xref: /openbmc/linux/kernel/bpf/verifier.c (revision 110e6f26)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/bpf.h>
16 #include <linux/filter.h>
17 #include <net/netlink.h>
18 #include <linux/file.h>
19 #include <linux/vmalloc.h>
20 
21 /* bpf_check() is a static code analyzer that walks eBPF program
22  * instruction by instruction and updates register/stack state.
23  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
24  *
25  * The first pass is depth-first-search to check that the program is a DAG.
26  * It rejects the following programs:
27  * - larger than BPF_MAXINSNS insns
28  * - if loop is present (detected via back-edge)
29  * - unreachable insns exist (shouldn't be a forest. program = one function)
30  * - out of bounds or malformed jumps
31  * The second pass is all possible path descent from the 1st insn.
32  * Since it's analyzing all pathes through the program, the length of the
33  * analysis is limited to 32k insn, which may be hit even if total number of
34  * insn is less then 4K, but there are too many branches that change stack/regs.
35  * Number of 'branches to be analyzed' is limited to 1k
36  *
37  * On entry to each instruction, each register has a type, and the instruction
38  * changes the types of the registers depending on instruction semantics.
39  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
40  * copied to R1.
41  *
42  * All registers are 64-bit.
43  * R0 - return register
44  * R1-R5 argument passing registers
45  * R6-R9 callee saved registers
46  * R10 - frame pointer read-only
47  *
48  * At the start of BPF program the register R1 contains a pointer to bpf_context
49  * and has type PTR_TO_CTX.
50  *
51  * Verifier tracks arithmetic operations on pointers in case:
52  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
53  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
54  * 1st insn copies R10 (which has FRAME_PTR) type into R1
55  * and 2nd arithmetic instruction is pattern matched to recognize
56  * that it wants to construct a pointer to some element within stack.
57  * So after 2nd insn, the register R1 has type PTR_TO_STACK
58  * (and -20 constant is saved for further stack bounds checking).
59  * Meaning that this reg is a pointer to stack plus known immediate constant.
60  *
61  * Most of the time the registers have UNKNOWN_VALUE type, which
62  * means the register has some value, but it's not a valid pointer.
63  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
64  *
65  * When verifier sees load or store instructions the type of base register
66  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
67  * types recognized by check_mem_access() function.
68  *
69  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
70  * and the range of [ptr, ptr + map's value_size) is accessible.
71  *
72  * registers used to pass values to function calls are checked against
73  * function argument constraints.
74  *
75  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
76  * It means that the register type passed to this function must be
77  * PTR_TO_STACK and it will be used inside the function as
78  * 'pointer to map element key'
79  *
80  * For example the argument constraints for bpf_map_lookup_elem():
81  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
82  *   .arg1_type = ARG_CONST_MAP_PTR,
83  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
84  *
85  * ret_type says that this function returns 'pointer to map elem value or null'
86  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
87  * 2nd argument should be a pointer to stack, which will be used inside
88  * the helper function as a pointer to map element key.
89  *
90  * On the kernel side the helper function looks like:
91  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
92  * {
93  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
94  *    void *key = (void *) (unsigned long) r2;
95  *    void *value;
96  *
97  *    here kernel can access 'key' and 'map' pointers safely, knowing that
98  *    [key, key + map->key_size) bytes are valid and were initialized on
99  *    the stack of eBPF program.
100  * }
101  *
102  * Corresponding eBPF program may look like:
103  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
104  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
105  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
106  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
107  * here verifier looks at prototype of map_lookup_elem() and sees:
108  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
109  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
110  *
111  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
112  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
113  * and were initialized prior to this call.
114  * If it's ok, then verifier allows this BPF_CALL insn and looks at
115  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
116  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
117  * returns ether pointer to map value or NULL.
118  *
119  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
120  * insn, the register holding that pointer in the true branch changes state to
121  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
122  * branch. See check_cond_jmp_op().
123  *
124  * After the call R0 is set to return type of the function and registers R1-R5
125  * are set to NOT_INIT to indicate that they are no longer readable.
126  */
127 
128 /* types of values stored in eBPF registers */
129 enum bpf_reg_type {
130 	NOT_INIT = 0,		 /* nothing was written into register */
131 	UNKNOWN_VALUE,		 /* reg doesn't contain a valid pointer */
132 	PTR_TO_CTX,		 /* reg points to bpf_context */
133 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
134 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
135 	PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
136 	FRAME_PTR,		 /* reg == frame_pointer */
137 	PTR_TO_STACK,		 /* reg == frame_pointer + imm */
138 	CONST_IMM,		 /* constant integer value */
139 };
140 
141 struct reg_state {
142 	enum bpf_reg_type type;
143 	union {
144 		/* valid when type == CONST_IMM | PTR_TO_STACK */
145 		int imm;
146 
147 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
148 		 *   PTR_TO_MAP_VALUE_OR_NULL
149 		 */
150 		struct bpf_map *map_ptr;
151 	};
152 };
153 
154 enum bpf_stack_slot_type {
155 	STACK_INVALID,    /* nothing was stored in this stack slot */
156 	STACK_SPILL,      /* register spilled into stack */
157 	STACK_MISC	  /* BPF program wrote some data into this slot */
158 };
159 
160 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
161 
162 /* state of the program:
163  * type of all registers and stack info
164  */
165 struct verifier_state {
166 	struct reg_state regs[MAX_BPF_REG];
167 	u8 stack_slot_type[MAX_BPF_STACK];
168 	struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
169 };
170 
171 /* linked list of verifier states used to prune search */
172 struct verifier_state_list {
173 	struct verifier_state state;
174 	struct verifier_state_list *next;
175 };
176 
177 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
178 struct verifier_stack_elem {
179 	/* verifer state is 'st'
180 	 * before processing instruction 'insn_idx'
181 	 * and after processing instruction 'prev_insn_idx'
182 	 */
183 	struct verifier_state st;
184 	int insn_idx;
185 	int prev_insn_idx;
186 	struct verifier_stack_elem *next;
187 };
188 
189 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
190 
191 /* single container for all structs
192  * one verifier_env per bpf_check() call
193  */
194 struct verifier_env {
195 	struct bpf_prog *prog;		/* eBPF program being verified */
196 	struct verifier_stack_elem *head; /* stack of verifier states to be processed */
197 	int stack_size;			/* number of states to be processed */
198 	struct verifier_state cur_state; /* current verifier state */
199 	struct verifier_state_list **explored_states; /* search pruning optimization */
200 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
201 	u32 used_map_cnt;		/* number of used maps */
202 	bool allow_ptr_leaks;
203 };
204 
205 /* verbose verifier prints what it's seeing
206  * bpf_check() is called under lock, so no race to access these global vars
207  */
208 static u32 log_level, log_size, log_len;
209 static char *log_buf;
210 
211 static DEFINE_MUTEX(bpf_verifier_lock);
212 
213 /* log_level controls verbosity level of eBPF verifier.
214  * verbose() is used to dump the verification trace to the log, so the user
215  * can figure out what's wrong with the program
216  */
217 static __printf(1, 2) void verbose(const char *fmt, ...)
