xref: /openbmc/linux/kernel/bpf/verifier.c (revision 151f4e2b)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <uapi/linux/btf.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/bpf.h>
19 #include <linux/btf.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/filter.h>
22 #include <net/netlink.h>
23 #include <linux/file.h>
24 #include <linux/vmalloc.h>
25 #include <linux/stringify.h>
26 #include <linux/bsearch.h>
27 #include <linux/sort.h>
28 #include <linux/perf_event.h>
29 #include <linux/ctype.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #include <linux/bpf_types.h>
38 #undef BPF_PROG_TYPE
39 #undef BPF_MAP_TYPE
40 };
41 
42 /* bpf_check() is a static code analyzer that walks eBPF program
43  * instruction by instruction and updates register/stack state.
44  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45  *
46  * The first pass is depth-first-search to check that the program is a DAG.
47  * It rejects the following programs:
48  * - larger than BPF_MAXINSNS insns
49  * - if loop is present (detected via back-edge)
50  * - unreachable insns exist (shouldn't be a forest. program = one function)
51  * - out of bounds or malformed jumps
52  * The second pass is all possible path descent from the 1st insn.
53  * Since it's analyzing all pathes through the program, the length of the
54  * analysis is limited to 64k insn, which may be hit even if total number of
55  * insn is less then 4K, but there are too many branches that change stack/regs.
56  * Number of 'branches to be analyzed' is limited to 1k
57  *
58  * On entry to each instruction, each register has a type, and the instruction
59  * changes the types of the registers depending on instruction semantics.
60  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61  * copied to R1.
62  *
63  * All registers are 64-bit.
64  * R0 - return register
65  * R1-R5 argument passing registers
66  * R6-R9 callee saved registers
67  * R10 - frame pointer read-only
68  *
69  * At the start of BPF program the register R1 contains a pointer to bpf_context
70  * and has type PTR_TO_CTX.
71  *
72  * Verifier tracks arithmetic operations on pointers in case:
73  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75  * 1st insn copies R10 (which has FRAME_PTR) type into R1
76  * and 2nd arithmetic instruction is pattern matched to recognize
77  * that it wants to construct a pointer to some element within stack.
78  * So after 2nd insn, the register R1 has type PTR_TO_STACK
79  * (and -20 constant is saved for further stack bounds checking).
80  * Meaning that this reg is a pointer to stack plus known immediate constant.
81  *
82  * Most of the time the registers have SCALAR_VALUE type, which
83  * means the register has some value, but it's not a valid pointer.
84  * (like pointer plus pointer becomes SCALAR_VALUE type)
85  *
86  * When verifier sees load or store instructions the type of base register
87  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88  * four pointer types recognized by check_mem_access() function.
89  *
90  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91  * and the range of [ptr, ptr + map's value_size) is accessible.
92  *
93  * registers used to pass values to function calls are checked against
94  * function argument constraints.
95  *
96  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97  * It means that the register type passed to this function must be
98  * PTR_TO_STACK and it will be used inside the function as
99  * 'pointer to map element key'
100  *
101  * For example the argument constraints for bpf_map_lookup_elem():
102  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103  *   .arg1_type = ARG_CONST_MAP_PTR,
104  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
105  *
106  * ret_type says that this function returns 'pointer to map elem value or null'
107  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108  * 2nd argument should be a pointer to stack, which will be used inside
109  * the helper function as a pointer to map element key.
110  *
111  * On the kernel side the helper function looks like:
112  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113  * {
114  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115  *    void *key = (void *) (unsigned long) r2;
116  *    void *value;
117  *
118  *    here kernel can access 'key' and 'map' pointers safely, knowing that
119  *    [key, key + map->key_size) bytes are valid and were initialized on
120  *    the stack of eBPF program.
121  * }
122  *
123  * Corresponding eBPF program may look like:
124  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
125  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
127  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128  * here verifier looks at prototype of map_lookup_elem() and sees:
129  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131  *
132  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134  * and were initialized prior to this call.
135  * If it's ok, then verifier allows this BPF_CALL insn and looks at
136  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138  * returns ether pointer to map value or NULL.
139  *
140  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141  * insn, the register holding that pointer in the true branch changes state to
142  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143  * branch. See check_cond_jmp_op().
144  *
145  * After the call R0 is set to return type of the function and registers R1-R5
146  * are set to NOT_INIT to indicate that they are no longer readable.
147  *
148  * The following reference types represent a potential reference to a kernel
149  * resource which, after first being allocated, must be checked and freed by
150  * the BPF program:
151  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152  *
153  * When the verifier sees a helper call return a reference type, it allocates a
154  * pointer id for the reference and stores it in the current function state.
155  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157  * passes through a NULL-check conditional. For the branch wherein the state is
158  * changed to CONST_IMM, the verifier releases the reference.
159  *
160  * For each helper function that allocates a reference, such as
161  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162  * bpf_sk_release(). When a reference type passes into the release function,
163  * the verifier also releases the reference. If any unchecked or unreleased
164  * reference remains at the end of the program, the verifier rejects it.
165  */
166 
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 	/* verifer state is 'st'
170 	 * before processing instruction 'insn_idx'
171 	 * and after processing instruction 'prev_insn_idx'
172 	 */
173 	struct bpf_verifier_state st;
174 	int insn_idx;
175 	int prev_insn_idx;
176 	struct bpf_verifier_stack_elem *next;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_STACK	1024
180 #define BPF_COMPLEXITY_LIMIT_STATES	64
181 
182 #define BPF_MAP_PTR_UNPRIV	1UL
183 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
184 					  POISON_POINTER_DELTA))
185 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
186 
187 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
188 {
189 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
190 }
191 
192 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
193 {
194 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
195 }
196 
197 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
198 			      const struct bpf_map *map, bool unpriv)
199 {
200 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
201 	unpriv |= bpf_map_ptr_unpriv(aux);
202 	aux->map_state = (unsigned long)map |
203 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
204 }
205 
206 struct bpf_call_arg_meta {
207 	struct bpf_map *map_ptr;
208 	bool raw_mode;
209 	bool pkt_access;
210 	int regno;
211 	int access_size;
212 	s64 msize_smax_value;
213 	u64 msize_umax_value;
214 	int ref_obj_id;
215 	int func_id;
216 };
217 
218 static DEFINE_MUTEX(bpf_verifier_lock);
219 
220 static const struct bpf_line_info *
221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222 {
223 	const struct bpf_line_info *linfo;
224 	const struct bpf_prog *prog;
225 	u32 i, nr_linfo;
226 
227 	prog = env->prog;
228 	nr_linfo = prog->aux->nr_linfo;
229 
230 	if (!nr_linfo || insn_off >= prog->len)
231 		return NULL;
232 
233 	linfo = prog->aux->linfo;
234 	for (i = 1; i < nr_linfo; i++)
235 		if (insn_off < linfo[i].insn_off)
236 			break;
237 
238 	return &linfo[i - 1];
239 }
240 
241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 		       va_list args)
243 {
244 	unsigned int n;
245 
246 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
247 
248 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 		  "verifier log line truncated - local buffer too short\n");
250 
251 	n = min(log->len_total - log->len_used - 1, n);
252 	log->kbuf[n] = '\0';
253 
254 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 		log->len_used += n;
256 	else
257 		log->ubuf = NULL;
258 }
259 
260 /* log_level controls verbosity level of eBPF verifier.
261  * bpf_verifier_log_write() is used to dump the verification trace to the log,
262  * so the user can figure out what's wrong with the program
263  */
264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 					   const char *fmt, ...)
266 {
267 	va_list args;
268 
269 	if (!bpf_verifier_log_needed(&env->log))
270 		return;
271 
272 	va_start(args, fmt);
273 	bpf_verifier_vlog(&env->log, fmt, args);
274 	va_end(args);
275 }
276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277 
278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279 {
280 	struct bpf_verifier_env *env = private_data;
281 	va_list args;
282 
283 	if (!bpf_verifier_log_needed(&env->log))
284 		return;
285 
286 	va_start(args, fmt);
287 	bpf_verifier_vlog(&env->log, fmt, args);
288 	va_end(args);
289 }
290 
291 static const char *ltrim(const char *s)
292 {
293 	while (isspace(*s))
294 		s++;
295 
296 	return s;
297 }
298 
299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 					 u32 insn_off,
301 					 const char *prefix_fmt, ...)
302 {
303 	const struct bpf_line_info *linfo;
304 
305 	if (!bpf_verifier_log_needed(&env->log))
306 		return;
307 
308 	linfo = find_linfo(env, insn_off);
309 	if (!linfo || linfo == env->prev_linfo)
310 		return;
311 
312 	if (prefix_fmt) {
313 		va_list args;
314 
315 		va_start(args, prefix_fmt);
316 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 		va_end(args);
318 	}
319 
320 	verbose(env, "%s\n",
321 		ltrim(btf_name_by_offset(env->prog->aux->btf,
322 					 linfo->line_off)));
323 
324 	env->prev_linfo = linfo;
325 }
326 
327 static bool type_is_pkt_pointer(enum bpf_reg_type type)
328 {
329 	return type == PTR_TO_PACKET ||
330 	       type == PTR_TO_PACKET_META;
331 }
332 
333 static bool type_is_sk_pointer(enum bpf_reg_type type)
334 {
335 	return type == PTR_TO_SOCKET ||
336 		type == PTR_TO_SOCK_COMMON ||
337 		type == PTR_TO_TCP_SOCK;
338 }
339 
340 static bool reg_type_may_be_null(enum bpf_reg_type type)
341 {
342 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
343 	       type == PTR_TO_SOCKET_OR_NULL ||
344 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
345 	       type == PTR_TO_TCP_SOCK_OR_NULL;
346 }
347 
348 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
349 {
350 	return reg->type == PTR_TO_MAP_VALUE &&
351 		map_value_has_spin_lock(reg->map_ptr);
352 }
353 
354 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
355 {
356 	return type == PTR_TO_SOCKET ||
357 		type == PTR_TO_SOCKET_OR_NULL ||
358 		type == PTR_TO_TCP_SOCK ||
359 		type == PTR_TO_TCP_SOCK_OR_NULL;
360 }
361 
362 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
363 {
364 	return type == ARG_PTR_TO_SOCK_COMMON;
365 }
366 
367 /* Determine whether the function releases some resources allocated by another
368  * function call. The first reference type argument will be assumed to be
369  * released by release_reference().
370  */
371 static bool is_release_function(enum bpf_func_id func_id)
372 {
373 	return func_id == BPF_FUNC_sk_release;
374 }
375 
376 static bool is_acquire_function(enum bpf_func_id func_id)
377 {
378 	return func_id == BPF_FUNC_sk_lookup_tcp ||
379 		func_id == BPF_FUNC_sk_lookup_udp ||
380 		func_id == BPF_FUNC_skc_lookup_tcp;
381 }
382 
383 static bool is_ptr_cast_function(enum bpf_func_id func_id)
384 {
385 	return func_id == BPF_FUNC_tcp_sock ||
386 		func_id == BPF_FUNC_sk_fullsock;
387 }
388 
389 /* string representation of 'enum bpf_reg_type' */
390 static const char * const reg_type_str[] = {
391 	[NOT_INIT]		= "?",
392 	[SCALAR_VALUE]		= "inv",
393 	[PTR_TO_CTX]		= "ctx",
394 	[CONST_PTR_TO_MAP]	= "map_ptr",
395 	[PTR_TO_MAP_VALUE]	= "map_value",
396 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
397 	[PTR_TO_STACK]		= "fp",
398 	[PTR_TO_PACKET]		= "pkt",
399 	[PTR_TO_PACKET_META]	= "pkt_meta",
400 	[PTR_TO_PACKET_END]	= "pkt_end",
401 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
402 	[PTR_TO_SOCKET]		= "sock",
403 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
404 	[PTR_TO_SOCK_COMMON]	= "sock_common",
405 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
406 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
407 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
408 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
409 };
410 
411 static char slot_type_char[] = {
412 	[STACK_INVALID]	= '?',
413 	[STACK_SPILL]	= 'r',
414 	[STACK_MISC]	= 'm',
415 	[STACK_ZERO]	= '0',
416 };
417 
418 static void print_liveness(struct bpf_verifier_env *env,
419 			   enum bpf_reg_liveness live)
420 {
421 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
422 	    verbose(env, "_");
423 	if (live & REG_LIVE_READ)
424 		verbose(env, "r");
425 	if (live & REG_LIVE_WRITTEN)
426 		verbose(env, "w");
427 	if (live & REG_LIVE_DONE)
428 		verbose(env, "D");
429 }
430 
431 static struct bpf_func_state *func(struct bpf_verifier_env *env,
432 				   const struct bpf_reg_state *reg)
433 {
434 	struct bpf_verifier_state *cur = env->cur_state;
435 
436 	return cur->frame[reg->frameno];
437 }
438 
439 static void print_verifier_state(struct bpf_verifier_env *env,
440 				 const struct bpf_func_state *state)
441 {
442 	const struct bpf_reg_state *reg;
443 	enum bpf_reg_type t;
444 	int i;
445 
446 	if (state->frameno)
447 		verbose(env, " frame%d:", state->frameno);
448 	for (i = 0; i < MAX_BPF_REG; i++) {
449 		reg = &state->regs[i];
450 		t = reg->type;
451 		if (t == NOT_INIT)
452 			continue;
453 		verbose(env, " R%d", i);
454 		print_liveness(env, reg->live);
455 		verbose(env, "=%s", reg_type_str[t]);
456 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
457 		    tnum_is_const(reg->var_off)) {
458 			/* reg->off should be 0 for SCALAR_VALUE */
459 			verbose(env, "%lld", reg->var_off.value + reg->off);
460 			if (t == PTR_TO_STACK)
461 				verbose(env, ",call_%d", func(env, reg)->callsite);
462 		} else {
463 			verbose(env, "(id=%d", reg->id);
464 			if (reg_type_may_be_refcounted_or_null(t))
465 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
466 			if (t != SCALAR_VALUE)
467 				verbose(env, ",off=%d", reg->off);
468 			if (type_is_pkt_pointer(t))
469 				verbose(env, ",r=%d", reg->range);
470 			else if (t == CONST_PTR_TO_MAP ||
471 				 t == PTR_TO_MAP_VALUE ||
472 				 t == PTR_TO_MAP_VALUE_OR_NULL)
473 				verbose(env, ",ks=%d,vs=%d",
474 					reg->map_ptr->key_size,
475 					reg->map_ptr->value_size);
476 			if (tnum_is_const(reg->var_off)) {
477 				/* Typically an immediate SCALAR_VALUE, but
478 				 * could be a pointer whose offset is too big
479 				 * for reg->off
480 				 */
481 				verbose(env, ",imm=%llx", reg->var_off.value);
482 			} else {
483 				if (reg->smin_value != reg->umin_value &&
484 				    reg->smin_value != S64_MIN)
485 					verbose(env, ",smin_value=%lld",
486 						(long long)reg->smin_value);
487 				if (reg->smax_value != reg->umax_value &&
488 				    reg->smax_value != S64_MAX)
489 					verbose(env, ",smax_value=%lld",
490 						(long long)reg->smax_value);
491 				if (reg->umin_value != 0)
492 					verbose(env, ",umin_value=%llu",
493 						(unsigned long long)reg->umin_value);
494 				if (reg->umax_value != U64_MAX)
495 					verbose(env, ",umax_value=%llu",
496 						(unsigned long long)reg->umax_value);
497 				if (!tnum_is_unknown(reg->var_off)) {
498 					char tn_buf[48];
499 
500 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
501 					verbose(env, ",var_off=%s", tn_buf);
502 				}
503 			}
504 			verbose(env, ")");
505 		}
506 	}
507 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
508 		char types_buf[BPF_REG_SIZE + 1];
509 		bool valid = false;
510 		int j;
511 
512 		for (j = 0; j < BPF_REG_SIZE; j++) {
513 			if (state->stack[i].slot_type[j] != STACK_INVALID)
514 				valid = true;
515 			types_buf[j] = slot_type_char[
516 					state->stack[i].slot_type[j]];
517 		}
518 		types_buf[BPF_REG_SIZE] = 0;
519 		if (!valid)
520 			continue;
521 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
522 		print_liveness(env, state->stack[i].spilled_ptr.live);
523 		if (state->stack[i].slot_type[0] == STACK_SPILL)
524 			verbose(env, "=%s",
525 				reg_type_str[state->stack[i].spilled_ptr.type]);
526 		else
527 			verbose(env, "=%s", types_buf);
528 	}
529 	if (state->acquired_refs && state->refs[0].id) {
530 		verbose(env, " refs=%d", state->refs[0].id);
531 		for (i = 1; i < state->acquired_refs; i++)
532 			if (state->refs[i].id)
533 				verbose(env, ",%d", state->refs[i].id);
534 	}
535 	verbose(env, "\n");
536 }
537 
538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
539 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
540 			       const struct bpf_func_state *src)	\
541 {									\
542 	if (!src->FIELD)						\
543 		return 0;						\
544 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
545 		/* internal bug, make state invalid to reject the program */ \
546 		memset(dst, 0, sizeof(*dst));				\
547 		return -EFAULT;						\
548 	}								\
549 	memcpy(dst->FIELD, src->FIELD,					\
550 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
551 	return 0;							\
552 }
553 /* copy_reference_state() */
554 COPY_STATE_FN(reference, acquired_refs, refs, 1)
555 /* copy_stack_state() */
556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557 #undef COPY_STATE_FN
558 
559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 				  bool copy_old)			\
562 {									\
563 	u32 old_size = state->COUNT;					\
564 	struct bpf_##NAME##_state *new_##FIELD;				\
565 	int slot = size / SIZE;						\
566 									\
567 	if (size <= old_size || !size) {				\
568 		if (copy_old)						\
569 			return 0;					\
570 		state->COUNT = slot * SIZE;				\
571 		if (!size && old_size) {				\
572 			kfree(state->FIELD);				\
573 			state->FIELD = NULL;				\
574 		}							\
575 		return 0;						\
576 	}								\
577 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 				    GFP_KERNEL);			\
579 	if (!new_##FIELD)						\
580 		return -ENOMEM;						\
581 	if (copy_old) {							\
582 		if (state->FIELD)					\
583 			memcpy(new_##FIELD, state->FIELD,		\
584 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 		memset(new_##FIELD + old_size / SIZE, 0,		\
586 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 	}								\
588 	state->COUNT = slot * SIZE;					\
589 	kfree(state->FIELD);						\
590 	state->FIELD = new_##FIELD;					\
591 	return 0;							\
592 }
593 /* realloc_reference_state() */
594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
595 /* realloc_stack_state() */
596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597 #undef REALLOC_STATE_FN
598 
599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600  * make it consume minimal amount of memory. check_stack_write() access from
601  * the program calls into realloc_func_state() to grow the stack size.
602  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603  * which realloc_stack_state() copies over. It points to previous
604  * bpf_verifier_state which is never reallocated.
605  */
606 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 			      int refs_size, bool copy_old)
608 {
609 	int err = realloc_reference_state(state, refs_size, copy_old);
610 	if (err)
611 		return err;
612 	return realloc_stack_state(state, stack_size, copy_old);
613 }
614 
615 /* Acquire a pointer id from the env and update the state->refs to include
616  * this new pointer reference.
617  * On success, returns a valid pointer id to associate with the register
618  * On failure, returns a negative errno.
619  */
620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
621 {
622 	struct bpf_func_state *state = cur_func(env);
623 	int new_ofs = state->acquired_refs;
624 	int id, err;
625 
626 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 	if (err)
628 		return err;
629 	id = ++env->id_gen;
630 	state->refs[new_ofs].id = id;
631 	state->refs[new_ofs].insn_idx = insn_idx;
632 
633 	return id;
634 }
635 
636 /* release function corresponding to acquire_reference_state(). Idempotent. */
637 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
638 {
639 	int i, last_idx;
640 
641 	last_idx = state->acquired_refs - 1;
642 	for (i = 0; i < state->acquired_refs; i++) {
643 		if (state->refs[i].id == ptr_id) {
644 			if (last_idx && i != last_idx)
645 				memcpy(&state->refs[i], &state->refs[last_idx],
646 				       sizeof(*state->refs));
647 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 			state->acquired_refs--;
649 			return 0;
650 		}
651 	}
652 	return -EINVAL;
653 }
654 
655 static int transfer_reference_state(struct bpf_func_state *dst,
656 				    struct bpf_func_state *src)
657 {
658 	int err = realloc_reference_state(dst, src->acquired_refs, false);
659 	if (err)
660 		return err;
661 	err = copy_reference_state(dst, src);
662 	if (err)
663 		return err;
664 	return 0;
665 }
666 
667 static void free_func_state(struct bpf_func_state *state)
668 {
669 	if (!state)
670 		return;
671 	kfree(state->refs);
672 	kfree(state->stack);
673 	kfree(state);
674 }
675 
676 static void free_verifier_state(struct bpf_verifier_state *state,
677 				bool free_self)
678 {
679 	int i;
680 
681 	for (i = 0; i <= state->curframe; i++) {
682 		free_func_state(state->frame[i]);
683 		state->frame[i] = NULL;
684 	}
685 	if (free_self)
686 		kfree(state);
687 }
688 
689 /* copy verifier state from src to dst growing dst stack space
690  * when necessary to accommodate larger src stack
691  */
692 static int copy_func_state(struct bpf_func_state *dst,
693 			   const struct bpf_func_state *src)
694 {
695 	int err;
696 
697 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
698 				 false);
699 	if (err)
700 		return err;
701 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
702 	err = copy_reference_state(dst, src);
703 	if (err)
704 		return err;
705 	return copy_stack_state(dst, src);
706 }
707 
708 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
709 			       const struct bpf_verifier_state *src)
710 {
711 	struct bpf_func_state *dst;
712 	int i, err;
713 
714 	/* if dst has more stack frames then src frame, free them */
715 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
716 		free_func_state(dst_state->frame[i]);
717 		dst_state->frame[i] = NULL;
718 	}
719 	dst_state->speculative = src->speculative;
720 	dst_state->curframe = src->curframe;
721 	dst_state->active_spin_lock = src->active_spin_lock;
722 	for (i = 0; i <= src->curframe; i++) {
723 		dst = dst_state->frame[i];
724 		if (!dst) {
725 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
726 			if (!dst)
727 				return -ENOMEM;
728 			dst_state->frame[i] = dst;
729 		}
730 		err = copy_func_state(dst, src->frame[i]);
731 		if (err)
732 			return err;
733 	}
734 	return 0;
735 }
736 
737 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
738 		     int *insn_idx)
739 {
740 	struct bpf_verifier_state *cur = env->cur_state;
741 	struct bpf_verifier_stack_elem *elem, *head = env->head;
742 	int err;
743 
744 	if (env->head == NULL)
745 		return -ENOENT;
746 
747 	if (cur) {
748 		err = copy_verifier_state(cur, &head->st);
749 		if (err)
750 			return err;
751 	}
752 	if (insn_idx)
753 		*insn_idx = head->insn_idx;
754 	if (prev_insn_idx)
755 		*prev_insn_idx = head->prev_insn_idx;
756 	elem = head->next;
757 	free_verifier_state(&head->st, false);
758 	kfree(head);
759 	env->head = elem;
760 	env->stack_size--;
761 	return 0;
762 }
763 
764 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
765 					     int insn_idx, int prev_insn_idx,
766 					     bool speculative)
767 {
768 	struct bpf_verifier_state *cur = env->cur_state;
769 	struct bpf_verifier_stack_elem *elem;
770 	int err;
771 
772 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
773 	if (!elem)
774 		goto err;
775 
776 	elem->insn_idx = insn_idx;
777 	elem->prev_insn_idx = prev_insn_idx;
778 	elem->next = env->head;
779 	env->head = elem;
780 	env->stack_size++;
781 	err = copy_verifier_state(&elem->st, cur);
782 	if (err)
783 		goto err;
784 	elem->st.speculative |= speculative;
785 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
786 		verbose(env, "BPF program is too complex\n");
787 		goto err;
788 	}
789 	return &elem->st;
790 err:
791 	free_verifier_state(env->cur_state, true);
792 	env->cur_state = NULL;
793 	/* pop all elements and return */
794 	while (!pop_stack(env, NULL, NULL));
795 	return NULL;
796 }
797 
798 #define CALLER_SAVED_REGS 6
799 static const int caller_saved[CALLER_SAVED_REGS] = {
800 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
801 };
802 
803 static void __mark_reg_not_init(struct bpf_reg_state *reg);
804 
805 /* Mark the unknown part of a register (variable offset or scalar value) as
806  * known to have the value @imm.
807  */
808 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
809 {
810 	/* Clear id, off, and union(map_ptr, range) */
811 	memset(((u8 *)reg) + sizeof(reg->type), 0,
812 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
813 	reg->var_off = tnum_const(imm);
814 	reg->smin_value = (s64)imm;
815 	reg->smax_value = (s64)imm;
816 	reg->umin_value = imm;
817 	reg->umax_value = imm;
818 }
819 
820 /* Mark the 'variable offset' part of a register as zero.  This should be
821  * used only on registers holding a pointer type.
822  */
823 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
824 {
825 	__mark_reg_known(reg, 0);
826 }
827 
828 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
829 {
830 	__mark_reg_known(reg, 0);
831 	reg->type = SCALAR_VALUE;
832 }
833 
834 static void mark_reg_known_zero(struct bpf_verifier_env *env,
835 				struct bpf_reg_state *regs, u32 regno)
836 {
837 	if (WARN_ON(regno >= MAX_BPF_REG)) {
838 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
839 		/* Something bad happened, let's kill all regs */
840 		for (regno = 0; regno < MAX_BPF_REG; regno++)
841 			__mark_reg_not_init(regs + regno);
842 		return;
843 	}
844 	__mark_reg_known_zero(regs + regno);
845 }
846 
847 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
848 {
849 	return type_is_pkt_pointer(reg->type);
850 }
851 
852 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
853 {
854 	return reg_is_pkt_pointer(reg) ||
855 	       reg->type == PTR_TO_PACKET_END;
856 }
857 
858 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
859 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
860 				    enum bpf_reg_type which)
861 {
862 	/* The register can already have a range from prior markings.
863 	 * This is fine as long as it hasn't been advanced from its
864 	 * origin.
865 	 */
866 	return reg->type == which &&
867 	       reg->id == 0 &&
868 	       reg->off == 0 &&
869 	       tnum_equals_const(reg->var_off, 0);
870 }
871 
872 /* Attempts to improve min/max values based on var_off information */
873 static void __update_reg_bounds(struct bpf_reg_state *reg)
874 {
875 	/* min signed is max(sign bit) | min(other bits) */
876 	reg->smin_value = max_t(s64, reg->smin_value,
877 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
878 	/* max signed is min(sign bit) | max(other bits) */
879 	reg->smax_value = min_t(s64, reg->smax_value,
880 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
881 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
882 	reg->umax_value = min(reg->umax_value,
883 			      reg->var_off.value | reg->var_off.mask);
884 }
885 
886 /* Uses signed min/max values to inform unsigned, and vice-versa */
887 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
888 {
889 	/* Learn sign from signed bounds.
890 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
891 	 * are the same, so combine.  This works even in the negative case, e.g.
892 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
893 	 */
894 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
895 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
896 							  reg->umin_value);
897 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
898 							  reg->umax_value);
899 		return;
900 	}
901 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
902 	 * boundary, so we must be careful.
903 	 */
904 	if ((s64)reg->umax_value >= 0) {
905 		/* Positive.  We can't learn anything from the smin, but smax
906 		 * is positive, hence safe.
907 		 */
908 		reg->smin_value = reg->umin_value;
909 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
910 							  reg->umax_value);
911 	} else if ((s64)reg->umin_value < 0) {
912 		/* Negative.  We can't learn anything from the smax, but smin
913 		 * is negative, hence safe.
914 		 */
915 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
916 							  reg->umin_value);
917 		reg->smax_value = reg->umax_value;
918 	}
919 }
920 
921 /* Attempts to improve var_off based on unsigned min/max information */
922 static void __reg_bound_offset(struct bpf_reg_state *reg)
923 {
924 	reg->var_off = tnum_intersect(reg->var_off,
925 				      tnum_range(reg->umin_value,
926 						 reg->umax_value));
927 }
928 
929 /* Reset the min/max bounds of a register */
930 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
931 {
932 	reg->smin_value = S64_MIN;
933 	reg->smax_value = S64_MAX;
934 	reg->umin_value = 0;
935 	reg->umax_value = U64_MAX;
936 }
937 
938 /* Mark a register as having a completely unknown (scalar) value. */
939 static void __mark_reg_unknown(struct bpf_reg_state *reg)
940 {
941 	/*
942 	 * Clear type, id, off, and union(map_ptr, range) and
943 	 * padding between 'type' and union
944 	 */
945 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
946 	reg->type = SCALAR_VALUE;
947 	reg->var_off = tnum_unknown;
948 	reg->frameno = 0;
949 	__mark_reg_unbounded(reg);
950 }
951 
952 static void mark_reg_unknown(struct bpf_verifier_env *env,
953 			     struct bpf_reg_state *regs, u32 regno)
954 {
955 	if (WARN_ON(regno >= MAX_BPF_REG)) {
956 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
957 		/* Something bad happened, let's kill all regs except FP */
958 		for (regno = 0; regno < BPF_REG_FP; regno++)
959 			__mark_reg_not_init(regs + regno);
960 		return;
961 	}
962 	__mark_reg_unknown(regs + regno);
963 }
964 
965 static void __mark_reg_not_init(struct bpf_reg_state *reg)
966 {
967 	__mark_reg_unknown(reg);
968 	reg->type = NOT_INIT;
969 }
970 
971 static void mark_reg_not_init(struct bpf_verifier_env *env,
972 			      struct bpf_reg_state *regs, u32 regno)
973 {
974 	if (WARN_ON(regno >= MAX_BPF_REG)) {
975 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
976 		/* Something bad happened, let's kill all regs except FP */
977 		for (regno = 0; regno < BPF_REG_FP; regno++)
978 			__mark_reg_not_init(regs + regno);
979 		return;
980 	}
981 	__mark_reg_not_init(regs + regno);
982 }
983 
984 static void init_reg_state(struct bpf_verifier_env *env,
985 			   struct bpf_func_state *state)
986 {
987 	struct bpf_reg_state *regs = state->regs;
988 	int i;
989 
990 	for (i = 0; i < MAX_BPF_REG; i++) {
991 		mark_reg_not_init(env, regs, i);
992 		regs[i].live = REG_LIVE_NONE;
993 		regs[i].parent = NULL;
994 	}
995 
996 	/* frame pointer */
997 	regs[BPF_REG_FP].type = PTR_TO_STACK;
998 	mark_reg_known_zero(env, regs, BPF_REG_FP);
999 	regs[BPF_REG_FP].frameno = state->frameno;
1000 
1001 	/* 1st arg to a function */
1002 	regs[BPF_REG_1].type = PTR_TO_CTX;
1003 	mark_reg_known_zero(env, regs, BPF_REG_1);
1004 }
1005 
1006 #define BPF_MAIN_FUNC (-1)
1007 static void init_func_state(struct bpf_verifier_env *env,
1008 			    struct bpf_func_state *state,
1009 			    int callsite, int frameno, int subprogno)
1010 {
1011 	state->callsite = callsite;
1012 	state->frameno = frameno;
1013 	state->subprogno = subprogno;
1014 	init_reg_state(env, state);
1015 }
1016 
1017 enum reg_arg_type {
1018 	SRC_OP,		/* register is used as source operand */
1019 	DST_OP,		/* register is used as destination operand */
1020 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1021 };
1022 
1023 static int cmp_subprogs(const void *a, const void *b)
1024 {
1025 	return ((struct bpf_subprog_info *)a)->start -
1026 	       ((struct bpf_subprog_info *)b)->start;
1027 }
1028 
1029 static int find_subprog(struct bpf_verifier_env *env, int off)
1030 {
1031 	struct bpf_subprog_info *p;
1032 
1033 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1034 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1035 	if (!p)
1036 		return -ENOENT;
1037 	return p - env->subprog_info;
1038 
1039 }
1040 
1041 static int add_subprog(struct bpf_verifier_env *env, int off)
1042 {
1043 	int insn_cnt = env->prog->len;
1044 	int ret;
1045 
1046 	if (off >= insn_cnt || off < 0) {
1047 		verbose(env, "call to invalid destination\n");
1048 		return -EINVAL;
1049 	}
1050 	ret = find_subprog(env, off);
1051 	if (ret >= 0)
1052 		return 0;
1053 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1054 		verbose(env, "too many subprograms\n");
1055 		return -E2BIG;
1056 	}
1057 	env->subprog_info[env->subprog_cnt++].start = off;
1058 	sort(env->subprog_info, env->subprog_cnt,
1059 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1060 	return 0;
1061 }
1062 
1063 static int check_subprogs(struct bpf_verifier_env *env)
1064 {
1065 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1066 	struct bpf_subprog_info *subprog = env->subprog_info;
1067 	struct bpf_insn *insn = env->prog->insnsi;
1068 	int insn_cnt = env->prog->len;
1069 
1070 	/* Add entry function. */
1071 	ret = add_subprog(env, 0);
1072 	if (ret < 0)
1073 		return ret;
1074 
1075 	/* determine subprog starts. The end is one before the next starts */
1076 	for (i = 0; i < insn_cnt; i++) {
1077 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1078 			continue;
1079 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1080 			continue;
1081 		if (!env->allow_ptr_leaks) {
1082 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1083 			return -EPERM;
1084 		}
1085 		ret = add_subprog(env, i + insn[i].imm + 1);
1086 		if (ret < 0)
1087 			return ret;
1088 	}
1089 
1090 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1091 	 * logic. 'subprog_cnt' should not be increased.
