; 7796 } 7797 7798 if (ptr_limit >= max) 7799 return REASON_LIMIT; 7800 *alu_limit = ptr_limit; 7801 return 0; 7802 } 7803 7804 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7805 const struct bpf_insn *insn) 7806 { 7807 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7808 } 7809 7810 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7811 u32 alu_state, u32 alu_limit) 7812 { 7813 /* If we arrived here from different branches with different 7814 * state or limits to sanitize, then this won't work. 7815 */ 7816 if (aux->alu_state && 7817 (aux->alu_state != alu_state || 7818 aux->alu_limit != alu_limit)) 7819 return REASON_PATHS; 7820 7821 /* Corresponding fixup done in do_misc_fixups(). */ 7822 aux->alu_state = alu_state; 7823 aux->alu_limit = alu_limit; 7824 return 0; 7825 } 7826 7827 static int sanitize_val_alu(struct bpf_verifier_env *env, 7828 struct bpf_insn *insn) 7829 { 7830 struct bpf_insn_aux_data *aux = cur_aux(env); 7831 7832 if (can_skip_alu_sanitation(env, insn)) 7833 return 0; 7834 7835 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7836 } 7837 7838 static bool sanitize_needed(u8 opcode) 7839 { 7840 return opcode == BPF_ADD || opcode == BPF_SUB; 7841 } 7842 7843 struct bpf_sanitize_info { 7844 struct bpf_insn_aux_data aux; 7845 bool mask_to_left; 7846 }; 7847 7848 static struct bpf_verifier_state * 7849 sanitize_speculative_path(struct bpf_verifier_env *env, 7850 const struct bpf_insn *insn, 7851 u32 next_idx, u32 curr_idx) 7852 { 7853 struct bpf_verifier_state *branch; 7854 struct bpf_reg_state *regs; 7855 7856 branch = push_stack(env, next_idx, curr_idx, true); 7857 if (branch && insn) { 7858 regs = branch->frame[branch->curframe]->regs; 7859 if (BPF_SRC(insn->code) == BPF_K) { 7860 mark_reg_unknown(env, regs, insn->dst_reg); 7861 } else if (BPF_SRC(insn->code) == BPF_X) { 7862 mark_reg_unknown(env, regs, insn->dst_reg); 7863 mark_reg_unknown(env, regs, insn->src_reg); 7864 } 7865 } 7866 return branch; 7867 } 7868 7869 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7870 struct bpf_insn *insn, 7871 const struct bpf_reg_state *ptr_reg, 7872 const struct bpf_reg_state *off_reg, 7873 struct bpf_reg_state *dst_reg, 7874 struct bpf_sanitize_info *info, 7875 const bool commit_window) 7876 { 7877 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7878 struct bpf_verifier_state *vstate = env->cur_state; 7879 bool off_is_imm = tnum_is_const(off_reg->var_off); 7880 bool off_is_neg = off_reg->smin_value < 0; 7881 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7882 u8 opcode = BPF_OP(insn->code); 7883 u32 alu_state, alu_limit; 7884 struct bpf_reg_state tmp; 7885 bool ret; 7886 int err; 7887 7888 if (can_skip_alu_sanitation(env, insn)) 7889 return 0; 7890 7891 /* We already marked aux for masking from non-speculative 7892 * paths, thus we got here in the first place. We only care 7893 * to explore bad access from here. 7894 */ 7895 if (vstate->speculative) 7896 goto do_sim; 7897 7898 if (!commit_window) { 7899 if (!tnum_is_const(off_reg->var_off) && 7900 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 7901 return REASON_BOUNDS; 7902 7903 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 7904 (opcode == BPF_SUB && !off_is_neg); 7905 } 7906 7907 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 7908 if (err < 0) 7909 return err; 7910 7911 if (commit_window) { 7912 /* In commit phase we narrow the masking window based on 7913 * the observed pointer move after the simulated operation. 7914 */ 7915 alu_state = info->aux.alu_state; 7916 alu_limit = abs(info->aux.alu_limit - alu_limit); 7917 } else { 7918 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 7919 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 7920 alu_state |= ptr_is_dst_reg ? 7921 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 7922 7923 /* Limit pruning on unknown scalars to enable deep search for 7924 * potential masking differences from other program paths. 7925 */ 7926 if (!off_is_imm) 7927 env->explore_alu_limits = true; 7928 } 7929 7930 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7931 if (err < 0) 7932 return err; 7933 do_sim: 7934 /* If we're in commit phase, we're done here given we already 7935 * pushed the truncated dst_reg into the speculative verification 7936 * stack. 7937 * 7938 * Also, when register is a known constant, we rewrite register-based 7939 * operation to immediate-based, and thus do not need masking (and as 7940 * a consequence, do not need to simulate the zero-truncation either). 7941 */ 7942 if (commit_window || off_is_imm) 7943 return 0; 7944 7945 /* Simulate and find potential out-of-bounds access under 7946 * speculative execution from truncation as a result of 7947 * masking when off was not within expected range. If off 7948 * sits in dst, then we temporarily need to move ptr there 7949 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7950 * for cases where we use K-based arithmetic in one direction 7951 * and truncated reg-based in the other in order to explore 7952 * bad access. 7953 */ 7954 if (!ptr_is_dst_reg) { 7955 tmp = *dst_reg; 7956 *dst_reg = *ptr_reg; 7957 } 7958 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7959 env->insn_idx); 7960 if (!ptr_is_dst_reg && ret) 7961 *dst_reg = tmp; 7962 return !ret ? REASON_STACK : 0; 7963 } 7964 7965 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7966 { 7967 struct bpf_verifier_state *vstate = env->cur_state; 7968 7969 /* If we simulate paths under speculation, we don't update the 7970 * insn as 'seen' such that when we verify unreachable paths in 7971 * the non-speculative domain, sanitize_dead_code() can still 7972 * rewrite/sanitize them. 7973 */ 7974 if (!vstate->speculative) 7975 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7976 } 7977 7978 static int sanitize_err(struct bpf_verifier_env *env, 7979 const struct bpf_insn *insn, int reason, 7980 const struct bpf_reg_state *off_reg, 7981 const struct bpf_reg_state *dst_reg) 7982 { 7983 static const char *err = "pointer arithmetic with it prohibited for !root"; 7984 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7985 u32 dst = insn->dst_reg, src = insn->src_reg; 7986 7987 switch (reason) { 7988 case REASON_BOUNDS: 7989 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7990 off_reg == dst_reg ? dst : src, err); 7991 break; 7992 case REASON_TYPE: 7993 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7994 off_reg == dst_reg ? src : dst, err); 7995 break; 7996 case REASON_PATHS: 7997 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7998 dst, op, err); 7999 break; 8000 case REASON_LIMIT: 8001 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 8002 dst, op, err); 8003 break; 8004 case REASON_STACK: 8005 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 8006 dst, err); 8007 break; 8008 default: 8009 verbose(env, "verifier internal error: unknown reason (%d)\n", 8010 reason); 8011 break; 8012 } 8013 8014 return -EACCES; 8015 } 8016 8017 /* check that stack access falls within stack limits and that 'reg' doesn't 8018 * have a variable offset. 8019 * 8020 * Variable offset is prohibited for unprivileged mode for simplicity since it 8021 * requires corresponding support in Spectre masking for stack ALU. See also 8022 * retrieve_ptr_limit(). 8023 * 8024 * 8025 * 'off' includes 'reg->off'. 8026 */ 8027 static int check_stack_access_for_ptr_arithmetic( 8028 struct bpf_verifier_env *env, 8029 int regno, 8030 const struct bpf_reg_state *reg, 8031 int off) 8032 { 8033 if (!tnum_is_const(reg->var_off)) { 8034 char tn_buf[48]; 8035 8036 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8037 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 8038 regno, tn_buf, off); 8039 return -EACCES; 8040 } 8041 8042 if (off >= 0 || off < -MAX_BPF_STACK) { 8043 verbose(env, "R%d stack pointer arithmetic goes out of range, " 8044 "prohibited for !root; off=%d\n", regno, off); 8045 return -EACCES; 8046 } 8047 8048 return 0; 8049 } 8050 8051 static int sanitize_check_bounds(struct bpf_verifier_env *env, 8052 const struct bpf_insn *insn, 8053 const struct bpf_reg_state *dst_reg) 8054 { 8055 u32 dst = insn->dst_reg; 8056 8057 /* For unprivileged we require that resulting offset must be in bounds 8058 * in order to be able to sanitize access later on. 8059 */ 8060 if (env->bypass_spec_v1) 8061 return 0; 8062 8063 switch (dst_reg->type) { 8064 case PTR_TO_STACK: 8065 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 8066 dst_reg->off + dst_reg->var_off.value)) 8067 return -EACCES; 8068 break; 8069 case PTR_TO_MAP_VALUE: 8070 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 8071 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 8072 "prohibited for !root\n", dst); 8073 return -EACCES; 8074 } 8075 break; 8076 default: 8077 break; 8078 } 8079 8080 return 0; 8081 } 8082 8083 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 8084 * Caller should also handle BPF_MOV case separately. 8085 * If we return -EACCES, caller may want to try again treating pointer as a 8086 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 8087 */ 8088 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 8089 struct bpf_insn *insn, 8090 const struct bpf_reg_state *ptr_reg, 8091 const struct bpf_reg_state *off_reg) 8092 { 8093 struct bpf_verifier_state *vstate = env->cur_state; 8094 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8095 struct bpf_reg_state *regs = state->regs, *dst_reg; 8096 bool known = tnum_is_const(off_reg->var_off); 8097 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 8098 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 8099 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 8100 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 8101 struct bpf_sanitize_info info = {}; 8102 u8 opcode = BPF_OP(insn->code); 8103 u32 dst = insn->dst_reg; 8104 int ret; 8105 8106 dst_reg = ®s[dst]; 8107 8108 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 8109 smin_val > smax_val || umin_val > umax_val) { 8110 /* Taint dst register if offset had invalid bounds derived from 8111 * e.g. dead branches. 8112 */ 8113 __mark_reg_unknown(env, dst_reg); 8114 return 0; 8115 } 8116 8117 if (BPF_CLASS(insn->code) != BPF_ALU64) { 8118 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 8119 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8120 __mark_reg_unknown(env, dst_reg); 8121 return 0; 8122 } 8123 8124 verbose(env, 8125 "R%d 32-bit pointer arithmetic prohibited\n", 8126 dst); 8127 return -EACCES; 8128 } 8129 8130 if (ptr_reg->type & PTR_MAYBE_NULL) { 8131 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 8132 dst, reg_type_str(env, ptr_reg->type)); 8133 return -EACCES; 8134 } 8135 8136 switch (base_type(ptr_reg->type)) { 8137 case CONST_PTR_TO_MAP: 8138 /* smin_val represents the known value */ 8139 if (known && smin_val == 0 && opcode == BPF_ADD) 8140 break; 8141 fallthrough; 8142 case PTR_TO_PACKET_END: 8143 case PTR_TO_SOCKET: 8144 case PTR_TO_SOCK_COMMON: 8145 case PTR_TO_TCP_SOCK: 8146 case PTR_TO_XDP_SOCK: 8147 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 8148 dst, reg_type_str(env, ptr_reg->type)); 8149 return -EACCES; 8150 default: 8151 break; 8152 } 8153 8154 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 8155 * The id may be overwritten later if we create a new variable offset. 8156 */ 8157 dst_reg->type = ptr_reg->type; 8158 dst_reg->id = ptr_reg->id; 8159 8160 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 8161 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 8162 return -EINVAL; 8163 8164 /* pointer types do not carry 32-bit bounds at the moment. */ 8165 __mark_reg32_unbounded(dst_reg); 8166 8167 if (sanitize_needed(opcode)) { 8168 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 8169 &info, false); 8170 if (ret < 0) 8171 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8172 } 8173 8174 switch (opcode) { 8175 case BPF_ADD: 8176 /* We can take a fixed offset as long as it doesn't overflow 8177 * the s32 'off' field 8178 */ 8179 if (known && (ptr_reg->off + smin_val == 8180 (s64)(s32)(ptr_reg->off + smin_val))) { 8181 /* pointer += K. Accumulate it into fixed offset */ 8182 dst_reg->smin_value = smin_ptr; 8183 dst_reg->smax_value = smax_ptr; 8184 dst_reg->umin_value = umin_ptr; 8185 dst_reg->umax_value = umax_ptr; 8186 dst_reg->var_off = ptr_reg->var_off; 8187 dst_reg->off = ptr_reg->off + smin_val; 8188 dst_reg->raw = ptr_reg->raw; 8189 break; 8190 } 8191 /* A new variable offset is created. Note that off_reg->off 8192 * == 0, since it's a scalar. 8193 * dst_reg gets the pointer type and since some positive 8194 * integer value was added to the pointer, give it a new 'id' 8195 * if it's a PTR_TO_PACKET. 8196 * this creates a new 'base' pointer, off_reg (variable) gets 8197 * added into the variable offset, and we copy the fixed offset 8198 * from ptr_reg. 8199 */ 8200 if (signed_add_overflows(smin_ptr, smin_val) || 8201 signed_add_overflows(smax_ptr, smax_val)) { 8202 dst_reg->smin_value = S64_MIN; 8203 dst_reg->smax_value = S64_MAX; 8204 } else { 8205 dst_reg->smin_value = smin_ptr + smin_val; 8206 dst_reg->smax_value = smax_ptr + smax_val; 8207 } 8208 if (umin_ptr + umin_val < umin_ptr || 8209 umax_ptr + umax_val < umax_ptr) { 8210 dst_reg->umin_value = 0; 8211 dst_reg->umax_value = U64_MAX; 8212 } else { 8213 dst_reg->umin_value = umin_ptr + umin_val; 8214 dst_reg->umax_value = umax_ptr + umax_val; 8215 } 8216 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 8217 dst_reg->off = ptr_reg->off; 8218 dst_reg->raw = ptr_reg->raw; 8219 if (reg_is_pkt_pointer(ptr_reg)) { 8220 dst_reg->id = ++env->id_gen; 8221 /* something was added to pkt_ptr, set range to zero */ 8222 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8223 } 8224 break; 8225 case BPF_SUB: 8226 if (dst_reg == off_reg) { 8227 /* scalar -= pointer. Creates an unknown scalar */ 8228 verbose(env, "R%d tried to subtract pointer from scalar\n", 8229 dst); 8230 return -EACCES; 8231 } 8232 /* We don't allow subtraction from FP, because (according to 8233 * test_verifier.c test "invalid fp arithmetic", JITs might not 8234 * be able to deal with it. 8235 */ 8236 if (ptr_reg->type == PTR_TO_STACK) { 8237 verbose(env, "R%d subtraction from stack pointer prohibited\n", 8238 dst); 8239 return -EACCES; 8240 } 8241 if (known && (ptr_reg->off - smin_val == 8242 (s64)(s32)(ptr_reg->off - smin_val))) { 8243 /* pointer -= K. Subtract it from fixed offset */ 8244 dst_reg->smin_value = smin_ptr; 8245 dst_reg->smax_value = smax_ptr; 8246 dst_reg->umin_value = umin_ptr; 8247 dst_reg->umax_value = umax_ptr; 8248 dst_reg->var_off = ptr_reg->var_off; 8249 dst_reg->id = ptr_reg->id; 8250 dst_reg->off = ptr_reg->off - smin_val; 8251 dst_reg->raw = ptr_reg->raw; 8252 break; 8253 } 8254 /* A new variable offset is created. If the subtrahend is known 8255 * nonnegative, then any reg->range we had before is still good. 8256 */ 8257 if (signed_sub_overflows(smin_ptr, smax_val) || 8258 signed_sub_overflows(smax_ptr, smin_val)) { 8259 /* Overflow possible, we know nothing */ 8260 dst_reg->smin_value = S64_MIN; 8261 dst_reg->smax_value = S64_MAX; 8262 } else { 8263 dst_reg->smin_value = smin_ptr - smax_val; 8264 dst_reg->smax_value = smax_ptr - smin_val; 8265 } 8266 if (umin_ptr < umax_val) { 8267 /* Overflow possible, we know nothing */ 8268 dst_reg->umin_value = 0; 8269 dst_reg->umax_value = U64_MAX; 8270 } else { 8271 /* Cannot overflow (as long as bounds are consistent) */ 8272 dst_reg->umin_value = umin_ptr - umax_val; 8273 dst_reg->umax_value = umax_ptr - umin_val; 8274 } 8275 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 8276 dst_reg->off = ptr_reg->off; 8277 dst_reg->raw = ptr_reg->raw; 8278 if (reg_is_pkt_pointer(ptr_reg)) { 8279 dst_reg->id = ++env->id_gen; 8280 /* something was added to pkt_ptr, set range to zero */ 8281 if (smin_val < 0) 8282 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 8283 } 8284 break; 8285 case BPF_AND: 8286 case BPF_OR: 8287 case BPF_XOR: 8288 /* bitwise ops on pointers are troublesome, prohibit. */ 8289 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 8290 dst, bpf_alu_string[opcode >> 4]); 8291 return -EACCES; 8292 default: 8293 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 8294 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 8295 dst, bpf_alu_string[opcode >> 4]); 8296 return -EACCES; 8297 } 8298 8299 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 8300 return -EINVAL; 8301 reg_bounds_sync(dst_reg); 8302 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 8303 return -EACCES; 8304 if (sanitize_needed(opcode)) { 8305 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 8306 &info, true); 8307 if (ret < 0) 8308 return sanitize_err(env, insn, ret, off_reg, dst_reg); 8309 } 8310 8311 return 0; 8312 } 8313 8314 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 8315 struct bpf_reg_state *src_reg) 8316 { 8317 s32 smin_val = src_reg->s32_min_value; 8318 s32 smax_val = src_reg->s32_max_value; 8319 u32 umin_val = src_reg->u32_min_value; 8320 u32 umax_val = src_reg->u32_max_value; 8321 8322 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 8323 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 8324 dst_reg->s32_min_value = S32_MIN; 8325 dst_reg->s32_max_value = S32_MAX; 8326 } else { 8327 dst_reg->s32_min_value += smin_val; 8328 dst_reg->s32_max_value += smax_val; 8329 } 8330 if (dst_reg->u32_min_value + umin_val < umin_val || 8331 dst_reg->u32_max_value + umax_val < umax_val) { 8332 dst_reg->u32_min_value = 0; 8333 dst_reg->u32_max_value = U32_MAX; 8334 } else { 8335 dst_reg->u32_min_value += umin_val; 8336 dst_reg->u32_max_value += umax_val; 8337 } 8338 } 8339 8340 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 8341 struct bpf_reg_state *src_reg) 8342 { 8343 s64 smin_val = src_reg->smin_value; 8344 s64 smax_val = src_reg->smax_value; 8345 u64 umin_val = src_reg->umin_value; 8346 u64 umax_val = src_reg->umax_value; 8347 8348 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 8349 signed_add_overflows(dst_reg->smax_value, smax_val)) { 8350 dst_reg->smin_value = S64_MIN; 8351 dst_reg->smax_value = S64_MAX; 8352 } else { 8353 dst_reg->smin_value += smin_val; 8354 dst_reg->smax_value += smax_val; 8355 } 8356 if (dst_reg->umin_value + umin_val < umin_val || 8357 dst_reg->umax_value + umax_val < umax_val) { 8358 dst_reg->umin_value = 0; 8359 dst_reg->umax_value = U64_MAX; 8360 } else { 8361 dst_reg->umin_value += umin_val; 8362 dst_reg->umax_value += umax_val; 8363 } 8364 } 8365 8366 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 8367 struct bpf_reg_state *src_reg) 8368 { 8369 s32 smin_val = src_reg->s32_min_value; 8370 s32 smax_val = src_reg->s32_max_value; 8371 u32 umin_val = src_reg->u32_min_value; 8372 u32 umax_val = src_reg->u32_max_value; 8373 8374 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 8375 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 8376 /* Overflow possible, we know nothing */ 8377 dst_reg->s32_min_value = S32_MIN; 8378 dst_reg->s32_max_value = S32_MAX; 8379 } else { 8380 dst_reg->s32_min_value -= smax_val; 8381 dst_reg->s32_max_value -= smin_val; 8382 } 8383 if (dst_reg->u32_min_value < umax_val) { 8384 /* Overflow possible, we know nothing */ 8385 dst_reg->u32_min_value = 0; 8386 dst_reg->u32_max_value = U32_MAX; 8387 } else { 8388 /* Cannot overflow (as long as bounds are consistent) */ 8389 dst_reg->u32_min_value -= umax_val; 8390 dst_reg->u32_max_value -= umin_val; 8391 } 8392 } 8393 8394 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 8395 struct bpf_reg_state *src_reg) 8396 { 8397 s64 smin_val = src_reg->smin_value; 8398 s64 smax_val = src_reg->smax_value; 8399 u64 umin_val = src_reg->umin_value; 8400 u64 umax_val = src_reg->umax_value; 8401 8402 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 8403 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 8404 /* Overflow possible, we know nothing */ 8405 dst_reg->smin_value = S64_MIN; 8406 dst_reg->smax_value = S64_MAX; 8407 } else { 8408 dst_reg->smin_value -= smax_val; 8409 dst_reg->smax_value -= smin_val; 8410 } 8411 if (dst_reg->umin_value < umax_val) { 8412 /* Overflow possible, we know nothing */ 8413 dst_reg->umin_value = 0; 8414 dst_reg->umax_value = U64_MAX; 8415 } else { 8416 /* Cannot overflow (as long as bounds are consistent) */ 8417 dst_reg->umin_value -= umax_val; 8418 dst_reg->umax_value -= umin_val; 8419 } 8420 } 8421 8422 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 8423 struct bpf_reg_state *src_reg) 8424 { 8425 s32 smin_val = src_reg->s32_min_value; 8426 u32 umin_val = src_reg->u32_min_value; 8427 u32 umax_val = src_reg->u32_max_value; 8428 8429 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 8430 /* Ain't nobody got time to multiply that sign */ 8431 __mark_reg32_unbounded(dst_reg); 8432 return; 8433 } 8434 /* Both values are positive, so we can work with unsigned and 8435 * copy the result to signed (unless it exceeds S32_MAX). 8436 */ 8437 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 8438 /* Potential overflow, we know nothing */ 8439 __mark_reg32_unbounded(dst_reg); 8440 return; 8441 } 8442 dst_reg->u32_min_value *= umin_val; 8443 dst_reg->u32_max_value *= umax_val; 8444 if (dst_reg->u32_max_value > S32_MAX) { 8445 /* Overflow possible, we know nothing */ 8446 dst_reg->s32_min_value = S32_MIN; 8447 dst_reg->s32_max_value = S32_MAX; 8448 } else { 8449 dst_reg->s32_min_value = dst_reg->u32_min_value; 8450 dst_reg->s32_max_value = dst_reg->u32_max_value; 8451 } 8452 } 8453 8454 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 8455 struct bpf_reg_state *src_reg) 8456 { 8457 s64 smin_val = src_reg->smin_value; 8458 u64 umin_val = src_reg->umin_value; 8459 u64 umax_val = src_reg->umax_value; 8460 8461 if (smin_val < 0 || dst_reg->smin_value < 0) { 8462 /* Ain't nobody got time to multiply that sign */ 8463 __mark_reg64_unbounded(dst_reg); 8464 return; 8465 } 8466 /* Both values are positive, so we can work with unsigned and 8467 * copy the result to signed (unless it exceeds S64_MAX). 8468 */ 8469 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 8470 /* Potential overflow, we know nothing */ 8471 __mark_reg64_unbounded(dst_reg); 8472 return; 8473 } 8474 dst_reg->umin_value *= umin_val; 8475 dst_reg->umax_value *= umax_val; 8476 if (dst_reg->umax_value > S64_MAX) { 8477 /* Overflow possible, we know nothing */ 8478 dst_reg->smin_value = S64_MIN; 8479 dst_reg->smax_value = S64_MAX; 8480 } else { 8481 dst_reg->smin_value = dst_reg->umin_value; 8482 dst_reg->smax_value = dst_reg->umax_value; 8483 } 8484 } 8485 8486 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 8487 struct bpf_reg_state *src_reg) 8488 { 8489 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8490 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8491 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8492 s32 smin_val = src_reg->s32_min_value; 8493 u32 umax_val = src_reg->u32_max_value; 8494 8495 if (src_known && dst_known) { 8496 __mark_reg32_known(dst_reg, var32_off.value); 8497 return; 8498 } 8499 8500 /* We get our minimum from the var_off, since that's inherently 8501 * bitwise. Our maximum is the minimum of the operands' maxima. 8502 */ 8503 dst_reg->u32_min_value = var32_off.value; 8504 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 8505 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8506 /* Lose signed bounds when ANDing negative numbers, 8507 * ain't nobody got time for that. 8508 */ 8509 dst_reg->s32_min_value = S32_MIN; 8510 dst_reg->s32_max_value = S32_MAX; 8511 } else { 8512 /* ANDing two positives gives a positive, so safe to 8513 * cast result into s64. 8514 */ 8515 dst_reg->s32_min_value = dst_reg->u32_min_value; 8516 dst_reg->s32_max_value = dst_reg->u32_max_value; 8517 } 8518 } 8519 8520 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 8521 struct bpf_reg_state *src_reg) 8522 { 8523 bool src_known = tnum_is_const(src_reg->var_off); 8524 bool dst_known = tnum_is_const(dst_reg->var_off); 8525 s64 smin_val = src_reg->smin_value; 8526 u64 umax_val = src_reg->umax_value; 8527 8528 if (src_known && dst_known) { 8529 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8530 return; 8531 } 8532 8533 /* We get our minimum from the var_off, since that's inherently 8534 * bitwise. Our maximum is the minimum of the operands' maxima. 8535 */ 8536 dst_reg->umin_value = dst_reg->var_off.value; 8537 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 8538 if (dst_reg->smin_value < 0 || smin_val < 0) { 8539 /* Lose signed bounds when ANDing negative numbers, 8540 * ain't nobody got time for that. 8541 */ 8542 dst_reg->smin_value = S64_MIN; 8543 dst_reg->smax_value = S64_MAX; 8544 } else { 8545 /* ANDing two positives gives a positive, so safe to 8546 * cast result into s64. 8547 */ 8548 dst_reg->smin_value = dst_reg->umin_value; 8549 dst_reg->smax_value = dst_reg->umax_value; 8550 } 8551 /* We may learn something more from the var_off */ 8552 __update_reg_bounds(dst_reg); 8553 } 8554 8555 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 8556 struct bpf_reg_state *src_reg) 8557 { 8558 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8559 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8560 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8561 s32 smin_val = src_reg->s32_min_value; 8562 u32 umin_val = src_reg->u32_min_value; 8563 8564 if (src_known && dst_known) { 8565 __mark_reg32_known(dst_reg, var32_off.value); 8566 return; 8567 } 8568 8569 /* We get our maximum from the var_off, and our minimum is the 8570 * maximum of the operands' minima 8571 */ 8572 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 8573 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8574 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 8575 /* Lose signed bounds when ORing negative numbers, 8576 * ain't nobody got time for that. 8577 */ 8578 dst_reg->s32_min_value = S32_MIN; 8579 dst_reg->s32_max_value = S32_MAX; 8580 } else { 8581 /* ORing two positives gives a positive, so safe to 8582 * cast result into s64. 8583 */ 8584 dst_reg->s32_min_value = dst_reg->u32_min_value; 8585 dst_reg->s32_max_value = dst_reg->u32_max_value; 8586 } 8587 } 8588 8589 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 8590 struct bpf_reg_state *src_reg) 8591 { 8592 bool src_known = tnum_is_const(src_reg->var_off); 8593 bool dst_known = tnum_is_const(dst_reg->var_off); 8594 s64 smin_val = src_reg->smin_value; 8595 u64 umin_val = src_reg->umin_value; 8596 8597 if (src_known && dst_known) { 8598 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8599 return; 8600 } 8601 8602 /* We get our maximum from the var_off, and our minimum is the 8603 * maximum of the operands' minima 8604 */ 8605 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 8606 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8607 if (dst_reg->smin_value < 0 || smin_val < 0) { 8608 /* Lose signed bounds when ORing negative numbers, 8609 * ain't nobody got time for that. 8610 */ 8611 dst_reg->smin_value = S64_MIN; 8612 dst_reg->smax_value = S64_MAX; 8613 } else { 8614 /* ORing two positives gives a positive, so safe to 8615 * cast result into s64. 8616 */ 8617 dst_reg->smin_value = dst_reg->umin_value; 8618 dst_reg->smax_value = dst_reg->umax_value; 8619 } 8620 /* We may learn something more from the var_off */ 8621 __update_reg_bounds(dst_reg); 8622 } 8623 8624 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 8625 struct bpf_reg_state *src_reg) 8626 { 8627 bool src_known = tnum_subreg_is_const(src_reg->var_off); 8628 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 8629 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 8630 s32 smin_val = src_reg->s32_min_value; 8631 8632 if (src_known && dst_known) { 8633 __mark_reg32_known(dst_reg, var32_off.value); 8634 return; 8635 } 8636 8637 /* We get both minimum and maximum from the var32_off. */ 8638 dst_reg->u32_min_value = var32_off.value; 8639 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 8640 8641 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 8642 /* XORing two positive sign numbers gives a positive, 8643 * so safe to cast u32 result into s32. 8644 */ 8645 dst_reg->s32_min_value = dst_reg->u32_min_value; 8646 dst_reg->s32_max_value = dst_reg->u32_max_value; 8647 } else { 8648 dst_reg->s32_min_value = S32_MIN; 8649 dst_reg->s32_max_value = S32_MAX; 8650 } 8651 } 8652 8653 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 8654 struct bpf_reg_state *src_reg) 8655 { 8656 bool src_known = tnum_is_const(src_reg->var_off); 8657 bool dst_known = tnum_is_const(dst_reg->var_off); 8658 s64 smin_val = src_reg->smin_value; 8659 8660 if (src_known && dst_known) { 8661 /* dst_reg->var_off.value has been updated earlier */ 8662 __mark_reg_known(dst_reg, dst_reg->var_off.value); 8663 return; 8664 } 8665 8666 /* We get both minimum and maximum from the var_off. */ 8667 dst_reg->umin_value = dst_reg->var_off.value; 8668 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 8669 8670 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 8671 /* XORing two positive sign numbers gives a positive, 8672 * so safe to cast u64 result into s64. 