218 {
219 	va_list args;
220 
221 	if (log_level == 0 || log_len >= log_size - 1)
222 		return;
223 
224 	va_start(args, fmt);
225 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
226 	va_end(args);
227 }
228 
229 /* string representation of 'enum bpf_reg_type' */
230 static const char * const reg_type_str[] = {
231 	[NOT_INIT]		= "?",
232 	[UNKNOWN_VALUE]		= "inv",
233 	[PTR_TO_CTX]		= "ctx",
234 	[CONST_PTR_TO_MAP]	= "map_ptr",
235 	[PTR_TO_MAP_VALUE]	= "map_value",
236 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
237 	[FRAME_PTR]		= "fp",
238 	[PTR_TO_STACK]		= "fp",
239 	[CONST_IMM]		= "imm",
240 };
241 
242 static const struct {
243 	int map_type;
244 	int func_id;
245 } func_limit[] = {
246 	{BPF_MAP_TYPE_PROG_ARRAY, BPF_FUNC_tail_call},
247 	{BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_FUNC_perf_event_read},
248 	{BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_FUNC_perf_event_output},
249 	{BPF_MAP_TYPE_STACK_TRACE, BPF_FUNC_get_stackid},
250 };
251 
252 static void print_verifier_state(struct verifier_env *env)
253 {
254 	enum bpf_reg_type t;
255 	int i;
256 
257 	for (i = 0; i < MAX_BPF_REG; i++) {
258 		t = env->cur_state.regs[i].type;
259 		if (t == NOT_INIT)
260 			continue;
261 		verbose(" R%d=%s", i, reg_type_str[t]);
262 		if (t == CONST_IMM || t == PTR_TO_STACK)
263 			verbose("%d", env->cur_state.regs[i].imm);
264 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
265 			 t == PTR_TO_MAP_VALUE_OR_NULL)
266 			verbose("(ks=%d,vs=%d)",
267 				env->cur_state.regs[i].map_ptr->key_size,
268 				env->cur_state.regs[i].map_ptr->value_size);
269 	}
270 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
271 		if (env->cur_state.stack_slot_type[i] == STACK_SPILL)
272 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
273 				reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]);
274 	}
275 	verbose("\n");
276 }
277 
278 static const char *const bpf_class_string[] = {
279 	[BPF_LD]    = "ld",
280 	[BPF_LDX]   = "ldx",
281 	[BPF_ST]    = "st",
282 	[BPF_STX]   = "stx",
283 	[BPF_ALU]   = "alu",
284 	[BPF_JMP]   = "jmp",
285 	[BPF_RET]   = "BUG",
286 	[BPF_ALU64] = "alu64",
287 };
288 
289 static const char *const bpf_alu_string[16] = {
290 	[BPF_ADD >> 4]  = "+=",
291 	[BPF_SUB >> 4]  = "-=",
292 	[BPF_MUL >> 4]  = "*=",
293 	[BPF_DIV >> 4]  = "/=",
294 	[BPF_OR  >> 4]  = "|=",
295 	[BPF_AND >> 4]  = "&=",
296 	[BPF_LSH >> 4]  = "<<=",
297 	[BPF_RSH >> 4]  = ">>=",
298 	[BPF_NEG >> 4]  = "neg",
299 	[BPF_MOD >> 4]  = "%=",
300 	[BPF_XOR >> 4]  = "^=",
301 	[BPF_MOV >> 4]  = "=",
302 	[BPF_ARSH >> 4] = "s>>=",
303 	[BPF_END >> 4]  = "endian",
304 };
305 
306 static const char *const bpf_ldst_string[] = {
307 	[BPF_W >> 3]  = "u32",
308 	[BPF_H >> 3]  = "u16",
309 	[BPF_B >> 3]  = "u8",
310 	[BPF_DW >> 3] = "u64",
311 };
312 
313 static const char *const bpf_jmp_string[16] = {
314 	[BPF_JA >> 4]   = "jmp",
315 	[BPF_JEQ >> 4]  = "==",
316 	[BPF_JGT >> 4]  = ">",
317 	[BPF_JGE >> 4]  = ">=",
318 	[BPF_JSET >> 4] = "&",
319 	[BPF_JNE >> 4]  = "!=",
320 	[BPF_JSGT >> 4] = "s>",
321 	[BPF_JSGE >> 4] = "s>=",
322 	[BPF_CALL >> 4] = "call",
323 	[BPF_EXIT >> 4] = "exit",
324 };
325 
326 static void print_bpf_insn(struct bpf_insn *insn)
327 {
328 	u8 class = BPF_CLASS(insn->code);
329 
330 	if (class == BPF_ALU || class == BPF_ALU64) {
331 		if (BPF_SRC(insn->code) == BPF_X)
332 			verbose("(%02x) %sr%d %s %sr%d\n",
333 				insn->code, class == BPF_ALU ? "(u32) " : "",
334 				insn->dst_reg,
335 				bpf_alu_string[BPF_OP(insn->code) >> 4],
336 				class == BPF_ALU ? "(u32) " : "",
337 				insn->src_reg);
338 		else
339 			verbose("(%02x) %sr%d %s %s%d\n",
340 				insn->code, class == BPF_ALU ? "(u32) " : "",
341 				insn->dst_reg,
342 				bpf_alu_string[BPF_OP(insn->code) >> 4],
343 				class == BPF_ALU ? "(u32) " : "",
344 				insn->imm);
345 	} else if (class == BPF_STX) {
346 		if (BPF_MODE(insn->code) == BPF_MEM)
347 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
348 				insn->code,
349 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
350 				insn->dst_reg,
351 				insn->off, insn->src_reg);
352 		else if (BPF_MODE(insn->code) == BPF_XADD)
353 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
354 				insn->code,
355 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
356 				insn->dst_reg, insn->off,
357 				insn->src_reg);
358 		else
359 			verbose("BUG_%02x\n", insn->code);
360 	} else if (class == BPF_ST) {
361 		if (BPF_MODE(insn->code) != BPF_MEM) {
362 			verbose("BUG_st_%02x\n", insn->code);
363 			return;
364 		}
365 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
366 			insn->code,
367 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
368 			insn->dst_reg,
369 			insn->off, insn->imm);
370 	} else if (class == BPF_LDX) {
371 		if (BPF_MODE(insn->code) != BPF_MEM) {
372 			verbose("BUG_ldx_%02x\n", insn->code);
373 			return;
374 		}
375 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
376 			insn->code, insn->dst_reg,
377 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
378 			insn->src_reg, insn->off);
379 	} else if (class == BPF_LD) {
380 		if (BPF_MODE(insn->code) == BPF_ABS) {
381 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
382 				insn->code,
383 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
384 				insn->imm);
385 		} else if (BPF_MODE(insn->code) == BPF_IND) {
386 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
387 				insn->code,
388 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
389 				insn->src_reg, insn->imm);
390 		} else if (BPF_MODE(insn->code) == BPF_IMM) {
391 			verbose("(%02x) r%d = 0x%x\n",
392 				insn->code, insn->dst_reg, insn->imm);
393 		} else {
394 			verbose("BUG_ld_%02x\n", insn->code);
395 			return;
396 		}
397 	} else if (class == BPF_JMP) {
398 		u8 opcode = BPF_OP(insn->code);
399 
400 		if (opcode == BPF_CALL) {
401 			verbose("(%02x) call %d\n", insn->code, insn->imm);
402 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
403 			verbose("(%02x) goto pc%+d\n",
404 				insn->code, insn->off);
405 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
406 			verbose("(%02x) exit\n", insn->code);
407 		} else if (BPF_SRC(insn->code) == BPF_X) {
408 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
409 				insn->code, insn->dst_reg,
410 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
411 				insn->src_reg, insn->off);
412 		} else {
413 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
414 				insn->code, insn->dst_reg,
415 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
416 				insn->imm, insn->off);
417 		}
418 	} else {
419 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
420 	}
421 }
422 
423 static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
424 {
425 	struct verifier_stack_elem *elem;
426 	int insn_idx;
427 
428 	if (env->head == NULL)
429 		return -1;
430 
431 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
432 	insn_idx = env->head->insn_idx;
433 	if (prev_insn_idx)
434 		*prev_insn_idx = env->head->prev_insn_idx;
435 	elem = env->head->next;
436 	kfree(env->head);
437 	env->head = elem;
438 	env->stack_size--;
439 	return insn_idx;
440 }
441 
442 static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
443 					 int prev_insn_idx)
444 {
445 	struct verifier_stack_elem *elem;
446 
447 	elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
448 	if (!elem)
449 		goto err;
450 
451 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
452 	elem->insn_idx = insn_idx;
453 	elem->prev_insn_idx = prev_insn_idx;
454 	elem->next = env->head;
455 	env->head = elem;
456 	env->stack_size++;
457 	if (env->stack_size > 1024) {
458 		verbose("BPF program is too complex\n");
459 		goto err;
460 	}
461 	return &elem->st;
462 err:
463 	/* pop all elements and return */
464 	while (pop_stack(env, NULL) >= 0);
465 	return NULL;
466 }
467 
468 #define CALLER_SAVED_REGS 6
469 static const int caller_saved[CALLER_SAVED_REGS] = {
470 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
471 };
472 
473 static void init_reg_state(struct reg_state *regs)
474 {
475 	int i;
476 
477 	for (i = 0; i < MAX_BPF_REG; i++) {
478 		regs[i].type = NOT_INIT;
479 		regs[i].imm = 0;
480 		regs[i].map_ptr = NULL;
481 	}
482 
483 	/* frame pointer */
484 	regs[BPF_REG_FP].type = FRAME_PTR;
485 
486 	/* 1st arg to a function */
487 	regs[BPF_REG_1].type = PTR_TO_CTX;
488 }
489 
490 static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
491 {
492 	BUG_ON(regno >= MAX_BPF_REG);
493 	regs[regno].type = UNKNOWN_VALUE;
494 	regs[regno].imm = 0;
495 	regs[regno].map_ptr = NULL;
496 }
497 
498 enum reg_arg_type {
499 	SRC_OP,		/* register is used as source operand */
500 	DST_OP,		/* register is used as destination operand */
501 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
502 };
503 
504 static int check_reg_arg(struct reg_state *regs, u32 regno,
505 			 enum reg_arg_type t)
506 {
507 	if (regno >= MAX_BPF_REG) {
508 		verbose("R%d is invalid\n", regno);
509 		return -EINVAL;
510 	}
511 
512 	if (t == SRC_OP) {
513 		/* check whether register used as source operand can be read */
514 		if (regs[regno].type == NOT_INIT) {
515 			verbose("R%d !read_ok\n", regno);
516 			return -EACCES;
517 		}
518 	} else {
519 		/* check whether register used as dest operand can be written to */
520 		if (regno == BPF_REG_FP) {
521 			verbose("frame pointer is read only\n");
522 			return -EACCES;
523 		}
524 		if (t == DST_OP)
525 			mark_reg_unknown_value(regs, regno);
526 	}
527 	return 0;
528 }
529 
530 static int bpf_size_to_bytes(int bpf_size)
531 {
532 	if (bpf_size == BPF_W)
533 		return 4;
534 	else if (bpf_size == BPF_H)
535 		return 2;
536 	else if (bpf_size == BPF_B)
537 		return 1;
538 	else if (bpf_size == BPF_DW)
539 		return 8;
540 	else
541 		return -EINVAL;
542 }
543 
544 static bool is_spillable_regtype(enum bpf_reg_type type)
545 {
546 	switch (type) {