1092 	 */
1093 	subprog[env->subprog_cnt].start = insn_cnt;
1094 
1095 	if (env->log.level & BPF_LOG_LEVEL2)
1096 		for (i = 0; i < env->subprog_cnt; i++)
1097 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1098 
1099 	/* now check that all jumps are within the same subprog */
1100 	subprog_start = subprog[cur_subprog].start;
1101 	subprog_end = subprog[cur_subprog + 1].start;
1102 	for (i = 0; i < insn_cnt; i++) {
1103 		u8 code = insn[i].code;
1104 
1105 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1106 			goto next;
1107 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1108 			goto next;
1109 		off = i + insn[i].off + 1;
1110 		if (off < subprog_start || off >= subprog_end) {
1111 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1112 			return -EINVAL;
1113 		}
1114 next:
1115 		if (i == subprog_end - 1) {
1116 			/* to avoid fall-through from one subprog into another
1117 			 * the last insn of the subprog should be either exit
1118 			 * or unconditional jump back
1119 			 */
1120 			if (code != (BPF_JMP | BPF_EXIT) &&
1121 			    code != (BPF_JMP | BPF_JA)) {
1122 				verbose(env, "last insn is not an exit or jmp\n");
1123 				return -EINVAL;
1124 			}
1125 			subprog_start = subprog_end;
1126 			cur_subprog++;
1127 			if (cur_subprog < env->subprog_cnt)
1128 				subprog_end = subprog[cur_subprog + 1].start;
1129 		}
1130 	}
1131 	return 0;
1132 }
1133 
1134 /* Parentage chain of this register (or stack slot) should take care of all
1135  * issues like callee-saved registers, stack slot allocation time, etc.
1136  */
1137 static int mark_reg_read(struct bpf_verifier_env *env,
1138 			 const struct bpf_reg_state *state,
1139 			 struct bpf_reg_state *parent)
1140 {
1141 	bool writes = parent == state->parent; /* Observe write marks */
1142 	int cnt = 0;
1143 
1144 	while (parent) {
1145 		/* if read wasn't screened by an earlier write ... */
1146 		if (writes && state->live & REG_LIVE_WRITTEN)
1147 			break;
1148 		if (parent->live & REG_LIVE_DONE) {
1149 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1150 				reg_type_str[parent->type],
1151 				parent->var_off.value, parent->off);
1152 			return -EFAULT;
1153 		}
1154 		if (parent->live & REG_LIVE_READ)
1155 			/* The parentage chain never changes and
1156 			 * this parent was already marked as LIVE_READ.
1157 			 * There is no need to keep walking the chain again and
1158 			 * keep re-marking all parents as LIVE_READ.
1159 			 * This case happens when the same register is read
1160 			 * multiple times without writes into it in-between.
1161 			 */
1162 			break;
1163 		/* ... then we depend on parent's value */
1164 		parent->live |= REG_LIVE_READ;
1165 		state = parent;
1166 		parent = state->parent;
1167 		writes = true;
1168 		cnt++;
1169 	}
1170 
1171 	if (env->longest_mark_read_walk < cnt)
1172 		env->longest_mark_read_walk = cnt;
1173 	return 0;
1174 }
1175 
1176 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1177 			 enum reg_arg_type t)
1178 {
1179 	struct bpf_verifier_state *vstate = env->cur_state;
1180 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1181 	struct bpf_reg_state *reg, *regs = state->regs;
1182 
1183 	if (regno >= MAX_BPF_REG) {
1184 		verbose(env, "R%d is invalid\n", regno);
1185 		return -EINVAL;
1186 	}
1187 
1188 	reg = &regs[regno];
1189 	if (t == SRC_OP) {
1190 		/* check whether register used as source operand can be read */
1191 		if (reg->type == NOT_INIT) {
1192 			verbose(env, "R%d !read_ok\n", regno);
1193 			return -EACCES;
1194 		}
1195 		/* We don't need to worry about FP liveness because it's read-only */
1196 		if (regno == BPF_REG_FP)
1197 			return 0;
1198 
1199 		return mark_reg_read(env, reg, reg->parent);
1200 	} else {
1201 		/* check whether register used as dest operand can be written to */
1202 		if (regno == BPF_REG_FP) {
1203 			verbose(env, "frame pointer is read only\n");
1204 			return -EACCES;
1205 		}
1206 		reg->live |= REG_LIVE_WRITTEN;
1207 		if (t == DST_OP)
1208 			mark_reg_unknown(env, regs, regno);
1209 	}
1210 	return 0;
1211 }
1212 
1213 static bool is_spillable_regtype(enum bpf_reg_type type)
1214 {
1215 	switch (type) {
1216 	case PTR_TO_MAP_VALUE:
1217 	case PTR_TO_MAP_VALUE_OR_NULL:
1218 	case PTR_TO_STACK:
1219 	case PTR_TO_CTX:
1220 	case PTR_TO_PACKET:
1221 	case PTR_TO_PACKET_META:
1222 	case PTR_TO_PACKET_END:
1223 	case PTR_TO_FLOW_KEYS:
1224 	case CONST_PTR_TO_MAP:
1225 	case PTR_TO_SOCKET:
1226 	case PTR_TO_SOCKET_OR_NULL:
1227 	case PTR_TO_SOCK_COMMON:
1228 	case PTR_TO_SOCK_COMMON_OR_NULL:
1229 	case PTR_TO_TCP_SOCK:
1230 	case PTR_TO_TCP_SOCK_OR_NULL:
1231 		return true;
1232 	default:
1233 		return false;
1234 	}
1235 }
1236 
1237 /* Does this register contain a constant zero? */
1238 static bool register_is_null(struct bpf_reg_state *reg)
1239 {
1240 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1241 }
1242 
1243 /* check_stack_read/write functions track spill/fill of registers,
1244  * stack boundary and alignment are checked in check_mem_access()
1245  */
1246 static int check_stack_write(struct bpf_verifier_env *env,
1247 			     struct bpf_func_state *state, /* func where register points to */
1248 			     int off, int size, int value_regno, int insn_idx)
1249 {
1250 	struct bpf_func_state *cur; /* state of the current function */
1251 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1252 	enum bpf_reg_type type;
1253 
1254 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1255 				 state->acquired_refs, true);
1256 	if (err)
1257 		return err;
1258 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1259 	 * so it's aligned access and [off, off + size) are within stack limits
1260 	 */
1261 	if (!env->allow_ptr_leaks &&
1262 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1263 	    size != BPF_REG_SIZE) {
1264 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1265 		return -EACCES;
1266 	}
1267 
1268 	cur = env->cur_state->frame[env->cur_state->curframe];
1269 	if (value_regno >= 0 &&
1270 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1271 
1272 		/* register containing pointer is being spilled into stack */
1273 		if (size != BPF_REG_SIZE) {
1274 			verbose(env, "invalid size of register spill\n");
1275 			return -EACCES;
1276 		}
1277 
1278 		if (state != cur && type == PTR_TO_STACK) {
1279 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1280 			return -EINVAL;
1281 		}
1282 
1283 		/* save register state */
1284 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1285 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1286 
1287 		for (i = 0; i < BPF_REG_SIZE; i++) {
1288 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1289 			    !env->allow_ptr_leaks) {
1290 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1291 				int soff = (-spi - 1) * BPF_REG_SIZE;
1292 
1293 				/* detected reuse of integer stack slot with a pointer
1294 				 * which means either llvm is reusing stack slot or
1295 				 * an attacker is trying to exploit CVE-2018-3639
1296 				 * (speculative store bypass)
1297 				 * Have to sanitize that slot with preemptive
1298 				 * store of zero.
1299 				 */
1300 				if (*poff && *poff != soff) {
1301 					/* disallow programs where single insn stores
1302 					 * into two different stack slots, since verifier
1303 					 * cannot sanitize them
1304 					 */
1305 					verbose(env,
1306 						"insn %d cannot access two stack slots fp%d and fp%d",
1307 						insn_idx, *poff, soff);
1308 					return -EINVAL;
1309 				}
1310 				*poff = soff;
1311 			}
1312 			state->stack[spi].slot_type[i] = STACK_SPILL;
1313 		}
1314 	} else {
1315 		u8 type = STACK_MISC;
1316 
1317 		/* regular write of data into stack destroys any spilled ptr */
1318 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1319 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1320 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1321 			for (i = 0; i < BPF_REG_SIZE; i++)
1322 				state->stack[spi].slot_type[i] = STACK_MISC;
1323 
1324 		/* only mark the slot as written if all 8 bytes were written
1325 		 * otherwise read propagation may incorrectly stop too soon
1326 		 * when stack slots are partially written.
1327 		 * This heuristic means that read propagation will be
1328 		 * conservative, since it will add reg_live_read marks
1329 		 * to stack slots all the way to first state when programs
1330 		 * writes+reads less than 8 bytes
1331 		 */
1332 		if (size == BPF_REG_SIZE)
1333 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1334 
1335 		/* when we zero initialize stack slots mark them as such */
1336 		if (value_regno >= 0 &&
1337 		    register_is_null(&cur->regs[value_regno]))
1338 			type = STACK_ZERO;
1339 
1340 		/* Mark slots affected by this stack write. */
1341 		for (i = 0; i < size; i++)
1342 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1343 				type;
1344 	}
1345 	return 0;
1346 }
1347 
1348 static int check_stack_read(struct bpf_verifier_env *env,
1349 			    struct bpf_func_state *reg_state /* func where register points to */,
1350 			    int off, int size, int value_regno)
1351 {
1352 	struct bpf_verifier_state *vstate = env->cur_state;
1353 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1354 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1355 	u8 *stype;
1356 
1357 	if (reg_state->allocated_stack <= slot) {
1358 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1359 			off, size);
1360 		return -EACCES;
1361 	}
1362 	stype = reg_state->stack[spi].slot_type;
1363 
1364 	if (stype[0] == STACK_SPILL) {
1365 		if (size != BPF_REG_SIZE) {
1366 			verbose(env, "invalid size of register spill\n");
1367 			return -EACCES;
1368 		}
1369 		for (i = 1; i < BPF_REG_SIZE; i++) {
1370 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1371 				verbose(env, "corrupted spill memory\n");
1372 				return -EACCES;
1373 			}
1374 		}
1375 
1376 		if (value_regno >= 0) {
1377 			/* restore register state from stack */
1378 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1379 			/* mark reg as written since spilled pointer state likely
1380 			 * has its liveness marks cleared by is_state_visited()
1381 			 * which resets stack/reg liveness for state transitions
1382 			 */
1383 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1384 		}
1385 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1386 			      reg_state->stack[spi].spilled_ptr.parent);
1387 		return 0;
1388 	} else {
1389 		int zeros = 0;
1390 
1391 		for (i = 0; i < size; i++) {
1392 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1393 				continue;
1394 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1395 				zeros++;
1396 				continue;
1397 			}
1398 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1399 				off, i, size);
1400 			return -EACCES;
1401 		}
1402 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1403 			      reg_state->stack[spi].spilled_ptr.parent);
1404 		if (value_regno >= 0) {
1405 			if (zeros == size) {
1406 				/* any size read into register is zero extended,
1407 				 * so the whole register == const_zero
1408 				 */
1409 				__mark_reg_const_zero(&state->regs[value_regno]);
1410 			} else {
1411 				/* have read misc data from the stack */
1412 				mark_reg_unknown(env, state->regs, value_regno);
1413 			}
1414 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1415 		}
1416 		return 0;
1417 	}
1418 }
1419 
1420 static int check_stack_access(struct bpf_verifier_env *env,
1421 			      const struct bpf_reg_state *reg,
1422 			      int off, int size)
1423 {
1424 	/* Stack accesses must be at a fixed offset, so that we
1425 	 * can determine what type of data were returned. See
1426 	 * check_stack_read().
1427 	 */
1428 	if (!tnum_is_const(reg->var_off)) {
1429 		char tn_buf[48];
1430 
1431 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1432 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
1433 			tn_buf, off, size);
1434 		return -EACCES;
1435 	}
1436 
1437 	if (off >= 0 || off < -MAX_BPF_STACK) {
1438 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
1439 		return -EACCES;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
1446 				 int off, int size, enum bpf_access_type type)
1447 {
1448 	struct bpf_reg_state *regs = cur_regs(env);
1449 	struct bpf_map *map = regs[regno].map_ptr;
1450 	u32 cap = bpf_map_flags_to_cap(map);
1451 
1452 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
1453 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
1454 			map->value_size, off, size);
1455 		return -EACCES;
1456 	}
1457 
1458 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
1459 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
1460 			map->value_size, off, size);
1461 		return -EACCES;
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 /* check read/write into map element returned by bpf_map_lookup_elem() */
1468 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1469 			      int size, bool zero_size_allowed)
1470 {
1471 	struct bpf_reg_state *regs = cur_regs(env);
1472 	struct bpf_map *map = regs[regno].map_ptr;
1473 
1474 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1475 	    off + size > map->value_size) {
1476 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1477 			map->value_size, off, size);
1478 		return -EACCES;
1479 	}
1480 	return 0;
1481 }
1482 
1483 /* check read/write into a map element with possible variable offset */
1484 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1485 			    int off, int size, bool zero_size_allowed)
1486 {
1487 	struct bpf_verifier_state *vstate = env->cur_state;
1488 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1489 	struct bpf_reg_state *reg = &state->regs[regno];
1490 	int err;
1491 
1492 	/* We may have adjusted the register to this map value, so we
1493 	 * need to try adding each of min_value and max_value to off
1494 	 * to make sure our theoretical access will be safe.
1495 	 */
1496 	if (env->log.level & BPF_LOG_LEVEL)
1497 		print_verifier_state(env, state);
1498 
1499 	/* The minimum value is only important with signed
1500 	 * comparisons where we can't assume the floor of a
1501 	 * value is 0.  If we are using signed variables for our
1502 	 * index'es we need to make sure that whatever we use
1503 	 * will have a set floor within our range.
1504 	 */
1505 	if (reg->smin_value < 0 &&
1506 	    (reg->smin_value == S64_MIN ||
1507 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1508 	      reg->smin_value + off < 0)) {
1509 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1510 			regno);
1511 		return -EACCES;
1512 	}
1513 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1514 				 zero_size_allowed);
1515 	if (err) {
1516 		verbose(env, "R%d min value is outside of the array range\n",
1517 			regno);
1518 		return err;
1519 	}
1520 
1521 	/* If we haven't set a max value then we need to bail since we can't be
1522 	 * sure we won't do bad things.
1523 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1524 	 */
1525 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1526 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1527 			regno);
1528 		return -EACCES;
1529 	}
1530 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1531 				 zero_size_allowed);
1532 	if (err)
1533 		verbose(env, "R%d max value is outside of the array range\n",
1534 			regno);
1535 
1536 	if (map_value_has_spin_lock(reg->map_ptr)) {
1537 		u32 lock = reg->map_ptr->spin_lock_off;
1538 
1539 		/* if any part of struct bpf_spin_lock can be touched by
1540 		 * load/store reject this program.
1541 		 * To check that [x1, x2) overlaps with [y1, y2)
1542 		 * it is sufficient to check x1 < y2 && y1 < x2.
1543 		 */
1544 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1545 		     lock < reg->umax_value + off + size) {
1546 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1547 			return -EACCES;
1548 		}
1549 	}
1550 	return err;
1551 }
1552 
1553 #define MAX_PACKET_OFF 0xffff
1554 
1555 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1556 				       const struct bpf_call_arg_meta *meta,
1557 				       enum bpf_access_type t)
1558 {
1559 	switch (env->prog->type) {
1560 	/* Program types only with direct read access go here! */
1561 	case BPF_PROG_TYPE_LWT_IN:
1562 	case BPF_PROG_TYPE_LWT_OUT:
1563 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1564 	case BPF_PROG_TYPE_SK_REUSEPORT:
1565 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1566 	case BPF_PROG_TYPE_CGROUP_SKB:
1567 		if (t == BPF_WRITE)
1568 			return false;
1569 		/* fallthrough */
1570 
1571 	/* Program types with direct read + write access go here! */
1572 	case BPF_PROG_TYPE_SCHED_CLS:
1573 	case BPF_PROG_TYPE_SCHED_ACT:
1574 	case BPF_PROG_TYPE_XDP:
1575 	case BPF_PROG_TYPE_LWT_XMIT:
1576 	case BPF_PROG_TYPE_SK_SKB:
1577 	case BPF_PROG_TYPE_SK_MSG:
1578 		if (meta)
1579 			return meta->pkt_access;
1580 
1581 		env->seen_direct_write = true;
1582 		return true;
1583 	default:
1584 		return false;
1585 	}
1586 }
1587 
1588 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1589 				 int off, int size, bool zero_size_allowed)
1590 {
1591 	struct bpf_reg_state *regs = cur_regs(env);
1592 	struct bpf_reg_state *reg = &regs[regno];
1593 
1594 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1595 	    (u64)off + size > reg->range) {
1596 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1597 			off, size, regno, reg->id, reg->off, reg->range);
1598 		return -EACCES;
1599 	}
1600 	return 0;
1601 }
1602 
1603 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1604 			       int size, bool zero_size_allowed)
1605 {
1606 	struct bpf_reg_state *regs = cur_regs(env);
1607 	struct bpf_reg_state *reg = &regs[regno];
1608 	int err;
1609 
1610 	/* We may have added a variable offset to the packet pointer; but any
1611 	 * reg->range we have comes after that.  We are only checking the fixed
1612 	 * offset.
1613 	 */
1614 
1615 	/* We don't allow negative numbers, because we aren't tracking enough
1616 	 * detail to prove they're safe.
1617 	 */
1618 	if (reg->smin_value < 0) {
1619 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1620 			regno);
1621 		return -EACCES;
1622 	}
1623 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1624 	if (err) {
1625 		verbose(env, "R%d offset is outside of the packet\n", regno);
1626 		return err;
1627 	}
1628 
1629 	/* __check_packet_access has made sure "off + size - 1" is within u16.
1630 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1631 	 * otherwise find_good_pkt_pointers would have refused to set range info
1632 	 * that __check_packet_access would have rejected this pkt access.
1633 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1634 	 */
1635 	env->prog->aux->max_pkt_offset =
1636 		max_t(u32, env->prog->aux->max_pkt_offset,
1637 		      off + reg->umax_value + size - 1);
1638 
1639 	return err;
1640 }
1641 
1642 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1643 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1644 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1645 {
1646 	struct bpf_insn_access_aux info = {
1647 		.reg_type = *reg_type,
1648 	};
1649 
1650 	if (env->ops->is_valid_access &&
1651 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1652 		/* A non zero info.ctx_field_size indicates that this field is a
1653 		 * candidate for later verifier transformation to load the whole
1654 		 * field and then apply a mask when accessed with a narrower
1655 		 * access than actual ctx access size. A zero info.ctx_field_size
1656 		 * will only allow for whole field access and rejects any other
1657 		 * type of narrower access.
1658 		 */
1659 		*reg_type = info.reg_type;
1660 
1661 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1662 		/* remember the offset of last byte accessed in ctx */
1663 		if (env->prog->aux->max_ctx_offset < off + size)
1664 			env->prog->aux->max_ctx_offset = off + size;
1665 		return 0;
1666 	}
1667 
1668 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1669 	return -EACCES;
1670 }
1671 
1672 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1673 				  int size)
1674 {
1675 	if (size < 0 || off < 0 ||
1676 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1677 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1678 			off, size);
1679 		return -EACCES;
1680 	}
1681 	return 0;
1682 }
1683 
1684 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1685 			     u32 regno, int off, int size,
1686 			     enum bpf_access_type t)
1687 {
1688 	struct bpf_reg_state *regs = cur_regs(env);
1689 	struct bpf_reg_state *reg = &regs[regno];
1690 	struct bpf_insn_access_aux info = {};
1691 	bool valid;
1692 
1693 	if (reg->smin_value < 0) {
1694 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1695 			regno);
1696 		return -EACCES;
1697 	}
1698 
1699 	switch (reg->type) {
1700 	case PTR_TO_SOCK_COMMON:
1701 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1702 		break;
1703 	case PTR_TO_SOCKET:
1704 		valid = bpf_sock_is_valid_access(off, size, t, &info);
1705 		break;
1706 	case PTR_TO_TCP_SOCK:
1707 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1708 		break;
1709 	default:
1710 		valid = false;
1711 	}
1712 
1713 
1714 	if (valid) {
1715 		env->insn_aux_data[insn_idx].ctx_field_size =
1716 			info.ctx_field_size;
1717 		return 0;
1718 	}
1719 
1720 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
1721 		regno, reg_type_str[reg->type], off, size);
1722 
1723 	return -EACCES;
1724 }
1725 
1726 static bool __is_pointer_value(bool allow_ptr_leaks,
1727 			       const struct bpf_reg_state *reg)
1728 {
1729 	if (allow_ptr_leaks)
1730 		return false;
1731 
1732 	return reg->type != SCALAR_VALUE;
1733 }
1734 
1735 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1736 {
1737 	return cur_regs(env) + regno;
1738 }
1739 
1740 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1741 {
1742 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1743 }
1744 
1745 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1746 {
1747 	const struct bpf_reg_state *reg = reg_state(env, regno);
1748 
1749 	return reg->type == PTR_TO_CTX;
1750 }
1751 
1752 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1753 {
1754 	const struct bpf_reg_state *reg = reg_state(env, regno);
1755 
1756 	return type_is_sk_pointer(reg->type);
1757 }
1758 
1759 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1760 {
1761 	const struct bpf_reg_state *reg = reg_state(env, regno);
1762 
1763 	return type_is_pkt_pointer(reg->type);
1764 }
1765 
1766 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1767 {
1768 	const struct bpf_reg_state *reg = reg_state(env, regno);
1769 
1770 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1771 	return reg->type == PTR_TO_FLOW_KEYS;
1772 }
1773 
1774 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1775 				   const struct bpf_reg_state *reg,
1776 				   int off, int size, bool strict)
1777 {
1778 	struct tnum reg_off;
1779 	int ip_align;
1780 
1781 	/* Byte size accesses are always allowed. */
1782 	if (!strict || size == 1)
1783 		return 0;
1784 
1785 	/* For platforms that do not have a Kconfig enabling
1786 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1787 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1788 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1789 	 * to this code only in strict mode where we want to emulate
1790 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1791 	 * unconditional IP align value of '2'.
1792 	 */
1793 	ip_align = 2;
1794 
1795 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1796 	if (!tnum_is_aligned(reg_off, size)) {
1797 		char tn_buf[48];
1798 
1799 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1800 		verbose(env,
1801 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1802 			ip_align, tn_buf, reg->off, off, size);
1803 		return -EACCES;
1804 	}
1805 
1806 	return 0;
1807 }
1808 
1809 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1810 				       const struct bpf_reg_state *reg,
1811 				       const char *pointer_desc,
1812 				       int off, int size, bool strict)
1813 {
1814 	struct tnum reg_off;
1815 
1816 	/* Byte size accesses are always allowed. */
1817 	if (!strict || size == 1)
1818 		return 0;
1819 
1820 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1821 	if (!tnum_is_aligned(reg_off, size)) {
1822 		char tn_buf[48];
1823 
1824 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1825 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1826 			pointer_desc, tn_buf, reg->off, off, size);
1827 		return -EACCES;
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static int check_ptr_alignment(struct bpf_verifier_env *env,
1834 			       const struct bpf_reg_state *reg, int off,
1835 			       int size, bool strict_alignment_once)
1836 {
1837 	bool strict = env->strict_alignment || strict_alignment_once;
1838 	const char *pointer_desc = "";
1839 
1840 	switch (reg->type) {
1841 	case PTR_TO_PACKET:
1842 	case PTR_TO_PACKET_META:
1843 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1844 		 * right in front, treat it the very same way.
1845 		 */
1846 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1847 	case PTR_TO_FLOW_KEYS:
1848 		pointer_desc = "flow keys ";
1849 		break;
1850 	case PTR_TO_MAP_VALUE:
1851 		pointer_desc = "value ";
1852 		break;
1853 	case PTR_TO_CTX:
1854 		pointer_desc = "context ";
1855 		break;
1856 	case PTR_TO_STACK:
1857 		pointer_desc = "stack ";
1858 		/* The stack spill tracking logic in check_stack_write()
1859 		 * and check_stack_read() relies on stack accesses being
1860 		 * aligned.
1861 		 */
1862 		strict = true;
1863 		break;
1864 	case PTR_TO_SOCKET:
1865 		pointer_desc = "sock ";
1866 		break;
1867 	case PTR_TO_SOCK_COMMON:
1868 		pointer_desc = "sock_common ";
1869 		break;
1870 	case PTR_TO_TCP_SOCK:
1871 		pointer_desc = "tcp_sock ";
1872 		break;
1873 	default:
1874 		break;
1875 	}
1876 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1877 					   strict);
1878 }
1879 
1880 static int update_stack_depth(struct bpf_verifier_env *env,
1881 			      const struct bpf_func_state *func,
1882 			      int off)
1883 {
1884 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1885 
1886 	if (stack >= -off)
1887 		return 0;
1888 
1889 	/* update known max for given subprogram */
1890 	env->subprog_info[func->subprogno].stack_depth = -off;
1891 	return 0;
1892 }
1893 
1894 /* starting from main bpf function walk all instructions of the function
1895  * and recursively walk all callees that given function can call.
1896  * Ignore jump and exit insns.
1897  * Since recursion is prevented by check_cfg() this algorithm
1898  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1899  */
1900 static int check_max_stack_depth(struct bpf_verifier_env *env)
1901 {
1902 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1903 	struct bpf_subprog_info *subprog = env->subprog_info;
1904 	struct bpf_insn *insn = env->prog->insnsi;
1905 	int ret_insn[MAX_CALL_FRAMES];
1906 	int ret_prog[MAX_CALL_FRAMES];
1907 
1908 process_func:
1909 	/* round up to 32-bytes, since this is granularity
1910 	 * of interpreter stack size
1911 	 */
1912 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1913 	if (depth > MAX_BPF_STACK) {
1914 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1915 			frame + 1, depth);
1916 		return -EACCES;
1917 	}
1918 continue_func:
1919 	subprog_end = subprog[idx + 1].start;
1920 	for (; i < subprog_end; i++) {
1921 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1922 			continue;
1923 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1924 			continue;
1925 		/* remember insn and function to return to */
1926 		ret_insn[frame] = i + 1;
1927 		ret_prog[frame] = idx;
1928 
1929 		/* find the callee */
1930 		i = i + insn[i].imm + 1;
1931 		idx = find_subprog(env, i);
1932 		if (idx < 0) {
1933 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1934 				  i);
1935 			return -EFAULT;
1936 		}
1937 		frame++;
1938 		if (frame >= MAX_CALL_FRAMES) {
1939 			verbose(env, "the call stack of %d frames is too deep !\n",
1940 				frame);
1941 			return -E2BIG;
1942 		}
1943 		goto process_func;
1944 	}
1945 	/* end of for() loop means the last insn of the 'subprog'
1946 	 * was reached. Doesn't matter whether it was JA or EXIT
1947 	 */
1948 	if (frame == 0)
1949 		return 0;
1950 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1951 	frame--;
1952 	i = ret_insn[frame];
1953 	idx = ret_prog[frame];
1954 	goto continue_func;
1955 }
1956 
1957 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1958 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1959 				  const struct bpf_insn *insn, int idx)
1960 {
1961 	int start = idx + insn->imm + 1, subprog;
1962 
1963 	subprog = find_subprog(env, start);
1964 	if (subprog < 0) {
1965 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1966 			  start);
1967 		return -EFAULT;
1968 	}
1969 	return env->subprog_info[subprog].stack_depth;
1970 }
1971 #endif
1972 
1973 static int check_ctx_reg(struct bpf_verifier_env *env,
1974 			 const struct bpf_reg_state *reg, int regno)
1975 {
1976 	/* Access to ctx or passing it to a helper is only allowed in
1977 	 * its original, unmodified form.
1978 	 */
1979 
1980 	if (reg->off) {
1981 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1982 			regno, reg->off);
1983 		return -EACCES;
1984 	}
1985 
1986 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1987 		char tn_buf[48];
1988 
1989 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1990 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1991 		return -EACCES;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 static int check_tp_buffer_access(struct bpf_verifier_env *env,
1998 				  const struct bpf_reg_state *reg,
1999 				  int regno, int off, int size)
2000 {
2001 	if (off < 0) {
2002 		verbose(env,
2003 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2004 			regno, off, size);
2005 		return -EACCES;
2006 	}
2007 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2008 		char tn_buf[48];
2009 
2010 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2011 		verbose(env,
2012 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2013 			regno, off, tn_buf);
2014 		return -EACCES;
2015 	}
2016 	if (off + size > env->prog->aux->max_tp_access)
2017 		env->prog->aux->max_tp_access = off + size;
2018 
2019 	return 0;
2020 }
2021 
2022 
2023 /* truncate register to smaller size (in bytes)
2024  * must be called with size < BPF_REG_SIZE
2025  */
2026 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2027 {
2028 	u64 mask;
2029 
2030 	/* clear high bits in bit representation */
2031 	reg->var_off = tnum_cast(reg->var_off, size);
2032 
2033 	/* fix arithmetic bounds */
2034 	mask = ((u64)1 << (size * 8)) - 1;
2035 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2036 		reg->umin_value &= mask;
2037 		reg->umax_value &= mask;
2038 	} else {
2039 		reg->umin_value = 0;
2040 		reg->umax_value = mask;
2041 	}
2042 	reg->smin_value = reg->umin_value;
2043 	reg->smax_value = reg->umax_value;
2044 }
2045 
2046 /* check whether memory at (regno + off) is accessible for t = (read | write)
2047  * if t==write, value_regno is a register which value is stored into memory
2048  * if t==read, value_regno is a register which will receive the value from memory
2049  * if t==write && value_regno==-1, some unknown value is stored into memory
2050  * if t==read && value_regno==-1, don't care what we read from memory
2051  */
2052 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2053 			    int off, int bpf_size, enum bpf_access_type t,
2054 			    int value_regno, bool strict_alignment_once)
2055 {
2056 	struct bpf_reg_state *regs = cur_regs(env);
2057 	struct bpf_reg_state *reg = regs + regno;
2058 	struct bpf_func_state *state;
2059 	int size, err = 0;
2060 
2061 	size = bpf_size_to_bytes(bpf_size);
2062 	if (size < 0)
2063 		return size;
2064 
2065 	/* alignment checks will add in reg->off themselves */
2066 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2067 	if (err)
2068 		return err;
2069 
2070 	/* for access checks, reg->off is just part of off */
2071 	off += reg->off;
2072 
2073 	if (reg->type == PTR_TO_MAP_VALUE) {
2074 		if (t == BPF_WRITE && value_regno >= 0 &&
2075 		    is_pointer_value(env, value_regno)) {
2076 			verbose(env, "R%d leaks addr into map\n", value_regno);
2077 			return -EACCES;
2078 		}
2079 		err = check_map_access_type(env, regno, off, size, t);
2080 		if (err)
2081 			return err;
2082 		err = check_map_access(env, regno, off, size, false);
2083 		if (!err && t == BPF_READ && value_regno >= 0)
2084 			mark_reg_unknown(env, regs, value_regno);
2085 
2086 	} else if (reg->type == PTR_TO_CTX) {
2087 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2088 
2089 		if (t == BPF_WRITE && value_regno >= 0 &&
2090 		    is_pointer_value(env, value_regno)) {
2091 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2092 			return -EACCES;
2093 		}
2094 
2095 		err = check_ctx_reg(env, reg, regno);
2096 		if (err < 0)
2097 			return err;
2098 
2099 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2100 		if (!err && t == BPF_READ && value_regno >= 0) {
2101 			/* ctx access returns either a scalar, or a
2102 			 * PTR_TO_PACKET[_META,_END]. In the latter
2103 			 * case, we know the offset is zero.
2104 			 */
2105 			if (reg_type == SCALAR_VALUE) {
2106 				mark_reg_unknown(env, regs, value_regno);
2107 			} else {
2108 				mark_reg_known_zero(env, regs,
2109 						    value_regno);
2110 				if (reg_type_may_be_null(reg_type))
2111 					regs[value_regno].id = ++env->id_gen;
2112 			}
2113 			regs[value_regno].type = reg_type;
2114 		}
2115 
2116 	} else if (reg->type == PTR_TO_STACK) {
2117 		off += reg->var_off.value;
2118 		err = check_stack_access(env, reg, off, size);
2119 		if (err)
2120 			return err;
2121 
2122 		state = func(env, reg);
2123 		err = update_stack_depth(env, state, off);
2124 		if (err)
2125 			return err;
2126 
2127 		if (t == BPF_WRITE)
2128 			err = check_stack_write(env, state, off, size,
2129 						value_regno, insn_idx);
2130 		else
2131 			err = check_stack_read(env, state, off, size,
2132 					       value_regno);
2133 	} else if (reg_is_pkt_pointer(reg)) {
2134 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2135 			verbose(env, "cannot write into packet\n");
2136 			return -EACCES;
2137 		}
2138 		if (t == BPF_WRITE && value_regno >= 0 &&
2139 		    is_pointer_value(env, value_regno)) {
2140 			verbose(env, "R%d leaks addr into packet\n",
2141 				value_regno);
2142 			return -EACCES;
2143 		}
2144 		err = check_packet_access(env, regno, off, size, false);
2145 		if (!err && t == BPF_READ && value_regno >= 0)
2146 			mark_reg_unknown(env, regs, value_regno);
2147 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2148 		if (t == BPF_WRITE && value_regno >= 0 &&
2149 		    is_pointer_value(env, value_regno)) {
2150 			verbose(env, "R%d leaks addr into flow keys\n",
2151 				value_regno);
2152 			return -EACCES;
2153 		}
2154 
2155 		err = check_flow_keys_access(env, off, size);
2156 		if (!err && t == BPF_READ && value_regno >= 0)
2157 			mark_reg_unknown(env, regs, value_regno);
2158 	} else if (type_is_sk_pointer(reg->type)) {
2159 		if (t == BPF_WRITE) {
2160 			verbose(env, "R%d cannot write into %s\n",
2161 				regno, reg_type_str[reg->type]);
2162 			return -EACCES;
2163 		}
2164 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2165 		if (!err && value_regno >= 0)
2166 			mark_reg_unknown(env, regs, value_regno);
2167 	} else if (reg->type == PTR_TO_TP_BUFFER) {
2168 		err = check_tp_buffer_access(env, reg, regno, off, size);
2169 		if (!err && t == BPF_READ && value_regno >= 0)
2170 			mark_reg_unknown(env, regs, value_regno);
2171 	} else {
2172 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2173 			reg_type_str[reg->type]);
2174 		return -EACCES;
2175 	}
2176 
2177 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2178 	    regs[value_regno].type == SCALAR_VALUE) {
2179 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2180 		coerce_reg_to_size(&regs[value_regno], size);
2181 	}
2182 	return err;
2183 }
2184 
2185 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2186 {
2187 	int err;
2188 
2189 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2190 	    insn->imm != 0) {
2191 		verbose(env, "BPF_XADD uses reserved fields\n");
2192 		return -EINVAL;
2193 	}
2194 
2195 	/* check src1 operand */
2196 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2197 	if (err)
2198 		return err;
2199 
2200 	/* check src2 operand */
2201 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2202 	if (err)
2203 		return err;
2204 
2205 	if (is_pointer_value(env, insn->src_reg)) {
2206 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2207 		return -EACCES;
2208 	}
2209 
2210 	if (is_ctx_reg(env, insn->dst_reg) ||
2211 	    is_pkt_reg(env, insn->dst_reg) ||
2212 	    is_flow_key_reg(env, insn->dst_reg) ||
2213 	    is_sk_reg(env, insn->dst_reg)) {
2214 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2215 			insn->dst_reg,
2216 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2217 		return -EACCES;
2218 	}
2219 
2220 	/* check whether atomic_add can read the memory */
2221 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2222 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2223 	if (err)
2224 		return err;
2225 
2226 	/* check whether atomic_add can write into the same memory */
2227 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2228 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2229 }
2230 
2231 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2232 				  int off, int access_size,
2233 				  bool zero_size_allowed)
2234 {
2235 	struct bpf_reg_state *reg = reg_state(env, regno);
2236 
2237 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2238 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2239 		if (tnum_is_const(reg->var_off)) {
2240 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2241 				regno, off, access_size);
2242 		} else {
2243 			char tn_buf[48];
2244 
2245 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2246 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2247 				regno, tn_buf, access_size);
2248 		}
2249 		return -EACCES;
2250 	}
2251 	return 0;
2252 }
2253 
2254 /* when register 'regno' is passed into function that will read 'access_size'
2255  * bytes from that pointer, make sure that it's within stack boundary
2256  * and all elements of stack are initialized.
