xref: /openbmc/linux/kernel/bpf/verifier.c (revision 108a36d0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43 
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168 
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 	/* verifer state is 'st'
172 	 * before processing instruction 'insn_idx'
173 	 * and after processing instruction 'prev_insn_idx'
174 	 */
175 	struct bpf_verifier_state st;
176 	int insn_idx;
177 	int prev_insn_idx;
178 	struct bpf_verifier_stack_elem *next;
179 	/* length of verifier log at the time this state was pushed on stack */
180 	u32 log_pos;
181 };
182 
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
184 #define BPF_COMPLEXITY_LIMIT_STATES	64
185 
186 #define BPF_MAP_KEY_POISON	(1ULL << 63)
187 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
188 
189 #define BPF_MAP_PTR_UNPRIV	1UL
190 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
191 					  POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193 
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 			      struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 			     u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203 
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208 
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213 
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 			      const struct bpf_map *map, bool unpriv)
216 {
217 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 	unpriv |= bpf_map_ptr_unpriv(aux);
219 	aux->map_ptr_state = (unsigned long)map |
220 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222 
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227 
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232 
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237 
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 	bool poisoned = bpf_map_key_poisoned(aux);
241 
242 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245 
246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == 0;
250 }
251 
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == BPF_PSEUDO_CALL;
256 }
257 
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263 
264 struct bpf_call_arg_meta {
265 	struct bpf_map *map_ptr;
266 	bool raw_mode;
267 	bool pkt_access;
268 	u8 release_regno;
269 	int regno;
270 	int access_size;
271 	int mem_size;
272 	u64 msize_max_value;
273 	int ref_obj_id;
274 	int dynptr_id;
275 	int map_uid;
276 	int func_id;
277 	struct btf *btf;
278 	u32 btf_id;
279 	struct btf *ret_btf;
280 	u32 ret_btf_id;
281 	u32 subprogno;
282 	struct btf_field *kptr_field;
283 };
284 
285 struct bpf_kfunc_call_arg_meta {
286 	/* In parameters */
287 	struct btf *btf;
288 	u32 func_id;
289 	u32 kfunc_flags;
290 	const struct btf_type *func_proto;
291 	const char *func_name;
292 	/* Out parameters */
293 	u32 ref_obj_id;
294 	u8 release_regno;
295 	bool r0_rdonly;
296 	u32 ret_btf_id;
297 	u64 r0_size;
298 	u32 subprogno;
299 	struct {
300 		u64 value;
301 		bool found;
302 	} arg_constant;
303 
304 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 	 * generally to pass info about user-defined local kptr types to later
306 	 * verification logic
307 	 *   bpf_obj_drop
308 	 *     Record the local kptr type to be drop'd
309 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 	 *     Record the local kptr type to be refcount_incr'd and use
311 	 *     arg_owning_ref to determine whether refcount_acquire should be
312 	 *     fallible
313 	 */
314 	struct btf *arg_btf;
315 	u32 arg_btf_id;
316 	bool arg_owning_ref;
317 
318 	struct {
319 		struct btf_field *field;
320 	} arg_list_head;
321 	struct {
322 		struct btf_field *field;
323 	} arg_rbtree_root;
324 	struct {
325 		enum bpf_dynptr_type type;
326 		u32 id;
327 		u32 ref_obj_id;
328 	} initialized_dynptr;
329 	struct {
330 		u8 spi;
331 		u8 frameno;
332 	} iter;
333 	u64 mem_size;
334 };
335 
336 struct btf *btf_vmlinux;
337 
338 static DEFINE_MUTEX(bpf_verifier_lock);
339 
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 	const struct bpf_line_info *linfo;
344 	const struct bpf_prog *prog;
345 	u32 i, nr_linfo;
346 
347 	prog = env->prog;
348 	nr_linfo = prog->aux->nr_linfo;
349 
350 	if (!nr_linfo || insn_off >= prog->len)
351 		return NULL;
352 
353 	linfo = prog->aux->linfo;
354 	for (i = 1; i < nr_linfo; i++)
355 		if (insn_off < linfo[i].insn_off)
356 			break;
357 
358 	return &linfo[i - 1];
359 }
360 
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 	struct bpf_verifier_env *env = private_data;
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(&env->log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(&env->log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	type = base_type(type);
431 	return type == PTR_TO_PACKET ||
432 	       type == PTR_TO_PACKET_META;
433 }
434 
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_SOCK_COMMON ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_XDP_SOCK;
441 }
442 
443 static bool type_may_be_null(u32 type)
444 {
445 	return type & PTR_MAYBE_NULL;
446 }
447 
448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 	enum bpf_reg_type type;
451 
452 	type = reg->type;
453 	if (type_may_be_null(type))
454 		return false;
455 
456 	type = base_type(type);
457 	return type == PTR_TO_SOCKET ||
458 		type == PTR_TO_TCP_SOCK ||
459 		type == PTR_TO_MAP_VALUE ||
460 		type == PTR_TO_MAP_KEY ||
461 		type == PTR_TO_SOCK_COMMON ||
462 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 		type == PTR_TO_MEM;
464 }
465 
466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470 
471 static bool type_is_non_owning_ref(u32 type)
472 {
473 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475 
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 	struct btf_record *rec = NULL;
479 	struct btf_struct_meta *meta;
480 
481 	if (reg->type == PTR_TO_MAP_VALUE) {
482 		rec = reg->map_ptr->record;
483 	} else if (type_is_ptr_alloc_obj(reg->type)) {
484 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 		if (meta)
486 			rec = meta->record;
487 	}
488 	return rec;
489 }
490 
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494 
495 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497 
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502 
503 static bool type_is_rdonly_mem(u32 type)
504 {
505 	return type & MEM_RDONLY;
506 }
507 
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 				const struct bpf_map *map)
510 {
511 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512 
513 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 	    func_id == BPF_FUNC_sk_lookup_udp ||
515 	    func_id == BPF_FUNC_skc_lookup_tcp ||
516 	    func_id == BPF_FUNC_ringbuf_reserve ||
517 	    func_id == BPF_FUNC_kptr_xchg)
518 		return true;
519 
520 	if (func_id == BPF_FUNC_map_lookup_elem &&
521 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 	     map_type == BPF_MAP_TYPE_SOCKHASH))
523 		return true;
524 
525 	return false;
526 }
527 
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_tcp_sock ||
531 		func_id == BPF_FUNC_sk_fullsock ||
532 		func_id == BPF_FUNC_skc_to_tcp_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 		func_id == BPF_FUNC_skc_to_udp6_sock ||
535 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 	return func_id == BPF_FUNC_dynptr_data;
543 }
544 
545 static bool is_callback_calling_kfunc(u32 btf_id);
546 
547 static bool is_callback_calling_function(enum bpf_func_id func_id)
548 {
549 	return func_id == BPF_FUNC_for_each_map_elem ||
550 	       func_id == BPF_FUNC_timer_set_callback ||
551 	       func_id == BPF_FUNC_find_vma ||
552 	       func_id == BPF_FUNC_loop ||
553 	       func_id == BPF_FUNC_user_ringbuf_drain;
554 }
555 
556 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
557 {
558 	return func_id == BPF_FUNC_timer_set_callback;
559 }
560 
561 static bool is_storage_get_function(enum bpf_func_id func_id)
562 {
563 	return func_id == BPF_FUNC_sk_storage_get ||
564 	       func_id == BPF_FUNC_inode_storage_get ||
565 	       func_id == BPF_FUNC_task_storage_get ||
566 	       func_id == BPF_FUNC_cgrp_storage_get;
567 }
568 
569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
570 					const struct bpf_map *map)
571 {
572 	int ref_obj_uses = 0;
573 
574 	if (is_ptr_cast_function(func_id))
575 		ref_obj_uses++;
576 	if (is_acquire_function(func_id, map))
577 		ref_obj_uses++;
578 	if (is_dynptr_ref_function(func_id))
579 		ref_obj_uses++;
580 
581 	return ref_obj_uses > 1;
582 }
583 
584 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
585 {
586 	return BPF_CLASS(insn->code) == BPF_STX &&
587 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
588 	       insn->imm == BPF_CMPXCHG;
589 }
590 
591 /* string representation of 'enum bpf_reg_type'
592  *
593  * Note that reg_type_str() can not appear more than once in a single verbose()
594  * statement.
595  */
596 static const char *reg_type_str(struct bpf_verifier_env *env,
597 				enum bpf_reg_type type)
598 {
599 	char postfix[16] = {0}, prefix[64] = {0};
600 	static const char * const str[] = {
601 		[NOT_INIT]		= "?",
602 		[SCALAR_VALUE]		= "scalar",
603 		[PTR_TO_CTX]		= "ctx",
604 		[CONST_PTR_TO_MAP]	= "map_ptr",
605 		[PTR_TO_MAP_VALUE]	= "map_value",
606 		[PTR_TO_STACK]		= "fp",
607 		[PTR_TO_PACKET]		= "pkt",
608 		[PTR_TO_PACKET_META]	= "pkt_meta",
609 		[PTR_TO_PACKET_END]	= "pkt_end",
610 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
611 		[PTR_TO_SOCKET]		= "sock",
612 		[PTR_TO_SOCK_COMMON]	= "sock_common",
613 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
614 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
615 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
616 		[PTR_TO_BTF_ID]		= "ptr_",
617 		[PTR_TO_MEM]		= "mem",
618 		[PTR_TO_BUF]		= "buf",
619 		[PTR_TO_FUNC]		= "func",
620 		[PTR_TO_MAP_KEY]	= "map_key",
621 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
622 	};
623 
624 	if (type & PTR_MAYBE_NULL) {
625 		if (base_type(type) == PTR_TO_BTF_ID)
626 			strncpy(postfix, "or_null_", 16);
627 		else
628 			strncpy(postfix, "_or_null", 16);
629 	}
630 
631 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
632 		 type & MEM_RDONLY ? "rdonly_" : "",
633 		 type & MEM_RINGBUF ? "ringbuf_" : "",
634 		 type & MEM_USER ? "user_" : "",
635 		 type & MEM_PERCPU ? "percpu_" : "",
636 		 type & MEM_RCU ? "rcu_" : "",
637 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
638 		 type & PTR_TRUSTED ? "trusted_" : ""
639 	);
640 
641 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
642 		 prefix, str[base_type(type)], postfix);
643 	return env->tmp_str_buf;
644 }
645 
646 static char slot_type_char[] = {
647 	[STACK_INVALID]	= '?',
648 	[STACK_SPILL]	= 'r',
649 	[STACK_MISC]	= 'm',
650 	[STACK_ZERO]	= '0',
651 	[STACK_DYNPTR]	= 'd',
652 	[STACK_ITER]	= 'i',
653 };
654 
655 static void print_liveness(struct bpf_verifier_env *env,
656 			   enum bpf_reg_liveness live)
657 {
658 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
659 	    verbose(env, "_");
660 	if (live & REG_LIVE_READ)
661 		verbose(env, "r");
662 	if (live & REG_LIVE_WRITTEN)
663 		verbose(env, "w");
664 	if (live & REG_LIVE_DONE)
665 		verbose(env, "D");
666 }
667 
668 static int __get_spi(s32 off)
669 {
670 	return (-off - 1) / BPF_REG_SIZE;
671 }
672 
673 static struct bpf_func_state *func(struct bpf_verifier_env *env,
674 				   const struct bpf_reg_state *reg)
675 {
676 	struct bpf_verifier_state *cur = env->cur_state;
677 
678 	return cur->frame[reg->frameno];
679 }
680 
681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
682 {
683        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
684 
685        /* We need to check that slots between [spi - nr_slots + 1, spi] are
686 	* within [0, allocated_stack).
687 	*
688 	* Please note that the spi grows downwards. For example, a dynptr
689 	* takes the size of two stack slots; the first slot will be at
690 	* spi and the second slot will be at spi - 1.
691 	*/
692        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
693 }
694 
695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
696 			          const char *obj_kind, int nr_slots)
697 {
698 	int off, spi;
699 
700 	if (!tnum_is_const(reg->var_off)) {
701 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
702 		return -EINVAL;
703 	}
704 
705 	off = reg->off + reg->var_off.value;
706 	if (off % BPF_REG_SIZE) {
707 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
708 		return -EINVAL;
709 	}
710 
711 	spi = __get_spi(off);
712 	if (spi + 1 < nr_slots) {
713 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
714 		return -EINVAL;
715 	}
716 
717 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
718 		return -ERANGE;
719 	return spi;
720 }
721 
722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
723 {
724 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
725 }
726 
727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
728 {
729 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
730 }
731 
732 static const char *btf_type_name(const struct btf *btf, u32 id)
733 {
734 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
735 }
736 
737 static const char *dynptr_type_str(enum bpf_dynptr_type type)
738 {
739 	switch (type) {
740 	case BPF_DYNPTR_TYPE_LOCAL:
741 		return "local";
742 	case BPF_DYNPTR_TYPE_RINGBUF:
743 		return "ringbuf";
744 	case BPF_DYNPTR_TYPE_SKB:
745 		return "skb";
746 	case BPF_DYNPTR_TYPE_XDP:
747 		return "xdp";
748 	case BPF_DYNPTR_TYPE_INVALID:
749 		return "<invalid>";
750 	default:
751 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
752 		return "<unknown>";
753 	}
754 }
755 
756 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
757 {
758 	if (!btf || btf_id == 0)
759 		return "<invalid>";
760 
761 	/* we already validated that type is valid and has conforming name */
762 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
763 }
764 
765 static const char *iter_state_str(enum bpf_iter_state state)
766 {
767 	switch (state) {
768 	case BPF_ITER_STATE_ACTIVE:
769 		return "active";
770 	case BPF_ITER_STATE_DRAINED:
771 		return "drained";
772 	case BPF_ITER_STATE_INVALID:
773 		return "<invalid>";
774 	default:
775 		WARN_ONCE(1, "unknown iter state %d\n", state);
776 		return "<unknown>";
777 	}
778 }
779 
780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
781 {
782 	env->scratched_regs |= 1U << regno;
783 }
784 
785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
786 {
787 	env->scratched_stack_slots |= 1ULL << spi;
788 }
789 
790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
791 {
792 	return (env->scratched_regs >> regno) & 1;
793 }
794 
795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
796 {
797 	return (env->scratched_stack_slots >> regno) & 1;
798 }
799 
800 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
801 {
802 	return env->scratched_regs || env->scratched_stack_slots;
803 }
804 
805 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
806 {
807 	env->scratched_regs = 0U;
808 	env->scratched_stack_slots = 0ULL;
809 }
810 
811 /* Used for printing the entire verifier state. */
812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
813 {
814 	env->scratched_regs = ~0U;
815 	env->scratched_stack_slots = ~0ULL;
816 }
817 
818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
819 {
820 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
821 	case DYNPTR_TYPE_LOCAL:
822 		return BPF_DYNPTR_TYPE_LOCAL;
823 	case DYNPTR_TYPE_RINGBUF:
824 		return BPF_DYNPTR_TYPE_RINGBUF;
825 	case DYNPTR_TYPE_SKB:
826 		return BPF_DYNPTR_TYPE_SKB;
827 	case DYNPTR_TYPE_XDP:
828 		return BPF_DYNPTR_TYPE_XDP;
829 	default:
830 		return BPF_DYNPTR_TYPE_INVALID;
831 	}
832 }
833 
834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
835 {
836 	switch (type) {
837 	case BPF_DYNPTR_TYPE_LOCAL:
838 		return DYNPTR_TYPE_LOCAL;
839 	case BPF_DYNPTR_TYPE_RINGBUF:
840 		return DYNPTR_TYPE_RINGBUF;
841 	case BPF_DYNPTR_TYPE_SKB:
842 		return DYNPTR_TYPE_SKB;
843 	case BPF_DYNPTR_TYPE_XDP:
844 		return DYNPTR_TYPE_XDP;
845 	default:
846 		return 0;
847 	}
848 }
849 
850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
851 {
852 	return type == BPF_DYNPTR_TYPE_RINGBUF;
853 }
854 
855 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
856 			      enum bpf_dynptr_type type,
857 			      bool first_slot, int dynptr_id);
858 
859 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
860 				struct bpf_reg_state *reg);
861 
862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
863 				   struct bpf_reg_state *sreg1,
864 				   struct bpf_reg_state *sreg2,
865 				   enum bpf_dynptr_type type)
866 {
867 	int id = ++env->id_gen;
868 
869 	__mark_dynptr_reg(sreg1, type, true, id);
870 	__mark_dynptr_reg(sreg2, type, false, id);
871 }
872 
873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
874 			       struct bpf_reg_state *reg,
875 			       enum bpf_dynptr_type type)
876 {
877 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
878 }
879 
880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
881 				        struct bpf_func_state *state, int spi);
882 
883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
884 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
885 {
886 	struct bpf_func_state *state = func(env, reg);
887 	enum bpf_dynptr_type type;
888 	int spi, i, err;
889 
890 	spi = dynptr_get_spi(env, reg);
891 	if (spi < 0)
892 		return spi;
893 
894 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
895 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
896 	 * to ensure that for the following example:
897 	 *	[d1][d1][d2][d2]
898 	 * spi    3   2   1   0
899 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
900 	 * case they do belong to same dynptr, second call won't see slot_type
901 	 * as STACK_DYNPTR and will simply skip destruction.
902 	 */
903 	err = destroy_if_dynptr_stack_slot(env, state, spi);
904 	if (err)
905 		return err;
906 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
907 	if (err)
908 		return err;
909 
910 	for (i = 0; i < BPF_REG_SIZE; i++) {
911 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
912 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
913 	}
914 
915 	type = arg_to_dynptr_type(arg_type);
916 	if (type == BPF_DYNPTR_TYPE_INVALID)
917 		return -EINVAL;
918 
919 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
920 			       &state->stack[spi - 1].spilled_ptr, type);
921 
922 	if (dynptr_type_refcounted(type)) {
923 		/* The id is used to track proper releasing */
924 		int id;
925 
926 		if (clone_ref_obj_id)
927 			id = clone_ref_obj_id;
928 		else
929 			id = acquire_reference_state(env, insn_idx);
930 
931 		if (id < 0)
932 			return id;
933 
934 		state->stack[spi].spilled_ptr.ref_obj_id = id;
935 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
936 	}
937 
938 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
939 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
940 
941 	return 0;
942 }
943 
944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
945 {
946 	int i;
947 
948 	for (i = 0; i < BPF_REG_SIZE; i++) {
949 		state->stack[spi].slot_type[i] = STACK_INVALID;
950 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
951 	}
952 
953 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
954 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
955 
956 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
957 	 *
958 	 * While we don't allow reading STACK_INVALID, it is still possible to
959 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
960 	 * helpers or insns can do partial read of that part without failing,
961 	 * but check_stack_range_initialized, check_stack_read_var_off, and
962 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
963 	 * the slot conservatively. Hence we need to prevent those liveness
964 	 * marking walks.
965 	 *
966 	 * This was not a problem before because STACK_INVALID is only set by
967 	 * default (where the default reg state has its reg->parent as NULL), or
968 	 * in clean_live_states after REG_LIVE_DONE (at which point
969 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
970 	 * verifier state exploration (like we did above). Hence, for our case
971 	 * parentage chain will still be live (i.e. reg->parent may be
972 	 * non-NULL), while earlier reg->parent was NULL, so we need
973 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
974 	 * done later on reads or by mark_dynptr_read as well to unnecessary
975 	 * mark registers in verifier state.
976 	 */
977 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
978 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
979 }
980 
981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
982 {
983 	struct bpf_func_state *state = func(env, reg);
984 	int spi, ref_obj_id, i;
985 
986 	spi = dynptr_get_spi(env, reg);
987 	if (spi < 0)
988 		return spi;
989 
990 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
991 		invalidate_dynptr(env, state, spi);
992 		return 0;
993 	}
994 
995 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
996 
997 	/* If the dynptr has a ref_obj_id, then we need to invalidate
998 	 * two things:
999 	 *
1000 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1001 	 * 2) Any slices derived from this dynptr.
1002 	 */
1003 
1004 	/* Invalidate any slices associated with this dynptr */
1005 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1006 
1007 	/* Invalidate any dynptr clones */
1008 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1009 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1010 			continue;
1011 
1012 		/* it should always be the case that if the ref obj id
1013 		 * matches then the stack slot also belongs to a
1014 		 * dynptr
1015 		 */
1016 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1017 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1018 			return -EFAULT;
1019 		}
1020 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1021 			invalidate_dynptr(env, state, i);
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1028 			       struct bpf_reg_state *reg);
1029 
1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1031 {
1032 	if (!env->allow_ptr_leaks)
1033 		__mark_reg_not_init(env, reg);
1034 	else
1035 		__mark_reg_unknown(env, reg);
1036 }
1037 
1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1039 				        struct bpf_func_state *state, int spi)
1040 {
1041 	struct bpf_func_state *fstate;
1042 	struct bpf_reg_state *dreg;
1043 	int i, dynptr_id;
1044 
1045 	/* We always ensure that STACK_DYNPTR is never set partially,
1046 	 * hence just checking for slot_type[0] is enough. This is
1047 	 * different for STACK_SPILL, where it may be only set for
1048 	 * 1 byte, so code has to use is_spilled_reg.
1049 	 */
1050 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1051 		return 0;
1052 
1053 	/* Reposition spi to first slot */
1054 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1055 		spi = spi + 1;
1056 
1057 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1058 		verbose(env, "cannot overwrite referenced dynptr\n");
1059 		return -EINVAL;
1060 	}
1061 
1062 	mark_stack_slot_scratched(env, spi);
1063 	mark_stack_slot_scratched(env, spi - 1);
1064 
1065 	/* Writing partially to one dynptr stack slot destroys both. */
1066 	for (i = 0; i < BPF_REG_SIZE; i++) {
1067 		state->stack[spi].slot_type[i] = STACK_INVALID;
1068 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1069 	}
1070 
1071 	dynptr_id = state->stack[spi].spilled_ptr.id;
1072 	/* Invalidate any slices associated with this dynptr */
1073 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1074 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1075 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1076 			continue;
1077 		if (dreg->dynptr_id == dynptr_id)
1078 			mark_reg_invalid(env, dreg);
1079 	}));
1080 
1081 	/* Do not release reference state, we are destroying dynptr on stack,
1082 	 * not using some helper to release it. Just reset register.
1083 	 */
1084 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1085 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1086 
1087 	/* Same reason as unmark_stack_slots_dynptr above */
1088 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1089 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1090 
1091 	return 0;
1092 }
1093 
1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1095 {
1096 	int spi;
1097 
1098 	if (reg->type == CONST_PTR_TO_DYNPTR)
1099 		return false;
1100 
1101 	spi = dynptr_get_spi(env, reg);
1102 
1103 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1104 	 * error because this just means the stack state hasn't been updated yet.
1105 	 * We will do check_mem_access to check and update stack bounds later.
1106 	 */
1107 	if (spi < 0 && spi != -ERANGE)
1108 		return false;
1109 
1110 	/* We don't need to check if the stack slots are marked by previous
1111 	 * dynptr initializations because we allow overwriting existing unreferenced
1112 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1113 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1114 	 * touching are completely destructed before we reinitialize them for a new
1115 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1116 	 * instead of delaying it until the end where the user will get "Unreleased
1117 	 * reference" error.
1118 	 */
1119 	return true;
1120 }
1121 
1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1123 {
1124 	struct bpf_func_state *state = func(env, reg);
1125 	int i, spi;
1126 
1127 	/* This already represents first slot of initialized bpf_dynptr.
1128 	 *
1129 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1130 	 * check_func_arg_reg_off's logic, so we don't need to check its
1131 	 * offset and alignment.
1132 	 */
1133 	if (reg->type == CONST_PTR_TO_DYNPTR)
1134 		return true;
1135 
1136 	spi = dynptr_get_spi(env, reg);
1137 	if (spi < 0)
1138 		return false;
1139 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1140 		return false;
1141 
1142 	for (i = 0; i < BPF_REG_SIZE; i++) {
1143 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1144 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1145 			return false;
1146 	}
1147 
1148 	return true;
1149 }
1150 
1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1152 				    enum bpf_arg_type arg_type)
1153 {
1154 	struct bpf_func_state *state = func(env, reg);
1155 	enum bpf_dynptr_type dynptr_type;
1156 	int spi;
1157 
1158 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1159 	if (arg_type == ARG_PTR_TO_DYNPTR)
1160 		return true;
1161 
1162 	dynptr_type = arg_to_dynptr_type(arg_type);
1163 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1164 		return reg->dynptr.type == dynptr_type;
1165 	} else {
1166 		spi = dynptr_get_spi(env, reg);
1167 		if (spi < 0)
1168 			return false;
1169 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1170 	}
1171 }
1172 
1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1174 
1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1176 				 struct bpf_reg_state *reg, int insn_idx,
1177 				 struct btf *btf, u32 btf_id, int nr_slots)
1178 {
1179 	struct bpf_func_state *state = func(env, reg);
1180 	int spi, i, j, id;
1181 
1182 	spi = iter_get_spi(env, reg, nr_slots);
1183 	if (spi < 0)
1184 		return spi;
1185 
1186 	id = acquire_reference_state(env, insn_idx);
1187 	if (id < 0)
1188 		return id;
1189 
1190 	for (i = 0; i < nr_slots; i++) {
1191 		struct bpf_stack_state *slot = &state->stack[spi - i];
1192 		struct bpf_reg_state *st = &slot->spilled_ptr;
1193 
1194 		__mark_reg_known_zero(st);
1195 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1196 		st->live |= REG_LIVE_WRITTEN;
1197 		st->ref_obj_id = i == 0 ? id : 0;
1198 		st->iter.btf = btf;
1199 		st->iter.btf_id = btf_id;
1200 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1201 		st->iter.depth = 0;
1202 
1203 		for (j = 0; j < BPF_REG_SIZE; j++)
1204 			slot->slot_type[j] = STACK_ITER;
1205 
1206 		mark_stack_slot_scratched(env, spi - i);
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1213 				   struct bpf_reg_state *reg, int nr_slots)
1214 {
1215 	struct bpf_func_state *state = func(env, reg);
1216 	int spi, i, j;
1217 
1218 	spi = iter_get_spi(env, reg, nr_slots);
1219 	if (spi < 0)
1220 		return spi;
1221 
1222 	for (i = 0; i < nr_slots; i++) {
1223 		struct bpf_stack_state *slot = &state->stack[spi - i];
1224 		struct bpf_reg_state *st = &slot->spilled_ptr;
1225 
1226 		if (i == 0)
1227 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1228 
1229 		__mark_reg_not_init(env, st);
1230 
1231 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1232 		st->live |= REG_LIVE_WRITTEN;
1233 
1234 		for (j = 0; j < BPF_REG_SIZE; j++)
1235 			slot->slot_type[j] = STACK_INVALID;
1236 
1237 		mark_stack_slot_scratched(env, spi - i);
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1244 				     struct bpf_reg_state *reg, int nr_slots)
1245 {
1246 	struct bpf_func_state *state = func(env, reg);
1247 	int spi, i, j;
1248 
1249 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1250 	 * will do check_mem_access to check and update stack bounds later, so
1251 	 * return true for that case.
1252 	 */
1253 	spi = iter_get_spi(env, reg, nr_slots);
1254 	if (spi == -ERANGE)
1255 		return true;
1256 	if (spi < 0)
1257 		return false;
1258 
1259 	for (i = 0; i < nr_slots; i++) {
1260 		struct bpf_stack_state *slot = &state->stack[spi - i];
1261 
1262 		for (j = 0; j < BPF_REG_SIZE; j++)
1263 			if (slot->slot_type[j] == STACK_ITER)
1264 				return false;
1265 	}
1266 
1267 	return true;
1268 }
1269 
1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1271 				   struct btf *btf, u32 btf_id, int nr_slots)
1272 {
1273 	struct bpf_func_state *state = func(env, reg);
1274 	int spi, i, j;
1275 
1276 	spi = iter_get_spi(env, reg, nr_slots);
1277 	if (spi < 0)
1278 		return false;
1279 
1280 	for (i = 0; i < nr_slots; i++) {
1281 		struct bpf_stack_state *slot = &state->stack[spi - i];
1282 		struct bpf_reg_state *st = &slot->spilled_ptr;
1283 
1284 		/* only main (first) slot has ref_obj_id set */
1285 		if (i == 0 && !st->ref_obj_id)
1286 			return false;
1287 		if (i != 0 && st->ref_obj_id)
1288 			return false;
1289 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1290 			return false;
1291 
1292 		for (j = 0; j < BPF_REG_SIZE; j++)
1293 			if (slot->slot_type[j] != STACK_ITER)
1294 				return false;
1295 	}
1296 
1297 	return true;
1298 }
1299 
1300 /* Check if given stack slot is "special":
1301  *   - spilled register state (STACK_SPILL);
1302  *   - dynptr state (STACK_DYNPTR);
1303  *   - iter state (STACK_ITER).
1304  */
1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1306 {
1307 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1308 
1309 	switch (type) {
1310 	case STACK_SPILL:
1311 	case STACK_DYNPTR:
1312 	case STACK_ITER:
1313 		return true;
1314 	case STACK_INVALID:
1315 	case STACK_MISC:
1316 	case STACK_ZERO:
1317 		return false;
1318 	default:
1319 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1320 		return true;
1321 	}
1322 }
1323 
1324 /* The reg state of a pointer or a bounded scalar was saved when
1325  * it was spilled to the stack.
1326  */
1327 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1328 {
1329 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1330 }
1331 
1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1333 {
1334 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1335 	       stack->spilled_ptr.type == SCALAR_VALUE;
1336 }
1337 
1338 static void scrub_spilled_slot(u8 *stype)
1339 {
1340 	if (*stype != STACK_INVALID)
1341 		*stype = STACK_MISC;
1342 }
1343 
1344 static void print_verifier_state(struct bpf_verifier_env *env,
1345 				 const struct bpf_func_state *state,
1346 				 bool print_all)
1347 {
1348 	const struct bpf_reg_state *reg;
1349 	enum bpf_reg_type t;
1350 	int i;
1351 
1352 	if (state->frameno)
1353 		verbose(env, " frame%d:", state->frameno);
1354 	for (i = 0; i < MAX_BPF_REG; i++) {
1355 		reg = &state->regs[i];
1356 		t = reg->type;
1357 		if (t == NOT_INIT)
1358 			continue;
1359 		if (!print_all && !reg_scratched(env, i))
1360 			continue;
1361 		verbose(env, " R%d", i);
1362 		print_liveness(env, reg->live);
1363 		verbose(env, "=");
1364 		if (t == SCALAR_VALUE && reg->precise)
1365 			verbose(env, "P");
1366 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1367 		    tnum_is_const(reg->var_off)) {
1368 			/* reg->off should be 0 for SCALAR_VALUE */
1369 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1370 			verbose(env, "%lld", reg->var_off.value + reg->off);
1371 		} else {
1372 			const char *sep = "";
1373 
1374 			verbose(env, "%s", reg_type_str(env, t));
1375 			if (base_type(t) == PTR_TO_BTF_ID)
1376 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1377 			verbose(env, "(");
1378 /*
1379  * _a stands for append, was shortened to avoid multiline statements below.
1380  * This macro is used to output a comma separated list of attributes.
1381  */
1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1383 
1384 			if (reg->id)
1385 				verbose_a("id=%d", reg->id);
1386 			if (reg->ref_obj_id)
1387 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1388 			if (type_is_non_owning_ref(reg->type))
1389 				verbose_a("%s", "non_own_ref");
1390 			if (t != SCALAR_VALUE)
1391 				verbose_a("off=%d", reg->off);
1392 			if (type_is_pkt_pointer(t))
1393 				verbose_a("r=%d", reg->range);
1394 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1395 				 base_type(t) == PTR_TO_MAP_KEY ||
1396 				 base_type(t) == PTR_TO_MAP_VALUE)
1397 				verbose_a("ks=%d,vs=%d",
1398 					  reg->map_ptr->key_size,
1399 					  reg->map_ptr->value_size);
1400 			if (tnum_is_const(reg->var_off)) {
1401 				/* Typically an immediate SCALAR_VALUE, but
1402 				 * could be a pointer whose offset is too big
1403 				 * for reg->off
1404 				 */
1405 				verbose_a("imm=%llx", reg->var_off.value);
1406 			} else {
1407 				if (reg->smin_value != reg->umin_value &&
1408 				    reg->smin_value != S64_MIN)
1409 					verbose_a("smin=%lld", (long long)reg->smin_value);
1410 				if (reg->smax_value != reg->umax_value &&
1411 				    reg->smax_value != S64_MAX)
1412 					verbose_a("smax=%lld", (long long)reg->smax_value);
1413 				if (reg->umin_value != 0)
1414 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1415 				if (reg->umax_value != U64_MAX)
1416 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1417 				if (!tnum_is_unknown(reg->var_off)) {
1418 					char tn_buf[48];
1419 
1420 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1421 					verbose_a("var_off=%s", tn_buf);
1422 				}
1423 				if (reg->s32_min_value != reg->smin_value &&
1424 				    reg->s32_min_value != S32_MIN)
1425 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1426 				if (reg->s32_max_value != reg->smax_value &&
1427 				    reg->s32_max_value != S32_MAX)
1428 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1429 				if (reg->u32_min_value != reg->umin_value &&
1430 				    reg->u32_min_value != U32_MIN)
1431 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1432 				if (reg->u32_max_value != reg->umax_value &&
1433 				    reg->u32_max_value != U32_MAX)
1434 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1435 			}
1436 #undef verbose_a
1437 
1438 			verbose(env, ")");
1439 		}
1440 	}
1441 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1442 		char types_buf[BPF_REG_SIZE + 1];
1443 		bool valid = false;
1444 		int j;
1445 
1446 		for (j = 0; j < BPF_REG_SIZE; j++) {
1447 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1448 				valid = true;
1449 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1450 		}
1451 		types_buf[BPF_REG_SIZE] = 0;
1452 		if (!valid)
1453 			continue;
1454 		if (!print_all && !stack_slot_scratched(env, i))
1455 			continue;
1456 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1457 		case STACK_SPILL:
1458 			reg = &state->stack[i].spilled_ptr;
1459 			t = reg->type;
1460 
1461 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1462 			print_liveness(env, reg->live);
1463 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1464 			if (t == SCALAR_VALUE && reg->precise)
1465 				verbose(env, "P");
1466 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1467 				verbose(env, "%lld", reg->var_off.value + reg->off);
1468 			break;
1469 		case STACK_DYNPTR:
1470 			i += BPF_DYNPTR_NR_SLOTS - 1;
1471 			reg = &state->stack[i].spilled_ptr;
1472 
1473 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1474 			print_liveness(env, reg->live);
1475 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1476 			if (reg->ref_obj_id)
1477 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1478 			break;
1479 		case STACK_ITER:
1480 			/* only main slot has ref_obj_id set; skip others */
1481 			reg = &state->stack[i].spilled_ptr;
1482 			if (!reg->ref_obj_id)
1483 				continue;
1484 
1485 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1486 			print_liveness(env, reg->live);
1487 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1488 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1489 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1490 				reg->iter.depth);
1491 			break;
1492 		case STACK_MISC:
1493 		case STACK_ZERO:
1494 		default:
1495 			reg = &state->stack[i].spilled_ptr;
1496 
1497 			for (j = 0; j < BPF_REG_SIZE; j++)
1498 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1499 			types_buf[BPF_REG_SIZE] = 0;
1500 
1501 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1502 			print_liveness(env, reg->live);
1503 			verbose(env, "=%s", types_buf);
1504 			break;
1505 		}
1506 	}
1507 	if (state->acquired_refs && state->refs[0].id) {
1508 		verbose(env, " refs=%d", state->refs[0].id);
1509 		for (i = 1; i < state->acquired_refs; i++)
1510 			if (state->refs[i].id)
1511 				verbose(env, ",%d", state->refs[i].id);
1512 	}
1513 	if (state->in_callback_fn)
1514 		verbose(env, " cb");
1515 	if (state->in_async_callback_fn)
1516 		verbose(env, " async_cb");
1517 	verbose(env, "\n");
1518 	mark_verifier_state_clean(env);
1519 }
1520 
1521 static inline u32 vlog_alignment(u32 pos)
1522 {
1523 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1524 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1525 }
1526 
1527 static void print_insn_state(struct bpf_verifier_env *env,
1528 			     const struct bpf_func_state *state)
1529 {
1530 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1531 		/* remove new line character */
1532 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1533 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1534 	} else {
1535 		verbose(env, "%d:", env->insn_idx);
1536 	}
1537 	print_verifier_state(env, state, false);
1538 }
1539 
1540 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1541  * small to hold src. This is different from krealloc since we don't want to preserve
1542  * the contents of dst.
1543  *
1544  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1545  * not be allocated.
1546  */
1547 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1548 {
1549 	size_t alloc_bytes;
1550 	void *orig = dst;
1551 	size_t bytes;
1552 
1553 	if (ZERO_OR_NULL_PTR(src))
1554 		goto out;
1555 
1556 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1557 		return NULL;
1558 
1559 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1560 	dst = krealloc(orig, alloc_bytes, flags);
1561 	if (!dst) {
1562 		kfree(orig);
1563 		return NULL;
1564 	}
1565 
1566 	memcpy(dst, src, bytes);
1567 out:
1568 	return dst ? dst : ZERO_SIZE_PTR;
1569 }
1570 
1571 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1572  * small to hold new_n items. new items are zeroed out if the array grows.
1573  *
1574  * Contrary to krealloc_array, does not free arr if new_n is zero.
1575  */
1576 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1577 {
1578 	size_t alloc_size;
1579 	void *new_arr;
1580 
1581 	if (!new_n || old_n == new_n)
1582 		goto out;
1583 
1584 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1585 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1586 	if (!new_arr) {
1587 		kfree(arr);
1588 		return NULL;
1589 	}
1590 	arr = new_arr;
1591 
1592 	if (new_n > old_n)
1593 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1594 
1595 out:
1596 	return arr ? arr : ZERO_SIZE_PTR;
1597 }
1598 
1599 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1600 {
1601 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1602 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1603 	if (!dst->refs)
1604 		return -ENOMEM;
1605 
1606 	dst->acquired_refs = src->acquired_refs;
1607 	return 0;
1608 }
1609 
1610 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1611 {
1612 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1613 
1614 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1615 				GFP_KERNEL);
1616 	if (!dst->stack)
1617 		return -ENOMEM;
1618 
1619 	dst->allocated_stack = src->allocated_stack;
1620 	return 0;
1621 }
1622 
1623 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1624 {
1625 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1626 				    sizeof(struct bpf_reference_state));
1627 	if (!state->refs)
1628 		return -ENOMEM;
1629 
1630 	state->acquired_refs = n;
1631 	return 0;
1632 }
1633 
1634 static int grow_stack_state(struct bpf_func_state *state, int size)
1635 {
1636 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1637 
1638 	if (old_n >= n)
1639 		return 0;
1640 
1641 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1642 	if (!state->stack)
1643 		return -ENOMEM;
1644 
1645 	state->allocated_stack = size;
1646 	return 0;
1647 }
1648 
1649 /* Acquire a pointer id from the env and update the state->refs to include
1650  * this new pointer reference.
1651  * On success, returns a valid pointer id to associate with the register
1652  * On failure, returns a negative errno.
1653  */
1654 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1655 {
1656 	struct bpf_func_state *state = cur_func(env);
1657 	int new_ofs = state->acquired_refs;
1658 	int id, err;
1659 
1660 	err = resize_reference_state(state, state->acquired_refs + 1);
1661 	if (err)
1662 		return err;
1663 	id = ++env->id_gen;
1664 	state->refs[new_ofs].id = id;
1665 	state->refs[new_ofs].insn_idx = insn_idx;
1666 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1667 
1668 	return id;
1669 }
1670 
1671 /* release function corresponding to acquire_reference_state(). Idempotent. */
1672 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1673 {
1674 	int i, last_idx;
1675 
1676 	last_idx = state->acquired_refs - 1;
1677 	for (i = 0; i < state->acquired_refs; i++) {
1678 		if (state->refs[i].id == ptr_id) {
1679 			/* Cannot release caller references in callbacks */
1680 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1681 				return -EINVAL;
1682 			if (last_idx && i != last_idx)
1683 				memcpy(&state->refs[i], &state->refs[last_idx],
1684 				       sizeof(*state->refs));
1685 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1686 			state->acquired_refs--;
1687 			return 0;
1688 		}
1689 	}
1690 	return -EINVAL;
1691 }
1692 
1693 static void free_func_state(struct bpf_func_state *state)
1694 {
1695 	if (!state)
1696 		return;
1697 	kfree(state->refs);
1698 	kfree(state->stack);
1699 	kfree(state);
1700 }
1701 
1702 static void clear_jmp_history(struct bpf_verifier_state *state)
1703 {
1704 	kfree(state->jmp_history);
1705 	state->jmp_history = NULL;
1706 	state->jmp_history_cnt = 0;
1707 }
1708 
1709 static void free_verifier_state(struct bpf_verifier_state *state,
1710 				bool free_self)
1711 {
1712 	int i;
1713 
1714 	for (i = 0; i <= state->curframe; i++) {
1715 		free_func_state(state->frame[i]);
1716 		state->frame[i] = NULL;
1717 	}
1718 	clear_jmp_history(state);
1719 	if (free_self)
1720 		kfree(state);
1721 }
1722 
1723 /* copy verifier state from src to dst growing dst stack space
1724  * when necessary to accommodate larger src stack
1725  */
1726 static int copy_func_state(struct bpf_func_state *dst,
1727 			   const struct bpf_func_state *src)
1728 {
1729 	int err;
1730 
1731 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1732 	err = copy_reference_state(dst, src);
1733 	if (err)
1734 		return err;
1735 	return copy_stack_state(dst, src);
1736 }
1737 
1738 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1739 			       const struct bpf_verifier_state *src)
1740 {
1741 	struct bpf_func_state *dst;
1742 	int i, err;
1743 
1744 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1745 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1746 					    GFP_USER);
1747 	if (!dst_state->jmp_history)
1748 		return -ENOMEM;
1749 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1750 
1751 	/* if dst has more stack frames then src frame, free them */
1752 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1753 		free_func_state(dst_state->frame[i]);
1754 		dst_state->frame[i] = NULL;
1755 	}
1756 	dst_state->speculative = src->speculative;
1757 	dst_state->active_rcu_lock = src->active_rcu_lock;
1758 	dst_state->curframe = src->curframe;
1759 	dst_state->active_lock.ptr = src->active_lock.ptr;
1760 	dst_state->active_lock.id = src->active_lock.id;
1761 	dst_state->branches = src->branches;
1762 	dst_state->parent = src->parent;
1763 	dst_state->first_insn_idx = src->first_insn_idx;
1764 	dst_state->last_insn_idx = src->last_insn_idx;
1765 	for (i = 0; i <= src->curframe; i++) {
1766 		dst = dst_state->frame[i];
1767 		if (!dst) {
1768 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1769 			if (!dst)
1770 				return -ENOMEM;
1771 			dst_state->frame[i] = dst;
1772 		}
1773 		err = copy_func_state(dst, src->frame[i]);
1774 		if (err)
1775 			return err;
1776 	}
1777 	return 0;
1778 }
1779 
1780 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1781 {
1782 	while (st) {
1783 		u32 br = --st->branches;
1784 
1785 		/* WARN_ON(br > 1) technically makes sense here,
1786 		 * but see comment in push_stack(), hence:
1787 		 */
1788 		WARN_ONCE((int)br < 0,
1789 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1790 			  br);
1791 		if (br)
1792 			break;
1793 		st = st->parent;
1794 	}
1795 }
1796 
1797 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1798 		     int *insn_idx, bool pop_log)
1799 {
1800 	struct bpf_verifier_state *cur = env->cur_state;
1801 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1802 	int err;
1803 
1804 	if (env->head == NULL)
1805 		return -ENOENT;
1806 
1807 	if (cur) {
1808 		err = copy_verifier_state(cur, &head->st);
1809 		if (err)
1810 			return err;
1811 	}
1812 	if (pop_log)
1813 		bpf_vlog_reset(&env->log, head->log_pos);
1814 	if (insn_idx)
1815 		*insn_idx = head->insn_idx;
1816 	if (prev_insn_idx)
1817 		*prev_insn_idx = head->prev_insn_idx;
1818 	elem = head->next;
1819 	free_verifier_state(&head->st, false);
1820 	kfree(head);
1821 	env->head = elem;
1822 	env->stack_size--;
1823 	return 0;
1824 }
1825 
1826 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1827 					     int insn_idx, int prev_insn_idx,
1828 					     bool speculative)
1829 {
1830 	struct bpf_verifier_state *cur = env->cur_state;
1831 	struct bpf_verifier_stack_elem *elem;
1832 	int err;
1833 
1834 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1835 	if (!elem)
1836 		goto err;
1837 
1838 	elem->insn_idx = insn_idx;
1839 	elem->prev_insn_idx = prev_insn_idx;
1840 	elem->next = env->head;
1841 	elem->log_pos = env->log.end_pos;
1842 	env->head = elem;
1843 	env->stack_size++;
1844 	err = copy_verifier_state(&elem->st, cur);
1845 	if (err)
1846 		goto err;
1847 	elem->st.speculative |= speculative;
1848 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1849 		verbose(env, "The sequence of %d jumps is too complex.\n",
1850 			env->stack_size);
1851 		goto err;
1852 	}
1853 	if (elem->st.parent) {
1854 		++elem->st.parent->branches;
1855 		/* WARN_ON(branches > 2) technically makes sense here,
1856 		 * but
1857 		 * 1. speculative states will bump 'branches' for non-branch
1858 		 * instructions
1859 		 * 2. is_state_visited() heuristics may decide not to create
1860 		 * a new state for a sequence of branches and all such current
1861 		 * and cloned states will be pointing to a single parent state
1862 		 * which might have large 'branches' count.
1863 		 */
1864 	}
1865 	return &elem->st;
1866 err:
1867 	free_verifier_state(env->cur_state, true);
1868 	env->cur_state = NULL;
1869 	/* pop all elements and return */
1870 	while (!pop_stack(env, NULL, NULL, false));
1871 	return NULL;
1872 }
1873 
1874 #define CALLER_SAVED_REGS 6
1875 static const int caller_saved[CALLER_SAVED_REGS] = {
1876 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1877 };
1878 
1879 /* This helper doesn't clear reg->id */
1880 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1881 {
1882 	reg->var_off = tnum_const(imm);
1883 	reg->smin_value = (s64)imm;
1884 	reg->smax_value = (s64)imm;
1885 	reg->umin_value = imm;
1886 	reg->umax_value = imm;
1887 
1888 	reg->s32_min_value = (s32)imm;
1889 	reg->s32_max_value = (s32)imm;
1890 	reg->u32_min_value = (u32)imm;
1891 	reg->u32_max_value = (u32)imm;
1892 }
1893 
1894 /* Mark the unknown part of a register (variable offset or scalar value) as
1895  * known to have the value @imm.
1896  */
1897 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1898 {
1899 	/* Clear off and union(map_ptr, range) */
1900 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1901 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1902 	reg->id = 0;
1903 	reg->ref_obj_id = 0;
1904 	___mark_reg_known(reg, imm);
1905 }
1906 
1907 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1908 {
1909 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1910 	reg->s32_min_value = (s32)imm;
1911 	reg->s32_max_value = (s32)imm;
1912 	reg->u32_min_value = (u32)imm;
1913 	reg->u32_max_value = (u32)imm;
1914 }
1915 
1916 /* Mark the 'variable offset' part of a register as zero.  This should be
1917  * used only on registers holding a pointer type.
1918  */
1919 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1920 {
1921 	__mark_reg_known(reg, 0);
1922 }
1923 
1924 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1925 {
1926 	__mark_reg_known(reg, 0);
1927 	reg->type = SCALAR_VALUE;
1928 }
1929 
1930 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1931 				struct bpf_reg_state *regs, u32 regno)
1932 {
1933 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1934 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1935 		/* Something bad happened, let's kill all regs */
1936 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1937 			__mark_reg_not_init(env, regs + regno);
1938 		return;
1939 	}
1940 	__mark_reg_known_zero(regs + regno);
1941 }
1942 
1943 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1944 			      bool first_slot, int dynptr_id)
1945 {
1946 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1947 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1948 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1949 	 */
1950 	__mark_reg_known_zero(reg);
1951 	reg->type = CONST_PTR_TO_DYNPTR;
1952 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1953 	reg->id = dynptr_id;
1954 	reg->dynptr.type = type;
1955 	reg->dynptr.first_slot = first_slot;
1956 }
1957 
1958 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1959 {
1960 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1961 		const struct bpf_map *map = reg->map_ptr;
1962 
1963 		if (map->inner_map_meta) {
1964 			reg->type = CONST_PTR_TO_MAP;
1965 			reg->map_ptr = map->inner_map_meta;
1966 			/* transfer reg's id which is unique for every map_lookup_elem
1967 			 * as UID of the inner map.
1968 			 */
1969 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1970 				reg->map_uid = reg->id;
1971 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1972 			reg->type = PTR_TO_XDP_SOCK;
1973 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1974 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1975 			reg->type = PTR_TO_SOCKET;
1976 		} else {
1977 			reg->type = PTR_TO_MAP_VALUE;
1978 		}
1979 		return;
1980 	}
1981 
1982 	reg->type &= ~PTR_MAYBE_NULL;
1983 }
1984 
1985 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1986 				struct btf_field_graph_root *ds_head)
1987 {
1988 	__mark_reg_known_zero(&regs[regno]);
1989 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1990 	regs[regno].btf = ds_head->btf;
1991 	regs[regno].btf_id = ds_head->value_btf_id;
1992 	regs[regno].off = ds_head->node_offset;
1993 }
1994 
1995 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1996 {
1997 	return type_is_pkt_pointer(reg->type);
1998 }
1999 
2000 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2001 {
2002 	return reg_is_pkt_pointer(reg) ||
2003 	       reg->type == PTR_TO_PACKET_END;
2004 }
2005 
2006 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2007 {
2008 	return base_type(reg->type) == PTR_TO_MEM &&
2009 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2010 }
2011 
2012 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2013 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2014 				    enum bpf_reg_type which)
2015 {
2016 	/* The register can already have a range from prior markings.
2017 	 * This is fine as long as it hasn't been advanced from its
2018 	 * origin.
2019 	 */
2020 	return reg->type == which &&
2021 	       reg->id == 0 &&
2022 	       reg->off == 0 &&
2023 	       tnum_equals_const(reg->var_off, 0);
2024 }
2025 
2026 /* Reset the min/max bounds of a register */
2027 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2028 {
2029 	reg->smin_value = S64_MIN;
2030 	reg->smax_value = S64_MAX;
2031 	reg->umin_value = 0;
2032 	reg->umax_value = U64_MAX;
2033 
2034 	reg->s32_min_value = S32_MIN;
2035 	reg->s32_max_value = S32_MAX;
2036 	reg->u32_min_value = 0;
2037 	reg->u32_max_value = U32_MAX;
2038 }
2039 
2040 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2041 {
2042 	reg->smin_value = S64_MIN;
2043 	reg->smax_value = S64_MAX;
2044 	reg->umin_value = 0;
2045 	reg->umax_value = U64_MAX;
2046 }
2047 
2048 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2049 {
2050 	reg->s32_min_value = S32_MIN;
2051 	reg->s32_max_value = S32_MAX;
2052 	reg->u32_min_value = 0;
2053 	reg->u32_max_value = U32_MAX;
2054 }
2055 
2056 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2057 {
2058 	struct tnum var32_off = tnum_subreg(reg->var_off);
2059 
2060 	/* min signed is max(sign bit) | min(other bits) */
2061 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2062 			var32_off.value | (var32_off.mask & S32_MIN));
2063 	/* max signed is min(sign bit) | max(other bits) */
2064 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2065 			var32_off.value | (var32_off.mask & S32_MAX));
2066 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2067 	reg->u32_max_value = min(reg->u32_max_value,
2068 				 (u32)(var32_off.value | var32_off.mask));
2069 }
2070 
2071 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2072 {
2073 	/* min signed is max(sign bit) | min(other bits) */
2074 	reg->smin_value = max_t(s64, reg->smin_value,
2075 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2076 	/* max signed is min(sign bit) | max(other bits) */
2077 	reg->smax_value = min_t(s64, reg->smax_value,
2078 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2079 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2080 	reg->umax_value = min(reg->umax_value,
2081 			      reg->var_off.value | reg->var_off.mask);
2082 }
2083 
2084 static void __update_reg_bounds(struct bpf_reg_state *reg)
2085 {
2086 	__update_reg32_bounds(reg);
2087 	__update_reg64_bounds(reg);
2088 }
2089 
2090 /* Uses signed min/max values to inform unsigned, and vice-versa */
2091 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2092 {
2093 	/* Learn sign from signed bounds.
2094 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2095 	 * are the same, so combine.  This works even in the negative case, e.g.
2096 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2097 	 */
2098 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2099 		reg->s32_min_value = reg->u32_min_value =
2100 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2101 		reg->s32_max_value = reg->u32_max_value =
2102 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2103 		return;
2104 	}
2105 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2106 	 * boundary, so we must be careful.
2107 	 */
2108 	if ((s32)reg->u32_max_value >= 0) {
2109 		/* Positive.  We can't learn anything from the smin, but smax
2110 		 * is positive, hence safe.
2111 		 */
2112 		reg->s32_min_value = reg->u32_min_value;
2113 		reg->s32_max_value = reg->u32_max_value =
2114 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2115 	} else if ((s32)reg->u32_min_value < 0) {
2116 		/* Negative.  We can't learn anything from the smax, but smin
2117 		 * is negative, hence safe.
2118 		 */
2119 		reg->s32_min_value = reg->u32_min_value =
2120 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2121 		reg->s32_max_value = reg->u32_max_value;
2122 	}
2123 }
2124 
2125 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2126 {
2127 	/* Learn sign from signed bounds.
2128 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2129 	 * are the same, so combine.  This works even in the negative case, e.g.
2130 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2131 	 */
2132 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2133 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2134 							  reg->umin_value);
2135 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2136 							  reg->umax_value);
2137 		return;
2138 	}
2139 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2140 	 * boundary, so we must be careful.
2141 	 */
2142 	if ((s64)reg->umax_value >= 0) {
2143 		/* Positive.  We can't learn anything from the smin, but smax
2144 		 * is positive, hence safe.
2145 		 */
2146 		reg->smin_value = reg->umin_value;
2147 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2148 							  reg->umax_value);
2149 	} else if ((s64)reg->umin_value < 0) {
2150 		/* Negative.  We can't learn anything from the smax, but smin
2151 		 * is negative, hence safe.
2152 		 */
2153 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2154 							  reg->umin_value);
2155 		reg->smax_value = reg->umax_value;
2156 	}
2157 }
2158 
2159 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2160 {
2161 	__reg32_deduce_bounds(reg);
2162 	__reg64_deduce_bounds(reg);
2163 }
2164 
2165 /* Attempts to improve var_off based on unsigned min/max information */
2166 static void __reg_bound_offset(struct bpf_reg_state *reg)
2167 {
2168 	struct tnum var64_off = tnum_intersect(reg->var_off,
2169 					       tnum_range(reg->umin_value,
2170 							  reg->umax_value));
2171 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2172 					       tnum_range(reg->u32_min_value,
2173 							  reg->u32_max_value));
2174 
2175 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2176 }
2177 
2178 static void reg_bounds_sync(struct bpf_reg_state *reg)
2179 {
2180 	/* We might have learned new bounds from the var_off. */
2181 	__update_reg_bounds(reg);
2182 	/* We might have learned something about the sign bit. */
2183 	__reg_deduce_bounds(reg);
2184 	/* We might have learned some bits from the bounds. */
2185 	__reg_bound_offset(reg);
2186 	/* Intersecting with the old var_off might have improved our bounds
2187 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2188 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2189 	 */
2190 	__update_reg_bounds(reg);
2191 }
2192 
2193 static bool __reg32_bound_s64(s32 a)
2194 {
2195 	return a >= 0 && a <= S32_MAX;
2196 }
2197 
2198 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2199 {
2200 	reg->umin_value = reg->u32_min_value;
2201 	reg->umax_value = reg->u32_max_value;
2202 
2203 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2204 	 * be positive otherwise set to worse case bounds and refine later
2205 	 * from tnum.
2206 	 */
2207 	if (__reg32_bound_s64(reg->s32_min_value) &&
2208 	    __reg32_bound_s64(reg->s32_max_value)) {
2209 		reg->smin_value = reg->s32_min_value;
2210 		reg->smax_value = reg->s32_max_value;
2211 	} else {
2212 		reg->smin_value = 0;
2213 		reg->smax_value = U32_MAX;
2214 	}
2215 }
2216 
2217 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2218 {
2219 	/* special case when 64-bit register has upper 32-bit register
2220 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2221 	 * allowing us to use 32-bit bounds directly,
2222 	 */
2223 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2224 		__reg_assign_32_into_64(reg);
2225 	} else {
2226 		/* Otherwise the best we can do is push lower 32bit known and
2227 		 * unknown bits into register (var_off set from jmp logic)
2228 		 * then learn as much as possible from the 64-bit tnum
2229 		 * known and unknown bits. The previous smin/smax bounds are
2230 		 * invalid here because of jmp32 compare so mark them unknown
2231 		 * so they do not impact tnum bounds calculation.
2232 		 */
2233 		__mark_reg64_unbounded(reg);
2234 	}
2235 	reg_bounds_sync(reg);
2236 }
2237 
2238 static bool __reg64_bound_s32(s64 a)
2239 {
2240 	return a >= S32_MIN && a <= S32_MAX;
2241 }
2242 
2243 static bool __reg64_bound_u32(u64 a)
2244 {
2245 	return a >= U32_MIN && a <= U32_MAX;
2246 }
2247 
2248 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2249 {
2250 	__mark_reg32_unbounded(reg);
2251 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2252 		reg->s32_min_value = (s32)reg->smin_value;
2253 		reg->s32_max_value = (s32)reg->smax_value;
2254 	}
2255 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2256 		reg->u32_min_value = (u32)reg->umin_value;
2257 		reg->u32_max_value = (u32)reg->umax_value;
2258 	}
2259 	reg_bounds_sync(reg);
2260 }
2261 
2262 /* Mark a register as having a completely unknown (scalar) value. */
2263 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2264 			       struct bpf_reg_state *reg)
2265 {
2266 	/*
2267 	 * Clear type, off, and union(map_ptr, range) and
2268 	 * padding between 'type' and union
2269 	 */
2270 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2271 	reg->type = SCALAR_VALUE;
2272 	reg->id = 0;
2273 	reg->ref_obj_id = 0;
2274 	reg->var_off = tnum_unknown;
2275 	reg->frameno = 0;
2276 	reg->precise = !env->bpf_capable;
2277 	__mark_reg_unbounded(reg);
2278 }
2279 
2280 static void mark_reg_unknown(struct bpf_verifier_env *env,
2281 			     struct bpf_reg_state *regs, u32 regno)
2282 {
2283 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2284 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2285 		/* Something bad happened, let's kill all regs except FP */
2286 		for (regno = 0; regno < BPF_REG_FP; regno++)
2287 			__mark_reg_not_init(env, regs + regno);
2288 		return;
2289 	}
2290 	__mark_reg_unknown(env, regs + regno);
2291 }
2292 
2293 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2294 				struct bpf_reg_state *reg)
2295 {
2296 	__mark_reg_unknown(env, reg);
2297 	reg->type = NOT_INIT;
2298 }
2299 
2300 static void mark_reg_not_init(struct bpf_verifier_env *env,
2301 			      struct bpf_reg_state *regs, u32 regno)
2302 {
2303 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2304 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2305 		/* Something bad happened, let's kill all regs except FP */
2306 		for (regno = 0; regno < BPF_REG_FP; regno++)
2307 			__mark_reg_not_init(env, regs + regno);
2308 		return;
2309 	}
2310 	__mark_reg_not_init(env, regs + regno);
2311 }
2312 
2313 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2314 			    struct bpf_reg_state *regs, u32 regno,
2315 			    enum bpf_reg_type reg_type,
2316 			    struct btf *btf, u32 btf_id,
2317 			    enum bpf_type_flag flag)
2318 {
2319 	if (reg_type == SCALAR_VALUE) {
2320 		mark_reg_unknown(env, regs, regno);
2321 		return;
2322 	}
2323 	mark_reg_known_zero(env, regs, regno);
2324 	regs[regno].type = PTR_TO_BTF_ID | flag;
2325 	regs[regno].btf = btf;
2326 	regs[regno].btf_id = btf_id;
2327 }
2328 
2329 #define DEF_NOT_SUBREG	(0)
2330 static void init_reg_state(struct bpf_verifier_env *env,
2331 			   struct bpf_func_state *state)
2332 {
2333 	struct bpf_reg_state *regs = state->regs;
2334 	int i;
2335 
2336 	for (i = 0; i < MAX_BPF_REG; i++) {
2337 		mark_reg_not_init(env, regs, i);
2338 		regs[i].live = REG_LIVE_NONE;
2339 		regs[i].parent = NULL;
2340 		regs[i].subreg_def = DEF_NOT_SUBREG;
2341 	}
2342 
2343 	/* frame pointer */
2344 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2345 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2346 	regs[BPF_REG_FP].frameno = state->frameno;
2347 }
2348 
2349 #define BPF_MAIN_FUNC (-1)
2350 static void init_func_state(struct bpf_verifier_env *env,
2351 			    struct bpf_func_state *state,
2352 			    int callsite, int frameno, int subprogno)
2353 {
2354 	state->callsite = callsite;
2355 	state->frameno = frameno;
2356 	state->subprogno = subprogno;
2357 	state->callback_ret_range = tnum_range(0, 0);
2358 	init_reg_state(env, state);
2359 	mark_verifier_state_scratched(env);
2360 }
2361 
2362 /* Similar to push_stack(), but for async callbacks */
2363 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2364 						int insn_idx, int prev_insn_idx,
2365 						int subprog)
2366 {
2367 	struct bpf_verifier_stack_elem *elem;
2368 	struct bpf_func_state *frame;
2369 
2370 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2371 	if (!elem)
2372 		goto err;
2373 
2374 	elem->insn_idx = insn_idx;
2375 	elem->prev_insn_idx = prev_insn_idx;
2376 	elem->next = env->head;
2377 	elem->log_pos = env->log.end_pos;
2378 	env->head = elem;
2379 	env->stack_size++;
2380 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2381 		verbose(env,
2382 			"The sequence of %d jumps is too complex for async cb.\n",
2383 			env->stack_size);
2384 		goto err;
2385 	}
2386 	/* Unlike push_stack() do not copy_verifier_state().
2387 	 * The caller state doesn't matter.
2388 	 * This is async callback. It starts in a fresh stack.
2389 	 * Initialize it similar to do_check_common().
2390 	 */
2391 	elem->st.branches = 1;
2392 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2393 	if (!frame)
2394 		goto err;
2395 	init_func_state(env, frame,
2396 			BPF_MAIN_FUNC /* callsite */,
2397 			0 /* frameno within this callchain */,
2398 			subprog /* subprog number within this prog */);
2399 	elem->st.frame[0] = frame;
2400 	return &elem->st;
2401 err:
2402 	free_verifier_state(env->cur_state, true);
2403 	env->cur_state = NULL;
2404 	/* pop all elements and return */
2405 	while (!pop_stack(env, NULL, NULL, false));
2406 	return NULL;
2407 }
2408 
2409 
2410 enum reg_arg_type {
2411 	SRC_OP,		/* register is used as source operand */
2412 	DST_OP,		/* register is used as destination operand */
2413 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2414 };
2415 
2416 static int cmp_subprogs(const void *a, const void *b)
2417 {
2418 	return ((struct bpf_subprog_info *)a)->start -
2419 	       ((struct bpf_subprog_info *)b)->start;
2420 }
2421 
2422 static int find_subprog(struct bpf_verifier_env *env, int off)
2423 {
2424 	struct bpf_subprog_info *p;
2425 
2426 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2427 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2428 	if (!p)
2429 		return -ENOENT;
2430 	return p - env->subprog_info;
2431 
2432 }
2433 
2434 static int add_subprog(struct bpf_verifier_env *env, int off)
2435 {
2436 	int insn_cnt = env->prog->len;
2437 	int ret;
2438 
2439 	if (off >= insn_cnt || off < 0) {
2440 		verbose(env, "call to invalid destination\n");
2441 		return -EINVAL;
2442 	}
2443 	ret = find_subprog(env, off);
2444 	if (ret >= 0)
2445 		return ret;
2446 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2447 		verbose(env, "too many subprograms\n");
2448 		return -E2BIG;
2449 	}
2450 	/* determine subprog starts. The end is one before the next starts */
2451 	env->subprog_info[env->subprog_cnt++].start = off;
2452 	sort(env->subprog_info, env->subprog_cnt,
2453 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2454 	return env->subprog_cnt - 1;
2455 }
2456 
2457 #define MAX_KFUNC_DESCS 256
2458 #define MAX_KFUNC_BTFS	256
2459 
2460 struct bpf_kfunc_desc {
2461 	struct btf_func_model func_model;
2462 	u32 func_id;
2463 	s32 imm;
2464 	u16 offset;
2465 	unsigned long addr;
2466 };
2467 
2468 struct bpf_kfunc_btf {
2469 	struct btf *btf;
2470 	struct module *module;
2471 	u16 offset;
2472 };
2473 
2474 struct bpf_kfunc_desc_tab {
2475 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2476 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2477 	 * available, therefore at the end of verification do_misc_fixups()
2478 	 * sorts this by imm and offset.
2479 	 */
2480 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2481 	u32 nr_descs;
2482 };
2483 
2484 struct bpf_kfunc_btf_tab {
2485 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2486 	u32 nr_descs;
2487 };
2488 
2489 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2490 {
2491 	const struct bpf_kfunc_desc *d0 = a;
2492 	const struct bpf_kfunc_desc *d1 = b;
2493 
2494 	/* func_id is not greater than BTF_MAX_TYPE */
2495 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2496 }
2497 
2498 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2499 {
2500 	const struct bpf_kfunc_btf *d0 = a;
2501 	const struct bpf_kfunc_btf *d1 = b;
2502 
2503 	return d0->offset - d1->offset;
2504 }
2505 
2506 static const struct bpf_kfunc_desc *
2507 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2508 {
2509 	struct bpf_kfunc_desc desc = {
2510 		.func_id = func_id,
2511 		.offset = offset,
2512 	};
2513 	struct bpf_kfunc_desc_tab *tab;
2514 
2515 	tab = prog->aux->kfunc_tab;
2516 	return bsearch(&desc, tab->descs, tab->nr_descs,
2517 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2518 }
2519 
2520 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2521 		       u16 btf_fd_idx, u8 **func_addr)
2522 {
2523 	const struct bpf_kfunc_desc *desc;
2524 
2525 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2526 	if (!desc)
2527 		return -EFAULT;
2528 
2529 	*func_addr = (u8 *)desc->addr;
2530 	return 0;
2531 }
2532 
2533 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2534 					 s16 offset)
2535 {
2536 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2537 	struct bpf_kfunc_btf_tab *tab;
2538 	struct bpf_kfunc_btf *b;
2539 	struct module *mod;
2540 	struct btf *btf;
2541 	int btf_fd;
2542 
2543 	tab = env->prog->aux->kfunc_btf_tab;
2544 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2545 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2546 	if (!b) {
2547 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2548 			verbose(env, "too many different module BTFs\n");
2549 			return ERR_PTR(-E2BIG);
2550 		}
2551 
2552 		if (bpfptr_is_null(env->fd_array)) {
2553 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2554 			return ERR_PTR(-EPROTO);
2555 		}
2556 
2557 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2558 					    offset * sizeof(btf_fd),
2559 					    sizeof(btf_fd)))
2560 			return ERR_PTR(-EFAULT);
2561 
2562 		btf = btf_get_by_fd(btf_fd);
2563 		if (IS_ERR(btf)) {
2564 			verbose(env, "invalid module BTF fd specified\n");
2565 			return btf;
2566 		}
2567 
2568 		if (!btf_is_module(btf)) {
2569 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2570 			btf_put(btf);
2571 			return ERR_PTR(-EINVAL);
2572 		}
2573 
2574 		mod = btf_try_get_module(btf);
2575 		if (!mod) {
2576 			btf_put(btf);
2577 			return ERR_PTR(-ENXIO);
2578 		}
2579 
2580 		b = &tab->descs[tab->nr_descs++];
2581 		b->btf = btf;
2582 		b->module = mod;
2583 		b->offset = offset;
2584 
2585 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2586 		     kfunc_btf_cmp_by_off, NULL);
2587 	}
2588 	return b->btf;
2589 }
2590 
2591 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2592 {
2593 	if (!tab)
2594 		return;
2595 
2596 	while (tab->nr_descs--) {
2597 		module_put(tab->descs[tab->nr_descs].module);
2598 		btf_put(tab->descs[tab->nr_descs].btf);
2599 	}
2600 	kfree(tab);
2601 }
2602 
2603 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2604 {
2605 	if (offset) {
2606 		if (offset < 0) {
2607 			/* In the future, this can be allowed to increase limit
2608 			 * of fd index into fd_array, interpreted as u16.
2609 			 */
2610 			verbose(env, "negative offset disallowed for kernel module function call\n");
2611 			return ERR_PTR(-EINVAL);
2612 		}
2613 
2614 		return __find_kfunc_desc_btf(env, offset);
2615 	}
2616 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2617 }
2618 
2619 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2620 {
2621 	const struct btf_type *func, *func_proto;
2622 	struct bpf_kfunc_btf_tab *btf_tab;
2623 	struct bpf_kfunc_desc_tab *tab;
2624 	struct bpf_prog_aux *prog_aux;
2625 	struct bpf_kfunc_desc *desc;
2626 	const char *func_name;
2627 	struct btf *desc_btf;
2628 	unsigned long call_imm;
2629 	unsigned long addr;
2630 	int err;
2631 
2632 	prog_aux = env->prog->aux;
2633 	tab = prog_aux->kfunc_tab;
2634 	btf_tab = prog_aux->kfunc_btf_tab;
2635 	if (!tab) {
2636 		if (!btf_vmlinux) {
2637 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2638 			return -ENOTSUPP;
2639 		}
2640 
2641 		if (!env->prog->jit_requested) {
2642 			verbose(env, "JIT is required for calling kernel function\n");
2643 			return -ENOTSUPP;
2644 		}
2645 
2646 		if (!bpf_jit_supports_kfunc_call()) {
2647 			verbose(env, "JIT does not support calling kernel function\n");
2648 			return -ENOTSUPP;
2649 		}
2650 
2651 		if (!env->prog->gpl_compatible) {
2652 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2653 			return -EINVAL;
2654 		}
2655 
2656 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2657 		if (!tab)
2658 			return -ENOMEM;
2659 		prog_aux->kfunc_tab = tab;
2660 	}
2661 
2662 	/* func_id == 0 is always invalid, but instead of returning an error, be
2663 	 * conservative and wait until the code elimination pass before returning
2664 	 * error, so that invalid calls that get pruned out can be in BPF programs
2665 	 * loaded from userspace.  It is also required that offset be untouched
2666 	 * for such calls.
2667 	 */
2668 	if (!func_id && !offset)
2669 		return 0;
2670 
2671 	if (!btf_tab && offset) {
2672 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2673 		if (!btf_tab)
2674 			return -ENOMEM;
2675 		prog_aux->kfunc_btf_tab = btf_tab;
2676 	}
2677 
2678 	desc_btf = find_kfunc_desc_btf(env, offset);
2679 	if (IS_ERR(desc_btf)) {
2680 		verbose(env, "failed to find BTF for kernel function\n");
2681 		return PTR_ERR(desc_btf);
2682 	}
2683 
2684 	if (find_kfunc_desc(env->prog, func_id, offset))
2685 		return 0;
2686 
2687 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2688 		verbose(env, "too many different kernel function calls\n");
2689 		return -E2BIG;
2690 	}
2691 
2692 	func = btf_type_by_id(desc_btf, func_id);
2693 	if (!func || !btf_type_is_func(func)) {
2694 		verbose(env, "kernel btf_id %u is not a function\n",
2695 			func_id);
2696 		return -EINVAL;
2697 	}
2698 	func_proto = btf_type_by_id(desc_btf, func->type);
2699 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2700 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2701 			func_id);
2702 		return -EINVAL;
2703 	}
2704 
2705 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2706 	addr = kallsyms_lookup_name(func_name);
2707 	if (!addr) {
2708 		verbose(env, "cannot find address for kernel function %s\n",
2709 			func_name);
2710 		return -EINVAL;
2711 	}
2712 	specialize_kfunc(env, func_id, offset, &addr);
2713 
2714 	if (bpf_jit_supports_far_kfunc_call()) {
2715 		call_imm = func_id;
2716 	} else {
2717 		call_imm = BPF_CALL_IMM(addr);
2718 		/* Check whether the relative offset overflows desc->imm */
2719 		if ((unsigned long)(s32)call_imm != call_imm) {
2720 			verbose(env, "address of kernel function %s is out of range\n",
2721 				func_name);
2722 			return -EINVAL;
2723 		}
2724 	}
2725 
2726 	if (bpf_dev_bound_kfunc_id(func_id)) {
2727 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2728 		if (err)
2729 			return err;
2730 	}
2731 
2732 	desc = &tab->descs[tab->nr_descs++];
2733 	desc->func_id = func_id;
2734 	desc->imm = call_imm;
2735 	desc->offset = offset;
2736 	desc->addr = addr;
2737 	err = btf_distill_func_proto(&env->log, desc_btf,
2738 				     func_proto, func_name,
2739 				     &desc->func_model);
2740 	if (!err)
2741 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2742 		     kfunc_desc_cmp_by_id_off, NULL);
2743 	return err;
2744 }
2745 
2746 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2747 {
2748 	const struct bpf_kfunc_desc *d0 = a;
2749 	const struct bpf_kfunc_desc *d1 = b;
2750 
2751 	if (d0->imm != d1->imm)
2752 		return d0->imm < d1->imm ? -1 : 1;
2753 	if (d0->offset != d1->offset)
2754 		return d0->offset < d1->offset ? -1 : 1;
2755 	return 0;
2756 }
2757 
2758 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2759 {
2760 	struct bpf_kfunc_desc_tab *tab;
2761 
2762 	tab = prog->aux->kfunc_tab;
2763 	if (!tab)
2764 		return;
2765 
2766 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2767 	     kfunc_desc_cmp_by_imm_off, NULL);
2768 }
2769 
2770 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2771 {
2772 	return !!prog->aux->kfunc_tab;
2773 }
2774 
2775 const struct btf_func_model *
2776 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2777 			 const struct bpf_insn *insn)
2778 {
2779 	const struct bpf_kfunc_desc desc = {
2780 		.imm = insn->imm,
2781 		.offset = insn->off,
2782 	};
2783 	const struct bpf_kfunc_desc *res;
2784 	struct bpf_kfunc_desc_tab *tab;
2785 
2786 	tab = prog->aux->kfunc_tab;
2787 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2788 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2789 
2790 	return res ? &res->func_model : NULL;
2791 }
2792 
2793 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2794 {
2795 	struct bpf_subprog_info *subprog = env->subprog_info;
2796 	struct bpf_insn *insn = env->prog->insnsi;
2797 	int i, ret, insn_cnt = env->prog->len;
2798 
2799 	/* Add entry function. */
2800 	ret = add_subprog(env, 0);
2801 	if (ret)
2802 		return ret;
2803 
2804 	for (i = 0; i < insn_cnt; i++, insn++) {
2805 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2806 		    !bpf_pseudo_kfunc_call(insn))
2807 			continue;
2808 
2809 		if (!env->bpf_capable) {
2810 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2811 			return -EPERM;
2812 		}
2813 
2814 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2815 			ret = add_subprog(env, i + insn->imm + 1);
2816 		else
2817 			ret = add_kfunc_call(env, insn->imm, insn->off);
2818 
2819 		if (ret < 0)
2820 			return ret;
2821 	}
2822 
2823 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2824 	 * logic. 'subprog_cnt' should not be increased.
2825 	 */
2826 	subprog[env->subprog_cnt].start = insn_cnt;
2827 
2828 	if (env->log.level & BPF_LOG_LEVEL2)
2829 		for (i = 0; i < env->subprog_cnt; i++)
2830 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2831 
2832 	return 0;
2833 }
2834 
2835 static int check_subprogs(struct bpf_verifier_env *env)
2836 {
2837 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2838 	struct bpf_subprog_info *subprog = env->subprog_info;
2839 	struct bpf_insn *insn = env->prog->insnsi;
2840 	int insn_cnt = env->prog->len;
2841 
2842 	/* now check that all jumps are within the same subprog */
2843 	subprog_start = subprog[cur_subprog].start;
2844 	subprog_end = subprog[cur_subprog + 1].start;
2845 	for (i = 0; i < insn_cnt; i++) {
2846 		u8 code = insn[i].code;
2847 
2848 		if (code == (BPF_JMP | BPF_CALL) &&
2849 		    insn[i].src_reg == 0 &&
2850 		    insn[i].imm == BPF_FUNC_tail_call)
2851 			subprog[cur_subprog].has_tail_call = true;
2852 		if (BPF_CLASS(code) == BPF_LD &&
2853 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2854 			subprog[cur_subprog].has_ld_abs = true;
2855 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2856 			goto next;
2857 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2858 			goto next;
2859 		if (code == (BPF_JMP32 | BPF_JA))
2860 			off = i + insn[i].imm + 1;
2861 		else
2862 			off = i + insn[i].off + 1;
2863 		if (off < subprog_start || off >= subprog_end) {
2864 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2865 			return -EINVAL;
2866 		}
2867 next:
2868 		if (i == subprog_end - 1) {
2869 			/* to avoid fall-through from one subprog into another
2870 			 * the last insn of the subprog should be either exit
2871 			 * or unconditional jump back
2872 			 */
2873 			if (code != (BPF_JMP | BPF_EXIT) &&
2874 			    code != (BPF_JMP32 | BPF_JA) &&
2875 			    code != (BPF_JMP | BPF_JA)) {
2876 				verbose(env, "last insn is not an exit or jmp\n");
2877 				return -EINVAL;
2878 			}
2879 			subprog_start = subprog_end;
2880 			cur_subprog++;
2881 			if (cur_subprog < env->subprog_cnt)
2882 				subprog_end = subprog[cur_subprog + 1].start;
2883 		}
2884 	}
2885 	return 0;
2886 }
2887 
2888 /* Parentage chain of this register (or stack slot) should take care of all
2889  * issues like callee-saved registers, stack slot allocation time, etc.