8673 */ 8674 dst_reg->smin_value = dst_reg->umin_value; 8675 dst_reg->smax_value = dst_reg->umax_value; 8676 } else { 8677 dst_reg->smin_value = S64_MIN; 8678 dst_reg->smax_value = S64_MAX; 8679 } 8680 8681 __update_reg_bounds(dst_reg); 8682 } 8683 8684 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8685 u64 umin_val, u64 umax_val) 8686 { 8687 /* We lose all sign bit information (except what we can pick 8688 * up from var_off) 8689 */ 8690 dst_reg->s32_min_value = S32_MIN; 8691 dst_reg->s32_max_value = S32_MAX; 8692 /* If we might shift our top bit out, then we know nothing */ 8693 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 8694 dst_reg->u32_min_value = 0; 8695 dst_reg->u32_max_value = U32_MAX; 8696 } else { 8697 dst_reg->u32_min_value <<= umin_val; 8698 dst_reg->u32_max_value <<= umax_val; 8699 } 8700 } 8701 8702 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 8703 struct bpf_reg_state *src_reg) 8704 { 8705 u32 umax_val = src_reg->u32_max_value; 8706 u32 umin_val = src_reg->u32_min_value; 8707 /* u32 alu operation will zext upper bits */ 8708 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8709 8710 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8711 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 8712 /* Not required but being careful mark reg64 bounds as unknown so 8713 * that we are forced to pick them up from tnum and zext later and 8714 * if some path skips this step we are still safe. 8715 */ 8716 __mark_reg64_unbounded(dst_reg); 8717 __update_reg32_bounds(dst_reg); 8718 } 8719 8720 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 8721 u64 umin_val, u64 umax_val) 8722 { 8723 /* Special case <<32 because it is a common compiler pattern to sign 8724 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 8725 * positive we know this shift will also be positive so we can track 8726 * bounds correctly. Otherwise we lose all sign bit information except 8727 * what we can pick up from var_off. Perhaps we can generalize this 8728 * later to shifts of any length. 8729 */ 8730 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 8731 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 8732 else 8733 dst_reg->smax_value = S64_MAX; 8734 8735 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 8736 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 8737 else 8738 dst_reg->smin_value = S64_MIN; 8739 8740 /* If we might shift our top bit out, then we know nothing */ 8741 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 8742 dst_reg->umin_value = 0; 8743 dst_reg->umax_value = U64_MAX; 8744 } else { 8745 dst_reg->umin_value <<= umin_val; 8746 dst_reg->umax_value <<= umax_val; 8747 } 8748 } 8749 8750 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 8751 struct bpf_reg_state *src_reg) 8752 { 8753 u64 umax_val = src_reg->umax_value; 8754 u64 umin_val = src_reg->umin_value; 8755 8756 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 8757 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 8758 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8759 8760 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 8761 /* We may learn something more from the var_off */ 8762 __update_reg_bounds(dst_reg); 8763 } 8764 8765 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 8766 struct bpf_reg_state *src_reg) 8767 { 8768 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8769 u32 umax_val = src_reg->u32_max_value; 8770 u32 umin_val = src_reg->u32_min_value; 8771 8772 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8773 * be negative, then either: 8774 * 1) src_reg might be zero, so the sign bit of the result is 8775 * unknown, so we lose our signed bounds 8776 * 2) it's known negative, thus the unsigned bounds capture the 8777 * signed bounds 8778 * 3) the signed bounds cross zero, so they tell us nothing 8779 * about the result 8780 * If the value in dst_reg is known nonnegative, then again the 8781 * unsigned bounds capture the signed bounds. 8782 * Thus, in all cases it suffices to blow away our signed bounds 8783 * and rely on inferring new ones from the unsigned bounds and 8784 * var_off of the result. 8785 */ 8786 dst_reg->s32_min_value = S32_MIN; 8787 dst_reg->s32_max_value = S32_MAX; 8788 8789 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8790 dst_reg->u32_min_value >>= umax_val; 8791 dst_reg->u32_max_value >>= umin_val; 8792 8793 __mark_reg64_unbounded(dst_reg); 8794 __update_reg32_bounds(dst_reg); 8795 } 8796 8797 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8798 struct bpf_reg_state *src_reg) 8799 { 8800 u64 umax_val = src_reg->umax_value; 8801 u64 umin_val = src_reg->umin_value; 8802 8803 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8804 * be negative, then either: 8805 * 1) src_reg might be zero, so the sign bit of the result is 8806 * unknown, so we lose our signed bounds 8807 * 2) it's known negative, thus the unsigned bounds capture the 8808 * signed bounds 8809 * 3) the signed bounds cross zero, so they tell us nothing 8810 * about the result 8811 * If the value in dst_reg is known nonnegative, then again the 8812 * unsigned bounds capture the signed bounds. 8813 * Thus, in all cases it suffices to blow away our signed bounds 8814 * and rely on inferring new ones from the unsigned bounds and 8815 * var_off of the result. 8816 */ 8817 dst_reg->smin_value = S64_MIN; 8818 dst_reg->smax_value = S64_MAX; 8819 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8820 dst_reg->umin_value >>= umax_val; 8821 dst_reg->umax_value >>= umin_val; 8822 8823 /* Its not easy to operate on alu32 bounds here because it depends 8824 * on bits being shifted in. Take easy way out and mark unbounded 8825 * so we can recalculate later from tnum. 8826 */ 8827 __mark_reg32_unbounded(dst_reg); 8828 __update_reg_bounds(dst_reg); 8829 } 8830 8831 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8832 struct bpf_reg_state *src_reg) 8833 { 8834 u64 umin_val = src_reg->u32_min_value; 8835 8836 /* Upon reaching here, src_known is true and 8837 * umax_val is equal to umin_val. 8838 */ 8839 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8840 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8841 8842 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8843 8844 /* blow away the dst_reg umin_value/umax_value and rely on 8845 * dst_reg var_off to refine the result. 8846 */ 8847 dst_reg->u32_min_value = 0; 8848 dst_reg->u32_max_value = U32_MAX; 8849 8850 __mark_reg64_unbounded(dst_reg); 8851 __update_reg32_bounds(dst_reg); 8852 } 8853 8854 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8855 struct bpf_reg_state *src_reg) 8856 { 8857 u64 umin_val = src_reg->umin_value; 8858 8859 /* Upon reaching here, src_known is true and umax_val is equal 8860 * to umin_val. 8861 */ 8862 dst_reg->smin_value >>= umin_val; 8863 dst_reg->smax_value >>= umin_val; 8864 8865 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8866 8867 /* blow away the dst_reg umin_value/umax_value and rely on 8868 * dst_reg var_off to refine the result. 8869 */ 8870 dst_reg->umin_value = 0; 8871 dst_reg->umax_value = U64_MAX; 8872 8873 /* Its not easy to operate on alu32 bounds here because it depends 8874 * on bits being shifted in from upper 32-bits. Take easy way out 8875 * and mark unbounded so we can recalculate later from tnum. 8876 */ 8877 __mark_reg32_unbounded(dst_reg); 8878 __update_reg_bounds(dst_reg); 8879 } 8880 8881 /* WARNING: This function does calculations on 64-bit values, but the actual 8882 * execution may occur on 32-bit values. Therefore, things like bitshifts 8883 * need extra checks in the 32-bit case. 8884 */ 8885 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8886 struct bpf_insn *insn, 8887 struct bpf_reg_state *dst_reg, 8888 struct bpf_reg_state src_reg) 8889 { 8890 struct bpf_reg_state *regs = cur_regs(env); 8891 u8 opcode = BPF_OP(insn->code); 8892 bool src_known; 8893 s64 smin_val, smax_val; 8894 u64 umin_val, umax_val; 8895 s32 s32_min_val, s32_max_val; 8896 u32 u32_min_val, u32_max_val; 8897 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8898 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 8899 int ret; 8900 8901 smin_val = src_reg.smin_value; 8902 smax_val = src_reg.smax_value; 8903 umin_val = src_reg.umin_value; 8904 umax_val = src_reg.umax_value; 8905 8906 s32_min_val = src_reg.s32_min_value; 8907 s32_max_val = src_reg.s32_max_value; 8908 u32_min_val = src_reg.u32_min_value; 8909 u32_max_val = src_reg.u32_max_value; 8910 8911 if (alu32) { 8912 src_known = tnum_subreg_is_const(src_reg.var_off); 8913 if ((src_known && 8914 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 8915 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 8916 /* Taint dst register if offset had invalid bounds 8917 * derived from e.g. dead branches. 8918 */ 8919 __mark_reg_unknown(env, dst_reg); 8920 return 0; 8921 } 8922 } else { 8923 src_known = tnum_is_const(src_reg.var_off); 8924 if ((src_known && 8925 (smin_val != smax_val || umin_val != umax_val)) || 8926 smin_val > smax_val || umin_val > umax_val) { 8927 /* Taint dst register if offset had invalid bounds 8928 * derived from e.g. dead branches. 8929 */ 8930 __mark_reg_unknown(env, dst_reg); 8931 return 0; 8932 } 8933 } 8934 8935 if (!src_known && 8936 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8937 __mark_reg_unknown(env, dst_reg); 8938 return 0; 8939 } 8940 8941 if (sanitize_needed(opcode)) { 8942 ret = sanitize_val_alu(env, insn); 8943 if (ret < 0) 8944 return sanitize_err(env, insn, ret, NULL, NULL); 8945 } 8946 8947 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8948 * There are two classes of instructions: The first class we track both 8949 * alu32 and alu64 sign/unsigned bounds independently this provides the 8950 * greatest amount of precision when alu operations are mixed with jmp32 8951 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8952 * and BPF_OR. This is possible because these ops have fairly easy to 8953 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8954 * See alu32 verifier tests for examples. The second class of 8955 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8956 * with regards to tracking sign/unsigned bounds because the bits may 8957 * cross subreg boundaries in the alu64 case. When this happens we mark 8958 * the reg unbounded in the subreg bound space and use the resulting 8959 * tnum to calculate an approximation of the sign/unsigned bounds. 8960 */ 8961 switch (opcode) { 8962 case BPF_ADD: 8963 scalar32_min_max_add(dst_reg, &src_reg); 8964 scalar_min_max_add(dst_reg, &src_reg); 8965 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8966 break; 8967 case BPF_SUB: 8968 scalar32_min_max_sub(dst_reg, &src_reg); 8969 scalar_min_max_sub(dst_reg, &src_reg); 8970 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8971 break; 8972 case BPF_MUL: 8973 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8974 scalar32_min_max_mul(dst_reg, &src_reg); 8975 scalar_min_max_mul(dst_reg, &src_reg); 8976 break; 8977 case BPF_AND: 8978 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8979 scalar32_min_max_and(dst_reg, &src_reg); 8980 scalar_min_max_and(dst_reg, &src_reg); 8981 break; 8982 case BPF_OR: 8983 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8984 scalar32_min_max_or(dst_reg, &src_reg); 8985 scalar_min_max_or(dst_reg, &src_reg); 8986 break; 8987 case BPF_XOR: 8988 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8989 scalar32_min_max_xor(dst_reg, &src_reg); 8990 scalar_min_max_xor(dst_reg, &src_reg); 8991 break; 8992 case BPF_LSH: 8993 if (umax_val >= insn_bitness) { 8994 /* Shifts greater than 31 or 63 are undefined. 8995 * This includes shifts by a negative number. 8996 */ 8997 mark_reg_unknown(env, regs, insn->dst_reg); 8998 break; 8999 } 9000 if (alu32) 9001 scalar32_min_max_lsh(dst_reg, &src_reg); 9002 else 9003 scalar_min_max_lsh(dst_reg, &src_reg); 9004 break; 9005 case BPF_RSH: 9006 if (umax_val >= insn_bitness) { 9007 /* Shifts greater than 31 or 63 are undefined. 9008 * This includes shifts by a negative number. 9009 */ 9010 mark_reg_unknown(env, regs, insn->dst_reg); 9011 break; 9012 } 9013 if (alu32) 9014 scalar32_min_max_rsh(dst_reg, &src_reg); 9015 else 9016 scalar_min_max_rsh(dst_reg, &src_reg); 9017 break; 9018 case BPF_ARSH: 9019 if (umax_val >= insn_bitness) { 9020 /* Shifts greater than 31 or 63 are undefined. 9021 * This includes shifts by a negative number. 9022 */ 9023 mark_reg_unknown(env, regs, insn->dst_reg); 9024 break; 9025 } 9026 if (alu32) 9027 scalar32_min_max_arsh(dst_reg, &src_reg); 9028 else 9029 scalar_min_max_arsh(dst_reg, &src_reg); 9030 break; 9031 default: 9032 mark_reg_unknown(env, regs, insn->dst_reg); 9033 break; 9034 } 9035 9036 /* ALU32 ops are zero extended into 64bit register */ 9037 if (alu32) 9038 zext_32_to_64(dst_reg); 9039 reg_bounds_sync(dst_reg); 9040 return 0; 9041 } 9042 9043 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 9044 * and var_off. 9045 */ 9046 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 9047 struct bpf_insn *insn) 9048 { 9049 struct bpf_verifier_state *vstate = env->cur_state; 9050 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9051 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 9052 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 9053 u8 opcode = BPF_OP(insn->code); 9054 int err; 9055 9056 dst_reg = ®s[insn->dst_reg]; 9057 src_reg = NULL; 9058 if (dst_reg->type != SCALAR_VALUE) 9059 ptr_reg = dst_reg; 9060 else 9061 /* Make sure ID is cleared otherwise dst_reg min/max could be 9062 * incorrectly propagated into other registers by find_equal_scalars() 9063 */ 9064 dst_reg->id = 0; 9065 if (BPF_SRC(insn->code) == BPF_X) { 9066 src_reg = ®s[insn->src_reg]; 9067 if (src_reg->type != SCALAR_VALUE) { 9068 if (dst_reg->type != SCALAR_VALUE) { 9069 /* Combining two pointers by any ALU op yields 9070 * an arbitrary scalar. Disallow all math except 9071 * pointer subtraction 9072 */ 9073 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 9074 mark_reg_unknown(env, regs, insn->dst_reg); 9075 return 0; 9076 } 9077 verbose(env, "R%d pointer %s pointer prohibited\n", 9078 insn->dst_reg, 9079 bpf_alu_string[opcode >> 4]); 9080 return -EACCES; 9081 } else { 9082 /* scalar += pointer 9083 * This is legal, but we have to reverse our 9084 * src/dest handling in computing the range 9085 */ 9086 err = mark_chain_precision(env, insn->dst_reg); 9087 if (err) 9088 return err; 9089 return adjust_ptr_min_max_vals(env, insn, 9090 src_reg, dst_reg); 9091 } 9092 } else if (ptr_reg) { 9093 /* pointer += scalar */ 9094 err = mark_chain_precision(env, insn->src_reg); 9095 if (err) 9096 return err; 9097 return adjust_ptr_min_max_vals(env, insn, 9098 dst_reg, src_reg); 9099 } 9100 } else { 9101 /* Pretend the src is a reg with a known value, since we only 9102 * need to be able to read from this state. 9103 */ 9104 off_reg.type = SCALAR_VALUE; 9105 __mark_reg_known(&off_reg, insn->imm); 9106 src_reg = &off_reg; 9107 if (ptr_reg) /* pointer += K */ 9108 return adjust_ptr_min_max_vals(env, insn, 9109 ptr_reg, src_reg); 9110 } 9111 9112 /* Got here implies adding two SCALAR_VALUEs */ 9113 if (WARN_ON_ONCE(ptr_reg)) { 9114 print_verifier_state(env, state, true); 9115 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 9116 return -EINVAL; 9117 } 9118 if (WARN_ON(!src_reg)) { 9119 print_verifier_state(env, state, true); 9120 verbose(env, "verifier internal error: no src_reg\n"); 9121 return -EINVAL; 9122 } 9123 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 9124 } 9125 9126 /* check validity of 32-bit and 64-bit arithmetic operations */ 9127 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 9128 { 9129 struct bpf_reg_state *regs = cur_regs(env); 9130 u8 opcode = BPF_OP(insn->code); 9131 int err; 9132 9133 if (opcode == BPF_END || opcode == BPF_NEG) { 9134 if (opcode == BPF_NEG) { 9135 if (BPF_SRC(insn->code) != BPF_K || 9136 insn->src_reg != BPF_REG_0 || 9137 insn->off != 0 || insn->imm != 0) { 9138 verbose(env, "BPF_NEG uses reserved fields\n"); 9139 return -EINVAL; 9140 } 9141 } else { 9142 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 9143 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 9144 BPF_CLASS(insn->code) == BPF_ALU64) { 9145 verbose(env, "BPF_END uses reserved fields\n"); 9146 return -EINVAL; 9147 } 9148 } 9149 9150 /* check src operand */ 9151 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9152 if (err) 9153 return err; 9154 9155 if (is_pointer_value(env, insn->dst_reg)) { 9156 verbose(env, "R%d pointer arithmetic prohibited\n", 9157 insn->dst_reg); 9158 return -EACCES; 9159 } 9160 9161 /* check dest operand */ 9162 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9163 if (err) 9164 return err; 9165 9166 } else if (opcode == BPF_MOV) { 9167 9168 if (BPF_SRC(insn->code) == BPF_X) { 9169 if (insn->imm != 0 || insn->off != 0) { 9170 verbose(env, "BPF_MOV uses reserved fields\n"); 9171 return -EINVAL; 9172 } 9173 9174 /* check src operand */ 9175 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9176 if (err) 9177 return err; 9178 } else { 9179 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9180 verbose(env, "BPF_MOV uses reserved fields\n"); 9181 return -EINVAL; 9182 } 9183 } 9184 9185 /* check dest operand, mark as required later */ 9186 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9187 if (err) 9188 return err; 9189 9190 if (BPF_SRC(insn->code) == BPF_X) { 9191 struct bpf_reg_state *src_reg = regs + insn->src_reg; 9192 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 9193 9194 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9195 /* case: R1 = R2 9196 * copy register state to dest reg 9197 */ 9198 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 9199 /* Assign src and dst registers the same ID 9200 * that will be used by find_equal_scalars() 9201 * to propagate min/max range. 9202 */ 9203 src_reg->id = ++env->id_gen; 9204 *dst_reg = *src_reg; 9205 dst_reg->live |= REG_LIVE_WRITTEN; 9206 dst_reg->subreg_def = DEF_NOT_SUBREG; 9207 } else { 9208 /* R1 = (u32) R2 */ 9209 if (is_pointer_value(env, insn->src_reg)) { 9210 verbose(env, 9211 "R%d partial copy of pointer\n", 9212 insn->src_reg); 9213 return -EACCES; 9214 } else if (src_reg->type == SCALAR_VALUE) { 9215 *dst_reg = *src_reg; 9216 /* Make sure ID is cleared otherwise 9217 * dst_reg min/max could be incorrectly 9218 * propagated into src_reg by find_equal_scalars() 9219 */ 9220 dst_reg->id = 0; 9221 dst_reg->live |= REG_LIVE_WRITTEN; 9222 dst_reg->subreg_def = env->insn_idx + 1; 9223 } else { 9224 mark_reg_unknown(env, regs, 9225 insn->dst_reg); 9226 } 9227 zext_32_to_64(dst_reg); 9228 reg_bounds_sync(dst_reg); 9229 } 9230 } else { 9231 /* case: R = imm 9232 * remember the value we stored into this reg 9233 */ 9234 /* clear any state __mark_reg_known doesn't set */ 9235 mark_reg_unknown(env, regs, insn->dst_reg); 9236 regs[insn->dst_reg].type = SCALAR_VALUE; 9237 if (BPF_CLASS(insn->code) == BPF_ALU64) { 9238 __mark_reg_known(regs + insn->dst_reg, 9239 insn->imm); 9240 } else { 9241 __mark_reg_known(regs + insn->dst_reg, 9242 (u32)insn->imm); 9243 } 9244 } 9245 9246 } else if (opcode > BPF_END) { 9247 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 9248 return -EINVAL; 9249 9250 } else { /* all other ALU ops: and, sub, xor, add, ... */ 9251 9252 if (BPF_SRC(insn->code) == BPF_X) { 9253 if (insn->imm != 0 || insn->off != 0) { 9254 verbose(env, "BPF_ALU uses reserved fields\n"); 9255 return -EINVAL; 9256 } 9257 /* check src1 operand */ 9258 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9259 if (err) 9260 return err; 9261 } else { 9262 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 9263 verbose(env, "BPF_ALU uses reserved fields\n"); 9264 return -EINVAL; 9265 } 9266 } 9267 9268 /* check src2 operand */ 9269 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9270 if (err) 9271 return err; 9272 9273 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 9274 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 9275 verbose(env, "div by zero\n"); 9276 return -EINVAL; 9277 } 9278 9279 if ((opcode == BPF_LSH || opcode == BPF_RSH || 9280 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 9281 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 9282 9283 if (insn->imm < 0 || insn->imm >= size) { 9284 verbose(env, "invalid shift %d\n", insn->imm); 9285 return -EINVAL; 9286 } 9287 } 9288 9289 /* check dest operand */ 9290 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9291 if (err) 9292 return err; 9293 9294 return adjust_reg_min_max_vals(env, insn); 9295 } 9296 9297 return 0; 9298 } 9299 9300 static void __find_good_pkt_pointers(struct bpf_func_state *state, 9301 struct bpf_reg_state *dst_reg, 9302 enum bpf_reg_type type, int new_range) 9303 { 9304 struct bpf_reg_state *reg; 9305 int i; 9306 9307 for (i = 0; i < MAX_BPF_REG; i++) { 9308 reg = &state->regs[i]; 9309 if (reg->type == type && reg->id == dst_reg->id) 9310 /* keep the maximum range already checked */ 9311 reg->range = max(reg->range, new_range); 9312 } 9313 9314 bpf_for_each_spilled_reg(i, state, reg) { 9315 if (!reg) 9316 continue; 9317 if (reg->type == type && reg->id == dst_reg->id) 9318 reg->range = max(reg->range, new_range); 9319 } 9320 } 9321 9322 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 9323 struct bpf_reg_state *dst_reg, 9324 enum bpf_reg_type type, 9325 bool range_right_open) 9326 { 9327 int new_range, i; 9328 9329 if (dst_reg->off < 0 || 9330 (dst_reg->off == 0 && range_right_open)) 9331 /* This doesn't give us any range */ 9332 return; 9333 9334 if (dst_reg->umax_value > MAX_PACKET_OFF || 9335 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 9336 /* Risk of overflow. For instance, ptr + (1<<63) may be less 9337 * than pkt_end, but that's because it's also less than pkt. 9338 */ 9339 return; 9340 9341 new_range = dst_reg->off; 9342 if (range_right_open) 9343 new_range++; 9344 9345 /* Examples for register markings: 9346 * 9347 * pkt_data in dst register: 9348 * 9349 * r2 = r3; 9350 * r2 += 8; 9351 * if (r2 > pkt_end) goto <handle exception> 9352 * <access okay> 9353 * 9354 * r2 = r3; 9355 * r2 += 8; 9356 * if (r2 < pkt_end) goto <access okay> 9357 * <handle exception> 9358 * 9359 * Where: 9360 * r2 == dst_reg, pkt_end == src_reg 9361 * r2=pkt(id=n,off=8,r=0) 9362 * r3=pkt(id=n,off=0,r=0) 9363 * 9364 * pkt_data in src register: 9365 * 9366 * r2 = r3; 9367 * r2 += 8; 9368 * if (pkt_end >= r2) goto <access okay> 9369 * <handle exception> 9370 * 9371 * r2 = r3; 9372 * r2 += 8; 9373 * if (pkt_end <= r2) goto <handle exception> 9374 * <access okay> 9375 * 9376 * Where: 9377 * pkt_end == dst_reg, r2 == src_reg 9378 * r2=pkt(id=n,off=8,r=0) 9379 * r3=pkt(id=n,off=0,r=0) 9380 * 9381 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 9382 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 9383 * and [r3, r3 + 8-1) respectively is safe to access depending on 9384 * the check. 9385 */ 9386 9387 /* If our ids match, then we must have the same max_value. And we 9388 * don't care about the other reg's fixed offset, since if it's too big 9389 * the range won't allow anything. 9390 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 9391 */ 9392 for (i = 0; i <= vstate->curframe; i++) 9393 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 9394 new_range); 9395 } 9396 9397 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 9398 { 9399 struct tnum subreg = tnum_subreg(reg->var_off); 9400 s32 sval = (s32)val; 9401 9402 switch (opcode) { 9403 case BPF_JEQ: 9404 if (tnum_is_const(subreg)) 9405 return !!tnum_equals_const(subreg, val); 9406 break; 9407 case BPF_JNE: 9408 if (tnum_is_const(subreg)) 9409 return !tnum_equals_const(subreg, val); 9410 break; 9411 case BPF_JSET: 9412 if ((~subreg.mask & subreg.value) & val) 9413 return 1; 9414 if (!((subreg.mask | subreg.value) & val)) 9415 return 0; 9416 break; 9417 case BPF_JGT: 9418 if (reg->u32_min_value > val) 9419 return 1; 9420 else if (reg->u32_max_value <= val) 9421 return 0; 9422 break; 9423 case BPF_JSGT: 9424 if (reg->s32_min_value > sval) 9425 return 1; 9426 else if (reg->s32_max_value <= sval) 9427 return 0; 9428 break; 9429 case BPF_JLT: 9430 if (reg->u32_max_value < val) 9431 return 1; 9432 else if (reg->u32_min_value >= val) 9433 return 0; 9434 break; 9435 case BPF_JSLT: 9436 if (reg->s32_max_value < sval) 9437 return 1; 9438 else if (reg->s32_min_value >= sval) 9439 return 0; 9440 break; 9441 case BPF_JGE: 9442 if (reg->u32_min_value >= val) 9443 return 1; 9444 else if (reg->u32_max_value < val) 9445 return 0; 9446 break; 9447 case BPF_JSGE: 9448 if (reg->s32_min_value >= sval) 9449 return 1; 9450 else if (reg->s32_max_value < sval) 9451 return 0; 9452 break; 9453 case BPF_JLE: 9454 if (reg->u32_max_value <= val) 9455 return 1; 9456 else if (reg->u32_min_value > val) 9457 return 0; 9458 break; 9459 case BPF_JSLE: 9460 if (reg->s32_max_value <= sval) 9461 return 1; 9462 else if (reg->s32_min_value > sval) 9463 return 0; 9464 break; 9465 } 9466 9467 return -1; 9468 } 9469 9470 9471 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 9472 { 9473 s64 sval = (s64)val; 9474 9475 switch (opcode) { 9476 case BPF_JEQ: 9477 if (tnum_is_const(reg->var_off)) 9478 return !!tnum_equals_const(reg->var_off, val); 9479 break; 9480 case BPF_JNE: 9481 if (tnum_is_const(reg->var_off)) 9482 return !tnum_equals_const(reg->var_off, val); 9483 break; 9484 case BPF_JSET: 9485 if ((~reg->var_off.mask & reg->var_off.value) & val) 9486 return 1; 9487 if (!((reg->var_off.mask | reg->var_off.value) & val)) 9488 return 0; 9489 break; 9490 case BPF_JGT: 9491 if (reg->umin_value > val) 9492 return 1; 9493 else if (reg->umax_value <= val) 9494 return 0; 9495 break; 9496 case BPF_JSGT: 9497 if (reg->smin_value > sval) 9498 return 1; 9499 else if (reg->smax_value <= sval) 9500 return 0; 9501 break; 9502 case BPF_JLT: 9503 if (reg->umax_value < val) 9504 return 1; 9505 else if (reg->umin_value >= val) 9506 return 0; 9507 break; 9508 case BPF_JSLT: 9509 if (reg->smax_value < sval) 9510 return 1; 9511 else if (reg->smin_value >= sval) 9512 return 0; 9513 break; 9514 case BPF_JGE: 9515 if (reg->umin_value >= val) 9516 return 1; 9517 else if (reg->umax_value < val) 9518 return 0; 9519 break; 9520 case BPF_JSGE: 9521 if (reg->smin_value >= sval) 9522 return 1; 9523 else if (reg->smax_value < sval) 9524 return 0; 9525 break; 9526 case BPF_JLE: 9527 if (reg->umax_value <= val) 9528 return 1; 9529 else if (reg->umin_value > val) 9530 return 0; 9531 break; 9532 case BPF_JSLE: 9533 if (reg->smax_value <= sval) 9534 return 1; 9535 else if (reg->smin_value > sval) 9536 return 0; 9537 break; 9538 } 9539 9540 return -1; 9541 } 9542 9543 /* compute branch direction of the expression "if (reg opcode val) goto target;" 9544 * and return: 9545 * 1 - branch will be taken and "goto target" will be executed 9546 * 0 - branch will not be taken and fall-through to next insn 9547 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 9548 * range [0,10] 9549 */ 9550 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 9551 bool is_jmp32) 9552 { 9553 if (__is_pointer_value(false, reg)) { 9554 if (!reg_type_not_null(reg->type)) 9555 return -1; 9556 9557 /* If pointer is valid tests against zero will fail so we can 9558 * use this to direct branch taken. 9559 */ 9560 if (val != 0) 9561 return -1; 9562 9563 switch (opcode) { 9564 case BPF_JEQ: 9565 return 0; 9566 case BPF_JNE: 9567 return 1; 9568 default: 9569 return -1; 9570 } 9571 } 9572 9573 if (is_jmp32) 9574 return is_branch32_taken(reg, val, opcode); 9575 return is_branch64_taken(reg, val, opcode); 9576 } 9577 9578 static int flip_opcode(u32 opcode) 9579 { 9580 /* How can we transform "a <op> b" into "b <op> a"? */ 9581 static const u8 opcode_flip[16] = { 9582 /* these stay the same */ 9583 [BPF_JEQ >> 4] = BPF_JEQ, 9584 [BPF_JNE >> 4] = BPF_JNE, 9585 [BPF_JSET >> 4] = BPF_JSET, 9586 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 9587 [BPF_JGE >> 4] = BPF_JLE, 9588 [BPF_JGT >> 4] = BPF_JLT, 9589 [BPF_JLE >> 4] = BPF_JGE, 9590 [BPF_JLT >> 4] = BPF_JGT, 9591 [BPF_JSGE >> 4] = BPF_JSLE, 9592 [BPF_JSGT >> 4] = BPF_JSLT, 9593 [BPF_JSLE >> 4] = BPF_JSGE, 9594 [BPF_JSLT >> 4] = BPF_JSGT 9595 }; 9596 return opcode_flip[opcode >> 4]; 9597 } 9598 9599 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 9600 struct bpf_reg_state *src_reg, 9601 u8 opcode) 9602 { 9603 struct bpf_reg_state *pkt; 9604 9605 if (src_reg->type == PTR_TO_PACKET_END) { 9606 pkt = dst_reg; 9607 } else if (dst_reg->type == PTR_TO_PACKET_END) { 9608 pkt = src_reg; 9609 opcode = flip_opcode(opcode); 9610 } else { 9611 return -1; 9612 } 9613 9614 if (pkt->range >= 0) 9615 return -1; 9616 9617 switch (opcode) { 9618 case BPF_JLE: 9619 /* pkt <= pkt_end */ 9620 fallthrough; 9621 case BPF_JGT: 9622 /* pkt > pkt_end */ 9623 if (pkt->range == BEYOND_PKT_END) 9624 /* pkt has at last one extra byte beyond pkt_end */ 9625 return opcode == BPF_JGT; 9626 break; 9627 case BPF_JLT: 9628 /* pkt < pkt_end */ 9629 fallthrough; 9630 case BPF_JGE: 9631 /* pkt >= pkt_end */ 9632 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 9633 return opcode == BPF_JGE; 9634 break; 9635 } 9636 return -1; 9637 } 9638 9639 /* Adjusts the register min/max values in the case that the dst_reg is the 9640 * variable register that we are working on, and src_reg is a constant or we're 9641 * simply doing a BPF_K check. 9642 * In JEQ/JNE cases we also adjust the var_off values. 9643 */ 9644 static void reg_set_min_max(struct bpf_reg_state *true_reg, 9645 struct bpf_reg_state *false_reg, 9646 u64 val, u32 val32, 9647 u8 opcode, bool is_jmp32) 9648 { 9649 struct tnum false_32off = tnum_subreg(false_reg->var_off); 9650 struct tnum false_64off = false_reg->var_off; 9651 struct tnum true_32off = tnum_subreg(true_reg->var_off); 9652 struct tnum true_64off = true_reg->var_off; 9653 s64 sval = (s64)val; 9654 s32 sval32 = (s32)val32; 9655 9656 /* If the dst_reg is a pointer, we can't learn anything about its 9657 * variable offset from the compare (unless src_reg were a pointer into 9658 * the same object, but we don't bother with that. 9659 * Since false_reg and true_reg have the same type by construction, we 9660 * only need to check one of them for pointerness. 9661 */ 9662 if (__is_pointer_value(false, false_reg)) 9663 return; 9664 9665 switch (opcode) { 9666 /* JEQ/JNE comparison doesn't change the register equivalence. 9667 * 9668 * r1 = r2; 9669 * if (r1 == 42) goto label; 9670 * ... 9671 * label: // here both r1 and r2 are known to be 42. 