2257  * Unlike most pointer bounds-checking functions, this one doesn't take an
2258  * 'off' argument, so it has to add in reg->off itself.
2259  */
2260 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2261 				int access_size, bool zero_size_allowed,
2262 				struct bpf_call_arg_meta *meta)
2263 {
2264 	struct bpf_reg_state *reg = reg_state(env, regno);
2265 	struct bpf_func_state *state = func(env, reg);
2266 	int err, min_off, max_off, i, slot, spi;
2267 
2268 	if (reg->type != PTR_TO_STACK) {
2269 		/* Allow zero-byte read from NULL, regardless of pointer type */
2270 		if (zero_size_allowed && access_size == 0 &&
2271 		    register_is_null(reg))
2272 			return 0;
2273 
2274 		verbose(env, "R%d type=%s expected=%s\n", regno,
2275 			reg_type_str[reg->type],
2276 			reg_type_str[PTR_TO_STACK]);
2277 		return -EACCES;
2278 	}
2279 
2280 	if (tnum_is_const(reg->var_off)) {
2281 		min_off = max_off = reg->var_off.value + reg->off;
2282 		err = __check_stack_boundary(env, regno, min_off, access_size,
2283 					     zero_size_allowed);
2284 		if (err)
2285 			return err;
2286 	} else {
2287 		/* Variable offset is prohibited for unprivileged mode for
2288 		 * simplicity since it requires corresponding support in
2289 		 * Spectre masking for stack ALU.
2290 		 * See also retrieve_ptr_limit().
2291 		 */
2292 		if (!env->allow_ptr_leaks) {
2293 			char tn_buf[48];
2294 
2295 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2296 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2297 				regno, tn_buf);
2298 			return -EACCES;
2299 		}
2300 		/* Only initialized buffer on stack is allowed to be accessed
2301 		 * with variable offset. With uninitialized buffer it's hard to
2302 		 * guarantee that whole memory is marked as initialized on
2303 		 * helper return since specific bounds are unknown what may
2304 		 * cause uninitialized stack leaking.
2305 		 */
2306 		if (meta && meta->raw_mode)
2307 			meta = NULL;
2308 
2309 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2310 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
2311 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
2312 				regno);
2313 			return -EACCES;
2314 		}
2315 		min_off = reg->smin_value + reg->off;
2316 		max_off = reg->smax_value + reg->off;
2317 		err = __check_stack_boundary(env, regno, min_off, access_size,
2318 					     zero_size_allowed);
2319 		if (err) {
2320 			verbose(env, "R%d min value is outside of stack bound\n",
2321 				regno);
2322 			return err;
2323 		}
2324 		err = __check_stack_boundary(env, regno, max_off, access_size,
2325 					     zero_size_allowed);
2326 		if (err) {
2327 			verbose(env, "R%d max value is outside of stack bound\n",
2328 				regno);
2329 			return err;
2330 		}
2331 	}
2332 
2333 	if (meta && meta->raw_mode) {
2334 		meta->access_size = access_size;
2335 		meta->regno = regno;
2336 		return 0;
2337 	}
2338 
2339 	for (i = min_off; i < max_off + access_size; i++) {
2340 		u8 *stype;
2341 
2342 		slot = -i - 1;
2343 		spi = slot / BPF_REG_SIZE;
2344 		if (state->allocated_stack <= slot)
2345 			goto err;
2346 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2347 		if (*stype == STACK_MISC)
2348 			goto mark;
2349 		if (*stype == STACK_ZERO) {
2350 			/* helper can write anything into the stack */
2351 			*stype = STACK_MISC;
2352 			goto mark;
2353 		}
2354 err:
2355 		if (tnum_is_const(reg->var_off)) {
2356 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2357 				min_off, i - min_off, access_size);
2358 		} else {
2359 			char tn_buf[48];
2360 
2361 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2362 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
2363 				tn_buf, i - min_off, access_size);
2364 		}
2365 		return -EACCES;
2366 mark:
2367 		/* reading any byte out of 8-byte 'spill_slot' will cause
2368 		 * the whole slot to be marked as 'read'
2369 		 */
2370 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2371 			      state->stack[spi].spilled_ptr.parent);
2372 	}
2373 	return update_stack_depth(env, state, min_off);
2374 }
2375 
2376 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2377 				   int access_size, bool zero_size_allowed,
2378 				   struct bpf_call_arg_meta *meta)
2379 {
2380 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2381 
2382 	switch (reg->type) {
2383 	case PTR_TO_PACKET:
2384 	case PTR_TO_PACKET_META:
2385 		return check_packet_access(env, regno, reg->off, access_size,
2386 					   zero_size_allowed);
2387 	case PTR_TO_MAP_VALUE:
2388 		if (check_map_access_type(env, regno, reg->off, access_size,
2389 					  meta && meta->raw_mode ? BPF_WRITE :
2390 					  BPF_READ))
2391 			return -EACCES;
2392 		return check_map_access(env, regno, reg->off, access_size,
2393 					zero_size_allowed);
2394 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2395 		return check_stack_boundary(env, regno, access_size,
2396 					    zero_size_allowed, meta);
2397 	}
2398 }
2399 
2400 /* Implementation details:
2401  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2402  * Two bpf_map_lookups (even with the same key) will have different reg->id.
2403  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2404  * value_or_null->value transition, since the verifier only cares about
2405  * the range of access to valid map value pointer and doesn't care about actual
2406  * address of the map element.
2407  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2408  * reg->id > 0 after value_or_null->value transition. By doing so
2409  * two bpf_map_lookups will be considered two different pointers that
2410  * point to different bpf_spin_locks.
2411  * The verifier allows taking only one bpf_spin_lock at a time to avoid
2412  * dead-locks.
2413  * Since only one bpf_spin_lock is allowed the checks are simpler than
2414  * reg_is_refcounted() logic. The verifier needs to remember only
2415  * one spin_lock instead of array of acquired_refs.
2416  * cur_state->active_spin_lock remembers which map value element got locked
2417  * and clears it after bpf_spin_unlock.
2418  */
2419 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2420 			     bool is_lock)
2421 {
2422 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2423 	struct bpf_verifier_state *cur = env->cur_state;
2424 	bool is_const = tnum_is_const(reg->var_off);
2425 	struct bpf_map *map = reg->map_ptr;
2426 	u64 val = reg->var_off.value;
2427 
2428 	if (reg->type != PTR_TO_MAP_VALUE) {
2429 		verbose(env, "R%d is not a pointer to map_value\n", regno);
2430 		return -EINVAL;
2431 	}
2432 	if (!is_const) {
2433 		verbose(env,
2434 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2435 			regno);
2436 		return -EINVAL;
2437 	}
2438 	if (!map->btf) {
2439 		verbose(env,
2440 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
2441 			map->name);
2442 		return -EINVAL;
2443 	}
2444 	if (!map_value_has_spin_lock(map)) {
2445 		if (map->spin_lock_off == -E2BIG)
2446 			verbose(env,
2447 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
2448 				map->name);
2449 		else if (map->spin_lock_off == -ENOENT)
2450 			verbose(env,
2451 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
2452 				map->name);
2453 		else
2454 			verbose(env,
2455 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2456 				map->name);
2457 		return -EINVAL;
2458 	}
2459 	if (map->spin_lock_off != val + reg->off) {
2460 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2461 			val + reg->off);
2462 		return -EINVAL;
2463 	}
2464 	if (is_lock) {
2465 		if (cur->active_spin_lock) {
2466 			verbose(env,
2467 				"Locking two bpf_spin_locks are not allowed\n");
2468 			return -EINVAL;
2469 		}
2470 		cur->active_spin_lock = reg->id;
2471 	} else {
2472 		if (!cur->active_spin_lock) {
2473 			verbose(env, "bpf_spin_unlock without taking a lock\n");
2474 			return -EINVAL;
2475 		}
2476 		if (cur->active_spin_lock != reg->id) {
2477 			verbose(env, "bpf_spin_unlock of different lock\n");
2478 			return -EINVAL;
2479 		}
2480 		cur->active_spin_lock = 0;
2481 	}
2482 	return 0;
2483 }
2484 
2485 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2486 {
2487 	return type == ARG_PTR_TO_MEM ||
2488 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2489 	       type == ARG_PTR_TO_UNINIT_MEM;
2490 }
2491 
2492 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2493 {
2494 	return type == ARG_CONST_SIZE ||
2495 	       type == ARG_CONST_SIZE_OR_ZERO;
2496 }
2497 
2498 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
2499 {
2500 	return type == ARG_PTR_TO_INT ||
2501 	       type == ARG_PTR_TO_LONG;
2502 }
2503 
2504 static int int_ptr_type_to_size(enum bpf_arg_type type)
2505 {
2506 	if (type == ARG_PTR_TO_INT)
2507 		return sizeof(u32);
2508 	else if (type == ARG_PTR_TO_LONG)
2509 		return sizeof(u64);
2510 
2511 	return -EINVAL;
2512 }
2513 
2514 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2515 			  enum bpf_arg_type arg_type,
2516 			  struct bpf_call_arg_meta *meta)
2517 {
2518 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2519 	enum bpf_reg_type expected_type, type = reg->type;
2520 	int err = 0;
2521 
2522 	if (arg_type == ARG_DONTCARE)
2523 		return 0;
2524 
2525 	err = check_reg_arg(env, regno, SRC_OP);
2526 	if (err)
2527 		return err;
2528 
2529 	if (arg_type == ARG_ANYTHING) {
2530 		if (is_pointer_value(env, regno)) {
2531 			verbose(env, "R%d leaks addr into helper function\n",
2532 				regno);
2533 			return -EACCES;
2534 		}
2535 		return 0;
2536 	}
2537 
2538 	if (type_is_pkt_pointer(type) &&
2539 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2540 		verbose(env, "helper access to the packet is not allowed\n");
2541 		return -EACCES;
2542 	}
2543 
2544 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2545 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2546 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
2547 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
2548 		expected_type = PTR_TO_STACK;
2549 		if (register_is_null(reg) &&
2550 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
2551 			/* final test in check_stack_boundary() */;
2552 		else if (!type_is_pkt_pointer(type) &&
2553 			 type != PTR_TO_MAP_VALUE &&
2554 			 type != expected_type)
2555 			goto err_type;
2556 	} else if (arg_type == ARG_CONST_SIZE ||
2557 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2558 		expected_type = SCALAR_VALUE;
2559 		if (type != expected_type)
2560 			goto err_type;
2561 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2562 		expected_type = CONST_PTR_TO_MAP;
2563 		if (type != expected_type)
2564 			goto err_type;
2565 	} else if (arg_type == ARG_PTR_TO_CTX) {
2566 		expected_type = PTR_TO_CTX;
2567 		if (type != expected_type)
2568 			goto err_type;
2569 		err = check_ctx_reg(env, reg, regno);
2570 		if (err < 0)
2571 			return err;
2572 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2573 		expected_type = PTR_TO_SOCK_COMMON;
2574 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2575 		if (!type_is_sk_pointer(type))
2576 			goto err_type;
2577 		if (reg->ref_obj_id) {
2578 			if (meta->ref_obj_id) {
2579 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2580 					regno, reg->ref_obj_id,
2581 					meta->ref_obj_id);
2582 				return -EFAULT;
2583 			}
2584 			meta->ref_obj_id = reg->ref_obj_id;
2585 		}
2586 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
2587 		expected_type = PTR_TO_SOCKET;
2588 		if (type != expected_type)
2589 			goto err_type;
2590 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2591 		if (meta->func_id == BPF_FUNC_spin_lock) {
2592 			if (process_spin_lock(env, regno, true))
2593 				return -EACCES;
2594 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
2595 			if (process_spin_lock(env, regno, false))
2596 				return -EACCES;
2597 		} else {
2598 			verbose(env, "verifier internal error\n");
2599 			return -EFAULT;
2600 		}
2601 	} else if (arg_type_is_mem_ptr(arg_type)) {
2602 		expected_type = PTR_TO_STACK;
2603 		/* One exception here. In case function allows for NULL to be
2604 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2605 		 * happens during stack boundary checking.
2606 		 */
2607 		if (register_is_null(reg) &&
2608 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2609 			/* final test in check_stack_boundary() */;
2610 		else if (!type_is_pkt_pointer(type) &&
2611 			 type != PTR_TO_MAP_VALUE &&
2612 			 type != expected_type)
2613 			goto err_type;
2614 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2615 	} else if (arg_type_is_int_ptr(arg_type)) {
2616 		expected_type = PTR_TO_STACK;
2617 		if (!type_is_pkt_pointer(type) &&
2618 		    type != PTR_TO_MAP_VALUE &&
2619 		    type != expected_type)
2620 			goto err_type;
2621 	} else {
2622 		verbose(env, "unsupported arg_type %d\n", arg_type);
2623 		return -EFAULT;
2624 	}
2625 
2626 	if (arg_type == ARG_CONST_MAP_PTR) {
2627 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2628 		meta->map_ptr = reg->map_ptr;
2629 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2630 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2631 		 * check that [key, key + map->key_size) are within
2632 		 * stack limits and initialized
2633 		 */
2634 		if (!meta->map_ptr) {
2635 			/* in function declaration map_ptr must come before
2636 			 * map_key, so that it's verified and known before
2637 			 * we have to check map_key here. Otherwise it means
2638 			 * that kernel subsystem misconfigured verifier
2639 			 */
2640 			verbose(env, "invalid map_ptr to access map->key\n");
2641 			return -EACCES;
2642 		}
2643 		err = check_helper_mem_access(env, regno,
2644 					      meta->map_ptr->key_size, false,
2645 					      NULL);
2646 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2647 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
2648 		    !register_is_null(reg)) ||
2649 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2650 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2651 		 * check [value, value + map->value_size) validity
2652 		 */
2653 		if (!meta->map_ptr) {
2654 			/* kernel subsystem misconfigured verifier */
2655 			verbose(env, "invalid map_ptr to access map->value\n");
2656 			return -EACCES;
2657 		}
2658 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2659 		err = check_helper_mem_access(env, regno,
2660 					      meta->map_ptr->value_size, false,
2661 					      meta);
2662 	} else if (arg_type_is_mem_size(arg_type)) {
2663 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2664 
2665 		/* remember the mem_size which may be used later
2666 		 * to refine return values.
2667 		 */
2668 		meta->msize_smax_value = reg->smax_value;
2669 		meta->msize_umax_value = reg->umax_value;
2670 
2671 		/* The register is SCALAR_VALUE; the access check
2672 		 * happens using its boundaries.
2673 		 */
2674 		if (!tnum_is_const(reg->var_off))
2675 			/* For unprivileged variable accesses, disable raw
2676 			 * mode so that the program is required to
2677 			 * initialize all the memory that the helper could
2678 			 * just partially fill up.
2679 			 */
2680 			meta = NULL;
2681 
2682 		if (reg->smin_value < 0) {
2683 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2684 				regno);
2685 			return -EACCES;
2686 		}
2687 
2688 		if (reg->umin_value == 0) {
2689 			err = check_helper_mem_access(env, regno - 1, 0,
2690 						      zero_size_allowed,
2691 						      meta);
2692 			if (err)
2693 				return err;
2694 		}
2695 
2696 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2697 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2698 				regno);
2699 			return -EACCES;
2700 		}
2701 		err = check_helper_mem_access(env, regno - 1,
2702 					      reg->umax_value,
2703 					      zero_size_allowed, meta);
2704 	} else if (arg_type_is_int_ptr(arg_type)) {
2705 		int size = int_ptr_type_to_size(arg_type);
2706 
2707 		err = check_helper_mem_access(env, regno, size, false, meta);
2708 		if (err)
2709 			return err;
2710 		err = check_ptr_alignment(env, reg, 0, size, true);
2711 	}
2712 
2713 	return err;
2714 err_type:
2715 	verbose(env, "R%d type=%s expected=%s\n", regno,
2716 		reg_type_str[type], reg_type_str[expected_type]);
2717 	return -EACCES;
2718 }
2719 
2720 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2721 					struct bpf_map *map, int func_id)
2722 {
2723 	if (!map)
2724 		return 0;
2725 
2726 	/* We need a two way check, first is from map perspective ... */
2727 	switch (map->map_type) {
2728 	case BPF_MAP_TYPE_PROG_ARRAY:
2729 		if (func_id != BPF_FUNC_tail_call)
2730 			goto error;
2731 		break;
2732 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2733 		if (func_id != BPF_FUNC_perf_event_read &&
2734 		    func_id != BPF_FUNC_perf_event_output &&
2735 		    func_id != BPF_FUNC_perf_event_read_value)
2736 			goto error;
2737 		break;
2738 	case BPF_MAP_TYPE_STACK_TRACE:
2739 		if (func_id != BPF_FUNC_get_stackid)
2740 			goto error;
2741 		break;
2742 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2743 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2744 		    func_id != BPF_FUNC_current_task_under_cgroup)
2745 			goto error;
2746 		break;
2747 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2748 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2749 		if (func_id != BPF_FUNC_get_local_storage)
2750 			goto error;
2751 		break;
2752 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2753 	 * allow to be modified from bpf side. So do not allow lookup elements
2754 	 * for now.
2755 	 */
2756 	case BPF_MAP_TYPE_DEVMAP:
2757 		if (func_id != BPF_FUNC_redirect_map)
2758 			goto error;
2759 		break;
2760 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2761 	 * appear.
2762 	 */
2763 	case BPF_MAP_TYPE_CPUMAP:
2764 	case BPF_MAP_TYPE_XSKMAP:
2765 		if (func_id != BPF_FUNC_redirect_map)
2766 			goto error;
2767 		break;
2768 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2769 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2770 		if (func_id != BPF_FUNC_map_lookup_elem)
2771 			goto error;
2772 		break;
2773 	case BPF_MAP_TYPE_SOCKMAP:
2774 		if (func_id != BPF_FUNC_sk_redirect_map &&
2775 		    func_id != BPF_FUNC_sock_map_update &&
2776 		    func_id != BPF_FUNC_map_delete_elem &&
2777 		    func_id != BPF_FUNC_msg_redirect_map)
2778 			goto error;
2779 		break;
2780 	case BPF_MAP_TYPE_SOCKHASH:
2781 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2782 		    func_id != BPF_FUNC_sock_hash_update &&
2783 		    func_id != BPF_FUNC_map_delete_elem &&
2784 		    func_id != BPF_FUNC_msg_redirect_hash)
2785 			goto error;
2786 		break;
2787 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2788 		if (func_id != BPF_FUNC_sk_select_reuseport)
2789 			goto error;
2790 		break;
2791 	case BPF_MAP_TYPE_QUEUE:
2792 	case BPF_MAP_TYPE_STACK:
2793 		if (func_id != BPF_FUNC_map_peek_elem &&
2794 		    func_id != BPF_FUNC_map_pop_elem &&
2795 		    func_id != BPF_FUNC_map_push_elem)
2796 			goto error;
2797 		break;
2798 	case BPF_MAP_TYPE_SK_STORAGE:
2799 		if (func_id != BPF_FUNC_sk_storage_get &&
2800 		    func_id != BPF_FUNC_sk_storage_delete)
2801 			goto error;
2802 		break;
2803 	default:
2804 		break;
2805 	}
2806 
2807 	/* ... and second from the function itself. */
2808 	switch (func_id) {
2809 	case BPF_FUNC_tail_call:
2810 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2811 			goto error;
2812 		if (env->subprog_cnt > 1) {
2813 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2814 			return -EINVAL;
2815 		}
2816 		break;
2817 	case BPF_FUNC_perf_event_read:
2818 	case BPF_FUNC_perf_event_output:
2819 	case BPF_FUNC_perf_event_read_value:
2820 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2821 			goto error;
2822 		break;
2823 	case BPF_FUNC_get_stackid:
2824 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2825 			goto error;
2826 		break;
2827 	case BPF_FUNC_current_task_under_cgroup:
2828 	case BPF_FUNC_skb_under_cgroup:
2829 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2830 			goto error;
2831 		break;
2832 	case BPF_FUNC_redirect_map:
2833 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2834 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2835 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2836 			goto error;
2837 		break;
2838 	case BPF_FUNC_sk_redirect_map:
2839 	case BPF_FUNC_msg_redirect_map:
2840 	case BPF_FUNC_sock_map_update:
2841 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2842 			goto error;
2843 		break;
2844 	case BPF_FUNC_sk_redirect_hash:
2845 	case BPF_FUNC_msg_redirect_hash:
2846 	case BPF_FUNC_sock_hash_update:
2847 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2848 			goto error;
2849 		break;
2850 	case BPF_FUNC_get_local_storage:
2851 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2852 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2853 			goto error;
2854 		break;
2855 	case BPF_FUNC_sk_select_reuseport:
2856 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2857 			goto error;
2858 		break;
2859 	case BPF_FUNC_map_peek_elem:
2860 	case BPF_FUNC_map_pop_elem:
2861 	case BPF_FUNC_map_push_elem:
2862 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2863 		    map->map_type != BPF_MAP_TYPE_STACK)
2864 			goto error;
2865 		break;
2866 	case BPF_FUNC_sk_storage_get:
2867 	case BPF_FUNC_sk_storage_delete:
2868 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
2869 			goto error;
2870 		break;
2871 	default:
2872 		break;
2873 	}
2874 
2875 	return 0;
2876 error:
2877 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2878 		map->map_type, func_id_name(func_id), func_id);
2879 	return -EINVAL;
2880 }
2881 
2882 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2883 {
2884 	int count = 0;
2885 
2886 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2887 		count++;
2888 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2889 		count++;
2890 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2891 		count++;
2892 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2893 		count++;
2894 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2895 		count++;
2896 
2897 	/* We only support one arg being in raw mode at the moment,
2898 	 * which is sufficient for the helper functions we have
2899 	 * right now.
2900 	 */
2901 	return count <= 1;
2902 }
2903 
2904 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2905 				    enum bpf_arg_type arg_next)
2906 {
2907 	return (arg_type_is_mem_ptr(arg_curr) &&
2908 	        !arg_type_is_mem_size(arg_next)) ||
2909 	       (!arg_type_is_mem_ptr(arg_curr) &&
2910 		arg_type_is_mem_size(arg_next));
2911 }
2912 
2913 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2914 {
2915 	/* bpf_xxx(..., buf, len) call will access 'len'
2916 	 * bytes from memory 'buf'. Both arg types need
2917 	 * to be paired, so make sure there's no buggy
2918 	 * helper function specification.
2919 	 */
2920 	if (arg_type_is_mem_size(fn->arg1_type) ||
2921 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2922 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2923 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2924 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2925 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2926 		return false;
2927 
2928 	return true;
2929 }
2930 
2931 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
2932 {
2933 	int count = 0;
2934 
2935 	if (arg_type_may_be_refcounted(fn->arg1_type))
2936 		count++;
2937 	if (arg_type_may_be_refcounted(fn->arg2_type))
2938 		count++;
2939 	if (arg_type_may_be_refcounted(fn->arg3_type))
2940 		count++;
2941 	if (arg_type_may_be_refcounted(fn->arg4_type))
2942 		count++;
2943 	if (arg_type_may_be_refcounted(fn->arg5_type))
2944 		count++;
2945 
2946 	/* A reference acquiring function cannot acquire
2947 	 * another refcounted ptr.
2948 	 */
2949 	if (is_acquire_function(func_id) && count)
2950 		return false;
2951 
2952 	/* We only support one arg being unreferenced at the moment,
2953 	 * which is sufficient for the helper functions we have right now.
2954 	 */
2955 	return count <= 1;
2956 }
2957 
2958 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
2959 {
2960 	return check_raw_mode_ok(fn) &&
2961 	       check_arg_pair_ok(fn) &&
2962 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
2963 }
2964 
2965 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2966  * are now invalid, so turn them into unknown SCALAR_VALUE.
2967  */
2968 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2969 				     struct bpf_func_state *state)
2970 {
2971 	struct bpf_reg_state *regs = state->regs, *reg;
2972 	int i;
2973 
2974 	for (i = 0; i < MAX_BPF_REG; i++)
2975 		if (reg_is_pkt_pointer_any(&regs[i]))
2976 			mark_reg_unknown(env, regs, i);
2977 
2978 	bpf_for_each_spilled_reg(i, state, reg) {
2979 		if (!reg)
2980 			continue;
2981 		if (reg_is_pkt_pointer_any(reg))
2982 			__mark_reg_unknown(reg);
2983 	}
2984 }
2985 
2986 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2987 {
2988 	struct bpf_verifier_state *vstate = env->cur_state;
2989 	int i;
2990 
2991 	for (i = 0; i <= vstate->curframe; i++)
2992 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2993 }
2994 
2995 static void release_reg_references(struct bpf_verifier_env *env,
2996 				   struct bpf_func_state *state,
2997 				   int ref_obj_id)
2998 {
2999 	struct bpf_reg_state *regs = state->regs, *reg;
3000 	int i;
3001 
3002 	for (i = 0; i < MAX_BPF_REG; i++)
3003 		if (regs[i].ref_obj_id == ref_obj_id)
3004 			mark_reg_unknown(env, regs, i);
3005 
3006 	bpf_for_each_spilled_reg(i, state, reg) {
3007 		if (!reg)
3008 			continue;
3009 		if (reg->ref_obj_id == ref_obj_id)
3010 			__mark_reg_unknown(reg);
3011 	}
3012 }
3013 
3014 /* The pointer with the specified id has released its reference to kernel
3015  * resources. Identify all copies of the same pointer and clear the reference.
3016  */
3017 static int release_reference(struct bpf_verifier_env *env,
3018 			     int ref_obj_id)
3019 {
3020 	struct bpf_verifier_state *vstate = env->cur_state;
3021 	int err;
3022 	int i;
3023 
3024 	err = release_reference_state(cur_func(env), ref_obj_id);
3025 	if (err)
3026 		return err;
3027 
3028 	for (i = 0; i <= vstate->curframe; i++)
3029 		release_reg_references(env, vstate->frame[i], ref_obj_id);
3030 
3031 	return 0;
3032 }
3033 
3034 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3035 			   int *insn_idx)
3036 {
3037 	struct bpf_verifier_state *state = env->cur_state;
3038 	struct bpf_func_state *caller, *callee;
3039 	int i, err, subprog, target_insn;
3040 
3041 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3042 		verbose(env, "the call stack of %d frames is too deep\n",
3043 			state->curframe + 2);
3044 		return -E2BIG;
3045 	}
3046 
3047 	target_insn = *insn_idx + insn->imm;
3048 	subprog = find_subprog(env, target_insn + 1);
3049 	if (subprog < 0) {
3050 		verbose(env, "verifier bug. No program starts at insn %d\n",
3051 			target_insn + 1);
3052 		return -EFAULT;
3053 	}
3054 
3055 	caller = state->frame[state->curframe];
3056 	if (state->frame[state->curframe + 1]) {
3057 		verbose(env, "verifier bug. Frame %d already allocated\n",
3058 			state->curframe + 1);
3059 		return -EFAULT;
3060 	}
3061 
3062 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3063 	if (!callee)
3064 		return -ENOMEM;
3065 	state->frame[state->curframe + 1] = callee;
3066 
3067 	/* callee cannot access r0, r6 - r9 for reading and has to write
3068 	 * into its own stack before reading from it.
3069 	 * callee can read/write into caller's stack
3070 	 */
3071 	init_func_state(env, callee,
3072 			/* remember the callsite, it will be used by bpf_exit */
3073 			*insn_idx /* callsite */,
3074 			state->curframe + 1 /* frameno within this callchain */,
3075 			subprog /* subprog number within this prog */);
3076 
3077 	/* Transfer references to the callee */
3078 	err = transfer_reference_state(callee, caller);
3079 	if (err)
3080 		return err;
3081 
3082 	/* copy r1 - r5 args that callee can access.  The copy includes parent
3083 	 * pointers, which connects us up to the liveness chain
3084 	 */
3085 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3086 		callee->regs[i] = caller->regs[i];
3087 
3088 	/* after the call registers r0 - r5 were scratched */
3089 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3090 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
3091 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3092 	}
3093 
3094 	/* only increment it after check_reg_arg() finished */
3095 	state->curframe++;
3096 
3097 	/* and go analyze first insn of the callee */
3098 	*insn_idx = target_insn;
3099 
3100 	if (env->log.level & BPF_LOG_LEVEL) {
3101 		verbose(env, "caller:\n");
3102 		print_verifier_state(env, caller);
3103 		verbose(env, "callee:\n");
3104 		print_verifier_state(env, callee);
3105 	}
3106 	return 0;
3107 }
3108 
3109 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3110 {
3111 	struct bpf_verifier_state *state = env->cur_state;
3112 	struct bpf_func_state *caller, *callee;
3113 	struct bpf_reg_state *r0;
3114 	int err;
3115 
3116 	callee = state->frame[state->curframe];
3117 	r0 = &callee->regs[BPF_REG_0];
3118 	if (r0->type == PTR_TO_STACK) {
3119 		/* technically it's ok to return caller's stack pointer
3120 		 * (or caller's caller's pointer) back to the caller,
3121 		 * since these pointers are valid. Only current stack
3122 		 * pointer will be invalid as soon as function exits,
3123 		 * but let's be conservative
3124 		 */
3125 		verbose(env, "cannot return stack pointer to the caller\n");
3126 		return -EINVAL;
3127 	}
3128 
3129 	state->curframe--;
3130 	caller = state->frame[state->curframe];
3131 	/* return to the caller whatever r0 had in the callee */
3132 	caller->regs[BPF_REG_0] = *r0;
3133 
3134 	/* Transfer references to the caller */
3135 	err = transfer_reference_state(caller, callee);
3136 	if (err)
3137 		return err;
3138 
3139 	*insn_idx = callee->callsite + 1;
3140 	if (env->log.level & BPF_LOG_LEVEL) {
3141 		verbose(env, "returning from callee:\n");
3142 		print_verifier_state(env, callee);
3143 		verbose(env, "to caller at %d:\n", *insn_idx);
3144 		print_verifier_state(env, caller);
3145 	}
3146 	/* clear everything in the callee */
3147 	free_func_state(callee);
3148 	state->frame[state->curframe + 1] = NULL;
3149 	return 0;
3150 }
3151 
3152 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3153 				   int func_id,
3154 				   struct bpf_call_arg_meta *meta)
3155 {
3156 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3157 
3158 	if (ret_type != RET_INTEGER ||
3159 	    (func_id != BPF_FUNC_get_stack &&
3160 	     func_id != BPF_FUNC_probe_read_str))
3161 		return;
3162 
3163 	ret_reg->smax_value = meta->msize_smax_value;
3164 	ret_reg->umax_value = meta->msize_umax_value;
3165 	__reg_deduce_bounds(ret_reg);
3166 	__reg_bound_offset(ret_reg);
3167 }
3168 
3169 static int
3170 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3171 		int func_id, int insn_idx)
3172 {
3173 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3174 	struct bpf_map *map = meta->map_ptr;
3175 
3176 	if (func_id != BPF_FUNC_tail_call &&
3177 	    func_id != BPF_FUNC_map_lookup_elem &&
3178 	    func_id != BPF_FUNC_map_update_elem &&
3179 	    func_id != BPF_FUNC_map_delete_elem &&
3180 	    func_id != BPF_FUNC_map_push_elem &&
3181 	    func_id != BPF_FUNC_map_pop_elem &&
3182 	    func_id != BPF_FUNC_map_peek_elem)
3183 		return 0;
3184 
3185 	if (map == NULL) {
3186 		verbose(env, "kernel subsystem misconfigured verifier\n");
3187 		return -EINVAL;
3188 	}
3189 
3190 	/* In case of read-only, some additional restrictions
3191 	 * need to be applied in order to prevent altering the
3192 	 * state of the map from program side.
