1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 27 #include "disasm.h" 28 29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 31 [_id] = & _name ## _verifier_ops, 32 #define BPF_MAP_TYPE(_id, _ops) 33 #define BPF_LINK_TYPE(_id, _name) 34 #include <linux/bpf_types.h> 35 #undef BPF_PROG_TYPE 36 #undef BPF_MAP_TYPE 37 #undef BPF_LINK_TYPE 38 }; 39 40 /* bpf_check() is a static code analyzer that walks eBPF program 41 * instruction by instruction and updates register/stack state. 42 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 43 * 44 * The first pass is depth-first-search to check that the program is a DAG. 45 * It rejects the following programs: 46 * - larger than BPF_MAXINSNS insns 47 * - if loop is present (detected via back-edge) 48 * - unreachable insns exist (shouldn't be a forest. program = one function) 49 * - out of bounds or malformed jumps 50 * The second pass is all possible path descent from the 1st insn. 51 * Since it's analyzing all paths through the program, the length of the 52 * analysis is limited to 64k insn, which may be hit even if total number of 53 * insn is less then 4K, but there are too many branches that change stack/regs. 54 * Number of 'branches to be analyzed' is limited to 1k 55 * 56 * On entry to each instruction, each register has a type, and the instruction 57 * changes the types of the registers depending on instruction semantics. 58 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 59 * copied to R1. 60 * 61 * All registers are 64-bit. 62 * R0 - return register 63 * R1-R5 argument passing registers 64 * R6-R9 callee saved registers 65 * R10 - frame pointer read-only 66 * 67 * At the start of BPF program the register R1 contains a pointer to bpf_context 68 * and has type PTR_TO_CTX. 69 * 70 * Verifier tracks arithmetic operations on pointers in case: 71 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 72 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 73 * 1st insn copies R10 (which has FRAME_PTR) type into R1 74 * and 2nd arithmetic instruction is pattern matched to recognize 75 * that it wants to construct a pointer to some element within stack. 76 * So after 2nd insn, the register R1 has type PTR_TO_STACK 77 * (and -20 constant is saved for further stack bounds checking). 78 * Meaning that this reg is a pointer to stack plus known immediate constant. 79 * 80 * Most of the time the registers have SCALAR_VALUE type, which 81 * means the register has some value, but it's not a valid pointer. 82 * (like pointer plus pointer becomes SCALAR_VALUE type) 83 * 84 * When verifier sees load or store instructions the type of base register 85 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 86 * four pointer types recognized by check_mem_access() function. 87 * 88 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 89 * and the range of [ptr, ptr + map's value_size) is accessible. 90 * 91 * registers used to pass values to function calls are checked against 92 * function argument constraints. 93 * 94 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 95 * It means that the register type passed to this function must be 96 * PTR_TO_STACK and it will be used inside the function as 97 * 'pointer to map element key' 98 * 99 * For example the argument constraints for bpf_map_lookup_elem(): 100 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 101 * .arg1_type = ARG_CONST_MAP_PTR, 102 * .arg2_type = ARG_PTR_TO_MAP_KEY, 103 * 104 * ret_type says that this function returns 'pointer to map elem value or null' 105 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 106 * 2nd argument should be a pointer to stack, which will be used inside 107 * the helper function as a pointer to map element key. 108 * 109 * On the kernel side the helper function looks like: 110 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 111 * { 112 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 113 * void *key = (void *) (unsigned long) r2; 114 * void *value; 115 * 116 * here kernel can access 'key' and 'map' pointers safely, knowing that 117 * [key, key + map->key_size) bytes are valid and were initialized on 118 * the stack of eBPF program. 119 * } 120 * 121 * Corresponding eBPF program may look like: 122 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 123 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 124 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 125 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 126 * here verifier looks at prototype of map_lookup_elem() and sees: 127 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 128 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 129 * 130 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 131 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 132 * and were initialized prior to this call. 133 * If it's ok, then verifier allows this BPF_CALL insn and looks at 134 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 135 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 136 * returns either pointer to map value or NULL. 137 * 138 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 139 * insn, the register holding that pointer in the true branch changes state to 140 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 141 * branch. See check_cond_jmp_op(). 142 * 143 * After the call R0 is set to return type of the function and registers R1-R5 144 * are set to NOT_INIT to indicate that they are no longer readable. 145 * 146 * The following reference types represent a potential reference to a kernel 147 * resource which, after first being allocated, must be checked and freed by 148 * the BPF program: 149 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 150 * 151 * When the verifier sees a helper call return a reference type, it allocates a 152 * pointer id for the reference and stores it in the current function state. 153 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 154 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 155 * passes through a NULL-check conditional. For the branch wherein the state is 156 * changed to CONST_IMM, the verifier releases the reference. 157 * 158 * For each helper function that allocates a reference, such as 159 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 160 * bpf_sk_release(). When a reference type passes into the release function, 161 * the verifier also releases the reference. If any unchecked or unreleased 162 * reference remains at the end of the program, the verifier rejects it. 163 */ 164 165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 166 struct bpf_verifier_stack_elem { 167 /* verifer state is 'st' 168 * before processing instruction 'insn_idx' 169 * and after processing instruction 'prev_insn_idx' 170 */ 171 struct bpf_verifier_state st; 172 int insn_idx; 173 int prev_insn_idx; 174 struct bpf_verifier_stack_elem *next; 175 /* length of verifier log at the time this state was pushed on stack */ 176 u32 log_pos; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_KEY_POISON (1ULL << 63) 183 #define BPF_MAP_KEY_SEEN (1ULL << 62) 184 185 #define BPF_MAP_PTR_UNPRIV 1UL 186 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 187 POISON_POINTER_DELTA)) 188 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 189 190 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 191 { 192 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 193 } 194 195 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 196 { 197 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 198 } 199 200 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 201 const struct bpf_map *map, bool unpriv) 202 { 203 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 204 unpriv |= bpf_map_ptr_unpriv(aux); 205 aux->map_ptr_state = (unsigned long)map | 206 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 207 } 208 209 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_key_state & BPF_MAP_KEY_POISON; 212 } 213 214 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 215 { 216 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 217 } 218 219 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 220 { 221 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 222 } 223 224 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 225 { 226 bool poisoned = bpf_map_key_poisoned(aux); 227 228 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 229 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 230 } 231 232 static bool bpf_pseudo_call(const struct bpf_insn *insn) 233 { 234 return insn->code == (BPF_JMP | BPF_CALL) && 235 insn->src_reg == BPF_PSEUDO_CALL; 236 } 237 238 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 239 { 240 return insn->code == (BPF_JMP | BPF_CALL) && 241 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 242 } 243 244 struct bpf_call_arg_meta { 245 struct bpf_map *map_ptr; 246 bool raw_mode; 247 bool pkt_access; 248 int regno; 249 int access_size; 250 int mem_size; 251 u64 msize_max_value; 252 int ref_obj_id; 253 int map_uid; 254 int func_id; 255 struct btf *btf; 256 u32 btf_id; 257 struct btf *ret_btf; 258 u32 ret_btf_id; 259 u32 subprogno; 260 }; 261 262 struct btf *btf_vmlinux; 263 264 static DEFINE_MUTEX(bpf_verifier_lock); 265 266 static const struct bpf_line_info * 267 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 268 { 269 const struct bpf_line_info *linfo; 270 const struct bpf_prog *prog; 271 u32 i, nr_linfo; 272 273 prog = env->prog; 274 nr_linfo = prog->aux->nr_linfo; 275 276 if (!nr_linfo || insn_off >= prog->len) 277 return NULL; 278 279 linfo = prog->aux->linfo; 280 for (i = 1; i < nr_linfo; i++) 281 if (insn_off < linfo[i].insn_off) 282 break; 283 284 return &linfo[i - 1]; 285 } 286 287 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 288 va_list args) 289 { 290 unsigned int n; 291 292 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 293 294 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 295 "verifier log line truncated - local buffer too short\n"); 296 297 if (log->level == BPF_LOG_KERNEL) { 298 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 299 300 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 301 return; 302 } 303 304 n = min(log->len_total - log->len_used - 1, n); 305 log->kbuf[n] = '\0'; 306 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 307 log->len_used += n; 308 else 309 log->ubuf = NULL; 310 } 311 312 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 313 { 314 char zero = 0; 315 316 if (!bpf_verifier_log_needed(log)) 317 return; 318 319 log->len_used = new_pos; 320 if (put_user(zero, log->ubuf + new_pos)) 321 log->ubuf = NULL; 322 } 323 324 /* log_level controls verbosity level of eBPF verifier. 325 * bpf_verifier_log_write() is used to dump the verification trace to the log, 326 * so the user can figure out what's wrong with the program 327 */ 328 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 329 const char *fmt, ...) 330 { 331 va_list args; 332 333 if (!bpf_verifier_log_needed(&env->log)) 334 return; 335 336 va_start(args, fmt); 337 bpf_verifier_vlog(&env->log, fmt, args); 338 va_end(args); 339 } 340 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 341 342 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 343 { 344 struct bpf_verifier_env *env = private_data; 345 va_list args; 346 347 if (!bpf_verifier_log_needed(&env->log)) 348 return; 349 350 va_start(args, fmt); 351 bpf_verifier_vlog(&env->log, fmt, args); 352 va_end(args); 353 } 354 355 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 356 const char *fmt, ...) 357 { 358 va_list args; 359 360 if (!bpf_verifier_log_needed(log)) 361 return; 362 363 va_start(args, fmt); 364 bpf_verifier_vlog(log, fmt, args); 365 va_end(args); 366 } 367 368 static const char *ltrim(const char *s) 369 { 370 while (isspace(*s)) 371 s++; 372 373 return s; 374 } 375 376 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 377 u32 insn_off, 378 const char *prefix_fmt, ...) 379 { 380 const struct bpf_line_info *linfo; 381 382 if (!bpf_verifier_log_needed(&env->log)) 383 return; 384 385 linfo = find_linfo(env, insn_off); 386 if (!linfo || linfo == env->prev_linfo) 387 return; 388 389 if (prefix_fmt) { 390 va_list args; 391 392 va_start(args, prefix_fmt); 393 bpf_verifier_vlog(&env->log, prefix_fmt, args); 394 va_end(args); 395 } 396 397 verbose(env, "%s\n", 398 ltrim(btf_name_by_offset(env->prog->aux->btf, 399 linfo->line_off))); 400 401 env->prev_linfo = linfo; 402 } 403 404 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 405 struct bpf_reg_state *reg, 406 struct tnum *range, const char *ctx, 407 const char *reg_name) 408 { 409 char tn_buf[48]; 410 411 verbose(env, "At %s the register %s ", ctx, reg_name); 412 if (!tnum_is_unknown(reg->var_off)) { 413 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 414 verbose(env, "has value %s", tn_buf); 415 } else { 416 verbose(env, "has unknown scalar value"); 417 } 418 tnum_strn(tn_buf, sizeof(tn_buf), *range); 419 verbose(env, " should have been in %s\n", tn_buf); 420 } 421 422 static bool type_is_pkt_pointer(enum bpf_reg_type type) 423 { 424 return type == PTR_TO_PACKET || 425 type == PTR_TO_PACKET_META; 426 } 427 428 static bool type_is_sk_pointer(enum bpf_reg_type type) 429 { 430 return type == PTR_TO_SOCKET || 431 type == PTR_TO_SOCK_COMMON || 432 type == PTR_TO_TCP_SOCK || 433 type == PTR_TO_XDP_SOCK; 434 } 435 436 static bool reg_type_not_null(enum bpf_reg_type type) 437 { 438 return type == PTR_TO_SOCKET || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_MAP_VALUE || 441 type == PTR_TO_MAP_KEY || 442 type == PTR_TO_SOCK_COMMON; 443 } 444 445 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 446 { 447 return reg->type == PTR_TO_MAP_VALUE && 448 map_value_has_spin_lock(reg->map_ptr); 449 } 450 451 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 452 { 453 return base_type(type) == PTR_TO_SOCKET || 454 base_type(type) == PTR_TO_TCP_SOCK || 455 base_type(type) == PTR_TO_MEM; 456 } 457 458 static bool type_is_rdonly_mem(u32 type) 459 { 460 return type & MEM_RDONLY; 461 } 462 463 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 464 { 465 return type == ARG_PTR_TO_SOCK_COMMON; 466 } 467 468 static bool type_may_be_null(u32 type) 469 { 470 return type & PTR_MAYBE_NULL; 471 } 472 473 /* Determine whether the function releases some resources allocated by another 474 * function call. The first reference type argument will be assumed to be 475 * released by release_reference(). 476 */ 477 static bool is_release_function(enum bpf_func_id func_id) 478 { 479 return func_id == BPF_FUNC_sk_release || 480 func_id == BPF_FUNC_ringbuf_submit || 481 func_id == BPF_FUNC_ringbuf_discard; 482 } 483 484 static bool may_be_acquire_function(enum bpf_func_id func_id) 485 { 486 return func_id == BPF_FUNC_sk_lookup_tcp || 487 func_id == BPF_FUNC_sk_lookup_udp || 488 func_id == BPF_FUNC_skc_lookup_tcp || 489 func_id == BPF_FUNC_map_lookup_elem || 490 func_id == BPF_FUNC_ringbuf_reserve; 491 } 492 493 static bool is_acquire_function(enum bpf_func_id func_id, 494 const struct bpf_map *map) 495 { 496 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 497 498 if (func_id == BPF_FUNC_sk_lookup_tcp || 499 func_id == BPF_FUNC_sk_lookup_udp || 500 func_id == BPF_FUNC_skc_lookup_tcp || 501 func_id == BPF_FUNC_ringbuf_reserve) 502 return true; 503 504 if (func_id == BPF_FUNC_map_lookup_elem && 505 (map_type == BPF_MAP_TYPE_SOCKMAP || 506 map_type == BPF_MAP_TYPE_SOCKHASH)) 507 return true; 508 509 return false; 510 } 511 512 static bool is_ptr_cast_function(enum bpf_func_id func_id) 513 { 514 return func_id == BPF_FUNC_tcp_sock || 515 func_id == BPF_FUNC_sk_fullsock || 516 func_id == BPF_FUNC_skc_to_tcp_sock || 517 func_id == BPF_FUNC_skc_to_tcp6_sock || 518 func_id == BPF_FUNC_skc_to_udp6_sock || 519 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 520 func_id == BPF_FUNC_skc_to_tcp_request_sock; 521 } 522 523 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 524 { 525 return BPF_CLASS(insn->code) == BPF_STX && 526 BPF_MODE(insn->code) == BPF_ATOMIC && 527 insn->imm == BPF_CMPXCHG; 528 } 529 530 /* string representation of 'enum bpf_reg_type' 531 * 532 * Note that reg_type_str() can not appear more than once in a single verbose() 533 * statement. 534 */ 535 static const char *reg_type_str(struct bpf_verifier_env *env, 536 enum bpf_reg_type type) 537 { 538 char postfix[16] = {0}, prefix[16] = {0}; 539 static const char * const str[] = { 540 [NOT_INIT] = "?", 541 [SCALAR_VALUE] = "inv", 542 [PTR_TO_CTX] = "ctx", 543 [CONST_PTR_TO_MAP] = "map_ptr", 544 [PTR_TO_MAP_VALUE] = "map_value", 545 [PTR_TO_STACK] = "fp", 546 [PTR_TO_PACKET] = "pkt", 547 [PTR_TO_PACKET_META] = "pkt_meta", 548 [PTR_TO_PACKET_END] = "pkt_end", 549 [PTR_TO_FLOW_KEYS] = "flow_keys", 550 [PTR_TO_SOCKET] = "sock", 551 [PTR_TO_SOCK_COMMON] = "sock_common", 552 [PTR_TO_TCP_SOCK] = "tcp_sock", 553 [PTR_TO_TP_BUFFER] = "tp_buffer", 554 [PTR_TO_XDP_SOCK] = "xdp_sock", 555 [PTR_TO_BTF_ID] = "ptr_", 556 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 557 [PTR_TO_MEM] = "mem", 558 [PTR_TO_BUF] = "buf", 559 [PTR_TO_FUNC] = "func", 560 [PTR_TO_MAP_KEY] = "map_key", 561 }; 562 563 if (type & PTR_MAYBE_NULL) { 564 if (base_type(type) == PTR_TO_BTF_ID || 565 base_type(type) == PTR_TO_PERCPU_BTF_ID) 566 strncpy(postfix, "or_null_", 16); 567 else 568 strncpy(postfix, "_or_null", 16); 569 } 570 571 if (type & MEM_RDONLY) 572 strncpy(prefix, "rdonly_", 16); 573 if (type & MEM_ALLOC) 574 strncpy(prefix, "alloc_", 16); 575 576 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 577 prefix, str[base_type(type)], postfix); 578 return env->type_str_buf; 579 } 580 581 static char slot_type_char[] = { 582 [STACK_INVALID] = '?', 583 [STACK_SPILL] = 'r', 584 [STACK_MISC] = 'm', 585 [STACK_ZERO] = '0', 586 }; 587 588 static void print_liveness(struct bpf_verifier_env *env, 589 enum bpf_reg_liveness live) 590 { 591 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 592 verbose(env, "_"); 593 if (live & REG_LIVE_READ) 594 verbose(env, "r"); 595 if (live & REG_LIVE_WRITTEN) 596 verbose(env, "w"); 597 if (live & REG_LIVE_DONE) 598 verbose(env, "D"); 599 } 600 601 static struct bpf_func_state *func(struct bpf_verifier_env *env, 602 const struct bpf_reg_state *reg) 603 { 604 struct bpf_verifier_state *cur = env->cur_state; 605 606 return cur->frame[reg->frameno]; 607 } 608 609 static const char *kernel_type_name(const struct btf* btf, u32 id) 610 { 611 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 612 } 613 614 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 615 { 616 env->scratched_regs |= 1U << regno; 617 } 618 619 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 620 { 621 env->scratched_stack_slots |= 1ULL << spi; 622 } 623 624 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 625 { 626 return (env->scratched_regs >> regno) & 1; 627 } 628 629 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 630 { 631 return (env->scratched_stack_slots >> regno) & 1; 632 } 633 634 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 635 { 636 return env->scratched_regs || env->scratched_stack_slots; 637 } 638 639 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 640 { 641 env->scratched_regs = 0U; 642 env->scratched_stack_slots = 0ULL; 643 } 644 645 /* Used for printing the entire verifier state. */ 646 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 647 { 648 env->scratched_regs = ~0U; 649 env->scratched_stack_slots = ~0ULL; 650 } 651 652 /* The reg state of a pointer or a bounded scalar was saved when 653 * it was spilled to the stack. 654 */ 655 static bool is_spilled_reg(const struct bpf_stack_state *stack) 656 { 657 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 658 } 659 660 static void scrub_spilled_slot(u8 *stype) 661 { 662 if (*stype != STACK_INVALID) 663 *stype = STACK_MISC; 664 } 665 666 static void print_verifier_state(struct bpf_verifier_env *env, 667 const struct bpf_func_state *state, 668 bool print_all) 669 { 670 const struct bpf_reg_state *reg; 671 enum bpf_reg_type t; 672 int i; 673 674 if (state->frameno) 675 verbose(env, " frame%d:", state->frameno); 676 for (i = 0; i < MAX_BPF_REG; i++) { 677 reg = &state->regs[i]; 678 t = reg->type; 679 if (t == NOT_INIT) 680 continue; 681 if (!print_all && !reg_scratched(env, i)) 682 continue; 683 verbose(env, " R%d", i); 684 print_liveness(env, reg->live); 685 verbose(env, "=%s", reg_type_str(env, t)); 686 if (t == SCALAR_VALUE && reg->precise) 687 verbose(env, "P"); 688 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 689 tnum_is_const(reg->var_off)) { 690 /* reg->off should be 0 for SCALAR_VALUE */ 691 verbose(env, "%lld", reg->var_off.value + reg->off); 692 } else { 693 if (base_type(t) == PTR_TO_BTF_ID || 694 base_type(t) == PTR_TO_PERCPU_BTF_ID) 695 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 696 verbose(env, "(id=%d", reg->id); 697 if (reg_type_may_be_refcounted_or_null(t)) 698 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 699 if (t != SCALAR_VALUE) 700 verbose(env, ",off=%d", reg->off); 701 if (type_is_pkt_pointer(t)) 702 verbose(env, ",r=%d", reg->range); 703 else if (base_type(t) == CONST_PTR_TO_MAP || 704 base_type(t) == PTR_TO_MAP_KEY || 705 base_type(t) == PTR_TO_MAP_VALUE) 706 verbose(env, ",ks=%d,vs=%d", 707 reg->map_ptr->key_size, 708 reg->map_ptr->value_size); 709 if (tnum_is_const(reg->var_off)) { 710 /* Typically an immediate SCALAR_VALUE, but 711 * could be a pointer whose offset is too big 712 * for reg->off 713 */ 714 verbose(env, ",imm=%llx", reg->var_off.value); 715 } else { 716 if (reg->smin_value != reg->umin_value && 717 reg->smin_value != S64_MIN) 718 verbose(env, ",smin_value=%lld", 719 (long long)reg->smin_value); 720 if (reg->smax_value != reg->umax_value && 721 reg->smax_value != S64_MAX) 722 verbose(env, ",smax_value=%lld", 723 (long long)reg->smax_value); 724 if (reg->umin_value != 0) 725 verbose(env, ",umin_value=%llu", 726 (unsigned long long)reg->umin_value); 727 if (reg->umax_value != U64_MAX) 728 verbose(env, ",umax_value=%llu", 729 (unsigned long long)reg->umax_value); 730 if (!tnum_is_unknown(reg->var_off)) { 731 char tn_buf[48]; 732 733 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 734 verbose(env, ",var_off=%s", tn_buf); 735 } 736 if (reg->s32_min_value != reg->smin_value && 737 reg->s32_min_value != S32_MIN) 738 verbose(env, ",s32_min_value=%d", 739 (int)(reg->s32_min_value)); 740 if (reg->s32_max_value != reg->smax_value && 741 reg->s32_max_value != S32_MAX) 742 verbose(env, ",s32_max_value=%d", 743 (int)(reg->s32_max_value)); 744 if (reg->u32_min_value != reg->umin_value && 745 reg->u32_min_value != U32_MIN) 746 verbose(env, ",u32_min_value=%d", 747 (int)(reg->u32_min_value)); 748 if (reg->u32_max_value != reg->umax_value && 749 reg->u32_max_value != U32_MAX) 750 verbose(env, ",u32_max_value=%d", 751 (int)(reg->u32_max_value)); 752 } 753 verbose(env, ")"); 754 } 755 } 756 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 757 char types_buf[BPF_REG_SIZE + 1]; 758 bool valid = false; 759 int j; 760 761 for (j = 0; j < BPF_REG_SIZE; j++) { 762 if (state->stack[i].slot_type[j] != STACK_INVALID) 763 valid = true; 764 types_buf[j] = slot_type_char[ 765 state->stack[i].slot_type[j]]; 766 } 767 types_buf[BPF_REG_SIZE] = 0; 768 if (!valid) 769 continue; 770 if (!print_all && !stack_slot_scratched(env, i)) 771 continue; 772 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 773 print_liveness(env, state->stack[i].spilled_ptr.live); 774 if (is_spilled_reg(&state->stack[i])) { 775 reg = &state->stack[i].spilled_ptr; 776 t = reg->type; 777 verbose(env, "=%s", reg_type_str(env, t)); 778 if (t == SCALAR_VALUE && reg->precise) 779 verbose(env, "P"); 780 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 781 verbose(env, "%lld", reg->var_off.value + reg->off); 782 } else { 783 verbose(env, "=%s", types_buf); 784 } 785 } 786 if (state->acquired_refs && state->refs[0].id) { 787 verbose(env, " refs=%d", state->refs[0].id); 788 for (i = 1; i < state->acquired_refs; i++) 789 if (state->refs[i].id) 790 verbose(env, ",%d", state->refs[i].id); 791 } 792 if (state->in_callback_fn) 793 verbose(env, " cb"); 794 if (state->in_async_callback_fn) 795 verbose(env, " async_cb"); 796 verbose(env, "\n"); 797 mark_verifier_state_clean(env); 798 } 799 800 static inline u32 vlog_alignment(u32 pos) 801 { 802 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 803 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 804 } 805 806 static void print_insn_state(struct bpf_verifier_env *env, 807 const struct bpf_func_state *state) 808 { 809 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 810 /* remove new line character */ 811 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 812 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 813 } else { 814 verbose(env, "%d:", env->insn_idx); 815 } 816 print_verifier_state(env, state, false); 817 } 818 819 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 820 * small to hold src. This is different from krealloc since we don't want to preserve 821 * the contents of dst. 822 * 823 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 824 * not be allocated. 825 */ 826 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 827 { 828 size_t bytes; 829 830 if (ZERO_OR_NULL_PTR(src)) 831 goto out; 832 833 if (unlikely(check_mul_overflow(n, size, &bytes))) 834 return NULL; 835 836 if (ksize(dst) < bytes) { 837 kfree(dst); 838 dst = kmalloc_track_caller(bytes, flags); 839 if (!dst) 840 return NULL; 841 } 842 843 memcpy(dst, src, bytes); 844 out: 845 return dst ? dst : ZERO_SIZE_PTR; 846 } 847 848 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 849 * small to hold new_n items. new items are zeroed out if the array grows. 850 * 851 * Contrary to krealloc_array, does not free arr if new_n is zero. 852 */ 853 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 854 { 855 if (!new_n || old_n == new_n) 856 goto out; 857 858 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 859 if (!arr) 860 return NULL; 861 862 if (new_n > old_n) 863 memset(arr + old_n * size, 0, (new_n - old_n) * size); 864 865 out: 866 return arr ? arr : ZERO_SIZE_PTR; 867 } 868 869 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 870 { 871 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 872 sizeof(struct bpf_reference_state), GFP_KERNEL); 873 if (!dst->refs) 874 return -ENOMEM; 875 876 dst->acquired_refs = src->acquired_refs; 877 return 0; 878 } 879 880 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 881 { 882 size_t n = src->allocated_stack / BPF_REG_SIZE; 883 884 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 885 GFP_KERNEL); 886 if (!dst->stack) 887 return -ENOMEM; 888 889 dst->allocated_stack = src->allocated_stack; 890 return 0; 891 } 892 893 static int resize_reference_state(struct bpf_func_state *state, size_t n) 894 { 895 state->refs = realloc_array(state->refs, state->acquired_refs, n, 896 sizeof(struct bpf_reference_state)); 897 if (!state->refs) 898 return -ENOMEM; 899 900 state->acquired_refs = n; 901 return 0; 902 } 903 904 static int grow_stack_state(struct bpf_func_state *state, int size) 905 { 906 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 907 908 if (old_n >= n) 909 return 0; 910 911 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 912 if (!state->stack) 913 return -ENOMEM; 914 915 state->allocated_stack = size; 916 return 0; 917 } 918 919 /* Acquire a pointer id from the env and update the state->refs to include 920 * this new pointer reference. 921 * On success, returns a valid pointer id to associate with the register 922 * On failure, returns a negative errno. 923 */ 924 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 925 { 926 struct bpf_func_state *state = cur_func(env); 927 int new_ofs = state->acquired_refs; 928 int id, err; 929 930 err = resize_reference_state(state, state->acquired_refs + 1); 931 if (err) 932 return err; 933 id = ++env->id_gen; 934 state->refs[new_ofs].id = id; 935 state->refs[new_ofs].insn_idx = insn_idx; 936 937 return id; 938 } 939 940 /* release function corresponding to acquire_reference_state(). Idempotent. */ 941 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 942 { 943 int i, last_idx; 944 945 last_idx = state->acquired_refs - 1; 946 for (i = 0; i < state->acquired_refs; i++) { 947 if (state->refs[i].id == ptr_id) { 948 if (last_idx && i != last_idx) 949 memcpy(&state->refs[i], &state->refs[last_idx], 950 sizeof(*state->refs)); 951 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 952 state->acquired_refs--; 953 return 0; 954 } 955 } 956 return -EINVAL; 957 } 958 959 static void free_func_state(struct bpf_func_state *state) 960 { 961 if (!state) 962 return; 963 kfree(state->refs); 964 kfree(state->stack); 965 kfree(state); 966 } 967 968 static void clear_jmp_history(struct bpf_verifier_state *state) 969 { 970 kfree(state->jmp_history); 971 state->jmp_history = NULL; 972 state->jmp_history_cnt = 0; 973 } 974 975 static void free_verifier_state(struct bpf_verifier_state *state, 976 bool free_self) 977 { 978 int i; 979 980 for (i = 0; i <= state->curframe; i++) { 981 free_func_state(state->frame[i]); 982 state->frame[i] = NULL; 983 } 984 clear_jmp_history(state); 985 if (free_self) 986 kfree(state); 987 } 988 989 /* copy verifier state from src to dst growing dst stack space 990 * when necessary to accommodate larger src stack 991 */ 992 static int copy_func_state(struct bpf_func_state *dst, 993 const struct bpf_func_state *src) 994 { 995 int err; 996 997 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 998 err = copy_reference_state(dst, src); 999 if (err) 1000 return err; 1001 return copy_stack_state(dst, src); 1002 } 1003 1004 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1005 const struct bpf_verifier_state *src) 1006 { 1007 struct bpf_func_state *dst; 1008 int i, err; 1009 1010 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1011 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1012 GFP_USER); 1013 if (!dst_state->jmp_history) 1014 return -ENOMEM; 1015 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1016 1017 /* if dst has more stack frames then src frame, free them */ 1018 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1019 free_func_state(dst_state->frame[i]); 1020 dst_state->frame[i] = NULL; 1021 } 1022 dst_state->speculative = src->speculative; 1023 dst_state->curframe = src->curframe; 1024 dst_state->active_spin_lock = src->active_spin_lock; 1025 dst_state->branches = src->branches; 1026 dst_state->parent = src->parent; 1027 dst_state->first_insn_idx = src->first_insn_idx; 1028 dst_state->last_insn_idx = src->last_insn_idx; 1029 for (i = 0; i <= src->curframe; i++) { 1030 dst = dst_state->frame[i]; 1031 if (!dst) { 1032 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1033 if (!dst) 1034 return -ENOMEM; 1035 dst_state->frame[i] = dst; 1036 } 1037 err = copy_func_state(dst, src->frame[i]); 1038 if (err) 1039 return err; 1040 } 1041 return 0; 1042 } 1043 1044 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1045 { 1046 while (st) { 1047 u32 br = --st->branches; 1048 1049 /* WARN_ON(br > 1) technically makes sense here, 1050 * but see comment in push_stack(), hence: 1051 */ 1052 WARN_ONCE((int)br < 0, 1053 "BUG update_branch_counts:branches_to_explore=%d\n", 1054 br); 1055 if (br) 1056 break; 1057 st = st->parent; 1058 } 1059 } 1060 1061 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1062 int *insn_idx, bool pop_log) 1063 { 1064 struct bpf_verifier_state *cur = env->cur_state; 1065 struct bpf_verifier_stack_elem *elem, *head = env->head; 1066 int err; 1067 1068 if (env->head == NULL) 1069 return -ENOENT; 1070 1071 if (cur) { 1072 err = copy_verifier_state(cur, &head->st); 1073 if (err) 1074 return err; 1075 } 1076 if (pop_log) 1077 bpf_vlog_reset(&env->log, head->log_pos); 1078 if (insn_idx) 1079 *insn_idx = head->insn_idx; 1080 if (prev_insn_idx) 1081 *prev_insn_idx = head->prev_insn_idx; 1082 elem = head->next; 1083 free_verifier_state(&head->st, false); 1084 kfree(head); 1085 env->head = elem; 1086 env->stack_size--; 1087 return 0; 1088 } 1089 1090 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1091 int insn_idx, int prev_insn_idx, 1092 bool speculative) 1093 { 1094 struct bpf_verifier_state *cur = env->cur_state; 1095 struct bpf_verifier_stack_elem *elem; 1096 int err; 1097 1098 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1099 if (!elem) 1100 goto err; 1101 1102 elem->insn_idx = insn_idx; 1103 elem->prev_insn_idx = prev_insn_idx; 1104 elem->next = env->head; 1105 elem->log_pos = env->log.len_used; 1106 env->head = elem; 1107 env->stack_size++; 1108 err = copy_verifier_state(&elem->st, cur); 1109 if (err) 1110 goto err; 1111 elem->st.speculative |= speculative; 1112 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1113 verbose(env, "The sequence of %d jumps is too complex.\n", 1114 env->stack_size); 1115 goto err; 1116 } 1117 if (elem->st.parent) { 1118 ++elem->st.parent->branches; 1119 /* WARN_ON(branches > 2) technically makes sense here, 1120 * but 1121 * 1. speculative states will bump 'branches' for non-branch 1122 * instructions 1123 * 2. is_state_visited() heuristics may decide not to create 1124 * a new state for a sequence of branches and all such current 1125 * and cloned states will be pointing to a single parent state 1126 * which might have large 'branches' count. 1127 */ 1128 } 1129 return &elem->st; 1130 err: 1131 free_verifier_state(env->cur_state, true); 1132 env->cur_state = NULL; 1133 /* pop all elements and return */ 1134 while (!pop_stack(env, NULL, NULL, false)); 1135 return NULL; 1136 } 1137 1138 #define CALLER_SAVED_REGS 6 1139 static const int caller_saved[CALLER_SAVED_REGS] = { 1140 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1141 }; 1142 1143 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1144 struct bpf_reg_state *reg); 1145 1146 /* This helper doesn't clear reg->id */ 1147 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1148 { 1149 reg->var_off = tnum_const(imm); 1150 reg->smin_value = (s64)imm; 1151 reg->smax_value = (s64)imm; 1152 reg->umin_value = imm; 1153 reg->umax_value = imm; 1154 1155 reg->s32_min_value = (s32)imm; 1156 reg->s32_max_value = (s32)imm; 1157 reg->u32_min_value = (u32)imm; 1158 reg->u32_max_value = (u32)imm; 1159 } 1160 1161 /* Mark the unknown part of a register (variable offset or scalar value) as 1162 * known to have the value @imm. 1163 */ 1164 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1165 { 1166 /* Clear id, off, and union(map_ptr, range) */ 1167 memset(((u8 *)reg) + sizeof(reg->type), 0, 1168 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1169 ___mark_reg_known(reg, imm); 1170 } 1171 1172 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1173 { 1174 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1175 reg->s32_min_value = (s32)imm; 1176 reg->s32_max_value = (s32)imm; 1177 reg->u32_min_value = (u32)imm; 1178 reg->u32_max_value = (u32)imm; 1179 } 1180 1181 /* Mark the 'variable offset' part of a register as zero. This should be 1182 * used only on registers holding a pointer type. 1183 */ 1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1185 { 1186 __mark_reg_known(reg, 0); 1187 } 1188 1189 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1190 { 1191 __mark_reg_known(reg, 0); 1192 reg->type = SCALAR_VALUE; 1193 } 1194 1195 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1196 struct bpf_reg_state *regs, u32 regno) 1197 { 1198 if (WARN_ON(regno >= MAX_BPF_REG)) { 1199 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1200 /* Something bad happened, let's kill all regs */ 1201 for (regno = 0; regno < MAX_BPF_REG; regno++) 1202 __mark_reg_not_init(env, regs + regno); 1203 return; 1204 } 1205 __mark_reg_known_zero(regs + regno); 1206 } 1207 1208 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1209 { 1210 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1211 const struct bpf_map *map = reg->map_ptr; 1212 1213 if (map->inner_map_meta) { 1214 reg->type = CONST_PTR_TO_MAP; 1215 reg->map_ptr = map->inner_map_meta; 1216 /* transfer reg's id which is unique for every map_lookup_elem 1217 * as UID of the inner map. 1218 */ 1219 if (map_value_has_timer(map->inner_map_meta)) 1220 reg->map_uid = reg->id; 1221 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1222 reg->type = PTR_TO_XDP_SOCK; 1223 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1224 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1225 reg->type = PTR_TO_SOCKET; 1226 } else { 1227 reg->type = PTR_TO_MAP_VALUE; 1228 } 1229 return; 1230 } 1231 1232 reg->type &= ~PTR_MAYBE_NULL; 1233 } 1234 1235 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1236 { 1237 return type_is_pkt_pointer(reg->type); 1238 } 1239 1240 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1241 { 1242 return reg_is_pkt_pointer(reg) || 1243 reg->type == PTR_TO_PACKET_END; 1244 } 1245 1246 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1247 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1248 enum bpf_reg_type which) 1249 { 1250 /* The register can already have a range from prior markings. 1251 * This is fine as long as it hasn't been advanced from its 1252 * origin. 1253 */ 1254 return reg->type == which && 1255 reg->id == 0 && 1256 reg->off == 0 && 1257 tnum_equals_const(reg->var_off, 0); 1258 } 1259 1260 /* Reset the min/max bounds of a register */ 1261 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1262 { 1263 reg->smin_value = S64_MIN; 1264 reg->smax_value = S64_MAX; 1265 reg->umin_value = 0; 1266 reg->umax_value = U64_MAX; 1267 1268 reg->s32_min_value = S32_MIN; 1269 reg->s32_max_value = S32_MAX; 1270 reg->u32_min_value = 0; 1271 reg->u32_max_value = U32_MAX; 1272 } 1273 1274 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1275 { 1276 reg->smin_value = S64_MIN; 1277 reg->smax_value = S64_MAX; 1278 reg->umin_value = 0; 1279 reg->umax_value = U64_MAX; 1280 } 1281 1282 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1283 { 1284 reg->s32_min_value = S32_MIN; 1285 reg->s32_max_value = S32_MAX; 1286 reg->u32_min_value = 0; 1287 reg->u32_max_value = U32_MAX; 1288 } 1289 1290 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1291 { 1292 struct tnum var32_off = tnum_subreg(reg->var_off); 1293 1294 /* min signed is max(sign bit) | min(other bits) */ 1295 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1296 var32_off.value | (var32_off.mask & S32_MIN)); 1297 /* max signed is min(sign bit) | max(other bits) */ 1298 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1299 var32_off.value | (var32_off.mask & S32_MAX)); 1300 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1301 reg->u32_max_value = min(reg->u32_max_value, 1302 (u32)(var32_off.value | var32_off.mask)); 1303 } 1304 1305 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1306 { 1307 /* min signed is max(sign bit) | min(other bits) */ 1308 reg->smin_value = max_t(s64, reg->smin_value, 1309 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1310 /* max signed is min(sign bit) | max(other bits) */ 1311 reg->smax_value = min_t(s64, reg->smax_value, 1312 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1313 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1314 reg->umax_value = min(reg->umax_value, 1315 reg->var_off.value | reg->var_off.mask); 1316 } 1317 1318 static void __update_reg_bounds(struct bpf_reg_state *reg) 1319 { 1320 __update_reg32_bounds(reg); 1321 __update_reg64_bounds(reg); 1322 } 1323 1324 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1325 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1326 { 1327 /* Learn sign from signed bounds. 1328 * If we cannot cross the sign boundary, then signed and unsigned bounds 1329 * are the same, so combine. This works even in the negative case, e.g. 1330 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1331 */ 1332 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1333 reg->s32_min_value = reg->u32_min_value = 1334 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1335 reg->s32_max_value = reg->u32_max_value = 1336 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1337 return; 1338 } 1339 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1340 * boundary, so we must be careful. 1341 */ 1342 if ((s32)reg->u32_max_value >= 0) { 1343 /* Positive. We can't learn anything from the smin, but smax 1344 * is positive, hence safe. 1345 */ 1346 reg->s32_min_value = reg->u32_min_value; 1347 reg->s32_max_value = reg->u32_max_value = 1348 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1349 } else if ((s32)reg->u32_min_value < 0) { 1350 /* Negative. We can't learn anything from the smax, but smin 1351 * is negative, hence safe. 1352 */ 1353 reg->s32_min_value = reg->u32_min_value = 1354 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1355 reg->s32_max_value = reg->u32_max_value; 1356 } 1357 } 1358 1359 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1360 { 1361 /* Learn sign from signed bounds. 1362 * If we cannot cross the sign boundary, then signed and unsigned bounds 1363 * are the same, so combine. This works even in the negative case, e.g. 1364 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1365 */ 1366 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1367 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1368 reg->umin_value); 1369 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1370 reg->umax_value); 1371 return; 1372 } 1373 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1374 * boundary, so we must be careful. 1375 */ 1376 if ((s64)reg->umax_value >= 0) { 1377 /* Positive. We can't learn anything from the smin, but smax 1378 * is positive, hence safe. 1379 */ 1380 reg->smin_value = reg->umin_value; 1381 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1382 reg->umax_value); 1383 } else if ((s64)reg->umin_value < 0) { 1384 /* Negative. We can't learn anything from the smax, but smin 1385 * is negative, hence safe. 1386 */ 1387 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1388 reg->umin_value); 1389 reg->smax_value = reg->umax_value; 1390 } 1391 } 1392 1393 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1394 { 1395 __reg32_deduce_bounds(reg); 1396 __reg64_deduce_bounds(reg); 1397 } 1398 1399 /* Attempts to improve var_off based on unsigned min/max information */ 1400 static void __reg_bound_offset(struct bpf_reg_state *reg) 1401 { 1402 struct tnum var64_off = tnum_intersect(reg->var_off, 1403 tnum_range(reg->umin_value, 1404 reg->umax_value)); 1405 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1406 tnum_range(reg->u32_min_value, 1407 reg->u32_max_value)); 1408 1409 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1410 } 1411 1412 static bool __reg32_bound_s64(s32 a) 1413 { 1414 return a >= 0 && a <= S32_MAX; 1415 } 1416 1417 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1418 { 1419 reg->umin_value = reg->u32_min_value; 1420 reg->umax_value = reg->u32_max_value; 1421 1422 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1423 * be positive otherwise set to worse case bounds and refine later 1424 * from tnum. 1425 */ 1426 if (__reg32_bound_s64(reg->s32_min_value) && 1427 __reg32_bound_s64(reg->s32_max_value)) { 1428 reg->smin_value = reg->s32_min_value; 1429 reg->smax_value = reg->s32_max_value; 1430 } else { 1431 reg->smin_value = 0; 1432 reg->smax_value = U32_MAX; 1433 } 1434 } 1435 1436 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1437 { 1438 /* special case when 64-bit register has upper 32-bit register 1439 * zeroed. Typically happens after zext or <<32, >>32 sequence 1440 * allowing us to use 32-bit bounds directly, 1441 */ 1442 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1443 __reg_assign_32_into_64(reg); 1444 } else { 1445 /* Otherwise the best we can do is push lower 32bit known and 1446 * unknown bits into register (var_off set from jmp logic) 1447 * then learn as much as possible from the 64-bit tnum 1448 * known and unknown bits. The previous smin/smax bounds are 1449 * invalid here because of jmp32 compare so mark them unknown 1450 * so they do not impact tnum bounds calculation. 1451 */ 1452 __mark_reg64_unbounded(reg); 1453 __update_reg_bounds(reg); 1454 } 1455 1456 /* Intersecting with the old var_off might have improved our bounds 1457 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1458 * then new var_off is (0; 0x7f...fc) which improves our umax. 1459 */ 1460 __reg_deduce_bounds(reg); 1461 __reg_bound_offset(reg); 1462 __update_reg_bounds(reg); 1463 } 1464 1465 static bool __reg64_bound_s32(s64 a) 1466 { 1467 return a >= S32_MIN && a <= S32_MAX; 1468 } 1469 1470 static bool __reg64_bound_u32(u64 a) 1471 { 1472 return a >= U32_MIN && a <= U32_MAX; 1473 } 1474 1475 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1476 { 1477 __mark_reg32_unbounded(reg); 1478 1479 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1480 reg->s32_min_value = (s32)reg->smin_value; 1481 reg->s32_max_value = (s32)reg->smax_value; 1482 } 1483 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1484 reg->u32_min_value = (u32)reg->umin_value; 1485 reg->u32_max_value = (u32)reg->umax_value; 1486 } 1487 1488 /* Intersecting with the old var_off might have improved our bounds 1489 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1490 * then new var_off is (0; 0x7f...fc) which improves our umax. 1491 */ 1492 __reg_deduce_bounds(reg); 1493 __reg_bound_offset(reg); 1494 __update_reg_bounds(reg); 1495 } 1496 1497 /* Mark a register as having a completely unknown (scalar) value. */ 1498 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1499 struct bpf_reg_state *reg) 1500 { 1501 /* 1502 * Clear type, id, off, and union(map_ptr, range) and 1503 * padding between 'type' and union 1504 */ 1505 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1506 reg->type = SCALAR_VALUE; 1507 reg->var_off = tnum_unknown; 1508 reg->frameno = 0; 1509 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1510 __mark_reg_unbounded(reg); 1511 } 1512 1513 static void mark_reg_unknown(struct bpf_verifier_env *env, 1514 struct bpf_reg_state *regs, u32 regno) 1515 { 1516 if (WARN_ON(regno >= MAX_BPF_REG)) { 1517 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1518 /* Something bad happened, let's kill all regs except FP */ 1519 for (regno = 0; regno < BPF_REG_FP; regno++) 1520 __mark_reg_not_init(env, regs + regno); 1521 return; 1522 } 1523 __mark_reg_unknown(env, regs + regno); 1524 } 1525 1526 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1527 struct bpf_reg_state *reg) 1528 { 1529 __mark_reg_unknown(env, reg); 1530 reg->type = NOT_INIT; 1531 } 1532 1533 static void mark_reg_not_init(struct bpf_verifier_env *env, 1534 struct bpf_reg_state *regs, u32 regno) 1535 { 1536 if (WARN_ON(regno >= MAX_BPF_REG)) { 1537 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1538 /* Something bad happened, let's kill all regs except FP */ 1539 for (regno = 0; regno < BPF_REG_FP; regno++) 1540 __mark_reg_not_init(env, regs + regno); 1541 return; 1542 } 1543 __mark_reg_not_init(env, regs + regno); 1544 } 1545 1546 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1547 struct bpf_reg_state *regs, u32 regno, 1548 enum bpf_reg_type reg_type, 1549 struct btf *btf, u32 btf_id) 1550 { 1551 if (reg_type == SCALAR_VALUE) { 1552 mark_reg_unknown(env, regs, regno); 1553 return; 1554 } 1555 mark_reg_known_zero(env, regs, regno); 1556 regs[regno].type = PTR_TO_BTF_ID; 1557 regs[regno].btf = btf; 1558 regs[regno].btf_id = btf_id; 1559 } 1560 1561 #define DEF_NOT_SUBREG (0) 1562 static void init_reg_state(struct bpf_verifier_env *env, 1563 struct bpf_func_state *state) 1564 { 1565 struct bpf_reg_state *regs = state->regs; 1566 int i; 1567 1568 for (i = 0; i < MAX_BPF_REG; i++) { 1569 mark_reg_not_init(env, regs, i); 1570 regs[i].live = REG_LIVE_NONE; 1571 regs[i].parent = NULL; 1572 regs[i].subreg_def = DEF_NOT_SUBREG; 1573 } 1574 1575 /* frame pointer */ 1576 regs[BPF_REG_FP].type = PTR_TO_STACK; 1577 mark_reg_known_zero(env, regs, BPF_REG_FP); 1578 regs[BPF_REG_FP].frameno = state->frameno; 1579 } 1580 1581 #define BPF_MAIN_FUNC (-1) 1582 static void init_func_state(struct bpf_verifier_env *env, 1583 struct bpf_func_state *state, 1584 int callsite, int frameno, int subprogno) 1585 { 1586 state->callsite = callsite; 1587 state->frameno = frameno; 1588 state->subprogno = subprogno; 1589 init_reg_state(env, state); 1590 mark_verifier_state_scratched(env); 1591 } 1592 1593 /* Similar to push_stack(), but for async callbacks */ 1594 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1595 int insn_idx, int prev_insn_idx, 1596 int subprog) 1597 { 1598 struct bpf_verifier_stack_elem *elem; 1599 struct bpf_func_state *frame; 1600 1601 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1602 if (!elem) 1603 goto err; 1604 1605 elem->insn_idx = insn_idx; 1606 elem->prev_insn_idx = prev_insn_idx; 1607 elem->next = env->head; 1608 elem->log_pos = env->log.len_used; 1609 env->head = elem; 1610 env->stack_size++; 1611 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1612 verbose(env, 1613 "The sequence of %d jumps is too complex for async cb.\n", 1614 env->stack_size); 1615 goto err; 1616 } 1617 /* Unlike push_stack() do not copy_verifier_state(). 1618 * The caller state doesn't matter. 1619 * This is async callback. It starts in a fresh stack. 1620 * Initialize it similar to do_check_common(). 