2890  */
2891 static int mark_reg_read(struct bpf_verifier_env *env,
2892 			 const struct bpf_reg_state *state,
2893 			 struct bpf_reg_state *parent, u8 flag)
2894 {
2895 	bool writes = parent == state->parent; /* Observe write marks */
2896 	int cnt = 0;
2897 
2898 	while (parent) {
2899 		/* if read wasn't screened by an earlier write ... */
2900 		if (writes && state->live & REG_LIVE_WRITTEN)
2901 			break;
2902 		if (parent->live & REG_LIVE_DONE) {
2903 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2904 				reg_type_str(env, parent->type),
2905 				parent->var_off.value, parent->off);
2906 			return -EFAULT;
2907 		}
2908 		/* The first condition is more likely to be true than the
2909 		 * second, checked it first.
2910 		 */
2911 		if ((parent->live & REG_LIVE_READ) == flag ||
2912 		    parent->live & REG_LIVE_READ64)
2913 			/* The parentage chain never changes and
2914 			 * this parent was already marked as LIVE_READ.
2915 			 * There is no need to keep walking the chain again and
2916 			 * keep re-marking all parents as LIVE_READ.
2917 			 * This case happens when the same register is read
2918 			 * multiple times without writes into it in-between.
2919 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2920 			 * then no need to set the weak REG_LIVE_READ32.
2921 			 */
2922 			break;
2923 		/* ... then we depend on parent's value */
2924 		parent->live |= flag;
2925 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2926 		if (flag == REG_LIVE_READ64)
2927 			parent->live &= ~REG_LIVE_READ32;
2928 		state = parent;
2929 		parent = state->parent;
2930 		writes = true;
2931 		cnt++;
2932 	}
2933 
2934 	if (env->longest_mark_read_walk < cnt)
2935 		env->longest_mark_read_walk = cnt;
2936 	return 0;
2937 }
2938 
2939 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2940 {
2941 	struct bpf_func_state *state = func(env, reg);
2942 	int spi, ret;
2943 
2944 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
2945 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2946 	 * check_kfunc_call.
2947 	 */
2948 	if (reg->type == CONST_PTR_TO_DYNPTR)
2949 		return 0;
2950 	spi = dynptr_get_spi(env, reg);
2951 	if (spi < 0)
2952 		return spi;
2953 	/* Caller ensures dynptr is valid and initialized, which means spi is in
2954 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2955 	 * read.
2956 	 */
2957 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2958 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2959 	if (ret)
2960 		return ret;
2961 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2962 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2963 }
2964 
2965 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2966 			  int spi, int nr_slots)
2967 {
2968 	struct bpf_func_state *state = func(env, reg);
2969 	int err, i;
2970 
2971 	for (i = 0; i < nr_slots; i++) {
2972 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2973 
2974 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2975 		if (err)
2976 			return err;
2977 
2978 		mark_stack_slot_scratched(env, spi - i);
2979 	}
2980 
2981 	return 0;
2982 }
2983 
2984 /* This function is supposed to be used by the following 32-bit optimization
2985  * code only. It returns TRUE if the source or destination register operates
2986  * on 64-bit, otherwise return FALSE.
2987  */
2988 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2989 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2990 {
2991 	u8 code, class, op;
2992 
2993 	code = insn->code;
2994 	class = BPF_CLASS(code);
2995 	op = BPF_OP(code);
2996 	if (class == BPF_JMP) {
2997 		/* BPF_EXIT for "main" will reach here. Return TRUE
2998 		 * conservatively.
2999 		 */
3000 		if (op == BPF_EXIT)
3001 			return true;
3002 		if (op == BPF_CALL) {
3003 			/* BPF to BPF call will reach here because of marking
3004 			 * caller saved clobber with DST_OP_NO_MARK for which we
3005 			 * don't care the register def because they are anyway
3006 			 * marked as NOT_INIT already.
3007 			 */
3008 			if (insn->src_reg == BPF_PSEUDO_CALL)
3009 				return false;
3010 			/* Helper call will reach here because of arg type
3011 			 * check, conservatively return TRUE.
3012 			 */
3013 			if (t == SRC_OP)
3014 				return true;
3015 
3016 			return false;
3017 		}
3018 	}
3019 
3020 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3021 		return false;
3022 
3023 	if (class == BPF_ALU64 || class == BPF_JMP ||
3024 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3025 		return true;
3026 
3027 	if (class == BPF_ALU || class == BPF_JMP32)
3028 		return false;
3029 
3030 	if (class == BPF_LDX) {
3031 		if (t != SRC_OP)
3032 			return BPF_SIZE(code) == BPF_DW;
3033 		/* LDX source must be ptr. */
3034 		return true;
3035 	}
3036 
3037 	if (class == BPF_STX) {
3038 		/* BPF_STX (including atomic variants) has multiple source
3039 		 * operands, one of which is a ptr. Check whether the caller is
3040 		 * asking about it.
3041 		 */
3042 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3043 			return true;
3044 		return BPF_SIZE(code) == BPF_DW;
3045 	}
3046 
3047 	if (class == BPF_LD) {
3048 		u8 mode = BPF_MODE(code);
3049 
3050 		/* LD_IMM64 */
3051 		if (mode == BPF_IMM)
3052 			return true;
3053 
3054 		/* Both LD_IND and LD_ABS return 32-bit data. */
3055 		if (t != SRC_OP)
3056 			return  false;
3057 
3058 		/* Implicit ctx ptr. */
3059 		if (regno == BPF_REG_6)
3060 			return true;
3061 
3062 		/* Explicit source could be any width. */
3063 		return true;
3064 	}
3065 
3066 	if (class == BPF_ST)
3067 		/* The only source register for BPF_ST is a ptr. */
3068 		return true;
3069 
3070 	/* Conservatively return true at default. */
3071 	return true;
3072 }
3073 
3074 /* Return the regno defined by the insn, or -1. */
3075 static int insn_def_regno(const struct bpf_insn *insn)
3076 {
3077 	switch (BPF_CLASS(insn->code)) {
3078 	case BPF_JMP:
3079 	case BPF_JMP32:
3080 	case BPF_ST:
3081 		return -1;
3082 	case BPF_STX:
3083 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3084 		    (insn->imm & BPF_FETCH)) {
3085 			if (insn->imm == BPF_CMPXCHG)
3086 				return BPF_REG_0;
3087 			else
3088 				return insn->src_reg;
3089 		} else {
3090 			return -1;
3091 		}
3092 	default:
3093 		return insn->dst_reg;
3094 	}
3095 }
3096 
3097 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3098 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3099 {
3100 	int dst_reg = insn_def_regno(insn);
3101 
3102 	if (dst_reg == -1)
3103 		return false;
3104 
3105 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3106 }
3107 
3108 static void mark_insn_zext(struct bpf_verifier_env *env,
3109 			   struct bpf_reg_state *reg)
3110 {
3111 	s32 def_idx = reg->subreg_def;
3112 
3113 	if (def_idx == DEF_NOT_SUBREG)
3114 		return;
3115 
3116 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3117 	/* The dst will be zero extended, so won't be sub-register anymore. */
3118 	reg->subreg_def = DEF_NOT_SUBREG;
3119 }
3120 
3121 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3122 			 enum reg_arg_type t)
3123 {
3124 	struct bpf_verifier_state *vstate = env->cur_state;
3125 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3126 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3127 	struct bpf_reg_state *reg, *regs = state->regs;
3128 	bool rw64;
3129 
3130 	if (regno >= MAX_BPF_REG) {
3131 		verbose(env, "R%d is invalid\n", regno);
3132 		return -EINVAL;
3133 	}
3134 
3135 	mark_reg_scratched(env, regno);
3136 
3137 	reg = &regs[regno];
3138 	rw64 = is_reg64(env, insn, regno, reg, t);
3139 	if (t == SRC_OP) {
3140 		/* check whether register used as source operand can be read */
3141 		if (reg->type == NOT_INIT) {
3142 			verbose(env, "R%d !read_ok\n", regno);
3143 			return -EACCES;
3144 		}
3145 		/* We don't need to worry about FP liveness because it's read-only */
3146 		if (regno == BPF_REG_FP)
3147 			return 0;
3148 
3149 		if (rw64)
3150 			mark_insn_zext(env, reg);
3151 
3152 		return mark_reg_read(env, reg, reg->parent,
3153 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3154 	} else {
3155 		/* check whether register used as dest operand can be written to */
3156 		if (regno == BPF_REG_FP) {
3157 			verbose(env, "frame pointer is read only\n");
3158 			return -EACCES;
3159 		}
3160 		reg->live |= REG_LIVE_WRITTEN;
3161 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3162 		if (t == DST_OP)
3163 			mark_reg_unknown(env, regs, regno);
3164 	}
3165 	return 0;
3166 }
3167 
3168 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3169 {
3170 	env->insn_aux_data[idx].jmp_point = true;
3171 }
3172 
3173 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3174 {
3175 	return env->insn_aux_data[insn_idx].jmp_point;
3176 }
3177 
3178 /* for any branch, call, exit record the history of jmps in the given state */
3179 static int push_jmp_history(struct bpf_verifier_env *env,
3180 			    struct bpf_verifier_state *cur)
3181 {
3182 	u32 cnt = cur->jmp_history_cnt;
3183 	struct bpf_idx_pair *p;
3184 	size_t alloc_size;
3185 
3186 	if (!is_jmp_point(env, env->insn_idx))
3187 		return 0;
3188 
3189 	cnt++;
3190 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3191 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3192 	if (!p)
3193 		return -ENOMEM;
3194 	p[cnt - 1].idx = env->insn_idx;
3195 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3196 	cur->jmp_history = p;
3197 	cur->jmp_history_cnt = cnt;
3198 	return 0;
3199 }
3200 
3201 /* Backtrack one insn at a time. If idx is not at the top of recorded
3202  * history then previous instruction came from straight line execution.
3203  */
3204 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3205 			     u32 *history)
3206 {
3207 	u32 cnt = *history;
3208 
3209 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3210 		i = st->jmp_history[cnt - 1].prev_idx;
3211 		(*history)--;
3212 	} else {
3213 		i--;
3214 	}
3215 	return i;
3216 }
3217 
3218 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3219 {
3220 	const struct btf_type *func;
3221 	struct btf *desc_btf;
3222 
3223 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3224 		return NULL;
3225 
3226 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3227 	if (IS_ERR(desc_btf))
3228 		return "<error>";
3229 
3230 	func = btf_type_by_id(desc_btf, insn->imm);
3231 	return btf_name_by_offset(desc_btf, func->name_off);
3232 }
3233 
3234 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3235 {
3236 	bt->frame = frame;
3237 }
3238 
3239 static inline void bt_reset(struct backtrack_state *bt)
3240 {
3241 	struct bpf_verifier_env *env = bt->env;
3242 
3243 	memset(bt, 0, sizeof(*bt));
3244 	bt->env = env;
3245 }
3246 
3247 static inline u32 bt_empty(struct backtrack_state *bt)
3248 {
3249 	u64 mask = 0;
3250 	int i;
3251 
3252 	for (i = 0; i <= bt->frame; i++)
3253 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3254 
3255 	return mask == 0;
3256 }
3257 
3258 static inline int bt_subprog_enter(struct backtrack_state *bt)
3259 {
3260 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3261 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3262 		WARN_ONCE(1, "verifier backtracking bug");
3263 		return -EFAULT;
3264 	}
3265 	bt->frame++;
3266 	return 0;
3267 }
3268 
3269 static inline int bt_subprog_exit(struct backtrack_state *bt)
3270 {
3271 	if (bt->frame == 0) {
3272 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3273 		WARN_ONCE(1, "verifier backtracking bug");
3274 		return -EFAULT;
3275 	}
3276 	bt->frame--;
3277 	return 0;
3278 }
3279 
3280 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3281 {
3282 	bt->reg_masks[frame] |= 1 << reg;
3283 }
3284 
3285 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3286 {
3287 	bt->reg_masks[frame] &= ~(1 << reg);
3288 }
3289 
3290 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3291 {
3292 	bt_set_frame_reg(bt, bt->frame, reg);
3293 }
3294 
3295 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3296 {
3297 	bt_clear_frame_reg(bt, bt->frame, reg);
3298 }
3299 
3300 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3301 {
3302 	bt->stack_masks[frame] |= 1ull << slot;
3303 }
3304 
3305 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3306 {
3307 	bt->stack_masks[frame] &= ~(1ull << slot);
3308 }
3309 
3310 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3311 {
3312 	bt_set_frame_slot(bt, bt->frame, slot);
3313 }
3314 
3315 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3316 {
3317 	bt_clear_frame_slot(bt, bt->frame, slot);
3318 }
3319 
3320 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3321 {
3322 	return bt->reg_masks[frame];
3323 }
3324 
3325 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3326 {
3327 	return bt->reg_masks[bt->frame];
3328 }
3329 
3330 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3331 {
3332 	return bt->stack_masks[frame];
3333 }
3334 
3335 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3336 {
3337 	return bt->stack_masks[bt->frame];
3338 }
3339 
3340 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3341 {
3342 	return bt->reg_masks[bt->frame] & (1 << reg);
3343 }
3344 
3345 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3346 {
3347 	return bt->stack_masks[bt->frame] & (1ull << slot);
3348 }
3349 
3350 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3351 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3352 {
3353 	DECLARE_BITMAP(mask, 64);
3354 	bool first = true;
3355 	int i, n;
3356 
3357 	buf[0] = '\0';
3358 
3359 	bitmap_from_u64(mask, reg_mask);
3360 	for_each_set_bit(i, mask, 32) {
3361 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3362 		first = false;
3363 		buf += n;
3364 		buf_sz -= n;
3365 		if (buf_sz < 0)
3366 			break;
3367 	}
3368 }
3369 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3370 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3371 {
3372 	DECLARE_BITMAP(mask, 64);
3373 	bool first = true;
3374 	int i, n;
3375 
3376 	buf[0] = '\0';
3377 
3378 	bitmap_from_u64(mask, stack_mask);
3379 	for_each_set_bit(i, mask, 64) {
3380 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3381 		first = false;
3382 		buf += n;
3383 		buf_sz -= n;
3384 		if (buf_sz < 0)
3385 			break;
3386 	}
3387 }
3388 
3389 /* For given verifier state backtrack_insn() is called from the last insn to
3390  * the first insn. Its purpose is to compute a bitmask of registers and
3391  * stack slots that needs precision in the parent verifier state.
3392  *
3393  * @idx is an index of the instruction we are currently processing;
3394  * @subseq_idx is an index of the subsequent instruction that:
3395  *   - *would be* executed next, if jump history is viewed in forward order;
3396  *   - *was* processed previously during backtracking.
3397  */
3398 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3399 			  struct backtrack_state *bt)
3400 {
3401 	const struct bpf_insn_cbs cbs = {
3402 		.cb_call	= disasm_kfunc_name,
3403 		.cb_print	= verbose,
3404 		.private_data	= env,
3405 	};
3406 	struct bpf_insn *insn = env->prog->insnsi + idx;
3407 	u8 class = BPF_CLASS(insn->code);
3408 	u8 opcode = BPF_OP(insn->code);
3409 	u8 mode = BPF_MODE(insn->code);
3410 	u32 dreg = insn->dst_reg;
3411 	u32 sreg = insn->src_reg;
3412 	u32 spi, i;
3413 
3414 	if (insn->code == 0)
3415 		return 0;
3416 	if (env->log.level & BPF_LOG_LEVEL2) {
3417 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3418 		verbose(env, "mark_precise: frame%d: regs=%s ",
3419 			bt->frame, env->tmp_str_buf);
3420 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3421 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3422 		verbose(env, "%d: ", idx);
3423 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3424 	}
3425 
3426 	if (class == BPF_ALU || class == BPF_ALU64) {
3427 		if (!bt_is_reg_set(bt, dreg))
3428 			return 0;
3429 		if (opcode == BPF_MOV) {
3430 			if (BPF_SRC(insn->code) == BPF_X) {
3431 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3432 				 * dreg needs precision after this insn
3433 				 * sreg needs precision before this insn
3434 				 */
3435 				bt_clear_reg(bt, dreg);
3436 				bt_set_reg(bt, sreg);
3437 			} else {
3438 				/* dreg = K
3439 				 * dreg needs precision after this insn.
3440 				 * Corresponding register is already marked
3441 				 * as precise=true in this verifier state.
3442 				 * No further markings in parent are necessary
3443 				 */
3444 				bt_clear_reg(bt, dreg);
3445 			}
3446 		} else {
3447 			if (BPF_SRC(insn->code) == BPF_X) {
3448 				/* dreg += sreg
3449 				 * both dreg and sreg need precision
3450 				 * before this insn
3451 				 */
3452 				bt_set_reg(bt, sreg);
3453 			} /* else dreg += K
3454 			   * dreg still needs precision before this insn
3455 			   */
3456 		}
3457 	} else if (class == BPF_LDX) {
3458 		if (!bt_is_reg_set(bt, dreg))
3459 			return 0;
3460 		bt_clear_reg(bt, dreg);
3461 
3462 		/* scalars can only be spilled into stack w/o losing precision.
3463 		 * Load from any other memory can be zero extended.
3464 		 * The desire to keep that precision is already indicated
3465 		 * by 'precise' mark in corresponding register of this state.
3466 		 * No further tracking necessary.
3467 		 */
3468 		if (insn->src_reg != BPF_REG_FP)
3469 			return 0;
3470 
3471 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3472 		 * that [fp - off] slot contains scalar that needs to be
3473 		 * tracked with precision
3474 		 */
3475 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3476 		if (spi >= 64) {
3477 			verbose(env, "BUG spi %d\n", spi);
3478 			WARN_ONCE(1, "verifier backtracking bug");
3479 			return -EFAULT;
3480 		}
3481 		bt_set_slot(bt, spi);
3482 	} else if (class == BPF_STX || class == BPF_ST) {
3483 		if (bt_is_reg_set(bt, dreg))
3484 			/* stx & st shouldn't be using _scalar_ dst_reg
3485 			 * to access memory. It means backtracking
3486 			 * encountered a case of pointer subtraction.
3487 			 */
3488 			return -ENOTSUPP;
3489 		/* scalars can only be spilled into stack */
3490 		if (insn->dst_reg != BPF_REG_FP)
3491 			return 0;
3492 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3493 		if (spi >= 64) {
3494 			verbose(env, "BUG spi %d\n", spi);
3495 			WARN_ONCE(1, "verifier backtracking bug");
3496 			return -EFAULT;
3497 		}
3498 		if (!bt_is_slot_set(bt, spi))
3499 			return 0;
3500 		bt_clear_slot(bt, spi);
3501 		if (class == BPF_STX)
3502 			bt_set_reg(bt, sreg);
3503 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3504 		if (bpf_pseudo_call(insn)) {
3505 			int subprog_insn_idx, subprog;
3506 
3507 			subprog_insn_idx = idx + insn->imm + 1;
3508 			subprog = find_subprog(env, subprog_insn_idx);
3509 			if (subprog < 0)
3510 				return -EFAULT;
3511 
3512 			if (subprog_is_global(env, subprog)) {
3513 				/* check that jump history doesn't have any
3514 				 * extra instructions from subprog; the next
3515 				 * instruction after call to global subprog
3516 				 * should be literally next instruction in
3517 				 * caller program
3518 				 */
3519 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3520 				/* r1-r5 are invalidated after subprog call,
3521 				 * so for global func call it shouldn't be set
3522 				 * anymore
3523 				 */
3524 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3525 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3526 					WARN_ONCE(1, "verifier backtracking bug");
3527 					return -EFAULT;
3528 				}
3529 				/* global subprog always sets R0 */
3530 				bt_clear_reg(bt, BPF_REG_0);
3531 				return 0;
3532 			} else {
3533 				/* static subprog call instruction, which
3534 				 * means that we are exiting current subprog,
3535 				 * so only r1-r5 could be still requested as
3536 				 * precise, r0 and r6-r10 or any stack slot in
3537 				 * the current frame should be zero by now
3538 				 */
3539 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3540 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3541 					WARN_ONCE(1, "verifier backtracking bug");
3542 					return -EFAULT;
3543 				}
3544 				/* we don't track register spills perfectly,
3545 				 * so fallback to force-precise instead of failing */
3546 				if (bt_stack_mask(bt) != 0)
3547 					return -ENOTSUPP;
3548 				/* propagate r1-r5 to the caller */
3549 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3550 					if (bt_is_reg_set(bt, i)) {
3551 						bt_clear_reg(bt, i);
3552 						bt_set_frame_reg(bt, bt->frame - 1, i);
3553 					}
3554 				}
3555 				if (bt_subprog_exit(bt))
3556 					return -EFAULT;
3557 				return 0;
3558 			}
3559 		} else if ((bpf_helper_call(insn) &&
3560 			    is_callback_calling_function(insn->imm) &&
3561 			    !is_async_callback_calling_function(insn->imm)) ||
3562 			   (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3563 			/* callback-calling helper or kfunc call, which means
3564 			 * we are exiting from subprog, but unlike the subprog
3565 			 * call handling above, we shouldn't propagate
3566 			 * precision of r1-r5 (if any requested), as they are
3567 			 * not actually arguments passed directly to callback
3568 			 * subprogs
3569 			 */
3570 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3571 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3572 				WARN_ONCE(1, "verifier backtracking bug");
3573 				return -EFAULT;
3574 			}
3575 			if (bt_stack_mask(bt) != 0)
3576 				return -ENOTSUPP;
3577 			/* clear r1-r5 in callback subprog's mask */
3578 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3579 				bt_clear_reg(bt, i);
3580 			if (bt_subprog_exit(bt))
3581 				return -EFAULT;
3582 			return 0;
3583 		} else if (opcode == BPF_CALL) {
3584 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3585 			 * catch this error later. Make backtracking conservative
3586 			 * with ENOTSUPP.
3587 			 */
3588 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3589 				return -ENOTSUPP;
3590 			/* regular helper call sets R0 */
3591 			bt_clear_reg(bt, BPF_REG_0);
3592 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3593 				/* if backtracing was looking for registers R1-R5
3594 				 * they should have been found already.
3595 				 */
3596 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3597 				WARN_ONCE(1, "verifier backtracking bug");
3598 				return -EFAULT;
3599 			}
3600 		} else if (opcode == BPF_EXIT) {
3601 			bool r0_precise;
3602 
3603 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3604 				/* if backtracing was looking for registers R1-R5
3605 				 * they should have been found already.
3606 				 */
3607 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3608 				WARN_ONCE(1, "verifier backtracking bug");
3609 				return -EFAULT;
3610 			}
3611 
3612 			/* BPF_EXIT in subprog or callback always returns
3613 			 * right after the call instruction, so by checking
3614 			 * whether the instruction at subseq_idx-1 is subprog
3615 			 * call or not we can distinguish actual exit from
3616 			 * *subprog* from exit from *callback*. In the former
3617 			 * case, we need to propagate r0 precision, if
3618 			 * necessary. In the former we never do that.
3619 			 */
3620 			r0_precise = subseq_idx - 1 >= 0 &&
3621 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3622 				     bt_is_reg_set(bt, BPF_REG_0);
3623 
3624 			bt_clear_reg(bt, BPF_REG_0);
3625 			if (bt_subprog_enter(bt))
3626 				return -EFAULT;
3627 
3628 			if (r0_precise)
3629 				bt_set_reg(bt, BPF_REG_0);
3630 			/* r6-r9 and stack slots will stay set in caller frame
3631 			 * bitmasks until we return back from callee(s)
3632 			 */
3633 			return 0;
3634 		} else if (BPF_SRC(insn->code) == BPF_X) {
3635 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3636 				return 0;
3637 			/* dreg <cond> sreg
3638 			 * Both dreg and sreg need precision before
3639 			 * this insn. If only sreg was marked precise
3640 			 * before it would be equally necessary to
3641 			 * propagate it to dreg.
3642 			 */
3643 			bt_set_reg(bt, dreg);
3644 			bt_set_reg(bt, sreg);
3645 			 /* else dreg <cond> K
3646 			  * Only dreg still needs precision before
3647 			  * this insn, so for the K-based conditional
3648 			  * there is nothing new to be marked.
3649 			  */
3650 		}
3651 	} else if (class == BPF_LD) {
3652 		if (!bt_is_reg_set(bt, dreg))
3653 			return 0;
3654 		bt_clear_reg(bt, dreg);
3655 		/* It's ld_imm64 or ld_abs or ld_ind.
3656 		 * For ld_imm64 no further tracking of precision
3657 		 * into parent is necessary
3658 		 */
3659 		if (mode == BPF_IND || mode == BPF_ABS)
3660 			/* to be analyzed */
3661 			return -ENOTSUPP;
3662 	}
3663 	return 0;
3664 }
3665 
3666 /* the scalar precision tracking algorithm:
3667  * . at the start all registers have precise=false.
3668  * . scalar ranges are tracked as normal through alu and jmp insns.
3669  * . once precise value of the scalar register is used in:
3670  *   .  ptr + scalar alu
3671  *   . if (scalar cond K|scalar)
3672  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3673  *   backtrack through the verifier states and mark all registers and
3674  *   stack slots with spilled constants that these scalar regisers
3675  *   should be precise.
3676  * . during state pruning two registers (or spilled stack slots)
3677  *   are equivalent if both are not precise.
3678  *
3679  * Note the verifier cannot simply walk register parentage chain,
3680  * since many different registers and stack slots could have been
3681  * used to compute single precise scalar.
3682  *
3683  * The approach of starting with precise=true for all registers and then
3684  * backtrack to mark a register as not precise when the verifier detects
3685  * that program doesn't care about specific value (e.g., when helper
3686  * takes register as ARG_ANYTHING parameter) is not safe.
3687  *
3688  * It's ok to walk single parentage chain of the verifier states.
3689  * It's possible that this backtracking will go all the way till 1st insn.
3690  * All other branches will be explored for needing precision later.
3691  *
3692  * The backtracking needs to deal with cases like:
3693  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3694  * r9 -= r8
3695  * r5 = r9
3696  * if r5 > 0x79f goto pc+7
3697  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3698  * r5 += 1
3699  * ...
3700  * call bpf_perf_event_output#25
3701  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3702  *
3703  * and this case:
3704  * r6 = 1
3705  * call foo // uses callee's r6 inside to compute r0
3706  * r0 += r6
3707  * if r0 == 0 goto
3708  *
3709  * to track above reg_mask/stack_mask needs to be independent for each frame.
3710  *
3711  * Also if parent's curframe > frame where backtracking started,
3712  * the verifier need to mark registers in both frames, otherwise callees
3713  * may incorrectly prune callers. This is similar to
3714  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3715  *
3716  * For now backtracking falls back into conservative marking.
3717  */
3718 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3719 				     struct bpf_verifier_state *st)
3720 {
3721 	struct bpf_func_state *func;
3722 	struct bpf_reg_state *reg;
3723 	int i, j;
3724 
3725 	if (env->log.level & BPF_LOG_LEVEL2) {
3726 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3727 			st->curframe);
3728 	}
3729 
3730 	/* big hammer: mark all scalars precise in this path.
3731 	 * pop_stack may still get !precise scalars.
3732 	 * We also skip current state and go straight to first parent state,
3733 	 * because precision markings in current non-checkpointed state are
3734 	 * not needed. See why in the comment in __mark_chain_precision below.
3735 	 */
3736 	for (st = st->parent; st; st = st->parent) {
3737 		for (i = 0; i <= st->curframe; i++) {
3738 			func = st->frame[i];
3739 			for (j = 0; j < BPF_REG_FP; j++) {
3740 				reg = &func->regs[j];
3741 				if (reg->type != SCALAR_VALUE || reg->precise)
3742 					continue;
3743 				reg->precise = true;
3744 				if (env->log.level & BPF_LOG_LEVEL2) {
3745 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3746 						i, j);
3747 				}
3748 			}
3749 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3750 				if (!is_spilled_reg(&func->stack[j]))
3751 					continue;
3752 				reg = &func->stack[j].spilled_ptr;
3753 				if (reg->type != SCALAR_VALUE || reg->precise)
3754 					continue;
3755 				reg->precise = true;
3756 				if (env->log.level & BPF_LOG_LEVEL2) {
3757 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3758 						i, -(j + 1) * 8);
3759 				}
3760 			}
3761 		}
3762 	}
3763 }
3764 
3765 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3766 {
3767 	struct bpf_func_state *func;
3768 	struct bpf_reg_state *reg;
3769 	int i, j;
3770 
3771 	for (i = 0; i <= st->curframe; i++) {
3772 		func = st->frame[i];
3773 		for (j = 0; j < BPF_REG_FP; j++) {
3774 			reg = &func->regs[j];
3775 			if (reg->type != SCALAR_VALUE)
3776 				continue;
3777 			reg->precise = false;
3778 		}
3779 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3780 			if (!is_spilled_reg(&func->stack[j]))
3781 				continue;
3782 			reg = &func->stack[j].spilled_ptr;
3783 			if (reg->type != SCALAR_VALUE)
3784 				continue;
3785 			reg->precise = false;
3786 		}
3787 	}
3788 }
3789 
3790 static bool idset_contains(struct bpf_idset *s, u32 id)
3791 {
3792 	u32 i;
3793 
3794 	for (i = 0; i < s->count; ++i)
3795 		if (s->ids[i] == id)
3796 			return true;
3797 
3798 	return false;
3799 }
3800 
3801 static int idset_push(struct bpf_idset *s, u32 id)
3802 {
3803 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3804 		return -EFAULT;
3805 	s->ids[s->count++] = id;
3806 	return 0;
3807 }
3808 
3809 static void idset_reset(struct bpf_idset *s)
3810 {
3811 	s->count = 0;
3812 }
3813 
3814 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3815  * Mark all registers with these IDs as precise.
3816  */
3817 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3818 {
3819 	struct bpf_idset *precise_ids = &env->idset_scratch;
3820 	struct backtrack_state *bt = &env->bt;
3821 	struct bpf_func_state *func;
3822 	struct bpf_reg_state *reg;
3823 	DECLARE_BITMAP(mask, 64);
3824 	int i, fr;
3825 
3826 	idset_reset(precise_ids);
3827 
3828 	for (fr = bt->frame; fr >= 0; fr--) {
3829 		func = st->frame[fr];
3830 
3831 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3832 		for_each_set_bit(i, mask, 32) {
3833 			reg = &func->regs[i];
3834 			if (!reg->id || reg->type != SCALAR_VALUE)
3835 				continue;
3836 			if (idset_push(precise_ids, reg->id))
3837 				return -EFAULT;
3838 		}
3839 
3840 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3841 		for_each_set_bit(i, mask, 64) {
3842 			if (i >= func->allocated_stack / BPF_REG_SIZE)
3843 				break;
3844 			if (!is_spilled_scalar_reg(&func->stack[i]))
3845 				continue;
3846 			reg = &func->stack[i].spilled_ptr;
3847 			if (!reg->id)
3848 				continue;
3849 			if (idset_push(precise_ids, reg->id))
3850 				return -EFAULT;
3851 		}
3852 	}
3853 
3854 	for (fr = 0; fr <= st->curframe; ++fr) {
3855 		func = st->frame[fr];
3856 
3857 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
3858 			reg = &func->regs[i];
3859 			if (!reg->id)
3860 				continue;
3861 			if (!idset_contains(precise_ids, reg->id))
3862 				continue;
3863 			bt_set_frame_reg(bt, fr, i);
3864 		}
3865 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
3866 			if (!is_spilled_scalar_reg(&func->stack[i]))
3867 				continue;
3868 			reg = &func->stack[i].spilled_ptr;
3869 			if (!reg->id)
3870 				continue;
3871 			if (!idset_contains(precise_ids, reg->id))
3872 				continue;
3873 			bt_set_frame_slot(bt, fr, i);
3874 		}
3875 	}
3876 
3877 	return 0;
3878 }
3879 
3880 /*
3881  * __mark_chain_precision() backtracks BPF program instruction sequence and
3882  * chain of verifier states making sure that register *regno* (if regno >= 0)
3883  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3884  * SCALARS, as well as any other registers and slots that contribute to
3885  * a tracked state of given registers/stack slots, depending on specific BPF
3886  * assembly instructions (see backtrack_insns() for exact instruction handling
3887  * logic). This backtracking relies on recorded jmp_history and is able to
3888  * traverse entire chain of parent states. This process ends only when all the
3889  * necessary registers/slots and their transitive dependencies are marked as
3890  * precise.
3891  *
3892  * One important and subtle aspect is that precise marks *do not matter* in
3893  * the currently verified state (current state). It is important to understand
3894  * why this is the case.
3895  *
3896  * First, note that current state is the state that is not yet "checkpointed",
3897  * i.e., it is not yet put into env->explored_states, and it has no children
3898  * states as well. It's ephemeral, and can end up either a) being discarded if
3899  * compatible explored state is found at some point or BPF_EXIT instruction is
3900  * reached or b) checkpointed and put into env->explored_states, branching out
3901  * into one or more children states.
3902  *
3903  * In the former case, precise markings in current state are completely
3904  * ignored by state comparison code (see regsafe() for details). Only
3905  * checkpointed ("old") state precise markings are important, and if old
3906  * state's register/slot is precise, regsafe() assumes current state's
3907  * register/slot as precise and checks value ranges exactly and precisely. If
3908  * states turn out to be compatible, current state's necessary precise
3909  * markings and any required parent states' precise markings are enforced
3910  * after the fact with propagate_precision() logic, after the fact. But it's
3911  * important to realize that in this case, even after marking current state
3912  * registers/slots as precise, we immediately discard current state. So what
3913  * actually matters is any of the precise markings propagated into current
3914  * state's parent states, which are always checkpointed (due to b) case above).
3915  * As such, for scenario a) it doesn't matter if current state has precise
3916  * markings set or not.
3917  *
3918  * Now, for the scenario b), checkpointing and forking into child(ren)
3919  * state(s). Note that before current state gets to checkpointing step, any
3920  * processed instruction always assumes precise SCALAR register/slot
3921  * knowledge: if precise value or range is useful to prune jump branch, BPF
3922  * verifier takes this opportunity enthusiastically. Similarly, when
3923  * register's value is used to calculate offset or memory address, exact
3924  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3925  * what we mentioned above about state comparison ignoring precise markings
3926  * during state comparison, BPF verifier ignores and also assumes precise
3927  * markings *at will* during instruction verification process. But as verifier
3928  * assumes precision, it also propagates any precision dependencies across
3929  * parent states, which are not yet finalized, so can be further restricted
3930  * based on new knowledge gained from restrictions enforced by their children
3931  * states. This is so that once those parent states are finalized, i.e., when
3932  * they have no more active children state, state comparison logic in
3933  * is_state_visited() would enforce strict and precise SCALAR ranges, if
3934  * required for correctness.
3935  *
3936  * To build a bit more intuition, note also that once a state is checkpointed,
3937  * the path we took to get to that state is not important. This is crucial
3938  * property for state pruning. When state is checkpointed and finalized at
3939  * some instruction index, it can be correctly and safely used to "short
3940  * circuit" any *compatible* state that reaches exactly the same instruction
3941  * index. I.e., if we jumped to that instruction from a completely different
3942  * code path than original finalized state was derived from, it doesn't
3943  * matter, current state can be discarded because from that instruction
3944  * forward having a compatible state will ensure we will safely reach the
3945  * exit. States describe preconditions for further exploration, but completely
3946  * forget the history of how we got here.
3947  *
3948  * This also means that even if we needed precise SCALAR range to get to
3949  * finalized state, but from that point forward *that same* SCALAR register is
3950  * never used in a precise context (i.e., it's precise value is not needed for
3951  * correctness), it's correct and safe to mark such register as "imprecise"
3952  * (i.e., precise marking set to false). This is what we rely on when we do
3953  * not set precise marking in current state. If no child state requires
3954  * precision for any given SCALAR register, it's safe to dictate that it can
3955  * be imprecise. If any child state does require this register to be precise,
3956  * we'll mark it precise later retroactively during precise markings
3957  * propagation from child state to parent states.
3958  *
3959  * Skipping precise marking setting in current state is a mild version of
3960  * relying on the above observation. But we can utilize this property even
3961  * more aggressively by proactively forgetting any precise marking in the
3962  * current state (which we inherited from the parent state), right before we
3963  * checkpoint it and branch off into new child state. This is done by
3964  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3965  * finalized states which help in short circuiting more future states.
3966  */
3967 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
3968 {
3969 	struct backtrack_state *bt = &env->bt;
3970 	struct bpf_verifier_state *st = env->cur_state;
3971 	int first_idx = st->first_insn_idx;
3972 	int last_idx = env->insn_idx;
3973 	int subseq_idx = -1;
3974 	struct bpf_func_state *func;
3975 	struct bpf_reg_state *reg;
3976 	bool skip_first = true;
3977 	int i, fr, err;
3978 
3979 	if (!env->bpf_capable)
3980 		return 0;
3981 
3982 	/* set frame number from which we are starting to backtrack */
3983 	bt_init(bt, env->cur_state->curframe);
3984 
3985 	/* Do sanity checks against current state of register and/or stack
3986 	 * slot, but don't set precise flag in current state, as precision
3987 	 * tracking in the current state is unnecessary.
3988 	 */
3989 	func = st->frame[bt->frame];
3990 	if (regno >= 0) {
3991 		reg = &func->regs[regno];
3992 		if (reg->type != SCALAR_VALUE) {
3993 			WARN_ONCE(1, "backtracing misuse");
3994 			return -EFAULT;
3995 		}
3996 		bt_set_reg(bt, regno);
3997 	}
3998 
3999 	if (bt_empty(bt))
4000 		return 0;
4001 
4002 	for (;;) {
4003 		DECLARE_BITMAP(mask, 64);
4004 		u32 history = st->jmp_history_cnt;
4005 
4006 		if (env->log.level & BPF_LOG_LEVEL2) {
4007 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4008 				bt->frame, last_idx, first_idx, subseq_idx);
4009 		}
4010 
4011 		/* If some register with scalar ID is marked as precise,
4012 		 * make sure that all registers sharing this ID are also precise.
4013 		 * This is needed to estimate effect of find_equal_scalars().
4014 		 * Do this at the last instruction of each state,
4015 		 * bpf_reg_state::id fields are valid for these instructions.
4016 		 *
4017 		 * Allows to track precision in situation like below:
4018 		 *
4019 		 *     r2 = unknown value
4020 		 *     ...
4021 		 *   --- state #0 ---
4022 		 *     ...
4023 		 *     r1 = r2                 // r1 and r2 now share the same ID
4024 		 *     ...
4025 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4026 		 *     ...
4027 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4028 		 *     ...
4029 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4030 		 *     r3 = r10
4031 		 *     r3 += r1                // need to mark both r1 and r2
4032 		 */
4033 		if (mark_precise_scalar_ids(env, st))
4034 			return -EFAULT;
4035 
4036 		if (last_idx < 0) {
4037 			/* we are at the entry into subprog, which
4038 			 * is expected for global funcs, but only if
4039 			 * requested precise registers are R1-R5
4040 			 * (which are global func's input arguments)
4041 			 */
4042 			if (st->curframe == 0 &&
4043 			    st->frame[0]->subprogno > 0 &&
4044 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4045 			    bt_stack_mask(bt) == 0 &&
4046 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4047 				bitmap_from_u64(mask, bt_reg_mask(bt));
4048 				for_each_set_bit(i, mask, 32) {
4049 					reg = &st->frame[0]->regs[i];
4050 					bt_clear_reg(bt, i);
4051 					if (reg->type == SCALAR_VALUE)
4052 						reg->precise = true;
4053 				}
4054 				return 0;
4055 			}
4056 
4057 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4058 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4059 			WARN_ONCE(1, "verifier backtracking bug");
4060 			return -EFAULT;
4061 		}
4062 
4063 		for (i = last_idx;;) {
4064 			if (skip_first) {
4065 				err = 0;
4066 				skip_first = false;
4067 			} else {
4068 				err = backtrack_insn(env, i, subseq_idx, bt);
4069 			}
4070 			if (err == -ENOTSUPP) {
4071 				mark_all_scalars_precise(env, env->cur_state);
4072 				bt_reset(bt);
4073 				return 0;
4074 			} else if (err) {
4075 				return err;
4076 			}
4077 			if (bt_empty(bt))
4078 				/* Found assignment(s) into tracked register in this state.
4079 				 * Since this state is already marked, just return.
4080 				 * Nothing to be tracked further in the parent state.
4081 				 */
4082 				return 0;
4083 			if (i == first_idx)
4084 				break;
4085 			subseq_idx = i;
4086 			i = get_prev_insn_idx(st, i, &history);
4087 			if (i >= env->prog->len) {
4088 				/* This can happen if backtracking reached insn 0
4089 				 * and there are still reg_mask or stack_mask
4090 				 * to backtrack.
4091 				 * It means the backtracking missed the spot where
4092 				 * particular register was initialized with a constant.
4093 				 */
4094 				verbose(env, "BUG backtracking idx %d\n", i);
4095 				WARN_ONCE(1, "verifier backtracking bug");
4096 				return -EFAULT;
4097 			}
4098 		}
4099 		st = st->parent;
4100 		if (!st)
4101 			break;
4102 
4103 		for (fr = bt->frame; fr >= 0; fr--) {
4104 			func = st->frame[fr];
4105 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4106 			for_each_set_bit(i, mask, 32) {
4107 				reg = &func->regs[i];
4108 				if (reg->type != SCALAR_VALUE) {
4109 					bt_clear_frame_reg(bt, fr, i);
4110 					continue;
4111 				}
4112 				if (reg->precise)
4113 					bt_clear_frame_reg(bt, fr, i);
4114 				else
4115 					reg->precise = true;
4116 			}
4117 
4118 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4119 			for_each_set_bit(i, mask, 64) {
4120 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4121 					/* the sequence of instructions:
4122 					 * 2: (bf) r3 = r10
4123 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4124 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4125 					 * doesn't contain jmps. It's backtracked
4126 					 * as a single block.
4127 					 * During backtracking insn 3 is not recognized as
4128 					 * stack access, so at the end of backtracking
4129 					 * stack slot fp-8 is still marked in stack_mask.
4130 					 * However the parent state may not have accessed
4131 					 * fp-8 and it's "unallocated" stack space.
4132 					 * In such case fallback to conservative.
4133 					 */
4134 					mark_all_scalars_precise(env, env->cur_state);
4135 					bt_reset(bt);
4136 					return 0;
4137 				}
4138 
4139 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4140 					bt_clear_frame_slot(bt, fr, i);
4141 					continue;
4142 				}
4143 				reg = &func->stack[i].spilled_ptr;
4144 				if (reg->precise)
4145 					bt_clear_frame_slot(bt, fr, i);
4146 				else
4147 					reg->precise = true;
4148 			}
4149 			if (env->log.level & BPF_LOG_LEVEL2) {
4150 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4151 					     bt_frame_reg_mask(bt, fr));
4152 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4153 					fr, env->tmp_str_buf);
4154 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4155 					       bt_frame_stack_mask(bt, fr));
4156 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4157 				print_verifier_state(env, func, true);
4158 			}
4159 		}
4160 
4161 		if (bt_empty(bt))
4162 			return 0;
4163 
4164 		subseq_idx = first_idx;
4165 		last_idx = st->last_insn_idx;
4166 		first_idx = st->first_insn_idx;
4167 	}
4168 
4169 	/* if we still have requested precise regs or slots, we missed
4170 	 * something (e.g., stack access through non-r10 register), so
4171 	 * fallback to marking all precise
4172 	 */
4173 	if (!bt_empty(bt)) {
4174 		mark_all_scalars_precise(env, env->cur_state);
4175 		bt_reset(bt);
4176 	}
4177 
4178 	return 0;
4179 }
4180 
4181 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4182 {
4183 	return __mark_chain_precision(env, regno);
4184 }
4185 
4186 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4187  * desired reg and stack masks across all relevant frames
4188  */
4189 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4190 {
4191 	return __mark_chain_precision(env, -1);
4192 }
4193 
4194 static bool is_spillable_regtype(enum bpf_reg_type type)
4195 {
4196 	switch (base_type(type)) {
4197 	case PTR_TO_MAP_VALUE:
4198 	case PTR_TO_STACK:
4199 	case PTR_TO_CTX:
4200 	case PTR_TO_PACKET:
4201 	case PTR_TO_PACKET_META:
4202 	case PTR_TO_PACKET_END:
4203 	case PTR_TO_FLOW_KEYS:
4204 	case CONST_PTR_TO_MAP:
4205 	case PTR_TO_SOCKET:
4206 	case PTR_TO_SOCK_COMMON:
4207 	case PTR_TO_TCP_SOCK:
4208 	case PTR_TO_XDP_SOCK:
4209 	case PTR_TO_BTF_ID:
4210 	case PTR_TO_BUF:
4211 	case PTR_TO_MEM:
4212 	case PTR_TO_FUNC:
4213 	case PTR_TO_MAP_KEY:
4214 		return true;
4215 	default:
4216 		return false;
4217 	}
4218 }
4219 
4220 /* Does this register contain a constant zero? */
4221 static bool register_is_null(struct bpf_reg_state *reg)
4222 {
4223 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4224 }
4225 
4226 static bool register_is_const(struct bpf_reg_state *reg)
4227 {
4228 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4229 }
4230 
4231 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4232 {
4233 	return tnum_is_unknown(reg->var_off) &&
4234 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4235 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4236 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4237 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4238 }
4239 
4240 static bool register_is_bounded(struct bpf_reg_state *reg)
4241 {
4242 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4243 }
4244 
4245 static bool __is_pointer_value(bool allow_ptr_leaks,
4246 			       const struct bpf_reg_state *reg)
4247 {
4248 	if (allow_ptr_leaks)
4249 		return false;
4250 
4251 	return reg->type != SCALAR_VALUE;
4252 }
4253 
4254 /* Copy src state preserving dst->parent and dst->live fields */
4255 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4256 {
4257 	struct bpf_reg_state *parent = dst->parent;
4258 	enum bpf_reg_liveness live = dst->live;
4259 
4260 	*dst = *src;
4261 	dst->parent = parent;
4262 	dst->live = live;
4263 }
4264 
4265 static void save_register_state(struct bpf_func_state *state,
4266 				int spi, struct bpf_reg_state *reg,
4267 				int size)
4268 {
4269 	int i;
4270 
4271 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4272 	if (size == BPF_REG_SIZE)
4273 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4274 
4275 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4276 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4277 
4278 	/* size < 8 bytes spill */
4279 	for (; i; i--)
4280 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4281 }
4282 
4283 static bool is_bpf_st_mem(struct bpf_insn *insn)
4284 {
4285 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4286 }
4287 
4288 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4289  * stack boundary and alignment are checked in check_mem_access()
4290  */
4291 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4292 				       /* stack frame we're writing to */
4293 				       struct bpf_func_state *state,
4294 				       int off, int size, int value_regno,
4295 				       int insn_idx)
4296 {
4297 	struct bpf_func_state *cur; /* state of the current function */
4298 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4299 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4300 	struct bpf_reg_state *reg = NULL;
4301 	u32 dst_reg = insn->dst_reg;
4302 
4303 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
4304 	if (err)
4305 		return err;
4306 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4307 	 * so it's aligned access and [off, off + size) are within stack limits
4308 	 */
4309 	if (!env->allow_ptr_leaks &&
4310 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
4311 	    size != BPF_REG_SIZE) {
4312 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4313 		return -EACCES;
4314 	}
4315 
4316 	cur = env->cur_state->frame[env->cur_state->curframe];
4317 	if (value_regno >= 0)
4318 		reg = &cur->regs[value_regno];
4319 	if (!env->bypass_spec_v4) {
4320 		bool sanitize = reg && is_spillable_regtype(reg->type);
4321 
4322 		for (i = 0; i < size; i++) {
4323 			u8 type = state->stack[spi].slot_type[i];
4324 
4325 			if (type != STACK_MISC && type != STACK_ZERO) {
4326 				sanitize = true;
4327 				break;
4328 			}
4329 		}
4330 
4331 		if (sanitize)
4332 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4333 	}
4334 
4335 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4336 	if (err)
4337 		return err;
4338 
4339 	mark_stack_slot_scratched(env, spi);
4340 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4341 	    !register_is_null(reg) && env->bpf_capable) {
4342 		if (dst_reg != BPF_REG_FP) {
4343 			/* The backtracking logic can only recognize explicit
4344 			 * stack slot address like [fp - 8]. Other spill of
4345 			 * scalar via different register has to be conservative.
4346 			 * Backtrack from here and mark all registers as precise
4347 			 * that contributed into 'reg' being a constant.
4348 			 */
4349 			err = mark_chain_precision(env, value_regno);
4350 			if (err)
4351 				return err;
4352 		}
4353 		save_register_state(state, spi, reg, size);
4354 		/* Break the relation on a narrowing spill. */
4355 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4356 			state->stack[spi].spilled_ptr.id = 0;
4357 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4358 		   insn->imm != 0 && env->bpf_capable) {
4359 		struct bpf_reg_state fake_reg = {};
4360 
4361 		__mark_reg_known(&fake_reg, (u32)insn->imm);
4362 		fake_reg.type = SCALAR_VALUE;
4363 		save_register_state(state, spi, &fake_reg, size);
4364 	} else if (reg && is_spillable_regtype(reg->type)) {
4365 		/* register containing pointer is being spilled into stack */
4366 		if (size != BPF_REG_SIZE) {
4367 			verbose_linfo(env, insn_idx, "; ");
4368 			verbose(env, "invalid size of register spill\n");
4369 			return -EACCES;
4370 		}
4371 		if (state != cur && reg->type == PTR_TO_STACK) {
4372 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4373 			return -EINVAL;
4374 		}
4375 		save_register_state(state, spi, reg, size);
4376 	} else {
4377 		u8 type = STACK_MISC;
4378 
4379 		/* regular write of data into stack destroys any spilled ptr */
4380 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4381 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4382 		if (is_stack_slot_special(&state->stack[spi]))
4383 			for (i = 0; i < BPF_REG_SIZE; i++)
4384 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4385 
4386 		/* only mark the slot as written if all 8 bytes were written
4387 		 * otherwise read propagation may incorrectly stop too soon
4388 		 * when stack slots are partially written.
4389 		 * This heuristic means that read propagation will be
4390 		 * conservative, since it will add reg_live_read marks
4391 		 * to stack slots all the way to first state when programs
4392 		 * writes+reads less than 8 bytes
4393 		 */
4394 		if (size == BPF_REG_SIZE)
4395 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4396 
4397 		/* when we zero initialize stack slots mark them as such */
4398 		if ((reg && register_is_null(reg)) ||
4399 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4400 			/* backtracking doesn't work for STACK_ZERO yet. */
4401 			err = mark_chain_precision(env, value_regno);
4402 			if (err)
4403 				return err;
4404 			type = STACK_ZERO;
4405 		}
4406 
4407 		/* Mark slots affected by this stack write. */
4408 		for (i = 0; i < size; i++)
4409 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4410 				type;
4411 	}
4412 	return 0;
4413 }
4414 
4415 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4416  * known to contain a variable offset.
4417  * This function checks whether the write is permitted and conservatively
4418  * tracks the effects of the write, considering that each stack slot in the
4419  * dynamic range is potentially written to.
4420  *
4421  * 'off' includes 'regno->off'.
4422  * 'value_regno' can be -1, meaning that an unknown value is being written to
4423  * the stack.
4424  *
4425  * Spilled pointers in range are not marked as written because we don't know
4426  * what's going to be actually written. This means that read propagation for
4427  * future reads cannot be terminated by this write.
4428  *
4429  * For privileged programs, uninitialized stack slots are considered
4430  * initialized by this write (even though we don't know exactly what offsets
4431  * are going to be written to). The idea is that we don't want the verifier to
4432  * reject future reads that access slots written to through variable offsets.
4433  */
4434 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4435 				     /* func where register points to */
4436 				     struct bpf_func_state *state,
4437 				     int ptr_regno, int off, int size,
4438 				     int value_regno, int insn_idx)
4439 {
4440 	struct bpf_func_state *cur; /* state of the current function */
4441 	int min_off, max_off;
4442 	int i, err;
4443 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4444 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4445 	bool writing_zero = false;
4446 	/* set if the fact that we're writing a zero is used to let any
4447 	 * stack slots remain STACK_ZERO
4448 	 */
4449 	bool zero_used = false;
4450 
4451 	cur = env->cur_state->frame[env->cur_state->curframe];
4452 	ptr_reg = &cur->regs[ptr_regno];
4453 	min_off = ptr_reg->smin_value + off;
4454 	max_off = ptr_reg->smax_value + off + size;
4455 	if (value_regno >= 0)
4456 		value_reg = &cur->regs[value_regno];
4457 	if ((value_reg && register_is_null(value_reg)) ||
4458 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4459 		writing_zero = true;
4460 
4461 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
4462 	if (err)
4463 		return err;
4464 
4465 	for (i = min_off; i < max_off; i++) {
4466 		int spi;
4467 
4468 		spi = __get_spi(i);
4469 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4470 		if (err)
4471 			return err;
4472 	}
4473 
4474 	/* Variable offset writes destroy any spilled pointers in range. */
4475 	for (i = min_off; i < max_off; i++) {
4476 		u8 new_type, *stype;
4477 		int slot, spi;
4478 
4479 		slot = -i - 1;
4480 		spi = slot / BPF_REG_SIZE;
4481 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4482 		mark_stack_slot_scratched(env, spi);
4483 
4484 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4485 			/* Reject the write if range we may write to has not
4486 			 * been initialized beforehand. If we didn't reject
4487 			 * here, the ptr status would be erased below (even
4488 			 * though not all slots are actually overwritten),
4489 			 * possibly opening the door to leaks.
4490 			 *
4491 			 * We do however catch STACK_INVALID case below, and
4492 			 * only allow reading possibly uninitialized memory
4493 			 * later for CAP_PERFMON, as the write may not happen to
4494 			 * that slot.
4495 			 */
4496 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4497 				insn_idx, i);
4498 			return -EINVAL;
4499 		}
4500 
4501 		/* Erase all spilled pointers. */
4502 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4503 
4504 		/* Update the slot type. */
4505 		new_type = STACK_MISC;
4506 		if (writing_zero && *stype == STACK_ZERO) {
4507 			new_type = STACK_ZERO;
4508 			zero_used = true;
4509 		}
4510 		/* If the slot is STACK_INVALID, we check whether it's OK to
4511 		 * pretend that it will be initialized by this write. The slot
4512 		 * might not actually be written to, and so if we mark it as
4513 		 * initialized future reads might leak uninitialized memory.
4514 		 * For privileged programs, we will accept such reads to slots
4515 		 * that may or may not be written because, if we're reject
4516 		 * them, the error would be too confusing.
4517 		 */
4518 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4519 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4520 					insn_idx, i);
4521 			return -EINVAL;
4522 		}
4523 		*stype = new_type;
4524 	}
4525 	if (zero_used) {
4526 		/* backtracking doesn't work for STACK_ZERO yet. */
4527 		err = mark_chain_precision(env, value_regno);
4528 		if (err)
4529 			return err;
4530 	}
4531 	return 0;
4532 }
4533 
4534 /* When register 'dst_regno' is assigned some values from stack[min_off,
4535  * max_off), we set the register's type according to the types of the
4536  * respective stack slots. If all the stack values are known to be zeros, then
4537  * so is the destination reg. Otherwise, the register is considered to be
4538  * SCALAR. This function does not deal with register filling; the caller must
4539  * ensure that all spilled registers in the stack range have been marked as
4540  * read.
4541  */
4542 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4543 				/* func where src register points to */
4544 				struct bpf_func_state *ptr_state,
4545 				int min_off, int max_off, int dst_regno)
4546 {
4547 	struct bpf_verifier_state *vstate = env->cur_state;
4548 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4549 	int i, slot, spi;
4550 	u8 *stype;
4551 	int zeros = 0;
4552 
4553 	for (i = min_off; i < max_off; i++) {
4554 		slot = -i - 1;
4555 		spi = slot / BPF_REG_SIZE;
4556 		mark_stack_slot_scratched(env, spi);
4557 		stype = ptr_state->stack[spi].slot_type;
4558 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4559 			break;
4560 		zeros++;
4561 	}
4562 	if (zeros == max_off - min_off) {
4563 		/* any access_size read into register is zero extended,
4564 		 * so the whole register == const_zero
4565 		 */
4566 		__mark_reg_const_zero(&state->regs[dst_regno]);
4567 		/* backtracking doesn't support STACK_ZERO yet,
4568 		 * so mark it precise here, so that later
4569 		 * backtracking can stop here.
4570 		 * Backtracking may not need this if this register
4571 		 * doesn't participate in pointer adjustment.
4572 		 * Forward propagation of precise flag is not
4573 		 * necessary either. This mark is only to stop
4574 		 * backtracking. Any register that contributed
4575 		 * to const 0 was marked precise before spill.
4576 		 */
4577 		state->regs[dst_regno].precise = true;
4578 	} else {
4579 		/* have read misc data from the stack */
4580 		mark_reg_unknown(env, state->regs, dst_regno);
4581 	}
4582 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4583 }
4584 
4585 /* Read the stack at 'off' and put the results into the register indicated by
4586  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4587  * spilled reg.
4588  *
4589  * 'dst_regno' can be -1, meaning that the read value is not going to a
4590  * register.
4591  *
4592  * The access is assumed to be within the current stack bounds.
4593  */
4594 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4595 				      /* func where src register points to */
4596 				      struct bpf_func_state *reg_state,
4597 				      int off, int size, int dst_regno)
4598 {
4599 	struct bpf_verifier_state *vstate = env->cur_state;
4600 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4601 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4602 	struct bpf_reg_state *reg;
4603 	u8 *stype, type;
4604 
4605 	stype = reg_state->stack[spi].slot_type;
4606 	reg = &reg_state->stack[spi].spilled_ptr;
4607 
4608 	mark_stack_slot_scratched(env, spi);
4609 
4610 	if (is_spilled_reg(&reg_state->stack[spi])) {
4611 		u8 spill_size = 1;
4612 
4613 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4614 			spill_size++;
4615 
4616 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4617 			if (reg->type != SCALAR_VALUE) {
4618 				verbose_linfo(env, env->insn_idx, "; ");
4619 				verbose(env, "invalid size of register fill\n");
4620 				return -EACCES;
4621 			}
4622 
4623 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4624 			if (dst_regno < 0)
4625 				return 0;
4626 
4627 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4628 				/* The earlier check_reg_arg() has decided the
4629 				 * subreg_def for this insn.  Save it first.
4630 				 */
4631 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4632 
4633 				copy_register_state(&state->regs[dst_regno], reg);
4634 				state->regs[dst_regno].subreg_def = subreg_def;
4635 			} else {
4636 				for (i = 0; i < size; i++) {
4637 					type = stype[(slot - i) % BPF_REG_SIZE];
4638 					if (type == STACK_SPILL)
4639 						continue;
4640 					if (type == STACK_MISC)
4641 						continue;
4642 					if (type == STACK_INVALID && env->allow_uninit_stack)
4643 						continue;
4644 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4645 						off, i, size);
4646 					return -EACCES;
4647 				}
4648 				mark_reg_unknown(env, state->regs, dst_regno);
4649 			}
4650 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4651 			return 0;
4652 		}
4653 
4654 		if (dst_regno >= 0) {
4655 			/* restore register state from stack */
4656 			copy_register_state(&state->regs[dst_regno], reg);
4657 			/* mark reg as written since spilled pointer state likely
4658 			 * has its liveness marks cleared by is_state_visited()
4659 			 * which resets stack/reg liveness for state transitions
4660 			 */
4661 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4662 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4663 			/* If dst_regno==-1, the caller is asking us whether
4664 			 * it is acceptable to use this value as a SCALAR_VALUE
4665 			 * (e.g. for XADD).
4666 			 * We must not allow unprivileged callers to do that
4667 			 * with spilled pointers.
4668 			 */
4669 			verbose(env, "leaking pointer from stack off %d\n",
4670 				off);
4671 			return -EACCES;
4672 		}
4673 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4674 	} else {
4675 		for (i = 0; i < size; i++) {
4676 			type = stype[(slot - i) % BPF_REG_SIZE];
4677 			if (type == STACK_MISC)
4678 				continue;
4679 			if (type == STACK_ZERO)
4680 				continue;
4681 			if (type == STACK_INVALID && env->allow_uninit_stack)
4682 				continue;
4683 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4684 				off, i, size);
4685 			return -EACCES;
4686 		}
4687 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4688 		if (dst_regno >= 0)
4689 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4690 	}
4691 	return 0;
4692 }
4693 
4694 enum bpf_access_src {
4695 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4696 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4697 };
4698 
4699 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4700 					 int regno, int off, int access_size,
4701 					 bool zero_size_allowed,
4702 					 enum bpf_access_src type,
4703 					 struct bpf_call_arg_meta *meta);
4704 
4705 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4706 {
4707 	return cur_regs(env) + regno;
4708 }
4709 
4710 /* Read the stack at 'ptr_regno + off' and put the result into the register
4711  * 'dst_regno'.
4712  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4713  * but not its variable offset.
4714  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4715  *
4716  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4717  * filling registers (i.e. reads of spilled register cannot be detected when
4718  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4719  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4720  * offset; for a fixed offset check_stack_read_fixed_off should be used
4721  * instead.
4722  */
4723 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4724 				    int ptr_regno, int off, int size, int dst_regno)
4725 {
4726 	/* The state of the source register. */
4727 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4728 	struct bpf_func_state *ptr_state = func(env, reg);
4729 	int err;
4730 	int min_off, max_off;
4731 
4732 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4733 	 */
4734 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4735 					    false, ACCESS_DIRECT, NULL);
4736 	if (err)
4737 		return err;
4738 
4739 	min_off = reg->smin_value + off;
4740 	max_off = reg->smax_value + off;
4741 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4742 	return 0;
4743 }
4744 
4745 /* check_stack_read dispatches to check_stack_read_fixed_off or
4746  * check_stack_read_var_off.
4747  *
4748  * The caller must ensure that the offset falls within the allocated stack
4749  * bounds.
4750  *
4751  * 'dst_regno' is a register which will receive the value from the stack. It
4752  * can be -1, meaning that the read value is not going to a register.
4753  */
4754 static int check_stack_read(struct bpf_verifier_env *env,
4755 			    int ptr_regno, int off, int size,
4756 			    int dst_regno)
4757 {
4758 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4759 	struct bpf_func_state *state = func(env, reg);
4760 	int err;
4761 	/* Some accesses are only permitted with a static offset. */
4762 	bool var_off = !tnum_is_const(reg->var_off);
4763 
4764 	/* The offset is required to be static when reads don't go to a
4765 	 * register, in order to not leak pointers (see
4766 	 * check_stack_read_fixed_off).
4767 	 */
4768 	if (dst_regno < 0 && var_off) {
4769 		char tn_buf[48];
4770 
4771 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4772 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4773 			tn_buf, off, size);
4774 		return -EACCES;
4775 	}
4776 	/* Variable offset is prohibited for unprivileged mode for simplicity
4777 	 * since it requires corresponding support in Spectre masking for stack
4778 	 * ALU. See also retrieve_ptr_limit(). The check in
4779 	 * check_stack_access_for_ptr_arithmetic() called by
4780 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4781 	 * with variable offsets, therefore no check is required here. Further,
4782 	 * just checking it here would be insufficient as speculative stack
4783 	 * writes could still lead to unsafe speculative behaviour.
4784 	 */
4785 	if (!var_off) {
4786 		off += reg->var_off.value;
4787 		err = check_stack_read_fixed_off(env, state, off, size,
4788 						 dst_regno);
4789 	} else {
4790 		/* Variable offset stack reads need more conservative handling
4791 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4792 		 * branch.
4793 		 */
4794 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4795 					       dst_regno);
4796 	}
4797 	return err;
4798 }
4799 
4800 
4801 /* check_stack_write dispatches to check_stack_write_fixed_off or
4802  * check_stack_write_var_off.
4803  *
4804  * 'ptr_regno' is the register used as a pointer into the stack.
4805  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4806  * 'value_regno' is the register whose value we're writing to the stack. It can
4807  * be -1, meaning that we're not writing from a register.
4808  *
4809  * The caller must ensure that the offset falls within the maximum stack size.
4810  */
4811 static int check_stack_write(struct bpf_verifier_env *env,
4812 			     int ptr_regno, int off, int size,
4813 			     int value_regno, int insn_idx)
4814 {
4815 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4816 	struct bpf_func_state *state = func(env, reg);
4817 	int err;
4818 
4819 	if (tnum_is_const(reg->var_off)) {
4820 		off += reg->var_off.value;
4821 		err = check_stack_write_fixed_off(env, state, off, size,
4822 						  value_regno, insn_idx);
4823 	} else {
4824 		/* Variable offset stack reads need more conservative handling
4825 		 * than fixed offset ones.
4826 		 */
4827 		err = check_stack_write_var_off(env, state,
4828 						ptr_regno, off, size,
4829 						value_regno, insn_idx);
4830 	}
4831 	return err;
4832 }
4833 
4834 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4835 				 int off, int size, enum bpf_access_type type)
4836 {
4837 	struct bpf_reg_state *regs = cur_regs(env);
4838 	struct bpf_map *map = regs[regno].map_ptr;
4839 	u32 cap = bpf_map_flags_to_cap(map);
4840 
4841 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4842 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4843 			map->value_size, off, size);
4844 		return -EACCES;
4845 	}
4846 
4847 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4848 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4849 			map->value_size, off, size);
4850 		return -EACCES;
4851 	}
4852 
4853 	return 0;
4854 }
4855 
4856 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4857 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4858 			      int off, int size, u32 mem_size,
4859 			      bool zero_size_allowed)
4860 {
4861 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4862 	struct bpf_reg_state *reg;
4863 
4864 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4865 		return 0;
4866 
4867 	reg = &cur_regs(env)[regno];
4868 	switch (reg->type) {
4869 	case PTR_TO_MAP_KEY:
4870 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4871 			mem_size, off, size);
4872 		break;
4873 	case PTR_TO_MAP_VALUE:
4874 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4875 			mem_size, off, size);
4876 		break;
4877 	case PTR_TO_PACKET:
4878 	case PTR_TO_PACKET_META:
4879 	case PTR_TO_PACKET_END:
4880 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4881 			off, size, regno, reg->id, off, mem_size);
4882 		break;
4883 	case PTR_TO_MEM:
4884 	default:
4885 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4886 			mem_size, off, size);
4887 	}
4888 
4889 	return -EACCES;
4890 }
4891 
4892 /* check read/write into a memory region with possible variable offset */
4893 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4894 				   int off, int size, u32 mem_size,
4895 				   bool zero_size_allowed)
4896 {
4897 	struct bpf_verifier_state *vstate = env->cur_state;
4898 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4899 	struct bpf_reg_state *reg = &state->regs[regno];
4900 	int err;
4901 
4902 	/* We may have adjusted the register pointing to memory region, so we
4903 	 * need to try adding each of min_value and max_value to off
4904 	 * to make sure our theoretical access will be safe.
4905 	 *
4906 	 * The minimum value is only important with signed
4907 	 * comparisons where we can't assume the floor of a
4908 	 * value is 0.  If we are using signed variables for our
4909 	 * index'es we need to make sure that whatever we use
4910 	 * will have a set floor within our range.
4911 	 */
4912 	if (reg->smin_value < 0 &&
4913 	    (reg->smin_value == S64_MIN ||
4914 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4915 	      reg->smin_value + off < 0)) {
4916 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4917 			regno);
4918 		return -EACCES;
4919 	}
4920 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
4921 				 mem_size, zero_size_allowed);
4922 	if (err) {
4923 		verbose(env, "R%d min value is outside of the allowed memory range\n",
4924 			regno);
4925 		return err;
4926 	}
4927 
4928 	/* If we haven't set a max value then we need to bail since we can't be
4929 	 * sure we won't do bad things.
4930 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
4931 	 */
4932 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4933 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4934 			regno);
4935 		return -EACCES;
4936 	}
4937 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
4938 				 mem_size, zero_size_allowed);
4939 	if (err) {
4940 		verbose(env, "R%d max value is outside of the allowed memory range\n",
4941 			regno);
4942 		return err;
4943 	}
4944 
4945 	return 0;
4946 }
4947 
4948 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4949 			       const struct bpf_reg_state *reg, int regno,
4950 			       bool fixed_off_ok)
4951 {
4952 	/* Access to this pointer-typed register or passing it to a helper
4953 	 * is only allowed in its original, unmodified form.
4954 	 */
4955 
4956 	if (reg->off < 0) {
4957 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4958 			reg_type_str(env, reg->type), regno, reg->off);
4959 		return -EACCES;
4960 	}
4961 
4962 	if (!fixed_off_ok && reg->off) {
4963 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4964 			reg_type_str(env, reg->type), regno, reg->off);
4965 		return -EACCES;
4966 	}
4967 
4968 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4969 		char tn_buf[48];
4970 
4971 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4972 		verbose(env, "variable %s access var_off=%s disallowed\n",
4973 			reg_type_str(env, reg->type), tn_buf);
4974 		return -EACCES;
4975 	}
4976 
4977 	return 0;
4978 }
4979 
4980 int check_ptr_off_reg(struct bpf_verifier_env *env,
4981 		      const struct bpf_reg_state *reg, int regno)
4982 {
4983 	return __check_ptr_off_reg(env, reg, regno, false);
4984 }
4985 
4986 static int map_kptr_match_type(struct bpf_verifier_env *env,
4987 			       struct btf_field *kptr_field,
4988 			       struct bpf_reg_state *reg, u32 regno)
4989 {
4990 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
4991 	int perm_flags;
4992 	const char *reg_name = "";
4993 
4994 	if (btf_is_kernel(reg->btf)) {
4995 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
4996 
4997 		/* Only unreferenced case accepts untrusted pointers */
4998 		if (kptr_field->type == BPF_KPTR_UNREF)
4999 			perm_flags |= PTR_UNTRUSTED;
5000 	} else {
5001 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5002 	}
5003 
5004 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5005 		goto bad_type;
5006 
5007 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5008 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5009 
5010 	/* For ref_ptr case, release function check should ensure we get one
5011 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5012 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5013 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5014 	 * reg->off and reg->ref_obj_id are not needed here.
5015 	 */
5016 	if (__check_ptr_off_reg(env, reg, regno, true))
5017 		return -EACCES;
5018 
5019 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5020 	 * we also need to take into account the reg->off.
5021 	 *
5022 	 * We want to support cases like:
5023 	 *
5024 	 * struct foo {
5025 	 *         struct bar br;
5026 	 *         struct baz bz;
5027 	 * };
5028 	 *
5029 	 * struct foo *v;
5030 	 * v = func();	      // PTR_TO_BTF_ID
5031 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5032 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5033 	 *                    // first member type of struct after comparison fails
5034 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5035 	 *                    // to match type
5036 	 *
5037 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5038 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5039 	 * the struct to match type against first member of struct, i.e. reject
5040 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5041 	 * strict mode to true for type match.
5042 	 */
5043 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5044 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5045 				  kptr_field->type == BPF_KPTR_REF))
5046 		goto bad_type;
5047 	return 0;
5048 bad_type:
5049 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5050 		reg_type_str(env, reg->type), reg_name);
5051 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5052 	if (kptr_field->type == BPF_KPTR_UNREF)
5053 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5054 			targ_name);
5055 	else
5056 		verbose(env, "\n");
5057 	return -EINVAL;
5058 }
5059 
5060 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5061  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5062  */
5063 static bool in_rcu_cs(struct bpf_verifier_env *env)
5064 {
5065 	return env->cur_state->active_rcu_lock ||
5066 	       env->cur_state->active_lock.ptr ||
5067 	       !env->prog->aux->sleepable;
5068 }
5069 
5070 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5071 BTF_SET_START(rcu_protected_types)
5072 BTF_ID(struct, prog_test_ref_kfunc)
5073 BTF_ID(struct, cgroup)
5074 BTF_ID(struct, bpf_cpumask)
5075 BTF_ID(struct, task_struct)
5076 BTF_SET_END(rcu_protected_types)
5077 
5078 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5079 {
5080 	if (!btf_is_kernel(btf))
5081 		return false;
5082 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5083 }
5084 
5085 static bool rcu_safe_kptr(const struct btf_field *field)
5086 {
5087 	const struct btf_field_kptr *kptr = &field->kptr;
5088 
5089 	return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5090 }
5091 
5092 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5093 				 int value_regno, int insn_idx,
5094 				 struct btf_field *kptr_field)
5095 {
5096 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5097 	int class = BPF_CLASS(insn->code);
5098 	struct bpf_reg_state *val_reg;
5099 
5100 	/* Things we already checked for in check_map_access and caller:
5101 	 *  - Reject cases where variable offset may touch kptr
5102 	 *  - size of access (must be BPF_DW)
5103 	 *  - tnum_is_const(reg->var_off)
5104 	 *  - kptr_field->offset == off + reg->var_off.value
5105 	 */
5106 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5107 	if (BPF_MODE(insn->code) != BPF_MEM) {
5108 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5109 		return -EACCES;
5110 	}
5111 
5112 	/* We only allow loading referenced kptr, since it will be marked as
5113 	 * untrusted, similar to unreferenced kptr.
5114 	 */
5115 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5116 		verbose(env, "store to referenced kptr disallowed\n");
5117 		return -EACCES;
5118 	}
5119 
5120 	if (class == BPF_LDX) {
5121 		val_reg = reg_state(env, value_regno);
5122 		/* We can simply mark the value_regno receiving the pointer
5123 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5124 		 */
5125 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5126 				kptr_field->kptr.btf_id,
5127 				rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5128 				PTR_MAYBE_NULL | MEM_RCU :
5129 				PTR_MAYBE_NULL | PTR_UNTRUSTED);
5130 		/* For mark_ptr_or_null_reg */
5131 		val_reg->id = ++env->id_gen;
5132 	} else if (class == BPF_STX) {
5133 		val_reg = reg_state(env, value_regno);
5134 		if (!register_is_null(val_reg) &&
5135 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5136 			return -EACCES;
5137 	} else if (class == BPF_ST) {
5138 		if (insn->imm) {
5139 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5140 				kptr_field->offset);
5141 			return -EACCES;
5142 		}
5143 	} else {
5144 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5145 		return -EACCES;
5146 	}
5147 	return 0;
5148 }
5149 
5150 /* check read/write into a map element with possible variable offset */
5151 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5152 			    int off, int size, bool zero_size_allowed,
5153 			    enum bpf_access_src src)
5154 {
5155 	struct bpf_verifier_state *vstate = env->cur_state;
5156 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5157 	struct bpf_reg_state *reg = &state->regs[regno];
5158 	struct bpf_map *map = reg->map_ptr;
5159 	struct btf_record *rec;
5160 	int err, i;
5161 
5162 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5163 				      zero_size_allowed);
5164 	if (err)
5165 		return err;
5166 
5167 	if (IS_ERR_OR_NULL(map->record))
5168 		return 0;
5169 	rec = map->record;
5170 	for (i = 0; i < rec->cnt; i++) {
5171 		struct btf_field *field = &rec->fields[i];
5172 		u32 p = field->offset;
5173 
5174 		/* If any part of a field  can be touched by load/store, reject
5175 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5176 		 * it is sufficient to check x1 < y2 && y1 < x2.
5177 		 */
5178 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5179 		    p < reg->umax_value + off + size) {
5180 			switch (field->type) {
5181 			case BPF_KPTR_UNREF:
5182 			case BPF_KPTR_REF:
5183 				if (src != ACCESS_DIRECT) {
5184 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5185 					return -EACCES;
5186 				}
5187 				if (!tnum_is_const(reg->var_off)) {
5188 					verbose(env, "kptr access cannot have variable offset\n");
5189 					return -EACCES;
5190 				}
5191 				if (p != off + reg->var_off.value) {
5192 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5193 						p, off + reg->var_off.value);
5194 					return -EACCES;
5195 				}
5196 				if (size != bpf_size_to_bytes(BPF_DW)) {
5197 					verbose(env, "kptr access size must be BPF_DW\n");
5198 					return -EACCES;
5199 				}
5200 				break;
5201 			default:
5202 				verbose(env, "%s cannot be accessed directly by load/store\n",
5203 					btf_field_type_name(field->type));
5204 				return -EACCES;
5205 			}
5206 		}
5207 	}
5208 	return 0;
5209 }
5210 
5211 #define MAX_PACKET_OFF 0xffff
5212 
5213 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5214 				       const struct bpf_call_arg_meta *meta,
5215 				       enum bpf_access_type t)
5216 {
5217 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5218 
5219 	switch (prog_type) {
5220 	/* Program types only with direct read access go here! */
5221 	case BPF_PROG_TYPE_LWT_IN:
5222 	case BPF_PROG_TYPE_LWT_OUT:
5223 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5224 	case BPF_PROG_TYPE_SK_REUSEPORT:
5225 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5226 	case BPF_PROG_TYPE_CGROUP_SKB:
5227 		if (t == BPF_WRITE)
5228 			return false;
5229 		fallthrough;
5230 
5231 	/* Program types with direct read + write access go here! */
5232 	case BPF_PROG_TYPE_SCHED_CLS:
5233 	case BPF_PROG_TYPE_SCHED_ACT:
5234 	case BPF_PROG_TYPE_XDP:
5235 	case BPF_PROG_TYPE_LWT_XMIT:
5236 	case BPF_PROG_TYPE_SK_SKB:
5237 	case BPF_PROG_TYPE_SK_MSG:
5238 		if (meta)
5239 			return meta->pkt_access;
5240 
5241 		env->seen_direct_write = true;
5242 		return true;
5243 
5244 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5245 		if (t == BPF_WRITE)
5246 			env->seen_direct_write = true;
5247 
5248 		return true;
5249 
5250 	default:
5251 		return false;
5252 	}
5253 }
5254 
5255 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5256 			       int size, bool zero_size_allowed)
5257 {
5258 	struct bpf_reg_state *regs = cur_regs(env);
5259 	struct bpf_reg_state *reg = &regs[regno];
5260 	int err;
5261 
5262 	/* We may have added a variable offset to the packet pointer; but any
5263 	 * reg->range we have comes after that.  We are only checking the fixed
5264 	 * offset.