3193 	 */
3194 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3195 	    (func_id == BPF_FUNC_map_delete_elem ||
3196 	     func_id == BPF_FUNC_map_update_elem ||
3197 	     func_id == BPF_FUNC_map_push_elem ||
3198 	     func_id == BPF_FUNC_map_pop_elem)) {
3199 		verbose(env, "write into map forbidden\n");
3200 		return -EACCES;
3201 	}
3202 
3203 	if (!BPF_MAP_PTR(aux->map_state))
3204 		bpf_map_ptr_store(aux, meta->map_ptr,
3205 				  meta->map_ptr->unpriv_array);
3206 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3207 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3208 				  meta->map_ptr->unpriv_array);
3209 	return 0;
3210 }
3211 
3212 static int check_reference_leak(struct bpf_verifier_env *env)
3213 {
3214 	struct bpf_func_state *state = cur_func(env);
3215 	int i;
3216 
3217 	for (i = 0; i < state->acquired_refs; i++) {
3218 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3219 			state->refs[i].id, state->refs[i].insn_idx);
3220 	}
3221 	return state->acquired_refs ? -EINVAL : 0;
3222 }
3223 
3224 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3225 {
3226 	const struct bpf_func_proto *fn = NULL;
3227 	struct bpf_reg_state *regs;
3228 	struct bpf_call_arg_meta meta;
3229 	bool changes_data;
3230 	int i, err;
3231 
3232 	/* find function prototype */
3233 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3234 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3235 			func_id);
3236 		return -EINVAL;
3237 	}
3238 
3239 	if (env->ops->get_func_proto)
3240 		fn = env->ops->get_func_proto(func_id, env->prog);
3241 	if (!fn) {
3242 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3243 			func_id);
3244 		return -EINVAL;
3245 	}
3246 
3247 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
3248 	if (!env->prog->gpl_compatible && fn->gpl_only) {
3249 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3250 		return -EINVAL;
3251 	}
3252 
3253 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
3254 	changes_data = bpf_helper_changes_pkt_data(fn->func);
3255 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3256 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3257 			func_id_name(func_id), func_id);
3258 		return -EINVAL;
3259 	}
3260 
3261 	memset(&meta, 0, sizeof(meta));
3262 	meta.pkt_access = fn->pkt_access;
3263 
3264 	err = check_func_proto(fn, func_id);
3265 	if (err) {
3266 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3267 			func_id_name(func_id), func_id);
3268 		return err;
3269 	}
3270 
3271 	meta.func_id = func_id;
3272 	/* check args */
3273 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3274 	if (err)
3275 		return err;
3276 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3277 	if (err)
3278 		return err;
3279 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3280 	if (err)
3281 		return err;
3282 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3283 	if (err)
3284 		return err;
3285 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3286 	if (err)
3287 		return err;
3288 
3289 	err = record_func_map(env, &meta, func_id, insn_idx);
3290 	if (err)
3291 		return err;
3292 
3293 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
3294 	 * is inferred from register state.
3295 	 */
3296 	for (i = 0; i < meta.access_size; i++) {
3297 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3298 				       BPF_WRITE, -1, false);
3299 		if (err)
3300 			return err;
3301 	}
3302 
3303 	if (func_id == BPF_FUNC_tail_call) {
3304 		err = check_reference_leak(env);
3305 		if (err) {
3306 			verbose(env, "tail_call would lead to reference leak\n");
3307 			return err;
3308 		}
3309 	} else if (is_release_function(func_id)) {
3310 		err = release_reference(env, meta.ref_obj_id);
3311 		if (err) {
3312 			verbose(env, "func %s#%d reference has not been acquired before\n",
3313 				func_id_name(func_id), func_id);
3314 			return err;
3315 		}
3316 	}
3317 
3318 	regs = cur_regs(env);
3319 
3320 	/* check that flags argument in get_local_storage(map, flags) is 0,
3321 	 * this is required because get_local_storage() can't return an error.
3322 	 */
3323 	if (func_id == BPF_FUNC_get_local_storage &&
3324 	    !register_is_null(&regs[BPF_REG_2])) {
3325 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3326 		return -EINVAL;
3327 	}
3328 
3329 	/* reset caller saved regs */
3330 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3331 		mark_reg_not_init(env, regs, caller_saved[i]);
3332 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3333 	}
3334 
3335 	/* update return register (already marked as written above) */
3336 	if (fn->ret_type == RET_INTEGER) {
3337 		/* sets type to SCALAR_VALUE */
3338 		mark_reg_unknown(env, regs, BPF_REG_0);
3339 	} else if (fn->ret_type == RET_VOID) {
3340 		regs[BPF_REG_0].type = NOT_INIT;
3341 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3342 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3343 		/* There is no offset yet applied, variable or fixed */
3344 		mark_reg_known_zero(env, regs, BPF_REG_0);
3345 		/* remember map_ptr, so that check_map_access()
3346 		 * can check 'value_size' boundary of memory access
3347 		 * to map element returned from bpf_map_lookup_elem()
3348 		 */
3349 		if (meta.map_ptr == NULL) {
3350 			verbose(env,
3351 				"kernel subsystem misconfigured verifier\n");
3352 			return -EINVAL;
3353 		}
3354 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
3355 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3356 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3357 			if (map_value_has_spin_lock(meta.map_ptr))
3358 				regs[BPF_REG_0].id = ++env->id_gen;
3359 		} else {
3360 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3361 			regs[BPF_REG_0].id = ++env->id_gen;
3362 		}
3363 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3364 		mark_reg_known_zero(env, regs, BPF_REG_0);
3365 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3366 		regs[BPF_REG_0].id = ++env->id_gen;
3367 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
3368 		mark_reg_known_zero(env, regs, BPF_REG_0);
3369 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
3370 		regs[BPF_REG_0].id = ++env->id_gen;
3371 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3372 		mark_reg_known_zero(env, regs, BPF_REG_0);
3373 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3374 		regs[BPF_REG_0].id = ++env->id_gen;
3375 	} else {
3376 		verbose(env, "unknown return type %d of func %s#%d\n",
3377 			fn->ret_type, func_id_name(func_id), func_id);
3378 		return -EINVAL;
3379 	}
3380 
3381 	if (is_ptr_cast_function(func_id)) {
3382 		/* For release_reference() */
3383 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
3384 	} else if (is_acquire_function(func_id)) {
3385 		int id = acquire_reference_state(env, insn_idx);
3386 
3387 		if (id < 0)
3388 			return id;
3389 		/* For mark_ptr_or_null_reg() */
3390 		regs[BPF_REG_0].id = id;
3391 		/* For release_reference() */
3392 		regs[BPF_REG_0].ref_obj_id = id;
3393 	}
3394 
3395 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3396 
3397 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3398 	if (err)
3399 		return err;
3400 
3401 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3402 		const char *err_str;
3403 
3404 #ifdef CONFIG_PERF_EVENTS
3405 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
3406 		err_str = "cannot get callchain buffer for func %s#%d\n";
3407 #else
3408 		err = -ENOTSUPP;
3409 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3410 #endif
3411 		if (err) {
3412 			verbose(env, err_str, func_id_name(func_id), func_id);
3413 			return err;
3414 		}
3415 
3416 		env->prog->has_callchain_buf = true;
3417 	}
3418 
3419 	if (changes_data)
3420 		clear_all_pkt_pointers(env);
3421 	return 0;
3422 }
3423 
3424 static bool signed_add_overflows(s64 a, s64 b)
3425 {
3426 	/* Do the add in u64, where overflow is well-defined */
3427 	s64 res = (s64)((u64)a + (u64)b);
3428 
3429 	if (b < 0)
3430 		return res > a;
3431 	return res < a;
3432 }
3433 
3434 static bool signed_sub_overflows(s64 a, s64 b)
3435 {
3436 	/* Do the sub in u64, where overflow is well-defined */
3437 	s64 res = (s64)((u64)a - (u64)b);
3438 
3439 	if (b < 0)
3440 		return res < a;
3441 	return res > a;
3442 }
3443 
3444 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3445 				  const struct bpf_reg_state *reg,
3446 				  enum bpf_reg_type type)
3447 {
3448 	bool known = tnum_is_const(reg->var_off);
3449 	s64 val = reg->var_off.value;
3450 	s64 smin = reg->smin_value;
3451 
3452 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3453 		verbose(env, "math between %s pointer and %lld is not allowed\n",
3454 			reg_type_str[type], val);
3455 		return false;
3456 	}
3457 
3458 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3459 		verbose(env, "%s pointer offset %d is not allowed\n",
3460 			reg_type_str[type], reg->off);
3461 		return false;
3462 	}
3463 
3464 	if (smin == S64_MIN) {
3465 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3466 			reg_type_str[type]);
3467 		return false;
3468 	}
3469 
3470 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3471 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
3472 			smin, reg_type_str[type]);
3473 		return false;
3474 	}
3475 
3476 	return true;
3477 }
3478 
3479 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3480 {
3481 	return &env->insn_aux_data[env->insn_idx];
3482 }
3483 
3484 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3485 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
3486 {
3487 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
3488 			    (opcode == BPF_SUB && !off_is_neg);
3489 	u32 off;
3490 
3491 	switch (ptr_reg->type) {
3492 	case PTR_TO_STACK:
3493 		/* Indirect variable offset stack access is prohibited in
3494 		 * unprivileged mode so it's not handled here.
3495 		 */
3496 		off = ptr_reg->off + ptr_reg->var_off.value;
3497 		if (mask_to_left)
3498 			*ptr_limit = MAX_BPF_STACK + off;
3499 		else
3500 			*ptr_limit = -off;
3501 		return 0;
3502 	case PTR_TO_MAP_VALUE:
3503 		if (mask_to_left) {
3504 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3505 		} else {
3506 			off = ptr_reg->smin_value + ptr_reg->off;
3507 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
3508 		}
3509 		return 0;
3510 	default:
3511 		return -EINVAL;
3512 	}
3513 }
3514 
3515 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3516 				    const struct bpf_insn *insn)
3517 {
3518 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3519 }
3520 
3521 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3522 				       u32 alu_state, u32 alu_limit)
3523 {
3524 	/* If we arrived here from different branches with different
3525 	 * state or limits to sanitize, then this won't work.
3526 	 */
3527 	if (aux->alu_state &&
3528 	    (aux->alu_state != alu_state ||
3529 	     aux->alu_limit != alu_limit))
3530 		return -EACCES;
3531 
3532 	/* Corresponding fixup done in fixup_bpf_calls(). */
3533 	aux->alu_state = alu_state;
3534 	aux->alu_limit = alu_limit;
3535 	return 0;
3536 }
3537 
3538 static int sanitize_val_alu(struct bpf_verifier_env *env,
3539 			    struct bpf_insn *insn)
3540 {
3541 	struct bpf_insn_aux_data *aux = cur_aux(env);
3542 
3543 	if (can_skip_alu_sanitation(env, insn))
3544 		return 0;
3545 
3546 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3547 }
3548 
3549 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3550 			    struct bpf_insn *insn,
3551 			    const struct bpf_reg_state *ptr_reg,
3552 			    struct bpf_reg_state *dst_reg,
3553 			    bool off_is_neg)
3554 {
3555 	struct bpf_verifier_state *vstate = env->cur_state;
3556 	struct bpf_insn_aux_data *aux = cur_aux(env);
3557 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
3558 	u8 opcode = BPF_OP(insn->code);
3559 	u32 alu_state, alu_limit;
3560 	struct bpf_reg_state tmp;
3561 	bool ret;
3562 
3563 	if (can_skip_alu_sanitation(env, insn))
3564 		return 0;
3565 
3566 	/* We already marked aux for masking from non-speculative
3567 	 * paths, thus we got here in the first place. We only care
3568 	 * to explore bad access from here.
3569 	 */
3570 	if (vstate->speculative)
3571 		goto do_sim;
3572 
3573 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3574 	alu_state |= ptr_is_dst_reg ?
3575 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3576 
3577 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3578 		return 0;
3579 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3580 		return -EACCES;
3581 do_sim:
3582 	/* Simulate and find potential out-of-bounds access under
3583 	 * speculative execution from truncation as a result of
3584 	 * masking when off was not within expected range. If off
3585 	 * sits in dst, then we temporarily need to move ptr there
3586 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3587 	 * for cases where we use K-based arithmetic in one direction
3588 	 * and truncated reg-based in the other in order to explore
3589 	 * bad access.
3590 	 */
3591 	if (!ptr_is_dst_reg) {
3592 		tmp = *dst_reg;
3593 		*dst_reg = *ptr_reg;
3594 	}
3595 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3596 	if (!ptr_is_dst_reg && ret)
3597 		*dst_reg = tmp;
3598 	return !ret ? -EFAULT : 0;
3599 }
3600 
3601 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3602  * Caller should also handle BPF_MOV case separately.
3603  * If we return -EACCES, caller may want to try again treating pointer as a
3604  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
3605  */
3606 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3607 				   struct bpf_insn *insn,
3608 				   const struct bpf_reg_state *ptr_reg,
3609 				   const struct bpf_reg_state *off_reg)
3610 {
3611 	struct bpf_verifier_state *vstate = env->cur_state;
3612 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3613 	struct bpf_reg_state *regs = state->regs, *dst_reg;
3614 	bool known = tnum_is_const(off_reg->var_off);
3615 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3616 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3617 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3618 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3619 	u32 dst = insn->dst_reg, src = insn->src_reg;
3620 	u8 opcode = BPF_OP(insn->code);
3621 	int ret;
3622 
3623 	dst_reg = &regs[dst];
3624 
3625 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3626 	    smin_val > smax_val || umin_val > umax_val) {
3627 		/* Taint dst register if offset had invalid bounds derived from
3628 		 * e.g. dead branches.
3629 		 */
3630 		__mark_reg_unknown(dst_reg);
3631 		return 0;
3632 	}
3633 
3634 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3635 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3636 		verbose(env,
3637 			"R%d 32-bit pointer arithmetic prohibited\n",
3638 			dst);
3639 		return -EACCES;
3640 	}
3641 
3642 	switch (ptr_reg->type) {
3643 	case PTR_TO_MAP_VALUE_OR_NULL:
3644 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3645 			dst, reg_type_str[ptr_reg->type]);
3646 		return -EACCES;
3647 	case CONST_PTR_TO_MAP:
3648 	case PTR_TO_PACKET_END:
3649 	case PTR_TO_SOCKET:
3650 	case PTR_TO_SOCKET_OR_NULL:
3651 	case PTR_TO_SOCK_COMMON:
3652 	case PTR_TO_SOCK_COMMON_OR_NULL:
3653 	case PTR_TO_TCP_SOCK:
3654 	case PTR_TO_TCP_SOCK_OR_NULL:
3655 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3656 			dst, reg_type_str[ptr_reg->type]);
3657 		return -EACCES;
3658 	case PTR_TO_MAP_VALUE:
3659 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3660 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3661 				off_reg == dst_reg ? dst : src);
3662 			return -EACCES;
3663 		}
3664 		/* fall-through */
3665 	default:
3666 		break;
3667 	}
3668 
3669 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3670 	 * The id may be overwritten later if we create a new variable offset.
3671 	 */
3672 	dst_reg->type = ptr_reg->type;
3673 	dst_reg->id = ptr_reg->id;
3674 
3675 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3676 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3677 		return -EINVAL;
3678 
3679 	switch (opcode) {
3680 	case BPF_ADD:
3681 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3682 		if (ret < 0) {
3683 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
3684 			return ret;
3685 		}
3686 		/* We can take a fixed offset as long as it doesn't overflow
3687 		 * the s32 'off' field
3688 		 */
3689 		if (known && (ptr_reg->off + smin_val ==
3690 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3691 			/* pointer += K.  Accumulate it into fixed offset */
3692 			dst_reg->smin_value = smin_ptr;
3693 			dst_reg->smax_value = smax_ptr;
3694 			dst_reg->umin_value = umin_ptr;
3695 			dst_reg->umax_value = umax_ptr;
3696 			dst_reg->var_off = ptr_reg->var_off;
3697 			dst_reg->off = ptr_reg->off + smin_val;
3698 			dst_reg->raw = ptr_reg->raw;
3699 			break;
3700 		}
3701 		/* A new variable offset is created.  Note that off_reg->off
3702 		 * == 0, since it's a scalar.
3703 		 * dst_reg gets the pointer type and since some positive
3704 		 * integer value was added to the pointer, give it a new 'id'
3705 		 * if it's a PTR_TO_PACKET.
3706 		 * this creates a new 'base' pointer, off_reg (variable) gets
3707 		 * added into the variable offset, and we copy the fixed offset
3708 		 * from ptr_reg.
3709 		 */
3710 		if (signed_add_overflows(smin_ptr, smin_val) ||
3711 		    signed_add_overflows(smax_ptr, smax_val)) {
3712 			dst_reg->smin_value = S64_MIN;
3713 			dst_reg->smax_value = S64_MAX;
3714 		} else {
3715 			dst_reg->smin_value = smin_ptr + smin_val;
3716 			dst_reg->smax_value = smax_ptr + smax_val;
3717 		}
3718 		if (umin_ptr + umin_val < umin_ptr ||
3719 		    umax_ptr + umax_val < umax_ptr) {
3720 			dst_reg->umin_value = 0;
3721 			dst_reg->umax_value = U64_MAX;
3722 		} else {
3723 			dst_reg->umin_value = umin_ptr + umin_val;
3724 			dst_reg->umax_value = umax_ptr + umax_val;
3725 		}
3726 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3727 		dst_reg->off = ptr_reg->off;
3728 		dst_reg->raw = ptr_reg->raw;
3729 		if (reg_is_pkt_pointer(ptr_reg)) {
3730 			dst_reg->id = ++env->id_gen;
3731 			/* something was added to pkt_ptr, set range to zero */
3732 			dst_reg->raw = 0;
3733 		}
3734 		break;
3735 	case BPF_SUB:
3736 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3737 		if (ret < 0) {
3738 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3739 			return ret;
3740 		}
3741 		if (dst_reg == off_reg) {
3742 			/* scalar -= pointer.  Creates an unknown scalar */
3743 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3744 				dst);
3745 			return -EACCES;
3746 		}
3747 		/* We don't allow subtraction from FP, because (according to
3748 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3749 		 * be able to deal with it.
3750 		 */
3751 		if (ptr_reg->type == PTR_TO_STACK) {
3752 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3753 				dst);
3754 			return -EACCES;
3755 		}
3756 		if (known && (ptr_reg->off - smin_val ==
3757 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3758 			/* pointer -= K.  Subtract it from fixed offset */
3759 			dst_reg->smin_value = smin_ptr;
3760 			dst_reg->smax_value = smax_ptr;
3761 			dst_reg->umin_value = umin_ptr;
3762 			dst_reg->umax_value = umax_ptr;
3763 			dst_reg->var_off = ptr_reg->var_off;
3764 			dst_reg->id = ptr_reg->id;
3765 			dst_reg->off = ptr_reg->off - smin_val;
3766 			dst_reg->raw = ptr_reg->raw;
3767 			break;
3768 		}
3769 		/* A new variable offset is created.  If the subtrahend is known
3770 		 * nonnegative, then any reg->range we had before is still good.
3771 		 */
3772 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3773 		    signed_sub_overflows(smax_ptr, smin_val)) {
3774 			/* Overflow possible, we know nothing */
3775 			dst_reg->smin_value = S64_MIN;
3776 			dst_reg->smax_value = S64_MAX;
3777 		} else {
3778 			dst_reg->smin_value = smin_ptr - smax_val;
3779 			dst_reg->smax_value = smax_ptr - smin_val;
3780 		}
3781 		if (umin_ptr < umax_val) {
3782 			/* Overflow possible, we know nothing */
3783 			dst_reg->umin_value = 0;
3784 			dst_reg->umax_value = U64_MAX;
3785 		} else {
3786 			/* Cannot overflow (as long as bounds are consistent) */
3787 			dst_reg->umin_value = umin_ptr - umax_val;
3788 			dst_reg->umax_value = umax_ptr - umin_val;
3789 		}
3790 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3791 		dst_reg->off = ptr_reg->off;
3792 		dst_reg->raw = ptr_reg->raw;
3793 		if (reg_is_pkt_pointer(ptr_reg)) {
3794 			dst_reg->id = ++env->id_gen;
3795 			/* something was added to pkt_ptr, set range to zero */
3796 			if (smin_val < 0)
3797 				dst_reg->raw = 0;
3798 		}
3799 		break;
3800 	case BPF_AND:
3801 	case BPF_OR:
3802 	case BPF_XOR:
3803 		/* bitwise ops on pointers are troublesome, prohibit. */
3804 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3805 			dst, bpf_alu_string[opcode >> 4]);
3806 		return -EACCES;
3807 	default:
3808 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3809 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3810 			dst, bpf_alu_string[opcode >> 4]);
3811 		return -EACCES;
3812 	}
3813 
3814 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3815 		return -EINVAL;
3816 
3817 	__update_reg_bounds(dst_reg);
3818 	__reg_deduce_bounds(dst_reg);
3819 	__reg_bound_offset(dst_reg);
3820 
3821 	/* For unprivileged we require that resulting offset must be in bounds
3822 	 * in order to be able to sanitize access later on.
3823 	 */
3824 	if (!env->allow_ptr_leaks) {
3825 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
3826 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
3827 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3828 				"prohibited for !root\n", dst);
3829 			return -EACCES;
3830 		} else if (dst_reg->type == PTR_TO_STACK &&
3831 			   check_stack_access(env, dst_reg, dst_reg->off +
3832 					      dst_reg->var_off.value, 1)) {
3833 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
3834 				"prohibited for !root\n", dst);
3835 			return -EACCES;
3836 		}
3837 	}
3838 
3839 	return 0;
3840 }
3841 
3842 /* WARNING: This function does calculations on 64-bit values, but the actual
3843  * execution may occur on 32-bit values. Therefore, things like bitshifts
3844  * need extra checks in the 32-bit case.
3845  */
3846 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3847 				      struct bpf_insn *insn,
3848 				      struct bpf_reg_state *dst_reg,
3849 				      struct bpf_reg_state src_reg)
3850 {
3851 	struct bpf_reg_state *regs = cur_regs(env);
3852 	u8 opcode = BPF_OP(insn->code);
3853 	bool src_known, dst_known;
3854 	s64 smin_val, smax_val;
3855 	u64 umin_val, umax_val;
3856 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3857 	u32 dst = insn->dst_reg;
3858 	int ret;
3859 
3860 	if (insn_bitness == 32) {
3861 		/* Relevant for 32-bit RSH: Information can propagate towards
3862 		 * LSB, so it isn't sufficient to only truncate the output to
3863 		 * 32 bits.
3864 		 */
3865 		coerce_reg_to_size(dst_reg, 4);
3866 		coerce_reg_to_size(&src_reg, 4);
3867 	}
3868 
3869 	smin_val = src_reg.smin_value;
3870 	smax_val = src_reg.smax_value;
3871 	umin_val = src_reg.umin_value;
3872 	umax_val = src_reg.umax_value;
3873 	src_known = tnum_is_const(src_reg.var_off);
3874 	dst_known = tnum_is_const(dst_reg->var_off);
3875 
3876 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3877 	    smin_val > smax_val || umin_val > umax_val) {
3878 		/* Taint dst register if offset had invalid bounds derived from
3879 		 * e.g. dead branches.
3880 		 */
3881 		__mark_reg_unknown(dst_reg);
3882 		return 0;
3883 	}
3884 
3885 	if (!src_known &&
3886 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3887 		__mark_reg_unknown(dst_reg);
3888 		return 0;
3889 	}
3890 
3891 	switch (opcode) {
3892 	case BPF_ADD:
3893 		ret = sanitize_val_alu(env, insn);
3894 		if (ret < 0) {
3895 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3896 			return ret;
3897 		}
3898 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3899 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3900 			dst_reg->smin_value = S64_MIN;
3901 			dst_reg->smax_value = S64_MAX;
3902 		} else {
3903 			dst_reg->smin_value += smin_val;
3904 			dst_reg->smax_value += smax_val;
3905 		}
3906 		if (dst_reg->umin_value + umin_val < umin_val ||
3907 		    dst_reg->umax_value + umax_val < umax_val) {
3908 			dst_reg->umin_value = 0;
3909 			dst_reg->umax_value = U64_MAX;
3910 		} else {
3911 			dst_reg->umin_value += umin_val;
3912 			dst_reg->umax_value += umax_val;
3913 		}
3914 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3915 		break;
3916 	case BPF_SUB:
3917 		ret = sanitize_val_alu(env, insn);
3918 		if (ret < 0) {
3919 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3920 			return ret;
3921 		}
3922 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3923 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3924 			/* Overflow possible, we know nothing */
3925 			dst_reg->smin_value = S64_MIN;
3926 			dst_reg->smax_value = S64_MAX;
3927 		} else {
3928 			dst_reg->smin_value -= smax_val;
3929 			dst_reg->smax_value -= smin_val;
3930 		}
3931 		if (dst_reg->umin_value < umax_val) {
3932 			/* Overflow possible, we know nothing */
3933 			dst_reg->umin_value = 0;
3934 			dst_reg->umax_value = U64_MAX;
3935 		} else {
3936 			/* Cannot overflow (as long as bounds are consistent) */
3937 			dst_reg->umin_value -= umax_val;
3938 			dst_reg->umax_value -= umin_val;
3939 		}
3940 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3941 		break;
3942 	case BPF_MUL:
3943 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3944 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3945 			/* Ain't nobody got time to multiply that sign */
3946 			__mark_reg_unbounded(dst_reg);
3947 			__update_reg_bounds(dst_reg);
3948 			break;
3949 		}
3950 		/* Both values are positive, so we can work with unsigned and
3951 		 * copy the result to signed (unless it exceeds S64_MAX).
3952 		 */
3953 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3954 			/* Potential overflow, we know nothing */
3955 			__mark_reg_unbounded(dst_reg);
3956 			/* (except what we can learn from the var_off) */
3957 			__update_reg_bounds(dst_reg);
3958 			break;
3959 		}
3960 		dst_reg->umin_value *= umin_val;
3961 		dst_reg->umax_value *= umax_val;
3962 		if (dst_reg->umax_value > S64_MAX) {
3963 			/* Overflow possible, we know nothing */
3964 			dst_reg->smin_value = S64_MIN;
3965 			dst_reg->smax_value = S64_MAX;
3966 		} else {
3967 			dst_reg->smin_value = dst_reg->umin_value;
3968 			dst_reg->smax_value = dst_reg->umax_value;
3969 		}
3970 		break;
3971 	case BPF_AND:
3972 		if (src_known && dst_known) {
3973 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3974 						  src_reg.var_off.value);
3975 			break;
3976 		}
3977 		/* We get our minimum from the var_off, since that's inherently
3978 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3979 		 */
3980 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3981 		dst_reg->umin_value = dst_reg->var_off.value;
3982 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3983 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3984 			/* Lose signed bounds when ANDing negative numbers,
3985 			 * ain't nobody got time for that.
3986 			 */
3987 			dst_reg->smin_value = S64_MIN;
3988 			dst_reg->smax_value = S64_MAX;
3989 		} else {
3990 			/* ANDing two positives gives a positive, so safe to
3991 			 * cast result into s64.
3992 			 */
3993 			dst_reg->smin_value = dst_reg->umin_value;
3994 			dst_reg->smax_value = dst_reg->umax_value;
3995 		}
3996 		/* We may learn something more from the var_off */
3997 		__update_reg_bounds(dst_reg);
3998 		break;
3999 	case BPF_OR:
4000 		if (src_known && dst_known) {
4001 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
4002 						  src_reg.var_off.value);
4003 			break;
4004 		}
4005 		/* We get our maximum from the var_off, and our minimum is the
4006 		 * maximum of the operands' minima
4007 		 */
4008 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4009 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4010 		dst_reg->umax_value = dst_reg->var_off.value |
4011 				      dst_reg->var_off.mask;
4012 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4013 			/* Lose signed bounds when ORing negative numbers,
4014 			 * ain't nobody got time for that.
4015 			 */
4016 			dst_reg->smin_value = S64_MIN;
4017 			dst_reg->smax_value = S64_MAX;
4018 		} else {
4019 			/* ORing two positives gives a positive, so safe to
4020 			 * cast result into s64.
4021 			 */
4022 			dst_reg->smin_value = dst_reg->umin_value;
4023 			dst_reg->smax_value = dst_reg->umax_value;
4024 		}
4025 		/* We may learn something more from the var_off */
4026 		__update_reg_bounds(dst_reg);
4027 		break;
4028 	case BPF_LSH:
4029 		if (umax_val >= insn_bitness) {
4030 			/* Shifts greater than 31 or 63 are undefined.
4031 			 * This includes shifts by a negative number.
4032 			 */
4033 			mark_reg_unknown(env, regs, insn->dst_reg);
4034 			break;
4035 		}
4036 		/* We lose all sign bit information (except what we can pick
4037 		 * up from var_off)
4038 		 */
4039 		dst_reg->smin_value = S64_MIN;
4040 		dst_reg->smax_value = S64_MAX;
4041 		/* If we might shift our top bit out, then we know nothing */
4042 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4043 			dst_reg->umin_value = 0;
4044 			dst_reg->umax_value = U64_MAX;
4045 		} else {
4046 			dst_reg->umin_value <<= umin_val;
4047 			dst_reg->umax_value <<= umax_val;
4048 		}
4049 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
4050 		/* We may learn something more from the var_off */
4051 		__update_reg_bounds(dst_reg);
4052 		break;
4053 	case BPF_RSH:
4054 		if (umax_val >= insn_bitness) {
4055 			/* Shifts greater than 31 or 63 are undefined.
4056 			 * This includes shifts by a negative number.
4057 			 */
4058 			mark_reg_unknown(env, regs, insn->dst_reg);
4059 			break;
4060 		}
4061 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
4062 		 * be negative, then either:
4063 		 * 1) src_reg might be zero, so the sign bit of the result is
4064 		 *    unknown, so we lose our signed bounds
4065 		 * 2) it's known negative, thus the unsigned bounds capture the
4066 		 *    signed bounds
4067 		 * 3) the signed bounds cross zero, so they tell us nothing
4068 		 *    about the result
4069 		 * If the value in dst_reg is known nonnegative, then again the
4070 		 * unsigned bounts capture the signed bounds.
4071 		 * Thus, in all cases it suffices to blow away our signed bounds
4072 		 * and rely on inferring new ones from the unsigned bounds and
4073 		 * var_off of the result.
4074 		 */
4075 		dst_reg->smin_value = S64_MIN;
4076 		dst_reg->smax_value = S64_MAX;
4077 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4078 		dst_reg->umin_value >>= umax_val;
4079 		dst_reg->umax_value >>= umin_val;
4080 		/* We may learn something more from the var_off */
4081 		__update_reg_bounds(dst_reg);
4082 		break;
4083 	case BPF_ARSH:
4084 		if (umax_val >= insn_bitness) {
4085 			/* Shifts greater than 31 or 63 are undefined.
4086 			 * This includes shifts by a negative number.
4087 			 */
4088 			mark_reg_unknown(env, regs, insn->dst_reg);
4089 			break;
4090 		}
4091 
4092 		/* Upon reaching here, src_known is true and
4093 		 * umax_val is equal to umin_val.
4094 		 */
4095 		dst_reg->smin_value >>= umin_val;
4096 		dst_reg->smax_value >>= umin_val;
4097 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4098 
4099 		/* blow away the dst_reg umin_value/umax_value and rely on
4100 		 * dst_reg var_off to refine the result.
4101 		 */
4102 		dst_reg->umin_value = 0;
4103 		dst_reg->umax_value = U64_MAX;
4104 		__update_reg_bounds(dst_reg);
4105 		break;
4106 	default:
4107 		mark_reg_unknown(env, regs, insn->dst_reg);
4108 		break;
4109 	}
4110 
4111 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4112 		/* 32-bit ALU ops are (32,32)->32 */
4113 		coerce_reg_to_size(dst_reg, 4);
4114 	}
4115 
4116 	__reg_deduce_bounds(dst_reg);
4117 	__reg_bound_offset(dst_reg);
4118 	return 0;
4119 }
4120 
4121 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4122  * and var_off.
4123  */
4124 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4125 				   struct bpf_insn *insn)
4126 {
4127 	struct bpf_verifier_state *vstate = env->cur_state;
4128 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4129 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4130 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4131 	u8 opcode = BPF_OP(insn->code);
4132 
4133 	dst_reg = &regs[insn->dst_reg];
4134 	src_reg = NULL;
4135 	if (dst_reg->type != SCALAR_VALUE)
4136 		ptr_reg = dst_reg;
4137 	if (BPF_SRC(insn->code) == BPF_X) {
4138 		src_reg = &regs[insn->src_reg];
4139 		if (src_reg->type != SCALAR_VALUE) {
4140 			if (dst_reg->type != SCALAR_VALUE) {
4141 				/* Combining two pointers by any ALU op yields
4142 				 * an arbitrary scalar. Disallow all math except
4143 				 * pointer subtraction
4144 				 */
4145 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4146 					mark_reg_unknown(env, regs, insn->dst_reg);
4147 					return 0;
4148 				}
4149 				verbose(env, "R%d pointer %s pointer prohibited\n",
4150 					insn->dst_reg,
4151 					bpf_alu_string[opcode >> 4]);
4152 				return -EACCES;
4153 			} else {
4154 				/* scalar += pointer
4155 				 * This is legal, but we have to reverse our
4156 				 * src/dest handling in computing the range
4157 				 */
4158 				return adjust_ptr_min_max_vals(env, insn,
4159 							       src_reg, dst_reg);
4160 			}
4161 		} else if (ptr_reg) {
4162 			/* pointer += scalar */
4163 			return adjust_ptr_min_max_vals(env, insn,
4164 						       dst_reg, src_reg);
4165 		}
4166 	} else {
4167 		/* Pretend the src is a reg with a known value, since we only
4168 		 * need to be able to read from this state.