1621 */ 1622 elem->st.branches = 1; 1623 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1624 if (!frame) 1625 goto err; 1626 init_func_state(env, frame, 1627 BPF_MAIN_FUNC /* callsite */, 1628 0 /* frameno within this callchain */, 1629 subprog /* subprog number within this prog */); 1630 elem->st.frame[0] = frame; 1631 return &elem->st; 1632 err: 1633 free_verifier_state(env->cur_state, true); 1634 env->cur_state = NULL; 1635 /* pop all elements and return */ 1636 while (!pop_stack(env, NULL, NULL, false)); 1637 return NULL; 1638 } 1639 1640 1641 enum reg_arg_type { 1642 SRC_OP, /* register is used as source operand */ 1643 DST_OP, /* register is used as destination operand */ 1644 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1645 }; 1646 1647 static int cmp_subprogs(const void *a, const void *b) 1648 { 1649 return ((struct bpf_subprog_info *)a)->start - 1650 ((struct bpf_subprog_info *)b)->start; 1651 } 1652 1653 static int find_subprog(struct bpf_verifier_env *env, int off) 1654 { 1655 struct bpf_subprog_info *p; 1656 1657 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1658 sizeof(env->subprog_info[0]), cmp_subprogs); 1659 if (!p) 1660 return -ENOENT; 1661 return p - env->subprog_info; 1662 1663 } 1664 1665 static int add_subprog(struct bpf_verifier_env *env, int off) 1666 { 1667 int insn_cnt = env->prog->len; 1668 int ret; 1669 1670 if (off >= insn_cnt || off < 0) { 1671 verbose(env, "call to invalid destination\n"); 1672 return -EINVAL; 1673 } 1674 ret = find_subprog(env, off); 1675 if (ret >= 0) 1676 return ret; 1677 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1678 verbose(env, "too many subprograms\n"); 1679 return -E2BIG; 1680 } 1681 /* determine subprog starts. The end is one before the next starts */ 1682 env->subprog_info[env->subprog_cnt++].start = off; 1683 sort(env->subprog_info, env->subprog_cnt, 1684 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1685 return env->subprog_cnt - 1; 1686 } 1687 1688 #define MAX_KFUNC_DESCS 256 1689 #define MAX_KFUNC_BTFS 256 1690 1691 struct bpf_kfunc_desc { 1692 struct btf_func_model func_model; 1693 u32 func_id; 1694 s32 imm; 1695 u16 offset; 1696 }; 1697 1698 struct bpf_kfunc_btf { 1699 struct btf *btf; 1700 struct module *module; 1701 u16 offset; 1702 }; 1703 1704 struct bpf_kfunc_desc_tab { 1705 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1706 u32 nr_descs; 1707 }; 1708 1709 struct bpf_kfunc_btf_tab { 1710 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1711 u32 nr_descs; 1712 }; 1713 1714 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1715 { 1716 const struct bpf_kfunc_desc *d0 = a; 1717 const struct bpf_kfunc_desc *d1 = b; 1718 1719 /* func_id is not greater than BTF_MAX_TYPE */ 1720 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1721 } 1722 1723 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1724 { 1725 const struct bpf_kfunc_btf *d0 = a; 1726 const struct bpf_kfunc_btf *d1 = b; 1727 1728 return d0->offset - d1->offset; 1729 } 1730 1731 static const struct bpf_kfunc_desc * 1732 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1733 { 1734 struct bpf_kfunc_desc desc = { 1735 .func_id = func_id, 1736 .offset = offset, 1737 }; 1738 struct bpf_kfunc_desc_tab *tab; 1739 1740 tab = prog->aux->kfunc_tab; 1741 return bsearch(&desc, tab->descs, tab->nr_descs, 1742 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1743 } 1744 1745 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1746 s16 offset, struct module **btf_modp) 1747 { 1748 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1749 struct bpf_kfunc_btf_tab *tab; 1750 struct bpf_kfunc_btf *b; 1751 struct module *mod; 1752 struct btf *btf; 1753 int btf_fd; 1754 1755 tab = env->prog->aux->kfunc_btf_tab; 1756 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1757 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1758 if (!b) { 1759 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1760 verbose(env, "too many different module BTFs\n"); 1761 return ERR_PTR(-E2BIG); 1762 } 1763 1764 if (bpfptr_is_null(env->fd_array)) { 1765 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1766 return ERR_PTR(-EPROTO); 1767 } 1768 1769 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1770 offset * sizeof(btf_fd), 1771 sizeof(btf_fd))) 1772 return ERR_PTR(-EFAULT); 1773 1774 btf = btf_get_by_fd(btf_fd); 1775 if (IS_ERR(btf)) { 1776 verbose(env, "invalid module BTF fd specified\n"); 1777 return btf; 1778 } 1779 1780 if (!btf_is_module(btf)) { 1781 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1782 btf_put(btf); 1783 return ERR_PTR(-EINVAL); 1784 } 1785 1786 mod = btf_try_get_module(btf); 1787 if (!mod) { 1788 btf_put(btf); 1789 return ERR_PTR(-ENXIO); 1790 } 1791 1792 b = &tab->descs[tab->nr_descs++]; 1793 b->btf = btf; 1794 b->module = mod; 1795 b->offset = offset; 1796 1797 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1798 kfunc_btf_cmp_by_off, NULL); 1799 } 1800 if (btf_modp) 1801 *btf_modp = b->module; 1802 return b->btf; 1803 } 1804 1805 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1806 { 1807 if (!tab) 1808 return; 1809 1810 while (tab->nr_descs--) { 1811 module_put(tab->descs[tab->nr_descs].module); 1812 btf_put(tab->descs[tab->nr_descs].btf); 1813 } 1814 kfree(tab); 1815 } 1816 1817 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, 1818 u32 func_id, s16 offset, 1819 struct module **btf_modp) 1820 { 1821 if (offset) { 1822 if (offset < 0) { 1823 /* In the future, this can be allowed to increase limit 1824 * of fd index into fd_array, interpreted as u16. 1825 */ 1826 verbose(env, "negative offset disallowed for kernel module function call\n"); 1827 return ERR_PTR(-EINVAL); 1828 } 1829 1830 return __find_kfunc_desc_btf(env, offset, btf_modp); 1831 } 1832 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1833 } 1834 1835 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1836 { 1837 const struct btf_type *func, *func_proto; 1838 struct bpf_kfunc_btf_tab *btf_tab; 1839 struct bpf_kfunc_desc_tab *tab; 1840 struct bpf_prog_aux *prog_aux; 1841 struct bpf_kfunc_desc *desc; 1842 const char *func_name; 1843 struct btf *desc_btf; 1844 unsigned long addr; 1845 int err; 1846 1847 prog_aux = env->prog->aux; 1848 tab = prog_aux->kfunc_tab; 1849 btf_tab = prog_aux->kfunc_btf_tab; 1850 if (!tab) { 1851 if (!btf_vmlinux) { 1852 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1853 return -ENOTSUPP; 1854 } 1855 1856 if (!env->prog->jit_requested) { 1857 verbose(env, "JIT is required for calling kernel function\n"); 1858 return -ENOTSUPP; 1859 } 1860 1861 if (!bpf_jit_supports_kfunc_call()) { 1862 verbose(env, "JIT does not support calling kernel function\n"); 1863 return -ENOTSUPP; 1864 } 1865 1866 if (!env->prog->gpl_compatible) { 1867 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1868 return -EINVAL; 1869 } 1870 1871 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1872 if (!tab) 1873 return -ENOMEM; 1874 prog_aux->kfunc_tab = tab; 1875 } 1876 1877 /* func_id == 0 is always invalid, but instead of returning an error, be 1878 * conservative and wait until the code elimination pass before returning 1879 * error, so that invalid calls that get pruned out can be in BPF programs 1880 * loaded from userspace. It is also required that offset be untouched 1881 * for such calls. 1882 */ 1883 if (!func_id && !offset) 1884 return 0; 1885 1886 if (!btf_tab && offset) { 1887 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 1888 if (!btf_tab) 1889 return -ENOMEM; 1890 prog_aux->kfunc_btf_tab = btf_tab; 1891 } 1892 1893 desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL); 1894 if (IS_ERR(desc_btf)) { 1895 verbose(env, "failed to find BTF for kernel function\n"); 1896 return PTR_ERR(desc_btf); 1897 } 1898 1899 if (find_kfunc_desc(env->prog, func_id, offset)) 1900 return 0; 1901 1902 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1903 verbose(env, "too many different kernel function calls\n"); 1904 return -E2BIG; 1905 } 1906 1907 func = btf_type_by_id(desc_btf, func_id); 1908 if (!func || !btf_type_is_func(func)) { 1909 verbose(env, "kernel btf_id %u is not a function\n", 1910 func_id); 1911 return -EINVAL; 1912 } 1913 func_proto = btf_type_by_id(desc_btf, func->type); 1914 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1915 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1916 func_id); 1917 return -EINVAL; 1918 } 1919 1920 func_name = btf_name_by_offset(desc_btf, func->name_off); 1921 addr = kallsyms_lookup_name(func_name); 1922 if (!addr) { 1923 verbose(env, "cannot find address for kernel function %s\n", 1924 func_name); 1925 return -EINVAL; 1926 } 1927 1928 desc = &tab->descs[tab->nr_descs++]; 1929 desc->func_id = func_id; 1930 desc->imm = BPF_CALL_IMM(addr); 1931 desc->offset = offset; 1932 err = btf_distill_func_proto(&env->log, desc_btf, 1933 func_proto, func_name, 1934 &desc->func_model); 1935 if (!err) 1936 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1937 kfunc_desc_cmp_by_id_off, NULL); 1938 return err; 1939 } 1940 1941 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1942 { 1943 const struct bpf_kfunc_desc *d0 = a; 1944 const struct bpf_kfunc_desc *d1 = b; 1945 1946 if (d0->imm > d1->imm) 1947 return 1; 1948 else if (d0->imm < d1->imm) 1949 return -1; 1950 return 0; 1951 } 1952 1953 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1954 { 1955 struct bpf_kfunc_desc_tab *tab; 1956 1957 tab = prog->aux->kfunc_tab; 1958 if (!tab) 1959 return; 1960 1961 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1962 kfunc_desc_cmp_by_imm, NULL); 1963 } 1964 1965 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1966 { 1967 return !!prog->aux->kfunc_tab; 1968 } 1969 1970 const struct btf_func_model * 1971 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1972 const struct bpf_insn *insn) 1973 { 1974 const struct bpf_kfunc_desc desc = { 1975 .imm = insn->imm, 1976 }; 1977 const struct bpf_kfunc_desc *res; 1978 struct bpf_kfunc_desc_tab *tab; 1979 1980 tab = prog->aux->kfunc_tab; 1981 res = bsearch(&desc, tab->descs, tab->nr_descs, 1982 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1983 1984 return res ? &res->func_model : NULL; 1985 } 1986 1987 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1988 { 1989 struct bpf_subprog_info *subprog = env->subprog_info; 1990 struct bpf_insn *insn = env->prog->insnsi; 1991 int i, ret, insn_cnt = env->prog->len; 1992 1993 /* Add entry function. */ 1994 ret = add_subprog(env, 0); 1995 if (ret) 1996 return ret; 1997 1998 for (i = 0; i < insn_cnt; i++, insn++) { 1999 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2000 !bpf_pseudo_kfunc_call(insn)) 2001 continue; 2002 2003 if (!env->bpf_capable) { 2004 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2005 return -EPERM; 2006 } 2007 2008 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2009 ret = add_subprog(env, i + insn->imm + 1); 2010 else 2011 ret = add_kfunc_call(env, insn->imm, insn->off); 2012 2013 if (ret < 0) 2014 return ret; 2015 } 2016 2017 /* Add a fake 'exit' subprog which could simplify subprog iteration 2018 * logic. 'subprog_cnt' should not be increased. 2019 */ 2020 subprog[env->subprog_cnt].start = insn_cnt; 2021 2022 if (env->log.level & BPF_LOG_LEVEL2) 2023 for (i = 0; i < env->subprog_cnt; i++) 2024 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2025 2026 return 0; 2027 } 2028 2029 static int check_subprogs(struct bpf_verifier_env *env) 2030 { 2031 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2032 struct bpf_subprog_info *subprog = env->subprog_info; 2033 struct bpf_insn *insn = env->prog->insnsi; 2034 int insn_cnt = env->prog->len; 2035 2036 /* now check that all jumps are within the same subprog */ 2037 subprog_start = subprog[cur_subprog].start; 2038 subprog_end = subprog[cur_subprog + 1].start; 2039 for (i = 0; i < insn_cnt; i++) { 2040 u8 code = insn[i].code; 2041 2042 if (code == (BPF_JMP | BPF_CALL) && 2043 insn[i].imm == BPF_FUNC_tail_call && 2044 insn[i].src_reg != BPF_PSEUDO_CALL) 2045 subprog[cur_subprog].has_tail_call = true; 2046 if (BPF_CLASS(code) == BPF_LD && 2047 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2048 subprog[cur_subprog].has_ld_abs = true; 2049 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2050 goto next; 2051 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2052 goto next; 2053 off = i + insn[i].off + 1; 2054 if (off < subprog_start || off >= subprog_end) { 2055 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2056 return -EINVAL; 2057 } 2058 next: 2059 if (i == subprog_end - 1) { 2060 /* to avoid fall-through from one subprog into another 2061 * the last insn of the subprog should be either exit 2062 * or unconditional jump back 2063 */ 2064 if (code != (BPF_JMP | BPF_EXIT) && 2065 code != (BPF_JMP | BPF_JA)) { 2066 verbose(env, "last insn is not an exit or jmp\n"); 2067 return -EINVAL; 2068 } 2069 subprog_start = subprog_end; 2070 cur_subprog++; 2071 if (cur_subprog < env->subprog_cnt) 2072 subprog_end = subprog[cur_subprog + 1].start; 2073 } 2074 } 2075 return 0; 2076 } 2077 2078 /* Parentage chain of this register (or stack slot) should take care of all 2079 * issues like callee-saved registers, stack slot allocation time, etc. 2080 */ 2081 static int mark_reg_read(struct bpf_verifier_env *env, 2082 const struct bpf_reg_state *state, 2083 struct bpf_reg_state *parent, u8 flag) 2084 { 2085 bool writes = parent == state->parent; /* Observe write marks */ 2086 int cnt = 0; 2087 2088 while (parent) { 2089 /* if read wasn't screened by an earlier write ... */ 2090 if (writes && state->live & REG_LIVE_WRITTEN) 2091 break; 2092 if (parent->live & REG_LIVE_DONE) { 2093 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2094 reg_type_str(env, parent->type), 2095 parent->var_off.value, parent->off); 2096 return -EFAULT; 2097 } 2098 /* The first condition is more likely to be true than the 2099 * second, checked it first. 2100 */ 2101 if ((parent->live & REG_LIVE_READ) == flag || 2102 parent->live & REG_LIVE_READ64) 2103 /* The parentage chain never changes and 2104 * this parent was already marked as LIVE_READ. 2105 * There is no need to keep walking the chain again and 2106 * keep re-marking all parents as LIVE_READ. 2107 * This case happens when the same register is read 2108 * multiple times without writes into it in-between. 2109 * Also, if parent has the stronger REG_LIVE_READ64 set, 2110 * then no need to set the weak REG_LIVE_READ32. 2111 */ 2112 break; 2113 /* ... then we depend on parent's value */ 2114 parent->live |= flag; 2115 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2116 if (flag == REG_LIVE_READ64) 2117 parent->live &= ~REG_LIVE_READ32; 2118 state = parent; 2119 parent = state->parent; 2120 writes = true; 2121 cnt++; 2122 } 2123 2124 if (env->longest_mark_read_walk < cnt) 2125 env->longest_mark_read_walk = cnt; 2126 return 0; 2127 } 2128 2129 /* This function is supposed to be used by the following 32-bit optimization 2130 * code only. It returns TRUE if the source or destination register operates 2131 * on 64-bit, otherwise return FALSE. 2132 */ 2133 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2134 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2135 { 2136 u8 code, class, op; 2137 2138 code = insn->code; 2139 class = BPF_CLASS(code); 2140 op = BPF_OP(code); 2141 if (class == BPF_JMP) { 2142 /* BPF_EXIT for "main" will reach here. Return TRUE 2143 * conservatively. 2144 */ 2145 if (op == BPF_EXIT) 2146 return true; 2147 if (op == BPF_CALL) { 2148 /* BPF to BPF call will reach here because of marking 2149 * caller saved clobber with DST_OP_NO_MARK for which we 2150 * don't care the register def because they are anyway 2151 * marked as NOT_INIT already. 2152 */ 2153 if (insn->src_reg == BPF_PSEUDO_CALL) 2154 return false; 2155 /* Helper call will reach here because of arg type 2156 * check, conservatively return TRUE. 2157 */ 2158 if (t == SRC_OP) 2159 return true; 2160 2161 return false; 2162 } 2163 } 2164 2165 if (class == BPF_ALU64 || class == BPF_JMP || 2166 /* BPF_END always use BPF_ALU class. */ 2167 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2168 return true; 2169 2170 if (class == BPF_ALU || class == BPF_JMP32) 2171 return false; 2172 2173 if (class == BPF_LDX) { 2174 if (t != SRC_OP) 2175 return BPF_SIZE(code) == BPF_DW; 2176 /* LDX source must be ptr. */ 2177 return true; 2178 } 2179 2180 if (class == BPF_STX) { 2181 /* BPF_STX (including atomic variants) has multiple source 2182 * operands, one of which is a ptr. Check whether the caller is 2183 * asking about it. 2184 */ 2185 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2186 return true; 2187 return BPF_SIZE(code) == BPF_DW; 2188 } 2189 2190 if (class == BPF_LD) { 2191 u8 mode = BPF_MODE(code); 2192 2193 /* LD_IMM64 */ 2194 if (mode == BPF_IMM) 2195 return true; 2196 2197 /* Both LD_IND and LD_ABS return 32-bit data. */ 2198 if (t != SRC_OP) 2199 return false; 2200 2201 /* Implicit ctx ptr. */ 2202 if (regno == BPF_REG_6) 2203 return true; 2204 2205 /* Explicit source could be any width. */ 2206 return true; 2207 } 2208 2209 if (class == BPF_ST) 2210 /* The only source register for BPF_ST is a ptr. */ 2211 return true; 2212 2213 /* Conservatively return true at default. */ 2214 return true; 2215 } 2216 2217 /* Return the regno defined by the insn, or -1. */ 2218 static int insn_def_regno(const struct bpf_insn *insn) 2219 { 2220 switch (BPF_CLASS(insn->code)) { 2221 case BPF_JMP: 2222 case BPF_JMP32: 2223 case BPF_ST: 2224 return -1; 2225 case BPF_STX: 2226 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2227 (insn->imm & BPF_FETCH)) { 2228 if (insn->imm == BPF_CMPXCHG) 2229 return BPF_REG_0; 2230 else 2231 return insn->src_reg; 2232 } else { 2233 return -1; 2234 } 2235 default: 2236 return insn->dst_reg; 2237 } 2238 } 2239 2240 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2241 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2242 { 2243 int dst_reg = insn_def_regno(insn); 2244 2245 if (dst_reg == -1) 2246 return false; 2247 2248 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2249 } 2250 2251 static void mark_insn_zext(struct bpf_verifier_env *env, 2252 struct bpf_reg_state *reg) 2253 { 2254 s32 def_idx = reg->subreg_def; 2255 2256 if (def_idx == DEF_NOT_SUBREG) 2257 return; 2258 2259 env->insn_aux_data[def_idx - 1].zext_dst = true; 2260 /* The dst will be zero extended, so won't be sub-register anymore. */ 2261 reg->subreg_def = DEF_NOT_SUBREG; 2262 } 2263 2264 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2265 enum reg_arg_type t) 2266 { 2267 struct bpf_verifier_state *vstate = env->cur_state; 2268 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2269 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2270 struct bpf_reg_state *reg, *regs = state->regs; 2271 bool rw64; 2272 2273 if (regno >= MAX_BPF_REG) { 2274 verbose(env, "R%d is invalid\n", regno); 2275 return -EINVAL; 2276 } 2277 2278 mark_reg_scratched(env, regno); 2279 2280 reg = ®s[regno]; 2281 rw64 = is_reg64(env, insn, regno, reg, t); 2282 if (t == SRC_OP) { 2283 /* check whether register used as source operand can be read */ 2284 if (reg->type == NOT_INIT) { 2285 verbose(env, "R%d !read_ok\n", regno); 2286 return -EACCES; 2287 } 2288 /* We don't need to worry about FP liveness because it's read-only */ 2289 if (regno == BPF_REG_FP) 2290 return 0; 2291 2292 if (rw64) 2293 mark_insn_zext(env, reg); 2294 2295 return mark_reg_read(env, reg, reg->parent, 2296 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2297 } else { 2298 /* check whether register used as dest operand can be written to */ 2299 if (regno == BPF_REG_FP) { 2300 verbose(env, "frame pointer is read only\n"); 2301 return -EACCES; 2302 } 2303 reg->live |= REG_LIVE_WRITTEN; 2304 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2305 if (t == DST_OP) 2306 mark_reg_unknown(env, regs, regno); 2307 } 2308 return 0; 2309 } 2310 2311 /* for any branch, call, exit record the history of jmps in the given state */ 2312 static int push_jmp_history(struct bpf_verifier_env *env, 2313 struct bpf_verifier_state *cur) 2314 { 2315 u32 cnt = cur->jmp_history_cnt; 2316 struct bpf_idx_pair *p; 2317 2318 cnt++; 2319 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2320 if (!p) 2321 return -ENOMEM; 2322 p[cnt - 1].idx = env->insn_idx; 2323 p[cnt - 1].prev_idx = env->prev_insn_idx; 2324 cur->jmp_history = p; 2325 cur->jmp_history_cnt = cnt; 2326 return 0; 2327 } 2328 2329 /* Backtrack one insn at a time. If idx is not at the top of recorded 2330 * history then previous instruction came from straight line execution. 2331 */ 2332 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2333 u32 *history) 2334 { 2335 u32 cnt = *history; 2336 2337 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2338 i = st->jmp_history[cnt - 1].prev_idx; 2339 (*history)--; 2340 } else { 2341 i--; 2342 } 2343 return i; 2344 } 2345 2346 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2347 { 2348 const struct btf_type *func; 2349 struct btf *desc_btf; 2350 2351 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2352 return NULL; 2353 2354 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL); 2355 if (IS_ERR(desc_btf)) 2356 return "<error>"; 2357 2358 func = btf_type_by_id(desc_btf, insn->imm); 2359 return btf_name_by_offset(desc_btf, func->name_off); 2360 } 2361 2362 /* For given verifier state backtrack_insn() is called from the last insn to 2363 * the first insn. Its purpose is to compute a bitmask of registers and 2364 * stack slots that needs precision in the parent verifier state. 2365 */ 2366 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2367 u32 *reg_mask, u64 *stack_mask) 2368 { 2369 const struct bpf_insn_cbs cbs = { 2370 .cb_call = disasm_kfunc_name, 2371 .cb_print = verbose, 2372 .private_data = env, 2373 }; 2374 struct bpf_insn *insn = env->prog->insnsi + idx; 2375 u8 class = BPF_CLASS(insn->code); 2376 u8 opcode = BPF_OP(insn->code); 2377 u8 mode = BPF_MODE(insn->code); 2378 u32 dreg = 1u << insn->dst_reg; 2379 u32 sreg = 1u << insn->src_reg; 2380 u32 spi; 2381 2382 if (insn->code == 0) 2383 return 0; 2384 if (env->log.level & BPF_LOG_LEVEL2) { 2385 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2386 verbose(env, "%d: ", idx); 2387 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2388 } 2389 2390 if (class == BPF_ALU || class == BPF_ALU64) { 2391 if (!(*reg_mask & dreg)) 2392 return 0; 2393 if (opcode == BPF_MOV) { 2394 if (BPF_SRC(insn->code) == BPF_X) { 2395 /* dreg = sreg 2396 * dreg needs precision after this insn 2397 * sreg needs precision before this insn 2398 */ 2399 *reg_mask &= ~dreg; 2400 *reg_mask |= sreg; 2401 } else { 2402 /* dreg = K 2403 * dreg needs precision after this insn. 2404 * Corresponding register is already marked 2405 * as precise=true in this verifier state. 2406 * No further markings in parent are necessary 2407 */ 2408 *reg_mask &= ~dreg; 2409 } 2410 } else { 2411 if (BPF_SRC(insn->code) == BPF_X) { 2412 /* dreg += sreg 2413 * both dreg and sreg need precision 2414 * before this insn 2415 */ 2416 *reg_mask |= sreg; 2417 } /* else dreg += K 2418 * dreg still needs precision before this insn 2419 */ 2420 } 2421 } else if (class == BPF_LDX) { 2422 if (!(*reg_mask & dreg)) 2423 return 0; 2424 *reg_mask &= ~dreg; 2425 2426 /* scalars can only be spilled into stack w/o losing precision. 2427 * Load from any other memory can be zero extended. 2428 * The desire to keep that precision is already indicated 2429 * by 'precise' mark in corresponding register of this state. 2430 * No further tracking necessary. 2431 */ 2432 if (insn->src_reg != BPF_REG_FP) 2433 return 0; 2434 2435 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2436 * that [fp - off] slot contains scalar that needs to be 2437 * tracked with precision 2438 */ 2439 spi = (-insn->off - 1) / BPF_REG_SIZE; 2440 if (spi >= 64) { 2441 verbose(env, "BUG spi %d\n", spi); 2442 WARN_ONCE(1, "verifier backtracking bug"); 2443 return -EFAULT; 2444 } 2445 *stack_mask |= 1ull << spi; 2446 } else if (class == BPF_STX || class == BPF_ST) { 2447 if (*reg_mask & dreg) 2448 /* stx & st shouldn't be using _scalar_ dst_reg 2449 * to access memory. It means backtracking 2450 * encountered a case of pointer subtraction. 2451 */ 2452 return -ENOTSUPP; 2453 /* scalars can only be spilled into stack */ 2454 if (insn->dst_reg != BPF_REG_FP) 2455 return 0; 2456 spi = (-insn->off - 1) / BPF_REG_SIZE; 2457 if (spi >= 64) { 2458 verbose(env, "BUG spi %d\n", spi); 2459 WARN_ONCE(1, "verifier backtracking bug"); 2460 return -EFAULT; 2461 } 2462 if (!(*stack_mask & (1ull << spi))) 2463 return 0; 2464 *stack_mask &= ~(1ull << spi); 2465 if (class == BPF_STX) 2466 *reg_mask |= sreg; 2467 } else if (class == BPF_JMP || class == BPF_JMP32) { 2468 if (opcode == BPF_CALL) { 2469 if (insn->src_reg == BPF_PSEUDO_CALL) 2470 return -ENOTSUPP; 2471 /* regular helper call sets R0 */ 2472 *reg_mask &= ~1; 2473 if (*reg_mask & 0x3f) { 2474 /* if backtracing was looking for registers R1-R5 2475 * they should have been found already. 2476 */ 2477 verbose(env, "BUG regs %x\n", *reg_mask); 2478 WARN_ONCE(1, "verifier backtracking bug"); 2479 return -EFAULT; 2480 } 2481 } else if (opcode == BPF_EXIT) { 2482 return -ENOTSUPP; 2483 } 2484 } else if (class == BPF_LD) { 2485 if (!(*reg_mask & dreg)) 2486 return 0; 2487 *reg_mask &= ~dreg; 2488 /* It's ld_imm64 or ld_abs or ld_ind. 2489 * For ld_imm64 no further tracking of precision 2490 * into parent is necessary 2491 */ 2492 if (mode == BPF_IND || mode == BPF_ABS) 2493 /* to be analyzed */ 2494 return -ENOTSUPP; 2495 } 2496 return 0; 2497 } 2498 2499 /* the scalar precision tracking algorithm: 2500 * . at the start all registers have precise=false. 2501 * . scalar ranges are tracked as normal through alu and jmp insns. 2502 * . once precise value of the scalar register is used in: 2503 * . ptr + scalar alu 2504 * . if (scalar cond K|scalar) 2505 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2506 * backtrack through the verifier states and mark all registers and 2507 * stack slots with spilled constants that these scalar regisers 2508 * should be precise. 2509 * . during state pruning two registers (or spilled stack slots) 2510 * are equivalent if both are not precise. 2511 * 2512 * Note the verifier cannot simply walk register parentage chain, 2513 * since many different registers and stack slots could have been 2514 * used to compute single precise scalar. 2515 * 2516 * The approach of starting with precise=true for all registers and then 2517 * backtrack to mark a register as not precise when the verifier detects 2518 * that program doesn't care about specific value (e.g., when helper 2519 * takes register as ARG_ANYTHING parameter) is not safe. 2520 * 2521 * It's ok to walk single parentage chain of the verifier states. 2522 * It's possible that this backtracking will go all the way till 1st insn. 2523 * All other branches will be explored for needing precision later. 2524 * 2525 * The backtracking needs to deal with cases like: 2526 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2527 * r9 -= r8 2528 * r5 = r9 2529 * if r5 > 0x79f goto pc+7 2530 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2531 * r5 += 1 2532 * ... 2533 * call bpf_perf_event_output#25 2534 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2535 * 2536 * and this case: 2537 * r6 = 1 2538 * call foo // uses callee's r6 inside to compute r0 2539 * r0 += r6 2540 * if r0 == 0 goto 2541 * 2542 * to track above reg_mask/stack_mask needs to be independent for each frame. 2543 * 2544 * Also if parent's curframe > frame where backtracking started, 2545 * the verifier need to mark registers in both frames, otherwise callees 2546 * may incorrectly prune callers. This is similar to 2547 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2548 * 2549 * For now backtracking falls back into conservative marking. 2550 */ 2551 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2552 struct bpf_verifier_state *st) 2553 { 2554 struct bpf_func_state *func; 2555 struct bpf_reg_state *reg; 2556 int i, j; 2557 2558 /* big hammer: mark all scalars precise in this path. 2559 * pop_stack may still get !precise scalars. 2560 */ 2561 for (; st; st = st->parent) 2562 for (i = 0; i <= st->curframe; i++) { 2563 func = st->frame[i]; 2564 for (j = 0; j < BPF_REG_FP; j++) { 2565 reg = &func->regs[j]; 2566 if (reg->type != SCALAR_VALUE) 2567 continue; 2568 reg->precise = true; 2569 } 2570 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2571 if (!is_spilled_reg(&func->stack[j])) 2572 continue; 2573 reg = &func->stack[j].spilled_ptr; 2574 if (reg->type != SCALAR_VALUE) 2575 continue; 2576 reg->precise = true; 2577 } 2578 } 2579 } 2580 2581 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2582 int spi) 2583 { 2584 struct bpf_verifier_state *st = env->cur_state; 2585 int first_idx = st->first_insn_idx; 2586 int last_idx = env->insn_idx; 2587 struct bpf_func_state *func; 2588 struct bpf_reg_state *reg; 2589 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2590 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2591 bool skip_first = true; 2592 bool new_marks = false; 2593 int i, err; 2594 2595 if (!env->bpf_capable) 2596 return 0; 2597 2598 func = st->frame[st->curframe]; 2599 if (regno >= 0) { 2600 reg = &func->regs[regno]; 2601 if (reg->type != SCALAR_VALUE) { 2602 WARN_ONCE(1, "backtracing misuse"); 2603 return -EFAULT; 2604 } 2605 if (!reg->precise) 2606 new_marks = true; 2607 else 2608 reg_mask = 0; 2609 reg->precise = true; 2610 } 2611 2612 while (spi >= 0) { 2613 if (!is_spilled_reg(&func->stack[spi])) { 2614 stack_mask = 0; 2615 break; 2616 } 2617 reg = &func->stack[spi].spilled_ptr; 2618 if (reg->type != SCALAR_VALUE) { 2619 stack_mask = 0; 2620 break; 2621 } 2622 if (!reg->precise) 2623 new_marks = true; 2624 else 2625 stack_mask = 0; 2626 reg->precise = true; 2627 break; 2628 } 2629 2630 if (!new_marks) 2631 return 0; 2632 if (!reg_mask && !stack_mask) 2633 return 0; 2634 for (;;) { 2635 DECLARE_BITMAP(mask, 64); 2636 u32 history = st->jmp_history_cnt; 2637 2638 if (env->log.level & BPF_LOG_LEVEL2) 2639 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2640 for (i = last_idx;;) { 2641 if (skip_first) { 2642 err = 0; 2643 skip_first = false; 2644 } else { 2645 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2646 } 2647 if (err == -ENOTSUPP) { 2648 mark_all_scalars_precise(env, st); 2649 return 0; 2650 } else if (err) { 2651 return err; 2652 } 2653 if (!reg_mask && !stack_mask) 2654 /* Found assignment(s) into tracked register in this state. 2655 * Since this state is already marked, just return. 2656 * Nothing to be tracked further in the parent state. 2657 */ 2658 return 0; 2659 if (i == first_idx) 2660 break; 2661 i = get_prev_insn_idx(st, i, &history); 2662 if (i >= env->prog->len) { 2663 /* This can happen if backtracking reached insn 0 2664 * and there are still reg_mask or stack_mask 2665 * to backtrack. 2666 * It means the backtracking missed the spot where 2667 * particular register was initialized with a constant. 2668 */ 2669 verbose(env, "BUG backtracking idx %d\n", i); 2670 WARN_ONCE(1, "verifier backtracking bug"); 2671 return -EFAULT; 2672 } 2673 } 2674 st = st->parent; 2675 if (!st) 2676 break; 2677 2678 new_marks = false; 2679 func = st->frame[st->curframe]; 2680 bitmap_from_u64(mask, reg_mask); 2681 for_each_set_bit(i, mask, 32) { 2682 reg = &func->regs[i]; 2683 if (reg->type != SCALAR_VALUE) { 2684 reg_mask &= ~(1u << i); 2685 continue; 2686 } 2687 if (!reg->precise) 2688 new_marks = true; 2689 reg->precise = true; 2690 } 2691 2692 bitmap_from_u64(mask, stack_mask); 2693 for_each_set_bit(i, mask, 64) { 2694 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2695 /* the sequence of instructions: 2696 * 2: (bf) r3 = r10 2697 * 3: (7b) *(u64 *)(r3 -8) = r0 2698 * 4: (79) r4 = *(u64 *)(r10 -8) 2699 * doesn't contain jmps. It's backtracked 2700 * as a single block. 2701 * During backtracking insn 3 is not recognized as 2702 * stack access, so at the end of backtracking 2703 * stack slot fp-8 is still marked in stack_mask. 2704 * However the parent state may not have accessed 2705 * fp-8 and it's "unallocated" stack space. 2706 * In such case fallback to conservative. 2707 */ 2708 mark_all_scalars_precise(env, st); 2709 return 0; 2710 } 2711 2712 if (!is_spilled_reg(&func->stack[i])) { 2713 stack_mask &= ~(1ull << i); 2714 continue; 2715 } 2716 reg = &func->stack[i].spilled_ptr; 2717 if (reg->type != SCALAR_VALUE) { 2718 stack_mask &= ~(1ull << i); 2719 continue; 2720 } 2721 if (!reg->precise) 2722 new_marks = true; 2723 reg->precise = true; 2724 } 2725 if (env->log.level & BPF_LOG_LEVEL2) { 2726 verbose(env, "parent %s regs=%x stack=%llx marks:", 2727 new_marks ? "didn't have" : "already had", 2728 reg_mask, stack_mask); 2729 print_verifier_state(env, func, true); 2730 } 2731 2732 if (!reg_mask && !stack_mask) 2733 break; 2734 if (!new_marks) 2735 break; 2736 2737 last_idx = st->last_insn_idx; 2738 first_idx = st->first_insn_idx; 2739 } 2740 return 0; 2741 } 2742 2743 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2744 { 2745 return __mark_chain_precision(env, regno, -1); 2746 } 2747 2748 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2749 { 2750 return __mark_chain_precision(env, -1, spi); 2751 } 2752 2753 static bool is_spillable_regtype(enum bpf_reg_type type) 2754 { 2755 switch (base_type(type)) { 2756 case PTR_TO_MAP_VALUE: 2757 case PTR_TO_STACK: 2758 case PTR_TO_CTX: 2759 case PTR_TO_PACKET: 2760 case PTR_TO_PACKET_META: 2761 case PTR_TO_PACKET_END: 2762 case PTR_TO_FLOW_KEYS: 2763 case CONST_PTR_TO_MAP: 2764 case PTR_TO_SOCKET: 2765 case PTR_TO_SOCK_COMMON: 2766 case PTR_TO_TCP_SOCK: 2767 case PTR_TO_XDP_SOCK: 2768 case PTR_TO_BTF_ID: 2769 case PTR_TO_BUF: 2770 case PTR_TO_PERCPU_BTF_ID: 2771 case PTR_TO_MEM: 2772 case PTR_TO_FUNC: 2773 case PTR_TO_MAP_KEY: 2774 return true; 2775 default: 2776 return false; 2777 } 2778 } 2779 2780 /* Does this register contain a constant zero? */ 2781 static bool register_is_null(struct bpf_reg_state *reg) 2782 { 2783 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2784 } 2785 2786 static bool register_is_const(struct bpf_reg_state *reg) 2787 { 2788 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2789 } 2790 2791 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2792 { 2793 return tnum_is_unknown(reg->var_off) && 2794 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2795 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2796 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2797 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2798 } 2799 2800 static bool register_is_bounded(struct bpf_reg_state *reg) 2801 { 2802 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2803 } 2804 2805 static bool __is_pointer_value(bool allow_ptr_leaks, 2806 const struct bpf_reg_state *reg) 2807 { 2808 if (allow_ptr_leaks) 2809 return false; 2810 2811 return reg->type != SCALAR_VALUE; 2812 } 2813 2814 static void save_register_state(struct bpf_func_state *state, 2815 int spi, struct bpf_reg_state *reg, 2816 int size) 2817 { 2818 int i; 2819 2820 state->stack[spi].spilled_ptr = *reg; 2821 if (size == BPF_REG_SIZE) 2822 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2823 2824 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2825 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2826 2827 /* size < 8 bytes spill */ 2828 for (; i; i--) 2829 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2830 } 2831 2832 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2833 * stack boundary and alignment are checked in check_mem_access() 2834 */ 2835 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2836 /* stack frame we're writing to */ 2837 struct bpf_func_state *state, 2838 int off, int size, int value_regno, 2839 int insn_idx) 2840 { 2841 struct bpf_func_state *cur; /* state of the current function */ 2842 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2843 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2844 struct bpf_reg_state *reg = NULL; 2845 2846 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2847 if (err) 2848 return err; 2849 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2850 * so it's aligned access and [off, off + size) are within stack limits 2851 */ 2852 if (!env->allow_ptr_leaks && 2853 state->stack[spi].slot_type[0] == STACK_SPILL && 2854 size != BPF_REG_SIZE) { 2855 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2856 return -EACCES; 2857 } 2858 2859 cur = env->cur_state->frame[env->cur_state->curframe]; 2860 if (value_regno >= 0) 2861 reg = &cur->regs[value_regno]; 2862 if (!env->bypass_spec_v4) { 2863 bool sanitize = reg && is_spillable_regtype(reg->type); 2864 2865 for (i = 0; i < size; i++) { 2866 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2867 sanitize = true; 2868 break; 2869 } 2870 } 2871 2872 if (sanitize) 2873 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2874 } 2875 2876 mark_stack_slot_scratched(env, spi); 2877 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 2878 !register_is_null(reg) && env->bpf_capable) { 2879 if (dst_reg != BPF_REG_FP) { 2880 /* The backtracking logic can only recognize explicit 2881 * stack slot address like [fp - 8]. Other spill of 2882 * scalar via different register has to be conservative. 2883 * Backtrack from here and mark all registers as precise 2884 * that contributed into 'reg' being a constant. 2885 */ 2886 err = mark_chain_precision(env, value_regno); 2887 if (err) 2888 return err; 2889 } 2890 save_register_state(state, spi, reg, size); 2891 } else if (reg && is_spillable_regtype(reg->type)) { 2892 /* register containing pointer is being spilled into stack */ 2893 if (size != BPF_REG_SIZE) { 2894 verbose_linfo(env, insn_idx, "; "); 2895 verbose(env, "invalid size of register spill\n"); 2896 return -EACCES; 2897 } 2898 if (state != cur && reg->type == PTR_TO_STACK) { 2899 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2900 return -EINVAL; 2901 } 2902 save_register_state(state, spi, reg, size); 2903 } else { 2904 u8 type = STACK_MISC; 2905 2906 /* regular write of data into stack destroys any spilled ptr */ 2907 state->stack[spi].spilled_ptr.type = NOT_INIT; 2908 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2909 if (is_spilled_reg(&state->stack[spi])) 2910 for (i = 0; i < BPF_REG_SIZE; i++) 2911 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 2912 2913 /* only mark the slot as written if all 8 bytes were written 2914 * otherwise read propagation may incorrectly stop too soon 2915 * when stack slots are partially written. 2916 * This heuristic means that read propagation will be 2917 * conservative, since it will add reg_live_read marks 2918 * to stack slots all the way to first state when programs 2919 * writes+reads less than 8 bytes 2920 */ 2921 if (size == BPF_REG_SIZE) 2922 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2923 2924 /* when we zero initialize stack slots mark them as such */ 2925 if (reg && register_is_null(reg)) { 2926 /* backtracking doesn't work for STACK_ZERO yet. */ 2927 err = mark_chain_precision(env, value_regno); 2928 if (err) 2929 return err; 2930 type = STACK_ZERO; 2931 } 2932 2933 /* Mark slots affected by this stack write. */ 2934 for (i = 0; i < size; i++) 2935 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2936 type; 2937 } 2938 return 0; 2939 } 2940 2941 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2942 * known to contain a variable offset. 2943 * This function checks whether the write is permitted and conservatively 2944 * tracks the effects of the write, considering that each stack slot in the 2945 * dynamic range is potentially written to. 2946 * 2947 * 'off' includes 'regno->off'. 2948 * 'value_regno' can be -1, meaning that an unknown value is being written to 2949 * the stack. 2950 * 2951 * Spilled pointers in range are not marked as written because we don't know 2952 * what's going to be actually written. This means that read propagation for 2953 * future reads cannot be terminated by this write. 2954 * 2955 * For privileged programs, uninitialized stack slots are considered 2956 * initialized by this write (even though we don't know exactly what offsets 2957 * are going to be written to). The idea is that we don't want the verifier to 2958 * reject future reads that access slots written to through variable offsets. 2959 */ 2960 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2961 /* func where register points to */ 2962 struct bpf_func_state *state, 2963 int ptr_regno, int off, int size, 2964 int value_regno, int insn_idx) 2965 { 2966 struct bpf_func_state *cur; /* state of the current function */ 2967 int min_off, max_off; 2968 int i, err; 2969 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2970 bool writing_zero = false; 2971 /* set if the fact that we're writing a zero is used to let any 2972 * stack slots remain STACK_ZERO 2973 */ 2974 bool zero_used = false; 2975 2976 cur = env->cur_state->frame[env->cur_state->curframe]; 2977 ptr_reg = &cur->regs[ptr_regno]; 2978 min_off = ptr_reg->smin_value + off; 2979 max_off = ptr_reg->smax_value + off + size; 2980 if (value_regno >= 0) 2981 value_reg = &cur->regs[value_regno]; 2982 if (value_reg && register_is_null(value_reg)) 2983 writing_zero = true; 2984 2985 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 2986 if (err) 2987 return err; 2988 2989 2990 /* Variable offset writes destroy any spilled pointers in range. */ 2991 for (i = min_off; i < max_off; i++) { 2992 u8 new_type, *stype; 2993 int slot, spi; 2994 2995 slot = -i - 1; 2996 spi = slot / BPF_REG_SIZE; 2997 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2998 mark_stack_slot_scratched(env, spi); 2999 3000 if (!env->allow_ptr_leaks 3001 && *stype != NOT_INIT 3002 && *stype != SCALAR_VALUE) { 3003 /* Reject the write if there's are spilled pointers in 3004 * range. If we didn't reject here, the ptr status 3005 * would be erased below (even though not all slots are 3006 * actually overwritten), possibly opening the door to 3007 * leaks. 3008 */ 3009 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3010 insn_idx, i); 3011 return -EINVAL; 3012 } 3013 3014 /* Erase all spilled pointers. */ 3015 state->stack[spi].spilled_ptr.type = NOT_INIT; 3016 3017 /* Update the slot type. */ 3018 new_type = STACK_MISC; 3019 if (writing_zero && *stype == STACK_ZERO) { 3020 new_type = STACK_ZERO; 3021 zero_used = true; 3022 } 3023 /* If the slot is STACK_INVALID, we check whether it's OK to 3024 * pretend that it will be initialized by this write. The slot 3025 * might not actually be written to, and so if we mark it as 3026 * initialized future reads might leak uninitialized memory. 3027 * For privileged programs, we will accept such reads to slots 3028 * that may or may not be written because, if we're reject 3029 * them, the error would be too confusing. 3030 */ 3031 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3032 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3033 insn_idx, i); 3034 return -EINVAL; 3035 } 3036 *stype = new_type; 3037 } 3038 if (zero_used) { 3039 /* backtracking doesn't work for STACK_ZERO yet. */ 3040 err = mark_chain_precision(env, value_regno); 3041 if (err) 3042 return err; 3043 } 3044 return 0; 3045 } 3046 3047 /* When register 'dst_regno' is assigned some values from stack[min_off, 3048 * max_off), we set the register's type according to the types of the 3049 * respective stack slots. If all the stack values are known to be zeros, then 3050 * so is the destination reg. Otherwise, the register is considered to be 3051 * SCALAR. This function does not deal with register filling; the caller must 3052 * ensure that all spilled registers in the stack range have been marked as 3053 * read. 3054 */ 3055 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3056 /* func where src register points to */ 3057 struct bpf_func_state *ptr_state, 3058 int min_off, int max_off, int dst_regno) 3059 { 3060 struct bpf_verifier_state *vstate = env->cur_state; 3061 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3062 int i, slot, spi; 3063 u8 *stype; 3064 int zeros = 0; 3065 3066 for (i = min_off; i < max_off; i++) { 3067 slot = -i - 1; 3068 spi = slot / BPF_REG_SIZE; 3069 stype = ptr_state->stack[spi].slot_type; 3070 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3071 break; 3072 zeros++; 3073 } 3074 if (zeros == max_off - min_off) { 3075 /* any access_size read into register is zero extended, 3076 * so the whole register == const_zero 3077 */ 3078 __mark_reg_const_zero(&state->regs[dst_regno]); 3079 /* backtracking doesn't support STACK_ZERO yet, 3080 * so mark it precise here, so that later 3081 * backtracking can stop here. 3082 * Backtracking may not need this if this register 3083 * doesn't participate in pointer adjustment. 3084 * Forward propagation of precise flag is not 3085 * necessary either. This mark is only to stop 3086 * backtracking. Any register that contributed 3087 * to const 0 was marked precise before spill. 3088 */ 3089 state->regs[dst_regno].precise = true; 3090 } else { 3091 /* have read misc data from the stack */ 3092 mark_reg_unknown(env, state->regs, dst_regno); 3093 } 3094 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3095 } 3096 3097 /* Read the stack at 'off' and put the results into the register indicated by 3098 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3099 * spilled reg. 3100 * 3101 * 'dst_regno' can be -1, meaning that the read value is not going to a 3102 * register. 3103 * 3104 * The access is assumed to be within the current stack bounds. 3105 */ 3106 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3107 /* func where src register points to */ 3108 struct bpf_func_state *reg_state, 3109 int off, int size, int dst_regno) 3110 { 3111 struct bpf_verifier_state *vstate = env->cur_state; 3112 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3113 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3114 struct bpf_reg_state *reg; 3115 u8 *stype, type; 3116 3117 stype = reg_state->stack[spi].slot_type; 3118 reg = ®_state->stack[spi].spilled_ptr; 3119 3120 if (is_spilled_reg(®_state->stack[spi])) { 3121 u8 spill_size = 1; 3122 3123 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3124 spill_size++; 3125 3126 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3127 if (reg->type != SCALAR_VALUE) { 3128 verbose_linfo(env, env->insn_idx, "; "); 3129 verbose(env, "invalid size of register fill\n"); 3130 return -EACCES; 3131 } 3132 3133 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3134 if (dst_regno < 0) 3135 return 0; 3136 3137 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3138 /* The earlier check_reg_arg() has decided the 3139 * subreg_def for this insn. Save it first. 3140 */ 3141 s32 subreg_def = state->regs[dst_regno].subreg_def; 3142 3143 state->regs[dst_regno] = *reg; 3144 state->regs[dst_regno].subreg_def = subreg_def; 3145 } else { 3146 for (i = 0; i < size; i++) { 3147 type = stype[(slot - i) % BPF_REG_SIZE]; 3148 if (type == STACK_SPILL) 3149 continue; 3150 if (type == STACK_MISC) 3151 continue; 3152 verbose(env, "invalid read from stack off %d+%d size %d\n", 3153 off, i, size); 3154 return -EACCES; 3155 } 3156 mark_reg_unknown(env, state->regs, dst_regno); 3157 } 3158 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3159 return 0; 3160 } 3161 3162 if (dst_regno >= 0) { 3163 /* restore register state from stack */ 3164 state->regs[dst_regno] = *reg; 3165 /* mark reg as written since spilled pointer state likely 3166 * has its liveness marks cleared by is_state_visited() 3167 * which resets stack/reg liveness for state transitions 3168 */ 3169 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3170 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3171 /* If dst_regno==-1, the caller is asking us whether 3172 * it is acceptable to use this value as a SCALAR_VALUE 3173 * (e.g. for XADD). 3174 * We must not allow unprivileged callers to do that 3175 * with spilled pointers. 3176 */ 3177 verbose(env, "leaking pointer from stack off %d\n", 3178 off); 3179 return -EACCES; 3180 } 3181 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3182 } else { 3183 for (i = 0; i < size; i++) { 3184 type = stype[(slot - i) % BPF_REG_SIZE]; 3185 if (type == STACK_MISC) 3186 continue; 3187 if (type == STACK_ZERO) 3188 continue; 3189 verbose(env, "invalid read from stack off %d+%d size %d\n", 3190 off, i, size); 3191 return -EACCES; 3192 } 3193 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3194 if (dst_regno >= 0) 3195 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3196 } 3197 return 0; 3198 } 3199 3200 enum stack_access_src { 3201 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3202 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3203 }; 3204 3205 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3206 int regno, int off, int access_size, 3207 bool zero_size_allowed, 3208 enum stack_access_src type, 3209 struct bpf_call_arg_meta *meta); 3210 3211 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3212 { 3213 return cur_regs(env) + regno; 3214 } 3215 3216 /* Read the stack at 'ptr_regno + off' and put the result into the register 3217 * 'dst_regno'. 3218 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3219 * but not its variable offset. 3220 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3221 * 3222 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3223 * filling registers (i.e. reads of spilled register cannot be detected when 3224 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3225 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3226 * offset; for a fixed offset check_stack_read_fixed_off should be used 3227 * instead. 3228 */ 3229 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3230 int ptr_regno, int off, int size, int dst_regno) 3231 { 3232 /* The state of the source register. */ 3233 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3234 struct bpf_func_state *ptr_state = func(env, reg); 3235 int err; 3236 int min_off, max_off; 3237 3238 /* Note that we pass a NULL meta, so raw access will not be permitted. 3239 */ 3240 err = check_stack_range_initialized(env, ptr_regno, off, size, 3241 false, ACCESS_DIRECT, NULL); 3242 if (err) 3243 return err; 3244 3245 min_off = reg->smin_value + off; 3246 max_off = reg->smax_value + off; 3247 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3248 return 0; 3249 } 3250 3251 /* check_stack_read dispatches to check_stack_read_fixed_off or 3252 * check_stack_read_var_off. 3253 * 3254 * The caller must ensure that the offset falls within the allocated stack 3255 * bounds. 3256 * 3257 * 'dst_regno' is a register which will receive the value from the stack. It 3258 * can be -1, meaning that the read value is not going to a register. 3259 */ 3260 static int check_stack_read(struct bpf_verifier_env *env, 3261 int ptr_regno, int off, int size, 3262 int dst_regno) 3263 { 3264 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3265 struct bpf_func_state *state = func(env, reg); 3266 int err; 3267 /* Some accesses are only permitted with a static offset. */ 3268 bool var_off = !tnum_is_const(reg->var_off); 3269 3270 /* The offset is required to be static when reads don't go to a 3271 * register, in order to not leak pointers (see 3272 * check_stack_read_fixed_off). 3273 */ 3274 if (dst_regno < 0 && var_off) { 3275 char tn_buf[48]; 3276 3277 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3278 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3279 tn_buf, off, size); 3280 return -EACCES; 3281 } 3282 /* Variable offset is prohibited for unprivileged mode for simplicity 3283 * since it requires corresponding support in Spectre masking for stack 3284 * ALU. See also retrieve_ptr_limit(). 3285 */ 3286 if (!env->bypass_spec_v1 && var_off) { 3287 char tn_buf[48]; 3288 3289 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3290 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3291 ptr_regno, tn_buf); 3292 return -EACCES; 3293 } 3294 3295 if (!var_off) { 3296 off += reg->var_off.value; 3297 err = check_stack_read_fixed_off(env, state, off, size, 3298 dst_regno); 3299 } else { 3300 /* Variable offset stack reads need more conservative handling 3301 * than fixed offset ones. Note that dst_regno >= 0 on this 3302 * branch. 3303 */ 3304 err = check_stack_read_var_off(env, ptr_regno, off, size, 3305 dst_regno); 3306 } 3307 return err; 3308 } 3309 3310 3311 /* check_stack_write dispatches to check_stack_write_fixed_off or 3312 * check_stack_write_var_off. 3313 * 3314 * 'ptr_regno' is the register used as a pointer into the stack. 3315 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3316 * 'value_regno' is the register whose value we're writing to the stack. It can 3317 * be -1, meaning that we're not writing from a register. 