5265 	 */
5266 
5267 	/* We don't allow negative numbers, because we aren't tracking enough
5268 	 * detail to prove they're safe.
5269 	 */
5270 	if (reg->smin_value < 0) {
5271 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5272 			regno);
5273 		return -EACCES;
5274 	}
5275 
5276 	err = reg->range < 0 ? -EINVAL :
5277 	      __check_mem_access(env, regno, off, size, reg->range,
5278 				 zero_size_allowed);
5279 	if (err) {
5280 		verbose(env, "R%d offset is outside of the packet\n", regno);
5281 		return err;
5282 	}
5283 
5284 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5285 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5286 	 * otherwise find_good_pkt_pointers would have refused to set range info
5287 	 * that __check_mem_access would have rejected this pkt access.
5288 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5289 	 */
5290 	env->prog->aux->max_pkt_offset =
5291 		max_t(u32, env->prog->aux->max_pkt_offset,
5292 		      off + reg->umax_value + size - 1);
5293 
5294 	return err;
5295 }
5296 
5297 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5298 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5299 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5300 			    struct btf **btf, u32 *btf_id)
5301 {
5302 	struct bpf_insn_access_aux info = {
5303 		.reg_type = *reg_type,
5304 		.log = &env->log,
5305 	};
5306 
5307 	if (env->ops->is_valid_access &&
5308 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5309 		/* A non zero info.ctx_field_size indicates that this field is a
5310 		 * candidate for later verifier transformation to load the whole
5311 		 * field and then apply a mask when accessed with a narrower
5312 		 * access than actual ctx access size. A zero info.ctx_field_size
5313 		 * will only allow for whole field access and rejects any other
5314 		 * type of narrower access.
5315 		 */
5316 		*reg_type = info.reg_type;
5317 
5318 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5319 			*btf = info.btf;
5320 			*btf_id = info.btf_id;
5321 		} else {
5322 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5323 		}
5324 		/* remember the offset of last byte accessed in ctx */
5325 		if (env->prog->aux->max_ctx_offset < off + size)
5326 			env->prog->aux->max_ctx_offset = off + size;
5327 		return 0;
5328 	}
5329 
5330 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5331 	return -EACCES;
5332 }
5333 
5334 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5335 				  int size)
5336 {
5337 	if (size < 0 || off < 0 ||
5338 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5339 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5340 			off, size);
5341 		return -EACCES;
5342 	}
5343 	return 0;
5344 }
5345 
5346 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5347 			     u32 regno, int off, int size,
5348 			     enum bpf_access_type t)
5349 {
5350 	struct bpf_reg_state *regs = cur_regs(env);
5351 	struct bpf_reg_state *reg = &regs[regno];
5352 	struct bpf_insn_access_aux info = {};
5353 	bool valid;
5354 
5355 	if (reg->smin_value < 0) {
5356 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5357 			regno);
5358 		return -EACCES;
5359 	}
5360 
5361 	switch (reg->type) {
5362 	case PTR_TO_SOCK_COMMON:
5363 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5364 		break;
5365 	case PTR_TO_SOCKET:
5366 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5367 		break;
5368 	case PTR_TO_TCP_SOCK:
5369 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5370 		break;
5371 	case PTR_TO_XDP_SOCK:
5372 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5373 		break;
5374 	default:
5375 		valid = false;
5376 	}
5377 
5378 
5379 	if (valid) {
5380 		env->insn_aux_data[insn_idx].ctx_field_size =
5381 			info.ctx_field_size;
5382 		return 0;
5383 	}
5384 
5385 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5386 		regno, reg_type_str(env, reg->type), off, size);
5387 
5388 	return -EACCES;
5389 }
5390 
5391 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5392 {
5393 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5394 }
5395 
5396 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5397 {
5398 	const struct bpf_reg_state *reg = reg_state(env, regno);
5399 
5400 	return reg->type == PTR_TO_CTX;
5401 }
5402 
5403 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5404 {
5405 	const struct bpf_reg_state *reg = reg_state(env, regno);
5406 
5407 	return type_is_sk_pointer(reg->type);
5408 }
5409 
5410 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5411 {
5412 	const struct bpf_reg_state *reg = reg_state(env, regno);
5413 
5414 	return type_is_pkt_pointer(reg->type);
5415 }
5416 
5417 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5418 {
5419 	const struct bpf_reg_state *reg = reg_state(env, regno);
5420 
5421 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5422 	return reg->type == PTR_TO_FLOW_KEYS;
5423 }
5424 
5425 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5426 #ifdef CONFIG_NET
5427 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5428 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5429 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5430 #endif
5431 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5432 };
5433 
5434 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5435 {
5436 	/* A referenced register is always trusted. */
5437 	if (reg->ref_obj_id)
5438 		return true;
5439 
5440 	/* Types listed in the reg2btf_ids are always trusted */
5441 	if (reg2btf_ids[base_type(reg->type)])
5442 		return true;
5443 
5444 	/* If a register is not referenced, it is trusted if it has the
5445 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5446 	 * other type modifiers may be safe, but we elect to take an opt-in
5447 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5448 	 * not.
5449 	 *
5450 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5451 	 * for whether a register is trusted.
5452 	 */
5453 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5454 	       !bpf_type_has_unsafe_modifiers(reg->type);
5455 }
5456 
5457 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5458 {
5459 	return reg->type & MEM_RCU;
5460 }
5461 
5462 static void clear_trusted_flags(enum bpf_type_flag *flag)
5463 {
5464 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5465 }
5466 
5467 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5468 				   const struct bpf_reg_state *reg,
5469 				   int off, int size, bool strict)
5470 {
5471 	struct tnum reg_off;
5472 	int ip_align;
5473 
5474 	/* Byte size accesses are always allowed. */
5475 	if (!strict || size == 1)
5476 		return 0;
5477 
5478 	/* For platforms that do not have a Kconfig enabling
5479 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5480 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5481 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5482 	 * to this code only in strict mode where we want to emulate
5483 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5484 	 * unconditional IP align value of '2'.
5485 	 */
5486 	ip_align = 2;
5487 
5488 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5489 	if (!tnum_is_aligned(reg_off, size)) {
5490 		char tn_buf[48];
5491 
5492 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5493 		verbose(env,
5494 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5495 			ip_align, tn_buf, reg->off, off, size);
5496 		return -EACCES;
5497 	}
5498 
5499 	return 0;
5500 }
5501 
5502 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5503 				       const struct bpf_reg_state *reg,
5504 				       const char *pointer_desc,
5505 				       int off, int size, bool strict)
5506 {
5507 	struct tnum reg_off;
5508 
5509 	/* Byte size accesses are always allowed. */
5510 	if (!strict || size == 1)
5511 		return 0;
5512 
5513 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5514 	if (!tnum_is_aligned(reg_off, size)) {
5515 		char tn_buf[48];
5516 
5517 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5518 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5519 			pointer_desc, tn_buf, reg->off, off, size);
5520 		return -EACCES;
5521 	}
5522 
5523 	return 0;
5524 }
5525 
5526 static int check_ptr_alignment(struct bpf_verifier_env *env,
5527 			       const struct bpf_reg_state *reg, int off,
5528 			       int size, bool strict_alignment_once)
5529 {
5530 	bool strict = env->strict_alignment || strict_alignment_once;
5531 	const char *pointer_desc = "";
5532 
5533 	switch (reg->type) {
5534 	case PTR_TO_PACKET:
5535 	case PTR_TO_PACKET_META:
5536 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5537 		 * right in front, treat it the very same way.
5538 		 */
5539 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5540 	case PTR_TO_FLOW_KEYS:
5541 		pointer_desc = "flow keys ";
5542 		break;
5543 	case PTR_TO_MAP_KEY:
5544 		pointer_desc = "key ";
5545 		break;
5546 	case PTR_TO_MAP_VALUE:
5547 		pointer_desc = "value ";
5548 		break;
5549 	case PTR_TO_CTX:
5550 		pointer_desc = "context ";
5551 		break;
5552 	case PTR_TO_STACK:
5553 		pointer_desc = "stack ";
5554 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5555 		 * and check_stack_read_fixed_off() relies on stack accesses being
5556 		 * aligned.
5557 		 */
5558 		strict = true;
5559 		break;
5560 	case PTR_TO_SOCKET:
5561 		pointer_desc = "sock ";
5562 		break;
5563 	case PTR_TO_SOCK_COMMON:
5564 		pointer_desc = "sock_common ";
5565 		break;
5566 	case PTR_TO_TCP_SOCK:
5567 		pointer_desc = "tcp_sock ";
5568 		break;
5569 	case PTR_TO_XDP_SOCK:
5570 		pointer_desc = "xdp_sock ";
5571 		break;
5572 	default:
5573 		break;
5574 	}
5575 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5576 					   strict);
5577 }
5578 
5579 static int update_stack_depth(struct bpf_verifier_env *env,
5580 			      const struct bpf_func_state *func,
5581 			      int off)
5582 {
5583 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
5584 
5585 	if (stack >= -off)
5586 		return 0;
5587 
5588 	/* update known max for given subprogram */
5589 	env->subprog_info[func->subprogno].stack_depth = -off;
5590 	return 0;
5591 }
5592 
5593 /* starting from main bpf function walk all instructions of the function
5594  * and recursively walk all callees that given function can call.
5595  * Ignore jump and exit insns.
5596  * Since recursion is prevented by check_cfg() this algorithm
5597  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5598  */
5599 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5600 {
5601 	struct bpf_subprog_info *subprog = env->subprog_info;
5602 	struct bpf_insn *insn = env->prog->insnsi;
5603 	int depth = 0, frame = 0, i, subprog_end;
5604 	bool tail_call_reachable = false;
5605 	int ret_insn[MAX_CALL_FRAMES];
5606 	int ret_prog[MAX_CALL_FRAMES];
5607 	int j;
5608 
5609 	i = subprog[idx].start;
5610 process_func:
5611 	/* protect against potential stack overflow that might happen when
5612 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5613 	 * depth for such case down to 256 so that the worst case scenario
5614 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5615 	 * 8k).
5616 	 *
5617 	 * To get the idea what might happen, see an example:
5618 	 * func1 -> sub rsp, 128
5619 	 *  subfunc1 -> sub rsp, 256
5620 	 *  tailcall1 -> add rsp, 256
5621 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5622 	 *   subfunc2 -> sub rsp, 64
5623 	 *   subfunc22 -> sub rsp, 128
5624 	 *   tailcall2 -> add rsp, 128
5625 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5626 	 *
5627 	 * tailcall will unwind the current stack frame but it will not get rid
5628 	 * of caller's stack as shown on the example above.
5629 	 */
5630 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5631 		verbose(env,
5632 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5633 			depth);
5634 		return -EACCES;
5635 	}
5636 	/* round up to 32-bytes, since this is granularity
5637 	 * of interpreter stack size
5638 	 */
5639 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5640 	if (depth > MAX_BPF_STACK) {
5641 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5642 			frame + 1, depth);
5643 		return -EACCES;
5644 	}
5645 continue_func:
5646 	subprog_end = subprog[idx + 1].start;
5647 	for (; i < subprog_end; i++) {
5648 		int next_insn, sidx;
5649 
5650 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5651 			continue;
5652 		/* remember insn and function to return to */
5653 		ret_insn[frame] = i + 1;
5654 		ret_prog[frame] = idx;
5655 
5656 		/* find the callee */
5657 		next_insn = i + insn[i].imm + 1;
5658 		sidx = find_subprog(env, next_insn);
5659 		if (sidx < 0) {
5660 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5661 				  next_insn);
5662 			return -EFAULT;
5663 		}
5664 		if (subprog[sidx].is_async_cb) {
5665 			if (subprog[sidx].has_tail_call) {
5666 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5667 				return -EFAULT;
5668 			}
5669 			/* async callbacks don't increase bpf prog stack size unless called directly */
5670 			if (!bpf_pseudo_call(insn + i))
5671 				continue;
5672 		}
5673 		i = next_insn;
5674 		idx = sidx;
5675 
5676 		if (subprog[idx].has_tail_call)
5677 			tail_call_reachable = true;
5678 
5679 		frame++;
5680 		if (frame >= MAX_CALL_FRAMES) {
5681 			verbose(env, "the call stack of %d frames is too deep !\n",
5682 				frame);
5683 			return -E2BIG;
5684 		}
5685 		goto process_func;
5686 	}
5687 	/* if tail call got detected across bpf2bpf calls then mark each of the
5688 	 * currently present subprog frames as tail call reachable subprogs;
5689 	 * this info will be utilized by JIT so that we will be preserving the
5690 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5691 	 */
5692 	if (tail_call_reachable)
5693 		for (j = 0; j < frame; j++)
5694 			subprog[ret_prog[j]].tail_call_reachable = true;
5695 	if (subprog[0].tail_call_reachable)
5696 		env->prog->aux->tail_call_reachable = true;
5697 
5698 	/* end of for() loop means the last insn of the 'subprog'
5699 	 * was reached. Doesn't matter whether it was JA or EXIT
5700 	 */
5701 	if (frame == 0)
5702 		return 0;
5703 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5704 	frame--;
5705 	i = ret_insn[frame];
5706 	idx = ret_prog[frame];
5707 	goto continue_func;
5708 }
5709 
5710 static int check_max_stack_depth(struct bpf_verifier_env *env)
5711 {
5712 	struct bpf_subprog_info *si = env->subprog_info;
5713 	int ret;
5714 
5715 	for (int i = 0; i < env->subprog_cnt; i++) {
5716 		if (!i || si[i].is_async_cb) {
5717 			ret = check_max_stack_depth_subprog(env, i);
5718 			if (ret < 0)
5719 				return ret;
5720 		}
5721 		continue;
5722 	}
5723 	return 0;
5724 }
5725 
5726 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5727 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5728 				  const struct bpf_insn *insn, int idx)
5729 {
5730 	int start = idx + insn->imm + 1, subprog;
5731 
5732 	subprog = find_subprog(env, start);
5733 	if (subprog < 0) {
5734 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5735 			  start);
5736 		return -EFAULT;
5737 	}
5738 	return env->subprog_info[subprog].stack_depth;
5739 }
5740 #endif
5741 
5742 static int __check_buffer_access(struct bpf_verifier_env *env,
5743 				 const char *buf_info,
5744 				 const struct bpf_reg_state *reg,
5745 				 int regno, int off, int size)
5746 {
5747 	if (off < 0) {
5748 		verbose(env,
5749 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5750 			regno, buf_info, off, size);
5751 		return -EACCES;
5752 	}
5753 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5754 		char tn_buf[48];
5755 
5756 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5757 		verbose(env,
5758 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5759 			regno, off, tn_buf);
5760 		return -EACCES;
5761 	}
5762 
5763 	return 0;
5764 }
5765 
5766 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5767 				  const struct bpf_reg_state *reg,
5768 				  int regno, int off, int size)
5769 {
5770 	int err;
5771 
5772 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5773 	if (err)
5774 		return err;
5775 
5776 	if (off + size > env->prog->aux->max_tp_access)
5777 		env->prog->aux->max_tp_access = off + size;
5778 
5779 	return 0;
5780 }
5781 
5782 static int check_buffer_access(struct bpf_verifier_env *env,
5783 			       const struct bpf_reg_state *reg,
5784 			       int regno, int off, int size,
5785 			       bool zero_size_allowed,
5786 			       u32 *max_access)
5787 {
5788 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5789 	int err;
5790 
5791 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5792 	if (err)
5793 		return err;
5794 
5795 	if (off + size > *max_access)
5796 		*max_access = off + size;
5797 
5798 	return 0;
5799 }
5800 
5801 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5802 static void zext_32_to_64(struct bpf_reg_state *reg)
5803 {
5804 	reg->var_off = tnum_subreg(reg->var_off);
5805 	__reg_assign_32_into_64(reg);
5806 }
5807 
5808 /* truncate register to smaller size (in bytes)
5809  * must be called with size < BPF_REG_SIZE
5810  */
5811 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5812 {
5813 	u64 mask;
5814 
5815 	/* clear high bits in bit representation */
5816 	reg->var_off = tnum_cast(reg->var_off, size);
5817 
5818 	/* fix arithmetic bounds */
5819 	mask = ((u64)1 << (size * 8)) - 1;
5820 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5821 		reg->umin_value &= mask;
5822 		reg->umax_value &= mask;
5823 	} else {
5824 		reg->umin_value = 0;
5825 		reg->umax_value = mask;
5826 	}
5827 	reg->smin_value = reg->umin_value;
5828 	reg->smax_value = reg->umax_value;
5829 
5830 	/* If size is smaller than 32bit register the 32bit register
5831 	 * values are also truncated so we push 64-bit bounds into
5832 	 * 32-bit bounds. Above were truncated < 32-bits already.
5833 	 */
5834 	if (size >= 4)
5835 		return;
5836 	__reg_combine_64_into_32(reg);
5837 }
5838 
5839 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
5840 {
5841 	if (size == 1) {
5842 		reg->smin_value = reg->s32_min_value = S8_MIN;
5843 		reg->smax_value = reg->s32_max_value = S8_MAX;
5844 	} else if (size == 2) {
5845 		reg->smin_value = reg->s32_min_value = S16_MIN;
5846 		reg->smax_value = reg->s32_max_value = S16_MAX;
5847 	} else {
5848 		/* size == 4 */
5849 		reg->smin_value = reg->s32_min_value = S32_MIN;
5850 		reg->smax_value = reg->s32_max_value = S32_MAX;
5851 	}
5852 	reg->umin_value = reg->u32_min_value = 0;
5853 	reg->umax_value = U64_MAX;
5854 	reg->u32_max_value = U32_MAX;
5855 	reg->var_off = tnum_unknown;
5856 }
5857 
5858 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
5859 {
5860 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
5861 	u64 top_smax_value, top_smin_value;
5862 	u64 num_bits = size * 8;
5863 
5864 	if (tnum_is_const(reg->var_off)) {
5865 		u64_cval = reg->var_off.value;
5866 		if (size == 1)
5867 			reg->var_off = tnum_const((s8)u64_cval);
5868 		else if (size == 2)
5869 			reg->var_off = tnum_const((s16)u64_cval);
5870 		else
5871 			/* size == 4 */
5872 			reg->var_off = tnum_const((s32)u64_cval);
5873 
5874 		u64_cval = reg->var_off.value;
5875 		reg->smax_value = reg->smin_value = u64_cval;
5876 		reg->umax_value = reg->umin_value = u64_cval;
5877 		reg->s32_max_value = reg->s32_min_value = u64_cval;
5878 		reg->u32_max_value = reg->u32_min_value = u64_cval;
5879 		return;
5880 	}
5881 
5882 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
5883 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
5884 
5885 	if (top_smax_value != top_smin_value)
5886 		goto out;
5887 
5888 	/* find the s64_min and s64_min after sign extension */
5889 	if (size == 1) {
5890 		init_s64_max = (s8)reg->smax_value;
5891 		init_s64_min = (s8)reg->smin_value;
5892 	} else if (size == 2) {
5893 		init_s64_max = (s16)reg->smax_value;
5894 		init_s64_min = (s16)reg->smin_value;
5895 	} else {
5896 		init_s64_max = (s32)reg->smax_value;
5897 		init_s64_min = (s32)reg->smin_value;
5898 	}
5899 
5900 	s64_max = max(init_s64_max, init_s64_min);
5901 	s64_min = min(init_s64_max, init_s64_min);
5902 
5903 	/* both of s64_max/s64_min positive or negative */
5904 	if ((s64_max >= 0) == (s64_min >= 0)) {
5905 		reg->smin_value = reg->s32_min_value = s64_min;
5906 		reg->smax_value = reg->s32_max_value = s64_max;
5907 		reg->umin_value = reg->u32_min_value = s64_min;
5908 		reg->umax_value = reg->u32_max_value = s64_max;
5909 		reg->var_off = tnum_range(s64_min, s64_max);
5910 		return;
5911 	}
5912 
5913 out:
5914 	set_sext64_default_val(reg, size);
5915 }
5916 
5917 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
5918 {
5919 	if (size == 1) {
5920 		reg->s32_min_value = S8_MIN;
5921 		reg->s32_max_value = S8_MAX;
5922 	} else {
5923 		/* size == 2 */
5924 		reg->s32_min_value = S16_MIN;
5925 		reg->s32_max_value = S16_MAX;
5926 	}
5927 	reg->u32_min_value = 0;
5928 	reg->u32_max_value = U32_MAX;
5929 }
5930 
5931 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
5932 {
5933 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
5934 	u32 top_smax_value, top_smin_value;
5935 	u32 num_bits = size * 8;
5936 
5937 	if (tnum_is_const(reg->var_off)) {
5938 		u32_val = reg->var_off.value;
5939 		if (size == 1)
5940 			reg->var_off = tnum_const((s8)u32_val);
5941 		else
5942 			reg->var_off = tnum_const((s16)u32_val);
5943 
5944 		u32_val = reg->var_off.value;
5945 		reg->s32_min_value = reg->s32_max_value = u32_val;
5946 		reg->u32_min_value = reg->u32_max_value = u32_val;
5947 		return;
5948 	}
5949 
5950 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
5951 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
5952 
5953 	if (top_smax_value != top_smin_value)
5954 		goto out;
5955 
5956 	/* find the s32_min and s32_min after sign extension */
5957 	if (size == 1) {
5958 		init_s32_max = (s8)reg->s32_max_value;
5959 		init_s32_min = (s8)reg->s32_min_value;
5960 	} else {
5961 		/* size == 2 */
5962 		init_s32_max = (s16)reg->s32_max_value;
5963 		init_s32_min = (s16)reg->s32_min_value;
5964 	}
5965 	s32_max = max(init_s32_max, init_s32_min);
5966 	s32_min = min(init_s32_max, init_s32_min);
5967 
5968 	if ((s32_min >= 0) == (s32_max >= 0)) {
5969 		reg->s32_min_value = s32_min;
5970 		reg->s32_max_value = s32_max;
5971 		reg->u32_min_value = (u32)s32_min;
5972 		reg->u32_max_value = (u32)s32_max;
5973 		return;
5974 	}
5975 
5976 out:
5977 	set_sext32_default_val(reg, size);
5978 }
5979 
5980 static bool bpf_map_is_rdonly(const struct bpf_map *map)
5981 {
5982 	/* A map is considered read-only if the following condition are true:
5983 	 *
5984 	 * 1) BPF program side cannot change any of the map content. The
5985 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5986 	 *    and was set at map creation time.
5987 	 * 2) The map value(s) have been initialized from user space by a
5988 	 *    loader and then "frozen", such that no new map update/delete
5989 	 *    operations from syscall side are possible for the rest of
5990 	 *    the map's lifetime from that point onwards.
5991 	 * 3) Any parallel/pending map update/delete operations from syscall
5992 	 *    side have been completed. Only after that point, it's safe to
5993 	 *    assume that map value(s) are immutable.
5994 	 */
5995 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
5996 	       READ_ONCE(map->frozen) &&
5997 	       !bpf_map_write_active(map);
5998 }
5999 
6000 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6001 			       bool is_ldsx)
6002 {
6003 	void *ptr;
6004 	u64 addr;
6005 	int err;
6006 
6007 	err = map->ops->map_direct_value_addr(map, &addr, off);
6008 	if (err)
6009 		return err;
6010 	ptr = (void *)(long)addr + off;
6011 
6012 	switch (size) {
6013 	case sizeof(u8):
6014 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6015 		break;
6016 	case sizeof(u16):
6017 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6018 		break;
6019 	case sizeof(u32):
6020 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6021 		break;
6022 	case sizeof(u64):
6023 		*val = *(u64 *)ptr;
6024 		break;
6025 	default:
6026 		return -EINVAL;
6027 	}
6028 	return 0;
6029 }
6030 
6031 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6032 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6033 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6034 
6035 /*
6036  * Allow list few fields as RCU trusted or full trusted.
6037  * This logic doesn't allow mix tagging and will be removed once GCC supports
6038  * btf_type_tag.
6039  */
6040 
6041 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6042 BTF_TYPE_SAFE_RCU(struct task_struct) {
6043 	const cpumask_t *cpus_ptr;
6044 	struct css_set __rcu *cgroups;
6045 	struct task_struct __rcu *real_parent;
6046 	struct task_struct *group_leader;
6047 };
6048 
6049 BTF_TYPE_SAFE_RCU(struct cgroup) {
6050 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6051 	struct kernfs_node *kn;
6052 };
6053 
6054 BTF_TYPE_SAFE_RCU(struct css_set) {
6055 	struct cgroup *dfl_cgrp;
6056 };
6057 
6058 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6059 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6060 	struct file __rcu *exe_file;
6061 };
6062 
6063 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6064  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6065  */
6066 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6067 	struct sock *sk;
6068 };
6069 
6070 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6071 	struct sock *sk;
6072 };
6073 
6074 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6075 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6076 	struct seq_file *seq;
6077 };
6078 
6079 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6080 	struct bpf_iter_meta *meta;
6081 	struct task_struct *task;
6082 };
6083 
6084 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6085 	struct file *file;
6086 };
6087 
6088 BTF_TYPE_SAFE_TRUSTED(struct file) {
6089 	struct inode *f_inode;
6090 };
6091 
6092 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6093 	/* no negative dentry-s in places where bpf can see it */
6094 	struct inode *d_inode;
6095 };
6096 
6097 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6098 	struct sock *sk;
6099 };
6100 
6101 static bool type_is_rcu(struct bpf_verifier_env *env,
6102 			struct bpf_reg_state *reg,
6103 			const char *field_name, u32 btf_id)
6104 {
6105 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6106 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6107 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6108 
6109 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6110 }
6111 
6112 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6113 				struct bpf_reg_state *reg,
6114 				const char *field_name, u32 btf_id)
6115 {
6116 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6117 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6118 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6119 
6120 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6121 }
6122 
6123 static bool type_is_trusted(struct bpf_verifier_env *env,
6124 			    struct bpf_reg_state *reg,
6125 			    const char *field_name, u32 btf_id)
6126 {
6127 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6128 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6129 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6130 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6131 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6132 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6133 
6134 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6135 }
6136 
6137 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6138 				   struct bpf_reg_state *regs,
6139 				   int regno, int off, int size,
6140 				   enum bpf_access_type atype,
6141 				   int value_regno)
6142 {
6143 	struct bpf_reg_state *reg = regs + regno;
6144 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6145 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6146 	const char *field_name = NULL;
6147 	enum bpf_type_flag flag = 0;
6148 	u32 btf_id = 0;
6149 	int ret;
6150 
6151 	if (!env->allow_ptr_leaks) {
6152 		verbose(env,
6153 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6154 			tname);
6155 		return -EPERM;
6156 	}
6157 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6158 		verbose(env,
6159 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6160 			tname);
6161 		return -EINVAL;
6162 	}
6163 	if (off < 0) {
6164 		verbose(env,
6165 			"R%d is ptr_%s invalid negative access: off=%d\n",
6166 			regno, tname, off);
6167 		return -EACCES;
6168 	}
6169 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6170 		char tn_buf[48];
6171 
6172 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6173 		verbose(env,
6174 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6175 			regno, tname, off, tn_buf);
6176 		return -EACCES;
6177 	}
6178 
6179 	if (reg->type & MEM_USER) {
6180 		verbose(env,
6181 			"R%d is ptr_%s access user memory: off=%d\n",
6182 			regno, tname, off);
6183 		return -EACCES;
6184 	}
6185 
6186 	if (reg->type & MEM_PERCPU) {
6187 		verbose(env,
6188 			"R%d is ptr_%s access percpu memory: off=%d\n",
6189 			regno, tname, off);
6190 		return -EACCES;
6191 	}
6192 
6193 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6194 		if (!btf_is_kernel(reg->btf)) {
6195 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6196 			return -EFAULT;
6197 		}
6198 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6199 	} else {
6200 		/* Writes are permitted with default btf_struct_access for
6201 		 * program allocated objects (which always have ref_obj_id > 0),
6202 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6203 		 */
6204 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6205 			verbose(env, "only read is supported\n");
6206 			return -EACCES;
6207 		}
6208 
6209 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6210 		    !reg->ref_obj_id) {
6211 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6212 			return -EFAULT;
6213 		}
6214 
6215 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6216 	}
6217 
6218 	if (ret < 0)
6219 		return ret;
6220 
6221 	if (ret != PTR_TO_BTF_ID) {
6222 		/* just mark; */
6223 
6224 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6225 		/* If this is an untrusted pointer, all pointers formed by walking it
6226 		 * also inherit the untrusted flag.
6227 		 */
6228 		flag = PTR_UNTRUSTED;
6229 
6230 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6231 		/* By default any pointer obtained from walking a trusted pointer is no
6232 		 * longer trusted, unless the field being accessed has explicitly been
6233 		 * marked as inheriting its parent's state of trust (either full or RCU).
6234 		 * For example:
6235 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6236 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6237 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6238 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6239 		 *
6240 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6241 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6242 		 */
6243 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6244 			flag |= PTR_TRUSTED;
6245 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6246 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6247 				/* ignore __rcu tag and mark it MEM_RCU */
6248 				flag |= MEM_RCU;
6249 			} else if (flag & MEM_RCU ||
6250 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6251 				/* __rcu tagged pointers can be NULL */
6252 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6253 
6254 				/* We always trust them */
6255 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6256 				    flag & PTR_UNTRUSTED)
6257 					flag &= ~PTR_UNTRUSTED;
6258 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6259 				/* keep as-is */
6260 			} else {
6261 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6262 				clear_trusted_flags(&flag);
6263 			}
6264 		} else {
6265 			/*
6266 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6267 			 * aggressively mark as untrusted otherwise such
6268 			 * pointers will be plain PTR_TO_BTF_ID without flags
6269 			 * and will be allowed to be passed into helpers for
6270 			 * compat reasons.
6271 			 */
6272 			flag = PTR_UNTRUSTED;
6273 		}
6274 	} else {
6275 		/* Old compat. Deprecated */
6276 		clear_trusted_flags(&flag);
6277 	}
6278 
6279 	if (atype == BPF_READ && value_regno >= 0)
6280 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6281 
6282 	return 0;
6283 }
6284 
6285 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6286 				   struct bpf_reg_state *regs,
6287 				   int regno, int off, int size,
6288 				   enum bpf_access_type atype,
6289 				   int value_regno)
6290 {
6291 	struct bpf_reg_state *reg = regs + regno;
6292 	struct bpf_map *map = reg->map_ptr;
6293 	struct bpf_reg_state map_reg;
6294 	enum bpf_type_flag flag = 0;
6295 	const struct btf_type *t;
6296 	const char *tname;
6297 	u32 btf_id;
6298 	int ret;
6299 
6300 	if (!btf_vmlinux) {
6301 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6302 		return -ENOTSUPP;
6303 	}
6304 
6305 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6306 		verbose(env, "map_ptr access not supported for map type %d\n",
6307 			map->map_type);
6308 		return -ENOTSUPP;
6309 	}
6310 
6311 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6312 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6313 
6314 	if (!env->allow_ptr_leaks) {
6315 		verbose(env,
6316 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6317 			tname);
6318 		return -EPERM;
6319 	}
6320 
6321 	if (off < 0) {
6322 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6323 			regno, tname, off);
6324 		return -EACCES;
6325 	}
6326 
6327 	if (atype != BPF_READ) {
6328 		verbose(env, "only read from %s is supported\n", tname);
6329 		return -EACCES;
6330 	}
6331 
6332 	/* Simulate access to a PTR_TO_BTF_ID */
6333 	memset(&map_reg, 0, sizeof(map_reg));
6334 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6335 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6336 	if (ret < 0)
6337 		return ret;
6338 
6339 	if (value_regno >= 0)
6340 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6341 
6342 	return 0;
6343 }
6344 
6345 /* Check that the stack access at the given offset is within bounds. The
6346  * maximum valid offset is -1.
6347  *
6348  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6349  * -state->allocated_stack for reads.
6350  */
6351 static int check_stack_slot_within_bounds(int off,
6352 					  struct bpf_func_state *state,
6353 					  enum bpf_access_type t)
6354 {
6355 	int min_valid_off;
6356 
6357 	if (t == BPF_WRITE)
6358 		min_valid_off = -MAX_BPF_STACK;
6359 	else
6360 		min_valid_off = -state->allocated_stack;
6361 
6362 	if (off < min_valid_off || off > -1)
6363 		return -EACCES;
6364 	return 0;
6365 }
6366 
6367 /* Check that the stack access at 'regno + off' falls within the maximum stack
6368  * bounds.
6369  *
6370  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6371  */
6372 static int check_stack_access_within_bounds(
6373 		struct bpf_verifier_env *env,
6374 		int regno, int off, int access_size,
6375 		enum bpf_access_src src, enum bpf_access_type type)
6376 {
6377 	struct bpf_reg_state *regs = cur_regs(env);
6378 	struct bpf_reg_state *reg = regs + regno;
6379 	struct bpf_func_state *state = func(env, reg);
6380 	int min_off, max_off;
6381 	int err;
6382 	char *err_extra;
6383 
6384 	if (src == ACCESS_HELPER)
6385 		/* We don't know if helpers are reading or writing (or both). */
6386 		err_extra = " indirect access to";
6387 	else if (type == BPF_READ)
6388 		err_extra = " read from";
6389 	else
6390 		err_extra = " write to";
6391 
6392 	if (tnum_is_const(reg->var_off)) {
6393 		min_off = reg->var_off.value + off;
6394 		if (access_size > 0)
6395 			max_off = min_off + access_size - 1;
6396 		else
6397 			max_off = min_off;
6398 	} else {
6399 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6400 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6401 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6402 				err_extra, regno);
6403 			return -EACCES;
6404 		}
6405 		min_off = reg->smin_value + off;
6406 		if (access_size > 0)
6407 			max_off = reg->smax_value + off + access_size - 1;
6408 		else
6409 			max_off = min_off;
6410 	}
6411 
6412 	err = check_stack_slot_within_bounds(min_off, state, type);
6413 	if (!err)
6414 		err = check_stack_slot_within_bounds(max_off, state, type);
6415 
6416 	if (err) {
6417 		if (tnum_is_const(reg->var_off)) {
6418 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6419 				err_extra, regno, off, access_size);
6420 		} else {
6421 			char tn_buf[48];
6422 
6423 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6424 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6425 				err_extra, regno, tn_buf, access_size);
6426 		}
6427 	}
6428 	return err;
6429 }
6430 
6431 /* check whether memory at (regno + off) is accessible for t = (read | write)
6432  * if t==write, value_regno is a register which value is stored into memory
6433  * if t==read, value_regno is a register which will receive the value from memory
6434  * if t==write && value_regno==-1, some unknown value is stored into memory
6435  * if t==read && value_regno==-1, don't care what we read from memory
6436  */
6437 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6438 			    int off, int bpf_size, enum bpf_access_type t,
6439 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6440 {
6441 	struct bpf_reg_state *regs = cur_regs(env);
6442 	struct bpf_reg_state *reg = regs + regno;
6443 	struct bpf_func_state *state;
6444 	int size, err = 0;
6445 
6446 	size = bpf_size_to_bytes(bpf_size);
6447 	if (size < 0)
6448 		return size;
6449 
6450 	/* alignment checks will add in reg->off themselves */
6451 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6452 	if (err)
6453 		return err;
6454 
6455 	/* for access checks, reg->off is just part of off */
6456 	off += reg->off;
6457 
6458 	if (reg->type == PTR_TO_MAP_KEY) {
6459 		if (t == BPF_WRITE) {
6460 			verbose(env, "write to change key R%d not allowed\n", regno);
6461 			return -EACCES;
6462 		}
6463 
6464 		err = check_mem_region_access(env, regno, off, size,
6465 					      reg->map_ptr->key_size, false);
6466 		if (err)
6467 			return err;
6468 		if (value_regno >= 0)
6469 			mark_reg_unknown(env, regs, value_regno);
6470 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6471 		struct btf_field *kptr_field = NULL;
6472 
6473 		if (t == BPF_WRITE && value_regno >= 0 &&
6474 		    is_pointer_value(env, value_regno)) {
6475 			verbose(env, "R%d leaks addr into map\n", value_regno);
6476 			return -EACCES;
6477 		}
6478 		err = check_map_access_type(env, regno, off, size, t);
6479 		if (err)
6480 			return err;
6481 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6482 		if (err)
6483 			return err;
6484 		if (tnum_is_const(reg->var_off))
6485 			kptr_field = btf_record_find(reg->map_ptr->record,
6486 						     off + reg->var_off.value, BPF_KPTR);
6487 		if (kptr_field) {
6488 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6489 		} else if (t == BPF_READ && value_regno >= 0) {
6490 			struct bpf_map *map = reg->map_ptr;
6491 
6492 			/* if map is read-only, track its contents as scalars */
6493 			if (tnum_is_const(reg->var_off) &&
6494 			    bpf_map_is_rdonly(map) &&
6495 			    map->ops->map_direct_value_addr) {
6496 				int map_off = off + reg->var_off.value;
6497 				u64 val = 0;
6498 
6499 				err = bpf_map_direct_read(map, map_off, size,
6500 							  &val, is_ldsx);
6501 				if (err)
6502 					return err;
6503 
6504 				regs[value_regno].type = SCALAR_VALUE;
6505 				__mark_reg_known(&regs[value_regno], val);
6506 			} else {
6507 				mark_reg_unknown(env, regs, value_regno);
6508 			}
6509 		}
6510 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6511 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6512 
6513 		if (type_may_be_null(reg->type)) {
6514 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6515 				reg_type_str(env, reg->type));
6516 			return -EACCES;
6517 		}
6518 
6519 		if (t == BPF_WRITE && rdonly_mem) {
6520 			verbose(env, "R%d cannot write into %s\n",
6521 				regno, reg_type_str(env, reg->type));
6522 			return -EACCES;
6523 		}
6524 
6525 		if (t == BPF_WRITE && value_regno >= 0 &&
6526 		    is_pointer_value(env, value_regno)) {
6527 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6528 			return -EACCES;
6529 		}
6530 
6531 		err = check_mem_region_access(env, regno, off, size,
6532 					      reg->mem_size, false);
6533 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6534 			mark_reg_unknown(env, regs, value_regno);
6535 	} else if (reg->type == PTR_TO_CTX) {
6536 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6537 		struct btf *btf = NULL;
6538 		u32 btf_id = 0;
6539 
6540 		if (t == BPF_WRITE && value_regno >= 0 &&
6541 		    is_pointer_value(env, value_regno)) {
6542 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6543 			return -EACCES;
6544 		}
6545 
6546 		err = check_ptr_off_reg(env, reg, regno);
6547 		if (err < 0)
6548 			return err;
6549 
6550 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6551 				       &btf_id);
6552 		if (err)
6553 			verbose_linfo(env, insn_idx, "; ");
6554 		if (!err && t == BPF_READ && value_regno >= 0) {
6555 			/* ctx access returns either a scalar, or a
6556 			 * PTR_TO_PACKET[_META,_END]. In the latter
6557 			 * case, we know the offset is zero.
6558 			 */
6559 			if (reg_type == SCALAR_VALUE) {
6560 				mark_reg_unknown(env, regs, value_regno);
6561 			} else {
6562 				mark_reg_known_zero(env, regs,
6563 						    value_regno);
6564 				if (type_may_be_null(reg_type))
6565 					regs[value_regno].id = ++env->id_gen;
6566 				/* A load of ctx field could have different
6567 				 * actual load size with the one encoded in the
6568 				 * insn. When the dst is PTR, it is for sure not
6569 				 * a sub-register.
6570 				 */
6571 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6572 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6573 					regs[value_regno].btf = btf;
6574 					regs[value_regno].btf_id = btf_id;
6575 				}
6576 			}
6577 			regs[value_regno].type = reg_type;
6578 		}
6579 
6580 	} else if (reg->type == PTR_TO_STACK) {
6581 		/* Basic bounds checks. */
6582 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6583 		if (err)
6584 			return err;
6585 
6586 		state = func(env, reg);
6587 		err = update_stack_depth(env, state, off);
6588 		if (err)
6589 			return err;
6590 
6591 		if (t == BPF_READ)
6592 			err = check_stack_read(env, regno, off, size,
6593 					       value_regno);
6594 		else
6595 			err = check_stack_write(env, regno, off, size,
6596 						value_regno, insn_idx);
6597 	} else if (reg_is_pkt_pointer(reg)) {
6598 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6599 			verbose(env, "cannot write into packet\n");
6600 			return -EACCES;
6601 		}
6602 		if (t == BPF_WRITE && value_regno >= 0 &&
6603 		    is_pointer_value(env, value_regno)) {
6604 			verbose(env, "R%d leaks addr into packet\n",
6605 				value_regno);
6606 			return -EACCES;
6607 		}
6608 		err = check_packet_access(env, regno, off, size, false);
6609 		if (!err && t == BPF_READ && value_regno >= 0)
6610 			mark_reg_unknown(env, regs, value_regno);
6611 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6612 		if (t == BPF_WRITE && value_regno >= 0 &&
6613 		    is_pointer_value(env, value_regno)) {
6614 			verbose(env, "R%d leaks addr into flow keys\n",
6615 				value_regno);
6616 			return -EACCES;
6617 		}
6618 
6619 		err = check_flow_keys_access(env, off, size);
6620 		if (!err && t == BPF_READ && value_regno >= 0)
6621 			mark_reg_unknown(env, regs, value_regno);
6622 	} else if (type_is_sk_pointer(reg->type)) {
6623 		if (t == BPF_WRITE) {
6624 			verbose(env, "R%d cannot write into %s\n",
6625 				regno, reg_type_str(env, reg->type));
6626 			return -EACCES;
6627 		}
6628 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6629 		if (!err && value_regno >= 0)
6630 			mark_reg_unknown(env, regs, value_regno);
6631 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6632 		err = check_tp_buffer_access(env, reg, regno, off, size);
6633 		if (!err && t == BPF_READ && value_regno >= 0)
6634 			mark_reg_unknown(env, regs, value_regno);
6635 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6636 		   !type_may_be_null(reg->type)) {
6637 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6638 					      value_regno);
6639 	} else if (reg->type == CONST_PTR_TO_MAP) {
6640 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6641 					      value_regno);
6642 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6643 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6644 		u32 *max_access;
6645 
6646 		if (rdonly_mem) {
6647 			if (t == BPF_WRITE) {
6648 				verbose(env, "R%d cannot write into %s\n",
6649 					regno, reg_type_str(env, reg->type));
6650 				return -EACCES;
6651 			}
6652 			max_access = &env->prog->aux->max_rdonly_access;
6653 		} else {
6654 			max_access = &env->prog->aux->max_rdwr_access;
6655 		}
6656 
6657 		err = check_buffer_access(env, reg, regno, off, size, false,
6658 					  max_access);
6659 
6660 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6661 			mark_reg_unknown(env, regs, value_regno);
6662 	} else {
6663 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6664 			reg_type_str(env, reg->type));
6665 		return -EACCES;
6666 	}
6667 
6668 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6669 	    regs[value_regno].type == SCALAR_VALUE) {
6670 		if (!is_ldsx)
6671 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6672 			coerce_reg_to_size(&regs[value_regno], size);
6673 		else
6674 			coerce_reg_to_size_sx(&regs[value_regno], size);
6675 	}
6676 	return err;
6677 }
6678 
6679 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6680 {
6681 	int load_reg;
6682 	int err;
6683 
6684 	switch (insn->imm) {
6685 	case BPF_ADD:
6686 	case BPF_ADD | BPF_FETCH:
6687 	case BPF_AND:
6688 	case BPF_AND | BPF_FETCH:
6689 	case BPF_OR:
6690 	case BPF_OR | BPF_FETCH:
6691 	case BPF_XOR:
6692 	case BPF_XOR | BPF_FETCH:
6693 	case BPF_XCHG:
6694 	case BPF_CMPXCHG:
6695 		break;
6696 	default:
6697 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6698 		return -EINVAL;
6699 	}
6700 
6701 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6702 		verbose(env, "invalid atomic operand size\n");
6703 		return -EINVAL;
6704 	}
6705 
6706 	/* check src1 operand */
6707 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6708 	if (err)
6709 		return err;
6710 
6711 	/* check src2 operand */
6712 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6713 	if (err)
6714 		return err;
6715 
6716 	if (insn->imm == BPF_CMPXCHG) {
6717 		/* Check comparison of R0 with memory location */
6718 		const u32 aux_reg = BPF_REG_0;
6719 
6720 		err = check_reg_arg(env, aux_reg, SRC_OP);
6721 		if (err)
6722 			return err;
6723 
6724 		if (is_pointer_value(env, aux_reg)) {
6725 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6726 			return -EACCES;
6727 		}
6728 	}
6729 
6730 	if (is_pointer_value(env, insn->src_reg)) {
6731 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6732 		return -EACCES;
6733 	}
6734 
6735 	if (is_ctx_reg(env, insn->dst_reg) ||
6736 	    is_pkt_reg(env, insn->dst_reg) ||
6737 	    is_flow_key_reg(env, insn->dst_reg) ||
6738 	    is_sk_reg(env, insn->dst_reg)) {
6739 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6740 			insn->dst_reg,
6741 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6742 		return -EACCES;
6743 	}
6744 
6745 	if (insn->imm & BPF_FETCH) {
6746 		if (insn->imm == BPF_CMPXCHG)
6747 			load_reg = BPF_REG_0;
6748 		else
6749 			load_reg = insn->src_reg;
6750 
6751 		/* check and record load of old value */
6752 		err = check_reg_arg(env, load_reg, DST_OP);
6753 		if (err)
6754 			return err;
6755 	} else {
6756 		/* This instruction accesses a memory location but doesn't
6757 		 * actually load it into a register.
6758 		 */
6759 		load_reg = -1;
6760 	}
6761 
6762 	/* Check whether we can read the memory, with second call for fetch
6763 	 * case to simulate the register fill.
6764 	 */
6765 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6766 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6767 	if (!err && load_reg >= 0)
6768 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6769 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6770 				       true, false);
6771 	if (err)
6772 		return err;
6773 
6774 	/* Check whether we can write into the same memory. */
6775 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6776 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6777 	if (err)
6778 		return err;
6779 
6780 	return 0;
6781 }
6782 
6783 /* When register 'regno' is used to read the stack (either directly or through
6784  * a helper function) make sure that it's within stack boundary and, depending
6785  * on the access type, that all elements of the stack are initialized.
6786  *
6787  * 'off' includes 'regno->off', but not its dynamic part (if any).
6788  *
6789  * All registers that have been spilled on the stack in the slots within the
6790  * read offsets are marked as read.
6791  */
6792 static int check_stack_range_initialized(
6793 		struct bpf_verifier_env *env, int regno, int off,
6794 		int access_size, bool zero_size_allowed,
6795 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6796 {
6797 	struct bpf_reg_state *reg = reg_state(env, regno);
6798 	struct bpf_func_state *state = func(env, reg);
6799 	int err, min_off, max_off, i, j, slot, spi;
6800 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6801 	enum bpf_access_type bounds_check_type;
6802 	/* Some accesses can write anything into the stack, others are
6803 	 * read-only.
6804 	 */
6805 	bool clobber = false;
6806 
6807 	if (access_size == 0 && !zero_size_allowed) {
6808 		verbose(env, "invalid zero-sized read\n");
6809 		return -EACCES;
6810 	}
6811 
6812 	if (type == ACCESS_HELPER) {
6813 		/* The bounds checks for writes are more permissive than for
6814 		 * reads. However, if raw_mode is not set, we'll do extra
6815 		 * checks below.
6816 		 */
6817 		bounds_check_type = BPF_WRITE;
6818 		clobber = true;
6819 	} else {
6820 		bounds_check_type = BPF_READ;
6821 	}
6822 	err = check_stack_access_within_bounds(env, regno, off, access_size,
6823 					       type, bounds_check_type);
6824 	if (err)
6825 		return err;
6826 
6827 
6828 	if (tnum_is_const(reg->var_off)) {
6829 		min_off = max_off = reg->var_off.value + off;
6830 	} else {
6831 		/* Variable offset is prohibited for unprivileged mode for
6832 		 * simplicity since it requires corresponding support in
6833 		 * Spectre masking for stack ALU.
6834 		 * See also retrieve_ptr_limit().
6835 		 */
6836 		if (!env->bypass_spec_v1) {
6837 			char tn_buf[48];
6838 
6839 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6840 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6841 				regno, err_extra, tn_buf);
6842 			return -EACCES;
6843 		}
6844 		/* Only initialized buffer on stack is allowed to be accessed
6845 		 * with variable offset. With uninitialized buffer it's hard to
6846 		 * guarantee that whole memory is marked as initialized on
6847 		 * helper return since specific bounds are unknown what may
6848 		 * cause uninitialized stack leaking.
6849 		 */
6850 		if (meta && meta->raw_mode)
6851 			meta = NULL;
6852 
6853 		min_off = reg->smin_value + off;
6854 		max_off = reg->smax_value + off;
6855 	}
6856 
6857 	if (meta && meta->raw_mode) {
6858 		/* Ensure we won't be overwriting dynptrs when simulating byte
6859 		 * by byte access in check_helper_call using meta.access_size.
6860 		 * This would be a problem if we have a helper in the future
6861 		 * which takes:
6862 		 *
6863 		 *	helper(uninit_mem, len, dynptr)
6864 		 *
6865 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6866 		 * may end up writing to dynptr itself when touching memory from
6867 		 * arg 1. This can be relaxed on a case by case basis for known
6868 		 * safe cases, but reject due to the possibilitiy of aliasing by
6869 		 * default.
6870 		 */
6871 		for (i = min_off; i < max_off + access_size; i++) {
6872 			int stack_off = -i - 1;
6873 
6874 			spi = __get_spi(i);
6875 			/* raw_mode may write past allocated_stack */
6876 			if (state->allocated_stack <= stack_off)
6877 				continue;
6878 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6879 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6880 				return -EACCES;
6881 			}
6882 		}
6883 		meta->access_size = access_size;
6884 		meta->regno = regno;
6885 		return 0;
6886 	}
6887 
6888 	for (i = min_off; i < max_off + access_size; i++) {
6889 		u8 *stype;
6890 
6891 		slot = -i - 1;
6892 		spi = slot / BPF_REG_SIZE;
6893 		if (state->allocated_stack <= slot)
6894 			goto err;
6895 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6896 		if (*stype == STACK_MISC)
6897 			goto mark;
6898 		if ((*stype == STACK_ZERO) ||
6899 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
6900 			if (clobber) {
6901 				/* helper can write anything into the stack */
6902 				*stype = STACK_MISC;
6903 			}
6904 			goto mark;
6905 		}
6906 
6907 		if (is_spilled_reg(&state->stack[spi]) &&
6908 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6909 		     env->allow_ptr_leaks)) {
6910 			if (clobber) {
6911 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6912 				for (j = 0; j < BPF_REG_SIZE; j++)
6913 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
6914 			}
6915 			goto mark;
6916 		}
6917 
6918 err:
6919 		if (tnum_is_const(reg->var_off)) {
6920 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6921 				err_extra, regno, min_off, i - min_off, access_size);
6922 		} else {
6923 			char tn_buf[48];
6924 
6925 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6926 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6927 				err_extra, regno, tn_buf, i - min_off, access_size);
6928 		}
6929 		return -EACCES;
6930 mark:
6931 		/* reading any byte out of 8-byte 'spill_slot' will cause
6932 		 * the whole slot to be marked as 'read'
6933 		 */
6934 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
6935 			      state->stack[spi].spilled_ptr.parent,
6936 			      REG_LIVE_READ64);
6937 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6938 		 * be sure that whether stack slot is written to or not. Hence,
6939 		 * we must still conservatively propagate reads upwards even if
6940 		 * helper may write to the entire memory range.
6941 		 */
6942 	}
6943 	return update_stack_depth(env, state, min_off);
6944 }
6945 
6946 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6947 				   int access_size, bool zero_size_allowed,
6948 				   struct bpf_call_arg_meta *meta)
6949 {
6950 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6951 	u32 *max_access;
6952 
6953 	switch (base_type(reg->type)) {
6954 	case PTR_TO_PACKET:
6955 	case PTR_TO_PACKET_META:
6956 		return check_packet_access(env, regno, reg->off, access_size,
6957 					   zero_size_allowed);
6958 	case PTR_TO_MAP_KEY:
6959 		if (meta && meta->raw_mode) {
6960 			verbose(env, "R%d cannot write into %s\n", regno,
6961 				reg_type_str(env, reg->type));
6962 			return -EACCES;
6963 		}
6964 		return check_mem_region_access(env, regno, reg->off, access_size,
6965 					       reg->map_ptr->key_size, false);
6966 	case PTR_TO_MAP_VALUE:
6967 		if (check_map_access_type(env, regno, reg->off, access_size,
6968 					  meta && meta->raw_mode ? BPF_WRITE :
6969 					  BPF_READ))
6970 			return -EACCES;
6971 		return check_map_access(env, regno, reg->off, access_size,
6972 					zero_size_allowed, ACCESS_HELPER);
6973 	case PTR_TO_MEM:
6974 		if (type_is_rdonly_mem(reg->type)) {
6975 			if (meta && meta->raw_mode) {
6976 				verbose(env, "R%d cannot write into %s\n", regno,
6977 					reg_type_str(env, reg->type));
6978 				return -EACCES;
6979 			}
6980 		}
6981 		return check_mem_region_access(env, regno, reg->off,
6982 					       access_size, reg->mem_size,
6983 					       zero_size_allowed);
6984 	case PTR_TO_BUF:
6985 		if (type_is_rdonly_mem(reg->type)) {
6986 			if (meta && meta->raw_mode) {
6987 				verbose(env, "R%d cannot write into %s\n", regno,
6988 					reg_type_str(env, reg->type));
6989 				return -EACCES;
6990 			}
6991 
6992 			max_access = &env->prog->aux->max_rdonly_access;
6993 		} else {
6994 			max_access = &env->prog->aux->max_rdwr_access;
6995 		}
6996 		return check_buffer_access(env, reg, regno, reg->off,
6997 					   access_size, zero_size_allowed,
6998 					   max_access);
6999 	case PTR_TO_STACK:
7000 		return check_stack_range_initialized(
7001 				env,
7002 				regno, reg->off, access_size,
7003 				zero_size_allowed, ACCESS_HELPER, meta);
7004 	case PTR_TO_BTF_ID:
7005 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7006 					       access_size, BPF_READ, -1);
7007 	case PTR_TO_CTX:
7008 		/* in case the function doesn't know how to access the context,
7009 		 * (because we are in a program of type SYSCALL for example), we
7010 		 * can not statically check its size.
7011 		 * Dynamically check it now.
7012 		 */
7013 		if (!env->ops->convert_ctx_access) {
7014 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7015 			int offset = access_size - 1;
7016 
7017 			/* Allow zero-byte read from PTR_TO_CTX */
7018 			if (access_size == 0)
7019 				return zero_size_allowed ? 0 : -EACCES;
7020 
7021 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7022 						atype, -1, false, false);
7023 		}
7024 
7025 		fallthrough;
7026 	default: /* scalar_value or invalid ptr */
7027 		/* Allow zero-byte read from NULL, regardless of pointer type */
7028 		if (zero_size_allowed && access_size == 0 &&
7029 		    register_is_null(reg))
7030 			return 0;
7031 
7032 		verbose(env, "R%d type=%s ", regno,
7033 			reg_type_str(env, reg->type));
7034 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7035 		return -EACCES;
7036 	}
7037 }
7038 
7039 static int check_mem_size_reg(struct bpf_verifier_env *env,
7040 			      struct bpf_reg_state *reg, u32 regno,
7041 			      bool zero_size_allowed,
7042 			      struct bpf_call_arg_meta *meta)
7043 {
7044 	int err;
7045 
7046 	/* This is used to refine r0 return value bounds for helpers
7047 	 * that enforce this value as an upper bound on return values.
7048 	 * See do_refine_retval_range() for helpers that can refine
7049 	 * the return value. C type of helper is u32 so we pull register
7050 	 * bound from umax_value however, if negative verifier errors
7051 	 * out. Only upper bounds can be learned because retval is an
7052 	 * int type and negative retvals are allowed.
7053 	 */
7054 	meta->msize_max_value = reg->umax_value;
7055 
7056 	/* The register is SCALAR_VALUE; the access check
7057 	 * happens using its boundaries.
7058 	 */
7059 	if (!tnum_is_const(reg->var_off))
7060 		/* For unprivileged variable accesses, disable raw
7061 		 * mode so that the program is required to
7062 		 * initialize all the memory that the helper could
7063 		 * just partially fill up.
7064 		 */
7065 		meta = NULL;
7066 
7067 	if (reg->smin_value < 0) {
7068 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7069 			regno);
7070 		return -EACCES;
7071 	}
7072 
7073 	if (reg->umin_value == 0) {
7074 		err = check_helper_mem_access(env, regno - 1, 0,
7075 					      zero_size_allowed,
7076 					      meta);
7077 		if (err)
7078 			return err;
7079 	}
7080 
7081 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7082 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7083 			regno);
7084 		return -EACCES;
7085 	}
7086 	err = check_helper_mem_access(env, regno - 1,
7087 				      reg->umax_value,
7088 				      zero_size_allowed, meta);
7089 	if (!err)
7090 		err = mark_chain_precision(env, regno);
7091 	return err;
7092 }
7093 
7094 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7095 		   u32 regno, u32 mem_size)
7096 {
7097 	bool may_be_null = type_may_be_null(reg->type);
7098 	struct bpf_reg_state saved_reg;
7099 	struct bpf_call_arg_meta meta;
7100 	int err;
7101 
7102 	if (register_is_null(reg))
7103 		return 0;
7104 
7105 	memset(&meta, 0, sizeof(meta));
7106 	/* Assuming that the register contains a value check if the memory
7107 	 * access is safe. Temporarily save and restore the register's state as
7108 	 * the conversion shouldn't be visible to a caller.
7109 	 */
7110 	if (may_be_null) {
7111 		saved_reg = *reg;
7112 		mark_ptr_not_null_reg(reg);
7113 	}
7114 
7115 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7116 	/* Check access for BPF_WRITE */
7117 	meta.raw_mode = true;
7118 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7119 
7120 	if (may_be_null)
7121 		*reg = saved_reg;
7122 
7123 	return err;
7124 }
7125 
7126 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7127 				    u32 regno)
7128 {
7129 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7130 	bool may_be_null = type_may_be_null(mem_reg->type);
7131 	struct bpf_reg_state saved_reg;
7132 	struct bpf_call_arg_meta meta;
7133 	int err;
7134 
7135 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7136 
7137 	memset(&meta, 0, sizeof(meta));
7138 
7139 	if (may_be_null) {
7140 		saved_reg = *mem_reg;
7141 		mark_ptr_not_null_reg(mem_reg);
7142 	}
7143 
7144 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7145 	/* Check access for BPF_WRITE */
7146 	meta.raw_mode = true;
7147 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7148 
7149 	if (may_be_null)
7150 		*mem_reg = saved_reg;
7151 	return err;
7152 }
7153 
7154 /* Implementation details:
7155  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7156  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7157  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7158  * Two separate bpf_obj_new will also have different reg->id.
7159  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7160  * clears reg->id after value_or_null->value transition, since the verifier only
7161  * cares about the range of access to valid map value pointer and doesn't care
7162  * about actual address of the map element.
7163  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7164  * reg->id > 0 after value_or_null->value transition. By doing so
7165  * two bpf_map_lookups will be considered two different pointers that
7166  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7167  * returned from bpf_obj_new.
7168  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7169  * dead-locks.
7170  * Since only one bpf_spin_lock is allowed the checks are simpler than
7171  * reg_is_refcounted() logic. The verifier needs to remember only
7172  * one spin_lock instead of array of acquired_refs.
7173  * cur_state->active_lock remembers which map value element or allocated
7174  * object got locked and clears it after bpf_spin_unlock.
7175  */
7176 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7177 			     bool is_lock)
7178 {
7179 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7180 	struct bpf_verifier_state *cur = env->cur_state;
7181 	bool is_const = tnum_is_const(reg->var_off);
7182 	u64 val = reg->var_off.value;
7183 	struct bpf_map *map = NULL;
7184 	struct btf *btf = NULL;
7185 	struct btf_record *rec;
7186 
7187 	if (!is_const) {
7188 		verbose(env,
7189 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7190 			regno);
7191 		return -EINVAL;
7192 	}
7193 	if (reg->type == PTR_TO_MAP_VALUE) {
7194 		map = reg->map_ptr;
7195 		if (!map->btf) {
7196 			verbose(env,
7197 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7198 				map->name);
7199 			return -EINVAL;
7200 		}
7201 	} else {
7202 		btf = reg->btf;
7203 	}
7204 
7205 	rec = reg_btf_record(reg);
7206 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7207 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7208 			map ? map->name : "kptr");
7209 		return -EINVAL;
7210 	}
7211 	if (rec->spin_lock_off != val + reg->off) {
7212 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7213 			val + reg->off, rec->spin_lock_off);
7214 		return -EINVAL;
7215 	}
7216 	if (is_lock) {
7217 		if (cur->active_lock.ptr) {
7218 			verbose(env,
7219 				"Locking two bpf_spin_locks are not allowed\n");
7220 			return -EINVAL;
7221 		}
7222 		if (map)
7223 			cur->active_lock.ptr = map;
7224 		else
7225 			cur->active_lock.ptr = btf;
7226 		cur->active_lock.id = reg->id;
7227 	} else {
7228 		void *ptr;
7229 
7230 		if (map)
7231 			ptr = map;
7232 		else
7233 			ptr = btf;
7234 
7235 		if (!cur->active_lock.ptr) {
7236 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7237 			return -EINVAL;
7238 		}
7239 		if (cur->active_lock.ptr != ptr ||
7240 		    cur->active_lock.id != reg->id) {
7241 			verbose(env, "bpf_spin_unlock of different lock\n");
7242 			return -EINVAL;
7243 		}
7244 
7245 		invalidate_non_owning_refs(env);
7246 
7247 		cur->active_lock.ptr = NULL;
7248 		cur->active_lock.id = 0;
7249 	}
7250 	return 0;
7251 }
7252 
7253 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7254 			      struct bpf_call_arg_meta *meta)
7255 {
7256 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7257 	bool is_const = tnum_is_const(reg->var_off);
7258 	struct bpf_map *map = reg->map_ptr;
7259 	u64 val = reg->var_off.value;
7260 
7261 	if (!is_const) {
7262 		verbose(env,
7263 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7264 			regno);
7265 		return -EINVAL;
7266 	}
7267 	if (!map->btf) {
7268 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7269 			map->name);
7270 		return -EINVAL;
7271 	}
7272 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7273 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7274 		return -EINVAL;
7275 	}
7276 	if (map->record->timer_off != val + reg->off) {
7277 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7278 			val + reg->off, map->record->timer_off);
7279 		return -EINVAL;
7280 	}
7281 	if (meta->map_ptr) {
7282 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7283 		return -EFAULT;
7284 	}
7285 	meta->map_uid = reg->map_uid;
7286 	meta->map_ptr = map;
7287 	return 0;
7288 }
7289 
7290 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7291 			     struct bpf_call_arg_meta *meta)
7292 {
7293 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7294 	struct bpf_map *map_ptr = reg->map_ptr;
7295 	struct btf_field *kptr_field;
7296 	u32 kptr_off;
7297 
7298 	if (!tnum_is_const(reg->var_off)) {
7299 		verbose(env,
7300 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7301 			regno);
7302 		return -EINVAL;
7303 	}
7304 	if (!map_ptr->btf) {
7305 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7306 			map_ptr->name);
7307 		return -EINVAL;
7308 	}
7309 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7310 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7311 		return -EINVAL;
7312 	}
7313 
7314 	meta->map_ptr = map_ptr;
7315 	kptr_off = reg->off + reg->var_off.value;
7316 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7317 	if (!kptr_field) {
7318 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7319 		return -EACCES;
7320 	}
7321 	if (kptr_field->type != BPF_KPTR_REF) {
7322 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7323 		return -EACCES;
7324 	}
7325 	meta->kptr_field = kptr_field;
7326 	return 0;
7327 }
7328 
7329 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7330  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7331  *
7332  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7333  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7334  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7335  *
7336  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7337  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7338  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7339  * mutate the view of the dynptr and also possibly destroy it. In the latter
7340  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7341  * memory that dynptr points to.
7342  *
7343  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7344  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7345  * readonly dynptr view yet, hence only the first case is tracked and checked.
7346  *
7347  * This is consistent with how C applies the const modifier to a struct object,
7348  * where the pointer itself inside bpf_dynptr becomes const but not what it
7349  * points to.
7350  *
7351  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7352  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7353  */
7354 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7355 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7356 {
7357 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7358 	int err;
7359 
7360 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7361 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7362 	 */
7363 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7364 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7365 		return -EFAULT;
7366 	}
7367 
7368 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7369 	 *		 constructing a mutable bpf_dynptr object.
7370 	 *
7371 	 *		 Currently, this is only possible with PTR_TO_STACK
7372 	 *		 pointing to a region of at least 16 bytes which doesn't
7373 	 *		 contain an existing bpf_dynptr.
7374 	 *
7375 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7376 	 *		 mutated or destroyed. However, the memory it points to
7377 	 *		 may be mutated.
7378 	 *
7379 	 *  None       - Points to a initialized dynptr that can be mutated and
7380 	 *		 destroyed, including mutation of the memory it points
7381 	 *		 to.
7382 	 */
7383 	if (arg_type & MEM_UNINIT) {
7384 		int i;
7385 
7386 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7387 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7388 			return -EINVAL;
7389 		}
7390 
7391 		/* we write BPF_DW bits (8 bytes) at a time */
7392 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7393 			err = check_mem_access(env, insn_idx, regno,
7394 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7395 			if (err)
7396 				return err;
7397 		}
7398 
7399 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7400 	} else /* MEM_RDONLY and None case from above */ {
7401 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7402 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7403 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7404 			return -EINVAL;
7405 		}
7406 
7407 		if (!is_dynptr_reg_valid_init(env, reg)) {
7408 			verbose(env,
7409 				"Expected an initialized dynptr as arg #%d\n",
7410 				regno);
7411 			return -EINVAL;
7412 		}
7413 
7414 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7415 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7416 			verbose(env,
7417 				"Expected a dynptr of type %s as arg #%d\n",
7418 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7419 			return -EINVAL;
7420 		}
7421 
7422 		err = mark_dynptr_read(env, reg);
7423 	}
7424 	return err;
7425 }
7426 
7427 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7428 {
7429 	struct bpf_func_state *state = func(env, reg);
7430 
7431 	return state->stack[spi].spilled_ptr.ref_obj_id;
7432 }
7433 
7434 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7435 {
7436 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7437 }
7438 
7439 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7440 {
7441 	return meta->kfunc_flags & KF_ITER_NEW;
7442 }
7443 
7444 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7445 {
7446 	return meta->kfunc_flags & KF_ITER_NEXT;
7447 }
7448 
7449 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7450 {
7451 	return meta->kfunc_flags & KF_ITER_DESTROY;
7452 }
7453 
7454 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7455 {
7456 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7457 	 * kfunc is iter state pointer
7458 	 */
7459 	return arg == 0 && is_iter_kfunc(meta);
7460 }
7461 
7462 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7463 			    struct bpf_kfunc_call_arg_meta *meta)
7464 {
7465 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7466 	const struct btf_type *t;
7467 	const struct btf_param *arg;
7468 	int spi, err, i, nr_slots;
7469 	u32 btf_id;
7470 
7471 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7472 	arg = &btf_params(meta->func_proto)[0];
7473 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7474 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7475 	nr_slots = t->size / BPF_REG_SIZE;
7476 
7477 	if (is_iter_new_kfunc(meta)) {
7478 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7479 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7480 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7481 				iter_type_str(meta->btf, btf_id), regno);
7482 			return -EINVAL;
7483 		}
7484 
7485 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7486 			err = check_mem_access(env, insn_idx, regno,
7487 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7488 			if (err)
7489 				return err;
7490 		}
7491 
7492 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7493 		if (err)
7494 			return err;
7495 	} else {
7496 		/* iter_next() or iter_destroy() expect initialized iter state*/
7497 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7498 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7499 				iter_type_str(meta->btf, btf_id), regno);
7500 			return -EINVAL;
7501 		}
7502 
7503 		spi = iter_get_spi(env, reg, nr_slots);
7504 		if (spi < 0)
7505 			return spi;
7506 
7507 		err = mark_iter_read(env, reg, spi, nr_slots);
7508 		if (err)
7509 			return err;
7510 
7511 		/* remember meta->iter info for process_iter_next_call() */
7512 		meta->iter.spi = spi;
7513 		meta->iter.frameno = reg->frameno;
7514 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7515 
7516 		if (is_iter_destroy_kfunc(meta)) {
7517 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7518 			if (err)
7519 				return err;
7520 		}
7521 	}
7522 
7523 	return 0;
7524 }
7525 
7526 /* process_iter_next_call() is called when verifier gets to iterator's next
7527  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7528  * to it as just "iter_next()" in comments below.
7529  *
7530  * BPF verifier relies on a crucial contract for any iter_next()
7531  * implementation: it should *eventually* return NULL, and once that happens
7532  * it should keep returning NULL. That is, once iterator exhausts elements to
7533  * iterate, it should never reset or spuriously return new elements.
7534  *
7535  * With the assumption of such contract, process_iter_next_call() simulates
7536  * a fork in the verifier state to validate loop logic correctness and safety
7537  * without having to simulate infinite amount of iterations.
7538  *
7539  * In current state, we first assume that iter_next() returned NULL and
7540  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7541  * conditions we should not form an infinite loop and should eventually reach
7542  * exit.
7543  *
7544  * Besides that, we also fork current state and enqueue it for later
7545  * verification. In a forked state we keep iterator state as ACTIVE
7546  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7547  * also bump iteration depth to prevent erroneous infinite loop detection
7548  * later on (see iter_active_depths_differ() comment for details). In this
7549  * state we assume that we'll eventually loop back to another iter_next()
7550  * calls (it could be in exactly same location or in some other instruction,
7551  * it doesn't matter, we don't make any unnecessary assumptions about this,
7552  * everything revolves around iterator state in a stack slot, not which
7553  * instruction is calling iter_next()). When that happens, we either will come
7554  * to iter_next() with equivalent state and can conclude that next iteration
7555  * will proceed in exactly the same way as we just verified, so it's safe to
7556  * assume that loop converges. If not, we'll go on another iteration
7557  * simulation with a different input state, until all possible starting states
7558  * are validated or we reach maximum number of instructions limit.
7559  *
7560  * This way, we will either exhaustively discover all possible input states
7561  * that iterator loop can start with and eventually will converge, or we'll
7562  * effectively regress into bounded loop simulation logic and either reach
7563  * maximum number of instructions if loop is not provably convergent, or there
7564  * is some statically known limit on number of iterations (e.g., if there is
7565  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7566  *
7567  * One very subtle but very important aspect is that we *always* simulate NULL
7568  * condition first (as the current state) before we simulate non-NULL case.
7569  * This has to do with intricacies of scalar precision tracking. By simulating
7570  * "exit condition" of iter_next() returning NULL first, we make sure all the
7571  * relevant precision marks *that will be set **after** we exit iterator loop*
7572  * are propagated backwards to common parent state of NULL and non-NULL
7573  * branches. Thanks to that, state equivalence checks done later in forked
7574  * state, when reaching iter_next() for ACTIVE iterator, can assume that
7575  * precision marks are finalized and won't change. Because simulating another
7576  * ACTIVE iterator iteration won't change them (because given same input
7577  * states we'll end up with exactly same output states which we are currently
7578  * comparing; and verification after the loop already propagated back what
7579  * needs to be **additionally** tracked as precise). It's subtle, grok
7580  * precision tracking for more intuitive understanding.
7581  */
7582 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7583 				  struct bpf_kfunc_call_arg_meta *meta)
7584 {
7585 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
7586 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7587 	struct bpf_reg_state *cur_iter, *queued_iter;
7588 	int iter_frameno = meta->iter.frameno;
7589 	int iter_spi = meta->iter.spi;
7590 
7591 	BTF_TYPE_EMIT(struct bpf_iter);
7592 
7593 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7594 
7595 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7596 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7597 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7598 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7599 		return -EFAULT;
7600 	}
7601 
7602 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7603 		/* branch out active iter state */
7604 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7605 		if (!queued_st)
7606 			return -ENOMEM;
7607 
7608 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7609 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7610 		queued_iter->iter.depth++;
7611 
7612 		queued_fr = queued_st->frame[queued_st->curframe];
7613 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7614 	}
7615 
7616 	/* switch to DRAINED state, but keep the depth unchanged */
7617 	/* mark current iter state as drained and assume returned NULL */
7618 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7619 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7620 
7621 	return 0;
7622 }
7623 
7624 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7625 {
7626 	return type == ARG_CONST_SIZE ||
7627 	       type == ARG_CONST_SIZE_OR_ZERO;
7628 }
7629 
7630 static bool arg_type_is_release(enum bpf_arg_type type)
7631 {
7632 	return type & OBJ_RELEASE;
7633 }
7634 
7635 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7636 {
7637 	return base_type(type) == ARG_PTR_TO_DYNPTR;
7638 }
7639 
7640 static int int_ptr_type_to_size(enum bpf_arg_type type)
7641 {
7642 	if (type == ARG_PTR_TO_INT)
7643 		return sizeof(u32);
7644 	else if (type == ARG_PTR_TO_LONG)
7645 		return sizeof(u64);
7646 
7647 	return -EINVAL;
7648 }
7649 
7650 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7651 				 const struct bpf_call_arg_meta *meta,
7652 				 enum bpf_arg_type *arg_type)
7653 {
7654 	if (!meta->map_ptr) {
7655 		/* kernel subsystem misconfigured verifier */
7656 		verbose(env, "invalid map_ptr to access map->type\n");
7657 		return -EACCES;
7658 	}
7659 
7660 	switch (meta->map_ptr->map_type) {
7661 	case BPF_MAP_TYPE_SOCKMAP:
7662 	case BPF_MAP_TYPE_SOCKHASH:
7663 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7664 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7665 		} else {
7666 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
7667 			return -EINVAL;
7668 		}
7669 		break;
7670 	case BPF_MAP_TYPE_BLOOM_FILTER:
7671 		if (meta->func_id == BPF_FUNC_map_peek_elem)
7672 			*arg_type = ARG_PTR_TO_MAP_VALUE;
7673 		break;
7674 	default:
7675 		break;
7676 	}
7677 	return 0;
7678 }
7679 
7680 struct bpf_reg_types {
7681 	const enum bpf_reg_type types[10];
7682 	u32 *btf_id;
7683 };
7684 
7685 static const struct bpf_reg_types sock_types = {
7686 	.types = {
7687 		PTR_TO_SOCK_COMMON,
7688 		PTR_TO_SOCKET,
7689 		PTR_TO_TCP_SOCK,
7690 		PTR_TO_XDP_SOCK,
7691 	},
7692 };
7693 
7694 #ifdef CONFIG_NET
7695 static const struct bpf_reg_types btf_id_sock_common_types = {
7696 	.types = {
7697 		PTR_TO_SOCK_COMMON,
7698 		PTR_TO_SOCKET,
7699 		PTR_TO_TCP_SOCK,
7700 		PTR_TO_XDP_SOCK,
7701 		PTR_TO_BTF_ID,
7702 		PTR_TO_BTF_ID | PTR_TRUSTED,
7703 	},
7704 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7705 };
7706 #endif
7707 
7708 static const struct bpf_reg_types mem_types = {
7709 	.types = {
7710 		PTR_TO_STACK,
7711 		PTR_TO_PACKET,
7712 		PTR_TO_PACKET_META,
7713 		PTR_TO_MAP_KEY,
7714 		PTR_TO_MAP_VALUE,
7715 		PTR_TO_MEM,
7716 		PTR_TO_MEM | MEM_RINGBUF,
7717 		PTR_TO_BUF,
7718 		PTR_TO_BTF_ID | PTR_TRUSTED,
7719 	},
7720 };
7721 
7722 static const struct bpf_reg_types int_ptr_types = {
7723 	.types = {
7724 		PTR_TO_STACK,
7725 		PTR_TO_PACKET,
7726 		PTR_TO_PACKET_META,
7727 		PTR_TO_MAP_KEY,
7728 		PTR_TO_MAP_VALUE,
7729 	},
7730 };
7731 
7732 static const struct bpf_reg_types spin_lock_types = {
7733 	.types = {
7734 		PTR_TO_MAP_VALUE,
7735 		PTR_TO_BTF_ID | MEM_ALLOC,
7736 	}
7737 };
7738 
7739 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7740 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7741 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7742 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7743 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7744 static const struct bpf_reg_types btf_ptr_types = {
7745 	.types = {
7746 		PTR_TO_BTF_ID,
7747 		PTR_TO_BTF_ID | PTR_TRUSTED,
7748 		PTR_TO_BTF_ID | MEM_RCU,
7749 	},
7750 };
7751 static const struct bpf_reg_types percpu_btf_ptr_types = {
7752 	.types = {
7753 		PTR_TO_BTF_ID | MEM_PERCPU,
7754 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7755 	}
7756 };
7757 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7758 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7759 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7760 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7761 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7762 static const struct bpf_reg_types dynptr_types = {
7763 	.types = {
7764 		PTR_TO_STACK,
7765 		CONST_PTR_TO_DYNPTR,
7766 	}
7767 };
7768 
7769 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7770 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
7771 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
7772 	[ARG_CONST_SIZE]		= &scalar_types,
7773 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
7774 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
7775 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
7776 	[ARG_PTR_TO_CTX]		= &context_types,
7777 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
7778 #ifdef CONFIG_NET
7779 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
7780 #endif
7781 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
7782 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
7783 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
7784 	[ARG_PTR_TO_MEM]		= &mem_types,
7785 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
7786 	[ARG_PTR_TO_INT]		= &int_ptr_types,
7787 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
7788 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
7789 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
7790 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
7791 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
7792 	[ARG_PTR_TO_TIMER]		= &timer_types,
7793 	[ARG_PTR_TO_KPTR]		= &kptr_types,
7794 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
7795 };
7796 
7797 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7798 			  enum bpf_arg_type arg_type,
7799 			  const u32 *arg_btf_id,
7800 			  struct bpf_call_arg_meta *meta)
7801 {
7802 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7803 	enum bpf_reg_type expected, type = reg->type;
7804 	const struct bpf_reg_types *compatible;
7805 	int i, j;
7806 
7807 	compatible = compatible_reg_types[base_type(arg_type)];
7808 	if (!compatible) {
7809 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7810 		return -EFAULT;
7811 	}
7812 
7813 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7814 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7815 	 *
7816 	 * Same for MAYBE_NULL:
7817 	 *
7818 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7819 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7820 	 *
7821 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
7822 	 *
7823 	 * Therefore we fold these flags depending on the arg_type before comparison.