4169 		 */
4170 		off_reg.type = SCALAR_VALUE;
4171 		__mark_reg_known(&off_reg, insn->imm);
4172 		src_reg = &off_reg;
4173 		if (ptr_reg) /* pointer += K */
4174 			return adjust_ptr_min_max_vals(env, insn,
4175 						       ptr_reg, src_reg);
4176 	}
4177 
4178 	/* Got here implies adding two SCALAR_VALUEs */
4179 	if (WARN_ON_ONCE(ptr_reg)) {
4180 		print_verifier_state(env, state);
4181 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
4182 		return -EINVAL;
4183 	}
4184 	if (WARN_ON(!src_reg)) {
4185 		print_verifier_state(env, state);
4186 		verbose(env, "verifier internal error: no src_reg\n");
4187 		return -EINVAL;
4188 	}
4189 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4190 }
4191 
4192 /* check validity of 32-bit and 64-bit arithmetic operations */
4193 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4194 {
4195 	struct bpf_reg_state *regs = cur_regs(env);
4196 	u8 opcode = BPF_OP(insn->code);
4197 	int err;
4198 
4199 	if (opcode == BPF_END || opcode == BPF_NEG) {
4200 		if (opcode == BPF_NEG) {
4201 			if (BPF_SRC(insn->code) != 0 ||
4202 			    insn->src_reg != BPF_REG_0 ||
4203 			    insn->off != 0 || insn->imm != 0) {
4204 				verbose(env, "BPF_NEG uses reserved fields\n");
4205 				return -EINVAL;
4206 			}
4207 		} else {
4208 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4209 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4210 			    BPF_CLASS(insn->code) == BPF_ALU64) {
4211 				verbose(env, "BPF_END uses reserved fields\n");
4212 				return -EINVAL;
4213 			}
4214 		}
4215 
4216 		/* check src operand */
4217 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4218 		if (err)
4219 			return err;
4220 
4221 		if (is_pointer_value(env, insn->dst_reg)) {
4222 			verbose(env, "R%d pointer arithmetic prohibited\n",
4223 				insn->dst_reg);
4224 			return -EACCES;
4225 		}
4226 
4227 		/* check dest operand */
4228 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
4229 		if (err)
4230 			return err;
4231 
4232 	} else if (opcode == BPF_MOV) {
4233 
4234 		if (BPF_SRC(insn->code) == BPF_X) {
4235 			if (insn->imm != 0 || insn->off != 0) {
4236 				verbose(env, "BPF_MOV uses reserved fields\n");
4237 				return -EINVAL;
4238 			}
4239 
4240 			/* check src operand */
4241 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4242 			if (err)
4243 				return err;
4244 		} else {
4245 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4246 				verbose(env, "BPF_MOV uses reserved fields\n");
4247 				return -EINVAL;
4248 			}
4249 		}
4250 
4251 		/* check dest operand, mark as required later */
4252 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4253 		if (err)
4254 			return err;
4255 
4256 		if (BPF_SRC(insn->code) == BPF_X) {
4257 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
4258 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4259 
4260 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4261 				/* case: R1 = R2
4262 				 * copy register state to dest reg
4263 				 */
4264 				*dst_reg = *src_reg;
4265 				dst_reg->live |= REG_LIVE_WRITTEN;
4266 			} else {
4267 				/* R1 = (u32) R2 */
4268 				if (is_pointer_value(env, insn->src_reg)) {
4269 					verbose(env,
4270 						"R%d partial copy of pointer\n",
4271 						insn->src_reg);
4272 					return -EACCES;
4273 				} else if (src_reg->type == SCALAR_VALUE) {
4274 					*dst_reg = *src_reg;
4275 					dst_reg->live |= REG_LIVE_WRITTEN;
4276 				} else {
4277 					mark_reg_unknown(env, regs,
4278 							 insn->dst_reg);
4279 				}
4280 				coerce_reg_to_size(dst_reg, 4);
4281 			}
4282 		} else {
4283 			/* case: R = imm
4284 			 * remember the value we stored into this reg
4285 			 */
4286 			/* clear any state __mark_reg_known doesn't set */
4287 			mark_reg_unknown(env, regs, insn->dst_reg);
4288 			regs[insn->dst_reg].type = SCALAR_VALUE;
4289 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4290 				__mark_reg_known(regs + insn->dst_reg,
4291 						 insn->imm);
4292 			} else {
4293 				__mark_reg_known(regs + insn->dst_reg,
4294 						 (u32)insn->imm);
4295 			}
4296 		}
4297 
4298 	} else if (opcode > BPF_END) {
4299 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4300 		return -EINVAL;
4301 
4302 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
4303 
4304 		if (BPF_SRC(insn->code) == BPF_X) {
4305 			if (insn->imm != 0 || insn->off != 0) {
4306 				verbose(env, "BPF_ALU uses reserved fields\n");
4307 				return -EINVAL;
4308 			}
4309 			/* check src1 operand */
4310 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4311 			if (err)
4312 				return err;
4313 		} else {
4314 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4315 				verbose(env, "BPF_ALU uses reserved fields\n");
4316 				return -EINVAL;
4317 			}
4318 		}
4319 
4320 		/* check src2 operand */
4321 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4322 		if (err)
4323 			return err;
4324 
4325 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4326 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4327 			verbose(env, "div by zero\n");
4328 			return -EINVAL;
4329 		}
4330 
4331 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4332 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4333 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4334 
4335 			if (insn->imm < 0 || insn->imm >= size) {
4336 				verbose(env, "invalid shift %d\n", insn->imm);
4337 				return -EINVAL;
4338 			}
4339 		}
4340 
4341 		/* check dest operand */
4342 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4343 		if (err)
4344 			return err;
4345 
4346 		return adjust_reg_min_max_vals(env, insn);
4347 	}
4348 
4349 	return 0;
4350 }
4351 
4352 static void __find_good_pkt_pointers(struct bpf_func_state *state,
4353 				     struct bpf_reg_state *dst_reg,
4354 				     enum bpf_reg_type type, u16 new_range)
4355 {
4356 	struct bpf_reg_state *reg;
4357 	int i;
4358 
4359 	for (i = 0; i < MAX_BPF_REG; i++) {
4360 		reg = &state->regs[i];
4361 		if (reg->type == type && reg->id == dst_reg->id)
4362 			/* keep the maximum range already checked */
4363 			reg->range = max(reg->range, new_range);
4364 	}
4365 
4366 	bpf_for_each_spilled_reg(i, state, reg) {
4367 		if (!reg)
4368 			continue;
4369 		if (reg->type == type && reg->id == dst_reg->id)
4370 			reg->range = max(reg->range, new_range);
4371 	}
4372 }
4373 
4374 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4375 				   struct bpf_reg_state *dst_reg,
4376 				   enum bpf_reg_type type,
4377 				   bool range_right_open)
4378 {
4379 	u16 new_range;
4380 	int i;
4381 
4382 	if (dst_reg->off < 0 ||
4383 	    (dst_reg->off == 0 && range_right_open))
4384 		/* This doesn't give us any range */
4385 		return;
4386 
4387 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
4388 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4389 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
4390 		 * than pkt_end, but that's because it's also less than pkt.
4391 		 */
4392 		return;
4393 
4394 	new_range = dst_reg->off;
4395 	if (range_right_open)
4396 		new_range--;
4397 
4398 	/* Examples for register markings:
4399 	 *
4400 	 * pkt_data in dst register:
4401 	 *
4402 	 *   r2 = r3;
4403 	 *   r2 += 8;
4404 	 *   if (r2 > pkt_end) goto <handle exception>
4405 	 *   <access okay>
4406 	 *
4407 	 *   r2 = r3;
4408 	 *   r2 += 8;
4409 	 *   if (r2 < pkt_end) goto <access okay>
4410 	 *   <handle exception>
4411 	 *
4412 	 *   Where:
4413 	 *     r2 == dst_reg, pkt_end == src_reg
4414 	 *     r2=pkt(id=n,off=8,r=0)
4415 	 *     r3=pkt(id=n,off=0,r=0)
4416 	 *
4417 	 * pkt_data in src register:
4418 	 *
4419 	 *   r2 = r3;
4420 	 *   r2 += 8;
4421 	 *   if (pkt_end >= r2) goto <access okay>
4422 	 *   <handle exception>
4423 	 *
4424 	 *   r2 = r3;
4425 	 *   r2 += 8;
4426 	 *   if (pkt_end <= r2) goto <handle exception>
4427 	 *   <access okay>
4428 	 *
4429 	 *   Where:
4430 	 *     pkt_end == dst_reg, r2 == src_reg
4431 	 *     r2=pkt(id=n,off=8,r=0)
4432 	 *     r3=pkt(id=n,off=0,r=0)
4433 	 *
4434 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4435 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4436 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
4437 	 * the check.
4438 	 */
4439 
4440 	/* If our ids match, then we must have the same max_value.  And we
4441 	 * don't care about the other reg's fixed offset, since if it's too big
4442 	 * the range won't allow anything.
4443 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4444 	 */
4445 	for (i = 0; i <= vstate->curframe; i++)
4446 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
4447 					 new_range);
4448 }
4449 
4450 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4451  * and return:
4452  *  1 - branch will be taken and "goto target" will be executed
4453  *  0 - branch will not be taken and fall-through to next insn
4454  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4455  */
4456 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4457 			   bool is_jmp32)
4458 {
4459 	struct bpf_reg_state reg_lo;
4460 	s64 sval;
4461 
4462 	if (__is_pointer_value(false, reg))
4463 		return -1;
4464 
4465 	if (is_jmp32) {
4466 		reg_lo = *reg;
4467 		reg = &reg_lo;
4468 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4469 		 * could truncate high bits and update umin/umax according to
4470 		 * information of low bits.
4471 		 */
4472 		coerce_reg_to_size(reg, 4);
4473 		/* smin/smax need special handling. For example, after coerce,
4474 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4475 		 * used as operand to JMP32. It is a negative number from s32's
4476 		 * point of view, while it is a positive number when seen as
4477 		 * s64. The smin/smax are kept as s64, therefore, when used with
4478 		 * JMP32, they need to be transformed into s32, then sign
4479 		 * extended back to s64.
4480 		 *
4481 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
4482 		 * different sign bit, then min/max relationship doesn't
4483 		 * maintain after casting into s32, for this case, set smin/smax
4484 		 * to safest range.
4485 		 */
4486 		if ((reg->umax_value ^ reg->umin_value) &
4487 		    (1ULL << 31)) {
4488 			reg->smin_value = S32_MIN;
4489 			reg->smax_value = S32_MAX;
4490 		}
4491 		reg->smin_value = (s64)(s32)reg->smin_value;
4492 		reg->smax_value = (s64)(s32)reg->smax_value;
4493 
4494 		val = (u32)val;
4495 		sval = (s64)(s32)val;
4496 	} else {
4497 		sval = (s64)val;
4498 	}
4499 
4500 	switch (opcode) {
4501 	case BPF_JEQ:
4502 		if (tnum_is_const(reg->var_off))
4503 			return !!tnum_equals_const(reg->var_off, val);
4504 		break;
4505 	case BPF_JNE:
4506 		if (tnum_is_const(reg->var_off))
4507 			return !tnum_equals_const(reg->var_off, val);
4508 		break;
4509 	case BPF_JSET:
4510 		if ((~reg->var_off.mask & reg->var_off.value) & val)
4511 			return 1;
4512 		if (!((reg->var_off.mask | reg->var_off.value) & val))
4513 			return 0;
4514 		break;
4515 	case BPF_JGT:
4516 		if (reg->umin_value > val)
4517 			return 1;
4518 		else if (reg->umax_value <= val)
4519 			return 0;
4520 		break;
4521 	case BPF_JSGT:
4522 		if (reg->smin_value > sval)
4523 			return 1;
4524 		else if (reg->smax_value < sval)
4525 			return 0;
4526 		break;
4527 	case BPF_JLT:
4528 		if (reg->umax_value < val)
4529 			return 1;
4530 		else if (reg->umin_value >= val)
4531 			return 0;
4532 		break;
4533 	case BPF_JSLT:
4534 		if (reg->smax_value < sval)
4535 			return 1;
4536 		else if (reg->smin_value >= sval)
4537 			return 0;
4538 		break;
4539 	case BPF_JGE:
4540 		if (reg->umin_value >= val)
4541 			return 1;
4542 		else if (reg->umax_value < val)
4543 			return 0;
4544 		break;
4545 	case BPF_JSGE:
4546 		if (reg->smin_value >= sval)
4547 			return 1;
4548 		else if (reg->smax_value < sval)
4549 			return 0;
4550 		break;
4551 	case BPF_JLE:
4552 		if (reg->umax_value <= val)
4553 			return 1;
4554 		else if (reg->umin_value > val)
4555 			return 0;
4556 		break;
4557 	case BPF_JSLE:
4558 		if (reg->smax_value <= sval)
4559 			return 1;
4560 		else if (reg->smin_value > sval)
4561 			return 0;
4562 		break;
4563 	}
4564 
4565 	return -1;
4566 }
4567 
4568 /* Generate min value of the high 32-bit from TNUM info. */
4569 static u64 gen_hi_min(struct tnum var)
4570 {
4571 	return var.value & ~0xffffffffULL;
4572 }
4573 
4574 /* Generate max value of the high 32-bit from TNUM info. */
4575 static u64 gen_hi_max(struct tnum var)
4576 {
4577 	return (var.value | var.mask) & ~0xffffffffULL;
4578 }
4579 
4580 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4581  * are with the same signedness.
4582  */
4583 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4584 {
4585 	return ((s32)sval >= 0 &&
4586 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4587 	       ((s32)sval < 0 &&
4588 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4589 }
4590 
4591 /* Adjusts the register min/max values in the case that the dst_reg is the
4592  * variable register that we are working on, and src_reg is a constant or we're
4593  * simply doing a BPF_K check.
4594  * In JEQ/JNE cases we also adjust the var_off values.
4595  */
4596 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4597 			    struct bpf_reg_state *false_reg, u64 val,
4598 			    u8 opcode, bool is_jmp32)
4599 {
4600 	s64 sval;
4601 
4602 	/* If the dst_reg is a pointer, we can't learn anything about its
4603 	 * variable offset from the compare (unless src_reg were a pointer into
4604 	 * the same object, but we don't bother with that.
4605 	 * Since false_reg and true_reg have the same type by construction, we
4606 	 * only need to check one of them for pointerness.
4607 	 */
4608 	if (__is_pointer_value(false, false_reg))
4609 		return;
4610 
4611 	val = is_jmp32 ? (u32)val : val;
4612 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4613 
4614 	switch (opcode) {
4615 	case BPF_JEQ:
4616 	case BPF_JNE:
4617 	{
4618 		struct bpf_reg_state *reg =
4619 			opcode == BPF_JEQ ? true_reg : false_reg;
4620 
4621 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4622 		 * if it is true we know the value for sure. Likewise for
4623 		 * BPF_JNE.
4624 		 */
4625 		if (is_jmp32) {
4626 			u64 old_v = reg->var_off.value;
4627 			u64 hi_mask = ~0xffffffffULL;
4628 
4629 			reg->var_off.value = (old_v & hi_mask) | val;
4630 			reg->var_off.mask &= hi_mask;
4631 		} else {
4632 			__mark_reg_known(reg, val);
4633 		}
4634 		break;
4635 	}
4636 	case BPF_JSET:
4637 		false_reg->var_off = tnum_and(false_reg->var_off,
4638 					      tnum_const(~val));
4639 		if (is_power_of_2(val))
4640 			true_reg->var_off = tnum_or(true_reg->var_off,
4641 						    tnum_const(val));
4642 		break;
4643 	case BPF_JGE:
4644 	case BPF_JGT:
4645 	{
4646 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
4647 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4648 
4649 		if (is_jmp32) {
4650 			false_umax += gen_hi_max(false_reg->var_off);
4651 			true_umin += gen_hi_min(true_reg->var_off);
4652 		}
4653 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4654 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4655 		break;
4656 	}
4657 	case BPF_JSGE:
4658 	case BPF_JSGT:
4659 	{
4660 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
4661 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4662 
4663 		/* If the full s64 was not sign-extended from s32 then don't
4664 		 * deduct further info.
4665 		 */
4666 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4667 			break;
4668 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4669 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4670 		break;
4671 	}
4672 	case BPF_JLE:
4673 	case BPF_JLT:
4674 	{
4675 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
4676 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4677 
4678 		if (is_jmp32) {
4679 			false_umin += gen_hi_min(false_reg->var_off);
4680 			true_umax += gen_hi_max(true_reg->var_off);
4681 		}
4682 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4683 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4684 		break;
4685 	}
4686 	case BPF_JSLE:
4687 	case BPF_JSLT:
4688 	{
4689 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
4690 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4691 
4692 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4693 			break;
4694 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4695 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4696 		break;
4697 	}
4698 	default:
4699 		break;
4700 	}
4701 
4702 	__reg_deduce_bounds(false_reg);
4703 	__reg_deduce_bounds(true_reg);
4704 	/* We might have learned some bits from the bounds. */
4705 	__reg_bound_offset(false_reg);
4706 	__reg_bound_offset(true_reg);
4707 	/* Intersecting with the old var_off might have improved our bounds
4708 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4709 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4710 	 */
4711 	__update_reg_bounds(false_reg);
4712 	__update_reg_bounds(true_reg);
4713 }
4714 
4715 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4716  * the variable reg.
4717  */
4718 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4719 				struct bpf_reg_state *false_reg, u64 val,
4720 				u8 opcode, bool is_jmp32)
4721 {
4722 	s64 sval;
4723 
4724 	if (__is_pointer_value(false, false_reg))
4725 		return;
4726 
4727 	val = is_jmp32 ? (u32)val : val;
4728 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4729 
4730 	switch (opcode) {
4731 	case BPF_JEQ:
4732 	case BPF_JNE:
4733 	{
4734 		struct bpf_reg_state *reg =
4735 			opcode == BPF_JEQ ? true_reg : false_reg;
4736 
4737 		if (is_jmp32) {
4738 			u64 old_v = reg->var_off.value;
4739 			u64 hi_mask = ~0xffffffffULL;
4740 
4741 			reg->var_off.value = (old_v & hi_mask) | val;
4742 			reg->var_off.mask &= hi_mask;
4743 		} else {
4744 			__mark_reg_known(reg, val);
4745 		}
4746 		break;
4747 	}
4748 	case BPF_JSET:
4749 		false_reg->var_off = tnum_and(false_reg->var_off,
4750 					      tnum_const(~val));
4751 		if (is_power_of_2(val))
4752 			true_reg->var_off = tnum_or(true_reg->var_off,
4753 						    tnum_const(val));
4754 		break;
4755 	case BPF_JGE:
4756 	case BPF_JGT:
4757 	{
4758 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
4759 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4760 
4761 		if (is_jmp32) {
4762 			false_umin += gen_hi_min(false_reg->var_off);
4763 			true_umax += gen_hi_max(true_reg->var_off);
4764 		}
4765 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4766 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4767 		break;
4768 	}
4769 	case BPF_JSGE:
4770 	case BPF_JSGT:
4771 	{
4772 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
4773 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4774 
4775 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4776 			break;
4777 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4778 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4779 		break;
4780 	}
4781 	case BPF_JLE:
4782 	case BPF_JLT:
4783 	{
4784 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
4785 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4786 
4787 		if (is_jmp32) {
4788 			false_umax += gen_hi_max(false_reg->var_off);
4789 			true_umin += gen_hi_min(true_reg->var_off);
4790 		}
4791 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4792 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4793 		break;
4794 	}
4795 	case BPF_JSLE:
4796 	case BPF_JSLT:
4797 	{
4798 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
4799 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4800 
4801 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4802 			break;
4803 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4804 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4805 		break;
4806 	}
4807 	default:
4808 		break;
4809 	}
4810 
4811 	__reg_deduce_bounds(false_reg);
4812 	__reg_deduce_bounds(true_reg);
4813 	/* We might have learned some bits from the bounds. */
4814 	__reg_bound_offset(false_reg);
4815 	__reg_bound_offset(true_reg);
4816 	/* Intersecting with the old var_off might have improved our bounds
4817 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4818 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4819 	 */
4820 	__update_reg_bounds(false_reg);
4821 	__update_reg_bounds(true_reg);
4822 }
4823 
4824 /* Regs are known to be equal, so intersect their min/max/var_off */
4825 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4826 				  struct bpf_reg_state *dst_reg)
4827 {
4828 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4829 							dst_reg->umin_value);
4830 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4831 							dst_reg->umax_value);
4832 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4833 							dst_reg->smin_value);
4834 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4835 							dst_reg->smax_value);
4836 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4837 							     dst_reg->var_off);
4838 	/* We might have learned new bounds from the var_off. */
4839 	__update_reg_bounds(src_reg);
4840 	__update_reg_bounds(dst_reg);
4841 	/* We might have learned something about the sign bit. */
4842 	__reg_deduce_bounds(src_reg);
4843 	__reg_deduce_bounds(dst_reg);
4844 	/* We might have learned some bits from the bounds. */
4845 	__reg_bound_offset(src_reg);
4846 	__reg_bound_offset(dst_reg);
4847 	/* Intersecting with the old var_off might have improved our bounds
4848 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4849 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4850 	 */
4851 	__update_reg_bounds(src_reg);
4852 	__update_reg_bounds(dst_reg);
4853 }
4854 
4855 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4856 				struct bpf_reg_state *true_dst,
4857 				struct bpf_reg_state *false_src,
4858 				struct bpf_reg_state *false_dst,
4859 				u8 opcode)
4860 {
4861 	switch (opcode) {
4862 	case BPF_JEQ:
4863 		__reg_combine_min_max(true_src, true_dst);
4864 		break;
4865 	case BPF_JNE:
4866 		__reg_combine_min_max(false_src, false_dst);
4867 		break;
4868 	}
4869 }
4870 
4871 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4872 				 struct bpf_reg_state *reg, u32 id,
4873 				 bool is_null)
4874 {
4875 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
4876 		/* Old offset (both fixed and variable parts) should
4877 		 * have been known-zero, because we don't allow pointer
4878 		 * arithmetic on pointers that might be NULL.
4879 		 */
4880 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4881 				 !tnum_equals_const(reg->var_off, 0) ||
4882 				 reg->off)) {
4883 			__mark_reg_known_zero(reg);
4884 			reg->off = 0;
4885 		}
4886 		if (is_null) {
4887 			reg->type = SCALAR_VALUE;
4888 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4889 			if (reg->map_ptr->inner_map_meta) {
4890 				reg->type = CONST_PTR_TO_MAP;
4891 				reg->map_ptr = reg->map_ptr->inner_map_meta;
4892 			} else {
4893 				reg->type = PTR_TO_MAP_VALUE;
4894 			}
4895 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4896 			reg->type = PTR_TO_SOCKET;
4897 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4898 			reg->type = PTR_TO_SOCK_COMMON;
4899 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4900 			reg->type = PTR_TO_TCP_SOCK;
4901 		}
4902 		if (is_null) {
4903 			/* We don't need id and ref_obj_id from this point
4904 			 * onwards anymore, thus we should better reset it,
4905 			 * so that state pruning has chances to take effect.
4906 			 */
4907 			reg->id = 0;
4908 			reg->ref_obj_id = 0;
4909 		} else if (!reg_may_point_to_spin_lock(reg)) {
4910 			/* For not-NULL ptr, reg->ref_obj_id will be reset
4911 			 * in release_reg_references().
4912 			 *
4913 			 * reg->id is still used by spin_lock ptr. Other
4914 			 * than spin_lock ptr type, reg->id can be reset.
4915 			 */
4916 			reg->id = 0;
4917 		}
4918 	}
4919 }
4920 
4921 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
4922 				    bool is_null)
4923 {
4924 	struct bpf_reg_state *reg;
4925 	int i;
4926 
4927 	for (i = 0; i < MAX_BPF_REG; i++)
4928 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
4929 
4930 	bpf_for_each_spilled_reg(i, state, reg) {
4931 		if (!reg)
4932 			continue;
4933 		mark_ptr_or_null_reg(state, reg, id, is_null);
4934 	}
4935 }
4936 
4937 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4938  * be folded together at some point.
4939  */
4940 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4941 				  bool is_null)
4942 {
4943 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4944 	struct bpf_reg_state *regs = state->regs;
4945 	u32 ref_obj_id = regs[regno].ref_obj_id;
4946 	u32 id = regs[regno].id;
4947 	int i;
4948 
4949 	if (ref_obj_id && ref_obj_id == id && is_null)
4950 		/* regs[regno] is in the " == NULL" branch.
4951 		 * No one could have freed the reference state before
4952 		 * doing the NULL check.
4953 		 */
4954 		WARN_ON_ONCE(release_reference_state(state, id));
4955 
4956 	for (i = 0; i <= vstate->curframe; i++)
4957 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
4958 }
4959 
4960 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4961 				   struct bpf_reg_state *dst_reg,
4962 				   struct bpf_reg_state *src_reg,
4963 				   struct bpf_verifier_state *this_branch,
4964 				   struct bpf_verifier_state *other_branch)
4965 {
4966 	if (BPF_SRC(insn->code) != BPF_X)
4967 		return false;
4968 
4969 	/* Pointers are always 64-bit. */
4970 	if (BPF_CLASS(insn->code) == BPF_JMP32)
4971 		return false;
4972 
4973 	switch (BPF_OP(insn->code)) {
4974 	case BPF_JGT:
4975 		if ((dst_reg->type == PTR_TO_PACKET &&
4976 		     src_reg->type == PTR_TO_PACKET_END) ||
4977 		    (dst_reg->type == PTR_TO_PACKET_META &&
4978 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4979 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4980 			find_good_pkt_pointers(this_branch, dst_reg,
4981 					       dst_reg->type, false);
4982 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4983 			    src_reg->type == PTR_TO_PACKET) ||
4984 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4985 			    src_reg->type == PTR_TO_PACKET_META)) {
4986 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4987 			find_good_pkt_pointers(other_branch, src_reg,
4988 					       src_reg->type, true);
4989 		} else {
4990 			return false;
4991 		}
4992 		break;
4993 	case BPF_JLT:
4994 		if ((dst_reg->type == PTR_TO_PACKET &&
4995 		     src_reg->type == PTR_TO_PACKET_END) ||
4996 		    (dst_reg->type == PTR_TO_PACKET_META &&
4997 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4998 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4999 			find_good_pkt_pointers(other_branch, dst_reg,
5000 					       dst_reg->type, true);
5001 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5002 			    src_reg->type == PTR_TO_PACKET) ||
5003 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5004 			    src_reg->type == PTR_TO_PACKET_META)) {
5005 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
5006 			find_good_pkt_pointers(this_branch, src_reg,
5007 					       src_reg->type, false);
5008 		} else {
5009 			return false;
5010 		}
5011 		break;
5012 	case BPF_JGE:
5013 		if ((dst_reg->type == PTR_TO_PACKET &&
5014 		     src_reg->type == PTR_TO_PACKET_END) ||
5015 		    (dst_reg->type == PTR_TO_PACKET_META &&
5016 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5017 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5018 			find_good_pkt_pointers(this_branch, dst_reg,
5019 					       dst_reg->type, true);
5020 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5021 			    src_reg->type == PTR_TO_PACKET) ||
5022 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5023 			    src_reg->type == PTR_TO_PACKET_META)) {
5024 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5025 			find_good_pkt_pointers(other_branch, src_reg,
5026 					       src_reg->type, false);
5027 		} else {
5028 			return false;
5029 		}
5030 		break;
5031 	case BPF_JLE:
5032 		if ((dst_reg->type == PTR_TO_PACKET &&
5033 		     src_reg->type == PTR_TO_PACKET_END) ||
5034 		    (dst_reg->type == PTR_TO_PACKET_META &&
5035 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5036 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5037 			find_good_pkt_pointers(other_branch, dst_reg,
5038 					       dst_reg->type, false);
5039 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5040 			    src_reg->type == PTR_TO_PACKET) ||
5041 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5042 			    src_reg->type == PTR_TO_PACKET_META)) {
5043 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5044 			find_good_pkt_pointers(this_branch, src_reg,
5045 					       src_reg->type, true);
5046 		} else {
5047 			return false;
5048 		}
5049 		break;
5050 	default:
5051 		return false;
5052 	}
5053 
5054 	return true;
5055 }
5056 
5057 static int check_cond_jmp_op(struct bpf_verifier_env *env,
5058 			     struct bpf_insn *insn, int *insn_idx)
5059 {
5060 	struct bpf_verifier_state *this_branch = env->cur_state;
5061 	struct bpf_verifier_state *other_branch;
5062 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5063 	struct bpf_reg_state *dst_reg, *other_branch_regs;
5064 	u8 opcode = BPF_OP(insn->code);
5065 	bool is_jmp32;
5066 	int err;
5067 
5068 	/* Only conditional jumps are expected to reach here. */
5069 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
5070 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5071 		return -EINVAL;
5072 	}
5073 
5074 	if (BPF_SRC(insn->code) == BPF_X) {
5075 		if (insn->imm != 0) {
5076 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5077 			return -EINVAL;
5078 		}
5079 
5080 		/* check src1 operand */
5081 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5082 		if (err)
5083 			return err;
5084 
5085 		if (is_pointer_value(env, insn->src_reg)) {
5086 			verbose(env, "R%d pointer comparison prohibited\n",
5087 				insn->src_reg);
5088 			return -EACCES;
5089 		}
5090 	} else {
5091 		if (insn->src_reg != BPF_REG_0) {
5092 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5093 			return -EINVAL;
5094 		}
5095 	}
5096 
5097 	/* check src2 operand */
5098 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5099 	if (err)
5100 		return err;
5101 
5102 	dst_reg = &regs[insn->dst_reg];
5103 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5104 
5105 	if (BPF_SRC(insn->code) == BPF_K) {
5106 		int pred = is_branch_taken(dst_reg, insn->imm, opcode,
5107 					   is_jmp32);
5108 
5109 		if (pred == 1) {
5110 			 /* only follow the goto, ignore fall-through */
5111 			*insn_idx += insn->off;
5112 			return 0;
5113 		} else if (pred == 0) {
5114 			/* only follow fall-through branch, since
5115 			 * that's where the program will go
5116 			 */
5117 			return 0;
5118 		}
5119 	}
5120 
5121 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5122 				  false);
5123 	if (!other_branch)
5124 		return -EFAULT;
5125 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5126 
5127 	/* detect if we are comparing against a constant value so we can adjust
5128 	 * our min/max values for our dst register.
5129 	 * this is only legit if both are scalars (or pointers to the same
5130 	 * object, I suppose, but we don't support that right now), because
5131 	 * otherwise the different base pointers mean the offsets aren't
5132 	 * comparable.
5133 	 */
5134 	if (BPF_SRC(insn->code) == BPF_X) {
5135 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5136 		struct bpf_reg_state lo_reg0 = *dst_reg;
5137 		struct bpf_reg_state lo_reg1 = *src_reg;
5138 		struct bpf_reg_state *src_lo, *dst_lo;
5139 
5140 		dst_lo = &lo_reg0;
5141 		src_lo = &lo_reg1;
5142 		coerce_reg_to_size(dst_lo, 4);
5143 		coerce_reg_to_size(src_lo, 4);
5144 
5145 		if (dst_reg->type == SCALAR_VALUE &&
5146 		    src_reg->type == SCALAR_VALUE) {
5147 			if (tnum_is_const(src_reg->var_off) ||
5148 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
5149 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
5150 						dst_reg,
5151 						is_jmp32
5152 						? src_lo->var_off.value
5153 						: src_reg->var_off.value,
5154 						opcode, is_jmp32);
5155 			else if (tnum_is_const(dst_reg->var_off) ||
5156 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5157 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5158 						    src_reg,
5159 						    is_jmp32
5160 						    ? dst_lo->var_off.value
5161 						    : dst_reg->var_off.value,
5162 						    opcode, is_jmp32);
5163 			else if (!is_jmp32 &&
5164 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
5165 				/* Comparing for equality, we can combine knowledge */
5166 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
5167 						    &other_branch_regs[insn->dst_reg],
5168 						    src_reg, dst_reg, opcode);
5169 		}
5170 	} else if (dst_reg->type == SCALAR_VALUE) {
5171 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
5172 					dst_reg, insn->imm, opcode, is_jmp32);
5173 	}
5174 
5175 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5176 	 * NOTE: these optimizations below are related with pointer comparison
5177 	 *       which will never be JMP32.
5178 	 */
5179 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5180 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5181 	    reg_type_may_be_null(dst_reg->type)) {
5182 		/* Mark all identical registers in each branch as either
5183 		 * safe or unknown depending R == 0 or R != 0 conditional.
5184 		 */
5185 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5186 				      opcode == BPF_JNE);
5187 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5188 				      opcode == BPF_JEQ);
5189 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5190 					   this_branch, other_branch) &&
5191 		   is_pointer_value(env, insn->dst_reg)) {
5192 		verbose(env, "R%d pointer comparison prohibited\n",
5193 			insn->dst_reg);
5194 		return -EACCES;
5195 	}
5196 	if (env->log.level & BPF_LOG_LEVEL)
5197 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5198 	return 0;
5199 }
5200 
5201 /* verify BPF_LD_IMM64 instruction */
5202 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5203 {
5204 	struct bpf_insn_aux_data *aux = cur_aux(env);
5205 	struct bpf_reg_state *regs = cur_regs(env);
5206 	struct bpf_map *map;
5207 	int err;
5208 
5209 	if (BPF_SIZE(insn->code) != BPF_DW) {
5210 		verbose(env, "invalid BPF_LD_IMM insn\n");
5211 		return -EINVAL;
5212 	}
5213 	if (insn->off != 0) {
5214 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5215 		return -EINVAL;
5216 	}
5217 
5218 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
5219 	if (err)
5220 		return err;
5221 
5222 	if (insn->src_reg == 0) {
5223 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5224 
5225 		regs[insn->dst_reg].type = SCALAR_VALUE;
5226 		__mark_reg_known(&regs[insn->dst_reg], imm);
5227 		return 0;
5228 	}
5229 
5230 	map = env->used_maps[aux->map_index];
5231 	mark_reg_known_zero(env, regs, insn->dst_reg);
5232 	regs[insn->dst_reg].map_ptr = map;
5233 
5234 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5235 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5236 		regs[insn->dst_reg].off = aux->map_off;
5237 		if (map_value_has_spin_lock(map))
5238 			regs[insn->dst_reg].id = ++env->id_gen;
5239 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5240 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5241 	} else {
5242 		verbose(env, "bpf verifier is misconfigured\n");
5243 		return -EINVAL;
5244 	}
5245 
5246 	return 0;
5247 }
5248 
5249 static bool may_access_skb(enum bpf_prog_type type)
5250 {
5251 	switch (type) {
5252 	case BPF_PROG_TYPE_SOCKET_FILTER:
5253 	case BPF_PROG_TYPE_SCHED_CLS:
5254 	case BPF_PROG_TYPE_SCHED_ACT:
5255 		return true;
5256 	default:
5257 		return false;
5258 	}
5259 }
5260 
5261 /* verify safety of LD_ABS|LD_IND instructions:
5262  * - they can only appear in the programs where ctx == skb
5263  * - since they are wrappers of function calls, they scratch R1-R5 registers,
5264  *   preserve R6-R9, and store return value into R0
5265  *
5266  * Implicit input:
5267  *   ctx == skb == R6 == CTX
5268  *
5269  * Explicit input:
5270  *   SRC == any register
5271  *   IMM == 32-bit immediate
5272  *
5273  * Output:
5274  *   R0 - 8/16/32-bit skb data converted to cpu endianness
5275  */
5276 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5277 {
5278 	struct bpf_reg_state *regs = cur_regs(env);
5279 	u8 mode = BPF_MODE(insn->code);
5280 	int i, err;
5281 
5282 	if (!may_access_skb(env->prog->type)) {
5283 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5284 		return -EINVAL;
5285 	}
5286 
5287 	if (!env->ops->gen_ld_abs) {
5288 		verbose(env, "bpf verifier is misconfigured\n");
5289 		return -EINVAL;
5290 	}
5291 
5292 	if (env->subprog_cnt > 1) {
5293 		/* when program has LD_ABS insn JITs and interpreter assume
5294 		 * that r1 == ctx == skb which is not the case for callees
5295 		 * that can have arbitrary arguments. It's problematic
5296 		 * for main prog as well since JITs would need to analyze
5297 		 * all functions in order to make proper register save/restore
5298 		 * decisions in the main prog. Hence disallow LD_ABS with calls
5299 		 */
5300 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5301 		return -EINVAL;
5302 	}
5303 
5304 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5305 	    BPF_SIZE(insn->code) == BPF_DW ||
5306 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5307 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5308 		return -EINVAL;
5309 	}
5310 
5311 	/* check whether implicit source operand (register R6) is readable */
5312 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5313 	if (err)
5314 		return err;
5315 
5316 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5317 	 * gen_ld_abs() may terminate the program at runtime, leading to
5318 	 * reference leak.