3318 * 3319 * The caller must ensure that the offset falls within the maximum stack size. 3320 */ 3321 static int check_stack_write(struct bpf_verifier_env *env, 3322 int ptr_regno, int off, int size, 3323 int value_regno, int insn_idx) 3324 { 3325 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3326 struct bpf_func_state *state = func(env, reg); 3327 int err; 3328 3329 if (tnum_is_const(reg->var_off)) { 3330 off += reg->var_off.value; 3331 err = check_stack_write_fixed_off(env, state, off, size, 3332 value_regno, insn_idx); 3333 } else { 3334 /* Variable offset stack reads need more conservative handling 3335 * than fixed offset ones. 3336 */ 3337 err = check_stack_write_var_off(env, state, 3338 ptr_regno, off, size, 3339 value_regno, insn_idx); 3340 } 3341 return err; 3342 } 3343 3344 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3345 int off, int size, enum bpf_access_type type) 3346 { 3347 struct bpf_reg_state *regs = cur_regs(env); 3348 struct bpf_map *map = regs[regno].map_ptr; 3349 u32 cap = bpf_map_flags_to_cap(map); 3350 3351 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3352 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3353 map->value_size, off, size); 3354 return -EACCES; 3355 } 3356 3357 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3358 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3359 map->value_size, off, size); 3360 return -EACCES; 3361 } 3362 3363 return 0; 3364 } 3365 3366 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3367 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3368 int off, int size, u32 mem_size, 3369 bool zero_size_allowed) 3370 { 3371 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3372 struct bpf_reg_state *reg; 3373 3374 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3375 return 0; 3376 3377 reg = &cur_regs(env)[regno]; 3378 switch (reg->type) { 3379 case PTR_TO_MAP_KEY: 3380 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3381 mem_size, off, size); 3382 break; 3383 case PTR_TO_MAP_VALUE: 3384 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3385 mem_size, off, size); 3386 break; 3387 case PTR_TO_PACKET: 3388 case PTR_TO_PACKET_META: 3389 case PTR_TO_PACKET_END: 3390 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3391 off, size, regno, reg->id, off, mem_size); 3392 break; 3393 case PTR_TO_MEM: 3394 default: 3395 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3396 mem_size, off, size); 3397 } 3398 3399 return -EACCES; 3400 } 3401 3402 /* check read/write into a memory region with possible variable offset */ 3403 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3404 int off, int size, u32 mem_size, 3405 bool zero_size_allowed) 3406 { 3407 struct bpf_verifier_state *vstate = env->cur_state; 3408 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3409 struct bpf_reg_state *reg = &state->regs[regno]; 3410 int err; 3411 3412 /* We may have adjusted the register pointing to memory region, so we 3413 * need to try adding each of min_value and max_value to off 3414 * to make sure our theoretical access will be safe. 3415 * 3416 * The minimum value is only important with signed 3417 * comparisons where we can't assume the floor of a 3418 * value is 0. If we are using signed variables for our 3419 * index'es we need to make sure that whatever we use 3420 * will have a set floor within our range. 3421 */ 3422 if (reg->smin_value < 0 && 3423 (reg->smin_value == S64_MIN || 3424 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3425 reg->smin_value + off < 0)) { 3426 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3427 regno); 3428 return -EACCES; 3429 } 3430 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3431 mem_size, zero_size_allowed); 3432 if (err) { 3433 verbose(env, "R%d min value is outside of the allowed memory range\n", 3434 regno); 3435 return err; 3436 } 3437 3438 /* If we haven't set a max value then we need to bail since we can't be 3439 * sure we won't do bad things. 3440 * If reg->umax_value + off could overflow, treat that as unbounded too. 3441 */ 3442 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3443 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3444 regno); 3445 return -EACCES; 3446 } 3447 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3448 mem_size, zero_size_allowed); 3449 if (err) { 3450 verbose(env, "R%d max value is outside of the allowed memory range\n", 3451 regno); 3452 return err; 3453 } 3454 3455 return 0; 3456 } 3457 3458 /* check read/write into a map element with possible variable offset */ 3459 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3460 int off, int size, bool zero_size_allowed) 3461 { 3462 struct bpf_verifier_state *vstate = env->cur_state; 3463 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3464 struct bpf_reg_state *reg = &state->regs[regno]; 3465 struct bpf_map *map = reg->map_ptr; 3466 int err; 3467 3468 err = check_mem_region_access(env, regno, off, size, map->value_size, 3469 zero_size_allowed); 3470 if (err) 3471 return err; 3472 3473 if (map_value_has_spin_lock(map)) { 3474 u32 lock = map->spin_lock_off; 3475 3476 /* if any part of struct bpf_spin_lock can be touched by 3477 * load/store reject this program. 3478 * To check that [x1, x2) overlaps with [y1, y2) 3479 * it is sufficient to check x1 < y2 && y1 < x2. 3480 */ 3481 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3482 lock < reg->umax_value + off + size) { 3483 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3484 return -EACCES; 3485 } 3486 } 3487 if (map_value_has_timer(map)) { 3488 u32 t = map->timer_off; 3489 3490 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3491 t < reg->umax_value + off + size) { 3492 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3493 return -EACCES; 3494 } 3495 } 3496 return err; 3497 } 3498 3499 #define MAX_PACKET_OFF 0xffff 3500 3501 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3502 { 3503 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3504 } 3505 3506 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3507 const struct bpf_call_arg_meta *meta, 3508 enum bpf_access_type t) 3509 { 3510 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3511 3512 switch (prog_type) { 3513 /* Program types only with direct read access go here! */ 3514 case BPF_PROG_TYPE_LWT_IN: 3515 case BPF_PROG_TYPE_LWT_OUT: 3516 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3517 case BPF_PROG_TYPE_SK_REUSEPORT: 3518 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3519 case BPF_PROG_TYPE_CGROUP_SKB: 3520 if (t == BPF_WRITE) 3521 return false; 3522 fallthrough; 3523 3524 /* Program types with direct read + write access go here! */ 3525 case BPF_PROG_TYPE_SCHED_CLS: 3526 case BPF_PROG_TYPE_SCHED_ACT: 3527 case BPF_PROG_TYPE_XDP: 3528 case BPF_PROG_TYPE_LWT_XMIT: 3529 case BPF_PROG_TYPE_SK_SKB: 3530 case BPF_PROG_TYPE_SK_MSG: 3531 if (meta) 3532 return meta->pkt_access; 3533 3534 env->seen_direct_write = true; 3535 return true; 3536 3537 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3538 if (t == BPF_WRITE) 3539 env->seen_direct_write = true; 3540 3541 return true; 3542 3543 default: 3544 return false; 3545 } 3546 } 3547 3548 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3549 int size, bool zero_size_allowed) 3550 { 3551 struct bpf_reg_state *regs = cur_regs(env); 3552 struct bpf_reg_state *reg = ®s[regno]; 3553 int err; 3554 3555 /* We may have added a variable offset to the packet pointer; but any 3556 * reg->range we have comes after that. We are only checking the fixed 3557 * offset. 3558 */ 3559 3560 /* We don't allow negative numbers, because we aren't tracking enough 3561 * detail to prove they're safe. 3562 */ 3563 if (reg->smin_value < 0) { 3564 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3565 regno); 3566 return -EACCES; 3567 } 3568 3569 err = reg->range < 0 ? -EINVAL : 3570 __check_mem_access(env, regno, off, size, reg->range, 3571 zero_size_allowed); 3572 if (err) { 3573 verbose(env, "R%d offset is outside of the packet\n", regno); 3574 return err; 3575 } 3576 3577 /* __check_mem_access has made sure "off + size - 1" is within u16. 3578 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3579 * otherwise find_good_pkt_pointers would have refused to set range info 3580 * that __check_mem_access would have rejected this pkt access. 3581 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3582 */ 3583 env->prog->aux->max_pkt_offset = 3584 max_t(u32, env->prog->aux->max_pkt_offset, 3585 off + reg->umax_value + size - 1); 3586 3587 return err; 3588 } 3589 3590 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3591 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3592 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3593 struct btf **btf, u32 *btf_id) 3594 { 3595 struct bpf_insn_access_aux info = { 3596 .reg_type = *reg_type, 3597 .log = &env->log, 3598 }; 3599 3600 if (env->ops->is_valid_access && 3601 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3602 /* A non zero info.ctx_field_size indicates that this field is a 3603 * candidate for later verifier transformation to load the whole 3604 * field and then apply a mask when accessed with a narrower 3605 * access than actual ctx access size. A zero info.ctx_field_size 3606 * will only allow for whole field access and rejects any other 3607 * type of narrower access. 3608 */ 3609 *reg_type = info.reg_type; 3610 3611 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 3612 *btf = info.btf; 3613 *btf_id = info.btf_id; 3614 } else { 3615 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3616 } 3617 /* remember the offset of last byte accessed in ctx */ 3618 if (env->prog->aux->max_ctx_offset < off + size) 3619 env->prog->aux->max_ctx_offset = off + size; 3620 return 0; 3621 } 3622 3623 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3624 return -EACCES; 3625 } 3626 3627 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3628 int size) 3629 { 3630 if (size < 0 || off < 0 || 3631 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3632 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3633 off, size); 3634 return -EACCES; 3635 } 3636 return 0; 3637 } 3638 3639 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3640 u32 regno, int off, int size, 3641 enum bpf_access_type t) 3642 { 3643 struct bpf_reg_state *regs = cur_regs(env); 3644 struct bpf_reg_state *reg = ®s[regno]; 3645 struct bpf_insn_access_aux info = {}; 3646 bool valid; 3647 3648 if (reg->smin_value < 0) { 3649 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3650 regno); 3651 return -EACCES; 3652 } 3653 3654 switch (reg->type) { 3655 case PTR_TO_SOCK_COMMON: 3656 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3657 break; 3658 case PTR_TO_SOCKET: 3659 valid = bpf_sock_is_valid_access(off, size, t, &info); 3660 break; 3661 case PTR_TO_TCP_SOCK: 3662 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3663 break; 3664 case PTR_TO_XDP_SOCK: 3665 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3666 break; 3667 default: 3668 valid = false; 3669 } 3670 3671 3672 if (valid) { 3673 env->insn_aux_data[insn_idx].ctx_field_size = 3674 info.ctx_field_size; 3675 return 0; 3676 } 3677 3678 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3679 regno, reg_type_str(env, reg->type), off, size); 3680 3681 return -EACCES; 3682 } 3683 3684 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3685 { 3686 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3687 } 3688 3689 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3690 { 3691 const struct bpf_reg_state *reg = reg_state(env, regno); 3692 3693 return reg->type == PTR_TO_CTX; 3694 } 3695 3696 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3697 { 3698 const struct bpf_reg_state *reg = reg_state(env, regno); 3699 3700 return type_is_sk_pointer(reg->type); 3701 } 3702 3703 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3704 { 3705 const struct bpf_reg_state *reg = reg_state(env, regno); 3706 3707 return type_is_pkt_pointer(reg->type); 3708 } 3709 3710 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3711 { 3712 const struct bpf_reg_state *reg = reg_state(env, regno); 3713 3714 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3715 return reg->type == PTR_TO_FLOW_KEYS; 3716 } 3717 3718 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3719 const struct bpf_reg_state *reg, 3720 int off, int size, bool strict) 3721 { 3722 struct tnum reg_off; 3723 int ip_align; 3724 3725 /* Byte size accesses are always allowed. */ 3726 if (!strict || size == 1) 3727 return 0; 3728 3729 /* For platforms that do not have a Kconfig enabling 3730 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3731 * NET_IP_ALIGN is universally set to '2'. And on platforms 3732 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3733 * to this code only in strict mode where we want to emulate 3734 * the NET_IP_ALIGN==2 checking. Therefore use an 3735 * unconditional IP align value of '2'. 3736 */ 3737 ip_align = 2; 3738 3739 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3740 if (!tnum_is_aligned(reg_off, size)) { 3741 char tn_buf[48]; 3742 3743 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3744 verbose(env, 3745 "misaligned packet access off %d+%s+%d+%d size %d\n", 3746 ip_align, tn_buf, reg->off, off, size); 3747 return -EACCES; 3748 } 3749 3750 return 0; 3751 } 3752 3753 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3754 const struct bpf_reg_state *reg, 3755 const char *pointer_desc, 3756 int off, int size, bool strict) 3757 { 3758 struct tnum reg_off; 3759 3760 /* Byte size accesses are always allowed. */ 3761 if (!strict || size == 1) 3762 return 0; 3763 3764 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3765 if (!tnum_is_aligned(reg_off, size)) { 3766 char tn_buf[48]; 3767 3768 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3769 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3770 pointer_desc, tn_buf, reg->off, off, size); 3771 return -EACCES; 3772 } 3773 3774 return 0; 3775 } 3776 3777 static int check_ptr_alignment(struct bpf_verifier_env *env, 3778 const struct bpf_reg_state *reg, int off, 3779 int size, bool strict_alignment_once) 3780 { 3781 bool strict = env->strict_alignment || strict_alignment_once; 3782 const char *pointer_desc = ""; 3783 3784 switch (reg->type) { 3785 case PTR_TO_PACKET: 3786 case PTR_TO_PACKET_META: 3787 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3788 * right in front, treat it the very same way. 3789 */ 3790 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3791 case PTR_TO_FLOW_KEYS: 3792 pointer_desc = "flow keys "; 3793 break; 3794 case PTR_TO_MAP_KEY: 3795 pointer_desc = "key "; 3796 break; 3797 case PTR_TO_MAP_VALUE: 3798 pointer_desc = "value "; 3799 break; 3800 case PTR_TO_CTX: 3801 pointer_desc = "context "; 3802 break; 3803 case PTR_TO_STACK: 3804 pointer_desc = "stack "; 3805 /* The stack spill tracking logic in check_stack_write_fixed_off() 3806 * and check_stack_read_fixed_off() relies on stack accesses being 3807 * aligned. 3808 */ 3809 strict = true; 3810 break; 3811 case PTR_TO_SOCKET: 3812 pointer_desc = "sock "; 3813 break; 3814 case PTR_TO_SOCK_COMMON: 3815 pointer_desc = "sock_common "; 3816 break; 3817 case PTR_TO_TCP_SOCK: 3818 pointer_desc = "tcp_sock "; 3819 break; 3820 case PTR_TO_XDP_SOCK: 3821 pointer_desc = "xdp_sock "; 3822 break; 3823 default: 3824 break; 3825 } 3826 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3827 strict); 3828 } 3829 3830 static int update_stack_depth(struct bpf_verifier_env *env, 3831 const struct bpf_func_state *func, 3832 int off) 3833 { 3834 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3835 3836 if (stack >= -off) 3837 return 0; 3838 3839 /* update known max for given subprogram */ 3840 env->subprog_info[func->subprogno].stack_depth = -off; 3841 return 0; 3842 } 3843 3844 /* starting from main bpf function walk all instructions of the function 3845 * and recursively walk all callees that given function can call. 3846 * Ignore jump and exit insns. 3847 * Since recursion is prevented by check_cfg() this algorithm 3848 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3849 */ 3850 static int check_max_stack_depth(struct bpf_verifier_env *env) 3851 { 3852 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3853 struct bpf_subprog_info *subprog = env->subprog_info; 3854 struct bpf_insn *insn = env->prog->insnsi; 3855 bool tail_call_reachable = false; 3856 int ret_insn[MAX_CALL_FRAMES]; 3857 int ret_prog[MAX_CALL_FRAMES]; 3858 int j; 3859 3860 process_func: 3861 /* protect against potential stack overflow that might happen when 3862 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3863 * depth for such case down to 256 so that the worst case scenario 3864 * would result in 8k stack size (32 which is tailcall limit * 256 = 3865 * 8k). 3866 * 3867 * To get the idea what might happen, see an example: 3868 * func1 -> sub rsp, 128 3869 * subfunc1 -> sub rsp, 256 3870 * tailcall1 -> add rsp, 256 3871 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3872 * subfunc2 -> sub rsp, 64 3873 * subfunc22 -> sub rsp, 128 3874 * tailcall2 -> add rsp, 128 3875 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3876 * 3877 * tailcall will unwind the current stack frame but it will not get rid 3878 * of caller's stack as shown on the example above. 3879 */ 3880 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3881 verbose(env, 3882 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3883 depth); 3884 return -EACCES; 3885 } 3886 /* round up to 32-bytes, since this is granularity 3887 * of interpreter stack size 3888 */ 3889 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3890 if (depth > MAX_BPF_STACK) { 3891 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3892 frame + 1, depth); 3893 return -EACCES; 3894 } 3895 continue_func: 3896 subprog_end = subprog[idx + 1].start; 3897 for (; i < subprog_end; i++) { 3898 int next_insn; 3899 3900 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3901 continue; 3902 /* remember insn and function to return to */ 3903 ret_insn[frame] = i + 1; 3904 ret_prog[frame] = idx; 3905 3906 /* find the callee */ 3907 next_insn = i + insn[i].imm + 1; 3908 idx = find_subprog(env, next_insn); 3909 if (idx < 0) { 3910 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3911 next_insn); 3912 return -EFAULT; 3913 } 3914 if (subprog[idx].is_async_cb) { 3915 if (subprog[idx].has_tail_call) { 3916 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 3917 return -EFAULT; 3918 } 3919 /* async callbacks don't increase bpf prog stack size */ 3920 continue; 3921 } 3922 i = next_insn; 3923 3924 if (subprog[idx].has_tail_call) 3925 tail_call_reachable = true; 3926 3927 frame++; 3928 if (frame >= MAX_CALL_FRAMES) { 3929 verbose(env, "the call stack of %d frames is too deep !\n", 3930 frame); 3931 return -E2BIG; 3932 } 3933 goto process_func; 3934 } 3935 /* if tail call got detected across bpf2bpf calls then mark each of the 3936 * currently present subprog frames as tail call reachable subprogs; 3937 * this info will be utilized by JIT so that we will be preserving the 3938 * tail call counter throughout bpf2bpf calls combined with tailcalls 3939 */ 3940 if (tail_call_reachable) 3941 for (j = 0; j < frame; j++) 3942 subprog[ret_prog[j]].tail_call_reachable = true; 3943 if (subprog[0].tail_call_reachable) 3944 env->prog->aux->tail_call_reachable = true; 3945 3946 /* end of for() loop means the last insn of the 'subprog' 3947 * was reached. Doesn't matter whether it was JA or EXIT 3948 */ 3949 if (frame == 0) 3950 return 0; 3951 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3952 frame--; 3953 i = ret_insn[frame]; 3954 idx = ret_prog[frame]; 3955 goto continue_func; 3956 } 3957 3958 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3959 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3960 const struct bpf_insn *insn, int idx) 3961 { 3962 int start = idx + insn->imm + 1, subprog; 3963 3964 subprog = find_subprog(env, start); 3965 if (subprog < 0) { 3966 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3967 start); 3968 return -EFAULT; 3969 } 3970 return env->subprog_info[subprog].stack_depth; 3971 } 3972 #endif 3973 3974 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 3975 const struct bpf_reg_state *reg, int regno, 3976 bool fixed_off_ok) 3977 { 3978 /* Access to this pointer-typed register or passing it to a helper 3979 * is only allowed in its original, unmodified form. 3980 */ 3981 3982 if (!fixed_off_ok && reg->off) { 3983 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 3984 reg_type_str(env, reg->type), regno, reg->off); 3985 return -EACCES; 3986 } 3987 3988 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3989 char tn_buf[48]; 3990 3991 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3992 verbose(env, "variable %s access var_off=%s disallowed\n", 3993 reg_type_str(env, reg->type), tn_buf); 3994 return -EACCES; 3995 } 3996 3997 return 0; 3998 } 3999 4000 int check_ptr_off_reg(struct bpf_verifier_env *env, 4001 const struct bpf_reg_state *reg, int regno) 4002 { 4003 return __check_ptr_off_reg(env, reg, regno, false); 4004 } 4005 4006 static int __check_buffer_access(struct bpf_verifier_env *env, 4007 const char *buf_info, 4008 const struct bpf_reg_state *reg, 4009 int regno, int off, int size) 4010 { 4011 if (off < 0) { 4012 verbose(env, 4013 "R%d invalid %s buffer access: off=%d, size=%d\n", 4014 regno, buf_info, off, size); 4015 return -EACCES; 4016 } 4017 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4018 char tn_buf[48]; 4019 4020 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4021 verbose(env, 4022 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4023 regno, off, tn_buf); 4024 return -EACCES; 4025 } 4026 4027 return 0; 4028 } 4029 4030 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4031 const struct bpf_reg_state *reg, 4032 int regno, int off, int size) 4033 { 4034 int err; 4035 4036 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4037 if (err) 4038 return err; 4039 4040 if (off + size > env->prog->aux->max_tp_access) 4041 env->prog->aux->max_tp_access = off + size; 4042 4043 return 0; 4044 } 4045 4046 static int check_buffer_access(struct bpf_verifier_env *env, 4047 const struct bpf_reg_state *reg, 4048 int regno, int off, int size, 4049 bool zero_size_allowed, 4050 const char *buf_info, 4051 u32 *max_access) 4052 { 4053 int err; 4054 4055 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4056 if (err) 4057 return err; 4058 4059 if (off + size > *max_access) 4060 *max_access = off + size; 4061 4062 return 0; 4063 } 4064 4065 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4066 static void zext_32_to_64(struct bpf_reg_state *reg) 4067 { 4068 reg->var_off = tnum_subreg(reg->var_off); 4069 __reg_assign_32_into_64(reg); 4070 } 4071 4072 /* truncate register to smaller size (in bytes) 4073 * must be called with size < BPF_REG_SIZE 4074 */ 4075 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4076 { 4077 u64 mask; 4078 4079 /* clear high bits in bit representation */ 4080 reg->var_off = tnum_cast(reg->var_off, size); 4081 4082 /* fix arithmetic bounds */ 4083 mask = ((u64)1 << (size * 8)) - 1; 4084 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4085 reg->umin_value &= mask; 4086 reg->umax_value &= mask; 4087 } else { 4088 reg->umin_value = 0; 4089 reg->umax_value = mask; 4090 } 4091 reg->smin_value = reg->umin_value; 4092 reg->smax_value = reg->umax_value; 4093 4094 /* If size is smaller than 32bit register the 32bit register 4095 * values are also truncated so we push 64-bit bounds into 4096 * 32-bit bounds. Above were truncated < 32-bits already. 4097 */ 4098 if (size >= 4) 4099 return; 4100 __reg_combine_64_into_32(reg); 4101 } 4102 4103 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4104 { 4105 /* A map is considered read-only if the following condition are true: 4106 * 4107 * 1) BPF program side cannot change any of the map content. The 4108 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4109 * and was set at map creation time. 4110 * 2) The map value(s) have been initialized from user space by a 4111 * loader and then "frozen", such that no new map update/delete 4112 * operations from syscall side are possible for the rest of 4113 * the map's lifetime from that point onwards. 4114 * 3) Any parallel/pending map update/delete operations from syscall 4115 * side have been completed. Only after that point, it's safe to 4116 * assume that map value(s) are immutable. 4117 */ 4118 return (map->map_flags & BPF_F_RDONLY_PROG) && 4119 READ_ONCE(map->frozen) && 4120 !bpf_map_write_active(map); 4121 } 4122 4123 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4124 { 4125 void *ptr; 4126 u64 addr; 4127 int err; 4128 4129 err = map->ops->map_direct_value_addr(map, &addr, off); 4130 if (err) 4131 return err; 4132 ptr = (void *)(long)addr + off; 4133 4134 switch (size) { 4135 case sizeof(u8): 4136 *val = (u64)*(u8 *)ptr; 4137 break; 4138 case sizeof(u16): 4139 *val = (u64)*(u16 *)ptr; 4140 break; 4141 case sizeof(u32): 4142 *val = (u64)*(u32 *)ptr; 4143 break; 4144 case sizeof(u64): 4145 *val = *(u64 *)ptr; 4146 break; 4147 default: 4148 return -EINVAL; 4149 } 4150 return 0; 4151 } 4152 4153 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4154 struct bpf_reg_state *regs, 4155 int regno, int off, int size, 4156 enum bpf_access_type atype, 4157 int value_regno) 4158 { 4159 struct bpf_reg_state *reg = regs + regno; 4160 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4161 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4162 u32 btf_id; 4163 int ret; 4164 4165 if (off < 0) { 4166 verbose(env, 4167 "R%d is ptr_%s invalid negative access: off=%d\n", 4168 regno, tname, off); 4169 return -EACCES; 4170 } 4171 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4172 char tn_buf[48]; 4173 4174 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4175 verbose(env, 4176 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4177 regno, tname, off, tn_buf); 4178 return -EACCES; 4179 } 4180 4181 if (env->ops->btf_struct_access) { 4182 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4183 off, size, atype, &btf_id); 4184 } else { 4185 if (atype != BPF_READ) { 4186 verbose(env, "only read is supported\n"); 4187 return -EACCES; 4188 } 4189 4190 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4191 atype, &btf_id); 4192 } 4193 4194 if (ret < 0) 4195 return ret; 4196 4197 if (atype == BPF_READ && value_regno >= 0) 4198 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 4199 4200 return 0; 4201 } 4202 4203 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4204 struct bpf_reg_state *regs, 4205 int regno, int off, int size, 4206 enum bpf_access_type atype, 4207 int value_regno) 4208 { 4209 struct bpf_reg_state *reg = regs + regno; 4210 struct bpf_map *map = reg->map_ptr; 4211 const struct btf_type *t; 4212 const char *tname; 4213 u32 btf_id; 4214 int ret; 4215 4216 if (!btf_vmlinux) { 4217 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4218 return -ENOTSUPP; 4219 } 4220 4221 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4222 verbose(env, "map_ptr access not supported for map type %d\n", 4223 map->map_type); 4224 return -ENOTSUPP; 4225 } 4226 4227 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4228 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4229 4230 if (!env->allow_ptr_to_map_access) { 4231 verbose(env, 4232 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4233 tname); 4234 return -EPERM; 4235 } 4236 4237 if (off < 0) { 4238 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4239 regno, tname, off); 4240 return -EACCES; 4241 } 4242 4243 if (atype != BPF_READ) { 4244 verbose(env, "only read from %s is supported\n", tname); 4245 return -EACCES; 4246 } 4247 4248 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 4249 if (ret < 0) 4250 return ret; 4251 4252 if (value_regno >= 0) 4253 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 4254 4255 return 0; 4256 } 4257 4258 /* Check that the stack access at the given offset is within bounds. The 4259 * maximum valid offset is -1. 4260 * 4261 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4262 * -state->allocated_stack for reads. 4263 */ 4264 static int check_stack_slot_within_bounds(int off, 4265 struct bpf_func_state *state, 4266 enum bpf_access_type t) 4267 { 4268 int min_valid_off; 4269 4270 if (t == BPF_WRITE) 4271 min_valid_off = -MAX_BPF_STACK; 4272 else 4273 min_valid_off = -state->allocated_stack; 4274 4275 if (off < min_valid_off || off > -1) 4276 return -EACCES; 4277 return 0; 4278 } 4279 4280 /* Check that the stack access at 'regno + off' falls within the maximum stack 4281 * bounds. 4282 * 4283 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4284 */ 4285 static int check_stack_access_within_bounds( 4286 struct bpf_verifier_env *env, 4287 int regno, int off, int access_size, 4288 enum stack_access_src src, enum bpf_access_type type) 4289 { 4290 struct bpf_reg_state *regs = cur_regs(env); 4291 struct bpf_reg_state *reg = regs + regno; 4292 struct bpf_func_state *state = func(env, reg); 4293 int min_off, max_off; 4294 int err; 4295 char *err_extra; 4296 4297 if (src == ACCESS_HELPER) 4298 /* We don't know if helpers are reading or writing (or both). */ 4299 err_extra = " indirect access to"; 4300 else if (type == BPF_READ) 4301 err_extra = " read from"; 4302 else 4303 err_extra = " write to"; 4304 4305 if (tnum_is_const(reg->var_off)) { 4306 min_off = reg->var_off.value + off; 4307 if (access_size > 0) 4308 max_off = min_off + access_size - 1; 4309 else 4310 max_off = min_off; 4311 } else { 4312 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4313 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4314 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4315 err_extra, regno); 4316 return -EACCES; 4317 } 4318 min_off = reg->smin_value + off; 4319 if (access_size > 0) 4320 max_off = reg->smax_value + off + access_size - 1; 4321 else 4322 max_off = min_off; 4323 } 4324 4325 err = check_stack_slot_within_bounds(min_off, state, type); 4326 if (!err) 4327 err = check_stack_slot_within_bounds(max_off, state, type); 4328 4329 if (err) { 4330 if (tnum_is_const(reg->var_off)) { 4331 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4332 err_extra, regno, off, access_size); 4333 } else { 4334 char tn_buf[48]; 4335 4336 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4337 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4338 err_extra, regno, tn_buf, access_size); 4339 } 4340 } 4341 return err; 4342 } 4343 4344 /* check whether memory at (regno + off) is accessible for t = (read | write) 4345 * if t==write, value_regno is a register which value is stored into memory 4346 * if t==read, value_regno is a register which will receive the value from memory 4347 * if t==write && value_regno==-1, some unknown value is stored into memory 4348 * if t==read && value_regno==-1, don't care what we read from memory 4349 */ 4350 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4351 int off, int bpf_size, enum bpf_access_type t, 4352 int value_regno, bool strict_alignment_once) 4353 { 4354 struct bpf_reg_state *regs = cur_regs(env); 4355 struct bpf_reg_state *reg = regs + regno; 4356 struct bpf_func_state *state; 4357 int size, err = 0; 4358 4359 size = bpf_size_to_bytes(bpf_size); 4360 if (size < 0) 4361 return size; 4362 4363 /* alignment checks will add in reg->off themselves */ 4364 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4365 if (err) 4366 return err; 4367 4368 /* for access checks, reg->off is just part of off */ 4369 off += reg->off; 4370 4371 if (reg->type == PTR_TO_MAP_KEY) { 4372 if (t == BPF_WRITE) { 4373 verbose(env, "write to change key R%d not allowed\n", regno); 4374 return -EACCES; 4375 } 4376 4377 err = check_mem_region_access(env, regno, off, size, 4378 reg->map_ptr->key_size, false); 4379 if (err) 4380 return err; 4381 if (value_regno >= 0) 4382 mark_reg_unknown(env, regs, value_regno); 4383 } else if (reg->type == PTR_TO_MAP_VALUE) { 4384 if (t == BPF_WRITE && value_regno >= 0 && 4385 is_pointer_value(env, value_regno)) { 4386 verbose(env, "R%d leaks addr into map\n", value_regno); 4387 return -EACCES; 4388 } 4389 err = check_map_access_type(env, regno, off, size, t); 4390 if (err) 4391 return err; 4392 err = check_map_access(env, regno, off, size, false); 4393 if (!err && t == BPF_READ && value_regno >= 0) { 4394 struct bpf_map *map = reg->map_ptr; 4395 4396 /* if map is read-only, track its contents as scalars */ 4397 if (tnum_is_const(reg->var_off) && 4398 bpf_map_is_rdonly(map) && 4399 map->ops->map_direct_value_addr) { 4400 int map_off = off + reg->var_off.value; 4401 u64 val = 0; 4402 4403 err = bpf_map_direct_read(map, map_off, size, 4404 &val); 4405 if (err) 4406 return err; 4407 4408 regs[value_regno].type = SCALAR_VALUE; 4409 __mark_reg_known(®s[value_regno], val); 4410 } else { 4411 mark_reg_unknown(env, regs, value_regno); 4412 } 4413 } 4414 } else if (base_type(reg->type) == PTR_TO_MEM) { 4415 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4416 4417 if (type_may_be_null(reg->type)) { 4418 verbose(env, "R%d invalid mem access '%s'\n", regno, 4419 reg_type_str(env, reg->type)); 4420 return -EACCES; 4421 } 4422 4423 if (t == BPF_WRITE && rdonly_mem) { 4424 verbose(env, "R%d cannot write into %s\n", 4425 regno, reg_type_str(env, reg->type)); 4426 return -EACCES; 4427 } 4428 4429 if (t == BPF_WRITE && value_regno >= 0 && 4430 is_pointer_value(env, value_regno)) { 4431 verbose(env, "R%d leaks addr into mem\n", value_regno); 4432 return -EACCES; 4433 } 4434 4435 err = check_mem_region_access(env, regno, off, size, 4436 reg->mem_size, false); 4437 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 4438 mark_reg_unknown(env, regs, value_regno); 4439 } else if (reg->type == PTR_TO_CTX) { 4440 enum bpf_reg_type reg_type = SCALAR_VALUE; 4441 struct btf *btf = NULL; 4442 u32 btf_id = 0; 4443 4444 if (t == BPF_WRITE && value_regno >= 0 && 4445 is_pointer_value(env, value_regno)) { 4446 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4447 return -EACCES; 4448 } 4449 4450 err = check_ptr_off_reg(env, reg, regno); 4451 if (err < 0) 4452 return err; 4453 4454 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4455 if (err) 4456 verbose_linfo(env, insn_idx, "; "); 4457 if (!err && t == BPF_READ && value_regno >= 0) { 4458 /* ctx access returns either a scalar, or a 4459 * PTR_TO_PACKET[_META,_END]. In the latter 4460 * case, we know the offset is zero. 4461 */ 4462 if (reg_type == SCALAR_VALUE) { 4463 mark_reg_unknown(env, regs, value_regno); 4464 } else { 4465 mark_reg_known_zero(env, regs, 4466 value_regno); 4467 if (type_may_be_null(reg_type)) 4468 regs[value_regno].id = ++env->id_gen; 4469 /* A load of ctx field could have different 4470 * actual load size with the one encoded in the 4471 * insn. When the dst is PTR, it is for sure not 4472 * a sub-register. 4473 */ 4474 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4475 if (base_type(reg_type) == PTR_TO_BTF_ID) { 4476 regs[value_regno].btf = btf; 4477 regs[value_regno].btf_id = btf_id; 4478 } 4479 } 4480 regs[value_regno].type = reg_type; 4481 } 4482 4483 } else if (reg->type == PTR_TO_STACK) { 4484 /* Basic bounds checks. */ 4485 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4486 if (err) 4487 return err; 4488 4489 state = func(env, reg); 4490 err = update_stack_depth(env, state, off); 4491 if (err) 4492 return err; 4493 4494 if (t == BPF_READ) 4495 err = check_stack_read(env, regno, off, size, 4496 value_regno); 4497 else 4498 err = check_stack_write(env, regno, off, size, 4499 value_regno, insn_idx); 4500 } else if (reg_is_pkt_pointer(reg)) { 4501 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4502 verbose(env, "cannot write into packet\n"); 4503 return -EACCES; 4504 } 4505 if (t == BPF_WRITE && value_regno >= 0 && 4506 is_pointer_value(env, value_regno)) { 4507 verbose(env, "R%d leaks addr into packet\n", 4508 value_regno); 4509 return -EACCES; 4510 } 4511 err = check_packet_access(env, regno, off, size, false); 4512 if (!err && t == BPF_READ && value_regno >= 0) 4513 mark_reg_unknown(env, regs, value_regno); 4514 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4515 if (t == BPF_WRITE && value_regno >= 0 && 4516 is_pointer_value(env, value_regno)) { 4517 verbose(env, "R%d leaks addr into flow keys\n", 4518 value_regno); 4519 return -EACCES; 4520 } 4521 4522 err = check_flow_keys_access(env, off, size); 4523 if (!err && t == BPF_READ && value_regno >= 0) 4524 mark_reg_unknown(env, regs, value_regno); 4525 } else if (type_is_sk_pointer(reg->type)) { 4526 if (t == BPF_WRITE) { 4527 verbose(env, "R%d cannot write into %s\n", 4528 regno, reg_type_str(env, reg->type)); 4529 return -EACCES; 4530 } 4531 err = check_sock_access(env, insn_idx, regno, off, size, t); 4532 if (!err && value_regno >= 0) 4533 mark_reg_unknown(env, regs, value_regno); 4534 } else if (reg->type == PTR_TO_TP_BUFFER) { 4535 err = check_tp_buffer_access(env, reg, regno, off, size); 4536 if (!err && t == BPF_READ && value_regno >= 0) 4537 mark_reg_unknown(env, regs, value_regno); 4538 } else if (reg->type == PTR_TO_BTF_ID) { 4539 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4540 value_regno); 4541 } else if (reg->type == CONST_PTR_TO_MAP) { 4542 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4543 value_regno); 4544 } else if (base_type(reg->type) == PTR_TO_BUF) { 4545 bool rdonly_mem = type_is_rdonly_mem(reg->type); 4546 const char *buf_info; 4547 u32 *max_access; 4548 4549 if (rdonly_mem) { 4550 if (t == BPF_WRITE) { 4551 verbose(env, "R%d cannot write into %s\n", 4552 regno, reg_type_str(env, reg->type)); 4553 return -EACCES; 4554 } 4555 buf_info = "rdonly"; 4556 max_access = &env->prog->aux->max_rdonly_access; 4557 } else { 4558 buf_info = "rdwr"; 4559 max_access = &env->prog->aux->max_rdwr_access; 4560 } 4561 4562 err = check_buffer_access(env, reg, regno, off, size, false, 4563 buf_info, max_access); 4564 4565 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 4566 mark_reg_unknown(env, regs, value_regno); 4567 } else { 4568 verbose(env, "R%d invalid mem access '%s'\n", regno, 4569 reg_type_str(env, reg->type)); 4570 return -EACCES; 4571 } 4572 4573 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4574 regs[value_regno].type == SCALAR_VALUE) { 4575 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4576 coerce_reg_to_size(®s[value_regno], size); 4577 } 4578 return err; 4579 } 4580 4581 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4582 { 4583 int load_reg; 4584 int err; 4585 4586 switch (insn->imm) { 4587 case BPF_ADD: 4588 case BPF_ADD | BPF_FETCH: 4589 case BPF_AND: 4590 case BPF_AND | BPF_FETCH: 4591 case BPF_OR: 4592 case BPF_OR | BPF_FETCH: 4593 case BPF_XOR: 4594 case BPF_XOR | BPF_FETCH: 4595 case BPF_XCHG: 4596 case BPF_CMPXCHG: 4597 break; 4598 default: 4599 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4600 return -EINVAL; 4601 } 4602 4603 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4604 verbose(env, "invalid atomic operand size\n"); 4605 return -EINVAL; 4606 } 4607 4608 /* check src1 operand */ 4609 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4610 if (err) 4611 return err; 4612 4613 /* check src2 operand */ 4614 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4615 if (err) 4616 return err; 4617 4618 if (insn->imm == BPF_CMPXCHG) { 4619 /* Check comparison of R0 with memory location */ 4620 const u32 aux_reg = BPF_REG_0; 4621 4622 err = check_reg_arg(env, aux_reg, SRC_OP); 4623 if (err) 4624 return err; 4625 4626 if (is_pointer_value(env, aux_reg)) { 4627 verbose(env, "R%d leaks addr into mem\n", aux_reg); 4628 return -EACCES; 4629 } 4630 } 4631 4632 if (is_pointer_value(env, insn->src_reg)) { 4633 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4634 return -EACCES; 4635 } 4636 4637 if (is_ctx_reg(env, insn->dst_reg) || 4638 is_pkt_reg(env, insn->dst_reg) || 4639 is_flow_key_reg(env, insn->dst_reg) || 4640 is_sk_reg(env, insn->dst_reg)) { 4641 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4642 insn->dst_reg, 4643 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 4644 return -EACCES; 4645 } 4646 4647 if (insn->imm & BPF_FETCH) { 4648 if (insn->imm == BPF_CMPXCHG) 4649 load_reg = BPF_REG_0; 4650 else 4651 load_reg = insn->src_reg; 4652 4653 /* check and record load of old value */ 4654 err = check_reg_arg(env, load_reg, DST_OP); 4655 if (err) 4656 return err; 4657 } else { 4658 /* This instruction accesses a memory location but doesn't 4659 * actually load it into a register. 4660 */ 4661 load_reg = -1; 4662 } 4663 4664 /* Check whether we can read the memory, with second call for fetch 4665 * case to simulate the register fill. 4666 */ 4667 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4668 BPF_SIZE(insn->code), BPF_READ, -1, true); 4669 if (!err && load_reg >= 0) 4670 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4671 BPF_SIZE(insn->code), BPF_READ, load_reg, 4672 true); 4673 if (err) 4674 return err; 4675 4676 /* Check whether we can write into the same memory. */ 4677 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4678 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4679 if (err) 4680 return err; 4681 4682 return 0; 4683 } 4684 4685 /* When register 'regno' is used to read the stack (either directly or through 4686 * a helper function) make sure that it's within stack boundary and, depending 4687 * on the access type, that all elements of the stack are initialized. 4688 * 4689 * 'off' includes 'regno->off', but not its dynamic part (if any). 4690 * 4691 * All registers that have been spilled on the stack in the slots within the 4692 * read offsets are marked as read. 4693 */ 4694 static int check_stack_range_initialized( 4695 struct bpf_verifier_env *env, int regno, int off, 4696 int access_size, bool zero_size_allowed, 4697 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4698 { 4699 struct bpf_reg_state *reg = reg_state(env, regno); 4700 struct bpf_func_state *state = func(env, reg); 4701 int err, min_off, max_off, i, j, slot, spi; 4702 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4703 enum bpf_access_type bounds_check_type; 4704 /* Some accesses can write anything into the stack, others are 4705 * read-only. 4706 */ 4707 bool clobber = false; 4708 4709 if (access_size == 0 && !zero_size_allowed) { 4710 verbose(env, "invalid zero-sized read\n"); 4711 return -EACCES; 4712 } 4713 4714 if (type == ACCESS_HELPER) { 4715 /* The bounds checks for writes are more permissive than for 4716 * reads. However, if raw_mode is not set, we'll do extra 4717 * checks below. 4718 */ 4719 bounds_check_type = BPF_WRITE; 4720 clobber = true; 4721 } else { 4722 bounds_check_type = BPF_READ; 4723 } 4724 err = check_stack_access_within_bounds(env, regno, off, access_size, 4725 type, bounds_check_type); 4726 if (err) 4727 return err; 4728 4729 4730 if (tnum_is_const(reg->var_off)) { 4731 min_off = max_off = reg->var_off.value + off; 4732 } else { 4733 /* Variable offset is prohibited for unprivileged mode for 4734 * simplicity since it requires corresponding support in 4735 * Spectre masking for stack ALU. 4736 * See also retrieve_ptr_limit(). 4737 */ 4738 if (!env->bypass_spec_v1) { 4739 char tn_buf[48]; 4740 4741 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4742 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4743 regno, err_extra, tn_buf); 4744 return -EACCES; 4745 } 4746 /* Only initialized buffer on stack is allowed to be accessed 4747 * with variable offset. With uninitialized buffer it's hard to 4748 * guarantee that whole memory is marked as initialized on 4749 * helper return since specific bounds are unknown what may 4750 * cause uninitialized stack leaking. 4751 */ 4752 if (meta && meta->raw_mode) 4753 meta = NULL; 4754 4755 min_off = reg->smin_value + off; 4756 max_off = reg->smax_value + off; 4757 } 4758 4759 if (meta && meta->raw_mode) { 4760 meta->access_size = access_size; 4761 meta->regno = regno; 4762 return 0; 4763 } 4764 4765 for (i = min_off; i < max_off + access_size; i++) { 4766 u8 *stype; 4767 4768 slot = -i - 1; 4769 spi = slot / BPF_REG_SIZE; 4770 if (state->allocated_stack <= slot) 4771 goto err; 4772 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4773 if (*stype == STACK_MISC) 4774 goto mark; 4775 if (*stype == STACK_ZERO) { 4776 if (clobber) { 4777 /* helper can write anything into the stack */ 4778 *stype = STACK_MISC; 4779 } 4780 goto mark; 4781 } 4782 4783 if (is_spilled_reg(&state->stack[spi]) && 4784 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4785 goto mark; 4786 4787 if (is_spilled_reg(&state->stack[spi]) && 4788 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4789 env->allow_ptr_leaks)) { 4790 if (clobber) { 4791 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4792 for (j = 0; j < BPF_REG_SIZE; j++) 4793 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 4794 } 4795 goto mark; 4796 } 4797 4798 err: 4799 if (tnum_is_const(reg->var_off)) { 4800 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4801 err_extra, regno, min_off, i - min_off, access_size); 4802 } else { 4803 char tn_buf[48]; 4804 4805 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4806 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4807 err_extra, regno, tn_buf, i - min_off, access_size); 4808 } 4809 return -EACCES; 4810 mark: 4811 /* reading any byte out of 8-byte 'spill_slot' will cause 4812 * the whole slot to be marked as 'read' 4813 */ 4814 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4815 state->stack[spi].spilled_ptr.parent, 4816 REG_LIVE_READ64); 4817 } 4818 return update_stack_depth(env, state, min_off); 4819 } 4820 4821 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4822 int access_size, bool zero_size_allowed, 4823 struct bpf_call_arg_meta *meta) 4824 { 4825 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4826 const char *buf_info; 4827 u32 *max_access; 4828 4829 switch (base_type(reg->type)) { 4830 case PTR_TO_PACKET: 4831 case PTR_TO_PACKET_META: 4832 return check_packet_access(env, regno, reg->off, access_size, 4833 zero_size_allowed); 4834 case PTR_TO_MAP_KEY: 4835 return check_mem_region_access(env, regno, reg->off, access_size, 4836 reg->map_ptr->key_size, false); 4837 case PTR_TO_MAP_VALUE: 4838 if (check_map_access_type(env, regno, reg->off, access_size, 4839 meta && meta->raw_mode ? BPF_WRITE : 4840 BPF_READ)) 4841 return -EACCES; 4842 return check_map_access(env, regno, reg->off, access_size, 4843 zero_size_allowed); 4844 case PTR_TO_MEM: 4845 return check_mem_region_access(env, regno, reg->off, 4846 access_size, reg->mem_size, 4847 zero_size_allowed); 4848 case PTR_TO_BUF: 4849 if (type_is_rdonly_mem(reg->type)) { 4850 if (meta && meta->raw_mode) 4851 return -EACCES; 4852 4853 buf_info = "rdonly"; 4854 max_access = &env->prog->aux->max_rdonly_access; 4855 } else { 4856 buf_info = "rdwr"; 4857 max_access = &env->prog->aux->max_rdwr_access; 4858 } 4859 return check_buffer_access(env, reg, regno, reg->off, 4860 access_size, zero_size_allowed, 4861 buf_info, max_access); 4862 case PTR_TO_STACK: 4863 return check_stack_range_initialized( 4864 env, 4865 regno, reg->off, access_size, 4866 zero_size_allowed, ACCESS_HELPER, meta); 4867 default: /* scalar_value or invalid ptr */ 4868 /* Allow zero-byte read from NULL, regardless of pointer type */ 4869 if (zero_size_allowed && access_size == 0 && 4870 register_is_null(reg)) 4871 return 0; 4872 4873 verbose(env, "R%d type=%s ", regno, 4874 reg_type_str(env, reg->type)); 4875 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 4876 return -EACCES; 4877 } 4878 } 4879 4880 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4881 u32 regno, u32 mem_size) 4882 { 4883 if (register_is_null(reg)) 4884 return 0; 4885 4886 if (type_may_be_null(reg->type)) { 4887 /* Assuming that the register contains a value check if the memory 4888 * access is safe. Temporarily save and restore the register's state as 4889 * the conversion shouldn't be visible to a caller. 4890 */ 4891 const struct bpf_reg_state saved_reg = *reg; 4892 int rv; 4893 4894 mark_ptr_not_null_reg(reg); 4895 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4896 *reg = saved_reg; 4897 return rv; 4898 } 4899 4900 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4901 } 4902 4903 /* Implementation details: 4904 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4905 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4906 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4907 * value_or_null->value transition, since the verifier only cares about 4908 * the range of access to valid map value pointer and doesn't care about actual 4909 * address of the map element. 4910 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4911 * reg->id > 0 after value_or_null->value transition. By doing so 4912 * two bpf_map_lookups will be considered two different pointers that 4913 * point to different bpf_spin_locks. 4914 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4915 * dead-locks. 4916 * Since only one bpf_spin_lock is allowed the checks are simpler than 4917 * reg_is_refcounted() logic. The verifier needs to remember only 4918 * one spin_lock instead of array of acquired_refs. 4919 * cur_state->active_spin_lock remembers which map value element got locked 4920 * and clears it after bpf_spin_unlock. 