9672 * 9673 * Hence when marking register as known preserve it's ID. 9674 */ 9675 case BPF_JEQ: 9676 if (is_jmp32) { 9677 __mark_reg32_known(true_reg, val32); 9678 true_32off = tnum_subreg(true_reg->var_off); 9679 } else { 9680 ___mark_reg_known(true_reg, val); 9681 true_64off = true_reg->var_off; 9682 } 9683 break; 9684 case BPF_JNE: 9685 if (is_jmp32) { 9686 __mark_reg32_known(false_reg, val32); 9687 false_32off = tnum_subreg(false_reg->var_off); 9688 } else { 9689 ___mark_reg_known(false_reg, val); 9690 false_64off = false_reg->var_off; 9691 } 9692 break; 9693 case BPF_JSET: 9694 if (is_jmp32) { 9695 false_32off = tnum_and(false_32off, tnum_const(~val32)); 9696 if (is_power_of_2(val32)) 9697 true_32off = tnum_or(true_32off, 9698 tnum_const(val32)); 9699 } else { 9700 false_64off = tnum_and(false_64off, tnum_const(~val)); 9701 if (is_power_of_2(val)) 9702 true_64off = tnum_or(true_64off, 9703 tnum_const(val)); 9704 } 9705 break; 9706 case BPF_JGE: 9707 case BPF_JGT: 9708 { 9709 if (is_jmp32) { 9710 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 9711 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 9712 9713 false_reg->u32_max_value = min(false_reg->u32_max_value, 9714 false_umax); 9715 true_reg->u32_min_value = max(true_reg->u32_min_value, 9716 true_umin); 9717 } else { 9718 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 9719 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 9720 9721 false_reg->umax_value = min(false_reg->umax_value, false_umax); 9722 true_reg->umin_value = max(true_reg->umin_value, true_umin); 9723 } 9724 break; 9725 } 9726 case BPF_JSGE: 9727 case BPF_JSGT: 9728 { 9729 if (is_jmp32) { 9730 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 9731 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 9732 9733 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 9734 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 9735 } else { 9736 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 9737 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 9738 9739 false_reg->smax_value = min(false_reg->smax_value, false_smax); 9740 true_reg->smin_value = max(true_reg->smin_value, true_smin); 9741 } 9742 break; 9743 } 9744 case BPF_JLE: 9745 case BPF_JLT: 9746 { 9747 if (is_jmp32) { 9748 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 9749 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 9750 9751 false_reg->u32_min_value = max(false_reg->u32_min_value, 9752 false_umin); 9753 true_reg->u32_max_value = min(true_reg->u32_max_value, 9754 true_umax); 9755 } else { 9756 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 9757 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 9758 9759 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9760 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9761 } 9762 break; 9763 } 9764 case BPF_JSLE: 9765 case BPF_JSLT: 9766 { 9767 if (is_jmp32) { 9768 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 9769 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 9770 9771 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 9772 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 9773 } else { 9774 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 9775 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 9776 9777 false_reg->smin_value = max(false_reg->smin_value, false_smin); 9778 true_reg->smax_value = min(true_reg->smax_value, true_smax); 9779 } 9780 break; 9781 } 9782 default: 9783 return; 9784 } 9785 9786 if (is_jmp32) { 9787 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9788 tnum_subreg(false_32off)); 9789 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9790 tnum_subreg(true_32off)); 9791 __reg_combine_32_into_64(false_reg); 9792 __reg_combine_32_into_64(true_reg); 9793 } else { 9794 false_reg->var_off = false_64off; 9795 true_reg->var_off = true_64off; 9796 __reg_combine_64_into_32(false_reg); 9797 __reg_combine_64_into_32(true_reg); 9798 } 9799 } 9800 9801 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9802 * the variable reg. 9803 */ 9804 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9805 struct bpf_reg_state *false_reg, 9806 u64 val, u32 val32, 9807 u8 opcode, bool is_jmp32) 9808 { 9809 opcode = flip_opcode(opcode); 9810 /* This uses zero as "not present in table"; luckily the zero opcode, 9811 * BPF_JA, can't get here. 9812 */ 9813 if (opcode) 9814 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9815 } 9816 9817 /* Regs are known to be equal, so intersect their min/max/var_off */ 9818 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9819 struct bpf_reg_state *dst_reg) 9820 { 9821 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9822 dst_reg->umin_value); 9823 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9824 dst_reg->umax_value); 9825 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9826 dst_reg->smin_value); 9827 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9828 dst_reg->smax_value); 9829 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9830 dst_reg->var_off); 9831 reg_bounds_sync(src_reg); 9832 reg_bounds_sync(dst_reg); 9833 } 9834 9835 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9836 struct bpf_reg_state *true_dst, 9837 struct bpf_reg_state *false_src, 9838 struct bpf_reg_state *false_dst, 9839 u8 opcode) 9840 { 9841 switch (opcode) { 9842 case BPF_JEQ: 9843 __reg_combine_min_max(true_src, true_dst); 9844 break; 9845 case BPF_JNE: 9846 __reg_combine_min_max(false_src, false_dst); 9847 break; 9848 } 9849 } 9850 9851 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9852 struct bpf_reg_state *reg, u32 id, 9853 bool is_null) 9854 { 9855 if (type_may_be_null(reg->type) && reg->id == id && 9856 !WARN_ON_ONCE(!reg->id)) { 9857 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9858 !tnum_equals_const(reg->var_off, 0) || 9859 reg->off)) { 9860 /* Old offset (both fixed and variable parts) should 9861 * have been known-zero, because we don't allow pointer 9862 * arithmetic on pointers that might be NULL. If we 9863 * see this happening, don't convert the register. 9864 */ 9865 return; 9866 } 9867 if (is_null) { 9868 reg->type = SCALAR_VALUE; 9869 /* We don't need id and ref_obj_id from this point 9870 * onwards anymore, thus we should better reset it, 9871 * so that state pruning has chances to take effect. 9872 */ 9873 reg->id = 0; 9874 reg->ref_obj_id = 0; 9875 9876 return; 9877 } 9878 9879 mark_ptr_not_null_reg(reg); 9880 9881 if (!reg_may_point_to_spin_lock(reg)) { 9882 /* For not-NULL ptr, reg->ref_obj_id will be reset 9883 * in release_reg_references(). 9884 * 9885 * reg->id is still used by spin_lock ptr. Other 9886 * than spin_lock ptr type, reg->id can be reset. 9887 */ 9888 reg->id = 0; 9889 } 9890 } 9891 } 9892 9893 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 9894 bool is_null) 9895 { 9896 struct bpf_reg_state *reg; 9897 int i; 9898 9899 for (i = 0; i < MAX_BPF_REG; i++) 9900 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 9901 9902 bpf_for_each_spilled_reg(i, state, reg) { 9903 if (!reg) 9904 continue; 9905 mark_ptr_or_null_reg(state, reg, id, is_null); 9906 } 9907 } 9908 9909 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9910 * be folded together at some point. 9911 */ 9912 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9913 bool is_null) 9914 { 9915 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9916 struct bpf_reg_state *regs = state->regs; 9917 u32 ref_obj_id = regs[regno].ref_obj_id; 9918 u32 id = regs[regno].id; 9919 int i; 9920 9921 if (ref_obj_id && ref_obj_id == id && is_null) 9922 /* regs[regno] is in the " == NULL" branch. 9923 * No one could have freed the reference state before 9924 * doing the NULL check. 9925 */ 9926 WARN_ON_ONCE(release_reference_state(state, id)); 9927 9928 for (i = 0; i <= vstate->curframe; i++) 9929 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9930 } 9931 9932 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9933 struct bpf_reg_state *dst_reg, 9934 struct bpf_reg_state *src_reg, 9935 struct bpf_verifier_state *this_branch, 9936 struct bpf_verifier_state *other_branch) 9937 { 9938 if (BPF_SRC(insn->code) != BPF_X) 9939 return false; 9940 9941 /* Pointers are always 64-bit. */ 9942 if (BPF_CLASS(insn->code) == BPF_JMP32) 9943 return false; 9944 9945 switch (BPF_OP(insn->code)) { 9946 case BPF_JGT: 9947 if ((dst_reg->type == PTR_TO_PACKET && 9948 src_reg->type == PTR_TO_PACKET_END) || 9949 (dst_reg->type == PTR_TO_PACKET_META && 9950 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9951 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9952 find_good_pkt_pointers(this_branch, dst_reg, 9953 dst_reg->type, false); 9954 mark_pkt_end(other_branch, insn->dst_reg, true); 9955 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9956 src_reg->type == PTR_TO_PACKET) || 9957 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9958 src_reg->type == PTR_TO_PACKET_META)) { 9959 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9960 find_good_pkt_pointers(other_branch, src_reg, 9961 src_reg->type, true); 9962 mark_pkt_end(this_branch, insn->src_reg, false); 9963 } else { 9964 return false; 9965 } 9966 break; 9967 case BPF_JLT: 9968 if ((dst_reg->type == PTR_TO_PACKET && 9969 src_reg->type == PTR_TO_PACKET_END) || 9970 (dst_reg->type == PTR_TO_PACKET_META && 9971 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9972 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9973 find_good_pkt_pointers(other_branch, dst_reg, 9974 dst_reg->type, true); 9975 mark_pkt_end(this_branch, insn->dst_reg, false); 9976 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9977 src_reg->type == PTR_TO_PACKET) || 9978 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9979 src_reg->type == PTR_TO_PACKET_META)) { 9980 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9981 find_good_pkt_pointers(this_branch, src_reg, 9982 src_reg->type, false); 9983 mark_pkt_end(other_branch, insn->src_reg, true); 9984 } else { 9985 return false; 9986 } 9987 break; 9988 case BPF_JGE: 9989 if ((dst_reg->type == PTR_TO_PACKET && 9990 src_reg->type == PTR_TO_PACKET_END) || 9991 (dst_reg->type == PTR_TO_PACKET_META && 9992 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9993 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9994 find_good_pkt_pointers(this_branch, dst_reg, 9995 dst_reg->type, true); 9996 mark_pkt_end(other_branch, insn->dst_reg, false); 9997 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9998 src_reg->type == PTR_TO_PACKET) || 9999 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10000 src_reg->type == PTR_TO_PACKET_META)) { 10001 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 10002 find_good_pkt_pointers(other_branch, src_reg, 10003 src_reg->type, false); 10004 mark_pkt_end(this_branch, insn->src_reg, true); 10005 } else { 10006 return false; 10007 } 10008 break; 10009 case BPF_JLE: 10010 if ((dst_reg->type == PTR_TO_PACKET && 10011 src_reg->type == PTR_TO_PACKET_END) || 10012 (dst_reg->type == PTR_TO_PACKET_META && 10013 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 10014 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 10015 find_good_pkt_pointers(other_branch, dst_reg, 10016 dst_reg->type, false); 10017 mark_pkt_end(this_branch, insn->dst_reg, true); 10018 } else if ((dst_reg->type == PTR_TO_PACKET_END && 10019 src_reg->type == PTR_TO_PACKET) || 10020 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 10021 src_reg->type == PTR_TO_PACKET_META)) { 10022 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 10023 find_good_pkt_pointers(this_branch, src_reg, 10024 src_reg->type, true); 10025 mark_pkt_end(other_branch, insn->src_reg, false); 10026 } else { 10027 return false; 10028 } 10029 break; 10030 default: 10031 return false; 10032 } 10033 10034 return true; 10035 } 10036 10037 static void find_equal_scalars(struct bpf_verifier_state *vstate, 10038 struct bpf_reg_state *known_reg) 10039 { 10040 struct bpf_func_state *state; 10041 struct bpf_reg_state *reg; 10042 int i, j; 10043 10044 for (i = 0; i <= vstate->curframe; i++) { 10045 state = vstate->frame[i]; 10046 for (j = 0; j < MAX_BPF_REG; j++) { 10047 reg = &state->regs[j]; 10048 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 10049 *reg = *known_reg; 10050 } 10051 10052 bpf_for_each_spilled_reg(j, state, reg) { 10053 if (!reg) 10054 continue; 10055 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 10056 *reg = *known_reg; 10057 } 10058 } 10059 } 10060 10061 static int check_cond_jmp_op(struct bpf_verifier_env *env, 10062 struct bpf_insn *insn, int *insn_idx) 10063 { 10064 struct bpf_verifier_state *this_branch = env->cur_state; 10065 struct bpf_verifier_state *other_branch; 10066 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 10067 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 10068 u8 opcode = BPF_OP(insn->code); 10069 bool is_jmp32; 10070 int pred = -1; 10071 int err; 10072 10073 /* Only conditional jumps are expected to reach here. */ 10074 if (opcode == BPF_JA || opcode > BPF_JSLE) { 10075 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 10076 return -EINVAL; 10077 } 10078 10079 if (BPF_SRC(insn->code) == BPF_X) { 10080 if (insn->imm != 0) { 10081 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10082 return -EINVAL; 10083 } 10084 10085 /* check src1 operand */ 10086 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10087 if (err) 10088 return err; 10089 10090 if (is_pointer_value(env, insn->src_reg)) { 10091 verbose(env, "R%d pointer comparison prohibited\n", 10092 insn->src_reg); 10093 return -EACCES; 10094 } 10095 src_reg = ®s[insn->src_reg]; 10096 } else { 10097 if (insn->src_reg != BPF_REG_0) { 10098 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 10099 return -EINVAL; 10100 } 10101 } 10102 10103 /* check src2 operand */ 10104 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 10105 if (err) 10106 return err; 10107 10108 dst_reg = ®s[insn->dst_reg]; 10109 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 10110 10111 if (BPF_SRC(insn->code) == BPF_K) { 10112 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 10113 } else if (src_reg->type == SCALAR_VALUE && 10114 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 10115 pred = is_branch_taken(dst_reg, 10116 tnum_subreg(src_reg->var_off).value, 10117 opcode, 10118 is_jmp32); 10119 } else if (src_reg->type == SCALAR_VALUE && 10120 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 10121 pred = is_branch_taken(dst_reg, 10122 src_reg->var_off.value, 10123 opcode, 10124 is_jmp32); 10125 } else if (reg_is_pkt_pointer_any(dst_reg) && 10126 reg_is_pkt_pointer_any(src_reg) && 10127 !is_jmp32) { 10128 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 10129 } 10130 10131 if (pred >= 0) { 10132 /* If we get here with a dst_reg pointer type it is because 10133 * above is_branch_taken() special cased the 0 comparison. 10134 */ 10135 if (!__is_pointer_value(false, dst_reg)) 10136 err = mark_chain_precision(env, insn->dst_reg); 10137 if (BPF_SRC(insn->code) == BPF_X && !err && 10138 !__is_pointer_value(false, src_reg)) 10139 err = mark_chain_precision(env, insn->src_reg); 10140 if (err) 10141 return err; 10142 } 10143 10144 if (pred == 1) { 10145 /* Only follow the goto, ignore fall-through. If needed, push 10146 * the fall-through branch for simulation under speculative 10147 * execution. 10148 */ 10149 if (!env->bypass_spec_v1 && 10150 !sanitize_speculative_path(env, insn, *insn_idx + 1, 10151 *insn_idx)) 10152 return -EFAULT; 10153 *insn_idx += insn->off; 10154 return 0; 10155 } else if (pred == 0) { 10156 /* Only follow the fall-through branch, since that's where the 10157 * program will go. If needed, push the goto branch for 10158 * simulation under speculative execution. 10159 */ 10160 if (!env->bypass_spec_v1 && 10161 !sanitize_speculative_path(env, insn, 10162 *insn_idx + insn->off + 1, 10163 *insn_idx)) 10164 return -EFAULT; 10165 return 0; 10166 } 10167 10168 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 10169 false); 10170 if (!other_branch) 10171 return -EFAULT; 10172 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 10173 10174 /* detect if we are comparing against a constant value so we can adjust 10175 * our min/max values for our dst register. 10176 * this is only legit if both are scalars (or pointers to the same 10177 * object, I suppose, but we don't support that right now), because 10178 * otherwise the different base pointers mean the offsets aren't 10179 * comparable. 10180 */ 10181 if (BPF_SRC(insn->code) == BPF_X) { 10182 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 10183 10184 if (dst_reg->type == SCALAR_VALUE && 10185 src_reg->type == SCALAR_VALUE) { 10186 if (tnum_is_const(src_reg->var_off) || 10187 (is_jmp32 && 10188 tnum_is_const(tnum_subreg(src_reg->var_off)))) 10189 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10190 dst_reg, 10191 src_reg->var_off.value, 10192 tnum_subreg(src_reg->var_off).value, 10193 opcode, is_jmp32); 10194 else if (tnum_is_const(dst_reg->var_off) || 10195 (is_jmp32 && 10196 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 10197 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 10198 src_reg, 10199 dst_reg->var_off.value, 10200 tnum_subreg(dst_reg->var_off).value, 10201 opcode, is_jmp32); 10202 else if (!is_jmp32 && 10203 (opcode == BPF_JEQ || opcode == BPF_JNE)) 10204 /* Comparing for equality, we can combine knowledge */ 10205 reg_combine_min_max(&other_branch_regs[insn->src_reg], 10206 &other_branch_regs[insn->dst_reg], 10207 src_reg, dst_reg, opcode); 10208 if (src_reg->id && 10209 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 10210 find_equal_scalars(this_branch, src_reg); 10211 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 10212 } 10213 10214 } 10215 } else if (dst_reg->type == SCALAR_VALUE) { 10216 reg_set_min_max(&other_branch_regs[insn->dst_reg], 10217 dst_reg, insn->imm, (u32)insn->imm, 10218 opcode, is_jmp32); 10219 } 10220 10221 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 10222 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 10223 find_equal_scalars(this_branch, dst_reg); 10224 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 10225 } 10226 10227 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 10228 * NOTE: these optimizations below are related with pointer comparison 10229 * which will never be JMP32. 10230 */ 10231 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 10232 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 10233 type_may_be_null(dst_reg->type)) { 10234 /* Mark all identical registers in each branch as either 10235 * safe or unknown depending R == 0 or R != 0 conditional. 10236 */ 10237 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 10238 opcode == BPF_JNE); 10239 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 10240 opcode == BPF_JEQ); 10241 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 10242 this_branch, other_branch) && 10243 is_pointer_value(env, insn->dst_reg)) { 10244 verbose(env, "R%d pointer comparison prohibited\n", 10245 insn->dst_reg); 10246 return -EACCES; 10247 } 10248 if (env->log.level & BPF_LOG_LEVEL) 10249 print_insn_state(env, this_branch->frame[this_branch->curframe]); 10250 return 0; 10251 } 10252 10253 /* verify BPF_LD_IMM64 instruction */ 10254 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 10255 { 10256 struct bpf_insn_aux_data *aux = cur_aux(env); 10257 struct bpf_reg_state *regs = cur_regs(env); 10258 struct bpf_reg_state *dst_reg; 10259 struct bpf_map *map; 10260 int err; 10261 10262 if (BPF_SIZE(insn->code) != BPF_DW) { 10263 verbose(env, "invalid BPF_LD_IMM insn\n"); 10264 return -EINVAL; 10265 } 10266 if (insn->off != 0) { 10267 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 10268 return -EINVAL; 10269 } 10270 10271 err = check_reg_arg(env, insn->dst_reg, DST_OP); 10272 if (err) 10273 return err; 10274 10275 dst_reg = ®s[insn->dst_reg]; 10276 if (insn->src_reg == 0) { 10277 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 10278 10279 dst_reg->type = SCALAR_VALUE; 10280 __mark_reg_known(®s[insn->dst_reg], imm); 10281 return 0; 10282 } 10283 10284 /* All special src_reg cases are listed below. From this point onwards 10285 * we either succeed and assign a corresponding dst_reg->type after 10286 * zeroing the offset, or fail and reject the program. 10287 */ 10288 mark_reg_known_zero(env, regs, insn->dst_reg); 10289 10290 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 10291 dst_reg->type = aux->btf_var.reg_type; 10292 switch (base_type(dst_reg->type)) { 10293 case PTR_TO_MEM: 10294 dst_reg->mem_size = aux->btf_var.mem_size; 10295 break; 10296 case PTR_TO_BTF_ID: 10297 dst_reg->btf = aux->btf_var.btf; 10298 dst_reg->btf_id = aux->btf_var.btf_id; 10299 break; 10300 default: 10301 verbose(env, "bpf verifier is misconfigured\n"); 10302 return -EFAULT; 10303 } 10304 return 0; 10305 } 10306 10307 if (insn->src_reg == BPF_PSEUDO_FUNC) { 10308 struct bpf_prog_aux *aux = env->prog->aux; 10309 u32 subprogno = find_subprog(env, 10310 env->insn_idx + insn->imm + 1); 10311 10312 if (!aux->func_info) { 10313 verbose(env, "missing btf func_info\n"); 10314 return -EINVAL; 10315 } 10316 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 10317 verbose(env, "callback function not static\n"); 10318 return -EINVAL; 10319 } 10320 10321 dst_reg->type = PTR_TO_FUNC; 10322 dst_reg->subprogno = subprogno; 10323 return 0; 10324 } 10325 10326 map = env->used_maps[aux->map_index]; 10327 dst_reg->map_ptr = map; 10328 10329 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 10330 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 10331 dst_reg->type = PTR_TO_MAP_VALUE; 10332 dst_reg->off = aux->map_off; 10333 if (map_value_has_spin_lock(map)) 10334 dst_reg->id = ++env->id_gen; 10335 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 10336 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 10337 dst_reg->type = CONST_PTR_TO_MAP; 10338 } else { 10339 verbose(env, "bpf verifier is misconfigured\n"); 10340 return -EINVAL; 10341 } 10342 10343 return 0; 10344 } 10345 10346 static bool may_access_skb(enum bpf_prog_type type) 10347 { 10348 switch (type) { 10349 case BPF_PROG_TYPE_SOCKET_FILTER: 10350 case BPF_PROG_TYPE_SCHED_CLS: 10351 case BPF_PROG_TYPE_SCHED_ACT: 10352 return true; 10353 default: 10354 return false; 10355 } 10356 } 10357 10358 /* verify safety of LD_ABS|LD_IND instructions: 10359 * - they can only appear in the programs where ctx == skb 10360 * - since they are wrappers of function calls, they scratch R1-R5 registers, 10361 * preserve R6-R9, and store return value into R0 10362 * 10363 * Implicit input: 10364 * ctx == skb == R6 == CTX 10365 * 10366 * Explicit input: 10367 * SRC == any register 10368 * IMM == 32-bit immediate 10369 * 10370 * Output: 10371 * R0 - 8/16/32-bit skb data converted to cpu endianness 10372 */ 10373 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 10374 { 10375 struct bpf_reg_state *regs = cur_regs(env); 10376 static const int ctx_reg = BPF_REG_6; 10377 u8 mode = BPF_MODE(insn->code); 10378 int i, err; 10379 10380 if (!may_access_skb(resolve_prog_type(env->prog))) { 10381 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 10382 return -EINVAL; 10383 } 10384 10385 if (!env->ops->gen_ld_abs) { 10386 verbose(env, "bpf verifier is misconfigured\n"); 10387 return -EINVAL; 10388 } 10389 10390 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 10391 BPF_SIZE(insn->code) == BPF_DW || 10392 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 10393 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 10394 return -EINVAL; 10395 } 10396 10397 /* check whether implicit source operand (register R6) is readable */ 10398 err = check_reg_arg(env, ctx_reg, SRC_OP); 10399 if (err) 10400 return err; 10401 10402 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 10403 * gen_ld_abs() may terminate the program at runtime, leading to 10404 * reference leak. 10405 */ 10406 err = check_reference_leak(env); 10407 if (err) { 10408 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 10409 return err; 10410 } 10411 10412 if (env->cur_state->active_spin_lock) { 10413 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 10414 return -EINVAL; 10415 } 10416 10417 if (regs[ctx_reg].type != PTR_TO_CTX) { 10418 verbose(env, 10419 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 10420 return -EINVAL; 10421 } 10422 10423 if (mode == BPF_IND) { 10424 /* check explicit source operand */ 10425 err = check_reg_arg(env, insn->src_reg, SRC_OP); 10426 if (err) 10427 return err; 10428 } 10429 10430 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 10431 if (err < 0) 10432 return err; 10433 10434 /* reset caller saved regs to unreadable */ 10435 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10436 mark_reg_not_init(env, regs, caller_saved[i]); 10437 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10438 } 10439 10440 /* mark destination R0 register as readable, since it contains 10441 * the value fetched from the packet. 10442 * Already marked as written above. 10443 */ 10444 mark_reg_unknown(env, regs, BPF_REG_0); 10445 /* ld_abs load up to 32-bit skb data. */ 10446 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 10447 return 0; 10448 } 10449 10450 static int check_return_code(struct bpf_verifier_env *env) 10451 { 10452 struct tnum enforce_attach_type_range = tnum_unknown; 10453 const struct bpf_prog *prog = env->prog; 10454 struct bpf_reg_state *reg; 10455 struct tnum range = tnum_range(0, 1); 10456 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 10457 int err; 10458 struct bpf_func_state *frame = env->cur_state->frame[0]; 10459 const bool is_subprog = frame->subprogno; 10460 10461 /* LSM and struct_ops func-ptr's return type could be "void" */ 10462 if (!is_subprog) { 10463 switch (prog_type) { 10464 case BPF_PROG_TYPE_LSM: 10465 if (prog->expected_attach_type == BPF_LSM_CGROUP) 10466 /* See below, can be 0 or 0-1 depending on hook. */ 10467 break; 10468 fallthrough; 10469 case BPF_PROG_TYPE_STRUCT_OPS: 10470 if (!prog->aux->attach_func_proto->type) 10471 return 0; 10472 break; 10473 default: 10474 break; 10475 } 10476 } 10477 10478 /* eBPF calling convention is such that R0 is used 10479 * to return the value from eBPF program. 10480 * Make sure that it's readable at this time 10481 * of bpf_exit, which means that program wrote 10482 * something into it earlier 10483 */ 10484 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 10485 if (err) 10486 return err; 10487 10488 if (is_pointer_value(env, BPF_REG_0)) { 10489 verbose(env, "R0 leaks addr as return value\n"); 10490 return -EACCES; 10491 } 10492 10493 reg = cur_regs(env) + BPF_REG_0; 10494 10495 if (frame->in_async_callback_fn) { 10496 /* enforce return zero from async callbacks like timer */ 10497 if (reg->type != SCALAR_VALUE) { 10498 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 10499 reg_type_str(env, reg->type)); 10500 return -EINVAL; 10501 } 10502 10503 if (!tnum_in(tnum_const(0), reg->var_off)) { 10504 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 10505 return -EINVAL; 10506 } 10507 return 0; 10508 } 10509 10510 if (is_subprog) { 10511 if (reg->type != SCALAR_VALUE) { 10512 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 10513 reg_type_str(env, reg->type)); 10514 return -EINVAL; 10515 } 10516 return 0; 10517 } 10518 10519 switch (prog_type) { 10520 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 10521 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 10522 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 10523 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 10524 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 10525 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 10526 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 10527 range = tnum_range(1, 1); 10528 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 10529 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 10530 range = tnum_range(0, 3); 10531 break; 10532 case BPF_PROG_TYPE_CGROUP_SKB: 10533 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 10534 range = tnum_range(0, 3); 10535 enforce_attach_type_range = tnum_range(2, 3); 10536 } 10537 break; 10538 case BPF_PROG_TYPE_CGROUP_SOCK: 10539 case BPF_PROG_TYPE_SOCK_OPS: 10540 case BPF_PROG_TYPE_CGROUP_DEVICE: 10541 case BPF_PROG_TYPE_CGROUP_SYSCTL: 10542 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 10543 break; 10544 case BPF_PROG_TYPE_RAW_TRACEPOINT: 10545 if (!env->prog->aux->attach_btf_id) 10546 return 0; 10547 range = tnum_const(0); 10548 break; 10549 case BPF_PROG_TYPE_TRACING: 10550 switch (env->prog->expected_attach_type) { 10551 case BPF_TRACE_FENTRY: 10552 case BPF_TRACE_FEXIT: 10553 range = tnum_const(0); 10554 break; 10555 case BPF_TRACE_RAW_TP: 10556 case BPF_MODIFY_RETURN: 10557 return 0; 10558 case BPF_TRACE_ITER: 10559 break; 10560 default: 10561 return -ENOTSUPP; 10562 } 10563 break; 10564 case BPF_PROG_TYPE_SK_LOOKUP: 10565 range = tnum_range(SK_DROP, SK_PASS); 10566 break; 10567 10568 case BPF_PROG_TYPE_LSM: 10569 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 10570 /* Regular BPF_PROG_TYPE_LSM programs can return 10571 * any value. 10572 */ 10573 return 0; 10574 } 10575 if (!env->prog->aux->attach_func_proto->type) { 10576 /* Make sure programs that attach to void 10577 * hooks don't try to modify return value. 10578 */ 10579 range = tnum_range(1, 1); 10580 } 10581 break; 10582 10583 case BPF_PROG_TYPE_EXT: 10584 /* freplace program can return anything as its return value 10585 * depends on the to-be-replaced kernel func or bpf program. 