547 	case PTR_TO_MAP_VALUE:
548 	case PTR_TO_MAP_VALUE_OR_NULL:
549 	case PTR_TO_STACK:
550 	case PTR_TO_CTX:
551 	case FRAME_PTR:
552 	case CONST_PTR_TO_MAP:
553 		return true;
554 	default:
555 		return false;
556 	}
557 }
558 
559 /* check_stack_read/write functions track spill/fill of registers,
560  * stack boundary and alignment are checked in check_mem_access()
561  */
562 static int check_stack_write(struct verifier_state *state, int off, int size,
563 			     int value_regno)
564 {
565 	int i;
566 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
567 	 * so it's aligned access and [off, off + size) are within stack limits
568 	 */
569 
570 	if (value_regno >= 0 &&
571 	    is_spillable_regtype(state->regs[value_regno].type)) {
572 
573 		/* register containing pointer is being spilled into stack */
574 		if (size != BPF_REG_SIZE) {
575 			verbose("invalid size of register spill\n");
576 			return -EACCES;
577 		}
578 
579 		/* save register state */
580 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
581 			state->regs[value_regno];
582 
583 		for (i = 0; i < BPF_REG_SIZE; i++)
584 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
585 	} else {
586 		/* regular write of data into stack */
587 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
588 			(struct reg_state) {};
589 
590 		for (i = 0; i < size; i++)
591 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
592 	}
593 	return 0;
594 }
595 
596 static int check_stack_read(struct verifier_state *state, int off, int size,
597 			    int value_regno)
598 {
599 	u8 *slot_type;
600 	int i;
601 
602 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
603 
604 	if (slot_type[0] == STACK_SPILL) {
605 		if (size != BPF_REG_SIZE) {
606 			verbose("invalid size of register spill\n");
607 			return -EACCES;
608 		}
609 		for (i = 1; i < BPF_REG_SIZE; i++) {
610 			if (slot_type[i] != STACK_SPILL) {
611 				verbose("corrupted spill memory\n");
612 				return -EACCES;
613 			}
614 		}
615 
616 		if (value_regno >= 0)
617 			/* restore register state from stack */
618 			state->regs[value_regno] =
619 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
620 		return 0;
621 	} else {
622 		for (i = 0; i < size; i++) {
623 			if (slot_type[i] != STACK_MISC) {
624 				verbose("invalid read from stack off %d+%d size %d\n",
625 					off, i, size);
626 				return -EACCES;
627 			}
628 		}
629 		if (value_regno >= 0)
630 			/* have read misc data from the stack */
631 			mark_reg_unknown_value(state->regs, value_regno);
632 		return 0;
633 	}
634 }
635 
636 /* check read/write into map element returned by bpf_map_lookup_elem() */
637 static int check_map_access(struct verifier_env *env, u32 regno, int off,
638 			    int size)
639 {
640 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
641 
642 	if (off < 0 || off + size > map->value_size) {
643 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
644 			map->value_size, off, size);
645 		return -EACCES;
646 	}
647 	return 0;
648 }
649 
650 /* check access to 'struct bpf_context' fields */
651 static int check_ctx_access(struct verifier_env *env, int off, int size,
652 			    enum bpf_access_type t)
653 {
654 	if (env->prog->aux->ops->is_valid_access &&
655 	    env->prog->aux->ops->is_valid_access(off, size, t))
656 		return 0;
657 
658 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
659 	return -EACCES;
660 }
661 
662 static bool is_pointer_value(struct verifier_env *env, int regno)
663 {
664 	if (env->allow_ptr_leaks)
665 		return false;
666 
667 	switch (env->cur_state.regs[regno].type) {
668 	case UNKNOWN_VALUE:
669 	case CONST_IMM:
670 		return false;
671 	default:
672 		return true;
673 	}
674 }
675 
676 /* check whether memory at (regno + off) is accessible for t = (read | write)
677  * if t==write, value_regno is a register which value is stored into memory
678  * if t==read, value_regno is a register which will receive the value from memory
679  * if t==write && value_regno==-1, some unknown value is stored into memory
680  * if t==read && value_regno==-1, don't care what we read from memory
681  */
682 static int check_mem_access(struct verifier_env *env, u32 regno, int off,
683 			    int bpf_size, enum bpf_access_type t,
684 			    int value_regno)
685 {
686 	struct verifier_state *state = &env->cur_state;
687 	int size, err = 0;
688 
689 	if (state->regs[regno].type == PTR_TO_STACK)
690 		off += state->regs[regno].imm;
691 
692 	size = bpf_size_to_bytes(bpf_size);
693 	if (size < 0)
694 		return size;
695 
696 	if (off % size != 0) {
697 		verbose("misaligned access off %d size %d\n", off, size);
698 		return -EACCES;
699 	}
700 
701 	if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
702 		if (t == BPF_WRITE && value_regno >= 0 &&
703 		    is_pointer_value(env, value_regno)) {
704 			verbose("R%d leaks addr into map\n", value_regno);
705 			return -EACCES;
706 		}
707 		err = check_map_access(env, regno, off, size);
708 		if (!err && t == BPF_READ && value_regno >= 0)
709 			mark_reg_unknown_value(state->regs, value_regno);
710 
711 	} else if (state->regs[regno].type == PTR_TO_CTX) {
712 		if (t == BPF_WRITE && value_regno >= 0 &&
713 		    is_pointer_value(env, value_regno)) {
714 			verbose("R%d leaks addr into ctx\n", value_regno);
715 			return -EACCES;
716 		}
717 		err = check_ctx_access(env, off, size, t);
718 		if (!err && t == BPF_READ && value_regno >= 0)
719 			mark_reg_unknown_value(state->regs, value_regno);
720 
721 	} else if (state->regs[regno].type == FRAME_PTR ||
722 		   state->regs[regno].type == PTR_TO_STACK) {
723 		if (off >= 0 || off < -MAX_BPF_STACK) {
724 			verbose("invalid stack off=%d size=%d\n", off, size);
725 			return -EACCES;
726 		}
727 		if (t == BPF_WRITE) {
728 			if (!env->allow_ptr_leaks &&
729 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
730 			    size != BPF_REG_SIZE) {
731 				verbose("attempt to corrupt spilled pointer on stack\n");
732 				return -EACCES;
733 			}
734 			err = check_stack_write(state, off, size, value_regno);
735 		} else {
736 			err = check_stack_read(state, off, size, value_regno);
737 		}
738 	} else {
739 		verbose("R%d invalid mem access '%s'\n",
740 			regno, reg_type_str[state->regs[regno].type]);
741 		return -EACCES;
742 	}
743 	return err;
744 }
745 
746 static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
747 {
748 	struct reg_state *regs = env->cur_state.regs;
749 	int err;
750 
751 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
752 	    insn->imm != 0) {
753 		verbose("BPF_XADD uses reserved fields\n");
754 		return -EINVAL;
755 	}
756 
757 	/* check src1 operand */
758 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
759 	if (err)
760 		return err;
761 
762 	/* check src2 operand */
763 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
764 	if (err)
765 		return err;
766 
767 	/* check whether atomic_add can read the memory */
768 	err = check_mem_access(env, insn->dst_reg, insn->off,
769 			       BPF_SIZE(insn->code), BPF_READ, -1);
770 	if (err)
771 		return err;
772 
773 	/* check whether atomic_add can write into the same memory */
774 	return check_mem_access(env, insn->dst_reg, insn->off,
775 				BPF_SIZE(insn->code), BPF_WRITE, -1);
776 }
777 
778 /* when register 'regno' is passed into function that will read 'access_size'
779  * bytes from that pointer, make sure that it's within stack boundary
780  * and all elements of stack are initialized
781  */
782 static int check_stack_boundary(struct verifier_env *env, int regno,
783 				int access_size, bool zero_size_allowed)
784 {
785 	struct verifier_state *state = &env->cur_state;
786 	struct reg_state *regs = state->regs;
787 	int off, i;
788 
789 	if (regs[regno].type != PTR_TO_STACK) {
790 		if (zero_size_allowed && access_size == 0 &&
791 		    regs[regno].type == CONST_IMM &&
792 		    regs[regno].imm  == 0)
793 			return 0;
794 
795 		verbose("R%d type=%s expected=%s\n", regno,
796 			reg_type_str[regs[regno].type],
797 			reg_type_str[PTR_TO_STACK]);
798 		return -EACCES;
799 	}
800 
801 	off = regs[regno].imm;
802 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
803 	    access_size <= 0) {
804 		verbose("invalid stack type R%d off=%d access_size=%d\n",
805 			regno, off, access_size);
806 		return -EACCES;
807 	}
808 
809 	for (i = 0; i < access_size; i++) {
810 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
811 			verbose("invalid indirect read from stack off %d+%d size %d\n",
812 				off, i, access_size);
813 			return -EACCES;
814 		}
815 	}
816 	return 0;
817 }
818 
819 static int check_func_arg(struct verifier_env *env, u32 regno,
820 			  enum bpf_arg_type arg_type, struct bpf_map **mapp)
821 {
822 	struct reg_state *reg = env->cur_state.regs + regno;
823 	enum bpf_reg_type expected_type;
824 	int err = 0;
825 
826 	if (arg_type == ARG_DONTCARE)
827 		return 0;
828 
829 	if (reg->type == NOT_INIT) {
830 		verbose("R%d !read_ok\n", regno);
831 		return -EACCES;
832 	}
833 
834 	if (arg_type == ARG_ANYTHING) {
835 		if (is_pointer_value(env, regno)) {
836 			verbose("R%d leaks addr into helper function\n", regno);
837 			return -EACCES;
838 		}
839 		return 0;
840 	}
841 
842 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
843 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
844 		expected_type = PTR_TO_STACK;
845 	} else if (arg_type == ARG_CONST_STACK_SIZE ||
846 		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
847 		expected_type = CONST_IMM;
848 	} else if (arg_type == ARG_CONST_MAP_PTR) {
849 		expected_type = CONST_PTR_TO_MAP;
850 	} else if (arg_type == ARG_PTR_TO_CTX) {
851 		expected_type = PTR_TO_CTX;
852 	} else if (arg_type == ARG_PTR_TO_STACK) {
853 		expected_type = PTR_TO_STACK;
854 		/* One exception here. In case function allows for NULL to be
855 		 * passed in as argument, it's a CONST_IMM type. Final test
856 		 * happens during stack boundary checking.