7824 	 */
7825 	if (arg_type & MEM_RDONLY)
7826 		type &= ~MEM_RDONLY;
7827 	if (arg_type & PTR_MAYBE_NULL)
7828 		type &= ~PTR_MAYBE_NULL;
7829 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
7830 		type &= ~DYNPTR_TYPE_FLAG_MASK;
7831 
7832 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
7833 		type &= ~MEM_ALLOC;
7834 
7835 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7836 		expected = compatible->types[i];
7837 		if (expected == NOT_INIT)
7838 			break;
7839 
7840 		if (type == expected)
7841 			goto found;
7842 	}
7843 
7844 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7845 	for (j = 0; j + 1 < i; j++)
7846 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7847 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
7848 	return -EACCES;
7849 
7850 found:
7851 	if (base_type(reg->type) != PTR_TO_BTF_ID)
7852 		return 0;
7853 
7854 	if (compatible == &mem_types) {
7855 		if (!(arg_type & MEM_RDONLY)) {
7856 			verbose(env,
7857 				"%s() may write into memory pointed by R%d type=%s\n",
7858 				func_id_name(meta->func_id),
7859 				regno, reg_type_str(env, reg->type));
7860 			return -EACCES;
7861 		}
7862 		return 0;
7863 	}
7864 
7865 	switch ((int)reg->type) {
7866 	case PTR_TO_BTF_ID:
7867 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7868 	case PTR_TO_BTF_ID | MEM_RCU:
7869 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7870 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
7871 	{
7872 		/* For bpf_sk_release, it needs to match against first member
7873 		 * 'struct sock_common', hence make an exception for it. This
7874 		 * allows bpf_sk_release to work for multiple socket types.
7875 		 */
7876 		bool strict_type_match = arg_type_is_release(arg_type) &&
7877 					 meta->func_id != BPF_FUNC_sk_release;
7878 
7879 		if (type_may_be_null(reg->type) &&
7880 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
7881 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7882 			return -EACCES;
7883 		}
7884 
7885 		if (!arg_btf_id) {
7886 			if (!compatible->btf_id) {
7887 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7888 				return -EFAULT;
7889 			}
7890 			arg_btf_id = compatible->btf_id;
7891 		}
7892 
7893 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7894 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7895 				return -EACCES;
7896 		} else {
7897 			if (arg_btf_id == BPF_PTR_POISON) {
7898 				verbose(env, "verifier internal error:");
7899 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7900 					regno);
7901 				return -EACCES;
7902 			}
7903 
7904 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7905 						  btf_vmlinux, *arg_btf_id,
7906 						  strict_type_match)) {
7907 				verbose(env, "R%d is of type %s but %s is expected\n",
7908 					regno, btf_type_name(reg->btf, reg->btf_id),
7909 					btf_type_name(btf_vmlinux, *arg_btf_id));
7910 				return -EACCES;
7911 			}
7912 		}
7913 		break;
7914 	}
7915 	case PTR_TO_BTF_ID | MEM_ALLOC:
7916 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7917 		    meta->func_id != BPF_FUNC_kptr_xchg) {
7918 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7919 			return -EFAULT;
7920 		}
7921 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7922 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7923 				return -EACCES;
7924 		}
7925 		break;
7926 	case PTR_TO_BTF_ID | MEM_PERCPU:
7927 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7928 		/* Handled by helper specific checks */
7929 		break;
7930 	default:
7931 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7932 		return -EFAULT;
7933 	}
7934 	return 0;
7935 }
7936 
7937 static struct btf_field *
7938 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7939 {
7940 	struct btf_field *field;
7941 	struct btf_record *rec;
7942 
7943 	rec = reg_btf_record(reg);
7944 	if (!rec)
7945 		return NULL;
7946 
7947 	field = btf_record_find(rec, off, fields);
7948 	if (!field)
7949 		return NULL;
7950 
7951 	return field;
7952 }
7953 
7954 int check_func_arg_reg_off(struct bpf_verifier_env *env,
7955 			   const struct bpf_reg_state *reg, int regno,
7956 			   enum bpf_arg_type arg_type)
7957 {
7958 	u32 type = reg->type;
7959 
7960 	/* When referenced register is passed to release function, its fixed
7961 	 * offset must be 0.
7962 	 *
7963 	 * We will check arg_type_is_release reg has ref_obj_id when storing
7964 	 * meta->release_regno.
7965 	 */
7966 	if (arg_type_is_release(arg_type)) {
7967 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7968 		 * may not directly point to the object being released, but to
7969 		 * dynptr pointing to such object, which might be at some offset
7970 		 * on the stack. In that case, we simply to fallback to the
7971 		 * default handling.
7972 		 */
7973 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7974 			return 0;
7975 
7976 		/* Doing check_ptr_off_reg check for the offset will catch this
7977 		 * because fixed_off_ok is false, but checking here allows us
7978 		 * to give the user a better error message.
7979 		 */
7980 		if (reg->off) {
7981 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7982 				regno);
7983 			return -EINVAL;
7984 		}
7985 		return __check_ptr_off_reg(env, reg, regno, false);
7986 	}
7987 
7988 	switch (type) {
7989 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
7990 	case PTR_TO_STACK:
7991 	case PTR_TO_PACKET:
7992 	case PTR_TO_PACKET_META:
7993 	case PTR_TO_MAP_KEY:
7994 	case PTR_TO_MAP_VALUE:
7995 	case PTR_TO_MEM:
7996 	case PTR_TO_MEM | MEM_RDONLY:
7997 	case PTR_TO_MEM | MEM_RINGBUF:
7998 	case PTR_TO_BUF:
7999 	case PTR_TO_BUF | MEM_RDONLY:
8000 	case SCALAR_VALUE:
8001 		return 0;
8002 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8003 	 * fixed offset.
8004 	 */
8005 	case PTR_TO_BTF_ID:
8006 	case PTR_TO_BTF_ID | MEM_ALLOC:
8007 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8008 	case PTR_TO_BTF_ID | MEM_RCU:
8009 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8010 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8011 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8012 		 * its fixed offset must be 0. In the other cases, fixed offset
8013 		 * can be non-zero. This was already checked above. So pass
8014 		 * fixed_off_ok as true to allow fixed offset for all other
8015 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8016 		 * still need to do checks instead of returning.
8017 		 */
8018 		return __check_ptr_off_reg(env, reg, regno, true);
8019 	default:
8020 		return __check_ptr_off_reg(env, reg, regno, false);
8021 	}
8022 }
8023 
8024 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8025 						const struct bpf_func_proto *fn,
8026 						struct bpf_reg_state *regs)
8027 {
8028 	struct bpf_reg_state *state = NULL;
8029 	int i;
8030 
8031 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8032 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8033 			if (state) {
8034 				verbose(env, "verifier internal error: multiple dynptr args\n");
8035 				return NULL;
8036 			}
8037 			state = &regs[BPF_REG_1 + i];
8038 		}
8039 
8040 	if (!state)
8041 		verbose(env, "verifier internal error: no dynptr arg found\n");
8042 
8043 	return state;
8044 }
8045 
8046 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8047 {
8048 	struct bpf_func_state *state = func(env, reg);
8049 	int spi;
8050 
8051 	if (reg->type == CONST_PTR_TO_DYNPTR)
8052 		return reg->id;
8053 	spi = dynptr_get_spi(env, reg);
8054 	if (spi < 0)
8055 		return spi;
8056 	return state->stack[spi].spilled_ptr.id;
8057 }
8058 
8059 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8060 {
8061 	struct bpf_func_state *state = func(env, reg);
8062 	int spi;
8063 
8064 	if (reg->type == CONST_PTR_TO_DYNPTR)
8065 		return reg->ref_obj_id;
8066 	spi = dynptr_get_spi(env, reg);
8067 	if (spi < 0)
8068 		return spi;
8069 	return state->stack[spi].spilled_ptr.ref_obj_id;
8070 }
8071 
8072 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8073 					    struct bpf_reg_state *reg)
8074 {
8075 	struct bpf_func_state *state = func(env, reg);
8076 	int spi;
8077 
8078 	if (reg->type == CONST_PTR_TO_DYNPTR)
8079 		return reg->dynptr.type;
8080 
8081 	spi = __get_spi(reg->off);
8082 	if (spi < 0) {
8083 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8084 		return BPF_DYNPTR_TYPE_INVALID;
8085 	}
8086 
8087 	return state->stack[spi].spilled_ptr.dynptr.type;
8088 }
8089 
8090 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8091 			  struct bpf_call_arg_meta *meta,
8092 			  const struct bpf_func_proto *fn,
8093 			  int insn_idx)
8094 {
8095 	u32 regno = BPF_REG_1 + arg;
8096 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8097 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8098 	enum bpf_reg_type type = reg->type;
8099 	u32 *arg_btf_id = NULL;
8100 	int err = 0;
8101 
8102 	if (arg_type == ARG_DONTCARE)
8103 		return 0;
8104 
8105 	err = check_reg_arg(env, regno, SRC_OP);
8106 	if (err)
8107 		return err;
8108 
8109 	if (arg_type == ARG_ANYTHING) {
8110 		if (is_pointer_value(env, regno)) {
8111 			verbose(env, "R%d leaks addr into helper function\n",
8112 				regno);
8113 			return -EACCES;
8114 		}
8115 		return 0;
8116 	}
8117 
8118 	if (type_is_pkt_pointer(type) &&
8119 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8120 		verbose(env, "helper access to the packet is not allowed\n");
8121 		return -EACCES;
8122 	}
8123 
8124 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8125 		err = resolve_map_arg_type(env, meta, &arg_type);
8126 		if (err)
8127 			return err;
8128 	}
8129 
8130 	if (register_is_null(reg) && type_may_be_null(arg_type))
8131 		/* A NULL register has a SCALAR_VALUE type, so skip
8132 		 * type checking.
8133 		 */
8134 		goto skip_type_check;
8135 
8136 	/* arg_btf_id and arg_size are in a union. */
8137 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8138 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8139 		arg_btf_id = fn->arg_btf_id[arg];
8140 
8141 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8142 	if (err)
8143 		return err;
8144 
8145 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8146 	if (err)
8147 		return err;
8148 
8149 skip_type_check:
8150 	if (arg_type_is_release(arg_type)) {
8151 		if (arg_type_is_dynptr(arg_type)) {
8152 			struct bpf_func_state *state = func(env, reg);
8153 			int spi;
8154 
8155 			/* Only dynptr created on stack can be released, thus
8156 			 * the get_spi and stack state checks for spilled_ptr
8157 			 * should only be done before process_dynptr_func for
8158 			 * PTR_TO_STACK.
8159 			 */
8160 			if (reg->type == PTR_TO_STACK) {
8161 				spi = dynptr_get_spi(env, reg);
8162 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8163 					verbose(env, "arg %d is an unacquired reference\n", regno);
8164 					return -EINVAL;
8165 				}
8166 			} else {
8167 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8168 				return -EINVAL;
8169 			}
8170 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8171 			verbose(env, "R%d must be referenced when passed to release function\n",
8172 				regno);
8173 			return -EINVAL;
8174 		}
8175 		if (meta->release_regno) {
8176 			verbose(env, "verifier internal error: more than one release argument\n");
8177 			return -EFAULT;
8178 		}
8179 		meta->release_regno = regno;
8180 	}
8181 
8182 	if (reg->ref_obj_id) {
8183 		if (meta->ref_obj_id) {
8184 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8185 				regno, reg->ref_obj_id,
8186 				meta->ref_obj_id);
8187 			return -EFAULT;
8188 		}
8189 		meta->ref_obj_id = reg->ref_obj_id;
8190 	}
8191 
8192 	switch (base_type(arg_type)) {
8193 	case ARG_CONST_MAP_PTR:
8194 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8195 		if (meta->map_ptr) {
8196 			/* Use map_uid (which is unique id of inner map) to reject:
8197 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8198 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8199 			 * if (inner_map1 && inner_map2) {
8200 			 *     timer = bpf_map_lookup_elem(inner_map1);
8201 			 *     if (timer)
8202 			 *         // mismatch would have been allowed
8203 			 *         bpf_timer_init(timer, inner_map2);
8204 			 * }
8205 			 *
8206 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8207 			 */
8208 			if (meta->map_ptr != reg->map_ptr ||
8209 			    meta->map_uid != reg->map_uid) {
8210 				verbose(env,
8211 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8212 					meta->map_uid, reg->map_uid);
8213 				return -EINVAL;
8214 			}
8215 		}
8216 		meta->map_ptr = reg->map_ptr;
8217 		meta->map_uid = reg->map_uid;
8218 		break;
8219 	case ARG_PTR_TO_MAP_KEY:
8220 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8221 		 * check that [key, key + map->key_size) are within
8222 		 * stack limits and initialized
8223 		 */
8224 		if (!meta->map_ptr) {
8225 			/* in function declaration map_ptr must come before
8226 			 * map_key, so that it's verified and known before
8227 			 * we have to check map_key here. Otherwise it means
8228 			 * that kernel subsystem misconfigured verifier
8229 			 */
8230 			verbose(env, "invalid map_ptr to access map->key\n");
8231 			return -EACCES;
8232 		}
8233 		err = check_helper_mem_access(env, regno,
8234 					      meta->map_ptr->key_size, false,
8235 					      NULL);
8236 		break;
8237 	case ARG_PTR_TO_MAP_VALUE:
8238 		if (type_may_be_null(arg_type) && register_is_null(reg))
8239 			return 0;
8240 
8241 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8242 		 * check [value, value + map->value_size) validity
8243 		 */
8244 		if (!meta->map_ptr) {
8245 			/* kernel subsystem misconfigured verifier */
8246 			verbose(env, "invalid map_ptr to access map->value\n");
8247 			return -EACCES;
8248 		}
8249 		meta->raw_mode = arg_type & MEM_UNINIT;
8250 		err = check_helper_mem_access(env, regno,
8251 					      meta->map_ptr->value_size, false,
8252 					      meta);
8253 		break;
8254 	case ARG_PTR_TO_PERCPU_BTF_ID:
8255 		if (!reg->btf_id) {
8256 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8257 			return -EACCES;
8258 		}
8259 		meta->ret_btf = reg->btf;
8260 		meta->ret_btf_id = reg->btf_id;
8261 		break;
8262 	case ARG_PTR_TO_SPIN_LOCK:
8263 		if (in_rbtree_lock_required_cb(env)) {
8264 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8265 			return -EACCES;
8266 		}
8267 		if (meta->func_id == BPF_FUNC_spin_lock) {
8268 			err = process_spin_lock(env, regno, true);
8269 			if (err)
8270 				return err;
8271 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8272 			err = process_spin_lock(env, regno, false);
8273 			if (err)
8274 				return err;
8275 		} else {
8276 			verbose(env, "verifier internal error\n");
8277 			return -EFAULT;
8278 		}
8279 		break;
8280 	case ARG_PTR_TO_TIMER:
8281 		err = process_timer_func(env, regno, meta);
8282 		if (err)
8283 			return err;
8284 		break;
8285 	case ARG_PTR_TO_FUNC:
8286 		meta->subprogno = reg->subprogno;
8287 		break;
8288 	case ARG_PTR_TO_MEM:
8289 		/* The access to this pointer is only checked when we hit the
8290 		 * next is_mem_size argument below.
8291 		 */
8292 		meta->raw_mode = arg_type & MEM_UNINIT;
8293 		if (arg_type & MEM_FIXED_SIZE) {
8294 			err = check_helper_mem_access(env, regno,
8295 						      fn->arg_size[arg], false,
8296 						      meta);
8297 		}
8298 		break;
8299 	case ARG_CONST_SIZE:
8300 		err = check_mem_size_reg(env, reg, regno, false, meta);
8301 		break;
8302 	case ARG_CONST_SIZE_OR_ZERO:
8303 		err = check_mem_size_reg(env, reg, regno, true, meta);
8304 		break;
8305 	case ARG_PTR_TO_DYNPTR:
8306 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8307 		if (err)
8308 			return err;
8309 		break;
8310 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8311 		if (!tnum_is_const(reg->var_off)) {
8312 			verbose(env, "R%d is not a known constant'\n",
8313 				regno);
8314 			return -EACCES;
8315 		}
8316 		meta->mem_size = reg->var_off.value;
8317 		err = mark_chain_precision(env, regno);
8318 		if (err)
8319 			return err;
8320 		break;
8321 	case ARG_PTR_TO_INT:
8322 	case ARG_PTR_TO_LONG:
8323 	{
8324 		int size = int_ptr_type_to_size(arg_type);
8325 
8326 		err = check_helper_mem_access(env, regno, size, false, meta);
8327 		if (err)
8328 			return err;
8329 		err = check_ptr_alignment(env, reg, 0, size, true);
8330 		break;
8331 	}
8332 	case ARG_PTR_TO_CONST_STR:
8333 	{
8334 		struct bpf_map *map = reg->map_ptr;
8335 		int map_off;
8336 		u64 map_addr;
8337 		char *str_ptr;
8338 
8339 		if (!bpf_map_is_rdonly(map)) {
8340 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8341 			return -EACCES;
8342 		}
8343 
8344 		if (!tnum_is_const(reg->var_off)) {
8345 			verbose(env, "R%d is not a constant address'\n", regno);
8346 			return -EACCES;
8347 		}
8348 
8349 		if (!map->ops->map_direct_value_addr) {
8350 			verbose(env, "no direct value access support for this map type\n");
8351 			return -EACCES;
8352 		}
8353 
8354 		err = check_map_access(env, regno, reg->off,
8355 				       map->value_size - reg->off, false,
8356 				       ACCESS_HELPER);
8357 		if (err)
8358 			return err;
8359 
8360 		map_off = reg->off + reg->var_off.value;
8361 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8362 		if (err) {
8363 			verbose(env, "direct value access on string failed\n");
8364 			return err;
8365 		}
8366 
8367 		str_ptr = (char *)(long)(map_addr);
8368 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8369 			verbose(env, "string is not zero-terminated\n");
8370 			return -EINVAL;
8371 		}
8372 		break;
8373 	}
8374 	case ARG_PTR_TO_KPTR:
8375 		err = process_kptr_func(env, regno, meta);
8376 		if (err)
8377 			return err;
8378 		break;
8379 	}
8380 
8381 	return err;
8382 }
8383 
8384 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8385 {
8386 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8387 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8388 
8389 	if (func_id != BPF_FUNC_map_update_elem)
8390 		return false;
8391 
8392 	/* It's not possible to get access to a locked struct sock in these
8393 	 * contexts, so updating is safe.
8394 	 */
8395 	switch (type) {
8396 	case BPF_PROG_TYPE_TRACING:
8397 		if (eatype == BPF_TRACE_ITER)
8398 			return true;
8399 		break;
8400 	case BPF_PROG_TYPE_SOCKET_FILTER:
8401 	case BPF_PROG_TYPE_SCHED_CLS:
8402 	case BPF_PROG_TYPE_SCHED_ACT:
8403 	case BPF_PROG_TYPE_XDP:
8404 	case BPF_PROG_TYPE_SK_REUSEPORT:
8405 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8406 	case BPF_PROG_TYPE_SK_LOOKUP:
8407 		return true;
8408 	default:
8409 		break;
8410 	}
8411 
8412 	verbose(env, "cannot update sockmap in this context\n");
8413 	return false;
8414 }
8415 
8416 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8417 {
8418 	return env->prog->jit_requested &&
8419 	       bpf_jit_supports_subprog_tailcalls();
8420 }
8421 
8422 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8423 					struct bpf_map *map, int func_id)
8424 {
8425 	if (!map)
8426 		return 0;
8427 
8428 	/* We need a two way check, first is from map perspective ... */
8429 	switch (map->map_type) {
8430 	case BPF_MAP_TYPE_PROG_ARRAY:
8431 		if (func_id != BPF_FUNC_tail_call)
8432 			goto error;
8433 		break;
8434 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8435 		if (func_id != BPF_FUNC_perf_event_read &&
8436 		    func_id != BPF_FUNC_perf_event_output &&
8437 		    func_id != BPF_FUNC_skb_output &&
8438 		    func_id != BPF_FUNC_perf_event_read_value &&
8439 		    func_id != BPF_FUNC_xdp_output)
8440 			goto error;
8441 		break;
8442 	case BPF_MAP_TYPE_RINGBUF:
8443 		if (func_id != BPF_FUNC_ringbuf_output &&
8444 		    func_id != BPF_FUNC_ringbuf_reserve &&
8445 		    func_id != BPF_FUNC_ringbuf_query &&
8446 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8447 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8448 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8449 			goto error;
8450 		break;
8451 	case BPF_MAP_TYPE_USER_RINGBUF:
8452 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8453 			goto error;
8454 		break;
8455 	case BPF_MAP_TYPE_STACK_TRACE:
8456 		if (func_id != BPF_FUNC_get_stackid)
8457 			goto error;
8458 		break;
8459 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8460 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8461 		    func_id != BPF_FUNC_current_task_under_cgroup)
8462 			goto error;
8463 		break;
8464 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8465 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8466 		if (func_id != BPF_FUNC_get_local_storage)
8467 			goto error;
8468 		break;
8469 	case BPF_MAP_TYPE_DEVMAP:
8470 	case BPF_MAP_TYPE_DEVMAP_HASH:
8471 		if (func_id != BPF_FUNC_redirect_map &&
8472 		    func_id != BPF_FUNC_map_lookup_elem)
8473 			goto error;
8474 		break;
8475 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8476 	 * appear.
8477 	 */
8478 	case BPF_MAP_TYPE_CPUMAP:
8479 		if (func_id != BPF_FUNC_redirect_map)
8480 			goto error;
8481 		break;
8482 	case BPF_MAP_TYPE_XSKMAP:
8483 		if (func_id != BPF_FUNC_redirect_map &&
8484 		    func_id != BPF_FUNC_map_lookup_elem)
8485 			goto error;
8486 		break;
8487 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8488 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8489 		if (func_id != BPF_FUNC_map_lookup_elem)
8490 			goto error;
8491 		break;
8492 	case BPF_MAP_TYPE_SOCKMAP:
8493 		if (func_id != BPF_FUNC_sk_redirect_map &&
8494 		    func_id != BPF_FUNC_sock_map_update &&
8495 		    func_id != BPF_FUNC_map_delete_elem &&
8496 		    func_id != BPF_FUNC_msg_redirect_map &&
8497 		    func_id != BPF_FUNC_sk_select_reuseport &&
8498 		    func_id != BPF_FUNC_map_lookup_elem &&
8499 		    !may_update_sockmap(env, func_id))
8500 			goto error;
8501 		break;
8502 	case BPF_MAP_TYPE_SOCKHASH:
8503 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8504 		    func_id != BPF_FUNC_sock_hash_update &&
8505 		    func_id != BPF_FUNC_map_delete_elem &&
8506 		    func_id != BPF_FUNC_msg_redirect_hash &&
8507 		    func_id != BPF_FUNC_sk_select_reuseport &&
8508 		    func_id != BPF_FUNC_map_lookup_elem &&
8509 		    !may_update_sockmap(env, func_id))
8510 			goto error;
8511 		break;
8512 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8513 		if (func_id != BPF_FUNC_sk_select_reuseport)
8514 			goto error;
8515 		break;
8516 	case BPF_MAP_TYPE_QUEUE:
8517 	case BPF_MAP_TYPE_STACK:
8518 		if (func_id != BPF_FUNC_map_peek_elem &&
8519 		    func_id != BPF_FUNC_map_pop_elem &&
8520 		    func_id != BPF_FUNC_map_push_elem)
8521 			goto error;
8522 		break;
8523 	case BPF_MAP_TYPE_SK_STORAGE:
8524 		if (func_id != BPF_FUNC_sk_storage_get &&
8525 		    func_id != BPF_FUNC_sk_storage_delete &&
8526 		    func_id != BPF_FUNC_kptr_xchg)
8527 			goto error;
8528 		break;
8529 	case BPF_MAP_TYPE_INODE_STORAGE:
8530 		if (func_id != BPF_FUNC_inode_storage_get &&
8531 		    func_id != BPF_FUNC_inode_storage_delete &&
8532 		    func_id != BPF_FUNC_kptr_xchg)
8533 			goto error;
8534 		break;
8535 	case BPF_MAP_TYPE_TASK_STORAGE:
8536 		if (func_id != BPF_FUNC_task_storage_get &&
8537 		    func_id != BPF_FUNC_task_storage_delete &&
8538 		    func_id != BPF_FUNC_kptr_xchg)
8539 			goto error;
8540 		break;
8541 	case BPF_MAP_TYPE_CGRP_STORAGE:
8542 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8543 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8544 		    func_id != BPF_FUNC_kptr_xchg)
8545 			goto error;
8546 		break;
8547 	case BPF_MAP_TYPE_BLOOM_FILTER:
8548 		if (func_id != BPF_FUNC_map_peek_elem &&
8549 		    func_id != BPF_FUNC_map_push_elem)
8550 			goto error;
8551 		break;
8552 	default:
8553 		break;
8554 	}
8555 
8556 	/* ... and second from the function itself. */
8557 	switch (func_id) {
8558 	case BPF_FUNC_tail_call:
8559 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8560 			goto error;
8561 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8562 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8563 			return -EINVAL;
8564 		}
8565 		break;
8566 	case BPF_FUNC_perf_event_read:
8567 	case BPF_FUNC_perf_event_output:
8568 	case BPF_FUNC_perf_event_read_value:
8569 	case BPF_FUNC_skb_output:
8570 	case BPF_FUNC_xdp_output:
8571 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8572 			goto error;
8573 		break;
8574 	case BPF_FUNC_ringbuf_output:
8575 	case BPF_FUNC_ringbuf_reserve:
8576 	case BPF_FUNC_ringbuf_query:
8577 	case BPF_FUNC_ringbuf_reserve_dynptr:
8578 	case BPF_FUNC_ringbuf_submit_dynptr:
8579 	case BPF_FUNC_ringbuf_discard_dynptr:
8580 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8581 			goto error;
8582 		break;
8583 	case BPF_FUNC_user_ringbuf_drain:
8584 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8585 			goto error;
8586 		break;
8587 	case BPF_FUNC_get_stackid:
8588 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8589 			goto error;
8590 		break;
8591 	case BPF_FUNC_current_task_under_cgroup:
8592 	case BPF_FUNC_skb_under_cgroup:
8593 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8594 			goto error;
8595 		break;
8596 	case BPF_FUNC_redirect_map:
8597 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8598 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8599 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8600 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8601 			goto error;
8602 		break;
8603 	case BPF_FUNC_sk_redirect_map:
8604 	case BPF_FUNC_msg_redirect_map:
8605 	case BPF_FUNC_sock_map_update:
8606 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8607 			goto error;
8608 		break;
8609 	case BPF_FUNC_sk_redirect_hash:
8610 	case BPF_FUNC_msg_redirect_hash:
8611 	case BPF_FUNC_sock_hash_update:
8612 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8613 			goto error;
8614 		break;
8615 	case BPF_FUNC_get_local_storage:
8616 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8617 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8618 			goto error;
8619 		break;
8620 	case BPF_FUNC_sk_select_reuseport:
8621 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8622 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8623 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8624 			goto error;
8625 		break;
8626 	case BPF_FUNC_map_pop_elem:
8627 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8628 		    map->map_type != BPF_MAP_TYPE_STACK)
8629 			goto error;
8630 		break;
8631 	case BPF_FUNC_map_peek_elem:
8632 	case BPF_FUNC_map_push_elem:
8633 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8634 		    map->map_type != BPF_MAP_TYPE_STACK &&
8635 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8636 			goto error;
8637 		break;
8638 	case BPF_FUNC_map_lookup_percpu_elem:
8639 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8640 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8641 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8642 			goto error;
8643 		break;
8644 	case BPF_FUNC_sk_storage_get:
8645 	case BPF_FUNC_sk_storage_delete:
8646 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8647 			goto error;
8648 		break;
8649 	case BPF_FUNC_inode_storage_get:
8650 	case BPF_FUNC_inode_storage_delete:
8651 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8652 			goto error;
8653 		break;
8654 	case BPF_FUNC_task_storage_get:
8655 	case BPF_FUNC_task_storage_delete:
8656 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8657 			goto error;
8658 		break;
8659 	case BPF_FUNC_cgrp_storage_get:
8660 	case BPF_FUNC_cgrp_storage_delete:
8661 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8662 			goto error;
8663 		break;
8664 	default:
8665 		break;
8666 	}
8667 
8668 	return 0;
8669 error:
8670 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
8671 		map->map_type, func_id_name(func_id), func_id);
8672 	return -EINVAL;
8673 }
8674 
8675 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8676 {
8677 	int count = 0;
8678 
8679 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8680 		count++;
8681 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8682 		count++;
8683 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8684 		count++;
8685 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8686 		count++;
8687 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8688 		count++;
8689 
8690 	/* We only support one arg being in raw mode at the moment,
8691 	 * which is sufficient for the helper functions we have
8692 	 * right now.
8693 	 */
8694 	return count <= 1;
8695 }
8696 
8697 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8698 {
8699 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8700 	bool has_size = fn->arg_size[arg] != 0;
8701 	bool is_next_size = false;
8702 
8703 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8704 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8705 
8706 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8707 		return is_next_size;
8708 
8709 	return has_size == is_next_size || is_next_size == is_fixed;
8710 }
8711 
8712 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8713 {
8714 	/* bpf_xxx(..., buf, len) call will access 'len'
8715 	 * bytes from memory 'buf'. Both arg types need
8716 	 * to be paired, so make sure there's no buggy
8717 	 * helper function specification.
8718 	 */
8719 	if (arg_type_is_mem_size(fn->arg1_type) ||
8720 	    check_args_pair_invalid(fn, 0) ||
8721 	    check_args_pair_invalid(fn, 1) ||
8722 	    check_args_pair_invalid(fn, 2) ||
8723 	    check_args_pair_invalid(fn, 3) ||
8724 	    check_args_pair_invalid(fn, 4))
8725 		return false;
8726 
8727 	return true;
8728 }
8729 
8730 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8731 {
8732 	int i;
8733 
8734 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8735 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8736 			return !!fn->arg_btf_id[i];
8737 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8738 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
8739 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8740 		    /* arg_btf_id and arg_size are in a union. */
8741 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8742 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8743 			return false;
8744 	}
8745 
8746 	return true;
8747 }
8748 
8749 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8750 {
8751 	return check_raw_mode_ok(fn) &&
8752 	       check_arg_pair_ok(fn) &&
8753 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
8754 }
8755 
8756 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8757  * are now invalid, so turn them into unknown SCALAR_VALUE.
8758  *
8759  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8760  * since these slices point to packet data.
8761  */
8762 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8763 {
8764 	struct bpf_func_state *state;
8765 	struct bpf_reg_state *reg;
8766 
8767 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8768 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8769 			mark_reg_invalid(env, reg);
8770 	}));
8771 }
8772 
8773 enum {
8774 	AT_PKT_END = -1,
8775 	BEYOND_PKT_END = -2,
8776 };
8777 
8778 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8779 {
8780 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8781 	struct bpf_reg_state *reg = &state->regs[regn];
8782 
8783 	if (reg->type != PTR_TO_PACKET)
8784 		/* PTR_TO_PACKET_META is not supported yet */
8785 		return;
8786 
8787 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8788 	 * How far beyond pkt_end it goes is unknown.
8789 	 * if (!range_open) it's the case of pkt >= pkt_end
8790 	 * if (range_open) it's the case of pkt > pkt_end
8791 	 * hence this pointer is at least 1 byte bigger than pkt_end
8792 	 */
8793 	if (range_open)
8794 		reg->range = BEYOND_PKT_END;
8795 	else
8796 		reg->range = AT_PKT_END;
8797 }
8798 
8799 /* The pointer with the specified id has released its reference to kernel
8800  * resources. Identify all copies of the same pointer and clear the reference.
8801  */
8802 static int release_reference(struct bpf_verifier_env *env,
8803 			     int ref_obj_id)
8804 {
8805 	struct bpf_func_state *state;
8806 	struct bpf_reg_state *reg;
8807 	int err;
8808 
8809 	err = release_reference_state(cur_func(env), ref_obj_id);
8810 	if (err)
8811 		return err;
8812 
8813 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8814 		if (reg->ref_obj_id == ref_obj_id)
8815 			mark_reg_invalid(env, reg);
8816 	}));
8817 
8818 	return 0;
8819 }
8820 
8821 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8822 {
8823 	struct bpf_func_state *unused;
8824 	struct bpf_reg_state *reg;
8825 
8826 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8827 		if (type_is_non_owning_ref(reg->type))
8828 			mark_reg_invalid(env, reg);
8829 	}));
8830 }
8831 
8832 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8833 				    struct bpf_reg_state *regs)
8834 {
8835 	int i;
8836 
8837 	/* after the call registers r0 - r5 were scratched */
8838 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8839 		mark_reg_not_init(env, regs, caller_saved[i]);
8840 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8841 	}
8842 }
8843 
8844 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8845 				   struct bpf_func_state *caller,
8846 				   struct bpf_func_state *callee,
8847 				   int insn_idx);
8848 
8849 static int set_callee_state(struct bpf_verifier_env *env,
8850 			    struct bpf_func_state *caller,
8851 			    struct bpf_func_state *callee, int insn_idx);
8852 
8853 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8854 			     int *insn_idx, int subprog,
8855 			     set_callee_state_fn set_callee_state_cb)
8856 {
8857 	struct bpf_verifier_state *state = env->cur_state;
8858 	struct bpf_func_state *caller, *callee;
8859 	int err;
8860 
8861 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
8862 		verbose(env, "the call stack of %d frames is too deep\n",
8863 			state->curframe + 2);
8864 		return -E2BIG;
8865 	}
8866 
8867 	caller = state->frame[state->curframe];
8868 	if (state->frame[state->curframe + 1]) {
8869 		verbose(env, "verifier bug. Frame %d already allocated\n",
8870 			state->curframe + 1);
8871 		return -EFAULT;
8872 	}
8873 
8874 	err = btf_check_subprog_call(env, subprog, caller->regs);
8875 	if (err == -EFAULT)
8876 		return err;
8877 	if (subprog_is_global(env, subprog)) {
8878 		if (err) {
8879 			verbose(env, "Caller passes invalid args into func#%d\n",
8880 				subprog);
8881 			return err;
8882 		} else {
8883 			if (env->log.level & BPF_LOG_LEVEL)
8884 				verbose(env,
8885 					"Func#%d is global and valid. Skipping.\n",
8886 					subprog);
8887 			clear_caller_saved_regs(env, caller->regs);
8888 
8889 			/* All global functions return a 64-bit SCALAR_VALUE */
8890 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
8891 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8892 
8893 			/* continue with next insn after call */
8894 			return 0;
8895 		}
8896 	}
8897 
8898 	/* set_callee_state is used for direct subprog calls, but we are
8899 	 * interested in validating only BPF helpers that can call subprogs as
8900 	 * callbacks
8901 	 */
8902 	if (set_callee_state_cb != set_callee_state) {
8903 		if (bpf_pseudo_kfunc_call(insn) &&
8904 		    !is_callback_calling_kfunc(insn->imm)) {
8905 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8906 				func_id_name(insn->imm), insn->imm);
8907 			return -EFAULT;
8908 		} else if (!bpf_pseudo_kfunc_call(insn) &&
8909 			   !is_callback_calling_function(insn->imm)) { /* helper */
8910 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8911 				func_id_name(insn->imm), insn->imm);
8912 			return -EFAULT;
8913 		}
8914 	}
8915 
8916 	if (insn->code == (BPF_JMP | BPF_CALL) &&
8917 	    insn->src_reg == 0 &&
8918 	    insn->imm == BPF_FUNC_timer_set_callback) {
8919 		struct bpf_verifier_state *async_cb;
8920 
8921 		/* there is no real recursion here. timer callbacks are async */
8922 		env->subprog_info[subprog].is_async_cb = true;
8923 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8924 					 *insn_idx, subprog);
8925 		if (!async_cb)
8926 			return -EFAULT;
8927 		callee = async_cb->frame[0];
8928 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
8929 
8930 		/* Convert bpf_timer_set_callback() args into timer callback args */
8931 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
8932 		if (err)
8933 			return err;
8934 
8935 		clear_caller_saved_regs(env, caller->regs);
8936 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
8937 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8938 		/* continue with next insn after call */
8939 		return 0;
8940 	}
8941 
8942 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8943 	if (!callee)
8944 		return -ENOMEM;
8945 	state->frame[state->curframe + 1] = callee;
8946 
8947 	/* callee cannot access r0, r6 - r9 for reading and has to write
8948 	 * into its own stack before reading from it.
8949 	 * callee can read/write into caller's stack
8950 	 */
8951 	init_func_state(env, callee,
8952 			/* remember the callsite, it will be used by bpf_exit */
8953 			*insn_idx /* callsite */,
8954 			state->curframe + 1 /* frameno within this callchain */,
8955 			subprog /* subprog number within this prog */);
8956 
8957 	/* Transfer references to the callee */
8958 	err = copy_reference_state(callee, caller);
8959 	if (err)
8960 		goto err_out;
8961 
8962 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
8963 	if (err)
8964 		goto err_out;
8965 
8966 	clear_caller_saved_regs(env, caller->regs);
8967 
8968 	/* only increment it after check_reg_arg() finished */
8969 	state->curframe++;
8970 
8971 	/* and go analyze first insn of the callee */
8972 	*insn_idx = env->subprog_info[subprog].start - 1;
8973 
8974 	if (env->log.level & BPF_LOG_LEVEL) {
8975 		verbose(env, "caller:\n");
8976 		print_verifier_state(env, caller, true);
8977 		verbose(env, "callee:\n");
8978 		print_verifier_state(env, callee, true);
8979 	}
8980 	return 0;
8981 
8982 err_out:
8983 	free_func_state(callee);
8984 	state->frame[state->curframe + 1] = NULL;
8985 	return err;
8986 }
8987 
8988 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8989 				   struct bpf_func_state *caller,
8990 				   struct bpf_func_state *callee)
8991 {
8992 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8993 	 *      void *callback_ctx, u64 flags);
8994 	 * callback_fn(struct bpf_map *map, void *key, void *value,
8995 	 *      void *callback_ctx);
8996 	 */
8997 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
8998 
8999 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9000 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9001 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9002 
9003 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9004 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9005 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9006 
9007 	/* pointer to stack or null */
9008 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9009 
9010 	/* unused */
9011 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9012 	return 0;
9013 }
9014 
9015 static int set_callee_state(struct bpf_verifier_env *env,
9016 			    struct bpf_func_state *caller,
9017 			    struct bpf_func_state *callee, int insn_idx)
9018 {
9019 	int i;
9020 
9021 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9022 	 * pointers, which connects us up to the liveness chain
9023 	 */
9024 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9025 		callee->regs[i] = caller->regs[i];
9026 	return 0;
9027 }
9028 
9029 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9030 			   int *insn_idx)
9031 {
9032 	int subprog, target_insn;
9033 
9034 	target_insn = *insn_idx + insn->imm + 1;
9035 	subprog = find_subprog(env, target_insn);
9036 	if (subprog < 0) {
9037 		verbose(env, "verifier bug. No program starts at insn %d\n",
9038 			target_insn);
9039 		return -EFAULT;
9040 	}
9041 
9042 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9043 }
9044 
9045 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9046 				       struct bpf_func_state *caller,
9047 				       struct bpf_func_state *callee,
9048 				       int insn_idx)
9049 {
9050 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9051 	struct bpf_map *map;
9052 	int err;
9053 
9054 	if (bpf_map_ptr_poisoned(insn_aux)) {
9055 		verbose(env, "tail_call abusing map_ptr\n");
9056 		return -EINVAL;
9057 	}
9058 
9059 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9060 	if (!map->ops->map_set_for_each_callback_args ||
9061 	    !map->ops->map_for_each_callback) {
9062 		verbose(env, "callback function not allowed for map\n");
9063 		return -ENOTSUPP;
9064 	}
9065 
9066 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9067 	if (err)
9068 		return err;
9069 
9070 	callee->in_callback_fn = true;
9071 	callee->callback_ret_range = tnum_range(0, 1);
9072 	return 0;
9073 }
9074 
9075 static int set_loop_callback_state(struct bpf_verifier_env *env,
9076 				   struct bpf_func_state *caller,
9077 				   struct bpf_func_state *callee,
9078 				   int insn_idx)
9079 {
9080 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9081 	 *	    u64 flags);
9082 	 * callback_fn(u32 index, void *callback_ctx);
9083 	 */
9084 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9085 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9086 
9087 	/* unused */
9088 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9089 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9090 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9091 
9092 	callee->in_callback_fn = true;
9093 	callee->callback_ret_range = tnum_range(0, 1);
9094 	return 0;
9095 }
9096 
9097 static int set_timer_callback_state(struct bpf_verifier_env *env,
9098 				    struct bpf_func_state *caller,
9099 				    struct bpf_func_state *callee,
9100 				    int insn_idx)
9101 {
9102 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9103 
9104 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9105 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9106 	 */
9107 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9108 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9109 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9110 
9111 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9112 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9113 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9114 
9115 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9116 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9117 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9118 
9119 	/* unused */
9120 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9121 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9122 	callee->in_async_callback_fn = true;
9123 	callee->callback_ret_range = tnum_range(0, 1);
9124 	return 0;
9125 }
9126 
9127 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9128 				       struct bpf_func_state *caller,
9129 				       struct bpf_func_state *callee,
9130 				       int insn_idx)
9131 {
9132 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9133 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9134 	 * (callback_fn)(struct task_struct *task,
9135 	 *               struct vm_area_struct *vma, void *callback_ctx);
9136 	 */
9137 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9138 
9139 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9140 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9141 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9142 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9143 
9144 	/* pointer to stack or null */
9145 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9146 
9147 	/* unused */
9148 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9149 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9150 	callee->in_callback_fn = true;
9151 	callee->callback_ret_range = tnum_range(0, 1);
9152 	return 0;
9153 }
9154 
9155 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9156 					   struct bpf_func_state *caller,
9157 					   struct bpf_func_state *callee,
9158 					   int insn_idx)
9159 {
9160 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9161 	 *			  callback_ctx, u64 flags);
9162 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9163 	 */
9164 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9165 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9166 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9167 
9168 	/* unused */
9169 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9170 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9171 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9172 
9173 	callee->in_callback_fn = true;
9174 	callee->callback_ret_range = tnum_range(0, 1);
9175 	return 0;
9176 }
9177 
9178 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9179 					 struct bpf_func_state *caller,
9180 					 struct bpf_func_state *callee,
9181 					 int insn_idx)
9182 {
9183 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9184 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9185 	 *
9186 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9187 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9188 	 * by this point, so look at 'root'
9189 	 */
9190 	struct btf_field *field;
9191 
9192 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9193 				      BPF_RB_ROOT);
9194 	if (!field || !field->graph_root.value_btf_id)
9195 		return -EFAULT;
9196 
9197 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9198 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9199 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9200 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9201 
9202 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9203 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9204 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9205 	callee->in_callback_fn = true;
9206 	callee->callback_ret_range = tnum_range(0, 1);
9207 	return 0;
9208 }
9209 
9210 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9211 
9212 /* Are we currently verifying the callback for a rbtree helper that must
9213  * be called with lock held? If so, no need to complain about unreleased
9214  * lock
9215  */
9216 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9217 {
9218 	struct bpf_verifier_state *state = env->cur_state;
9219 	struct bpf_insn *insn = env->prog->insnsi;
9220 	struct bpf_func_state *callee;
9221 	int kfunc_btf_id;
9222 
9223 	if (!state->curframe)
9224 		return false;
9225 
9226 	callee = state->frame[state->curframe];
9227 
9228 	if (!callee->in_callback_fn)
9229 		return false;
9230 
9231 	kfunc_btf_id = insn[callee->callsite].imm;
9232 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9233 }
9234 
9235 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9236 {
9237 	struct bpf_verifier_state *state = env->cur_state;
9238 	struct bpf_func_state *caller, *callee;
9239 	struct bpf_reg_state *r0;
9240 	int err;
9241 
9242 	callee = state->frame[state->curframe];
9243 	r0 = &callee->regs[BPF_REG_0];
9244 	if (r0->type == PTR_TO_STACK) {
9245 		/* technically it's ok to return caller's stack pointer
9246 		 * (or caller's caller's pointer) back to the caller,
9247 		 * since these pointers are valid. Only current stack
9248 		 * pointer will be invalid as soon as function exits,
9249 		 * but let's be conservative
9250 		 */
9251 		verbose(env, "cannot return stack pointer to the caller\n");
9252 		return -EINVAL;
9253 	}
9254 
9255 	caller = state->frame[state->curframe - 1];
9256 	if (callee->in_callback_fn) {
9257 		/* enforce R0 return value range [0, 1]. */
9258 		struct tnum range = callee->callback_ret_range;
9259 
9260 		if (r0->type != SCALAR_VALUE) {
9261 			verbose(env, "R0 not a scalar value\n");
9262 			return -EACCES;
9263 		}
9264 		if (!tnum_in(range, r0->var_off)) {
9265 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9266 			return -EINVAL;
9267 		}
9268 	} else {
9269 		/* return to the caller whatever r0 had in the callee */
9270 		caller->regs[BPF_REG_0] = *r0;
9271 	}
9272 
9273 	/* callback_fn frame should have released its own additions to parent's
9274 	 * reference state at this point, or check_reference_leak would
9275 	 * complain, hence it must be the same as the caller. There is no need
9276 	 * to copy it back.
9277 	 */
9278 	if (!callee->in_callback_fn) {
9279 		/* Transfer references to the caller */
9280 		err = copy_reference_state(caller, callee);
9281 		if (err)
9282 			return err;
9283 	}
9284 
9285 	*insn_idx = callee->callsite + 1;
9286 	if (env->log.level & BPF_LOG_LEVEL) {
9287 		verbose(env, "returning from callee:\n");
9288 		print_verifier_state(env, callee, true);
9289 		verbose(env, "to caller at %d:\n", *insn_idx);
9290 		print_verifier_state(env, caller, true);
9291 	}
9292 	/* clear everything in the callee */
9293 	free_func_state(callee);
9294 	state->frame[state->curframe--] = NULL;
9295 	return 0;
9296 }
9297 
9298 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9299 				   int func_id,
9300 				   struct bpf_call_arg_meta *meta)
9301 {
9302 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9303 
9304 	if (ret_type != RET_INTEGER)
9305 		return;
9306 
9307 	switch (func_id) {
9308 	case BPF_FUNC_get_stack:
9309 	case BPF_FUNC_get_task_stack:
9310 	case BPF_FUNC_probe_read_str:
9311 	case BPF_FUNC_probe_read_kernel_str:
9312 	case BPF_FUNC_probe_read_user_str:
9313 		ret_reg->smax_value = meta->msize_max_value;
9314 		ret_reg->s32_max_value = meta->msize_max_value;
9315 		ret_reg->smin_value = -MAX_ERRNO;
9316 		ret_reg->s32_min_value = -MAX_ERRNO;
9317 		reg_bounds_sync(ret_reg);
9318 		break;
9319 	case BPF_FUNC_get_smp_processor_id:
9320 		ret_reg->umax_value = nr_cpu_ids - 1;
9321 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9322 		ret_reg->smax_value = nr_cpu_ids - 1;
9323 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9324 		ret_reg->umin_value = 0;
9325 		ret_reg->u32_min_value = 0;
9326 		ret_reg->smin_value = 0;
9327 		ret_reg->s32_min_value = 0;
9328 		reg_bounds_sync(ret_reg);
9329 		break;
9330 	}
9331 }
9332 
9333 static int
9334 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9335 		int func_id, int insn_idx)
9336 {
9337 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9338 	struct bpf_map *map = meta->map_ptr;
9339 
9340 	if (func_id != BPF_FUNC_tail_call &&
9341 	    func_id != BPF_FUNC_map_lookup_elem &&
9342 	    func_id != BPF_FUNC_map_update_elem &&
9343 	    func_id != BPF_FUNC_map_delete_elem &&
9344 	    func_id != BPF_FUNC_map_push_elem &&
9345 	    func_id != BPF_FUNC_map_pop_elem &&
9346 	    func_id != BPF_FUNC_map_peek_elem &&
9347 	    func_id != BPF_FUNC_for_each_map_elem &&
9348 	    func_id != BPF_FUNC_redirect_map &&
9349 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9350 		return 0;
9351 
9352 	if (map == NULL) {
9353 		verbose(env, "kernel subsystem misconfigured verifier\n");
9354 		return -EINVAL;
9355 	}
9356 
9357 	/* In case of read-only, some additional restrictions
9358 	 * need to be applied in order to prevent altering the
9359 	 * state of the map from program side.
9360 	 */
9361 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9362 	    (func_id == BPF_FUNC_map_delete_elem ||
9363 	     func_id == BPF_FUNC_map_update_elem ||
9364 	     func_id == BPF_FUNC_map_push_elem ||
9365 	     func_id == BPF_FUNC_map_pop_elem)) {
9366 		verbose(env, "write into map forbidden\n");
9367 		return -EACCES;
9368 	}
9369 
9370 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9371 		bpf_map_ptr_store(aux, meta->map_ptr,
9372 				  !meta->map_ptr->bypass_spec_v1);
9373 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9374 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9375 				  !meta->map_ptr->bypass_spec_v1);
9376 	return 0;
9377 }
9378 
9379 static int
9380 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9381 		int func_id, int insn_idx)
9382 {
9383 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9384 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9385 	struct bpf_map *map = meta->map_ptr;
9386 	u64 val, max;
9387 	int err;
9388 
9389 	if (func_id != BPF_FUNC_tail_call)
9390 		return 0;
9391 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9392 		verbose(env, "kernel subsystem misconfigured verifier\n");
9393 		return -EINVAL;
9394 	}
9395 
9396 	reg = &regs[BPF_REG_3];
9397 	val = reg->var_off.value;
9398 	max = map->max_entries;
9399 
9400 	if (!(register_is_const(reg) && val < max)) {
9401 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9402 		return 0;
9403 	}
9404 
9405 	err = mark_chain_precision(env, BPF_REG_3);
9406 	if (err)
9407 		return err;
9408 	if (bpf_map_key_unseen(aux))
9409 		bpf_map_key_store(aux, val);
9410 	else if (!bpf_map_key_poisoned(aux) &&
9411 		  bpf_map_key_immediate(aux) != val)
9412 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9413 	return 0;
9414 }
9415 
9416 static int check_reference_leak(struct bpf_verifier_env *env)
9417 {
9418 	struct bpf_func_state *state = cur_func(env);
9419 	bool refs_lingering = false;
9420 	int i;
9421 
9422 	if (state->frameno && !state->in_callback_fn)
9423 		return 0;
9424 
9425 	for (i = 0; i < state->acquired_refs; i++) {
9426 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9427 			continue;
9428 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9429 			state->refs[i].id, state->refs[i].insn_idx);
9430 		refs_lingering = true;
9431 	}
9432 	return refs_lingering ? -EINVAL : 0;
9433 }
9434 
9435 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9436 				   struct bpf_reg_state *regs)
9437 {
9438 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9439 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9440 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9441 	struct bpf_bprintf_data data = {};
9442 	int err, fmt_map_off, num_args;
9443 	u64 fmt_addr;
9444 	char *fmt;
9445 
9446 	/* data must be an array of u64 */
9447 	if (data_len_reg->var_off.value % 8)
9448 		return -EINVAL;
9449 	num_args = data_len_reg->var_off.value / 8;
9450 
9451 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9452 	 * and map_direct_value_addr is set.
9453 	 */
9454 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9455 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9456 						  fmt_map_off);
9457 	if (err) {
9458 		verbose(env, "verifier bug\n");
9459 		return -EFAULT;
9460 	}
9461 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9462 
9463 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9464 	 * can focus on validating the format specifiers.
9465 	 */
9466 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9467 	if (err < 0)
9468 		verbose(env, "Invalid format string\n");
9469 
9470 	return err;
9471 }
9472 
9473 static int check_get_func_ip(struct bpf_verifier_env *env)
9474 {
9475 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9476 	int func_id = BPF_FUNC_get_func_ip;
9477 
9478 	if (type == BPF_PROG_TYPE_TRACING) {
9479 		if (!bpf_prog_has_trampoline(env->prog)) {
9480 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9481 				func_id_name(func_id), func_id);
9482 			return -ENOTSUPP;
9483 		}
9484 		return 0;
9485 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9486 		return 0;
9487 	}
9488 
9489 	verbose(env, "func %s#%d not supported for program type %d\n",
9490 		func_id_name(func_id), func_id, type);
9491 	return -ENOTSUPP;
9492 }
9493 
9494 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9495 {
9496 	return &env->insn_aux_data[env->insn_idx];
9497 }
9498 
9499 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9500 {
9501 	struct bpf_reg_state *regs = cur_regs(env);
9502 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9503 	bool reg_is_null = register_is_null(reg);
9504 
9505 	if (reg_is_null)
9506 		mark_chain_precision(env, BPF_REG_4);
9507 
9508 	return reg_is_null;
9509 }
9510 
9511 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9512 {
9513 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9514 
9515 	if (!state->initialized) {
9516 		state->initialized = 1;
9517 		state->fit_for_inline = loop_flag_is_zero(env);
9518 		state->callback_subprogno = subprogno;
9519 		return;
9520 	}
9521 
9522 	if (!state->fit_for_inline)
9523 		return;
9524 
9525 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9526 				 state->callback_subprogno == subprogno);
9527 }
9528 
9529 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9530 			     int *insn_idx_p)
9531 {
9532 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9533 	const struct bpf_func_proto *fn = NULL;
9534 	enum bpf_return_type ret_type;
9535 	enum bpf_type_flag ret_flag;
9536 	struct bpf_reg_state *regs;
9537 	struct bpf_call_arg_meta meta;
9538 	int insn_idx = *insn_idx_p;
9539 	bool changes_data;
9540 	int i, err, func_id;
9541 
9542 	/* find function prototype */
9543 	func_id = insn->imm;
9544 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9545 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9546 			func_id);
9547 		return -EINVAL;
9548 	}
9549 
9550 	if (env->ops->get_func_proto)
9551 		fn = env->ops->get_func_proto(func_id, env->prog);
9552 	if (!fn) {
9553 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9554 			func_id);
9555 		return -EINVAL;
9556 	}
9557 
9558 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9559 	if (!env->prog->gpl_compatible && fn->gpl_only) {
9560 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9561 		return -EINVAL;
9562 	}
9563 
9564 	if (fn->allowed && !fn->allowed(env->prog)) {
9565 		verbose(env, "helper call is not allowed in probe\n");
9566 		return -EINVAL;
9567 	}
9568 
9569 	if (!env->prog->aux->sleepable && fn->might_sleep) {
9570 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
9571 		return -EINVAL;
9572 	}
9573 
9574 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
9575 	changes_data = bpf_helper_changes_pkt_data(fn->func);
9576 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9577 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9578 			func_id_name(func_id), func_id);
9579 		return -EINVAL;
9580 	}
9581 
9582 	memset(&meta, 0, sizeof(meta));
9583 	meta.pkt_access = fn->pkt_access;
9584 
9585 	err = check_func_proto(fn, func_id);
9586 	if (err) {
9587 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9588 			func_id_name(func_id), func_id);
9589 		return err;
9590 	}
9591 
9592 	if (env->cur_state->active_rcu_lock) {
9593 		if (fn->might_sleep) {
9594 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9595 				func_id_name(func_id), func_id);
9596 			return -EINVAL;
9597 		}
9598 
9599 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9600 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9601 	}
9602 
9603 	meta.func_id = func_id;
9604 	/* check args */
9605 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
9606 		err = check_func_arg(env, i, &meta, fn, insn_idx);
9607 		if (err)
9608 			return err;
9609 	}
9610 
9611 	err = record_func_map(env, &meta, func_id, insn_idx);
9612 	if (err)
9613 		return err;
9614 
9615 	err = record_func_key(env, &meta, func_id, insn_idx);
9616 	if (err)
9617 		return err;
9618 
9619 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
9620 	 * is inferred from register state.
9621 	 */
9622 	for (i = 0; i < meta.access_size; i++) {
9623 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
9624 				       BPF_WRITE, -1, false, false);
9625 		if (err)
9626 			return err;
9627 	}
9628 
9629 	regs = cur_regs(env);
9630 
9631 	if (meta.release_regno) {
9632 		err = -EINVAL;
9633 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9634 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9635 		 * is safe to do directly.
9636 		 */
9637 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9638 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9639 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9640 				return -EFAULT;
9641 			}
9642 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
9643 		} else if (meta.ref_obj_id) {
9644 			err = release_reference(env, meta.ref_obj_id);
9645 		} else if (register_is_null(&regs[meta.release_regno])) {
9646 			/* meta.ref_obj_id can only be 0 if register that is meant to be
9647 			 * released is NULL, which must be > R0.
9648 			 */
9649 			err = 0;
9650 		}
9651 		if (err) {
9652 			verbose(env, "func %s#%d reference has not been acquired before\n",
9653 				func_id_name(func_id), func_id);
9654 			return err;
9655 		}
9656 	}
9657 
9658 	switch (func_id) {
9659 	case BPF_FUNC_tail_call:
9660 		err = check_reference_leak(env);
9661 		if (err) {
9662 			verbose(env, "tail_call would lead to reference leak\n");
9663 			return err;
9664 		}
9665 		break;
9666 	case BPF_FUNC_get_local_storage:
9667 		/* check that flags argument in get_local_storage(map, flags) is 0,
9668 		 * this is required because get_local_storage() can't return an error.
9669 		 */
9670 		if (!register_is_null(&regs[BPF_REG_2])) {
9671 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9672 			return -EINVAL;
9673 		}
9674 		break;
9675 	case BPF_FUNC_for_each_map_elem:
9676 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9677 					set_map_elem_callback_state);
9678 		break;
9679 	case BPF_FUNC_timer_set_callback:
9680 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9681 					set_timer_callback_state);
9682 		break;
9683 	case BPF_FUNC_find_vma:
9684 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9685 					set_find_vma_callback_state);
9686 		break;
9687 	case BPF_FUNC_snprintf:
9688 		err = check_bpf_snprintf_call(env, regs);
9689 		break;
9690 	case BPF_FUNC_loop:
9691 		update_loop_inline_state(env, meta.subprogno);
9692 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9693 					set_loop_callback_state);
9694 		break;
9695 	case BPF_FUNC_dynptr_from_mem:
9696 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9697 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9698 				reg_type_str(env, regs[BPF_REG_1].type));
9699 			return -EACCES;
9700 		}
9701 		break;
9702 	case BPF_FUNC_set_retval:
9703 		if (prog_type == BPF_PROG_TYPE_LSM &&
9704 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
9705 			if (!env->prog->aux->attach_func_proto->type) {
9706 				/* Make sure programs that attach to void
9707 				 * hooks don't try to modify return value.
9708 				 */
9709 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9710 				return -EINVAL;
9711 			}
9712 		}
9713 		break;
9714 	case BPF_FUNC_dynptr_data:
9715 	{
9716 		struct bpf_reg_state *reg;
9717 		int id, ref_obj_id;
9718 
9719 		reg = get_dynptr_arg_reg(env, fn, regs);
9720 		if (!reg)
9721 			return -EFAULT;
9722 
9723 
9724 		if (meta.dynptr_id) {
9725 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9726 			return -EFAULT;
9727 		}
9728 		if (meta.ref_obj_id) {
9729 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9730 			return -EFAULT;
9731 		}
9732 
9733 		id = dynptr_id(env, reg);
9734 		if (id < 0) {
9735 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9736 			return id;
9737 		}
9738 
9739 		ref_obj_id = dynptr_ref_obj_id(env, reg);
9740 		if (ref_obj_id < 0) {
9741 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9742 			return ref_obj_id;
9743 		}
9744 
9745 		meta.dynptr_id = id;
9746 		meta.ref_obj_id = ref_obj_id;
9747 
9748 		break;
9749 	}
9750 	case BPF_FUNC_dynptr_write:
9751 	{
9752 		enum bpf_dynptr_type dynptr_type;
9753 		struct bpf_reg_state *reg;
9754 
9755 		reg = get_dynptr_arg_reg(env, fn, regs);
9756 		if (!reg)
9757 			return -EFAULT;
9758 
9759 		dynptr_type = dynptr_get_type(env, reg);
9760 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9761 			return -EFAULT;
9762 
9763 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9764 			/* this will trigger clear_all_pkt_pointers(), which will
9765 			 * invalidate all dynptr slices associated with the skb
9766 			 */
9767 			changes_data = true;
9768 
9769 		break;
9770 	}
9771 	case BPF_FUNC_user_ringbuf_drain:
9772 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9773 					set_user_ringbuf_callback_state);
9774 		break;
9775 	}
9776 
9777 	if (err)
9778 		return err;
9779 
9780 	/* reset caller saved regs */
9781 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9782 		mark_reg_not_init(env, regs, caller_saved[i]);
9783 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9784 	}
9785 
9786 	/* helper call returns 64-bit value. */
9787 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9788 
9789 	/* update return register (already marked as written above) */
9790 	ret_type = fn->ret_type;
9791 	ret_flag = type_flag(ret_type);
9792 
9793 	switch (base_type(ret_type)) {
9794 	case RET_INTEGER:
9795 		/* sets type to SCALAR_VALUE */
9796 		mark_reg_unknown(env, regs, BPF_REG_0);
9797 		break;
9798 	case RET_VOID:
9799 		regs[BPF_REG_0].type = NOT_INIT;
9800 		break;
9801 	case RET_PTR_TO_MAP_VALUE:
9802 		/* There is no offset yet applied, variable or fixed */
9803 		mark_reg_known_zero(env, regs, BPF_REG_0);
9804 		/* remember map_ptr, so that check_map_access()
9805 		 * can check 'value_size' boundary of memory access
9806 		 * to map element returned from bpf_map_lookup_elem()
9807 		 */
9808 		if (meta.map_ptr == NULL) {
9809 			verbose(env,
9810 				"kernel subsystem misconfigured verifier\n");
9811 			return -EINVAL;
9812 		}
9813 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
9814 		regs[BPF_REG_0].map_uid = meta.map_uid;
9815 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9816 		if (!type_may_be_null(ret_type) &&
9817 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
9818 			regs[BPF_REG_0].id = ++env->id_gen;
9819 		}
9820 		break;
9821 	case RET_PTR_TO_SOCKET:
9822 		mark_reg_known_zero(env, regs, BPF_REG_0);
9823 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
9824 		break;
9825 	case RET_PTR_TO_SOCK_COMMON:
9826 		mark_reg_known_zero(env, regs, BPF_REG_0);
9827 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
9828 		break;
9829 	case RET_PTR_TO_TCP_SOCK:
9830 		mark_reg_known_zero(env, regs, BPF_REG_0);
9831 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
9832 		break;
9833 	case RET_PTR_TO_MEM:
9834 		mark_reg_known_zero(env, regs, BPF_REG_0);
9835 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9836 		regs[BPF_REG_0].mem_size = meta.mem_size;
9837 		break;
9838 	case RET_PTR_TO_MEM_OR_BTF_ID:
9839 	{
9840 		const struct btf_type *t;
9841 
9842 		mark_reg_known_zero(env, regs, BPF_REG_0);
9843 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
9844 		if (!btf_type_is_struct(t)) {
9845 			u32 tsize;
9846 			const struct btf_type *ret;
9847 			const char *tname;
9848 
9849 			/* resolve the type size of ksym. */
9850 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
9851 			if (IS_ERR(ret)) {
9852 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
9853 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
9854 					tname, PTR_ERR(ret));
9855 				return -EINVAL;
9856 			}
9857 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9858 			regs[BPF_REG_0].mem_size = tsize;
9859 		} else {
9860 			/* MEM_RDONLY may be carried from ret_flag, but it
9861 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9862 			 * it will confuse the check of PTR_TO_BTF_ID in
9863 			 * check_mem_access().
9864 			 */
9865 			ret_flag &= ~MEM_RDONLY;
9866 
9867 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9868 			regs[BPF_REG_0].btf = meta.ret_btf;
9869 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9870 		}
9871 		break;
9872 	}
9873 	case RET_PTR_TO_BTF_ID:
9874 	{
9875 		struct btf *ret_btf;
9876 		int ret_btf_id;
9877 
9878 		mark_reg_known_zero(env, regs, BPF_REG_0);
9879 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9880 		if (func_id == BPF_FUNC_kptr_xchg) {
9881 			ret_btf = meta.kptr_field->kptr.btf;
9882 			ret_btf_id = meta.kptr_field->kptr.btf_id;
9883 			if (!btf_is_kernel(ret_btf))
9884 				regs[BPF_REG_0].type |= MEM_ALLOC;
9885 		} else {
9886 			if (fn->ret_btf_id == BPF_PTR_POISON) {
9887 				verbose(env, "verifier internal error:");
9888 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9889 					func_id_name(func_id));
9890 				return -EINVAL;
9891 			}
9892 			ret_btf = btf_vmlinux;
9893 			ret_btf_id = *fn->ret_btf_id;
9894 		}
9895 		if (ret_btf_id == 0) {
9896 			verbose(env, "invalid return type %u of func %s#%d\n",
9897 				base_type(ret_type), func_id_name(func_id),
9898 				func_id);
9899 			return -EINVAL;
9900 		}
9901 		regs[BPF_REG_0].btf = ret_btf;
9902 		regs[BPF_REG_0].btf_id = ret_btf_id;
9903 		break;
9904 	}
9905 	default:
9906 		verbose(env, "unknown return type %u of func %s#%d\n",
9907 			base_type(ret_type), func_id_name(func_id), func_id);
9908 		return -EINVAL;
9909 	}
9910 
9911 	if (type_may_be_null(regs[BPF_REG_0].type))
9912 		regs[BPF_REG_0].id = ++env->id_gen;
9913 
9914 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9915 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9916 			func_id_name(func_id), func_id);
9917 		return -EFAULT;
9918 	}
9919 
9920 	if (is_dynptr_ref_function(func_id))
9921 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9922 
9923 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
9924 		/* For release_reference() */
9925 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9926 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
9927 		int id = acquire_reference_state(env, insn_idx);
9928 
9929 		if (id < 0)
9930 			return id;
9931 		/* For mark_ptr_or_null_reg() */
9932 		regs[BPF_REG_0].id = id;
9933 		/* For release_reference() */
9934 		regs[BPF_REG_0].ref_obj_id = id;
9935 	}
9936 
9937 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9938 
9939 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
9940 	if (err)
9941 		return err;
9942 
9943 	if ((func_id == BPF_FUNC_get_stack ||
9944 	     func_id == BPF_FUNC_get_task_stack) &&
9945 	    !env->prog->has_callchain_buf) {
9946 		const char *err_str;
9947 
9948 #ifdef CONFIG_PERF_EVENTS
9949 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
9950 		err_str = "cannot get callchain buffer for func %s#%d\n";
9951 #else
9952 		err = -ENOTSUPP;
9953 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9954 #endif
9955 		if (err) {
9956 			verbose(env, err_str, func_id_name(func_id), func_id);
9957 			return err;
9958 		}
9959 
9960 		env->prog->has_callchain_buf = true;
9961 	}
9962 
9963 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9964 		env->prog->call_get_stack = true;
9965 
9966 	if (func_id == BPF_FUNC_get_func_ip) {
9967 		if (check_get_func_ip(env))
9968 			return -ENOTSUPP;
9969 		env->prog->call_get_func_ip = true;
9970 	}
9971 
9972 	if (changes_data)
9973 		clear_all_pkt_pointers(env);
9974 	return 0;
9975 }
9976 
9977 /* mark_btf_func_reg_size() is used when the reg size is determined by
9978  * the BTF func_proto's return value size and argument.
9979  */
9980 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9981 				   size_t reg_size)
9982 {
9983 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
9984 
9985 	if (regno == BPF_REG_0) {
9986 		/* Function return value */
9987 		reg->live |= REG_LIVE_WRITTEN;
9988 		reg->subreg_def = reg_size == sizeof(u64) ?
9989 			DEF_NOT_SUBREG : env->insn_idx + 1;
9990 	} else {
9991 		/* Function argument */
9992 		if (reg_size == sizeof(u64)) {
9993 			mark_insn_zext(env, reg);
9994 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
9995 		} else {
9996 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
9997 		}
9998 	}
9999 }
10000 
10001 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10002 {
10003 	return meta->kfunc_flags & KF_ACQUIRE;
10004 }
10005 
10006 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10007 {
10008 	return meta->kfunc_flags & KF_RELEASE;
10009 }
10010 
10011 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10012 {
10013 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10014 }
10015 
10016 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10017 {
10018 	return meta->kfunc_flags & KF_SLEEPABLE;
10019 }
10020 
10021 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10022 {
10023 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10024 }
10025 
10026 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10027 {
10028 	return meta->kfunc_flags & KF_RCU;
10029 }
10030 
10031 static bool __kfunc_param_match_suffix(const struct btf *btf,
10032 				       const struct btf_param *arg,
10033 				       const char *suffix)
10034 {
10035 	int suffix_len = strlen(suffix), len;
10036 	const char *param_name;
10037 
10038 	/* In the future, this can be ported to use BTF tagging */
10039 	param_name = btf_name_by_offset(btf, arg->name_off);
10040 	if (str_is_empty(param_name))
10041 		return false;
10042 	len = strlen(param_name);
10043 	if (len < suffix_len)
10044 		return false;
10045 	param_name += len - suffix_len;
10046 	return !strncmp(param_name, suffix, suffix_len);
10047 }
10048 
10049 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10050 				  const struct btf_param *arg,
10051 				  const struct bpf_reg_state *reg)
10052 {
10053 	const struct btf_type *t;
10054 
10055 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10056 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10057 		return false;
10058 
10059 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10060 }
10061 
10062 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10063 					const struct btf_param *arg,
10064 					const struct bpf_reg_state *reg)
10065 {
10066 	const struct btf_type *t;
10067 
10068 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10069 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10070 		return false;
10071 
10072 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10073 }
10074 
10075 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10076 {
10077 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10078 }
10079 
10080 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10081 {
10082 	return __kfunc_param_match_suffix(btf, arg, "__k");
10083 }
10084 
10085 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10086 {
10087 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10088 }
10089 
10090 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10091 {
10092 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10093 }
10094 
10095 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10096 {
10097 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10098 }
10099 
10100 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10101 {
10102 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10103 }
10104 
10105 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10106 					  const struct btf_param *arg,
10107 					  const char *name)
10108 {
10109 	int len, target_len = strlen(name);
10110 	const char *param_name;
10111 
10112 	param_name = btf_name_by_offset(btf, arg->name_off);
10113 	if (str_is_empty(param_name))
10114 		return false;
10115 	len = strlen(param_name);
10116 	if (len != target_len)
10117 		return false;
10118 	if (strcmp(param_name, name))
10119 		return false;
10120 
10121 	return true;
10122 }
10123 
10124 enum {
10125 	KF_ARG_DYNPTR_ID,
10126 	KF_ARG_LIST_HEAD_ID,
10127 	KF_ARG_LIST_NODE_ID,
10128 	KF_ARG_RB_ROOT_ID,
10129 	KF_ARG_RB_NODE_ID,
10130 };
10131 
10132 BTF_ID_LIST(kf_arg_btf_ids)
10133 BTF_ID(struct, bpf_dynptr_kern)
10134 BTF_ID(struct, bpf_list_head)
10135 BTF_ID(struct, bpf_list_node)
10136 BTF_ID(struct, bpf_rb_root)
10137 BTF_ID(struct, bpf_rb_node)
10138 
10139 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10140 				    const struct btf_param *arg, int type)
10141 {
10142 	const struct btf_type *t;
10143 	u32 res_id;
10144 
10145 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10146 	if (!t)
10147 		return false;
10148 	if (!btf_type_is_ptr(t))
10149 		return false;
10150 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10151 	if (!t)
10152 		return false;
10153 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10154 }
10155 
10156 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10157 {
10158 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10159 }
10160 
10161 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10162 {
10163 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10164 }
10165 
10166 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10167 {
10168 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10169 }
10170 
10171 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10172 {
10173 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10174 }
10175 
10176 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10177 {
10178 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10179 }
10180 
10181 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10182 				  const struct btf_param *arg)
10183 {
10184 	const struct btf_type *t;
10185 
10186 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10187 	if (!t)
10188 		return false;
10189 
10190 	return true;
10191 }
10192 
10193 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10194 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10195 					const struct btf *btf,
10196 					const struct btf_type *t, int rec)
10197 {
10198 	const struct btf_type *member_type;
10199 	const struct btf_member *member;
10200 	u32 i;
10201 
10202 	if (!btf_type_is_struct(t))
10203 		return false;
10204 
10205 	for_each_member(i, t, member) {
10206 		const struct btf_array *array;
10207 
10208 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10209 		if (btf_type_is_struct(member_type)) {
10210 			if (rec >= 3) {
10211 				verbose(env, "max struct nesting depth exceeded\n");
10212 				return false;
10213 			}
10214 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10215 				return false;
10216 			continue;
10217 		}
10218 		if (btf_type_is_array(member_type)) {
10219 			array = btf_array(member_type);
10220 			if (!array->nelems)
10221 				return false;
10222 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10223 			if (!btf_type_is_scalar(member_type))
10224 				return false;
10225 			continue;
10226 		}
10227 		if (!btf_type_is_scalar(member_type))
10228 			return false;
10229 	}
10230 	return true;
10231 }
10232 
10233 enum kfunc_ptr_arg_type {
10234 	KF_ARG_PTR_TO_CTX,
10235 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10236 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10237 	KF_ARG_PTR_TO_DYNPTR,
10238 	KF_ARG_PTR_TO_ITER,
10239 	KF_ARG_PTR_TO_LIST_HEAD,
10240 	KF_ARG_PTR_TO_LIST_NODE,
10241 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10242 	KF_ARG_PTR_TO_MEM,
10243 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10244 	KF_ARG_PTR_TO_CALLBACK,
10245 	KF_ARG_PTR_TO_RB_ROOT,
10246 	KF_ARG_PTR_TO_RB_NODE,
10247 };
10248 
10249 enum special_kfunc_type {
10250 	KF_bpf_obj_new_impl,
10251 	KF_bpf_obj_drop_impl,
10252 	KF_bpf_refcount_acquire_impl,
10253 	KF_bpf_list_push_front_impl,
10254 	KF_bpf_list_push_back_impl,
10255 	KF_bpf_list_pop_front,
10256 	KF_bpf_list_pop_back,
10257 	KF_bpf_cast_to_kern_ctx,
10258 	KF_bpf_rdonly_cast,
10259 	KF_bpf_rcu_read_lock,
10260 	KF_bpf_rcu_read_unlock,
10261 	KF_bpf_rbtree_remove,
10262 	KF_bpf_rbtree_add_impl,
10263 	KF_bpf_rbtree_first,
10264 	KF_bpf_dynptr_from_skb,
10265 	KF_bpf_dynptr_from_xdp,
10266 	KF_bpf_dynptr_slice,
10267 	KF_bpf_dynptr_slice_rdwr,
10268 	KF_bpf_dynptr_clone,
10269 };
10270 
10271 BTF_SET_START(special_kfunc_set)
10272 BTF_ID(func, bpf_obj_new_impl)
10273 BTF_ID(func, bpf_obj_drop_impl)
10274 BTF_ID(func, bpf_refcount_acquire_impl)
10275 BTF_ID(func, bpf_list_push_front_impl)
10276 BTF_ID(func, bpf_list_push_back_impl)
10277 BTF_ID(func, bpf_list_pop_front)
10278 BTF_ID(func, bpf_list_pop_back)
10279 BTF_ID(func, bpf_cast_to_kern_ctx)
10280 BTF_ID(func, bpf_rdonly_cast)
10281 BTF_ID(func, bpf_rbtree_remove)
10282 BTF_ID(func, bpf_rbtree_add_impl)
10283 BTF_ID(func, bpf_rbtree_first)
10284 BTF_ID(func, bpf_dynptr_from_skb)
10285 BTF_ID(func, bpf_dynptr_from_xdp)
10286 BTF_ID(func, bpf_dynptr_slice)
10287 BTF_ID(func, bpf_dynptr_slice_rdwr)
10288 BTF_ID(func, bpf_dynptr_clone)
10289 BTF_SET_END(special_kfunc_set)
10290 
10291 BTF_ID_LIST(special_kfunc_list)
10292 BTF_ID(func, bpf_obj_new_impl)
10293 BTF_ID(func, bpf_obj_drop_impl)
10294 BTF_ID(func, bpf_refcount_acquire_impl)
10295 BTF_ID(func, bpf_list_push_front_impl)
10296 BTF_ID(func, bpf_list_push_back_impl)
10297 BTF_ID(func, bpf_list_pop_front)
10298 BTF_ID(func, bpf_list_pop_back)
10299 BTF_ID(func, bpf_cast_to_kern_ctx)
10300 BTF_ID(func, bpf_rdonly_cast)
10301 BTF_ID(func, bpf_rcu_read_lock)
10302 BTF_ID(func, bpf_rcu_read_unlock)
10303 BTF_ID(func, bpf_rbtree_remove)
10304 BTF_ID(func, bpf_rbtree_add_impl)
10305 BTF_ID(func, bpf_rbtree_first)
10306 BTF_ID(func, bpf_dynptr_from_skb)
10307 BTF_ID(func, bpf_dynptr_from_xdp)
10308 BTF_ID(func, bpf_dynptr_slice)
10309 BTF_ID(func, bpf_dynptr_slice_rdwr)
10310 BTF_ID(func, bpf_dynptr_clone)
10311 
10312 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10313 {
10314 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10315 	    meta->arg_owning_ref) {
10316 		return false;
10317 	}
10318 
10319 	return meta->kfunc_flags & KF_RET_NULL;
10320 }
10321 
10322 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10323 {
10324 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10325 }
10326 
10327 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10328 {
10329 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10330 }
10331 
10332 static enum kfunc_ptr_arg_type
10333 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10334 		       struct bpf_kfunc_call_arg_meta *meta,
10335 		       const struct btf_type *t, const struct btf_type *ref_t,
10336 		       const char *ref_tname, const struct btf_param *args,
10337 		       int argno, int nargs)
10338 {
10339 	u32 regno = argno + 1;
10340 	struct bpf_reg_state *regs = cur_regs(env);
10341 	struct bpf_reg_state *reg = &regs[regno];
10342 	bool arg_mem_size = false;
10343 
10344 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10345 		return KF_ARG_PTR_TO_CTX;
10346 
10347 	/* In this function, we verify the kfunc's BTF as per the argument type,
10348 	 * leaving the rest of the verification with respect to the register
10349 	 * type to our caller. When a set of conditions hold in the BTF type of
10350 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10351 	 */
10352 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10353 		return KF_ARG_PTR_TO_CTX;
10354 
10355 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10356 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10357 
10358 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10359 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10360 
10361 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10362 		return KF_ARG_PTR_TO_DYNPTR;
10363 
10364 	if (is_kfunc_arg_iter(meta, argno))
10365 		return KF_ARG_PTR_TO_ITER;
10366 
10367 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10368 		return KF_ARG_PTR_TO_LIST_HEAD;
10369 
10370 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10371 		return KF_ARG_PTR_TO_LIST_NODE;
10372 
10373 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10374 		return KF_ARG_PTR_TO_RB_ROOT;
10375 
10376 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10377 		return KF_ARG_PTR_TO_RB_NODE;
10378 
10379 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10380 		if (!btf_type_is_struct(ref_t)) {
10381 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10382 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10383 			return -EINVAL;
10384 		}
10385 		return KF_ARG_PTR_TO_BTF_ID;
10386 	}
10387 
10388 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10389 		return KF_ARG_PTR_TO_CALLBACK;
10390 
10391 
10392 	if (argno + 1 < nargs &&
10393 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10394 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10395 		arg_mem_size = true;
10396 
10397 	/* This is the catch all argument type of register types supported by
10398 	 * check_helper_mem_access. However, we only allow when argument type is
10399 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10400 	 * arg_mem_size is true, the pointer can be void *.