10586 */ 10587 default: 10588 return 0; 10589 } 10590 10591 if (reg->type != SCALAR_VALUE) { 10592 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 10593 reg_type_str(env, reg->type)); 10594 return -EINVAL; 10595 } 10596 10597 if (!tnum_in(range, reg->var_off)) { 10598 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 10599 if (prog->expected_attach_type == BPF_LSM_CGROUP && 10600 prog_type == BPF_PROG_TYPE_LSM && 10601 !prog->aux->attach_func_proto->type) 10602 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10603 return -EINVAL; 10604 } 10605 10606 if (!tnum_is_unknown(enforce_attach_type_range) && 10607 tnum_in(enforce_attach_type_range, reg->var_off)) 10608 env->prog->enforce_expected_attach_type = 1; 10609 return 0; 10610 } 10611 10612 /* non-recursive DFS pseudo code 10613 * 1 procedure DFS-iterative(G,v): 10614 * 2 label v as discovered 10615 * 3 let S be a stack 10616 * 4 S.push(v) 10617 * 5 while S is not empty 10618 * 6 t <- S.pop() 10619 * 7 if t is what we're looking for: 10620 * 8 return t 10621 * 9 for all edges e in G.adjacentEdges(t) do 10622 * 10 if edge e is already labelled 10623 * 11 continue with the next edge 10624 * 12 w <- G.adjacentVertex(t,e) 10625 * 13 if vertex w is not discovered and not explored 10626 * 14 label e as tree-edge 10627 * 15 label w as discovered 10628 * 16 S.push(w) 10629 * 17 continue at 5 10630 * 18 else if vertex w is discovered 10631 * 19 label e as back-edge 10632 * 20 else 10633 * 21 // vertex w is explored 10634 * 22 label e as forward- or cross-edge 10635 * 23 label t as explored 10636 * 24 S.pop() 10637 * 10638 * convention: 10639 * 0x10 - discovered 10640 * 0x11 - discovered and fall-through edge labelled 10641 * 0x12 - discovered and fall-through and branch edges labelled 10642 * 0x20 - explored 10643 */ 10644 10645 enum { 10646 DISCOVERED = 0x10, 10647 EXPLORED = 0x20, 10648 FALLTHROUGH = 1, 10649 BRANCH = 2, 10650 }; 10651 10652 static u32 state_htab_size(struct bpf_verifier_env *env) 10653 { 10654 return env->prog->len; 10655 } 10656 10657 static struct bpf_verifier_state_list **explored_state( 10658 struct bpf_verifier_env *env, 10659 int idx) 10660 { 10661 struct bpf_verifier_state *cur = env->cur_state; 10662 struct bpf_func_state *state = cur->frame[cur->curframe]; 10663 10664 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 10665 } 10666 10667 static void init_explored_state(struct bpf_verifier_env *env, int idx) 10668 { 10669 env->insn_aux_data[idx].prune_point = true; 10670 } 10671 10672 enum { 10673 DONE_EXPLORING = 0, 10674 KEEP_EXPLORING = 1, 10675 }; 10676 10677 /* t, w, e - match pseudo-code above: 10678 * t - index of current instruction 10679 * w - next instruction 10680 * e - edge 10681 */ 10682 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 10683 bool loop_ok) 10684 { 10685 int *insn_stack = env->cfg.insn_stack; 10686 int *insn_state = env->cfg.insn_state; 10687 10688 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 10689 return DONE_EXPLORING; 10690 10691 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 10692 return DONE_EXPLORING; 10693 10694 if (w < 0 || w >= env->prog->len) { 10695 verbose_linfo(env, t, "%d: ", t); 10696 verbose(env, "jump out of range from insn %d to %d\n", t, w); 10697 return -EINVAL; 10698 } 10699 10700 if (e == BRANCH) 10701 /* mark branch target for state pruning */ 10702 init_explored_state(env, w); 10703 10704 if (insn_state[w] == 0) { 10705 /* tree-edge */ 10706 insn_state[t] = DISCOVERED | e; 10707 insn_state[w] = DISCOVERED; 10708 if (env->cfg.cur_stack >= env->prog->len) 10709 return -E2BIG; 10710 insn_stack[env->cfg.cur_stack++] = w; 10711 return KEEP_EXPLORING; 10712 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 10713 if (loop_ok && env->bpf_capable) 10714 return DONE_EXPLORING; 10715 verbose_linfo(env, t, "%d: ", t); 10716 verbose_linfo(env, w, "%d: ", w); 10717 verbose(env, "back-edge from insn %d to %d\n", t, w); 10718 return -EINVAL; 10719 } else if (insn_state[w] == EXPLORED) { 10720 /* forward- or cross-edge */ 10721 insn_state[t] = DISCOVERED | e; 10722 } else { 10723 verbose(env, "insn state internal bug\n"); 10724 return -EFAULT; 10725 } 10726 return DONE_EXPLORING; 10727 } 10728 10729 static int visit_func_call_insn(int t, int insn_cnt, 10730 struct bpf_insn *insns, 10731 struct bpf_verifier_env *env, 10732 bool visit_callee) 10733 { 10734 int ret; 10735 10736 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 10737 if (ret) 10738 return ret; 10739 10740 if (t + 1 < insn_cnt) 10741 init_explored_state(env, t + 1); 10742 if (visit_callee) { 10743 init_explored_state(env, t); 10744 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 10745 /* It's ok to allow recursion from CFG point of 10746 * view. __check_func_call() will do the actual 10747 * check. 10748 */ 10749 bpf_pseudo_func(insns + t)); 10750 } 10751 return ret; 10752 } 10753 10754 /* Visits the instruction at index t and returns one of the following: 10755 * < 0 - an error occurred 10756 * DONE_EXPLORING - the instruction was fully explored 10757 * KEEP_EXPLORING - there is still work to be done before it is fully explored 10758 */ 10759 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 10760 { 10761 struct bpf_insn *insns = env->prog->insnsi; 10762 int ret; 10763 10764 if (bpf_pseudo_func(insns + t)) 10765 return visit_func_call_insn(t, insn_cnt, insns, env, true); 10766 10767 /* All non-branch instructions have a single fall-through edge. */ 10768 if (BPF_CLASS(insns[t].code) != BPF_JMP && 10769 BPF_CLASS(insns[t].code) != BPF_JMP32) 10770 return push_insn(t, t + 1, FALLTHROUGH, env, false); 10771 10772 switch (BPF_OP(insns[t].code)) { 10773 case BPF_EXIT: 10774 return DONE_EXPLORING; 10775 10776 case BPF_CALL: 10777 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10778 /* Mark this call insn to trigger is_state_visited() check 10779 * before call itself is processed by __check_func_call(). 10780 * Otherwise new async state will be pushed for further 10781 * exploration. 10782 */ 10783 init_explored_state(env, t); 10784 return visit_func_call_insn(t, insn_cnt, insns, env, 10785 insns[t].src_reg == BPF_PSEUDO_CALL); 10786 10787 case BPF_JA: 10788 if (BPF_SRC(insns[t].code) != BPF_K) 10789 return -EINVAL; 10790 10791 /* unconditional jump with single edge */ 10792 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10793 true); 10794 if (ret) 10795 return ret; 10796 10797 /* unconditional jmp is not a good pruning point, 10798 * but it's marked, since backtracking needs 10799 * to record jmp history in is_state_visited(). 10800 */ 10801 init_explored_state(env, t + insns[t].off + 1); 10802 /* tell verifier to check for equivalent states 10803 * after every call and jump 10804 */ 10805 if (t + 1 < insn_cnt) 10806 init_explored_state(env, t + 1); 10807 10808 return ret; 10809 10810 default: 10811 /* conditional jump with two edges */ 10812 init_explored_state(env, t); 10813 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10814 if (ret) 10815 return ret; 10816 10817 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10818 } 10819 } 10820 10821 /* non-recursive depth-first-search to detect loops in BPF program 10822 * loop == back-edge in directed graph 10823 */ 10824 static int check_cfg(struct bpf_verifier_env *env) 10825 { 10826 int insn_cnt = env->prog->len; 10827 int *insn_stack, *insn_state; 10828 int ret = 0; 10829 int i; 10830 10831 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10832 if (!insn_state) 10833 return -ENOMEM; 10834 10835 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10836 if (!insn_stack) { 10837 kvfree(insn_state); 10838 return -ENOMEM; 10839 } 10840 10841 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10842 insn_stack[0] = 0; /* 0 is the first instruction */ 10843 env->cfg.cur_stack = 1; 10844 10845 while (env->cfg.cur_stack > 0) { 10846 int t = insn_stack[env->cfg.cur_stack - 1]; 10847 10848 ret = visit_insn(t, insn_cnt, env); 10849 switch (ret) { 10850 case DONE_EXPLORING: 10851 insn_state[t] = EXPLORED; 10852 env->cfg.cur_stack--; 10853 break; 10854 case KEEP_EXPLORING: 10855 break; 10856 default: 10857 if (ret > 0) { 10858 verbose(env, "visit_insn internal bug\n"); 10859 ret = -EFAULT; 10860 } 10861 goto err_free; 10862 } 10863 } 10864 10865 if (env->cfg.cur_stack < 0) { 10866 verbose(env, "pop stack internal bug\n"); 10867 ret = -EFAULT; 10868 goto err_free; 10869 } 10870 10871 for (i = 0; i < insn_cnt; i++) { 10872 if (insn_state[i] != EXPLORED) { 10873 verbose(env, "unreachable insn %d\n", i); 10874 ret = -EINVAL; 10875 goto err_free; 10876 } 10877 } 10878 ret = 0; /* cfg looks good */ 10879 10880 err_free: 10881 kvfree(insn_state); 10882 kvfree(insn_stack); 10883 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10884 return ret; 10885 } 10886 10887 static int check_abnormal_return(struct bpf_verifier_env *env) 10888 { 10889 int i; 10890 10891 for (i = 1; i < env->subprog_cnt; i++) { 10892 if (env->subprog_info[i].has_ld_abs) { 10893 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10894 return -EINVAL; 10895 } 10896 if (env->subprog_info[i].has_tail_call) { 10897 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10898 return -EINVAL; 10899 } 10900 } 10901 return 0; 10902 } 10903 10904 /* The minimum supported BTF func info size */ 10905 #define MIN_BPF_FUNCINFO_SIZE 8 10906 #define MAX_FUNCINFO_REC_SIZE 252 10907 10908 static int check_btf_func(struct bpf_verifier_env *env, 10909 const union bpf_attr *attr, 10910 bpfptr_t uattr) 10911 { 10912 const struct btf_type *type, *func_proto, *ret_type; 10913 u32 i, nfuncs, urec_size, min_size; 10914 u32 krec_size = sizeof(struct bpf_func_info); 10915 struct bpf_func_info *krecord; 10916 struct bpf_func_info_aux *info_aux = NULL; 10917 struct bpf_prog *prog; 10918 const struct btf *btf; 10919 bpfptr_t urecord; 10920 u32 prev_offset = 0; 10921 bool scalar_return; 10922 int ret = -ENOMEM; 10923 10924 nfuncs = attr->func_info_cnt; 10925 if (!nfuncs) { 10926 if (check_abnormal_return(env)) 10927 return -EINVAL; 10928 return 0; 10929 } 10930 10931 if (nfuncs != env->subprog_cnt) { 10932 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10933 return -EINVAL; 10934 } 10935 10936 urec_size = attr->func_info_rec_size; 10937 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10938 urec_size > MAX_FUNCINFO_REC_SIZE || 10939 urec_size % sizeof(u32)) { 10940 verbose(env, "invalid func info rec size %u\n", urec_size); 10941 return -EINVAL; 10942 } 10943 10944 prog = env->prog; 10945 btf = prog->aux->btf; 10946 10947 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10948 min_size = min_t(u32, krec_size, urec_size); 10949 10950 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10951 if (!krecord) 10952 return -ENOMEM; 10953 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10954 if (!info_aux) 10955 goto err_free; 10956 10957 for (i = 0; i < nfuncs; i++) { 10958 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10959 if (ret) { 10960 if (ret == -E2BIG) { 10961 verbose(env, "nonzero tailing record in func info"); 10962 /* set the size kernel expects so loader can zero 10963 * out the rest of the record. 10964 */ 10965 if (copy_to_bpfptr_offset(uattr, 10966 offsetof(union bpf_attr, func_info_rec_size), 10967 &min_size, sizeof(min_size))) 10968 ret = -EFAULT; 10969 } 10970 goto err_free; 10971 } 10972 10973 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10974 ret = -EFAULT; 10975 goto err_free; 10976 } 10977 10978 /* check insn_off */ 10979 ret = -EINVAL; 10980 if (i == 0) { 10981 if (krecord[i].insn_off) { 10982 verbose(env, 10983 "nonzero insn_off %u for the first func info record", 10984 krecord[i].insn_off); 10985 goto err_free; 10986 } 10987 } else if (krecord[i].insn_off <= prev_offset) { 10988 verbose(env, 10989 "same or smaller insn offset (%u) than previous func info record (%u)", 10990 krecord[i].insn_off, prev_offset); 10991 goto err_free; 10992 } 10993 10994 if (env->subprog_info[i].start != krecord[i].insn_off) { 10995 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10996 goto err_free; 10997 } 10998 10999 /* check type_id */ 11000 type = btf_type_by_id(btf, krecord[i].type_id); 11001 if (!type || !btf_type_is_func(type)) { 11002 verbose(env, "invalid type id %d in func info", 11003 krecord[i].type_id); 11004 goto err_free; 11005 } 11006 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 11007 11008 func_proto = btf_type_by_id(btf, type->type); 11009 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 11010 /* btf_func_check() already verified it during BTF load */ 11011 goto err_free; 11012 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 11013 scalar_return = 11014 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 11015 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 11016 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 11017 goto err_free; 11018 } 11019 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 11020 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 11021 goto err_free; 11022 } 11023 11024 prev_offset = krecord[i].insn_off; 11025 bpfptr_add(&urecord, urec_size); 11026 } 11027 11028 prog->aux->func_info = krecord; 11029 prog->aux->func_info_cnt = nfuncs; 11030 prog->aux->func_info_aux = info_aux; 11031 return 0; 11032 11033 err_free: 11034 kvfree(krecord); 11035 kfree(info_aux); 11036 return ret; 11037 } 11038 11039 static void adjust_btf_func(struct bpf_verifier_env *env) 11040 { 11041 struct bpf_prog_aux *aux = env->prog->aux; 11042 int i; 11043 11044 if (!aux->func_info) 11045 return; 11046 11047 for (i = 0; i < env->subprog_cnt; i++) 11048 aux->func_info[i].insn_off = env->subprog_info[i].start; 11049 } 11050 11051 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 11052 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 11053 11054 static int check_btf_line(struct bpf_verifier_env *env, 11055 const union bpf_attr *attr, 11056 bpfptr_t uattr) 11057 { 11058 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 11059 struct bpf_subprog_info *sub; 11060 struct bpf_line_info *linfo; 11061 struct bpf_prog *prog; 11062 const struct btf *btf; 11063 bpfptr_t ulinfo; 11064 int err; 11065 11066 nr_linfo = attr->line_info_cnt; 11067 if (!nr_linfo) 11068 return 0; 11069 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 11070 return -EINVAL; 11071 11072 rec_size = attr->line_info_rec_size; 11073 if (rec_size < MIN_BPF_LINEINFO_SIZE || 11074 rec_size > MAX_LINEINFO_REC_SIZE || 11075 rec_size & (sizeof(u32) - 1)) 11076 return -EINVAL; 11077 11078 /* Need to zero it in case the userspace may 11079 * pass in a smaller bpf_line_info object. 11080 */ 11081 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 11082 GFP_KERNEL | __GFP_NOWARN); 11083 if (!linfo) 11084 return -ENOMEM; 11085 11086 prog = env->prog; 11087 btf = prog->aux->btf; 11088 11089 s = 0; 11090 sub = env->subprog_info; 11091 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 11092 expected_size = sizeof(struct bpf_line_info); 11093 ncopy = min_t(u32, expected_size, rec_size); 11094 for (i = 0; i < nr_linfo; i++) { 11095 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 11096 if (err) { 11097 if (err == -E2BIG) { 11098 verbose(env, "nonzero tailing record in line_info"); 11099 if (copy_to_bpfptr_offset(uattr, 11100 offsetof(union bpf_attr, line_info_rec_size), 11101 &expected_size, sizeof(expected_size))) 11102 err = -EFAULT; 11103 } 11104 goto err_free; 11105 } 11106 11107 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 11108 err = -EFAULT; 11109 goto err_free; 11110 } 11111 11112 /* 11113 * Check insn_off to ensure 11114 * 1) strictly increasing AND 11115 * 2) bounded by prog->len 11116 * 11117 * The linfo[0].insn_off == 0 check logically falls into 11118 * the later "missing bpf_line_info for func..." case 11119 * because the first linfo[0].insn_off must be the 11120 * first sub also and the first sub must have 11121 * subprog_info[0].start == 0. 11122 */ 11123 if ((i && linfo[i].insn_off <= prev_offset) || 11124 linfo[i].insn_off >= prog->len) { 11125 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 11126 i, linfo[i].insn_off, prev_offset, 11127 prog->len); 11128 err = -EINVAL; 11129 goto err_free; 11130 } 11131 11132 if (!prog->insnsi[linfo[i].insn_off].code) { 11133 verbose(env, 11134 "Invalid insn code at line_info[%u].insn_off\n", 11135 i); 11136 err = -EINVAL; 11137 goto err_free; 11138 } 11139 11140 if (!btf_name_by_offset(btf, linfo[i].line_off) || 11141 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 11142 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 11143 err = -EINVAL; 11144 goto err_free; 11145 } 11146 11147 if (s != env->subprog_cnt) { 11148 if (linfo[i].insn_off == sub[s].start) { 11149 sub[s].linfo_idx = i; 11150 s++; 11151 } else if (sub[s].start < linfo[i].insn_off) { 11152 verbose(env, "missing bpf_line_info for func#%u\n", s); 11153 err = -EINVAL; 11154 goto err_free; 11155 } 11156 } 11157 11158 prev_offset = linfo[i].insn_off; 11159 bpfptr_add(&ulinfo, rec_size); 11160 } 11161 11162 if (s != env->subprog_cnt) { 11163 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 11164 env->subprog_cnt - s, s); 11165 err = -EINVAL; 11166 goto err_free; 11167 } 11168 11169 prog->aux->linfo = linfo; 11170 prog->aux->nr_linfo = nr_linfo; 11171 11172 return 0; 11173 11174 err_free: 11175 kvfree(linfo); 11176 return err; 11177 } 11178 11179 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 11180 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 11181 11182 static int check_core_relo(struct bpf_verifier_env *env, 11183 const union bpf_attr *attr, 11184 bpfptr_t uattr) 11185 { 11186 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 11187 struct bpf_core_relo core_relo = {}; 11188 struct bpf_prog *prog = env->prog; 11189 const struct btf *btf = prog->aux->btf; 11190 struct bpf_core_ctx ctx = { 11191 .log = &env->log, 11192 .btf = btf, 11193 }; 11194 bpfptr_t u_core_relo; 11195 int err; 11196 11197 nr_core_relo = attr->core_relo_cnt; 11198 if (!nr_core_relo) 11199 return 0; 11200 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 11201 return -EINVAL; 11202 11203 rec_size = attr->core_relo_rec_size; 11204 if (rec_size < MIN_CORE_RELO_SIZE || 11205 rec_size > MAX_CORE_RELO_SIZE || 11206 rec_size % sizeof(u32)) 11207 return -EINVAL; 11208 11209 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 11210 expected_size = sizeof(struct bpf_core_relo); 11211 ncopy = min_t(u32, expected_size, rec_size); 11212 11213 /* Unlike func_info and line_info, copy and apply each CO-RE 11214 * relocation record one at a time. 11215 */ 11216 for (i = 0; i < nr_core_relo; i++) { 11217 /* future proofing when sizeof(bpf_core_relo) changes */ 11218 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 11219 if (err) { 11220 if (err == -E2BIG) { 11221 verbose(env, "nonzero tailing record in core_relo"); 11222 if (copy_to_bpfptr_offset(uattr, 11223 offsetof(union bpf_attr, core_relo_rec_size), 11224 &expected_size, sizeof(expected_size))) 11225 err = -EFAULT; 11226 } 11227 break; 11228 } 11229 11230 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 11231 err = -EFAULT; 11232 break; 11233 } 11234 11235 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 11236 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 11237 i, core_relo.insn_off, prog->len); 11238 err = -EINVAL; 11239 break; 11240 } 11241 11242 err = bpf_core_apply(&ctx, &core_relo, i, 11243 &prog->insnsi[core_relo.insn_off / 8]); 11244 if (err) 11245 break; 11246 bpfptr_add(&u_core_relo, rec_size); 11247 } 11248 return err; 11249 } 11250 11251 static int check_btf_info(struct bpf_verifier_env *env, 11252 const union bpf_attr *attr, 11253 bpfptr_t uattr) 11254 { 11255 struct btf *btf; 11256 int err; 11257 11258 if (!attr->func_info_cnt && !attr->line_info_cnt) { 11259 if (check_abnormal_return(env)) 11260 return -EINVAL; 11261 return 0; 11262 } 11263 11264 btf = btf_get_by_fd(attr->prog_btf_fd); 11265 if (IS_ERR(btf)) 11266 return PTR_ERR(btf); 11267 if (btf_is_kernel(btf)) { 11268 btf_put(btf); 11269 return -EACCES; 11270 } 11271 env->prog->aux->btf = btf; 11272 11273 err = check_btf_func(env, attr, uattr); 11274 if (err) 11275 return err; 11276 11277 err = check_btf_line(env, attr, uattr); 11278 if (err) 11279 return err; 11280 11281 err = check_core_relo(env, attr, uattr); 11282 if (err) 11283 return err; 11284 11285 return 0; 11286 } 11287 11288 /* check %cur's range satisfies %old's */ 11289 static bool range_within(struct bpf_reg_state *old, 11290 struct bpf_reg_state *cur) 11291 { 11292 return old->umin_value <= cur->umin_value && 11293 old->umax_value >= cur->umax_value && 11294 old->smin_value <= cur->smin_value && 11295 old->smax_value >= cur->smax_value && 11296 old->u32_min_value <= cur->u32_min_value && 11297 old->u32_max_value >= cur->u32_max_value && 11298 old->s32_min_value <= cur->s32_min_value && 11299 old->s32_max_value >= cur->s32_max_value; 11300 } 11301 11302 /* If in the old state two registers had the same id, then they need to have 11303 * the same id in the new state as well. But that id could be different from 11304 * the old state, so we need to track the mapping from old to new ids. 11305 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 11306 * regs with old id 5 must also have new id 9 for the new state to be safe. But 11307 * regs with a different old id could still have new id 9, we don't care about 11308 * that. 11309 * So we look through our idmap to see if this old id has been seen before. If 11310 * so, we require the new id to match; otherwise, we add the id pair to the map. 11311 */ 11312 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 11313 { 11314 unsigned int i; 11315 11316 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 11317 if (!idmap[i].old) { 11318 /* Reached an empty slot; haven't seen this id before */ 11319 idmap[i].old = old_id; 11320 idmap[i].cur = cur_id; 11321 return true; 11322 } 11323 if (idmap[i].old == old_id) 11324 return idmap[i].cur == cur_id; 11325 } 11326 /* We ran out of idmap slots, which should be impossible */ 11327 WARN_ON_ONCE(1); 11328 return false; 11329 } 11330 11331 static void clean_func_state(struct bpf_verifier_env *env, 11332 struct bpf_func_state *st) 11333 { 11334 enum bpf_reg_liveness live; 11335 int i, j; 11336 11337 for (i = 0; i < BPF_REG_FP; i++) { 11338 live = st->regs[i].live; 11339 /* liveness must not touch this register anymore */ 11340 st->regs[i].live |= REG_LIVE_DONE; 11341 if (!(live & REG_LIVE_READ)) 11342 /* since the register is unused, clear its state 11343 * to make further comparison simpler 11344 */ 11345 __mark_reg_not_init(env, &st->regs[i]); 11346 } 11347 11348 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 11349 live = st->stack[i].spilled_ptr.live; 11350 /* liveness must not touch this stack slot anymore */ 11351 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 11352 if (!(live & REG_LIVE_READ)) { 11353 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 11354 for (j = 0; j < BPF_REG_SIZE; j++) 11355 st->stack[i].slot_type[j] = STACK_INVALID; 11356 } 11357 } 11358 } 11359 11360 static void clean_verifier_state(struct bpf_verifier_env *env, 11361 struct bpf_verifier_state *st) 11362 { 11363 int i; 11364 11365 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 11366 /* all regs in this state in all frames were already marked */ 11367 return; 11368 11369 for (i = 0; i <= st->curframe; i++) 11370 clean_func_state(env, st->frame[i]); 11371 } 11372 11373 /* the parentage chains form a tree. 11374 * the verifier states are added to state lists at given insn and 11375 * pushed into state stack for future exploration. 11376 * when the verifier reaches bpf_exit insn some of the verifer states 11377 * stored in the state lists have their final liveness state already, 11378 * but a lot of states will get revised from liveness point of view when 11379 * the verifier explores other branches. 11380 * Example: 11381 * 1: r0 = 1 11382 * 2: if r1 == 100 goto pc+1 11383 * 3: r0 = 2 11384 * 4: exit 11385 * when the verifier reaches exit insn the register r0 in the state list of 11386 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 11387 * of insn 2 and goes exploring further. At the insn 4 it will walk the 11388 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 11389 * 11390 * Since the verifier pushes the branch states as it sees them while exploring 11391 * the program the condition of walking the branch instruction for the second 11392 * time means that all states below this branch were already explored and 11393 * their final liveness marks are already propagated. 11394 * Hence when the verifier completes the search of state list in is_state_visited() 11395 * we can call this clean_live_states() function to mark all liveness states 11396 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 11397 * will not be used. 11398 * This function also clears the registers and stack for states that !READ 11399 * to simplify state merging. 11400 * 11401 * Important note here that walking the same branch instruction in the callee 11402 * doesn't meant that the states are DONE. The verifier has to compare 11403 * the callsites 11404 */ 11405 static void clean_live_states(struct bpf_verifier_env *env, int insn, 11406 struct bpf_verifier_state *cur) 11407 { 11408 struct bpf_verifier_state_list *sl; 11409 int i; 11410 11411 sl = *explored_state(env, insn); 11412 while (sl) { 11413 if (sl->state.branches) 11414 goto next; 11415 if (sl->state.insn_idx != insn || 11416 sl->state.curframe != cur->curframe) 11417 goto next; 11418 for (i = 0; i <= cur->curframe; i++) 11419 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 11420 goto next; 11421 clean_verifier_state(env, &sl->state); 11422 next: 11423 sl = sl->next; 11424 } 11425 } 11426 11427 /* Returns true if (rold safe implies rcur safe) */ 11428 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 11429 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 11430 { 11431 bool equal; 11432 11433 if (!(rold->live & REG_LIVE_READ)) 11434 /* explored state didn't use this */ 11435 return true; 11436 11437 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 11438 11439 if (rold->type == PTR_TO_STACK) 11440 /* two stack pointers are equal only if they're pointing to 11441 * the same stack frame, since fp-8 in foo != fp-8 in bar 11442 */ 11443 return equal && rold->frameno == rcur->frameno; 11444 11445 if (equal) 11446 return true; 11447 11448 if (rold->type == NOT_INIT) 11449 /* explored state can't have used this */ 11450 return true; 11451 if (rcur->type == NOT_INIT) 11452 return false; 11453 switch (base_type(rold->type)) { 11454 case SCALAR_VALUE: 11455 if (env->explore_alu_limits) 11456 return false; 11457 if (rcur->type == SCALAR_VALUE) { 11458 if (!rold->precise && !rcur->precise) 11459 return true; 11460 /* new val must satisfy old val knowledge */ 11461 return range_within(rold, rcur) && 11462 tnum_in(rold->var_off, rcur->var_off); 11463 } else { 11464 /* We're trying to use a pointer in place of a scalar. 11465 * Even if the scalar was unbounded, this could lead to 11466 * pointer leaks because scalars are allowed to leak 11467 * while pointers are not. We could make this safe in 11468 * special cases if root is calling us, but it's 11469 * probably not worth the hassle. 11470 */ 11471 return false; 11472 } 11473 case PTR_TO_MAP_KEY: 11474 case PTR_TO_MAP_VALUE: 11475 /* a PTR_TO_MAP_VALUE could be safe to use as a 11476 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 11477 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 11478 * checked, doing so could have affected others with the same 11479 * id, and we can't check for that because we lost the id when 11480 * we converted to a PTR_TO_MAP_VALUE. 11481 */ 11482 if (type_may_be_null(rold->type)) { 11483 if (!type_may_be_null(rcur->type)) 11484 return false; 11485 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 11486 return false; 11487 /* Check our ids match any regs they're supposed to */ 11488 return check_ids(rold->id, rcur->id, idmap); 11489 } 11490 11491 /* If the new min/max/var_off satisfy the old ones and 11492 * everything else matches, we are OK. 11493 * 'id' is not compared, since it's only used for maps with 11494 * bpf_spin_lock inside map element and in such cases if 11495 * the rest of the prog is valid for one map element then 11496 * it's valid for all map elements regardless of the key 11497 * used in bpf_map_lookup() 11498 */ 11499 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 11500 range_within(rold, rcur) && 11501 tnum_in(rold->var_off, rcur->var_off); 11502 case PTR_TO_PACKET_META: 11503 case PTR_TO_PACKET: 11504 if (rcur->type != rold->type) 11505 return false; 11506 /* We must have at least as much range as the old ptr 11507 * did, so that any accesses which were safe before are 11508 * still safe. This is true even if old range < old off, 11509 * since someone could have accessed through (ptr - k), or 11510 * even done ptr -= k in a register, to get a safe access. 11511 */ 11512 if (rold->range > rcur->range) 11513 return false; 11514 /* If the offsets don't match, we can't trust our alignment; 11515 * nor can we be sure that we won't fall out of range. 11516 */ 11517 if (rold->off != rcur->off) 11518 return false; 11519 /* id relations must be preserved */ 11520 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 11521 return false; 11522 /* new val must satisfy old val knowledge */ 11523 return range_within(rold, rcur) && 11524 tnum_in(rold->var_off, rcur->var_off); 11525 case PTR_TO_CTX: 11526 case CONST_PTR_TO_MAP: 11527 case PTR_TO_PACKET_END: 11528 case PTR_TO_FLOW_KEYS: 11529 case PTR_TO_SOCKET: 11530 case PTR_TO_SOCK_COMMON: 11531 case PTR_TO_TCP_SOCK: 11532 case PTR_TO_XDP_SOCK: 11533 /* Only valid matches are exact, which memcmp() above 11534 * would have accepted 11535 */ 11536 default: 11537 /* Don't know what's going on, just say it's not safe */ 11538 return false; 11539 } 11540 11541 /* Shouldn't get here; if we do, say it's not safe */ 11542 WARN_ON_ONCE(1); 11543 return false; 11544 } 11545 11546 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 11547 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 11548 { 11549 int i, spi; 11550 11551 /* walk slots of the explored stack and ignore any additional 11552 * slots in the current stack, since explored(safe) state 11553 * didn't use them 11554 */ 11555 for (i = 0; i < old->allocated_stack; i++) { 11556 spi = i / BPF_REG_SIZE; 11557 11558 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 11559 i += BPF_REG_SIZE - 1; 11560 /* explored state didn't use this */ 11561 continue; 11562 } 11563 11564 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 11565 continue; 11566 11567 /* explored stack has more populated slots than current stack 11568 * and these slots were used 11569 */ 11570 if (i >= cur->allocated_stack) 11571 return false; 11572 11573 /* if old state was safe with misc data in the stack 11574 * it will be safe with zero-initialized stack. 