857 		 */
858 		if (reg->type == CONST_IMM && reg->imm == 0)
859 			expected_type = CONST_IMM;
860 	} else {
861 		verbose("unsupported arg_type %d\n", arg_type);
862 		return -EFAULT;
863 	}
864 
865 	if (reg->type != expected_type) {
866 		verbose("R%d type=%s expected=%s\n", regno,
867 			reg_type_str[reg->type], reg_type_str[expected_type]);
868 		return -EACCES;
869 	}
870 
871 	if (arg_type == ARG_CONST_MAP_PTR) {
872 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
873 		*mapp = reg->map_ptr;
874 
875 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
876 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
877 		 * check that [key, key + map->key_size) are within
878 		 * stack limits and initialized
879 		 */
880 		if (!*mapp) {
881 			/* in function declaration map_ptr must come before
882 			 * map_key, so that it's verified and known before
883 			 * we have to check map_key here. Otherwise it means
884 			 * that kernel subsystem misconfigured verifier
885 			 */
886 			verbose("invalid map_ptr to access map->key\n");
887 			return -EACCES;
888 		}
889 		err = check_stack_boundary(env, regno, (*mapp)->key_size,
890 					   false);
891 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
892 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
893 		 * check [value, value + map->value_size) validity
894 		 */
895 		if (!*mapp) {
896 			/* kernel subsystem misconfigured verifier */
897 			verbose("invalid map_ptr to access map->value\n");
898 			return -EACCES;
899 		}
900 		err = check_stack_boundary(env, regno, (*mapp)->value_size,
901 					   false);
902 	} else if (arg_type == ARG_CONST_STACK_SIZE ||
903 		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
904 		bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
905 
906 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
907 		 * from stack pointer 'buf'. Check it
908 		 * note: regno == len, regno - 1 == buf
909 		 */
910 		if (regno == 0) {
911 			/* kernel subsystem misconfigured verifier */
912 			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
913 			return -EACCES;
914 		}
915 		err = check_stack_boundary(env, regno - 1, reg->imm,
916 					   zero_size_allowed);
917 	}
918 
919 	return err;
920 }
921 
922 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
923 {
924 	bool bool_map, bool_func;
925 	int i;
926 
927 	if (!map)
928 		return 0;
929 
930 	for (i = 0; i < ARRAY_SIZE(func_limit); i++) {
931 		bool_map = (map->map_type == func_limit[i].map_type);
932 		bool_func = (func_id == func_limit[i].func_id);
933 		/* only when map & func pair match it can continue.
934 		 * don't allow any other map type to be passed into
935 		 * the special func;
936 		 */
937 		if (bool_func && bool_map != bool_func) {
938 			verbose("cannot pass map_type %d into func %d\n",
939 				map->map_type, func_id);
940 			return -EINVAL;
941 		}
942 	}
943 
944 	return 0;
945 }
946 
947 static int check_call(struct verifier_env *env, int func_id)
948 {
949 	struct verifier_state *state = &env->cur_state;
950 	const struct bpf_func_proto *fn = NULL;
951 	struct reg_state *regs = state->regs;
952 	struct bpf_map *map = NULL;
953 	struct reg_state *reg;
954 	int i, err;
955 
956 	/* find function prototype */
957 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
958 		verbose("invalid func %d\n", func_id);
959 		return -EINVAL;
960 	}
961 
962 	if (env->prog->aux->ops->get_func_proto)
963 		fn = env->prog->aux->ops->get_func_proto(func_id);
964 
965 	if (!fn) {
966 		verbose("unknown func %d\n", func_id);
967 		return -EINVAL;
968 	}
969 
970 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
971 	if (!env->prog->gpl_compatible && fn->gpl_only) {
972 		verbose("cannot call GPL only function from proprietary program\n");
973 		return -EINVAL;
974 	}
975 
976 	/* check args */
977 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
978 	if (err)
979 		return err;
980 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
981 	if (err)
982 		return err;
983 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
984 	if (err)
985 		return err;
986 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
987 	if (err)
988 		return err;
989 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
990 	if (err)
991 		return err;
992 
993 	/* reset caller saved regs */
994 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
995 		reg = regs + caller_saved[i];
996 		reg->type = NOT_INIT;
997 		reg->imm = 0;
998 	}
999 
1000 	/* update return register */
1001 	if (fn->ret_type == RET_INTEGER) {
1002 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
1003 	} else if (fn->ret_type == RET_VOID) {
1004 		regs[BPF_REG_0].type = NOT_INIT;
1005 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1006 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1007 		/* remember map_ptr, so that check_map_access()
1008 		 * can check 'value_size' boundary of memory access
1009 		 * to map element returned from bpf_map_lookup_elem()
1010 		 */
1011 		if (map == NULL) {
1012 			verbose("kernel subsystem misconfigured verifier\n");
1013 			return -EINVAL;
1014 		}
1015 		regs[BPF_REG_0].map_ptr = map;
1016 	} else {
1017 		verbose("unknown return type %d of func %d\n",
1018 			fn->ret_type, func_id);
1019 		return -EINVAL;
1020 	}
1021 
1022 	err = check_map_func_compatibility(map, func_id);
1023 	if (err)
1024 		return err;
1025 
1026 	return 0;
1027 }
1028 
1029 /* check validity of 32-bit and 64-bit arithmetic operations */
1030 static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
1031 {
1032 	struct reg_state *regs = env->cur_state.regs;
1033 	u8 opcode = BPF_OP(insn->code);
1034 	int err;
1035 
1036 	if (opcode == BPF_END || opcode == BPF_NEG) {
1037 		if (opcode == BPF_NEG) {
1038 			if (BPF_SRC(insn->code) != 0 ||
1039 			    insn->src_reg != BPF_REG_0 ||
1040 			    insn->off != 0 || insn->imm != 0) {
1041 				verbose("BPF_NEG uses reserved fields\n");
1042 				return -EINVAL;
1043 			}
1044 		} else {
1045 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1046 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1047 				verbose("BPF_END uses reserved fields\n");
1048 				return -EINVAL;
1049 			}
1050 		}
1051 
1052 		/* check src operand */
1053 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1054 		if (err)
1055 			return err;
1056 
1057 		if (is_pointer_value(env, insn->dst_reg)) {
1058 			verbose("R%d pointer arithmetic prohibited\n",
1059 				insn->dst_reg);
1060 			return -EACCES;
1061 		}
1062 
1063 		/* check dest operand */
1064 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1065 		if (err)
1066 			return err;
1067 
1068 	} else if (opcode == BPF_MOV) {
1069 
1070 		if (BPF_SRC(insn->code) == BPF_X) {
1071 			if (insn->imm != 0 || insn->off != 0) {
1072 				verbose("BPF_MOV uses reserved fields\n");
1073 				return -EINVAL;
1074 			}
1075 
1076 			/* check src operand */
1077 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1078 			if (err)
1079 				return err;
1080 		} else {
1081 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1082 				verbose("BPF_MOV uses reserved fields\n");
1083 				return -EINVAL;
1084 			}
1085 		}
1086 
1087 		/* check dest operand */
1088 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1089 		if (err)
1090 			return err;
1091 
1092 		if (BPF_SRC(insn->code) == BPF_X) {
1093 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1094 				/* case: R1 = R2
1095 				 * copy register state to dest reg
1096 				 */
1097 				regs[insn->dst_reg] = regs[insn->src_reg];
1098 			} else {
1099 				if (is_pointer_value(env, insn->src_reg)) {
1100 					verbose("R%d partial copy of pointer\n",
1101 						insn->src_reg);
1102 					return -EACCES;
1103 				}
1104 				regs[insn->dst_reg].type = UNKNOWN_VALUE;
1105 				regs[insn->dst_reg].map_ptr = NULL;
1106 			}
1107 		} else {
1108 			/* case: R = imm
1109 			 * remember the value we stored into this reg
1110 			 */
1111 			regs[insn->dst_reg].type = CONST_IMM;
1112 			regs[insn->dst_reg].imm = insn->imm;
1113 		}
1114 
1115 	} else if (opcode > BPF_END) {
1116 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1117 		return -EINVAL;
1118 
1119 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1120 
1121 		bool stack_relative = false;
1122 
1123 		if (BPF_SRC(insn->code) == BPF_X) {
1124 			if (insn->imm != 0 || insn->off != 0) {
1125 				verbose("BPF_ALU uses reserved fields\n");
1126 				return -EINVAL;
1127 			}
1128 			/* check src1 operand */
1129 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1130 			if (err)
1131 				return err;
1132 		} else {
1133 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1134 				verbose("BPF_ALU uses reserved fields\n");
1135 				return -EINVAL;
1136 			}
1137 		}
1138 
1139 		/* check src2 operand */
1140 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1141 		if (err)
1142 			return err;
1143 
1144 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1145 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1146 			verbose("div by zero\n");