10401 	 */
10402 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10403 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10404 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10405 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10406 		return -EINVAL;
10407 	}
10408 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10409 }
10410 
10411 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10412 					struct bpf_reg_state *reg,
10413 					const struct btf_type *ref_t,
10414 					const char *ref_tname, u32 ref_id,
10415 					struct bpf_kfunc_call_arg_meta *meta,
10416 					int argno)
10417 {
10418 	const struct btf_type *reg_ref_t;
10419 	bool strict_type_match = false;
10420 	const struct btf *reg_btf;
10421 	const char *reg_ref_tname;
10422 	u32 reg_ref_id;
10423 
10424 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10425 		reg_btf = reg->btf;
10426 		reg_ref_id = reg->btf_id;
10427 	} else {
10428 		reg_btf = btf_vmlinux;
10429 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10430 	}
10431 
10432 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10433 	 * or releasing a reference, or are no-cast aliases. We do _not_
10434 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10435 	 * as we want to enable BPF programs to pass types that are bitwise
10436 	 * equivalent without forcing them to explicitly cast with something
10437 	 * like bpf_cast_to_kern_ctx().
10438 	 *
10439 	 * For example, say we had a type like the following:
10440 	 *
10441 	 * struct bpf_cpumask {
10442 	 *	cpumask_t cpumask;
10443 	 *	refcount_t usage;
10444 	 * };
10445 	 *
10446 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10447 	 * to a struct cpumask, so it would be safe to pass a struct
10448 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10449 	 *
10450 	 * The philosophy here is similar to how we allow scalars of different
10451 	 * types to be passed to kfuncs as long as the size is the same. The
10452 	 * only difference here is that we're simply allowing
10453 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10454 	 * resolve types.
10455 	 */
10456 	if (is_kfunc_acquire(meta) ||
10457 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10458 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10459 		strict_type_match = true;
10460 
10461 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10462 
10463 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10464 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10465 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10466 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10467 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10468 			btf_type_str(reg_ref_t), reg_ref_tname);
10469 		return -EINVAL;
10470 	}
10471 	return 0;
10472 }
10473 
10474 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10475 {
10476 	struct bpf_verifier_state *state = env->cur_state;
10477 	struct btf_record *rec = reg_btf_record(reg);
10478 
10479 	if (!state->active_lock.ptr) {
10480 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10481 		return -EFAULT;
10482 	}
10483 
10484 	if (type_flag(reg->type) & NON_OWN_REF) {
10485 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10486 		return -EFAULT;
10487 	}
10488 
10489 	reg->type |= NON_OWN_REF;
10490 	if (rec->refcount_off >= 0)
10491 		reg->type |= MEM_RCU;
10492 
10493 	return 0;
10494 }
10495 
10496 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10497 {
10498 	struct bpf_func_state *state, *unused;
10499 	struct bpf_reg_state *reg;
10500 	int i;
10501 
10502 	state = cur_func(env);
10503 
10504 	if (!ref_obj_id) {
10505 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10506 			     "owning -> non-owning conversion\n");
10507 		return -EFAULT;
10508 	}
10509 
10510 	for (i = 0; i < state->acquired_refs; i++) {
10511 		if (state->refs[i].id != ref_obj_id)
10512 			continue;
10513 
10514 		/* Clear ref_obj_id here so release_reference doesn't clobber
10515 		 * the whole reg
10516 		 */
10517 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10518 			if (reg->ref_obj_id == ref_obj_id) {
10519 				reg->ref_obj_id = 0;
10520 				ref_set_non_owning(env, reg);
10521 			}
10522 		}));
10523 		return 0;
10524 	}
10525 
10526 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10527 	return -EFAULT;
10528 }
10529 
10530 /* Implementation details:
10531  *
10532  * Each register points to some region of memory, which we define as an
10533  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10534  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10535  * allocation. The lock and the data it protects are colocated in the same
10536  * memory region.
10537  *
10538  * Hence, everytime a register holds a pointer value pointing to such
10539  * allocation, the verifier preserves a unique reg->id for it.
10540  *
10541  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10542  * bpf_spin_lock is called.
10543  *
10544  * To enable this, lock state in the verifier captures two values:
10545  *	active_lock.ptr = Register's type specific pointer
10546  *	active_lock.id  = A unique ID for each register pointer value
10547  *
10548  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10549  * supported register types.
10550  *
10551  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10552  * allocated objects is the reg->btf pointer.
10553  *
10554  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10555  * can establish the provenance of the map value statically for each distinct
10556  * lookup into such maps. They always contain a single map value hence unique
10557  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10558  *
10559  * So, in case of global variables, they use array maps with max_entries = 1,
10560  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10561  * into the same map value as max_entries is 1, as described above).
10562  *
10563  * In case of inner map lookups, the inner map pointer has same map_ptr as the
10564  * outer map pointer (in verifier context), but each lookup into an inner map
10565  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10566  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10567  * will get different reg->id assigned to each lookup, hence different
10568  * active_lock.id.
10569  *
10570  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10571  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10572  * returned from bpf_obj_new. Each allocation receives a new reg->id.
10573  */
10574 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10575 {
10576 	void *ptr;
10577 	u32 id;
10578 
10579 	switch ((int)reg->type) {
10580 	case PTR_TO_MAP_VALUE:
10581 		ptr = reg->map_ptr;
10582 		break;
10583 	case PTR_TO_BTF_ID | MEM_ALLOC:
10584 		ptr = reg->btf;
10585 		break;
10586 	default:
10587 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
10588 		return -EFAULT;
10589 	}
10590 	id = reg->id;
10591 
10592 	if (!env->cur_state->active_lock.ptr)
10593 		return -EINVAL;
10594 	if (env->cur_state->active_lock.ptr != ptr ||
10595 	    env->cur_state->active_lock.id != id) {
10596 		verbose(env, "held lock and object are not in the same allocation\n");
10597 		return -EINVAL;
10598 	}
10599 	return 0;
10600 }
10601 
10602 static bool is_bpf_list_api_kfunc(u32 btf_id)
10603 {
10604 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10605 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
10606 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10607 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
10608 }
10609 
10610 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
10611 {
10612 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
10613 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10614 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
10615 }
10616 
10617 static bool is_bpf_graph_api_kfunc(u32 btf_id)
10618 {
10619 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
10620 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
10621 }
10622 
10623 static bool is_callback_calling_kfunc(u32 btf_id)
10624 {
10625 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
10626 }
10627 
10628 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10629 {
10630 	return is_bpf_rbtree_api_kfunc(btf_id);
10631 }
10632 
10633 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10634 					  enum btf_field_type head_field_type,
10635 					  u32 kfunc_btf_id)
10636 {
10637 	bool ret;
10638 
10639 	switch (head_field_type) {
10640 	case BPF_LIST_HEAD:
10641 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10642 		break;
10643 	case BPF_RB_ROOT:
10644 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10645 		break;
10646 	default:
10647 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10648 			btf_field_type_name(head_field_type));
10649 		return false;
10650 	}
10651 
10652 	if (!ret)
10653 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10654 			btf_field_type_name(head_field_type));
10655 	return ret;
10656 }
10657 
10658 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10659 					  enum btf_field_type node_field_type,
10660 					  u32 kfunc_btf_id)
10661 {
10662 	bool ret;
10663 
10664 	switch (node_field_type) {
10665 	case BPF_LIST_NODE:
10666 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10667 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
10668 		break;
10669 	case BPF_RB_NODE:
10670 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10671 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
10672 		break;
10673 	default:
10674 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10675 			btf_field_type_name(node_field_type));
10676 		return false;
10677 	}
10678 
10679 	if (!ret)
10680 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10681 			btf_field_type_name(node_field_type));
10682 	return ret;
10683 }
10684 
10685 static int
10686 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10687 				   struct bpf_reg_state *reg, u32 regno,
10688 				   struct bpf_kfunc_call_arg_meta *meta,
10689 				   enum btf_field_type head_field_type,
10690 				   struct btf_field **head_field)
10691 {
10692 	const char *head_type_name;
10693 	struct btf_field *field;
10694 	struct btf_record *rec;
10695 	u32 head_off;
10696 
10697 	if (meta->btf != btf_vmlinux) {
10698 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10699 		return -EFAULT;
10700 	}
10701 
10702 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10703 		return -EFAULT;
10704 
10705 	head_type_name = btf_field_type_name(head_field_type);
10706 	if (!tnum_is_const(reg->var_off)) {
10707 		verbose(env,
10708 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10709 			regno, head_type_name);
10710 		return -EINVAL;
10711 	}
10712 
10713 	rec = reg_btf_record(reg);
10714 	head_off = reg->off + reg->var_off.value;
10715 	field = btf_record_find(rec, head_off, head_field_type);
10716 	if (!field) {
10717 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10718 		return -EINVAL;
10719 	}
10720 
10721 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10722 	if (check_reg_allocation_locked(env, reg)) {
10723 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10724 			rec->spin_lock_off, head_type_name);
10725 		return -EINVAL;
10726 	}
10727 
10728 	if (*head_field) {
10729 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10730 		return -EFAULT;
10731 	}
10732 	*head_field = field;
10733 	return 0;
10734 }
10735 
10736 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10737 					   struct bpf_reg_state *reg, u32 regno,
10738 					   struct bpf_kfunc_call_arg_meta *meta)
10739 {
10740 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10741 							  &meta->arg_list_head.field);
10742 }
10743 
10744 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10745 					     struct bpf_reg_state *reg, u32 regno,
10746 					     struct bpf_kfunc_call_arg_meta *meta)
10747 {
10748 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10749 							  &meta->arg_rbtree_root.field);
10750 }
10751 
10752 static int
10753 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10754 				   struct bpf_reg_state *reg, u32 regno,
10755 				   struct bpf_kfunc_call_arg_meta *meta,
10756 				   enum btf_field_type head_field_type,
10757 				   enum btf_field_type node_field_type,
10758 				   struct btf_field **node_field)
10759 {
10760 	const char *node_type_name;
10761 	const struct btf_type *et, *t;
10762 	struct btf_field *field;
10763 	u32 node_off;
10764 
10765 	if (meta->btf != btf_vmlinux) {
10766 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10767 		return -EFAULT;
10768 	}
10769 
10770 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10771 		return -EFAULT;
10772 
10773 	node_type_name = btf_field_type_name(node_field_type);
10774 	if (!tnum_is_const(reg->var_off)) {
10775 		verbose(env,
10776 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10777 			regno, node_type_name);
10778 		return -EINVAL;
10779 	}
10780 
10781 	node_off = reg->off + reg->var_off.value;
10782 	field = reg_find_field_offset(reg, node_off, node_field_type);
10783 	if (!field || field->offset != node_off) {
10784 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
10785 		return -EINVAL;
10786 	}
10787 
10788 	field = *node_field;
10789 
10790 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
10791 	t = btf_type_by_id(reg->btf, reg->btf_id);
10792 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10793 				  field->graph_root.value_btf_id, true)) {
10794 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
10795 			"in struct %s, but arg is at offset=%d in struct %s\n",
10796 			btf_field_type_name(head_field_type),
10797 			btf_field_type_name(node_field_type),
10798 			field->graph_root.node_offset,
10799 			btf_name_by_offset(field->graph_root.btf, et->name_off),
10800 			node_off, btf_name_by_offset(reg->btf, t->name_off));
10801 		return -EINVAL;
10802 	}
10803 	meta->arg_btf = reg->btf;
10804 	meta->arg_btf_id = reg->btf_id;
10805 
10806 	if (node_off != field->graph_root.node_offset) {
10807 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10808 			node_off, btf_field_type_name(node_field_type),
10809 			field->graph_root.node_offset,
10810 			btf_name_by_offset(field->graph_root.btf, et->name_off));
10811 		return -EINVAL;
10812 	}
10813 
10814 	return 0;
10815 }
10816 
10817 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10818 					   struct bpf_reg_state *reg, u32 regno,
10819 					   struct bpf_kfunc_call_arg_meta *meta)
10820 {
10821 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10822 						  BPF_LIST_HEAD, BPF_LIST_NODE,
10823 						  &meta->arg_list_head.field);
10824 }
10825 
10826 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10827 					     struct bpf_reg_state *reg, u32 regno,
10828 					     struct bpf_kfunc_call_arg_meta *meta)
10829 {
10830 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10831 						  BPF_RB_ROOT, BPF_RB_NODE,
10832 						  &meta->arg_rbtree_root.field);
10833 }
10834 
10835 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10836 			    int insn_idx)
10837 {
10838 	const char *func_name = meta->func_name, *ref_tname;
10839 	const struct btf *btf = meta->btf;
10840 	const struct btf_param *args;
10841 	struct btf_record *rec;
10842 	u32 i, nargs;
10843 	int ret;
10844 
10845 	args = (const struct btf_param *)(meta->func_proto + 1);
10846 	nargs = btf_type_vlen(meta->func_proto);
10847 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10848 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10849 			MAX_BPF_FUNC_REG_ARGS);
10850 		return -EINVAL;
10851 	}
10852 
10853 	/* Check that BTF function arguments match actual types that the
10854 	 * verifier sees.
10855 	 */
10856 	for (i = 0; i < nargs; i++) {
10857 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10858 		const struct btf_type *t, *ref_t, *resolve_ret;
10859 		enum bpf_arg_type arg_type = ARG_DONTCARE;
10860 		u32 regno = i + 1, ref_id, type_size;
10861 		bool is_ret_buf_sz = false;
10862 		int kf_arg_type;
10863 
10864 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
10865 
10866 		if (is_kfunc_arg_ignore(btf, &args[i]))
10867 			continue;
10868 
10869 		if (btf_type_is_scalar(t)) {
10870 			if (reg->type != SCALAR_VALUE) {
10871 				verbose(env, "R%d is not a scalar\n", regno);
10872 				return -EINVAL;
10873 			}
10874 
10875 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10876 				if (meta->arg_constant.found) {
10877 					verbose(env, "verifier internal error: only one constant argument permitted\n");
10878 					return -EFAULT;
10879 				}
10880 				if (!tnum_is_const(reg->var_off)) {
10881 					verbose(env, "R%d must be a known constant\n", regno);
10882 					return -EINVAL;
10883 				}
10884 				ret = mark_chain_precision(env, regno);
10885 				if (ret < 0)
10886 					return ret;
10887 				meta->arg_constant.found = true;
10888 				meta->arg_constant.value = reg->var_off.value;
10889 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
10890 				meta->r0_rdonly = true;
10891 				is_ret_buf_sz = true;
10892 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10893 				is_ret_buf_sz = true;
10894 			}
10895 
10896 			if (is_ret_buf_sz) {
10897 				if (meta->r0_size) {
10898 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10899 					return -EINVAL;
10900 				}
10901 
10902 				if (!tnum_is_const(reg->var_off)) {
10903 					verbose(env, "R%d is not a const\n", regno);
10904 					return -EINVAL;
10905 				}
10906 
10907 				meta->r0_size = reg->var_off.value;
10908 				ret = mark_chain_precision(env, regno);
10909 				if (ret)
10910 					return ret;
10911 			}
10912 			continue;
10913 		}
10914 
10915 		if (!btf_type_is_ptr(t)) {
10916 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10917 			return -EINVAL;
10918 		}
10919 
10920 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
10921 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
10922 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10923 			return -EACCES;
10924 		}
10925 
10926 		if (reg->ref_obj_id) {
10927 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
10928 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10929 					regno, reg->ref_obj_id,
10930 					meta->ref_obj_id);
10931 				return -EFAULT;
10932 			}
10933 			meta->ref_obj_id = reg->ref_obj_id;
10934 			if (is_kfunc_release(meta))
10935 				meta->release_regno = regno;
10936 		}
10937 
10938 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10939 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10940 
10941 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10942 		if (kf_arg_type < 0)
10943 			return kf_arg_type;
10944 
10945 		switch (kf_arg_type) {
10946 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10947 		case KF_ARG_PTR_TO_BTF_ID:
10948 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
10949 				break;
10950 
10951 			if (!is_trusted_reg(reg)) {
10952 				if (!is_kfunc_rcu(meta)) {
10953 					verbose(env, "R%d must be referenced or trusted\n", regno);
10954 					return -EINVAL;
10955 				}
10956 				if (!is_rcu_reg(reg)) {
10957 					verbose(env, "R%d must be a rcu pointer\n", regno);
10958 					return -EINVAL;
10959 				}
10960 			}
10961 
10962 			fallthrough;
10963 		case KF_ARG_PTR_TO_CTX:
10964 			/* Trusted arguments have the same offset checks as release arguments */
10965 			arg_type |= OBJ_RELEASE;
10966 			break;
10967 		case KF_ARG_PTR_TO_DYNPTR:
10968 		case KF_ARG_PTR_TO_ITER:
10969 		case KF_ARG_PTR_TO_LIST_HEAD:
10970 		case KF_ARG_PTR_TO_LIST_NODE:
10971 		case KF_ARG_PTR_TO_RB_ROOT:
10972 		case KF_ARG_PTR_TO_RB_NODE:
10973 		case KF_ARG_PTR_TO_MEM:
10974 		case KF_ARG_PTR_TO_MEM_SIZE:
10975 		case KF_ARG_PTR_TO_CALLBACK:
10976 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
10977 			/* Trusted by default */
10978 			break;
10979 		default:
10980 			WARN_ON_ONCE(1);
10981 			return -EFAULT;
10982 		}
10983 
10984 		if (is_kfunc_release(meta) && reg->ref_obj_id)
10985 			arg_type |= OBJ_RELEASE;
10986 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
10987 		if (ret < 0)
10988 			return ret;
10989 
10990 		switch (kf_arg_type) {
10991 		case KF_ARG_PTR_TO_CTX:
10992 			if (reg->type != PTR_TO_CTX) {
10993 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
10994 				return -EINVAL;
10995 			}
10996 
10997 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
10998 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
10999 				if (ret < 0)
11000 					return -EINVAL;
11001 				meta->ret_btf_id  = ret;
11002 			}
11003 			break;
11004 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11005 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11006 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11007 				return -EINVAL;
11008 			}
11009 			if (!reg->ref_obj_id) {
11010 				verbose(env, "allocated object must be referenced\n");
11011 				return -EINVAL;
11012 			}
11013 			if (meta->btf == btf_vmlinux &&
11014 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11015 				meta->arg_btf = reg->btf;
11016 				meta->arg_btf_id = reg->btf_id;
11017 			}
11018 			break;
11019 		case KF_ARG_PTR_TO_DYNPTR:
11020 		{
11021 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11022 			int clone_ref_obj_id = 0;
11023 
11024 			if (reg->type != PTR_TO_STACK &&
11025 			    reg->type != CONST_PTR_TO_DYNPTR) {
11026 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11027 				return -EINVAL;
11028 			}
11029 
11030 			if (reg->type == CONST_PTR_TO_DYNPTR)
11031 				dynptr_arg_type |= MEM_RDONLY;
11032 
11033 			if (is_kfunc_arg_uninit(btf, &args[i]))
11034 				dynptr_arg_type |= MEM_UNINIT;
11035 
11036 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11037 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11038 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11039 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11040 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11041 				   (dynptr_arg_type & MEM_UNINIT)) {
11042 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11043 
11044 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11045 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11046 					return -EFAULT;
11047 				}
11048 
11049 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11050 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11051 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11052 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11053 					return -EFAULT;
11054 				}
11055 			}
11056 
11057 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11058 			if (ret < 0)
11059 				return ret;
11060 
11061 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11062 				int id = dynptr_id(env, reg);
11063 
11064 				if (id < 0) {
11065 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11066 					return id;
11067 				}
11068 				meta->initialized_dynptr.id = id;
11069 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11070 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11071 			}
11072 
11073 			break;
11074 		}
11075 		case KF_ARG_PTR_TO_ITER:
11076 			ret = process_iter_arg(env, regno, insn_idx, meta);
11077 			if (ret < 0)
11078 				return ret;
11079 			break;
11080 		case KF_ARG_PTR_TO_LIST_HEAD:
11081 			if (reg->type != PTR_TO_MAP_VALUE &&
11082 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11083 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11084 				return -EINVAL;
11085 			}
11086 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11087 				verbose(env, "allocated object must be referenced\n");
11088 				return -EINVAL;
11089 			}
11090 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11091 			if (ret < 0)
11092 				return ret;
11093 			break;
11094 		case KF_ARG_PTR_TO_RB_ROOT:
11095 			if (reg->type != PTR_TO_MAP_VALUE &&
11096 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11097 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11098 				return -EINVAL;
11099 			}
11100 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11101 				verbose(env, "allocated object must be referenced\n");
11102 				return -EINVAL;
11103 			}
11104 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11105 			if (ret < 0)
11106 				return ret;
11107 			break;
11108 		case KF_ARG_PTR_TO_LIST_NODE:
11109 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11110 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11111 				return -EINVAL;
11112 			}
11113 			if (!reg->ref_obj_id) {
11114 				verbose(env, "allocated object must be referenced\n");
11115 				return -EINVAL;
11116 			}
11117 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11118 			if (ret < 0)
11119 				return ret;
11120 			break;
11121 		case KF_ARG_PTR_TO_RB_NODE:
11122 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11123 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11124 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11125 					return -EINVAL;
11126 				}
11127 				if (in_rbtree_lock_required_cb(env)) {
11128 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11129 					return -EINVAL;
11130 				}
11131 			} else {
11132 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11133 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11134 					return -EINVAL;
11135 				}
11136 				if (!reg->ref_obj_id) {
11137 					verbose(env, "allocated object must be referenced\n");
11138 					return -EINVAL;
11139 				}
11140 			}
11141 
11142 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11143 			if (ret < 0)
11144 				return ret;
11145 			break;
11146 		case KF_ARG_PTR_TO_BTF_ID:
11147 			/* Only base_type is checked, further checks are done here */
11148 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11149 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11150 			    !reg2btf_ids[base_type(reg->type)]) {
11151 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11152 				verbose(env, "expected %s or socket\n",
11153 					reg_type_str(env, base_type(reg->type) |
11154 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11155 				return -EINVAL;
11156 			}
11157 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11158 			if (ret < 0)
11159 				return ret;
11160 			break;
11161 		case KF_ARG_PTR_TO_MEM:
11162 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11163 			if (IS_ERR(resolve_ret)) {
11164 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11165 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11166 				return -EINVAL;
11167 			}
11168 			ret = check_mem_reg(env, reg, regno, type_size);
11169 			if (ret < 0)
11170 				return ret;
11171 			break;
11172 		case KF_ARG_PTR_TO_MEM_SIZE:
11173 		{
11174 			struct bpf_reg_state *buff_reg = &regs[regno];
11175 			const struct btf_param *buff_arg = &args[i];
11176 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11177 			const struct btf_param *size_arg = &args[i + 1];
11178 
11179 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11180 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11181 				if (ret < 0) {
11182 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11183 					return ret;
11184 				}
11185 			}
11186 
11187 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11188 				if (meta->arg_constant.found) {
11189 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11190 					return -EFAULT;
11191 				}
11192 				if (!tnum_is_const(size_reg->var_off)) {
11193 					verbose(env, "R%d must be a known constant\n", regno + 1);
11194 					return -EINVAL;
11195 				}
11196 				meta->arg_constant.found = true;
11197 				meta->arg_constant.value = size_reg->var_off.value;
11198 			}
11199 
11200 			/* Skip next '__sz' or '__szk' argument */
11201 			i++;
11202 			break;
11203 		}
11204 		case KF_ARG_PTR_TO_CALLBACK:
11205 			meta->subprogno = reg->subprogno;
11206 			break;
11207 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11208 			if (!type_is_ptr_alloc_obj(reg->type)) {
11209 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11210 				return -EINVAL;
11211 			}
11212 			if (!type_is_non_owning_ref(reg->type))
11213 				meta->arg_owning_ref = true;
11214 
11215 			rec = reg_btf_record(reg);
11216 			if (!rec) {
11217 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11218 				return -EFAULT;
11219 			}
11220 
11221 			if (rec->refcount_off < 0) {
11222 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11223 				return -EINVAL;
11224 			}
11225 
11226 			meta->arg_btf = reg->btf;
11227 			meta->arg_btf_id = reg->btf_id;
11228 			break;
11229 		}
11230 	}
11231 
11232 	if (is_kfunc_release(meta) && !meta->release_regno) {
11233 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11234 			func_name);
11235 		return -EINVAL;
11236 	}
11237 
11238 	return 0;
11239 }
11240 
11241 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11242 			    struct bpf_insn *insn,
11243 			    struct bpf_kfunc_call_arg_meta *meta,
11244 			    const char **kfunc_name)
11245 {
11246 	const struct btf_type *func, *func_proto;
11247 	u32 func_id, *kfunc_flags;
11248 	const char *func_name;
11249 	struct btf *desc_btf;
11250 
11251 	if (kfunc_name)
11252 		*kfunc_name = NULL;
11253 
11254 	if (!insn->imm)
11255 		return -EINVAL;
11256 
11257 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11258 	if (IS_ERR(desc_btf))
11259 		return PTR_ERR(desc_btf);
11260 
11261 	func_id = insn->imm;
11262 	func = btf_type_by_id(desc_btf, func_id);
11263 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11264 	if (kfunc_name)
11265 		*kfunc_name = func_name;
11266 	func_proto = btf_type_by_id(desc_btf, func->type);
11267 
11268 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11269 	if (!kfunc_flags) {
11270 		return -EACCES;
11271 	}
11272 
11273 	memset(meta, 0, sizeof(*meta));
11274 	meta->btf = desc_btf;
11275 	meta->func_id = func_id;
11276 	meta->kfunc_flags = *kfunc_flags;
11277 	meta->func_proto = func_proto;
11278 	meta->func_name = func_name;
11279 
11280 	return 0;
11281 }
11282 
11283 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11284 			    int *insn_idx_p)
11285 {
11286 	const struct btf_type *t, *ptr_type;
11287 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11288 	struct bpf_reg_state *regs = cur_regs(env);
11289 	const char *func_name, *ptr_type_name;
11290 	bool sleepable, rcu_lock, rcu_unlock;
11291 	struct bpf_kfunc_call_arg_meta meta;
11292 	struct bpf_insn_aux_data *insn_aux;
11293 	int err, insn_idx = *insn_idx_p;
11294 	const struct btf_param *args;
11295 	const struct btf_type *ret_t;
11296 	struct btf *desc_btf;
11297 
11298 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11299 	if (!insn->imm)
11300 		return 0;
11301 
11302 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11303 	if (err == -EACCES && func_name)
11304 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11305 	if (err)
11306 		return err;
11307 	desc_btf = meta.btf;
11308 	insn_aux = &env->insn_aux_data[insn_idx];
11309 
11310 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11311 
11312 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11313 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11314 		return -EACCES;
11315 	}
11316 
11317 	sleepable = is_kfunc_sleepable(&meta);
11318 	if (sleepable && !env->prog->aux->sleepable) {
11319 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11320 		return -EACCES;
11321 	}
11322 
11323 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11324 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11325 
11326 	if (env->cur_state->active_rcu_lock) {
11327 		struct bpf_func_state *state;
11328 		struct bpf_reg_state *reg;
11329 
11330 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11331 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11332 			return -EACCES;
11333 		}
11334 
11335 		if (rcu_lock) {
11336 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11337 			return -EINVAL;
11338 		} else if (rcu_unlock) {
11339 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11340 				if (reg->type & MEM_RCU) {
11341 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11342 					reg->type |= PTR_UNTRUSTED;
11343 				}
11344 			}));
11345 			env->cur_state->active_rcu_lock = false;
11346 		} else if (sleepable) {
11347 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11348 			return -EACCES;
11349 		}
11350 	} else if (rcu_lock) {
11351 		env->cur_state->active_rcu_lock = true;
11352 	} else if (rcu_unlock) {
11353 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11354 		return -EINVAL;
11355 	}
11356 
11357 	/* Check the arguments */
11358 	err = check_kfunc_args(env, &meta, insn_idx);
11359 	if (err < 0)
11360 		return err;
11361 	/* In case of release function, we get register number of refcounted
11362 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11363 	 */
11364 	if (meta.release_regno) {
11365 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11366 		if (err) {
11367 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11368 				func_name, meta.func_id);
11369 			return err;
11370 		}
11371 	}
11372 
11373 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11374 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11375 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11376 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11377 		insn_aux->insert_off = regs[BPF_REG_2].off;
11378 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11379 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11380 		if (err) {
11381 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11382 				func_name, meta.func_id);
11383 			return err;
11384 		}
11385 
11386 		err = release_reference(env, release_ref_obj_id);
11387 		if (err) {
11388 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11389 				func_name, meta.func_id);
11390 			return err;
11391 		}
11392 	}
11393 
11394 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11395 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11396 					set_rbtree_add_callback_state);
11397 		if (err) {
11398 			verbose(env, "kfunc %s#%d failed callback verification\n",
11399 				func_name, meta.func_id);
11400 			return err;
11401 		}
11402 	}
11403 
11404 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11405 		mark_reg_not_init(env, regs, caller_saved[i]);
11406 
11407 	/* Check return type */
11408 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11409 
11410 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11411 		/* Only exception is bpf_obj_new_impl */
11412 		if (meta.btf != btf_vmlinux ||
11413 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11414 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11415 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11416 			return -EINVAL;
11417 		}
11418 	}
11419 
11420 	if (btf_type_is_scalar(t)) {
11421 		mark_reg_unknown(env, regs, BPF_REG_0);
11422 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11423 	} else if (btf_type_is_ptr(t)) {
11424 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11425 
11426 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11427 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11428 				struct btf *ret_btf;
11429 				u32 ret_btf_id;
11430 
11431 				if (unlikely(!bpf_global_ma_set))
11432 					return -ENOMEM;
11433 
11434 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11435 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11436 					return -EINVAL;
11437 				}
11438 
11439 				ret_btf = env->prog->aux->btf;
11440 				ret_btf_id = meta.arg_constant.value;
11441 
11442 				/* This may be NULL due to user not supplying a BTF */
11443 				if (!ret_btf) {
11444 					verbose(env, "bpf_obj_new requires prog BTF\n");
11445 					return -EINVAL;
11446 				}
11447 
11448 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11449 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11450 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11451 					return -EINVAL;
11452 				}
11453 
11454 				mark_reg_known_zero(env, regs, BPF_REG_0);
11455 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11456 				regs[BPF_REG_0].btf = ret_btf;
11457 				regs[BPF_REG_0].btf_id = ret_btf_id;
11458 
11459 				insn_aux->obj_new_size = ret_t->size;
11460 				insn_aux->kptr_struct_meta =
11461 					btf_find_struct_meta(ret_btf, ret_btf_id);
11462 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11463 				mark_reg_known_zero(env, regs, BPF_REG_0);
11464 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11465 				regs[BPF_REG_0].btf = meta.arg_btf;
11466 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11467 
11468 				insn_aux->kptr_struct_meta =
11469 					btf_find_struct_meta(meta.arg_btf,
11470 							     meta.arg_btf_id);
11471 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11472 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11473 				struct btf_field *field = meta.arg_list_head.field;
11474 
11475 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11476 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11477 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11478 				struct btf_field *field = meta.arg_rbtree_root.field;
11479 
11480 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11481 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11482 				mark_reg_known_zero(env, regs, BPF_REG_0);
11483 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11484 				regs[BPF_REG_0].btf = desc_btf;
11485 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11486 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11487 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11488 				if (!ret_t || !btf_type_is_struct(ret_t)) {
11489 					verbose(env,
11490 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11491 					return -EINVAL;
11492 				}
11493 
11494 				mark_reg_known_zero(env, regs, BPF_REG_0);
11495 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11496 				regs[BPF_REG_0].btf = desc_btf;
11497 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11498 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11499 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11500 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11501 
11502 				mark_reg_known_zero(env, regs, BPF_REG_0);
11503 
11504 				if (!meta.arg_constant.found) {
11505 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11506 					return -EFAULT;
11507 				}
11508 
11509 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11510 
11511 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11512 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11513 
11514 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11515 					regs[BPF_REG_0].type |= MEM_RDONLY;
11516 				} else {
11517 					/* this will set env->seen_direct_write to true */
11518 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11519 						verbose(env, "the prog does not allow writes to packet data\n");
11520 						return -EINVAL;
11521 					}
11522 				}
11523 
11524 				if (!meta.initialized_dynptr.id) {
11525 					verbose(env, "verifier internal error: no dynptr id\n");
11526 					return -EFAULT;
11527 				}
11528 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11529 
11530 				/* we don't need to set BPF_REG_0's ref obj id
11531 				 * because packet slices are not refcounted (see
11532 				 * dynptr_type_refcounted)
11533 				 */
11534 			} else {
11535 				verbose(env, "kernel function %s unhandled dynamic return type\n",
11536 					meta.func_name);
11537 				return -EFAULT;
11538 			}
11539 		} else if (!__btf_type_is_struct(ptr_type)) {
11540 			if (!meta.r0_size) {
11541 				__u32 sz;
11542 
11543 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11544 					meta.r0_size = sz;
11545 					meta.r0_rdonly = true;
11546 				}
11547 			}
11548 			if (!meta.r0_size) {
11549 				ptr_type_name = btf_name_by_offset(desc_btf,
11550 								   ptr_type->name_off);
11551 				verbose(env,
11552 					"kernel function %s returns pointer type %s %s is not supported\n",
11553 					func_name,
11554 					btf_type_str(ptr_type),
11555 					ptr_type_name);
11556 				return -EINVAL;
11557 			}
11558 
11559 			mark_reg_known_zero(env, regs, BPF_REG_0);
11560 			regs[BPF_REG_0].type = PTR_TO_MEM;
11561 			regs[BPF_REG_0].mem_size = meta.r0_size;
11562 
11563 			if (meta.r0_rdonly)
11564 				regs[BPF_REG_0].type |= MEM_RDONLY;
11565 
11566 			/* Ensures we don't access the memory after a release_reference() */
11567 			if (meta.ref_obj_id)
11568 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11569 		} else {
11570 			mark_reg_known_zero(env, regs, BPF_REG_0);
11571 			regs[BPF_REG_0].btf = desc_btf;
11572 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11573 			regs[BPF_REG_0].btf_id = ptr_type_id;
11574 		}
11575 
11576 		if (is_kfunc_ret_null(&meta)) {
11577 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11578 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
11579 			regs[BPF_REG_0].id = ++env->id_gen;
11580 		}
11581 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
11582 		if (is_kfunc_acquire(&meta)) {
11583 			int id = acquire_reference_state(env, insn_idx);
11584 
11585 			if (id < 0)
11586 				return id;
11587 			if (is_kfunc_ret_null(&meta))
11588 				regs[BPF_REG_0].id = id;
11589 			regs[BPF_REG_0].ref_obj_id = id;
11590 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11591 			ref_set_non_owning(env, &regs[BPF_REG_0]);
11592 		}
11593 
11594 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
11595 			regs[BPF_REG_0].id = ++env->id_gen;
11596 	} else if (btf_type_is_void(t)) {
11597 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11598 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11599 				insn_aux->kptr_struct_meta =
11600 					btf_find_struct_meta(meta.arg_btf,
11601 							     meta.arg_btf_id);
11602 			}
11603 		}
11604 	}
11605 
11606 	nargs = btf_type_vlen(meta.func_proto);
11607 	args = (const struct btf_param *)(meta.func_proto + 1);
11608 	for (i = 0; i < nargs; i++) {
11609 		u32 regno = i + 1;
11610 
11611 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
11612 		if (btf_type_is_ptr(t))
11613 			mark_btf_func_reg_size(env, regno, sizeof(void *));
11614 		else
11615 			/* scalar. ensured by btf_check_kfunc_arg_match() */
11616 			mark_btf_func_reg_size(env, regno, t->size);
11617 	}
11618 
11619 	if (is_iter_next_kfunc(&meta)) {
11620 		err = process_iter_next_call(env, insn_idx, &meta);
11621 		if (err)
11622 			return err;
11623 	}
11624 
11625 	return 0;
11626 }
11627 
11628 static bool signed_add_overflows(s64 a, s64 b)
11629 {
11630 	/* Do the add in u64, where overflow is well-defined */
11631 	s64 res = (s64)((u64)a + (u64)b);
11632 
11633 	if (b < 0)
11634 		return res > a;
11635 	return res < a;
11636 }
11637 
11638 static bool signed_add32_overflows(s32 a, s32 b)
11639 {
11640 	/* Do the add in u32, where overflow is well-defined */
11641 	s32 res = (s32)((u32)a + (u32)b);
11642 
11643 	if (b < 0)
11644 		return res > a;
11645 	return res < a;
11646 }
11647 
11648 static bool signed_sub_overflows(s64 a, s64 b)
11649 {
11650 	/* Do the sub in u64, where overflow is well-defined */
11651 	s64 res = (s64)((u64)a - (u64)b);
11652 
11653 	if (b < 0)
11654 		return res < a;
11655 	return res > a;
11656 }
11657 
11658 static bool signed_sub32_overflows(s32 a, s32 b)
11659 {
11660 	/* Do the sub in u32, where overflow is well-defined */
11661 	s32 res = (s32)((u32)a - (u32)b);
11662 
11663 	if (b < 0)
11664 		return res < a;
11665 	return res > a;
11666 }
11667 
11668 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11669 				  const struct bpf_reg_state *reg,
11670 				  enum bpf_reg_type type)
11671 {
11672 	bool known = tnum_is_const(reg->var_off);
11673 	s64 val = reg->var_off.value;
11674 	s64 smin = reg->smin_value;
11675 
11676 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11677 		verbose(env, "math between %s pointer and %lld is not allowed\n",
11678 			reg_type_str(env, type), val);
11679 		return false;
11680 	}
11681 
11682 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11683 		verbose(env, "%s pointer offset %d is not allowed\n",
11684 			reg_type_str(env, type), reg->off);
11685 		return false;
11686 	}
11687 
11688 	if (smin == S64_MIN) {
11689 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
11690 			reg_type_str(env, type));
11691 		return false;
11692 	}
11693 
11694 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11695 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
11696 			smin, reg_type_str(env, type));
11697 		return false;
11698 	}
11699 
11700 	return true;
11701 }
11702 
11703 enum {
11704 	REASON_BOUNDS	= -1,
11705 	REASON_TYPE	= -2,
11706 	REASON_PATHS	= -3,
11707 	REASON_LIMIT	= -4,
11708 	REASON_STACK	= -5,
11709 };
11710 
11711 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
11712 			      u32 *alu_limit, bool mask_to_left)
11713 {
11714 	u32 max = 0, ptr_limit = 0;
11715 
11716 	switch (ptr_reg->type) {
11717 	case PTR_TO_STACK:
11718 		/* Offset 0 is out-of-bounds, but acceptable start for the
11719 		 * left direction, see BPF_REG_FP. Also, unknown scalar
11720 		 * offset where we would need to deal with min/max bounds is
11721 		 * currently prohibited for unprivileged.
11722 		 */
11723 		max = MAX_BPF_STACK + mask_to_left;
11724 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
11725 		break;
11726 	case PTR_TO_MAP_VALUE:
11727 		max = ptr_reg->map_ptr->value_size;
11728 		ptr_limit = (mask_to_left ?
11729 			     ptr_reg->smin_value :
11730 			     ptr_reg->umax_value) + ptr_reg->off;
11731 		break;
11732 	default:
11733 		return REASON_TYPE;
11734 	}
11735 
11736 	if (ptr_limit >= max)
11737 		return REASON_LIMIT;
11738 	*alu_limit = ptr_limit;
11739 	return 0;
11740 }
11741 
11742 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11743 				    const struct bpf_insn *insn)
11744 {
11745 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
11746 }
11747 
11748 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11749 				       u32 alu_state, u32 alu_limit)
11750 {
11751 	/* If we arrived here from different branches with different
11752 	 * state or limits to sanitize, then this won't work.
11753 	 */
11754 	if (aux->alu_state &&
11755 	    (aux->alu_state != alu_state ||
11756 	     aux->alu_limit != alu_limit))
11757 		return REASON_PATHS;
11758 
11759 	/* Corresponding fixup done in do_misc_fixups(). */
11760 	aux->alu_state = alu_state;
11761 	aux->alu_limit = alu_limit;
11762 	return 0;
11763 }
11764 
11765 static int sanitize_val_alu(struct bpf_verifier_env *env,
11766 			    struct bpf_insn *insn)
11767 {
11768 	struct bpf_insn_aux_data *aux = cur_aux(env);
11769 
11770 	if (can_skip_alu_sanitation(env, insn))
11771 		return 0;
11772 
11773 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11774 }
11775 
11776 static bool sanitize_needed(u8 opcode)
11777 {
11778 	return opcode == BPF_ADD || opcode == BPF_SUB;
11779 }
11780 
11781 struct bpf_sanitize_info {
11782 	struct bpf_insn_aux_data aux;
11783 	bool mask_to_left;
11784 };
11785 
11786 static struct bpf_verifier_state *
11787 sanitize_speculative_path(struct bpf_verifier_env *env,
11788 			  const struct bpf_insn *insn,
11789 			  u32 next_idx, u32 curr_idx)
11790 {
11791 	struct bpf_verifier_state *branch;
11792 	struct bpf_reg_state *regs;
11793 
11794 	branch = push_stack(env, next_idx, curr_idx, true);
11795 	if (branch && insn) {
11796 		regs = branch->frame[branch->curframe]->regs;
11797 		if (BPF_SRC(insn->code) == BPF_K) {
11798 			mark_reg_unknown(env, regs, insn->dst_reg);
11799 		} else if (BPF_SRC(insn->code) == BPF_X) {
11800 			mark_reg_unknown(env, regs, insn->dst_reg);
11801 			mark_reg_unknown(env, regs, insn->src_reg);
11802 		}
11803 	}
11804 	return branch;
11805 }
11806 
11807 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11808 			    struct bpf_insn *insn,
11809 			    const struct bpf_reg_state *ptr_reg,
11810 			    const struct bpf_reg_state *off_reg,
11811 			    struct bpf_reg_state *dst_reg,
11812 			    struct bpf_sanitize_info *info,
11813 			    const bool commit_window)
11814 {
11815 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
11816 	struct bpf_verifier_state *vstate = env->cur_state;
11817 	bool off_is_imm = tnum_is_const(off_reg->var_off);
11818 	bool off_is_neg = off_reg->smin_value < 0;
11819 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
11820 	u8 opcode = BPF_OP(insn->code);
11821 	u32 alu_state, alu_limit;
11822 	struct bpf_reg_state tmp;
11823 	bool ret;
11824 	int err;
11825 
11826 	if (can_skip_alu_sanitation(env, insn))
11827 		return 0;
11828 
11829 	/* We already marked aux for masking from non-speculative
11830 	 * paths, thus we got here in the first place. We only care
11831 	 * to explore bad access from here.
11832 	 */
11833 	if (vstate->speculative)
11834 		goto do_sim;
11835 
11836 	if (!commit_window) {
11837 		if (!tnum_is_const(off_reg->var_off) &&
11838 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11839 			return REASON_BOUNDS;
11840 
11841 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
11842 				     (opcode == BPF_SUB && !off_is_neg);
11843 	}
11844 
11845 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
11846 	if (err < 0)
11847 		return err;
11848 
11849 	if (commit_window) {
11850 		/* In commit phase we narrow the masking window based on
11851 		 * the observed pointer move after the simulated operation.
11852 		 */
11853 		alu_state = info->aux.alu_state;
11854 		alu_limit = abs(info->aux.alu_limit - alu_limit);
11855 	} else {
11856 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
11857 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
11858 		alu_state |= ptr_is_dst_reg ?
11859 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
11860 
11861 		/* Limit pruning on unknown scalars to enable deep search for
11862 		 * potential masking differences from other program paths.
11863 		 */
11864 		if (!off_is_imm)
11865 			env->explore_alu_limits = true;
11866 	}
11867 
11868 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11869 	if (err < 0)
11870 		return err;
11871 do_sim:
11872 	/* If we're in commit phase, we're done here given we already
11873 	 * pushed the truncated dst_reg into the speculative verification
11874 	 * stack.
11875 	 *
11876 	 * Also, when register is a known constant, we rewrite register-based
11877 	 * operation to immediate-based, and thus do not need masking (and as
11878 	 * a consequence, do not need to simulate the zero-truncation either).
11879 	 */
11880 	if (commit_window || off_is_imm)
11881 		return 0;
11882 
11883 	/* Simulate and find potential out-of-bounds access under
11884 	 * speculative execution from truncation as a result of
11885 	 * masking when off was not within expected range. If off
11886 	 * sits in dst, then we temporarily need to move ptr there
11887 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11888 	 * for cases where we use K-based arithmetic in one direction
11889 	 * and truncated reg-based in the other in order to explore
11890 	 * bad access.
11891 	 */
11892 	if (!ptr_is_dst_reg) {
11893 		tmp = *dst_reg;
11894 		copy_register_state(dst_reg, ptr_reg);
11895 	}
11896 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11897 					env->insn_idx);
11898 	if (!ptr_is_dst_reg && ret)
11899 		*dst_reg = tmp;
11900 	return !ret ? REASON_STACK : 0;
11901 }
11902 
11903 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11904 {
11905 	struct bpf_verifier_state *vstate = env->cur_state;
11906 
11907 	/* If we simulate paths under speculation, we don't update the
11908 	 * insn as 'seen' such that when we verify unreachable paths in
11909 	 * the non-speculative domain, sanitize_dead_code() can still
11910 	 * rewrite/sanitize them.
11911 	 */
11912 	if (!vstate->speculative)
11913 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11914 }
11915 
11916 static int sanitize_err(struct bpf_verifier_env *env,
11917 			const struct bpf_insn *insn, int reason,
11918 			const struct bpf_reg_state *off_reg,
11919 			const struct bpf_reg_state *dst_reg)
11920 {
11921 	static const char *err = "pointer arithmetic with it prohibited for !root";
11922 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11923 	u32 dst = insn->dst_reg, src = insn->src_reg;
11924 
11925 	switch (reason) {
11926 	case REASON_BOUNDS:
11927 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11928 			off_reg == dst_reg ? dst : src, err);
11929 		break;
11930 	case REASON_TYPE:
11931 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11932 			off_reg == dst_reg ? src : dst, err);
11933 		break;
11934 	case REASON_PATHS:
11935 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11936 			dst, op, err);
11937 		break;
11938 	case REASON_LIMIT:
11939 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11940 			dst, op, err);
11941 		break;
11942 	case REASON_STACK:
11943 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11944 			dst, err);
11945 		break;
11946 	default:
11947 		verbose(env, "verifier internal error: unknown reason (%d)\n",
11948 			reason);
11949 		break;
11950 	}
11951 
11952 	return -EACCES;
11953 }
11954 
11955 /* check that stack access falls within stack limits and that 'reg' doesn't
11956  * have a variable offset.
11957  *
11958  * Variable offset is prohibited for unprivileged mode for simplicity since it
11959  * requires corresponding support in Spectre masking for stack ALU.  See also
11960  * retrieve_ptr_limit().
11961  *
11962  *
11963  * 'off' includes 'reg->off'.
11964  */
11965 static int check_stack_access_for_ptr_arithmetic(
11966 				struct bpf_verifier_env *env,
11967 				int regno,
11968 				const struct bpf_reg_state *reg,
11969 				int off)
11970 {
11971 	if (!tnum_is_const(reg->var_off)) {
11972 		char tn_buf[48];
11973 
11974 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11975 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11976 			regno, tn_buf, off);
11977 		return -EACCES;
11978 	}
11979 
11980 	if (off >= 0 || off < -MAX_BPF_STACK) {
11981 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
11982 			"prohibited for !root; off=%d\n", regno, off);
11983 		return -EACCES;
11984 	}
11985 
11986 	return 0;
11987 }
11988 
11989 static int sanitize_check_bounds(struct bpf_verifier_env *env,
11990 				 const struct bpf_insn *insn,
11991 				 const struct bpf_reg_state *dst_reg)
11992 {
11993 	u32 dst = insn->dst_reg;
11994 
11995 	/* For unprivileged we require that resulting offset must be in bounds
11996 	 * in order to be able to sanitize access later on.
11997 	 */
11998 	if (env->bypass_spec_v1)
11999 		return 0;
12000 
12001 	switch (dst_reg->type) {
12002 	case PTR_TO_STACK:
12003 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12004 					dst_reg->off + dst_reg->var_off.value))
12005 			return -EACCES;
12006 		break;
12007 	case PTR_TO_MAP_VALUE:
12008 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12009 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12010 				"prohibited for !root\n", dst);
12011 			return -EACCES;
12012 		}
12013 		break;
12014 	default:
12015 		break;
12016 	}
12017 
12018 	return 0;
12019 }
12020 
12021 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12022  * Caller should also handle BPF_MOV case separately.
12023  * If we return -EACCES, caller may want to try again treating pointer as a
12024  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12025  */
12026 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12027 				   struct bpf_insn *insn,
12028 				   const struct bpf_reg_state *ptr_reg,
12029 				   const struct bpf_reg_state *off_reg)
12030 {
12031 	struct bpf_verifier_state *vstate = env->cur_state;
12032 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12033 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12034 	bool known = tnum_is_const(off_reg->var_off);
12035 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12036 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12037 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12038 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12039 	struct bpf_sanitize_info info = {};
12040 	u8 opcode = BPF_OP(insn->code);
12041 	u32 dst = insn->dst_reg;
12042 	int ret;
12043 
12044 	dst_reg = &regs[dst];
12045 
12046 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12047 	    smin_val > smax_val || umin_val > umax_val) {
12048 		/* Taint dst register if offset had invalid bounds derived from
12049 		 * e.g. dead branches.
12050 		 */
12051 		__mark_reg_unknown(env, dst_reg);
12052 		return 0;
12053 	}
12054 
12055 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12056 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12057 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12058 			__mark_reg_unknown(env, dst_reg);
12059 			return 0;
12060 		}
12061 
12062 		verbose(env,
12063 			"R%d 32-bit pointer arithmetic prohibited\n",
12064 			dst);
12065 		return -EACCES;
12066 	}
12067 
12068 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12069 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12070 			dst, reg_type_str(env, ptr_reg->type));
12071 		return -EACCES;
12072 	}
12073 
12074 	switch (base_type(ptr_reg->type)) {
12075 	case CONST_PTR_TO_MAP:
12076 		/* smin_val represents the known value */
12077 		if (known && smin_val == 0 && opcode == BPF_ADD)
12078 			break;
12079 		fallthrough;
12080 	case PTR_TO_PACKET_END:
12081 	case PTR_TO_SOCKET:
12082 	case PTR_TO_SOCK_COMMON:
12083 	case PTR_TO_TCP_SOCK:
12084 	case PTR_TO_XDP_SOCK:
12085 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12086 			dst, reg_type_str(env, ptr_reg->type));
12087 		return -EACCES;
12088 	default:
12089 		break;
12090 	}
12091 
12092 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12093 	 * The id may be overwritten later if we create a new variable offset.
12094 	 */
12095 	dst_reg->type = ptr_reg->type;
12096 	dst_reg->id = ptr_reg->id;
12097 
12098 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12099 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12100 		return -EINVAL;
12101 
12102 	/* pointer types do not carry 32-bit bounds at the moment. */
12103 	__mark_reg32_unbounded(dst_reg);
12104 
12105 	if (sanitize_needed(opcode)) {
12106 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12107 				       &info, false);
12108 		if (ret < 0)
12109 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12110 	}
12111 
12112 	switch (opcode) {
12113 	case BPF_ADD:
12114 		/* We can take a fixed offset as long as it doesn't overflow
12115 		 * the s32 'off' field
12116 		 */
12117 		if (known && (ptr_reg->off + smin_val ==
12118 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12119 			/* pointer += K.  Accumulate it into fixed offset */
12120 			dst_reg->smin_value = smin_ptr;
12121 			dst_reg->smax_value = smax_ptr;
12122 			dst_reg->umin_value = umin_ptr;
12123 			dst_reg->umax_value = umax_ptr;
12124 			dst_reg->var_off = ptr_reg->var_off;
12125 			dst_reg->off = ptr_reg->off + smin_val;
12126 			dst_reg->raw = ptr_reg->raw;
12127 			break;
12128 		}
12129 		/* A new variable offset is created.  Note that off_reg->off
12130 		 * == 0, since it's a scalar.
12131 		 * dst_reg gets the pointer type and since some positive
12132 		 * integer value was added to the pointer, give it a new 'id'
12133 		 * if it's a PTR_TO_PACKET.
12134 		 * this creates a new 'base' pointer, off_reg (variable) gets
12135 		 * added into the variable offset, and we copy the fixed offset
12136 		 * from ptr_reg.
12137 		 */
12138 		if (signed_add_overflows(smin_ptr, smin_val) ||
12139 		    signed_add_overflows(smax_ptr, smax_val)) {
12140 			dst_reg->smin_value = S64_MIN;
12141 			dst_reg->smax_value = S64_MAX;
12142 		} else {
12143 			dst_reg->smin_value = smin_ptr + smin_val;
12144 			dst_reg->smax_value = smax_ptr + smax_val;
12145 		}
12146 		if (umin_ptr + umin_val < umin_ptr ||
12147 		    umax_ptr + umax_val < umax_ptr) {
12148 			dst_reg->umin_value = 0;
12149 			dst_reg->umax_value = U64_MAX;
12150 		} else {
12151 			dst_reg->umin_value = umin_ptr + umin_val;
12152 			dst_reg->umax_value = umax_ptr + umax_val;
12153 		}
12154 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12155 		dst_reg->off = ptr_reg->off;
12156 		dst_reg->raw = ptr_reg->raw;
12157 		if (reg_is_pkt_pointer(ptr_reg)) {
12158 			dst_reg->id = ++env->id_gen;
12159 			/* something was added to pkt_ptr, set range to zero */
12160 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12161 		}
12162 		break;
12163 	case BPF_SUB:
12164 		if (dst_reg == off_reg) {
12165 			/* scalar -= pointer.  Creates an unknown scalar */
12166 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12167 				dst);
12168 			return -EACCES;
12169 		}
12170 		/* We don't allow subtraction from FP, because (according to
12171 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12172 		 * be able to deal with it.
12173 		 */
12174 		if (ptr_reg->type == PTR_TO_STACK) {
12175 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12176 				dst);
12177 			return -EACCES;
12178 		}
12179 		if (known && (ptr_reg->off - smin_val ==
12180 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12181 			/* pointer -= K.  Subtract it from fixed offset */
12182 			dst_reg->smin_value = smin_ptr;
12183 			dst_reg->smax_value = smax_ptr;
12184 			dst_reg->umin_value = umin_ptr;
12185 			dst_reg->umax_value = umax_ptr;
12186 			dst_reg->var_off = ptr_reg->var_off;
12187 			dst_reg->id = ptr_reg->id;
12188 			dst_reg->off = ptr_reg->off - smin_val;
12189 			dst_reg->raw = ptr_reg->raw;
12190 			break;
12191 		}
12192 		/* A new variable offset is created.  If the subtrahend is known
12193 		 * nonnegative, then any reg->range we had before is still good.
12194 		 */
12195 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12196 		    signed_sub_overflows(smax_ptr, smin_val)) {
12197 			/* Overflow possible, we know nothing */
12198 			dst_reg->smin_value = S64_MIN;
12199 			dst_reg->smax_value = S64_MAX;
12200 		} else {
12201 			dst_reg->smin_value = smin_ptr - smax_val;
12202 			dst_reg->smax_value = smax_ptr - smin_val;
12203 		}
12204 		if (umin_ptr < umax_val) {
12205 			/* Overflow possible, we know nothing */
12206 			dst_reg->umin_value = 0;
12207 			dst_reg->umax_value = U64_MAX;
12208 		} else {
12209 			/* Cannot overflow (as long as bounds are consistent) */
12210 			dst_reg->umin_value = umin_ptr - umax_val;
12211 			dst_reg->umax_value = umax_ptr - umin_val;
12212 		}
12213 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12214 		dst_reg->off = ptr_reg->off;
12215 		dst_reg->raw = ptr_reg->raw;
12216 		if (reg_is_pkt_pointer(ptr_reg)) {
12217 			dst_reg->id = ++env->id_gen;
12218 			/* something was added to pkt_ptr, set range to zero */
12219 			if (smin_val < 0)
12220 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12221 		}
12222 		break;
12223 	case BPF_AND:
12224 	case BPF_OR:
12225 	case BPF_XOR:
12226 		/* bitwise ops on pointers are troublesome, prohibit. */
12227 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12228 			dst, bpf_alu_string[opcode >> 4]);
12229 		return -EACCES;
12230 	default:
12231 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12232 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12233 			dst, bpf_alu_string[opcode >> 4]);
12234 		return -EACCES;
12235 	}
12236 
12237 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12238 		return -EINVAL;
12239 	reg_bounds_sync(dst_reg);
12240 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12241 		return -EACCES;
12242 	if (sanitize_needed(opcode)) {
12243 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12244 				       &info, true);
12245 		if (ret < 0)
12246 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12247 	}
12248 
12249 	return 0;
12250 }
12251 
12252 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12253 				 struct bpf_reg_state *src_reg)
12254 {
12255 	s32 smin_val = src_reg->s32_min_value;
12256 	s32 smax_val = src_reg->s32_max_value;
12257 	u32 umin_val = src_reg->u32_min_value;
12258 	u32 umax_val = src_reg->u32_max_value;
12259 
12260 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12261 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12262 		dst_reg->s32_min_value = S32_MIN;
12263 		dst_reg->s32_max_value = S32_MAX;
12264 	} else {
12265 		dst_reg->s32_min_value += smin_val;
12266 		dst_reg->s32_max_value += smax_val;
12267 	}
12268 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12269 	    dst_reg->u32_max_value + umax_val < umax_val) {
12270 		dst_reg->u32_min_value = 0;
12271 		dst_reg->u32_max_value = U32_MAX;
12272 	} else {
12273 		dst_reg->u32_min_value += umin_val;
12274 		dst_reg->u32_max_value += umax_val;
12275 	}
12276 }
12277 
12278 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12279 			       struct bpf_reg_state *src_reg)
12280 {
12281 	s64 smin_val = src_reg->smin_value;
12282 	s64 smax_val = src_reg->smax_value;
12283 	u64 umin_val = src_reg->umin_value;
12284 	u64 umax_val = src_reg->umax_value;
12285 
12286 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12287 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12288 		dst_reg->smin_value = S64_MIN;
12289 		dst_reg->smax_value = S64_MAX;
12290 	} else {
12291 		dst_reg->smin_value += smin_val;
12292 		dst_reg->smax_value += smax_val;
12293 	}
12294 	if (dst_reg->umin_value + umin_val < umin_val ||
12295 	    dst_reg->umax_value + umax_val < umax_val) {
12296 		dst_reg->umin_value = 0;
12297 		dst_reg->umax_value = U64_MAX;
12298 	} else {
12299 		dst_reg->umin_value += umin_val;
12300 		dst_reg->umax_value += umax_val;
12301 	}
12302 }
12303 
12304 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12305 				 struct bpf_reg_state *src_reg)
12306 {
12307 	s32 smin_val = src_reg->s32_min_value;
12308 	s32 smax_val = src_reg->s32_max_value;
12309 	u32 umin_val = src_reg->u32_min_value;
12310 	u32 umax_val = src_reg->u32_max_value;
12311 
12312 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12313 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12314 		/* Overflow possible, we know nothing */
12315 		dst_reg->s32_min_value = S32_MIN;
12316 		dst_reg->s32_max_value = S32_MAX;
12317 	} else {
12318 		dst_reg->s32_min_value -= smax_val;
12319 		dst_reg->s32_max_value -= smin_val;
12320 	}
12321 	if (dst_reg->u32_min_value < umax_val) {
12322 		/* Overflow possible, we know nothing */
12323 		dst_reg->u32_min_value = 0;
12324 		dst_reg->u32_max_value = U32_MAX;
12325 	} else {
12326 		/* Cannot overflow (as long as bounds are consistent) */
12327 		dst_reg->u32_min_value -= umax_val;
12328 		dst_reg->u32_max_value -= umin_val;
12329 	}
12330 }
12331 
12332 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12333 			       struct bpf_reg_state *src_reg)
12334 {
12335 	s64 smin_val = src_reg->smin_value;
12336 	s64 smax_val = src_reg->smax_value;
12337 	u64 umin_val = src_reg->umin_value;
12338 	u64 umax_val = src_reg->umax_value;
12339 
12340 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12341 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12342 		/* Overflow possible, we know nothing */
12343 		dst_reg->smin_value = S64_MIN;
12344 		dst_reg->smax_value = S64_MAX;
12345 	} else {
12346 		dst_reg->smin_value -= smax_val;
12347 		dst_reg->smax_value -= smin_val;
12348 	}
12349 	if (dst_reg->umin_value < umax_val) {
12350 		/* Overflow possible, we know nothing */
12351 		dst_reg->umin_value = 0;
12352 		dst_reg->umax_value = U64_MAX;
12353 	} else {
12354 		/* Cannot overflow (as long as bounds are consistent) */
12355 		dst_reg->umin_value -= umax_val;
12356 		dst_reg->umax_value -= umin_val;
12357 	}
12358 }
12359 
12360 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12361 				 struct bpf_reg_state *src_reg)
12362 {
12363 	s32 smin_val = src_reg->s32_min_value;
12364 	u32 umin_val = src_reg->u32_min_value;
12365 	u32 umax_val = src_reg->u32_max_value;
12366 
12367 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12368 		/* Ain't nobody got time to multiply that sign */
12369 		__mark_reg32_unbounded(dst_reg);
12370 		return;
12371 	}
12372 	/* Both values are positive, so we can work with unsigned and
12373 	 * copy the result to signed (unless it exceeds S32_MAX).
12374 	 */
12375 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12376 		/* Potential overflow, we know nothing */
12377 		__mark_reg32_unbounded(dst_reg);
12378 		return;
12379 	}
12380 	dst_reg->u32_min_value *= umin_val;
12381 	dst_reg->u32_max_value *= umax_val;
12382 	if (dst_reg->u32_max_value > S32_MAX) {
12383 		/* Overflow possible, we know nothing */
12384 		dst_reg->s32_min_value = S32_MIN;
12385 		dst_reg->s32_max_value = S32_MAX;
12386 	} else {
12387 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12388 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12389 	}
12390 }
12391 
12392 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12393 			       struct bpf_reg_state *src_reg)
12394 {
12395 	s64 smin_val = src_reg->smin_value;
12396 	u64 umin_val = src_reg->umin_value;
12397 	u64 umax_val = src_reg->umax_value;
12398 
12399 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12400 		/* Ain't nobody got time to multiply that sign */
12401 		__mark_reg64_unbounded(dst_reg);
12402 		return;
12403 	}
12404 	/* Both values are positive, so we can work with unsigned and
12405 	 * copy the result to signed (unless it exceeds S64_MAX).
12406 	 */
12407 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12408 		/* Potential overflow, we know nothing */
12409 		__mark_reg64_unbounded(dst_reg);
12410 		return;
12411 	}
12412 	dst_reg->umin_value *= umin_val;
12413 	dst_reg->umax_value *= umax_val;
12414 	if (dst_reg->umax_value > S64_MAX) {
12415 		/* Overflow possible, we know nothing */
12416 		dst_reg->smin_value = S64_MIN;
12417 		dst_reg->smax_value = S64_MAX;
12418 	} else {
12419 		dst_reg->smin_value = dst_reg->umin_value;
12420 		dst_reg->smax_value = dst_reg->umax_value;
12421 	}
12422 }
12423 
12424 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12425 				 struct bpf_reg_state *src_reg)
12426 {
12427 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12428 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12429 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12430 	s32 smin_val = src_reg->s32_min_value;
12431 	u32 umax_val = src_reg->u32_max_value;
12432 
12433 	if (src_known && dst_known) {
12434 		__mark_reg32_known(dst_reg, var32_off.value);
12435 		return;
12436 	}
12437 
12438 	/* We get our minimum from the var_off, since that's inherently
12439 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12440 	 */
12441 	dst_reg->u32_min_value = var32_off.value;
12442 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12443 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12444 		/* Lose signed bounds when ANDing negative numbers,
12445 		 * ain't nobody got time for that.
12446 		 */
12447 		dst_reg->s32_min_value = S32_MIN;
12448 		dst_reg->s32_max_value = S32_MAX;
12449 	} else {
12450 		/* ANDing two positives gives a positive, so safe to
12451 		 * cast result into s64.
12452 		 */
12453 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12454 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12455 	}
12456 }
12457 
12458 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12459 			       struct bpf_reg_state *src_reg)
12460 {
12461 	bool src_known = tnum_is_const(src_reg->var_off);
12462 	bool dst_known = tnum_is_const(dst_reg->var_off);
12463 	s64 smin_val = src_reg->smin_value;
12464 	u64 umax_val = src_reg->umax_value;
12465 
12466 	if (src_known && dst_known) {
12467 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12468 		return;
12469 	}
12470 
12471 	/* We get our minimum from the var_off, since that's inherently
12472 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12473 	 */
12474 	dst_reg->umin_value = dst_reg->var_off.value;
12475 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12476 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12477 		/* Lose signed bounds when ANDing negative numbers,
12478 		 * ain't nobody got time for that.
12479 		 */
12480 		dst_reg->smin_value = S64_MIN;
12481 		dst_reg->smax_value = S64_MAX;
12482 	} else {
12483 		/* ANDing two positives gives a positive, so safe to
12484 		 * cast result into s64.
12485 		 */
12486 		dst_reg->smin_value = dst_reg->umin_value;
12487 		dst_reg->smax_value = dst_reg->umax_value;
12488 	}
12489 	/* We may learn something more from the var_off */
12490 	__update_reg_bounds(dst_reg);
12491 }
12492 
12493 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12494 				struct bpf_reg_state *src_reg)
12495 {
12496 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12497 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12498 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12499 	s32 smin_val = src_reg->s32_min_value;
12500 	u32 umin_val = src_reg->u32_min_value;
12501 
12502 	if (src_known && dst_known) {
12503 		__mark_reg32_known(dst_reg, var32_off.value);
12504 		return;
12505 	}
12506 
12507 	/* We get our maximum from the var_off, and our minimum is the
12508 	 * maximum of the operands' minima
12509 	 */
12510 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12511 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12512 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12513 		/* Lose signed bounds when ORing negative numbers,
12514 		 * ain't nobody got time for that.
12515 		 */
12516 		dst_reg->s32_min_value = S32_MIN;
12517 		dst_reg->s32_max_value = S32_MAX;
12518 	} else {
12519 		/* ORing two positives gives a positive, so safe to
12520 		 * cast result into s64.
12521 		 */
12522 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12523 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12524 	}
12525 }
12526 
12527 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12528 			      struct bpf_reg_state *src_reg)
12529 {
12530 	bool src_known = tnum_is_const(src_reg->var_off);
12531 	bool dst_known = tnum_is_const(dst_reg->var_off);
12532 	s64 smin_val = src_reg->smin_value;
12533 	u64 umin_val = src_reg->umin_value;
12534 
12535 	if (src_known && dst_known) {
12536 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12537 		return;
12538 	}
12539 
12540 	/* We get our maximum from the var_off, and our minimum is the
12541 	 * maximum of the operands' minima
12542 	 */
12543 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12544 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12545 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12546 		/* Lose signed bounds when ORing negative numbers,
12547 		 * ain't nobody got time for that.
12548 		 */
12549 		dst_reg->smin_value = S64_MIN;
12550 		dst_reg->smax_value = S64_MAX;
12551 	} else {
12552 		/* ORing two positives gives a positive, so safe to
12553 		 * cast result into s64.
12554 		 */
12555 		dst_reg->smin_value = dst_reg->umin_value;
12556 		dst_reg->smax_value = dst_reg->umax_value;
12557 	}
12558 	/* We may learn something more from the var_off */
12559 	__update_reg_bounds(dst_reg);
12560 }
12561 
12562 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12563 				 struct bpf_reg_state *src_reg)
12564 {
12565 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12566 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12567 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12568 	s32 smin_val = src_reg->s32_min_value;
12569 
12570 	if (src_known && dst_known) {
12571 		__mark_reg32_known(dst_reg, var32_off.value);
12572 		return;
12573 	}
12574 
12575 	/* We get both minimum and maximum from the var32_off. */
12576 	dst_reg->u32_min_value = var32_off.value;
12577 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12578 
12579 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
12580 		/* XORing two positive sign numbers gives a positive,
12581 		 * so safe to cast u32 result into s32.
12582 		 */
12583 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12584 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12585 	} else {
12586 		dst_reg->s32_min_value = S32_MIN;
12587 		dst_reg->s32_max_value = S32_MAX;
12588 	}
12589 }
12590 
12591 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
12592 			       struct bpf_reg_state *src_reg)
12593 {
12594 	bool src_known = tnum_is_const(src_reg->var_off);
12595 	bool dst_known = tnum_is_const(dst_reg->var_off);
12596 	s64 smin_val = src_reg->smin_value;
12597 
12598 	if (src_known && dst_known) {
12599 		/* dst_reg->var_off.value has been updated earlier */
12600 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12601 		return;
12602 	}
12603 
12604 	/* We get both minimum and maximum from the var_off. */
12605 	dst_reg->umin_value = dst_reg->var_off.value;
12606 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12607 
12608 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
12609 		/* XORing two positive sign numbers gives a positive,
12610 		 * so safe to cast u64 result into s64.
12611 		 */
12612 		dst_reg->smin_value = dst_reg->umin_value;
12613 		dst_reg->smax_value = dst_reg->umax_value;
12614 	} else {
12615 		dst_reg->smin_value = S64_MIN;
12616 		dst_reg->smax_value = S64_MAX;
12617 	}
12618 
12619 	__update_reg_bounds(dst_reg);
12620 }
12621 
12622 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12623 				   u64 umin_val, u64 umax_val)
12624 {
12625 	/* We lose all sign bit information (except what we can pick
12626 	 * up from var_off)
12627 	 */
12628 	dst_reg->s32_min_value = S32_MIN;
12629 	dst_reg->s32_max_value = S32_MAX;
12630 	/* If we might shift our top bit out, then we know nothing */
12631 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
12632 		dst_reg->u32_min_value = 0;
12633 		dst_reg->u32_max_value = U32_MAX;
12634 	} else {
12635 		dst_reg->u32_min_value <<= umin_val;
12636 		dst_reg->u32_max_value <<= umax_val;
12637 	}
12638 }
12639 
12640 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12641 				 struct bpf_reg_state *src_reg)
12642 {
12643 	u32 umax_val = src_reg->u32_max_value;
12644 	u32 umin_val = src_reg->u32_min_value;
12645 	/* u32 alu operation will zext upper bits */
12646 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12647 
12648 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12649 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
12650 	/* Not required but being careful mark reg64 bounds as unknown so
12651 	 * that we are forced to pick them up from tnum and zext later and
12652 	 * if some path skips this step we are still safe.
12653 	 */
12654 	__mark_reg64_unbounded(dst_reg);
12655 	__update_reg32_bounds(dst_reg);
12656 }
12657 
12658 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12659 				   u64 umin_val, u64 umax_val)
12660 {
12661 	/* Special case <<32 because it is a common compiler pattern to sign
12662 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12663 	 * positive we know this shift will also be positive so we can track
12664 	 * bounds correctly. Otherwise we lose all sign bit information except
12665 	 * what we can pick up from var_off. Perhaps we can generalize this
12666 	 * later to shifts of any length.
12667 	 */
12668 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12669 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12670 	else
12671 		dst_reg->smax_value = S64_MAX;
12672 
12673 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12674 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12675 	else
12676 		dst_reg->smin_value = S64_MIN;
12677 
12678 	/* If we might shift our top bit out, then we know nothing */
12679 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12680 		dst_reg->umin_value = 0;
12681 		dst_reg->umax_value = U64_MAX;
12682 	} else {
12683 		dst_reg->umin_value <<= umin_val;
12684 		dst_reg->umax_value <<= umax_val;
12685 	}
12686 }
12687 
12688 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12689 			       struct bpf_reg_state *src_reg)
12690 {
12691 	u64 umax_val = src_reg->umax_value;
12692 	u64 umin_val = src_reg->umin_value;
12693 
12694 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
12695 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12696 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12697 
12698 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12699 	/* We may learn something more from the var_off */
12700 	__update_reg_bounds(dst_reg);
12701 }
12702 
12703 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12704 				 struct bpf_reg_state *src_reg)
12705 {
12706 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12707 	u32 umax_val = src_reg->u32_max_value;
12708 	u32 umin_val = src_reg->u32_min_value;
12709 
12710 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12711 	 * be negative, then either:
12712 	 * 1) src_reg might be zero, so the sign bit of the result is
12713 	 *    unknown, so we lose our signed bounds
12714 	 * 2) it's known negative, thus the unsigned bounds capture the
12715 	 *    signed bounds
12716 	 * 3) the signed bounds cross zero, so they tell us nothing
12717 	 *    about the result
12718 	 * If the value in dst_reg is known nonnegative, then again the
12719 	 * unsigned bounds capture the signed bounds.
12720 	 * Thus, in all cases it suffices to blow away our signed bounds
12721 	 * and rely on inferring new ones from the unsigned bounds and
12722 	 * var_off of the result.
12723 	 */
12724 	dst_reg->s32_min_value = S32_MIN;
12725 	dst_reg->s32_max_value = S32_MAX;
12726 
12727 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
12728 	dst_reg->u32_min_value >>= umax_val;
12729 	dst_reg->u32_max_value >>= umin_val;
12730 
12731 	__mark_reg64_unbounded(dst_reg);
12732 	__update_reg32_bounds(dst_reg);
12733 }
12734 
12735 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12736 			       struct bpf_reg_state *src_reg)
12737 {
12738 	u64 umax_val = src_reg->umax_value;
12739 	u64 umin_val = src_reg->umin_value;
12740 
12741 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12742 	 * be negative, then either:
12743 	 * 1) src_reg might be zero, so the sign bit of the result is
12744 	 *    unknown, so we lose our signed bounds
12745 	 * 2) it's known negative, thus the unsigned bounds capture the
12746 	 *    signed bounds
12747 	 * 3) the signed bounds cross zero, so they tell us nothing
12748 	 *    about the result
12749 	 * If the value in dst_reg is known nonnegative, then again the
12750 	 * unsigned bounds capture the signed bounds.
12751 	 * Thus, in all cases it suffices to blow away our signed bounds
12752 	 * and rely on inferring new ones from the unsigned bounds and
12753 	 * var_off of the result.