11575 * The opposite is not true 11576 */ 11577 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 11578 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 11579 continue; 11580 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 11581 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 11582 /* Ex: old explored (safe) state has STACK_SPILL in 11583 * this stack slot, but current has STACK_MISC -> 11584 * this verifier states are not equivalent, 11585 * return false to continue verification of this path 11586 */ 11587 return false; 11588 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 11589 continue; 11590 if (!is_spilled_reg(&old->stack[spi])) 11591 continue; 11592 if (!regsafe(env, &old->stack[spi].spilled_ptr, 11593 &cur->stack[spi].spilled_ptr, idmap)) 11594 /* when explored and current stack slot are both storing 11595 * spilled registers, check that stored pointers types 11596 * are the same as well. 11597 * Ex: explored safe path could have stored 11598 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 11599 * but current path has stored: 11600 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 11601 * such verifier states are not equivalent. 11602 * return false to continue verification of this path 11603 */ 11604 return false; 11605 } 11606 return true; 11607 } 11608 11609 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 11610 { 11611 if (old->acquired_refs != cur->acquired_refs) 11612 return false; 11613 return !memcmp(old->refs, cur->refs, 11614 sizeof(*old->refs) * old->acquired_refs); 11615 } 11616 11617 /* compare two verifier states 11618 * 11619 * all states stored in state_list are known to be valid, since 11620 * verifier reached 'bpf_exit' instruction through them 11621 * 11622 * this function is called when verifier exploring different branches of 11623 * execution popped from the state stack. If it sees an old state that has 11624 * more strict register state and more strict stack state then this execution 11625 * branch doesn't need to be explored further, since verifier already 11626 * concluded that more strict state leads to valid finish. 11627 * 11628 * Therefore two states are equivalent if register state is more conservative 11629 * and explored stack state is more conservative than the current one. 11630 * Example: 11631 * explored current 11632 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 11633 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 11634 * 11635 * In other words if current stack state (one being explored) has more 11636 * valid slots than old one that already passed validation, it means 11637 * the verifier can stop exploring and conclude that current state is valid too 11638 * 11639 * Similarly with registers. If explored state has register type as invalid 11640 * whereas register type in current state is meaningful, it means that 11641 * the current state will reach 'bpf_exit' instruction safely 11642 */ 11643 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 11644 struct bpf_func_state *cur) 11645 { 11646 int i; 11647 11648 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 11649 for (i = 0; i < MAX_BPF_REG; i++) 11650 if (!regsafe(env, &old->regs[i], &cur->regs[i], 11651 env->idmap_scratch)) 11652 return false; 11653 11654 if (!stacksafe(env, old, cur, env->idmap_scratch)) 11655 return false; 11656 11657 if (!refsafe(old, cur)) 11658 return false; 11659 11660 return true; 11661 } 11662 11663 static bool states_equal(struct bpf_verifier_env *env, 11664 struct bpf_verifier_state *old, 11665 struct bpf_verifier_state *cur) 11666 { 11667 int i; 11668 11669 if (old->curframe != cur->curframe) 11670 return false; 11671 11672 /* Verification state from speculative execution simulation 11673 * must never prune a non-speculative execution one. 11674 */ 11675 if (old->speculative && !cur->speculative) 11676 return false; 11677 11678 if (old->active_spin_lock != cur->active_spin_lock) 11679 return false; 11680 11681 /* for states to be equal callsites have to be the same 11682 * and all frame states need to be equivalent 11683 */ 11684 for (i = 0; i <= old->curframe; i++) { 11685 if (old->frame[i]->callsite != cur->frame[i]->callsite) 11686 return false; 11687 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 11688 return false; 11689 } 11690 return true; 11691 } 11692 11693 /* Return 0 if no propagation happened. Return negative error code if error 11694 * happened. Otherwise, return the propagated bit. 11695 */ 11696 static int propagate_liveness_reg(struct bpf_verifier_env *env, 11697 struct bpf_reg_state *reg, 11698 struct bpf_reg_state *parent_reg) 11699 { 11700 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 11701 u8 flag = reg->live & REG_LIVE_READ; 11702 int err; 11703 11704 /* When comes here, read flags of PARENT_REG or REG could be any of 11705 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 11706 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 11707 */ 11708 if (parent_flag == REG_LIVE_READ64 || 11709 /* Or if there is no read flag from REG. */ 11710 !flag || 11711 /* Or if the read flag from REG is the same as PARENT_REG. */ 11712 parent_flag == flag) 11713 return 0; 11714 11715 err = mark_reg_read(env, reg, parent_reg, flag); 11716 if (err) 11717 return err; 11718 11719 return flag; 11720 } 11721 11722 /* A write screens off any subsequent reads; but write marks come from the 11723 * straight-line code between a state and its parent. When we arrive at an 11724 * equivalent state (jump target or such) we didn't arrive by the straight-line 11725 * code, so read marks in the state must propagate to the parent regardless 11726 * of the state's write marks. That's what 'parent == state->parent' comparison 11727 * in mark_reg_read() is for. 11728 */ 11729 static int propagate_liveness(struct bpf_verifier_env *env, 11730 const struct bpf_verifier_state *vstate, 11731 struct bpf_verifier_state *vparent) 11732 { 11733 struct bpf_reg_state *state_reg, *parent_reg; 11734 struct bpf_func_state *state, *parent; 11735 int i, frame, err = 0; 11736 11737 if (vparent->curframe != vstate->curframe) { 11738 WARN(1, "propagate_live: parent frame %d current frame %d\n", 11739 vparent->curframe, vstate->curframe); 11740 return -EFAULT; 11741 } 11742 /* Propagate read liveness of registers... */ 11743 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 11744 for (frame = 0; frame <= vstate->curframe; frame++) { 11745 parent = vparent->frame[frame]; 11746 state = vstate->frame[frame]; 11747 parent_reg = parent->regs; 11748 state_reg = state->regs; 11749 /* We don't need to worry about FP liveness, it's read-only */ 11750 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 11751 err = propagate_liveness_reg(env, &state_reg[i], 11752 &parent_reg[i]); 11753 if (err < 0) 11754 return err; 11755 if (err == REG_LIVE_READ64) 11756 mark_insn_zext(env, &parent_reg[i]); 11757 } 11758 11759 /* Propagate stack slots. */ 11760 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 11761 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 11762 parent_reg = &parent->stack[i].spilled_ptr; 11763 state_reg = &state->stack[i].spilled_ptr; 11764 err = propagate_liveness_reg(env, state_reg, 11765 parent_reg); 11766 if (err < 0) 11767 return err; 11768 } 11769 } 11770 return 0; 11771 } 11772 11773 /* find precise scalars in the previous equivalent state and 11774 * propagate them into the current state 11775 */ 11776 static int propagate_precision(struct bpf_verifier_env *env, 11777 const struct bpf_verifier_state *old) 11778 { 11779 struct bpf_reg_state *state_reg; 11780 struct bpf_func_state *state; 11781 int i, err = 0; 11782 11783 state = old->frame[old->curframe]; 11784 state_reg = state->regs; 11785 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11786 if (state_reg->type != SCALAR_VALUE || 11787 !state_reg->precise) 11788 continue; 11789 if (env->log.level & BPF_LOG_LEVEL2) 11790 verbose(env, "propagating r%d\n", i); 11791 err = mark_chain_precision(env, i); 11792 if (err < 0) 11793 return err; 11794 } 11795 11796 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 11797 if (!is_spilled_reg(&state->stack[i])) 11798 continue; 11799 state_reg = &state->stack[i].spilled_ptr; 11800 if (state_reg->type != SCALAR_VALUE || 11801 !state_reg->precise) 11802 continue; 11803 if (env->log.level & BPF_LOG_LEVEL2) 11804 verbose(env, "propagating fp%d\n", 11805 (-i - 1) * BPF_REG_SIZE); 11806 err = mark_chain_precision_stack(env, i); 11807 if (err < 0) 11808 return err; 11809 } 11810 return 0; 11811 } 11812 11813 static bool states_maybe_looping(struct bpf_verifier_state *old, 11814 struct bpf_verifier_state *cur) 11815 { 11816 struct bpf_func_state *fold, *fcur; 11817 int i, fr = cur->curframe; 11818 11819 if (old->curframe != fr) 11820 return false; 11821 11822 fold = old->frame[fr]; 11823 fcur = cur->frame[fr]; 11824 for (i = 0; i < MAX_BPF_REG; i++) 11825 if (memcmp(&fold->regs[i], &fcur->regs[i], 11826 offsetof(struct bpf_reg_state, parent))) 11827 return false; 11828 return true; 11829 } 11830 11831 11832 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11833 { 11834 struct bpf_verifier_state_list *new_sl; 11835 struct bpf_verifier_state_list *sl, **pprev; 11836 struct bpf_verifier_state *cur = env->cur_state, *new; 11837 int i, j, err, states_cnt = 0; 11838 bool add_new_state = env->test_state_freq ? true : false; 11839 11840 cur->last_insn_idx = env->prev_insn_idx; 11841 if (!env->insn_aux_data[insn_idx].prune_point) 11842 /* this 'insn_idx' instruction wasn't marked, so we will not 11843 * be doing state search here 11844 */ 11845 return 0; 11846 11847 /* bpf progs typically have pruning point every 4 instructions 11848 * http://vger.kernel.org/bpfconf2019.html#session-1 11849 * Do not add new state for future pruning if the verifier hasn't seen 11850 * at least 2 jumps and at least 8 instructions. 11851 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11852 * In tests that amounts to up to 50% reduction into total verifier 11853 * memory consumption and 20% verifier time speedup. 11854 */ 11855 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11856 env->insn_processed - env->prev_insn_processed >= 8) 11857 add_new_state = true; 11858 11859 pprev = explored_state(env, insn_idx); 11860 sl = *pprev; 11861 11862 clean_live_states(env, insn_idx, cur); 11863 11864 while (sl) { 11865 states_cnt++; 11866 if (sl->state.insn_idx != insn_idx) 11867 goto next; 11868 11869 if (sl->state.branches) { 11870 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11871 11872 if (frame->in_async_callback_fn && 11873 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11874 /* Different async_entry_cnt means that the verifier is 11875 * processing another entry into async callback. 11876 * Seeing the same state is not an indication of infinite 11877 * loop or infinite recursion. 11878 * But finding the same state doesn't mean that it's safe 11879 * to stop processing the current state. The previous state 11880 * hasn't yet reached bpf_exit, since state.branches > 0. 11881 * Checking in_async_callback_fn alone is not enough either. 11882 * Since the verifier still needs to catch infinite loops 11883 * inside async callbacks. 11884 */ 11885 } else if (states_maybe_looping(&sl->state, cur) && 11886 states_equal(env, &sl->state, cur)) { 11887 verbose_linfo(env, insn_idx, "; "); 11888 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11889 return -EINVAL; 11890 } 11891 /* if the verifier is processing a loop, avoid adding new state 11892 * too often, since different loop iterations have distinct 11893 * states and may not help future pruning. 11894 * This threshold shouldn't be too low to make sure that 11895 * a loop with large bound will be rejected quickly. 11896 * The most abusive loop will be: 11897 * r1 += 1 11898 * if r1 < 1000000 goto pc-2 11899 * 1M insn_procssed limit / 100 == 10k peak states. 11900 * This threshold shouldn't be too high either, since states 11901 * at the end of the loop are likely to be useful in pruning. 11902 */ 11903 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11904 env->insn_processed - env->prev_insn_processed < 100) 11905 add_new_state = false; 11906 goto miss; 11907 } 11908 if (states_equal(env, &sl->state, cur)) { 11909 sl->hit_cnt++; 11910 /* reached equivalent register/stack state, 11911 * prune the search. 11912 * Registers read by the continuation are read by us. 11913 * If we have any write marks in env->cur_state, they 11914 * will prevent corresponding reads in the continuation 11915 * from reaching our parent (an explored_state). Our 11916 * own state will get the read marks recorded, but 11917 * they'll be immediately forgotten as we're pruning 11918 * this state and will pop a new one. 11919 */ 11920 err = propagate_liveness(env, &sl->state, cur); 11921 11922 /* if previous state reached the exit with precision and 11923 * current state is equivalent to it (except precsion marks) 11924 * the precision needs to be propagated back in 11925 * the current state. 11926 */ 11927 err = err ? : push_jmp_history(env, cur); 11928 err = err ? : propagate_precision(env, &sl->state); 11929 if (err) 11930 return err; 11931 return 1; 11932 } 11933 miss: 11934 /* when new state is not going to be added do not increase miss count. 11935 * Otherwise several loop iterations will remove the state 11936 * recorded earlier. The goal of these heuristics is to have 11937 * states from some iterations of the loop (some in the beginning 11938 * and some at the end) to help pruning. 11939 */ 11940 if (add_new_state) 11941 sl->miss_cnt++; 11942 /* heuristic to determine whether this state is beneficial 11943 * to keep checking from state equivalence point of view. 11944 * Higher numbers increase max_states_per_insn and verification time, 11945 * but do not meaningfully decrease insn_processed. 11946 */ 11947 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 11948 /* the state is unlikely to be useful. Remove it to 11949 * speed up verification 11950 */ 11951 *pprev = sl->next; 11952 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 11953 u32 br = sl->state.branches; 11954 11955 WARN_ONCE(br, 11956 "BUG live_done but branches_to_explore %d\n", 11957 br); 11958 free_verifier_state(&sl->state, false); 11959 kfree(sl); 11960 env->peak_states--; 11961 } else { 11962 /* cannot free this state, since parentage chain may 11963 * walk it later. Add it for free_list instead to 11964 * be freed at the end of verification 11965 */ 11966 sl->next = env->free_list; 11967 env->free_list = sl; 11968 } 11969 sl = *pprev; 11970 continue; 11971 } 11972 next: 11973 pprev = &sl->next; 11974 sl = *pprev; 11975 } 11976 11977 if (env->max_states_per_insn < states_cnt) 11978 env->max_states_per_insn = states_cnt; 11979 11980 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 11981 return push_jmp_history(env, cur); 11982 11983 if (!add_new_state) 11984 return push_jmp_history(env, cur); 11985 11986 /* There were no equivalent states, remember the current one. 11987 * Technically the current state is not proven to be safe yet, 11988 * but it will either reach outer most bpf_exit (which means it's safe) 11989 * or it will be rejected. When there are no loops the verifier won't be 11990 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 11991 * again on the way to bpf_exit. 11992 * When looping the sl->state.branches will be > 0 and this state 11993 * will not be considered for equivalence until branches == 0. 11994 */ 11995 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 11996 if (!new_sl) 11997 return -ENOMEM; 11998 env->total_states++; 11999 env->peak_states++; 12000 env->prev_jmps_processed = env->jmps_processed; 12001 env->prev_insn_processed = env->insn_processed; 12002 12003 /* add new state to the head of linked list */ 12004 new = &new_sl->state; 12005 err = copy_verifier_state(new, cur); 12006 if (err) { 12007 free_verifier_state(new, false); 12008 kfree(new_sl); 12009 return err; 12010 } 12011 new->insn_idx = insn_idx; 12012 WARN_ONCE(new->branches != 1, 12013 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 12014 12015 cur->parent = new; 12016 cur->first_insn_idx = insn_idx; 12017 clear_jmp_history(cur); 12018 new_sl->next = *explored_state(env, insn_idx); 12019 *explored_state(env, insn_idx) = new_sl; 12020 /* connect new state to parentage chain. Current frame needs all 12021 * registers connected. Only r6 - r9 of the callers are alive (pushed 12022 * to the stack implicitly by JITs) so in callers' frames connect just 12023 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 12024 * the state of the call instruction (with WRITTEN set), and r0 comes 12025 * from callee with its full parentage chain, anyway. 12026 */ 12027 /* clear write marks in current state: the writes we did are not writes 12028 * our child did, so they don't screen off its reads from us. 12029 * (There are no read marks in current state, because reads always mark 12030 * their parent and current state never has children yet. Only 12031 * explored_states can get read marks.) 12032 */ 12033 for (j = 0; j <= cur->curframe; j++) { 12034 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 12035 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 12036 for (i = 0; i < BPF_REG_FP; i++) 12037 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 12038 } 12039 12040 /* all stack frames are accessible from callee, clear them all */ 12041 for (j = 0; j <= cur->curframe; j++) { 12042 struct bpf_func_state *frame = cur->frame[j]; 12043 struct bpf_func_state *newframe = new->frame[j]; 12044 12045 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 12046 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 12047 frame->stack[i].spilled_ptr.parent = 12048 &newframe->stack[i].spilled_ptr; 12049 } 12050 } 12051 return 0; 12052 } 12053 12054 /* Return true if it's OK to have the same insn return a different type. */ 12055 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 12056 { 12057 switch (base_type(type)) { 12058 case PTR_TO_CTX: 12059 case PTR_TO_SOCKET: 12060 case PTR_TO_SOCK_COMMON: 12061 case PTR_TO_TCP_SOCK: 12062 case PTR_TO_XDP_SOCK: 12063 case PTR_TO_BTF_ID: 12064 return false; 12065 default: 12066 return true; 12067 } 12068 } 12069 12070 /* If an instruction was previously used with particular pointer types, then we 12071 * need to be careful to avoid cases such as the below, where it may be ok 12072 * for one branch accessing the pointer, but not ok for the other branch: 12073 * 12074 * R1 = sock_ptr 12075 * goto X; 12076 * ... 12077 * R1 = some_other_valid_ptr; 12078 * goto X; 12079 * ... 12080 * R2 = *(u32 *)(R1 + 0); 12081 */ 12082 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 12083 { 12084 return src != prev && (!reg_type_mismatch_ok(src) || 12085 !reg_type_mismatch_ok(prev)); 12086 } 12087 12088 static int do_check(struct bpf_verifier_env *env) 12089 { 12090 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 12091 struct bpf_verifier_state *state = env->cur_state; 12092 struct bpf_insn *insns = env->prog->insnsi; 12093 struct bpf_reg_state *regs; 12094 int insn_cnt = env->prog->len; 12095 bool do_print_state = false; 12096 int prev_insn_idx = -1; 12097 12098 for (;;) { 12099 struct bpf_insn *insn; 12100 u8 class; 12101 int err; 12102 12103 env->prev_insn_idx = prev_insn_idx; 12104 if (env->insn_idx >= insn_cnt) { 12105 verbose(env, "invalid insn idx %d insn_cnt %d\n", 12106 env->insn_idx, insn_cnt); 12107 return -EFAULT; 12108 } 12109 12110 insn = &insns[env->insn_idx]; 12111 class = BPF_CLASS(insn->code); 12112 12113 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 12114 verbose(env, 12115 "BPF program is too large. Processed %d insn\n", 12116 env->insn_processed); 12117 return -E2BIG; 12118 } 12119 12120 err = is_state_visited(env, env->insn_idx); 12121 if (err < 0) 12122 return err; 12123 if (err == 1) { 12124 /* found equivalent state, can prune the search */ 12125 if (env->log.level & BPF_LOG_LEVEL) { 12126 if (do_print_state) 12127 verbose(env, "\nfrom %d to %d%s: safe\n", 12128 env->prev_insn_idx, env->insn_idx, 12129 env->cur_state->speculative ? 12130 " (speculative execution)" : ""); 12131 else 12132 verbose(env, "%d: safe\n", env->insn_idx); 12133 } 12134 goto process_bpf_exit; 12135 } 12136 12137 if (signal_pending(current)) 12138 return -EAGAIN; 12139 12140 if (need_resched()) 12141 cond_resched(); 12142 12143 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 12144 verbose(env, "\nfrom %d to %d%s:", 12145 env->prev_insn_idx, env->insn_idx, 12146 env->cur_state->speculative ? 12147 " (speculative execution)" : ""); 12148 print_verifier_state(env, state->frame[state->curframe], true); 12149 do_print_state = false; 12150 } 12151 12152 if (env->log.level & BPF_LOG_LEVEL) { 12153 const struct bpf_insn_cbs cbs = { 12154 .cb_call = disasm_kfunc_name, 12155 .cb_print = verbose, 12156 .private_data = env, 12157 }; 12158 12159 if (verifier_state_scratched(env)) 12160 print_insn_state(env, state->frame[state->curframe]); 12161 12162 verbose_linfo(env, env->insn_idx, "; "); 12163 env->prev_log_len = env->log.len_used; 12164 verbose(env, "%d: ", env->insn_idx); 12165 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 12166 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 12167 env->prev_log_len = env->log.len_used; 12168 } 12169 12170 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12171 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 12172 env->prev_insn_idx); 12173 if (err) 12174 return err; 12175 } 12176 12177 regs = cur_regs(env); 12178 sanitize_mark_insn_seen(env); 12179 prev_insn_idx = env->insn_idx; 12180 12181 if (class == BPF_ALU || class == BPF_ALU64) { 12182 err = check_alu_op(env, insn); 12183 if (err) 12184 return err; 12185 12186 } else if (class == BPF_LDX) { 12187 enum bpf_reg_type *prev_src_type, src_reg_type; 12188 12189 /* check for reserved fields is already done */ 12190 12191 /* check src operand */ 12192 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12193 if (err) 12194 return err; 12195 12196 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 12197 if (err) 12198 return err; 12199 12200 src_reg_type = regs[insn->src_reg].type; 12201 12202 /* check that memory (src_reg + off) is readable, 12203 * the state of dst_reg will be updated by this func 12204 */ 12205 err = check_mem_access(env, env->insn_idx, insn->src_reg, 12206 insn->off, BPF_SIZE(insn->code), 12207 BPF_READ, insn->dst_reg, false); 12208 if (err) 12209 return err; 12210 12211 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12212 12213 if (*prev_src_type == NOT_INIT) { 12214 /* saw a valid insn 12215 * dst_reg = *(u32 *)(src_reg + off) 12216 * save type to validate intersecting paths 12217 */ 12218 *prev_src_type = src_reg_type; 12219 12220 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 12221 /* ABuser program is trying to use the same insn 12222 * dst_reg = *(u32*) (src_reg + off) 12223 * with different pointer types: 12224 * src_reg == ctx in one branch and 12225 * src_reg == stack|map in some other branch. 12226 * Reject it. 12227 */ 12228 verbose(env, "same insn cannot be used with different pointers\n"); 12229 return -EINVAL; 12230 } 12231 12232 } else if (class == BPF_STX) { 12233 enum bpf_reg_type *prev_dst_type, dst_reg_type; 12234 12235 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 12236 err = check_atomic(env, env->insn_idx, insn); 12237 if (err) 12238 return err; 12239 env->insn_idx++; 12240 continue; 12241 } 12242 12243 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 12244 verbose(env, "BPF_STX uses reserved fields\n"); 12245 return -EINVAL; 12246 } 12247 12248 /* check src1 operand */ 12249 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12250 if (err) 12251 return err; 12252 /* check src2 operand */ 12253 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12254 if (err) 12255 return err; 12256 12257 dst_reg_type = regs[insn->dst_reg].type; 12258 12259 /* check that memory (dst_reg + off) is writeable */ 12260 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12261 insn->off, BPF_SIZE(insn->code), 12262 BPF_WRITE, insn->src_reg, false); 12263 if (err) 12264 return err; 12265 12266 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 12267 12268 if (*prev_dst_type == NOT_INIT) { 12269 *prev_dst_type = dst_reg_type; 12270 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 12271 verbose(env, "same insn cannot be used with different pointers\n"); 12272 return -EINVAL; 12273 } 12274 12275 } else if (class == BPF_ST) { 12276 if (BPF_MODE(insn->code) != BPF_MEM || 12277 insn->src_reg != BPF_REG_0) { 12278 verbose(env, "BPF_ST uses reserved fields\n"); 12279 return -EINVAL; 12280 } 12281 /* check src operand */ 12282 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12283 if (err) 12284 return err; 12285 12286 if (is_ctx_reg(env, insn->dst_reg)) { 12287 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 12288 insn->dst_reg, 12289 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 12290 return -EACCES; 12291 } 12292 12293 /* check that memory (dst_reg + off) is writeable */ 12294 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 12295 insn->off, BPF_SIZE(insn->code), 12296 BPF_WRITE, -1, false); 12297 if (err) 12298 return err; 12299 12300 } else if (class == BPF_JMP || class == BPF_JMP32) { 12301 u8 opcode = BPF_OP(insn->code); 12302 12303 env->jmps_processed++; 12304 if (opcode == BPF_CALL) { 12305 if (BPF_SRC(insn->code) != BPF_K || 12306 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 12307 && insn->off != 0) || 12308 (insn->src_reg != BPF_REG_0 && 12309 insn->src_reg != BPF_PSEUDO_CALL && 12310 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 12311 insn->dst_reg != BPF_REG_0 || 12312 class == BPF_JMP32) { 12313 verbose(env, "BPF_CALL uses reserved fields\n"); 12314 return -EINVAL; 12315 } 12316 12317 if (env->cur_state->active_spin_lock && 12318 (insn->src_reg == BPF_PSEUDO_CALL || 12319 insn->imm != BPF_FUNC_spin_unlock)) { 12320 verbose(env, "function calls are not allowed while holding a lock\n"); 12321 return -EINVAL; 12322 } 12323 if (insn->src_reg == BPF_PSEUDO_CALL) 12324 err = check_func_call(env, insn, &env->insn_idx); 12325 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 12326 err = check_kfunc_call(env, insn, &env->insn_idx); 12327 else 12328 err = check_helper_call(env, insn, &env->insn_idx); 12329 if (err) 12330 return err; 12331 } else if (opcode == BPF_JA) { 12332 if (BPF_SRC(insn->code) != BPF_K || 12333 insn->imm != 0 || 12334 insn->src_reg != BPF_REG_0 || 12335 insn->dst_reg != BPF_REG_0 || 12336 class == BPF_JMP32) { 12337 verbose(env, "BPF_JA uses reserved fields\n"); 12338 return -EINVAL; 12339 } 12340 12341 env->insn_idx += insn->off + 1; 12342 continue; 12343 12344 } else if (opcode == BPF_EXIT) { 12345 if (BPF_SRC(insn->code) != BPF_K || 12346 insn->imm != 0 || 12347 insn->src_reg != BPF_REG_0 || 12348 insn->dst_reg != BPF_REG_0 || 12349 class == BPF_JMP32) { 12350 verbose(env, "BPF_EXIT uses reserved fields\n"); 12351 return -EINVAL; 12352 } 12353 12354 if (env->cur_state->active_spin_lock) { 12355 verbose(env, "bpf_spin_unlock is missing\n"); 12356 return -EINVAL; 12357 } 12358 12359 /* We must do check_reference_leak here before 12360 * prepare_func_exit to handle the case when 12361 * state->curframe > 0, it may be a callback 12362 * function, for which reference_state must 12363 * match caller reference state when it exits. 12364 */ 12365 err = check_reference_leak(env); 12366 if (err) 12367 return err; 12368 12369 if (state->curframe) { 12370 /* exit from nested function */ 12371 err = prepare_func_exit(env, &env->insn_idx); 12372 if (err) 12373 return err; 12374 do_print_state = true; 12375 continue; 12376 } 12377 12378 err = check_return_code(env); 12379 if (err) 12380 return err; 12381 process_bpf_exit: 12382 mark_verifier_state_scratched(env); 12383 update_branch_counts(env, env->cur_state); 12384 err = pop_stack(env, &prev_insn_idx, 12385 &env->insn_idx, pop_log); 12386 if (err < 0) { 12387 if (err != -ENOENT) 12388 return err; 12389 break; 12390 } else { 12391 do_print_state = true; 12392 continue; 12393 } 12394 } else { 12395 err = check_cond_jmp_op(env, insn, &env->insn_idx); 12396 if (err) 12397 return err; 12398 } 12399 } else if (class == BPF_LD) { 12400 u8 mode = BPF_MODE(insn->code); 12401 12402 if (mode == BPF_ABS || mode == BPF_IND) { 12403 err = check_ld_abs(env, insn); 12404 if (err) 12405 return err; 12406 12407 } else if (mode == BPF_IMM) { 12408 err = check_ld_imm(env, insn); 12409 if (err) 12410 return err; 12411 12412 env->insn_idx++; 12413 sanitize_mark_insn_seen(env); 12414 } else { 12415 verbose(env, "invalid BPF_LD mode\n"); 12416 return -EINVAL; 12417 } 12418 } else { 12419 verbose(env, "unknown insn class %d\n", class); 12420 return -EINVAL; 12421 } 12422 12423 env->insn_idx++; 12424 } 12425 12426 return 0; 12427 } 12428 12429 static int find_btf_percpu_datasec(struct btf *btf) 12430 { 12431 const struct btf_type *t; 12432 const char *tname; 12433 int i, n; 12434 12435 /* 12436 * Both vmlinux and module each have their own ".data..percpu" 12437 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 12438 * types to look at only module's own BTF types. 12439 */ 12440 n = btf_nr_types(btf); 12441 if (btf_is_module(btf)) 12442 i = btf_nr_types(btf_vmlinux); 12443 else 12444 i = 1; 12445 12446 for(; i < n; i++) { 12447 t = btf_type_by_id(btf, i); 12448 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 12449 continue; 12450 12451 tname = btf_name_by_offset(btf, t->name_off); 12452 if (!strcmp(tname, ".data..percpu")) 12453 return i; 12454 } 12455 12456 return -ENOENT; 12457 } 12458 12459 /* replace pseudo btf_id with kernel symbol address */ 12460 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 12461 struct bpf_insn *insn, 12462 struct bpf_insn_aux_data *aux) 12463 { 12464 const struct btf_var_secinfo *vsi; 12465 const struct btf_type *datasec; 12466 struct btf_mod_pair *btf_mod; 12467 const struct btf_type *t; 12468 const char *sym_name; 12469 bool percpu = false; 12470 u32 type, id = insn->imm; 12471 struct btf *btf; 12472 s32 datasec_id; 12473 u64 addr; 12474 int i, btf_fd, err; 12475 12476 btf_fd = insn[1].imm; 12477 if (btf_fd) { 12478 btf = btf_get_by_fd(btf_fd); 12479 if (IS_ERR(btf)) { 12480 verbose(env, "invalid module BTF object FD specified.