1147 			return -EINVAL;
1148 		}
1149 
1150 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1151 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1152 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1153 
1154 			if (insn->imm < 0 || insn->imm >= size) {
1155 				verbose("invalid shift %d\n", insn->imm);
1156 				return -EINVAL;
1157 			}
1158 		}
1159 
1160 		/* pattern match 'bpf_add Rx, imm' instruction */
1161 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1162 		    regs[insn->dst_reg].type == FRAME_PTR &&
1163 		    BPF_SRC(insn->code) == BPF_K) {
1164 			stack_relative = true;
1165 		} else if (is_pointer_value(env, insn->dst_reg)) {
1166 			verbose("R%d pointer arithmetic prohibited\n",
1167 				insn->dst_reg);
1168 			return -EACCES;
1169 		} else if (BPF_SRC(insn->code) == BPF_X &&
1170 			   is_pointer_value(env, insn->src_reg)) {
1171 			verbose("R%d pointer arithmetic prohibited\n",
1172 				insn->src_reg);
1173 			return -EACCES;
1174 		}
1175 
1176 		/* check dest operand */
1177 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1178 		if (err)
1179 			return err;
1180 
1181 		if (stack_relative) {
1182 			regs[insn->dst_reg].type = PTR_TO_STACK;
1183 			regs[insn->dst_reg].imm = insn->imm;
1184 		}
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static int check_cond_jmp_op(struct verifier_env *env,
1191 			     struct bpf_insn *insn, int *insn_idx)
1192 {
1193 	struct reg_state *regs = env->cur_state.regs;
1194 	struct verifier_state *other_branch;
1195 	u8 opcode = BPF_OP(insn->code);
1196 	int err;
1197 
1198 	if (opcode > BPF_EXIT) {
1199 		verbose("invalid BPF_JMP opcode %x\n", opcode);
1200 		return -EINVAL;
1201 	}
1202 
1203 	if (BPF_SRC(insn->code) == BPF_X) {
1204 		if (insn->imm != 0) {
1205 			verbose("BPF_JMP uses reserved fields\n");
1206 			return -EINVAL;
1207 		}
1208 
1209 		/* check src1 operand */
1210 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1211 		if (err)
1212 			return err;
1213 
1214 		if (is_pointer_value(env, insn->src_reg)) {
1215 			verbose("R%d pointer comparison prohibited\n",
1216 				insn->src_reg);
1217 			return -EACCES;
1218 		}
1219 	} else {
1220 		if (insn->src_reg != BPF_REG_0) {
1221 			verbose("BPF_JMP uses reserved fields\n");
1222 			return -EINVAL;
1223 		}
1224 	}
1225 
1226 	/* check src2 operand */
1227 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1228 	if (err)
1229 		return err;
1230 
1231 	/* detect if R == 0 where R was initialized to zero earlier */
1232 	if (BPF_SRC(insn->code) == BPF_K &&
1233 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1234 	    regs[insn->dst_reg].type == CONST_IMM &&
1235 	    regs[insn->dst_reg].imm == insn->imm) {
1236 		if (opcode == BPF_JEQ) {
1237 			/* if (imm == imm) goto pc+off;
1238 			 * only follow the goto, ignore fall-through
1239 			 */
1240 			*insn_idx += insn->off;
1241 			return 0;
1242 		} else {
1243 			/* if (imm != imm) goto pc+off;
1244 			 * only follow fall-through branch, since
1245 			 * that's where the program will go
1246 			 */
1247 			return 0;
1248 		}
1249 	}
1250 
1251 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1252 	if (!other_branch)
1253 		return -EFAULT;
1254 
1255 	/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1256 	if (BPF_SRC(insn->code) == BPF_K &&
1257 	    insn->imm == 0 && (opcode == BPF_JEQ ||
1258 			       opcode == BPF_JNE) &&
1259 	    regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
1260 		if (opcode == BPF_JEQ) {
1261 			/* next fallthrough insn can access memory via
1262 			 * this register
1263 			 */
1264 			regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1265 			/* branch targer cannot access it, since reg == 0 */
1266 			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1267 			other_branch->regs[insn->dst_reg].imm = 0;
1268 		} else {
1269 			other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1270 			regs[insn->dst_reg].type = CONST_IMM;
1271 			regs[insn->dst_reg].imm = 0;
1272 		}
1273 	} else if (is_pointer_value(env, insn->dst_reg)) {
1274 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
1275 		return -EACCES;
1276 	} else if (BPF_SRC(insn->code) == BPF_K &&
1277 		   (opcode == BPF_JEQ || opcode == BPF_JNE)) {
1278 
1279 		if (opcode == BPF_JEQ) {
1280 			/* detect if (R == imm) goto
1281 			 * and in the target state recognize that R = imm
1282 			 */
1283 			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1284 			other_branch->regs[insn->dst_reg].imm = insn->imm;
1285 		} else {
1286 			/* detect if (R != imm) goto
1287 			 * and in the fall-through state recognize that R = imm
1288 			 */
1289 			regs[insn->dst_reg].type = CONST_IMM;
1290 			regs[insn->dst_reg].imm = insn->imm;
1291 		}
1292 	}
1293 	if (log_level)
1294 		print_verifier_state(env);
1295 	return 0;
1296 }
1297 
1298 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
1299 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1300 {
1301 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1302 
1303 	return (struct bpf_map *) (unsigned long) imm64;
1304 }
1305 
1306 /* verify BPF_LD_IMM64 instruction */
1307 static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1308 {
1309 	struct reg_state *regs = env->cur_state.regs;
1310 	int err;
1311 
1312 	if (BPF_SIZE(insn->code) != BPF_DW) {
1313 		verbose("invalid BPF_LD_IMM insn\n");
1314 		return -EINVAL;
1315 	}
1316 	if (insn->off != 0) {
1317 		verbose("BPF_LD_IMM64 uses reserved fields\n");
1318 		return -EINVAL;
1319 	}
1320 
1321 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1322 	if (err)
1323 		return err;
1324 
1325 	if (insn->src_reg == 0)
1326 		/* generic move 64-bit immediate into a register */
1327 		return 0;
1328 
1329 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1330 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1331 
1332 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1333 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1334 	return 0;
1335 }
1336 
1337 static bool may_access_skb(enum bpf_prog_type type)
1338 {
1339 	switch (type) {
1340 	case BPF_PROG_TYPE_SOCKET_FILTER:
1341 	case BPF_PROG_TYPE_SCHED_CLS:
1342 	case BPF_PROG_TYPE_SCHED_ACT:
1343 		return true;
1344 	default:
1345 		return false;
1346 	}
1347 }
1348 
1349 /* verify safety of LD_ABS|LD_IND instructions:
1350  * - they can only appear in the programs where ctx == skb
1351  * - since they are wrappers of function calls, they scratch R1-R5 registers,
1352  *   preserve R6-R9, and store return value into R0
1353  *
1354  * Implicit input:
1355  *   ctx == skb == R6 == CTX
1356  *
1357  * Explicit input:
1358  *   SRC == any register
1359  *   IMM == 32-bit immediate
1360  *
1361  * Output:
1362  *   R0 - 8/16/32-bit skb data converted to cpu endianness
1363  */
1364 static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
1365 {
1366 	struct reg_state *regs = env->cur_state.regs;
1367 	u8 mode = BPF_MODE(insn->code);
1368 	struct reg_state *reg;
1369 	int i, err;
1370 
1371 	if (!may_access_skb(env->prog->type)) {
1372 		verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n");
1373 		return -EINVAL;
1374 	}
1375 
1376 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
1377 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1378 		verbose("BPF_LD_ABS uses reserved fields\n");
1379 		return -EINVAL;
1380 	}
1381 
1382 	/* check whether implicit source operand (register R6) is readable */
1383 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1384 	if (err)
1385 		return err;
1386 
1387 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1388 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1389 		return -EINVAL;
1390 	}
1391 
1392 	if (mode == BPF_IND) {
1393 		/* check explicit source operand */
1394 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1395 		if (err)
1396 			return err;
1397 	}
1398 
1399 	/* reset caller saved regs to unreadable */
1400 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1401 		reg = regs + caller_saved[i];
1402 		reg->type = NOT_INIT;
1403 		reg->imm = 0;
1404 	}
1405 
1406 	/* mark destination R0 register as readable, since it contains
1407 	 * the value fetched from the packet
1408 	 */
1409 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
1410 	return 0;
1411 }
1412 
1413 /* non-recursive DFS pseudo code
1414  * 1  procedure DFS-iterative(G,v):
1415  * 2      label v as discovered
1416  * 3      let S be a stack
1417  * 4      S.push(v)
1418  * 5      while S is not empty
1419  * 6            t <- S.pop()
1420  * 7            if t is what we're looking for:
1421  * 8                return t
1422  * 9            for all edges e in G.adjacentEdges(t) do
1423  * 10               if edge e is already labelled
1424  * 11                   continue with the next edge
1425  * 12               w <- G.adjacentVertex(t,e)
1426  * 13               if vertex w is not discovered and not explored