12754 	 */
12755 	dst_reg->smin_value = S64_MIN;
12756 	dst_reg->smax_value = S64_MAX;
12757 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12758 	dst_reg->umin_value >>= umax_val;
12759 	dst_reg->umax_value >>= umin_val;
12760 
12761 	/* Its not easy to operate on alu32 bounds here because it depends
12762 	 * on bits being shifted in. Take easy way out and mark unbounded
12763 	 * so we can recalculate later from tnum.
12764 	 */
12765 	__mark_reg32_unbounded(dst_reg);
12766 	__update_reg_bounds(dst_reg);
12767 }
12768 
12769 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12770 				  struct bpf_reg_state *src_reg)
12771 {
12772 	u64 umin_val = src_reg->u32_min_value;
12773 
12774 	/* Upon reaching here, src_known is true and
12775 	 * umax_val is equal to umin_val.
12776 	 */
12777 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12778 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
12779 
12780 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12781 
12782 	/* blow away the dst_reg umin_value/umax_value and rely on
12783 	 * dst_reg var_off to refine the result.
12784 	 */
12785 	dst_reg->u32_min_value = 0;
12786 	dst_reg->u32_max_value = U32_MAX;
12787 
12788 	__mark_reg64_unbounded(dst_reg);
12789 	__update_reg32_bounds(dst_reg);
12790 }
12791 
12792 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12793 				struct bpf_reg_state *src_reg)
12794 {
12795 	u64 umin_val = src_reg->umin_value;
12796 
12797 	/* Upon reaching here, src_known is true and umax_val is equal
12798 	 * to umin_val.
12799 	 */
12800 	dst_reg->smin_value >>= umin_val;
12801 	dst_reg->smax_value >>= umin_val;
12802 
12803 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
12804 
12805 	/* blow away the dst_reg umin_value/umax_value and rely on
12806 	 * dst_reg var_off to refine the result.
12807 	 */
12808 	dst_reg->umin_value = 0;
12809 	dst_reg->umax_value = U64_MAX;
12810 
12811 	/* Its not easy to operate on alu32 bounds here because it depends
12812 	 * on bits being shifted in from upper 32-bits. Take easy way out
12813 	 * and mark unbounded so we can recalculate later from tnum.
12814 	 */
12815 	__mark_reg32_unbounded(dst_reg);
12816 	__update_reg_bounds(dst_reg);
12817 }
12818 
12819 /* WARNING: This function does calculations on 64-bit values, but the actual
12820  * execution may occur on 32-bit values. Therefore, things like bitshifts
12821  * need extra checks in the 32-bit case.
12822  */
12823 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12824 				      struct bpf_insn *insn,
12825 				      struct bpf_reg_state *dst_reg,
12826 				      struct bpf_reg_state src_reg)
12827 {
12828 	struct bpf_reg_state *regs = cur_regs(env);
12829 	u8 opcode = BPF_OP(insn->code);
12830 	bool src_known;
12831 	s64 smin_val, smax_val;
12832 	u64 umin_val, umax_val;
12833 	s32 s32_min_val, s32_max_val;
12834 	u32 u32_min_val, u32_max_val;
12835 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
12836 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
12837 	int ret;
12838 
12839 	smin_val = src_reg.smin_value;
12840 	smax_val = src_reg.smax_value;
12841 	umin_val = src_reg.umin_value;
12842 	umax_val = src_reg.umax_value;
12843 
12844 	s32_min_val = src_reg.s32_min_value;
12845 	s32_max_val = src_reg.s32_max_value;
12846 	u32_min_val = src_reg.u32_min_value;
12847 	u32_max_val = src_reg.u32_max_value;
12848 
12849 	if (alu32) {
12850 		src_known = tnum_subreg_is_const(src_reg.var_off);
12851 		if ((src_known &&
12852 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12853 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12854 			/* Taint dst register if offset had invalid bounds
12855 			 * derived from e.g. dead branches.
12856 			 */
12857 			__mark_reg_unknown(env, dst_reg);
12858 			return 0;
12859 		}
12860 	} else {
12861 		src_known = tnum_is_const(src_reg.var_off);
12862 		if ((src_known &&
12863 		     (smin_val != smax_val || umin_val != umax_val)) ||
12864 		    smin_val > smax_val || umin_val > umax_val) {
12865 			/* Taint dst register if offset had invalid bounds
12866 			 * derived from e.g. dead branches.
12867 			 */
12868 			__mark_reg_unknown(env, dst_reg);
12869 			return 0;
12870 		}
12871 	}
12872 
12873 	if (!src_known &&
12874 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
12875 		__mark_reg_unknown(env, dst_reg);
12876 		return 0;
12877 	}
12878 
12879 	if (sanitize_needed(opcode)) {
12880 		ret = sanitize_val_alu(env, insn);
12881 		if (ret < 0)
12882 			return sanitize_err(env, insn, ret, NULL, NULL);
12883 	}
12884 
12885 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12886 	 * There are two classes of instructions: The first class we track both
12887 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
12888 	 * greatest amount of precision when alu operations are mixed with jmp32
12889 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12890 	 * and BPF_OR. This is possible because these ops have fairly easy to
12891 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12892 	 * See alu32 verifier tests for examples. The second class of
12893 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12894 	 * with regards to tracking sign/unsigned bounds because the bits may
12895 	 * cross subreg boundaries in the alu64 case. When this happens we mark
12896 	 * the reg unbounded in the subreg bound space and use the resulting
12897 	 * tnum to calculate an approximation of the sign/unsigned bounds.
12898 	 */
12899 	switch (opcode) {
12900 	case BPF_ADD:
12901 		scalar32_min_max_add(dst_reg, &src_reg);
12902 		scalar_min_max_add(dst_reg, &src_reg);
12903 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
12904 		break;
12905 	case BPF_SUB:
12906 		scalar32_min_max_sub(dst_reg, &src_reg);
12907 		scalar_min_max_sub(dst_reg, &src_reg);
12908 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
12909 		break;
12910 	case BPF_MUL:
12911 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12912 		scalar32_min_max_mul(dst_reg, &src_reg);
12913 		scalar_min_max_mul(dst_reg, &src_reg);
12914 		break;
12915 	case BPF_AND:
12916 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12917 		scalar32_min_max_and(dst_reg, &src_reg);
12918 		scalar_min_max_and(dst_reg, &src_reg);
12919 		break;
12920 	case BPF_OR:
12921 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12922 		scalar32_min_max_or(dst_reg, &src_reg);
12923 		scalar_min_max_or(dst_reg, &src_reg);
12924 		break;
12925 	case BPF_XOR:
12926 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12927 		scalar32_min_max_xor(dst_reg, &src_reg);
12928 		scalar_min_max_xor(dst_reg, &src_reg);
12929 		break;
12930 	case BPF_LSH:
12931 		if (umax_val >= insn_bitness) {
12932 			/* Shifts greater than 31 or 63 are undefined.
12933 			 * This includes shifts by a negative number.
12934 			 */
12935 			mark_reg_unknown(env, regs, insn->dst_reg);
12936 			break;
12937 		}
12938 		if (alu32)
12939 			scalar32_min_max_lsh(dst_reg, &src_reg);
12940 		else
12941 			scalar_min_max_lsh(dst_reg, &src_reg);
12942 		break;
12943 	case BPF_RSH:
12944 		if (umax_val >= insn_bitness) {
12945 			/* Shifts greater than 31 or 63 are undefined.
12946 			 * This includes shifts by a negative number.
12947 			 */
12948 			mark_reg_unknown(env, regs, insn->dst_reg);
12949 			break;
12950 		}
12951 		if (alu32)
12952 			scalar32_min_max_rsh(dst_reg, &src_reg);
12953 		else
12954 			scalar_min_max_rsh(dst_reg, &src_reg);
12955 		break;
12956 	case BPF_ARSH:
12957 		if (umax_val >= insn_bitness) {
12958 			/* Shifts greater than 31 or 63 are undefined.
12959 			 * This includes shifts by a negative number.
12960 			 */
12961 			mark_reg_unknown(env, regs, insn->dst_reg);
12962 			break;
12963 		}
12964 		if (alu32)
12965 			scalar32_min_max_arsh(dst_reg, &src_reg);
12966 		else
12967 			scalar_min_max_arsh(dst_reg, &src_reg);
12968 		break;
12969 	default:
12970 		mark_reg_unknown(env, regs, insn->dst_reg);
12971 		break;
12972 	}
12973 
12974 	/* ALU32 ops are zero extended into 64bit register */
12975 	if (alu32)
12976 		zext_32_to_64(dst_reg);
12977 	reg_bounds_sync(dst_reg);
12978 	return 0;
12979 }
12980 
12981 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
12982  * and var_off.
12983  */
12984 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
12985 				   struct bpf_insn *insn)
12986 {
12987 	struct bpf_verifier_state *vstate = env->cur_state;
12988 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12989 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
12990 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
12991 	u8 opcode = BPF_OP(insn->code);
12992 	int err;
12993 
12994 	dst_reg = &regs[insn->dst_reg];
12995 	src_reg = NULL;
12996 	if (dst_reg->type != SCALAR_VALUE)
12997 		ptr_reg = dst_reg;
12998 	else
12999 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13000 		 * incorrectly propagated into other registers by find_equal_scalars()
13001 		 */
13002 		dst_reg->id = 0;
13003 	if (BPF_SRC(insn->code) == BPF_X) {
13004 		src_reg = &regs[insn->src_reg];
13005 		if (src_reg->type != SCALAR_VALUE) {
13006 			if (dst_reg->type != SCALAR_VALUE) {
13007 				/* Combining two pointers by any ALU op yields
13008 				 * an arbitrary scalar. Disallow all math except
13009 				 * pointer subtraction
13010 				 */
13011 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13012 					mark_reg_unknown(env, regs, insn->dst_reg);
13013 					return 0;
13014 				}
13015 				verbose(env, "R%d pointer %s pointer prohibited\n",
13016 					insn->dst_reg,
13017 					bpf_alu_string[opcode >> 4]);
13018 				return -EACCES;
13019 			} else {
13020 				/* scalar += pointer
13021 				 * This is legal, but we have to reverse our
13022 				 * src/dest handling in computing the range
13023 				 */
13024 				err = mark_chain_precision(env, insn->dst_reg);
13025 				if (err)
13026 					return err;
13027 				return adjust_ptr_min_max_vals(env, insn,
13028 							       src_reg, dst_reg);
13029 			}
13030 		} else if (ptr_reg) {
13031 			/* pointer += scalar */
13032 			err = mark_chain_precision(env, insn->src_reg);
13033 			if (err)
13034 				return err;
13035 			return adjust_ptr_min_max_vals(env, insn,
13036 						       dst_reg, src_reg);
13037 		} else if (dst_reg->precise) {
13038 			/* if dst_reg is precise, src_reg should be precise as well */
13039 			err = mark_chain_precision(env, insn->src_reg);
13040 			if (err)
13041 				return err;
13042 		}
13043 	} else {
13044 		/* Pretend the src is a reg with a known value, since we only
13045 		 * need to be able to read from this state.
13046 		 */
13047 		off_reg.type = SCALAR_VALUE;
13048 		__mark_reg_known(&off_reg, insn->imm);
13049 		src_reg = &off_reg;
13050 		if (ptr_reg) /* pointer += K */
13051 			return adjust_ptr_min_max_vals(env, insn,
13052 						       ptr_reg, src_reg);
13053 	}
13054 
13055 	/* Got here implies adding two SCALAR_VALUEs */
13056 	if (WARN_ON_ONCE(ptr_reg)) {
13057 		print_verifier_state(env, state, true);
13058 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13059 		return -EINVAL;
13060 	}
13061 	if (WARN_ON(!src_reg)) {
13062 		print_verifier_state(env, state, true);
13063 		verbose(env, "verifier internal error: no src_reg\n");
13064 		return -EINVAL;
13065 	}
13066 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13067 }
13068 
13069 /* check validity of 32-bit and 64-bit arithmetic operations */
13070 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13071 {
13072 	struct bpf_reg_state *regs = cur_regs(env);
13073 	u8 opcode = BPF_OP(insn->code);
13074 	int err;
13075 
13076 	if (opcode == BPF_END || opcode == BPF_NEG) {
13077 		if (opcode == BPF_NEG) {
13078 			if (BPF_SRC(insn->code) != BPF_K ||
13079 			    insn->src_reg != BPF_REG_0 ||
13080 			    insn->off != 0 || insn->imm != 0) {
13081 				verbose(env, "BPF_NEG uses reserved fields\n");
13082 				return -EINVAL;
13083 			}
13084 		} else {
13085 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13086 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13087 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13088 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13089 				verbose(env, "BPF_END uses reserved fields\n");
13090 				return -EINVAL;
13091 			}
13092 		}
13093 
13094 		/* check src operand */
13095 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13096 		if (err)
13097 			return err;
13098 
13099 		if (is_pointer_value(env, insn->dst_reg)) {
13100 			verbose(env, "R%d pointer arithmetic prohibited\n",
13101 				insn->dst_reg);
13102 			return -EACCES;
13103 		}
13104 
13105 		/* check dest operand */
13106 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13107 		if (err)
13108 			return err;
13109 
13110 	} else if (opcode == BPF_MOV) {
13111 
13112 		if (BPF_SRC(insn->code) == BPF_X) {
13113 			if (insn->imm != 0) {
13114 				verbose(env, "BPF_MOV uses reserved fields\n");
13115 				return -EINVAL;
13116 			}
13117 
13118 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13119 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13120 					verbose(env, "BPF_MOV uses reserved fields\n");
13121 					return -EINVAL;
13122 				}
13123 			} else {
13124 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13125 				    insn->off != 32) {
13126 					verbose(env, "BPF_MOV uses reserved fields\n");
13127 					return -EINVAL;
13128 				}
13129 			}
13130 
13131 			/* check src operand */
13132 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13133 			if (err)
13134 				return err;
13135 		} else {
13136 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13137 				verbose(env, "BPF_MOV uses reserved fields\n");
13138 				return -EINVAL;
13139 			}
13140 		}
13141 
13142 		/* check dest operand, mark as required later */
13143 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13144 		if (err)
13145 			return err;
13146 
13147 		if (BPF_SRC(insn->code) == BPF_X) {
13148 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13149 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13150 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13151 				       !tnum_is_const(src_reg->var_off);
13152 
13153 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13154 				if (insn->off == 0) {
13155 					/* case: R1 = R2
13156 					 * copy register state to dest reg
13157 					 */
13158 					if (need_id)
13159 						/* Assign src and dst registers the same ID
13160 						 * that will be used by find_equal_scalars()
13161 						 * to propagate min/max range.
13162 						 */
13163 						src_reg->id = ++env->id_gen;
13164 					copy_register_state(dst_reg, src_reg);
13165 					dst_reg->live |= REG_LIVE_WRITTEN;
13166 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13167 				} else {
13168 					/* case: R1 = (s8, s16 s32)R2 */
13169 					if (is_pointer_value(env, insn->src_reg)) {
13170 						verbose(env,
13171 							"R%d sign-extension part of pointer\n",
13172 							insn->src_reg);
13173 						return -EACCES;
13174 					} else if (src_reg->type == SCALAR_VALUE) {
13175 						bool no_sext;
13176 
13177 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13178 						if (no_sext && need_id)
13179 							src_reg->id = ++env->id_gen;
13180 						copy_register_state(dst_reg, src_reg);
13181 						if (!no_sext)
13182 							dst_reg->id = 0;
13183 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13184 						dst_reg->live |= REG_LIVE_WRITTEN;
13185 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13186 					} else {
13187 						mark_reg_unknown(env, regs, insn->dst_reg);
13188 					}
13189 				}
13190 			} else {
13191 				/* R1 = (u32) R2 */
13192 				if (is_pointer_value(env, insn->src_reg)) {
13193 					verbose(env,
13194 						"R%d partial copy of pointer\n",
13195 						insn->src_reg);
13196 					return -EACCES;
13197 				} else if (src_reg->type == SCALAR_VALUE) {
13198 					if (insn->off == 0) {
13199 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13200 
13201 						if (is_src_reg_u32 && need_id)
13202 							src_reg->id = ++env->id_gen;
13203 						copy_register_state(dst_reg, src_reg);
13204 						/* Make sure ID is cleared if src_reg is not in u32
13205 						 * range otherwise dst_reg min/max could be incorrectly
13206 						 * propagated into src_reg by find_equal_scalars()
13207 						 */
13208 						if (!is_src_reg_u32)
13209 							dst_reg->id = 0;
13210 						dst_reg->live |= REG_LIVE_WRITTEN;
13211 						dst_reg->subreg_def = env->insn_idx + 1;
13212 					} else {
13213 						/* case: W1 = (s8, s16)W2 */
13214 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13215 
13216 						if (no_sext && need_id)
13217 							src_reg->id = ++env->id_gen;
13218 						copy_register_state(dst_reg, src_reg);
13219 						if (!no_sext)
13220 							dst_reg->id = 0;
13221 						dst_reg->live |= REG_LIVE_WRITTEN;
13222 						dst_reg->subreg_def = env->insn_idx + 1;
13223 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13224 					}
13225 				} else {
13226 					mark_reg_unknown(env, regs,
13227 							 insn->dst_reg);
13228 				}
13229 				zext_32_to_64(dst_reg);
13230 				reg_bounds_sync(dst_reg);
13231 			}
13232 		} else {
13233 			/* case: R = imm
13234 			 * remember the value we stored into this reg
13235 			 */
13236 			/* clear any state __mark_reg_known doesn't set */
13237 			mark_reg_unknown(env, regs, insn->dst_reg);
13238 			regs[insn->dst_reg].type = SCALAR_VALUE;
13239 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13240 				__mark_reg_known(regs + insn->dst_reg,
13241 						 insn->imm);
13242 			} else {
13243 				__mark_reg_known(regs + insn->dst_reg,
13244 						 (u32)insn->imm);
13245 			}
13246 		}
13247 
13248 	} else if (opcode > BPF_END) {
13249 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13250 		return -EINVAL;
13251 
13252 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13253 
13254 		if (BPF_SRC(insn->code) == BPF_X) {
13255 			if (insn->imm != 0 || insn->off > 1 ||
13256 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13257 				verbose(env, "BPF_ALU uses reserved fields\n");
13258 				return -EINVAL;
13259 			}
13260 			/* check src1 operand */
13261 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13262 			if (err)
13263 				return err;
13264 		} else {
13265 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13266 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13267 				verbose(env, "BPF_ALU uses reserved fields\n");
13268 				return -EINVAL;
13269 			}
13270 		}
13271 
13272 		/* check src2 operand */
13273 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13274 		if (err)
13275 			return err;
13276 
13277 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13278 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13279 			verbose(env, "div by zero\n");
13280 			return -EINVAL;
13281 		}
13282 
13283 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13284 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13285 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13286 
13287 			if (insn->imm < 0 || insn->imm >= size) {
13288 				verbose(env, "invalid shift %d\n", insn->imm);
13289 				return -EINVAL;
13290 			}
13291 		}
13292 
13293 		/* check dest operand */
13294 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13295 		if (err)
13296 			return err;
13297 
13298 		return adjust_reg_min_max_vals(env, insn);
13299 	}
13300 
13301 	return 0;
13302 }
13303 
13304 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13305 				   struct bpf_reg_state *dst_reg,
13306 				   enum bpf_reg_type type,
13307 				   bool range_right_open)
13308 {
13309 	struct bpf_func_state *state;
13310 	struct bpf_reg_state *reg;
13311 	int new_range;
13312 
13313 	if (dst_reg->off < 0 ||
13314 	    (dst_reg->off == 0 && range_right_open))
13315 		/* This doesn't give us any range */
13316 		return;
13317 
13318 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13319 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13320 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13321 		 * than pkt_end, but that's because it's also less than pkt.
13322 		 */
13323 		return;
13324 
13325 	new_range = dst_reg->off;
13326 	if (range_right_open)
13327 		new_range++;
13328 
13329 	/* Examples for register markings:
13330 	 *
13331 	 * pkt_data in dst register:
13332 	 *
13333 	 *   r2 = r3;
13334 	 *   r2 += 8;
13335 	 *   if (r2 > pkt_end) goto <handle exception>
13336 	 *   <access okay>
13337 	 *
13338 	 *   r2 = r3;
13339 	 *   r2 += 8;
13340 	 *   if (r2 < pkt_end) goto <access okay>
13341 	 *   <handle exception>
13342 	 *
13343 	 *   Where:
13344 	 *     r2 == dst_reg, pkt_end == src_reg
13345 	 *     r2=pkt(id=n,off=8,r=0)
13346 	 *     r3=pkt(id=n,off=0,r=0)
13347 	 *
13348 	 * pkt_data in src register:
13349 	 *
13350 	 *   r2 = r3;
13351 	 *   r2 += 8;
13352 	 *   if (pkt_end >= r2) goto <access okay>
13353 	 *   <handle exception>
13354 	 *
13355 	 *   r2 = r3;
13356 	 *   r2 += 8;
13357 	 *   if (pkt_end <= r2) goto <handle exception>
13358 	 *   <access okay>
13359 	 *
13360 	 *   Where:
13361 	 *     pkt_end == dst_reg, r2 == src_reg
13362 	 *     r2=pkt(id=n,off=8,r=0)
13363 	 *     r3=pkt(id=n,off=0,r=0)
13364 	 *
13365 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13366 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13367 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
13368 	 * the check.
13369 	 */
13370 
13371 	/* If our ids match, then we must have the same max_value.  And we
13372 	 * don't care about the other reg's fixed offset, since if it's too big
13373 	 * the range won't allow anything.
13374 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13375 	 */
13376 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13377 		if (reg->type == type && reg->id == dst_reg->id)
13378 			/* keep the maximum range already checked */
13379 			reg->range = max(reg->range, new_range);
13380 	}));
13381 }
13382 
13383 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13384 {
13385 	struct tnum subreg = tnum_subreg(reg->var_off);
13386 	s32 sval = (s32)val;
13387 
13388 	switch (opcode) {
13389 	case BPF_JEQ:
13390 		if (tnum_is_const(subreg))
13391 			return !!tnum_equals_const(subreg, val);
13392 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13393 			return 0;
13394 		break;
13395 	case BPF_JNE:
13396 		if (tnum_is_const(subreg))
13397 			return !tnum_equals_const(subreg, val);
13398 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13399 			return 1;
13400 		break;
13401 	case BPF_JSET:
13402 		if ((~subreg.mask & subreg.value) & val)
13403 			return 1;
13404 		if (!((subreg.mask | subreg.value) & val))
13405 			return 0;
13406 		break;
13407 	case BPF_JGT:
13408 		if (reg->u32_min_value > val)
13409 			return 1;
13410 		else if (reg->u32_max_value <= val)
13411 			return 0;
13412 		break;
13413 	case BPF_JSGT:
13414 		if (reg->s32_min_value > sval)
13415 			return 1;
13416 		else if (reg->s32_max_value <= sval)
13417 			return 0;
13418 		break;
13419 	case BPF_JLT:
13420 		if (reg->u32_max_value < val)
13421 			return 1;
13422 		else if (reg->u32_min_value >= val)
13423 			return 0;
13424 		break;
13425 	case BPF_JSLT:
13426 		if (reg->s32_max_value < sval)
13427 			return 1;
13428 		else if (reg->s32_min_value >= sval)
13429 			return 0;
13430 		break;
13431 	case BPF_JGE:
13432 		if (reg->u32_min_value >= val)
13433 			return 1;
13434 		else if (reg->u32_max_value < val)
13435 			return 0;
13436 		break;
13437 	case BPF_JSGE:
13438 		if (reg->s32_min_value >= sval)
13439 			return 1;
13440 		else if (reg->s32_max_value < sval)
13441 			return 0;
13442 		break;
13443 	case BPF_JLE:
13444 		if (reg->u32_max_value <= val)
13445 			return 1;
13446 		else if (reg->u32_min_value > val)
13447 			return 0;
13448 		break;
13449 	case BPF_JSLE:
13450 		if (reg->s32_max_value <= sval)
13451 			return 1;
13452 		else if (reg->s32_min_value > sval)
13453 			return 0;
13454 		break;
13455 	}
13456 
13457 	return -1;
13458 }
13459 
13460 
13461 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13462 {
13463 	s64 sval = (s64)val;
13464 
13465 	switch (opcode) {
13466 	case BPF_JEQ:
13467 		if (tnum_is_const(reg->var_off))
13468 			return !!tnum_equals_const(reg->var_off, val);
13469 		else if (val < reg->umin_value || val > reg->umax_value)
13470 			return 0;
13471 		break;
13472 	case BPF_JNE:
13473 		if (tnum_is_const(reg->var_off))
13474 			return !tnum_equals_const(reg->var_off, val);
13475 		else if (val < reg->umin_value || val > reg->umax_value)
13476 			return 1;
13477 		break;
13478 	case BPF_JSET:
13479 		if ((~reg->var_off.mask & reg->var_off.value) & val)
13480 			return 1;
13481 		if (!((reg->var_off.mask | reg->var_off.value) & val))
13482 			return 0;
13483 		break;
13484 	case BPF_JGT:
13485 		if (reg->umin_value > val)
13486 			return 1;
13487 		else if (reg->umax_value <= val)
13488 			return 0;
13489 		break;
13490 	case BPF_JSGT:
13491 		if (reg->smin_value > sval)
13492 			return 1;
13493 		else if (reg->smax_value <= sval)
13494 			return 0;
13495 		break;
13496 	case BPF_JLT:
13497 		if (reg->umax_value < val)
13498 			return 1;
13499 		else if (reg->umin_value >= val)
13500 			return 0;
13501 		break;
13502 	case BPF_JSLT:
13503 		if (reg->smax_value < sval)
13504 			return 1;
13505 		else if (reg->smin_value >= sval)
13506 			return 0;
13507 		break;
13508 	case BPF_JGE:
13509 		if (reg->umin_value >= val)
13510 			return 1;
13511 		else if (reg->umax_value < val)
13512 			return 0;
13513 		break;
13514 	case BPF_JSGE:
13515 		if (reg->smin_value >= sval)
13516 			return 1;
13517 		else if (reg->smax_value < sval)
13518 			return 0;
13519 		break;
13520 	case BPF_JLE:
13521 		if (reg->umax_value <= val)
13522 			return 1;
13523 		else if (reg->umin_value > val)
13524 			return 0;
13525 		break;
13526 	case BPF_JSLE:
13527 		if (reg->smax_value <= sval)
13528 			return 1;
13529 		else if (reg->smin_value > sval)
13530 			return 0;
13531 		break;
13532 	}
13533 
13534 	return -1;
13535 }
13536 
13537 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13538  * and return:
13539  *  1 - branch will be taken and "goto target" will be executed
13540  *  0 - branch will not be taken and fall-through to next insn
13541  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13542  *      range [0,10]
13543  */
13544 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13545 			   bool is_jmp32)
13546 {
13547 	if (__is_pointer_value(false, reg)) {
13548 		if (!reg_not_null(reg))
13549 			return -1;
13550 
13551 		/* If pointer is valid tests against zero will fail so we can
13552 		 * use this to direct branch taken.
13553 		 */
13554 		if (val != 0)
13555 			return -1;
13556 
13557 		switch (opcode) {
13558 		case BPF_JEQ:
13559 			return 0;
13560 		case BPF_JNE:
13561 			return 1;
13562 		default:
13563 			return -1;
13564 		}
13565 	}
13566 
13567 	if (is_jmp32)
13568 		return is_branch32_taken(reg, val, opcode);
13569 	return is_branch64_taken(reg, val, opcode);
13570 }
13571 
13572 static int flip_opcode(u32 opcode)
13573 {
13574 	/* How can we transform "a <op> b" into "b <op> a"? */
13575 	static const u8 opcode_flip[16] = {
13576 		/* these stay the same */
13577 		[BPF_JEQ  >> 4] = BPF_JEQ,
13578 		[BPF_JNE  >> 4] = BPF_JNE,
13579 		[BPF_JSET >> 4] = BPF_JSET,
13580 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
13581 		[BPF_JGE  >> 4] = BPF_JLE,
13582 		[BPF_JGT  >> 4] = BPF_JLT,
13583 		[BPF_JLE  >> 4] = BPF_JGE,
13584 		[BPF_JLT  >> 4] = BPF_JGT,
13585 		[BPF_JSGE >> 4] = BPF_JSLE,
13586 		[BPF_JSGT >> 4] = BPF_JSLT,
13587 		[BPF_JSLE >> 4] = BPF_JSGE,
13588 		[BPF_JSLT >> 4] = BPF_JSGT
13589 	};
13590 	return opcode_flip[opcode >> 4];
13591 }
13592 
13593 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
13594 				   struct bpf_reg_state *src_reg,
13595 				   u8 opcode)
13596 {
13597 	struct bpf_reg_state *pkt;
13598 
13599 	if (src_reg->type == PTR_TO_PACKET_END) {
13600 		pkt = dst_reg;
13601 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
13602 		pkt = src_reg;
13603 		opcode = flip_opcode(opcode);
13604 	} else {
13605 		return -1;
13606 	}
13607 
13608 	if (pkt->range >= 0)
13609 		return -1;
13610 
13611 	switch (opcode) {
13612 	case BPF_JLE:
13613 		/* pkt <= pkt_end */
13614 		fallthrough;
13615 	case BPF_JGT:
13616 		/* pkt > pkt_end */
13617 		if (pkt->range == BEYOND_PKT_END)
13618 			/* pkt has at last one extra byte beyond pkt_end */
13619 			return opcode == BPF_JGT;
13620 		break;
13621 	case BPF_JLT:
13622 		/* pkt < pkt_end */
13623 		fallthrough;
13624 	case BPF_JGE:
13625 		/* pkt >= pkt_end */
13626 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
13627 			return opcode == BPF_JGE;
13628 		break;
13629 	}
13630 	return -1;
13631 }
13632 
13633 /* Adjusts the register min/max values in the case that the dst_reg is the
13634  * variable register that we are working on, and src_reg is a constant or we're
13635  * simply doing a BPF_K check.
13636  * In JEQ/JNE cases we also adjust the var_off values.
13637  */
13638 static void reg_set_min_max(struct bpf_reg_state *true_reg,
13639 			    struct bpf_reg_state *false_reg,
13640 			    u64 val, u32 val32,
13641 			    u8 opcode, bool is_jmp32)
13642 {
13643 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
13644 	struct tnum false_64off = false_reg->var_off;
13645 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
13646 	struct tnum true_64off = true_reg->var_off;
13647 	s64 sval = (s64)val;
13648 	s32 sval32 = (s32)val32;
13649 
13650 	/* If the dst_reg is a pointer, we can't learn anything about its
13651 	 * variable offset from the compare (unless src_reg were a pointer into
13652 	 * the same object, but we don't bother with that.
13653 	 * Since false_reg and true_reg have the same type by construction, we
13654 	 * only need to check one of them for pointerness.
13655 	 */
13656 	if (__is_pointer_value(false, false_reg))
13657 		return;
13658 
13659 	switch (opcode) {
13660 	/* JEQ/JNE comparison doesn't change the register equivalence.
13661 	 *
13662 	 * r1 = r2;
13663 	 * if (r1 == 42) goto label;
13664 	 * ...
13665 	 * label: // here both r1 and r2 are known to be 42.
13666 	 *
13667 	 * Hence when marking register as known preserve it's ID.
13668 	 */
13669 	case BPF_JEQ:
13670 		if (is_jmp32) {
13671 			__mark_reg32_known(true_reg, val32);
13672 			true_32off = tnum_subreg(true_reg->var_off);
13673 		} else {
13674 			___mark_reg_known(true_reg, val);
13675 			true_64off = true_reg->var_off;
13676 		}
13677 		break;
13678 	case BPF_JNE:
13679 		if (is_jmp32) {
13680 			__mark_reg32_known(false_reg, val32);
13681 			false_32off = tnum_subreg(false_reg->var_off);
13682 		} else {
13683 			___mark_reg_known(false_reg, val);
13684 			false_64off = false_reg->var_off;
13685 		}
13686 		break;
13687 	case BPF_JSET:
13688 		if (is_jmp32) {
13689 			false_32off = tnum_and(false_32off, tnum_const(~val32));
13690 			if (is_power_of_2(val32))
13691 				true_32off = tnum_or(true_32off,
13692 						     tnum_const(val32));
13693 		} else {
13694 			false_64off = tnum_and(false_64off, tnum_const(~val));
13695 			if (is_power_of_2(val))
13696 				true_64off = tnum_or(true_64off,
13697 						     tnum_const(val));
13698 		}
13699 		break;
13700 	case BPF_JGE:
13701 	case BPF_JGT:
13702 	{
13703 		if (is_jmp32) {
13704 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
13705 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
13706 
13707 			false_reg->u32_max_value = min(false_reg->u32_max_value,
13708 						       false_umax);
13709 			true_reg->u32_min_value = max(true_reg->u32_min_value,
13710 						      true_umin);
13711 		} else {
13712 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
13713 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13714 
13715 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
13716 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
13717 		}
13718 		break;
13719 	}
13720 	case BPF_JSGE:
13721 	case BPF_JSGT:
13722 	{
13723 		if (is_jmp32) {
13724 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
13725 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
13726 
13727 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
13728 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
13729 		} else {
13730 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
13731 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
13732 
13733 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
13734 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
13735 		}
13736 		break;
13737 	}
13738 	case BPF_JLE:
13739 	case BPF_JLT:
13740 	{
13741 		if (is_jmp32) {
13742 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
13743 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
13744 
13745 			false_reg->u32_min_value = max(false_reg->u32_min_value,
13746 						       false_umin);
13747 			true_reg->u32_max_value = min(true_reg->u32_max_value,
13748 						      true_umax);
13749 		} else {
13750 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
13751 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
13752 
13753 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
13754 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
13755 		}
13756 		break;
13757 	}
13758 	case BPF_JSLE:
13759 	case BPF_JSLT:
13760 	{
13761 		if (is_jmp32) {
13762 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
13763 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
13764 
13765 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
13766 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
13767 		} else {
13768 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
13769 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
13770 
13771 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
13772 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
13773 		}
13774 		break;
13775 	}
13776 	default:
13777 		return;
13778 	}
13779 
13780 	if (is_jmp32) {
13781 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
13782 					     tnum_subreg(false_32off));
13783 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
13784 					    tnum_subreg(true_32off));
13785 		__reg_combine_32_into_64(false_reg);
13786 		__reg_combine_32_into_64(true_reg);
13787 	} else {
13788 		false_reg->var_off = false_64off;
13789 		true_reg->var_off = true_64off;
13790 		__reg_combine_64_into_32(false_reg);
13791 		__reg_combine_64_into_32(true_reg);
13792 	}
13793 }
13794 
13795 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
13796  * the variable reg.
13797  */
13798 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
13799 				struct bpf_reg_state *false_reg,
13800 				u64 val, u32 val32,
13801 				u8 opcode, bool is_jmp32)
13802 {
13803 	opcode = flip_opcode(opcode);
13804 	/* This uses zero as "not present in table"; luckily the zero opcode,
13805 	 * BPF_JA, can't get here.
13806 	 */
13807 	if (opcode)
13808 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
13809 }
13810 
13811 /* Regs are known to be equal, so intersect their min/max/var_off */
13812 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13813 				  struct bpf_reg_state *dst_reg)
13814 {
13815 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13816 							dst_reg->umin_value);
13817 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13818 							dst_reg->umax_value);
13819 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13820 							dst_reg->smin_value);
13821 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13822 							dst_reg->smax_value);
13823 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13824 							     dst_reg->var_off);
13825 	reg_bounds_sync(src_reg);
13826 	reg_bounds_sync(dst_reg);
13827 }
13828 
13829 static void reg_combine_min_max(struct bpf_reg_state *true_src,
13830 				struct bpf_reg_state *true_dst,
13831 				struct bpf_reg_state *false_src,
13832 				struct bpf_reg_state *false_dst,
13833 				u8 opcode)
13834 {
13835 	switch (opcode) {
13836 	case BPF_JEQ:
13837 		__reg_combine_min_max(true_src, true_dst);
13838 		break;
13839 	case BPF_JNE:
13840 		__reg_combine_min_max(false_src, false_dst);
13841 		break;
13842 	}
13843 }
13844 
13845 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13846 				 struct bpf_reg_state *reg, u32 id,
13847 				 bool is_null)
13848 {
13849 	if (type_may_be_null(reg->type) && reg->id == id &&
13850 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
13851 		/* Old offset (both fixed and variable parts) should have been
13852 		 * known-zero, because we don't allow pointer arithmetic on
13853 		 * pointers that might be NULL. If we see this happening, don't
13854 		 * convert the register.
13855 		 *
13856 		 * But in some cases, some helpers that return local kptrs
13857 		 * advance offset for the returned pointer. In those cases, it
13858 		 * is fine to expect to see reg->off.
13859 		 */
13860 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13861 			return;
13862 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13863 		    WARN_ON_ONCE(reg->off))
13864 			return;
13865 
13866 		if (is_null) {
13867 			reg->type = SCALAR_VALUE;
13868 			/* We don't need id and ref_obj_id from this point
13869 			 * onwards anymore, thus we should better reset it,
13870 			 * so that state pruning has chances to take effect.
13871 			 */
13872 			reg->id = 0;
13873 			reg->ref_obj_id = 0;
13874 
13875 			return;
13876 		}
13877 
13878 		mark_ptr_not_null_reg(reg);
13879 
13880 		if (!reg_may_point_to_spin_lock(reg)) {
13881 			/* For not-NULL ptr, reg->ref_obj_id will be reset
13882 			 * in release_reference().
13883 			 *
13884 			 * reg->id is still used by spin_lock ptr. Other
13885 			 * than spin_lock ptr type, reg->id can be reset.
13886 			 */
13887 			reg->id = 0;
13888 		}
13889 	}
13890 }
13891 
13892 /* The logic is similar to find_good_pkt_pointers(), both could eventually
13893  * be folded together at some point.
13894  */
13895 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13896 				  bool is_null)
13897 {
13898 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13899 	struct bpf_reg_state *regs = state->regs, *reg;
13900 	u32 ref_obj_id = regs[regno].ref_obj_id;
13901 	u32 id = regs[regno].id;
13902 
13903 	if (ref_obj_id && ref_obj_id == id && is_null)
13904 		/* regs[regno] is in the " == NULL" branch.
13905 		 * No one could have freed the reference state before
13906 		 * doing the NULL check.
13907 		 */
13908 		WARN_ON_ONCE(release_reference_state(state, id));
13909 
13910 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13911 		mark_ptr_or_null_reg(state, reg, id, is_null);
13912 	}));
13913 }
13914 
13915 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13916 				   struct bpf_reg_state *dst_reg,
13917 				   struct bpf_reg_state *src_reg,
13918 				   struct bpf_verifier_state *this_branch,
13919 				   struct bpf_verifier_state *other_branch)
13920 {
13921 	if (BPF_SRC(insn->code) != BPF_X)
13922 		return false;
13923 
13924 	/* Pointers are always 64-bit. */
13925 	if (BPF_CLASS(insn->code) == BPF_JMP32)
13926 		return false;
13927 
13928 	switch (BPF_OP(insn->code)) {
13929 	case BPF_JGT:
13930 		if ((dst_reg->type == PTR_TO_PACKET &&
13931 		     src_reg->type == PTR_TO_PACKET_END) ||
13932 		    (dst_reg->type == PTR_TO_PACKET_META &&
13933 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13934 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13935 			find_good_pkt_pointers(this_branch, dst_reg,
13936 					       dst_reg->type, false);
13937 			mark_pkt_end(other_branch, insn->dst_reg, true);
13938 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13939 			    src_reg->type == PTR_TO_PACKET) ||
13940 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13941 			    src_reg->type == PTR_TO_PACKET_META)) {
13942 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
13943 			find_good_pkt_pointers(other_branch, src_reg,
13944 					       src_reg->type, true);
13945 			mark_pkt_end(this_branch, insn->src_reg, false);
13946 		} else {
13947 			return false;
13948 		}
13949 		break;
13950 	case BPF_JLT:
13951 		if ((dst_reg->type == PTR_TO_PACKET &&
13952 		     src_reg->type == PTR_TO_PACKET_END) ||
13953 		    (dst_reg->type == PTR_TO_PACKET_META &&
13954 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13955 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13956 			find_good_pkt_pointers(other_branch, dst_reg,
13957 					       dst_reg->type, true);
13958 			mark_pkt_end(this_branch, insn->dst_reg, false);
13959 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13960 			    src_reg->type == PTR_TO_PACKET) ||
13961 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13962 			    src_reg->type == PTR_TO_PACKET_META)) {
13963 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
13964 			find_good_pkt_pointers(this_branch, src_reg,
13965 					       src_reg->type, false);
13966 			mark_pkt_end(other_branch, insn->src_reg, true);
13967 		} else {
13968 			return false;
13969 		}
13970 		break;
13971 	case BPF_JGE:
13972 		if ((dst_reg->type == PTR_TO_PACKET &&
13973 		     src_reg->type == PTR_TO_PACKET_END) ||
13974 		    (dst_reg->type == PTR_TO_PACKET_META &&
13975 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13976 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13977 			find_good_pkt_pointers(this_branch, dst_reg,
13978 					       dst_reg->type, true);
13979 			mark_pkt_end(other_branch, insn->dst_reg, false);
13980 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13981 			    src_reg->type == PTR_TO_PACKET) ||
13982 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13983 			    src_reg->type == PTR_TO_PACKET_META)) {
13984 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
13985 			find_good_pkt_pointers(other_branch, src_reg,
13986 					       src_reg->type, false);
13987 			mark_pkt_end(this_branch, insn->src_reg, true);
13988 		} else {
13989 			return false;
13990 		}
13991 		break;
13992 	case BPF_JLE:
13993 		if ((dst_reg->type == PTR_TO_PACKET &&
13994 		     src_reg->type == PTR_TO_PACKET_END) ||
13995 		    (dst_reg->type == PTR_TO_PACKET_META &&
13996 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13997 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
13998 			find_good_pkt_pointers(other_branch, dst_reg,
13999 					       dst_reg->type, false);
14000 			mark_pkt_end(this_branch, insn->dst_reg, true);
14001 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14002 			    src_reg->type == PTR_TO_PACKET) ||
14003 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14004 			    src_reg->type == PTR_TO_PACKET_META)) {
14005 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14006 			find_good_pkt_pointers(this_branch, src_reg,
14007 					       src_reg->type, true);
14008 			mark_pkt_end(other_branch, insn->src_reg, false);
14009 		} else {
14010 			return false;
14011 		}
14012 		break;
14013 	default:
14014 		return false;
14015 	}
14016 
14017 	return true;
14018 }
14019 
14020 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14021 			       struct bpf_reg_state *known_reg)
14022 {
14023 	struct bpf_func_state *state;
14024 	struct bpf_reg_state *reg;
14025 
14026 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14027 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14028 			copy_register_state(reg, known_reg);
14029 	}));
14030 }
14031 
14032 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14033 			     struct bpf_insn *insn, int *insn_idx)
14034 {
14035 	struct bpf_verifier_state *this_branch = env->cur_state;
14036 	struct bpf_verifier_state *other_branch;
14037 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14038 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14039 	struct bpf_reg_state *eq_branch_regs;
14040 	u8 opcode = BPF_OP(insn->code);
14041 	bool is_jmp32;
14042 	int pred = -1;
14043 	int err;
14044 
14045 	/* Only conditional jumps are expected to reach here. */
14046 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14047 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14048 		return -EINVAL;
14049 	}
14050 
14051 	/* check src2 operand */
14052 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14053 	if (err)
14054 		return err;
14055 
14056 	dst_reg = &regs[insn->dst_reg];
14057 	if (BPF_SRC(insn->code) == BPF_X) {
14058 		if (insn->imm != 0) {
14059 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14060 			return -EINVAL;
14061 		}
14062 
14063 		/* check src1 operand */
14064 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14065 		if (err)
14066 			return err;
14067 
14068 		src_reg = &regs[insn->src_reg];
14069 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14070 		    is_pointer_value(env, insn->src_reg)) {
14071 			verbose(env, "R%d pointer comparison prohibited\n",
14072 				insn->src_reg);
14073 			return -EACCES;
14074 		}
14075 	} else {
14076 		if (insn->src_reg != BPF_REG_0) {
14077 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14078 			return -EINVAL;
14079 		}
14080 	}
14081 
14082 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14083 
14084 	if (BPF_SRC(insn->code) == BPF_K) {
14085 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14086 	} else if (src_reg->type == SCALAR_VALUE &&
14087 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14088 		pred = is_branch_taken(dst_reg,
14089 				       tnum_subreg(src_reg->var_off).value,
14090 				       opcode,
14091 				       is_jmp32);
14092 	} else if (src_reg->type == SCALAR_VALUE &&
14093 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14094 		pred = is_branch_taken(dst_reg,
14095 				       src_reg->var_off.value,
14096 				       opcode,
14097 				       is_jmp32);
14098 	} else if (dst_reg->type == SCALAR_VALUE &&
14099 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14100 		pred = is_branch_taken(src_reg,
14101 				       tnum_subreg(dst_reg->var_off).value,
14102 				       flip_opcode(opcode),
14103 				       is_jmp32);
14104 	} else if (dst_reg->type == SCALAR_VALUE &&
14105 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14106 		pred = is_branch_taken(src_reg,
14107 				       dst_reg->var_off.value,
14108 				       flip_opcode(opcode),
14109 				       is_jmp32);
14110 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14111 		   reg_is_pkt_pointer_any(src_reg) &&
14112 		   !is_jmp32) {
14113 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14114 	}
14115 
14116 	if (pred >= 0) {
14117 		/* If we get here with a dst_reg pointer type it is because
14118 		 * above is_branch_taken() special cased the 0 comparison.
14119 		 */
14120 		if (!__is_pointer_value(false, dst_reg))
14121 			err = mark_chain_precision(env, insn->dst_reg);
14122 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14123 		    !__is_pointer_value(false, src_reg))
14124 			err = mark_chain_precision(env, insn->src_reg);
14125 		if (err)
14126 			return err;
14127 	}
14128 
14129 	if (pred == 1) {
14130 		/* Only follow the goto, ignore fall-through. If needed, push
14131 		 * the fall-through branch for simulation under speculative
14132 		 * execution.
14133 		 */
14134 		if (!env->bypass_spec_v1 &&
14135 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14136 					       *insn_idx))
14137 			return -EFAULT;
14138 		*insn_idx += insn->off;
14139 		return 0;
14140 	} else if (pred == 0) {
14141 		/* Only follow the fall-through branch, since that's where the
14142 		 * program will go. If needed, push the goto branch for
14143 		 * simulation under speculative execution.
14144 		 */
14145 		if (!env->bypass_spec_v1 &&
14146 		    !sanitize_speculative_path(env, insn,
14147 					       *insn_idx + insn->off + 1,
14148 					       *insn_idx))
14149 			return -EFAULT;
14150 		return 0;
14151 	}
14152 
14153 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14154 				  false);
14155 	if (!other_branch)
14156 		return -EFAULT;
14157 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14158 
14159 	/* detect if we are comparing against a constant value so we can adjust
14160 	 * our min/max values for our dst register.
14161 	 * this is only legit if both are scalars (or pointers to the same
14162 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14163 	 * because otherwise the different base pointers mean the offsets aren't
14164 	 * comparable.
14165 	 */
14166 	if (BPF_SRC(insn->code) == BPF_X) {
14167 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14168 
14169 		if (dst_reg->type == SCALAR_VALUE &&
14170 		    src_reg->type == SCALAR_VALUE) {
14171 			if (tnum_is_const(src_reg->var_off) ||
14172 			    (is_jmp32 &&
14173 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14174 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14175 						dst_reg,
14176 						src_reg->var_off.value,
14177 						tnum_subreg(src_reg->var_off).value,
14178 						opcode, is_jmp32);
14179 			else if (tnum_is_const(dst_reg->var_off) ||
14180 				 (is_jmp32 &&
14181 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14182 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14183 						    src_reg,
14184 						    dst_reg->var_off.value,
14185 						    tnum_subreg(dst_reg->var_off).value,
14186 						    opcode, is_jmp32);
14187 			else if (!is_jmp32 &&
14188 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14189 				/* Comparing for equality, we can combine knowledge */
14190 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14191 						    &other_branch_regs[insn->dst_reg],
14192 						    src_reg, dst_reg, opcode);
14193 			if (src_reg->id &&
14194 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14195 				find_equal_scalars(this_branch, src_reg);
14196 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14197 			}
14198 
14199 		}
14200 	} else if (dst_reg->type == SCALAR_VALUE) {
14201 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14202 					dst_reg, insn->imm, (u32)insn->imm,
14203 					opcode, is_jmp32);
14204 	}
14205 
14206 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14207 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14208 		find_equal_scalars(this_branch, dst_reg);
14209 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14210 	}
14211 
14212 	/* if one pointer register is compared to another pointer
14213 	 * register check if PTR_MAYBE_NULL could be lifted.
14214 	 * E.g. register A - maybe null
14215 	 *      register B - not null
14216 	 * for JNE A, B, ... - A is not null in the false branch;
14217 	 * for JEQ A, B, ... - A is not null in the true branch.
14218 	 *
14219 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14220 	 * not need to be null checked by the BPF program, i.e.,
14221 	 * could be null even without PTR_MAYBE_NULL marking, so
14222 	 * only propagate nullness when neither reg is that type.
14223 	 */
14224 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14225 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14226 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14227 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14228 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14229 		eq_branch_regs = NULL;
14230 		switch (opcode) {
14231 		case BPF_JEQ:
14232 			eq_branch_regs = other_branch_regs;
14233 			break;
14234 		case BPF_JNE:
14235 			eq_branch_regs = regs;
14236 			break;
14237 		default:
14238 			/* do nothing */
14239 			break;
14240 		}
14241 		if (eq_branch_regs) {
14242 			if (type_may_be_null(src_reg->type))
14243 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14244 			else
14245 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14246 		}
14247 	}
14248 
14249 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14250 	 * NOTE: these optimizations below are related with pointer comparison
14251 	 *       which will never be JMP32.
14252 	 */
14253 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14254 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14255 	    type_may_be_null(dst_reg->type)) {
14256 		/* Mark all identical registers in each branch as either
14257 		 * safe or unknown depending R == 0 or R != 0 conditional.
14258 		 */
14259 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14260 				      opcode == BPF_JNE);
14261 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14262 				      opcode == BPF_JEQ);
14263 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14264 					   this_branch, other_branch) &&
14265 		   is_pointer_value(env, insn->dst_reg)) {
14266 		verbose(env, "R%d pointer comparison prohibited\n",
14267 			insn->dst_reg);
14268 		return -EACCES;
14269 	}
14270 	if (env->log.level & BPF_LOG_LEVEL)
14271 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14272 	return 0;
14273 }
14274 
14275 /* verify BPF_LD_IMM64 instruction */
14276 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14277 {
14278 	struct bpf_insn_aux_data *aux = cur_aux(env);
14279 	struct bpf_reg_state *regs = cur_regs(env);
14280 	struct bpf_reg_state *dst_reg;
14281 	struct bpf_map *map;
14282 	int err;
14283 
14284 	if (BPF_SIZE(insn->code) != BPF_DW) {
14285 		verbose(env, "invalid BPF_LD_IMM insn\n");
14286 		return -EINVAL;
14287 	}
14288 	if (insn->off != 0) {
14289 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14290 		return -EINVAL;
14291 	}
14292 
14293 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14294 	if (err)
14295 		return err;
14296 
14297 	dst_reg = &regs[insn->dst_reg];
14298 	if (insn->src_reg == 0) {
14299 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14300 
14301 		dst_reg->type = SCALAR_VALUE;
14302 		__mark_reg_known(&regs[insn->dst_reg], imm);
14303 		return 0;
14304 	}
14305 
14306 	/* All special src_reg cases are listed below. From this point onwards
14307 	 * we either succeed and assign a corresponding dst_reg->type after
14308 	 * zeroing the offset, or fail and reject the program.
14309 	 */
14310 	mark_reg_known_zero(env, regs, insn->dst_reg);
14311 
14312 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14313 		dst_reg->type = aux->btf_var.reg_type;
14314 		switch (base_type(dst_reg->type)) {
14315 		case PTR_TO_MEM:
14316 			dst_reg->mem_size = aux->btf_var.mem_size;
14317 			break;
14318 		case PTR_TO_BTF_ID:
14319 			dst_reg->btf = aux->btf_var.btf;
14320 			dst_reg->btf_id = aux->btf_var.btf_id;
14321 			break;
14322 		default:
14323 			verbose(env, "bpf verifier is misconfigured\n");
14324 			return -EFAULT;
14325 		}
14326 		return 0;
14327 	}
14328 
14329 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14330 		struct bpf_prog_aux *aux = env->prog->aux;
14331 		u32 subprogno = find_subprog(env,
14332 					     env->insn_idx + insn->imm + 1);
14333 
14334 		if (!aux->func_info) {
14335 			verbose(env, "missing btf func_info\n");
14336 			return -EINVAL;
14337 		}
14338 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14339 			verbose(env, "callback function not static\n");
14340 			return -EINVAL;
14341 		}
14342 
14343 		dst_reg->type = PTR_TO_FUNC;
14344 		dst_reg->subprogno = subprogno;
14345 		return 0;
14346 	}
14347 
14348 	map = env->used_maps[aux->map_index];
14349 	dst_reg->map_ptr = map;
14350 
14351 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14352 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14353 		dst_reg->type = PTR_TO_MAP_VALUE;
14354 		dst_reg->off = aux->map_off;
14355 		WARN_ON_ONCE(map->max_entries != 1);
14356 		/* We want reg->id to be same (0) as map_value is not distinct */
14357 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14358 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14359 		dst_reg->type = CONST_PTR_TO_MAP;
14360 	} else {
14361 		verbose(env, "bpf verifier is misconfigured\n");
14362 		return -EINVAL;
14363 	}
14364 
14365 	return 0;
14366 }
14367 
14368 static bool may_access_skb(enum bpf_prog_type type)
14369 {
14370 	switch (type) {
14371 	case BPF_PROG_TYPE_SOCKET_FILTER:
14372 	case BPF_PROG_TYPE_SCHED_CLS:
14373 	case BPF_PROG_TYPE_SCHED_ACT:
14374 		return true;
14375 	default:
14376 		return false;
14377 	}
14378 }
14379 
14380 /* verify safety of LD_ABS|LD_IND instructions:
14381  * - they can only appear in the programs where ctx == skb
14382  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14383  *   preserve R6-R9, and store return value into R0
14384  *
14385  * Implicit input:
14386  *   ctx == skb == R6 == CTX
14387  *
14388  * Explicit input:
14389  *   SRC == any register
14390  *   IMM == 32-bit immediate
14391  *
14392  * Output:
14393  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14394  */
14395 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14396 {
14397 	struct bpf_reg_state *regs = cur_regs(env);
14398 	static const int ctx_reg = BPF_REG_6;
14399 	u8 mode = BPF_MODE(insn->code);
14400 	int i, err;
14401 
14402 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14403 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14404 		return -EINVAL;
14405 	}
14406 
14407 	if (!env->ops->gen_ld_abs) {
14408 		verbose(env, "bpf verifier is misconfigured\n");
14409 		return -EINVAL;
14410 	}
14411 
14412 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14413 	    BPF_SIZE(insn->code) == BPF_DW ||
14414 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14415 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14416 		return -EINVAL;
14417 	}
14418 
14419 	/* check whether implicit source operand (register R6) is readable */
14420 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14421 	if (err)
14422 		return err;
14423 
14424 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14425 	 * gen_ld_abs() may terminate the program at runtime, leading to
14426 	 * reference leak.
14427 	 */
14428 	err = check_reference_leak(env);
14429 	if (err) {
14430 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14431 		return err;
14432 	}
14433 
14434 	if (env->cur_state->active_lock.ptr) {
14435 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14436 		return -EINVAL;
14437 	}
14438 
14439 	if (env->cur_state->active_rcu_lock) {
14440 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14441 		return -EINVAL;
14442 	}
14443 
14444 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14445 		verbose(env,
14446 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14447 		return -EINVAL;
14448 	}
14449 
14450 	if (mode == BPF_IND) {
14451 		/* check explicit source operand */
14452 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14453 		if (err)
14454 			return err;
14455 	}
14456 
14457 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14458 	if (err < 0)
14459 		return err;
14460 
14461 	/* reset caller saved regs to unreadable */
14462 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14463 		mark_reg_not_init(env, regs, caller_saved[i]);
14464 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14465 	}
14466 
14467 	/* mark destination R0 register as readable, since it contains
14468 	 * the value fetched from the packet.
14469 	 * Already marked as written above.
14470 	 */
14471 	mark_reg_unknown(env, regs, BPF_REG_0);
14472 	/* ld_abs load up to 32-bit skb data. */
14473 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14474 	return 0;
14475 }
14476 
14477 static int check_return_code(struct bpf_verifier_env *env)
14478 {
14479 	struct tnum enforce_attach_type_range = tnum_unknown;
14480 	const struct bpf_prog *prog = env->prog;
14481 	struct bpf_reg_state *reg;
14482 	struct tnum range = tnum_range(0, 1);
14483 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14484 	int err;
14485 	struct bpf_func_state *frame = env->cur_state->frame[0];
14486 	const bool is_subprog = frame->subprogno;
14487 
14488 	/* LSM and struct_ops func-ptr's return type could be "void" */
14489 	if (!is_subprog) {
14490 		switch (prog_type) {
14491 		case BPF_PROG_TYPE_LSM:
14492 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14493 				/* See below, can be 0 or 0-1 depending on hook. */
14494 				break;
14495 			fallthrough;
14496 		case BPF_PROG_TYPE_STRUCT_OPS:
14497 			if (!prog->aux->attach_func_proto->type)
14498 				return 0;
14499 			break;
14500 		default:
14501 			break;
14502 		}
14503 	}
14504 
14505 	/* eBPF calling convention is such that R0 is used
14506 	 * to return the value from eBPF program.
14507 	 * Make sure that it's readable at this time
14508 	 * of bpf_exit, which means that program wrote
14509 	 * something into it earlier
14510 	 */
14511 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14512 	if (err)
14513 		return err;
14514 
14515 	if (is_pointer_value(env, BPF_REG_0)) {
14516 		verbose(env, "R0 leaks addr as return value\n");
14517 		return -EACCES;
14518 	}
14519 
14520 	reg = cur_regs(env) + BPF_REG_0;
14521 
14522 	if (frame->in_async_callback_fn) {
14523 		/* enforce return zero from async callbacks like timer */
14524 		if (reg->type != SCALAR_VALUE) {
14525 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
14526 				reg_type_str(env, reg->type));
14527 			return -EINVAL;
14528 		}
14529 
14530 		if (!tnum_in(tnum_const(0), reg->var_off)) {
14531 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
14532 			return -EINVAL;
14533 		}
14534 		return 0;
14535 	}
14536 
14537 	if (is_subprog) {
14538 		if (reg->type != SCALAR_VALUE) {
14539 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
14540 				reg_type_str(env, reg->type));
14541 			return -EINVAL;
14542 		}
14543 		return 0;
14544 	}
14545 
14546 	switch (prog_type) {
14547 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14548 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
14549 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14550 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14551 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14552 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14553 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
14554 			range = tnum_range(1, 1);
14555 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14556 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14557 			range = tnum_range(0, 3);
14558 		break;
14559 	case BPF_PROG_TYPE_CGROUP_SKB:
14560 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14561 			range = tnum_range(0, 3);
14562 			enforce_attach_type_range = tnum_range(2, 3);
14563 		}
14564 		break;
14565 	case BPF_PROG_TYPE_CGROUP_SOCK:
14566 	case BPF_PROG_TYPE_SOCK_OPS:
14567 	case BPF_PROG_TYPE_CGROUP_DEVICE:
14568 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
14569 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
14570 		break;
14571 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14572 		if (!env->prog->aux->attach_btf_id)
14573 			return 0;
14574 		range = tnum_const(0);
14575 		break;
14576 	case BPF_PROG_TYPE_TRACING:
14577 		switch (env->prog->expected_attach_type) {
14578 		case BPF_TRACE_FENTRY:
14579 		case BPF_TRACE_FEXIT:
14580 			range = tnum_const(0);
14581 			break;
14582 		case BPF_TRACE_RAW_TP:
14583 		case BPF_MODIFY_RETURN:
14584 			return 0;
14585 		case BPF_TRACE_ITER:
14586 			break;
14587 		default:
14588 			return -ENOTSUPP;
14589 		}
14590 		break;
14591 	case BPF_PROG_TYPE_SK_LOOKUP:
14592 		range = tnum_range(SK_DROP, SK_PASS);
14593 		break;
14594 
14595 	case BPF_PROG_TYPE_LSM:
14596 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
14597 			/* Regular BPF_PROG_TYPE_LSM programs can return
14598 			 * any value.
14599 			 */
14600 			return 0;
14601 		}
14602 		if (!env->prog->aux->attach_func_proto->type) {
14603 			/* Make sure programs that attach to void
14604 			 * hooks don't try to modify return value.
14605 			 */
14606 			range = tnum_range(1, 1);
14607 		}
14608 		break;
14609 
14610 	case BPF_PROG_TYPE_NETFILTER:
14611 		range = tnum_range(NF_DROP, NF_ACCEPT);
14612 		break;
14613 	case BPF_PROG_TYPE_EXT:
14614 		/* freplace program can return anything as its return value
14615 		 * depends on the to-be-replaced kernel func or bpf program.
14616 		 */
14617 	default:
14618 		return 0;
14619 	}
14620 
14621 	if (reg->type != SCALAR_VALUE) {
14622 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
14623 			reg_type_str(env, reg->type));
14624 		return -EINVAL;
14625 	}
14626 
14627 	if (!tnum_in(range, reg->var_off)) {
14628 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
14629 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
14630 		    prog_type == BPF_PROG_TYPE_LSM &&
14631 		    !prog->aux->attach_func_proto->type)
14632 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
14633 		return -EINVAL;
14634 	}
14635 
14636 	if (!tnum_is_unknown(enforce_attach_type_range) &&
14637 	    tnum_in(enforce_attach_type_range, reg->var_off))
14638 		env->prog->enforce_expected_attach_type = 1;
14639 	return 0;
14640 }
14641 
14642 /* non-recursive DFS pseudo code
14643  * 1  procedure DFS-iterative(G,v):
14644  * 2      label v as discovered
14645  * 3      let S be a stack
14646  * 4      S.push(v)
14647  * 5      while S is not empty
14648  * 6            t <- S.peek()
14649  * 7            if t is what we're looking for:
14650  * 8                return t
14651  * 9            for all edges e in G.adjacentEdges(t) do
14652  * 10               if edge e is already labelled
14653  * 11                   continue with the next edge
14654  * 12               w <- G.adjacentVertex(t,e)
14655  * 13               if vertex w is not discovered and not explored
14656  * 14                   label e as tree-edge
14657  * 15                   label w as discovered
14658  * 16                   S.push(w)
14659  * 17                   continue at 5
14660  * 18               else if vertex w is discovered
14661  * 19                   label e as back-edge
14662  * 20               else
14663  * 21                   // vertex w is explored
14664  * 22                   label e as forward- or cross-edge
14665  * 23           label t as explored
14666  * 24           S.pop()
14667  *
14668  * convention:
14669  * 0x10 - discovered
14670  * 0x11 - discovered and fall-through edge labelled
14671  * 0x12 - discovered and fall-through and branch edges labelled
14672  * 0x20 - explored
14673  */
14674 
14675 enum {
14676 	DISCOVERED = 0x10,
14677 	EXPLORED = 0x20,
14678 	FALLTHROUGH = 1,
14679 	BRANCH = 2,
14680 };
14681 
14682 static u32 state_htab_size(struct bpf_verifier_env *env)
14683 {
14684 	return env->prog->len;
14685 }
14686 
14687 static struct bpf_verifier_state_list **explored_state(
14688 					struct bpf_verifier_env *env,
14689 					int idx)
14690 {
14691 	struct bpf_verifier_state *cur = env->cur_state;
14692 	struct bpf_func_state *state = cur->frame[cur->curframe];
14693 
14694 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
14695 }
14696 
14697 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
14698 {
14699 	env->insn_aux_data[idx].prune_point = true;
14700 }
14701 
14702 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
14703 {
14704 	return env->insn_aux_data[insn_idx].prune_point;
14705 }
14706 
14707 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
14708 {
14709 	env->insn_aux_data[idx].force_checkpoint = true;
14710 }
14711 
14712 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14713 {
14714 	return env->insn_aux_data[insn_idx].force_checkpoint;
14715 }
14716 
14717 
14718 enum {
14719 	DONE_EXPLORING = 0,
14720 	KEEP_EXPLORING = 1,
14721 };
14722 
14723 /* t, w, e - match pseudo-code above:
14724  * t - index of current instruction
14725  * w - next instruction
14726  * e - edge
14727  */
14728 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
14729 		     bool loop_ok)
14730 {
14731 	int *insn_stack = env->cfg.insn_stack;
14732 	int *insn_state = env->cfg.insn_state;
14733 
14734 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
14735 		return DONE_EXPLORING;
14736 
14737 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
14738 		return DONE_EXPLORING;
14739 
14740 	if (w < 0 || w >= env->prog->len) {
14741 		verbose_linfo(env, t, "%d: ", t);
14742 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
14743 		return -EINVAL;
14744 	}
14745 
14746 	if (e == BRANCH) {
14747 		/* mark branch target for state pruning */
14748 		mark_prune_point(env, w);
14749 		mark_jmp_point(env, w);
14750 	}
14751 
14752 	if (insn_state[w] == 0) {
14753 		/* tree-edge */
14754 		insn_state[t] = DISCOVERED | e;
14755 		insn_state[w] = DISCOVERED;
14756 		if (env->cfg.cur_stack >= env->prog->len)
14757 			return -E2BIG;
14758 		insn_stack[env->cfg.cur_stack++] = w;
14759 		return KEEP_EXPLORING;
14760 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
14761 		if (loop_ok && env->bpf_capable)
14762 			return DONE_EXPLORING;
14763 		verbose_linfo(env, t, "%d: ", t);
14764 		verbose_linfo(env, w, "%d: ", w);
14765 		verbose(env, "back-edge from insn %d to %d\n", t, w);
14766 		return -EINVAL;
14767 	} else if (insn_state[w] == EXPLORED) {
14768 		/* forward- or cross-edge */
14769 		insn_state[t] = DISCOVERED | e;
14770 	} else {
14771 		verbose(env, "insn state internal bug\n");
14772 		return -EFAULT;
14773 	}
14774 	return DONE_EXPLORING;
14775 }
14776 
14777 static int visit_func_call_insn(int t, struct bpf_insn *insns,
14778 				struct bpf_verifier_env *env,
14779 				bool visit_callee)
14780 {
14781 	int ret;
14782 
14783 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
14784 	if (ret)
14785 		return ret;
14786 
14787 	mark_prune_point(env, t + 1);
14788 	/* when we exit from subprog, we need to record non-linear history */
14789 	mark_jmp_point(env, t + 1);
14790 
14791 	if (visit_callee) {
14792 		mark_prune_point(env, t);
14793 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
14794 				/* It's ok to allow recursion from CFG point of
14795 				 * view. __check_func_call() will do the actual
14796 				 * check.
14797 				 */
14798 				bpf_pseudo_func(insns + t));
14799 	}
14800 	return ret;
14801 }
14802 
14803 /* Visits the instruction at index t and returns one of the following:
14804  *  < 0 - an error occurred
14805  *  DONE_EXPLORING - the instruction was fully explored
14806  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
14807  */
14808 static int visit_insn(int t, struct bpf_verifier_env *env)
14809 {
14810 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
14811 	int ret, off;
14812 
14813 	if (bpf_pseudo_func(insn))
14814 		return visit_func_call_insn(t, insns, env, true);
14815 
14816 	/* All non-branch instructions have a single fall-through edge. */
14817 	if (BPF_CLASS(insn->code) != BPF_JMP &&
14818 	    BPF_CLASS(insn->code) != BPF_JMP32)
14819 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
14820 
14821 	switch (BPF_OP(insn->code)) {
14822 	case BPF_EXIT:
14823 		return DONE_EXPLORING;
14824 
14825 	case BPF_CALL:
14826 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
14827 			/* Mark this call insn as a prune point to trigger
14828 			 * is_state_visited() check before call itself is
14829 			 * processed by __check_func_call(). Otherwise new
14830 			 * async state will be pushed for further exploration.
14831 			 */
14832 			mark_prune_point(env, t);
14833 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14834 			struct bpf_kfunc_call_arg_meta meta;
14835 
14836 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
14837 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
14838 				mark_prune_point(env, t);
14839 				/* Checking and saving state checkpoints at iter_next() call
14840 				 * is crucial for fast convergence of open-coded iterator loop
14841 				 * logic, so we need to force it. If we don't do that,
14842 				 * is_state_visited() might skip saving a checkpoint, causing
14843 				 * unnecessarily long sequence of not checkpointed
14844 				 * instructions and jumps, leading to exhaustion of jump
14845 				 * history buffer, and potentially other undesired outcomes.
14846 				 * It is expected that with correct open-coded iterators
14847 				 * convergence will happen quickly, so we don't run a risk of
14848 				 * exhausting memory.
14849 				 */
14850 				mark_force_checkpoint(env, t);
14851 			}
14852 		}
14853 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
14854 
14855 	case BPF_JA:
14856 		if (BPF_SRC(insn->code) != BPF_K)
14857 			return -EINVAL;
14858 
14859 		if (BPF_CLASS(insn->code) == BPF_JMP)
14860 			off = insn->off;
14861 		else
14862 			off = insn->imm;
14863 
14864 		/* unconditional jump with single edge */
14865 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env,
14866 				true);
14867 		if (ret)
14868 			return ret;
14869 
14870 		mark_prune_point(env, t + off + 1);
14871 		mark_jmp_point(env, t + off + 1);
14872 
14873 		return ret;
14874 
14875 	default:
14876 		/* conditional jump with two edges */
14877 		mark_prune_point(env, t);
14878 
14879 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
14880 		if (ret)
14881 			return ret;
14882 
14883 		return push_insn(t, t + insn->off + 1, BRANCH, env, true);
14884 	}
14885 }
14886 
14887 /* non-recursive depth-first-search to detect loops in BPF program
14888  * loop == back-edge in directed graph
14889  */
14890 static int check_cfg(struct bpf_verifier_env *env)
14891 {
14892 	int insn_cnt = env->prog->len;
14893 	int *insn_stack, *insn_state;
14894 	int ret = 0;
14895 	int i;
14896 
14897 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14898 	if (!insn_state)
14899 		return -ENOMEM;
14900 
14901 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14902 	if (!insn_stack) {
14903 		kvfree(insn_state);
14904 		return -ENOMEM;
14905 	}
14906 
14907 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14908 	insn_stack[0] = 0; /* 0 is the first instruction */
14909 	env->cfg.cur_stack = 1;
14910 
14911 	while (env->cfg.cur_stack > 0) {
14912 		int t = insn_stack[env->cfg.cur_stack - 1];
14913 
14914 		ret = visit_insn(t, env);
14915 		switch (ret) {
14916 		case DONE_EXPLORING:
14917 			insn_state[t] = EXPLORED;
14918 			env->cfg.cur_stack--;
14919 			break;
14920 		case KEEP_EXPLORING:
14921 			break;
14922 		default:
14923 			if (ret > 0) {
14924 				verbose(env, "visit_insn internal bug\n");
14925 				ret = -EFAULT;
14926 			}
14927 			goto err_free;
14928 		}
14929 	}
14930 
14931 	if (env->cfg.cur_stack < 0) {
14932 		verbose(env, "pop stack internal bug\n");
14933 		ret = -EFAULT;
14934 		goto err_free;
14935 	}
14936 
14937 	for (i = 0; i < insn_cnt; i++) {
14938 		if (insn_state[i] != EXPLORED) {
14939 			verbose(env, "unreachable insn %d\n", i);
14940 			ret = -EINVAL;
14941 			goto err_free;
14942 		}
14943 	}
14944 	ret = 0; /* cfg looks good */
14945 
14946 err_free:
14947 	kvfree(insn_state);
14948 	kvfree(insn_stack);
14949 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
14950 	return ret;
14951 }
14952 
14953 static int check_abnormal_return(struct bpf_verifier_env *env)
14954 {
14955 	int i;
14956 
14957 	for (i = 1; i < env->subprog_cnt; i++) {
14958 		if (env->subprog_info[i].has_ld_abs) {
14959 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14960 			return -EINVAL;
14961 		}
14962 		if (env->subprog_info[i].has_tail_call) {
14963 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14964 			return -EINVAL;
14965 		}
14966 	}
14967 	return 0;
14968 }
14969 
14970 /* The minimum supported BTF func info size */
14971 #define MIN_BPF_FUNCINFO_SIZE	8
14972 #define MAX_FUNCINFO_REC_SIZE	252
14973 
14974 static int check_btf_func(struct bpf_verifier_env *env,
14975 			  const union bpf_attr *attr,
14976 			  bpfptr_t uattr)
14977 {
14978 	const struct btf_type *type, *func_proto, *ret_type;
14979 	u32 i, nfuncs, urec_size, min_size;
14980 	u32 krec_size = sizeof(struct bpf_func_info);
14981 	struct bpf_func_info *krecord;
14982 	struct bpf_func_info_aux *info_aux = NULL;
14983 	struct bpf_prog *prog;
14984 	const struct btf *btf;
14985 	bpfptr_t urecord;
14986 	u32 prev_offset = 0;
14987 	bool scalar_return;
14988 	int ret = -ENOMEM;
14989 
14990 	nfuncs = attr->func_info_cnt;
14991 	if (!nfuncs) {
14992 		if (check_abnormal_return(env))
14993 			return -EINVAL;
14994 		return 0;
14995 	}
14996 
14997 	if (nfuncs != env->subprog_cnt) {
14998 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
14999 		return -EINVAL;
15000 	}
15001 
15002 	urec_size = attr->func_info_rec_size;
15003 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15004 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15005 	    urec_size % sizeof(u32)) {
15006 		verbose(env, "invalid func info rec size %u\n", urec_size);
15007 		return -EINVAL;
15008 	}
15009 
15010 	prog = env->prog;
15011 	btf = prog->aux->btf;
15012 
15013 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15014 	min_size = min_t(u32, krec_size, urec_size);
15015 
15016 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15017 	if (!krecord)
15018 		return -ENOMEM;
15019 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15020 	if (!info_aux)
15021 		goto err_free;
15022 
15023 	for (i = 0; i < nfuncs; i++) {
15024 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15025 		if (ret) {
15026 			if (ret == -E2BIG) {
15027 				verbose(env, "nonzero tailing record in func info");
15028 				/* set the size kernel expects so loader can zero
15029 				 * out the rest of the record.
15030 				 */
15031 				if (copy_to_bpfptr_offset(uattr,
15032 							  offsetof(union bpf_attr, func_info_rec_size),
15033 							  &min_size, sizeof(min_size)))
15034 					ret = -EFAULT;
15035 			}
15036 			goto err_free;
15037 		}
15038 
15039 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15040 			ret = -EFAULT;
15041 			goto err_free;
15042 		}
15043 
15044 		/* check insn_off */
15045 		ret = -EINVAL;
15046 		if (i == 0) {
15047 			if (krecord[i].insn_off) {
15048 				verbose(env,
15049 					"nonzero insn_off %u for the first func info record",
15050 					krecord[i].insn_off);
15051 				goto err_free;
15052 			}
15053 		} else if (krecord[i].insn_off <= prev_offset) {
15054 			verbose(env,
15055 				"same or smaller insn offset (%u) than previous func info record (%u)",
15056 				krecord[i].insn_off, prev_offset);
15057 			goto err_free;
15058 		}
15059 
15060 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15061 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15062 			goto err_free;
15063 		}
15064 
15065 		/* check type_id */
15066 		type = btf_type_by_id(btf, krecord[i].type_id);
15067 		if (!type || !btf_type_is_func(type)) {
15068 			verbose(env, "invalid type id %d in func info",
15069 				krecord[i].type_id);
15070 			goto err_free;
15071 		}
15072 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15073 
15074 		func_proto = btf_type_by_id(btf, type->type);
15075 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15076 			/* btf_func_check() already verified it during BTF load */
15077 			goto err_free;
15078 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15079 		scalar_return =
15080 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15081 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15082 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15083 			goto err_free;
15084 		}
15085 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15086 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15087 			goto err_free;
15088 		}
15089 
15090 		prev_offset = krecord[i].insn_off;
15091 		bpfptr_add(&urecord, urec_size);
15092 	}
15093 
15094 	prog->aux->func_info = krecord;
15095 	prog->aux->func_info_cnt = nfuncs;
15096 	prog->aux->func_info_aux = info_aux;
15097 	return 0;
15098 
15099 err_free:
15100 	kvfree(krecord);
15101 	kfree(info_aux);
15102 	return ret;
15103 }
15104 
15105 static void adjust_btf_func(struct bpf_verifier_env *env)
15106 {
15107 	struct bpf_prog_aux *aux = env->prog->aux;
15108 	int i;
15109 
15110 	if (!aux->func_info)
15111 		return;
15112 
15113 	for (i = 0; i < env->subprog_cnt; i++)
15114 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15115 }
15116 
15117 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15118 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15119 
15120 static int check_btf_line(struct bpf_verifier_env *env,
15121 			  const union bpf_attr *attr,
15122 			  bpfptr_t uattr)
15123 {
15124 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15125 	struct bpf_subprog_info *sub;
15126 	struct bpf_line_info *linfo;
15127 	struct bpf_prog *prog;
15128 	const struct btf *btf;
15129 	bpfptr_t ulinfo;
15130 	int err;
15131 
15132 	nr_linfo = attr->line_info_cnt;
15133 	if (!nr_linfo)
15134 		return 0;
15135 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15136 		return -EINVAL;
15137 
15138 	rec_size = attr->line_info_rec_size;
15139 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15140 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15141 	    rec_size & (sizeof(u32) - 1))
15142 		return -EINVAL;
15143 
15144 	/* Need to zero it in case the userspace may
15145 	 * pass in a smaller bpf_line_info object.