\n"); 12481 return -EINVAL; 12482 } 12483 } else { 12484 if (!btf_vmlinux) { 12485 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 12486 return -EINVAL; 12487 } 12488 btf = btf_vmlinux; 12489 btf_get(btf); 12490 } 12491 12492 t = btf_type_by_id(btf, id); 12493 if (!t) { 12494 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 12495 err = -ENOENT; 12496 goto err_put; 12497 } 12498 12499 if (!btf_type_is_var(t)) { 12500 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 12501 err = -EINVAL; 12502 goto err_put; 12503 } 12504 12505 sym_name = btf_name_by_offset(btf, t->name_off); 12506 addr = kallsyms_lookup_name(sym_name); 12507 if (!addr) { 12508 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 12509 sym_name); 12510 err = -ENOENT; 12511 goto err_put; 12512 } 12513 12514 datasec_id = find_btf_percpu_datasec(btf); 12515 if (datasec_id > 0) { 12516 datasec = btf_type_by_id(btf, datasec_id); 12517 for_each_vsi(i, datasec, vsi) { 12518 if (vsi->type == id) { 12519 percpu = true; 12520 break; 12521 } 12522 } 12523 } 12524 12525 insn[0].imm = (u32)addr; 12526 insn[1].imm = addr >> 32; 12527 12528 type = t->type; 12529 t = btf_type_skip_modifiers(btf, type, NULL); 12530 if (percpu) { 12531 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 12532 aux->btf_var.btf = btf; 12533 aux->btf_var.btf_id = type; 12534 } else if (!btf_type_is_struct(t)) { 12535 const struct btf_type *ret; 12536 const char *tname; 12537 u32 tsize; 12538 12539 /* resolve the type size of ksym. */ 12540 ret = btf_resolve_size(btf, t, &tsize); 12541 if (IS_ERR(ret)) { 12542 tname = btf_name_by_offset(btf, t->name_off); 12543 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 12544 tname, PTR_ERR(ret)); 12545 err = -EINVAL; 12546 goto err_put; 12547 } 12548 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 12549 aux->btf_var.mem_size = tsize; 12550 } else { 12551 aux->btf_var.reg_type = PTR_TO_BTF_ID; 12552 aux->btf_var.btf = btf; 12553 aux->btf_var.btf_id = type; 12554 } 12555 12556 /* check whether we recorded this BTF (and maybe module) already */ 12557 for (i = 0; i < env->used_btf_cnt; i++) { 12558 if (env->used_btfs[i].btf == btf) { 12559 btf_put(btf); 12560 return 0; 12561 } 12562 } 12563 12564 if (env->used_btf_cnt >= MAX_USED_BTFS) { 12565 err = -E2BIG; 12566 goto err_put; 12567 } 12568 12569 btf_mod = &env->used_btfs[env->used_btf_cnt]; 12570 btf_mod->btf = btf; 12571 btf_mod->module = NULL; 12572 12573 /* if we reference variables from kernel module, bump its refcount */ 12574 if (btf_is_module(btf)) { 12575 btf_mod->module = btf_try_get_module(btf); 12576 if (!btf_mod->module) { 12577 err = -ENXIO; 12578 goto err_put; 12579 } 12580 } 12581 12582 env->used_btf_cnt++; 12583 12584 return 0; 12585 err_put: 12586 btf_put(btf); 12587 return err; 12588 } 12589 12590 static bool is_tracing_prog_type(enum bpf_prog_type type) 12591 { 12592 switch (type) { 12593 case BPF_PROG_TYPE_KPROBE: 12594 case BPF_PROG_TYPE_TRACEPOINT: 12595 case BPF_PROG_TYPE_PERF_EVENT: 12596 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12597 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 12598 return true; 12599 default: 12600 return false; 12601 } 12602 } 12603 12604 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 12605 struct bpf_map *map, 12606 struct bpf_prog *prog) 12607 12608 { 12609 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12610 12611 if (map_value_has_spin_lock(map)) { 12612 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 12613 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 12614 return -EINVAL; 12615 } 12616 12617 if (is_tracing_prog_type(prog_type)) { 12618 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 12619 return -EINVAL; 12620 } 12621 12622 if (prog->aux->sleepable) { 12623 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 12624 return -EINVAL; 12625 } 12626 } 12627 12628 if (map_value_has_timer(map)) { 12629 if (is_tracing_prog_type(prog_type)) { 12630 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 12631 return -EINVAL; 12632 } 12633 } 12634 12635 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 12636 !bpf_offload_prog_map_match(prog, map)) { 12637 verbose(env, "offload device mismatch between prog and map\n"); 12638 return -EINVAL; 12639 } 12640 12641 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 12642 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 12643 return -EINVAL; 12644 } 12645 12646 if (prog->aux->sleepable) 12647 switch (map->map_type) { 12648 case BPF_MAP_TYPE_HASH: 12649 case BPF_MAP_TYPE_LRU_HASH: 12650 case BPF_MAP_TYPE_ARRAY: 12651 case BPF_MAP_TYPE_PERCPU_HASH: 12652 case BPF_MAP_TYPE_PERCPU_ARRAY: 12653 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 12654 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 12655 case BPF_MAP_TYPE_HASH_OF_MAPS: 12656 case BPF_MAP_TYPE_RINGBUF: 12657 case BPF_MAP_TYPE_INODE_STORAGE: 12658 case BPF_MAP_TYPE_SK_STORAGE: 12659 case BPF_MAP_TYPE_TASK_STORAGE: 12660 break; 12661 default: 12662 verbose(env, 12663 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 12664 return -EINVAL; 12665 } 12666 12667 return 0; 12668 } 12669 12670 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 12671 { 12672 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 12673 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 12674 } 12675 12676 /* find and rewrite pseudo imm in ld_imm64 instructions: 12677 * 12678 * 1. if it accesses map FD, replace it with actual map pointer. 12679 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 12680 * 12681 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 12682 */ 12683 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 12684 { 12685 struct bpf_insn *insn = env->prog->insnsi; 12686 int insn_cnt = env->prog->len; 12687 int i, j, err; 12688 12689 err = bpf_prog_calc_tag(env->prog); 12690 if (err) 12691 return err; 12692 12693 for (i = 0; i < insn_cnt; i++, insn++) { 12694 if (BPF_CLASS(insn->code) == BPF_LDX && 12695 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 12696 verbose(env, "BPF_LDX uses reserved fields\n"); 12697 return -EINVAL; 12698 } 12699 12700 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 12701 struct bpf_insn_aux_data *aux; 12702 struct bpf_map *map; 12703 struct fd f; 12704 u64 addr; 12705 u32 fd; 12706 12707 if (i == insn_cnt - 1 || insn[1].code != 0 || 12708 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 12709 insn[1].off != 0) { 12710 verbose(env, "invalid bpf_ld_imm64 insn\n"); 12711 return -EINVAL; 12712 } 12713 12714 if (insn[0].src_reg == 0) 12715 /* valid generic load 64-bit imm */ 12716 goto next_insn; 12717 12718 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 12719 aux = &env->insn_aux_data[i]; 12720 err = check_pseudo_btf_id(env, insn, aux); 12721 if (err) 12722 return err; 12723 goto next_insn; 12724 } 12725 12726 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 12727 aux = &env->insn_aux_data[i]; 12728 aux->ptr_type = PTR_TO_FUNC; 12729 goto next_insn; 12730 } 12731 12732 /* In final convert_pseudo_ld_imm64() step, this is 12733 * converted into regular 64-bit imm load insn. 12734 */ 12735 switch (insn[0].src_reg) { 12736 case BPF_PSEUDO_MAP_VALUE: 12737 case BPF_PSEUDO_MAP_IDX_VALUE: 12738 break; 12739 case BPF_PSEUDO_MAP_FD: 12740 case BPF_PSEUDO_MAP_IDX: 12741 if (insn[1].imm == 0) 12742 break; 12743 fallthrough; 12744 default: 12745 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12746 return -EINVAL; 12747 } 12748 12749 switch (insn[0].src_reg) { 12750 case BPF_PSEUDO_MAP_IDX_VALUE: 12751 case BPF_PSEUDO_MAP_IDX: 12752 if (bpfptr_is_null(env->fd_array)) { 12753 verbose(env, "fd_idx without fd_array is invalid\n"); 12754 return -EPROTO; 12755 } 12756 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12757 insn[0].imm * sizeof(fd), 12758 sizeof(fd))) 12759 return -EFAULT; 12760 break; 12761 default: 12762 fd = insn[0].imm; 12763 break; 12764 } 12765 12766 f = fdget(fd); 12767 map = __bpf_map_get(f); 12768 if (IS_ERR(map)) { 12769 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12770 insn[0].imm); 12771 return PTR_ERR(map); 12772 } 12773 12774 err = check_map_prog_compatibility(env, map, env->prog); 12775 if (err) { 12776 fdput(f); 12777 return err; 12778 } 12779 12780 aux = &env->insn_aux_data[i]; 12781 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12782 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12783 addr = (unsigned long)map; 12784 } else { 12785 u32 off = insn[1].imm; 12786 12787 if (off >= BPF_MAX_VAR_OFF) { 12788 verbose(env, "direct value offset of %u is not allowed\n", off); 12789 fdput(f); 12790 return -EINVAL; 12791 } 12792 12793 if (!map->ops->map_direct_value_addr) { 12794 verbose(env, "no direct value access support for this map type\n"); 12795 fdput(f); 12796 return -EINVAL; 12797 } 12798 12799 err = map->ops->map_direct_value_addr(map, &addr, off); 12800 if (err) { 12801 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12802 map->value_size, off); 12803 fdput(f); 12804 return err; 12805 } 12806 12807 aux->map_off = off; 12808 addr += off; 12809 } 12810 12811 insn[0].imm = (u32)addr; 12812 insn[1].imm = addr >> 32; 12813 12814 /* check whether we recorded this map already */ 12815 for (j = 0; j < env->used_map_cnt; j++) { 12816 if (env->used_maps[j] == map) { 12817 aux->map_index = j; 12818 fdput(f); 12819 goto next_insn; 12820 } 12821 } 12822 12823 if (env->used_map_cnt >= MAX_USED_MAPS) { 12824 fdput(f); 12825 return -E2BIG; 12826 } 12827 12828 /* hold the map. If the program is rejected by verifier, 12829 * the map will be released by release_maps() or it 12830 * will be used by the valid program until it's unloaded 12831 * and all maps are released in free_used_maps() 12832 */ 12833 bpf_map_inc(map); 12834 12835 aux->map_index = env->used_map_cnt; 12836 env->used_maps[env->used_map_cnt++] = map; 12837 12838 if (bpf_map_is_cgroup_storage(map) && 12839 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12840 verbose(env, "only one cgroup storage of each type is allowed\n"); 12841 fdput(f); 12842 return -EBUSY; 12843 } 12844 12845 fdput(f); 12846 next_insn: 12847 insn++; 12848 i++; 12849 continue; 12850 } 12851 12852 /* Basic sanity check before we invest more work here. */ 12853 if (!bpf_opcode_in_insntable(insn->code)) { 12854 verbose(env, "unknown opcode %02x\n", insn->code); 12855 return -EINVAL; 12856 } 12857 } 12858 12859 /* now all pseudo BPF_LD_IMM64 instructions load valid 12860 * 'struct bpf_map *' into a register instead of user map_fd. 12861 * These pointers will be used later by verifier to validate map access. 12862 */ 12863 return 0; 12864 } 12865 12866 /* drop refcnt of maps used by the rejected program */ 12867 static void release_maps(struct bpf_verifier_env *env) 12868 { 12869 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12870 env->used_map_cnt); 12871 } 12872 12873 /* drop refcnt of maps used by the rejected program */ 12874 static void release_btfs(struct bpf_verifier_env *env) 12875 { 12876 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12877 env->used_btf_cnt); 12878 } 12879 12880 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12881 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12882 { 12883 struct bpf_insn *insn = env->prog->insnsi; 12884 int insn_cnt = env->prog->len; 12885 int i; 12886 12887 for (i = 0; i < insn_cnt; i++, insn++) { 12888 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12889 continue; 12890 if (insn->src_reg == BPF_PSEUDO_FUNC) 12891 continue; 12892 insn->src_reg = 0; 12893 } 12894 } 12895 12896 /* single env->prog->insni[off] instruction was replaced with the range 12897 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12898 * [0, off) and [off, end) to new locations, so the patched range stays zero 12899 */ 12900 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12901 struct bpf_insn_aux_data *new_data, 12902 struct bpf_prog *new_prog, u32 off, u32 cnt) 12903 { 12904 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12905 struct bpf_insn *insn = new_prog->insnsi; 12906 u32 old_seen = old_data[off].seen; 12907 u32 prog_len; 12908 int i; 12909 12910 /* aux info at OFF always needs adjustment, no matter fast path 12911 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12912 * original insn at old prog. 12913 */ 12914 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12915 12916 if (cnt == 1) 12917 return; 12918 prog_len = new_prog->len; 12919 12920 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12921 memcpy(new_data + off + cnt - 1, old_data + off, 12922 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12923 for (i = off; i < off + cnt - 1; i++) { 12924 /* Expand insni[off]'s seen count to the patched range. */ 12925 new_data[i].seen = old_seen; 12926 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12927 } 12928 env->insn_aux_data = new_data; 12929 vfree(old_data); 12930 } 12931 12932 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12933 { 12934 int i; 12935 12936 if (len == 1) 12937 return; 12938 /* NOTE: fake 'exit' subprog should be updated as well. */ 12939 for (i = 0; i <= env->subprog_cnt; i++) { 12940 if (env->subprog_info[i].start <= off) 12941 continue; 12942 env->subprog_info[i].start += len - 1; 12943 } 12944 } 12945 12946 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 12947 { 12948 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 12949 int i, sz = prog->aux->size_poke_tab; 12950 struct bpf_jit_poke_descriptor *desc; 12951 12952 for (i = 0; i < sz; i++) { 12953 desc = &tab[i]; 12954 if (desc->insn_idx <= off) 12955 continue; 12956 desc->insn_idx += len - 1; 12957 } 12958 } 12959 12960 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 12961 const struct bpf_insn *patch, u32 len) 12962 { 12963 struct bpf_prog *new_prog; 12964 struct bpf_insn_aux_data *new_data = NULL; 12965 12966 if (len > 1) { 12967 new_data = vzalloc(array_size(env->prog->len + len - 1, 12968 sizeof(struct bpf_insn_aux_data))); 12969 if (!new_data) 12970 return NULL; 12971 } 12972 12973 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 12974 if (IS_ERR(new_prog)) { 12975 if (PTR_ERR(new_prog) == -ERANGE) 12976 verbose(env, 12977 "insn %d cannot be patched due to 16-bit range\n", 12978 env->insn_aux_data[off].orig_idx); 12979 vfree(new_data); 12980 return NULL; 12981 } 12982 adjust_insn_aux_data(env, new_data, new_prog, off, len); 12983 adjust_subprog_starts(env, off, len); 12984 adjust_poke_descs(new_prog, off, len); 12985 return new_prog; 12986 } 12987 12988 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 12989 u32 off, u32 cnt) 12990 { 12991 int i, j; 12992 12993 /* find first prog starting at or after off (first to remove) */ 12994 for (i = 0; i < env->subprog_cnt; i++) 12995 if (env->subprog_info[i].start >= off) 12996 break; 12997 /* find first prog starting at or after off + cnt (first to stay) */ 12998 for (j = i; j < env->subprog_cnt; j++) 12999 if (env->subprog_info[j].start >= off + cnt) 13000 break; 13001 /* if j doesn't start exactly at off + cnt, we are just removing 13002 * the front of previous prog 13003 */ 13004 if (env->subprog_info[j].start != off + cnt) 13005 j--; 13006 13007 if (j > i) { 13008 struct bpf_prog_aux *aux = env->prog->aux; 13009 int move; 13010 13011 /* move fake 'exit' subprog as well */ 13012 move = env->subprog_cnt + 1 - j; 13013 13014 memmove(env->subprog_info + i, 13015 env->subprog_info + j, 13016 sizeof(*env->subprog_info) * move); 13017 env->subprog_cnt -= j - i; 13018 13019 /* remove func_info */ 13020 if (aux->func_info) { 13021 move = aux->func_info_cnt - j; 13022 13023 memmove(aux->func_info + i, 13024 aux->func_info + j, 13025 sizeof(*aux->func_info) * move); 13026 aux->func_info_cnt -= j - i; 13027 /* func_info->insn_off is set after all code rewrites, 13028 * in adjust_btf_func() - no need to adjust 13029 */ 13030 } 13031 } else { 13032 /* convert i from "first prog to remove" to "first to adjust" */ 13033 if (env->subprog_info[i].start == off) 13034 i++; 13035 } 13036 13037 /* update fake 'exit' subprog as well */ 13038 for (; i <= env->subprog_cnt; i++) 13039 env->subprog_info[i].start -= cnt; 13040 13041 return 0; 13042 } 13043 13044 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 13045 u32 cnt) 13046 { 13047 struct bpf_prog *prog = env->prog; 13048 u32 i, l_off, l_cnt, nr_linfo; 13049 struct bpf_line_info *linfo; 13050 13051 nr_linfo = prog->aux->nr_linfo; 13052 if (!nr_linfo) 13053 return 0; 13054 13055 linfo = prog->aux->linfo; 13056 13057 /* find first line info to remove, count lines to be removed */ 13058 for (i = 0; i < nr_linfo; i++) 13059 if (linfo[i].insn_off >= off) 13060 break; 13061 13062 l_off = i; 13063 l_cnt = 0; 13064 for (; i < nr_linfo; i++) 13065 if (linfo[i].insn_off < off + cnt) 13066 l_cnt++; 13067 else 13068 break; 13069 13070 /* First live insn doesn't match first live linfo, it needs to "inherit" 13071 * last removed linfo. prog is already modified, so prog->len == off 13072 * means no live instructions after (tail of the program was removed). 13073 */ 13074 if (prog->len != off && l_cnt && 13075 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 13076 l_cnt--; 13077 linfo[--i].insn_off = off + cnt; 13078 } 13079 13080 /* remove the line info which refer to the removed instructions */ 13081 if (l_cnt) { 13082 memmove(linfo + l_off, linfo + i, 13083 sizeof(*linfo) * (nr_linfo - i)); 13084 13085 prog->aux->nr_linfo -= l_cnt; 13086 nr_linfo = prog->aux->nr_linfo; 13087 } 13088 13089 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 13090 for (i = l_off; i < nr_linfo; i++) 13091 linfo[i].insn_off -= cnt; 13092 13093 /* fix up all subprogs (incl. 'exit') which start >= off */ 13094 for (i = 0; i <= env->subprog_cnt; i++) 13095 if (env->subprog_info[i].linfo_idx > l_off) { 13096 /* program may have started in the removed region but 13097 * may not be fully removed 13098 */ 13099 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 13100 env->subprog_info[i].linfo_idx -= l_cnt; 13101 else 13102 env->subprog_info[i].linfo_idx = l_off; 13103 } 13104 13105 return 0; 13106 } 13107 13108 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 13109 { 13110 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13111 unsigned int orig_prog_len = env->prog->len; 13112 int err; 13113 13114 if (bpf_prog_is_dev_bound(env->prog->aux)) 13115 bpf_prog_offload_remove_insns(env, off, cnt); 13116 13117 err = bpf_remove_insns(env->prog, off, cnt); 13118 if (err) 13119 return err; 13120 13121 err = adjust_subprog_starts_after_remove(env, off, cnt); 13122 if (err) 13123 return err; 13124 13125 err = bpf_adj_linfo_after_remove(env, off, cnt); 13126 if (err) 13127 return err; 13128 13129 memmove(aux_data + off, aux_data + off + cnt, 13130 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 13131 13132 return 0; 13133 } 13134 13135 /* The verifier does more data flow analysis than llvm and will not 13136 * explore branches that are dead at run time. Malicious programs can 13137 * have dead code too. Therefore replace all dead at-run-time code 13138 * with 'ja -1'. 13139 * 13140 * Just nops are not optimal, e.g. if they would sit at the end of the 13141 * program and through another bug we would manage to jump there, then 13142 * we'd execute beyond program memory otherwise. Returning exception 13143 * code also wouldn't work since we can have subprogs where the dead 13144 * code could be located. 13145 */ 13146 static void sanitize_dead_code(struct bpf_verifier_env *env) 13147 { 13148 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13149 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 13150 struct bpf_insn *insn = env->prog->insnsi; 13151 const int insn_cnt = env->prog->len; 13152 int i; 13153 13154 for (i = 0; i < insn_cnt; i++) { 13155 if (aux_data[i].seen) 13156 continue; 13157 memcpy(insn + i, &trap, sizeof(trap)); 13158 aux_data[i].zext_dst = false; 13159 } 13160 } 13161 13162 static bool insn_is_cond_jump(u8 code) 13163 { 13164 u8 op; 13165 13166 if (BPF_CLASS(code) == BPF_JMP32) 13167 return true; 13168 13169 if (BPF_CLASS(code) != BPF_JMP) 13170 return false; 13171 13172 op = BPF_OP(code); 13173 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 13174 } 13175 13176 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 13177 { 13178 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13179 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13180 struct bpf_insn *insn = env->prog->insnsi; 13181 const int insn_cnt = env->prog->len; 13182 int i; 13183 13184 for (i = 0; i < insn_cnt; i++, insn++) { 13185 if (!insn_is_cond_jump(insn->code)) 13186 continue; 13187 13188 if (!aux_data[i + 1].seen) 13189 ja.off = insn->off; 13190 else if (!aux_data[i + 1 + insn->off].seen) 13191 ja.off = 0; 13192 else 13193 continue; 13194 13195 if (bpf_prog_is_dev_bound(env->prog->aux)) 13196 bpf_prog_offload_replace_insn(env, i, &ja); 13197 13198 memcpy(insn, &ja, sizeof(ja)); 13199 } 13200 } 13201 13202 static int opt_remove_dead_code(struct bpf_verifier_env *env) 13203 { 13204 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 13205 int insn_cnt = env->prog->len; 13206 int i, err; 13207 13208 for (i = 0; i < insn_cnt; i++) { 13209 int j; 13210 13211 j = 0; 13212 while (i + j < insn_cnt && !aux_data[i + j].seen) 13213 j++; 13214 if (!j) 13215 continue; 13216 13217 err = verifier_remove_insns(env, i, j); 13218 if (err) 13219 return err; 13220 insn_cnt = env->prog->len; 13221 } 13222 13223 return 0; 13224 } 13225 13226 static int opt_remove_nops(struct bpf_verifier_env *env) 13227 { 13228 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 13229 struct bpf_insn *insn = env->prog->insnsi; 13230 int insn_cnt = env->prog->len; 13231 int i, err; 13232 13233 for (i = 0; i < insn_cnt; i++) { 13234 if (memcmp(&insn[i], &ja, sizeof(ja))) 13235 continue; 13236 13237 err = verifier_remove_insns(env, i, 1); 13238 if (err) 13239 return err; 13240 insn_cnt--; 13241 i--; 13242 } 13243 13244 return 0; 13245 } 13246 13247 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 13248 const union bpf_attr *attr) 13249 { 13250 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 13251 struct bpf_insn_aux_data *aux = env->insn_aux_data; 13252 int i, patch_len, delta = 0, len = env->prog->len; 13253 struct bpf_insn *insns = env->prog->insnsi; 13254 struct bpf_prog *new_prog; 13255 bool rnd_hi32; 13256 13257 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 13258 zext_patch[1] = BPF_ZEXT_REG(0); 13259 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 13260 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 13261 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 13262 for (i = 0; i < len; i++) { 13263 int adj_idx = i + delta; 13264 struct bpf_insn insn; 13265 int load_reg; 13266 13267 insn = insns[adj_idx]; 13268 load_reg = insn_def_regno(&insn); 13269 if (!aux[adj_idx].zext_dst) { 13270 u8 code, class; 13271 u32 imm_rnd; 13272 13273 if (!rnd_hi32) 13274 continue; 13275 13276 code = insn.code; 13277 class = BPF_CLASS(code); 13278 if (load_reg == -1) 13279 continue; 13280 13281 /* NOTE: arg "reg" (the fourth one) is only used for 13282 * BPF_STX + SRC_OP, so it is safe to pass NULL 13283 * here. 13284 */ 13285 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 13286 if (class == BPF_LD && 13287 BPF_MODE(code) == BPF_IMM) 13288 i++; 13289 continue; 13290 } 13291 13292 /* ctx load could be transformed into wider load. */ 13293 if (class == BPF_LDX && 13294 aux[adj_idx].ptr_type == PTR_TO_CTX) 13295 continue; 13296 13297 imm_rnd = get_random_int(); 13298 rnd_hi32_patch[0] = insn; 13299 rnd_hi32_patch[1].imm = imm_rnd; 13300 rnd_hi32_patch[3].dst_reg = load_reg; 13301 patch = rnd_hi32_patch; 13302 patch_len = 4; 13303 goto apply_patch_buffer; 13304 } 13305 13306 /* Add in an zero-extend instruction if a) the JIT has requested 13307 * it or b) it's a CMPXCHG. 13308 * 13309 * The latter is because: BPF_CMPXCHG always loads a value into 13310 * R0, therefore always zero-extends. However some archs' 13311 * equivalent instruction only does this load when the 13312 * comparison is successful. This detail of CMPXCHG is 13313 * orthogonal to the general zero-extension behaviour of the 13314 * CPU, so it's treated independently of bpf_jit_needs_zext. 13315 */ 13316 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 13317 continue; 13318 13319 if (WARN_ON(load_reg == -1)) { 13320 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 13321 return -EFAULT; 13322 } 13323 13324 zext_patch[0] = insn; 13325 zext_patch[1].dst_reg = load_reg; 13326 zext_patch[1].src_reg = load_reg; 13327 patch = zext_patch; 13328 patch_len = 2; 13329 apply_patch_buffer: 13330 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 13331 if (!new_prog) 13332 return -ENOMEM; 13333 env->prog = new_prog; 13334 insns = new_prog->insnsi; 13335 aux = env->insn_aux_data; 13336 delta += patch_len - 1; 13337 } 13338 13339 return 0; 13340 } 13341 13342 /* convert load instructions that access fields of a context type into a 13343 * sequence of instructions that access fields of the underlying structure: 13344 * struct __sk_buff -> struct sk_buff 13345 * struct bpf_sock_ops -> struct sock 13346 */ 13347 static int convert_ctx_accesses(struct bpf_verifier_env *env) 13348 { 13349 const struct bpf_verifier_ops *ops = env->ops; 13350 int i, cnt, size, ctx_field_size, delta = 0; 13351 const int insn_cnt = env->prog->len; 13352 struct bpf_insn insn_buf[16], *insn; 13353 u32 target_size, size_default, off; 13354 struct bpf_prog *new_prog; 13355 enum bpf_access_type type; 13356 bool is_narrower_load; 13357 13358 if (ops->gen_prologue || env->seen_direct_write) { 13359 if (!ops->gen_prologue) { 13360 verbose(env, "bpf verifier is misconfigured\n"); 13361 return -EINVAL; 13362 } 13363 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 13364 env->prog); 13365 if (cnt >= ARRAY_SIZE(insn_buf)) { 13366 verbose(env, "bpf verifier is misconfigured\n"); 13367 return -EINVAL; 13368 } else if (cnt) { 13369 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 13370 if (!new_prog) 13371 return -ENOMEM; 13372 13373 env->prog = new_prog; 13374 delta += cnt - 1; 13375 } 13376 } 13377 13378 if (bpf_prog_is_dev_bound(env->prog->aux)) 13379 return 0; 13380 13381 insn = env->prog->insnsi + delta; 13382 13383 for (i = 0; i < insn_cnt; i++, insn++) { 13384 bpf_convert_ctx_access_t convert_ctx_access; 13385 bool ctx_access; 13386 13387 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 13388 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 13389 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 13390 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 13391 type = BPF_READ; 13392 ctx_access = true; 13393 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 13394 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 13395 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 13396 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 13397 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 13398 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 13399 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 13400 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 13401 type = BPF_WRITE; 13402 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 13403 } else { 13404 continue; 13405 } 13406 13407 if (type == BPF_WRITE && 13408 env->insn_aux_data[i + delta].sanitize_stack_spill) { 13409 struct bpf_insn patch[] = { 13410 *insn, 13411 BPF_ST_NOSPEC(), 13412 }; 13413 13414 cnt = ARRAY_SIZE(patch); 13415 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 13416 if (!new_prog) 13417 return -ENOMEM; 13418 13419 delta += cnt - 1; 13420 env->prog = new_prog; 13421 insn = new_prog->insnsi + i + delta; 13422 continue; 13423 } 13424 13425 if (!ctx_access) 13426 continue; 13427 13428 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 13429 case PTR_TO_CTX: 13430 if (!ops->convert_ctx_access) 13431 continue; 13432 convert_ctx_access = ops->convert_ctx_access; 13433 break; 13434 case PTR_TO_SOCKET: 13435 case PTR_TO_SOCK_COMMON: 13436 convert_ctx_access = bpf_sock_convert_ctx_access; 13437 break; 13438 case PTR_TO_TCP_SOCK: 13439 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 13440 break; 13441 case PTR_TO_XDP_SOCK: 13442 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 13443 break; 13444 case PTR_TO_BTF_ID: 13445 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 13446 if (type == BPF_READ) { 13447 insn->code = BPF_LDX | BPF_PROBE_MEM | 13448 BPF_SIZE((insn)->code); 13449 env->prog->aux->num_exentries++; 13450 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 13451 verbose(env, "Writes through BTF pointers are not allowed\n"); 13452 return -EINVAL; 13453 } 13454 continue; 13455 default: 13456 continue; 13457 } 13458 13459 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 13460 size = BPF_LDST_BYTES(insn); 13461 13462 /* If the read access is a narrower load of the field, 13463 * convert to a 4/8-byte load, to minimum program type specific 13464 * convert_ctx_access changes. If conversion is successful, 13465 * we will apply proper mask to the result. 