1427  * 14                   label e as tree-edge
1428  * 15                   label w as discovered
1429  * 16                   S.push(w)
1430  * 17                   continue at 5
1431  * 18               else if vertex w is discovered
1432  * 19                   label e as back-edge
1433  * 20               else
1434  * 21                   // vertex w is explored
1435  * 22                   label e as forward- or cross-edge
1436  * 23           label t as explored
1437  * 24           S.pop()
1438  *
1439  * convention:
1440  * 0x10 - discovered
1441  * 0x11 - discovered and fall-through edge labelled
1442  * 0x12 - discovered and fall-through and branch edges labelled
1443  * 0x20 - explored
1444  */
1445 
1446 enum {
1447 	DISCOVERED = 0x10,
1448 	EXPLORED = 0x20,
1449 	FALLTHROUGH = 1,
1450 	BRANCH = 2,
1451 };
1452 
1453 #define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1454 
1455 static int *insn_stack;	/* stack of insns to process */
1456 static int cur_stack;	/* current stack index */
1457 static int *insn_state;
1458 
1459 /* t, w, e - match pseudo-code above:
1460  * t - index of current instruction
1461  * w - next instruction
1462  * e - edge
1463  */
1464 static int push_insn(int t, int w, int e, struct verifier_env *env)
1465 {
1466 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1467 		return 0;
1468 
1469 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1470 		return 0;
1471 
1472 	if (w < 0 || w >= env->prog->len) {
1473 		verbose("jump out of range from insn %d to %d\n", t, w);
1474 		return -EINVAL;
1475 	}
1476 
1477 	if (e == BRANCH)
1478 		/* mark branch target for state pruning */
1479 		env->explored_states[w] = STATE_LIST_MARK;
1480 
1481 	if (insn_state[w] == 0) {
1482 		/* tree-edge */
1483 		insn_state[t] = DISCOVERED | e;
1484 		insn_state[w] = DISCOVERED;
1485 		if (cur_stack >= env->prog->len)
1486 			return -E2BIG;
1487 		insn_stack[cur_stack++] = w;
1488 		return 1;
1489 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1490 		verbose("back-edge from insn %d to %d\n", t, w);
1491 		return -EINVAL;
1492 	} else if (insn_state[w] == EXPLORED) {
1493 		/* forward- or cross-edge */
1494 		insn_state[t] = DISCOVERED | e;
1495 	} else {
1496 		verbose("insn state internal bug\n");
1497 		return -EFAULT;
1498 	}
1499 	return 0;
1500 }
1501 
1502 /* non-recursive depth-first-search to detect loops in BPF program
1503  * loop == back-edge in directed graph
1504  */
1505 static int check_cfg(struct verifier_env *env)
1506 {
1507 	struct bpf_insn *insns = env->prog->insnsi;
1508 	int insn_cnt = env->prog->len;
1509 	int ret = 0;
1510 	int i, t;
1511 
1512 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1513 	if (!insn_state)
1514 		return -ENOMEM;
1515 
1516 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1517 	if (!insn_stack) {
1518 		kfree(insn_state);
1519 		return -ENOMEM;
1520 	}
1521 
1522 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1523 	insn_stack[0] = 0; /* 0 is the first instruction */
1524 	cur_stack = 1;
1525 
1526 peek_stack:
1527 	if (cur_stack == 0)
1528 		goto check_state;
1529 	t = insn_stack[cur_stack - 1];
1530 
1531 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1532 		u8 opcode = BPF_OP(insns[t].code);
1533 
1534 		if (opcode == BPF_EXIT) {
1535 			goto mark_explored;
1536 		} else if (opcode == BPF_CALL) {
1537 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1538 			if (ret == 1)
1539 				goto peek_stack;
1540 			else if (ret < 0)
1541 				goto err_free;
1542 		} else if (opcode == BPF_JA) {
1543 			if (BPF_SRC(insns[t].code) != BPF_K) {
1544 				ret = -EINVAL;
1545 				goto err_free;
1546 			}
1547 			/* unconditional jump with single edge */
1548 			ret = push_insn(t, t + insns[t].off + 1,
1549 					FALLTHROUGH, env);
1550 			if (ret == 1)
1551 				goto peek_stack;
1552 			else if (ret < 0)
1553 				goto err_free;
1554 			/* tell verifier to check for equivalent states
1555 			 * after every call and jump
1556 			 */
1557 			if (t + 1 < insn_cnt)
1558 				env->explored_states[t + 1] = STATE_LIST_MARK;
1559 		} else {
1560 			/* conditional jump with two edges */
1561 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1562 			if (ret == 1)
1563 				goto peek_stack;
1564 			else if (ret < 0)
1565 				goto err_free;
1566 
1567 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
1568 			if (ret == 1)
1569 				goto peek_stack;
1570 			else if (ret < 0)
1571 				goto err_free;
1572 		}
1573 	} else {
1574 		/* all other non-branch instructions with single
1575 		 * fall-through edge
1576 		 */
1577 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
1578 		if (ret == 1)
1579 			goto peek_stack;
1580 		else if (ret < 0)
1581 			goto err_free;
1582 	}
1583 
1584 mark_explored:
1585 	insn_state[t] = EXPLORED;
1586 	if (cur_stack-- <= 0) {
1587 		verbose("pop stack internal bug\n");
1588 		ret = -EFAULT;
1589 		goto err_free;
1590 	}
1591 	goto peek_stack;
1592 
1593 check_state:
1594 	for (i = 0; i < insn_cnt; i++) {
1595 		if (insn_state[i] != EXPLORED) {
1596 			verbose("unreachable insn %d\n", i);
1597 			ret = -EINVAL;
1598 			goto err_free;
1599 		}
1600 	}
1601 	ret = 0; /* cfg looks good */
1602 
1603 err_free:
1604 	kfree(insn_state);
1605 	kfree(insn_stack);
1606 	return ret;
1607 }
1608 
1609 /* compare two verifier states
1610  *
1611  * all states stored in state_list are known to be valid, since
1612  * verifier reached 'bpf_exit' instruction through them
1613  *
1614  * this function is called when verifier exploring different branches of
1615  * execution popped from the state stack. If it sees an old state that has
1616  * more strict register state and more strict stack state then this execution
1617  * branch doesn't need to be explored further, since verifier already
1618  * concluded that more strict state leads to valid finish.
1619  *
1620  * Therefore two states are equivalent if register state is more conservative
1621  * and explored stack state is more conservative than the current one.
1622  * Example:
1623  *       explored                   current
1624  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
1625  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
1626  *
1627  * In other words if current stack state (one being explored) has more
1628  * valid slots than old one that already passed validation, it means
1629  * the verifier can stop exploring and conclude that current state is valid too
1630  *
1631  * Similarly with registers. If explored state has register type as invalid
1632  * whereas register type in current state is meaningful, it means that
1633  * the current state will reach 'bpf_exit' instruction safely
1634  */
1635 static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
1636 {
1637 	int i;
1638 
1639 	for (i = 0; i < MAX_BPF_REG; i++) {
1640 		if (memcmp(&old->regs[i], &cur->regs[i],
1641 			   sizeof(old->regs[0])) != 0) {
1642 			if (old->regs[i].type == NOT_INIT ||
1643 			    (old->regs[i].type == UNKNOWN_VALUE &&
1644 			     cur->regs[i].type != NOT_INIT))
1645 				continue;
1646 			return false;
1647 		}
1648 	}
1649 
1650 	for (i = 0; i < MAX_BPF_STACK; i++) {
1651 		if (old->stack_slot_type[i] == STACK_INVALID)
1652 			continue;
1653 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
1654 			/* Ex: old explored (safe) state has STACK_SPILL in
1655 			 * this stack slot, but current has has STACK_MISC ->
1656 			 * this verifier states are not equivalent,
1657 			 * return false to continue verification of this path
1658 			 */
1659 			return false;
1660 		if (i % BPF_REG_SIZE)
1661 			continue;
1662 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
1663 			   &cur->spilled_regs[i / BPF_REG_SIZE],
1664 			   sizeof(old->spilled_regs[0])))
1665 			/* when explored and current stack slot types are
1666 			 * the same, check that stored pointers types
1667 			 * are the same as well.
1668 			 * Ex: explored safe path could have stored
1669 			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
1670 			 * but current path has stored:
1671 			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
1672 			 * such verifier states are not equivalent.
1673 			 * return false to continue verification of this path
1674 			 */
1675 			return false;
1676 		else
1677 			continue;
1678 	}
1679 	return true;
1680 }
1681 
1682 static int is_state_visited(struct verifier_env *env, int insn_idx)
1683 {
1684 	struct verifier_state_list *new_sl;
1685 	struct verifier_state_list *sl;
1686 
1687 	sl = env->explored_states[insn_idx];
1688 	if (!sl)
1689 		/* this 'insn_idx' instruction wasn't marked, so we will not
1690 		 * be doing state search here
1691 		 */
1692 		return 0;
1693 
1694 	while (sl != STATE_LIST_MARK) {
1695 		if (states_equal(&sl->state, &env->cur_state))
1696 			/* reached equivalent register/stack state,
1697 			 * prune the search
1698 			 */
1699 			return 1;
1700 		sl = sl->next;
1701 	}
1702 
1703 	/* there were no equivalent states, remember current one.