4921 */ 4922 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4923 bool is_lock) 4924 { 4925 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4926 struct bpf_verifier_state *cur = env->cur_state; 4927 bool is_const = tnum_is_const(reg->var_off); 4928 struct bpf_map *map = reg->map_ptr; 4929 u64 val = reg->var_off.value; 4930 4931 if (!is_const) { 4932 verbose(env, 4933 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4934 regno); 4935 return -EINVAL; 4936 } 4937 if (!map->btf) { 4938 verbose(env, 4939 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4940 map->name); 4941 return -EINVAL; 4942 } 4943 if (!map_value_has_spin_lock(map)) { 4944 if (map->spin_lock_off == -E2BIG) 4945 verbose(env, 4946 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4947 map->name); 4948 else if (map->spin_lock_off == -ENOENT) 4949 verbose(env, 4950 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4951 map->name); 4952 else 4953 verbose(env, 4954 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4955 map->name); 4956 return -EINVAL; 4957 } 4958 if (map->spin_lock_off != val + reg->off) { 4959 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4960 val + reg->off); 4961 return -EINVAL; 4962 } 4963 if (is_lock) { 4964 if (cur->active_spin_lock) { 4965 verbose(env, 4966 "Locking two bpf_spin_locks are not allowed\n"); 4967 return -EINVAL; 4968 } 4969 cur->active_spin_lock = reg->id; 4970 } else { 4971 if (!cur->active_spin_lock) { 4972 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4973 return -EINVAL; 4974 } 4975 if (cur->active_spin_lock != reg->id) { 4976 verbose(env, "bpf_spin_unlock of different lock\n"); 4977 return -EINVAL; 4978 } 4979 cur->active_spin_lock = 0; 4980 } 4981 return 0; 4982 } 4983 4984 static int process_timer_func(struct bpf_verifier_env *env, int regno, 4985 struct bpf_call_arg_meta *meta) 4986 { 4987 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4988 bool is_const = tnum_is_const(reg->var_off); 4989 struct bpf_map *map = reg->map_ptr; 4990 u64 val = reg->var_off.value; 4991 4992 if (!is_const) { 4993 verbose(env, 4994 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 4995 regno); 4996 return -EINVAL; 4997 } 4998 if (!map->btf) { 4999 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 5000 map->name); 5001 return -EINVAL; 5002 } 5003 if (!map_value_has_timer(map)) { 5004 if (map->timer_off == -E2BIG) 5005 verbose(env, 5006 "map '%s' has more than one 'struct bpf_timer'\n", 5007 map->name); 5008 else if (map->timer_off == -ENOENT) 5009 verbose(env, 5010 "map '%s' doesn't have 'struct bpf_timer'\n", 5011 map->name); 5012 else 5013 verbose(env, 5014 "map '%s' is not a struct type or bpf_timer is mangled\n", 5015 map->name); 5016 return -EINVAL; 5017 } 5018 if (map->timer_off != val + reg->off) { 5019 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 5020 val + reg->off, map->timer_off); 5021 return -EINVAL; 5022 } 5023 if (meta->map_ptr) { 5024 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 5025 return -EFAULT; 5026 } 5027 meta->map_uid = reg->map_uid; 5028 meta->map_ptr = map; 5029 return 0; 5030 } 5031 5032 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 5033 { 5034 return base_type(type) == ARG_PTR_TO_MEM || 5035 base_type(type) == ARG_PTR_TO_UNINIT_MEM; 5036 } 5037 5038 static bool arg_type_is_mem_size(enum bpf_arg_type type) 5039 { 5040 return type == ARG_CONST_SIZE || 5041 type == ARG_CONST_SIZE_OR_ZERO; 5042 } 5043 5044 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 5045 { 5046 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 5047 } 5048 5049 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 5050 { 5051 return type == ARG_PTR_TO_INT || 5052 type == ARG_PTR_TO_LONG; 5053 } 5054 5055 static int int_ptr_type_to_size(enum bpf_arg_type type) 5056 { 5057 if (type == ARG_PTR_TO_INT) 5058 return sizeof(u32); 5059 else if (type == ARG_PTR_TO_LONG) 5060 return sizeof(u64); 5061 5062 return -EINVAL; 5063 } 5064 5065 static int resolve_map_arg_type(struct bpf_verifier_env *env, 5066 const struct bpf_call_arg_meta *meta, 5067 enum bpf_arg_type *arg_type) 5068 { 5069 if (!meta->map_ptr) { 5070 /* kernel subsystem misconfigured verifier */ 5071 verbose(env, "invalid map_ptr to access map->type\n"); 5072 return -EACCES; 5073 } 5074 5075 switch (meta->map_ptr->map_type) { 5076 case BPF_MAP_TYPE_SOCKMAP: 5077 case BPF_MAP_TYPE_SOCKHASH: 5078 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 5079 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 5080 } else { 5081 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5082 return -EINVAL; 5083 } 5084 break; 5085 case BPF_MAP_TYPE_BLOOM_FILTER: 5086 if (meta->func_id == BPF_FUNC_map_peek_elem) 5087 *arg_type = ARG_PTR_TO_MAP_VALUE; 5088 break; 5089 default: 5090 break; 5091 } 5092 return 0; 5093 } 5094 5095 struct bpf_reg_types { 5096 const enum bpf_reg_type types[10]; 5097 u32 *btf_id; 5098 }; 5099 5100 static const struct bpf_reg_types map_key_value_types = { 5101 .types = { 5102 PTR_TO_STACK, 5103 PTR_TO_PACKET, 5104 PTR_TO_PACKET_META, 5105 PTR_TO_MAP_KEY, 5106 PTR_TO_MAP_VALUE, 5107 }, 5108 }; 5109 5110 static const struct bpf_reg_types sock_types = { 5111 .types = { 5112 PTR_TO_SOCK_COMMON, 5113 PTR_TO_SOCKET, 5114 PTR_TO_TCP_SOCK, 5115 PTR_TO_XDP_SOCK, 5116 }, 5117 }; 5118 5119 #ifdef CONFIG_NET 5120 static const struct bpf_reg_types btf_id_sock_common_types = { 5121 .types = { 5122 PTR_TO_SOCK_COMMON, 5123 PTR_TO_SOCKET, 5124 PTR_TO_TCP_SOCK, 5125 PTR_TO_XDP_SOCK, 5126 PTR_TO_BTF_ID, 5127 }, 5128 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5129 }; 5130 #endif 5131 5132 static const struct bpf_reg_types mem_types = { 5133 .types = { 5134 PTR_TO_STACK, 5135 PTR_TO_PACKET, 5136 PTR_TO_PACKET_META, 5137 PTR_TO_MAP_KEY, 5138 PTR_TO_MAP_VALUE, 5139 PTR_TO_MEM, 5140 PTR_TO_MEM | MEM_ALLOC, 5141 PTR_TO_BUF, 5142 }, 5143 }; 5144 5145 static const struct bpf_reg_types int_ptr_types = { 5146 .types = { 5147 PTR_TO_STACK, 5148 PTR_TO_PACKET, 5149 PTR_TO_PACKET_META, 5150 PTR_TO_MAP_KEY, 5151 PTR_TO_MAP_VALUE, 5152 }, 5153 }; 5154 5155 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5156 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5157 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5158 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } }; 5159 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5160 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5161 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5162 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 5163 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5164 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5165 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5166 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5167 5168 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5169 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5170 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5171 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 5172 [ARG_CONST_SIZE] = &scalar_types, 5173 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5174 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5175 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5176 [ARG_PTR_TO_CTX] = &context_types, 5177 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5178 #ifdef CONFIG_NET 5179 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5180 #endif 5181 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5182 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5183 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5184 [ARG_PTR_TO_MEM] = &mem_types, 5185 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 5186 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5187 [ARG_PTR_TO_INT] = &int_ptr_types, 5188 [ARG_PTR_TO_LONG] = &int_ptr_types, 5189 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5190 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5191 [ARG_PTR_TO_STACK] = &stack_ptr_types, 5192 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5193 [ARG_PTR_TO_TIMER] = &timer_types, 5194 }; 5195 5196 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5197 enum bpf_arg_type arg_type, 5198 const u32 *arg_btf_id) 5199 { 5200 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5201 enum bpf_reg_type expected, type = reg->type; 5202 const struct bpf_reg_types *compatible; 5203 int i, j; 5204 5205 compatible = compatible_reg_types[base_type(arg_type)]; 5206 if (!compatible) { 5207 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5208 return -EFAULT; 5209 } 5210 5211 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 5212 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 5213 * 5214 * Same for MAYBE_NULL: 5215 * 5216 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 5217 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 5218 * 5219 * Therefore we fold these flags depending on the arg_type before comparison. 5220 */ 5221 if (arg_type & MEM_RDONLY) 5222 type &= ~MEM_RDONLY; 5223 if (arg_type & PTR_MAYBE_NULL) 5224 type &= ~PTR_MAYBE_NULL; 5225 5226 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5227 expected = compatible->types[i]; 5228 if (expected == NOT_INIT) 5229 break; 5230 5231 if (type == expected) 5232 goto found; 5233 } 5234 5235 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 5236 for (j = 0; j + 1 < i; j++) 5237 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 5238 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 5239 return -EACCES; 5240 5241 found: 5242 if (reg->type == PTR_TO_BTF_ID) { 5243 if (!arg_btf_id) { 5244 if (!compatible->btf_id) { 5245 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5246 return -EFAULT; 5247 } 5248 arg_btf_id = compatible->btf_id; 5249 } 5250 5251 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5252 btf_vmlinux, *arg_btf_id)) { 5253 verbose(env, "R%d is of type %s but %s is expected\n", 5254 regno, kernel_type_name(reg->btf, reg->btf_id), 5255 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5256 return -EACCES; 5257 } 5258 } 5259 5260 return 0; 5261 } 5262 5263 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5264 struct bpf_call_arg_meta *meta, 5265 const struct bpf_func_proto *fn) 5266 { 5267 u32 regno = BPF_REG_1 + arg; 5268 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5269 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5270 enum bpf_reg_type type = reg->type; 5271 int err = 0; 5272 5273 if (arg_type == ARG_DONTCARE) 5274 return 0; 5275 5276 err = check_reg_arg(env, regno, SRC_OP); 5277 if (err) 5278 return err; 5279 5280 if (arg_type == ARG_ANYTHING) { 5281 if (is_pointer_value(env, regno)) { 5282 verbose(env, "R%d leaks addr into helper function\n", 5283 regno); 5284 return -EACCES; 5285 } 5286 return 0; 5287 } 5288 5289 if (type_is_pkt_pointer(type) && 5290 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5291 verbose(env, "helper access to the packet is not allowed\n"); 5292 return -EACCES; 5293 } 5294 5295 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE || 5296 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5297 err = resolve_map_arg_type(env, meta, &arg_type); 5298 if (err) 5299 return err; 5300 } 5301 5302 if (register_is_null(reg) && type_may_be_null(arg_type)) 5303 /* A NULL register has a SCALAR_VALUE type, so skip 5304 * type checking. 5305 */ 5306 goto skip_type_check; 5307 5308 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 5309 if (err) 5310 return err; 5311 5312 switch ((u32)type) { 5313 case SCALAR_VALUE: 5314 /* Pointer types where reg offset is explicitly allowed: */ 5315 case PTR_TO_PACKET: 5316 case PTR_TO_PACKET_META: 5317 case PTR_TO_MAP_KEY: 5318 case PTR_TO_MAP_VALUE: 5319 case PTR_TO_MEM: 5320 case PTR_TO_MEM | MEM_RDONLY: 5321 case PTR_TO_MEM | MEM_ALLOC: 5322 case PTR_TO_BUF: 5323 case PTR_TO_BUF | MEM_RDONLY: 5324 case PTR_TO_STACK: 5325 /* Some of the argument types nevertheless require a 5326 * zero register offset. 5327 */ 5328 if (arg_type == ARG_PTR_TO_ALLOC_MEM) 5329 goto force_off_check; 5330 break; 5331 /* All the rest must be rejected: */ 5332 default: 5333 force_off_check: 5334 err = __check_ptr_off_reg(env, reg, regno, 5335 type == PTR_TO_BTF_ID); 5336 if (err < 0) 5337 return err; 5338 break; 5339 } 5340 5341 skip_type_check: 5342 if (reg->ref_obj_id) { 5343 if (meta->ref_obj_id) { 5344 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5345 regno, reg->ref_obj_id, 5346 meta->ref_obj_id); 5347 return -EFAULT; 5348 } 5349 meta->ref_obj_id = reg->ref_obj_id; 5350 } 5351 5352 if (arg_type == ARG_CONST_MAP_PTR) { 5353 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5354 if (meta->map_ptr) { 5355 /* Use map_uid (which is unique id of inner map) to reject: 5356 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5357 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5358 * if (inner_map1 && inner_map2) { 5359 * timer = bpf_map_lookup_elem(inner_map1); 5360 * if (timer) 5361 * // mismatch would have been allowed 5362 * bpf_timer_init(timer, inner_map2); 5363 * } 5364 * 5365 * Comparing map_ptr is enough to distinguish normal and outer maps. 5366 */ 5367 if (meta->map_ptr != reg->map_ptr || 5368 meta->map_uid != reg->map_uid) { 5369 verbose(env, 5370 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5371 meta->map_uid, reg->map_uid); 5372 return -EINVAL; 5373 } 5374 } 5375 meta->map_ptr = reg->map_ptr; 5376 meta->map_uid = reg->map_uid; 5377 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5378 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5379 * check that [key, key + map->key_size) are within 5380 * stack limits and initialized 5381 */ 5382 if (!meta->map_ptr) { 5383 /* in function declaration map_ptr must come before 5384 * map_key, so that it's verified and known before 5385 * we have to check map_key here. Otherwise it means 5386 * that kernel subsystem misconfigured verifier 5387 */ 5388 verbose(env, "invalid map_ptr to access map->key\n"); 5389 return -EACCES; 5390 } 5391 err = check_helper_mem_access(env, regno, 5392 meta->map_ptr->key_size, false, 5393 NULL); 5394 } else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE || 5395 base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5396 if (type_may_be_null(arg_type) && register_is_null(reg)) 5397 return 0; 5398 5399 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5400 * check [value, value + map->value_size) validity 5401 */ 5402 if (!meta->map_ptr) { 5403 /* kernel subsystem misconfigured verifier */ 5404 verbose(env, "invalid map_ptr to access map->value\n"); 5405 return -EACCES; 5406 } 5407 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 5408 err = check_helper_mem_access(env, regno, 5409 meta->map_ptr->value_size, false, 5410 meta); 5411 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5412 if (!reg->btf_id) { 5413 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5414 return -EACCES; 5415 } 5416 meta->ret_btf = reg->btf; 5417 meta->ret_btf_id = reg->btf_id; 5418 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5419 if (meta->func_id == BPF_FUNC_spin_lock) { 5420 if (process_spin_lock(env, regno, true)) 5421 return -EACCES; 5422 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5423 if (process_spin_lock(env, regno, false)) 5424 return -EACCES; 5425 } else { 5426 verbose(env, "verifier internal error\n"); 5427 return -EFAULT; 5428 } 5429 } else if (arg_type == ARG_PTR_TO_TIMER) { 5430 if (process_timer_func(env, regno, meta)) 5431 return -EACCES; 5432 } else if (arg_type == ARG_PTR_TO_FUNC) { 5433 meta->subprogno = reg->subprogno; 5434 } else if (arg_type_is_mem_ptr(arg_type)) { 5435 /* The access to this pointer is only checked when we hit the 5436 * next is_mem_size argument below. 5437 */ 5438 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5439 } else if (arg_type_is_mem_size(arg_type)) { 5440 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5441 5442 /* This is used to refine r0 return value bounds for helpers 5443 * that enforce this value as an upper bound on return values. 5444 * See do_refine_retval_range() for helpers that can refine 5445 * the return value. C type of helper is u32 so we pull register 5446 * bound from umax_value however, if negative verifier errors 5447 * out. Only upper bounds can be learned because retval is an 5448 * int type and negative retvals are allowed. 5449 */ 5450 meta->msize_max_value = reg->umax_value; 5451 5452 /* The register is SCALAR_VALUE; the access check 5453 * happens using its boundaries. 5454 */ 5455 if (!tnum_is_const(reg->var_off)) 5456 /* For unprivileged variable accesses, disable raw 5457 * mode so that the program is required to 5458 * initialize all the memory that the helper could 5459 * just partially fill up. 5460 */ 5461 meta = NULL; 5462 5463 if (reg->smin_value < 0) { 5464 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5465 regno); 5466 return -EACCES; 5467 } 5468 5469 if (reg->umin_value == 0) { 5470 err = check_helper_mem_access(env, regno - 1, 0, 5471 zero_size_allowed, 5472 meta); 5473 if (err) 5474 return err; 5475 } 5476 5477 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5478 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5479 regno); 5480 return -EACCES; 5481 } 5482 err = check_helper_mem_access(env, regno - 1, 5483 reg->umax_value, 5484 zero_size_allowed, meta); 5485 if (!err) 5486 err = mark_chain_precision(env, regno); 5487 } else if (arg_type_is_alloc_size(arg_type)) { 5488 if (!tnum_is_const(reg->var_off)) { 5489 verbose(env, "R%d is not a known constant'\n", 5490 regno); 5491 return -EACCES; 5492 } 5493 meta->mem_size = reg->var_off.value; 5494 } else if (arg_type_is_int_ptr(arg_type)) { 5495 int size = int_ptr_type_to_size(arg_type); 5496 5497 err = check_helper_mem_access(env, regno, size, false, meta); 5498 if (err) 5499 return err; 5500 err = check_ptr_alignment(env, reg, 0, size, true); 5501 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5502 struct bpf_map *map = reg->map_ptr; 5503 int map_off; 5504 u64 map_addr; 5505 char *str_ptr; 5506 5507 if (!bpf_map_is_rdonly(map)) { 5508 verbose(env, "R%d does not point to a readonly map'\n", regno); 5509 return -EACCES; 5510 } 5511 5512 if (!tnum_is_const(reg->var_off)) { 5513 verbose(env, "R%d is not a constant address'\n", regno); 5514 return -EACCES; 5515 } 5516 5517 if (!map->ops->map_direct_value_addr) { 5518 verbose(env, "no direct value access support for this map type\n"); 5519 return -EACCES; 5520 } 5521 5522 err = check_map_access(env, regno, reg->off, 5523 map->value_size - reg->off, false); 5524 if (err) 5525 return err; 5526 5527 map_off = reg->off + reg->var_off.value; 5528 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5529 if (err) { 5530 verbose(env, "direct value access on string failed\n"); 5531 return err; 5532 } 5533 5534 str_ptr = (char *)(long)(map_addr); 5535 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5536 verbose(env, "string is not zero-terminated\n"); 5537 return -EINVAL; 5538 } 5539 } 5540 5541 return err; 5542 } 5543 5544 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5545 { 5546 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5547 enum bpf_prog_type type = resolve_prog_type(env->prog); 5548 5549 if (func_id != BPF_FUNC_map_update_elem) 5550 return false; 5551 5552 /* It's not possible to get access to a locked struct sock in these 5553 * contexts, so updating is safe. 5554 */ 5555 switch (type) { 5556 case BPF_PROG_TYPE_TRACING: 5557 if (eatype == BPF_TRACE_ITER) 5558 return true; 5559 break; 5560 case BPF_PROG_TYPE_SOCKET_FILTER: 5561 case BPF_PROG_TYPE_SCHED_CLS: 5562 case BPF_PROG_TYPE_SCHED_ACT: 5563 case BPF_PROG_TYPE_XDP: 5564 case BPF_PROG_TYPE_SK_REUSEPORT: 5565 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5566 case BPF_PROG_TYPE_SK_LOOKUP: 5567 return true; 5568 default: 5569 break; 5570 } 5571 5572 verbose(env, "cannot update sockmap in this context\n"); 5573 return false; 5574 } 5575 5576 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5577 { 5578 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5579 } 5580 5581 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5582 struct bpf_map *map, int func_id) 5583 { 5584 if (!map) 5585 return 0; 5586 5587 /* We need a two way check, first is from map perspective ... */ 5588 switch (map->map_type) { 5589 case BPF_MAP_TYPE_PROG_ARRAY: 5590 if (func_id != BPF_FUNC_tail_call) 5591 goto error; 5592 break; 5593 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5594 if (func_id != BPF_FUNC_perf_event_read && 5595 func_id != BPF_FUNC_perf_event_output && 5596 func_id != BPF_FUNC_skb_output && 5597 func_id != BPF_FUNC_perf_event_read_value && 5598 func_id != BPF_FUNC_xdp_output) 5599 goto error; 5600 break; 5601 case BPF_MAP_TYPE_RINGBUF: 5602 if (func_id != BPF_FUNC_ringbuf_output && 5603 func_id != BPF_FUNC_ringbuf_reserve && 5604 func_id != BPF_FUNC_ringbuf_query) 5605 goto error; 5606 break; 5607 case BPF_MAP_TYPE_STACK_TRACE: 5608 if (func_id != BPF_FUNC_get_stackid) 5609 goto error; 5610 break; 5611 case BPF_MAP_TYPE_CGROUP_ARRAY: 5612 if (func_id != BPF_FUNC_skb_under_cgroup && 5613 func_id != BPF_FUNC_current_task_under_cgroup) 5614 goto error; 5615 break; 5616 case BPF_MAP_TYPE_CGROUP_STORAGE: 5617 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5618 if (func_id != BPF_FUNC_get_local_storage) 5619 goto error; 5620 break; 5621 case BPF_MAP_TYPE_DEVMAP: 5622 case BPF_MAP_TYPE_DEVMAP_HASH: 5623 if (func_id != BPF_FUNC_redirect_map && 5624 func_id != BPF_FUNC_map_lookup_elem) 5625 goto error; 5626 break; 5627 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5628 * appear. 5629 */ 5630 case BPF_MAP_TYPE_CPUMAP: 5631 if (func_id != BPF_FUNC_redirect_map) 5632 goto error; 5633 break; 5634 case BPF_MAP_TYPE_XSKMAP: 5635 if (func_id != BPF_FUNC_redirect_map && 5636 func_id != BPF_FUNC_map_lookup_elem) 5637 goto error; 5638 break; 5639 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5640 case BPF_MAP_TYPE_HASH_OF_MAPS: 5641 if (func_id != BPF_FUNC_map_lookup_elem) 5642 goto error; 5643 break; 5644 case BPF_MAP_TYPE_SOCKMAP: 5645 if (func_id != BPF_FUNC_sk_redirect_map && 5646 func_id != BPF_FUNC_sock_map_update && 5647 func_id != BPF_FUNC_map_delete_elem && 5648 func_id != BPF_FUNC_msg_redirect_map && 5649 func_id != BPF_FUNC_sk_select_reuseport && 5650 func_id != BPF_FUNC_map_lookup_elem && 5651 !may_update_sockmap(env, func_id)) 5652 goto error; 5653 break; 5654 case BPF_MAP_TYPE_SOCKHASH: 5655 if (func_id != BPF_FUNC_sk_redirect_hash && 5656 func_id != BPF_FUNC_sock_hash_update && 5657 func_id != BPF_FUNC_map_delete_elem && 5658 func_id != BPF_FUNC_msg_redirect_hash && 5659 func_id != BPF_FUNC_sk_select_reuseport && 5660 func_id != BPF_FUNC_map_lookup_elem && 5661 !may_update_sockmap(env, func_id)) 5662 goto error; 5663 break; 5664 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5665 if (func_id != BPF_FUNC_sk_select_reuseport) 5666 goto error; 5667 break; 5668 case BPF_MAP_TYPE_QUEUE: 5669 case BPF_MAP_TYPE_STACK: 5670 if (func_id != BPF_FUNC_map_peek_elem && 5671 func_id != BPF_FUNC_map_pop_elem && 5672 func_id != BPF_FUNC_map_push_elem) 5673 goto error; 5674 break; 5675 case BPF_MAP_TYPE_SK_STORAGE: 5676 if (func_id != BPF_FUNC_sk_storage_get && 5677 func_id != BPF_FUNC_sk_storage_delete) 5678 goto error; 5679 break; 5680 case BPF_MAP_TYPE_INODE_STORAGE: 5681 if (func_id != BPF_FUNC_inode_storage_get && 5682 func_id != BPF_FUNC_inode_storage_delete) 5683 goto error; 5684 break; 5685 case BPF_MAP_TYPE_TASK_STORAGE: 5686 if (func_id != BPF_FUNC_task_storage_get && 5687 func_id != BPF_FUNC_task_storage_delete) 5688 goto error; 5689 break; 5690 case BPF_MAP_TYPE_BLOOM_FILTER: 5691 if (func_id != BPF_FUNC_map_peek_elem && 5692 func_id != BPF_FUNC_map_push_elem) 5693 goto error; 5694 break; 5695 default: 5696 break; 5697 } 5698 5699 /* ... and second from the function itself. */ 5700 switch (func_id) { 5701 case BPF_FUNC_tail_call: 5702 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5703 goto error; 5704 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5705 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5706 return -EINVAL; 5707 } 5708 break; 5709 case BPF_FUNC_perf_event_read: 5710 case BPF_FUNC_perf_event_output: 5711 case BPF_FUNC_perf_event_read_value: 5712 case BPF_FUNC_skb_output: 5713 case BPF_FUNC_xdp_output: 5714 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5715 goto error; 5716 break; 5717 case BPF_FUNC_ringbuf_output: 5718 case BPF_FUNC_ringbuf_reserve: 5719 case BPF_FUNC_ringbuf_query: 5720 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 5721 goto error; 5722 break; 5723 case BPF_FUNC_get_stackid: 5724 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5725 goto error; 5726 break; 5727 case BPF_FUNC_current_task_under_cgroup: 5728 case BPF_FUNC_skb_under_cgroup: 5729 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5730 goto error; 5731 break; 5732 case BPF_FUNC_redirect_map: 5733 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5734 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5735 map->map_type != BPF_MAP_TYPE_CPUMAP && 5736 map->map_type != BPF_MAP_TYPE_XSKMAP) 5737 goto error; 5738 break; 5739 case BPF_FUNC_sk_redirect_map: 5740 case BPF_FUNC_msg_redirect_map: 5741 case BPF_FUNC_sock_map_update: 5742 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5743 goto error; 5744 break; 5745 case BPF_FUNC_sk_redirect_hash: 5746 case BPF_FUNC_msg_redirect_hash: 5747 case BPF_FUNC_sock_hash_update: 5748 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5749 goto error; 5750 break; 5751 case BPF_FUNC_get_local_storage: 5752 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5753 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5754 goto error; 5755 break; 5756 case BPF_FUNC_sk_select_reuseport: 5757 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5758 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5759 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5760 goto error; 5761 break; 5762 case BPF_FUNC_map_pop_elem: 5763 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5764 map->map_type != BPF_MAP_TYPE_STACK) 5765 goto error; 5766 break; 5767 case BPF_FUNC_map_peek_elem: 5768 case BPF_FUNC_map_push_elem: 5769 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5770 map->map_type != BPF_MAP_TYPE_STACK && 5771 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 5772 goto error; 5773 break; 5774 case BPF_FUNC_sk_storage_get: 5775 case BPF_FUNC_sk_storage_delete: 5776 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5777 goto error; 5778 break; 5779 case BPF_FUNC_inode_storage_get: 5780 case BPF_FUNC_inode_storage_delete: 5781 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5782 goto error; 5783 break; 5784 case BPF_FUNC_task_storage_get: 5785 case BPF_FUNC_task_storage_delete: 5786 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5787 goto error; 5788 break; 5789 default: 5790 break; 5791 } 5792 5793 return 0; 5794 error: 5795 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5796 map->map_type, func_id_name(func_id), func_id); 5797 return -EINVAL; 5798 } 5799 5800 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5801 { 5802 int count = 0; 5803 5804 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5805 count++; 5806 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5807 count++; 5808 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5809 count++; 5810 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5811 count++; 5812 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5813 count++; 5814 5815 /* We only support one arg being in raw mode at the moment, 5816 * which is sufficient for the helper functions we have 5817 * right now. 5818 */ 5819 return count <= 1; 5820 } 5821 5822 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5823 enum bpf_arg_type arg_next) 5824 { 5825 return (arg_type_is_mem_ptr(arg_curr) && 5826 !arg_type_is_mem_size(arg_next)) || 5827 (!arg_type_is_mem_ptr(arg_curr) && 5828 arg_type_is_mem_size(arg_next)); 5829 } 5830 5831 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5832 { 5833 /* bpf_xxx(..., buf, len) call will access 'len' 5834 * bytes from memory 'buf'. Both arg types need 5835 * to be paired, so make sure there's no buggy 5836 * helper function specification. 5837 */ 5838 if (arg_type_is_mem_size(fn->arg1_type) || 5839 arg_type_is_mem_ptr(fn->arg5_type) || 5840 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5841 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5842 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5843 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5844 return false; 5845 5846 return true; 5847 } 5848 5849 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5850 { 5851 int count = 0; 5852 5853 if (arg_type_may_be_refcounted(fn->arg1_type)) 5854 count++; 5855 if (arg_type_may_be_refcounted(fn->arg2_type)) 5856 count++; 5857 if (arg_type_may_be_refcounted(fn->arg3_type)) 5858 count++; 5859 if (arg_type_may_be_refcounted(fn->arg4_type)) 5860 count++; 5861 if (arg_type_may_be_refcounted(fn->arg5_type)) 5862 count++; 5863 5864 /* A reference acquiring function cannot acquire 5865 * another refcounted ptr. 5866 */ 5867 if (may_be_acquire_function(func_id) && count) 5868 return false; 5869 5870 /* We only support one arg being unreferenced at the moment, 5871 * which is sufficient for the helper functions we have right now. 5872 */ 5873 return count <= 1; 5874 } 5875 5876 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5877 { 5878 int i; 5879 5880 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5881 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5882 return false; 5883 5884 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5885 return false; 5886 } 5887 5888 return true; 5889 } 5890 5891 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5892 { 5893 return check_raw_mode_ok(fn) && 5894 check_arg_pair_ok(fn) && 5895 check_btf_id_ok(fn) && 5896 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5897 } 5898 5899 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5900 * are now invalid, so turn them into unknown SCALAR_VALUE. 5901 */ 5902 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5903 struct bpf_func_state *state) 5904 { 5905 struct bpf_reg_state *regs = state->regs, *reg; 5906 int i; 5907 5908 for (i = 0; i < MAX_BPF_REG; i++) 5909 if (reg_is_pkt_pointer_any(®s[i])) 5910 mark_reg_unknown(env, regs, i); 5911 5912 bpf_for_each_spilled_reg(i, state, reg) { 5913 if (!reg) 5914 continue; 5915 if (reg_is_pkt_pointer_any(reg)) 5916 __mark_reg_unknown(env, reg); 5917 } 5918 } 5919 5920 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5921 { 5922 struct bpf_verifier_state *vstate = env->cur_state; 5923 int i; 5924 5925 for (i = 0; i <= vstate->curframe; i++) 5926 __clear_all_pkt_pointers(env, vstate->frame[i]); 5927 } 5928 5929 enum { 5930 AT_PKT_END = -1, 5931 BEYOND_PKT_END = -2, 5932 }; 5933 5934 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5935 { 5936 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5937 struct bpf_reg_state *reg = &state->regs[regn]; 5938 5939 if (reg->type != PTR_TO_PACKET) 5940 /* PTR_TO_PACKET_META is not supported yet */ 5941 return; 5942 5943 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5944 * How far beyond pkt_end it goes is unknown. 5945 * if (!range_open) it's the case of pkt >= pkt_end 5946 * if (range_open) it's the case of pkt > pkt_end 5947 * hence this pointer is at least 1 byte bigger than pkt_end 5948 */ 5949 if (range_open) 5950 reg->range = BEYOND_PKT_END; 5951 else 5952 reg->range = AT_PKT_END; 5953 } 5954 5955 static void release_reg_references(struct bpf_verifier_env *env, 5956 struct bpf_func_state *state, 5957 int ref_obj_id) 5958 { 5959 struct bpf_reg_state *regs = state->regs, *reg; 5960 int i; 5961 5962 for (i = 0; i < MAX_BPF_REG; i++) 5963 if (regs[i].ref_obj_id == ref_obj_id) 5964 mark_reg_unknown(env, regs, i); 5965 5966 bpf_for_each_spilled_reg(i, state, reg) { 5967 if (!reg) 5968 continue; 5969 if (reg->ref_obj_id == ref_obj_id) 5970 __mark_reg_unknown(env, reg); 5971 } 5972 } 5973 5974 /* The pointer with the specified id has released its reference to kernel 5975 * resources. Identify all copies of the same pointer and clear the reference. 5976 */ 5977 static int release_reference(struct bpf_verifier_env *env, 5978 int ref_obj_id) 5979 { 5980 struct bpf_verifier_state *vstate = env->cur_state; 5981 int err; 5982 int i; 5983 5984 err = release_reference_state(cur_func(env), ref_obj_id); 5985 if (err) 5986 return err; 5987 5988 for (i = 0; i <= vstate->curframe; i++) 5989 release_reg_references(env, vstate->frame[i], ref_obj_id); 5990 5991 return 0; 5992 } 5993 5994 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5995 struct bpf_reg_state *regs) 5996 { 5997 int i; 5998 5999 /* after the call registers r0 - r5 were scratched */ 6000 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6001 mark_reg_not_init(env, regs, caller_saved[i]); 6002 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6003 } 6004 } 6005 6006 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 6007 struct bpf_func_state *caller, 6008 struct bpf_func_state *callee, 6009 int insn_idx); 6010 6011 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6012 int *insn_idx, int subprog, 6013 set_callee_state_fn set_callee_state_cb) 6014 { 6015 struct bpf_verifier_state *state = env->cur_state; 6016 struct bpf_func_info_aux *func_info_aux; 6017 struct bpf_func_state *caller, *callee; 6018 int err; 6019 bool is_global = false; 6020 6021 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 6022 verbose(env, "the call stack of %d frames is too deep\n", 6023 state->curframe + 2); 6024 return -E2BIG; 6025 } 6026 6027 caller = state->frame[state->curframe]; 6028 if (state->frame[state->curframe + 1]) { 6029 verbose(env, "verifier bug. Frame %d already allocated\n", 6030 state->curframe + 1); 6031 return -EFAULT; 6032 } 6033 6034 func_info_aux = env->prog->aux->func_info_aux; 6035 if (func_info_aux) 6036 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6037 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 6038 if (err == -EFAULT) 6039 return err; 6040 if (is_global) { 6041 if (err) { 6042 verbose(env, "Caller passes invalid args into func#%d\n", 6043 subprog); 6044 return err; 6045 } else { 6046 if (env->log.level & BPF_LOG_LEVEL) 6047 verbose(env, 6048 "Func#%d is global and valid. Skipping.\n", 6049 subprog); 6050 clear_caller_saved_regs(env, caller->regs); 6051 6052 /* All global functions return a 64-bit SCALAR_VALUE */ 6053 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6054 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6055 6056 /* continue with next insn after call */ 6057 return 0; 6058 } 6059 } 6060 6061 if (insn->code == (BPF_JMP | BPF_CALL) && 6062 insn->src_reg == 0 && 6063 insn->imm == BPF_FUNC_timer_set_callback) { 6064 struct bpf_verifier_state *async_cb; 6065 6066 /* there is no real recursion here. timer callbacks are async */ 6067 env->subprog_info[subprog].is_async_cb = true; 6068 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 6069 *insn_idx, subprog); 6070 if (!async_cb) 6071 return -EFAULT; 6072 callee = async_cb->frame[0]; 6073 callee->async_entry_cnt = caller->async_entry_cnt + 1; 6074 6075 /* Convert bpf_timer_set_callback() args into timer callback args */ 6076 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6077 if (err) 6078 return err; 6079 6080 clear_caller_saved_regs(env, caller->regs); 6081 mark_reg_unknown(env, caller->regs, BPF_REG_0); 6082 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6083 /* continue with next insn after call */ 6084 return 0; 6085 } 6086 6087 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 6088 if (!callee) 6089 return -ENOMEM; 6090 state->frame[state->curframe + 1] = callee; 6091 6092 /* callee cannot access r0, r6 - r9 for reading and has to write 6093 * into its own stack before reading from it. 6094 * callee can read/write into caller's stack 6095 */ 6096 init_func_state(env, callee, 6097 /* remember the callsite, it will be used by bpf_exit */ 6098 *insn_idx /* callsite */, 6099 state->curframe + 1 /* frameno within this callchain */, 6100 subprog /* subprog number within this prog */); 6101 6102 /* Transfer references to the callee */ 6103 err = copy_reference_state(callee, caller); 6104 if (err) 6105 return err; 6106 6107 err = set_callee_state_cb(env, caller, callee, *insn_idx); 6108 if (err) 6109 return err; 6110 6111 clear_caller_saved_regs(env, caller->regs); 6112 6113 /* only increment it after check_reg_arg() finished */ 6114 state->curframe++; 6115 6116 /* and go analyze first insn of the callee */ 6117 *insn_idx = env->subprog_info[subprog].start - 1; 6118 6119 if (env->log.level & BPF_LOG_LEVEL) { 6120 verbose(env, "caller:\n"); 6121 print_verifier_state(env, caller, true); 6122 verbose(env, "callee:\n"); 6123 print_verifier_state(env, callee, true); 6124 } 6125 return 0; 6126 } 6127 6128 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6129 struct bpf_func_state *caller, 6130 struct bpf_func_state *callee) 6131 { 6132 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6133 * void *callback_ctx, u64 flags); 6134 * callback_fn(struct bpf_map *map, void *key, void *value, 6135 * void *callback_ctx); 6136 */ 6137 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6138 6139 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6140 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6141 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6142 6143 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6144 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6145 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6146 6147 /* pointer to stack or null */ 6148 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6149 6150 /* unused */ 6151 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6152 return 0; 6153 } 6154 6155 static int set_callee_state(struct bpf_verifier_env *env, 6156 struct bpf_func_state *caller, 6157 struct bpf_func_state *callee, int insn_idx) 6158 { 6159 int i; 6160 6161 /* copy r1 - r5 args that callee can access. The copy includes parent 6162 * pointers, which connects us up to the liveness chain 6163 */ 6164 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6165 callee->regs[i] = caller->regs[i]; 6166 return 0; 6167 } 6168 6169 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6170 int *insn_idx) 6171 { 6172 int subprog, target_insn; 6173 6174 target_insn = *insn_idx + insn->imm + 1; 6175 subprog = find_subprog(env, target_insn); 6176 if (subprog < 0) { 6177 verbose(env, "verifier bug. No program starts at insn %d\n", 6178 target_insn); 6179 return -EFAULT; 6180 } 6181 6182 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6183 } 6184 6185 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6186 struct bpf_func_state *caller, 6187 struct bpf_func_state *callee, 6188 int insn_idx) 6189 { 6190 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6191 struct bpf_map *map; 6192 int err; 6193 6194 if (bpf_map_ptr_poisoned(insn_aux)) { 6195 verbose(env, "tail_call abusing map_ptr\n"); 6196 return -EINVAL; 6197 } 6198 6199 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6200 if (!map->ops->map_set_for_each_callback_args || 6201 !map->ops->map_for_each_callback) { 6202 verbose(env, "callback function not allowed for map\n"); 6203 return -ENOTSUPP; 6204 } 6205 6206 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6207 if (err) 6208 return err; 6209 6210 callee->in_callback_fn = true; 6211 return 0; 6212 } 6213 6214 static int set_loop_callback_state(struct bpf_verifier_env *env, 6215 struct bpf_func_state *caller, 6216 struct bpf_func_state *callee, 6217 int insn_idx) 6218 { 6219 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 6220 * u64 flags); 6221 * callback_fn(u32 index, void *callback_ctx); 6222 */ 6223 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 6224 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 6225 6226 /* unused */ 6227 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 6228 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6229 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6230 6231 callee->in_callback_fn = true; 6232 return 0; 6233 } 6234 6235 static int set_timer_callback_state(struct bpf_verifier_env *env, 6236 struct bpf_func_state *caller, 6237 struct bpf_func_state *callee, 6238 int insn_idx) 6239 { 6240 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6241 6242 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6243 * callback_fn(struct bpf_map *map, void *key, void *value); 6244 */ 6245 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6246 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6247 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6248 6249 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6250 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6251 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6252 6253 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6254 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6255 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6256 6257 /* unused */ 6258 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6259 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6260 callee->in_async_callback_fn = true; 6261 return 0; 6262 } 6263 6264 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 6265 struct bpf_func_state *caller, 6266 struct bpf_func_state *callee, 6267 int insn_idx) 6268 { 6269 /* bpf_find_vma(struct task_struct *task, u64 addr, 6270 * void *callback_fn, void *callback_ctx, u64 flags) 6271 * (callback_fn)(struct task_struct *task, 6272 * struct vm_area_struct *vma, void *callback_ctx); 6273 */ 6274 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6275 6276 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 6277 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6278 callee->regs[BPF_REG_2].btf = btf_vmlinux; 6279 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 6280 6281 /* pointer to stack or null */ 6282 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 6283 6284 /* unused */ 6285 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6286 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6287 callee->in_callback_fn = true; 6288 return 0; 6289 } 6290 6291 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6292 { 6293 struct bpf_verifier_state *state = env->cur_state; 6294 struct bpf_func_state *caller, *callee; 6295 struct bpf_reg_state *r0; 6296 int err; 6297 6298 callee = state->frame[state->curframe]; 6299 r0 = &callee->regs[BPF_REG_0]; 6300 if (r0->type == PTR_TO_STACK) { 6301 /* technically it's ok to return caller's stack pointer 6302 * (or caller's caller's pointer) back to the caller, 6303 * since these pointers are valid. Only current stack 6304 * pointer will be invalid as soon as function exits, 6305 * but let's be conservative 6306 */ 6307 verbose(env, "cannot return stack pointer to the caller\n"); 6308 return -EINVAL; 6309 } 6310 6311 state->curframe--; 6312 caller = state->frame[state->curframe]; 6313 if (callee->in_callback_fn) { 6314 /* enforce R0 return value range [0, 1]. */ 6315 struct tnum range = tnum_range(0, 1); 6316 6317 if (r0->type != SCALAR_VALUE) { 6318 verbose(env, "R0 not a scalar value\n"); 6319 return -EACCES; 6320 } 6321 if (!tnum_in(range, r0->var_off)) { 6322 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6323 return -EINVAL; 6324 } 6325 } else { 6326 /* return to the caller whatever r0 had in the callee */ 6327 caller->regs[BPF_REG_0] = *r0; 6328 } 6329 6330 /* Transfer references to the caller */ 6331 err = copy_reference_state(caller, callee); 6332 if (err) 6333 return err; 6334 6335 *insn_idx = callee->callsite + 1; 6336 if (env->log.level & BPF_LOG_LEVEL) { 6337 verbose(env, "returning from callee:\n"); 6338 print_verifier_state(env, callee, true); 6339 verbose(env, "to caller at %d:\n", *insn_idx); 6340 print_verifier_state(env, caller, true); 6341 } 6342 /* clear everything in the callee */ 6343 free_func_state(callee); 6344 state->frame[state->curframe + 1] = NULL; 6345 return 0; 6346 } 6347 6348 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6349 int func_id, 6350 struct bpf_call_arg_meta *meta) 6351 { 6352 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6353 6354 if (ret_type != RET_INTEGER || 6355 (func_id != BPF_FUNC_get_stack && 6356 func_id != BPF_FUNC_get_task_stack && 6357 func_id != BPF_FUNC_probe_read_str && 6358 func_id != BPF_FUNC_probe_read_kernel_str && 6359 func_id != BPF_FUNC_probe_read_user_str)) 6360 return; 6361 6362 ret_reg->smax_value = meta->msize_max_value; 6363 ret_reg->s32_max_value = meta->msize_max_value; 6364 ret_reg->smin_value = -MAX_ERRNO; 6365 ret_reg->s32_min_value = -MAX_ERRNO; 6366 __reg_deduce_bounds(ret_reg); 6367 __reg_bound_offset(ret_reg); 6368 __update_reg_bounds(ret_reg); 6369 } 6370 6371 static int 6372 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6373 int func_id, int insn_idx) 6374 { 6375 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6376 struct bpf_map *map = meta->map_ptr; 6377 6378 if (func_id != BPF_FUNC_tail_call && 6379 func_id != BPF_FUNC_map_lookup_elem && 6380 func_id != BPF_FUNC_map_update_elem && 6381 func_id != BPF_FUNC_map_delete_elem && 6382 func_id != BPF_FUNC_map_push_elem && 6383 func_id != BPF_FUNC_map_pop_elem && 6384 func_id != BPF_FUNC_map_peek_elem && 6385 func_id != BPF_FUNC_for_each_map_elem && 6386 func_id != BPF_FUNC_redirect_map) 6387 return 0; 6388 6389 if (map == NULL) { 6390 verbose(env, "kernel subsystem misconfigured verifier\n"); 6391 return -EINVAL; 6392 } 6393 6394 /* In case of read-only, some additional restrictions 6395 * need to be applied in order to prevent altering the 6396 * state of the map from program side. 6397 */ 6398 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6399 (func_id == BPF_FUNC_map_delete_elem || 6400 func_id == BPF_FUNC_map_update_elem || 6401 func_id == BPF_FUNC_map_push_elem || 6402 func_id == BPF_FUNC_map_pop_elem)) { 6403 verbose(env, "write into map forbidden\n"); 6404 return -EACCES; 6405 } 6406 6407 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6408 bpf_map_ptr_store(aux, meta->map_ptr, 6409 !meta->map_ptr->bypass_spec_v1); 6410 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6411 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6412 !meta->map_ptr->bypass_spec_v1); 6413 return 0; 6414 } 6415 6416 static int 6417 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6418 int func_id, int insn_idx) 6419 { 6420 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6421 struct bpf_reg_state *regs = cur_regs(env), *reg; 6422 struct bpf_map *map = meta->map_ptr; 6423 struct tnum range; 6424 u64 val; 6425 int err; 6426 6427 if (func_id != BPF_FUNC_tail_call) 6428 return 0; 6429 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 6430 verbose(env, "kernel subsystem misconfigured verifier\n"); 6431 return -EINVAL; 6432 } 6433 6434 range = tnum_range(0, map->max_entries - 1); 6435 reg = ®s[BPF_REG_3]; 6436 6437 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 6438 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6439 return 0; 6440 } 6441 6442 err = mark_chain_precision(env, BPF_REG_3); 6443 if (err) 6444 return err; 6445 6446 val = reg->var_off.value; 6447 if (bpf_map_key_unseen(aux)) 6448 bpf_map_key_store(aux, val); 6449 else if (!bpf_map_key_poisoned(aux) && 6450 bpf_map_key_immediate(aux) != val) 6451 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6452 return 0; 6453 } 6454 6455 static int check_reference_leak(struct bpf_verifier_env *env) 6456 { 6457 struct bpf_func_state *state = cur_func(env); 6458 int i; 6459 6460 for (i = 0; i < state->acquired_refs; i++) { 6461 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 6462 state->refs[i].id, state->refs[i].insn_idx); 6463 } 6464 return state->acquired_refs ? -EINVAL : 0; 6465 } 6466 6467 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 6468 struct bpf_reg_state *regs) 6469 { 6470 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 6471 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 6472 struct bpf_map *fmt_map = fmt_reg->map_ptr; 6473 int err, fmt_map_off, num_args; 6474 u64 fmt_addr; 6475 char *fmt; 6476 6477 /* data must be an array of u64 */ 6478 if (data_len_reg->var_off.value % 8) 6479 return -EINVAL; 6480 num_args = data_len_reg->var_off.value / 8; 6481 6482 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 6483 * and map_direct_value_addr is set. 6484 */ 6485 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 6486 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 6487 fmt_map_off); 6488 if (err) { 6489 verbose(env, "verifier bug\n"); 6490 return -EFAULT; 6491 } 6492 fmt = (char *)(long)fmt_addr + fmt_map_off; 6493 6494 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 6495 * can focus on validating the format specifiers. 6496 */ 6497 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 6498 if (err < 0) 6499 verbose(env, "Invalid format string\n"); 6500 6501 return err; 6502 } 6503 6504 static int check_get_func_ip(struct bpf_verifier_env *env) 6505 { 6506 enum bpf_prog_type type = resolve_prog_type(env->prog); 6507 int func_id = BPF_FUNC_get_func_ip; 6508 6509 if (type == BPF_PROG_TYPE_TRACING) { 6510 if (!bpf_prog_has_trampoline(env->prog)) { 6511 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 6512 func_id_name(func_id), func_id); 6513 return -ENOTSUPP; 6514 } 6515 return 0; 6516 } else if (type == BPF_PROG_TYPE_KPROBE) { 6517 return 0; 6518 } 6519 6520 verbose(env, "func %s#%d not supported for program type %d\n", 6521 func_id_name(func_id), func_id, type); 6522 return -ENOTSUPP; 6523 } 6524 6525 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6526 int *insn_idx_p) 6527 { 6528 const struct bpf_func_proto *fn = NULL; 6529 enum bpf_return_type ret_type; 6530 enum bpf_type_flag ret_flag; 6531 struct bpf_reg_state *regs; 6532 struct bpf_call_arg_meta meta; 6533 int insn_idx = *insn_idx_p; 6534 bool changes_data; 6535 int i, err, func_id; 6536 6537 /* find function prototype */ 6538 func_id = insn->imm; 6539 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 6540 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 6541 func_id); 6542 return -EINVAL; 6543 } 6544 6545 if (env->ops->get_func_proto) 6546 fn = env->ops->get_func_proto(func_id, env->prog); 6547 if (!fn) { 6548 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 6549 func_id); 6550 return -EINVAL; 6551 } 6552 6553 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 6554 if (!env->prog->gpl_compatible && fn->gpl_only) { 6555 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 6556 return -EINVAL; 6557 } 6558 6559 if (fn->allowed && !fn->allowed(env->prog)) { 6560 verbose(env, "helper call is not allowed in probe\n"); 6561 return -EINVAL; 6562 } 6563 6564 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 6565 changes_data = bpf_helper_changes_pkt_data(fn->func); 6566 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 6567 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 6568 func_id_name(func_id), func_id); 6569 return -EINVAL; 6570 } 6571 6572 memset(&meta, 0, sizeof(meta)); 6573 meta.pkt_access = fn->pkt_access; 6574 6575 err = check_func_proto(fn, func_id); 6576 if (err) { 6577 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 6578 func_id_name(func_id), func_id); 6579 return err; 6580 } 6581 6582 meta.func_id = func_id; 6583 /* check args */ 6584 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6585 err = check_func_arg(env, i, &meta, fn); 6586 if (err) 6587 return err; 6588 } 6589 6590 err = record_func_map(env, &meta, func_id, insn_idx); 6591 if (err) 6592 return err; 6593 6594 err = record_func_key(env, &meta, func_id, insn_idx); 6595 if (err) 6596 return err; 6597 6598 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6599 * is inferred from register state. 6600 */ 6601 for (i = 0; i < meta.access_size; i++) { 6602 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6603 BPF_WRITE, -1, false); 6604 if (err) 6605 return err; 6606 } 6607 6608 if (is_release_function(func_id)) { 6609 err = release_reference(env, meta.ref_obj_id); 6610 if (err) { 6611 verbose(env, "func %s#%d reference has not been acquired before\n", 6612 func_id_name(func_id), func_id); 6613 return err; 6614 } 6615 } 6616 6617 regs = cur_regs(env); 6618 6619 switch (func_id) { 6620 case BPF_FUNC_tail_call: 6621 err = check_reference_leak(env); 6622 if (err) { 6623 verbose(env, "tail_call would lead to reference leak\n"); 6624 return err; 6625 } 6626 break; 6627 case BPF_FUNC_get_local_storage: 6628 /* check that flags argument in get_local_storage(map, flags) is 0, 6629 * this is required because get_local_storage() can't return an error. 6630 */ 6631 if (!register_is_null(®s[BPF_REG_2])) { 6632 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6633 return -EINVAL; 6634 } 6635 break; 6636 case BPF_FUNC_for_each_map_elem: 6637 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6638 set_map_elem_callback_state); 6639 break; 6640 case BPF_FUNC_timer_set_callback: 6641 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6642 set_timer_callback_state); 6643 break; 6644 case BPF_FUNC_find_vma: 6645 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6646 set_find_vma_callback_state); 6647 break; 6648 case BPF_FUNC_snprintf: 6649 err = check_bpf_snprintf_call(env, regs); 6650 break; 6651 case BPF_FUNC_loop: 6652 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6653 set_loop_callback_state); 6654 break; 6655 } 6656 6657 if (err) 6658 return err; 6659 6660 /* reset caller saved regs */ 6661 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6662 mark_reg_not_init(env, regs, caller_saved[i]); 6663 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6664 } 6665 6666 /* helper call returns 64-bit value. */ 6667 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6668 6669 /* update return register (already marked as written above) */ 6670 ret_type = fn->ret_type; 6671 ret_flag = type_flag(fn->ret_type); 6672 if (ret_type == RET_INTEGER) { 6673 /* sets type to SCALAR_VALUE */ 6674 mark_reg_unknown(env, regs, BPF_REG_0); 6675 } else if (ret_type == RET_VOID) { 6676 regs[BPF_REG_0].type = NOT_INIT; 6677 } else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) { 6678 /* There is no offset yet applied, variable or fixed */ 6679 mark_reg_known_zero(env, regs, BPF_REG_0); 6680 /* remember map_ptr, so that check_map_access() 6681 * can check 'value_size' boundary of memory access 6682 * to map element returned from bpf_map_lookup_elem() 6683 */ 6684 if (meta.map_ptr == NULL) { 6685 verbose(env, 6686 "kernel subsystem misconfigured verifier\n"); 6687 return -EINVAL; 6688 } 6689 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6690 regs[BPF_REG_0].map_uid = meta.map_uid; 6691 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 6692 if (!type_may_be_null(ret_type) && 6693 map_value_has_spin_lock(meta.map_ptr)) { 6694 regs[BPF_REG_0].id = ++env->id_gen; 6695 } 6696 } else if (base_type(ret_type) == RET_PTR_TO_SOCKET) { 6697 mark_reg_known_zero(env, regs, BPF_REG_0); 6698 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 6699 } else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) { 6700 mark_reg_known_zero(env, regs, BPF_REG_0); 6701 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 6702 } else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) { 6703 mark_reg_known_zero(env, regs, BPF_REG_0); 6704 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 6705 } else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) { 6706 mark_reg_known_zero(env, regs, BPF_REG_0); 6707 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 6708 regs[BPF_REG_0].mem_size = meta.mem_size; 6709 } else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) { 6710 const struct btf_type *t; 6711 6712 mark_reg_known_zero(env, regs, BPF_REG_0); 6713 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6714 if (!btf_type_is_struct(t)) { 6715 u32 tsize; 6716 const struct btf_type *ret; 6717 const char *tname; 6718 6719 /* resolve the type size of ksym. */ 6720 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6721 if (IS_ERR(ret)) { 6722 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6723 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6724 tname, PTR_ERR(ret)); 6725 return -EINVAL; 6726 } 6727 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 6728 regs[BPF_REG_0].mem_size = tsize; 6729 } else { 6730 /* MEM_RDONLY may be carried from ret_flag, but it 6731 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 6732 * it will confuse the check of PTR_TO_BTF_ID in 6733 * check_mem_access(). 