15146 	 */
15147 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15148 			 GFP_KERNEL | __GFP_NOWARN);
15149 	if (!linfo)
15150 		return -ENOMEM;
15151 
15152 	prog = env->prog;
15153 	btf = prog->aux->btf;
15154 
15155 	s = 0;
15156 	sub = env->subprog_info;
15157 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15158 	expected_size = sizeof(struct bpf_line_info);
15159 	ncopy = min_t(u32, expected_size, rec_size);
15160 	for (i = 0; i < nr_linfo; i++) {
15161 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15162 		if (err) {
15163 			if (err == -E2BIG) {
15164 				verbose(env, "nonzero tailing record in line_info");
15165 				if (copy_to_bpfptr_offset(uattr,
15166 							  offsetof(union bpf_attr, line_info_rec_size),
15167 							  &expected_size, sizeof(expected_size)))
15168 					err = -EFAULT;
15169 			}
15170 			goto err_free;
15171 		}
15172 
15173 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15174 			err = -EFAULT;
15175 			goto err_free;
15176 		}
15177 
15178 		/*
15179 		 * Check insn_off to ensure
15180 		 * 1) strictly increasing AND
15181 		 * 2) bounded by prog->len
15182 		 *
15183 		 * The linfo[0].insn_off == 0 check logically falls into
15184 		 * the later "missing bpf_line_info for func..." case
15185 		 * because the first linfo[0].insn_off must be the
15186 		 * first sub also and the first sub must have
15187 		 * subprog_info[0].start == 0.
15188 		 */
15189 		if ((i && linfo[i].insn_off <= prev_offset) ||
15190 		    linfo[i].insn_off >= prog->len) {
15191 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15192 				i, linfo[i].insn_off, prev_offset,
15193 				prog->len);
15194 			err = -EINVAL;
15195 			goto err_free;
15196 		}
15197 
15198 		if (!prog->insnsi[linfo[i].insn_off].code) {
15199 			verbose(env,
15200 				"Invalid insn code at line_info[%u].insn_off\n",
15201 				i);
15202 			err = -EINVAL;
15203 			goto err_free;
15204 		}
15205 
15206 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15207 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15208 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15209 			err = -EINVAL;
15210 			goto err_free;
15211 		}
15212 
15213 		if (s != env->subprog_cnt) {
15214 			if (linfo[i].insn_off == sub[s].start) {
15215 				sub[s].linfo_idx = i;
15216 				s++;
15217 			} else if (sub[s].start < linfo[i].insn_off) {
15218 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15219 				err = -EINVAL;
15220 				goto err_free;
15221 			}
15222 		}
15223 
15224 		prev_offset = linfo[i].insn_off;
15225 		bpfptr_add(&ulinfo, rec_size);
15226 	}
15227 
15228 	if (s != env->subprog_cnt) {
15229 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15230 			env->subprog_cnt - s, s);
15231 		err = -EINVAL;
15232 		goto err_free;
15233 	}
15234 
15235 	prog->aux->linfo = linfo;
15236 	prog->aux->nr_linfo = nr_linfo;
15237 
15238 	return 0;
15239 
15240 err_free:
15241 	kvfree(linfo);
15242 	return err;
15243 }
15244 
15245 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15246 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15247 
15248 static int check_core_relo(struct bpf_verifier_env *env,
15249 			   const union bpf_attr *attr,
15250 			   bpfptr_t uattr)
15251 {
15252 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15253 	struct bpf_core_relo core_relo = {};
15254 	struct bpf_prog *prog = env->prog;
15255 	const struct btf *btf = prog->aux->btf;
15256 	struct bpf_core_ctx ctx = {
15257 		.log = &env->log,
15258 		.btf = btf,
15259 	};
15260 	bpfptr_t u_core_relo;
15261 	int err;
15262 
15263 	nr_core_relo = attr->core_relo_cnt;
15264 	if (!nr_core_relo)
15265 		return 0;
15266 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15267 		return -EINVAL;
15268 
15269 	rec_size = attr->core_relo_rec_size;
15270 	if (rec_size < MIN_CORE_RELO_SIZE ||
15271 	    rec_size > MAX_CORE_RELO_SIZE ||
15272 	    rec_size % sizeof(u32))
15273 		return -EINVAL;
15274 
15275 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15276 	expected_size = sizeof(struct bpf_core_relo);
15277 	ncopy = min_t(u32, expected_size, rec_size);
15278 
15279 	/* Unlike func_info and line_info, copy and apply each CO-RE
15280 	 * relocation record one at a time.
15281 	 */
15282 	for (i = 0; i < nr_core_relo; i++) {
15283 		/* future proofing when sizeof(bpf_core_relo) changes */
15284 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15285 		if (err) {
15286 			if (err == -E2BIG) {
15287 				verbose(env, "nonzero tailing record in core_relo");
15288 				if (copy_to_bpfptr_offset(uattr,
15289 							  offsetof(union bpf_attr, core_relo_rec_size),
15290 							  &expected_size, sizeof(expected_size)))
15291 					err = -EFAULT;
15292 			}
15293 			break;
15294 		}
15295 
15296 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15297 			err = -EFAULT;
15298 			break;
15299 		}
15300 
15301 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15302 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15303 				i, core_relo.insn_off, prog->len);
15304 			err = -EINVAL;
15305 			break;
15306 		}
15307 
15308 		err = bpf_core_apply(&ctx, &core_relo, i,
15309 				     &prog->insnsi[core_relo.insn_off / 8]);
15310 		if (err)
15311 			break;
15312 		bpfptr_add(&u_core_relo, rec_size);
15313 	}
15314 	return err;
15315 }
15316 
15317 static int check_btf_info(struct bpf_verifier_env *env,
15318 			  const union bpf_attr *attr,
15319 			  bpfptr_t uattr)
15320 {
15321 	struct btf *btf;
15322 	int err;
15323 
15324 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15325 		if (check_abnormal_return(env))
15326 			return -EINVAL;
15327 		return 0;
15328 	}
15329 
15330 	btf = btf_get_by_fd(attr->prog_btf_fd);
15331 	if (IS_ERR(btf))
15332 		return PTR_ERR(btf);
15333 	if (btf_is_kernel(btf)) {
15334 		btf_put(btf);
15335 		return -EACCES;
15336 	}
15337 	env->prog->aux->btf = btf;
15338 
15339 	err = check_btf_func(env, attr, uattr);
15340 	if (err)
15341 		return err;
15342 
15343 	err = check_btf_line(env, attr, uattr);
15344 	if (err)
15345 		return err;
15346 
15347 	err = check_core_relo(env, attr, uattr);
15348 	if (err)
15349 		return err;
15350 
15351 	return 0;
15352 }
15353 
15354 /* check %cur's range satisfies %old's */
15355 static bool range_within(struct bpf_reg_state *old,
15356 			 struct bpf_reg_state *cur)
15357 {
15358 	return old->umin_value <= cur->umin_value &&
15359 	       old->umax_value >= cur->umax_value &&
15360 	       old->smin_value <= cur->smin_value &&
15361 	       old->smax_value >= cur->smax_value &&
15362 	       old->u32_min_value <= cur->u32_min_value &&
15363 	       old->u32_max_value >= cur->u32_max_value &&
15364 	       old->s32_min_value <= cur->s32_min_value &&
15365 	       old->s32_max_value >= cur->s32_max_value;
15366 }
15367 
15368 /* If in the old state two registers had the same id, then they need to have
15369  * the same id in the new state as well.  But that id could be different from
15370  * the old state, so we need to track the mapping from old to new ids.
15371  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15372  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
15373  * regs with a different old id could still have new id 9, we don't care about
15374  * that.
15375  * So we look through our idmap to see if this old id has been seen before.  If
15376  * so, we require the new id to match; otherwise, we add the id pair to the map.
15377  */
15378 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15379 {
15380 	struct bpf_id_pair *map = idmap->map;
15381 	unsigned int i;
15382 
15383 	/* either both IDs should be set or both should be zero */
15384 	if (!!old_id != !!cur_id)
15385 		return false;
15386 
15387 	if (old_id == 0) /* cur_id == 0 as well */
15388 		return true;
15389 
15390 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15391 		if (!map[i].old) {
15392 			/* Reached an empty slot; haven't seen this id before */
15393 			map[i].old = old_id;
15394 			map[i].cur = cur_id;
15395 			return true;
15396 		}
15397 		if (map[i].old == old_id)
15398 			return map[i].cur == cur_id;
15399 		if (map[i].cur == cur_id)
15400 			return false;
15401 	}
15402 	/* We ran out of idmap slots, which should be impossible */
15403 	WARN_ON_ONCE(1);
15404 	return false;
15405 }
15406 
15407 /* Similar to check_ids(), but allocate a unique temporary ID
15408  * for 'old_id' or 'cur_id' of zero.
15409  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15410  */
15411 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15412 {
15413 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15414 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15415 
15416 	return check_ids(old_id, cur_id, idmap);
15417 }
15418 
15419 static void clean_func_state(struct bpf_verifier_env *env,
15420 			     struct bpf_func_state *st)
15421 {
15422 	enum bpf_reg_liveness live;
15423 	int i, j;
15424 
15425 	for (i = 0; i < BPF_REG_FP; i++) {
15426 		live = st->regs[i].live;
15427 		/* liveness must not touch this register anymore */
15428 		st->regs[i].live |= REG_LIVE_DONE;
15429 		if (!(live & REG_LIVE_READ))
15430 			/* since the register is unused, clear its state
15431 			 * to make further comparison simpler
15432 			 */
15433 			__mark_reg_not_init(env, &st->regs[i]);
15434 	}
15435 
15436 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15437 		live = st->stack[i].spilled_ptr.live;
15438 		/* liveness must not touch this stack slot anymore */
15439 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15440 		if (!(live & REG_LIVE_READ)) {
15441 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15442 			for (j = 0; j < BPF_REG_SIZE; j++)
15443 				st->stack[i].slot_type[j] = STACK_INVALID;
15444 		}
15445 	}
15446 }
15447 
15448 static void clean_verifier_state(struct bpf_verifier_env *env,
15449 				 struct bpf_verifier_state *st)
15450 {
15451 	int i;
15452 
15453 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15454 		/* all regs in this state in all frames were already marked */
15455 		return;
15456 
15457 	for (i = 0; i <= st->curframe; i++)
15458 		clean_func_state(env, st->frame[i]);
15459 }
15460 
15461 /* the parentage chains form a tree.
15462  * the verifier states are added to state lists at given insn and
15463  * pushed into state stack for future exploration.
15464  * when the verifier reaches bpf_exit insn some of the verifer states
15465  * stored in the state lists have their final liveness state already,
15466  * but a lot of states will get revised from liveness point of view when
15467  * the verifier explores other branches.
15468  * Example:
15469  * 1: r0 = 1
15470  * 2: if r1 == 100 goto pc+1
15471  * 3: r0 = 2
15472  * 4: exit
15473  * when the verifier reaches exit insn the register r0 in the state list of
15474  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15475  * of insn 2 and goes exploring further. At the insn 4 it will walk the
15476  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15477  *
15478  * Since the verifier pushes the branch states as it sees them while exploring
15479  * the program the condition of walking the branch instruction for the second
15480  * time means that all states below this branch were already explored and
15481  * their final liveness marks are already propagated.
15482  * Hence when the verifier completes the search of state list in is_state_visited()
15483  * we can call this clean_live_states() function to mark all liveness states
15484  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15485  * will not be used.
15486  * This function also clears the registers and stack for states that !READ
15487  * to simplify state merging.
15488  *
15489  * Important note here that walking the same branch instruction in the callee
15490  * doesn't meant that the states are DONE. The verifier has to compare
15491  * the callsites
15492  */
15493 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15494 			      struct bpf_verifier_state *cur)
15495 {
15496 	struct bpf_verifier_state_list *sl;
15497 	int i;
15498 
15499 	sl = *explored_state(env, insn);
15500 	while (sl) {
15501 		if (sl->state.branches)
15502 			goto next;
15503 		if (sl->state.insn_idx != insn ||
15504 		    sl->state.curframe != cur->curframe)
15505 			goto next;
15506 		for (i = 0; i <= cur->curframe; i++)
15507 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
15508 				goto next;
15509 		clean_verifier_state(env, &sl->state);
15510 next:
15511 		sl = sl->next;
15512 	}
15513 }
15514 
15515 static bool regs_exact(const struct bpf_reg_state *rold,
15516 		       const struct bpf_reg_state *rcur,
15517 		       struct bpf_idmap *idmap)
15518 {
15519 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15520 	       check_ids(rold->id, rcur->id, idmap) &&
15521 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15522 }
15523 
15524 /* Returns true if (rold safe implies rcur safe) */
15525 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15526 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap)
15527 {
15528 	if (!(rold->live & REG_LIVE_READ))
15529 		/* explored state didn't use this */
15530 		return true;
15531 	if (rold->type == NOT_INIT)
15532 		/* explored state can't have used this */
15533 		return true;
15534 	if (rcur->type == NOT_INIT)
15535 		return false;
15536 
15537 	/* Enforce that register types have to match exactly, including their
15538 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15539 	 * rule.
15540 	 *
15541 	 * One can make a point that using a pointer register as unbounded
15542 	 * SCALAR would be technically acceptable, but this could lead to
15543 	 * pointer leaks because scalars are allowed to leak while pointers
15544 	 * are not. We could make this safe in special cases if root is
15545 	 * calling us, but it's probably not worth the hassle.
15546 	 *
15547 	 * Also, register types that are *not* MAYBE_NULL could technically be
15548 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15549 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15550 	 * to the same map).
15551 	 * However, if the old MAYBE_NULL register then got NULL checked,
15552 	 * doing so could have affected others with the same id, and we can't
15553 	 * check for that because we lost the id when we converted to
15554 	 * a non-MAYBE_NULL variant.
15555 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
15556 	 * non-MAYBE_NULL registers as well.
15557 	 */
15558 	if (rold->type != rcur->type)
15559 		return false;
15560 
15561 	switch (base_type(rold->type)) {
15562 	case SCALAR_VALUE:
15563 		if (env->explore_alu_limits) {
15564 			/* explore_alu_limits disables tnum_in() and range_within()
15565 			 * logic and requires everything to be strict
15566 			 */
15567 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15568 			       check_scalar_ids(rold->id, rcur->id, idmap);
15569 		}
15570 		if (!rold->precise)
15571 			return true;
15572 		/* Why check_ids() for scalar registers?
15573 		 *
15574 		 * Consider the following BPF code:
15575 		 *   1: r6 = ... unbound scalar, ID=a ...
15576 		 *   2: r7 = ... unbound scalar, ID=b ...
15577 		 *   3: if (r6 > r7) goto +1
15578 		 *   4: r6 = r7
15579 		 *   5: if (r6 > X) goto ...
15580 		 *   6: ... memory operation using r7 ...
15581 		 *
15582 		 * First verification path is [1-6]:
15583 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
15584 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
15585 		 *   r7 <= X, because r6 and r7 share same id.
15586 		 * Next verification path is [1-4, 6].
15587 		 *
15588 		 * Instruction (6) would be reached in two states:
15589 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
15590 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
15591 		 *
15592 		 * Use check_ids() to distinguish these states.
15593 		 * ---
15594 		 * Also verify that new value satisfies old value range knowledge.
15595 		 */
15596 		return range_within(rold, rcur) &&
15597 		       tnum_in(rold->var_off, rcur->var_off) &&
15598 		       check_scalar_ids(rold->id, rcur->id, idmap);
15599 	case PTR_TO_MAP_KEY:
15600 	case PTR_TO_MAP_VALUE:
15601 	case PTR_TO_MEM:
15602 	case PTR_TO_BUF:
15603 	case PTR_TO_TP_BUFFER:
15604 		/* If the new min/max/var_off satisfy the old ones and
15605 		 * everything else matches, we are OK.
15606 		 */
15607 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
15608 		       range_within(rold, rcur) &&
15609 		       tnum_in(rold->var_off, rcur->var_off) &&
15610 		       check_ids(rold->id, rcur->id, idmap) &&
15611 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15612 	case PTR_TO_PACKET_META:
15613 	case PTR_TO_PACKET:
15614 		/* We must have at least as much range as the old ptr
15615 		 * did, so that any accesses which were safe before are
15616 		 * still safe.  This is true even if old range < old off,
15617 		 * since someone could have accessed through (ptr - k), or
15618 		 * even done ptr -= k in a register, to get a safe access.
15619 		 */
15620 		if (rold->range > rcur->range)
15621 			return false;
15622 		/* If the offsets don't match, we can't trust our alignment;
15623 		 * nor can we be sure that we won't fall out of range.
15624 		 */
15625 		if (rold->off != rcur->off)
15626 			return false;
15627 		/* id relations must be preserved */
15628 		if (!check_ids(rold->id, rcur->id, idmap))
15629 			return false;
15630 		/* new val must satisfy old val knowledge */
15631 		return range_within(rold, rcur) &&
15632 		       tnum_in(rold->var_off, rcur->var_off);
15633 	case PTR_TO_STACK:
15634 		/* two stack pointers are equal only if they're pointing to
15635 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
15636 		 */
15637 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
15638 	default:
15639 		return regs_exact(rold, rcur, idmap);
15640 	}
15641 }
15642 
15643 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
15644 		      struct bpf_func_state *cur, struct bpf_idmap *idmap)
15645 {
15646 	int i, spi;
15647 
15648 	/* walk slots of the explored stack and ignore any additional
15649 	 * slots in the current stack, since explored(safe) state
15650 	 * didn't use them
15651 	 */
15652 	for (i = 0; i < old->allocated_stack; i++) {
15653 		struct bpf_reg_state *old_reg, *cur_reg;
15654 
15655 		spi = i / BPF_REG_SIZE;
15656 
15657 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
15658 			i += BPF_REG_SIZE - 1;
15659 			/* explored state didn't use this */
15660 			continue;
15661 		}
15662 
15663 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
15664 			continue;
15665 
15666 		if (env->allow_uninit_stack &&
15667 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
15668 			continue;
15669 
15670 		/* explored stack has more populated slots than current stack
15671 		 * and these slots were used
15672 		 */
15673 		if (i >= cur->allocated_stack)
15674 			return false;
15675 
15676 		/* if old state was safe with misc data in the stack
15677 		 * it will be safe with zero-initialized stack.
15678 		 * The opposite is not true
15679 		 */
15680 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
15681 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
15682 			continue;
15683 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
15684 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
15685 			/* Ex: old explored (safe) state has STACK_SPILL in
15686 			 * this stack slot, but current has STACK_MISC ->
15687 			 * this verifier states are not equivalent,
15688 			 * return false to continue verification of this path
15689 			 */
15690 			return false;
15691 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
15692 			continue;
15693 		/* Both old and cur are having same slot_type */
15694 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
15695 		case STACK_SPILL:
15696 			/* when explored and current stack slot are both storing
15697 			 * spilled registers, check that stored pointers types
15698 			 * are the same as well.
15699 			 * Ex: explored safe path could have stored
15700 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
15701 			 * but current path has stored:
15702 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
15703 			 * such verifier states are not equivalent.
15704 			 * return false to continue verification of this path
15705 			 */
15706 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
15707 				     &cur->stack[spi].spilled_ptr, idmap))
15708 				return false;
15709 			break;
15710 		case STACK_DYNPTR:
15711 			old_reg = &old->stack[spi].spilled_ptr;
15712 			cur_reg = &cur->stack[spi].spilled_ptr;
15713 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
15714 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
15715 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15716 				return false;
15717 			break;
15718 		case STACK_ITER:
15719 			old_reg = &old->stack[spi].spilled_ptr;
15720 			cur_reg = &cur->stack[spi].spilled_ptr;
15721 			/* iter.depth is not compared between states as it
15722 			 * doesn't matter for correctness and would otherwise
15723 			 * prevent convergence; we maintain it only to prevent
15724 			 * infinite loop check triggering, see
15725 			 * iter_active_depths_differ()
15726 			 */
15727 			if (old_reg->iter.btf != cur_reg->iter.btf ||
15728 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
15729 			    old_reg->iter.state != cur_reg->iter.state ||
15730 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
15731 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15732 				return false;
15733 			break;
15734 		case STACK_MISC:
15735 		case STACK_ZERO:
15736 		case STACK_INVALID:
15737 			continue;
15738 		/* Ensure that new unhandled slot types return false by default */
15739 		default:
15740 			return false;
15741 		}
15742 	}
15743 	return true;
15744 }
15745 
15746 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
15747 		    struct bpf_idmap *idmap)
15748 {
15749 	int i;
15750 
15751 	if (old->acquired_refs != cur->acquired_refs)
15752 		return false;
15753 
15754 	for (i = 0; i < old->acquired_refs; i++) {
15755 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
15756 			return false;
15757 	}
15758 
15759 	return true;
15760 }
15761 
15762 /* compare two verifier states
15763  *
15764  * all states stored in state_list are known to be valid, since
15765  * verifier reached 'bpf_exit' instruction through them
15766  *
15767  * this function is called when verifier exploring different branches of
15768  * execution popped from the state stack. If it sees an old state that has
15769  * more strict register state and more strict stack state then this execution
15770  * branch doesn't need to be explored further, since verifier already
15771  * concluded that more strict state leads to valid finish.
15772  *
15773  * Therefore two states are equivalent if register state is more conservative
15774  * and explored stack state is more conservative than the current one.
15775  * Example:
15776  *       explored                   current
15777  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
15778  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
15779  *
15780  * In other words if current stack state (one being explored) has more
15781  * valid slots than old one that already passed validation, it means
15782  * the verifier can stop exploring and conclude that current state is valid too
15783  *
15784  * Similarly with registers. If explored state has register type as invalid
15785  * whereas register type in current state is meaningful, it means that
15786  * the current state will reach 'bpf_exit' instruction safely
15787  */
15788 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
15789 			      struct bpf_func_state *cur)
15790 {
15791 	int i;
15792 
15793 	for (i = 0; i < MAX_BPF_REG; i++)
15794 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
15795 			     &env->idmap_scratch))
15796 			return false;
15797 
15798 	if (!stacksafe(env, old, cur, &env->idmap_scratch))
15799 		return false;
15800 
15801 	if (!refsafe(old, cur, &env->idmap_scratch))
15802 		return false;
15803 
15804 	return true;
15805 }
15806 
15807 static bool states_equal(struct bpf_verifier_env *env,
15808 			 struct bpf_verifier_state *old,
15809 			 struct bpf_verifier_state *cur)
15810 {
15811 	int i;
15812 
15813 	if (old->curframe != cur->curframe)
15814 		return false;
15815 
15816 	env->idmap_scratch.tmp_id_gen = env->id_gen;
15817 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
15818 
15819 	/* Verification state from speculative execution simulation
15820 	 * must never prune a non-speculative execution one.
15821 	 */
15822 	if (old->speculative && !cur->speculative)
15823 		return false;
15824 
15825 	if (old->active_lock.ptr != cur->active_lock.ptr)
15826 		return false;
15827 
15828 	/* Old and cur active_lock's have to be either both present
15829 	 * or both absent.
15830 	 */
15831 	if (!!old->active_lock.id != !!cur->active_lock.id)
15832 		return false;
15833 
15834 	if (old->active_lock.id &&
15835 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
15836 		return false;
15837 
15838 	if (old->active_rcu_lock != cur->active_rcu_lock)
15839 		return false;
15840 
15841 	/* for states to be equal callsites have to be the same
15842 	 * and all frame states need to be equivalent
15843 	 */
15844 	for (i = 0; i <= old->curframe; i++) {
15845 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
15846 			return false;
15847 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
15848 			return false;
15849 	}
15850 	return true;
15851 }
15852 
15853 /* Return 0 if no propagation happened. Return negative error code if error
15854  * happened. Otherwise, return the propagated bit.
15855  */
15856 static int propagate_liveness_reg(struct bpf_verifier_env *env,
15857 				  struct bpf_reg_state *reg,
15858 				  struct bpf_reg_state *parent_reg)
15859 {
15860 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15861 	u8 flag = reg->live & REG_LIVE_READ;
15862 	int err;
15863 
15864 	/* When comes here, read flags of PARENT_REG or REG could be any of
15865 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15866 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15867 	 */
15868 	if (parent_flag == REG_LIVE_READ64 ||
15869 	    /* Or if there is no read flag from REG. */
15870 	    !flag ||
15871 	    /* Or if the read flag from REG is the same as PARENT_REG. */
15872 	    parent_flag == flag)
15873 		return 0;
15874 
15875 	err = mark_reg_read(env, reg, parent_reg, flag);
15876 	if (err)
15877 		return err;
15878 
15879 	return flag;
15880 }
15881 
15882 /* A write screens off any subsequent reads; but write marks come from the
15883  * straight-line code between a state and its parent.  When we arrive at an
15884  * equivalent state (jump target or such) we didn't arrive by the straight-line
15885  * code, so read marks in the state must propagate to the parent regardless
15886  * of the state's write marks. That's what 'parent == state->parent' comparison
15887  * in mark_reg_read() is for.
15888  */
15889 static int propagate_liveness(struct bpf_verifier_env *env,
15890 			      const struct bpf_verifier_state *vstate,
15891 			      struct bpf_verifier_state *vparent)
15892 {
15893 	struct bpf_reg_state *state_reg, *parent_reg;
15894 	struct bpf_func_state *state, *parent;
15895 	int i, frame, err = 0;
15896 
15897 	if (vparent->curframe != vstate->curframe) {
15898 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
15899 		     vparent->curframe, vstate->curframe);
15900 		return -EFAULT;
15901 	}
15902 	/* Propagate read liveness of registers... */
15903 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
15904 	for (frame = 0; frame <= vstate->curframe; frame++) {
15905 		parent = vparent->frame[frame];
15906 		state = vstate->frame[frame];
15907 		parent_reg = parent->regs;
15908 		state_reg = state->regs;
15909 		/* We don't need to worry about FP liveness, it's read-only */
15910 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
15911 			err = propagate_liveness_reg(env, &state_reg[i],
15912 						     &parent_reg[i]);
15913 			if (err < 0)
15914 				return err;
15915 			if (err == REG_LIVE_READ64)
15916 				mark_insn_zext(env, &parent_reg[i]);
15917 		}
15918 
15919 		/* Propagate stack slots. */
15920 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15921 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
15922 			parent_reg = &parent->stack[i].spilled_ptr;
15923 			state_reg = &state->stack[i].spilled_ptr;
15924 			err = propagate_liveness_reg(env, state_reg,
15925 						     parent_reg);
15926 			if (err < 0)
15927 				return err;
15928 		}
15929 	}
15930 	return 0;
15931 }
15932 
15933 /* find precise scalars in the previous equivalent state and
15934  * propagate them into the current state
15935  */
15936 static int propagate_precision(struct bpf_verifier_env *env,
15937 			       const struct bpf_verifier_state *old)
15938 {
15939 	struct bpf_reg_state *state_reg;
15940 	struct bpf_func_state *state;
15941 	int i, err = 0, fr;
15942 	bool first;
15943 
15944 	for (fr = old->curframe; fr >= 0; fr--) {
15945 		state = old->frame[fr];
15946 		state_reg = state->regs;
15947 		first = true;
15948 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15949 			if (state_reg->type != SCALAR_VALUE ||
15950 			    !state_reg->precise ||
15951 			    !(state_reg->live & REG_LIVE_READ))
15952 				continue;
15953 			if (env->log.level & BPF_LOG_LEVEL2) {
15954 				if (first)
15955 					verbose(env, "frame %d: propagating r%d", fr, i);
15956 				else
15957 					verbose(env, ",r%d", i);
15958 			}
15959 			bt_set_frame_reg(&env->bt, fr, i);
15960 			first = false;
15961 		}
15962 
15963 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15964 			if (!is_spilled_reg(&state->stack[i]))
15965 				continue;
15966 			state_reg = &state->stack[i].spilled_ptr;
15967 			if (state_reg->type != SCALAR_VALUE ||
15968 			    !state_reg->precise ||
15969 			    !(state_reg->live & REG_LIVE_READ))
15970 				continue;
15971 			if (env->log.level & BPF_LOG_LEVEL2) {
15972 				if (first)
15973 					verbose(env, "frame %d: propagating fp%d",
15974 						fr, (-i - 1) * BPF_REG_SIZE);
15975 				else
15976 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
15977 			}
15978 			bt_set_frame_slot(&env->bt, fr, i);
15979 			first = false;
15980 		}
15981 		if (!first)
15982 			verbose(env, "\n");
15983 	}
15984 
15985 	err = mark_chain_precision_batch(env);
15986 	if (err < 0)
15987 		return err;
15988 
15989 	return 0;
15990 }
15991 
15992 static bool states_maybe_looping(struct bpf_verifier_state *old,
15993 				 struct bpf_verifier_state *cur)
15994 {
15995 	struct bpf_func_state *fold, *fcur;
15996 	int i, fr = cur->curframe;
15997 
15998 	if (old->curframe != fr)
15999 		return false;
16000 
16001 	fold = old->frame[fr];
16002 	fcur = cur->frame[fr];
16003 	for (i = 0; i < MAX_BPF_REG; i++)
16004 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16005 			   offsetof(struct bpf_reg_state, parent)))
16006 			return false;
16007 	return true;
16008 }
16009 
16010 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16011 {
16012 	return env->insn_aux_data[insn_idx].is_iter_next;
16013 }
16014 
16015 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16016  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16017  * states to match, which otherwise would look like an infinite loop. So while
16018  * iter_next() calls are taken care of, we still need to be careful and
16019  * prevent erroneous and too eager declaration of "ininite loop", when
16020  * iterators are involved.
16021  *
16022  * Here's a situation in pseudo-BPF assembly form:
16023  *
16024  *   0: again:                          ; set up iter_next() call args
16025  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16026  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16027  *   3:   if r0 == 0 goto done
16028  *   4:   ... something useful here ...
16029  *   5:   goto again                    ; another iteration
16030  *   6: done:
16031  *   7:   r1 = &it
16032  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16033  *   9:   exit
16034  *
16035  * This is a typical loop. Let's assume that we have a prune point at 1:,
16036  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16037  * again`, assuming other heuristics don't get in a way).
16038  *
16039  * When we first time come to 1:, let's say we have some state X. We proceed
16040  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16041  * Now we come back to validate that forked ACTIVE state. We proceed through
16042  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16043  * are converging. But the problem is that we don't know that yet, as this
16044  * convergence has to happen at iter_next() call site only. So if nothing is
16045  * done, at 1: verifier will use bounded loop logic and declare infinite
16046  * looping (and would be *technically* correct, if not for iterator's
16047  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16048  * don't want that. So what we do in process_iter_next_call() when we go on
16049  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16050  * a different iteration. So when we suspect an infinite loop, we additionally
16051  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16052  * pretend we are not looping and wait for next iter_next() call.
16053  *
16054  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16055  * loop, because that would actually mean infinite loop, as DRAINED state is
16056  * "sticky", and so we'll keep returning into the same instruction with the
16057  * same state (at least in one of possible code paths).
16058  *
16059  * This approach allows to keep infinite loop heuristic even in the face of
16060  * active iterator. E.g., C snippet below is and will be detected as
16061  * inifintely looping:
16062  *
16063  *   struct bpf_iter_num it;
16064  *   int *p, x;
16065  *
16066  *   bpf_iter_num_new(&it, 0, 10);
16067  *   while ((p = bpf_iter_num_next(&t))) {
16068  *       x = p;
16069  *       while (x--) {} // <<-- infinite loop here
16070  *   }
16071  *
16072  */
16073 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16074 {
16075 	struct bpf_reg_state *slot, *cur_slot;
16076 	struct bpf_func_state *state;
16077 	int i, fr;
16078 
16079 	for (fr = old->curframe; fr >= 0; fr--) {
16080 		state = old->frame[fr];
16081 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16082 			if (state->stack[i].slot_type[0] != STACK_ITER)
16083 				continue;
16084 
16085 			slot = &state->stack[i].spilled_ptr;
16086 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16087 				continue;
16088 
16089 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16090 			if (cur_slot->iter.depth != slot->iter.depth)
16091 				return true;
16092 		}
16093 	}
16094 	return false;
16095 }
16096 
16097 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16098 {
16099 	struct bpf_verifier_state_list *new_sl;
16100 	struct bpf_verifier_state_list *sl, **pprev;
16101 	struct bpf_verifier_state *cur = env->cur_state, *new;
16102 	int i, j, err, states_cnt = 0;
16103 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16104 	bool add_new_state = force_new_state;
16105 
16106 	/* bpf progs typically have pruning point every 4 instructions
16107 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16108 	 * Do not add new state for future pruning if the verifier hasn't seen
16109 	 * at least 2 jumps and at least 8 instructions.
16110 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16111 	 * In tests that amounts to up to 50% reduction into total verifier
16112 	 * memory consumption and 20% verifier time speedup.
16113 	 */
16114 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16115 	    env->insn_processed - env->prev_insn_processed >= 8)
16116 		add_new_state = true;
16117 
16118 	pprev = explored_state(env, insn_idx);
16119 	sl = *pprev;
16120 
16121 	clean_live_states(env, insn_idx, cur);
16122 
16123 	while (sl) {
16124 		states_cnt++;
16125 		if (sl->state.insn_idx != insn_idx)
16126 			goto next;
16127 
16128 		if (sl->state.branches) {
16129 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16130 
16131 			if (frame->in_async_callback_fn &&
16132 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16133 				/* Different async_entry_cnt means that the verifier is
16134 				 * processing another entry into async callback.
16135 				 * Seeing the same state is not an indication of infinite
16136 				 * loop or infinite recursion.
16137 				 * But finding the same state doesn't mean that it's safe
16138 				 * to stop processing the current state. The previous state
16139 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16140 				 * Checking in_async_callback_fn alone is not enough either.
16141 				 * Since the verifier still needs to catch infinite loops
16142 				 * inside async callbacks.
16143 				 */
16144 				goto skip_inf_loop_check;
16145 			}
16146 			/* BPF open-coded iterators loop detection is special.
16147 			 * states_maybe_looping() logic is too simplistic in detecting
16148 			 * states that *might* be equivalent, because it doesn't know
16149 			 * about ID remapping, so don't even perform it.
16150 			 * See process_iter_next_call() and iter_active_depths_differ()
16151 			 * for overview of the logic. When current and one of parent
16152 			 * states are detected as equivalent, it's a good thing: we prove
16153 			 * convergence and can stop simulating further iterations.
16154 			 * It's safe to assume that iterator loop will finish, taking into
16155 			 * account iter_next() contract of eventually returning
16156 			 * sticky NULL result.
16157 			 */
16158 			if (is_iter_next_insn(env, insn_idx)) {
16159 				if (states_equal(env, &sl->state, cur)) {
16160 					struct bpf_func_state *cur_frame;
16161 					struct bpf_reg_state *iter_state, *iter_reg;
16162 					int spi;
16163 
16164 					cur_frame = cur->frame[cur->curframe];
16165 					/* btf_check_iter_kfuncs() enforces that
16166 					 * iter state pointer is always the first arg
16167 					 */
16168 					iter_reg = &cur_frame->regs[BPF_REG_1];
16169 					/* current state is valid due to states_equal(),
16170 					 * so we can assume valid iter and reg state,
16171 					 * no need for extra (re-)validations
16172 					 */
16173 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16174 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16175 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
16176 						goto hit;
16177 				}
16178 				goto skip_inf_loop_check;
16179 			}
16180 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16181 			if (states_maybe_looping(&sl->state, cur) &&
16182 			    states_equal(env, &sl->state, cur) &&
16183 			    !iter_active_depths_differ(&sl->state, cur)) {
16184 				verbose_linfo(env, insn_idx, "; ");
16185 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16186 				return -EINVAL;
16187 			}
16188 			/* if the verifier is processing a loop, avoid adding new state
16189 			 * too often, since different loop iterations have distinct
16190 			 * states and may not help future pruning.
16191 			 * This threshold shouldn't be too low to make sure that
16192 			 * a loop with large bound will be rejected quickly.
16193 			 * The most abusive loop will be:
16194 			 * r1 += 1
16195 			 * if r1 < 1000000 goto pc-2
16196 			 * 1M insn_procssed limit / 100 == 10k peak states.
16197 			 * This threshold shouldn't be too high either, since states
16198 			 * at the end of the loop are likely to be useful in pruning.
16199 			 */
16200 skip_inf_loop_check:
16201 			if (!force_new_state &&
16202 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16203 			    env->insn_processed - env->prev_insn_processed < 100)
16204 				add_new_state = false;
16205 			goto miss;
16206 		}
16207 		if (states_equal(env, &sl->state, cur)) {
16208 hit:
16209 			sl->hit_cnt++;
16210 			/* reached equivalent register/stack state,
16211 			 * prune the search.
16212 			 * Registers read by the continuation are read by us.
16213 			 * If we have any write marks in env->cur_state, they
16214 			 * will prevent corresponding reads in the continuation
16215 			 * from reaching our parent (an explored_state).  Our
16216 			 * own state will get the read marks recorded, but
16217 			 * they'll be immediately forgotten as we're pruning
16218 			 * this state and will pop a new one.
16219 			 */
16220 			err = propagate_liveness(env, &sl->state, cur);
16221 
16222 			/* if previous state reached the exit with precision and
16223 			 * current state is equivalent to it (except precsion marks)
16224 			 * the precision needs to be propagated back in
16225 			 * the current state.
16226 			 */
16227 			err = err ? : push_jmp_history(env, cur);
16228 			err = err ? : propagate_precision(env, &sl->state);
16229 			if (err)
16230 				return err;
16231 			return 1;
16232 		}
16233 miss:
16234 		/* when new state is not going to be added do not increase miss count.
16235 		 * Otherwise several loop iterations will remove the state
16236 		 * recorded earlier. The goal of these heuristics is to have
16237 		 * states from some iterations of the loop (some in the beginning
16238 		 * and some at the end) to help pruning.
16239 		 */
16240 		if (add_new_state)
16241 			sl->miss_cnt++;
16242 		/* heuristic to determine whether this state is beneficial
16243 		 * to keep checking from state equivalence point of view.
16244 		 * Higher numbers increase max_states_per_insn and verification time,
16245 		 * but do not meaningfully decrease insn_processed.
16246 		 */
16247 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
16248 			/* the state is unlikely to be useful. Remove it to
16249 			 * speed up verification
16250 			 */
16251 			*pprev = sl->next;
16252 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
16253 				u32 br = sl->state.branches;
16254 
16255 				WARN_ONCE(br,
16256 					  "BUG live_done but branches_to_explore %d\n",
16257 					  br);
16258 				free_verifier_state(&sl->state, false);
16259 				kfree(sl);
16260 				env->peak_states--;
16261 			} else {
16262 				/* cannot free this state, since parentage chain may
16263 				 * walk it later. Add it for free_list instead to
16264 				 * be freed at the end of verification
16265 				 */
16266 				sl->next = env->free_list;
16267 				env->free_list = sl;
16268 			}
16269 			sl = *pprev;
16270 			continue;
16271 		}
16272 next:
16273 		pprev = &sl->next;
16274 		sl = *pprev;
16275 	}
16276 
16277 	if (env->max_states_per_insn < states_cnt)
16278 		env->max_states_per_insn = states_cnt;
16279 
16280 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16281 		return 0;
16282 
16283 	if (!add_new_state)
16284 		return 0;
16285 
16286 	/* There were no equivalent states, remember the current one.
16287 	 * Technically the current state is not proven to be safe yet,
16288 	 * but it will either reach outer most bpf_exit (which means it's safe)
16289 	 * or it will be rejected. When there are no loops the verifier won't be
16290 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16291 	 * again on the way to bpf_exit.
16292 	 * When looping the sl->state.branches will be > 0 and this state
16293 	 * will not be considered for equivalence until branches == 0.
16294 	 */
16295 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16296 	if (!new_sl)
16297 		return -ENOMEM;
16298 	env->total_states++;
16299 	env->peak_states++;
16300 	env->prev_jmps_processed = env->jmps_processed;
16301 	env->prev_insn_processed = env->insn_processed;
16302 
16303 	/* forget precise markings we inherited, see __mark_chain_precision */
16304 	if (env->bpf_capable)
16305 		mark_all_scalars_imprecise(env, cur);
16306 
16307 	/* add new state to the head of linked list */
16308 	new = &new_sl->state;
16309 	err = copy_verifier_state(new, cur);
16310 	if (err) {
16311 		free_verifier_state(new, false);
16312 		kfree(new_sl);
16313 		return err;
16314 	}
16315 	new->insn_idx = insn_idx;
16316 	WARN_ONCE(new->branches != 1,
16317 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16318 
16319 	cur->parent = new;
16320 	cur->first_insn_idx = insn_idx;
16321 	clear_jmp_history(cur);
16322 	new_sl->next = *explored_state(env, insn_idx);
16323 	*explored_state(env, insn_idx) = new_sl;
16324 	/* connect new state to parentage chain. Current frame needs all
16325 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
16326 	 * to the stack implicitly by JITs) so in callers' frames connect just
16327 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16328 	 * the state of the call instruction (with WRITTEN set), and r0 comes
16329 	 * from callee with its full parentage chain, anyway.
16330 	 */
16331 	/* clear write marks in current state: the writes we did are not writes
16332 	 * our child did, so they don't screen off its reads from us.
16333 	 * (There are no read marks in current state, because reads always mark
16334 	 * their parent and current state never has children yet.  Only
16335 	 * explored_states can get read marks.)
16336 	 */
16337 	for (j = 0; j <= cur->curframe; j++) {
16338 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16339 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16340 		for (i = 0; i < BPF_REG_FP; i++)
16341 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16342 	}
16343 
16344 	/* all stack frames are accessible from callee, clear them all */
16345 	for (j = 0; j <= cur->curframe; j++) {
16346 		struct bpf_func_state *frame = cur->frame[j];
16347 		struct bpf_func_state *newframe = new->frame[j];
16348 
16349 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16350 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16351 			frame->stack[i].spilled_ptr.parent =
16352 						&newframe->stack[i].spilled_ptr;
16353 		}
16354 	}
16355 	return 0;
16356 }
16357 
16358 /* Return true if it's OK to have the same insn return a different type. */
16359 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16360 {
16361 	switch (base_type(type)) {
16362 	case PTR_TO_CTX:
16363 	case PTR_TO_SOCKET:
16364 	case PTR_TO_SOCK_COMMON:
16365 	case PTR_TO_TCP_SOCK:
16366 	case PTR_TO_XDP_SOCK:
16367 	case PTR_TO_BTF_ID:
16368 		return false;
16369 	default:
16370 		return true;
16371 	}
16372 }
16373 
16374 /* If an instruction was previously used with particular pointer types, then we
16375  * need to be careful to avoid cases such as the below, where it may be ok
16376  * for one branch accessing the pointer, but not ok for the other branch:
16377  *
16378  * R1 = sock_ptr
16379  * goto X;
16380  * ...
16381  * R1 = some_other_valid_ptr;
16382  * goto X;
16383  * ...
16384  * R2 = *(u32 *)(R1 + 0);
16385  */
16386 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16387 {
16388 	return src != prev && (!reg_type_mismatch_ok(src) ||
16389 			       !reg_type_mismatch_ok(prev));
16390 }
16391 
16392 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16393 			     bool allow_trust_missmatch)
16394 {
16395 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16396 
16397 	if (*prev_type == NOT_INIT) {
16398 		/* Saw a valid insn
16399 		 * dst_reg = *(u32 *)(src_reg + off)
16400 		 * save type to validate intersecting paths
16401 		 */
16402 		*prev_type = type;
16403 	} else if (reg_type_mismatch(type, *prev_type)) {
16404 		/* Abuser program is trying to use the same insn
16405 		 * dst_reg = *(u32*) (src_reg + off)
16406 		 * with different pointer types:
16407 		 * src_reg == ctx in one branch and
16408 		 * src_reg == stack|map in some other branch.
16409 		 * Reject it.
16410 		 */
16411 		if (allow_trust_missmatch &&
16412 		    base_type(type) == PTR_TO_BTF_ID &&
16413 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
16414 			/*
16415 			 * Have to support a use case when one path through
16416 			 * the program yields TRUSTED pointer while another
16417 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16418 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
16419 			 */
16420 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16421 		} else {
16422 			verbose(env, "same insn cannot be used with different pointers\n");
16423 			return -EINVAL;
16424 		}
16425 	}
16426 
16427 	return 0;
16428 }
16429 
16430 static int do_check(struct bpf_verifier_env *env)
16431 {
16432 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16433 	struct bpf_verifier_state *state = env->cur_state;
16434 	struct bpf_insn *insns = env->prog->insnsi;
16435 	struct bpf_reg_state *regs;
16436 	int insn_cnt = env->prog->len;
16437 	bool do_print_state = false;
16438 	int prev_insn_idx = -1;
16439 
16440 	for (;;) {
16441 		struct bpf_insn *insn;
16442 		u8 class;
16443 		int err;
16444 
16445 		env->prev_insn_idx = prev_insn_idx;
16446 		if (env->insn_idx >= insn_cnt) {
16447 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
16448 				env->insn_idx, insn_cnt);
16449 			return -EFAULT;
16450 		}
16451 
16452 		insn = &insns[env->insn_idx];
16453 		class = BPF_CLASS(insn->code);
16454 
16455 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
16456 			verbose(env,
16457 				"BPF program is too large. Processed %d insn\n",
16458 				env->insn_processed);
16459 			return -E2BIG;
16460 		}
16461 
16462 		state->last_insn_idx = env->prev_insn_idx;
16463 
16464 		if (is_prune_point(env, env->insn_idx)) {
16465 			err = is_state_visited(env, env->insn_idx);
16466 			if (err < 0)
16467 				return err;
16468 			if (err == 1) {
16469 				/* found equivalent state, can prune the search */
16470 				if (env->log.level & BPF_LOG_LEVEL) {
16471 					if (do_print_state)
16472 						verbose(env, "\nfrom %d to %d%s: safe\n",
16473 							env->prev_insn_idx, env->insn_idx,
16474 							env->cur_state->speculative ?
16475 							" (speculative execution)" : "");
16476 					else
16477 						verbose(env, "%d: safe\n", env->insn_idx);
16478 				}
16479 				goto process_bpf_exit;
16480 			}
16481 		}
16482 
16483 		if (is_jmp_point(env, env->insn_idx)) {
16484 			err = push_jmp_history(env, state);
16485 			if (err)
16486 				return err;
16487 		}
16488 
16489 		if (signal_pending(current))
16490 			return -EAGAIN;
16491 
16492 		if (need_resched())
16493 			cond_resched();
16494 
16495 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
16496 			verbose(env, "\nfrom %d to %d%s:",
16497 				env->prev_insn_idx, env->insn_idx,
16498 				env->cur_state->speculative ?
16499 				" (speculative execution)" : "");
16500 			print_verifier_state(env, state->frame[state->curframe], true);
16501 			do_print_state = false;
16502 		}
16503 
16504 		if (env->log.level & BPF_LOG_LEVEL) {
16505 			const struct bpf_insn_cbs cbs = {
16506 				.cb_call	= disasm_kfunc_name,
16507 				.cb_print	= verbose,
16508 				.private_data	= env,
16509 			};
16510 
16511 			if (verifier_state_scratched(env))
16512 				print_insn_state(env, state->frame[state->curframe]);
16513 
16514 			verbose_linfo(env, env->insn_idx, "; ");
16515 			env->prev_log_pos = env->log.end_pos;
16516 			verbose(env, "%d: ", env->insn_idx);
16517 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
16518 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
16519 			env->prev_log_pos = env->log.end_pos;
16520 		}
16521 
16522 		if (bpf_prog_is_offloaded(env->prog->aux)) {
16523 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
16524 							   env->prev_insn_idx);
16525 			if (err)
16526 				return err;
16527 		}
16528 
16529 		regs = cur_regs(env);
16530 		sanitize_mark_insn_seen(env);
16531 		prev_insn_idx = env->insn_idx;
16532 
16533 		if (class == BPF_ALU || class == BPF_ALU64) {
16534 			err = check_alu_op(env, insn);
16535 			if (err)
16536 				return err;
16537 
16538 		} else if (class == BPF_LDX) {
16539 			enum bpf_reg_type src_reg_type;
16540 
16541 			/* check for reserved fields is already done */
16542 
16543 			/* check src operand */
16544 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16545 			if (err)
16546 				return err;
16547 
16548 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16549 			if (err)
16550 				return err;
16551 
16552 			src_reg_type = regs[insn->src_reg].type;
16553 
16554 			/* check that memory (src_reg + off) is readable,
16555 			 * the state of dst_reg will be updated by this func
16556 			 */
16557 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
16558 					       insn->off, BPF_SIZE(insn->code),
16559 					       BPF_READ, insn->dst_reg, false,
16560 					       BPF_MODE(insn->code) == BPF_MEMSX);
16561 			if (err)
16562 				return err;
16563 
16564 			err = save_aux_ptr_type(env, src_reg_type, true);
16565 			if (err)
16566 				return err;
16567 		} else if (class == BPF_STX) {
16568 			enum bpf_reg_type dst_reg_type;
16569 
16570 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
16571 				err = check_atomic(env, env->insn_idx, insn);
16572 				if (err)
16573 					return err;
16574 				env->insn_idx++;
16575 				continue;
16576 			}
16577 
16578 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
16579 				verbose(env, "BPF_STX uses reserved fields\n");
16580 				return -EINVAL;
16581 			}
16582 
16583 			/* check src1 operand */
16584 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16585 			if (err)
16586 				return err;
16587 			/* check src2 operand */
16588 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16589 			if (err)
16590 				return err;
16591 
16592 			dst_reg_type = regs[insn->dst_reg].type;
16593 
16594 			/* check that memory (dst_reg + off) is writeable */
16595 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16596 					       insn->off, BPF_SIZE(insn->code),
16597 					       BPF_WRITE, insn->src_reg, false, false);
16598 			if (err)
16599 				return err;
16600 
16601 			err = save_aux_ptr_type(env, dst_reg_type, false);
16602 			if (err)
16603 				return err;
16604 		} else if (class == BPF_ST) {
16605 			enum bpf_reg_type dst_reg_type;
16606 
16607 			if (BPF_MODE(insn->code) != BPF_MEM ||
16608 			    insn->src_reg != BPF_REG_0) {
16609 				verbose(env, "BPF_ST uses reserved fields\n");
16610 				return -EINVAL;
16611 			}
16612 			/* check src operand */
16613 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16614 			if (err)
16615 				return err;
16616 
16617 			dst_reg_type = regs[insn->dst_reg].type;
16618 
16619 			/* check that memory (dst_reg + off) is writeable */
16620 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16621 					       insn->off, BPF_SIZE(insn->code),
16622 					       BPF_WRITE, -1, false, false);
16623 			if (err)
16624 				return err;
16625 
16626 			err = save_aux_ptr_type(env, dst_reg_type, false);
16627 			if (err)
16628 				return err;
16629 		} else if (class == BPF_JMP || class == BPF_JMP32) {
16630 			u8 opcode = BPF_OP(insn->code);
16631 
16632 			env->jmps_processed++;
16633 			if (opcode == BPF_CALL) {
16634 				if (BPF_SRC(insn->code) != BPF_K ||
16635 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
16636 				     && insn->off != 0) ||
16637 				    (insn->src_reg != BPF_REG_0 &&
16638 				     insn->src_reg != BPF_PSEUDO_CALL &&
16639 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
16640 				    insn->dst_reg != BPF_REG_0 ||
16641 				    class == BPF_JMP32) {
16642 					verbose(env, "BPF_CALL uses reserved fields\n");
16643 					return -EINVAL;
16644 				}
16645 
16646 				if (env->cur_state->active_lock.ptr) {
16647 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
16648 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
16649 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
16650 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
16651 						verbose(env, "function calls are not allowed while holding a lock\n");
16652 						return -EINVAL;
16653 					}
16654 				}
16655 				if (insn->src_reg == BPF_PSEUDO_CALL)
16656 					err = check_func_call(env, insn, &env->insn_idx);
16657 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
16658 					err = check_kfunc_call(env, insn, &env->insn_idx);
16659 				else
16660 					err = check_helper_call(env, insn, &env->insn_idx);
16661 				if (err)
16662 					return err;
16663 
16664 				mark_reg_scratched(env, BPF_REG_0);
16665 			} else if (opcode == BPF_JA) {
16666 				if (BPF_SRC(insn->code) != BPF_K ||
16667 				    insn->src_reg != BPF_REG_0 ||
16668 				    insn->dst_reg != BPF_REG_0 ||
16669 				    (class == BPF_JMP && insn->imm != 0) ||
16670 				    (class == BPF_JMP32 && insn->off != 0)) {
16671 					verbose(env, "BPF_JA uses reserved fields\n");
16672 					return -EINVAL;
16673 				}
16674 
16675 				if (class == BPF_JMP)
16676 					env->insn_idx += insn->off + 1;
16677 				else
16678 					env->insn_idx += insn->imm + 1;
16679 				continue;
16680 
16681 			} else if (opcode == BPF_EXIT) {
16682 				if (BPF_SRC(insn->code) != BPF_K ||
16683 				    insn->imm != 0 ||
16684 				    insn->src_reg != BPF_REG_0 ||
16685 				    insn->dst_reg != BPF_REG_0 ||
16686 				    class == BPF_JMP32) {
16687 					verbose(env, "BPF_EXIT uses reserved fields\n");
16688 					return -EINVAL;
16689 				}
16690 
16691 				if (env->cur_state->active_lock.ptr &&
16692 				    !in_rbtree_lock_required_cb(env)) {
16693 					verbose(env, "bpf_spin_unlock is missing\n");
16694 					return -EINVAL;
16695 				}
16696 
16697 				if (env->cur_state->active_rcu_lock &&
16698 				    !in_rbtree_lock_required_cb(env)) {
16699 					verbose(env, "bpf_rcu_read_unlock is missing\n");
16700 					return -EINVAL;
16701 				}
16702 
16703 				/* We must do check_reference_leak here before
16704 				 * prepare_func_exit to handle the case when
16705 				 * state->curframe > 0, it may be a callback
16706 				 * function, for which reference_state must
16707 				 * match caller reference state when it exits.
16708 				 */
16709 				err = check_reference_leak(env);
16710 				if (err)
16711 					return err;
16712 
16713 				if (state->curframe) {
16714 					/* exit from nested function */
16715 					err = prepare_func_exit(env, &env->insn_idx);
16716 					if (err)
16717 						return err;
16718 					do_print_state = true;
16719 					continue;
16720 				}
16721 
16722 				err = check_return_code(env);
16723 				if (err)
16724 					return err;
16725 process_bpf_exit:
16726 				mark_verifier_state_scratched(env);
16727 				update_branch_counts(env, env->cur_state);
16728 				err = pop_stack(env, &prev_insn_idx,
16729 						&env->insn_idx, pop_log);
16730 				if (err < 0) {
16731 					if (err != -ENOENT)
16732 						return err;
16733 					break;
16734 				} else {
16735 					do_print_state = true;
16736 					continue;
16737 				}
16738 			} else {
16739 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
16740 				if (err)
16741 					return err;
16742 			}
16743 		} else if (class == BPF_LD) {
16744 			u8 mode = BPF_MODE(insn->code);
16745 
16746 			if (mode == BPF_ABS || mode == BPF_IND) {
16747 				err = check_ld_abs(env, insn);
16748 				if (err)
16749 					return err;
16750 
16751 			} else if (mode == BPF_IMM) {
16752 				err = check_ld_imm(env, insn);
16753 				if (err)
16754 					return err;
16755 
16756 				env->insn_idx++;
16757 				sanitize_mark_insn_seen(env);
16758 			} else {
16759 				verbose(env, "invalid BPF_LD mode\n");
16760 				return -EINVAL;
16761 			}
16762 		} else {
16763 			verbose(env, "unknown insn class %d\n", class);
16764 			return -EINVAL;
16765 		}
16766 
16767 		env->insn_idx++;
16768 	}
16769 
16770 	return 0;
16771 }
16772 
16773 static int find_btf_percpu_datasec(struct btf *btf)
16774 {
16775 	const struct btf_type *t;
16776 	const char *tname;
16777 	int i, n;
16778 
16779 	/*
16780 	 * Both vmlinux and module each have their own ".data..percpu"
16781 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
16782 	 * types to look at only module's own BTF types.
16783 	 */
16784 	n = btf_nr_types(btf);
16785 	if (btf_is_module(btf))
16786 		i = btf_nr_types(btf_vmlinux);
16787 	else
16788 		i = 1;
16789 
16790 	for(; i < n; i++) {
16791 		t = btf_type_by_id(btf, i);
16792 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
16793 			continue;
16794 
16795 		tname = btf_name_by_offset(btf, t->name_off);
16796 		if (!strcmp(tname, ".data..percpu"))
16797 			return i;
16798 	}
16799 
16800 	return -ENOENT;
16801 }
16802 
16803 /* replace pseudo btf_id with kernel symbol address */
16804 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
16805 			       struct bpf_insn *insn,
16806 			       struct bpf_insn_aux_data *aux)
16807 {
16808 	const struct btf_var_secinfo *vsi;
16809 	const struct btf_type *datasec;
16810 	struct btf_mod_pair *btf_mod;
16811 	const struct btf_type *t;
16812 	const char *sym_name;
16813 	bool percpu = false;
16814 	u32 type, id = insn->imm;
16815 	struct btf *btf;
16816 	s32 datasec_id;
16817 	u64 addr;
16818 	int i, btf_fd, err;
16819 
16820 	btf_fd = insn[1].imm;
16821 	if (btf_fd) {
16822 		btf = btf_get_by_fd(btf_fd);
16823 		if (IS_ERR(btf)) {
16824 			verbose(env, "invalid module BTF object FD specified.\n");
16825 			return -EINVAL;
16826 		}
16827 	} else {
16828 		if (!btf_vmlinux) {
16829 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
16830 			return -EINVAL;
16831 		}
16832 		btf = btf_vmlinux;
16833 		btf_get(btf);
16834 	}
16835 
16836 	t = btf_type_by_id(btf, id);
16837 	if (!t) {
16838 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
16839 		err = -ENOENT;
16840 		goto err_put;
16841 	}
16842 
16843 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
16844 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
16845 		err = -EINVAL;
16846 		goto err_put;
16847 	}
16848 
16849 	sym_name = btf_name_by_offset(btf, t->name_off);
16850 	addr = kallsyms_lookup_name(sym_name);
16851 	if (!addr) {
16852 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
16853 			sym_name);
16854 		err = -ENOENT;
16855 		goto err_put;
16856 	}
16857 	insn[0].imm = (u32)addr;
16858 	insn[1].imm = addr >> 32;
16859 
16860 	if (btf_type_is_func(t)) {
16861 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16862 		aux->btf_var.mem_size = 0;
16863 		goto check_btf;
16864 	}
16865 
16866 	datasec_id = find_btf_percpu_datasec(btf);
16867 	if (datasec_id > 0) {
16868 		datasec = btf_type_by_id(btf, datasec_id);
16869 		for_each_vsi(i, datasec, vsi) {
16870 			if (vsi->type == id) {
16871 				percpu = true;
16872 				break;
16873 			}
16874 		}
16875 	}
16876 
16877 	type = t->type;
16878 	t = btf_type_skip_modifiers(btf, type, NULL);
16879 	if (percpu) {
16880 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
16881 		aux->btf_var.btf = btf;
16882 		aux->btf_var.btf_id = type;
16883 	} else if (!btf_type_is_struct(t)) {
16884 		const struct btf_type *ret;
16885 		const char *tname;
16886 		u32 tsize;
16887 
16888 		/* resolve the type size of ksym. */
16889 		ret = btf_resolve_size(btf, t, &tsize);
16890 		if (IS_ERR(ret)) {
16891 			tname = btf_name_by_offset(btf, t->name_off);
16892 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16893 				tname, PTR_ERR(ret));
16894 			err = -EINVAL;
16895 			goto err_put;
16896 		}
16897 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16898 		aux->btf_var.mem_size = tsize;
16899 	} else {
16900 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
16901 		aux->btf_var.btf = btf;
16902 		aux->btf_var.btf_id = type;
16903 	}
16904 check_btf:
16905 	/* check whether we recorded this BTF (and maybe module) already */
16906 	for (i = 0; i < env->used_btf_cnt; i++) {
16907 		if (env->used_btfs[i].btf == btf) {
16908 			btf_put(btf);
16909 			return 0;
16910 		}
16911 	}
16912 
16913 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
16914 		err = -E2BIG;
16915 		goto err_put;
16916 	}
16917 
16918 	btf_mod = &env->used_btfs[env->used_btf_cnt];
16919 	btf_mod->btf = btf;
16920 	btf_mod->module = NULL;
16921 
16922 	/* if we reference variables from kernel module, bump its refcount */
16923 	if (btf_is_module(btf)) {
16924 		btf_mod->module = btf_try_get_module(btf);
16925 		if (!btf_mod->module) {
16926 			err = -ENXIO;
16927 			goto err_put;
16928 		}
16929 	}
16930 
16931 	env->used_btf_cnt++;
16932 
16933 	return 0;
16934 err_put:
16935 	btf_put(btf);
16936 	return err;
16937 }
16938 
16939 static bool is_tracing_prog_type(enum bpf_prog_type type)
16940 {
16941 	switch (type) {
16942 	case BPF_PROG_TYPE_KPROBE:
16943 	case BPF_PROG_TYPE_TRACEPOINT:
16944 	case BPF_PROG_TYPE_PERF_EVENT:
16945 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
16946 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
16947 		return true;
16948 	default:
16949 		return false;
16950 	}
16951 }
16952 
16953 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16954 					struct bpf_map *map,
16955 					struct bpf_prog *prog)
16956 
16957 {
16958 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
16959 
16960 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16961 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
16962 		if (is_tracing_prog_type(prog_type)) {
16963 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
16964 			return -EINVAL;
16965 		}
16966 	}
16967 
16968 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
16969 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16970 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
16971 			return -EINVAL;
16972 		}
16973 
16974 		if (is_tracing_prog_type(prog_type)) {
16975 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
16976 			return -EINVAL;
16977 		}
16978 	}
16979 
16980 	if (btf_record_has_field(map->record, BPF_TIMER)) {
16981 		if (is_tracing_prog_type(prog_type)) {
16982 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
16983 			return -EINVAL;
16984 		}
16985 	}
16986 
16987 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
16988 	    !bpf_offload_prog_map_match(prog, map)) {
16989 		verbose(env, "offload device mismatch between prog and map\n");
16990 		return -EINVAL;
16991 	}
16992 
16993 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
16994 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
16995 		return -EINVAL;
16996 	}
16997 
16998 	if (prog->aux->sleepable)
16999 		switch (map->map_type) {
17000 		case BPF_MAP_TYPE_HASH:
17001 		case BPF_MAP_TYPE_LRU_HASH:
17002 		case BPF_MAP_TYPE_ARRAY:
17003 		case BPF_MAP_TYPE_PERCPU_HASH:
17004 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17005 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17006 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17007 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17008 		case BPF_MAP_TYPE_RINGBUF:
17009 		case BPF_MAP_TYPE_USER_RINGBUF:
17010 		case BPF_MAP_TYPE_INODE_STORAGE:
17011 		case BPF_MAP_TYPE_SK_STORAGE:
17012 		case BPF_MAP_TYPE_TASK_STORAGE:
17013 		case BPF_MAP_TYPE_CGRP_STORAGE:
17014 			break;
17015 		default:
17016 			verbose(env,
17017 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17018 			return -EINVAL;
17019 		}
17020 
17021 	return 0;
17022 }
17023 
17024 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17025 {
17026 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17027 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17028 }
17029 
17030 /* find and rewrite pseudo imm in ld_imm64 instructions:
17031  *
17032  * 1. if it accesses map FD, replace it with actual map pointer.
17033  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17034  *
17035  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17036  */
17037 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17038 {
17039 	struct bpf_insn *insn = env->prog->insnsi;
17040 	int insn_cnt = env->prog->len;
17041 	int i, j, err;
17042 
17043 	err = bpf_prog_calc_tag(env->prog);
17044 	if (err)
17045 		return err;
17046 
17047 	for (i = 0; i < insn_cnt; i++, insn++) {
17048 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17049 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17050 		    insn->imm != 0)) {
17051 			verbose(env, "BPF_LDX uses reserved fields\n");
17052 			return -EINVAL;
17053 		}
17054 
17055 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17056 			struct bpf_insn_aux_data *aux;
17057 			struct bpf_map *map;
17058 			struct fd f;
17059 			u64 addr;
17060 			u32 fd;
17061 
17062 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17063 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17064 			    insn[1].off != 0) {
17065 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17066 				return -EINVAL;
17067 			}
17068 
17069 			if (insn[0].src_reg == 0)
17070 				/* valid generic load 64-bit imm */
17071 				goto next_insn;
17072 
17073 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17074 				aux = &env->insn_aux_data[i];
17075 				err = check_pseudo_btf_id(env, insn, aux);
17076 				if (err)
17077 					return err;
17078 				goto next_insn;
17079 			}
17080 
17081 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17082 				aux = &env->insn_aux_data[i];
17083 				aux->ptr_type = PTR_TO_FUNC;
17084 				goto next_insn;
17085 			}
17086 
17087 			/* In final convert_pseudo_ld_imm64() step, this is
17088 			 * converted into regular 64-bit imm load insn.
17089 			 */
17090 			switch (insn[0].src_reg) {
17091 			case BPF_PSEUDO_MAP_VALUE:
17092 			case BPF_PSEUDO_MAP_IDX_VALUE:
17093 				break;
17094 			case BPF_PSEUDO_MAP_FD:
17095 			case BPF_PSEUDO_MAP_IDX:
17096 				if (insn[1].imm == 0)
17097 					break;
17098 				fallthrough;
17099 			default:
17100 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17101 				return -EINVAL;
17102 			}
17103 
17104 			switch (insn[0].src_reg) {
17105 			case BPF_PSEUDO_MAP_IDX_VALUE:
17106 			case BPF_PSEUDO_MAP_IDX:
17107 				if (bpfptr_is_null(env->fd_array)) {
17108 					verbose(env, "fd_idx without fd_array is invalid\n");
17109 					return -EPROTO;
17110 				}
17111 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17112 							    insn[0].imm * sizeof(fd),
17113 							    sizeof(fd)))
17114 					return -EFAULT;
17115 				break;
17116 			default:
17117 				fd = insn[0].imm;
17118 				break;
17119 			}
17120 
17121 			f = fdget(fd);
17122 			map = __bpf_map_get(f);
17123 			if (IS_ERR(map)) {
17124 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
17125 					insn[0].imm);
17126 				return PTR_ERR(map);
17127 			}
17128 
17129 			err = check_map_prog_compatibility(env, map, env->prog);
17130 			if (err) {
17131 				fdput(f);
17132 				return err;
17133 			}
17134 
17135 			aux = &env->insn_aux_data[i];
17136 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17137 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17138 				addr = (unsigned long)map;
17139 			} else {
17140 				u32 off = insn[1].imm;
17141 
17142 				if (off >= BPF_MAX_VAR_OFF) {
17143 					verbose(env, "direct value offset of %u is not allowed\n", off);
17144 					fdput(f);
17145 					return -EINVAL;
17146 				}
17147 
17148 				if (!map->ops->map_direct_value_addr) {
17149 					verbose(env, "no direct value access support for this map type\n");
17150 					fdput(f);
17151 					return -EINVAL;
17152 				}
17153 
17154 				err = map->ops->map_direct_value_addr(map, &addr, off);
17155 				if (err) {
17156 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17157 						map->value_size, off);
17158 					fdput(f);
17159 					return err;
17160 				}
17161 
17162 				aux->map_off = off;
17163 				addr += off;
17164 			}
17165 
17166 			insn[0].imm = (u32)addr;
17167 			insn[1].imm = addr >> 32;
17168 
17169 			/* check whether we recorded this map already */
17170 			for (j = 0; j < env->used_map_cnt; j++) {
17171 				if (env->used_maps[j] == map) {
17172 					aux->map_index = j;
17173 					fdput(f);
17174 					goto next_insn;
17175 				}
17176 			}
17177 
17178 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17179 				fdput(f);
17180 				return -E2BIG;
17181 			}
17182 
17183 			/* hold the map. If the program is rejected by verifier,
17184 			 * the map will be released by release_maps() or it
17185 			 * will be used by the valid program until it's unloaded
17186 			 * and all maps are released in free_used_maps()
17187 			 */
17188 			bpf_map_inc(map);
17189 
17190 			aux->map_index = env->used_map_cnt;
17191 			env->used_maps[env->used_map_cnt++] = map;
17192 
17193 			if (bpf_map_is_cgroup_storage(map) &&
17194 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
17195 				verbose(env, "only one cgroup storage of each type is allowed\n");
17196 				fdput(f);
17197 				return -EBUSY;
17198 			}
17199 
17200 			fdput(f);
17201 next_insn:
17202 			insn++;
17203 			i++;
17204 			continue;
17205 		}
17206 
17207 		/* Basic sanity check before we invest more work here. */
17208 		if (!bpf_opcode_in_insntable(insn->code)) {
17209 			verbose(env, "unknown opcode %02x\n", insn->code);
17210 			return -EINVAL;
17211 		}
17212 	}
17213 
17214 	/* now all pseudo BPF_LD_IMM64 instructions load valid
17215 	 * 'struct bpf_map *' into a register instead of user map_fd.
17216 	 * These pointers will be used later by verifier to validate map access.
17217 	 */
17218 	return 0;
17219 }
17220 
17221 /* drop refcnt of maps used by the rejected program */
17222 static void release_maps(struct bpf_verifier_env *env)
17223 {
17224 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
17225 			     env->used_map_cnt);
17226 }
17227 
17228 /* drop refcnt of maps used by the rejected program */
17229 static void release_btfs(struct bpf_verifier_env *env)
17230 {
17231 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17232 			     env->used_btf_cnt);
17233 }
17234 
17235 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
17236 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17237 {
17238 	struct bpf_insn *insn = env->prog->insnsi;
17239 	int insn_cnt = env->prog->len;
17240 	int i;
17241 
17242 	for (i = 0; i < insn_cnt; i++, insn++) {
17243 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17244 			continue;
17245 		if (insn->src_reg == BPF_PSEUDO_FUNC)
17246 			continue;
17247 		insn->src_reg = 0;
17248 	}
17249 }
17250 
17251 /* single env->prog->insni[off] instruction was replaced with the range
17252  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
17253  * [0, off) and [off, end) to new locations, so the patched range stays zero
17254  */
17255 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17256 				 struct bpf_insn_aux_data *new_data,
17257 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
17258 {
17259 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17260 	struct bpf_insn *insn = new_prog->insnsi;
17261 	u32 old_seen = old_data[off].seen;
17262 	u32 prog_len;
17263 	int i;
17264 
17265 	/* aux info at OFF always needs adjustment, no matter fast path
17266 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17267 	 * original insn at old prog.
17268 	 */
17269 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17270 
17271 	if (cnt == 1)
17272 		return;
17273 	prog_len = new_prog->len;
17274 
17275 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17276 	memcpy(new_data + off + cnt - 1, old_data + off,
17277 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17278 	for (i = off; i < off + cnt - 1; i++) {
17279 		/* Expand insni[off]'s seen count to the patched range. */
17280 		new_data[i].seen = old_seen;
17281 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
17282 	}
17283 	env->insn_aux_data = new_data;
17284 	vfree(old_data);
17285 }
17286 
17287 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17288 {
17289 	int i;
17290 
17291 	if (len == 1)
17292 		return;
17293 	/* NOTE: fake 'exit' subprog should be updated as well. */
17294 	for (i = 0; i <= env->subprog_cnt; i++) {
17295 		if (env->subprog_info[i].start <= off)
17296 			continue;
17297 		env->subprog_info[i].start += len - 1;
17298 	}
17299 }
17300 
17301 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17302 {
17303 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17304 	int i, sz = prog->aux->size_poke_tab;
17305 	struct bpf_jit_poke_descriptor *desc;
17306 
17307 	for (i = 0; i < sz; i++) {
17308 		desc = &tab[i];
17309 		if (desc->insn_idx <= off)
17310 			continue;
17311 		desc->insn_idx += len - 1;
17312 	}
17313 }
17314 
17315 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17316 					    const struct bpf_insn *patch, u32 len)
17317 {
17318 	struct bpf_prog *new_prog;
17319 	struct bpf_insn_aux_data *new_data = NULL;
17320 
17321 	if (len > 1) {
17322 		new_data = vzalloc(array_size(env->prog->len + len - 1,
17323 					      sizeof(struct bpf_insn_aux_data)));
17324 		if (!new_data)
17325 			return NULL;
17326 	}
17327 
17328 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17329 	if (IS_ERR(new_prog)) {
17330 		if (PTR_ERR(new_prog) == -ERANGE)
17331 			verbose(env,
17332 				"insn %d cannot be patched due to 16-bit range\n",
17333 				env->insn_aux_data[off].orig_idx);
17334 		vfree(new_data);
17335 		return NULL;
17336 	}
17337 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
17338 	adjust_subprog_starts(env, off, len);
17339 	adjust_poke_descs(new_prog, off, len);
17340 	return new_prog;
17341 }
17342 
17343 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17344 					      u32 off, u32 cnt)
17345 {
17346 	int i, j;
17347 
17348 	/* find first prog starting at or after off (first to remove) */
17349 	for (i = 0; i < env->subprog_cnt; i++)
17350 		if (env->subprog_info[i].start >= off)
17351 			break;
17352 	/* find first prog starting at or after off + cnt (first to stay) */
17353 	for (j = i; j < env->subprog_cnt; j++)
17354 		if (env->subprog_info[j].start >= off + cnt)
17355 			break;
17356 	/* if j doesn't start exactly at off + cnt, we are just removing
17357 	 * the front of previous prog
17358 	 */
17359 	if (env->subprog_info[j].start != off + cnt)
17360 		j--;
17361 
17362 	if (j > i) {
17363 		struct bpf_prog_aux *aux = env->prog->aux;
17364 		int move;
17365 
17366 		/* move fake 'exit' subprog as well */
17367 		move = env->subprog_cnt + 1 - j;
17368 
17369 		memmove(env->subprog_info + i,
17370 			env->subprog_info + j,
17371 			sizeof(*env->subprog_info) * move);
17372 		env->subprog_cnt -= j - i;
17373 
17374 		/* remove func_info */
17375 		if (aux->func_info) {
17376 			move = aux->func_info_cnt - j;
17377 
17378 			memmove(aux->func_info + i,
17379 				aux->func_info + j,
17380 				sizeof(*aux->func_info) * move);
17381 			aux->func_info_cnt -= j - i;
17382 			/* func_info->insn_off is set after all code rewrites,
17383 			 * in adjust_btf_func() - no need to adjust
17384 			 */
17385 		}
17386 	} else {
17387 		/* convert i from "first prog to remove" to "first to adjust" */
17388 		if (env->subprog_info[i].start == off)
17389 			i++;
17390 	}
17391 
17392 	/* update fake 'exit' subprog as well */
17393 	for (; i <= env->subprog_cnt; i++)
17394 		env->subprog_info[i].start -= cnt;
17395 
17396 	return 0;
17397 }
17398 
17399 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17400 				      u32 cnt)
17401 {
17402 	struct bpf_prog *prog = env->prog;
17403 	u32 i, l_off, l_cnt, nr_linfo;
17404 	struct bpf_line_info *linfo;
17405 
17406 	nr_linfo = prog->aux->nr_linfo;
17407 	if (!nr_linfo)
17408 		return 0;
17409 
17410 	linfo = prog->aux->linfo;
17411 
17412 	/* find first line info to remove, count lines to be removed */
17413 	for (i = 0; i < nr_linfo; i++)
17414 		if (linfo[i].insn_off >= off)
17415 			break;
17416 
17417 	l_off = i;
17418 	l_cnt = 0;
17419 	for (; i < nr_linfo; i++)
17420 		if (linfo[i].insn_off < off + cnt)
17421 			l_cnt++;
17422 		else
17423 			break;
17424 
17425 	/* First live insn doesn't match first live linfo, it needs to "inherit"
17426 	 * last removed linfo.  prog is already modified, so prog->len == off
17427 	 * means no live instructions after (tail of the program was removed).
17428 	 */
17429 	if (prog->len != off && l_cnt &&
17430 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17431 		l_cnt--;
17432 		linfo[--i].insn_off = off + cnt;
17433 	}
17434 
17435 	/* remove the line info which refer to the removed instructions */
17436 	if (l_cnt) {
17437 		memmove(linfo + l_off, linfo + i,
17438 			sizeof(*linfo) * (nr_linfo - i));
17439 
17440 		prog->aux->nr_linfo -= l_cnt;
17441 		nr_linfo = prog->aux->nr_linfo;
17442 	}
17443 
17444 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
17445 	for (i = l_off; i < nr_linfo; i++)
17446 		linfo[i].insn_off -= cnt;
17447 
17448 	/* fix up all subprogs (incl. 'exit') which start >= off */
17449 	for (i = 0; i <= env->subprog_cnt; i++)
17450 		if (env->subprog_info[i].linfo_idx > l_off) {
17451 			/* program may have started in the removed region but
17452 			 * may not be fully removed
17453 			 */
17454 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
17455 				env->subprog_info[i].linfo_idx -= l_cnt;
17456 			else
17457 				env->subprog_info[i].linfo_idx = l_off;
17458 		}
17459 
17460 	return 0;
17461 }
17462 
17463 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17464 {
17465 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17466 	unsigned int orig_prog_len = env->prog->len;
17467 	int err;
17468 
17469 	if (bpf_prog_is_offloaded(env->prog->aux))
17470 		bpf_prog_offload_remove_insns(env, off, cnt);
17471 
17472 	err = bpf_remove_insns(env->prog, off, cnt);
17473 	if (err)
17474 		return err;
17475 
17476 	err = adjust_subprog_starts_after_remove(env, off, cnt);
17477 	if (err)
17478 		return err;
17479 
17480 	err = bpf_adj_linfo_after_remove(env, off, cnt);
17481 	if (err)
17482 		return err;
17483 
17484 	memmove(aux_data + off,	aux_data + off + cnt,
17485 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
17486 
17487 	return 0;
17488 }
17489 
17490 /* The verifier does more data flow analysis than llvm and will not
17491  * explore branches that are dead at run time. Malicious programs can
17492  * have dead code too. Therefore replace all dead at-run-time code
17493  * with 'ja -1'.