1704 	 * technically the current state is not proven to be safe yet,
1705 	 * but it will either reach bpf_exit (which means it's safe) or
1706 	 * it will be rejected. Since there are no loops, we won't be
1707 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
1708 	 */
1709 	new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
1710 	if (!new_sl)
1711 		return -ENOMEM;
1712 
1713 	/* add new state to the head of linked list */
1714 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
1715 	new_sl->next = env->explored_states[insn_idx];
1716 	env->explored_states[insn_idx] = new_sl;
1717 	return 0;
1718 }
1719 
1720 static int do_check(struct verifier_env *env)
1721 {
1722 	struct verifier_state *state = &env->cur_state;
1723 	struct bpf_insn *insns = env->prog->insnsi;
1724 	struct reg_state *regs = state->regs;
1725 	int insn_cnt = env->prog->len;
1726 	int insn_idx, prev_insn_idx = 0;
1727 	int insn_processed = 0;
1728 	bool do_print_state = false;
1729 
1730 	init_reg_state(regs);
1731 	insn_idx = 0;
1732 	for (;;) {
1733 		struct bpf_insn *insn;
1734 		u8 class;
1735 		int err;
1736 
1737 		if (insn_idx >= insn_cnt) {
1738 			verbose("invalid insn idx %d insn_cnt %d\n",
1739 				insn_idx, insn_cnt);
1740 			return -EFAULT;
1741 		}
1742 
1743 		insn = &insns[insn_idx];
1744 		class = BPF_CLASS(insn->code);
1745 
1746 		if (++insn_processed > 32768) {
1747 			verbose("BPF program is too large. Proccessed %d insn\n",
1748 				insn_processed);
1749 			return -E2BIG;
1750 		}
1751 
1752 		err = is_state_visited(env, insn_idx);
1753 		if (err < 0)
1754 			return err;
1755 		if (err == 1) {
1756 			/* found equivalent state, can prune the search */
1757 			if (log_level) {
1758 				if (do_print_state)
1759 					verbose("\nfrom %d to %d: safe\n",
1760 						prev_insn_idx, insn_idx);
1761 				else
1762 					verbose("%d: safe\n", insn_idx);
1763 			}
1764 			goto process_bpf_exit;
1765 		}
1766 
1767 		if (log_level && do_print_state) {
1768 			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1769 			print_verifier_state(env);
1770 			do_print_state = false;
1771 		}
1772 
1773 		if (log_level) {
1774 			verbose("%d: ", insn_idx);
1775 			print_bpf_insn(insn);
1776 		}
1777 
1778 		if (class == BPF_ALU || class == BPF_ALU64) {
1779 			err = check_alu_op(env, insn);
1780 			if (err)
1781 				return err;
1782 
1783 		} else if (class == BPF_LDX) {
1784 			enum bpf_reg_type src_reg_type;
1785 
1786 			/* check for reserved fields is already done */
1787 
1788 			/* check src operand */
1789 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1790 			if (err)
1791 				return err;
1792 
1793 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1794 			if (err)
1795 				return err;
1796 
1797 			src_reg_type = regs[insn->src_reg].type;
1798 
1799 			/* check that memory (src_reg + off) is readable,
1800 			 * the state of dst_reg will be updated by this func
1801 			 */
1802 			err = check_mem_access(env, insn->src_reg, insn->off,
1803 					       BPF_SIZE(insn->code), BPF_READ,
1804 					       insn->dst_reg);
1805 			if (err)
1806 				return err;
1807 
1808 			if (BPF_SIZE(insn->code) != BPF_W) {
1809 				insn_idx++;
1810 				continue;
1811 			}
1812 
1813 			if (insn->imm == 0) {
1814 				/* saw a valid insn
1815 				 * dst_reg = *(u32 *)(src_reg + off)
1816 				 * use reserved 'imm' field to mark this insn
1817 				 */
1818 				insn->imm = src_reg_type;
1819 
1820 			} else if (src_reg_type != insn->imm &&
1821 				   (src_reg_type == PTR_TO_CTX ||
1822 				    insn->imm == PTR_TO_CTX)) {
1823 				/* ABuser program is trying to use the same insn
1824 				 * dst_reg = *(u32*) (src_reg + off)
1825 				 * with different pointer types:
1826 				 * src_reg == ctx in one branch and
1827 				 * src_reg == stack|map in some other branch.
1828 				 * Reject it.
1829 				 */
1830 				verbose("same insn cannot be used with different pointers\n");
1831 				return -EINVAL;
1832 			}
1833 
1834 		} else if (class == BPF_STX) {
1835 			enum bpf_reg_type dst_reg_type;
1836 
1837 			if (BPF_MODE(insn->code) == BPF_XADD) {
1838 				err = check_xadd(env, insn);
1839 				if (err)
1840 					return err;
1841 				insn_idx++;
1842 				continue;
1843 			}
1844 
1845 			/* check src1 operand */
1846 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1847 			if (err)
1848 				return err;
1849 			/* check src2 operand */
1850 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1851 			if (err)
1852 				return err;
1853 
1854 			dst_reg_type = regs[insn->dst_reg].type;
1855 
1856 			/* check that memory (dst_reg + off) is writeable */
1857 			err = check_mem_access(env, insn->dst_reg, insn->off,
1858 					       BPF_SIZE(insn->code), BPF_WRITE,
1859 					       insn->src_reg);
1860 			if (err)
1861 				return err;
1862 
1863 			if (insn->imm == 0) {
1864 				insn->imm = dst_reg_type;
1865 			} else if (dst_reg_type != insn->imm &&
1866 				   (dst_reg_type == PTR_TO_CTX ||
1867 				    insn->imm == PTR_TO_CTX)) {
1868 				verbose("same insn cannot be used with different pointers\n");
1869 				return -EINVAL;
1870 			}
1871 
1872 		} else if (class == BPF_ST) {
1873 			if (BPF_MODE(insn->code) != BPF_MEM ||
1874 			    insn->src_reg != BPF_REG_0) {
1875 				verbose("BPF_ST uses reserved fields\n");
1876 				return -EINVAL;
1877 			}
1878 			/* check src operand */
1879 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1880 			if (err)
1881 				return err;
1882 
1883 			/* check that memory (dst_reg + off) is writeable */
1884 			err = check_mem_access(env, insn->dst_reg, insn->off,
1885 					       BPF_SIZE(insn->code), BPF_WRITE,
1886 					       -1);
1887 			if (err)
1888 				return err;
1889 
1890 		} else if (class == BPF_JMP) {
1891 			u8 opcode = BPF_OP(insn->code);
1892 
1893 			if (opcode == BPF_CALL) {
1894 				if (BPF_SRC(insn->code) != BPF_K ||
1895 				    insn->off != 0 ||
1896 				    insn->src_reg != BPF_REG_0 ||
1897 				    insn->dst_reg != BPF_REG_0) {
1898 					verbose("BPF_CALL uses reserved fields\n");
1899 					return -EINVAL;
1900 				}
1901 
1902 				err = check_call(env, insn->imm);
1903 				if (err)
1904 					return err;
1905 
1906 			} else if (opcode == BPF_JA) {
1907 				if (BPF_SRC(insn->code) != BPF_K ||
1908 				    insn->imm != 0 ||
1909 				    insn->src_reg != BPF_REG_0 ||
1910 				    insn->dst_reg != BPF_REG_0) {
1911 					verbose("BPF_JA uses reserved fields\n");
1912 					return -EINVAL;
1913 				}
1914 
1915 				insn_idx += insn->off + 1;
1916 				continue;
1917 
1918 			} else if (opcode == BPF_EXIT) {
1919 				if (BPF_SRC(insn->code) != BPF_K ||
1920 				    insn->imm != 0 ||
1921 				    insn->src_reg != BPF_REG_0 ||
1922 				    insn->dst_reg != BPF_REG_0) {
1923 					verbose("BPF_EXIT uses reserved fields\n");
1924 					return -EINVAL;
1925 				}
1926 
1927 				/* eBPF calling convetion is such that R0 is used
1928 				 * to return the value from eBPF program.
1929 				 * Make sure that it's readable at this time
1930 				 * of bpf_exit, which means that program wrote
1931 				 * something into it earlier
1932 				 */
1933 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
1934 				if (err)
1935 					return err;
1936 
1937 				if (is_pointer_value(env, BPF_REG_0)) {
1938 					verbose("R0 leaks addr as return value\n");
1939 					return -EACCES;
1940 				}
1941 
1942 process_bpf_exit:
1943 				insn_idx = pop_stack(env, &prev_insn_idx);
1944 				if (insn_idx < 0) {
1945 					break;
1946 				} else {
1947 					do_print_state = true;
1948 					continue;
1949 				}
1950 			} else {
1951 				err = check_cond_jmp_op(env, insn, &insn_idx);
1952 				if (err)
1953 					return err;
1954 			}
1955 		} else if (class == BPF_LD) {
1956 			u8 mode = BPF_MODE(insn->code);
1957 
1958 			if (mode == BPF_ABS || mode == BPF_IND) {
1959 				err = check_ld_abs(env, insn);
1960 				if (err)
1961 					return err;
1962 
1963 			} else if (mode == BPF_IMM) {
1964 				err = check_ld_imm(env, insn);
1965 				if (err)
1966 					return err;
1967 
1968 				insn_idx++;
1969 			} else {
1970 				verbose("invalid BPF_LD mode\n");
1971 				return -EINVAL;
1972 			}
1973 		} else {
1974 			verbose("unknown insn class %d\n", class);
1975 			return -EINVAL;
1976 		}
1977 
1978 		insn_idx++;
1979 	}
1980 
1981 	return 0;
1982 }
1983 
1984 /* look for pseudo eBPF instructions that access map FDs and
1985  * replace them with actual map pointers
1986  */
1987 static int replace_map_fd_with_map_ptr(struct verifier_env *env)
1988 {
1989 	struct bpf_insn *insn = env->prog->insnsi;
1990 	int insn_cnt = env->prog->len;
1991 	int i, j;
1992 
1993 	for (i = 0; i < insn_cnt; i++, insn++) {
1994 		if (BPF_CLASS(insn->code) == BPF_LDX &&
1995 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
1996 			verbose("BPF_LDX uses reserved fields\n");
1997 			return -EINVAL;
1998 		}
1999 
2000 		if (BPF_CLASS(insn->code) == BPF_STX &&
2001 		    ((BPF_MODE(insn->code) != BPF_MEM &&
2002 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2003 			verbose("BPF_STX uses reserved fields\n");
2004 			return -EINVAL;
2005 		}
2006 
2007 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2008 			struct bpf_map *map;
2009 			struct fd f;
2010 
2011 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
2012 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2013 			    insn[1].off != 0) {
2014 				verbose("invalid bpf_ld_imm64 insn\n");
2015 				return -EINVAL;
2016 			}
2017 
2018 			if (insn->src_reg == 0)
2019 				/* valid generic load 64-bit imm */
2020 				goto next_insn;
2021 
2022 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2023 				verbose("unrecognized bpf_ld_imm64 insn\n");
2024 				return -EINVAL;
2025 			}
2026 
2027 			f = fdget(insn->imm);
2028 			map = __bpf_map_get(f);
2029 			if (IS_ERR(map)) {
2030 				verbose("fd %d is not pointing to valid bpf_map\n",
2031 					insn->imm);
2032 				fdput(f);
2033 				return PTR_ERR(map);
2034 			}
2035 
2036 			/* store map pointer inside BPF_LD_IMM64 instruction */
2037 			insn[0].imm = (u32) (unsigned long) map;
2038 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
2039 
2040 			/* check whether we recorded this map already */
2041 			for (j = 0; j < env->used_map_cnt; j++)
2042 				if (env->used_maps[j] == map) {
2043 					fdput(f);
2044 					goto next_insn;
2045 				}
2046 
2047 			if (env->used_map_cnt >= MAX_USED_MAPS) {
2048 				fdput(f);
2049 				return -E2BIG;
2050 			}
2051 
2052 			/* remember this map */
2053 			env->used_maps[env->used_map_cnt++] = map;
2054 
2055 			/* hold the map. If the program is rejected by verifier,
2056 			 * the map will be released by release_maps() or it
2057 			 * will be used by the valid program until it's unloaded
2058 			 * and all maps are released in free_bpf_prog_info()
2059 			 */
2060 			bpf_map_inc(map, false);
2061 			fdput(f);
2062 next_insn:
2063 			insn++;
2064 			i++;
2065 		}
2066 	}
2067 
2068 	/* now all pseudo BPF_LD_IMM64 instructions load valid
2069 	 * 'struct bpf_map *' into a register instead of user map_fd.