6734 */ 6735 ret_flag &= ~MEM_RDONLY; 6736 6737 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 6738 regs[BPF_REG_0].btf = meta.ret_btf; 6739 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6740 } 6741 } else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) { 6742 int ret_btf_id; 6743 6744 mark_reg_known_zero(env, regs, BPF_REG_0); 6745 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 6746 ret_btf_id = *fn->ret_btf_id; 6747 if (ret_btf_id == 0) { 6748 verbose(env, "invalid return type %u of func %s#%d\n", 6749 base_type(ret_type), func_id_name(func_id), 6750 func_id); 6751 return -EINVAL; 6752 } 6753 /* current BPF helper definitions are only coming from 6754 * built-in code with type IDs from vmlinux BTF 6755 */ 6756 regs[BPF_REG_0].btf = btf_vmlinux; 6757 regs[BPF_REG_0].btf_id = ret_btf_id; 6758 } else { 6759 verbose(env, "unknown return type %u of func %s#%d\n", 6760 base_type(ret_type), func_id_name(func_id), func_id); 6761 return -EINVAL; 6762 } 6763 6764 if (type_may_be_null(regs[BPF_REG_0].type)) 6765 regs[BPF_REG_0].id = ++env->id_gen; 6766 6767 if (is_ptr_cast_function(func_id)) { 6768 /* For release_reference() */ 6769 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6770 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6771 int id = acquire_reference_state(env, insn_idx); 6772 6773 if (id < 0) 6774 return id; 6775 /* For mark_ptr_or_null_reg() */ 6776 regs[BPF_REG_0].id = id; 6777 /* For release_reference() */ 6778 regs[BPF_REG_0].ref_obj_id = id; 6779 } 6780 6781 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6782 6783 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6784 if (err) 6785 return err; 6786 6787 if ((func_id == BPF_FUNC_get_stack || 6788 func_id == BPF_FUNC_get_task_stack) && 6789 !env->prog->has_callchain_buf) { 6790 const char *err_str; 6791 6792 #ifdef CONFIG_PERF_EVENTS 6793 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6794 err_str = "cannot get callchain buffer for func %s#%d\n"; 6795 #else 6796 err = -ENOTSUPP; 6797 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6798 #endif 6799 if (err) { 6800 verbose(env, err_str, func_id_name(func_id), func_id); 6801 return err; 6802 } 6803 6804 env->prog->has_callchain_buf = true; 6805 } 6806 6807 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6808 env->prog->call_get_stack = true; 6809 6810 if (func_id == BPF_FUNC_get_func_ip) { 6811 if (check_get_func_ip(env)) 6812 return -ENOTSUPP; 6813 env->prog->call_get_func_ip = true; 6814 } 6815 6816 if (changes_data) 6817 clear_all_pkt_pointers(env); 6818 return 0; 6819 } 6820 6821 /* mark_btf_func_reg_size() is used when the reg size is determined by 6822 * the BTF func_proto's return value size and argument. 6823 */ 6824 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6825 size_t reg_size) 6826 { 6827 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6828 6829 if (regno == BPF_REG_0) { 6830 /* Function return value */ 6831 reg->live |= REG_LIVE_WRITTEN; 6832 reg->subreg_def = reg_size == sizeof(u64) ? 6833 DEF_NOT_SUBREG : env->insn_idx + 1; 6834 } else { 6835 /* Function argument */ 6836 if (reg_size == sizeof(u64)) { 6837 mark_insn_zext(env, reg); 6838 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6839 } else { 6840 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6841 } 6842 } 6843 } 6844 6845 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6846 { 6847 const struct btf_type *t, *func, *func_proto, *ptr_type; 6848 struct bpf_reg_state *regs = cur_regs(env); 6849 const char *func_name, *ptr_type_name; 6850 u32 i, nargs, func_id, ptr_type_id; 6851 struct module *btf_mod = NULL; 6852 const struct btf_param *args; 6853 struct btf *desc_btf; 6854 int err; 6855 6856 /* skip for now, but return error when we find this in fixup_kfunc_call */ 6857 if (!insn->imm) 6858 return 0; 6859 6860 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod); 6861 if (IS_ERR(desc_btf)) 6862 return PTR_ERR(desc_btf); 6863 6864 func_id = insn->imm; 6865 func = btf_type_by_id(desc_btf, func_id); 6866 func_name = btf_name_by_offset(desc_btf, func->name_off); 6867 func_proto = btf_type_by_id(desc_btf, func->type); 6868 6869 if (!env->ops->check_kfunc_call || 6870 !env->ops->check_kfunc_call(func_id, btf_mod)) { 6871 verbose(env, "calling kernel function %s is not allowed\n", 6872 func_name); 6873 return -EACCES; 6874 } 6875 6876 /* Check the arguments */ 6877 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs); 6878 if (err) 6879 return err; 6880 6881 for (i = 0; i < CALLER_SAVED_REGS; i++) 6882 mark_reg_not_init(env, regs, caller_saved[i]); 6883 6884 /* Check return type */ 6885 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 6886 if (btf_type_is_scalar(t)) { 6887 mark_reg_unknown(env, regs, BPF_REG_0); 6888 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6889 } else if (btf_type_is_ptr(t)) { 6890 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 6891 &ptr_type_id); 6892 if (!btf_type_is_struct(ptr_type)) { 6893 ptr_type_name = btf_name_by_offset(desc_btf, 6894 ptr_type->name_off); 6895 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6896 func_name, btf_type_str(ptr_type), 6897 ptr_type_name); 6898 return -EINVAL; 6899 } 6900 mark_reg_known_zero(env, regs, BPF_REG_0); 6901 regs[BPF_REG_0].btf = desc_btf; 6902 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6903 regs[BPF_REG_0].btf_id = ptr_type_id; 6904 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6905 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6906 6907 nargs = btf_type_vlen(func_proto); 6908 args = (const struct btf_param *)(func_proto + 1); 6909 for (i = 0; i < nargs; i++) { 6910 u32 regno = i + 1; 6911 6912 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 6913 if (btf_type_is_ptr(t)) 6914 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6915 else 6916 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6917 mark_btf_func_reg_size(env, regno, t->size); 6918 } 6919 6920 return 0; 6921 } 6922 6923 static bool signed_add_overflows(s64 a, s64 b) 6924 { 6925 /* Do the add in u64, where overflow is well-defined */ 6926 s64 res = (s64)((u64)a + (u64)b); 6927 6928 if (b < 0) 6929 return res > a; 6930 return res < a; 6931 } 6932 6933 static bool signed_add32_overflows(s32 a, s32 b) 6934 { 6935 /* Do the add in u32, where overflow is well-defined */ 6936 s32 res = (s32)((u32)a + (u32)b); 6937 6938 if (b < 0) 6939 return res > a; 6940 return res < a; 6941 } 6942 6943 static bool signed_sub_overflows(s64 a, s64 b) 6944 { 6945 /* Do the sub in u64, where overflow is well-defined */ 6946 s64 res = (s64)((u64)a - (u64)b); 6947 6948 if (b < 0) 6949 return res < a; 6950 return res > a; 6951 } 6952 6953 static bool signed_sub32_overflows(s32 a, s32 b) 6954 { 6955 /* Do the sub in u32, where overflow is well-defined */ 6956 s32 res = (s32)((u32)a - (u32)b); 6957 6958 if (b < 0) 6959 return res < a; 6960 return res > a; 6961 } 6962 6963 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6964 const struct bpf_reg_state *reg, 6965 enum bpf_reg_type type) 6966 { 6967 bool known = tnum_is_const(reg->var_off); 6968 s64 val = reg->var_off.value; 6969 s64 smin = reg->smin_value; 6970 6971 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6972 verbose(env, "math between %s pointer and %lld is not allowed\n", 6973 reg_type_str(env, type), val); 6974 return false; 6975 } 6976 6977 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6978 verbose(env, "%s pointer offset %d is not allowed\n", 6979 reg_type_str(env, type), reg->off); 6980 return false; 6981 } 6982 6983 if (smin == S64_MIN) { 6984 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6985 reg_type_str(env, type)); 6986 return false; 6987 } 6988 6989 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6990 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6991 smin, reg_type_str(env, type)); 6992 return false; 6993 } 6994 6995 return true; 6996 } 6997 6998 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6999 { 7000 return &env->insn_aux_data[env->insn_idx]; 7001 } 7002 7003 enum { 7004 REASON_BOUNDS = -1, 7005 REASON_TYPE = -2, 7006 REASON_PATHS = -3, 7007 REASON_LIMIT = -4, 7008 REASON_STACK = -5, 7009 }; 7010 7011 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 7012 u32 *alu_limit, bool mask_to_left) 7013 { 7014 u32 max = 0, ptr_limit = 0; 7015 7016 switch (ptr_reg->type) { 7017 case PTR_TO_STACK: 7018 /* Offset 0 is out-of-bounds, but acceptable start for the 7019 * left direction, see BPF_REG_FP. Also, unknown scalar 7020 * offset where we would need to deal with min/max bounds is 7021 * currently prohibited for unprivileged. 7022 */ 7023 max = MAX_BPF_STACK + mask_to_left; 7024 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 7025 break; 7026 case PTR_TO_MAP_VALUE: 7027 max = ptr_reg->map_ptr->value_size; 7028 ptr_limit = (mask_to_left ? 7029 ptr_reg->smin_value : 7030 ptr_reg->umax_value) + ptr_reg->off; 7031 break; 7032 default: 7033 return REASON_TYPE; 7034 } 7035 7036 if (ptr_limit >= max) 7037 return REASON_LIMIT; 7038 *alu_limit = ptr_limit; 7039 return 0; 7040 } 7041 7042 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 7043 const struct bpf_insn *insn) 7044 { 7045 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 7046 } 7047 7048 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 7049 u32 alu_state, u32 alu_limit) 7050 { 7051 /* If we arrived here from different branches with different 7052 * state or limits to sanitize, then this won't work. 7053 */ 7054 if (aux->alu_state && 7055 (aux->alu_state != alu_state || 7056 aux->alu_limit != alu_limit)) 7057 return REASON_PATHS; 7058 7059 /* Corresponding fixup done in do_misc_fixups(). */ 7060 aux->alu_state = alu_state; 7061 aux->alu_limit = alu_limit; 7062 return 0; 7063 } 7064 7065 static int sanitize_val_alu(struct bpf_verifier_env *env, 7066 struct bpf_insn *insn) 7067 { 7068 struct bpf_insn_aux_data *aux = cur_aux(env); 7069 7070 if (can_skip_alu_sanitation(env, insn)) 7071 return 0; 7072 7073 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 7074 } 7075 7076 static bool sanitize_needed(u8 opcode) 7077 { 7078 return opcode == BPF_ADD || opcode == BPF_SUB; 7079 } 7080 7081 struct bpf_sanitize_info { 7082 struct bpf_insn_aux_data aux; 7083 bool mask_to_left; 7084 }; 7085 7086 static struct bpf_verifier_state * 7087 sanitize_speculative_path(struct bpf_verifier_env *env, 7088 const struct bpf_insn *insn, 7089 u32 next_idx, u32 curr_idx) 7090 { 7091 struct bpf_verifier_state *branch; 7092 struct bpf_reg_state *regs; 7093 7094 branch = push_stack(env, next_idx, curr_idx, true); 7095 if (branch && insn) { 7096 regs = branch->frame[branch->curframe]->regs; 7097 if (BPF_SRC(insn->code) == BPF_K) { 7098 mark_reg_unknown(env, regs, insn->dst_reg); 7099 } else if (BPF_SRC(insn->code) == BPF_X) { 7100 mark_reg_unknown(env, regs, insn->dst_reg); 7101 mark_reg_unknown(env, regs, insn->src_reg); 7102 } 7103 } 7104 return branch; 7105 } 7106 7107 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 7108 struct bpf_insn *insn, 7109 const struct bpf_reg_state *ptr_reg, 7110 const struct bpf_reg_state *off_reg, 7111 struct bpf_reg_state *dst_reg, 7112 struct bpf_sanitize_info *info, 7113 const bool commit_window) 7114 { 7115 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 7116 struct bpf_verifier_state *vstate = env->cur_state; 7117 bool off_is_imm = tnum_is_const(off_reg->var_off); 7118 bool off_is_neg = off_reg->smin_value < 0; 7119 bool ptr_is_dst_reg = ptr_reg == dst_reg; 7120 u8 opcode = BPF_OP(insn->code); 7121 u32 alu_state, alu_limit; 7122 struct bpf_reg_state tmp; 7123 bool ret; 7124 int err; 7125 7126 if (can_skip_alu_sanitation(env, insn)) 7127 return 0; 7128 7129 /* We already marked aux for masking from non-speculative 7130 * paths, thus we got here in the first place. We only care 7131 * to explore bad access from here. 7132 */ 7133 if (vstate->speculative) 7134 goto do_sim; 7135 7136 if (!commit_window) { 7137 if (!tnum_is_const(off_reg->var_off) && 7138 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 7139 return REASON_BOUNDS; 7140 7141 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 7142 (opcode == BPF_SUB && !off_is_neg); 7143 } 7144 7145 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 7146 if (err < 0) 7147 return err; 7148 7149 if (commit_window) { 7150 /* In commit phase we narrow the masking window based on 7151 * the observed pointer move after the simulated operation. 7152 */ 7153 alu_state = info->aux.alu_state; 7154 alu_limit = abs(info->aux.alu_limit - alu_limit); 7155 } else { 7156 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 7157 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 7158 alu_state |= ptr_is_dst_reg ? 7159 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 7160 7161 /* Limit pruning on unknown scalars to enable deep search for 7162 * potential masking differences from other program paths. 7163 */ 7164 if (!off_is_imm) 7165 env->explore_alu_limits = true; 7166 } 7167 7168 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7169 if (err < 0) 7170 return err; 7171 do_sim: 7172 /* If we're in commit phase, we're done here given we already 7173 * pushed the truncated dst_reg into the speculative verification 7174 * stack. 7175 * 7176 * Also, when register is a known constant, we rewrite register-based 7177 * operation to immediate-based, and thus do not need masking (and as 7178 * a consequence, do not need to simulate the zero-truncation either). 7179 */ 7180 if (commit_window || off_is_imm) 7181 return 0; 7182 7183 /* Simulate and find potential out-of-bounds access under 7184 * speculative execution from truncation as a result of 7185 * masking when off was not within expected range. If off 7186 * sits in dst, then we temporarily need to move ptr there 7187 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7188 * for cases where we use K-based arithmetic in one direction 7189 * and truncated reg-based in the other in order to explore 7190 * bad access. 7191 */ 7192 if (!ptr_is_dst_reg) { 7193 tmp = *dst_reg; 7194 *dst_reg = *ptr_reg; 7195 } 7196 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7197 env->insn_idx); 7198 if (!ptr_is_dst_reg && ret) 7199 *dst_reg = tmp; 7200 return !ret ? REASON_STACK : 0; 7201 } 7202 7203 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7204 { 7205 struct bpf_verifier_state *vstate = env->cur_state; 7206 7207 /* If we simulate paths under speculation, we don't update the 7208 * insn as 'seen' such that when we verify unreachable paths in 7209 * the non-speculative domain, sanitize_dead_code() can still 7210 * rewrite/sanitize them. 7211 */ 7212 if (!vstate->speculative) 7213 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7214 } 7215 7216 static int sanitize_err(struct bpf_verifier_env *env, 7217 const struct bpf_insn *insn, int reason, 7218 const struct bpf_reg_state *off_reg, 7219 const struct bpf_reg_state *dst_reg) 7220 { 7221 static const char *err = "pointer arithmetic with it prohibited for !root"; 7222 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7223 u32 dst = insn->dst_reg, src = insn->src_reg; 7224 7225 switch (reason) { 7226 case REASON_BOUNDS: 7227 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7228 off_reg == dst_reg ? dst : src, err); 7229 break; 7230 case REASON_TYPE: 7231 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7232 off_reg == dst_reg ? src : dst, err); 7233 break; 7234 case REASON_PATHS: 7235 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7236 dst, op, err); 7237 break; 7238 case REASON_LIMIT: 7239 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7240 dst, op, err); 7241 break; 7242 case REASON_STACK: 7243 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7244 dst, err); 7245 break; 7246 default: 7247 verbose(env, "verifier internal error: unknown reason (%d)\n", 7248 reason); 7249 break; 7250 } 7251 7252 return -EACCES; 7253 } 7254 7255 /* check that stack access falls within stack limits and that 'reg' doesn't 7256 * have a variable offset. 7257 * 7258 * Variable offset is prohibited for unprivileged mode for simplicity since it 7259 * requires corresponding support in Spectre masking for stack ALU. See also 7260 * retrieve_ptr_limit(). 7261 * 7262 * 7263 * 'off' includes 'reg->off'. 7264 */ 7265 static int check_stack_access_for_ptr_arithmetic( 7266 struct bpf_verifier_env *env, 7267 int regno, 7268 const struct bpf_reg_state *reg, 7269 int off) 7270 { 7271 if (!tnum_is_const(reg->var_off)) { 7272 char tn_buf[48]; 7273 7274 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7275 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 7276 regno, tn_buf, off); 7277 return -EACCES; 7278 } 7279 7280 if (off >= 0 || off < -MAX_BPF_STACK) { 7281 verbose(env, "R%d stack pointer arithmetic goes out of range, " 7282 "prohibited for !root; off=%d\n", regno, off); 7283 return -EACCES; 7284 } 7285 7286 return 0; 7287 } 7288 7289 static int sanitize_check_bounds(struct bpf_verifier_env *env, 7290 const struct bpf_insn *insn, 7291 const struct bpf_reg_state *dst_reg) 7292 { 7293 u32 dst = insn->dst_reg; 7294 7295 /* For unprivileged we require that resulting offset must be in bounds 7296 * in order to be able to sanitize access later on. 7297 */ 7298 if (env->bypass_spec_v1) 7299 return 0; 7300 7301 switch (dst_reg->type) { 7302 case PTR_TO_STACK: 7303 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 7304 dst_reg->off + dst_reg->var_off.value)) 7305 return -EACCES; 7306 break; 7307 case PTR_TO_MAP_VALUE: 7308 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 7309 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 7310 "prohibited for !root\n", dst); 7311 return -EACCES; 7312 } 7313 break; 7314 default: 7315 break; 7316 } 7317 7318 return 0; 7319 } 7320 7321 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 7322 * Caller should also handle BPF_MOV case separately. 7323 * If we return -EACCES, caller may want to try again treating pointer as a 7324 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 7325 */ 7326 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 7327 struct bpf_insn *insn, 7328 const struct bpf_reg_state *ptr_reg, 7329 const struct bpf_reg_state *off_reg) 7330 { 7331 struct bpf_verifier_state *vstate = env->cur_state; 7332 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7333 struct bpf_reg_state *regs = state->regs, *dst_reg; 7334 bool known = tnum_is_const(off_reg->var_off); 7335 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 7336 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 7337 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 7338 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 7339 struct bpf_sanitize_info info = {}; 7340 u8 opcode = BPF_OP(insn->code); 7341 u32 dst = insn->dst_reg; 7342 int ret; 7343 7344 dst_reg = ®s[dst]; 7345 7346 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 7347 smin_val > smax_val || umin_val > umax_val) { 7348 /* Taint dst register if offset had invalid bounds derived from 7349 * e.g. dead branches. 7350 */ 7351 __mark_reg_unknown(env, dst_reg); 7352 return 0; 7353 } 7354 7355 if (BPF_CLASS(insn->code) != BPF_ALU64) { 7356 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 7357 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7358 __mark_reg_unknown(env, dst_reg); 7359 return 0; 7360 } 7361 7362 verbose(env, 7363 "R%d 32-bit pointer arithmetic prohibited\n", 7364 dst); 7365 return -EACCES; 7366 } 7367 7368 if (ptr_reg->type & PTR_MAYBE_NULL) { 7369 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 7370 dst, reg_type_str(env, ptr_reg->type)); 7371 return -EACCES; 7372 } 7373 7374 switch (base_type(ptr_reg->type)) { 7375 case CONST_PTR_TO_MAP: 7376 /* smin_val represents the known value */ 7377 if (known && smin_val == 0 && opcode == BPF_ADD) 7378 break; 7379 fallthrough; 7380 case PTR_TO_PACKET_END: 7381 case PTR_TO_SOCKET: 7382 case PTR_TO_SOCK_COMMON: 7383 case PTR_TO_TCP_SOCK: 7384 case PTR_TO_XDP_SOCK: 7385 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 7386 dst, reg_type_str(env, ptr_reg->type)); 7387 return -EACCES; 7388 default: 7389 break; 7390 } 7391 7392 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 7393 * The id may be overwritten later if we create a new variable offset. 7394 */ 7395 dst_reg->type = ptr_reg->type; 7396 dst_reg->id = ptr_reg->id; 7397 7398 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 7399 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 7400 return -EINVAL; 7401 7402 /* pointer types do not carry 32-bit bounds at the moment. */ 7403 __mark_reg32_unbounded(dst_reg); 7404 7405 if (sanitize_needed(opcode)) { 7406 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 7407 &info, false); 7408 if (ret < 0) 7409 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7410 } 7411 7412 switch (opcode) { 7413 case BPF_ADD: 7414 /* We can take a fixed offset as long as it doesn't overflow 7415 * the s32 'off' field 7416 */ 7417 if (known && (ptr_reg->off + smin_val == 7418 (s64)(s32)(ptr_reg->off + smin_val))) { 7419 /* pointer += K. Accumulate it into fixed offset */ 7420 dst_reg->smin_value = smin_ptr; 7421 dst_reg->smax_value = smax_ptr; 7422 dst_reg->umin_value = umin_ptr; 7423 dst_reg->umax_value = umax_ptr; 7424 dst_reg->var_off = ptr_reg->var_off; 7425 dst_reg->off = ptr_reg->off + smin_val; 7426 dst_reg->raw = ptr_reg->raw; 7427 break; 7428 } 7429 /* A new variable offset is created. Note that off_reg->off 7430 * == 0, since it's a scalar. 7431 * dst_reg gets the pointer type and since some positive 7432 * integer value was added to the pointer, give it a new 'id' 7433 * if it's a PTR_TO_PACKET. 7434 * this creates a new 'base' pointer, off_reg (variable) gets 7435 * added into the variable offset, and we copy the fixed offset 7436 * from ptr_reg. 7437 */ 7438 if (signed_add_overflows(smin_ptr, smin_val) || 7439 signed_add_overflows(smax_ptr, smax_val)) { 7440 dst_reg->smin_value = S64_MIN; 7441 dst_reg->smax_value = S64_MAX; 7442 } else { 7443 dst_reg->smin_value = smin_ptr + smin_val; 7444 dst_reg->smax_value = smax_ptr + smax_val; 7445 } 7446 if (umin_ptr + umin_val < umin_ptr || 7447 umax_ptr + umax_val < umax_ptr) { 7448 dst_reg->umin_value = 0; 7449 dst_reg->umax_value = U64_MAX; 7450 } else { 7451 dst_reg->umin_value = umin_ptr + umin_val; 7452 dst_reg->umax_value = umax_ptr + umax_val; 7453 } 7454 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 7455 dst_reg->off = ptr_reg->off; 7456 dst_reg->raw = ptr_reg->raw; 7457 if (reg_is_pkt_pointer(ptr_reg)) { 7458 dst_reg->id = ++env->id_gen; 7459 /* something was added to pkt_ptr, set range to zero */ 7460 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7461 } 7462 break; 7463 case BPF_SUB: 7464 if (dst_reg == off_reg) { 7465 /* scalar -= pointer. Creates an unknown scalar */ 7466 verbose(env, "R%d tried to subtract pointer from scalar\n", 7467 dst); 7468 return -EACCES; 7469 } 7470 /* We don't allow subtraction from FP, because (according to 7471 * test_verifier.c test "invalid fp arithmetic", JITs might not 7472 * be able to deal with it. 7473 */ 7474 if (ptr_reg->type == PTR_TO_STACK) { 7475 verbose(env, "R%d subtraction from stack pointer prohibited\n", 7476 dst); 7477 return -EACCES; 7478 } 7479 if (known && (ptr_reg->off - smin_val == 7480 (s64)(s32)(ptr_reg->off - smin_val))) { 7481 /* pointer -= K. Subtract it from fixed offset */ 7482 dst_reg->smin_value = smin_ptr; 7483 dst_reg->smax_value = smax_ptr; 7484 dst_reg->umin_value = umin_ptr; 7485 dst_reg->umax_value = umax_ptr; 7486 dst_reg->var_off = ptr_reg->var_off; 7487 dst_reg->id = ptr_reg->id; 7488 dst_reg->off = ptr_reg->off - smin_val; 7489 dst_reg->raw = ptr_reg->raw; 7490 break; 7491 } 7492 /* A new variable offset is created. If the subtrahend is known 7493 * nonnegative, then any reg->range we had before is still good. 7494 */ 7495 if (signed_sub_overflows(smin_ptr, smax_val) || 7496 signed_sub_overflows(smax_ptr, smin_val)) { 7497 /* Overflow possible, we know nothing */ 7498 dst_reg->smin_value = S64_MIN; 7499 dst_reg->smax_value = S64_MAX; 7500 } else { 7501 dst_reg->smin_value = smin_ptr - smax_val; 7502 dst_reg->smax_value = smax_ptr - smin_val; 7503 } 7504 if (umin_ptr < umax_val) { 7505 /* Overflow possible, we know nothing */ 7506 dst_reg->umin_value = 0; 7507 dst_reg->umax_value = U64_MAX; 7508 } else { 7509 /* Cannot overflow (as long as bounds are consistent) */ 7510 dst_reg->umin_value = umin_ptr - umax_val; 7511 dst_reg->umax_value = umax_ptr - umin_val; 7512 } 7513 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 7514 dst_reg->off = ptr_reg->off; 7515 dst_reg->raw = ptr_reg->raw; 7516 if (reg_is_pkt_pointer(ptr_reg)) { 7517 dst_reg->id = ++env->id_gen; 7518 /* something was added to pkt_ptr, set range to zero */ 7519 if (smin_val < 0) 7520 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7521 } 7522 break; 7523 case BPF_AND: 7524 case BPF_OR: 7525 case BPF_XOR: 7526 /* bitwise ops on pointers are troublesome, prohibit. */ 7527 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 7528 dst, bpf_alu_string[opcode >> 4]); 7529 return -EACCES; 7530 default: 7531 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 7532 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 7533 dst, bpf_alu_string[opcode >> 4]); 7534 return -EACCES; 7535 } 7536 7537 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 7538 return -EINVAL; 7539 7540 __update_reg_bounds(dst_reg); 7541 __reg_deduce_bounds(dst_reg); 7542 __reg_bound_offset(dst_reg); 7543 7544 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 7545 return -EACCES; 7546 if (sanitize_needed(opcode)) { 7547 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 7548 &info, true); 7549 if (ret < 0) 7550 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7551 } 7552 7553 return 0; 7554 } 7555 7556 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 7557 struct bpf_reg_state *src_reg) 7558 { 7559 s32 smin_val = src_reg->s32_min_value; 7560 s32 smax_val = src_reg->s32_max_value; 7561 u32 umin_val = src_reg->u32_min_value; 7562 u32 umax_val = src_reg->u32_max_value; 7563 7564 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 7565 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 7566 dst_reg->s32_min_value = S32_MIN; 7567 dst_reg->s32_max_value = S32_MAX; 7568 } else { 7569 dst_reg->s32_min_value += smin_val; 7570 dst_reg->s32_max_value += smax_val; 7571 } 7572 if (dst_reg->u32_min_value + umin_val < umin_val || 7573 dst_reg->u32_max_value + umax_val < umax_val) { 7574 dst_reg->u32_min_value = 0; 7575 dst_reg->u32_max_value = U32_MAX; 7576 } else { 7577 dst_reg->u32_min_value += umin_val; 7578 dst_reg->u32_max_value += umax_val; 7579 } 7580 } 7581 7582 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 7583 struct bpf_reg_state *src_reg) 7584 { 7585 s64 smin_val = src_reg->smin_value; 7586 s64 smax_val = src_reg->smax_value; 7587 u64 umin_val = src_reg->umin_value; 7588 u64 umax_val = src_reg->umax_value; 7589 7590 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 7591 signed_add_overflows(dst_reg->smax_value, smax_val)) { 7592 dst_reg->smin_value = S64_MIN; 7593 dst_reg->smax_value = S64_MAX; 7594 } else { 7595 dst_reg->smin_value += smin_val; 7596 dst_reg->smax_value += smax_val; 7597 } 7598 if (dst_reg->umin_value + umin_val < umin_val || 7599 dst_reg->umax_value + umax_val < umax_val) { 7600 dst_reg->umin_value = 0; 7601 dst_reg->umax_value = U64_MAX; 7602 } else { 7603 dst_reg->umin_value += umin_val; 7604 dst_reg->umax_value += umax_val; 7605 } 7606 } 7607 7608 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 7609 struct bpf_reg_state *src_reg) 7610 { 7611 s32 smin_val = src_reg->s32_min_value; 7612 s32 smax_val = src_reg->s32_max_value; 7613 u32 umin_val = src_reg->u32_min_value; 7614 u32 umax_val = src_reg->u32_max_value; 7615 7616 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 7617 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 7618 /* Overflow possible, we know nothing */ 7619 dst_reg->s32_min_value = S32_MIN; 7620 dst_reg->s32_max_value = S32_MAX; 7621 } else { 7622 dst_reg->s32_min_value -= smax_val; 7623 dst_reg->s32_max_value -= smin_val; 7624 } 7625 if (dst_reg->u32_min_value < umax_val) { 7626 /* Overflow possible, we know nothing */ 7627 dst_reg->u32_min_value = 0; 7628 dst_reg->u32_max_value = U32_MAX; 7629 } else { 7630 /* Cannot overflow (as long as bounds are consistent) */ 7631 dst_reg->u32_min_value -= umax_val; 7632 dst_reg->u32_max_value -= umin_val; 7633 } 7634 } 7635 7636 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7637 struct bpf_reg_state *src_reg) 7638 { 7639 s64 smin_val = src_reg->smin_value; 7640 s64 smax_val = src_reg->smax_value; 7641 u64 umin_val = src_reg->umin_value; 7642 u64 umax_val = src_reg->umax_value; 7643 7644 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7645 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7646 /* Overflow possible, we know nothing */ 7647 dst_reg->smin_value = S64_MIN; 7648 dst_reg->smax_value = S64_MAX; 7649 } else { 7650 dst_reg->smin_value -= smax_val; 7651 dst_reg->smax_value -= smin_val; 7652 } 7653 if (dst_reg->umin_value < umax_val) { 7654 /* Overflow possible, we know nothing */ 7655 dst_reg->umin_value = 0; 7656 dst_reg->umax_value = U64_MAX; 7657 } else { 7658 /* Cannot overflow (as long as bounds are consistent) */ 7659 dst_reg->umin_value -= umax_val; 7660 dst_reg->umax_value -= umin_val; 7661 } 7662 } 7663 7664 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7665 struct bpf_reg_state *src_reg) 7666 { 7667 s32 smin_val = src_reg->s32_min_value; 7668 u32 umin_val = src_reg->u32_min_value; 7669 u32 umax_val = src_reg->u32_max_value; 7670 7671 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7672 /* Ain't nobody got time to multiply that sign */ 7673 __mark_reg32_unbounded(dst_reg); 7674 return; 7675 } 7676 /* Both values are positive, so we can work with unsigned and 7677 * copy the result to signed (unless it exceeds S32_MAX). 7678 */ 7679 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7680 /* Potential overflow, we know nothing */ 7681 __mark_reg32_unbounded(dst_reg); 7682 return; 7683 } 7684 dst_reg->u32_min_value *= umin_val; 7685 dst_reg->u32_max_value *= umax_val; 7686 if (dst_reg->u32_max_value > S32_MAX) { 7687 /* Overflow possible, we know nothing */ 7688 dst_reg->s32_min_value = S32_MIN; 7689 dst_reg->s32_max_value = S32_MAX; 7690 } else { 7691 dst_reg->s32_min_value = dst_reg->u32_min_value; 7692 dst_reg->s32_max_value = dst_reg->u32_max_value; 7693 } 7694 } 7695 7696 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7697 struct bpf_reg_state *src_reg) 7698 { 7699 s64 smin_val = src_reg->smin_value; 7700 u64 umin_val = src_reg->umin_value; 7701 u64 umax_val = src_reg->umax_value; 7702 7703 if (smin_val < 0 || dst_reg->smin_value < 0) { 7704 /* Ain't nobody got time to multiply that sign */ 7705 __mark_reg64_unbounded(dst_reg); 7706 return; 7707 } 7708 /* Both values are positive, so we can work with unsigned and 7709 * copy the result to signed (unless it exceeds S64_MAX). 7710 */ 7711 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7712 /* Potential overflow, we know nothing */ 7713 __mark_reg64_unbounded(dst_reg); 7714 return; 7715 } 7716 dst_reg->umin_value *= umin_val; 7717 dst_reg->umax_value *= umax_val; 7718 if (dst_reg->umax_value > S64_MAX) { 7719 /* Overflow possible, we know nothing */ 7720 dst_reg->smin_value = S64_MIN; 7721 dst_reg->smax_value = S64_MAX; 7722 } else { 7723 dst_reg->smin_value = dst_reg->umin_value; 7724 dst_reg->smax_value = dst_reg->umax_value; 7725 } 7726 } 7727 7728 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7729 struct bpf_reg_state *src_reg) 7730 { 7731 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7732 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7733 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7734 s32 smin_val = src_reg->s32_min_value; 7735 u32 umax_val = src_reg->u32_max_value; 7736 7737 if (src_known && dst_known) { 7738 __mark_reg32_known(dst_reg, var32_off.value); 7739 return; 7740 } 7741 7742 /* We get our minimum from the var_off, since that's inherently 7743 * bitwise. Our maximum is the minimum of the operands' maxima. 7744 */ 7745 dst_reg->u32_min_value = var32_off.value; 7746 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7747 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7748 /* Lose signed bounds when ANDing negative numbers, 7749 * ain't nobody got time for that. 7750 */ 7751 dst_reg->s32_min_value = S32_MIN; 7752 dst_reg->s32_max_value = S32_MAX; 7753 } else { 7754 /* ANDing two positives gives a positive, so safe to 7755 * cast result into s64. 7756 */ 7757 dst_reg->s32_min_value = dst_reg->u32_min_value; 7758 dst_reg->s32_max_value = dst_reg->u32_max_value; 7759 } 7760 } 7761 7762 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7763 struct bpf_reg_state *src_reg) 7764 { 7765 bool src_known = tnum_is_const(src_reg->var_off); 7766 bool dst_known = tnum_is_const(dst_reg->var_off); 7767 s64 smin_val = src_reg->smin_value; 7768 u64 umax_val = src_reg->umax_value; 7769 7770 if (src_known && dst_known) { 7771 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7772 return; 7773 } 7774 7775 /* We get our minimum from the var_off, since that's inherently 7776 * bitwise. Our maximum is the minimum of the operands' maxima. 7777 */ 7778 dst_reg->umin_value = dst_reg->var_off.value; 7779 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7780 if (dst_reg->smin_value < 0 || smin_val < 0) { 7781 /* Lose signed bounds when ANDing negative numbers, 7782 * ain't nobody got time for that. 7783 */ 7784 dst_reg->smin_value = S64_MIN; 7785 dst_reg->smax_value = S64_MAX; 7786 } else { 7787 /* ANDing two positives gives a positive, so safe to 7788 * cast result into s64. 7789 */ 7790 dst_reg->smin_value = dst_reg->umin_value; 7791 dst_reg->smax_value = dst_reg->umax_value; 7792 } 7793 /* We may learn something more from the var_off */ 7794 __update_reg_bounds(dst_reg); 7795 } 7796 7797 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7798 struct bpf_reg_state *src_reg) 7799 { 7800 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7801 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7802 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7803 s32 smin_val = src_reg->s32_min_value; 7804 u32 umin_val = src_reg->u32_min_value; 7805 7806 if (src_known && dst_known) { 7807 __mark_reg32_known(dst_reg, var32_off.value); 7808 return; 7809 } 7810 7811 /* We get our maximum from the var_off, and our minimum is the 7812 * maximum of the operands' minima 7813 */ 7814 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7815 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7816 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7817 /* Lose signed bounds when ORing negative numbers, 7818 * ain't nobody got time for that. 7819 */ 7820 dst_reg->s32_min_value = S32_MIN; 7821 dst_reg->s32_max_value = S32_MAX; 7822 } else { 7823 /* ORing two positives gives a positive, so safe to 7824 * cast result into s64. 7825 */ 7826 dst_reg->s32_min_value = dst_reg->u32_min_value; 7827 dst_reg->s32_max_value = dst_reg->u32_max_value; 7828 } 7829 } 7830 7831 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7832 struct bpf_reg_state *src_reg) 7833 { 7834 bool src_known = tnum_is_const(src_reg->var_off); 7835 bool dst_known = tnum_is_const(dst_reg->var_off); 7836 s64 smin_val = src_reg->smin_value; 7837 u64 umin_val = src_reg->umin_value; 7838 7839 if (src_known && dst_known) { 7840 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7841 return; 7842 } 7843 7844 /* We get our maximum from the var_off, and our minimum is the 7845 * maximum of the operands' minima 7846 */ 7847 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7848 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7849 if (dst_reg->smin_value < 0 || smin_val < 0) { 7850 /* Lose signed bounds when ORing negative numbers, 7851 * ain't nobody got time for that. 7852 */ 7853 dst_reg->smin_value = S64_MIN; 7854 dst_reg->smax_value = S64_MAX; 7855 } else { 7856 /* ORing two positives gives a positive, so safe to 7857 * cast result into s64. 7858 */ 7859 dst_reg->smin_value = dst_reg->umin_value; 7860 dst_reg->smax_value = dst_reg->umax_value; 7861 } 7862 /* We may learn something more from the var_off */ 7863 __update_reg_bounds(dst_reg); 7864 } 7865 7866 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7867 struct bpf_reg_state *src_reg) 7868 { 7869 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7870 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7871 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7872 s32 smin_val = src_reg->s32_min_value; 7873 7874 if (src_known && dst_known) { 7875 __mark_reg32_known(dst_reg, var32_off.value); 7876 return; 7877 } 7878 7879 /* We get both minimum and maximum from the var32_off. */ 7880 dst_reg->u32_min_value = var32_off.value; 7881 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7882 7883 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7884 /* XORing two positive sign numbers gives a positive, 7885 * so safe to cast u32 result into s32. 7886 */ 7887 dst_reg->s32_min_value = dst_reg->u32_min_value; 7888 dst_reg->s32_max_value = dst_reg->u32_max_value; 7889 } else { 7890 dst_reg->s32_min_value = S32_MIN; 7891 dst_reg->s32_max_value = S32_MAX; 7892 } 7893 } 7894 7895 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7896 struct bpf_reg_state *src_reg) 7897 { 7898 bool src_known = tnum_is_const(src_reg->var_off); 7899 bool dst_known = tnum_is_const(dst_reg->var_off); 7900 s64 smin_val = src_reg->smin_value; 7901 7902 if (src_known && dst_known) { 7903 /* dst_reg->var_off.value has been updated earlier */ 7904 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7905 return; 7906 } 7907 7908 /* We get both minimum and maximum from the var_off. */ 7909 dst_reg->umin_value = dst_reg->var_off.value; 7910 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7911 7912 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7913 /* XORing two positive sign numbers gives a positive, 7914 * so safe to cast u64 result into s64. 7915 */ 7916 dst_reg->smin_value = dst_reg->umin_value; 7917 dst_reg->smax_value = dst_reg->umax_value; 7918 } else { 7919 dst_reg->smin_value = S64_MIN; 7920 dst_reg->smax_value = S64_MAX; 7921 } 7922 7923 __update_reg_bounds(dst_reg); 7924 } 7925 7926 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7927 u64 umin_val, u64 umax_val) 7928 { 7929 /* We lose all sign bit information (except what we can pick 7930 * up from var_off) 7931 */ 7932 dst_reg->s32_min_value = S32_MIN; 7933 dst_reg->s32_max_value = S32_MAX; 7934 /* If we might shift our top bit out, then we know nothing */ 7935 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7936 dst_reg->u32_min_value = 0; 7937 dst_reg->u32_max_value = U32_MAX; 7938 } else { 7939 dst_reg->u32_min_value <<= umin_val; 7940 dst_reg->u32_max_value <<= umax_val; 7941 } 7942 } 7943 7944 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7945 struct bpf_reg_state *src_reg) 7946 { 7947 u32 umax_val = src_reg->u32_max_value; 7948 u32 umin_val = src_reg->u32_min_value; 7949 /* u32 alu operation will zext upper bits */ 7950 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7951 7952 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7953 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7954 /* Not required but being careful mark reg64 bounds as unknown so 7955 * that we are forced to pick them up from tnum and zext later and 7956 * if some path skips this step we are still safe. 7957 */ 7958 __mark_reg64_unbounded(dst_reg); 7959 __update_reg32_bounds(dst_reg); 7960 } 7961 7962 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7963 u64 umin_val, u64 umax_val) 7964 { 7965 /* Special case <<32 because it is a common compiler pattern to sign 7966 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7967 * positive we know this shift will also be positive so we can track 7968 * bounds correctly. Otherwise we lose all sign bit information except 7969 * what we can pick up from var_off. Perhaps we can generalize this 7970 * later to shifts of any length. 7971 */ 7972 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7973 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7974 else 7975 dst_reg->smax_value = S64_MAX; 7976 7977 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7978 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7979 else 7980 dst_reg->smin_value = S64_MIN; 7981 7982 /* If we might shift our top bit out, then we know nothing */ 7983 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7984 dst_reg->umin_value = 0; 7985 dst_reg->umax_value = U64_MAX; 7986 } else { 7987 dst_reg->umin_value <<= umin_val; 7988 dst_reg->umax_value <<= umax_val; 7989 } 7990 } 7991 7992 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7993 struct bpf_reg_state *src_reg) 7994 { 7995 u64 umax_val = src_reg->umax_value; 7996 u64 umin_val = src_reg->umin_value; 7997 7998 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7999 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 8000 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 8001 8002 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 8003 /* We may learn something more from the var_off */ 8004 __update_reg_bounds(dst_reg); 8005 } 8006 8007 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 8008 struct bpf_reg_state *src_reg) 8009 { 8010 struct tnum subreg = tnum_subreg(dst_reg->var_off); 8011 u32 umax_val = src_reg->u32_max_value; 8012 u32 umin_val = src_reg->u32_min_value; 8013 8014 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8015 * be negative, then either: 8016 * 1) src_reg might be zero, so the sign bit of the result is 8017 * unknown, so we lose our signed bounds 8018 * 2) it's known negative, thus the unsigned bounds capture the 8019 * signed bounds 8020 * 3) the signed bounds cross zero, so they tell us nothing 8021 * about the result 8022 * If the value in dst_reg is known nonnegative, then again the 8023 * unsigned bounds capture the signed bounds. 8024 * Thus, in all cases it suffices to blow away our signed bounds 8025 * and rely on inferring new ones from the unsigned bounds and 8026 * var_off of the result. 8027 */ 8028 dst_reg->s32_min_value = S32_MIN; 8029 dst_reg->s32_max_value = S32_MAX; 8030 8031 dst_reg->var_off = tnum_rshift(subreg, umin_val); 8032 dst_reg->u32_min_value >>= umax_val; 8033 dst_reg->u32_max_value >>= umin_val; 8034 8035 __mark_reg64_unbounded(dst_reg); 8036 __update_reg32_bounds(dst_reg); 8037 } 8038 8039 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 8040 struct bpf_reg_state *src_reg) 8041 { 8042 u64 umax_val = src_reg->umax_value; 8043 u64 umin_val = src_reg->umin_value; 8044 8045 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 8046 * be negative, then either: 8047 * 1) src_reg might be zero, so the sign bit of the result is 8048 * unknown, so we lose our signed bounds 8049 * 2) it's known negative, thus the unsigned bounds capture the 8050 * signed bounds 8051 * 3) the signed bounds cross zero, so they tell us nothing 8052 * about the result 8053 * If the value in dst_reg is known nonnegative, then again the 8054 * unsigned bounds capture the signed bounds. 8055 * Thus, in all cases it suffices to blow away our signed bounds 8056 * and rely on inferring new ones from the unsigned bounds and 8057 * var_off of the result. 8058 */ 8059 dst_reg->smin_value = S64_MIN; 8060 dst_reg->smax_value = S64_MAX; 8061 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 8062 dst_reg->umin_value >>= umax_val; 8063 dst_reg->umax_value >>= umin_val; 8064 8065 /* Its not easy to operate on alu32 bounds here because it depends 8066 * on bits being shifted in. Take easy way out and mark unbounded 8067 * so we can recalculate later from tnum. 8068 */ 8069 __mark_reg32_unbounded(dst_reg); 8070 __update_reg_bounds(dst_reg); 8071 } 8072 8073 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 8074 struct bpf_reg_state *src_reg) 8075 { 8076 u64 umin_val = src_reg->u32_min_value; 8077 8078 /* Upon reaching here, src_known is true and 8079 * umax_val is equal to umin_val. 8080 */ 8081 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 8082 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 8083 8084 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 8085 8086 /* blow away the dst_reg umin_value/umax_value and rely on 8087 * dst_reg var_off to refine the result. 8088 */ 8089 dst_reg->u32_min_value = 0; 8090 dst_reg->u32_max_value = U32_MAX; 8091 8092 __mark_reg64_unbounded(dst_reg); 8093 __update_reg32_bounds(dst_reg); 8094 } 8095 8096 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 8097 struct bpf_reg_state *src_reg) 8098 { 8099 u64 umin_val = src_reg->umin_value; 8100 8101 /* Upon reaching here, src_known is true and umax_val is equal 8102 * to umin_val. 8103 */ 8104 dst_reg->smin_value >>= umin_val; 8105 dst_reg->smax_value >>= umin_val; 8106 8107 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 8108 8109 /* blow away the dst_reg umin_value/umax_value and rely on 8110 * dst_reg var_off to refine the result. 8111 */ 8112 dst_reg->umin_value = 0; 8113 dst_reg->umax_value = U64_MAX; 8114 8115 /* Its not easy to operate on alu32 bounds here because it depends 8116 * on bits being shifted in from upper 32-bits. Take easy way out 8117 * and mark unbounded so we can recalculate later from tnum. 8118 */ 8119 __mark_reg32_unbounded(dst_reg); 8120 __update_reg_bounds(dst_reg); 8121 } 8122 8123 /* WARNING: This function does calculations on 64-bit values, but the actual 8124 * execution may occur on 32-bit values. Therefore, things like bitshifts 8125 * need extra checks in the 32-bit case. 8126 */ 8127 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 8128 struct bpf_insn *insn, 8129 struct bpf_reg_state *dst_reg, 8130 struct bpf_reg_state src_reg) 8131 { 8132 struct bpf_reg_state *regs = cur_regs(env); 8133 u8 opcode = BPF_OP(insn->code); 8134 bool src_known; 8135 s64 smin_val, smax_val; 8136 u64 umin_val, umax_val; 8137 s32 s32_min_val, s32_max_val; 8138 u32 u32_min_val, u32_max_val; 8139 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 8140 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 8141 int ret; 8142 8143 smin_val = src_reg.smin_value; 8144 smax_val = src_reg.smax_value; 8145 umin_val = src_reg.umin_value; 8146 umax_val = src_reg.umax_value; 8147 8148 s32_min_val = src_reg.s32_min_value; 8149 s32_max_val = src_reg.s32_max_value; 8150 u32_min_val = src_reg.u32_min_value; 8151 u32_max_val = src_reg.u32_max_value; 8152 8153 if (alu32) { 8154 src_known = tnum_subreg_is_const(src_reg.var_off); 8155 if ((src_known && 8156 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 8157 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 8158 /* Taint dst register if offset had invalid bounds 8159 * derived from e.g. dead branches. 8160 */ 8161 __mark_reg_unknown(env, dst_reg); 8162 return 0; 8163 } 8164 } else { 8165 src_known = tnum_is_const(src_reg.var_off); 8166 if ((src_known && 8167 (smin_val != smax_val || umin_val != umax_val)) || 8168 smin_val > smax_val || umin_val > umax_val) { 8169 /* Taint dst register if offset had invalid bounds 8170 * derived from e.g. dead branches. 8171 */ 8172 __mark_reg_unknown(env, dst_reg); 8173 return 0; 8174 } 8175 } 8176 8177 if (!src_known && 8178 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8179 __mark_reg_unknown(env, dst_reg); 8180 return 0; 8181 } 8182 8183 if (sanitize_needed(opcode)) { 8184 ret = sanitize_val_alu(env, insn); 8185 if (ret < 0) 8186 return sanitize_err(env, insn, ret, NULL, NULL); 8187 } 8188 8189 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8190 * There are two classes of instructions: The first class we track both 8191 * alu32 and alu64 sign/unsigned bounds independently this provides the 8192 * greatest amount of precision when alu operations are mixed with jmp32 8193 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8194 * and BPF_OR. This is possible because these ops have fairly easy to 8195 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8196 * See alu32 verifier tests for examples. The second class of 8197 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8198 * with regards to tracking sign/unsigned bounds because the bits may 8199 * cross subreg boundaries in the alu64 case. When this happens we mark 8200 * the reg unbounded in the subreg bound space and use the resulting 8201 * tnum to calculate an approximation of the sign/unsigned bounds. 8202 */ 8203 switch (opcode) { 8204 case BPF_ADD: 8205 scalar32_min_max_add(dst_reg, &src_reg); 8206 scalar_min_max_add(dst_reg, &src_reg); 8207 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8208 break; 8209 case BPF_SUB: 8210 scalar32_min_max_sub(dst_reg, &src_reg); 8211 scalar_min_max_sub(dst_reg, &src_reg); 8212 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8213 break; 8214 case BPF_MUL: 8215 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8216 scalar32_min_max_mul(dst_reg, &src_reg); 8217 scalar_min_max_mul(dst_reg, &src_reg); 8218 break; 8219 case BPF_AND: 8220 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8221 scalar32_min_max_and(dst_reg, &src_reg); 8222 scalar_min_max_and(dst_reg, &src_reg); 8223 break; 8224 case BPF_OR: 8225 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8226 scalar32_min_max_or(dst_reg, &src_reg); 8227 scalar_min_max_or(dst_reg, &src_reg); 8228 break; 8229 case BPF_XOR: 8230 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8231 scalar32_min_max_xor(dst_reg, &src_reg); 8232 scalar_min_max_xor(dst_reg, &src_reg); 8233 break; 8234 case BPF_LSH: 8235 if (umax_val >= insn_bitness) { 8236 /* Shifts greater than 31 or 63 are undefined. 8237 * This includes shifts by a negative number. 8238 */ 8239 mark_reg_unknown(env, regs, insn->dst_reg); 8240 break; 8241 } 8242 if (alu32) 8243 scalar32_min_max_lsh(dst_reg, &src_reg); 8244 else 8245 scalar_min_max_lsh(dst_reg, &src_reg); 8246 break; 8247 case BPF_RSH: 8248 if (umax_val >= insn_bitness) { 8249 /* Shifts greater than 31 or 63 are undefined. 8250 * This includes shifts by a negative number. 8251 */ 8252 mark_reg_unknown(env, regs, insn->dst_reg); 8253 break; 8254 } 8255 if (alu32) 8256 scalar32_min_max_rsh(dst_reg, &src_reg); 8257 else 8258 scalar_min_max_rsh(dst_reg, &src_reg); 8259 break; 8260 case BPF_ARSH: 8261 if (umax_val >= insn_bitness) { 8262 /* Shifts greater than 31 or 63 are undefined. 8263 * This includes shifts by a negative number. 