5319 	 */
5320 	err = check_reference_leak(env);
5321 	if (err) {
5322 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5323 		return err;
5324 	}
5325 
5326 	if (env->cur_state->active_spin_lock) {
5327 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5328 		return -EINVAL;
5329 	}
5330 
5331 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5332 		verbose(env,
5333 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5334 		return -EINVAL;
5335 	}
5336 
5337 	if (mode == BPF_IND) {
5338 		/* check explicit source operand */
5339 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5340 		if (err)
5341 			return err;
5342 	}
5343 
5344 	/* reset caller saved regs to unreadable */
5345 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5346 		mark_reg_not_init(env, regs, caller_saved[i]);
5347 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5348 	}
5349 
5350 	/* mark destination R0 register as readable, since it contains
5351 	 * the value fetched from the packet.
5352 	 * Already marked as written above.
5353 	 */
5354 	mark_reg_unknown(env, regs, BPF_REG_0);
5355 	return 0;
5356 }
5357 
5358 static int check_return_code(struct bpf_verifier_env *env)
5359 {
5360 	struct bpf_reg_state *reg;
5361 	struct tnum range = tnum_range(0, 1);
5362 
5363 	switch (env->prog->type) {
5364 	case BPF_PROG_TYPE_CGROUP_SKB:
5365 	case BPF_PROG_TYPE_CGROUP_SOCK:
5366 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5367 	case BPF_PROG_TYPE_SOCK_OPS:
5368 	case BPF_PROG_TYPE_CGROUP_DEVICE:
5369 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
5370 		break;
5371 	default:
5372 		return 0;
5373 	}
5374 
5375 	reg = cur_regs(env) + BPF_REG_0;
5376 	if (reg->type != SCALAR_VALUE) {
5377 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5378 			reg_type_str[reg->type]);
5379 		return -EINVAL;
5380 	}
5381 
5382 	if (!tnum_in(range, reg->var_off)) {
5383 		verbose(env, "At program exit the register R0 ");
5384 		if (!tnum_is_unknown(reg->var_off)) {
5385 			char tn_buf[48];
5386 
5387 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5388 			verbose(env, "has value %s", tn_buf);
5389 		} else {
5390 			verbose(env, "has unknown scalar value");
5391 		}
5392 		verbose(env, " should have been 0 or 1\n");
5393 		return -EINVAL;
5394 	}
5395 	return 0;
5396 }
5397 
5398 /* non-recursive DFS pseudo code
5399  * 1  procedure DFS-iterative(G,v):
5400  * 2      label v as discovered
5401  * 3      let S be a stack
5402  * 4      S.push(v)
5403  * 5      while S is not empty
5404  * 6            t <- S.pop()
5405  * 7            if t is what we're looking for:
5406  * 8                return t
5407  * 9            for all edges e in G.adjacentEdges(t) do
5408  * 10               if edge e is already labelled
5409  * 11                   continue with the next edge
5410  * 12               w <- G.adjacentVertex(t,e)
5411  * 13               if vertex w is not discovered and not explored
5412  * 14                   label e as tree-edge
5413  * 15                   label w as discovered
5414  * 16                   S.push(w)
5415  * 17                   continue at 5
5416  * 18               else if vertex w is discovered
5417  * 19                   label e as back-edge
5418  * 20               else
5419  * 21                   // vertex w is explored
5420  * 22                   label e as forward- or cross-edge
5421  * 23           label t as explored
5422  * 24           S.pop()
5423  *
5424  * convention:
5425  * 0x10 - discovered
5426  * 0x11 - discovered and fall-through edge labelled
5427  * 0x12 - discovered and fall-through and branch edges labelled
5428  * 0x20 - explored
5429  */
5430 
5431 enum {
5432 	DISCOVERED = 0x10,
5433 	EXPLORED = 0x20,
5434 	FALLTHROUGH = 1,
5435 	BRANCH = 2,
5436 };
5437 
5438 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
5439 
5440 /* t, w, e - match pseudo-code above:
5441  * t - index of current instruction
5442  * w - next instruction
5443  * e - edge
5444  */
5445 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5446 {
5447 	int *insn_stack = env->cfg.insn_stack;
5448 	int *insn_state = env->cfg.insn_state;
5449 
5450 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5451 		return 0;
5452 
5453 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5454 		return 0;
5455 
5456 	if (w < 0 || w >= env->prog->len) {
5457 		verbose_linfo(env, t, "%d: ", t);
5458 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
5459 		return -EINVAL;
5460 	}
5461 
5462 	if (e == BRANCH)
5463 		/* mark branch target for state pruning */
5464 		env->explored_states[w] = STATE_LIST_MARK;
5465 
5466 	if (insn_state[w] == 0) {
5467 		/* tree-edge */
5468 		insn_state[t] = DISCOVERED | e;
5469 		insn_state[w] = DISCOVERED;
5470 		if (env->cfg.cur_stack >= env->prog->len)
5471 			return -E2BIG;
5472 		insn_stack[env->cfg.cur_stack++] = w;
5473 		return 1;
5474 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5475 		verbose_linfo(env, t, "%d: ", t);
5476 		verbose_linfo(env, w, "%d: ", w);
5477 		verbose(env, "back-edge from insn %d to %d\n", t, w);
5478 		return -EINVAL;
5479 	} else if (insn_state[w] == EXPLORED) {
5480 		/* forward- or cross-edge */
5481 		insn_state[t] = DISCOVERED | e;
5482 	} else {
5483 		verbose(env, "insn state internal bug\n");
5484 		return -EFAULT;
5485 	}
5486 	return 0;
5487 }
5488 
5489 /* non-recursive depth-first-search to detect loops in BPF program
5490  * loop == back-edge in directed graph
5491  */
5492 static int check_cfg(struct bpf_verifier_env *env)
5493 {
5494 	struct bpf_insn *insns = env->prog->insnsi;
5495 	int insn_cnt = env->prog->len;
5496 	int *insn_stack, *insn_state;
5497 	int ret = 0;
5498 	int i, t;
5499 
5500 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5501 	if (!insn_state)
5502 		return -ENOMEM;
5503 
5504 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5505 	if (!insn_stack) {
5506 		kvfree(insn_state);
5507 		return -ENOMEM;
5508 	}
5509 
5510 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5511 	insn_stack[0] = 0; /* 0 is the first instruction */
5512 	env->cfg.cur_stack = 1;
5513 
5514 peek_stack:
5515 	if (env->cfg.cur_stack == 0)
5516 		goto check_state;
5517 	t = insn_stack[env->cfg.cur_stack - 1];
5518 
5519 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5520 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
5521 		u8 opcode = BPF_OP(insns[t].code);
5522 
5523 		if (opcode == BPF_EXIT) {
5524 			goto mark_explored;
5525 		} else if (opcode == BPF_CALL) {
5526 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5527 			if (ret == 1)
5528 				goto peek_stack;
5529 			else if (ret < 0)
5530 				goto err_free;
5531 			if (t + 1 < insn_cnt)
5532 				env->explored_states[t + 1] = STATE_LIST_MARK;
5533 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5534 				env->explored_states[t] = STATE_LIST_MARK;
5535 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5536 				if (ret == 1)
5537 					goto peek_stack;
5538 				else if (ret < 0)
5539 					goto err_free;
5540 			}
5541 		} else if (opcode == BPF_JA) {
5542 			if (BPF_SRC(insns[t].code) != BPF_K) {
5543 				ret = -EINVAL;
5544 				goto err_free;
5545 			}
5546 			/* unconditional jump with single edge */
5547 			ret = push_insn(t, t + insns[t].off + 1,
5548 					FALLTHROUGH, env);
5549 			if (ret == 1)
5550 				goto peek_stack;
5551 			else if (ret < 0)
5552 				goto err_free;
5553 			/* tell verifier to check for equivalent states
5554 			 * after every call and jump
5555 			 */
5556 			if (t + 1 < insn_cnt)
5557 				env->explored_states[t + 1] = STATE_LIST_MARK;
5558 		} else {
5559 			/* conditional jump with two edges */
5560 			env->explored_states[t] = STATE_LIST_MARK;
5561 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5562 			if (ret == 1)
5563 				goto peek_stack;
5564 			else if (ret < 0)
5565 				goto err_free;
5566 
5567 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5568 			if (ret == 1)
5569 				goto peek_stack;
5570 			else if (ret < 0)
5571 				goto err_free;
5572 		}
5573 	} else {
5574 		/* all other non-branch instructions with single
5575 		 * fall-through edge
5576 		 */
5577 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
5578 		if (ret == 1)
5579 			goto peek_stack;
5580 		else if (ret < 0)
5581 			goto err_free;
5582 	}
5583 
5584 mark_explored:
5585 	insn_state[t] = EXPLORED;
5586 	if (env->cfg.cur_stack-- <= 0) {
5587 		verbose(env, "pop stack internal bug\n");
5588 		ret = -EFAULT;
5589 		goto err_free;
5590 	}
5591 	goto peek_stack;
5592 
5593 check_state:
5594 	for (i = 0; i < insn_cnt; i++) {
5595 		if (insn_state[i] != EXPLORED) {
5596 			verbose(env, "unreachable insn %d\n", i);
5597 			ret = -EINVAL;
5598 			goto err_free;
5599 		}
5600 	}
5601 	ret = 0; /* cfg looks good */
5602 
5603 err_free:
5604 	kvfree(insn_state);
5605 	kvfree(insn_stack);
5606 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
5607 	return ret;
5608 }
5609 
5610 /* The minimum supported BTF func info size */
5611 #define MIN_BPF_FUNCINFO_SIZE	8
5612 #define MAX_FUNCINFO_REC_SIZE	252
5613 
5614 static int check_btf_func(struct bpf_verifier_env *env,
5615 			  const union bpf_attr *attr,
5616 			  union bpf_attr __user *uattr)
5617 {
5618 	u32 i, nfuncs, urec_size, min_size;
5619 	u32 krec_size = sizeof(struct bpf_func_info);
5620 	struct bpf_func_info *krecord;
5621 	const struct btf_type *type;
5622 	struct bpf_prog *prog;
5623 	const struct btf *btf;
5624 	void __user *urecord;
5625 	u32 prev_offset = 0;
5626 	int ret = 0;
5627 
5628 	nfuncs = attr->func_info_cnt;
5629 	if (!nfuncs)
5630 		return 0;
5631 
5632 	if (nfuncs != env->subprog_cnt) {
5633 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5634 		return -EINVAL;
5635 	}
5636 
5637 	urec_size = attr->func_info_rec_size;
5638 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5639 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
5640 	    urec_size % sizeof(u32)) {
5641 		verbose(env, "invalid func info rec size %u\n", urec_size);
5642 		return -EINVAL;
5643 	}
5644 
5645 	prog = env->prog;
5646 	btf = prog->aux->btf;
5647 
5648 	urecord = u64_to_user_ptr(attr->func_info);
5649 	min_size = min_t(u32, krec_size, urec_size);
5650 
5651 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5652 	if (!krecord)
5653 		return -ENOMEM;
5654 
5655 	for (i = 0; i < nfuncs; i++) {
5656 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5657 		if (ret) {
5658 			if (ret == -E2BIG) {
5659 				verbose(env, "nonzero tailing record in func info");
5660 				/* set the size kernel expects so loader can zero
5661 				 * out the rest of the record.
5662 				 */
5663 				if (put_user(min_size, &uattr->func_info_rec_size))
5664 					ret = -EFAULT;
5665 			}
5666 			goto err_free;
5667 		}
5668 
5669 		if (copy_from_user(&krecord[i], urecord, min_size)) {
5670 			ret = -EFAULT;
5671 			goto err_free;
5672 		}
5673 
5674 		/* check insn_off */
5675 		if (i == 0) {
5676 			if (krecord[i].insn_off) {
5677 				verbose(env,
5678 					"nonzero insn_off %u for the first func info record",
5679 					krecord[i].insn_off);
5680 				ret = -EINVAL;
5681 				goto err_free;
5682 			}
5683 		} else if (krecord[i].insn_off <= prev_offset) {
5684 			verbose(env,
5685 				"same or smaller insn offset (%u) than previous func info record (%u)",
5686 				krecord[i].insn_off, prev_offset);
5687 			ret = -EINVAL;
5688 			goto err_free;
5689 		}
5690 
5691 		if (env->subprog_info[i].start != krecord[i].insn_off) {
5692 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5693 			ret = -EINVAL;
5694 			goto err_free;
5695 		}
5696 
5697 		/* check type_id */
5698 		type = btf_type_by_id(btf, krecord[i].type_id);
5699 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5700 			verbose(env, "invalid type id %d in func info",
5701 				krecord[i].type_id);
5702 			ret = -EINVAL;
5703 			goto err_free;
5704 		}
5705 
5706 		prev_offset = krecord[i].insn_off;
5707 		urecord += urec_size;
5708 	}
5709 
5710 	prog->aux->func_info = krecord;
5711 	prog->aux->func_info_cnt = nfuncs;
5712 	return 0;
5713 
5714 err_free:
5715 	kvfree(krecord);
5716 	return ret;
5717 }
5718 
5719 static void adjust_btf_func(struct bpf_verifier_env *env)
5720 {
5721 	int i;
5722 
5723 	if (!env->prog->aux->func_info)
5724 		return;
5725 
5726 	for (i = 0; i < env->subprog_cnt; i++)
5727 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5728 }
5729 
5730 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
5731 		sizeof(((struct bpf_line_info *)(0))->line_col))
5732 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
5733 
5734 static int check_btf_line(struct bpf_verifier_env *env,
5735 			  const union bpf_attr *attr,
5736 			  union bpf_attr __user *uattr)
5737 {
5738 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5739 	struct bpf_subprog_info *sub;
5740 	struct bpf_line_info *linfo;
5741 	struct bpf_prog *prog;
5742 	const struct btf *btf;
5743 	void __user *ulinfo;
5744 	int err;
5745 
5746 	nr_linfo = attr->line_info_cnt;
5747 	if (!nr_linfo)
5748 		return 0;
5749 
5750 	rec_size = attr->line_info_rec_size;
5751 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5752 	    rec_size > MAX_LINEINFO_REC_SIZE ||
5753 	    rec_size & (sizeof(u32) - 1))
5754 		return -EINVAL;
5755 
5756 	/* Need to zero it in case the userspace may
5757 	 * pass in a smaller bpf_line_info object.
5758 	 */
5759 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5760 			 GFP_KERNEL | __GFP_NOWARN);
5761 	if (!linfo)
5762 		return -ENOMEM;
5763 
5764 	prog = env->prog;
5765 	btf = prog->aux->btf;
5766 
5767 	s = 0;
5768 	sub = env->subprog_info;
5769 	ulinfo = u64_to_user_ptr(attr->line_info);
5770 	expected_size = sizeof(struct bpf_line_info);
5771 	ncopy = min_t(u32, expected_size, rec_size);
5772 	for (i = 0; i < nr_linfo; i++) {
5773 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5774 		if (err) {
5775 			if (err == -E2BIG) {
5776 				verbose(env, "nonzero tailing record in line_info");
5777 				if (put_user(expected_size,
5778 					     &uattr->line_info_rec_size))
5779 					err = -EFAULT;
5780 			}
5781 			goto err_free;
5782 		}
5783 
5784 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5785 			err = -EFAULT;
5786 			goto err_free;
5787 		}
5788 
5789 		/*
5790 		 * Check insn_off to ensure
5791 		 * 1) strictly increasing AND
5792 		 * 2) bounded by prog->len
5793 		 *
5794 		 * The linfo[0].insn_off == 0 check logically falls into
5795 		 * the later "missing bpf_line_info for func..." case
5796 		 * because the first linfo[0].insn_off must be the
5797 		 * first sub also and the first sub must have
5798 		 * subprog_info[0].start == 0.
5799 		 */
5800 		if ((i && linfo[i].insn_off <= prev_offset) ||
5801 		    linfo[i].insn_off >= prog->len) {
5802 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5803 				i, linfo[i].insn_off, prev_offset,
5804 				prog->len);
5805 			err = -EINVAL;
5806 			goto err_free;
5807 		}
5808 
5809 		if (!prog->insnsi[linfo[i].insn_off].code) {
5810 			verbose(env,
5811 				"Invalid insn code at line_info[%u].insn_off\n",
5812 				i);
5813 			err = -EINVAL;
5814 			goto err_free;
5815 		}
5816 
5817 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5818 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5819 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5820 			err = -EINVAL;
5821 			goto err_free;
5822 		}
5823 
5824 		if (s != env->subprog_cnt) {
5825 			if (linfo[i].insn_off == sub[s].start) {
5826 				sub[s].linfo_idx = i;
5827 				s++;
5828 			} else if (sub[s].start < linfo[i].insn_off) {
5829 				verbose(env, "missing bpf_line_info for func#%u\n", s);
5830 				err = -EINVAL;
5831 				goto err_free;
5832 			}
5833 		}
5834 
5835 		prev_offset = linfo[i].insn_off;
5836 		ulinfo += rec_size;
5837 	}
5838 
5839 	if (s != env->subprog_cnt) {
5840 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5841 			env->subprog_cnt - s, s);
5842 		err = -EINVAL;
5843 		goto err_free;
5844 	}
5845 
5846 	prog->aux->linfo = linfo;
5847 	prog->aux->nr_linfo = nr_linfo;
5848 
5849 	return 0;
5850 
5851 err_free:
5852 	kvfree(linfo);
5853 	return err;
5854 }
5855 
5856 static int check_btf_info(struct bpf_verifier_env *env,
5857 			  const union bpf_attr *attr,
5858 			  union bpf_attr __user *uattr)
5859 {
5860 	struct btf *btf;
5861 	int err;
5862 
5863 	if (!attr->func_info_cnt && !attr->line_info_cnt)
5864 		return 0;
5865 
5866 	btf = btf_get_by_fd(attr->prog_btf_fd);
5867 	if (IS_ERR(btf))
5868 		return PTR_ERR(btf);
5869 	env->prog->aux->btf = btf;
5870 
5871 	err = check_btf_func(env, attr, uattr);
5872 	if (err)
5873 		return err;
5874 
5875 	err = check_btf_line(env, attr, uattr);
5876 	if (err)
5877 		return err;
5878 
5879 	return 0;
5880 }
5881 
5882 /* check %cur's range satisfies %old's */
5883 static bool range_within(struct bpf_reg_state *old,
5884 			 struct bpf_reg_state *cur)
5885 {
5886 	return old->umin_value <= cur->umin_value &&
5887 	       old->umax_value >= cur->umax_value &&
5888 	       old->smin_value <= cur->smin_value &&
5889 	       old->smax_value >= cur->smax_value;
5890 }
5891 
5892 /* Maximum number of register states that can exist at once */
5893 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5894 struct idpair {
5895 	u32 old;
5896 	u32 cur;
5897 };
5898 
5899 /* If in the old state two registers had the same id, then they need to have
5900  * the same id in the new state as well.  But that id could be different from
5901  * the old state, so we need to track the mapping from old to new ids.
5902  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5903  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
5904  * regs with a different old id could still have new id 9, we don't care about
5905  * that.
5906  * So we look through our idmap to see if this old id has been seen before.  If
5907  * so, we require the new id to match; otherwise, we add the id pair to the map.
5908  */
5909 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
5910 {
5911 	unsigned int i;
5912 
5913 	for (i = 0; i < ID_MAP_SIZE; i++) {
5914 		if (!idmap[i].old) {
5915 			/* Reached an empty slot; haven't seen this id before */
5916 			idmap[i].old = old_id;
5917 			idmap[i].cur = cur_id;
5918 			return true;
5919 		}
5920 		if (idmap[i].old == old_id)
5921 			return idmap[i].cur == cur_id;
5922 	}
5923 	/* We ran out of idmap slots, which should be impossible */
5924 	WARN_ON_ONCE(1);
5925 	return false;
5926 }
5927 
5928 static void clean_func_state(struct bpf_verifier_env *env,
5929 			     struct bpf_func_state *st)
5930 {
5931 	enum bpf_reg_liveness live;
5932 	int i, j;
5933 
5934 	for (i = 0; i < BPF_REG_FP; i++) {
5935 		live = st->regs[i].live;
5936 		/* liveness must not touch this register anymore */
5937 		st->regs[i].live |= REG_LIVE_DONE;
5938 		if (!(live & REG_LIVE_READ))
5939 			/* since the register is unused, clear its state
5940 			 * to make further comparison simpler
5941 			 */
5942 			__mark_reg_not_init(&st->regs[i]);
5943 	}
5944 
5945 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5946 		live = st->stack[i].spilled_ptr.live;
5947 		/* liveness must not touch this stack slot anymore */
5948 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5949 		if (!(live & REG_LIVE_READ)) {
5950 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
5951 			for (j = 0; j < BPF_REG_SIZE; j++)
5952 				st->stack[i].slot_type[j] = STACK_INVALID;
5953 		}
5954 	}
5955 }
5956 
5957 static void clean_verifier_state(struct bpf_verifier_env *env,
5958 				 struct bpf_verifier_state *st)
5959 {
5960 	int i;
5961 
5962 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5963 		/* all regs in this state in all frames were already marked */
5964 		return;
5965 
5966 	for (i = 0; i <= st->curframe; i++)
5967 		clean_func_state(env, st->frame[i]);
5968 }
5969 
5970 /* the parentage chains form a tree.
5971  * the verifier states are added to state lists at given insn and
5972  * pushed into state stack for future exploration.
5973  * when the verifier reaches bpf_exit insn some of the verifer states
5974  * stored in the state lists have their final liveness state already,
5975  * but a lot of states will get revised from liveness point of view when
5976  * the verifier explores other branches.
5977  * Example:
5978  * 1: r0 = 1
5979  * 2: if r1 == 100 goto pc+1
5980  * 3: r0 = 2
5981  * 4: exit
5982  * when the verifier reaches exit insn the register r0 in the state list of
5983  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5984  * of insn 2 and goes exploring further. At the insn 4 it will walk the
5985  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5986  *
5987  * Since the verifier pushes the branch states as it sees them while exploring
5988  * the program the condition of walking the branch instruction for the second
5989  * time means that all states below this branch were already explored and
5990  * their final liveness markes are already propagated.
5991  * Hence when the verifier completes the search of state list in is_state_visited()
5992  * we can call this clean_live_states() function to mark all liveness states
5993  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5994  * will not be used.
5995  * This function also clears the registers and stack for states that !READ
5996  * to simplify state merging.
5997  *
5998  * Important note here that walking the same branch instruction in the callee
5999  * doesn't meant that the states are DONE. The verifier has to compare
6000  * the callsites
6001  */
6002 static void clean_live_states(struct bpf_verifier_env *env, int insn,
6003 			      struct bpf_verifier_state *cur)
6004 {
6005 	struct bpf_verifier_state_list *sl;
6006 	int i;
6007 
6008 	sl = env->explored_states[insn];
6009 	if (!sl)
6010 		return;
6011 
6012 	while (sl != STATE_LIST_MARK) {
6013 		if (sl->state.curframe != cur->curframe)
6014 			goto next;
6015 		for (i = 0; i <= cur->curframe; i++)
6016 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6017 				goto next;
6018 		clean_verifier_state(env, &sl->state);
6019 next:
6020 		sl = sl->next;
6021 	}
6022 }
6023 
6024 /* Returns true if (rold safe implies rcur safe) */
6025 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6026 		    struct idpair *idmap)
6027 {
6028 	bool equal;
6029 
6030 	if (!(rold->live & REG_LIVE_READ))
6031 		/* explored state didn't use this */
6032 		return true;
6033 
6034 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
6035 
6036 	if (rold->type == PTR_TO_STACK)
6037 		/* two stack pointers are equal only if they're pointing to
6038 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
6039 		 */
6040 		return equal && rold->frameno == rcur->frameno;
6041 
6042 	if (equal)
6043 		return true;
6044 
6045 	if (rold->type == NOT_INIT)
6046 		/* explored state can't have used this */
6047 		return true;
6048 	if (rcur->type == NOT_INIT)
6049 		return false;
6050 	switch (rold->type) {
6051 	case SCALAR_VALUE:
6052 		if (rcur->type == SCALAR_VALUE) {
6053 			/* new val must satisfy old val knowledge */
6054 			return range_within(rold, rcur) &&
6055 			       tnum_in(rold->var_off, rcur->var_off);
6056 		} else {
6057 			/* We're trying to use a pointer in place of a scalar.
6058 			 * Even if the scalar was unbounded, this could lead to
6059 			 * pointer leaks because scalars are allowed to leak
6060 			 * while pointers are not. We could make this safe in
6061 			 * special cases if root is calling us, but it's
6062 			 * probably not worth the hassle.
6063 			 */
6064 			return false;
6065 		}
6066 	case PTR_TO_MAP_VALUE:
6067 		/* If the new min/max/var_off satisfy the old ones and
6068 		 * everything else matches, we are OK.
6069 		 * 'id' is not compared, since it's only used for maps with
6070 		 * bpf_spin_lock inside map element and in such cases if
6071 		 * the rest of the prog is valid for one map element then
6072 		 * it's valid for all map elements regardless of the key
6073 		 * used in bpf_map_lookup()
6074 		 */
6075 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6076 		       range_within(rold, rcur) &&
6077 		       tnum_in(rold->var_off, rcur->var_off);
6078 	case PTR_TO_MAP_VALUE_OR_NULL:
6079 		/* a PTR_TO_MAP_VALUE could be safe to use as a
6080 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6081 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6082 		 * checked, doing so could have affected others with the same
6083 		 * id, and we can't check for that because we lost the id when
6084 		 * we converted to a PTR_TO_MAP_VALUE.
6085 		 */
6086 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6087 			return false;
6088 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6089 			return false;
6090 		/* Check our ids match any regs they're supposed to */
6091 		return check_ids(rold->id, rcur->id, idmap);
6092 	case PTR_TO_PACKET_META:
6093 	case PTR_TO_PACKET:
6094 		if (rcur->type != rold->type)
6095 			return false;
6096 		/* We must have at least as much range as the old ptr
6097 		 * did, so that any accesses which were safe before are
6098 		 * still safe.  This is true even if old range < old off,
6099 		 * since someone could have accessed through (ptr - k), or
6100 		 * even done ptr -= k in a register, to get a safe access.
6101 		 */
6102 		if (rold->range > rcur->range)
6103 			return false;
6104 		/* If the offsets don't match, we can't trust our alignment;
6105 		 * nor can we be sure that we won't fall out of range.
6106 		 */
6107 		if (rold->off != rcur->off)
6108 			return false;
6109 		/* id relations must be preserved */
6110 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6111 			return false;
6112 		/* new val must satisfy old val knowledge */
6113 		return range_within(rold, rcur) &&
6114 		       tnum_in(rold->var_off, rcur->var_off);
6115 	case PTR_TO_CTX:
6116 	case CONST_PTR_TO_MAP:
6117 	case PTR_TO_PACKET_END:
6118 	case PTR_TO_FLOW_KEYS:
6119 	case PTR_TO_SOCKET:
6120 	case PTR_TO_SOCKET_OR_NULL:
6121 	case PTR_TO_SOCK_COMMON:
6122 	case PTR_TO_SOCK_COMMON_OR_NULL:
6123 	case PTR_TO_TCP_SOCK:
6124 	case PTR_TO_TCP_SOCK_OR_NULL:
6125 		/* Only valid matches are exact, which memcmp() above
6126 		 * would have accepted
6127 		 */
6128 	default:
6129 		/* Don't know what's going on, just say it's not safe */
6130 		return false;
6131 	}
6132 
6133 	/* Shouldn't get here; if we do, say it's not safe */
6134 	WARN_ON_ONCE(1);
6135 	return false;
6136 }
6137 
6138 static bool stacksafe(struct bpf_func_state *old,
6139 		      struct bpf_func_state *cur,
6140 		      struct idpair *idmap)
6141 {
6142 	int i, spi;
6143 
6144 	/* walk slots of the explored stack and ignore any additional
6145 	 * slots in the current stack, since explored(safe) state
6146 	 * didn't use them
6147 	 */
6148 	for (i = 0; i < old->allocated_stack; i++) {
6149 		spi = i / BPF_REG_SIZE;
6150 
6151 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6152 			i += BPF_REG_SIZE - 1;
6153 			/* explored state didn't use this */
6154 			continue;
6155 		}
6156 
6157 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6158 			continue;
6159 
6160 		/* explored stack has more populated slots than current stack
6161 		 * and these slots were used
6162 		 */
6163 		if (i >= cur->allocated_stack)
6164 			return false;
6165 
6166 		/* if old state was safe with misc data in the stack
6167 		 * it will be safe with zero-initialized stack.
6168 		 * The opposite is not true
6169 		 */
6170 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6171 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6172 			continue;
6173 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6174 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6175 			/* Ex: old explored (safe) state has STACK_SPILL in
6176 			 * this stack slot, but current has has STACK_MISC ->
6177 			 * this verifier states are not equivalent,
6178 			 * return false to continue verification of this path
6179 			 */
6180 			return false;
6181 		if (i % BPF_REG_SIZE)
6182 			continue;
6183 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
6184 			continue;
6185 		if (!regsafe(&old->stack[spi].spilled_ptr,
6186 			     &cur->stack[spi].spilled_ptr,
6187 			     idmap))
6188 			/* when explored and current stack slot are both storing
6189 			 * spilled registers, check that stored pointers types
6190 			 * are the same as well.
6191 			 * Ex: explored safe path could have stored
6192 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6193 			 * but current path has stored:
6194 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6195 			 * such verifier states are not equivalent.
6196 			 * return false to continue verification of this path
6197 			 */
6198 			return false;
6199 	}
6200 	return true;
6201 }
6202 
6203 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6204 {
6205 	if (old->acquired_refs != cur->acquired_refs)
6206 		return false;
6207 	return !memcmp(old->refs, cur->refs,
6208 		       sizeof(*old->refs) * old->acquired_refs);
6209 }
6210 
6211 /* compare two verifier states
6212  *
6213  * all states stored in state_list are known to be valid, since
6214  * verifier reached 'bpf_exit' instruction through them
6215  *
6216  * this function is called when verifier exploring different branches of
6217  * execution popped from the state stack. If it sees an old state that has
6218  * more strict register state and more strict stack state then this execution
6219  * branch doesn't need to be explored further, since verifier already
6220  * concluded that more strict state leads to valid finish.
6221  *
6222  * Therefore two states are equivalent if register state is more conservative
6223  * and explored stack state is more conservative than the current one.
6224  * Example:
6225  *       explored                   current
6226  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6227  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6228  *
6229  * In other words if current stack state (one being explored) has more
6230  * valid slots than old one that already passed validation, it means
6231  * the verifier can stop exploring and conclude that current state is valid too
6232  *
6233  * Similarly with registers. If explored state has register type as invalid
6234  * whereas register type in current state is meaningful, it means that
6235  * the current state will reach 'bpf_exit' instruction safely
6236  */
6237 static bool func_states_equal(struct bpf_func_state *old,
6238 			      struct bpf_func_state *cur)
6239 {
6240 	struct idpair *idmap;
6241 	bool ret = false;
6242 	int i;
6243 
6244 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6245 	/* If we failed to allocate the idmap, just say it's not safe */
6246 	if (!idmap)
6247 		return false;
6248 
6249 	for (i = 0; i < MAX_BPF_REG; i++) {
6250 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
6251 			goto out_free;
6252 	}
6253 
6254 	if (!stacksafe(old, cur, idmap))
6255 		goto out_free;
6256 
6257 	if (!refsafe(old, cur))
6258 		goto out_free;
6259 	ret = true;
6260 out_free:
6261 	kfree(idmap);
6262 	return ret;
6263 }
6264 
6265 static bool states_equal(struct bpf_verifier_env *env,
6266 			 struct bpf_verifier_state *old,
6267 			 struct bpf_verifier_state *cur)
6268 {
6269 	int i;
6270 
6271 	if (old->curframe != cur->curframe)
6272 		return false;
6273 
6274 	/* Verification state from speculative execution simulation
6275 	 * must never prune a non-speculative execution one.