17494  *
17495  * Just nops are not optimal, e.g. if they would sit at the end of the
17496  * program and through another bug we would manage to jump there, then
17497  * we'd execute beyond program memory otherwise. Returning exception
17498  * code also wouldn't work since we can have subprogs where the dead
17499  * code could be located.
17500  */
17501 static void sanitize_dead_code(struct bpf_verifier_env *env)
17502 {
17503 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17504 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
17505 	struct bpf_insn *insn = env->prog->insnsi;
17506 	const int insn_cnt = env->prog->len;
17507 	int i;
17508 
17509 	for (i = 0; i < insn_cnt; i++) {
17510 		if (aux_data[i].seen)
17511 			continue;
17512 		memcpy(insn + i, &trap, sizeof(trap));
17513 		aux_data[i].zext_dst = false;
17514 	}
17515 }
17516 
17517 static bool insn_is_cond_jump(u8 code)
17518 {
17519 	u8 op;
17520 
17521 	op = BPF_OP(code);
17522 	if (BPF_CLASS(code) == BPF_JMP32)
17523 		return op != BPF_JA;
17524 
17525 	if (BPF_CLASS(code) != BPF_JMP)
17526 		return false;
17527 
17528 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
17529 }
17530 
17531 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
17532 {
17533 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17534 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17535 	struct bpf_insn *insn = env->prog->insnsi;
17536 	const int insn_cnt = env->prog->len;
17537 	int i;
17538 
17539 	for (i = 0; i < insn_cnt; i++, insn++) {
17540 		if (!insn_is_cond_jump(insn->code))
17541 			continue;
17542 
17543 		if (!aux_data[i + 1].seen)
17544 			ja.off = insn->off;
17545 		else if (!aux_data[i + 1 + insn->off].seen)
17546 			ja.off = 0;
17547 		else
17548 			continue;
17549 
17550 		if (bpf_prog_is_offloaded(env->prog->aux))
17551 			bpf_prog_offload_replace_insn(env, i, &ja);
17552 
17553 		memcpy(insn, &ja, sizeof(ja));
17554 	}
17555 }
17556 
17557 static int opt_remove_dead_code(struct bpf_verifier_env *env)
17558 {
17559 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17560 	int insn_cnt = env->prog->len;
17561 	int i, err;
17562 
17563 	for (i = 0; i < insn_cnt; i++) {
17564 		int j;
17565 
17566 		j = 0;
17567 		while (i + j < insn_cnt && !aux_data[i + j].seen)
17568 			j++;
17569 		if (!j)
17570 			continue;
17571 
17572 		err = verifier_remove_insns(env, i, j);
17573 		if (err)
17574 			return err;
17575 		insn_cnt = env->prog->len;
17576 	}
17577 
17578 	return 0;
17579 }
17580 
17581 static int opt_remove_nops(struct bpf_verifier_env *env)
17582 {
17583 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17584 	struct bpf_insn *insn = env->prog->insnsi;
17585 	int insn_cnt = env->prog->len;
17586 	int i, err;
17587 
17588 	for (i = 0; i < insn_cnt; i++) {
17589 		if (memcmp(&insn[i], &ja, sizeof(ja)))
17590 			continue;
17591 
17592 		err = verifier_remove_insns(env, i, 1);
17593 		if (err)
17594 			return err;
17595 		insn_cnt--;
17596 		i--;
17597 	}
17598 
17599 	return 0;
17600 }
17601 
17602 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
17603 					 const union bpf_attr *attr)
17604 {
17605 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
17606 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
17607 	int i, patch_len, delta = 0, len = env->prog->len;
17608 	struct bpf_insn *insns = env->prog->insnsi;
17609 	struct bpf_prog *new_prog;
17610 	bool rnd_hi32;
17611 
17612 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
17613 	zext_patch[1] = BPF_ZEXT_REG(0);
17614 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
17615 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
17616 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
17617 	for (i = 0; i < len; i++) {
17618 		int adj_idx = i + delta;
17619 		struct bpf_insn insn;
17620 		int load_reg;
17621 
17622 		insn = insns[adj_idx];
17623 		load_reg = insn_def_regno(&insn);
17624 		if (!aux[adj_idx].zext_dst) {
17625 			u8 code, class;
17626 			u32 imm_rnd;
17627 
17628 			if (!rnd_hi32)
17629 				continue;
17630 
17631 			code = insn.code;
17632 			class = BPF_CLASS(code);
17633 			if (load_reg == -1)
17634 				continue;
17635 
17636 			/* NOTE: arg "reg" (the fourth one) is only used for
17637 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
17638 			 *       here.
17639 			 */
17640 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
17641 				if (class == BPF_LD &&
17642 				    BPF_MODE(code) == BPF_IMM)
17643 					i++;
17644 				continue;
17645 			}
17646 
17647 			/* ctx load could be transformed into wider load. */
17648 			if (class == BPF_LDX &&
17649 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
17650 				continue;
17651 
17652 			imm_rnd = get_random_u32();
17653 			rnd_hi32_patch[0] = insn;
17654 			rnd_hi32_patch[1].imm = imm_rnd;
17655 			rnd_hi32_patch[3].dst_reg = load_reg;
17656 			patch = rnd_hi32_patch;
17657 			patch_len = 4;
17658 			goto apply_patch_buffer;
17659 		}
17660 
17661 		/* Add in an zero-extend instruction if a) the JIT has requested
17662 		 * it or b) it's a CMPXCHG.
17663 		 *
17664 		 * The latter is because: BPF_CMPXCHG always loads a value into
17665 		 * R0, therefore always zero-extends. However some archs'
17666 		 * equivalent instruction only does this load when the
17667 		 * comparison is successful. This detail of CMPXCHG is
17668 		 * orthogonal to the general zero-extension behaviour of the
17669 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
17670 		 */
17671 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
17672 			continue;
17673 
17674 		/* Zero-extension is done by the caller. */
17675 		if (bpf_pseudo_kfunc_call(&insn))
17676 			continue;
17677 
17678 		if (WARN_ON(load_reg == -1)) {
17679 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
17680 			return -EFAULT;
17681 		}
17682 
17683 		zext_patch[0] = insn;
17684 		zext_patch[1].dst_reg = load_reg;
17685 		zext_patch[1].src_reg = load_reg;
17686 		patch = zext_patch;
17687 		patch_len = 2;
17688 apply_patch_buffer:
17689 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
17690 		if (!new_prog)
17691 			return -ENOMEM;
17692 		env->prog = new_prog;
17693 		insns = new_prog->insnsi;
17694 		aux = env->insn_aux_data;
17695 		delta += patch_len - 1;
17696 	}
17697 
17698 	return 0;
17699 }
17700 
17701 /* convert load instructions that access fields of a context type into a
17702  * sequence of instructions that access fields of the underlying structure:
17703  *     struct __sk_buff    -> struct sk_buff
17704  *     struct bpf_sock_ops -> struct sock
17705  */
17706 static int convert_ctx_accesses(struct bpf_verifier_env *env)
17707 {
17708 	const struct bpf_verifier_ops *ops = env->ops;
17709 	int i, cnt, size, ctx_field_size, delta = 0;
17710 	const int insn_cnt = env->prog->len;
17711 	struct bpf_insn insn_buf[16], *insn;
17712 	u32 target_size, size_default, off;
17713 	struct bpf_prog *new_prog;
17714 	enum bpf_access_type type;
17715 	bool is_narrower_load;
17716 
17717 	if (ops->gen_prologue || env->seen_direct_write) {
17718 		if (!ops->gen_prologue) {
17719 			verbose(env, "bpf verifier is misconfigured\n");
17720 			return -EINVAL;
17721 		}
17722 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
17723 					env->prog);
17724 		if (cnt >= ARRAY_SIZE(insn_buf)) {
17725 			verbose(env, "bpf verifier is misconfigured\n");
17726 			return -EINVAL;
17727 		} else if (cnt) {
17728 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
17729 			if (!new_prog)
17730 				return -ENOMEM;
17731 
17732 			env->prog = new_prog;
17733 			delta += cnt - 1;
17734 		}
17735 	}
17736 
17737 	if (bpf_prog_is_offloaded(env->prog->aux))
17738 		return 0;
17739 
17740 	insn = env->prog->insnsi + delta;
17741 
17742 	for (i = 0; i < insn_cnt; i++, insn++) {
17743 		bpf_convert_ctx_access_t convert_ctx_access;
17744 		u8 mode;
17745 
17746 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
17747 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
17748 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
17749 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
17750 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
17751 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
17752 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
17753 			type = BPF_READ;
17754 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
17755 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
17756 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
17757 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
17758 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
17759 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
17760 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
17761 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
17762 			type = BPF_WRITE;
17763 		} else {
17764 			continue;
17765 		}
17766 
17767 		if (type == BPF_WRITE &&
17768 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
17769 			struct bpf_insn patch[] = {
17770 				*insn,
17771 				BPF_ST_NOSPEC(),
17772 			};
17773 
17774 			cnt = ARRAY_SIZE(patch);
17775 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
17776 			if (!new_prog)
17777 				return -ENOMEM;
17778 
17779 			delta    += cnt - 1;
17780 			env->prog = new_prog;
17781 			insn      = new_prog->insnsi + i + delta;
17782 			continue;
17783 		}
17784 
17785 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
17786 		case PTR_TO_CTX:
17787 			if (!ops->convert_ctx_access)
17788 				continue;
17789 			convert_ctx_access = ops->convert_ctx_access;
17790 			break;
17791 		case PTR_TO_SOCKET:
17792 		case PTR_TO_SOCK_COMMON:
17793 			convert_ctx_access = bpf_sock_convert_ctx_access;
17794 			break;
17795 		case PTR_TO_TCP_SOCK:
17796 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
17797 			break;
17798 		case PTR_TO_XDP_SOCK:
17799 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
17800 			break;
17801 		case PTR_TO_BTF_ID:
17802 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
17803 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
17804 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
17805 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
17806 		 * any faults for loads into such types. BPF_WRITE is disallowed
17807 		 * for this case.
17808 		 */
17809 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
17810 			if (type == BPF_READ) {
17811 				if (BPF_MODE(insn->code) == BPF_MEM)
17812 					insn->code = BPF_LDX | BPF_PROBE_MEM |
17813 						     BPF_SIZE((insn)->code);
17814 				else
17815 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
17816 						     BPF_SIZE((insn)->code);
17817 				env->prog->aux->num_exentries++;
17818 			}
17819 			continue;
17820 		default:
17821 			continue;
17822 		}
17823 
17824 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
17825 		size = BPF_LDST_BYTES(insn);
17826 		mode = BPF_MODE(insn->code);
17827 
17828 		/* If the read access is a narrower load of the field,
17829 		 * convert to a 4/8-byte load, to minimum program type specific
17830 		 * convert_ctx_access changes. If conversion is successful,
17831 		 * we will apply proper mask to the result.
17832 		 */
17833 		is_narrower_load = size < ctx_field_size;
17834 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
17835 		off = insn->off;
17836 		if (is_narrower_load) {
17837 			u8 size_code;
17838 
17839 			if (type == BPF_WRITE) {
17840 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
17841 				return -EINVAL;
17842 			}
17843 
17844 			size_code = BPF_H;
17845 			if (ctx_field_size == 4)
17846 				size_code = BPF_W;
17847 			else if (ctx_field_size == 8)
17848 				size_code = BPF_DW;
17849 
17850 			insn->off = off & ~(size_default - 1);
17851 			insn->code = BPF_LDX | BPF_MEM | size_code;
17852 		}
17853 
17854 		target_size = 0;
17855 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
17856 					 &target_size);
17857 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
17858 		    (ctx_field_size && !target_size)) {
17859 			verbose(env, "bpf verifier is misconfigured\n");
17860 			return -EINVAL;
17861 		}
17862 
17863 		if (is_narrower_load && size < target_size) {
17864 			u8 shift = bpf_ctx_narrow_access_offset(
17865 				off, size, size_default) * 8;
17866 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
17867 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
17868 				return -EINVAL;
17869 			}
17870 			if (ctx_field_size <= 4) {
17871 				if (shift)
17872 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
17873 									insn->dst_reg,
17874 									shift);
17875 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17876 								(1 << size * 8) - 1);
17877 			} else {
17878 				if (shift)
17879 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17880 									insn->dst_reg,
17881 									shift);
17882 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17883 								(1ULL << size * 8) - 1);
17884 			}
17885 		}
17886 		if (mode == BPF_MEMSX)
17887 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
17888 						       insn->dst_reg, insn->dst_reg,
17889 						       size * 8, 0);
17890 
17891 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17892 		if (!new_prog)
17893 			return -ENOMEM;
17894 
17895 		delta += cnt - 1;
17896 
17897 		/* keep walking new program and skip insns we just inserted */
17898 		env->prog = new_prog;
17899 		insn      = new_prog->insnsi + i + delta;
17900 	}
17901 
17902 	return 0;
17903 }
17904 
17905 static int jit_subprogs(struct bpf_verifier_env *env)
17906 {
17907 	struct bpf_prog *prog = env->prog, **func, *tmp;
17908 	int i, j, subprog_start, subprog_end = 0, len, subprog;
17909 	struct bpf_map *map_ptr;
17910 	struct bpf_insn *insn;
17911 	void *old_bpf_func;
17912 	int err, num_exentries;
17913 
17914 	if (env->subprog_cnt <= 1)
17915 		return 0;
17916 
17917 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17918 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
17919 			continue;
17920 
17921 		/* Upon error here we cannot fall back to interpreter but
17922 		 * need a hard reject of the program. Thus -EFAULT is
17923 		 * propagated in any case.
17924 		 */
17925 		subprog = find_subprog(env, i + insn->imm + 1);
17926 		if (subprog < 0) {
17927 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17928 				  i + insn->imm + 1);
17929 			return -EFAULT;
17930 		}
17931 		/* temporarily remember subprog id inside insn instead of
17932 		 * aux_data, since next loop will split up all insns into funcs
17933 		 */
17934 		insn->off = subprog;
17935 		/* remember original imm in case JIT fails and fallback
17936 		 * to interpreter will be needed
17937 		 */
17938 		env->insn_aux_data[i].call_imm = insn->imm;
17939 		/* point imm to __bpf_call_base+1 from JITs point of view */
17940 		insn->imm = 1;
17941 		if (bpf_pseudo_func(insn))
17942 			/* jit (e.g. x86_64) may emit fewer instructions
17943 			 * if it learns a u32 imm is the same as a u64 imm.
17944 			 * Force a non zero here.
17945 			 */
17946 			insn[1].imm = 1;
17947 	}
17948 
17949 	err = bpf_prog_alloc_jited_linfo(prog);
17950 	if (err)
17951 		goto out_undo_insn;
17952 
17953 	err = -ENOMEM;
17954 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
17955 	if (!func)
17956 		goto out_undo_insn;
17957 
17958 	for (i = 0; i < env->subprog_cnt; i++) {
17959 		subprog_start = subprog_end;
17960 		subprog_end = env->subprog_info[i + 1].start;
17961 
17962 		len = subprog_end - subprog_start;
17963 		/* bpf_prog_run() doesn't call subprogs directly,
17964 		 * hence main prog stats include the runtime of subprogs.
17965 		 * subprogs don't have IDs and not reachable via prog_get_next_id
17966 		 * func[i]->stats will never be accessed and stays NULL
17967 		 */
17968 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
17969 		if (!func[i])
17970 			goto out_free;
17971 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
17972 		       len * sizeof(struct bpf_insn));
17973 		func[i]->type = prog->type;
17974 		func[i]->len = len;
17975 		if (bpf_prog_calc_tag(func[i]))
17976 			goto out_free;
17977 		func[i]->is_func = 1;
17978 		func[i]->aux->func_idx = i;
17979 		/* Below members will be freed only at prog->aux */
17980 		func[i]->aux->btf = prog->aux->btf;
17981 		func[i]->aux->func_info = prog->aux->func_info;
17982 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
17983 		func[i]->aux->poke_tab = prog->aux->poke_tab;
17984 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
17985 
17986 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
17987 			struct bpf_jit_poke_descriptor *poke;
17988 
17989 			poke = &prog->aux->poke_tab[j];
17990 			if (poke->insn_idx < subprog_end &&
17991 			    poke->insn_idx >= subprog_start)
17992 				poke->aux = func[i]->aux;
17993 		}
17994 
17995 		func[i]->aux->name[0] = 'F';
17996 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
17997 		func[i]->jit_requested = 1;
17998 		func[i]->blinding_requested = prog->blinding_requested;
17999 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18000 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18001 		func[i]->aux->linfo = prog->aux->linfo;
18002 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18003 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18004 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18005 		num_exentries = 0;
18006 		insn = func[i]->insnsi;
18007 		for (j = 0; j < func[i]->len; j++, insn++) {
18008 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18009 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18010 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18011 				num_exentries++;
18012 		}
18013 		func[i]->aux->num_exentries = num_exentries;
18014 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18015 		func[i] = bpf_int_jit_compile(func[i]);
18016 		if (!func[i]->jited) {
18017 			err = -ENOTSUPP;
18018 			goto out_free;
18019 		}
18020 		cond_resched();
18021 	}
18022 
18023 	/* at this point all bpf functions were successfully JITed
18024 	 * now populate all bpf_calls with correct addresses and
18025 	 * run last pass of JIT
18026 	 */
18027 	for (i = 0; i < env->subprog_cnt; i++) {
18028 		insn = func[i]->insnsi;
18029 		for (j = 0; j < func[i]->len; j++, insn++) {
18030 			if (bpf_pseudo_func(insn)) {
18031 				subprog = insn->off;
18032 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18033 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18034 				continue;
18035 			}
18036 			if (!bpf_pseudo_call(insn))
18037 				continue;
18038 			subprog = insn->off;
18039 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18040 		}
18041 
18042 		/* we use the aux data to keep a list of the start addresses
18043 		 * of the JITed images for each function in the program
18044 		 *
18045 		 * for some architectures, such as powerpc64, the imm field
18046 		 * might not be large enough to hold the offset of the start
18047 		 * address of the callee's JITed image from __bpf_call_base
18048 		 *
18049 		 * in such cases, we can lookup the start address of a callee
18050 		 * by using its subprog id, available from the off field of
18051 		 * the call instruction, as an index for this list
18052 		 */
18053 		func[i]->aux->func = func;
18054 		func[i]->aux->func_cnt = env->subprog_cnt;
18055 	}
18056 	for (i = 0; i < env->subprog_cnt; i++) {
18057 		old_bpf_func = func[i]->bpf_func;
18058 		tmp = bpf_int_jit_compile(func[i]);
18059 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18060 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18061 			err = -ENOTSUPP;
18062 			goto out_free;
18063 		}
18064 		cond_resched();
18065 	}
18066 
18067 	/* finally lock prog and jit images for all functions and
18068 	 * populate kallsysm. Begin at the first subprogram, since
18069 	 * bpf_prog_load will add the kallsyms for the main program.
18070 	 */
18071 	for (i = 1; i < env->subprog_cnt; i++) {
18072 		bpf_prog_lock_ro(func[i]);
18073 		bpf_prog_kallsyms_add(func[i]);
18074 	}
18075 
18076 	/* Last step: make now unused interpreter insns from main
18077 	 * prog consistent for later dump requests, so they can
18078 	 * later look the same as if they were interpreted only.
18079 	 */
18080 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18081 		if (bpf_pseudo_func(insn)) {
18082 			insn[0].imm = env->insn_aux_data[i].call_imm;
18083 			insn[1].imm = insn->off;
18084 			insn->off = 0;
18085 			continue;
18086 		}
18087 		if (!bpf_pseudo_call(insn))
18088 			continue;
18089 		insn->off = env->insn_aux_data[i].call_imm;
18090 		subprog = find_subprog(env, i + insn->off + 1);
18091 		insn->imm = subprog;
18092 	}
18093 
18094 	prog->jited = 1;
18095 	prog->bpf_func = func[0]->bpf_func;
18096 	prog->jited_len = func[0]->jited_len;
18097 	prog->aux->extable = func[0]->aux->extable;
18098 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18099 	prog->aux->func = func;
18100 	prog->aux->func_cnt = env->subprog_cnt;
18101 	bpf_prog_jit_attempt_done(prog);
18102 	return 0;
18103 out_free:
18104 	/* We failed JIT'ing, so at this point we need to unregister poke
18105 	 * descriptors from subprogs, so that kernel is not attempting to
18106 	 * patch it anymore as we're freeing the subprog JIT memory.
18107 	 */
18108 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18109 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18110 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18111 	}
18112 	/* At this point we're guaranteed that poke descriptors are not
18113 	 * live anymore. We can just unlink its descriptor table as it's
18114 	 * released with the main prog.
18115 	 */
18116 	for (i = 0; i < env->subprog_cnt; i++) {
18117 		if (!func[i])
18118 			continue;
18119 		func[i]->aux->poke_tab = NULL;
18120 		bpf_jit_free(func[i]);
18121 	}
18122 	kfree(func);
18123 out_undo_insn:
18124 	/* cleanup main prog to be interpreted */
18125 	prog->jit_requested = 0;
18126 	prog->blinding_requested = 0;
18127 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18128 		if (!bpf_pseudo_call(insn))
18129 			continue;
18130 		insn->off = 0;
18131 		insn->imm = env->insn_aux_data[i].call_imm;
18132 	}
18133 	bpf_prog_jit_attempt_done(prog);
18134 	return err;
18135 }
18136 
18137 static int fixup_call_args(struct bpf_verifier_env *env)
18138 {
18139 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18140 	struct bpf_prog *prog = env->prog;
18141 	struct bpf_insn *insn = prog->insnsi;
18142 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18143 	int i, depth;
18144 #endif
18145 	int err = 0;
18146 
18147 	if (env->prog->jit_requested &&
18148 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18149 		err = jit_subprogs(env);
18150 		if (err == 0)
18151 			return 0;
18152 		if (err == -EFAULT)
18153 			return err;
18154 	}
18155 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18156 	if (has_kfunc_call) {
18157 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18158 		return -EINVAL;
18159 	}
18160 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18161 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18162 		 * have to be rejected, since interpreter doesn't support them yet.
18163 		 */
18164 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18165 		return -EINVAL;
18166 	}
18167 	for (i = 0; i < prog->len; i++, insn++) {
18168 		if (bpf_pseudo_func(insn)) {
18169 			/* When JIT fails the progs with callback calls
18170 			 * have to be rejected, since interpreter doesn't support them yet.
18171 			 */
18172 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18173 			return -EINVAL;
18174 		}
18175 
18176 		if (!bpf_pseudo_call(insn))
18177 			continue;
18178 		depth = get_callee_stack_depth(env, insn, i);
18179 		if (depth < 0)
18180 			return depth;
18181 		bpf_patch_call_args(insn, depth);
18182 	}
18183 	err = 0;
18184 #endif
18185 	return err;
18186 }
18187 
18188 /* replace a generic kfunc with a specialized version if necessary */
18189 static void specialize_kfunc(struct bpf_verifier_env *env,
18190 			     u32 func_id, u16 offset, unsigned long *addr)
18191 {
18192 	struct bpf_prog *prog = env->prog;
18193 	bool seen_direct_write;
18194 	void *xdp_kfunc;
18195 	bool is_rdonly;
18196 
18197 	if (bpf_dev_bound_kfunc_id(func_id)) {
18198 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18199 		if (xdp_kfunc) {
18200 			*addr = (unsigned long)xdp_kfunc;
18201 			return;
18202 		}
18203 		/* fallback to default kfunc when not supported by netdev */
18204 	}
18205 
18206 	if (offset)
18207 		return;
18208 
18209 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18210 		seen_direct_write = env->seen_direct_write;
18211 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18212 
18213 		if (is_rdonly)
18214 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18215 
18216 		/* restore env->seen_direct_write to its original value, since
18217 		 * may_access_direct_pkt_data mutates it
18218 		 */
18219 		env->seen_direct_write = seen_direct_write;
18220 	}
18221 }
18222 
18223 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18224 					    u16 struct_meta_reg,
18225 					    u16 node_offset_reg,
18226 					    struct bpf_insn *insn,
18227 					    struct bpf_insn *insn_buf,
18228 					    int *cnt)
18229 {
18230 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18231 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18232 
18233 	insn_buf[0] = addr[0];
18234 	insn_buf[1] = addr[1];
18235 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18236 	insn_buf[3] = *insn;
18237 	*cnt = 4;
18238 }
18239 
18240 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18241 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18242 {
18243 	const struct bpf_kfunc_desc *desc;
18244 
18245 	if (!insn->imm) {
18246 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18247 		return -EINVAL;
18248 	}
18249 
18250 	*cnt = 0;
18251 
18252 	/* insn->imm has the btf func_id. Replace it with an offset relative to
18253 	 * __bpf_call_base, unless the JIT needs to call functions that are
18254 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18255 	 */
18256 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18257 	if (!desc) {
18258 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18259 			insn->imm);
18260 		return -EFAULT;
18261 	}
18262 
18263 	if (!bpf_jit_supports_far_kfunc_call())
18264 		insn->imm = BPF_CALL_IMM(desc->addr);
18265 	if (insn->off)
18266 		return 0;
18267 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18268 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18269 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18270 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18271 
18272 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18273 		insn_buf[1] = addr[0];
18274 		insn_buf[2] = addr[1];
18275 		insn_buf[3] = *insn;
18276 		*cnt = 4;
18277 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18278 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18279 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18280 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18281 
18282 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18283 		    !kptr_struct_meta) {
18284 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18285 				insn_idx);
18286 			return -EFAULT;
18287 		}
18288 
18289 		insn_buf[0] = addr[0];
18290 		insn_buf[1] = addr[1];
18291 		insn_buf[2] = *insn;
18292 		*cnt = 3;
18293 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18294 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18295 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18296 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18297 		int struct_meta_reg = BPF_REG_3;
18298 		int node_offset_reg = BPF_REG_4;
18299 
18300 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18301 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18302 			struct_meta_reg = BPF_REG_4;
18303 			node_offset_reg = BPF_REG_5;
18304 		}
18305 
18306 		if (!kptr_struct_meta) {
18307 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18308 				insn_idx);
18309 			return -EFAULT;
18310 		}
18311 
18312 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18313 						node_offset_reg, insn, insn_buf, cnt);
18314 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18315 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18316 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18317 		*cnt = 1;
18318 	}
18319 	return 0;
18320 }
18321 
18322 /* Do various post-verification rewrites in a single program pass.
18323  * These rewrites simplify JIT and interpreter implementations.
18324  */
18325 static int do_misc_fixups(struct bpf_verifier_env *env)
18326 {
18327 	struct bpf_prog *prog = env->prog;
18328 	enum bpf_attach_type eatype = prog->expected_attach_type;
18329 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18330 	struct bpf_insn *insn = prog->insnsi;
18331 	const struct bpf_func_proto *fn;
18332 	const int insn_cnt = prog->len;
18333 	const struct bpf_map_ops *ops;
18334 	struct bpf_insn_aux_data *aux;
18335 	struct bpf_insn insn_buf[16];
18336 	struct bpf_prog *new_prog;
18337 	struct bpf_map *map_ptr;
18338 	int i, ret, cnt, delta = 0;
18339 
18340 	for (i = 0; i < insn_cnt; i++, insn++) {
18341 		/* Make divide-by-zero exceptions impossible. */
18342 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18343 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18344 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18345 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18346 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18347 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18348 			struct bpf_insn *patchlet;
18349 			struct bpf_insn chk_and_div[] = {
18350 				/* [R,W]x div 0 -> 0 */
18351 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18352 					     BPF_JNE | BPF_K, insn->src_reg,
18353 					     0, 2, 0),
18354 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18355 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18356 				*insn,
18357 			};
18358 			struct bpf_insn chk_and_mod[] = {
18359 				/* [R,W]x mod 0 -> [R,W]x */
18360 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18361 					     BPF_JEQ | BPF_K, insn->src_reg,
18362 					     0, 1 + (is64 ? 0 : 1), 0),
18363 				*insn,
18364 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18365 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18366 			};
18367 
18368 			patchlet = isdiv ? chk_and_div : chk_and_mod;
18369 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18370 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18371 
18372 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18373 			if (!new_prog)
18374 				return -ENOMEM;
18375 
18376 			delta    += cnt - 1;
18377 			env->prog = prog = new_prog;
18378 			insn      = new_prog->insnsi + i + delta;
18379 			continue;
18380 		}
18381 
18382 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18383 		if (BPF_CLASS(insn->code) == BPF_LD &&
18384 		    (BPF_MODE(insn->code) == BPF_ABS ||
18385 		     BPF_MODE(insn->code) == BPF_IND)) {
18386 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
18387 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18388 				verbose(env, "bpf verifier is misconfigured\n");
18389 				return -EINVAL;
18390 			}
18391 
18392 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18393 			if (!new_prog)
18394 				return -ENOMEM;
18395 
18396 			delta    += cnt - 1;
18397 			env->prog = prog = new_prog;
18398 			insn      = new_prog->insnsi + i + delta;
18399 			continue;
18400 		}
18401 
18402 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
18403 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18404 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18405 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18406 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18407 			struct bpf_insn *patch = &insn_buf[0];
18408 			bool issrc, isneg, isimm;
18409 			u32 off_reg;
18410 
18411 			aux = &env->insn_aux_data[i + delta];
18412 			if (!aux->alu_state ||
18413 			    aux->alu_state == BPF_ALU_NON_POINTER)
18414 				continue;
18415 
18416 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18417 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18418 				BPF_ALU_SANITIZE_SRC;
18419 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18420 
18421 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
18422 			if (isimm) {
18423 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18424 			} else {
18425 				if (isneg)
18426 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18427 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18428 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18429 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18430 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18431 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18432 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18433 			}
18434 			if (!issrc)
18435 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18436 			insn->src_reg = BPF_REG_AX;
18437 			if (isneg)
18438 				insn->code = insn->code == code_add ?
18439 					     code_sub : code_add;
18440 			*patch++ = *insn;
18441 			if (issrc && isneg && !isimm)
18442 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18443 			cnt = patch - insn_buf;
18444 
18445 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18446 			if (!new_prog)
18447 				return -ENOMEM;
18448 
18449 			delta    += cnt - 1;
18450 			env->prog = prog = new_prog;
18451 			insn      = new_prog->insnsi + i + delta;
18452 			continue;
18453 		}
18454 
18455 		if (insn->code != (BPF_JMP | BPF_CALL))
18456 			continue;
18457 		if (insn->src_reg == BPF_PSEUDO_CALL)
18458 			continue;
18459 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18460 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
18461 			if (ret)
18462 				return ret;
18463 			if (cnt == 0)
18464 				continue;
18465 
18466 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18467 			if (!new_prog)
18468 				return -ENOMEM;
18469 
18470 			delta	 += cnt - 1;
18471 			env->prog = prog = new_prog;
18472 			insn	  = new_prog->insnsi + i + delta;
18473 			continue;
18474 		}
18475 
18476 		if (insn->imm == BPF_FUNC_get_route_realm)
18477 			prog->dst_needed = 1;
18478 		if (insn->imm == BPF_FUNC_get_prandom_u32)
18479 			bpf_user_rnd_init_once();
18480 		if (insn->imm == BPF_FUNC_override_return)
18481 			prog->kprobe_override = 1;
18482 		if (insn->imm == BPF_FUNC_tail_call) {
18483 			/* If we tail call into other programs, we
18484 			 * cannot make any assumptions since they can
18485 			 * be replaced dynamically during runtime in
18486 			 * the program array.
18487 			 */
18488 			prog->cb_access = 1;
18489 			if (!allow_tail_call_in_subprogs(env))
18490 				prog->aux->stack_depth = MAX_BPF_STACK;
18491 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
18492 
18493 			/* mark bpf_tail_call as different opcode to avoid
18494 			 * conditional branch in the interpreter for every normal
18495 			 * call and to prevent accidental JITing by JIT compiler
18496 			 * that doesn't support bpf_tail_call yet
18497 			 */
18498 			insn->imm = 0;
18499 			insn->code = BPF_JMP | BPF_TAIL_CALL;
18500 
18501 			aux = &env->insn_aux_data[i + delta];
18502 			if (env->bpf_capable && !prog->blinding_requested &&
18503 			    prog->jit_requested &&
18504 			    !bpf_map_key_poisoned(aux) &&
18505 			    !bpf_map_ptr_poisoned(aux) &&
18506 			    !bpf_map_ptr_unpriv(aux)) {
18507 				struct bpf_jit_poke_descriptor desc = {
18508 					.reason = BPF_POKE_REASON_TAIL_CALL,
18509 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
18510 					.tail_call.key = bpf_map_key_immediate(aux),
18511 					.insn_idx = i + delta,
18512 				};
18513 
18514 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
18515 				if (ret < 0) {
18516 					verbose(env, "adding tail call poke descriptor failed\n");
18517 					return ret;
18518 				}
18519 
18520 				insn->imm = ret + 1;
18521 				continue;
18522 			}
18523 
18524 			if (!bpf_map_ptr_unpriv(aux))
18525 				continue;
18526 
18527 			/* instead of changing every JIT dealing with tail_call
18528 			 * emit two extra insns:
18529 			 * if (index >= max_entries) goto out;
18530 			 * index &= array->index_mask;
18531 			 * to avoid out-of-bounds cpu speculation
18532 			 */
18533 			if (bpf_map_ptr_poisoned(aux)) {
18534 				verbose(env, "tail_call abusing map_ptr\n");
18535 				return -EINVAL;
18536 			}
18537 
18538 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18539 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
18540 						  map_ptr->max_entries, 2);
18541 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
18542 						    container_of(map_ptr,
18543 								 struct bpf_array,
18544 								 map)->index_mask);
18545 			insn_buf[2] = *insn;
18546 			cnt = 3;
18547 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18548 			if (!new_prog)
18549 				return -ENOMEM;
18550 
18551 			delta    += cnt - 1;
18552 			env->prog = prog = new_prog;
18553 			insn      = new_prog->insnsi + i + delta;
18554 			continue;
18555 		}
18556 
18557 		if (insn->imm == BPF_FUNC_timer_set_callback) {
18558 			/* The verifier will process callback_fn as many times as necessary
18559 			 * with different maps and the register states prepared by
18560 			 * set_timer_callback_state will be accurate.
18561 			 *
18562 			 * The following use case is valid:
18563 			 *   map1 is shared by prog1, prog2, prog3.
18564 			 *   prog1 calls bpf_timer_init for some map1 elements
18565 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
18566 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
18567 			 *   prog3 calls bpf_timer_start for some map1 elements.
18568 			 *     Those that were not both bpf_timer_init-ed and
18569 			 *     bpf_timer_set_callback-ed will return -EINVAL.
18570 			 */
18571 			struct bpf_insn ld_addrs[2] = {
18572 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
18573 			};
18574 
18575 			insn_buf[0] = ld_addrs[0];
18576 			insn_buf[1] = ld_addrs[1];
18577 			insn_buf[2] = *insn;
18578 			cnt = 3;
18579 
18580 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18581 			if (!new_prog)
18582 				return -ENOMEM;
18583 
18584 			delta    += cnt - 1;
18585 			env->prog = prog = new_prog;
18586 			insn      = new_prog->insnsi + i + delta;
18587 			goto patch_call_imm;
18588 		}
18589 
18590 		if (is_storage_get_function(insn->imm)) {
18591 			if (!env->prog->aux->sleepable ||
18592 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
18593 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
18594 			else
18595 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
18596 			insn_buf[1] = *insn;
18597 			cnt = 2;
18598 
18599 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18600 			if (!new_prog)
18601 				return -ENOMEM;
18602 
18603 			delta += cnt - 1;
18604 			env->prog = prog = new_prog;
18605 			insn = new_prog->insnsi + i + delta;
18606 			goto patch_call_imm;
18607 		}
18608 
18609 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
18610 		 * and other inlining handlers are currently limited to 64 bit
18611 		 * only.
18612 		 */
18613 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18614 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
18615 		     insn->imm == BPF_FUNC_map_update_elem ||
18616 		     insn->imm == BPF_FUNC_map_delete_elem ||
18617 		     insn->imm == BPF_FUNC_map_push_elem   ||
18618 		     insn->imm == BPF_FUNC_map_pop_elem    ||
18619 		     insn->imm == BPF_FUNC_map_peek_elem   ||
18620 		     insn->imm == BPF_FUNC_redirect_map    ||
18621 		     insn->imm == BPF_FUNC_for_each_map_elem ||
18622 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
18623 			aux = &env->insn_aux_data[i + delta];
18624 			if (bpf_map_ptr_poisoned(aux))
18625 				goto patch_call_imm;
18626 
18627 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18628 			ops = map_ptr->ops;
18629 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
18630 			    ops->map_gen_lookup) {
18631 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
18632 				if (cnt == -EOPNOTSUPP)
18633 					goto patch_map_ops_generic;
18634 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18635 					verbose(env, "bpf verifier is misconfigured\n");
18636 					return -EINVAL;
18637 				}
18638 
18639 				new_prog = bpf_patch_insn_data(env, i + delta,
18640 							       insn_buf, cnt);
18641 				if (!new_prog)
18642 					return -ENOMEM;
18643 
18644 				delta    += cnt - 1;
18645 				env->prog = prog = new_prog;
18646 				insn      = new_prog->insnsi + i + delta;
18647 				continue;
18648 			}
18649 
18650 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
18651 				     (void *(*)(struct bpf_map *map, void *key))NULL));
18652 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
18653 				     (long (*)(struct bpf_map *map, void *key))NULL));
18654 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
18655 				     (long (*)(struct bpf_map *map, void *key, void *value,
18656 					      u64 flags))NULL));
18657 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
18658 				     (long (*)(struct bpf_map *map, void *value,
18659 					      u64 flags))NULL));
18660 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
18661 				     (long (*)(struct bpf_map *map, void *value))NULL));
18662 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
18663 				     (long (*)(struct bpf_map *map, void *value))NULL));
18664 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
18665 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
18666 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
18667 				     (long (*)(struct bpf_map *map,
18668 					      bpf_callback_t callback_fn,
18669 					      void *callback_ctx,
18670 					      u64 flags))NULL));
18671 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
18672 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
18673 
18674 patch_map_ops_generic:
18675 			switch (insn->imm) {
18676 			case BPF_FUNC_map_lookup_elem:
18677 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
18678 				continue;
18679 			case BPF_FUNC_map_update_elem:
18680 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
18681 				continue;
18682 			case BPF_FUNC_map_delete_elem:
18683 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
18684 				continue;
18685 			case BPF_FUNC_map_push_elem:
18686 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
18687 				continue;
18688 			case BPF_FUNC_map_pop_elem:
18689 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
18690 				continue;
18691 			case BPF_FUNC_map_peek_elem:
18692 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
18693 				continue;
18694 			case BPF_FUNC_redirect_map:
18695 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
18696 				continue;
18697 			case BPF_FUNC_for_each_map_elem:
18698 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
18699 				continue;
18700 			case BPF_FUNC_map_lookup_percpu_elem:
18701 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
18702 				continue;
18703 			}
18704 
18705 			goto patch_call_imm;
18706 		}
18707 
18708 		/* Implement bpf_jiffies64 inline. */
18709 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18710 		    insn->imm == BPF_FUNC_jiffies64) {
18711 			struct bpf_insn ld_jiffies_addr[2] = {
18712 				BPF_LD_IMM64(BPF_REG_0,
18713 					     (unsigned long)&jiffies),
18714 			};
18715 
18716 			insn_buf[0] = ld_jiffies_addr[0];
18717 			insn_buf[1] = ld_jiffies_addr[1];
18718 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
18719 						  BPF_REG_0, 0);
18720 			cnt = 3;
18721 
18722 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
18723 						       cnt);
18724 			if (!new_prog)
18725 				return -ENOMEM;
18726 
18727 			delta    += cnt - 1;
18728 			env->prog = prog = new_prog;
18729 			insn      = new_prog->insnsi + i + delta;
18730 			continue;
18731 		}
18732 
18733 		/* Implement bpf_get_func_arg inline. */
18734 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18735 		    insn->imm == BPF_FUNC_get_func_arg) {
18736 			/* Load nr_args from ctx - 8 */
18737 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18738 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
18739 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
18740 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
18741 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
18742 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18743 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
18744 			insn_buf[7] = BPF_JMP_A(1);
18745 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
18746 			cnt = 9;
18747 
18748 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18749 			if (!new_prog)
18750 				return -ENOMEM;
18751 
18752 			delta    += cnt - 1;
18753 			env->prog = prog = new_prog;
18754 			insn      = new_prog->insnsi + i + delta;
18755 			continue;
18756 		}
18757 
18758 		/* Implement bpf_get_func_ret inline. */
18759 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18760 		    insn->imm == BPF_FUNC_get_func_ret) {
18761 			if (eatype == BPF_TRACE_FEXIT ||
18762 			    eatype == BPF_MODIFY_RETURN) {
18763 				/* Load nr_args from ctx - 8 */
18764 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18765 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
18766 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
18767 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18768 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
18769 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
18770 				cnt = 6;
18771 			} else {
18772 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
18773 				cnt = 1;
18774 			}
18775 
18776 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18777 			if (!new_prog)
18778 				return -ENOMEM;
18779 
18780 			delta    += cnt - 1;
18781 			env->prog = prog = new_prog;
18782 			insn      = new_prog->insnsi + i + delta;
18783 			continue;
18784 		}
18785 
18786 		/* Implement get_func_arg_cnt inline. */
18787 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18788 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
18789 			/* Load nr_args from ctx - 8 */
18790 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18791 
18792 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18793 			if (!new_prog)
18794 				return -ENOMEM;
18795 
18796 			env->prog = prog = new_prog;
18797 			insn      = new_prog->insnsi + i + delta;
18798 			continue;
18799 		}
18800 
18801 		/* Implement bpf_get_func_ip inline. */
18802 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18803 		    insn->imm == BPF_FUNC_get_func_ip) {
18804 			/* Load IP address from ctx - 16 */
18805 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
18806 
18807 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18808 			if (!new_prog)
18809 				return -ENOMEM;
18810 
18811 			env->prog = prog = new_prog;
18812 			insn      = new_prog->insnsi + i + delta;
18813 			continue;
18814 		}
18815 
18816 patch_call_imm:
18817 		fn = env->ops->get_func_proto(insn->imm, env->prog);
18818 		/* all functions that have prototype and verifier allowed
18819 		 * programs to call them, must be real in-kernel functions
18820 		 */
18821 		if (!fn->func) {
18822 			verbose(env,
18823 				"kernel subsystem misconfigured func %s#%d\n",
18824 				func_id_name(insn->imm), insn->imm);
18825 			return -EFAULT;
18826 		}
18827 		insn->imm = fn->func - __bpf_call_base;
18828 	}
18829 
18830 	/* Since poke tab is now finalized, publish aux to tracker. */
18831 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18832 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18833 		if (!map_ptr->ops->map_poke_track ||
18834 		    !map_ptr->ops->map_poke_untrack ||
18835 		    !map_ptr->ops->map_poke_run) {
18836 			verbose(env, "bpf verifier is misconfigured\n");
18837 			return -EINVAL;
18838 		}
18839 
18840 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
18841 		if (ret < 0) {
18842 			verbose(env, "tracking tail call prog failed\n");
18843 			return ret;
18844 		}
18845 	}
18846 
18847 	sort_kfunc_descs_by_imm_off(env->prog);
18848 
18849 	return 0;
18850 }
18851 
18852 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
18853 					int position,
18854 					s32 stack_base,
18855 					u32 callback_subprogno,
18856 					u32 *cnt)
18857 {
18858 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
18859 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
18860 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
18861 	int reg_loop_max = BPF_REG_6;
18862 	int reg_loop_cnt = BPF_REG_7;
18863 	int reg_loop_ctx = BPF_REG_8;
18864 
18865 	struct bpf_prog *new_prog;
18866 	u32 callback_start;
18867 	u32 call_insn_offset;
18868 	s32 callback_offset;
18869 
18870 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
18871 	 * be careful to modify this code in sync.
18872 	 */
18873 	struct bpf_insn insn_buf[] = {
18874 		/* Return error and jump to the end of the patch if
18875 		 * expected number of iterations is too big.
18876 		 */
18877 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
18878 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
18879 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
18880 		/* spill R6, R7, R8 to use these as loop vars */
18881 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
18882 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
18883 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
18884 		/* initialize loop vars */
18885 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
18886 		BPF_MOV32_IMM(reg_loop_cnt, 0),
18887 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
18888 		/* loop header,
18889 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
18890 		 */
18891 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
18892 		/* callback call,
18893 		 * correct callback offset would be set after patching
18894 		 */
18895 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
18896 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
18897 		BPF_CALL_REL(0),
18898 		/* increment loop counter */
18899 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
18900 		/* jump to loop header if callback returned 0 */
18901 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
18902 		/* return value of bpf_loop,
18903 		 * set R0 to the number of iterations
18904 		 */
18905 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
18906 		/* restore original values of R6, R7, R8 */
18907 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
18908 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
18909 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
18910 	};
18911 
18912 	*cnt = ARRAY_SIZE(insn_buf);
18913 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
18914 	if (!new_prog)
18915 		return new_prog;
18916 
18917 	/* callback start is known only after patching */
18918 	callback_start = env->subprog_info[callback_subprogno].start;
18919 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
18920 	call_insn_offset = position + 12;
18921 	callback_offset = callback_start - call_insn_offset - 1;
18922 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
18923 
18924 	return new_prog;
18925 }
18926 
18927 static bool is_bpf_loop_call(struct bpf_insn *insn)
18928 {
18929 	return insn->code == (BPF_JMP | BPF_CALL) &&
18930 		insn->src_reg == 0 &&
18931 		insn->imm == BPF_FUNC_loop;
18932 }
18933 
18934 /* For all sub-programs in the program (including main) check
18935  * insn_aux_data to see if there are bpf_loop calls that require
18936  * inlining. If such calls are found the calls are replaced with a
18937  * sequence of instructions produced by `inline_bpf_loop` function and
18938  * subprog stack_depth is increased by the size of 3 registers.
18939  * This stack space is used to spill values of the R6, R7, R8.  These
18940  * registers are used to store the loop bound, counter and context
18941  * variables.
18942  */
18943 static int optimize_bpf_loop(struct bpf_verifier_env *env)
18944 {
18945 	struct bpf_subprog_info *subprogs = env->subprog_info;
18946 	int i, cur_subprog = 0, cnt, delta = 0;
18947 	struct bpf_insn *insn = env->prog->insnsi;
18948 	int insn_cnt = env->prog->len;
18949 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
18950 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18951 	u16 stack_depth_extra = 0;
18952 
18953 	for (i = 0; i < insn_cnt; i++, insn++) {
18954 		struct bpf_loop_inline_state *inline_state =
18955 			&env->insn_aux_data[i + delta].loop_inline_state;
18956 
18957 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18958 			struct bpf_prog *new_prog;
18959 
18960 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18961 			new_prog = inline_bpf_loop(env,
18962 						   i + delta,
18963 						   -(stack_depth + stack_depth_extra),
18964 						   inline_state->callback_subprogno,
18965 						   &cnt);
18966 			if (!new_prog)
18967 				return -ENOMEM;
18968 
18969 			delta     += cnt - 1;
18970 			env->prog  = new_prog;
18971 			insn       = new_prog->insnsi + i + delta;
18972 		}
18973 
18974 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
18975 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
18976 			cur_subprog++;
18977 			stack_depth = subprogs[cur_subprog].stack_depth;
18978 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18979 			stack_depth_extra = 0;
18980 		}
18981 	}
18982 
18983 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
18984 
18985 	return 0;
18986 }
18987 
18988 static void free_states(struct bpf_verifier_env *env)
18989 {
18990 	struct bpf_verifier_state_list *sl, *sln;
18991 	int i;
18992 
18993 	sl = env->free_list;
18994 	while (sl) {
18995 		sln = sl->next;
18996 		free_verifier_state(&sl->state, false);
18997 		kfree(sl);
18998 		sl = sln;
18999 	}
19000 	env->free_list = NULL;
19001 
19002 	if (!env->explored_states)
19003 		return;
19004 
19005 	for (i = 0; i < state_htab_size(env); i++) {
19006 		sl = env->explored_states[i];
19007 
19008 		while (sl) {
19009 			sln = sl->next;
19010 			free_verifier_state(&sl->state, false);
19011 			kfree(sl);
19012 			sl = sln;
19013 		}
19014 		env->explored_states[i] = NULL;
19015 	}
19016 }
19017 
19018 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19019 {
19020 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19021 	struct bpf_verifier_state *state;
19022 	struct bpf_reg_state *regs;
19023 	int ret, i;
19024 
19025 	env->prev_linfo = NULL;
19026 	env->pass_cnt++;
19027 
19028 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19029 	if (!state)
19030 		return -ENOMEM;
19031 	state->curframe = 0;
19032 	state->speculative = false;
19033 	state->branches = 1;
19034 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19035 	if (!state->frame[0]) {
19036 		kfree(state);
19037 		return -ENOMEM;
19038 	}
19039 	env->cur_state = state;
19040 	init_func_state(env, state->frame[0],
19041 			BPF_MAIN_FUNC /* callsite */,
19042 			0 /* frameno */,
19043 			subprog);
19044 	state->first_insn_idx = env->subprog_info[subprog].start;
19045 	state->last_insn_idx = -1;
19046 
19047 	regs = state->frame[state->curframe]->regs;
19048 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19049 		ret = btf_prepare_func_args(env, subprog, regs);
19050 		if (ret)
19051 			goto out;
19052 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19053 			if (regs[i].type == PTR_TO_CTX)
19054 				mark_reg_known_zero(env, regs, i);
19055 			else if (regs[i].type == SCALAR_VALUE)
19056 				mark_reg_unknown(env, regs, i);
19057 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19058 				const u32 mem_size = regs[i].mem_size;
19059 
19060 				mark_reg_known_zero(env, regs, i);
19061 				regs[i].mem_size = mem_size;
19062 				regs[i].id = ++env->id_gen;
19063 			}
19064 		}
19065 	} else {
19066 		/* 1st arg to a function */
19067 		regs[BPF_REG_1].type = PTR_TO_CTX;
19068 		mark_reg_known_zero(env, regs, BPF_REG_1);
19069 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19070 		if (ret == -EFAULT)
19071 			/* unlikely verifier bug. abort.
19072 			 * ret == 0 and ret < 0 are sadly acceptable for
19073 			 * main() function due to backward compatibility.
19074 			 * Like socket filter program may be written as:
19075 			 * int bpf_prog(struct pt_regs *ctx)
19076 			 * and never dereference that ctx in the program.
19077 			 * 'struct pt_regs' is a type mismatch for socket
19078 			 * filter that should be using 'struct __sk_buff'.
19079 			 */
19080 			goto out;
19081 	}
19082 
19083 	ret = do_check(env);
19084 out:
19085 	/* check for NULL is necessary, since cur_state can be freed inside
19086 	 * do_check() under memory pressure.
19087 	 */
19088 	if (env->cur_state) {
19089 		free_verifier_state(env->cur_state, true);
19090 		env->cur_state = NULL;
19091 	}
19092 	while (!pop_stack(env, NULL, NULL, false));
19093 	if (!ret && pop_log)
19094 		bpf_vlog_reset(&env->log, 0);
19095 	free_states(env);
19096 	return ret;
19097 }
19098 
19099 /* Verify all global functions in a BPF program one by one based on their BTF.
19100  * All global functions must pass verification. Otherwise the whole program is rejected.
19101  * Consider:
19102  * int bar(int);
19103  * int foo(int f)
19104  * {
19105  *    return bar(f);
19106  * }
19107  * int bar(int b)
19108  * {
19109  *    ...
19110  * }
19111  * foo() will be verified first for R1=any_scalar_value. During verification it
19112  * will be assumed that bar() already verified successfully and call to bar()
19113  * from foo() will be checked for type match only. Later bar() will be verified
19114  * independently to check that it's safe for R1=any_scalar_value.
19115  */
19116 static int do_check_subprogs(struct bpf_verifier_env *env)
19117 {
19118 	struct bpf_prog_aux *aux = env->prog->aux;
19119 	int i, ret;
19120 
19121 	if (!aux->func_info)
19122 		return 0;
19123 
19124 	for (i = 1; i < env->subprog_cnt; i++) {
19125 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19126 			continue;
19127 		env->insn_idx = env->subprog_info[i].start;
19128 		WARN_ON_ONCE(env->insn_idx == 0);
19129 		ret = do_check_common(env, i);
19130 		if (ret) {
19131 			return ret;
19132 		} else if (env->log.level & BPF_LOG_LEVEL) {
19133 			verbose(env,
19134 				"Func#%d is safe for any args that match its prototype\n",
19135 				i);
19136 		}
19137 	}
19138 	return 0;
19139 }
19140 
19141 static int do_check_main(struct bpf_verifier_env *env)
19142 {
19143 	int ret;
19144 
19145 	env->insn_idx = 0;
19146 	ret = do_check_common(env, 0);
19147 	if (!ret)
19148 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19149 	return ret;
19150 }
19151 
19152 
19153 static void print_verification_stats(struct bpf_verifier_env *env)
19154 {
19155 	int i;
19156 
19157 	if (env->log.level & BPF_LOG_STATS) {
19158 		verbose(env, "verification time %lld usec\n",
19159 			div_u64(env->verification_time, 1000));
19160 		verbose(env, "stack depth ");
19161 		for (i = 0; i < env->subprog_cnt; i++) {
19162 			u32 depth = env->subprog_info[i].stack_depth;
19163 
19164 			verbose(env, "%d", depth);
19165 			if (i + 1 < env->subprog_cnt)
19166 				verbose(env, "+");
19167 		}
19168 		verbose(env, "\n");
19169 	}
19170 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19171 		"total_states %d peak_states %d mark_read %d\n",
19172 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19173 		env->max_states_per_insn, env->total_states,
19174 		env->peak_states, env->longest_mark_read_walk);
19175 }
19176 
19177 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19178 {
19179 	const struct btf_type *t, *func_proto;
19180 	const struct bpf_struct_ops *st_ops;
19181 	const struct btf_member *member;
19182 	struct bpf_prog *prog = env->prog;
19183 	u32 btf_id, member_idx;
19184 	const char *mname;
19185 
19186 	if (!prog->gpl_compatible) {
19187 		verbose(env, "struct ops programs must have a GPL compatible license\n");
19188 		return -EINVAL;
19189 	}
19190 
19191 	btf_id = prog->aux->attach_btf_id;
19192 	st_ops = bpf_struct_ops_find(btf_id);
19193 	if (!st_ops) {
19194 		verbose(env, "attach_btf_id %u is not a supported struct\n",
19195 			btf_id);
19196 		return -ENOTSUPP;
19197 	}
19198 
19199 	t = st_ops->type;
19200 	member_idx = prog->expected_attach_type;
19201 	if (member_idx >= btf_type_vlen(t)) {
19202 		verbose(env, "attach to invalid member idx %u of struct %s\n",
19203 			member_idx, st_ops->name);
19204 		return -EINVAL;
19205 	}
19206 
19207 	member = &btf_type_member(t)[member_idx];
19208 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19209 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19210 					       NULL);
19211 	if (!func_proto) {
19212 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19213 			mname, member_idx, st_ops->name);
19214 		return -EINVAL;
19215 	}
19216 
19217 	if (st_ops->check_member) {
19218 		int err = st_ops->check_member(t, member, prog);
19219 
19220 		if (err) {
19221 			verbose(env, "attach to unsupported member %s of struct %s\n",
19222 				mname, st_ops->name);
19223 			return err;
19224 		}
19225 	}
19226 
19227 	prog->aux->attach_func_proto = func_proto;
19228 	prog->aux->attach_func_name = mname;
19229 	env->ops = st_ops->verifier_ops;
19230 
19231 	return 0;
19232 }
19233 #define SECURITY_PREFIX "security_"
19234 
19235 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19236 {
19237 	if (within_error_injection_list(addr) ||
19238 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19239 		return 0;
19240 
19241 	return -EINVAL;
19242 }
19243 
19244 /* list of non-sleepable functions that are otherwise on
19245  * ALLOW_ERROR_INJECTION list
19246  */
19247 BTF_SET_START(btf_non_sleepable_error_inject)
19248 /* Three functions below can be called from sleepable and non-sleepable context.
19249  * Assume non-sleepable from bpf safety point of view.
19250  */
19251 BTF_ID(func, __filemap_add_folio)
19252 BTF_ID(func, should_fail_alloc_page)
19253 BTF_ID(func, should_failslab)
19254 BTF_SET_END(btf_non_sleepable_error_inject)
19255 
19256 static int check_non_sleepable_error_inject(u32 btf_id)
19257 {
19258 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19259 }
19260 
19261 int bpf_check_attach_target(struct bpf_verifier_log *log,
19262 			    const struct bpf_prog *prog,
19263 			    const struct bpf_prog *tgt_prog,
19264 			    u32 btf_id,
19265 			    struct bpf_attach_target_info *tgt_info)
19266 {
19267 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19268 	const char prefix[] = "btf_trace_";
19269 	int ret = 0, subprog = -1, i;
19270 	const struct btf_type *t;
19271 	bool conservative = true;
19272 	const char *tname;
19273 	struct btf *btf;
19274 	long addr = 0;
19275 	struct module *mod = NULL;
19276 
19277 	if (!btf_id) {
19278 		bpf_log(log, "Tracing programs must provide btf_id\n");
19279 		return -EINVAL;
19280 	}
19281 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19282 	if (!btf) {
19283 		bpf_log(log,
19284 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19285 		return -EINVAL;
19286 	}
19287 	t = btf_type_by_id(btf, btf_id);
19288 	if (!t) {
19289 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19290 		return -EINVAL;
19291 	}
19292 	tname = btf_name_by_offset(btf, t->name_off);
19293 	if (!tname) {
19294 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19295 		return -EINVAL;
19296 	}
19297 	if (tgt_prog) {
19298 		struct bpf_prog_aux *aux = tgt_prog->aux;
19299 
19300 		if (bpf_prog_is_dev_bound(prog->aux) &&
19301 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19302 			bpf_log(log, "Target program bound device mismatch");
19303 			return -EINVAL;
19304 		}
19305 
19306 		for (i = 0; i < aux->func_info_cnt; i++)
19307 			if (aux->func_info[i].type_id == btf_id) {
19308 				subprog = i;
19309 				break;
19310 			}
19311 		if (subprog == -1) {
19312 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
19313 			return -EINVAL;
19314 		}
19315 		conservative = aux->func_info_aux[subprog].unreliable;
19316 		if (prog_extension) {
19317 			if (conservative) {
19318 				bpf_log(log,
19319 					"Cannot replace static functions\n");
19320 				return -EINVAL;
19321 			}
19322 			if (!prog->jit_requested) {
19323 				bpf_log(log,
19324 					"Extension programs should be JITed\n");
19325 				return -EINVAL;
19326 			}
19327 		}
19328 		if (!tgt_prog->jited) {
19329 			bpf_log(log, "Can attach to only JITed progs\n");
19330 			return -EINVAL;
19331 		}
19332 		if (tgt_prog->type == prog->type) {
19333 			/* Cannot fentry/fexit another fentry/fexit program.
19334 			 * Cannot attach program extension to another extension.
19335 			 * It's ok to attach fentry/fexit to extension program.
19336 			 */
19337 			bpf_log(log, "Cannot recursively attach\n");
19338 			return -EINVAL;
19339 		}
19340 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19341 		    prog_extension &&
19342 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19343 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19344 			/* Program extensions can extend all program types
19345 			 * except fentry/fexit. The reason is the following.
19346 			 * The fentry/fexit programs are used for performance
19347 			 * analysis, stats and can be attached to any program
19348 			 * type except themselves. When extension program is
19349 			 * replacing XDP function it is necessary to allow
19350 			 * performance analysis of all functions. Both original
19351 			 * XDP program and its program extension. Hence
19352 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19353 			 * allowed. If extending of fentry/fexit was allowed it
19354 			 * would be possible to create long call chain
19355 			 * fentry->extension->fentry->extension beyond
19356 			 * reasonable stack size. Hence extending fentry is not
19357 			 * allowed.
19358 			 */
19359 			bpf_log(log, "Cannot extend fentry/fexit\n");
19360 			return -EINVAL;
19361 		}
19362 	} else {
19363 		if (prog_extension) {
19364 			bpf_log(log, "Cannot replace kernel functions\n");
19365 			return -EINVAL;
19366 		}
19367 	}
19368 
19369 	switch (prog->expected_attach_type) {
19370 	case BPF_TRACE_RAW_TP:
19371 		if (tgt_prog) {
19372 			bpf_log(log,
19373 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19374 			return -EINVAL;
19375 		}
19376 		if (!btf_type_is_typedef(t)) {
19377 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
19378 				btf_id);
19379 			return -EINVAL;
19380 		}
19381 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19382 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19383 				btf_id, tname);
19384 			return -EINVAL;
19385 		}
19386 		tname += sizeof(prefix) - 1;
19387 		t = btf_type_by_id(btf, t->type);
19388 		if (!btf_type_is_ptr(t))
19389 			/* should never happen in valid vmlinux build */
19390 			return -EINVAL;
19391 		t = btf_type_by_id(btf, t->type);
19392 		if (!btf_type_is_func_proto(t))
19393 			/* should never happen in valid vmlinux build */
19394 			return -EINVAL;
19395 
19396 		break;
19397 	case BPF_TRACE_ITER:
19398 		if (!btf_type_is_func(t)) {
19399 			bpf_log(log, "attach_btf_id %u is not a function\n",
19400 				btf_id);
19401 			return -EINVAL;
19402 		}
19403 		t = btf_type_by_id(btf, t->type);
19404 		if (!btf_type_is_func_proto(t))
19405 			return -EINVAL;
19406 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19407 		if (ret)
19408 			return ret;
19409 		break;
19410 	default:
19411 		if (!prog_extension)
19412 			return -EINVAL;
19413 		fallthrough;
19414 	case BPF_MODIFY_RETURN:
19415 	case BPF_LSM_MAC:
19416 	case BPF_LSM_CGROUP:
19417 	case BPF_TRACE_FENTRY:
19418 	case BPF_TRACE_FEXIT:
19419 		if (!btf_type_is_func(t)) {
19420 			bpf_log(log, "attach_btf_id %u is not a function\n",
19421 				btf_id);
19422 			return -EINVAL;
19423 		}
19424 		if (prog_extension &&
19425 		    btf_check_type_match(log, prog, btf, t))
19426 			return -EINVAL;
19427 		t = btf_type_by_id(btf, t->type);
19428 		if (!btf_type_is_func_proto(t))
19429 			return -EINVAL;
19430 
19431 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19432 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19433 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19434 			return -EINVAL;
19435 
19436 		if (tgt_prog && conservative)
19437 			t = NULL;
19438 
19439 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19440 		if (ret < 0)
19441 			return ret;
19442 
19443 		if (tgt_prog) {
19444 			if (subprog == 0)
19445 				addr = (long) tgt_prog->bpf_func;
19446 			else
19447 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
19448 		} else {
19449 			if (btf_is_module(btf)) {
19450 				mod = btf_try_get_module(btf);
19451 				if (mod)
19452 					addr = find_kallsyms_symbol_value(mod, tname);
19453 				else
19454 					addr = 0;
19455 			} else {
19456 				addr = kallsyms_lookup_name(tname);
19457 			}
19458 			if (!addr) {
19459 				module_put(mod);
19460 				bpf_log(log,
19461 					"The address of function %s cannot be found\n",
19462 					tname);
19463 				return -ENOENT;
19464 			}
19465 		}
19466 
19467 		if (prog->aux->sleepable) {
19468 			ret = -EINVAL;
19469 			switch (prog->type) {
19470 			case BPF_PROG_TYPE_TRACING:
19471 
19472 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
19473 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
19474 				 */
19475 				if (!check_non_sleepable_error_inject(btf_id) &&
19476 				    within_error_injection_list(addr))
19477 					ret = 0;
19478 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
19479 				 * in the fmodret id set with the KF_SLEEPABLE flag.
19480 				 */
19481 				else {
19482 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
19483 										prog);
19484 
19485 					if (flags && (*flags & KF_SLEEPABLE))
19486 						ret = 0;
19487 				}
19488 				break;
19489 			case BPF_PROG_TYPE_LSM:
19490 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
19491 				 * Only some of them are sleepable.
19492 				 */
19493 				if (bpf_lsm_is_sleepable_hook(btf_id))
19494 					ret = 0;
19495 				break;
19496 			default:
19497 				break;
19498 			}
19499 			if (ret) {
19500 				module_put(mod);
19501 				bpf_log(log, "%s is not sleepable\n", tname);
19502 				return ret;
19503 			}
19504 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
19505 			if (tgt_prog) {
19506 				module_put(mod);
19507 				bpf_log(log, "can't modify return codes of BPF programs\n");
19508 				return -EINVAL;
19509 			}
19510 			ret = -EINVAL;
19511 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
19512 			    !check_attach_modify_return(addr, tname))
19513 				ret = 0;
19514 			if (ret) {
19515 				module_put(mod);
19516 				bpf_log(log, "%s() is not modifiable\n", tname);
19517 				return ret;
19518 			}
19519 		}
19520 
19521 		break;
19522 	}
19523 	tgt_info->tgt_addr = addr;
19524 	tgt_info->tgt_name = tname;
19525 	tgt_info->tgt_type = t;
19526 	tgt_info->tgt_mod = mod;
19527 	return 0;
19528 }
19529 
19530 BTF_SET_START(btf_id_deny)
19531 BTF_ID_UNUSED
19532 #ifdef CONFIG_SMP
19533 BTF_ID(func, migrate_disable)
19534 BTF_ID(func, migrate_enable)
19535 #endif
19536 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
19537 BTF_ID(func, rcu_read_unlock_strict)
19538 #endif
19539 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
19540 BTF_ID(func, preempt_count_add)
19541 BTF_ID(func, preempt_count_sub)
19542 #endif
19543 #ifdef CONFIG_PREEMPT_RCU
19544 BTF_ID(func, __rcu_read_lock)
19545 BTF_ID(func, __rcu_read_unlock)
19546 #endif
19547 BTF_SET_END(btf_id_deny)
19548 
19549 static bool can_be_sleepable(struct bpf_prog *prog)
19550 {
19551 	if (prog->type == BPF_PROG_TYPE_TRACING) {
19552 		switch (prog->expected_attach_type) {
19553 		case BPF_TRACE_FENTRY:
19554 		case BPF_TRACE_FEXIT:
19555 		case BPF_MODIFY_RETURN:
19556 		case BPF_TRACE_ITER:
19557 			return true;
19558 		default:
19559 			return false;
19560 		}
19561 	}
19562 	return prog->type == BPF_PROG_TYPE_LSM ||
19563 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
19564 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
19565 }
19566 
19567 static int check_attach_btf_id(struct bpf_verifier_env *env)
19568 {
19569 	struct bpf_prog *prog = env->prog;
19570 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
19571 	struct bpf_attach_target_info tgt_info = {};
19572 	u32 btf_id = prog->aux->attach_btf_id;
19573 	struct bpf_trampoline *tr;
19574 	int ret;
19575 	u64 key;
19576 
19577 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
19578 		if (prog->aux->sleepable)
19579 			/* attach_btf_id checked to be zero already */
19580 			return 0;
19581 		verbose(env, "Syscall programs can only be sleepable\n");
19582 		return -EINVAL;
19583 	}
19584 
19585 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
19586 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
19587 		return -EINVAL;
19588 	}
19589 
19590 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
19591 		return check_struct_ops_btf_id(env);
19592 
19593 	if (prog->type != BPF_PROG_TYPE_TRACING &&
19594 	    prog->type != BPF_PROG_TYPE_LSM &&
19595 	    prog->type != BPF_PROG_TYPE_EXT)
19596 		return 0;
19597 
19598 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
19599 	if (ret)
19600 		return ret;
19601 
19602 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
19603 		/* to make freplace equivalent to their targets, they need to
19604 		 * inherit env->ops and expected_attach_type for the rest of the
19605 		 * verification
19606 		 */
19607 		env->ops = bpf_verifier_ops[tgt_prog->type];
19608 		prog->expected_attach_type = tgt_prog->expected_attach_type;
19609 	}
19610 
19611 	/* store info about the attachment target that will be used later */
19612 	prog->aux->attach_func_proto = tgt_info.tgt_type;
19613 	prog->aux->attach_func_name = tgt_info.tgt_name;
19614 	prog->aux->mod = tgt_info.tgt_mod;
19615 
19616 	if (tgt_prog) {
19617 		prog->aux->saved_dst_prog_type = tgt_prog->type;
19618 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
19619 	}
19620 
19621 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
19622 		prog->aux->attach_btf_trace = true;
19623 		return 0;
19624 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
19625 		if (!bpf_iter_prog_supported(prog))
19626 			return -EINVAL;
19627 		return 0;
19628 	}
19629 
19630 	if (prog->type == BPF_PROG_TYPE_LSM) {
19631 		ret = bpf_lsm_verify_prog(&env->log, prog);
19632 		if (ret < 0)
19633 			return ret;
19634 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
19635 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
19636 		return -EINVAL;
19637 	}
19638 
19639 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
19640 	tr = bpf_trampoline_get(key, &tgt_info);
19641 	if (!tr)
19642 		return -ENOMEM;
19643 
19644 	prog->aux->dst_trampoline = tr;
19645 	return 0;
19646 }
19647 
19648 struct btf *bpf_get_btf_vmlinux(void)
19649 {
19650 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
19651 		mutex_lock(&bpf_verifier_lock);
19652 		if (!btf_vmlinux)
19653 			btf_vmlinux = btf_parse_vmlinux();
19654 		mutex_unlock(&bpf_verifier_lock);
19655 	}
19656 	return btf_vmlinux;
19657 }
19658 
19659 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
19660 {
19661 	u64 start_time = ktime_get_ns();
19662 	struct bpf_verifier_env *env;
19663 	int i, len, ret = -EINVAL, err;
19664 	u32 log_true_size;
19665 	bool is_priv;
19666 
19667 	/* no program is valid */
19668 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
19669 		return -EINVAL;
19670 
19671 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
19672 	 * allocate/free it every time bpf_check() is called
19673 	 */
19674 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
19675 	if (!env)
19676 		return -ENOMEM;
19677 
19678 	env->bt.env = env;
19679 
19680 	len = (*prog)->len;
19681 	env->insn_aux_data =
19682 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
19683 	ret = -ENOMEM;
19684 	if (!env->insn_aux_data)
19685 		goto err_free_env;
19686 	for (i = 0; i < len; i++)
19687 		env->insn_aux_data[i].orig_idx = i;
19688 	env->prog = *prog;
19689 	env->ops = bpf_verifier_ops[env->prog->type];
19690 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
19691 	is_priv = bpf_capable();
19692 
19693 	bpf_get_btf_vmlinux();
19694 
19695 	/* grab the mutex to protect few globals used by verifier */
19696 	if (!is_priv)
19697 		mutex_lock(&bpf_verifier_lock);
19698 
19699 	/* user could have requested verbose verifier output
19700 	 * and supplied buffer to store the verification trace
19701 	 */
19702 	ret = bpf_vlog_init(&env->log, attr->log_level,
19703 			    (char __user *) (unsigned long) attr->log_buf,
19704 			    attr->log_size);
19705 	if (ret)
19706 		goto err_unlock;
19707 
19708 	mark_verifier_state_clean(env);
19709 
19710 	if (IS_ERR(btf_vmlinux)) {
19711 		/* Either gcc or pahole or kernel are broken. */
19712 		verbose(env, "in-kernel BTF is malformed\n");
19713 		ret = PTR_ERR(btf_vmlinux);
19714 		goto skip_full_check;
19715 	}
19716 
19717 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
19718 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
19719 		env->strict_alignment = true;
19720 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
19721 		env->strict_alignment = false;
19722 
19723 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
19724 	env->allow_uninit_stack = bpf_allow_uninit_stack();
19725 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
19726 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
19727 	env->bpf_capable = bpf_capable();
19728 
19729 	if (is_priv)
19730 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
19731 
19732 	env->explored_states = kvcalloc(state_htab_size(env),
19733 				       sizeof(struct bpf_verifier_state_list *),
19734 				       GFP_USER);
19735 	ret = -ENOMEM;
19736 	if (!env->explored_states)
19737 		goto skip_full_check;
19738 
19739 	ret = add_subprog_and_kfunc(env);
19740 	if (ret < 0)
19741 		goto skip_full_check;
19742 
19743 	ret = check_subprogs(env);
19744 	if (ret < 0)
19745 		goto skip_full_check;
19746 
19747 	ret = check_btf_info(env, attr, uattr);
19748 	if (ret < 0)
19749 		goto skip_full_check;
19750 
19751 	ret = check_attach_btf_id(env);
19752 	if (ret)
19753 		goto skip_full_check;
19754 
19755 	ret = resolve_pseudo_ldimm64(env);
19756 	if (ret < 0)
19757 		goto skip_full_check;
19758 
19759 	if (bpf_prog_is_offloaded(env->prog->aux)) {
19760 		ret = bpf_prog_offload_verifier_prep(env->prog);
19761 		if (ret)
19762 			goto skip_full_check;
19763 	}
19764 
19765 	ret = check_cfg(env);
19766 	if (ret < 0)
19767 		goto skip_full_check;
19768 
19769 	ret = do_check_subprogs(env);
19770 	ret = ret ?: do_check_main(env);
19771 
19772 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
19773 		ret = bpf_prog_offload_finalize(env);
19774 
19775 skip_full_check:
19776 	kvfree(env->explored_states);
19777 
19778 	if (ret == 0)
19779 		ret = check_max_stack_depth(env);
19780 
19781 	/* instruction rewrites happen after this point */
19782 	if (ret == 0)
19783 		ret = optimize_bpf_loop(env);
19784 
19785 	if (is_priv) {
19786 		if (ret == 0)
19787 			opt_hard_wire_dead_code_branches(env);
19788 		if (ret == 0)
19789 			ret = opt_remove_dead_code(env);
19790 		if (ret == 0)
19791 			ret = opt_remove_nops(env);
19792 	} else {
19793 		if (ret == 0)
19794 			sanitize_dead_code(env);
19795 	}
19796 
19797 	if (ret == 0)
19798 		/* program is valid, convert *(u32*)(ctx + off) accesses */
19799 		ret = convert_ctx_accesses(env);
19800 
19801 	if (ret == 0)
19802 		ret = do_misc_fixups(env);
19803 
19804 	/* do 32-bit optimization after insn patching has done so those patched
19805 	 * insns could be handled correctly.
19806 	 */
19807 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
19808 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
19809 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
19810 								     : false;
19811 	}
19812 
19813 	if (ret == 0)
19814 		ret = fixup_call_args(env);
19815 
19816 	env->verification_time = ktime_get_ns() - start_time;
19817 	print_verification_stats(env);
19818 	env->prog->aux->verified_insns = env->insn_processed;
19819 
19820 	/* preserve original error even if log finalization is successful */
19821 	err = bpf_vlog_finalize(&env->log, &log_true_size);
19822 	if (err)
19823 		ret = err;
19824 
19825 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
19826 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
19827 				  &log_true_size, sizeof(log_true_size))) {
19828 		ret = -EFAULT;
19829 		goto err_release_maps;
19830 	}
19831 
19832 	if (ret)
19833 		goto err_release_maps;
19834 
19835 	if (env->used_map_cnt) {
19836 		/* if program passed verifier, update used_maps in bpf_prog_info */
19837 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
19838 							  sizeof(env->used_maps[0]),
19839 							  GFP_KERNEL);
19840 
19841 		if (!env->prog->aux->used_maps) {
19842 			ret = -ENOMEM;
19843 			goto err_release_maps;
19844 		}
19845 
19846 		memcpy(env->prog->aux->used_maps, env->used_maps,
19847 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
19848 		env->prog->aux->used_map_cnt = env->used_map_cnt;
19849 	}
19850 	if (env->used_btf_cnt) {
19851 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
19852 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
19853 							  sizeof(env->used_btfs[0]),
19854 							  GFP_KERNEL);
19855 		if (!env->prog->aux->used_btfs) {
19856 			ret = -ENOMEM;
19857 			goto err_release_maps;
19858 		}
19859 
19860 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
19861 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
19862 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
19863 	}
19864 	if (env->used_map_cnt || env->used_btf_cnt) {
19865 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
19866 		 * bpf_ld_imm64 instructions
19867 		 */
19868 		convert_pseudo_ld_imm64(env);
19869 	}
19870 
19871 	adjust_btf_func(env);
19872 
19873 err_release_maps:
19874 	if (!env->prog->aux->used_maps)
19875 		/* if we didn't copy map pointers into bpf_prog_info, release
19876 		 * them now. Otherwise free_used_maps() will release them.
19877 		 */
19878 		release_maps(env);
19879 	if (!env->prog->aux->used_btfs)
19880 		release_btfs(env);
19881 
19882 	/* extension progs temporarily inherit the attach_type of their targets
19883 	   for verification purposes, so set it back to zero before returning
19884 	 */
19885 	if (env->prog->type == BPF_PROG_TYPE_EXT)
19886 		env->prog->expected_attach_type = 0;
19887 
19888 	*prog = env->prog;
19889 err_unlock:
19890 	if (!is_priv)
19891 		mutex_unlock(&bpf_verifier_lock);
19892 	vfree(env->insn_aux_data);
19893 err_free_env:
19894 	kfree(env);
19895 	return ret;
19896 }
19897