2070 	 * These pointers will be used later by verifier to validate map access.
2071 	 */
2072 	return 0;
2073 }
2074 
2075 /* drop refcnt of maps used by the rejected program */
2076 static void release_maps(struct verifier_env *env)
2077 {
2078 	int i;
2079 
2080 	for (i = 0; i < env->used_map_cnt; i++)
2081 		bpf_map_put(env->used_maps[i]);
2082 }
2083 
2084 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
2085 static void convert_pseudo_ld_imm64(struct verifier_env *env)
2086 {
2087 	struct bpf_insn *insn = env->prog->insnsi;
2088 	int insn_cnt = env->prog->len;
2089 	int i;
2090 
2091 	for (i = 0; i < insn_cnt; i++, insn++)
2092 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
2093 			insn->src_reg = 0;
2094 }
2095 
2096 static void adjust_branches(struct bpf_prog *prog, int pos, int delta)
2097 {
2098 	struct bpf_insn *insn = prog->insnsi;
2099 	int insn_cnt = prog->len;
2100 	int i;
2101 
2102 	for (i = 0; i < insn_cnt; i++, insn++) {
2103 		if (BPF_CLASS(insn->code) != BPF_JMP ||
2104 		    BPF_OP(insn->code) == BPF_CALL ||
2105 		    BPF_OP(insn->code) == BPF_EXIT)
2106 			continue;
2107 
2108 		/* adjust offset of jmps if necessary */
2109 		if (i < pos && i + insn->off + 1 > pos)
2110 			insn->off += delta;
2111 		else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
2112 			insn->off -= delta;
2113 	}
2114 }
2115 
2116 /* convert load instructions that access fields of 'struct __sk_buff'
2117  * into sequence of instructions that access fields of 'struct sk_buff'
2118  */
2119 static int convert_ctx_accesses(struct verifier_env *env)
2120 {
2121 	struct bpf_insn *insn = env->prog->insnsi;
2122 	int insn_cnt = env->prog->len;
2123 	struct bpf_insn insn_buf[16];
2124 	struct bpf_prog *new_prog;
2125 	u32 cnt;
2126 	int i;
2127 	enum bpf_access_type type;
2128 
2129 	if (!env->prog->aux->ops->convert_ctx_access)
2130 		return 0;
2131 
2132 	for (i = 0; i < insn_cnt; i++, insn++) {
2133 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
2134 			type = BPF_READ;
2135 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
2136 			type = BPF_WRITE;
2137 		else
2138 			continue;
2139 
2140 		if (insn->imm != PTR_TO_CTX) {
2141 			/* clear internal mark */
2142 			insn->imm = 0;
2143 			continue;
2144 		}
2145 
2146 		cnt = env->prog->aux->ops->
2147 			convert_ctx_access(type, insn->dst_reg, insn->src_reg,
2148 					   insn->off, insn_buf, env->prog);
2149 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
2150 			verbose("bpf verifier is misconfigured\n");
2151 			return -EINVAL;
2152 		}
2153 
2154 		if (cnt == 1) {
2155 			memcpy(insn, insn_buf, sizeof(*insn));
2156 			continue;
2157 		}
2158 
2159 		/* several new insns need to be inserted. Make room for them */
2160 		insn_cnt += cnt - 1;
2161 		new_prog = bpf_prog_realloc(env->prog,
2162 					    bpf_prog_size(insn_cnt),
2163 					    GFP_USER);
2164 		if (!new_prog)
2165 			return -ENOMEM;
2166 
2167 		new_prog->len = insn_cnt;
2168 
2169 		memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1,
2170 			sizeof(*insn) * (insn_cnt - i - cnt));
2171 
2172 		/* copy substitute insns in place of load instruction */
2173 		memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt);
2174 
2175 		/* adjust branches in the whole program */
2176 		adjust_branches(new_prog, i, cnt - 1);
2177 
2178 		/* keep walking new program and skip insns we just inserted */
2179 		env->prog = new_prog;
2180 		insn = new_prog->insnsi + i + cnt - 1;
2181 		i += cnt - 1;
2182 	}
2183 
2184 	return 0;
2185 }
2186 
2187 static void free_states(struct verifier_env *env)
2188 {
2189 	struct verifier_state_list *sl, *sln;
2190 	int i;
2191 
2192 	if (!env->explored_states)
2193 		return;
2194 
2195 	for (i = 0; i < env->prog->len; i++) {
2196 		sl = env->explored_states[i];
2197 
2198 		if (sl)
2199 			while (sl != STATE_LIST_MARK) {
2200 				sln = sl->next;
2201 				kfree(sl);
2202 				sl = sln;
2203 			}
2204 	}
2205 
2206 	kfree(env->explored_states);
2207 }
2208 
2209 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
2210 {
2211 	char __user *log_ubuf = NULL;
2212 	struct verifier_env *env;
2213 	int ret = -EINVAL;
2214 
2215 	if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
2216 		return -E2BIG;
2217 
2218 	/* 'struct verifier_env' can be global, but since it's not small,
2219 	 * allocate/free it every time bpf_check() is called
2220 	 */
2221 	env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
2222 	if (!env)
2223 		return -ENOMEM;
2224 
2225 	env->prog = *prog;
2226 
2227 	/* grab the mutex to protect few globals used by verifier */
2228 	mutex_lock(&bpf_verifier_lock);
2229 
2230 	if (attr->log_level || attr->log_buf || attr->log_size) {
2231 		/* user requested verbose verifier output
2232 		 * and supplied buffer to store the verification trace
2233 		 */
2234 		log_level = attr->log_level;
2235 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2236 		log_size = attr->log_size;
2237 		log_len = 0;
2238 
2239 		ret = -EINVAL;
2240 		/* log_* values have to be sane */
2241 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2242 		    log_level == 0 || log_ubuf == NULL)
2243 			goto free_env;
2244 
2245 		ret = -ENOMEM;
2246 		log_buf = vmalloc(log_size);
2247 		if (!log_buf)
2248 			goto free_env;
2249 	} else {
2250 		log_level = 0;
2251 	}
2252 
2253 	ret = replace_map_fd_with_map_ptr(env);
2254 	if (ret < 0)
2255 		goto skip_full_check;
2256 
2257 	env->explored_states = kcalloc(env->prog->len,
2258 				       sizeof(struct verifier_state_list *),
2259 				       GFP_USER);
2260 	ret = -ENOMEM;
2261 	if (!env->explored_states)
2262 		goto skip_full_check;
2263 
2264 	ret = check_cfg(env);
2265 	if (ret < 0)
2266 		goto skip_full_check;
2267 
2268 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
2269 
2270 	ret = do_check(env);
2271 
2272 skip_full_check:
2273 	while (pop_stack(env, NULL) >= 0);
2274 	free_states(env);
2275 
2276 	if (ret == 0)
2277 		/* program is valid, convert *(u32*)(ctx + off) accesses */
2278 		ret = convert_ctx_accesses(env);
2279 
2280 	if (log_level && log_len >= log_size - 1) {
2281 		BUG_ON(log_len >= log_size);
2282 		/* verifier log exceeded user supplied buffer */
2283 		ret = -ENOSPC;
2284 		/* fall through to return what was recorded */
2285 	}
2286 
2287 	/* copy verifier log back to user space including trailing zero */
2288 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2289 		ret = -EFAULT;
2290 		goto free_log_buf;
2291 	}
2292 
2293 	if (ret == 0 && env->used_map_cnt) {
2294 		/* if program passed verifier, update used_maps in bpf_prog_info */
2295 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2296 							  sizeof(env->used_maps[0]),
2297 							  GFP_KERNEL);
2298 
2299 		if (!env->prog->aux->used_maps) {
2300 			ret = -ENOMEM;
2301 			goto free_log_buf;
2302 		}
2303 
2304 		memcpy(env->prog->aux->used_maps, env->used_maps,
2305 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
2306 		env->prog->aux->used_map_cnt = env->used_map_cnt;
2307 
2308 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
2309 		 * bpf_ld_imm64 instructions
2310 		 */
2311 		convert_pseudo_ld_imm64(env);
2312 	}
2313 
2314 free_log_buf:
2315 	if (log_level)
2316 		vfree(log_buf);
2317 free_env:
2318 	if (!env->prog->aux->used_maps)
2319 		/* if we didn't copy map pointers into bpf_prog_info, release
2320 		 * them now. Otherwise free_bpf_prog_info() will release them.
2321 		 */
2322 		release_maps(env);
2323 	*prog = env->prog;
2324 	kfree(env);
2325 	mutex_unlock(&bpf_verifier_lock);
2326 	return ret;
2327 }
2328