8264 */ 8265 mark_reg_unknown(env, regs, insn->dst_reg); 8266 break; 8267 } 8268 if (alu32) 8269 scalar32_min_max_arsh(dst_reg, &src_reg); 8270 else 8271 scalar_min_max_arsh(dst_reg, &src_reg); 8272 break; 8273 default: 8274 mark_reg_unknown(env, regs, insn->dst_reg); 8275 break; 8276 } 8277 8278 /* ALU32 ops are zero extended into 64bit register */ 8279 if (alu32) 8280 zext_32_to_64(dst_reg); 8281 8282 __update_reg_bounds(dst_reg); 8283 __reg_deduce_bounds(dst_reg); 8284 __reg_bound_offset(dst_reg); 8285 return 0; 8286 } 8287 8288 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 8289 * and var_off. 8290 */ 8291 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 8292 struct bpf_insn *insn) 8293 { 8294 struct bpf_verifier_state *vstate = env->cur_state; 8295 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8296 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 8297 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 8298 u8 opcode = BPF_OP(insn->code); 8299 int err; 8300 8301 dst_reg = ®s[insn->dst_reg]; 8302 src_reg = NULL; 8303 if (dst_reg->type != SCALAR_VALUE) 8304 ptr_reg = dst_reg; 8305 else 8306 /* Make sure ID is cleared otherwise dst_reg min/max could be 8307 * incorrectly propagated into other registers by find_equal_scalars() 8308 */ 8309 dst_reg->id = 0; 8310 if (BPF_SRC(insn->code) == BPF_X) { 8311 src_reg = ®s[insn->src_reg]; 8312 if (src_reg->type != SCALAR_VALUE) { 8313 if (dst_reg->type != SCALAR_VALUE) { 8314 /* Combining two pointers by any ALU op yields 8315 * an arbitrary scalar. Disallow all math except 8316 * pointer subtraction 8317 */ 8318 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8319 mark_reg_unknown(env, regs, insn->dst_reg); 8320 return 0; 8321 } 8322 verbose(env, "R%d pointer %s pointer prohibited\n", 8323 insn->dst_reg, 8324 bpf_alu_string[opcode >> 4]); 8325 return -EACCES; 8326 } else { 8327 /* scalar += pointer 8328 * This is legal, but we have to reverse our 8329 * src/dest handling in computing the range 8330 */ 8331 err = mark_chain_precision(env, insn->dst_reg); 8332 if (err) 8333 return err; 8334 return adjust_ptr_min_max_vals(env, insn, 8335 src_reg, dst_reg); 8336 } 8337 } else if (ptr_reg) { 8338 /* pointer += scalar */ 8339 err = mark_chain_precision(env, insn->src_reg); 8340 if (err) 8341 return err; 8342 return adjust_ptr_min_max_vals(env, insn, 8343 dst_reg, src_reg); 8344 } 8345 } else { 8346 /* Pretend the src is a reg with a known value, since we only 8347 * need to be able to read from this state. 8348 */ 8349 off_reg.type = SCALAR_VALUE; 8350 __mark_reg_known(&off_reg, insn->imm); 8351 src_reg = &off_reg; 8352 if (ptr_reg) /* pointer += K */ 8353 return adjust_ptr_min_max_vals(env, insn, 8354 ptr_reg, src_reg); 8355 } 8356 8357 /* Got here implies adding two SCALAR_VALUEs */ 8358 if (WARN_ON_ONCE(ptr_reg)) { 8359 print_verifier_state(env, state, true); 8360 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 8361 return -EINVAL; 8362 } 8363 if (WARN_ON(!src_reg)) { 8364 print_verifier_state(env, state, true); 8365 verbose(env, "verifier internal error: no src_reg\n"); 8366 return -EINVAL; 8367 } 8368 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 8369 } 8370 8371 /* check validity of 32-bit and 64-bit arithmetic operations */ 8372 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 8373 { 8374 struct bpf_reg_state *regs = cur_regs(env); 8375 u8 opcode = BPF_OP(insn->code); 8376 int err; 8377 8378 if (opcode == BPF_END || opcode == BPF_NEG) { 8379 if (opcode == BPF_NEG) { 8380 if (BPF_SRC(insn->code) != 0 || 8381 insn->src_reg != BPF_REG_0 || 8382 insn->off != 0 || insn->imm != 0) { 8383 verbose(env, "BPF_NEG uses reserved fields\n"); 8384 return -EINVAL; 8385 } 8386 } else { 8387 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 8388 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 8389 BPF_CLASS(insn->code) == BPF_ALU64) { 8390 verbose(env, "BPF_END uses reserved fields\n"); 8391 return -EINVAL; 8392 } 8393 } 8394 8395 /* check src operand */ 8396 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8397 if (err) 8398 return err; 8399 8400 if (is_pointer_value(env, insn->dst_reg)) { 8401 verbose(env, "R%d pointer arithmetic prohibited\n", 8402 insn->dst_reg); 8403 return -EACCES; 8404 } 8405 8406 /* check dest operand */ 8407 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8408 if (err) 8409 return err; 8410 8411 } else if (opcode == BPF_MOV) { 8412 8413 if (BPF_SRC(insn->code) == BPF_X) { 8414 if (insn->imm != 0 || insn->off != 0) { 8415 verbose(env, "BPF_MOV uses reserved fields\n"); 8416 return -EINVAL; 8417 } 8418 8419 /* check src operand */ 8420 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8421 if (err) 8422 return err; 8423 } else { 8424 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8425 verbose(env, "BPF_MOV uses reserved fields\n"); 8426 return -EINVAL; 8427 } 8428 } 8429 8430 /* check dest operand, mark as required later */ 8431 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8432 if (err) 8433 return err; 8434 8435 if (BPF_SRC(insn->code) == BPF_X) { 8436 struct bpf_reg_state *src_reg = regs + insn->src_reg; 8437 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 8438 8439 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8440 /* case: R1 = R2 8441 * copy register state to dest reg 8442 */ 8443 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 8444 /* Assign src and dst registers the same ID 8445 * that will be used by find_equal_scalars() 8446 * to propagate min/max range. 8447 */ 8448 src_reg->id = ++env->id_gen; 8449 *dst_reg = *src_reg; 8450 dst_reg->live |= REG_LIVE_WRITTEN; 8451 dst_reg->subreg_def = DEF_NOT_SUBREG; 8452 } else { 8453 /* R1 = (u32) R2 */ 8454 if (is_pointer_value(env, insn->src_reg)) { 8455 verbose(env, 8456 "R%d partial copy of pointer\n", 8457 insn->src_reg); 8458 return -EACCES; 8459 } else if (src_reg->type == SCALAR_VALUE) { 8460 *dst_reg = *src_reg; 8461 /* Make sure ID is cleared otherwise 8462 * dst_reg min/max could be incorrectly 8463 * propagated into src_reg by find_equal_scalars() 8464 */ 8465 dst_reg->id = 0; 8466 dst_reg->live |= REG_LIVE_WRITTEN; 8467 dst_reg->subreg_def = env->insn_idx + 1; 8468 } else { 8469 mark_reg_unknown(env, regs, 8470 insn->dst_reg); 8471 } 8472 zext_32_to_64(dst_reg); 8473 8474 __update_reg_bounds(dst_reg); 8475 __reg_deduce_bounds(dst_reg); 8476 __reg_bound_offset(dst_reg); 8477 } 8478 } else { 8479 /* case: R = imm 8480 * remember the value we stored into this reg 8481 */ 8482 /* clear any state __mark_reg_known doesn't set */ 8483 mark_reg_unknown(env, regs, insn->dst_reg); 8484 regs[insn->dst_reg].type = SCALAR_VALUE; 8485 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8486 __mark_reg_known(regs + insn->dst_reg, 8487 insn->imm); 8488 } else { 8489 __mark_reg_known(regs + insn->dst_reg, 8490 (u32)insn->imm); 8491 } 8492 } 8493 8494 } else if (opcode > BPF_END) { 8495 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 8496 return -EINVAL; 8497 8498 } else { /* all other ALU ops: and, sub, xor, add, ... */ 8499 8500 if (BPF_SRC(insn->code) == BPF_X) { 8501 if (insn->imm != 0 || insn->off != 0) { 8502 verbose(env, "BPF_ALU uses reserved fields\n"); 8503 return -EINVAL; 8504 } 8505 /* check src1 operand */ 8506 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8507 if (err) 8508 return err; 8509 } else { 8510 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8511 verbose(env, "BPF_ALU uses reserved fields\n"); 8512 return -EINVAL; 8513 } 8514 } 8515 8516 /* check src2 operand */ 8517 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8518 if (err) 8519 return err; 8520 8521 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 8522 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 8523 verbose(env, "div by zero\n"); 8524 return -EINVAL; 8525 } 8526 8527 if ((opcode == BPF_LSH || opcode == BPF_RSH || 8528 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 8529 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 8530 8531 if (insn->imm < 0 || insn->imm >= size) { 8532 verbose(env, "invalid shift %d\n", insn->imm); 8533 return -EINVAL; 8534 } 8535 } 8536 8537 /* check dest operand */ 8538 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8539 if (err) 8540 return err; 8541 8542 return adjust_reg_min_max_vals(env, insn); 8543 } 8544 8545 return 0; 8546 } 8547 8548 static void __find_good_pkt_pointers(struct bpf_func_state *state, 8549 struct bpf_reg_state *dst_reg, 8550 enum bpf_reg_type type, int new_range) 8551 { 8552 struct bpf_reg_state *reg; 8553 int i; 8554 8555 for (i = 0; i < MAX_BPF_REG; i++) { 8556 reg = &state->regs[i]; 8557 if (reg->type == type && reg->id == dst_reg->id) 8558 /* keep the maximum range already checked */ 8559 reg->range = max(reg->range, new_range); 8560 } 8561 8562 bpf_for_each_spilled_reg(i, state, reg) { 8563 if (!reg) 8564 continue; 8565 if (reg->type == type && reg->id == dst_reg->id) 8566 reg->range = max(reg->range, new_range); 8567 } 8568 } 8569 8570 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 8571 struct bpf_reg_state *dst_reg, 8572 enum bpf_reg_type type, 8573 bool range_right_open) 8574 { 8575 int new_range, i; 8576 8577 if (dst_reg->off < 0 || 8578 (dst_reg->off == 0 && range_right_open)) 8579 /* This doesn't give us any range */ 8580 return; 8581 8582 if (dst_reg->umax_value > MAX_PACKET_OFF || 8583 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 8584 /* Risk of overflow. For instance, ptr + (1<<63) may be less 8585 * than pkt_end, but that's because it's also less than pkt. 8586 */ 8587 return; 8588 8589 new_range = dst_reg->off; 8590 if (range_right_open) 8591 new_range++; 8592 8593 /* Examples for register markings: 8594 * 8595 * pkt_data in dst register: 8596 * 8597 * r2 = r3; 8598 * r2 += 8; 8599 * if (r2 > pkt_end) goto <handle exception> 8600 * <access okay> 8601 * 8602 * r2 = r3; 8603 * r2 += 8; 8604 * if (r2 < pkt_end) goto <access okay> 8605 * <handle exception> 8606 * 8607 * Where: 8608 * r2 == dst_reg, pkt_end == src_reg 8609 * r2=pkt(id=n,off=8,r=0) 8610 * r3=pkt(id=n,off=0,r=0) 8611 * 8612 * pkt_data in src register: 8613 * 8614 * r2 = r3; 8615 * r2 += 8; 8616 * if (pkt_end >= r2) goto <access okay> 8617 * <handle exception> 8618 * 8619 * r2 = r3; 8620 * r2 += 8; 8621 * if (pkt_end <= r2) goto <handle exception> 8622 * <access okay> 8623 * 8624 * Where: 8625 * pkt_end == dst_reg, r2 == src_reg 8626 * r2=pkt(id=n,off=8,r=0) 8627 * r3=pkt(id=n,off=0,r=0) 8628 * 8629 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8630 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8631 * and [r3, r3 + 8-1) respectively is safe to access depending on 8632 * the check. 8633 */ 8634 8635 /* If our ids match, then we must have the same max_value. And we 8636 * don't care about the other reg's fixed offset, since if it's too big 8637 * the range won't allow anything. 8638 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8639 */ 8640 for (i = 0; i <= vstate->curframe; i++) 8641 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8642 new_range); 8643 } 8644 8645 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8646 { 8647 struct tnum subreg = tnum_subreg(reg->var_off); 8648 s32 sval = (s32)val; 8649 8650 switch (opcode) { 8651 case BPF_JEQ: 8652 if (tnum_is_const(subreg)) 8653 return !!tnum_equals_const(subreg, val); 8654 break; 8655 case BPF_JNE: 8656 if (tnum_is_const(subreg)) 8657 return !tnum_equals_const(subreg, val); 8658 break; 8659 case BPF_JSET: 8660 if ((~subreg.mask & subreg.value) & val) 8661 return 1; 8662 if (!((subreg.mask | subreg.value) & val)) 8663 return 0; 8664 break; 8665 case BPF_JGT: 8666 if (reg->u32_min_value > val) 8667 return 1; 8668 else if (reg->u32_max_value <= val) 8669 return 0; 8670 break; 8671 case BPF_JSGT: 8672 if (reg->s32_min_value > sval) 8673 return 1; 8674 else if (reg->s32_max_value <= sval) 8675 return 0; 8676 break; 8677 case BPF_JLT: 8678 if (reg->u32_max_value < val) 8679 return 1; 8680 else if (reg->u32_min_value >= val) 8681 return 0; 8682 break; 8683 case BPF_JSLT: 8684 if (reg->s32_max_value < sval) 8685 return 1; 8686 else if (reg->s32_min_value >= sval) 8687 return 0; 8688 break; 8689 case BPF_JGE: 8690 if (reg->u32_min_value >= val) 8691 return 1; 8692 else if (reg->u32_max_value < val) 8693 return 0; 8694 break; 8695 case BPF_JSGE: 8696 if (reg->s32_min_value >= sval) 8697 return 1; 8698 else if (reg->s32_max_value < sval) 8699 return 0; 8700 break; 8701 case BPF_JLE: 8702 if (reg->u32_max_value <= val) 8703 return 1; 8704 else if (reg->u32_min_value > val) 8705 return 0; 8706 break; 8707 case BPF_JSLE: 8708 if (reg->s32_max_value <= sval) 8709 return 1; 8710 else if (reg->s32_min_value > sval) 8711 return 0; 8712 break; 8713 } 8714 8715 return -1; 8716 } 8717 8718 8719 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8720 { 8721 s64 sval = (s64)val; 8722 8723 switch (opcode) { 8724 case BPF_JEQ: 8725 if (tnum_is_const(reg->var_off)) 8726 return !!tnum_equals_const(reg->var_off, val); 8727 break; 8728 case BPF_JNE: 8729 if (tnum_is_const(reg->var_off)) 8730 return !tnum_equals_const(reg->var_off, val); 8731 break; 8732 case BPF_JSET: 8733 if ((~reg->var_off.mask & reg->var_off.value) & val) 8734 return 1; 8735 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8736 return 0; 8737 break; 8738 case BPF_JGT: 8739 if (reg->umin_value > val) 8740 return 1; 8741 else if (reg->umax_value <= val) 8742 return 0; 8743 break; 8744 case BPF_JSGT: 8745 if (reg->smin_value > sval) 8746 return 1; 8747 else if (reg->smax_value <= sval) 8748 return 0; 8749 break; 8750 case BPF_JLT: 8751 if (reg->umax_value < val) 8752 return 1; 8753 else if (reg->umin_value >= val) 8754 return 0; 8755 break; 8756 case BPF_JSLT: 8757 if (reg->smax_value < sval) 8758 return 1; 8759 else if (reg->smin_value >= sval) 8760 return 0; 8761 break; 8762 case BPF_JGE: 8763 if (reg->umin_value >= val) 8764 return 1; 8765 else if (reg->umax_value < val) 8766 return 0; 8767 break; 8768 case BPF_JSGE: 8769 if (reg->smin_value >= sval) 8770 return 1; 8771 else if (reg->smax_value < sval) 8772 return 0; 8773 break; 8774 case BPF_JLE: 8775 if (reg->umax_value <= val) 8776 return 1; 8777 else if (reg->umin_value > val) 8778 return 0; 8779 break; 8780 case BPF_JSLE: 8781 if (reg->smax_value <= sval) 8782 return 1; 8783 else if (reg->smin_value > sval) 8784 return 0; 8785 break; 8786 } 8787 8788 return -1; 8789 } 8790 8791 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8792 * and return: 8793 * 1 - branch will be taken and "goto target" will be executed 8794 * 0 - branch will not be taken and fall-through to next insn 8795 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8796 * range [0,10] 8797 */ 8798 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8799 bool is_jmp32) 8800 { 8801 if (__is_pointer_value(false, reg)) { 8802 if (!reg_type_not_null(reg->type)) 8803 return -1; 8804 8805 /* If pointer is valid tests against zero will fail so we can 8806 * use this to direct branch taken. 8807 */ 8808 if (val != 0) 8809 return -1; 8810 8811 switch (opcode) { 8812 case BPF_JEQ: 8813 return 0; 8814 case BPF_JNE: 8815 return 1; 8816 default: 8817 return -1; 8818 } 8819 } 8820 8821 if (is_jmp32) 8822 return is_branch32_taken(reg, val, opcode); 8823 return is_branch64_taken(reg, val, opcode); 8824 } 8825 8826 static int flip_opcode(u32 opcode) 8827 { 8828 /* How can we transform "a <op> b" into "b <op> a"? */ 8829 static const u8 opcode_flip[16] = { 8830 /* these stay the same */ 8831 [BPF_JEQ >> 4] = BPF_JEQ, 8832 [BPF_JNE >> 4] = BPF_JNE, 8833 [BPF_JSET >> 4] = BPF_JSET, 8834 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8835 [BPF_JGE >> 4] = BPF_JLE, 8836 [BPF_JGT >> 4] = BPF_JLT, 8837 [BPF_JLE >> 4] = BPF_JGE, 8838 [BPF_JLT >> 4] = BPF_JGT, 8839 [BPF_JSGE >> 4] = BPF_JSLE, 8840 [BPF_JSGT >> 4] = BPF_JSLT, 8841 [BPF_JSLE >> 4] = BPF_JSGE, 8842 [BPF_JSLT >> 4] = BPF_JSGT 8843 }; 8844 return opcode_flip[opcode >> 4]; 8845 } 8846 8847 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8848 struct bpf_reg_state *src_reg, 8849 u8 opcode) 8850 { 8851 struct bpf_reg_state *pkt; 8852 8853 if (src_reg->type == PTR_TO_PACKET_END) { 8854 pkt = dst_reg; 8855 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8856 pkt = src_reg; 8857 opcode = flip_opcode(opcode); 8858 } else { 8859 return -1; 8860 } 8861 8862 if (pkt->range >= 0) 8863 return -1; 8864 8865 switch (opcode) { 8866 case BPF_JLE: 8867 /* pkt <= pkt_end */ 8868 fallthrough; 8869 case BPF_JGT: 8870 /* pkt > pkt_end */ 8871 if (pkt->range == BEYOND_PKT_END) 8872 /* pkt has at last one extra byte beyond pkt_end */ 8873 return opcode == BPF_JGT; 8874 break; 8875 case BPF_JLT: 8876 /* pkt < pkt_end */ 8877 fallthrough; 8878 case BPF_JGE: 8879 /* pkt >= pkt_end */ 8880 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8881 return opcode == BPF_JGE; 8882 break; 8883 } 8884 return -1; 8885 } 8886 8887 /* Adjusts the register min/max values in the case that the dst_reg is the 8888 * variable register that we are working on, and src_reg is a constant or we're 8889 * simply doing a BPF_K check. 8890 * In JEQ/JNE cases we also adjust the var_off values. 8891 */ 8892 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8893 struct bpf_reg_state *false_reg, 8894 u64 val, u32 val32, 8895 u8 opcode, bool is_jmp32) 8896 { 8897 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8898 struct tnum false_64off = false_reg->var_off; 8899 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8900 struct tnum true_64off = true_reg->var_off; 8901 s64 sval = (s64)val; 8902 s32 sval32 = (s32)val32; 8903 8904 /* If the dst_reg is a pointer, we can't learn anything about its 8905 * variable offset from the compare (unless src_reg were a pointer into 8906 * the same object, but we don't bother with that. 8907 * Since false_reg and true_reg have the same type by construction, we 8908 * only need to check one of them for pointerness. 8909 */ 8910 if (__is_pointer_value(false, false_reg)) 8911 return; 8912 8913 switch (opcode) { 8914 case BPF_JEQ: 8915 case BPF_JNE: 8916 { 8917 struct bpf_reg_state *reg = 8918 opcode == BPF_JEQ ? true_reg : false_reg; 8919 8920 /* JEQ/JNE comparison doesn't change the register equivalence. 8921 * r1 = r2; 8922 * if (r1 == 42) goto label; 8923 * ... 8924 * label: // here both r1 and r2 are known to be 42. 8925 * 8926 * Hence when marking register as known preserve it's ID. 8927 */ 8928 if (is_jmp32) 8929 __mark_reg32_known(reg, val32); 8930 else 8931 ___mark_reg_known(reg, val); 8932 break; 8933 } 8934 case BPF_JSET: 8935 if (is_jmp32) { 8936 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8937 if (is_power_of_2(val32)) 8938 true_32off = tnum_or(true_32off, 8939 tnum_const(val32)); 8940 } else { 8941 false_64off = tnum_and(false_64off, tnum_const(~val)); 8942 if (is_power_of_2(val)) 8943 true_64off = tnum_or(true_64off, 8944 tnum_const(val)); 8945 } 8946 break; 8947 case BPF_JGE: 8948 case BPF_JGT: 8949 { 8950 if (is_jmp32) { 8951 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8952 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8953 8954 false_reg->u32_max_value = min(false_reg->u32_max_value, 8955 false_umax); 8956 true_reg->u32_min_value = max(true_reg->u32_min_value, 8957 true_umin); 8958 } else { 8959 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8960 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8961 8962 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8963 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8964 } 8965 break; 8966 } 8967 case BPF_JSGE: 8968 case BPF_JSGT: 8969 { 8970 if (is_jmp32) { 8971 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8972 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8973 8974 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8975 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8976 } else { 8977 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8978 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8979 8980 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8981 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8982 } 8983 break; 8984 } 8985 case BPF_JLE: 8986 case BPF_JLT: 8987 { 8988 if (is_jmp32) { 8989 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8990 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8991 8992 false_reg->u32_min_value = max(false_reg->u32_min_value, 8993 false_umin); 8994 true_reg->u32_max_value = min(true_reg->u32_max_value, 8995 true_umax); 8996 } else { 8997 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8998 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8999 9000 false_reg->umin_value = max(false_reg->umin_value, false_umin); 9001 true_reg->umax_value = min(true_reg->umax_value, true_umax); 9002 } 9003 break; 9004 } 9005 case BPF_JSLE: 9006 case BPF_JSLT: 9007 { 9008 if (is_jmp32) { 9009 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 9010 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 9011 9012 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 9013 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 9014 } else { 9015 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 9016 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 9017 9018 false_reg->smin_value = max(false_reg->smin_value, false_smin); 9019 true_reg->smax_value = min(true_reg->smax_value, true_smax); 9020 } 9021 break; 9022 } 9023 default: 9024 return; 9025 } 9026 9027 if (is_jmp32) { 9028 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 9029 tnum_subreg(false_32off)); 9030 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 9031 tnum_subreg(true_32off)); 9032 __reg_combine_32_into_64(false_reg); 9033 __reg_combine_32_into_64(true_reg); 9034 } else { 9035 false_reg->var_off = false_64off; 9036 true_reg->var_off = true_64off; 9037 __reg_combine_64_into_32(false_reg); 9038 __reg_combine_64_into_32(true_reg); 9039 } 9040 } 9041 9042 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 9043 * the variable reg. 9044 */ 9045 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 9046 struct bpf_reg_state *false_reg, 9047 u64 val, u32 val32, 9048 u8 opcode, bool is_jmp32) 9049 { 9050 opcode = flip_opcode(opcode); 9051 /* This uses zero as "not present in table"; luckily the zero opcode, 9052 * BPF_JA, can't get here. 9053 */ 9054 if (opcode) 9055 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 9056 } 9057 9058 /* Regs are known to be equal, so intersect their min/max/var_off */ 9059 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 9060 struct bpf_reg_state *dst_reg) 9061 { 9062 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 9063 dst_reg->umin_value); 9064 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 9065 dst_reg->umax_value); 9066 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 9067 dst_reg->smin_value); 9068 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 9069 dst_reg->smax_value); 9070 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 9071 dst_reg->var_off); 9072 /* We might have learned new bounds from the var_off. */ 9073 __update_reg_bounds(src_reg); 9074 __update_reg_bounds(dst_reg); 9075 /* We might have learned something about the sign bit. */ 9076 __reg_deduce_bounds(src_reg); 9077 __reg_deduce_bounds(dst_reg); 9078 /* We might have learned some bits from the bounds. */ 9079 __reg_bound_offset(src_reg); 9080 __reg_bound_offset(dst_reg); 9081 /* Intersecting with the old var_off might have improved our bounds 9082 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 9083 * then new var_off is (0; 0x7f...fc) which improves our umax. 9084 */ 9085 __update_reg_bounds(src_reg); 9086 __update_reg_bounds(dst_reg); 9087 } 9088 9089 static void reg_combine_min_max(struct bpf_reg_state *true_src, 9090 struct bpf_reg_state *true_dst, 9091 struct bpf_reg_state *false_src, 9092 struct bpf_reg_state *false_dst, 9093 u8 opcode) 9094 { 9095 switch (opcode) { 9096 case BPF_JEQ: 9097 __reg_combine_min_max(true_src, true_dst); 9098 break; 9099 case BPF_JNE: 9100 __reg_combine_min_max(false_src, false_dst); 9101 break; 9102 } 9103 } 9104 9105 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 9106 struct bpf_reg_state *reg, u32 id, 9107 bool is_null) 9108 { 9109 if (type_may_be_null(reg->type) && reg->id == id && 9110 !WARN_ON_ONCE(!reg->id)) { 9111 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 9112 !tnum_equals_const(reg->var_off, 0) || 9113 reg->off)) { 9114 /* Old offset (both fixed and variable parts) should 9115 * have been known-zero, because we don't allow pointer 9116 * arithmetic on pointers that might be NULL. If we 9117 * see this happening, don't convert the register. 9118 */ 9119 return; 9120 } 9121 if (is_null) { 9122 reg->type = SCALAR_VALUE; 9123 /* We don't need id and ref_obj_id from this point 9124 * onwards anymore, thus we should better reset it, 9125 * so that state pruning has chances to take effect. 9126 */ 9127 reg->id = 0; 9128 reg->ref_obj_id = 0; 9129 9130 return; 9131 } 9132 9133 mark_ptr_not_null_reg(reg); 9134 9135 if (!reg_may_point_to_spin_lock(reg)) { 9136 /* For not-NULL ptr, reg->ref_obj_id will be reset 9137 * in release_reg_references(). 9138 * 9139 * reg->id is still used by spin_lock ptr. Other 9140 * than spin_lock ptr type, reg->id can be reset. 9141 */ 9142 reg->id = 0; 9143 } 9144 } 9145 } 9146 9147 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 9148 bool is_null) 9149 { 9150 struct bpf_reg_state *reg; 9151 int i; 9152 9153 for (i = 0; i < MAX_BPF_REG; i++) 9154 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 9155 9156 bpf_for_each_spilled_reg(i, state, reg) { 9157 if (!reg) 9158 continue; 9159 mark_ptr_or_null_reg(state, reg, id, is_null); 9160 } 9161 } 9162 9163 /* The logic is similar to find_good_pkt_pointers(), both could eventually 9164 * be folded together at some point. 9165 */ 9166 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9167 bool is_null) 9168 { 9169 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9170 struct bpf_reg_state *regs = state->regs; 9171 u32 ref_obj_id = regs[regno].ref_obj_id; 9172 u32 id = regs[regno].id; 9173 int i; 9174 9175 if (ref_obj_id && ref_obj_id == id && is_null) 9176 /* regs[regno] is in the " == NULL" branch. 9177 * No one could have freed the reference state before 9178 * doing the NULL check. 9179 */ 9180 WARN_ON_ONCE(release_reference_state(state, id)); 9181 9182 for (i = 0; i <= vstate->curframe; i++) 9183 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9184 } 9185 9186 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9187 struct bpf_reg_state *dst_reg, 9188 struct bpf_reg_state *src_reg, 9189 struct bpf_verifier_state *this_branch, 9190 struct bpf_verifier_state *other_branch) 9191 { 9192 if (BPF_SRC(insn->code) != BPF_X) 9193 return false; 9194 9195 /* Pointers are always 64-bit. */ 9196 if (BPF_CLASS(insn->code) == BPF_JMP32) 9197 return false; 9198 9199 switch (BPF_OP(insn->code)) { 9200 case BPF_JGT: 9201 if ((dst_reg->type == PTR_TO_PACKET && 9202 src_reg->type == PTR_TO_PACKET_END) || 9203 (dst_reg->type == PTR_TO_PACKET_META && 9204 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9205 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9206 find_good_pkt_pointers(this_branch, dst_reg, 9207 dst_reg->type, false); 9208 mark_pkt_end(other_branch, insn->dst_reg, true); 9209 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9210 src_reg->type == PTR_TO_PACKET) || 9211 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9212 src_reg->type == PTR_TO_PACKET_META)) { 9213 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9214 find_good_pkt_pointers(other_branch, src_reg, 9215 src_reg->type, true); 9216 mark_pkt_end(this_branch, insn->src_reg, false); 9217 } else { 9218 return false; 9219 } 9220 break; 9221 case BPF_JLT: 9222 if ((dst_reg->type == PTR_TO_PACKET && 9223 src_reg->type == PTR_TO_PACKET_END) || 9224 (dst_reg->type == PTR_TO_PACKET_META && 9225 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9226 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9227 find_good_pkt_pointers(other_branch, dst_reg, 9228 dst_reg->type, true); 9229 mark_pkt_end(this_branch, insn->dst_reg, false); 9230 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9231 src_reg->type == PTR_TO_PACKET) || 9232 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9233 src_reg->type == PTR_TO_PACKET_META)) { 9234 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9235 find_good_pkt_pointers(this_branch, src_reg, 9236 src_reg->type, false); 9237 mark_pkt_end(other_branch, insn->src_reg, true); 9238 } else { 9239 return false; 9240 } 9241 break; 9242 case BPF_JGE: 9243 if ((dst_reg->type == PTR_TO_PACKET && 9244 src_reg->type == PTR_TO_PACKET_END) || 9245 (dst_reg->type == PTR_TO_PACKET_META && 9246 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9247 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9248 find_good_pkt_pointers(this_branch, dst_reg, 9249 dst_reg->type, true); 9250 mark_pkt_end(other_branch, insn->dst_reg, false); 9251 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9252 src_reg->type == PTR_TO_PACKET) || 9253 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9254 src_reg->type == PTR_TO_PACKET_META)) { 9255 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9256 find_good_pkt_pointers(other_branch, src_reg, 9257 src_reg->type, false); 9258 mark_pkt_end(this_branch, insn->src_reg, true); 9259 } else { 9260 return false; 9261 } 9262 break; 9263 case BPF_JLE: 9264 if ((dst_reg->type == PTR_TO_PACKET && 9265 src_reg->type == PTR_TO_PACKET_END) || 9266 (dst_reg->type == PTR_TO_PACKET_META && 9267 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9268 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9269 find_good_pkt_pointers(other_branch, dst_reg, 9270 dst_reg->type, false); 9271 mark_pkt_end(this_branch, insn->dst_reg, true); 9272 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9273 src_reg->type == PTR_TO_PACKET) || 9274 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9275 src_reg->type == PTR_TO_PACKET_META)) { 9276 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9277 find_good_pkt_pointers(this_branch, src_reg, 9278 src_reg->type, true); 9279 mark_pkt_end(other_branch, insn->src_reg, false); 9280 } else { 9281 return false; 9282 } 9283 break; 9284 default: 9285 return false; 9286 } 9287 9288 return true; 9289 } 9290 9291 static void find_equal_scalars(struct bpf_verifier_state *vstate, 9292 struct bpf_reg_state *known_reg) 9293 { 9294 struct bpf_func_state *state; 9295 struct bpf_reg_state *reg; 9296 int i, j; 9297 9298 for (i = 0; i <= vstate->curframe; i++) { 9299 state = vstate->frame[i]; 9300 for (j = 0; j < MAX_BPF_REG; j++) { 9301 reg = &state->regs[j]; 9302 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9303 *reg = *known_reg; 9304 } 9305 9306 bpf_for_each_spilled_reg(j, state, reg) { 9307 if (!reg) 9308 continue; 9309 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9310 *reg = *known_reg; 9311 } 9312 } 9313 } 9314 9315 static int check_cond_jmp_op(struct bpf_verifier_env *env, 9316 struct bpf_insn *insn, int *insn_idx) 9317 { 9318 struct bpf_verifier_state *this_branch = env->cur_state; 9319 struct bpf_verifier_state *other_branch; 9320 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 9321 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 9322 u8 opcode = BPF_OP(insn->code); 9323 bool is_jmp32; 9324 int pred = -1; 9325 int err; 9326 9327 /* Only conditional jumps are expected to reach here. */ 9328 if (opcode == BPF_JA || opcode > BPF_JSLE) { 9329 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 9330 return -EINVAL; 9331 } 9332 9333 if (BPF_SRC(insn->code) == BPF_X) { 9334 if (insn->imm != 0) { 9335 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9336 return -EINVAL; 9337 } 9338 9339 /* check src1 operand */ 9340 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9341 if (err) 9342 return err; 9343 9344 if (is_pointer_value(env, insn->src_reg)) { 9345 verbose(env, "R%d pointer comparison prohibited\n", 9346 insn->src_reg); 9347 return -EACCES; 9348 } 9349 src_reg = ®s[insn->src_reg]; 9350 } else { 9351 if (insn->src_reg != BPF_REG_0) { 9352 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9353 return -EINVAL; 9354 } 9355 } 9356 9357 /* check src2 operand */ 9358 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9359 if (err) 9360 return err; 9361 9362 dst_reg = ®s[insn->dst_reg]; 9363 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 9364 9365 if (BPF_SRC(insn->code) == BPF_K) { 9366 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 9367 } else if (src_reg->type == SCALAR_VALUE && 9368 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 9369 pred = is_branch_taken(dst_reg, 9370 tnum_subreg(src_reg->var_off).value, 9371 opcode, 9372 is_jmp32); 9373 } else if (src_reg->type == SCALAR_VALUE && 9374 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 9375 pred = is_branch_taken(dst_reg, 9376 src_reg->var_off.value, 9377 opcode, 9378 is_jmp32); 9379 } else if (reg_is_pkt_pointer_any(dst_reg) && 9380 reg_is_pkt_pointer_any(src_reg) && 9381 !is_jmp32) { 9382 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 9383 } 9384 9385 if (pred >= 0) { 9386 /* If we get here with a dst_reg pointer type it is because 9387 * above is_branch_taken() special cased the 0 comparison. 9388 */ 9389 if (!__is_pointer_value(false, dst_reg)) 9390 err = mark_chain_precision(env, insn->dst_reg); 9391 if (BPF_SRC(insn->code) == BPF_X && !err && 9392 !__is_pointer_value(false, src_reg)) 9393 err = mark_chain_precision(env, insn->src_reg); 9394 if (err) 9395 return err; 9396 } 9397 9398 if (pred == 1) { 9399 /* Only follow the goto, ignore fall-through. If needed, push 9400 * the fall-through branch for simulation under speculative 9401 * execution. 9402 */ 9403 if (!env->bypass_spec_v1 && 9404 !sanitize_speculative_path(env, insn, *insn_idx + 1, 9405 *insn_idx)) 9406 return -EFAULT; 9407 *insn_idx += insn->off; 9408 return 0; 9409 } else if (pred == 0) { 9410 /* Only follow the fall-through branch, since that's where the 9411 * program will go. If needed, push the goto branch for 9412 * simulation under speculative execution. 9413 */ 9414 if (!env->bypass_spec_v1 && 9415 !sanitize_speculative_path(env, insn, 9416 *insn_idx + insn->off + 1, 9417 *insn_idx)) 9418 return -EFAULT; 9419 return 0; 9420 } 9421 9422 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 9423 false); 9424 if (!other_branch) 9425 return -EFAULT; 9426 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 9427 9428 /* detect if we are comparing against a constant value so we can adjust 9429 * our min/max values for our dst register. 9430 * this is only legit if both are scalars (or pointers to the same 9431 * object, I suppose, but we don't support that right now), because 9432 * otherwise the different base pointers mean the offsets aren't 9433 * comparable. 9434 */ 9435 if (BPF_SRC(insn->code) == BPF_X) { 9436 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 9437 9438 if (dst_reg->type == SCALAR_VALUE && 9439 src_reg->type == SCALAR_VALUE) { 9440 if (tnum_is_const(src_reg->var_off) || 9441 (is_jmp32 && 9442 tnum_is_const(tnum_subreg(src_reg->var_off)))) 9443 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9444 dst_reg, 9445 src_reg->var_off.value, 9446 tnum_subreg(src_reg->var_off).value, 9447 opcode, is_jmp32); 9448 else if (tnum_is_const(dst_reg->var_off) || 9449 (is_jmp32 && 9450 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 9451 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 9452 src_reg, 9453 dst_reg->var_off.value, 9454 tnum_subreg(dst_reg->var_off).value, 9455 opcode, is_jmp32); 9456 else if (!is_jmp32 && 9457 (opcode == BPF_JEQ || opcode == BPF_JNE)) 9458 /* Comparing for equality, we can combine knowledge */ 9459 reg_combine_min_max(&other_branch_regs[insn->src_reg], 9460 &other_branch_regs[insn->dst_reg], 9461 src_reg, dst_reg, opcode); 9462 if (src_reg->id && 9463 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 9464 find_equal_scalars(this_branch, src_reg); 9465 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 9466 } 9467 9468 } 9469 } else if (dst_reg->type == SCALAR_VALUE) { 9470 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9471 dst_reg, insn->imm, (u32)insn->imm, 9472 opcode, is_jmp32); 9473 } 9474 9475 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 9476 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 9477 find_equal_scalars(this_branch, dst_reg); 9478 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 9479 } 9480 9481 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 9482 * NOTE: these optimizations below are related with pointer comparison 9483 * which will never be JMP32. 9484 */ 9485 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 9486 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 9487 type_may_be_null(dst_reg->type)) { 9488 /* Mark all identical registers in each branch as either 9489 * safe or unknown depending R == 0 or R != 0 conditional. 9490 */ 9491 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 9492 opcode == BPF_JNE); 9493 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 9494 opcode == BPF_JEQ); 9495 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 9496 this_branch, other_branch) && 9497 is_pointer_value(env, insn->dst_reg)) { 9498 verbose(env, "R%d pointer comparison prohibited\n", 9499 insn->dst_reg); 9500 return -EACCES; 9501 } 9502 if (env->log.level & BPF_LOG_LEVEL) 9503 print_insn_state(env, this_branch->frame[this_branch->curframe]); 9504 return 0; 9505 } 9506 9507 /* verify BPF_LD_IMM64 instruction */ 9508 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 9509 { 9510 struct bpf_insn_aux_data *aux = cur_aux(env); 9511 struct bpf_reg_state *regs = cur_regs(env); 9512 struct bpf_reg_state *dst_reg; 9513 struct bpf_map *map; 9514 int err; 9515 9516 if (BPF_SIZE(insn->code) != BPF_DW) { 9517 verbose(env, "invalid BPF_LD_IMM insn\n"); 9518 return -EINVAL; 9519 } 9520 if (insn->off != 0) { 9521 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 9522 return -EINVAL; 9523 } 9524 9525 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9526 if (err) 9527 return err; 9528 9529 dst_reg = ®s[insn->dst_reg]; 9530 if (insn->src_reg == 0) { 9531 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 9532 9533 dst_reg->type = SCALAR_VALUE; 9534 __mark_reg_known(®s[insn->dst_reg], imm); 9535 return 0; 9536 } 9537 9538 /* All special src_reg cases are listed below. From this point onwards 9539 * we either succeed and assign a corresponding dst_reg->type after 9540 * zeroing the offset, or fail and reject the program. 9541 */ 9542 mark_reg_known_zero(env, regs, insn->dst_reg); 9543 9544 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 9545 dst_reg->type = aux->btf_var.reg_type; 9546 switch (base_type(dst_reg->type)) { 9547 case PTR_TO_MEM: 9548 dst_reg->mem_size = aux->btf_var.mem_size; 9549 break; 9550 case PTR_TO_BTF_ID: 9551 case PTR_TO_PERCPU_BTF_ID: 9552 dst_reg->btf = aux->btf_var.btf; 9553 dst_reg->btf_id = aux->btf_var.btf_id; 9554 break; 9555 default: 9556 verbose(env, "bpf verifier is misconfigured\n"); 9557 return -EFAULT; 9558 } 9559 return 0; 9560 } 9561 9562 if (insn->src_reg == BPF_PSEUDO_FUNC) { 9563 struct bpf_prog_aux *aux = env->prog->aux; 9564 u32 subprogno = find_subprog(env, 9565 env->insn_idx + insn->imm + 1); 9566 9567 if (!aux->func_info) { 9568 verbose(env, "missing btf func_info\n"); 9569 return -EINVAL; 9570 } 9571 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 9572 verbose(env, "callback function not static\n"); 9573 return -EINVAL; 9574 } 9575 9576 dst_reg->type = PTR_TO_FUNC; 9577 dst_reg->subprogno = subprogno; 9578 return 0; 9579 } 9580 9581 map = env->used_maps[aux->map_index]; 9582 dst_reg->map_ptr = map; 9583 9584 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 9585 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 9586 dst_reg->type = PTR_TO_MAP_VALUE; 9587 dst_reg->off = aux->map_off; 9588 if (map_value_has_spin_lock(map)) 9589 dst_reg->id = ++env->id_gen; 9590 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 9591 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 9592 dst_reg->type = CONST_PTR_TO_MAP; 9593 } else { 9594 verbose(env, "bpf verifier is misconfigured\n"); 9595 return -EINVAL; 9596 } 9597 9598 return 0; 9599 } 9600 9601 static bool may_access_skb(enum bpf_prog_type type) 9602 { 9603 switch (type) { 9604 case BPF_PROG_TYPE_SOCKET_FILTER: 9605 case BPF_PROG_TYPE_SCHED_CLS: 9606 case BPF_PROG_TYPE_SCHED_ACT: 9607 return true; 9608 default: 9609 return false; 9610 } 9611 } 9612 9613 /* verify safety of LD_ABS|LD_IND instructions: 9614 * - they can only appear in the programs where ctx == skb 9615 * - since they are wrappers of function calls, they scratch R1-R5 registers, 9616 * preserve R6-R9, and store return value into R0 9617 * 9618 * Implicit input: 9619 * ctx == skb == R6 == CTX 9620 * 9621 * Explicit input: 9622 * SRC == any register 9623 * IMM == 32-bit immediate 9624 * 9625 * Output: 9626 * R0 - 8/16/32-bit skb data converted to cpu endianness 9627 */ 9628 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9629 { 9630 struct bpf_reg_state *regs = cur_regs(env); 9631 static const int ctx_reg = BPF_REG_6; 9632 u8 mode = BPF_MODE(insn->code); 9633 int i, err; 9634 9635 if (!may_access_skb(resolve_prog_type(env->prog))) { 9636 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9637 return -EINVAL; 9638 } 9639 9640 if (!env->ops->gen_ld_abs) { 9641 verbose(env, "bpf verifier is misconfigured\n"); 9642 return -EINVAL; 9643 } 9644 9645 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9646 BPF_SIZE(insn->code) == BPF_DW || 9647 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9648 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9649 return -EINVAL; 9650 } 9651 9652 /* check whether implicit source operand (register R6) is readable */ 9653 err = check_reg_arg(env, ctx_reg, SRC_OP); 9654 if (err) 9655 return err; 9656 9657 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9658 * gen_ld_abs() may terminate the program at runtime, leading to 9659 * reference leak. 9660 */ 9661 err = check_reference_leak(env); 9662 if (err) { 9663 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9664 return err; 9665 } 9666 9667 if (env->cur_state->active_spin_lock) { 9668 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9669 return -EINVAL; 9670 } 9671 9672 if (regs[ctx_reg].type != PTR_TO_CTX) { 9673 verbose(env, 9674 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9675 return -EINVAL; 9676 } 9677 9678 if (mode == BPF_IND) { 9679 /* check explicit source operand */ 9680 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9681 if (err) 9682 return err; 9683 } 9684 9685 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 9686 if (err < 0) 9687 return err; 9688 9689 /* reset caller saved regs to unreadable */ 9690 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9691 mark_reg_not_init(env, regs, caller_saved[i]); 9692 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9693 } 9694 9695 /* mark destination R0 register as readable, since it contains 9696 * the value fetched from the packet. 9697 * Already marked as written above. 9698 */ 9699 mark_reg_unknown(env, regs, BPF_REG_0); 9700 /* ld_abs load up to 32-bit skb data. */ 9701 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9702 return 0; 9703 } 9704 9705 static int check_return_code(struct bpf_verifier_env *env) 9706 { 9707 struct tnum enforce_attach_type_range = tnum_unknown; 9708 const struct bpf_prog *prog = env->prog; 9709 struct bpf_reg_state *reg; 9710 struct tnum range = tnum_range(0, 1); 9711 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9712 int err; 9713 struct bpf_func_state *frame = env->cur_state->frame[0]; 9714 const bool is_subprog = frame->subprogno; 9715 9716 /* LSM and struct_ops func-ptr's return type could be "void" */ 9717 if (!is_subprog && 9718 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9719 prog_type == BPF_PROG_TYPE_LSM) && 9720 !prog->aux->attach_func_proto->type) 9721 return 0; 9722 9723 /* eBPF calling convention is such that R0 is used 9724 * to return the value from eBPF program. 9725 * Make sure that it's readable at this time 9726 * of bpf_exit, which means that program wrote 9727 * something into it earlier 9728 */ 9729 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9730 if (err) 9731 return err; 9732 9733 if (is_pointer_value(env, BPF_REG_0)) { 9734 verbose(env, "R0 leaks addr as return value\n"); 9735 return -EACCES; 9736 } 9737 9738 reg = cur_regs(env) + BPF_REG_0; 9739 9740 if (frame->in_async_callback_fn) { 9741 /* enforce return zero from async callbacks like timer */ 9742 if (reg->type != SCALAR_VALUE) { 9743 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 9744 reg_type_str(env, reg->type)); 9745 return -EINVAL; 9746 } 9747 9748 if (!tnum_in(tnum_const(0), reg->var_off)) { 9749 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 9750 return -EINVAL; 9751 } 9752 return 0; 9753 } 9754 9755 if (is_subprog) { 9756 if (reg->type != SCALAR_VALUE) { 9757 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9758 reg_type_str(env, reg->type)); 9759 return -EINVAL; 9760 } 9761 return 0; 9762 } 9763 9764 switch (prog_type) { 9765 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9766 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9767 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9768 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9769 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9770 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9771 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9772 range = tnum_range(1, 1); 9773 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9774 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9775 range = tnum_range(0, 3); 9776 break; 9777 case BPF_PROG_TYPE_CGROUP_SKB: 9778 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9779 range = tnum_range(0, 3); 9780 enforce_attach_type_range = tnum_range(2, 3); 9781 } 9782 break; 9783 case BPF_PROG_TYPE_CGROUP_SOCK: 9784 case BPF_PROG_TYPE_SOCK_OPS: 9785 case BPF_PROG_TYPE_CGROUP_DEVICE: 9786 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9787 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9788 break; 9789 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9790 if (!env->prog->aux->attach_btf_id) 9791 return 0; 9792 range = tnum_const(0); 9793 break; 9794 case BPF_PROG_TYPE_TRACING: 9795 switch (env->prog->expected_attach_type) { 9796 case BPF_TRACE_FENTRY: 9797 case BPF_TRACE_FEXIT: 9798 range = tnum_const(0); 9799 break; 9800 case BPF_TRACE_RAW_TP: 9801 case BPF_MODIFY_RETURN: 9802 return 0; 9803 case BPF_TRACE_ITER: 9804 break; 9805 default: 9806 return -ENOTSUPP; 9807 } 9808 break; 9809 case BPF_PROG_TYPE_SK_LOOKUP: 9810 range = tnum_range(SK_DROP, SK_PASS); 9811 break; 9812 case BPF_PROG_TYPE_EXT: 9813 /* freplace program can return anything as its return value 9814 * depends on the to-be-replaced kernel func or bpf program. 9815 */ 9816 default: 9817 return 0; 9818 } 9819 9820 if (reg->type != SCALAR_VALUE) { 9821 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9822 reg_type_str(env, reg->type)); 9823 return -EINVAL; 9824 } 9825 9826 if (!tnum_in(range, reg->var_off)) { 9827 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9828 return -EINVAL; 9829 } 9830 9831 if (!tnum_is_unknown(enforce_attach_type_range) && 9832 tnum_in(enforce_attach_type_range, reg->var_off)) 9833 env->prog->enforce_expected_attach_type = 1; 9834 return 0; 9835 } 9836 9837 /* non-recursive DFS pseudo code 9838 * 1 procedure DFS-iterative(G,v): 9839 * 2 label v as discovered 9840 * 3 let S be a stack 9841 * 4 S.push(v) 9842 * 5 while S is not empty 9843 * 6 t <- S.pop() 9844 * 7 if t is what we're looking for: 9845 * 8 return t 9846 * 9 for all edges e in G.adjacentEdges(t) do 9847 * 10 if edge e is already labelled 9848 * 11 continue with the next edge 9849 * 12 w <- G.adjacentVertex(t,e) 9850 * 13 if vertex w is not discovered and not explored 9851 * 14 label e as tree-edge 9852 * 15 label w as discovered 9853 * 16 S.push(w) 9854 * 17 continue at 5 9855 * 18 else if vertex w is discovered 9856 * 19 label e as back-edge 9857 * 20 else 9858 * 21 // vertex w is explored 9859 * 22 label e as forward- or cross-edge 9860 * 23 label t as explored 9861 * 24 S.pop() 9862 * 9863 * convention: 9864 * 0x10 - discovered 9865 * 0x11 - discovered and fall-through edge labelled 9866 * 0x12 - discovered and fall-through and branch edges labelled 9867 * 0x20 - explored 9868 */ 9869 9870 enum { 9871 DISCOVERED = 0x10, 9872 EXPLORED = 0x20, 9873 FALLTHROUGH = 1, 9874 BRANCH = 2, 9875 }; 9876 9877 static u32 state_htab_size(struct bpf_verifier_env *env) 9878 { 9879 return env->prog->len; 9880 } 9881 9882 static struct bpf_verifier_state_list **explored_state( 9883 struct bpf_verifier_env *env, 9884 int idx) 9885 { 9886 struct bpf_verifier_state *cur = env->cur_state; 9887 struct bpf_func_state *state = cur->frame[cur->curframe]; 9888 9889 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9890 } 9891 9892 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9893 { 9894 env->insn_aux_data[idx].prune_point = true; 9895 } 9896 9897 enum { 9898 DONE_EXPLORING = 0, 9899 KEEP_EXPLORING = 1, 9900 }; 9901 9902 /* t, w, e - match pseudo-code above: 9903 * t - index of current instruction 9904 * w - next instruction 9905 * e - edge 9906 */ 9907 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9908 bool loop_ok) 9909 { 9910 int *insn_stack = env->cfg.insn_stack; 9911 int *insn_state = env->cfg.insn_state; 9912 9913 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9914 return DONE_EXPLORING; 9915 9916 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9917 return DONE_EXPLORING; 9918 9919 if (w < 0 || w >= env->prog->len) { 9920 verbose_linfo(env, t, "%d: ", t); 9921 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9922 return -EINVAL; 9923 } 9924 9925 if (e == BRANCH) 9926 /* mark branch target for state pruning */ 9927 init_explored_state(env, w); 9928 9929 if (insn_state[w] == 0) { 9930 /* tree-edge */ 9931 insn_state[t] = DISCOVERED | e; 9932 insn_state[w] = DISCOVERED; 9933 if (env->cfg.cur_stack >= env->prog->len) 9934 return -E2BIG; 9935 insn_stack[env->cfg.cur_stack++] = w; 9936 return KEEP_EXPLORING; 9937 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9938 if (loop_ok && env->bpf_capable) 9939 return DONE_EXPLORING; 9940 verbose_linfo(env, t, "%d: ", t); 9941 verbose_linfo(env, w, "%d: ", w); 9942 verbose(env, "back-edge from insn %d to %d\n", t, w); 9943 return -EINVAL; 9944 } else if (insn_state[w] == EXPLORED) { 9945 /* forward- or cross-edge */ 9946 insn_state[t] = DISCOVERED | e; 9947 } else { 9948 verbose(env, "insn state internal bug\n"); 9949 return -EFAULT; 9950 } 9951 return DONE_EXPLORING; 9952 } 9953 9954 static int visit_func_call_insn(int t, int insn_cnt, 9955 struct bpf_insn *insns, 9956 struct bpf_verifier_env *env, 9957 bool visit_callee) 9958 { 9959 int ret; 9960 9961 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9962 if (ret) 9963 return ret; 9964 9965 if (t + 1 < insn_cnt) 9966 init_explored_state(env, t + 1); 9967 if (visit_callee) { 9968 init_explored_state(env, t); 9969 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 9970 /* It's ok to allow recursion from CFG point of 9971 * view. __check_func_call() will do the actual 9972 * check. 9973 */ 9974 bpf_pseudo_func(insns + t)); 9975 } 9976 return ret; 9977 } 9978 9979 /* Visits the instruction at index t and returns one of the following: 9980 * < 0 - an error occurred 9981 * DONE_EXPLORING - the instruction was fully explored 9982 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9983 */ 9984 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9985 { 9986 struct bpf_insn *insns = env->prog->insnsi; 9987 int ret; 9988 9989 if (bpf_pseudo_func(insns + t)) 9990 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9991 9992 /* All non-branch instructions have a single fall-through edge. */ 9993 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9994 BPF_CLASS(insns[t].code) != BPF_JMP32) 9995 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9996 9997 switch (BPF_OP(insns[t].code)) { 9998 case BPF_EXIT: 9999 return DONE_EXPLORING; 10000 10001 case BPF_CALL: 10002 if (insns[t].imm == BPF_FUNC_timer_set_callback) 10003 /* Mark this call insn to trigger is_state_visited() check 10004 * before call itself is processed by __check_func_call(). 