13466 */ 13467 is_narrower_load = size < ctx_field_size; 13468 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 13469 off = insn->off; 13470 if (is_narrower_load) { 13471 u8 size_code; 13472 13473 if (type == BPF_WRITE) { 13474 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 13475 return -EINVAL; 13476 } 13477 13478 size_code = BPF_H; 13479 if (ctx_field_size == 4) 13480 size_code = BPF_W; 13481 else if (ctx_field_size == 8) 13482 size_code = BPF_DW; 13483 13484 insn->off = off & ~(size_default - 1); 13485 insn->code = BPF_LDX | BPF_MEM | size_code; 13486 } 13487 13488 target_size = 0; 13489 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 13490 &target_size); 13491 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 13492 (ctx_field_size && !target_size)) { 13493 verbose(env, "bpf verifier is misconfigured\n"); 13494 return -EINVAL; 13495 } 13496 13497 if (is_narrower_load && size < target_size) { 13498 u8 shift = bpf_ctx_narrow_access_offset( 13499 off, size, size_default) * 8; 13500 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 13501 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 13502 return -EINVAL; 13503 } 13504 if (ctx_field_size <= 4) { 13505 if (shift) 13506 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 13507 insn->dst_reg, 13508 shift); 13509 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 13510 (1 << size * 8) - 1); 13511 } else { 13512 if (shift) 13513 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 13514 insn->dst_reg, 13515 shift); 13516 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 13517 (1ULL << size * 8) - 1); 13518 } 13519 } 13520 13521 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13522 if (!new_prog) 13523 return -ENOMEM; 13524 13525 delta += cnt - 1; 13526 13527 /* keep walking new program and skip insns we just inserted */ 13528 env->prog = new_prog; 13529 insn = new_prog->insnsi + i + delta; 13530 } 13531 13532 return 0; 13533 } 13534 13535 static int jit_subprogs(struct bpf_verifier_env *env) 13536 { 13537 struct bpf_prog *prog = env->prog, **func, *tmp; 13538 int i, j, subprog_start, subprog_end = 0, len, subprog; 13539 struct bpf_map *map_ptr; 13540 struct bpf_insn *insn; 13541 void *old_bpf_func; 13542 int err, num_exentries; 13543 13544 if (env->subprog_cnt <= 1) 13545 return 0; 13546 13547 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13548 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 13549 continue; 13550 13551 /* Upon error here we cannot fall back to interpreter but 13552 * need a hard reject of the program. Thus -EFAULT is 13553 * propagated in any case. 13554 */ 13555 subprog = find_subprog(env, i + insn->imm + 1); 13556 if (subprog < 0) { 13557 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 13558 i + insn->imm + 1); 13559 return -EFAULT; 13560 } 13561 /* temporarily remember subprog id inside insn instead of 13562 * aux_data, since next loop will split up all insns into funcs 13563 */ 13564 insn->off = subprog; 13565 /* remember original imm in case JIT fails and fallback 13566 * to interpreter will be needed 13567 */ 13568 env->insn_aux_data[i].call_imm = insn->imm; 13569 /* point imm to __bpf_call_base+1 from JITs point of view */ 13570 insn->imm = 1; 13571 if (bpf_pseudo_func(insn)) 13572 /* jit (e.g. x86_64) may emit fewer instructions 13573 * if it learns a u32 imm is the same as a u64 imm. 13574 * Force a non zero here. 13575 */ 13576 insn[1].imm = 1; 13577 } 13578 13579 err = bpf_prog_alloc_jited_linfo(prog); 13580 if (err) 13581 goto out_undo_insn; 13582 13583 err = -ENOMEM; 13584 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 13585 if (!func) 13586 goto out_undo_insn; 13587 13588 for (i = 0; i < env->subprog_cnt; i++) { 13589 subprog_start = subprog_end; 13590 subprog_end = env->subprog_info[i + 1].start; 13591 13592 len = subprog_end - subprog_start; 13593 /* bpf_prog_run() doesn't call subprogs directly, 13594 * hence main prog stats include the runtime of subprogs. 13595 * subprogs don't have IDs and not reachable via prog_get_next_id 13596 * func[i]->stats will never be accessed and stays NULL 13597 */ 13598 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 13599 if (!func[i]) 13600 goto out_free; 13601 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 13602 len * sizeof(struct bpf_insn)); 13603 func[i]->type = prog->type; 13604 func[i]->len = len; 13605 if (bpf_prog_calc_tag(func[i])) 13606 goto out_free; 13607 func[i]->is_func = 1; 13608 func[i]->aux->func_idx = i; 13609 /* Below members will be freed only at prog->aux */ 13610 func[i]->aux->btf = prog->aux->btf; 13611 func[i]->aux->func_info = prog->aux->func_info; 13612 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 13613 func[i]->aux->poke_tab = prog->aux->poke_tab; 13614 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 13615 13616 for (j = 0; j < prog->aux->size_poke_tab; j++) { 13617 struct bpf_jit_poke_descriptor *poke; 13618 13619 poke = &prog->aux->poke_tab[j]; 13620 if (poke->insn_idx < subprog_end && 13621 poke->insn_idx >= subprog_start) 13622 poke->aux = func[i]->aux; 13623 } 13624 13625 func[i]->aux->name[0] = 'F'; 13626 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 13627 func[i]->jit_requested = 1; 13628 func[i]->blinding_requested = prog->blinding_requested; 13629 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 13630 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 13631 func[i]->aux->linfo = prog->aux->linfo; 13632 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 13633 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 13634 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 13635 num_exentries = 0; 13636 insn = func[i]->insnsi; 13637 for (j = 0; j < func[i]->len; j++, insn++) { 13638 if (BPF_CLASS(insn->code) == BPF_LDX && 13639 BPF_MODE(insn->code) == BPF_PROBE_MEM) 13640 num_exentries++; 13641 } 13642 func[i]->aux->num_exentries = num_exentries; 13643 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 13644 func[i] = bpf_int_jit_compile(func[i]); 13645 if (!func[i]->jited) { 13646 err = -ENOTSUPP; 13647 goto out_free; 13648 } 13649 cond_resched(); 13650 } 13651 13652 /* at this point all bpf functions were successfully JITed 13653 * now populate all bpf_calls with correct addresses and 13654 * run last pass of JIT 13655 */ 13656 for (i = 0; i < env->subprog_cnt; i++) { 13657 insn = func[i]->insnsi; 13658 for (j = 0; j < func[i]->len; j++, insn++) { 13659 if (bpf_pseudo_func(insn)) { 13660 subprog = insn->off; 13661 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 13662 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 13663 continue; 13664 } 13665 if (!bpf_pseudo_call(insn)) 13666 continue; 13667 subprog = insn->off; 13668 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 13669 } 13670 13671 /* we use the aux data to keep a list of the start addresses 13672 * of the JITed images for each function in the program 13673 * 13674 * for some architectures, such as powerpc64, the imm field 13675 * might not be large enough to hold the offset of the start 13676 * address of the callee's JITed image from __bpf_call_base 13677 * 13678 * in such cases, we can lookup the start address of a callee 13679 * by using its subprog id, available from the off field of 13680 * the call instruction, as an index for this list 13681 */ 13682 func[i]->aux->func = func; 13683 func[i]->aux->func_cnt = env->subprog_cnt; 13684 } 13685 for (i = 0; i < env->subprog_cnt; i++) { 13686 old_bpf_func = func[i]->bpf_func; 13687 tmp = bpf_int_jit_compile(func[i]); 13688 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 13689 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 13690 err = -ENOTSUPP; 13691 goto out_free; 13692 } 13693 cond_resched(); 13694 } 13695 13696 /* finally lock prog and jit images for all functions and 13697 * populate kallsysm 13698 */ 13699 for (i = 0; i < env->subprog_cnt; i++) { 13700 bpf_prog_lock_ro(func[i]); 13701 bpf_prog_kallsyms_add(func[i]); 13702 } 13703 13704 /* Last step: make now unused interpreter insns from main 13705 * prog consistent for later dump requests, so they can 13706 * later look the same as if they were interpreted only. 13707 */ 13708 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13709 if (bpf_pseudo_func(insn)) { 13710 insn[0].imm = env->insn_aux_data[i].call_imm; 13711 insn[1].imm = insn->off; 13712 insn->off = 0; 13713 continue; 13714 } 13715 if (!bpf_pseudo_call(insn)) 13716 continue; 13717 insn->off = env->insn_aux_data[i].call_imm; 13718 subprog = find_subprog(env, i + insn->off + 1); 13719 insn->imm = subprog; 13720 } 13721 13722 prog->jited = 1; 13723 prog->bpf_func = func[0]->bpf_func; 13724 prog->jited_len = func[0]->jited_len; 13725 prog->aux->func = func; 13726 prog->aux->func_cnt = env->subprog_cnt; 13727 bpf_prog_jit_attempt_done(prog); 13728 return 0; 13729 out_free: 13730 /* We failed JIT'ing, so at this point we need to unregister poke 13731 * descriptors from subprogs, so that kernel is not attempting to 13732 * patch it anymore as we're freeing the subprog JIT memory. 13733 */ 13734 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13735 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13736 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13737 } 13738 /* At this point we're guaranteed that poke descriptors are not 13739 * live anymore. We can just unlink its descriptor table as it's 13740 * released with the main prog. 13741 */ 13742 for (i = 0; i < env->subprog_cnt; i++) { 13743 if (!func[i]) 13744 continue; 13745 func[i]->aux->poke_tab = NULL; 13746 bpf_jit_free(func[i]); 13747 } 13748 kfree(func); 13749 out_undo_insn: 13750 /* cleanup main prog to be interpreted */ 13751 prog->jit_requested = 0; 13752 prog->blinding_requested = 0; 13753 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13754 if (!bpf_pseudo_call(insn)) 13755 continue; 13756 insn->off = 0; 13757 insn->imm = env->insn_aux_data[i].call_imm; 13758 } 13759 bpf_prog_jit_attempt_done(prog); 13760 return err; 13761 } 13762 13763 static int fixup_call_args(struct bpf_verifier_env *env) 13764 { 13765 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13766 struct bpf_prog *prog = env->prog; 13767 struct bpf_insn *insn = prog->insnsi; 13768 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13769 int i, depth; 13770 #endif 13771 int err = 0; 13772 13773 if (env->prog->jit_requested && 13774 !bpf_prog_is_dev_bound(env->prog->aux)) { 13775 err = jit_subprogs(env); 13776 if (err == 0) 13777 return 0; 13778 if (err == -EFAULT) 13779 return err; 13780 } 13781 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13782 if (has_kfunc_call) { 13783 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13784 return -EINVAL; 13785 } 13786 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13787 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13788 * have to be rejected, since interpreter doesn't support them yet. 13789 */ 13790 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13791 return -EINVAL; 13792 } 13793 for (i = 0; i < prog->len; i++, insn++) { 13794 if (bpf_pseudo_func(insn)) { 13795 /* When JIT fails the progs with callback calls 13796 * have to be rejected, since interpreter doesn't support them yet. 13797 */ 13798 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13799 return -EINVAL; 13800 } 13801 13802 if (!bpf_pseudo_call(insn)) 13803 continue; 13804 depth = get_callee_stack_depth(env, insn, i); 13805 if (depth < 0) 13806 return depth; 13807 bpf_patch_call_args(insn, depth); 13808 } 13809 err = 0; 13810 #endif 13811 return err; 13812 } 13813 13814 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13815 struct bpf_insn *insn) 13816 { 13817 const struct bpf_kfunc_desc *desc; 13818 13819 if (!insn->imm) { 13820 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13821 return -EINVAL; 13822 } 13823 13824 /* insn->imm has the btf func_id. Replace it with 13825 * an address (relative to __bpf_base_call). 13826 */ 13827 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13828 if (!desc) { 13829 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13830 insn->imm); 13831 return -EFAULT; 13832 } 13833 13834 insn->imm = desc->imm; 13835 13836 return 0; 13837 } 13838 13839 /* Do various post-verification rewrites in a single program pass. 13840 * These rewrites simplify JIT and interpreter implementations. 13841 */ 13842 static int do_misc_fixups(struct bpf_verifier_env *env) 13843 { 13844 struct bpf_prog *prog = env->prog; 13845 enum bpf_attach_type eatype = prog->expected_attach_type; 13846 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13847 struct bpf_insn *insn = prog->insnsi; 13848 const struct bpf_func_proto *fn; 13849 const int insn_cnt = prog->len; 13850 const struct bpf_map_ops *ops; 13851 struct bpf_insn_aux_data *aux; 13852 struct bpf_insn insn_buf[16]; 13853 struct bpf_prog *new_prog; 13854 struct bpf_map *map_ptr; 13855 int i, ret, cnt, delta = 0; 13856 13857 for (i = 0; i < insn_cnt; i++, insn++) { 13858 /* Make divide-by-zero exceptions impossible. */ 13859 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13860 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13861 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13862 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13863 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13864 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13865 struct bpf_insn *patchlet; 13866 struct bpf_insn chk_and_div[] = { 13867 /* [R,W]x div 0 -> 0 */ 13868 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13869 BPF_JNE | BPF_K, insn->src_reg, 13870 0, 2, 0), 13871 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13872 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13873 *insn, 13874 }; 13875 struct bpf_insn chk_and_mod[] = { 13876 /* [R,W]x mod 0 -> [R,W]x */ 13877 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13878 BPF_JEQ | BPF_K, insn->src_reg, 13879 0, 1 + (is64 ? 0 : 1), 0), 13880 *insn, 13881 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13882 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13883 }; 13884 13885 patchlet = isdiv ? chk_and_div : chk_and_mod; 13886 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13887 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13888 13889 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13890 if (!new_prog) 13891 return -ENOMEM; 13892 13893 delta += cnt - 1; 13894 env->prog = prog = new_prog; 13895 insn = new_prog->insnsi + i + delta; 13896 continue; 13897 } 13898 13899 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13900 if (BPF_CLASS(insn->code) == BPF_LD && 13901 (BPF_MODE(insn->code) == BPF_ABS || 13902 BPF_MODE(insn->code) == BPF_IND)) { 13903 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13904 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13905 verbose(env, "bpf verifier is misconfigured\n"); 13906 return -EINVAL; 13907 } 13908 13909 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13910 if (!new_prog) 13911 return -ENOMEM; 13912 13913 delta += cnt - 1; 13914 env->prog = prog = new_prog; 13915 insn = new_prog->insnsi + i + delta; 13916 continue; 13917 } 13918 13919 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13920 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13921 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13922 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13923 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13924 struct bpf_insn *patch = &insn_buf[0]; 13925 bool issrc, isneg, isimm; 13926 u32 off_reg; 13927 13928 aux = &env->insn_aux_data[i + delta]; 13929 if (!aux->alu_state || 13930 aux->alu_state == BPF_ALU_NON_POINTER) 13931 continue; 13932 13933 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13934 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13935 BPF_ALU_SANITIZE_SRC; 13936 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13937 13938 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13939 if (isimm) { 13940 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13941 } else { 13942 if (isneg) 13943 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13944 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13945 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 13946 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 13947 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 13948 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 13949 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 13950 } 13951 if (!issrc) 13952 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 13953 insn->src_reg = BPF_REG_AX; 13954 if (isneg) 13955 insn->code = insn->code == code_add ? 13956 code_sub : code_add; 13957 *patch++ = *insn; 13958 if (issrc && isneg && !isimm) 13959 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13960 cnt = patch - insn_buf; 13961 13962 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13963 if (!new_prog) 13964 return -ENOMEM; 13965 13966 delta += cnt - 1; 13967 env->prog = prog = new_prog; 13968 insn = new_prog->insnsi + i + delta; 13969 continue; 13970 } 13971 13972 if (insn->code != (BPF_JMP | BPF_CALL)) 13973 continue; 13974 if (insn->src_reg == BPF_PSEUDO_CALL) 13975 continue; 13976 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 13977 ret = fixup_kfunc_call(env, insn); 13978 if (ret) 13979 return ret; 13980 continue; 13981 } 13982 13983 if (insn->imm == BPF_FUNC_get_route_realm) 13984 prog->dst_needed = 1; 13985 if (insn->imm == BPF_FUNC_get_prandom_u32) 13986 bpf_user_rnd_init_once(); 13987 if (insn->imm == BPF_FUNC_override_return) 13988 prog->kprobe_override = 1; 13989 if (insn->imm == BPF_FUNC_tail_call) { 13990 /* If we tail call into other programs, we 13991 * cannot make any assumptions since they can 13992 * be replaced dynamically during runtime in 13993 * the program array. 13994 */ 13995 prog->cb_access = 1; 13996 if (!allow_tail_call_in_subprogs(env)) 13997 prog->aux->stack_depth = MAX_BPF_STACK; 13998 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 13999 14000 /* mark bpf_tail_call as different opcode to avoid 14001 * conditional branch in the interpreter for every normal 14002 * call and to prevent accidental JITing by JIT compiler 14003 * that doesn't support bpf_tail_call yet 14004 */ 14005 insn->imm = 0; 14006 insn->code = BPF_JMP | BPF_TAIL_CALL; 14007 14008 aux = &env->insn_aux_data[i + delta]; 14009 if (env->bpf_capable && !prog->blinding_requested && 14010 prog->jit_requested && 14011 !bpf_map_key_poisoned(aux) && 14012 !bpf_map_ptr_poisoned(aux) && 14013 !bpf_map_ptr_unpriv(aux)) { 14014 struct bpf_jit_poke_descriptor desc = { 14015 .reason = BPF_POKE_REASON_TAIL_CALL, 14016 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 14017 .tail_call.key = bpf_map_key_immediate(aux), 14018 .insn_idx = i + delta, 14019 }; 14020 14021 ret = bpf_jit_add_poke_descriptor(prog, &desc); 14022 if (ret < 0) { 14023 verbose(env, "adding tail call poke descriptor failed\n"); 14024 return ret; 14025 } 14026 14027 insn->imm = ret + 1; 14028 continue; 14029 } 14030 14031 if (!bpf_map_ptr_unpriv(aux)) 14032 continue; 14033 14034 /* instead of changing every JIT dealing with tail_call 14035 * emit two extra insns: 14036 * if (index >= max_entries) goto out; 14037 * index &= array->index_mask; 14038 * to avoid out-of-bounds cpu speculation 14039 */ 14040 if (bpf_map_ptr_poisoned(aux)) { 14041 verbose(env, "tail_call abusing map_ptr\n"); 14042 return -EINVAL; 14043 } 14044 14045 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14046 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 14047 map_ptr->max_entries, 2); 14048 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 14049 container_of(map_ptr, 14050 struct bpf_array, 14051 map)->index_mask); 14052 insn_buf[2] = *insn; 14053 cnt = 3; 14054 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14055 if (!new_prog) 14056 return -ENOMEM; 14057 14058 delta += cnt - 1; 14059 env->prog = prog = new_prog; 14060 insn = new_prog->insnsi + i + delta; 14061 continue; 14062 } 14063 14064 if (insn->imm == BPF_FUNC_timer_set_callback) { 14065 /* The verifier will process callback_fn as many times as necessary 14066 * with different maps and the register states prepared by 14067 * set_timer_callback_state will be accurate. 14068 * 14069 * The following use case is valid: 14070 * map1 is shared by prog1, prog2, prog3. 14071 * prog1 calls bpf_timer_init for some map1 elements 14072 * prog2 calls bpf_timer_set_callback for some map1 elements. 14073 * Those that were not bpf_timer_init-ed will return -EINVAL. 14074 * prog3 calls bpf_timer_start for some map1 elements. 14075 * Those that were not both bpf_timer_init-ed and 14076 * bpf_timer_set_callback-ed will return -EINVAL. 14077 */ 14078 struct bpf_insn ld_addrs[2] = { 14079 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 14080 }; 14081 14082 insn_buf[0] = ld_addrs[0]; 14083 insn_buf[1] = ld_addrs[1]; 14084 insn_buf[2] = *insn; 14085 cnt = 3; 14086 14087 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14088 if (!new_prog) 14089 return -ENOMEM; 14090 14091 delta += cnt - 1; 14092 env->prog = prog = new_prog; 14093 insn = new_prog->insnsi + i + delta; 14094 goto patch_call_imm; 14095 } 14096 14097 if (insn->imm == BPF_FUNC_task_storage_get || 14098 insn->imm == BPF_FUNC_sk_storage_get || 14099 insn->imm == BPF_FUNC_inode_storage_get) { 14100 if (env->prog->aux->sleepable) 14101 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 14102 else 14103 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 14104 insn_buf[1] = *insn; 14105 cnt = 2; 14106 14107 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14108 if (!new_prog) 14109 return -ENOMEM; 14110 14111 delta += cnt - 1; 14112 env->prog = prog = new_prog; 14113 insn = new_prog->insnsi + i + delta; 14114 goto patch_call_imm; 14115 } 14116 14117 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 14118 * and other inlining handlers are currently limited to 64 bit 14119 * only. 14120 */ 14121 if (prog->jit_requested && BITS_PER_LONG == 64 && 14122 (insn->imm == BPF_FUNC_map_lookup_elem || 14123 insn->imm == BPF_FUNC_map_update_elem || 14124 insn->imm == BPF_FUNC_map_delete_elem || 14125 insn->imm == BPF_FUNC_map_push_elem || 14126 insn->imm == BPF_FUNC_map_pop_elem || 14127 insn->imm == BPF_FUNC_map_peek_elem || 14128 insn->imm == BPF_FUNC_redirect_map || 14129 insn->imm == BPF_FUNC_for_each_map_elem || 14130 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 14131 aux = &env->insn_aux_data[i + delta]; 14132 if (bpf_map_ptr_poisoned(aux)) 14133 goto patch_call_imm; 14134 14135 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 14136 ops = map_ptr->ops; 14137 if (insn->imm == BPF_FUNC_map_lookup_elem && 14138 ops->map_gen_lookup) { 14139 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 14140 if (cnt == -EOPNOTSUPP) 14141 goto patch_map_ops_generic; 14142 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 14143 verbose(env, "bpf verifier is misconfigured\n"); 14144 return -EINVAL; 14145 } 14146 14147 new_prog = bpf_patch_insn_data(env, i + delta, 14148 insn_buf, cnt); 14149 if (!new_prog) 14150 return -ENOMEM; 14151 14152 delta += cnt - 1; 14153 env->prog = prog = new_prog; 14154 insn = new_prog->insnsi + i + delta; 14155 continue; 14156 } 14157 14158 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 14159 (void *(*)(struct bpf_map *map, void *key))NULL)); 14160 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 14161 (int (*)(struct bpf_map *map, void *key))NULL)); 14162 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 14163 (int (*)(struct bpf_map *map, void *key, void *value, 14164 u64 flags))NULL)); 14165 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 14166 (int (*)(struct bpf_map *map, void *value, 14167 u64 flags))NULL)); 14168 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 14169 (int (*)(struct bpf_map *map, void *value))NULL)); 14170 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 14171 (int (*)(struct bpf_map *map, void *value))NULL)); 14172 BUILD_BUG_ON(!__same_type(ops->map_redirect, 14173 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 14174 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 14175 (int (*)(struct bpf_map *map, 14176 bpf_callback_t callback_fn, 14177 void *callback_ctx, 14178 u64 flags))NULL)); 14179 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 14180 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 14181 14182 patch_map_ops_generic: 14183 switch (insn->imm) { 14184 case BPF_FUNC_map_lookup_elem: 14185 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 14186 continue; 14187 case BPF_FUNC_map_update_elem: 14188 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 14189 continue; 14190 case BPF_FUNC_map_delete_elem: 14191 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 14192 continue; 14193 case BPF_FUNC_map_push_elem: 14194 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 14195 continue; 14196 case BPF_FUNC_map_pop_elem: 14197 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 14198 continue; 14199 case BPF_FUNC_map_peek_elem: 14200 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 14201 continue; 14202 case BPF_FUNC_redirect_map: 14203 insn->imm = BPF_CALL_IMM(ops->map_redirect); 14204 continue; 14205 case BPF_FUNC_for_each_map_elem: 14206 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 14207 continue; 14208 case BPF_FUNC_map_lookup_percpu_elem: 14209 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 14210 continue; 14211 } 14212 14213 goto patch_call_imm; 14214 } 14215 14216 /* Implement bpf_jiffies64 inline. */ 14217 if (prog->jit_requested && BITS_PER_LONG == 64 && 14218 insn->imm == BPF_FUNC_jiffies64) { 14219 struct bpf_insn ld_jiffies_addr[2] = { 14220 BPF_LD_IMM64(BPF_REG_0, 14221 (unsigned long)&jiffies), 14222 }; 14223 14224 insn_buf[0] = ld_jiffies_addr[0]; 14225 insn_buf[1] = ld_jiffies_addr[1]; 14226 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 14227 BPF_REG_0, 0); 14228 cnt = 3; 14229 14230 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 14231 cnt); 14232 if (!new_prog) 14233 return -ENOMEM; 14234 14235 delta += cnt - 1; 14236 env->prog = prog = new_prog; 14237 insn = new_prog->insnsi + i + delta; 14238 continue; 14239 } 14240 14241 /* Implement bpf_get_func_arg inline. */ 14242 if (prog_type == BPF_PROG_TYPE_TRACING && 14243 insn->imm == BPF_FUNC_get_func_arg) { 14244 /* Load nr_args from ctx - 8 */ 14245 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14246 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 14247 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 14248 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 14249 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 14250 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14251 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 14252 insn_buf[7] = BPF_JMP_A(1); 14253 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 14254 cnt = 9; 14255 14256 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14257 if (!new_prog) 14258 return -ENOMEM; 14259 14260 delta += cnt - 1; 14261 env->prog = prog = new_prog; 14262 insn = new_prog->insnsi + i + delta; 14263 continue; 14264 } 14265 14266 /* Implement bpf_get_func_ret inline. */ 14267 if (prog_type == BPF_PROG_TYPE_TRACING && 14268 insn->imm == BPF_FUNC_get_func_ret) { 14269 if (eatype == BPF_TRACE_FEXIT || 14270 eatype == BPF_MODIFY_RETURN) { 14271 /* Load nr_args from ctx - 8 */ 14272 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14273 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 14274 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 14275 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 14276 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 14277 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 14278 cnt = 6; 14279 } else { 14280 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 14281 cnt = 1; 14282 } 14283 14284 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 14285 if (!new_prog) 14286 return -ENOMEM; 14287 14288 delta += cnt - 1; 14289 env->prog = prog = new_prog; 14290 insn = new_prog->insnsi + i + delta; 14291 continue; 14292 } 14293 14294 /* Implement get_func_arg_cnt inline. */ 14295 if (prog_type == BPF_PROG_TYPE_TRACING && 14296 insn->imm == BPF_FUNC_get_func_arg_cnt) { 14297 /* Load nr_args from ctx - 8 */ 14298 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 14299 14300 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14301 if (!new_prog) 14302 return -ENOMEM; 14303 14304 env->prog = prog = new_prog; 14305 insn = new_prog->insnsi + i + delta; 14306 continue; 14307 } 14308 14309 /* Implement bpf_get_func_ip inline. */ 14310 if (prog_type == BPF_PROG_TYPE_TRACING && 14311 insn->imm == BPF_FUNC_get_func_ip) { 14312 /* Load IP address from ctx - 16 */ 14313 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 14314 14315 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 14316 if (!new_prog) 14317 return -ENOMEM; 14318 14319 env->prog = prog = new_prog; 14320 insn = new_prog->insnsi + i + delta; 14321 continue; 14322 } 14323 14324 patch_call_imm: 14325 fn = env->ops->get_func_proto(insn->imm, env->prog); 14326 /* all functions that have prototype and verifier allowed 14327 * programs to call them, must be real in-kernel functions 14328 */ 14329 if (!fn->func) { 14330 verbose(env, 14331 "kernel subsystem misconfigured func %s#%d\n", 14332 func_id_name(insn->imm), insn->imm); 14333 return -EFAULT; 14334 } 14335 insn->imm = fn->func - __bpf_call_base; 14336 } 14337 14338 /* Since poke tab is now finalized, publish aux to tracker. */ 14339 for (i = 0; i < prog->aux->size_poke_tab; i++) { 14340 map_ptr = prog->aux->poke_tab[i].tail_call.map; 14341 if (!map_ptr->ops->map_poke_track || 14342 !map_ptr->ops->map_poke_untrack || 14343 !map_ptr->ops->map_poke_run) { 14344 verbose(env, "bpf verifier is misconfigured\n"); 14345 return -EINVAL; 14346 } 14347 14348 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 14349 if (ret < 0) { 14350 verbose(env, "tracking tail call prog failed\n"); 14351 return ret; 14352 } 14353 } 14354 14355 sort_kfunc_descs_by_imm(env->prog); 14356 14357 return 0; 14358 } 14359 14360 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 14361 int position, 14362 s32 stack_base, 14363 u32 callback_subprogno, 14364 u32 *cnt) 14365 { 14366 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 14367 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 14368 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 14369 int reg_loop_max = BPF_REG_6; 14370 int reg_loop_cnt = BPF_REG_7; 14371 int reg_loop_ctx = BPF_REG_8; 14372 14373 struct bpf_prog *new_prog; 14374 u32 callback_start; 14375 u32 call_insn_offset; 14376 s32 callback_offset; 14377 14378 /* This represents an inlined version of bpf_iter.c:bpf_loop, 14379 * be careful to modify this code in sync. 14380 */ 14381 struct bpf_insn insn_buf[] = { 14382 /* Return error and jump to the end of the patch if 14383 * expected number of iterations is too big. 14384 */ 14385 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 14386 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 14387 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 14388 /* spill R6, R7, R8 to use these as loop vars */ 14389 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 14390 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 14391 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 14392 /* initialize loop vars */ 14393 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 14394 BPF_MOV32_IMM(reg_loop_cnt, 0), 14395 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 14396 /* loop header, 14397 * if reg_loop_cnt >= reg_loop_max skip the loop body 14398 */ 14399 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 14400 /* callback call, 14401 * correct callback offset would be set after patching 14402 */ 14403 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 14404 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 14405 BPF_CALL_REL(0), 14406 /* increment loop counter */ 14407 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 14408 /* jump to loop header if callback returned 0 */ 14409 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 14410 /* return value of bpf_loop, 14411 * set R0 to the number of iterations 14412 */ 14413 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 14414 /* restore original values of R6, R7, R8 */ 14415 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 14416 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 14417 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 14418 }; 14419 14420 *cnt = ARRAY_SIZE(insn_buf); 14421 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 14422 if (!new_prog) 14423 return new_prog; 14424 14425 /* callback start is known only after patching */ 14426 callback_start = env->subprog_info[callback_subprogno].start; 14427 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 14428 call_insn_offset = position + 12; 14429 callback_offset = callback_start - call_insn_offset - 1; 14430 new_prog->insnsi[call_insn_offset].imm = callback_offset; 14431 14432 return new_prog; 14433 } 14434 14435 static bool is_bpf_loop_call(struct bpf_insn *insn) 14436 { 14437 return insn->code == (BPF_JMP | BPF_CALL) && 14438 insn->src_reg == 0 && 14439 insn->imm == BPF_FUNC_loop; 14440 } 14441 14442 /* For all sub-programs in the program (including main) check 14443 * insn_aux_data to see if there are bpf_loop calls that require 14444 * inlining. If such calls are found the calls are replaced with a 14445 * sequence of instructions produced by `inline_bpf_loop` function and 14446 * subprog stack_depth is increased by the size of 3 registers. 