6276 	 */
6277 	if (old->speculative && !cur->speculative)
6278 		return false;
6279 
6280 	if (old->active_spin_lock != cur->active_spin_lock)
6281 		return false;
6282 
6283 	/* for states to be equal callsites have to be the same
6284 	 * and all frame states need to be equivalent
6285 	 */
6286 	for (i = 0; i <= old->curframe; i++) {
6287 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
6288 			return false;
6289 		if (!func_states_equal(old->frame[i], cur->frame[i]))
6290 			return false;
6291 	}
6292 	return true;
6293 }
6294 
6295 static int propagate_liveness_reg(struct bpf_verifier_env *env,
6296 				  struct bpf_reg_state *reg,
6297 				  struct bpf_reg_state *parent_reg)
6298 {
6299 	int err;
6300 
6301 	if (parent_reg->live & REG_LIVE_READ || !(reg->live & REG_LIVE_READ))
6302 		return 0;
6303 
6304 	err = mark_reg_read(env, reg, parent_reg);
6305 	if (err)
6306 		return err;
6307 
6308 	return 0;
6309 }
6310 
6311 /* A write screens off any subsequent reads; but write marks come from the
6312  * straight-line code between a state and its parent.  When we arrive at an
6313  * equivalent state (jump target or such) we didn't arrive by the straight-line
6314  * code, so read marks in the state must propagate to the parent regardless
6315  * of the state's write marks. That's what 'parent == state->parent' comparison
6316  * in mark_reg_read() is for.
6317  */
6318 static int propagate_liveness(struct bpf_verifier_env *env,
6319 			      const struct bpf_verifier_state *vstate,
6320 			      struct bpf_verifier_state *vparent)
6321 {
6322 	struct bpf_reg_state *state_reg, *parent_reg;
6323 	struct bpf_func_state *state, *parent;
6324 	int i, frame, err = 0;
6325 
6326 	if (vparent->curframe != vstate->curframe) {
6327 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
6328 		     vparent->curframe, vstate->curframe);
6329 		return -EFAULT;
6330 	}
6331 	/* Propagate read liveness of registers... */
6332 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6333 	for (frame = 0; frame <= vstate->curframe; frame++) {
6334 		parent = vparent->frame[frame];
6335 		state = vstate->frame[frame];
6336 		parent_reg = parent->regs;
6337 		state_reg = state->regs;
6338 		/* We don't need to worry about FP liveness, it's read-only */
6339 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6340 			err = propagate_liveness_reg(env, &state_reg[i],
6341 						     &parent_reg[i]);
6342 			if (err)
6343 				return err;
6344 		}
6345 
6346 		/* Propagate stack slots. */
6347 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6348 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6349 			parent_reg = &parent->stack[i].spilled_ptr;
6350 			state_reg = &state->stack[i].spilled_ptr;
6351 			err = propagate_liveness_reg(env, state_reg,
6352 						     parent_reg);
6353 			if (err)
6354 				return err;
6355 		}
6356 	}
6357 	return err;
6358 }
6359 
6360 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6361 {
6362 	struct bpf_verifier_state_list *new_sl;
6363 	struct bpf_verifier_state_list *sl, **pprev;
6364 	struct bpf_verifier_state *cur = env->cur_state, *new;
6365 	int i, j, err, states_cnt = 0;
6366 
6367 	pprev = &env->explored_states[insn_idx];
6368 	sl = *pprev;
6369 
6370 	if (!sl)
6371 		/* this 'insn_idx' instruction wasn't marked, so we will not
6372 		 * be doing state search here
6373 		 */
6374 		return 0;
6375 
6376 	clean_live_states(env, insn_idx, cur);
6377 
6378 	while (sl != STATE_LIST_MARK) {
6379 		if (states_equal(env, &sl->state, cur)) {
6380 			sl->hit_cnt++;
6381 			/* reached equivalent register/stack state,
6382 			 * prune the search.
6383 			 * Registers read by the continuation are read by us.
6384 			 * If we have any write marks in env->cur_state, they
6385 			 * will prevent corresponding reads in the continuation
6386 			 * from reaching our parent (an explored_state).  Our
6387 			 * own state will get the read marks recorded, but
6388 			 * they'll be immediately forgotten as we're pruning
6389 			 * this state and will pop a new one.
6390 			 */
6391 			err = propagate_liveness(env, &sl->state, cur);
6392 			if (err)
6393 				return err;
6394 			return 1;
6395 		}
6396 		states_cnt++;
6397 		sl->miss_cnt++;
6398 		/* heuristic to determine whether this state is beneficial
6399 		 * to keep checking from state equivalence point of view.
6400 		 * Higher numbers increase max_states_per_insn and verification time,
6401 		 * but do not meaningfully decrease insn_processed.
6402 		 */
6403 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
6404 			/* the state is unlikely to be useful. Remove it to
6405 			 * speed up verification
6406 			 */
6407 			*pprev = sl->next;
6408 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
6409 				free_verifier_state(&sl->state, false);
6410 				kfree(sl);
6411 				env->peak_states--;
6412 			} else {
6413 				/* cannot free this state, since parentage chain may
6414 				 * walk it later. Add it for free_list instead to
6415 				 * be freed at the end of verification
6416 				 */
6417 				sl->next = env->free_list;
6418 				env->free_list = sl;
6419 			}
6420 			sl = *pprev;
6421 			continue;
6422 		}
6423 		pprev = &sl->next;
6424 		sl = *pprev;
6425 	}
6426 
6427 	if (env->max_states_per_insn < states_cnt)
6428 		env->max_states_per_insn = states_cnt;
6429 
6430 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6431 		return 0;
6432 
6433 	/* there were no equivalent states, remember current one.
6434 	 * technically the current state is not proven to be safe yet,
6435 	 * but it will either reach outer most bpf_exit (which means it's safe)
6436 	 * or it will be rejected. Since there are no loops, we won't be
6437 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6438 	 * again on the way to bpf_exit
6439 	 */
6440 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6441 	if (!new_sl)
6442 		return -ENOMEM;
6443 	env->total_states++;
6444 	env->peak_states++;
6445 
6446 	/* add new state to the head of linked list */
6447 	new = &new_sl->state;
6448 	err = copy_verifier_state(new, cur);
6449 	if (err) {
6450 		free_verifier_state(new, false);
6451 		kfree(new_sl);
6452 		return err;
6453 	}
6454 	new_sl->next = env->explored_states[insn_idx];
6455 	env->explored_states[insn_idx] = new_sl;
6456 	/* connect new state to parentage chain. Current frame needs all
6457 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
6458 	 * to the stack implicitly by JITs) so in callers' frames connect just
6459 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6460 	 * the state of the call instruction (with WRITTEN set), and r0 comes
6461 	 * from callee with its full parentage chain, anyway.
6462 	 */
6463 	for (j = 0; j <= cur->curframe; j++)
6464 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6465 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6466 	/* clear write marks in current state: the writes we did are not writes
6467 	 * our child did, so they don't screen off its reads from us.
6468 	 * (There are no read marks in current state, because reads always mark
6469 	 * their parent and current state never has children yet.  Only
6470 	 * explored_states can get read marks.)
6471 	 */
6472 	for (i = 0; i < BPF_REG_FP; i++)
6473 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6474 
6475 	/* all stack frames are accessible from callee, clear them all */
6476 	for (j = 0; j <= cur->curframe; j++) {
6477 		struct bpf_func_state *frame = cur->frame[j];
6478 		struct bpf_func_state *newframe = new->frame[j];
6479 
6480 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6481 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6482 			frame->stack[i].spilled_ptr.parent =
6483 						&newframe->stack[i].spilled_ptr;
6484 		}
6485 	}
6486 	return 0;
6487 }
6488 
6489 /* Return true if it's OK to have the same insn return a different type. */
6490 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6491 {
6492 	switch (type) {
6493 	case PTR_TO_CTX:
6494 	case PTR_TO_SOCKET:
6495 	case PTR_TO_SOCKET_OR_NULL:
6496 	case PTR_TO_SOCK_COMMON:
6497 	case PTR_TO_SOCK_COMMON_OR_NULL:
6498 	case PTR_TO_TCP_SOCK:
6499 	case PTR_TO_TCP_SOCK_OR_NULL:
6500 		return false;
6501 	default:
6502 		return true;
6503 	}
6504 }
6505 
6506 /* If an instruction was previously used with particular pointer types, then we
6507  * need to be careful to avoid cases such as the below, where it may be ok
6508  * for one branch accessing the pointer, but not ok for the other branch:
6509  *
6510  * R1 = sock_ptr
6511  * goto X;
6512  * ...
6513  * R1 = some_other_valid_ptr;
6514  * goto X;
6515  * ...
6516  * R2 = *(u32 *)(R1 + 0);
6517  */
6518 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6519 {
6520 	return src != prev && (!reg_type_mismatch_ok(src) ||
6521 			       !reg_type_mismatch_ok(prev));
6522 }
6523 
6524 static int do_check(struct bpf_verifier_env *env)
6525 {
6526 	struct bpf_verifier_state *state;
6527 	struct bpf_insn *insns = env->prog->insnsi;
6528 	struct bpf_reg_state *regs;
6529 	int insn_cnt = env->prog->len;
6530 	bool do_print_state = false;
6531 
6532 	env->prev_linfo = NULL;
6533 
6534 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6535 	if (!state)
6536 		return -ENOMEM;
6537 	state->curframe = 0;
6538 	state->speculative = false;
6539 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6540 	if (!state->frame[0]) {
6541 		kfree(state);
6542 		return -ENOMEM;
6543 	}
6544 	env->cur_state = state;
6545 	init_func_state(env, state->frame[0],
6546 			BPF_MAIN_FUNC /* callsite */,
6547 			0 /* frameno */,
6548 			0 /* subprogno, zero == main subprog */);
6549 
6550 	for (;;) {
6551 		struct bpf_insn *insn;
6552 		u8 class;
6553 		int err;
6554 
6555 		if (env->insn_idx >= insn_cnt) {
6556 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
6557 				env->insn_idx, insn_cnt);
6558 			return -EFAULT;
6559 		}
6560 
6561 		insn = &insns[env->insn_idx];
6562 		class = BPF_CLASS(insn->code);
6563 
6564 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6565 			verbose(env,
6566 				"BPF program is too large. Processed %d insn\n",
6567 				env->insn_processed);
6568 			return -E2BIG;
6569 		}
6570 
6571 		err = is_state_visited(env, env->insn_idx);
6572 		if (err < 0)
6573 			return err;
6574 		if (err == 1) {
6575 			/* found equivalent state, can prune the search */
6576 			if (env->log.level & BPF_LOG_LEVEL) {
6577 				if (do_print_state)
6578 					verbose(env, "\nfrom %d to %d%s: safe\n",
6579 						env->prev_insn_idx, env->insn_idx,
6580 						env->cur_state->speculative ?
6581 						" (speculative execution)" : "");
6582 				else
6583 					verbose(env, "%d: safe\n", env->insn_idx);
6584 			}
6585 			goto process_bpf_exit;
6586 		}
6587 
6588 		if (signal_pending(current))
6589 			return -EAGAIN;
6590 
6591 		if (need_resched())
6592 			cond_resched();
6593 
6594 		if (env->log.level & BPF_LOG_LEVEL2 ||
6595 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
6596 			if (env->log.level & BPF_LOG_LEVEL2)
6597 				verbose(env, "%d:", env->insn_idx);
6598 			else
6599 				verbose(env, "\nfrom %d to %d%s:",
6600 					env->prev_insn_idx, env->insn_idx,
6601 					env->cur_state->speculative ?
6602 					" (speculative execution)" : "");
6603 			print_verifier_state(env, state->frame[state->curframe]);
6604 			do_print_state = false;
6605 		}
6606 
6607 		if (env->log.level & BPF_LOG_LEVEL) {
6608 			const struct bpf_insn_cbs cbs = {
6609 				.cb_print	= verbose,
6610 				.private_data	= env,
6611 			};
6612 
6613 			verbose_linfo(env, env->insn_idx, "; ");
6614 			verbose(env, "%d: ", env->insn_idx);
6615 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6616 		}
6617 
6618 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
6619 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6620 							   env->prev_insn_idx);
6621 			if (err)
6622 				return err;
6623 		}
6624 
6625 		regs = cur_regs(env);
6626 		env->insn_aux_data[env->insn_idx].seen = true;
6627 
6628 		if (class == BPF_ALU || class == BPF_ALU64) {
6629 			err = check_alu_op(env, insn);
6630 			if (err)
6631 				return err;
6632 
6633 		} else if (class == BPF_LDX) {
6634 			enum bpf_reg_type *prev_src_type, src_reg_type;
6635 
6636 			/* check for reserved fields is already done */
6637 
6638 			/* check src operand */
6639 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6640 			if (err)
6641 				return err;
6642 
6643 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6644 			if (err)
6645 				return err;
6646 
6647 			src_reg_type = regs[insn->src_reg].type;
6648 
6649 			/* check that memory (src_reg + off) is readable,
6650 			 * the state of dst_reg will be updated by this func
6651 			 */
6652 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
6653 					       insn->off, BPF_SIZE(insn->code),
6654 					       BPF_READ, insn->dst_reg, false);
6655 			if (err)
6656 				return err;
6657 
6658 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6659 
6660 			if (*prev_src_type == NOT_INIT) {
6661 				/* saw a valid insn
6662 				 * dst_reg = *(u32 *)(src_reg + off)
6663 				 * save type to validate intersecting paths
6664 				 */
6665 				*prev_src_type = src_reg_type;
6666 
6667 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6668 				/* ABuser program is trying to use the same insn
6669 				 * dst_reg = *(u32*) (src_reg + off)
6670 				 * with different pointer types:
6671 				 * src_reg == ctx in one branch and
6672 				 * src_reg == stack|map in some other branch.
6673 				 * Reject it.
6674 				 */
6675 				verbose(env, "same insn cannot be used with different pointers\n");
6676 				return -EINVAL;
6677 			}
6678 
6679 		} else if (class == BPF_STX) {
6680 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
6681 
6682 			if (BPF_MODE(insn->code) == BPF_XADD) {
6683 				err = check_xadd(env, env->insn_idx, insn);
6684 				if (err)
6685 					return err;
6686 				env->insn_idx++;
6687 				continue;
6688 			}
6689 
6690 			/* check src1 operand */
6691 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6692 			if (err)
6693 				return err;
6694 			/* check src2 operand */
6695 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6696 			if (err)
6697 				return err;
6698 
6699 			dst_reg_type = regs[insn->dst_reg].type;
6700 
6701 			/* check that memory (dst_reg + off) is writeable */
6702 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6703 					       insn->off, BPF_SIZE(insn->code),
6704 					       BPF_WRITE, insn->src_reg, false);
6705 			if (err)
6706 				return err;
6707 
6708 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6709 
6710 			if (*prev_dst_type == NOT_INIT) {
6711 				*prev_dst_type = dst_reg_type;
6712 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6713 				verbose(env, "same insn cannot be used with different pointers\n");
6714 				return -EINVAL;
6715 			}
6716 
6717 		} else if (class == BPF_ST) {
6718 			if (BPF_MODE(insn->code) != BPF_MEM ||
6719 			    insn->src_reg != BPF_REG_0) {
6720 				verbose(env, "BPF_ST uses reserved fields\n");
6721 				return -EINVAL;
6722 			}
6723 			/* check src operand */
6724 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6725 			if (err)
6726 				return err;
6727 
6728 			if (is_ctx_reg(env, insn->dst_reg)) {
6729 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6730 					insn->dst_reg,
6731 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
6732 				return -EACCES;
6733 			}
6734 
6735 			/* check that memory (dst_reg + off) is writeable */
6736 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6737 					       insn->off, BPF_SIZE(insn->code),
6738 					       BPF_WRITE, -1, false);
6739 			if (err)
6740 				return err;
6741 
6742 		} else if (class == BPF_JMP || class == BPF_JMP32) {
6743 			u8 opcode = BPF_OP(insn->code);
6744 
6745 			if (opcode == BPF_CALL) {
6746 				if (BPF_SRC(insn->code) != BPF_K ||
6747 				    insn->off != 0 ||
6748 				    (insn->src_reg != BPF_REG_0 &&
6749 				     insn->src_reg != BPF_PSEUDO_CALL) ||
6750 				    insn->dst_reg != BPF_REG_0 ||
6751 				    class == BPF_JMP32) {
6752 					verbose(env, "BPF_CALL uses reserved fields\n");
6753 					return -EINVAL;
6754 				}
6755 
6756 				if (env->cur_state->active_spin_lock &&
6757 				    (insn->src_reg == BPF_PSEUDO_CALL ||
6758 				     insn->imm != BPF_FUNC_spin_unlock)) {
6759 					verbose(env, "function calls are not allowed while holding a lock\n");
6760 					return -EINVAL;
6761 				}
6762 				if (insn->src_reg == BPF_PSEUDO_CALL)
6763 					err = check_func_call(env, insn, &env->insn_idx);
6764 				else
6765 					err = check_helper_call(env, insn->imm, env->insn_idx);
6766 				if (err)
6767 					return err;
6768 
6769 			} else if (opcode == BPF_JA) {
6770 				if (BPF_SRC(insn->code) != BPF_K ||
6771 				    insn->imm != 0 ||
6772 				    insn->src_reg != BPF_REG_0 ||
6773 				    insn->dst_reg != BPF_REG_0 ||
6774 				    class == BPF_JMP32) {
6775 					verbose(env, "BPF_JA uses reserved fields\n");
6776 					return -EINVAL;
6777 				}
6778 
6779 				env->insn_idx += insn->off + 1;
6780 				continue;
6781 
6782 			} else if (opcode == BPF_EXIT) {
6783 				if (BPF_SRC(insn->code) != BPF_K ||
6784 				    insn->imm != 0 ||
6785 				    insn->src_reg != BPF_REG_0 ||
6786 				    insn->dst_reg != BPF_REG_0 ||
6787 				    class == BPF_JMP32) {
6788 					verbose(env, "BPF_EXIT uses reserved fields\n");
6789 					return -EINVAL;
6790 				}
6791 
6792 				if (env->cur_state->active_spin_lock) {
6793 					verbose(env, "bpf_spin_unlock is missing\n");
6794 					return -EINVAL;
6795 				}
6796 
6797 				if (state->curframe) {
6798 					/* exit from nested function */
6799 					env->prev_insn_idx = env->insn_idx;
6800 					err = prepare_func_exit(env, &env->insn_idx);
6801 					if (err)
6802 						return err;
6803 					do_print_state = true;
6804 					continue;
6805 				}
6806 
6807 				err = check_reference_leak(env);
6808 				if (err)
6809 					return err;
6810 
6811 				/* eBPF calling convetion is such that R0 is used
6812 				 * to return the value from eBPF program.
6813 				 * Make sure that it's readable at this time
6814 				 * of bpf_exit, which means that program wrote
6815 				 * something into it earlier
6816 				 */
6817 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6818 				if (err)
6819 					return err;
6820 
6821 				if (is_pointer_value(env, BPF_REG_0)) {
6822 					verbose(env, "R0 leaks addr as return value\n");
6823 					return -EACCES;
6824 				}
6825 
6826 				err = check_return_code(env);
6827 				if (err)
6828 					return err;
6829 process_bpf_exit:
6830 				err = pop_stack(env, &env->prev_insn_idx,
6831 						&env->insn_idx);
6832 				if (err < 0) {
6833 					if (err != -ENOENT)
6834 						return err;
6835 					break;
6836 				} else {
6837 					do_print_state = true;
6838 					continue;
6839 				}
6840 			} else {
6841 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
6842 				if (err)
6843 					return err;
6844 			}
6845 		} else if (class == BPF_LD) {
6846 			u8 mode = BPF_MODE(insn->code);
6847 
6848 			if (mode == BPF_ABS || mode == BPF_IND) {
6849 				err = check_ld_abs(env, insn);
6850 				if (err)
6851 					return err;
6852 
6853 			} else if (mode == BPF_IMM) {
6854 				err = check_ld_imm(env, insn);
6855 				if (err)
6856 					return err;
6857 
6858 				env->insn_idx++;
6859 				env->insn_aux_data[env->insn_idx].seen = true;
6860 			} else {
6861 				verbose(env, "invalid BPF_LD mode\n");
6862 				return -EINVAL;
6863 			}
6864 		} else {
6865 			verbose(env, "unknown insn class %d\n", class);
6866 			return -EINVAL;
6867 		}
6868 
6869 		env->insn_idx++;
6870 	}
6871 
6872 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
6873 	return 0;
6874 }
6875 
6876 static int check_map_prealloc(struct bpf_map *map)
6877 {
6878 	return (map->map_type != BPF_MAP_TYPE_HASH &&
6879 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6880 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
6881 		!(map->map_flags & BPF_F_NO_PREALLOC);
6882 }
6883 
6884 static bool is_tracing_prog_type(enum bpf_prog_type type)
6885 {
6886 	switch (type) {
6887 	case BPF_PROG_TYPE_KPROBE:
6888 	case BPF_PROG_TYPE_TRACEPOINT:
6889 	case BPF_PROG_TYPE_PERF_EVENT:
6890 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6891 		return true;
6892 	default:
6893 		return false;
6894 	}
6895 }
6896 
6897 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6898 					struct bpf_map *map,
6899 					struct bpf_prog *prog)
6900 
6901 {
6902 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6903 	 * preallocated hash maps, since doing memory allocation
6904 	 * in overflow_handler can crash depending on where nmi got
6905 	 * triggered.
6906 	 */
6907 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6908 		if (!check_map_prealloc(map)) {
6909 			verbose(env, "perf_event programs can only use preallocated hash map\n");
6910 			return -EINVAL;
6911 		}
6912 		if (map->inner_map_meta &&
6913 		    !check_map_prealloc(map->inner_map_meta)) {
6914 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
6915 			return -EINVAL;
6916 		}
6917 	}
6918 
6919 	if ((is_tracing_prog_type(prog->type) ||
6920 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6921 	    map_value_has_spin_lock(map)) {
6922 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6923 		return -EINVAL;
6924 	}
6925 
6926 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
6927 	    !bpf_offload_prog_map_match(prog, map)) {
6928 		verbose(env, "offload device mismatch between prog and map\n");
6929 		return -EINVAL;
6930 	}
6931 
6932 	return 0;
6933 }
6934 
6935 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6936 {
6937 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6938 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6939 }
6940 
6941 /* look for pseudo eBPF instructions that access map FDs and
6942  * replace them with actual map pointers
6943  */
6944 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
6945 {
6946 	struct bpf_insn *insn = env->prog->insnsi;
6947 	int insn_cnt = env->prog->len;
6948 	int i, j, err;
6949 
6950 	err = bpf_prog_calc_tag(env->prog);
6951 	if (err)
6952 		return err;
6953 
6954 	for (i = 0; i < insn_cnt; i++, insn++) {
6955 		if (BPF_CLASS(insn->code) == BPF_LDX &&
6956 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
6957 			verbose(env, "BPF_LDX uses reserved fields\n");
6958 			return -EINVAL;
6959 		}
6960 
6961 		if (BPF_CLASS(insn->code) == BPF_STX &&
6962 		    ((BPF_MODE(insn->code) != BPF_MEM &&
6963 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
6964 			verbose(env, "BPF_STX uses reserved fields\n");
6965 			return -EINVAL;
6966 		}
6967 
6968 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6969 			struct bpf_insn_aux_data *aux;
6970 			struct bpf_map *map;
6971 			struct fd f;
6972 			u64 addr;
6973 
6974 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
6975 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6976 			    insn[1].off != 0) {
6977 				verbose(env, "invalid bpf_ld_imm64 insn\n");
6978 				return -EINVAL;
6979 			}
6980 
6981 			if (insn[0].src_reg == 0)
6982 				/* valid generic load 64-bit imm */
6983 				goto next_insn;
6984 
6985 			/* In final convert_pseudo_ld_imm64() step, this is
6986 			 * converted into regular 64-bit imm load insn.
6987 			 */
6988 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
6989 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
6990 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
6991 			     insn[1].imm != 0)) {
6992 				verbose(env,
6993 					"unrecognized bpf_ld_imm64 insn\n");
6994 				return -EINVAL;
6995 			}
6996 
6997 			f = fdget(insn[0].imm);
6998 			map = __bpf_map_get(f);
6999 			if (IS_ERR(map)) {
7000 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
7001 					insn[0].imm);
7002 				return PTR_ERR(map);
7003 			}
7004 
7005 			err = check_map_prog_compatibility(env, map, env->prog);
7006 			if (err) {
7007 				fdput(f);
7008 				return err;
7009 			}
7010 
7011 			aux = &env->insn_aux_data[i];
7012 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7013 				addr = (unsigned long)map;
7014 			} else {
7015 				u32 off = insn[1].imm;
7016 
7017 				if (off >= BPF_MAX_VAR_OFF) {
7018 					verbose(env, "direct value offset of %u is not allowed\n", off);
7019 					fdput(f);
7020 					return -EINVAL;
7021 				}
7022 
7023 				if (!map->ops->map_direct_value_addr) {
7024 					verbose(env, "no direct value access support for this map type\n");
7025 					fdput(f);
7026 					return -EINVAL;
7027 				}
7028 
7029 				err = map->ops->map_direct_value_addr(map, &addr, off);
7030 				if (err) {
7031 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7032 						map->value_size, off);
7033 					fdput(f);
7034 					return err;
7035 				}
7036 
7037 				aux->map_off = off;
7038 				addr += off;
7039 			}
7040 
7041 			insn[0].imm = (u32)addr;
7042 			insn[1].imm = addr >> 32;
7043 
7044 			/* check whether we recorded this map already */
7045 			for (j = 0; j < env->used_map_cnt; j++) {
7046 				if (env->used_maps[j] == map) {
7047 					aux->map_index = j;
7048 					fdput(f);
7049 					goto next_insn;
7050 				}
7051 			}
7052 
7053 			if (env->used_map_cnt >= MAX_USED_MAPS) {
7054 				fdput(f);
7055 				return -E2BIG;
7056 			}
7057 
7058 			/* hold the map. If the program is rejected by verifier,
7059 			 * the map will be released by release_maps() or it
7060 			 * will be used by the valid program until it's unloaded
7061 			 * and all maps are released in free_used_maps()
7062 			 */
7063 			map = bpf_map_inc(map, false);
7064 			if (IS_ERR(map)) {
7065 				fdput(f);
7066 				return PTR_ERR(map);
7067 			}
7068 
7069 			aux->map_index = env->used_map_cnt;
7070 			env->used_maps[env->used_map_cnt++] = map;
7071 
7072 			if (bpf_map_is_cgroup_storage(map) &&
7073 			    bpf_cgroup_storage_assign(env->prog, map)) {
7074 				verbose(env, "only one cgroup storage of each type is allowed\n");
7075 				fdput(f);
7076 				return -EBUSY;
7077 			}
7078 
7079 			fdput(f);
7080 next_insn:
7081 			insn++;
7082 			i++;
7083 			continue;
7084 		}
7085 
7086 		/* Basic sanity check before we invest more work here. */
7087 		if (!bpf_opcode_in_insntable(insn->code)) {
7088 			verbose(env, "unknown opcode %02x\n", insn->code);
7089 			return -EINVAL;
7090 		}
7091 	}
7092 
7093 	/* now all pseudo BPF_LD_IMM64 instructions load valid
7094 	 * 'struct bpf_map *' into a register instead of user map_fd.
7095 	 * These pointers will be used later by verifier to validate map access.
7096 	 */
7097 	return 0;
7098 }
7099 
7100 /* drop refcnt of maps used by the rejected program */
7101 static void release_maps(struct bpf_verifier_env *env)
7102 {
7103 	enum bpf_cgroup_storage_type stype;
7104 	int i;
7105 
7106 	for_each_cgroup_storage_type(stype) {
7107 		if (!env->prog->aux->cgroup_storage[stype])
7108 			continue;
7109 		bpf_cgroup_storage_release(env->prog,
7110 			env->prog->aux->cgroup_storage[stype]);
7111 	}
7112 
7113 	for (i = 0; i < env->used_map_cnt; i++)
7114 		bpf_map_put(env->used_maps[i]);
7115 }
7116 
7117 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
7118 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
7119 {
7120 	struct bpf_insn *insn = env->prog->insnsi;
7121 	int insn_cnt = env->prog->len;
7122 	int i;
7123 
7124 	for (i = 0; i < insn_cnt; i++, insn++)
7125 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7126 			insn->src_reg = 0;
7127 }
7128 
7129 /* single env->prog->insni[off] instruction was replaced with the range
7130  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
7131  * [0, off) and [off, end) to new locations, so the patched range stays zero
7132  */
7133 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
7134 				u32 off, u32 cnt)
7135 {
7136 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
7137 	int i;
7138 
7139 	if (cnt == 1)
7140 		return 0;
7141 	new_data = vzalloc(array_size(prog_len,
7142 				      sizeof(struct bpf_insn_aux_data)));
7143 	if (!new_data)
7144 		return -ENOMEM;
7145 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
7146 	memcpy(new_data + off + cnt - 1, old_data + off,
7147 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
7148 	for (i = off; i < off + cnt - 1; i++)
7149 		new_data[i].seen = true;
7150 	env->insn_aux_data = new_data;
7151 	vfree(old_data);
7152 	return 0;
7153 }
7154 
7155 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
7156 {
7157 	int i;
7158 
7159 	if (len == 1)
7160 		return;
7161 	/* NOTE: fake 'exit' subprog should be updated as well. */
7162 	for (i = 0; i <= env->subprog_cnt; i++) {
7163 		if (env->subprog_info[i].start <= off)
7164 			continue;
7165 		env->subprog_info[i].start += len - 1;
7166 	}
7167 }
7168 
7169 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
7170 					    const struct bpf_insn *patch, u32 len)
7171 {
7172 	struct bpf_prog *new_prog;
7173 
7174 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
7175 	if (IS_ERR(new_prog)) {
7176 		if (PTR_ERR(new_prog) == -ERANGE)
7177 			verbose(env,
7178 				"insn %d cannot be patched due to 16-bit range\n",
7179 				env->insn_aux_data[off].orig_idx);
7180 		return NULL;
7181 	}
7182 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
7183 		return NULL;
7184 	adjust_subprog_starts(env, off, len);
7185 	return new_prog;
7186 }
7187 
7188 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
7189 					      u32 off, u32 cnt)
7190 {
7191 	int i, j;
7192 
7193 	/* find first prog starting at or after off (first to remove) */
7194 	for (i = 0; i < env->subprog_cnt; i++)
7195 		if (env->subprog_info[i].start >= off)
7196 			break;
7197 	/* find first prog starting at or after off + cnt (first to stay) */
7198 	for (j = i; j < env->subprog_cnt; j++)
7199 		if (env->subprog_info[j].start >= off + cnt)
7200 			break;
7201 	/* if j doesn't start exactly at off + cnt, we are just removing
7202 	 * the front of previous prog
7203 	 */
7204 	if (env->subprog_info[j].start != off + cnt)
7205 		j--;
7206 
7207 	if (j > i) {
7208 		struct bpf_prog_aux *aux = env->prog->aux;
7209 		int move;
7210 
7211 		/* move fake 'exit' subprog as well */
7212 		move = env->subprog_cnt + 1 - j;
7213 
7214 		memmove(env->subprog_info + i,
7215 			env->subprog_info + j,
7216 			sizeof(*env->subprog_info) * move);
7217 		env->subprog_cnt -= j - i;
7218 
7219 		/* remove func_info */
7220 		if (aux->func_info) {
7221 			move = aux->func_info_cnt - j;
7222 
7223 			memmove(aux->func_info + i,
7224 				aux->func_info + j,
7225 				sizeof(*aux->func_info) * move);
7226 			aux->func_info_cnt -= j - i;
7227 			/* func_info->insn_off is set after all code rewrites,
7228 			 * in adjust_btf_func() - no need to adjust
7229 			 */
7230 		}
7231 	} else {
7232 		/* convert i from "first prog to remove" to "first to adjust" */
7233 		if (env->subprog_info[i].start == off)
7234 			i++;
7235 	}
7236 
7237 	/* update fake 'exit' subprog as well */
7238 	for (; i <= env->subprog_cnt; i++)
7239 		env->subprog_info[i].start -= cnt;
7240 
7241 	return 0;
7242 }
7243 
7244 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
7245 				      u32 cnt)
7246 {
7247 	struct bpf_prog *prog = env->prog;
7248 	u32 i, l_off, l_cnt, nr_linfo;
7249 	struct bpf_line_info *linfo;
7250 
7251 	nr_linfo = prog->aux->nr_linfo;
7252 	if (!nr_linfo)
7253 		return 0;
7254 
7255 	linfo = prog->aux->linfo;
7256 
7257 	/* find first line info to remove, count lines to be removed */
7258 	for (i = 0; i < nr_linfo; i++)
7259 		if (linfo[i].insn_off >= off)
7260 			break;
7261 
7262 	l_off = i;
7263 	l_cnt = 0;
7264 	for (; i < nr_linfo; i++)
7265 		if (linfo[i].insn_off < off + cnt)
7266 			l_cnt++;
7267 		else
7268 			break;
7269 
7270 	/* First live insn doesn't match first live linfo, it needs to "inherit"
7271 	 * last removed linfo.  prog is already modified, so prog->len == off
7272 	 * means no live instructions after (tail of the program was removed).
7273 	 */
7274 	if (prog->len != off && l_cnt &&
7275 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
7276 		l_cnt--;
7277 		linfo[--i].insn_off = off + cnt;
7278 	}
7279 
7280 	/* remove the line info which refer to the removed instructions */
7281 	if (l_cnt) {
7282 		memmove(linfo + l_off, linfo + i,
7283 			sizeof(*linfo) * (nr_linfo - i));
7284 
7285 		prog->aux->nr_linfo -= l_cnt;
7286 		nr_linfo = prog->aux->nr_linfo;
7287 	}
7288 
7289 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
7290 	for (i = l_off; i < nr_linfo; i++)
7291 		linfo[i].insn_off -= cnt;
7292 
7293 	/* fix up all subprogs (incl. 'exit') which start >= off */
7294 	for (i = 0; i <= env->subprog_cnt; i++)
7295 		if (env->subprog_info[i].linfo_idx > l_off) {
7296 			/* program may have started in the removed region but
7297 			 * may not be fully removed
7298 			 */
7299 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
7300 				env->subprog_info[i].linfo_idx -= l_cnt;
7301 			else
7302 				env->subprog_info[i].linfo_idx = l_off;
7303 		}
7304 
7305 	return 0;
7306 }
7307 
7308 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7309 {
7310 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7311 	unsigned int orig_prog_len = env->prog->len;
7312 	int err;
7313 
7314 	if (bpf_prog_is_dev_bound(env->prog->aux))
7315 		bpf_prog_offload_remove_insns(env, off, cnt);
7316 
7317 	err = bpf_remove_insns(env->prog, off, cnt);
7318 	if (err)
7319 		return err;
7320 
7321 	err = adjust_subprog_starts_after_remove(env, off, cnt);
7322 	if (err)
7323 		return err;
7324 
7325 	err = bpf_adj_linfo_after_remove(env, off, cnt);
7326 	if (err)
7327 		return err;
7328 
7329 	memmove(aux_data + off,	aux_data + off + cnt,
7330 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
7331 
7332 	return 0;
7333 }
7334 
7335 /* The verifier does more data flow analysis than llvm and will not
7336  * explore branches that are dead at run time. Malicious programs can
7337  * have dead code too. Therefore replace all dead at-run-time code
7338  * with 'ja -1'.