10005 * Otherwise new async state will be pushed for further 10006 * exploration. 10007 */ 10008 init_explored_state(env, t); 10009 return visit_func_call_insn(t, insn_cnt, insns, env, 10010 insns[t].src_reg == BPF_PSEUDO_CALL); 10011 10012 case BPF_JA: 10013 if (BPF_SRC(insns[t].code) != BPF_K) 10014 return -EINVAL; 10015 10016 /* unconditional jump with single edge */ 10017 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 10018 true); 10019 if (ret) 10020 return ret; 10021 10022 /* unconditional jmp is not a good pruning point, 10023 * but it's marked, since backtracking needs 10024 * to record jmp history in is_state_visited(). 10025 */ 10026 init_explored_state(env, t + insns[t].off + 1); 10027 /* tell verifier to check for equivalent states 10028 * after every call and jump 10029 */ 10030 if (t + 1 < insn_cnt) 10031 init_explored_state(env, t + 1); 10032 10033 return ret; 10034 10035 default: 10036 /* conditional jump with two edges */ 10037 init_explored_state(env, t); 10038 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 10039 if (ret) 10040 return ret; 10041 10042 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 10043 } 10044 } 10045 10046 /* non-recursive depth-first-search to detect loops in BPF program 10047 * loop == back-edge in directed graph 10048 */ 10049 static int check_cfg(struct bpf_verifier_env *env) 10050 { 10051 int insn_cnt = env->prog->len; 10052 int *insn_stack, *insn_state; 10053 int ret = 0; 10054 int i; 10055 10056 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10057 if (!insn_state) 10058 return -ENOMEM; 10059 10060 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 10061 if (!insn_stack) { 10062 kvfree(insn_state); 10063 return -ENOMEM; 10064 } 10065 10066 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 10067 insn_stack[0] = 0; /* 0 is the first instruction */ 10068 env->cfg.cur_stack = 1; 10069 10070 while (env->cfg.cur_stack > 0) { 10071 int t = insn_stack[env->cfg.cur_stack - 1]; 10072 10073 ret = visit_insn(t, insn_cnt, env); 10074 switch (ret) { 10075 case DONE_EXPLORING: 10076 insn_state[t] = EXPLORED; 10077 env->cfg.cur_stack--; 10078 break; 10079 case KEEP_EXPLORING: 10080 break; 10081 default: 10082 if (ret > 0) { 10083 verbose(env, "visit_insn internal bug\n"); 10084 ret = -EFAULT; 10085 } 10086 goto err_free; 10087 } 10088 } 10089 10090 if (env->cfg.cur_stack < 0) { 10091 verbose(env, "pop stack internal bug\n"); 10092 ret = -EFAULT; 10093 goto err_free; 10094 } 10095 10096 for (i = 0; i < insn_cnt; i++) { 10097 if (insn_state[i] != EXPLORED) { 10098 verbose(env, "unreachable insn %d\n", i); 10099 ret = -EINVAL; 10100 goto err_free; 10101 } 10102 } 10103 ret = 0; /* cfg looks good */ 10104 10105 err_free: 10106 kvfree(insn_state); 10107 kvfree(insn_stack); 10108 env->cfg.insn_state = env->cfg.insn_stack = NULL; 10109 return ret; 10110 } 10111 10112 static int check_abnormal_return(struct bpf_verifier_env *env) 10113 { 10114 int i; 10115 10116 for (i = 1; i < env->subprog_cnt; i++) { 10117 if (env->subprog_info[i].has_ld_abs) { 10118 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 10119 return -EINVAL; 10120 } 10121 if (env->subprog_info[i].has_tail_call) { 10122 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 10123 return -EINVAL; 10124 } 10125 } 10126 return 0; 10127 } 10128 10129 /* The minimum supported BTF func info size */ 10130 #define MIN_BPF_FUNCINFO_SIZE 8 10131 #define MAX_FUNCINFO_REC_SIZE 252 10132 10133 static int check_btf_func(struct bpf_verifier_env *env, 10134 const union bpf_attr *attr, 10135 bpfptr_t uattr) 10136 { 10137 const struct btf_type *type, *func_proto, *ret_type; 10138 u32 i, nfuncs, urec_size, min_size; 10139 u32 krec_size = sizeof(struct bpf_func_info); 10140 struct bpf_func_info *krecord; 10141 struct bpf_func_info_aux *info_aux = NULL; 10142 struct bpf_prog *prog; 10143 const struct btf *btf; 10144 bpfptr_t urecord; 10145 u32 prev_offset = 0; 10146 bool scalar_return; 10147 int ret = -ENOMEM; 10148 10149 nfuncs = attr->func_info_cnt; 10150 if (!nfuncs) { 10151 if (check_abnormal_return(env)) 10152 return -EINVAL; 10153 return 0; 10154 } 10155 10156 if (nfuncs != env->subprog_cnt) { 10157 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 10158 return -EINVAL; 10159 } 10160 10161 urec_size = attr->func_info_rec_size; 10162 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 10163 urec_size > MAX_FUNCINFO_REC_SIZE || 10164 urec_size % sizeof(u32)) { 10165 verbose(env, "invalid func info rec size %u\n", urec_size); 10166 return -EINVAL; 10167 } 10168 10169 prog = env->prog; 10170 btf = prog->aux->btf; 10171 10172 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10173 min_size = min_t(u32, krec_size, urec_size); 10174 10175 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10176 if (!krecord) 10177 return -ENOMEM; 10178 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10179 if (!info_aux) 10180 goto err_free; 10181 10182 for (i = 0; i < nfuncs; i++) { 10183 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10184 if (ret) { 10185 if (ret == -E2BIG) { 10186 verbose(env, "nonzero tailing record in func info"); 10187 /* set the size kernel expects so loader can zero 10188 * out the rest of the record. 10189 */ 10190 if (copy_to_bpfptr_offset(uattr, 10191 offsetof(union bpf_attr, func_info_rec_size), 10192 &min_size, sizeof(min_size))) 10193 ret = -EFAULT; 10194 } 10195 goto err_free; 10196 } 10197 10198 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10199 ret = -EFAULT; 10200 goto err_free; 10201 } 10202 10203 /* check insn_off */ 10204 ret = -EINVAL; 10205 if (i == 0) { 10206 if (krecord[i].insn_off) { 10207 verbose(env, 10208 "nonzero insn_off %u for the first func info record", 10209 krecord[i].insn_off); 10210 goto err_free; 10211 } 10212 } else if (krecord[i].insn_off <= prev_offset) { 10213 verbose(env, 10214 "same or smaller insn offset (%u) than previous func info record (%u)", 10215 krecord[i].insn_off, prev_offset); 10216 goto err_free; 10217 } 10218 10219 if (env->subprog_info[i].start != krecord[i].insn_off) { 10220 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10221 goto err_free; 10222 } 10223 10224 /* check type_id */ 10225 type = btf_type_by_id(btf, krecord[i].type_id); 10226 if (!type || !btf_type_is_func(type)) { 10227 verbose(env, "invalid type id %d in func info", 10228 krecord[i].type_id); 10229 goto err_free; 10230 } 10231 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10232 10233 func_proto = btf_type_by_id(btf, type->type); 10234 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10235 /* btf_func_check() already verified it during BTF load */ 10236 goto err_free; 10237 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10238 scalar_return = 10239 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 10240 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10241 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10242 goto err_free; 10243 } 10244 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10245 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10246 goto err_free; 10247 } 10248 10249 prev_offset = krecord[i].insn_off; 10250 bpfptr_add(&urecord, urec_size); 10251 } 10252 10253 prog->aux->func_info = krecord; 10254 prog->aux->func_info_cnt = nfuncs; 10255 prog->aux->func_info_aux = info_aux; 10256 return 0; 10257 10258 err_free: 10259 kvfree(krecord); 10260 kfree(info_aux); 10261 return ret; 10262 } 10263 10264 static void adjust_btf_func(struct bpf_verifier_env *env) 10265 { 10266 struct bpf_prog_aux *aux = env->prog->aux; 10267 int i; 10268 10269 if (!aux->func_info) 10270 return; 10271 10272 for (i = 0; i < env->subprog_cnt; i++) 10273 aux->func_info[i].insn_off = env->subprog_info[i].start; 10274 } 10275 10276 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 10277 sizeof(((struct bpf_line_info *)(0))->line_col)) 10278 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 10279 10280 static int check_btf_line(struct bpf_verifier_env *env, 10281 const union bpf_attr *attr, 10282 bpfptr_t uattr) 10283 { 10284 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 10285 struct bpf_subprog_info *sub; 10286 struct bpf_line_info *linfo; 10287 struct bpf_prog *prog; 10288 const struct btf *btf; 10289 bpfptr_t ulinfo; 10290 int err; 10291 10292 nr_linfo = attr->line_info_cnt; 10293 if (!nr_linfo) 10294 return 0; 10295 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 10296 return -EINVAL; 10297 10298 rec_size = attr->line_info_rec_size; 10299 if (rec_size < MIN_BPF_LINEINFO_SIZE || 10300 rec_size > MAX_LINEINFO_REC_SIZE || 10301 rec_size & (sizeof(u32) - 1)) 10302 return -EINVAL; 10303 10304 /* Need to zero it in case the userspace may 10305 * pass in a smaller bpf_line_info object. 10306 */ 10307 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 10308 GFP_KERNEL | __GFP_NOWARN); 10309 if (!linfo) 10310 return -ENOMEM; 10311 10312 prog = env->prog; 10313 btf = prog->aux->btf; 10314 10315 s = 0; 10316 sub = env->subprog_info; 10317 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 10318 expected_size = sizeof(struct bpf_line_info); 10319 ncopy = min_t(u32, expected_size, rec_size); 10320 for (i = 0; i < nr_linfo; i++) { 10321 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 10322 if (err) { 10323 if (err == -E2BIG) { 10324 verbose(env, "nonzero tailing record in line_info"); 10325 if (copy_to_bpfptr_offset(uattr, 10326 offsetof(union bpf_attr, line_info_rec_size), 10327 &expected_size, sizeof(expected_size))) 10328 err = -EFAULT; 10329 } 10330 goto err_free; 10331 } 10332 10333 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 10334 err = -EFAULT; 10335 goto err_free; 10336 } 10337 10338 /* 10339 * Check insn_off to ensure 10340 * 1) strictly increasing AND 10341 * 2) bounded by prog->len 10342 * 10343 * The linfo[0].insn_off == 0 check logically falls into 10344 * the later "missing bpf_line_info for func..." case 10345 * because the first linfo[0].insn_off must be the 10346 * first sub also and the first sub must have 10347 * subprog_info[0].start == 0. 10348 */ 10349 if ((i && linfo[i].insn_off <= prev_offset) || 10350 linfo[i].insn_off >= prog->len) { 10351 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 10352 i, linfo[i].insn_off, prev_offset, 10353 prog->len); 10354 err = -EINVAL; 10355 goto err_free; 10356 } 10357 10358 if (!prog->insnsi[linfo[i].insn_off].code) { 10359 verbose(env, 10360 "Invalid insn code at line_info[%u].insn_off\n", 10361 i); 10362 err = -EINVAL; 10363 goto err_free; 10364 } 10365 10366 if (!btf_name_by_offset(btf, linfo[i].line_off) || 10367 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 10368 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 10369 err = -EINVAL; 10370 goto err_free; 10371 } 10372 10373 if (s != env->subprog_cnt) { 10374 if (linfo[i].insn_off == sub[s].start) { 10375 sub[s].linfo_idx = i; 10376 s++; 10377 } else if (sub[s].start < linfo[i].insn_off) { 10378 verbose(env, "missing bpf_line_info for func#%u\n", s); 10379 err = -EINVAL; 10380 goto err_free; 10381 } 10382 } 10383 10384 prev_offset = linfo[i].insn_off; 10385 bpfptr_add(&ulinfo, rec_size); 10386 } 10387 10388 if (s != env->subprog_cnt) { 10389 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 10390 env->subprog_cnt - s, s); 10391 err = -EINVAL; 10392 goto err_free; 10393 } 10394 10395 prog->aux->linfo = linfo; 10396 prog->aux->nr_linfo = nr_linfo; 10397 10398 return 0; 10399 10400 err_free: 10401 kvfree(linfo); 10402 return err; 10403 } 10404 10405 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 10406 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 10407 10408 static int check_core_relo(struct bpf_verifier_env *env, 10409 const union bpf_attr *attr, 10410 bpfptr_t uattr) 10411 { 10412 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 10413 struct bpf_core_relo core_relo = {}; 10414 struct bpf_prog *prog = env->prog; 10415 const struct btf *btf = prog->aux->btf; 10416 struct bpf_core_ctx ctx = { 10417 .log = &env->log, 10418 .btf = btf, 10419 }; 10420 bpfptr_t u_core_relo; 10421 int err; 10422 10423 nr_core_relo = attr->core_relo_cnt; 10424 if (!nr_core_relo) 10425 return 0; 10426 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 10427 return -EINVAL; 10428 10429 rec_size = attr->core_relo_rec_size; 10430 if (rec_size < MIN_CORE_RELO_SIZE || 10431 rec_size > MAX_CORE_RELO_SIZE || 10432 rec_size % sizeof(u32)) 10433 return -EINVAL; 10434 10435 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 10436 expected_size = sizeof(struct bpf_core_relo); 10437 ncopy = min_t(u32, expected_size, rec_size); 10438 10439 /* Unlike func_info and line_info, copy and apply each CO-RE 10440 * relocation record one at a time. 10441 */ 10442 for (i = 0; i < nr_core_relo; i++) { 10443 /* future proofing when sizeof(bpf_core_relo) changes */ 10444 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 10445 if (err) { 10446 if (err == -E2BIG) { 10447 verbose(env, "nonzero tailing record in core_relo"); 10448 if (copy_to_bpfptr_offset(uattr, 10449 offsetof(union bpf_attr, core_relo_rec_size), 10450 &expected_size, sizeof(expected_size))) 10451 err = -EFAULT; 10452 } 10453 break; 10454 } 10455 10456 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 10457 err = -EFAULT; 10458 break; 10459 } 10460 10461 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 10462 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 10463 i, core_relo.insn_off, prog->len); 10464 err = -EINVAL; 10465 break; 10466 } 10467 10468 err = bpf_core_apply(&ctx, &core_relo, i, 10469 &prog->insnsi[core_relo.insn_off / 8]); 10470 if (err) 10471 break; 10472 bpfptr_add(&u_core_relo, rec_size); 10473 } 10474 return err; 10475 } 10476 10477 static int check_btf_info(struct bpf_verifier_env *env, 10478 const union bpf_attr *attr, 10479 bpfptr_t uattr) 10480 { 10481 struct btf *btf; 10482 int err; 10483 10484 if (!attr->func_info_cnt && !attr->line_info_cnt) { 10485 if (check_abnormal_return(env)) 10486 return -EINVAL; 10487 return 0; 10488 } 10489 10490 btf = btf_get_by_fd(attr->prog_btf_fd); 10491 if (IS_ERR(btf)) 10492 return PTR_ERR(btf); 10493 if (btf_is_kernel(btf)) { 10494 btf_put(btf); 10495 return -EACCES; 10496 } 10497 env->prog->aux->btf = btf; 10498 10499 err = check_btf_func(env, attr, uattr); 10500 if (err) 10501 return err; 10502 10503 err = check_btf_line(env, attr, uattr); 10504 if (err) 10505 return err; 10506 10507 err = check_core_relo(env, attr, uattr); 10508 if (err) 10509 return err; 10510 10511 return 0; 10512 } 10513 10514 /* check %cur's range satisfies %old's */ 10515 static bool range_within(struct bpf_reg_state *old, 10516 struct bpf_reg_state *cur) 10517 { 10518 return old->umin_value <= cur->umin_value && 10519 old->umax_value >= cur->umax_value && 10520 old->smin_value <= cur->smin_value && 10521 old->smax_value >= cur->smax_value && 10522 old->u32_min_value <= cur->u32_min_value && 10523 old->u32_max_value >= cur->u32_max_value && 10524 old->s32_min_value <= cur->s32_min_value && 10525 old->s32_max_value >= cur->s32_max_value; 10526 } 10527 10528 /* If in the old state two registers had the same id, then they need to have 10529 * the same id in the new state as well. But that id could be different from 10530 * the old state, so we need to track the mapping from old to new ids. 10531 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 10532 * regs with old id 5 must also have new id 9 for the new state to be safe. But 10533 * regs with a different old id could still have new id 9, we don't care about 10534 * that. 10535 * So we look through our idmap to see if this old id has been seen before. If 10536 * so, we require the new id to match; otherwise, we add the id pair to the map. 10537 */ 10538 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 10539 { 10540 unsigned int i; 10541 10542 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 10543 if (!idmap[i].old) { 10544 /* Reached an empty slot; haven't seen this id before */ 10545 idmap[i].old = old_id; 10546 idmap[i].cur = cur_id; 10547 return true; 10548 } 10549 if (idmap[i].old == old_id) 10550 return idmap[i].cur == cur_id; 10551 } 10552 /* We ran out of idmap slots, which should be impossible */ 10553 WARN_ON_ONCE(1); 10554 return false; 10555 } 10556 10557 static void clean_func_state(struct bpf_verifier_env *env, 10558 struct bpf_func_state *st) 10559 { 10560 enum bpf_reg_liveness live; 10561 int i, j; 10562 10563 for (i = 0; i < BPF_REG_FP; i++) { 10564 live = st->regs[i].live; 10565 /* liveness must not touch this register anymore */ 10566 st->regs[i].live |= REG_LIVE_DONE; 10567 if (!(live & REG_LIVE_READ)) 10568 /* since the register is unused, clear its state 10569 * to make further comparison simpler 10570 */ 10571 __mark_reg_not_init(env, &st->regs[i]); 10572 } 10573 10574 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 10575 live = st->stack[i].spilled_ptr.live; 10576 /* liveness must not touch this stack slot anymore */ 10577 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 10578 if (!(live & REG_LIVE_READ)) { 10579 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 10580 for (j = 0; j < BPF_REG_SIZE; j++) 10581 st->stack[i].slot_type[j] = STACK_INVALID; 10582 } 10583 } 10584 } 10585 10586 static void clean_verifier_state(struct bpf_verifier_env *env, 10587 struct bpf_verifier_state *st) 10588 { 10589 int i; 10590 10591 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 10592 /* all regs in this state in all frames were already marked */ 10593 return; 10594 10595 for (i = 0; i <= st->curframe; i++) 10596 clean_func_state(env, st->frame[i]); 10597 } 10598 10599 /* the parentage chains form a tree. 10600 * the verifier states are added to state lists at given insn and 10601 * pushed into state stack for future exploration. 10602 * when the verifier reaches bpf_exit insn some of the verifer states 10603 * stored in the state lists have their final liveness state already, 10604 * but a lot of states will get revised from liveness point of view when 10605 * the verifier explores other branches. 10606 * Example: 10607 * 1: r0 = 1 10608 * 2: if r1 == 100 goto pc+1 10609 * 3: r0 = 2 10610 * 4: exit 10611 * when the verifier reaches exit insn the register r0 in the state list of 10612 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 10613 * of insn 2 and goes exploring further. At the insn 4 it will walk the 10614 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 10615 * 10616 * Since the verifier pushes the branch states as it sees them while exploring 10617 * the program the condition of walking the branch instruction for the second 10618 * time means that all states below this branch were already explored and 10619 * their final liveness marks are already propagated. 10620 * Hence when the verifier completes the search of state list in is_state_visited() 10621 * we can call this clean_live_states() function to mark all liveness states 10622 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 10623 * will not be used. 10624 * This function also clears the registers and stack for states that !READ 10625 * to simplify state merging. 10626 * 10627 * Important note here that walking the same branch instruction in the callee 10628 * doesn't meant that the states are DONE. The verifier has to compare 10629 * the callsites 10630 */ 10631 static void clean_live_states(struct bpf_verifier_env *env, int insn, 10632 struct bpf_verifier_state *cur) 10633 { 10634 struct bpf_verifier_state_list *sl; 10635 int i; 10636 10637 sl = *explored_state(env, insn); 10638 while (sl) { 10639 if (sl->state.branches) 10640 goto next; 10641 if (sl->state.insn_idx != insn || 10642 sl->state.curframe != cur->curframe) 10643 goto next; 10644 for (i = 0; i <= cur->curframe; i++) 10645 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 10646 goto next; 10647 clean_verifier_state(env, &sl->state); 10648 next: 10649 sl = sl->next; 10650 } 10651 } 10652 10653 /* Returns true if (rold safe implies rcur safe) */ 10654 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 10655 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 10656 { 10657 bool equal; 10658 10659 if (!(rold->live & REG_LIVE_READ)) 10660 /* explored state didn't use this */ 10661 return true; 10662 10663 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 10664 10665 if (rold->type == PTR_TO_STACK) 10666 /* two stack pointers are equal only if they're pointing to 10667 * the same stack frame, since fp-8 in foo != fp-8 in bar 10668 */ 10669 return equal && rold->frameno == rcur->frameno; 10670 10671 if (equal) 10672 return true; 10673 10674 if (rold->type == NOT_INIT) 10675 /* explored state can't have used this */ 10676 return true; 10677 if (rcur->type == NOT_INIT) 10678 return false; 10679 switch (base_type(rold->type)) { 10680 case SCALAR_VALUE: 10681 if (env->explore_alu_limits) 10682 return false; 10683 if (rcur->type == SCALAR_VALUE) { 10684 if (!rold->precise && !rcur->precise) 10685 return true; 10686 /* new val must satisfy old val knowledge */ 10687 return range_within(rold, rcur) && 10688 tnum_in(rold->var_off, rcur->var_off); 10689 } else { 10690 /* We're trying to use a pointer in place of a scalar. 10691 * Even if the scalar was unbounded, this could lead to 10692 * pointer leaks because scalars are allowed to leak 10693 * while pointers are not. We could make this safe in 10694 * special cases if root is calling us, but it's 10695 * probably not worth the hassle. 10696 */ 10697 return false; 10698 } 10699 case PTR_TO_MAP_KEY: 10700 case PTR_TO_MAP_VALUE: 10701 /* a PTR_TO_MAP_VALUE could be safe to use as a 10702 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 10703 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 10704 * checked, doing so could have affected others with the same 10705 * id, and we can't check for that because we lost the id when 10706 * we converted to a PTR_TO_MAP_VALUE. 10707 */ 10708 if (type_may_be_null(rold->type)) { 10709 if (!type_may_be_null(rcur->type)) 10710 return false; 10711 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 10712 return false; 10713 /* Check our ids match any regs they're supposed to */ 10714 return check_ids(rold->id, rcur->id, idmap); 10715 } 10716 10717 /* If the new min/max/var_off satisfy the old ones and 10718 * everything else matches, we are OK. 10719 * 'id' is not compared, since it's only used for maps with 10720 * bpf_spin_lock inside map element and in such cases if 10721 * the rest of the prog is valid for one map element then 10722 * it's valid for all map elements regardless of the key 10723 * used in bpf_map_lookup() 10724 */ 10725 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 10726 range_within(rold, rcur) && 10727 tnum_in(rold->var_off, rcur->var_off); 10728 case PTR_TO_PACKET_META: 10729 case PTR_TO_PACKET: 10730 if (rcur->type != rold->type) 10731 return false; 10732 /* We must have at least as much range as the old ptr 10733 * did, so that any accesses which were safe before are 10734 * still safe. This is true even if old range < old off, 10735 * since someone could have accessed through (ptr - k), or 10736 * even done ptr -= k in a register, to get a safe access. 10737 */ 10738 if (rold->range > rcur->range) 10739 return false; 10740 /* If the offsets don't match, we can't trust our alignment; 10741 * nor can we be sure that we won't fall out of range. 10742 */ 10743 if (rold->off != rcur->off) 10744 return false; 10745 /* id relations must be preserved */ 10746 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10747 return false; 10748 /* new val must satisfy old val knowledge */ 10749 return range_within(rold, rcur) && 10750 tnum_in(rold->var_off, rcur->var_off); 10751 case PTR_TO_CTX: 10752 case CONST_PTR_TO_MAP: 10753 case PTR_TO_PACKET_END: 10754 case PTR_TO_FLOW_KEYS: 10755 case PTR_TO_SOCKET: 10756 case PTR_TO_SOCK_COMMON: 10757 case PTR_TO_TCP_SOCK: 10758 case PTR_TO_XDP_SOCK: 10759 /* Only valid matches are exact, which memcmp() above 10760 * would have accepted 10761 */ 10762 default: 10763 /* Don't know what's going on, just say it's not safe */ 10764 return false; 10765 } 10766 10767 /* Shouldn't get here; if we do, say it's not safe */ 10768 WARN_ON_ONCE(1); 10769 return false; 10770 } 10771 10772 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 10773 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 10774 { 10775 int i, spi; 10776 10777 /* walk slots of the explored stack and ignore any additional 10778 * slots in the current stack, since explored(safe) state 10779 * didn't use them 10780 */ 10781 for (i = 0; i < old->allocated_stack; i++) { 10782 spi = i / BPF_REG_SIZE; 10783 10784 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10785 i += BPF_REG_SIZE - 1; 10786 /* explored state didn't use this */ 10787 continue; 10788 } 10789 10790 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10791 continue; 10792 10793 /* explored stack has more populated slots than current stack 10794 * and these slots were used 10795 */ 10796 if (i >= cur->allocated_stack) 10797 return false; 10798 10799 /* if old state was safe with misc data in the stack 10800 * it will be safe with zero-initialized stack. 10801 * The opposite is not true 10802 */ 10803 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10804 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10805 continue; 10806 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10807 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10808 /* Ex: old explored (safe) state has STACK_SPILL in 10809 * this stack slot, but current has STACK_MISC -> 10810 * this verifier states are not equivalent, 10811 * return false to continue verification of this path 10812 */ 10813 return false; 10814 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 10815 continue; 10816 if (!is_spilled_reg(&old->stack[spi])) 10817 continue; 10818 if (!regsafe(env, &old->stack[spi].spilled_ptr, 10819 &cur->stack[spi].spilled_ptr, idmap)) 10820 /* when explored and current stack slot are both storing 10821 * spilled registers, check that stored pointers types 10822 * are the same as well. 10823 * Ex: explored safe path could have stored 10824 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10825 * but current path has stored: 10826 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10827 * such verifier states are not equivalent. 10828 * return false to continue verification of this path 10829 */ 10830 return false; 10831 } 10832 return true; 10833 } 10834 10835 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10836 { 10837 if (old->acquired_refs != cur->acquired_refs) 10838 return false; 10839 return !memcmp(old->refs, cur->refs, 10840 sizeof(*old->refs) * old->acquired_refs); 10841 } 10842 10843 /* compare two verifier states 10844 * 10845 * all states stored in state_list are known to be valid, since 10846 * verifier reached 'bpf_exit' instruction through them 10847 * 10848 * this function is called when verifier exploring different branches of 10849 * execution popped from the state stack. If it sees an old state that has 10850 * more strict register state and more strict stack state then this execution 10851 * branch doesn't need to be explored further, since verifier already 10852 * concluded that more strict state leads to valid finish. 10853 * 10854 * Therefore two states are equivalent if register state is more conservative 10855 * and explored stack state is more conservative than the current one. 10856 * Example: 10857 * explored current 10858 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10859 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10860 * 10861 * In other words if current stack state (one being explored) has more 10862 * valid slots than old one that already passed validation, it means 10863 * the verifier can stop exploring and conclude that current state is valid too 10864 * 10865 * Similarly with registers. If explored state has register type as invalid 10866 * whereas register type in current state is meaningful, it means that 10867 * the current state will reach 'bpf_exit' instruction safely 10868 */ 10869 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10870 struct bpf_func_state *cur) 10871 { 10872 int i; 10873 10874 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 10875 for (i = 0; i < MAX_BPF_REG; i++) 10876 if (!regsafe(env, &old->regs[i], &cur->regs[i], 10877 env->idmap_scratch)) 10878 return false; 10879 10880 if (!stacksafe(env, old, cur, env->idmap_scratch)) 10881 return false; 10882 10883 if (!refsafe(old, cur)) 10884 return false; 10885 10886 return true; 10887 } 10888 10889 static bool states_equal(struct bpf_verifier_env *env, 10890 struct bpf_verifier_state *old, 10891 struct bpf_verifier_state *cur) 10892 { 10893 int i; 10894 10895 if (old->curframe != cur->curframe) 10896 return false; 10897 10898 /* Verification state from speculative execution simulation 10899 * must never prune a non-speculative execution one. 10900 */ 10901 if (old->speculative && !cur->speculative) 10902 return false; 10903 10904 if (old->active_spin_lock != cur->active_spin_lock) 10905 return false; 10906 10907 /* for states to be equal callsites have to be the same 10908 * and all frame states need to be equivalent 10909 */ 10910 for (i = 0; i <= old->curframe; i++) { 10911 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10912 return false; 10913 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 10914 return false; 10915 } 10916 return true; 10917 } 10918 10919 /* Return 0 if no propagation happened. Return negative error code if error 10920 * happened. Otherwise, return the propagated bit. 10921 */ 10922 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10923 struct bpf_reg_state *reg, 10924 struct bpf_reg_state *parent_reg) 10925 { 10926 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10927 u8 flag = reg->live & REG_LIVE_READ; 10928 int err; 10929 10930 /* When comes here, read flags of PARENT_REG or REG could be any of 10931 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10932 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10933 */ 10934 if (parent_flag == REG_LIVE_READ64 || 10935 /* Or if there is no read flag from REG. */ 10936 !flag || 10937 /* Or if the read flag from REG is the same as PARENT_REG. */ 10938 parent_flag == flag) 10939 return 0; 10940 10941 err = mark_reg_read(env, reg, parent_reg, flag); 10942 if (err) 10943 return err; 10944 10945 return flag; 10946 } 10947 10948 /* A write screens off any subsequent reads; but write marks come from the 10949 * straight-line code between a state and its parent. When we arrive at an 10950 * equivalent state (jump target or such) we didn't arrive by the straight-line 10951 * code, so read marks in the state must propagate to the parent regardless 10952 * of the state's write marks. That's what 'parent == state->parent' comparison 10953 * in mark_reg_read() is for. 10954 */ 10955 static int propagate_liveness(struct bpf_verifier_env *env, 10956 const struct bpf_verifier_state *vstate, 10957 struct bpf_verifier_state *vparent) 10958 { 10959 struct bpf_reg_state *state_reg, *parent_reg; 10960 struct bpf_func_state *state, *parent; 10961 int i, frame, err = 0; 10962 10963 if (vparent->curframe != vstate->curframe) { 10964 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10965 vparent->curframe, vstate->curframe); 10966 return -EFAULT; 10967 } 10968 /* Propagate read liveness of registers... */ 10969 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10970 for (frame = 0; frame <= vstate->curframe; frame++) { 10971 parent = vparent->frame[frame]; 10972 state = vstate->frame[frame]; 10973 parent_reg = parent->regs; 10974 state_reg = state->regs; 10975 /* We don't need to worry about FP liveness, it's read-only */ 10976 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10977 err = propagate_liveness_reg(env, &state_reg[i], 10978 &parent_reg[i]); 10979 if (err < 0) 10980 return err; 10981 if (err == REG_LIVE_READ64) 10982 mark_insn_zext(env, &parent_reg[i]); 10983 } 10984 10985 /* Propagate stack slots. */ 10986 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10987 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10988 parent_reg = &parent->stack[i].spilled_ptr; 10989 state_reg = &state->stack[i].spilled_ptr; 10990 err = propagate_liveness_reg(env, state_reg, 10991 parent_reg); 10992 if (err < 0) 10993 return err; 10994 } 10995 } 10996 return 0; 10997 } 10998 10999 /* find precise scalars in the previous equivalent state and 11000 * propagate them into the current state 11001 */ 11002 static int propagate_precision(struct bpf_verifier_env *env, 11003 const struct bpf_verifier_state *old) 11004 { 11005 struct bpf_reg_state *state_reg; 11006 struct bpf_func_state *state; 11007 int i, err = 0; 11008 11009 state = old->frame[old->curframe]; 11010 state_reg = state->regs; 11011 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 11012 if (state_reg->type != SCALAR_VALUE || 11013 !state_reg->precise) 11014 continue; 11015 if (env->log.level & BPF_LOG_LEVEL2) 11016 verbose(env, "propagating r%d\n", i); 11017 err = mark_chain_precision(env, i); 11018 if (err < 0) 11019 return err; 11020 } 11021 11022 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 11023 if (!is_spilled_reg(&state->stack[i])) 11024 continue; 11025 state_reg = &state->stack[i].spilled_ptr; 11026 if (state_reg->type != SCALAR_VALUE || 11027 !state_reg->precise) 11028 continue; 11029 if (env->log.level & BPF_LOG_LEVEL2) 11030 verbose(env, "propagating fp%d\n", 11031 (-i - 1) * BPF_REG_SIZE); 11032 err = mark_chain_precision_stack(env, i); 11033 if (err < 0) 11034 return err; 11035 } 11036 return 0; 11037 } 11038 11039 static bool states_maybe_looping(struct bpf_verifier_state *old, 11040 struct bpf_verifier_state *cur) 11041 { 11042 struct bpf_func_state *fold, *fcur; 11043 int i, fr = cur->curframe; 11044 11045 if (old->curframe != fr) 11046 return false; 11047 11048 fold = old->frame[fr]; 11049 fcur = cur->frame[fr]; 11050 for (i = 0; i < MAX_BPF_REG; i++) 11051 if (memcmp(&fold->regs[i], &fcur->regs[i], 11052 offsetof(struct bpf_reg_state, parent))) 11053 return false; 11054 return true; 11055 } 11056 11057 11058 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 11059 { 11060 struct bpf_verifier_state_list *new_sl; 11061 struct bpf_verifier_state_list *sl, **pprev; 11062 struct bpf_verifier_state *cur = env->cur_state, *new; 11063 int i, j, err, states_cnt = 0; 11064 bool add_new_state = env->test_state_freq ? true : false; 11065 11066 cur->last_insn_idx = env->prev_insn_idx; 11067 if (!env->insn_aux_data[insn_idx].prune_point) 11068 /* this 'insn_idx' instruction wasn't marked, so we will not 11069 * be doing state search here 11070 */ 11071 return 0; 11072 11073 /* bpf progs typically have pruning point every 4 instructions 11074 * http://vger.kernel.org/bpfconf2019.html#session-1 11075 * Do not add new state for future pruning if the verifier hasn't seen 11076 * at least 2 jumps and at least 8 instructions. 11077 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 11078 * In tests that amounts to up to 50% reduction into total verifier 11079 * memory consumption and 20% verifier time speedup. 11080 */ 11081 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 11082 env->insn_processed - env->prev_insn_processed >= 8) 11083 add_new_state = true; 11084 11085 pprev = explored_state(env, insn_idx); 11086 sl = *pprev; 11087 11088 clean_live_states(env, insn_idx, cur); 11089 11090 while (sl) { 11091 states_cnt++; 11092 if (sl->state.insn_idx != insn_idx) 11093 goto next; 11094 11095 if (sl->state.branches) { 11096 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 11097 11098 if (frame->in_async_callback_fn && 11099 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 11100 /* Different async_entry_cnt means that the verifier is 11101 * processing another entry into async callback. 11102 * Seeing the same state is not an indication of infinite 11103 * loop or infinite recursion. 11104 * But finding the same state doesn't mean that it's safe 11105 * to stop processing the current state. The previous state 11106 * hasn't yet reached bpf_exit, since state.branches > 0. 11107 * Checking in_async_callback_fn alone is not enough either. 11108 * Since the verifier still needs to catch infinite loops 11109 * inside async callbacks. 11110 */ 11111 } else if (states_maybe_looping(&sl->state, cur) && 11112 states_equal(env, &sl->state, cur)) { 11113 verbose_linfo(env, insn_idx, "; "); 11114 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 11115 return -EINVAL; 11116 } 11117 /* if the verifier is processing a loop, avoid adding new state 11118 * too often, since different loop iterations have distinct 11119 * states and may not help future pruning. 11120 * This threshold shouldn't be too low to make sure that 11121 * a loop with large bound will be rejected quickly. 11122 * The most abusive loop will be: 11123 * r1 += 1 11124 * if r1 < 1000000 goto pc-2 11125 * 1M insn_procssed limit / 100 == 10k peak states. 11126 * This threshold shouldn't be too high either, since states 11127 * at the end of the loop are likely to be useful in pruning. 11128 */ 11129 if (env->jmps_processed - env->prev_jmps_processed < 20 && 11130 env->insn_processed - env->prev_insn_processed < 100) 11131 add_new_state = false; 11132 goto miss; 11133 } 11134 if (states_equal(env, &sl->state, cur)) { 11135 sl->hit_cnt++; 11136 /* reached equivalent register/stack state, 11137 * prune the search. 11138 * Registers read by the continuation are read by us. 11139 * If we have any write marks in env->cur_state, they 11140 * will prevent corresponding reads in the continuation 11141 * from reaching our parent (an explored_state). Our 11142 * own state will get the read marks recorded, but 11143 * they'll be immediately forgotten as we're pruning 11144 * this state and will pop a new one. 11145 */ 11146 err = propagate_liveness(env, &sl->state, cur); 11147 11148 /* if previous state reached the exit with precision and 11149 * current state is equivalent to it (except precsion marks) 11150 * the precision needs to be propagated back in 11151 * the current state. 11152 */ 11153 err = err ? : push_jmp_history(env, cur); 11154 err = err ? : propagate_precision(env, &sl->state); 11155 if (err) 11156 return err; 11157 return 1; 11158 } 11159 miss: 11160 /* when new state is not going to be added do not increase miss count. 11161 * Otherwise several loop iterations will remove the state 11162 * recorded earlier. The goal of these heuristics is to have 11163 * states from some iterations of the loop (some in the beginning 11164 * and some at the end) to help pruning. 11165 */ 11166 if (add_new_state) 11167 sl->miss_cnt++; 11168 /* heuristic to determine whether this state is beneficial 11169 * to keep checking from state equivalence point of view. 11170 * Higher numbers increase max_states_per_insn and verification time, 11171 * but do not meaningfully decrease insn_processed. 11172 */ 11173 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 11174 /* the state is unlikely to be useful. Remove it to 11175 * speed up verification 11176 */ 11177 *pprev = sl->next; 11178 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 11179 u32 br = sl->state.branches; 11180 11181 WARN_ONCE(br, 11182 "BUG live_done but branches_to_explore %d\n", 11183 br); 11184 free_verifier_state(&sl->state, false); 11185 kfree(sl); 11186 env->peak_states--; 11187 } else { 11188 /* cannot free this state, since parentage chain may 11189 * walk it later. Add it for free_list instead to 11190 * be freed at the end of verification 11191 */ 11192 sl->next = env->free_list; 11193 env->free_list = sl; 11194 } 11195 sl = *pprev; 11196 continue; 11197 } 11198 next: 11199 pprev = &sl->next; 11200 sl = *pprev; 11201 } 11202 11203 if (env->max_states_per_insn < states_cnt) 11204 env->max_states_per_insn = states_cnt; 11205 11206 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 11207 return push_jmp_history(env, cur); 11208 11209 if (!add_new_state) 11210 return push_jmp_history(env, cur); 11211 11212 /* There were no equivalent states, remember the current one. 11213 * Technically the current state is not proven to be safe yet, 11214 * but it will either reach outer most bpf_exit (which means it's safe) 11215 * or it will be rejected. When there are no loops the verifier won't be 11216 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 11217 * again on the way to bpf_exit. 11218 * When looping the sl->state.branches will be > 0 and this state 11219 * will not be considered for equivalence until branches == 0. 11220 */ 11221 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 11222 if (!new_sl) 11223 return -ENOMEM; 11224 env->total_states++; 11225 env->peak_states++; 11226 env->prev_jmps_processed = env->jmps_processed; 11227 env->prev_insn_processed = env->insn_processed; 11228 11229 /* add new state to the head of linked list */ 11230 new = &new_sl->state; 11231 err = copy_verifier_state(new, cur); 11232 if (err) { 11233 free_verifier_state(new, false); 11234 kfree(new_sl); 11235 return err; 11236 } 11237 new->insn_idx = insn_idx; 11238 WARN_ONCE(new->branches != 1, 11239 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 11240 11241 cur->parent = new; 11242 cur->first_insn_idx = insn_idx; 11243 clear_jmp_history(cur); 11244 new_sl->next = *explored_state(env, insn_idx); 11245 *explored_state(env, insn_idx) = new_sl; 11246 /* connect new state to parentage chain. Current frame needs all 11247 * registers connected. Only r6 - r9 of the callers are alive (pushed 11248 * to the stack implicitly by JITs) so in callers' frames connect just 11249 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 11250 * the state of the call instruction (with WRITTEN set), and r0 comes 11251 * from callee with its full parentage chain, anyway. 11252 */ 11253 /* clear write marks in current state: the writes we did are not writes 11254 * our child did, so they don't screen off its reads from us. 11255 * (There are no read marks in current state, because reads always mark 11256 * their parent and current state never has children yet. Only 11257 * explored_states can get read marks.) 11258 */ 11259 for (j = 0; j <= cur->curframe; j++) { 11260 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 11261 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 11262 for (i = 0; i < BPF_REG_FP; i++) 11263 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 11264 } 11265 11266 /* all stack frames are accessible from callee, clear them all */ 11267 for (j = 0; j <= cur->curframe; j++) { 11268 struct bpf_func_state *frame = cur->frame[j]; 11269 struct bpf_func_state *newframe = new->frame[j]; 11270 11271 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 11272 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 11273 frame->stack[i].spilled_ptr.parent = 11274 &newframe->stack[i].spilled_ptr; 11275 } 11276 } 11277 return 0; 11278 } 11279 11280 /* Return true if it's OK to have the same insn return a different type. */ 11281 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 11282 { 11283 switch (base_type(type)) { 11284 case PTR_TO_CTX: 11285 case PTR_TO_SOCKET: 11286 case PTR_TO_SOCK_COMMON: 11287 case PTR_TO_TCP_SOCK: 11288 case PTR_TO_XDP_SOCK: 11289 case PTR_TO_BTF_ID: 11290 return false; 11291 default: 11292 return true; 11293 } 11294 } 11295 11296 /* If an instruction was previously used with particular pointer types, then we 11297 * need to be careful to avoid cases such as the below, where it may be ok 11298 * for one branch accessing the pointer, but not ok for the other branch: 11299 * 11300 * R1 = sock_ptr 11301 * goto X; 11302 * ... 11303 * R1 = some_other_valid_ptr; 11304 * goto X; 11305 * ... 11306 * R2 = *(u32 *)(R1 + 0); 11307 */ 11308 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 11309 { 11310 return src != prev && (!reg_type_mismatch_ok(src) || 11311 !reg_type_mismatch_ok(prev)); 11312 } 11313 11314 static int do_check(struct bpf_verifier_env *env) 11315 { 11316 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11317 struct bpf_verifier_state *state = env->cur_state; 11318 struct bpf_insn *insns = env->prog->insnsi; 11319 struct bpf_reg_state *regs; 11320 int insn_cnt = env->prog->len; 11321 bool do_print_state = false; 11322 int prev_insn_idx = -1; 11323 11324 for (;;) { 11325 struct bpf_insn *insn; 11326 u8 class; 11327 int err; 11328 11329 env->prev_insn_idx = prev_insn_idx; 11330 if (env->insn_idx >= insn_cnt) { 11331 verbose(env, "invalid insn idx %d insn_cnt %d\n", 11332 env->insn_idx, insn_cnt); 11333 return -EFAULT; 11334 } 11335 11336 insn = &insns[env->insn_idx]; 11337 class = BPF_CLASS(insn->code); 11338 11339 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 11340 verbose(env, 11341 "BPF program is too large. Processed %d insn\n", 11342 env->insn_processed); 11343 return -E2BIG; 11344 } 11345 11346 err = is_state_visited(env, env->insn_idx); 11347 if (err < 0) 11348 return err; 11349 if (err == 1) { 11350 /* found equivalent state, can prune the search */ 11351 if (env->log.level & BPF_LOG_LEVEL) { 11352 if (do_print_state) 11353 verbose(env, "\nfrom %d to %d%s: safe\n", 11354 env->prev_insn_idx, env->insn_idx, 11355 env->cur_state->speculative ? 11356 " (speculative execution)" : ""); 11357 else 11358 verbose(env, "%d: safe\n", env->insn_idx); 11359 } 11360 goto process_bpf_exit; 11361 } 11362 11363 if (signal_pending(current)) 11364 return -EAGAIN; 11365 11366 if (need_resched()) 11367 cond_resched(); 11368 11369 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 11370 verbose(env, "\nfrom %d to %d%s:", 11371 env->prev_insn_idx, env->insn_idx, 11372 env->cur_state->speculative ? 11373 " (speculative execution)" : ""); 11374 print_verifier_state(env, state->frame[state->curframe], true); 11375 do_print_state = false; 11376 } 11377 11378 if (env->log.level & BPF_LOG_LEVEL) { 11379 const struct bpf_insn_cbs cbs = { 11380 .cb_call = disasm_kfunc_name, 11381 .cb_print = verbose, 11382 .private_data = env, 11383 }; 11384 11385 if (verifier_state_scratched(env)) 11386 print_insn_state(env, state->frame[state->curframe]); 11387 11388 verbose_linfo(env, env->insn_idx, "; "); 11389 env->prev_log_len = env->log.len_used; 11390 verbose(env, "%d: ", env->insn_idx); 11391 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 11392 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 11393 env->prev_log_len = env->log.len_used; 11394 } 11395 11396 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11397 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 11398 env->prev_insn_idx); 11399 if (err) 11400 return err; 11401 } 11402 11403 regs = cur_regs(env); 11404 sanitize_mark_insn_seen(env); 11405 prev_insn_idx = env->insn_idx; 11406 11407 if (class == BPF_ALU || class == BPF_ALU64) { 11408 err = check_alu_op(env, insn); 11409 if (err) 11410 return err; 11411 11412 } else if (class == BPF_LDX) { 11413 enum bpf_reg_type *prev_src_type, src_reg_type; 11414 11415 /* check for reserved fields is already done */ 11416 11417 /* check src operand */ 11418 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11419 if (err) 11420 return err; 11421 11422 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11423 if (err) 11424 return err; 11425 11426 src_reg_type = regs[insn->src_reg].type; 11427 11428 /* check that memory (src_reg + off) is readable, 11429 * the state of dst_reg will be updated by this func 11430 */ 11431 err = check_mem_access(env, env->insn_idx, insn->src_reg, 11432 insn->off, BPF_SIZE(insn->code), 11433 BPF_READ, insn->dst_reg, false); 11434 if (err) 11435 return err; 11436 11437 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11438 11439 if (*prev_src_type == NOT_INIT) { 11440 /* saw a valid insn 11441 * dst_reg = *(u32 *)(src_reg + off) 11442 * save type to validate intersecting paths 11443 */ 11444 *prev_src_type = src_reg_type; 11445 11446 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 11447 /* ABuser program is trying to use the same insn 11448 * dst_reg = *(u32*) (src_reg + off) 11449 * with different pointer types: 11450 * src_reg == ctx in one branch and 11451 * src_reg == stack|map in some other branch. 11452 * Reject it. 11453 */ 11454 verbose(env, "same insn cannot be used with different pointers\n"); 11455 return -EINVAL; 11456 } 11457 11458 } else if (class == BPF_STX) { 11459 enum bpf_reg_type *prev_dst_type, dst_reg_type; 11460 11461 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 11462 err = check_atomic(env, env->insn_idx, insn); 11463 if (err) 11464 return err; 11465 env->insn_idx++; 11466 continue; 11467 } 11468 11469 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 11470 verbose(env, "BPF_STX uses reserved fields\n"); 11471 return -EINVAL; 11472 } 11473 11474 /* check src1 operand */ 11475 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11476 if (err) 11477 return err; 11478 /* check src2 operand */ 11479 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11480 if (err) 11481 return err; 11482 11483 dst_reg_type = regs[insn->dst_reg].type; 11484 11485 /* check that memory (dst_reg + off) is writeable */ 11486 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11487 insn->off, BPF_SIZE(insn->code), 11488 BPF_WRITE, insn->src_reg, false); 11489 if (err) 11490 return err; 11491 11492 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11493 11494 if (*prev_dst_type == NOT_INIT) { 11495 *prev_dst_type = dst_reg_type; 11496 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 11497 verbose(env, "same insn cannot be used with different pointers\n"); 11498 return -EINVAL; 11499 } 11500 11501 } else if (class == BPF_ST) { 11502 if (BPF_MODE(insn->code) != BPF_MEM || 11503 insn->src_reg != BPF_REG_0) { 11504 verbose(env, "BPF_ST uses reserved fields\n"); 11505 return -EINVAL; 11506 } 11507 /* check src operand */ 11508 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11509 if (err) 11510 return err; 11511 11512 if (is_ctx_reg(env, insn->dst_reg)) { 11513 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 11514 insn->dst_reg, 11515 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 11516 return -EACCES; 11517 } 11518 11519 /* check that memory (dst_reg + off) is writeable */ 11520 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11521 insn->off, BPF_SIZE(insn->code), 11522 BPF_WRITE, -1, false); 11523 if (err) 11524 return err; 11525 11526 } else if (class == BPF_JMP || class == BPF_JMP32) { 11527 u8 opcode = BPF_OP(insn->code); 11528 11529 env->jmps_processed++; 11530 if (opcode == BPF_CALL) { 11531 if (BPF_SRC(insn->code) != BPF_K || 11532 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 11533 && insn->off != 0) || 11534 (insn->src_reg != BPF_REG_0 && 11535 insn->src_reg != BPF_PSEUDO_CALL && 11536 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 11537 insn->dst_reg != BPF_REG_0 || 11538 class == BPF_JMP32) { 11539 verbose(env, "BPF_CALL uses reserved fields\n"); 11540 return -EINVAL; 11541 } 11542 11543 if (env->cur_state->active_spin_lock && 11544 (insn->src_reg == BPF_PSEUDO_CALL || 11545 insn->imm != BPF_FUNC_spin_unlock)) { 11546 verbose(env, "function calls are not allowed while holding a lock\n"); 11547 return -EINVAL; 11548 } 11549 if (insn->src_reg == BPF_PSEUDO_CALL) 11550 err = check_func_call(env, insn, &env->insn_idx); 11551 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 11552 err = check_kfunc_call(env, insn); 11553 else 11554 err = check_helper_call(env, insn, &env->insn_idx); 11555 if (err) 11556 return err; 11557 } else if (opcode == BPF_JA) { 11558 if (BPF_SRC(insn->code) != BPF_K || 11559 insn->imm != 0 || 11560 insn->src_reg != BPF_REG_0 || 11561 insn->dst_reg != BPF_REG_0 || 11562 class == BPF_JMP32) { 11563 verbose(env, "BPF_JA uses reserved fields\n"); 11564 return -EINVAL; 11565 } 11566 11567 env->insn_idx += insn->off + 1; 11568 continue; 11569 11570 } else if (opcode == BPF_EXIT) { 11571 if (BPF_SRC(insn->code) != BPF_K || 11572 insn->imm != 0 || 11573 insn->src_reg != BPF_REG_0 || 11574 insn->dst_reg != BPF_REG_0 || 11575 class == BPF_JMP32) { 11576 verbose(env, "BPF_EXIT uses reserved fields\n"); 11577 return -EINVAL; 11578 } 11579 11580 if (env->cur_state->active_spin_lock) { 11581 verbose(env, "bpf_spin_unlock is missing\n"); 11582 return -EINVAL; 11583 } 11584 11585 if (state->curframe) { 11586 /* exit from nested function */ 11587 err = prepare_func_exit(env, &env->insn_idx); 11588 if (err) 11589 return err; 11590 do_print_state = true; 11591 continue; 11592 } 11593 11594 err = check_reference_leak(env); 11595 if (err) 11596 return err; 11597 11598 err = check_return_code(env); 11599 if (err) 11600 return err; 11601 process_bpf_exit: 11602 mark_verifier_state_scratched(env); 11603 update_branch_counts(env, env->cur_state); 11604 err = pop_stack(env, &prev_insn_idx, 11605 &env->insn_idx, pop_log); 11606 if (err < 0) { 11607 if (err != -ENOENT) 11608 return err; 11609 break; 11610 } else { 11611 do_print_state = true; 11612 continue; 11613 } 11614 } else { 11615 err = check_cond_jmp_op(env, insn, &env->insn_idx); 11616 if (err) 11617 return err; 11618 } 11619 } else if (class == BPF_LD) { 11620 u8 mode = BPF_MODE(insn->code); 11621 11622 if (mode == BPF_ABS || mode == BPF_IND) { 11623 err = check_ld_abs(env, insn); 11624 if (err) 11625 return err; 11626 11627 } else if (mode == BPF_IMM) { 11628 err = check_ld_imm(env, insn); 11629 if (err) 11630 return err; 11631 11632 env->insn_idx++; 11633 sanitize_mark_insn_seen(env); 11634 } else { 11635 verbose(env, "invalid BPF_LD mode\n"); 11636 return -EINVAL; 11637 } 11638 } else { 11639 verbose(env, "unknown insn class %d\n", class); 11640 return -EINVAL; 11641 } 11642 11643 env->insn_idx++; 11644 } 11645 11646 return 0; 11647 } 11648 11649 static int find_btf_percpu_datasec(struct btf *btf) 11650 { 11651 const struct btf_type *t; 11652 const char *tname; 11653 int i, n; 11654 11655 /* 11656 * Both vmlinux and module each have their own ".data..percpu" 11657 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 11658 * types to look at only module's own BTF types. 