14447 * This stack space is used to spill values of the R6, R7, R8. These 14448 * registers are used to store the loop bound, counter and context 14449 * variables. 14450 */ 14451 static int optimize_bpf_loop(struct bpf_verifier_env *env) 14452 { 14453 struct bpf_subprog_info *subprogs = env->subprog_info; 14454 int i, cur_subprog = 0, cnt, delta = 0; 14455 struct bpf_insn *insn = env->prog->insnsi; 14456 int insn_cnt = env->prog->len; 14457 u16 stack_depth = subprogs[cur_subprog].stack_depth; 14458 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14459 u16 stack_depth_extra = 0; 14460 14461 for (i = 0; i < insn_cnt; i++, insn++) { 14462 struct bpf_loop_inline_state *inline_state = 14463 &env->insn_aux_data[i + delta].loop_inline_state; 14464 14465 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 14466 struct bpf_prog *new_prog; 14467 14468 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 14469 new_prog = inline_bpf_loop(env, 14470 i + delta, 14471 -(stack_depth + stack_depth_extra), 14472 inline_state->callback_subprogno, 14473 &cnt); 14474 if (!new_prog) 14475 return -ENOMEM; 14476 14477 delta += cnt - 1; 14478 env->prog = new_prog; 14479 insn = new_prog->insnsi + i + delta; 14480 } 14481 14482 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 14483 subprogs[cur_subprog].stack_depth += stack_depth_extra; 14484 cur_subprog++; 14485 stack_depth = subprogs[cur_subprog].stack_depth; 14486 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 14487 stack_depth_extra = 0; 14488 } 14489 } 14490 14491 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14492 14493 return 0; 14494 } 14495 14496 static void free_states(struct bpf_verifier_env *env) 14497 { 14498 struct bpf_verifier_state_list *sl, *sln; 14499 int i; 14500 14501 sl = env->free_list; 14502 while (sl) { 14503 sln = sl->next; 14504 free_verifier_state(&sl->state, false); 14505 kfree(sl); 14506 sl = sln; 14507 } 14508 env->free_list = NULL; 14509 14510 if (!env->explored_states) 14511 return; 14512 14513 for (i = 0; i < state_htab_size(env); i++) { 14514 sl = env->explored_states[i]; 14515 14516 while (sl) { 14517 sln = sl->next; 14518 free_verifier_state(&sl->state, false); 14519 kfree(sl); 14520 sl = sln; 14521 } 14522 env->explored_states[i] = NULL; 14523 } 14524 } 14525 14526 static int do_check_common(struct bpf_verifier_env *env, int subprog) 14527 { 14528 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14529 struct bpf_verifier_state *state; 14530 struct bpf_reg_state *regs; 14531 int ret, i; 14532 14533 env->prev_linfo = NULL; 14534 env->pass_cnt++; 14535 14536 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 14537 if (!state) 14538 return -ENOMEM; 14539 state->curframe = 0; 14540 state->speculative = false; 14541 state->branches = 1; 14542 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 14543 if (!state->frame[0]) { 14544 kfree(state); 14545 return -ENOMEM; 14546 } 14547 env->cur_state = state; 14548 init_func_state(env, state->frame[0], 14549 BPF_MAIN_FUNC /* callsite */, 14550 0 /* frameno */, 14551 subprog); 14552 14553 regs = state->frame[state->curframe]->regs; 14554 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 14555 ret = btf_prepare_func_args(env, subprog, regs); 14556 if (ret) 14557 goto out; 14558 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 14559 if (regs[i].type == PTR_TO_CTX) 14560 mark_reg_known_zero(env, regs, i); 14561 else if (regs[i].type == SCALAR_VALUE) 14562 mark_reg_unknown(env, regs, i); 14563 else if (base_type(regs[i].type) == PTR_TO_MEM) { 14564 const u32 mem_size = regs[i].mem_size; 14565 14566 mark_reg_known_zero(env, regs, i); 14567 regs[i].mem_size = mem_size; 14568 regs[i].id = ++env->id_gen; 14569 } 14570 } 14571 } else { 14572 /* 1st arg to a function */ 14573 regs[BPF_REG_1].type = PTR_TO_CTX; 14574 mark_reg_known_zero(env, regs, BPF_REG_1); 14575 ret = btf_check_subprog_arg_match(env, subprog, regs); 14576 if (ret == -EFAULT) 14577 /* unlikely verifier bug. abort. 14578 * ret == 0 and ret < 0 are sadly acceptable for 14579 * main() function due to backward compatibility. 14580 * Like socket filter program may be written as: 14581 * int bpf_prog(struct pt_regs *ctx) 14582 * and never dereference that ctx in the program. 14583 * 'struct pt_regs' is a type mismatch for socket 14584 * filter that should be using 'struct __sk_buff'. 14585 */ 14586 goto out; 14587 } 14588 14589 ret = do_check(env); 14590 out: 14591 /* check for NULL is necessary, since cur_state can be freed inside 14592 * do_check() under memory pressure. 14593 */ 14594 if (env->cur_state) { 14595 free_verifier_state(env->cur_state, true); 14596 env->cur_state = NULL; 14597 } 14598 while (!pop_stack(env, NULL, NULL, false)); 14599 if (!ret && pop_log) 14600 bpf_vlog_reset(&env->log, 0); 14601 free_states(env); 14602 return ret; 14603 } 14604 14605 /* Verify all global functions in a BPF program one by one based on their BTF. 14606 * All global functions must pass verification. Otherwise the whole program is rejected. 14607 * Consider: 14608 * int bar(int); 14609 * int foo(int f) 14610 * { 14611 * return bar(f); 14612 * } 14613 * int bar(int b) 14614 * { 14615 * ... 14616 * } 14617 * foo() will be verified first for R1=any_scalar_value. During verification it 14618 * will be assumed that bar() already verified successfully and call to bar() 14619 * from foo() will be checked for type match only. Later bar() will be verified 14620 * independently to check that it's safe for R1=any_scalar_value. 14621 */ 14622 static int do_check_subprogs(struct bpf_verifier_env *env) 14623 { 14624 struct bpf_prog_aux *aux = env->prog->aux; 14625 int i, ret; 14626 14627 if (!aux->func_info) 14628 return 0; 14629 14630 for (i = 1; i < env->subprog_cnt; i++) { 14631 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 14632 continue; 14633 env->insn_idx = env->subprog_info[i].start; 14634 WARN_ON_ONCE(env->insn_idx == 0); 14635 ret = do_check_common(env, i); 14636 if (ret) { 14637 return ret; 14638 } else if (env->log.level & BPF_LOG_LEVEL) { 14639 verbose(env, 14640 "Func#%d is safe for any args that match its prototype\n", 14641 i); 14642 } 14643 } 14644 return 0; 14645 } 14646 14647 static int do_check_main(struct bpf_verifier_env *env) 14648 { 14649 int ret; 14650 14651 env->insn_idx = 0; 14652 ret = do_check_common(env, 0); 14653 if (!ret) 14654 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 14655 return ret; 14656 } 14657 14658 14659 static void print_verification_stats(struct bpf_verifier_env *env) 14660 { 14661 int i; 14662 14663 if (env->log.level & BPF_LOG_STATS) { 14664 verbose(env, "verification time %lld usec\n", 14665 div_u64(env->verification_time, 1000)); 14666 verbose(env, "stack depth "); 14667 for (i = 0; i < env->subprog_cnt; i++) { 14668 u32 depth = env->subprog_info[i].stack_depth; 14669 14670 verbose(env, "%d", depth); 14671 if (i + 1 < env->subprog_cnt) 14672 verbose(env, "+"); 14673 } 14674 verbose(env, "\n"); 14675 } 14676 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 14677 "total_states %d peak_states %d mark_read %d\n", 14678 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 14679 env->max_states_per_insn, env->total_states, 14680 env->peak_states, env->longest_mark_read_walk); 14681 } 14682 14683 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 14684 { 14685 const struct btf_type *t, *func_proto; 14686 const struct bpf_struct_ops *st_ops; 14687 const struct btf_member *member; 14688 struct bpf_prog *prog = env->prog; 14689 u32 btf_id, member_idx; 14690 const char *mname; 14691 14692 if (!prog->gpl_compatible) { 14693 verbose(env, "struct ops programs must have a GPL compatible license\n"); 14694 return -EINVAL; 14695 } 14696 14697 btf_id = prog->aux->attach_btf_id; 14698 st_ops = bpf_struct_ops_find(btf_id); 14699 if (!st_ops) { 14700 verbose(env, "attach_btf_id %u is not a supported struct\n", 14701 btf_id); 14702 return -ENOTSUPP; 14703 } 14704 14705 t = st_ops->type; 14706 member_idx = prog->expected_attach_type; 14707 if (member_idx >= btf_type_vlen(t)) { 14708 verbose(env, "attach to invalid member idx %u of struct %s\n", 14709 member_idx, st_ops->name); 14710 return -EINVAL; 14711 } 14712 14713 member = &btf_type_member(t)[member_idx]; 14714 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 14715 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 14716 NULL); 14717 if (!func_proto) { 14718 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 14719 mname, member_idx, st_ops->name); 14720 return -EINVAL; 14721 } 14722 14723 if (st_ops->check_member) { 14724 int err = st_ops->check_member(t, member); 14725 14726 if (err) { 14727 verbose(env, "attach to unsupported member %s of struct %s\n", 14728 mname, st_ops->name); 14729 return err; 14730 } 14731 } 14732 14733 prog->aux->attach_func_proto = func_proto; 14734 prog->aux->attach_func_name = mname; 14735 env->ops = st_ops->verifier_ops; 14736 14737 return 0; 14738 } 14739 #define SECURITY_PREFIX "security_" 14740 14741 static int check_attach_modify_return(unsigned long addr, const char *func_name) 14742 { 14743 if (within_error_injection_list(addr) || 14744 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 14745 return 0; 14746 14747 return -EINVAL; 14748 } 14749 14750 /* list of non-sleepable functions that are otherwise on 14751 * ALLOW_ERROR_INJECTION list 14752 */ 14753 BTF_SET_START(btf_non_sleepable_error_inject) 14754 /* Three functions below can be called from sleepable and non-sleepable context. 14755 * Assume non-sleepable from bpf safety point of view. 14756 */ 14757 BTF_ID(func, __filemap_add_folio) 14758 BTF_ID(func, should_fail_alloc_page) 14759 BTF_ID(func, should_failslab) 14760 BTF_SET_END(btf_non_sleepable_error_inject) 14761 14762 static int check_non_sleepable_error_inject(u32 btf_id) 14763 { 14764 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 14765 } 14766 14767 int bpf_check_attach_target(struct bpf_verifier_log *log, 14768 const struct bpf_prog *prog, 14769 const struct bpf_prog *tgt_prog, 14770 u32 btf_id, 14771 struct bpf_attach_target_info *tgt_info) 14772 { 14773 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 14774 const char prefix[] = "btf_trace_"; 14775 int ret = 0, subprog = -1, i; 14776 const struct btf_type *t; 14777 bool conservative = true; 14778 const char *tname; 14779 struct btf *btf; 14780 long addr = 0; 14781 14782 if (!btf_id) { 14783 bpf_log(log, "Tracing programs must provide btf_id\n"); 14784 return -EINVAL; 14785 } 14786 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 14787 if (!btf) { 14788 bpf_log(log, 14789 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 14790 return -EINVAL; 14791 } 14792 t = btf_type_by_id(btf, btf_id); 14793 if (!t) { 14794 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 14795 return -EINVAL; 14796 } 14797 tname = btf_name_by_offset(btf, t->name_off); 14798 if (!tname) { 14799 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 14800 return -EINVAL; 14801 } 14802 if (tgt_prog) { 14803 struct bpf_prog_aux *aux = tgt_prog->aux; 14804 14805 for (i = 0; i < aux->func_info_cnt; i++) 14806 if (aux->func_info[i].type_id == btf_id) { 14807 subprog = i; 14808 break; 14809 } 14810 if (subprog == -1) { 14811 bpf_log(log, "Subprog %s doesn't exist\n", tname); 14812 return -EINVAL; 14813 } 14814 conservative = aux->func_info_aux[subprog].unreliable; 14815 if (prog_extension) { 14816 if (conservative) { 14817 bpf_log(log, 14818 "Cannot replace static functions\n"); 14819 return -EINVAL; 14820 } 14821 if (!prog->jit_requested) { 14822 bpf_log(log, 14823 "Extension programs should be JITed\n"); 14824 return -EINVAL; 14825 } 14826 } 14827 if (!tgt_prog->jited) { 14828 bpf_log(log, "Can attach to only JITed progs\n"); 14829 return -EINVAL; 14830 } 14831 if (tgt_prog->type == prog->type) { 14832 /* Cannot fentry/fexit another fentry/fexit program. 14833 * Cannot attach program extension to another extension. 14834 * It's ok to attach fentry/fexit to extension program. 14835 */ 14836 bpf_log(log, "Cannot recursively attach\n"); 14837 return -EINVAL; 14838 } 14839 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 14840 prog_extension && 14841 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 14842 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 14843 /* Program extensions can extend all program types 14844 * except fentry/fexit. The reason is the following. 14845 * The fentry/fexit programs are used for performance 14846 * analysis, stats and can be attached to any program 14847 * type except themselves. When extension program is 14848 * replacing XDP function it is necessary to allow 14849 * performance analysis of all functions. Both original 14850 * XDP program and its program extension. Hence 14851 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 14852 * allowed. If extending of fentry/fexit was allowed it 14853 * would be possible to create long call chain 14854 * fentry->extension->fentry->extension beyond 14855 * reasonable stack size. Hence extending fentry is not 14856 * allowed. 14857 */ 14858 bpf_log(log, "Cannot extend fentry/fexit\n"); 14859 return -EINVAL; 14860 } 14861 } else { 14862 if (prog_extension) { 14863 bpf_log(log, "Cannot replace kernel functions\n"); 14864 return -EINVAL; 14865 } 14866 } 14867 14868 switch (prog->expected_attach_type) { 14869 case BPF_TRACE_RAW_TP: 14870 if (tgt_prog) { 14871 bpf_log(log, 14872 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 14873 return -EINVAL; 14874 } 14875 if (!btf_type_is_typedef(t)) { 14876 bpf_log(log, "attach_btf_id %u is not a typedef\n", 14877 btf_id); 14878 return -EINVAL; 14879 } 14880 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 14881 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 14882 btf_id, tname); 14883 return -EINVAL; 14884 } 14885 tname += sizeof(prefix) - 1; 14886 t = btf_type_by_id(btf, t->type); 14887 if (!btf_type_is_ptr(t)) 14888 /* should never happen in valid vmlinux build */ 14889 return -EINVAL; 14890 t = btf_type_by_id(btf, t->type); 14891 if (!btf_type_is_func_proto(t)) 14892 /* should never happen in valid vmlinux build */ 14893 return -EINVAL; 14894 14895 break; 14896 case BPF_TRACE_ITER: 14897 if (!btf_type_is_func(t)) { 14898 bpf_log(log, "attach_btf_id %u is not a function\n", 14899 btf_id); 14900 return -EINVAL; 14901 } 14902 t = btf_type_by_id(btf, t->type); 14903 if (!btf_type_is_func_proto(t)) 14904 return -EINVAL; 14905 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14906 if (ret) 14907 return ret; 14908 break; 14909 default: 14910 if (!prog_extension) 14911 return -EINVAL; 14912 fallthrough; 14913 case BPF_MODIFY_RETURN: 14914 case BPF_LSM_MAC: 14915 case BPF_LSM_CGROUP: 14916 case BPF_TRACE_FENTRY: 14917 case BPF_TRACE_FEXIT: 14918 if (!btf_type_is_func(t)) { 14919 bpf_log(log, "attach_btf_id %u is not a function\n", 14920 btf_id); 14921 return -EINVAL; 14922 } 14923 if (prog_extension && 14924 btf_check_type_match(log, prog, btf, t)) 14925 return -EINVAL; 14926 t = btf_type_by_id(btf, t->type); 14927 if (!btf_type_is_func_proto(t)) 14928 return -EINVAL; 14929 14930 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14931 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14932 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 14933 return -EINVAL; 14934 14935 if (tgt_prog && conservative) 14936 t = NULL; 14937 14938 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14939 if (ret < 0) 14940 return ret; 14941 14942 if (tgt_prog) { 14943 if (subprog == 0) 14944 addr = (long) tgt_prog->bpf_func; 14945 else 14946 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 14947 } else { 14948 addr = kallsyms_lookup_name(tname); 14949 if (!addr) { 14950 bpf_log(log, 14951 "The address of function %s cannot be found\n", 14952 tname); 14953 return -ENOENT; 14954 } 14955 } 14956 14957 if (prog->aux->sleepable) { 14958 ret = -EINVAL; 14959 switch (prog->type) { 14960 case BPF_PROG_TYPE_TRACING: 14961 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 14962 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 14963 */ 14964 if (!check_non_sleepable_error_inject(btf_id) && 14965 within_error_injection_list(addr)) 14966 ret = 0; 14967 break; 14968 case BPF_PROG_TYPE_LSM: 14969 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 14970 * Only some of them are sleepable. 14971 */ 14972 if (bpf_lsm_is_sleepable_hook(btf_id)) 14973 ret = 0; 14974 break; 14975 default: 14976 break; 14977 } 14978 if (ret) { 14979 bpf_log(log, "%s is not sleepable\n", tname); 14980 return ret; 14981 } 14982 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 14983 if (tgt_prog) { 14984 bpf_log(log, "can't modify return codes of BPF programs\n"); 14985 return -EINVAL; 14986 } 14987 ret = check_attach_modify_return(addr, tname); 14988 if (ret) { 14989 bpf_log(log, "%s() is not modifiable\n", tname); 14990 return ret; 14991 } 14992 } 14993 14994 break; 14995 } 14996 tgt_info->tgt_addr = addr; 14997 tgt_info->tgt_name = tname; 14998 tgt_info->tgt_type = t; 14999 return 0; 15000 } 15001 15002 BTF_SET_START(btf_id_deny) 15003 BTF_ID_UNUSED 15004 #ifdef CONFIG_SMP 15005 BTF_ID(func, migrate_disable) 15006 BTF_ID(func, migrate_enable) 15007 #endif 15008 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 15009 BTF_ID(func, rcu_read_unlock_strict) 15010 #endif 15011 BTF_SET_END(btf_id_deny) 15012 15013 static int check_attach_btf_id(struct bpf_verifier_env *env) 15014 { 15015 struct bpf_prog *prog = env->prog; 15016 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 15017 struct bpf_attach_target_info tgt_info = {}; 15018 u32 btf_id = prog->aux->attach_btf_id; 15019 struct bpf_trampoline *tr; 15020 int ret; 15021 u64 key; 15022 15023 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 15024 if (prog->aux->sleepable) 15025 /* attach_btf_id checked to be zero already */ 15026 return 0; 15027 verbose(env, "Syscall programs can only be sleepable\n"); 15028 return -EINVAL; 15029 } 15030 15031 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 15032 prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) { 15033 verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n"); 15034 return -EINVAL; 15035 } 15036 15037 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 15038 return check_struct_ops_btf_id(env); 15039 15040 if (prog->type != BPF_PROG_TYPE_TRACING && 15041 prog->type != BPF_PROG_TYPE_LSM && 15042 prog->type != BPF_PROG_TYPE_EXT) 15043 return 0; 15044 15045 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 15046 if (ret) 15047 return ret; 15048 15049 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 15050 /* to make freplace equivalent to their targets, they need to 15051 * inherit env->ops and expected_attach_type for the rest of the 15052 * verification 15053 */ 15054 env->ops = bpf_verifier_ops[tgt_prog->type]; 15055 prog->expected_attach_type = tgt_prog->expected_attach_type; 15056 } 15057 15058 /* store info about the attachment target that will be used later */ 15059 prog->aux->attach_func_proto = tgt_info.tgt_type; 15060 prog->aux->attach_func_name = tgt_info.tgt_name; 15061 15062 if (tgt_prog) { 15063 prog->aux->saved_dst_prog_type = tgt_prog->type; 15064 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 15065 } 15066 15067 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 15068 prog->aux->attach_btf_trace = true; 15069 return 0; 15070 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 15071 if (!bpf_iter_prog_supported(prog)) 15072 return -EINVAL; 15073 return 0; 15074 } 15075 15076 if (prog->type == BPF_PROG_TYPE_LSM) { 15077 ret = bpf_lsm_verify_prog(&env->log, prog); 15078 if (ret < 0) 15079 return ret; 15080 } else if (prog->type == BPF_PROG_TYPE_TRACING && 15081 btf_id_set_contains(&btf_id_deny, btf_id)) { 15082 return -EINVAL; 15083 } 15084 15085 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 15086 tr = bpf_trampoline_get(key, &tgt_info); 15087 if (!tr) 15088 return -ENOMEM; 15089 15090 prog->aux->dst_trampoline = tr; 15091 return 0; 15092 } 15093 15094 struct btf *bpf_get_btf_vmlinux(void) 15095 { 15096 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 15097 mutex_lock(&bpf_verifier_lock); 15098 if (!btf_vmlinux) 15099 btf_vmlinux = btf_parse_vmlinux(); 15100 mutex_unlock(&bpf_verifier_lock); 15101 } 15102 return btf_vmlinux; 15103 } 15104 15105 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 15106 { 15107 u64 start_time = ktime_get_ns(); 15108 struct bpf_verifier_env *env; 15109 struct bpf_verifier_log *log; 15110 int i, len, ret = -EINVAL; 15111 bool is_priv; 15112 15113 /* no program is valid */ 15114 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 15115 return -EINVAL; 15116 15117 /* 'struct bpf_verifier_env' can be global, but since it's not small, 15118 * allocate/free it every time bpf_check() is called 15119 */ 15120 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 15121 if (!env) 15122 return -ENOMEM; 15123 log = &env->log; 15124 15125 len = (*prog)->len; 15126 env->insn_aux_data = 15127 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 15128 ret = -ENOMEM; 15129 if (!env->insn_aux_data) 15130 goto err_free_env; 15131 for (i = 0; i < len; i++) 15132 env->insn_aux_data[i].orig_idx = i; 15133 env->prog = *prog; 15134 env->ops = bpf_verifier_ops[env->prog->type]; 15135 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 15136 is_priv = bpf_capable(); 15137 15138 bpf_get_btf_vmlinux(); 15139 15140 /* grab the mutex to protect few globals used by verifier */ 15141 if (!is_priv) 15142 mutex_lock(&bpf_verifier_lock); 15143 15144 if (attr->log_level || attr->log_buf || attr->log_size) { 15145 /* user requested verbose verifier output 15146 * and supplied buffer to store the verification trace 15147 */ 15148 log->level = attr->log_level; 15149 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 15150 log->len_total = attr->log_size; 15151 15152 /* log attributes have to be sane */ 15153 if (!bpf_verifier_log_attr_valid(log)) { 15154 ret = -EINVAL; 15155 goto err_unlock; 15156 } 15157 } 15158 15159 mark_verifier_state_clean(env); 15160 15161 if (IS_ERR(btf_vmlinux)) { 15162 /* Either gcc or pahole or kernel are broken. */ 15163 verbose(env, "in-kernel BTF is malformed\n"); 15164 ret = PTR_ERR(btf_vmlinux); 15165 goto skip_full_check; 15166 } 15167 15168 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 15169 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 15170 env->strict_alignment = true; 15171 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 15172 env->strict_alignment = false; 15173 15174 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 15175 env->allow_uninit_stack = bpf_allow_uninit_stack(); 15176 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 15177 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 15178 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 15179 env->bpf_capable = bpf_capable(); 15180 15181 if (is_priv) 15182 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 15183 15184 env->explored_states = kvcalloc(state_htab_size(env), 15185 sizeof(struct bpf_verifier_state_list *), 15186 GFP_USER); 15187 ret = -ENOMEM; 15188 if (!env->explored_states) 15189 goto skip_full_check; 15190 15191 ret = add_subprog_and_kfunc(env); 15192 if (ret < 0) 15193 goto skip_full_check; 15194 15195 ret = check_subprogs(env); 15196 if (ret < 0) 15197 goto skip_full_check; 15198 15199 ret = check_btf_info(env, attr, uattr); 15200 if (ret < 0) 15201 goto skip_full_check; 15202 15203 ret = check_attach_btf_id(env); 15204 if (ret) 15205 goto skip_full_check; 15206 15207 ret = resolve_pseudo_ldimm64(env); 15208 if (ret < 0) 15209 goto skip_full_check; 15210 15211 if (bpf_prog_is_dev_bound(env->prog->aux)) { 15212 ret = bpf_prog_offload_verifier_prep(env->prog); 15213 if (ret) 15214 goto skip_full_check; 15215 } 15216 15217 ret = check_cfg(env); 15218 if (ret < 0) 15219 goto skip_full_check; 15220 15221 ret = do_check_subprogs(env); 15222 ret = ret ?: do_check_main(env); 15223 15224 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 15225 ret = bpf_prog_offload_finalize(env); 15226 15227 skip_full_check: 15228 kvfree(env->explored_states); 15229 15230 if (ret == 0) 15231 ret = check_max_stack_depth(env); 15232 15233 /* instruction rewrites happen after this point */ 15234 if (ret == 0) 15235 ret = optimize_bpf_loop(env); 15236 15237 if (is_priv) { 15238 if (ret == 0) 15239 opt_hard_wire_dead_code_branches(env); 15240 if (ret == 0) 15241 ret = opt_remove_dead_code(env); 15242 if (ret == 0) 15243 ret = opt_remove_nops(env); 15244 } else { 15245 if (ret == 0) 15246 sanitize_dead_code(env); 15247 } 15248 15249 if (ret == 0) 15250 /* program is valid, convert *(u32*)(ctx + off) accesses */ 15251 ret = convert_ctx_accesses(env); 15252 15253 if (ret == 0) 15254 ret = do_misc_fixups(env); 15255 15256 /* do 32-bit optimization after insn patching has done so those patched 15257 * insns could be handled correctly. 15258 */ 15259 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 15260 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 15261 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 15262 : false; 15263 } 15264 15265 if (ret == 0) 15266 ret = fixup_call_args(env); 15267 15268 env->verification_time = ktime_get_ns() - start_time; 15269 print_verification_stats(env); 15270 env->prog->aux->verified_insns = env->insn_processed; 15271 15272 if (log->level && bpf_verifier_log_full(log)) 15273 ret = -ENOSPC; 15274 if (log->level && !log->ubuf) { 15275 ret = -EFAULT; 15276 goto err_release_maps; 15277 } 15278 15279 if (ret) 15280 goto err_release_maps; 15281 15282 if (env->used_map_cnt) { 15283 /* if program passed verifier, update used_maps in bpf_prog_info */ 15284 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 15285 sizeof(env->used_maps[0]), 15286 GFP_KERNEL); 15287 15288 if (!env->prog->aux->used_maps) { 15289 ret = -ENOMEM; 15290 goto err_release_maps; 15291 } 15292 15293 memcpy(env->prog->aux->used_maps, env->used_maps, 15294 sizeof(env->used_maps[0]) * env->used_map_cnt); 15295 env->prog->aux->used_map_cnt = env->used_map_cnt; 15296 } 15297 if (env->used_btf_cnt) { 15298 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 15299 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 15300 sizeof(env->used_btfs[0]), 15301 GFP_KERNEL); 15302 if (!env->prog->aux->used_btfs) { 15303 ret = -ENOMEM; 15304 goto err_release_maps; 15305 } 15306 15307 memcpy(env->prog->aux->used_btfs, env->used_btfs, 15308 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 15309 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 15310 } 15311 if (env->used_map_cnt || env->used_btf_cnt) { 15312 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 15313 * bpf_ld_imm64 instructions 15314 */ 15315 convert_pseudo_ld_imm64(env); 15316 } 15317 15318 adjust_btf_func(env); 15319 15320 err_release_maps: 15321 if (!env->prog->aux->used_maps) 15322 /* if we didn't copy map pointers into bpf_prog_info, release 15323 * them now. Otherwise free_used_maps() will release them. 15324 */ 15325 release_maps(env); 15326 if (!env->prog->aux->used_btfs) 15327 release_btfs(env); 15328 15329 /* extension progs temporarily inherit the attach_type of their targets 15330 for verification purposes, so set it back to zero before returning 15331 */ 15332 if (env->prog->type == BPF_PROG_TYPE_EXT) 15333 env->prog->expected_attach_type = 0; 15334 15335 *prog = env->prog; 15336 err_unlock: 15337 if (!is_priv) 15338 mutex_unlock(&bpf_verifier_lock); 15339 vfree(env->insn_aux_data); 15340 err_free_env: 15341 kfree(env); 15342 return ret; 15343 } 15344