7339  *
7340  * Just nops are not optimal, e.g. if they would sit at the end of the
7341  * program and through another bug we would manage to jump there, then
7342  * we'd execute beyond program memory otherwise. Returning exception
7343  * code also wouldn't work since we can have subprogs where the dead
7344  * code could be located.
7345  */
7346 static void sanitize_dead_code(struct bpf_verifier_env *env)
7347 {
7348 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7349 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7350 	struct bpf_insn *insn = env->prog->insnsi;
7351 	const int insn_cnt = env->prog->len;
7352 	int i;
7353 
7354 	for (i = 0; i < insn_cnt; i++) {
7355 		if (aux_data[i].seen)
7356 			continue;
7357 		memcpy(insn + i, &trap, sizeof(trap));
7358 	}
7359 }
7360 
7361 static bool insn_is_cond_jump(u8 code)
7362 {
7363 	u8 op;
7364 
7365 	if (BPF_CLASS(code) == BPF_JMP32)
7366 		return true;
7367 
7368 	if (BPF_CLASS(code) != BPF_JMP)
7369 		return false;
7370 
7371 	op = BPF_OP(code);
7372 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7373 }
7374 
7375 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7376 {
7377 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7378 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7379 	struct bpf_insn *insn = env->prog->insnsi;
7380 	const int insn_cnt = env->prog->len;
7381 	int i;
7382 
7383 	for (i = 0; i < insn_cnt; i++, insn++) {
7384 		if (!insn_is_cond_jump(insn->code))
7385 			continue;
7386 
7387 		if (!aux_data[i + 1].seen)
7388 			ja.off = insn->off;
7389 		else if (!aux_data[i + 1 + insn->off].seen)
7390 			ja.off = 0;
7391 		else
7392 			continue;
7393 
7394 		if (bpf_prog_is_dev_bound(env->prog->aux))
7395 			bpf_prog_offload_replace_insn(env, i, &ja);
7396 
7397 		memcpy(insn, &ja, sizeof(ja));
7398 	}
7399 }
7400 
7401 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7402 {
7403 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7404 	int insn_cnt = env->prog->len;
7405 	int i, err;
7406 
7407 	for (i = 0; i < insn_cnt; i++) {
7408 		int j;
7409 
7410 		j = 0;
7411 		while (i + j < insn_cnt && !aux_data[i + j].seen)
7412 			j++;
7413 		if (!j)
7414 			continue;
7415 
7416 		err = verifier_remove_insns(env, i, j);
7417 		if (err)
7418 			return err;
7419 		insn_cnt = env->prog->len;
7420 	}
7421 
7422 	return 0;
7423 }
7424 
7425 static int opt_remove_nops(struct bpf_verifier_env *env)
7426 {
7427 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7428 	struct bpf_insn *insn = env->prog->insnsi;
7429 	int insn_cnt = env->prog->len;
7430 	int i, err;
7431 
7432 	for (i = 0; i < insn_cnt; i++) {
7433 		if (memcmp(&insn[i], &ja, sizeof(ja)))
7434 			continue;
7435 
7436 		err = verifier_remove_insns(env, i, 1);
7437 		if (err)
7438 			return err;
7439 		insn_cnt--;
7440 		i--;
7441 	}
7442 
7443 	return 0;
7444 }
7445 
7446 /* convert load instructions that access fields of a context type into a
7447  * sequence of instructions that access fields of the underlying structure:
7448  *     struct __sk_buff    -> struct sk_buff
7449  *     struct bpf_sock_ops -> struct sock
7450  */
7451 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7452 {
7453 	const struct bpf_verifier_ops *ops = env->ops;
7454 	int i, cnt, size, ctx_field_size, delta = 0;
7455 	const int insn_cnt = env->prog->len;
7456 	struct bpf_insn insn_buf[16], *insn;
7457 	u32 target_size, size_default, off;
7458 	struct bpf_prog *new_prog;
7459 	enum bpf_access_type type;
7460 	bool is_narrower_load;
7461 
7462 	if (ops->gen_prologue || env->seen_direct_write) {
7463 		if (!ops->gen_prologue) {
7464 			verbose(env, "bpf verifier is misconfigured\n");
7465 			return -EINVAL;
7466 		}
7467 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7468 					env->prog);
7469 		if (cnt >= ARRAY_SIZE(insn_buf)) {
7470 			verbose(env, "bpf verifier is misconfigured\n");
7471 			return -EINVAL;
7472 		} else if (cnt) {
7473 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7474 			if (!new_prog)
7475 				return -ENOMEM;
7476 
7477 			env->prog = new_prog;
7478 			delta += cnt - 1;
7479 		}
7480 	}
7481 
7482 	if (bpf_prog_is_dev_bound(env->prog->aux))
7483 		return 0;
7484 
7485 	insn = env->prog->insnsi + delta;
7486 
7487 	for (i = 0; i < insn_cnt; i++, insn++) {
7488 		bpf_convert_ctx_access_t convert_ctx_access;
7489 
7490 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7491 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7492 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7493 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7494 			type = BPF_READ;
7495 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7496 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7497 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7498 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7499 			type = BPF_WRITE;
7500 		else
7501 			continue;
7502 
7503 		if (type == BPF_WRITE &&
7504 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
7505 			struct bpf_insn patch[] = {
7506 				/* Sanitize suspicious stack slot with zero.
7507 				 * There are no memory dependencies for this store,
7508 				 * since it's only using frame pointer and immediate
7509 				 * constant of zero
7510 				 */
7511 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7512 					   env->insn_aux_data[i + delta].sanitize_stack_off,
7513 					   0),
7514 				/* the original STX instruction will immediately
7515 				 * overwrite the same stack slot with appropriate value
7516 				 */
7517 				*insn,
7518 			};
7519 
7520 			cnt = ARRAY_SIZE(patch);
7521 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7522 			if (!new_prog)
7523 				return -ENOMEM;
7524 
7525 			delta    += cnt - 1;
7526 			env->prog = new_prog;
7527 			insn      = new_prog->insnsi + i + delta;
7528 			continue;
7529 		}
7530 
7531 		switch (env->insn_aux_data[i + delta].ptr_type) {
7532 		case PTR_TO_CTX:
7533 			if (!ops->convert_ctx_access)
7534 				continue;
7535 			convert_ctx_access = ops->convert_ctx_access;
7536 			break;
7537 		case PTR_TO_SOCKET:
7538 		case PTR_TO_SOCK_COMMON:
7539 			convert_ctx_access = bpf_sock_convert_ctx_access;
7540 			break;
7541 		case PTR_TO_TCP_SOCK:
7542 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7543 			break;
7544 		default:
7545 			continue;
7546 		}
7547 
7548 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7549 		size = BPF_LDST_BYTES(insn);
7550 
7551 		/* If the read access is a narrower load of the field,
7552 		 * convert to a 4/8-byte load, to minimum program type specific
7553 		 * convert_ctx_access changes. If conversion is successful,
7554 		 * we will apply proper mask to the result.
7555 		 */
7556 		is_narrower_load = size < ctx_field_size;
7557 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7558 		off = insn->off;
7559 		if (is_narrower_load) {
7560 			u8 size_code;
7561 
7562 			if (type == BPF_WRITE) {
7563 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7564 				return -EINVAL;
7565 			}
7566 
7567 			size_code = BPF_H;
7568 			if (ctx_field_size == 4)
7569 				size_code = BPF_W;
7570 			else if (ctx_field_size == 8)
7571 				size_code = BPF_DW;
7572 
7573 			insn->off = off & ~(size_default - 1);
7574 			insn->code = BPF_LDX | BPF_MEM | size_code;
7575 		}
7576 
7577 		target_size = 0;
7578 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7579 					 &target_size);
7580 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7581 		    (ctx_field_size && !target_size)) {
7582 			verbose(env, "bpf verifier is misconfigured\n");
7583 			return -EINVAL;
7584 		}
7585 
7586 		if (is_narrower_load && size < target_size) {
7587 			u8 shift = (off & (size_default - 1)) * 8;
7588 
7589 			if (ctx_field_size <= 4) {
7590 				if (shift)
7591 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7592 									insn->dst_reg,
7593 									shift);
7594 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7595 								(1 << size * 8) - 1);
7596 			} else {
7597 				if (shift)
7598 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7599 									insn->dst_reg,
7600 									shift);
7601 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7602 								(1ULL << size * 8) - 1);
7603 			}
7604 		}
7605 
7606 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7607 		if (!new_prog)
7608 			return -ENOMEM;
7609 
7610 		delta += cnt - 1;
7611 
7612 		/* keep walking new program and skip insns we just inserted */
7613 		env->prog = new_prog;
7614 		insn      = new_prog->insnsi + i + delta;
7615 	}
7616 
7617 	return 0;
7618 }
7619 
7620 static int jit_subprogs(struct bpf_verifier_env *env)
7621 {
7622 	struct bpf_prog *prog = env->prog, **func, *tmp;
7623 	int i, j, subprog_start, subprog_end = 0, len, subprog;
7624 	struct bpf_insn *insn;
7625 	void *old_bpf_func;
7626 	int err;
7627 
7628 	if (env->subprog_cnt <= 1)
7629 		return 0;
7630 
7631 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7632 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7633 		    insn->src_reg != BPF_PSEUDO_CALL)
7634 			continue;
7635 		/* Upon error here we cannot fall back to interpreter but
7636 		 * need a hard reject of the program. Thus -EFAULT is
7637 		 * propagated in any case.
7638 		 */
7639 		subprog = find_subprog(env, i + insn->imm + 1);
7640 		if (subprog < 0) {
7641 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7642 				  i + insn->imm + 1);
7643 			return -EFAULT;
7644 		}
7645 		/* temporarily remember subprog id inside insn instead of
7646 		 * aux_data, since next loop will split up all insns into funcs
7647 		 */
7648 		insn->off = subprog;
7649 		/* remember original imm in case JIT fails and fallback
7650 		 * to interpreter will be needed
7651 		 */
7652 		env->insn_aux_data[i].call_imm = insn->imm;
7653 		/* point imm to __bpf_call_base+1 from JITs point of view */
7654 		insn->imm = 1;
7655 	}
7656 
7657 	err = bpf_prog_alloc_jited_linfo(prog);
7658 	if (err)
7659 		goto out_undo_insn;
7660 
7661 	err = -ENOMEM;
7662 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7663 	if (!func)
7664 		goto out_undo_insn;
7665 
7666 	for (i = 0; i < env->subprog_cnt; i++) {
7667 		subprog_start = subprog_end;
7668 		subprog_end = env->subprog_info[i + 1].start;
7669 
7670 		len = subprog_end - subprog_start;
7671 		/* BPF_PROG_RUN doesn't call subprogs directly,
7672 		 * hence main prog stats include the runtime of subprogs.
7673 		 * subprogs don't have IDs and not reachable via prog_get_next_id
7674 		 * func[i]->aux->stats will never be accessed and stays NULL
7675 		 */
7676 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7677 		if (!func[i])
7678 			goto out_free;
7679 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7680 		       len * sizeof(struct bpf_insn));
7681 		func[i]->type = prog->type;
7682 		func[i]->len = len;
7683 		if (bpf_prog_calc_tag(func[i]))
7684 			goto out_free;
7685 		func[i]->is_func = 1;
7686 		func[i]->aux->func_idx = i;
7687 		/* the btf and func_info will be freed only at prog->aux */
7688 		func[i]->aux->btf = prog->aux->btf;
7689 		func[i]->aux->func_info = prog->aux->func_info;
7690 
7691 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
7692 		 * Long term would need debug info to populate names
7693 		 */
7694 		func[i]->aux->name[0] = 'F';
7695 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7696 		func[i]->jit_requested = 1;
7697 		func[i]->aux->linfo = prog->aux->linfo;
7698 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7699 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7700 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7701 		func[i] = bpf_int_jit_compile(func[i]);
7702 		if (!func[i]->jited) {
7703 			err = -ENOTSUPP;
7704 			goto out_free;
7705 		}
7706 		cond_resched();
7707 	}
7708 	/* at this point all bpf functions were successfully JITed
7709 	 * now populate all bpf_calls with correct addresses and
7710 	 * run last pass of JIT
7711 	 */
7712 	for (i = 0; i < env->subprog_cnt; i++) {
7713 		insn = func[i]->insnsi;
7714 		for (j = 0; j < func[i]->len; j++, insn++) {
7715 			if (insn->code != (BPF_JMP | BPF_CALL) ||
7716 			    insn->src_reg != BPF_PSEUDO_CALL)
7717 				continue;
7718 			subprog = insn->off;
7719 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
7720 				    __bpf_call_base;
7721 		}
7722 
7723 		/* we use the aux data to keep a list of the start addresses
7724 		 * of the JITed images for each function in the program
7725 		 *
7726 		 * for some architectures, such as powerpc64, the imm field
7727 		 * might not be large enough to hold the offset of the start
7728 		 * address of the callee's JITed image from __bpf_call_base
7729 		 *
7730 		 * in such cases, we can lookup the start address of a callee
7731 		 * by using its subprog id, available from the off field of
7732 		 * the call instruction, as an index for this list
7733 		 */
7734 		func[i]->aux->func = func;
7735 		func[i]->aux->func_cnt = env->subprog_cnt;
7736 	}
7737 	for (i = 0; i < env->subprog_cnt; i++) {
7738 		old_bpf_func = func[i]->bpf_func;
7739 		tmp = bpf_int_jit_compile(func[i]);
7740 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7741 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
7742 			err = -ENOTSUPP;
7743 			goto out_free;
7744 		}
7745 		cond_resched();
7746 	}
7747 
7748 	/* finally lock prog and jit images for all functions and
7749 	 * populate kallsysm
7750 	 */
7751 	for (i = 0; i < env->subprog_cnt; i++) {
7752 		bpf_prog_lock_ro(func[i]);
7753 		bpf_prog_kallsyms_add(func[i]);
7754 	}
7755 
7756 	/* Last step: make now unused interpreter insns from main
7757 	 * prog consistent for later dump requests, so they can
7758 	 * later look the same as if they were interpreted only.
7759 	 */
7760 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7761 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7762 		    insn->src_reg != BPF_PSEUDO_CALL)
7763 			continue;
7764 		insn->off = env->insn_aux_data[i].call_imm;
7765 		subprog = find_subprog(env, i + insn->off + 1);
7766 		insn->imm = subprog;
7767 	}
7768 
7769 	prog->jited = 1;
7770 	prog->bpf_func = func[0]->bpf_func;
7771 	prog->aux->func = func;
7772 	prog->aux->func_cnt = env->subprog_cnt;
7773 	bpf_prog_free_unused_jited_linfo(prog);
7774 	return 0;
7775 out_free:
7776 	for (i = 0; i < env->subprog_cnt; i++)
7777 		if (func[i])
7778 			bpf_jit_free(func[i]);
7779 	kfree(func);
7780 out_undo_insn:
7781 	/* cleanup main prog to be interpreted */
7782 	prog->jit_requested = 0;
7783 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7784 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7785 		    insn->src_reg != BPF_PSEUDO_CALL)
7786 			continue;
7787 		insn->off = 0;
7788 		insn->imm = env->insn_aux_data[i].call_imm;
7789 	}
7790 	bpf_prog_free_jited_linfo(prog);
7791 	return err;
7792 }
7793 
7794 static int fixup_call_args(struct bpf_verifier_env *env)
7795 {
7796 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7797 	struct bpf_prog *prog = env->prog;
7798 	struct bpf_insn *insn = prog->insnsi;
7799 	int i, depth;
7800 #endif
7801 	int err = 0;
7802 
7803 	if (env->prog->jit_requested &&
7804 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
7805 		err = jit_subprogs(env);
7806 		if (err == 0)
7807 			return 0;
7808 		if (err == -EFAULT)
7809 			return err;
7810 	}
7811 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7812 	for (i = 0; i < prog->len; i++, insn++) {
7813 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7814 		    insn->src_reg != BPF_PSEUDO_CALL)
7815 			continue;
7816 		depth = get_callee_stack_depth(env, insn, i);
7817 		if (depth < 0)
7818 			return depth;
7819 		bpf_patch_call_args(insn, depth);
7820 	}
7821 	err = 0;
7822 #endif
7823 	return err;
7824 }
7825 
7826 /* fixup insn->imm field of bpf_call instructions
7827  * and inline eligible helpers as explicit sequence of BPF instructions
7828  *
7829  * this function is called after eBPF program passed verification
7830  */
7831 static int fixup_bpf_calls(struct bpf_verifier_env *env)
7832 {
7833 	struct bpf_prog *prog = env->prog;
7834 	struct bpf_insn *insn = prog->insnsi;
7835 	const struct bpf_func_proto *fn;
7836 	const int insn_cnt = prog->len;
7837 	const struct bpf_map_ops *ops;
7838 	struct bpf_insn_aux_data *aux;
7839 	struct bpf_insn insn_buf[16];
7840 	struct bpf_prog *new_prog;
7841 	struct bpf_map *map_ptr;
7842 	int i, cnt, delta = 0;
7843 
7844 	for (i = 0; i < insn_cnt; i++, insn++) {
7845 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7846 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7847 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
7848 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7849 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7850 			struct bpf_insn mask_and_div[] = {
7851 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7852 				/* Rx div 0 -> 0 */
7853 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7854 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7855 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7856 				*insn,
7857 			};
7858 			struct bpf_insn mask_and_mod[] = {
7859 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7860 				/* Rx mod 0 -> Rx */
7861 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7862 				*insn,
7863 			};
7864 			struct bpf_insn *patchlet;
7865 
7866 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7867 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7868 				patchlet = mask_and_div + (is64 ? 1 : 0);
7869 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7870 			} else {
7871 				patchlet = mask_and_mod + (is64 ? 1 : 0);
7872 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7873 			}
7874 
7875 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
7876 			if (!new_prog)
7877 				return -ENOMEM;
7878 
7879 			delta    += cnt - 1;
7880 			env->prog = prog = new_prog;
7881 			insn      = new_prog->insnsi + i + delta;
7882 			continue;
7883 		}
7884 
7885 		if (BPF_CLASS(insn->code) == BPF_LD &&
7886 		    (BPF_MODE(insn->code) == BPF_ABS ||
7887 		     BPF_MODE(insn->code) == BPF_IND)) {
7888 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
7889 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7890 				verbose(env, "bpf verifier is misconfigured\n");
7891 				return -EINVAL;
7892 			}
7893 
7894 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7895 			if (!new_prog)
7896 				return -ENOMEM;
7897 
7898 			delta    += cnt - 1;
7899 			env->prog = prog = new_prog;
7900 			insn      = new_prog->insnsi + i + delta;
7901 			continue;
7902 		}
7903 
7904 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7905 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7906 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7907 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7908 			struct bpf_insn insn_buf[16];
7909 			struct bpf_insn *patch = &insn_buf[0];
7910 			bool issrc, isneg;
7911 			u32 off_reg;
7912 
7913 			aux = &env->insn_aux_data[i + delta];
7914 			if (!aux->alu_state ||
7915 			    aux->alu_state == BPF_ALU_NON_POINTER)
7916 				continue;
7917 
7918 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7919 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7920 				BPF_ALU_SANITIZE_SRC;
7921 
7922 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
7923 			if (isneg)
7924 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7925 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7926 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7927 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7928 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7929 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7930 			if (issrc) {
7931 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7932 							 off_reg);
7933 				insn->src_reg = BPF_REG_AX;
7934 			} else {
7935 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7936 							 BPF_REG_AX);
7937 			}
7938 			if (isneg)
7939 				insn->code = insn->code == code_add ?
7940 					     code_sub : code_add;
7941 			*patch++ = *insn;
7942 			if (issrc && isneg)
7943 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7944 			cnt = patch - insn_buf;
7945 
7946 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7947 			if (!new_prog)
7948 				return -ENOMEM;
7949 
7950 			delta    += cnt - 1;
7951 			env->prog = prog = new_prog;
7952 			insn      = new_prog->insnsi + i + delta;
7953 			continue;
7954 		}
7955 
7956 		if (insn->code != (BPF_JMP | BPF_CALL))
7957 			continue;
7958 		if (insn->src_reg == BPF_PSEUDO_CALL)
7959 			continue;
7960 
7961 		if (insn->imm == BPF_FUNC_get_route_realm)
7962 			prog->dst_needed = 1;
7963 		if (insn->imm == BPF_FUNC_get_prandom_u32)
7964 			bpf_user_rnd_init_once();
7965 		if (insn->imm == BPF_FUNC_override_return)
7966 			prog->kprobe_override = 1;
7967 		if (insn->imm == BPF_FUNC_tail_call) {
7968 			/* If we tail call into other programs, we
7969 			 * cannot make any assumptions since they can
7970 			 * be replaced dynamically during runtime in
7971 			 * the program array.
7972 			 */
7973 			prog->cb_access = 1;
7974 			env->prog->aux->stack_depth = MAX_BPF_STACK;
7975 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7976 
7977 			/* mark bpf_tail_call as different opcode to avoid
7978 			 * conditional branch in the interpeter for every normal
7979 			 * call and to prevent accidental JITing by JIT compiler
7980 			 * that doesn't support bpf_tail_call yet
7981 			 */
7982 			insn->imm = 0;
7983 			insn->code = BPF_JMP | BPF_TAIL_CALL;
7984 
7985 			aux = &env->insn_aux_data[i + delta];
7986 			if (!bpf_map_ptr_unpriv(aux))
7987 				continue;
7988 
7989 			/* instead of changing every JIT dealing with tail_call
7990 			 * emit two extra insns:
7991 			 * if (index >= max_entries) goto out;
7992 			 * index &= array->index_mask;
7993 			 * to avoid out-of-bounds cpu speculation
7994 			 */
7995 			if (bpf_map_ptr_poisoned(aux)) {
7996 				verbose(env, "tail_call abusing map_ptr\n");
7997 				return -EINVAL;
7998 			}
7999 
8000 			map_ptr = BPF_MAP_PTR(aux->map_state);
8001 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
8002 						  map_ptr->max_entries, 2);
8003 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
8004 						    container_of(map_ptr,
8005 								 struct bpf_array,
8006 								 map)->index_mask);
8007 			insn_buf[2] = *insn;
8008 			cnt = 3;
8009 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8010 			if (!new_prog)
8011 				return -ENOMEM;
8012 
8013 			delta    += cnt - 1;
8014 			env->prog = prog = new_prog;
8015 			insn      = new_prog->insnsi + i + delta;
8016 			continue;
8017 		}
8018 
8019 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
8020 		 * and other inlining handlers are currently limited to 64 bit
8021 		 * only.
8022 		 */
8023 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
8024 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
8025 		     insn->imm == BPF_FUNC_map_update_elem ||
8026 		     insn->imm == BPF_FUNC_map_delete_elem ||
8027 		     insn->imm == BPF_FUNC_map_push_elem   ||
8028 		     insn->imm == BPF_FUNC_map_pop_elem    ||
8029 		     insn->imm == BPF_FUNC_map_peek_elem)) {
8030 			aux = &env->insn_aux_data[i + delta];
8031 			if (bpf_map_ptr_poisoned(aux))
8032 				goto patch_call_imm;
8033 
8034 			map_ptr = BPF_MAP_PTR(aux->map_state);
8035 			ops = map_ptr->ops;
8036 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
8037 			    ops->map_gen_lookup) {
8038 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
8039 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8040 					verbose(env, "bpf verifier is misconfigured\n");
8041 					return -EINVAL;
8042 				}
8043 
8044 				new_prog = bpf_patch_insn_data(env, i + delta,
8045 							       insn_buf, cnt);
8046 				if (!new_prog)
8047 					return -ENOMEM;
8048 
8049 				delta    += cnt - 1;
8050 				env->prog = prog = new_prog;
8051 				insn      = new_prog->insnsi + i + delta;
8052 				continue;
8053 			}
8054 
8055 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
8056 				     (void *(*)(struct bpf_map *map, void *key))NULL));
8057 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
8058 				     (int (*)(struct bpf_map *map, void *key))NULL));
8059 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
8060 				     (int (*)(struct bpf_map *map, void *key, void *value,
8061 					      u64 flags))NULL));
8062 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
8063 				     (int (*)(struct bpf_map *map, void *value,
8064 					      u64 flags))NULL));
8065 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
8066 				     (int (*)(struct bpf_map *map, void *value))NULL));
8067 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
8068 				     (int (*)(struct bpf_map *map, void *value))NULL));
8069 
8070 			switch (insn->imm) {
8071 			case BPF_FUNC_map_lookup_elem:
8072 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
8073 					    __bpf_call_base;
8074 				continue;
8075 			case BPF_FUNC_map_update_elem:
8076 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
8077 					    __bpf_call_base;
8078 				continue;
8079 			case BPF_FUNC_map_delete_elem:
8080 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
8081 					    __bpf_call_base;
8082 				continue;
8083 			case BPF_FUNC_map_push_elem:
8084 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
8085 					    __bpf_call_base;
8086 				continue;
8087 			case BPF_FUNC_map_pop_elem:
8088 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
8089 					    __bpf_call_base;
8090 				continue;
8091 			case BPF_FUNC_map_peek_elem:
8092 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
8093 					    __bpf_call_base;
8094 				continue;
8095 			}
8096 
8097 			goto patch_call_imm;
8098 		}
8099 
8100 patch_call_imm:
8101 		fn = env->ops->get_func_proto(insn->imm, env->prog);
8102 		/* all functions that have prototype and verifier allowed
8103 		 * programs to call them, must be real in-kernel functions
8104 		 */
8105 		if (!fn->func) {
8106 			verbose(env,
8107 				"kernel subsystem misconfigured func %s#%d\n",
8108 				func_id_name(insn->imm), insn->imm);
8109 			return -EFAULT;
8110 		}
8111 		insn->imm = fn->func - __bpf_call_base;
8112 	}
8113 
8114 	return 0;
8115 }
8116 
8117 static void free_states(struct bpf_verifier_env *env)
8118 {
8119 	struct bpf_verifier_state_list *sl, *sln;
8120 	int i;
8121 
8122 	sl = env->free_list;
8123 	while (sl) {
8124 		sln = sl->next;
8125 		free_verifier_state(&sl->state, false);
8126 		kfree(sl);
8127 		sl = sln;
8128 	}
8129 
8130 	if (!env->explored_states)
8131 		return;
8132 
8133 	for (i = 0; i < env->prog->len; i++) {
8134 		sl = env->explored_states[i];
8135 
8136 		if (sl)
8137 			while (sl != STATE_LIST_MARK) {
8138 				sln = sl->next;
8139 				free_verifier_state(&sl->state, false);
8140 				kfree(sl);
8141 				sl = sln;
8142 			}
8143 	}
8144 
8145 	kvfree(env->explored_states);
8146 }
8147 
8148 static void print_verification_stats(struct bpf_verifier_env *env)
8149 {
8150 	int i;
8151 
8152 	if (env->log.level & BPF_LOG_STATS) {
8153 		verbose(env, "verification time %lld usec\n",
8154 			div_u64(env->verification_time, 1000));
8155 		verbose(env, "stack depth ");
8156 		for (i = 0; i < env->subprog_cnt; i++) {
8157 			u32 depth = env->subprog_info[i].stack_depth;
8158 
8159 			verbose(env, "%d", depth);
8160 			if (i + 1 < env->subprog_cnt)
8161 				verbose(env, "+");
8162 		}
8163 		verbose(env, "\n");
8164 	}
8165 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
8166 		"total_states %d peak_states %d mark_read %d\n",
8167 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
8168 		env->max_states_per_insn, env->total_states,
8169 		env->peak_states, env->longest_mark_read_walk);
8170 }
8171 
8172 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
8173 	      union bpf_attr __user *uattr)
8174 {
8175 	u64 start_time = ktime_get_ns();
8176 	struct bpf_verifier_env *env;
8177 	struct bpf_verifier_log *log;
8178 	int i, len, ret = -EINVAL;
8179 	bool is_priv;
8180 
8181 	/* no program is valid */
8182 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
8183 		return -EINVAL;
8184 
8185 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
8186 	 * allocate/free it every time bpf_check() is called
8187 	 */
8188 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
8189 	if (!env)
8190 		return -ENOMEM;
8191 	log = &env->log;
8192 
8193 	len = (*prog)->len;
8194 	env->insn_aux_data =
8195 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
8196 	ret = -ENOMEM;
8197 	if (!env->insn_aux_data)
8198 		goto err_free_env;
8199 	for (i = 0; i < len; i++)
8200 		env->insn_aux_data[i].orig_idx = i;
8201 	env->prog = *prog;
8202 	env->ops = bpf_verifier_ops[env->prog->type];
8203 	is_priv = capable(CAP_SYS_ADMIN);
8204 
8205 	/* grab the mutex to protect few globals used by verifier */
8206 	if (!is_priv)
8207 		mutex_lock(&bpf_verifier_lock);
8208 
8209 	if (attr->log_level || attr->log_buf || attr->log_size) {
8210 		/* user requested verbose verifier output
8211 		 * and supplied buffer to store the verification trace
8212 		 */
8213 		log->level = attr->log_level;
8214 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
8215 		log->len_total = attr->log_size;
8216 
8217 		ret = -EINVAL;
8218 		/* log attributes have to be sane */
8219 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
8220 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
8221 			goto err_unlock;
8222 	}
8223 
8224 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
8225 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
8226 		env->strict_alignment = true;
8227 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
8228 		env->strict_alignment = false;
8229 
8230 	env->allow_ptr_leaks = is_priv;
8231 
8232 	ret = replace_map_fd_with_map_ptr(env);
8233 	if (ret < 0)
8234 		goto skip_full_check;
8235 
8236 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
8237 		ret = bpf_prog_offload_verifier_prep(env->prog);
8238 		if (ret)
8239 			goto skip_full_check;
8240 	}
8241 
8242 	env->explored_states = kvcalloc(env->prog->len,
8243 				       sizeof(struct bpf_verifier_state_list *),
8244 				       GFP_USER);
8245 	ret = -ENOMEM;
8246 	if (!env->explored_states)
8247 		goto skip_full_check;
8248 
8249 	ret = check_subprogs(env);
8250 	if (ret < 0)
8251 		goto skip_full_check;
8252 
8253 	ret = check_btf_info(env, attr, uattr);
8254 	if (ret < 0)
8255 		goto skip_full_check;
8256 
8257 	ret = check_cfg(env);
8258 	if (ret < 0)
8259 		goto skip_full_check;
8260 
8261 	ret = do_check(env);
8262 	if (env->cur_state) {
8263 		free_verifier_state(env->cur_state, true);
8264 		env->cur_state = NULL;
8265 	}
8266 
8267 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
8268 		ret = bpf_prog_offload_finalize(env);
8269 
8270 skip_full_check:
8271 	while (!pop_stack(env, NULL, NULL));
8272 	free_states(env);
8273 
8274 	if (ret == 0)
8275 		ret = check_max_stack_depth(env);
8276 
8277 	/* instruction rewrites happen after this point */
8278 	if (is_priv) {
8279 		if (ret == 0)
8280 			opt_hard_wire_dead_code_branches(env);
8281 		if (ret == 0)
8282 			ret = opt_remove_dead_code(env);
8283 		if (ret == 0)
8284 			ret = opt_remove_nops(env);
8285 	} else {
8286 		if (ret == 0)
8287 			sanitize_dead_code(env);
8288 	}
8289 
8290 	if (ret == 0)
8291 		/* program is valid, convert *(u32*)(ctx + off) accesses */
8292 		ret = convert_ctx_accesses(env);
8293 
8294 	if (ret == 0)
8295 		ret = fixup_bpf_calls(env);
8296 
8297 	if (ret == 0)
8298 		ret = fixup_call_args(env);
8299 
8300 	env->verification_time = ktime_get_ns() - start_time;
8301 	print_verification_stats(env);
8302 
8303 	if (log->level && bpf_verifier_log_full(log))
8304 		ret = -ENOSPC;
8305 	if (log->level && !log->ubuf) {
8306 		ret = -EFAULT;
8307 		goto err_release_maps;
8308 	}
8309 
8310 	if (ret == 0 && env->used_map_cnt) {
8311 		/* if program passed verifier, update used_maps in bpf_prog_info */
8312 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
8313 							  sizeof(env->used_maps[0]),
8314 							  GFP_KERNEL);
8315 
8316 		if (!env->prog->aux->used_maps) {
8317 			ret = -ENOMEM;
8318 			goto err_release_maps;
8319 		}
8320 
8321 		memcpy(env->prog->aux->used_maps, env->used_maps,
8322 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
8323 		env->prog->aux->used_map_cnt = env->used_map_cnt;
8324 
8325 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
8326 		 * bpf_ld_imm64 instructions
8327 		 */
8328 		convert_pseudo_ld_imm64(env);
8329 	}
8330 
8331 	if (ret == 0)
8332 		adjust_btf_func(env);
8333 
8334 err_release_maps:
8335 	if (!env->prog->aux->used_maps)
8336 		/* if we didn't copy map pointers into bpf_prog_info, release
8337 		 * them now. Otherwise free_used_maps() will release them.
8338 		 */
8339 		release_maps(env);
8340 	*prog = env->prog;
8341 err_unlock:
8342 	if (!is_priv)
8343 		mutex_unlock(&bpf_verifier_lock);
8344 	vfree(env->insn_aux_data);
8345 err_free_env:
8346 	kfree(env);
8347 	return ret;
8348 }
8349