11659 */ 11660 n = btf_nr_types(btf); 11661 if (btf_is_module(btf)) 11662 i = btf_nr_types(btf_vmlinux); 11663 else 11664 i = 1; 11665 11666 for(; i < n; i++) { 11667 t = btf_type_by_id(btf, i); 11668 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 11669 continue; 11670 11671 tname = btf_name_by_offset(btf, t->name_off); 11672 if (!strcmp(tname, ".data..percpu")) 11673 return i; 11674 } 11675 11676 return -ENOENT; 11677 } 11678 11679 /* replace pseudo btf_id with kernel symbol address */ 11680 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 11681 struct bpf_insn *insn, 11682 struct bpf_insn_aux_data *aux) 11683 { 11684 const struct btf_var_secinfo *vsi; 11685 const struct btf_type *datasec; 11686 struct btf_mod_pair *btf_mod; 11687 const struct btf_type *t; 11688 const char *sym_name; 11689 bool percpu = false; 11690 u32 type, id = insn->imm; 11691 struct btf *btf; 11692 s32 datasec_id; 11693 u64 addr; 11694 int i, btf_fd, err; 11695 11696 btf_fd = insn[1].imm; 11697 if (btf_fd) { 11698 btf = btf_get_by_fd(btf_fd); 11699 if (IS_ERR(btf)) { 11700 verbose(env, "invalid module BTF object FD specified.\n"); 11701 return -EINVAL; 11702 } 11703 } else { 11704 if (!btf_vmlinux) { 11705 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 11706 return -EINVAL; 11707 } 11708 btf = btf_vmlinux; 11709 btf_get(btf); 11710 } 11711 11712 t = btf_type_by_id(btf, id); 11713 if (!t) { 11714 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 11715 err = -ENOENT; 11716 goto err_put; 11717 } 11718 11719 if (!btf_type_is_var(t)) { 11720 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 11721 err = -EINVAL; 11722 goto err_put; 11723 } 11724 11725 sym_name = btf_name_by_offset(btf, t->name_off); 11726 addr = kallsyms_lookup_name(sym_name); 11727 if (!addr) { 11728 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 11729 sym_name); 11730 err = -ENOENT; 11731 goto err_put; 11732 } 11733 11734 datasec_id = find_btf_percpu_datasec(btf); 11735 if (datasec_id > 0) { 11736 datasec = btf_type_by_id(btf, datasec_id); 11737 for_each_vsi(i, datasec, vsi) { 11738 if (vsi->type == id) { 11739 percpu = true; 11740 break; 11741 } 11742 } 11743 } 11744 11745 insn[0].imm = (u32)addr; 11746 insn[1].imm = addr >> 32; 11747 11748 type = t->type; 11749 t = btf_type_skip_modifiers(btf, type, NULL); 11750 if (percpu) { 11751 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 11752 aux->btf_var.btf = btf; 11753 aux->btf_var.btf_id = type; 11754 } else if (!btf_type_is_struct(t)) { 11755 const struct btf_type *ret; 11756 const char *tname; 11757 u32 tsize; 11758 11759 /* resolve the type size of ksym. */ 11760 ret = btf_resolve_size(btf, t, &tsize); 11761 if (IS_ERR(ret)) { 11762 tname = btf_name_by_offset(btf, t->name_off); 11763 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11764 tname, PTR_ERR(ret)); 11765 err = -EINVAL; 11766 goto err_put; 11767 } 11768 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 11769 aux->btf_var.mem_size = tsize; 11770 } else { 11771 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11772 aux->btf_var.btf = btf; 11773 aux->btf_var.btf_id = type; 11774 } 11775 11776 /* check whether we recorded this BTF (and maybe module) already */ 11777 for (i = 0; i < env->used_btf_cnt; i++) { 11778 if (env->used_btfs[i].btf == btf) { 11779 btf_put(btf); 11780 return 0; 11781 } 11782 } 11783 11784 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11785 err = -E2BIG; 11786 goto err_put; 11787 } 11788 11789 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11790 btf_mod->btf = btf; 11791 btf_mod->module = NULL; 11792 11793 /* if we reference variables from kernel module, bump its refcount */ 11794 if (btf_is_module(btf)) { 11795 btf_mod->module = btf_try_get_module(btf); 11796 if (!btf_mod->module) { 11797 err = -ENXIO; 11798 goto err_put; 11799 } 11800 } 11801 11802 env->used_btf_cnt++; 11803 11804 return 0; 11805 err_put: 11806 btf_put(btf); 11807 return err; 11808 } 11809 11810 static int check_map_prealloc(struct bpf_map *map) 11811 { 11812 return (map->map_type != BPF_MAP_TYPE_HASH && 11813 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11814 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11815 !(map->map_flags & BPF_F_NO_PREALLOC); 11816 } 11817 11818 static bool is_tracing_prog_type(enum bpf_prog_type type) 11819 { 11820 switch (type) { 11821 case BPF_PROG_TYPE_KPROBE: 11822 case BPF_PROG_TYPE_TRACEPOINT: 11823 case BPF_PROG_TYPE_PERF_EVENT: 11824 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11825 return true; 11826 default: 11827 return false; 11828 } 11829 } 11830 11831 static bool is_preallocated_map(struct bpf_map *map) 11832 { 11833 if (!check_map_prealloc(map)) 11834 return false; 11835 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11836 return false; 11837 return true; 11838 } 11839 11840 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11841 struct bpf_map *map, 11842 struct bpf_prog *prog) 11843 11844 { 11845 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11846 /* 11847 * Validate that trace type programs use preallocated hash maps. 11848 * 11849 * For programs attached to PERF events this is mandatory as the 11850 * perf NMI can hit any arbitrary code sequence. 11851 * 11852 * All other trace types using preallocated hash maps are unsafe as 11853 * well because tracepoint or kprobes can be inside locked regions 11854 * of the memory allocator or at a place where a recursion into the 11855 * memory allocator would see inconsistent state. 11856 * 11857 * On RT enabled kernels run-time allocation of all trace type 11858 * programs is strictly prohibited due to lock type constraints. On 11859 * !RT kernels it is allowed for backwards compatibility reasons for 11860 * now, but warnings are emitted so developers are made aware of 11861 * the unsafety and can fix their programs before this is enforced. 11862 */ 11863 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11864 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11865 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11866 return -EINVAL; 11867 } 11868 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11869 verbose(env, "trace type programs can only use preallocated hash map\n"); 11870 return -EINVAL; 11871 } 11872 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11873 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11874 } 11875 11876 if (map_value_has_spin_lock(map)) { 11877 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11878 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11879 return -EINVAL; 11880 } 11881 11882 if (is_tracing_prog_type(prog_type)) { 11883 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11884 return -EINVAL; 11885 } 11886 11887 if (prog->aux->sleepable) { 11888 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11889 return -EINVAL; 11890 } 11891 } 11892 11893 if (map_value_has_timer(map)) { 11894 if (is_tracing_prog_type(prog_type)) { 11895 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 11896 return -EINVAL; 11897 } 11898 } 11899 11900 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11901 !bpf_offload_prog_map_match(prog, map)) { 11902 verbose(env, "offload device mismatch between prog and map\n"); 11903 return -EINVAL; 11904 } 11905 11906 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11907 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11908 return -EINVAL; 11909 } 11910 11911 if (prog->aux->sleepable) 11912 switch (map->map_type) { 11913 case BPF_MAP_TYPE_HASH: 11914 case BPF_MAP_TYPE_LRU_HASH: 11915 case BPF_MAP_TYPE_ARRAY: 11916 case BPF_MAP_TYPE_PERCPU_HASH: 11917 case BPF_MAP_TYPE_PERCPU_ARRAY: 11918 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11919 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11920 case BPF_MAP_TYPE_HASH_OF_MAPS: 11921 if (!is_preallocated_map(map)) { 11922 verbose(env, 11923 "Sleepable programs can only use preallocated maps\n"); 11924 return -EINVAL; 11925 } 11926 break; 11927 case BPF_MAP_TYPE_RINGBUF: 11928 case BPF_MAP_TYPE_INODE_STORAGE: 11929 case BPF_MAP_TYPE_SK_STORAGE: 11930 case BPF_MAP_TYPE_TASK_STORAGE: 11931 break; 11932 default: 11933 verbose(env, 11934 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11935 return -EINVAL; 11936 } 11937 11938 return 0; 11939 } 11940 11941 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11942 { 11943 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11944 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11945 } 11946 11947 /* find and rewrite pseudo imm in ld_imm64 instructions: 11948 * 11949 * 1. if it accesses map FD, replace it with actual map pointer. 11950 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11951 * 11952 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11953 */ 11954 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11955 { 11956 struct bpf_insn *insn = env->prog->insnsi; 11957 int insn_cnt = env->prog->len; 11958 int i, j, err; 11959 11960 err = bpf_prog_calc_tag(env->prog); 11961 if (err) 11962 return err; 11963 11964 for (i = 0; i < insn_cnt; i++, insn++) { 11965 if (BPF_CLASS(insn->code) == BPF_LDX && 11966 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11967 verbose(env, "BPF_LDX uses reserved fields\n"); 11968 return -EINVAL; 11969 } 11970 11971 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11972 struct bpf_insn_aux_data *aux; 11973 struct bpf_map *map; 11974 struct fd f; 11975 u64 addr; 11976 u32 fd; 11977 11978 if (i == insn_cnt - 1 || insn[1].code != 0 || 11979 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11980 insn[1].off != 0) { 11981 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11982 return -EINVAL; 11983 } 11984 11985 if (insn[0].src_reg == 0) 11986 /* valid generic load 64-bit imm */ 11987 goto next_insn; 11988 11989 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11990 aux = &env->insn_aux_data[i]; 11991 err = check_pseudo_btf_id(env, insn, aux); 11992 if (err) 11993 return err; 11994 goto next_insn; 11995 } 11996 11997 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11998 aux = &env->insn_aux_data[i]; 11999 aux->ptr_type = PTR_TO_FUNC; 12000 goto next_insn; 12001 } 12002 12003 /* In final convert_pseudo_ld_imm64() step, this is 12004 * converted into regular 64-bit imm load insn. 12005 */ 12006 switch (insn[0].src_reg) { 12007 case BPF_PSEUDO_MAP_VALUE: 12008 case BPF_PSEUDO_MAP_IDX_VALUE: 12009 break; 12010 case BPF_PSEUDO_MAP_FD: 12011 case BPF_PSEUDO_MAP_IDX: 12012 if (insn[1].imm == 0) 12013 break; 12014 fallthrough; 12015 default: 12016 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 12017 return -EINVAL; 12018 } 12019 12020 switch (insn[0].src_reg) { 12021 case BPF_PSEUDO_MAP_IDX_VALUE: 12022 case BPF_PSEUDO_MAP_IDX: 12023 if (bpfptr_is_null(env->fd_array)) { 12024 verbose(env, "fd_idx without fd_array is invalid\n"); 12025 return -EPROTO; 12026 } 12027 if (copy_from_bpfptr_offset(&fd, env->fd_array, 12028 insn[0].imm * sizeof(fd), 12029 sizeof(fd))) 12030 return -EFAULT; 12031 break; 12032 default: 12033 fd = insn[0].imm; 12034 break; 12035 } 12036 12037 f = fdget(fd); 12038 map = __bpf_map_get(f); 12039 if (IS_ERR(map)) { 12040 verbose(env, "fd %d is not pointing to valid bpf_map\n", 12041 insn[0].imm); 12042 return PTR_ERR(map); 12043 } 12044 12045 err = check_map_prog_compatibility(env, map, env->prog); 12046 if (err) { 12047 fdput(f); 12048 return err; 12049 } 12050 12051 aux = &env->insn_aux_data[i]; 12052 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 12053 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 12054 addr = (unsigned long)map; 12055 } else { 12056 u32 off = insn[1].imm; 12057 12058 if (off >= BPF_MAX_VAR_OFF) { 12059 verbose(env, "direct value offset of %u is not allowed\n", off); 12060 fdput(f); 12061 return -EINVAL; 12062 } 12063 12064 if (!map->ops->map_direct_value_addr) { 12065 verbose(env, "no direct value access support for this map type\n"); 12066 fdput(f); 12067 return -EINVAL; 12068 } 12069 12070 err = map->ops->map_direct_value_addr(map, &addr, off); 12071 if (err) { 12072 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 12073 map->value_size, off); 12074 fdput(f); 12075 return err; 12076 } 12077 12078 aux->map_off = off; 12079 addr += off; 12080 } 12081 12082 insn[0].imm = (u32)addr; 12083 insn[1].imm = addr >> 32; 12084 12085 /* check whether we recorded this map already */ 12086 for (j = 0; j < env->used_map_cnt; j++) { 12087 if (env->used_maps[j] == map) { 12088 aux->map_index = j; 12089 fdput(f); 12090 goto next_insn; 12091 } 12092 } 12093 12094 if (env->used_map_cnt >= MAX_USED_MAPS) { 12095 fdput(f); 12096 return -E2BIG; 12097 } 12098 12099 /* hold the map. If the program is rejected by verifier, 12100 * the map will be released by release_maps() or it 12101 * will be used by the valid program until it's unloaded 12102 * and all maps are released in free_used_maps() 12103 */ 12104 bpf_map_inc(map); 12105 12106 aux->map_index = env->used_map_cnt; 12107 env->used_maps[env->used_map_cnt++] = map; 12108 12109 if (bpf_map_is_cgroup_storage(map) && 12110 bpf_cgroup_storage_assign(env->prog->aux, map)) { 12111 verbose(env, "only one cgroup storage of each type is allowed\n"); 12112 fdput(f); 12113 return -EBUSY; 12114 } 12115 12116 fdput(f); 12117 next_insn: 12118 insn++; 12119 i++; 12120 continue; 12121 } 12122 12123 /* Basic sanity check before we invest more work here. */ 12124 if (!bpf_opcode_in_insntable(insn->code)) { 12125 verbose(env, "unknown opcode %02x\n", insn->code); 12126 return -EINVAL; 12127 } 12128 } 12129 12130 /* now all pseudo BPF_LD_IMM64 instructions load valid 12131 * 'struct bpf_map *' into a register instead of user map_fd. 12132 * These pointers will be used later by verifier to validate map access. 12133 */ 12134 return 0; 12135 } 12136 12137 /* drop refcnt of maps used by the rejected program */ 12138 static void release_maps(struct bpf_verifier_env *env) 12139 { 12140 __bpf_free_used_maps(env->prog->aux, env->used_maps, 12141 env->used_map_cnt); 12142 } 12143 12144 /* drop refcnt of maps used by the rejected program */ 12145 static void release_btfs(struct bpf_verifier_env *env) 12146 { 12147 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 12148 env->used_btf_cnt); 12149 } 12150 12151 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 12152 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 12153 { 12154 struct bpf_insn *insn = env->prog->insnsi; 12155 int insn_cnt = env->prog->len; 12156 int i; 12157 12158 for (i = 0; i < insn_cnt; i++, insn++) { 12159 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 12160 continue; 12161 if (insn->src_reg == BPF_PSEUDO_FUNC) 12162 continue; 12163 insn->src_reg = 0; 12164 } 12165 } 12166 12167 /* single env->prog->insni[off] instruction was replaced with the range 12168 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 12169 * [0, off) and [off, end) to new locations, so the patched range stays zero 12170 */ 12171 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 12172 struct bpf_insn_aux_data *new_data, 12173 struct bpf_prog *new_prog, u32 off, u32 cnt) 12174 { 12175 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 12176 struct bpf_insn *insn = new_prog->insnsi; 12177 u32 old_seen = old_data[off].seen; 12178 u32 prog_len; 12179 int i; 12180 12181 /* aux info at OFF always needs adjustment, no matter fast path 12182 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 12183 * original insn at old prog. 12184 */ 12185 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 12186 12187 if (cnt == 1) 12188 return; 12189 prog_len = new_prog->len; 12190 12191 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 12192 memcpy(new_data + off + cnt - 1, old_data + off, 12193 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 12194 for (i = off; i < off + cnt - 1; i++) { 12195 /* Expand insni[off]'s seen count to the patched range. */ 12196 new_data[i].seen = old_seen; 12197 new_data[i].zext_dst = insn_has_def32(env, insn + i); 12198 } 12199 env->insn_aux_data = new_data; 12200 vfree(old_data); 12201 } 12202 12203 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 12204 { 12205 int i; 12206 12207 if (len == 1) 12208 return; 12209 /* NOTE: fake 'exit' subprog should be updated as well. */ 12210 for (i = 0; i <= env->subprog_cnt; i++) { 12211 if (env->subprog_info[i].start <= off) 12212 continue; 12213 env->subprog_info[i].start += len - 1; 12214 } 12215 } 12216 12217 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 12218 { 12219 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 12220 int i, sz = prog->aux->size_poke_tab; 12221 struct bpf_jit_poke_descriptor *desc; 12222 12223 for (i = 0; i < sz; i++) { 12224 desc = &tab[i]; 12225 if (desc->insn_idx <= off) 12226 continue; 12227 desc->insn_idx += len - 1; 12228 } 12229 } 12230 12231 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 12232 const struct bpf_insn *patch, u32 len) 12233 { 12234 struct bpf_prog *new_prog; 12235 struct bpf_insn_aux_data *new_data = NULL; 12236 12237 if (len > 1) { 12238 new_data = vzalloc(array_size(env->prog->len + len - 1, 12239 sizeof(struct bpf_insn_aux_data))); 12240 if (!new_data) 12241 return NULL; 12242 } 12243 12244 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 12245 if (IS_ERR(new_prog)) { 12246 if (PTR_ERR(new_prog) == -ERANGE) 12247 verbose(env, 12248 "insn %d cannot be patched due to 16-bit range\n", 12249 env->insn_aux_data[off].orig_idx); 12250 vfree(new_data); 12251 return NULL; 12252 } 12253 adjust_insn_aux_data(env, new_data, new_prog, off, len); 12254 adjust_subprog_starts(env, off, len); 12255 adjust_poke_descs(new_prog, off, len); 12256 return new_prog; 12257 } 12258 12259 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 12260 u32 off, u32 cnt) 12261 { 12262 int i, j; 12263 12264 /* find first prog starting at or after off (first to remove) */ 12265 for (i = 0; i < env->subprog_cnt; i++) 12266 if (env->subprog_info[i].start >= off) 12267 break; 12268 /* find first prog starting at or after off + cnt (first to stay) */ 12269 for (j = i; j < env->subprog_cnt; j++) 12270 if (env->subprog_info[j].start >= off + cnt) 12271 break; 12272 /* if j doesn't start exactly at off + cnt, we are just removing 12273 * the front of previous prog 12274 */ 12275 if (env->subprog_info[j].start != off + cnt) 12276 j--; 12277 12278 if (j > i) { 12279 struct bpf_prog_aux *aux = env->prog->aux; 12280 int move; 12281 12282 /* move fake 'exit' subprog as well */ 12283 move = env->subprog_cnt + 1 - j; 12284 12285 memmove(env->subprog_info + i, 12286 env->subprog_info + j, 12287 sizeof(*env->subprog_info) * move); 12288 env->subprog_cnt -= j - i; 12289 12290 /* remove func_info */ 12291 if (aux->func_info) { 12292 move = aux->func_info_cnt - j; 12293 12294 memmove(aux->func_info + i, 12295 aux->func_info + j, 12296 sizeof(*aux->func_info) * move); 12297 aux->func_info_cnt -= j - i; 12298 /* func_info->insn_off is set after all code rewrites, 12299 * in adjust_btf_func() - no need to adjust 12300 */ 12301 } 12302 } else { 12303 /* convert i from "first prog to remove" to "first to adjust" */ 12304 if (env->subprog_info[i].start == off) 12305 i++; 12306 } 12307 12308 /* update fake 'exit' subprog as well */ 12309 for (; i <= env->subprog_cnt; i++) 12310 env->subprog_info[i].start -= cnt; 12311 12312 return 0; 12313 } 12314 12315 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 12316 u32 cnt) 12317 { 12318 struct bpf_prog *prog = env->prog; 12319 u32 i, l_off, l_cnt, nr_linfo; 12320 struct bpf_line_info *linfo; 12321 12322 nr_linfo = prog->aux->nr_linfo; 12323 if (!nr_linfo) 12324 return 0; 12325 12326 linfo = prog->aux->linfo; 12327 12328 /* find first line info to remove, count lines to be removed */ 12329 for (i = 0; i < nr_linfo; i++) 12330 if (linfo[i].insn_off >= off) 12331 break; 12332 12333 l_off = i; 12334 l_cnt = 0; 12335 for (; i < nr_linfo; i++) 12336 if (linfo[i].insn_off < off + cnt) 12337 l_cnt++; 12338 else 12339 break; 12340 12341 /* First live insn doesn't match first live linfo, it needs to "inherit" 12342 * last removed linfo. prog is already modified, so prog->len == off 12343 * means no live instructions after (tail of the program was removed). 12344 */ 12345 if (prog->len != off && l_cnt && 12346 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 12347 l_cnt--; 12348 linfo[--i].insn_off = off + cnt; 12349 } 12350 12351 /* remove the line info which refer to the removed instructions */ 12352 if (l_cnt) { 12353 memmove(linfo + l_off, linfo + i, 12354 sizeof(*linfo) * (nr_linfo - i)); 12355 12356 prog->aux->nr_linfo -= l_cnt; 12357 nr_linfo = prog->aux->nr_linfo; 12358 } 12359 12360 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 12361 for (i = l_off; i < nr_linfo; i++) 12362 linfo[i].insn_off -= cnt; 12363 12364 /* fix up all subprogs (incl. 'exit') which start >= off */ 12365 for (i = 0; i <= env->subprog_cnt; i++) 12366 if (env->subprog_info[i].linfo_idx > l_off) { 12367 /* program may have started in the removed region but 12368 * may not be fully removed 12369 */ 12370 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 12371 env->subprog_info[i].linfo_idx -= l_cnt; 12372 else 12373 env->subprog_info[i].linfo_idx = l_off; 12374 } 12375 12376 return 0; 12377 } 12378 12379 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 12380 { 12381 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12382 unsigned int orig_prog_len = env->prog->len; 12383 int err; 12384 12385 if (bpf_prog_is_dev_bound(env->prog->aux)) 12386 bpf_prog_offload_remove_insns(env, off, cnt); 12387 12388 err = bpf_remove_insns(env->prog, off, cnt); 12389 if (err) 12390 return err; 12391 12392 err = adjust_subprog_starts_after_remove(env, off, cnt); 12393 if (err) 12394 return err; 12395 12396 err = bpf_adj_linfo_after_remove(env, off, cnt); 12397 if (err) 12398 return err; 12399 12400 memmove(aux_data + off, aux_data + off + cnt, 12401 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 12402 12403 return 0; 12404 } 12405 12406 /* The verifier does more data flow analysis than llvm and will not 12407 * explore branches that are dead at run time. Malicious programs can 12408 * have dead code too. Therefore replace all dead at-run-time code 12409 * with 'ja -1'. 12410 * 12411 * Just nops are not optimal, e.g. if they would sit at the end of the 12412 * program and through another bug we would manage to jump there, then 12413 * we'd execute beyond program memory otherwise. Returning exception 12414 * code also wouldn't work since we can have subprogs where the dead 12415 * code could be located. 12416 */ 12417 static void sanitize_dead_code(struct bpf_verifier_env *env) 12418 { 12419 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12420 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 12421 struct bpf_insn *insn = env->prog->insnsi; 12422 const int insn_cnt = env->prog->len; 12423 int i; 12424 12425 for (i = 0; i < insn_cnt; i++) { 12426 if (aux_data[i].seen) 12427 continue; 12428 memcpy(insn + i, &trap, sizeof(trap)); 12429 aux_data[i].zext_dst = false; 12430 } 12431 } 12432 12433 static bool insn_is_cond_jump(u8 code) 12434 { 12435 u8 op; 12436 12437 if (BPF_CLASS(code) == BPF_JMP32) 12438 return true; 12439 12440 if (BPF_CLASS(code) != BPF_JMP) 12441 return false; 12442 12443 op = BPF_OP(code); 12444 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 12445 } 12446 12447 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 12448 { 12449 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12450 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12451 struct bpf_insn *insn = env->prog->insnsi; 12452 const int insn_cnt = env->prog->len; 12453 int i; 12454 12455 for (i = 0; i < insn_cnt; i++, insn++) { 12456 if (!insn_is_cond_jump(insn->code)) 12457 continue; 12458 12459 if (!aux_data[i + 1].seen) 12460 ja.off = insn->off; 12461 else if (!aux_data[i + 1 + insn->off].seen) 12462 ja.off = 0; 12463 else 12464 continue; 12465 12466 if (bpf_prog_is_dev_bound(env->prog->aux)) 12467 bpf_prog_offload_replace_insn(env, i, &ja); 12468 12469 memcpy(insn, &ja, sizeof(ja)); 12470 } 12471 } 12472 12473 static int opt_remove_dead_code(struct bpf_verifier_env *env) 12474 { 12475 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12476 int insn_cnt = env->prog->len; 12477 int i, err; 12478 12479 for (i = 0; i < insn_cnt; i++) { 12480 int j; 12481 12482 j = 0; 12483 while (i + j < insn_cnt && !aux_data[i + j].seen) 12484 j++; 12485 if (!j) 12486 continue; 12487 12488 err = verifier_remove_insns(env, i, j); 12489 if (err) 12490 return err; 12491 insn_cnt = env->prog->len; 12492 } 12493 12494 return 0; 12495 } 12496 12497 static int opt_remove_nops(struct bpf_verifier_env *env) 12498 { 12499 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12500 struct bpf_insn *insn = env->prog->insnsi; 12501 int insn_cnt = env->prog->len; 12502 int i, err; 12503 12504 for (i = 0; i < insn_cnt; i++) { 12505 if (memcmp(&insn[i], &ja, sizeof(ja))) 12506 continue; 12507 12508 err = verifier_remove_insns(env, i, 1); 12509 if (err) 12510 return err; 12511 insn_cnt--; 12512 i--; 12513 } 12514 12515 return 0; 12516 } 12517 12518 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 12519 const union bpf_attr *attr) 12520 { 12521 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 12522 struct bpf_insn_aux_data *aux = env->insn_aux_data; 12523 int i, patch_len, delta = 0, len = env->prog->len; 12524 struct bpf_insn *insns = env->prog->insnsi; 12525 struct bpf_prog *new_prog; 12526 bool rnd_hi32; 12527 12528 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 12529 zext_patch[1] = BPF_ZEXT_REG(0); 12530 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 12531 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 12532 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 12533 for (i = 0; i < len; i++) { 12534 int adj_idx = i + delta; 12535 struct bpf_insn insn; 12536 int load_reg; 12537 12538 insn = insns[adj_idx]; 12539 load_reg = insn_def_regno(&insn); 12540 if (!aux[adj_idx].zext_dst) { 12541 u8 code, class; 12542 u32 imm_rnd; 12543 12544 if (!rnd_hi32) 12545 continue; 12546 12547 code = insn.code; 12548 class = BPF_CLASS(code); 12549 if (load_reg == -1) 12550 continue; 12551 12552 /* NOTE: arg "reg" (the fourth one) is only used for 12553 * BPF_STX + SRC_OP, so it is safe to pass NULL 12554 * here. 12555 */ 12556 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 12557 if (class == BPF_LD && 12558 BPF_MODE(code) == BPF_IMM) 12559 i++; 12560 continue; 12561 } 12562 12563 /* ctx load could be transformed into wider load. */ 12564 if (class == BPF_LDX && 12565 aux[adj_idx].ptr_type == PTR_TO_CTX) 12566 continue; 12567 12568 imm_rnd = get_random_int(); 12569 rnd_hi32_patch[0] = insn; 12570 rnd_hi32_patch[1].imm = imm_rnd; 12571 rnd_hi32_patch[3].dst_reg = load_reg; 12572 patch = rnd_hi32_patch; 12573 patch_len = 4; 12574 goto apply_patch_buffer; 12575 } 12576 12577 /* Add in an zero-extend instruction if a) the JIT has requested 12578 * it or b) it's a CMPXCHG. 12579 * 12580 * The latter is because: BPF_CMPXCHG always loads a value into 12581 * R0, therefore always zero-extends. However some archs' 12582 * equivalent instruction only does this load when the 12583 * comparison is successful. This detail of CMPXCHG is 12584 * orthogonal to the general zero-extension behaviour of the 12585 * CPU, so it's treated independently of bpf_jit_needs_zext. 12586 */ 12587 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 12588 continue; 12589 12590 if (WARN_ON(load_reg == -1)) { 12591 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 12592 return -EFAULT; 12593 } 12594 12595 zext_patch[0] = insn; 12596 zext_patch[1].dst_reg = load_reg; 12597 zext_patch[1].src_reg = load_reg; 12598 patch = zext_patch; 12599 patch_len = 2; 12600 apply_patch_buffer: 12601 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 12602 if (!new_prog) 12603 return -ENOMEM; 12604 env->prog = new_prog; 12605 insns = new_prog->insnsi; 12606 aux = env->insn_aux_data; 12607 delta += patch_len - 1; 12608 } 12609 12610 return 0; 12611 } 12612 12613 /* convert load instructions that access fields of a context type into a 12614 * sequence of instructions that access fields of the underlying structure: 12615 * struct __sk_buff -> struct sk_buff 12616 * struct bpf_sock_ops -> struct sock 12617 */ 12618 static int convert_ctx_accesses(struct bpf_verifier_env *env) 12619 { 12620 const struct bpf_verifier_ops *ops = env->ops; 12621 int i, cnt, size, ctx_field_size, delta = 0; 12622 const int insn_cnt = env->prog->len; 12623 struct bpf_insn insn_buf[16], *insn; 12624 u32 target_size, size_default, off; 12625 struct bpf_prog *new_prog; 12626 enum bpf_access_type type; 12627 bool is_narrower_load; 12628 12629 if (ops->gen_prologue || env->seen_direct_write) { 12630 if (!ops->gen_prologue) { 12631 verbose(env, "bpf verifier is misconfigured\n"); 12632 return -EINVAL; 12633 } 12634 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 12635 env->prog); 12636 if (cnt >= ARRAY_SIZE(insn_buf)) { 12637 verbose(env, "bpf verifier is misconfigured\n"); 12638 return -EINVAL; 12639 } else if (cnt) { 12640 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 12641 if (!new_prog) 12642 return -ENOMEM; 12643 12644 env->prog = new_prog; 12645 delta += cnt - 1; 12646 } 12647 } 12648 12649 if (bpf_prog_is_dev_bound(env->prog->aux)) 12650 return 0; 12651 12652 insn = env->prog->insnsi + delta; 12653 12654 for (i = 0; i < insn_cnt; i++, insn++) { 12655 bpf_convert_ctx_access_t convert_ctx_access; 12656 bool ctx_access; 12657 12658 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 12659 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 12660 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 12661 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 12662 type = BPF_READ; 12663 ctx_access = true; 12664 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 12665 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 12666 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 12667 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 12668 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 12669 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 12670 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 12671 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 12672 type = BPF_WRITE; 12673 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 12674 } else { 12675 continue; 12676 } 12677 12678 if (type == BPF_WRITE && 12679 env->insn_aux_data[i + delta].sanitize_stack_spill) { 12680 struct bpf_insn patch[] = { 12681 *insn, 12682 BPF_ST_NOSPEC(), 12683 }; 12684 12685 cnt = ARRAY_SIZE(patch); 12686 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 12687 if (!new_prog) 12688 return -ENOMEM; 12689 12690 delta += cnt - 1; 12691 env->prog = new_prog; 12692 insn = new_prog->insnsi + i + delta; 12693 continue; 12694 } 12695 12696 if (!ctx_access) 12697 continue; 12698 12699 switch (env->insn_aux_data[i + delta].ptr_type) { 12700 case PTR_TO_CTX: 12701 if (!ops->convert_ctx_access) 12702 continue; 12703 convert_ctx_access = ops->convert_ctx_access; 12704 break; 12705 case PTR_TO_SOCKET: 12706 case PTR_TO_SOCK_COMMON: 12707 convert_ctx_access = bpf_sock_convert_ctx_access; 12708 break; 12709 case PTR_TO_TCP_SOCK: 12710 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 12711 break; 12712 case PTR_TO_XDP_SOCK: 12713 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 12714 break; 12715 case PTR_TO_BTF_ID: 12716 if (type == BPF_READ) { 12717 insn->code = BPF_LDX | BPF_PROBE_MEM | 12718 BPF_SIZE((insn)->code); 12719 env->prog->aux->num_exentries++; 12720 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 12721 verbose(env, "Writes through BTF pointers are not allowed\n"); 12722 return -EINVAL; 12723 } 12724 continue; 12725 default: 12726 continue; 12727 } 12728 12729 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 12730 size = BPF_LDST_BYTES(insn); 12731 12732 /* If the read access is a narrower load of the field, 12733 * convert to a 4/8-byte load, to minimum program type specific 12734 * convert_ctx_access changes. If conversion is successful, 12735 * we will apply proper mask to the result. 12736 */ 12737 is_narrower_load = size < ctx_field_size; 12738 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 12739 off = insn->off; 12740 if (is_narrower_load) { 12741 u8 size_code; 12742 12743 if (type == BPF_WRITE) { 12744 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 12745 return -EINVAL; 12746 } 12747 12748 size_code = BPF_H; 12749 if (ctx_field_size == 4) 12750 size_code = BPF_W; 12751 else if (ctx_field_size == 8) 12752 size_code = BPF_DW; 12753 12754 insn->off = off & ~(size_default - 1); 12755 insn->code = BPF_LDX | BPF_MEM | size_code; 12756 } 12757 12758 target_size = 0; 12759 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12760 &target_size); 12761 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 12762 (ctx_field_size && !target_size)) { 12763 verbose(env, "bpf verifier is misconfigured\n"); 12764 return -EINVAL; 12765 } 12766 12767 if (is_narrower_load && size < target_size) { 12768 u8 shift = bpf_ctx_narrow_access_offset( 12769 off, size, size_default) * 8; 12770 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 12771 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 12772 return -EINVAL; 12773 } 12774 if (ctx_field_size <= 4) { 12775 if (shift) 12776 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12777 insn->dst_reg, 12778 shift); 12779 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12780 (1 << size * 8) - 1); 12781 } else { 12782 if (shift) 12783 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12784 insn->dst_reg, 12785 shift); 12786 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12787 (1ULL << size * 8) - 1); 12788 } 12789 } 12790 12791 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12792 if (!new_prog) 12793 return -ENOMEM; 12794 12795 delta += cnt - 1; 12796 12797 /* keep walking new program and skip insns we just inserted */ 12798 env->prog = new_prog; 12799 insn = new_prog->insnsi + i + delta; 12800 } 12801 12802 return 0; 12803 } 12804 12805 static int jit_subprogs(struct bpf_verifier_env *env) 12806 { 12807 struct bpf_prog *prog = env->prog, **func, *tmp; 12808 int i, j, subprog_start, subprog_end = 0, len, subprog; 12809 struct bpf_map *map_ptr; 12810 struct bpf_insn *insn; 12811 void *old_bpf_func; 12812 int err, num_exentries; 12813 12814 if (env->subprog_cnt <= 1) 12815 return 0; 12816 12817 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12818 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 12819 continue; 12820 12821 /* Upon error here we cannot fall back to interpreter but 12822 * need a hard reject of the program. Thus -EFAULT is 12823 * propagated in any case. 12824 */ 12825 subprog = find_subprog(env, i + insn->imm + 1); 12826 if (subprog < 0) { 12827 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12828 i + insn->imm + 1); 12829 return -EFAULT; 12830 } 12831 /* temporarily remember subprog id inside insn instead of 12832 * aux_data, since next loop will split up all insns into funcs 12833 */ 12834 insn->off = subprog; 12835 /* remember original imm in case JIT fails and fallback 12836 * to interpreter will be needed 12837 */ 12838 env->insn_aux_data[i].call_imm = insn->imm; 12839 /* point imm to __bpf_call_base+1 from JITs point of view */ 12840 insn->imm = 1; 12841 if (bpf_pseudo_func(insn)) 12842 /* jit (e.g. x86_64) may emit fewer instructions 12843 * if it learns a u32 imm is the same as a u64 imm. 12844 * Force a non zero here. 12845 */ 12846 insn[1].imm = 1; 12847 } 12848 12849 err = bpf_prog_alloc_jited_linfo(prog); 12850 if (err) 12851 goto out_undo_insn; 12852 12853 err = -ENOMEM; 12854 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12855 if (!func) 12856 goto out_undo_insn; 12857 12858 for (i = 0; i < env->subprog_cnt; i++) { 12859 subprog_start = subprog_end; 12860 subprog_end = env->subprog_info[i + 1].start; 12861 12862 len = subprog_end - subprog_start; 12863 /* bpf_prog_run() doesn't call subprogs directly, 12864 * hence main prog stats include the runtime of subprogs. 12865 * subprogs don't have IDs and not reachable via prog_get_next_id 12866 * func[i]->stats will never be accessed and stays NULL 12867 */ 12868 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12869 if (!func[i]) 12870 goto out_free; 12871 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12872 len * sizeof(struct bpf_insn)); 12873 func[i]->type = prog->type; 12874 func[i]->len = len; 12875 if (bpf_prog_calc_tag(func[i])) 12876 goto out_free; 12877 func[i]->is_func = 1; 12878 func[i]->aux->func_idx = i; 12879 /* Below members will be freed only at prog->aux */ 12880 func[i]->aux->btf = prog->aux->btf; 12881 func[i]->aux->func_info = prog->aux->func_info; 12882 func[i]->aux->poke_tab = prog->aux->poke_tab; 12883 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 12884 12885 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12886 struct bpf_jit_poke_descriptor *poke; 12887 12888 poke = &prog->aux->poke_tab[j]; 12889 if (poke->insn_idx < subprog_end && 12890 poke->insn_idx >= subprog_start) 12891 poke->aux = func[i]->aux; 12892 } 12893 12894 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12895 * Long term would need debug info to populate names 12896 */ 12897 func[i]->aux->name[0] = 'F'; 12898 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12899 func[i]->jit_requested = 1; 12900 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12901 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 12902 func[i]->aux->linfo = prog->aux->linfo; 12903 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12904 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12905 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12906 num_exentries = 0; 12907 insn = func[i]->insnsi; 12908 for (j = 0; j < func[i]->len; j++, insn++) { 12909 if (BPF_CLASS(insn->code) == BPF_LDX && 12910 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12911 num_exentries++; 12912 } 12913 func[i]->aux->num_exentries = num_exentries; 12914 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12915 func[i] = bpf_int_jit_compile(func[i]); 12916 if (!func[i]->jited) { 12917 err = -ENOTSUPP; 12918 goto out_free; 12919 } 12920 cond_resched(); 12921 } 12922 12923 /* at this point all bpf functions were successfully JITed 12924 * now populate all bpf_calls with correct addresses and 12925 * run last pass of JIT 12926 */ 12927 for (i = 0; i < env->subprog_cnt; i++) { 12928 insn = func[i]->insnsi; 12929 for (j = 0; j < func[i]->len; j++, insn++) { 12930 if (bpf_pseudo_func(insn)) { 12931 subprog = insn->off; 12932 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12933 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12934 continue; 12935 } 12936 if (!bpf_pseudo_call(insn)) 12937 continue; 12938 subprog = insn->off; 12939 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 12940 } 12941 12942 /* we use the aux data to keep a list of the start addresses 12943 * of the JITed images for each function in the program 12944 * 12945 * for some architectures, such as powerpc64, the imm field 12946 * might not be large enough to hold the offset of the start 12947 * address of the callee's JITed image from __bpf_call_base 12948 * 12949 * in such cases, we can lookup the start address of a callee 12950 * by using its subprog id, available from the off field of 12951 * the call instruction, as an index for this list 12952 */ 12953 func[i]->aux->func = func; 12954 func[i]->aux->func_cnt = env->subprog_cnt; 12955 } 12956 for (i = 0; i < env->subprog_cnt; i++) { 12957 old_bpf_func = func[i]->bpf_func; 12958 tmp = bpf_int_jit_compile(func[i]); 12959 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12960 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12961 err = -ENOTSUPP; 12962 goto out_free; 12963 } 12964 cond_resched(); 12965 } 12966 12967 /* finally lock prog and jit images for all functions and 12968 * populate kallsysm 12969 */ 12970 for (i = 0; i < env->subprog_cnt; i++) { 12971 bpf_prog_lock_ro(func[i]); 12972 bpf_prog_kallsyms_add(func[i]); 12973 } 12974 12975 /* Last step: make now unused interpreter insns from main 12976 * prog consistent for later dump requests, so they can 12977 * later look the same as if they were interpreted only. 12978 */ 12979 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12980 if (bpf_pseudo_func(insn)) { 12981 insn[0].imm = env->insn_aux_data[i].call_imm; 12982 insn[1].imm = insn->off; 12983 insn->off = 0; 12984 continue; 12985 } 12986 if (!bpf_pseudo_call(insn)) 12987 continue; 12988 insn->off = env->insn_aux_data[i].call_imm; 12989 subprog = find_subprog(env, i + insn->off + 1); 12990 insn->imm = subprog; 12991 } 12992 12993 prog->jited = 1; 12994 prog->bpf_func = func[0]->bpf_func; 12995 prog->aux->func = func; 12996 prog->aux->func_cnt = env->subprog_cnt; 12997 bpf_prog_jit_attempt_done(prog); 12998 return 0; 12999 out_free: 13000 /* We failed JIT'ing, so at this point we need to unregister poke 13001 * descriptors from subprogs, so that kernel is not attempting to 13002 * patch it anymore as we're freeing the subprog JIT memory. 13003 */ 13004 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13005 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13006 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 13007 } 13008 /* At this point we're guaranteed that poke descriptors are not 13009 * live anymore. We can just unlink its descriptor table as it's 13010 * released with the main prog. 13011 */ 13012 for (i = 0; i < env->subprog_cnt; i++) { 13013 if (!func[i]) 13014 continue; 13015 func[i]->aux->poke_tab = NULL; 13016 bpf_jit_free(func[i]); 13017 } 13018 kfree(func); 13019 out_undo_insn: 13020 /* cleanup main prog to be interpreted */ 13021 prog->jit_requested = 0; 13022 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 13023 if (!bpf_pseudo_call(insn)) 13024 continue; 13025 insn->off = 0; 13026 insn->imm = env->insn_aux_data[i].call_imm; 13027 } 13028 bpf_prog_jit_attempt_done(prog); 13029 return err; 13030 } 13031 13032 static int fixup_call_args(struct bpf_verifier_env *env) 13033 { 13034 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13035 struct bpf_prog *prog = env->prog; 13036 struct bpf_insn *insn = prog->insnsi; 13037 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 13038 int i, depth; 13039 #endif 13040 int err = 0; 13041 13042 if (env->prog->jit_requested && 13043 !bpf_prog_is_dev_bound(env->prog->aux)) { 13044 err = jit_subprogs(env); 13045 if (err == 0) 13046 return 0; 13047 if (err == -EFAULT) 13048 return err; 13049 } 13050 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 13051 if (has_kfunc_call) { 13052 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 13053 return -EINVAL; 13054 } 13055 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 13056 /* When JIT fails the progs with bpf2bpf calls and tail_calls 13057 * have to be rejected, since interpreter doesn't support them yet. 13058 */ 13059 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 13060 return -EINVAL; 13061 } 13062 for (i = 0; i < prog->len; i++, insn++) { 13063 if (bpf_pseudo_func(insn)) { 13064 /* When JIT fails the progs with callback calls 13065 * have to be rejected, since interpreter doesn't support them yet. 13066 */ 13067 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 13068 return -EINVAL; 13069 } 13070 13071 if (!bpf_pseudo_call(insn)) 13072 continue; 13073 depth = get_callee_stack_depth(env, insn, i); 13074 if (depth < 0) 13075 return depth; 13076 bpf_patch_call_args(insn, depth); 13077 } 13078 err = 0; 13079 #endif 13080 return err; 13081 } 13082 13083 static int fixup_kfunc_call(struct bpf_verifier_env *env, 13084 struct bpf_insn *insn) 13085 { 13086 const struct bpf_kfunc_desc *desc; 13087 13088 if (!insn->imm) { 13089 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 13090 return -EINVAL; 13091 } 13092 13093 /* insn->imm has the btf func_id. Replace it with 13094 * an address (relative to __bpf_base_call). 13095 */ 13096 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 13097 if (!desc) { 13098 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 13099 insn->imm); 13100 return -EFAULT; 13101 } 13102 13103 insn->imm = desc->imm; 13104 13105 return 0; 13106 } 13107 13108 /* Do various post-verification rewrites in a single program pass. 13109 * These rewrites simplify JIT and interpreter implementations. 13110 */ 13111 static int do_misc_fixups(struct bpf_verifier_env *env) 13112 { 13113 struct bpf_prog *prog = env->prog; 13114 enum bpf_attach_type eatype = prog->expected_attach_type; 13115 bool expect_blinding = bpf_jit_blinding_enabled(prog); 13116 enum bpf_prog_type prog_type = resolve_prog_type(prog); 13117 struct bpf_insn *insn = prog->insnsi; 13118 const struct bpf_func_proto *fn; 13119 const int insn_cnt = prog->len; 13120 const struct bpf_map_ops *ops; 13121 struct bpf_insn_aux_data *aux; 13122 struct bpf_insn insn_buf[16]; 13123 struct bpf_prog *new_prog; 13124 struct bpf_map *map_ptr; 13125 int i, ret, cnt, delta = 0; 13126 13127 for (i = 0; i < insn_cnt; i++, insn++) { 13128 /* Make divide-by-zero exceptions impossible. */ 13129 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 13130 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 13131 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 13132 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 13133 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 13134 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 13135 struct bpf_insn *patchlet; 13136 struct bpf_insn chk_and_div[] = { 13137 /* [R,W]x div 0 -> 0 */ 13138 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13139 BPF_JNE | BPF_K, insn->src_reg, 13140 0, 2, 0), 13141 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 13142 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13143 *insn, 13144 }; 13145 struct bpf_insn chk_and_mod[] = { 13146 /* [R,W]x mod 0 -> [R,W]x */ 13147 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 13148 BPF_JEQ | BPF_K, insn->src_reg, 13149 0, 1 + (is64 ? 0 : 1), 0), 13150 *insn, 13151 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 13152 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 13153 }; 13154 13155 patchlet = isdiv ? chk_and_div : chk_and_mod; 13156 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 13157 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 13158 13159 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 13160 if (!new_prog) 13161 return -ENOMEM; 13162 13163 delta += cnt - 1; 13164 env->prog = prog = new_prog; 13165 insn = new_prog->insnsi + i + delta; 13166 continue; 13167 } 13168 13169 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 13170 if (BPF_CLASS(insn->code) == BPF_LD && 13171 (BPF_MODE(insn->code) == BPF_ABS || 13172 BPF_MODE(insn->code) == BPF_IND)) { 13173 cnt = env->ops->gen_ld_abs(insn, insn_buf); 13174 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13175 verbose(env, "bpf verifier is misconfigured\n"); 13176 return -EINVAL; 13177 } 13178 13179 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13180 if (!new_prog) 13181 return -ENOMEM; 13182 13183 delta += cnt - 1; 13184 env->prog = prog = new_prog; 13185 insn = new_prog->insnsi + i + delta; 13186 continue; 13187 } 13188 13189 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 13190 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 13191 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 13192 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 13193 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 13194 struct bpf_insn *patch = &insn_buf[0]; 13195 bool issrc, isneg, isimm; 13196 u32 off_reg; 13197 13198 aux = &env->insn_aux_data[i + delta]; 13199 if (!aux->alu_state || 13200 aux->alu_state == BPF_ALU_NON_POINTER) 13201 continue; 13202 13203 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 13204 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 13205 BPF_ALU_SANITIZE_SRC; 13206 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 13207 13208 off_reg = issrc ? insn->src_reg : insn->dst_reg; 13209 if (isimm) { 13210 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13211 } else { 13212 if (isneg) 13213 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13214 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 13215 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 13216 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 13217 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 13218 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 13219 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 13220 } 13221 if (!issrc) 13222 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 13223 insn->src_reg = BPF_REG_AX; 13224 if (isneg) 13225 insn->code = insn->code == code_add ? 13226 code_sub : code_add; 13227 *patch++ = *insn; 13228 if (issrc && isneg && !isimm) 13229 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 13230 cnt = patch - insn_buf; 13231 13232 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13233 if (!new_prog) 13234 return -ENOMEM; 13235 13236 delta += cnt - 1; 13237 env->prog = prog = new_prog; 13238 insn = new_prog->insnsi + i + delta; 13239 continue; 13240 } 13241 13242 if (insn->code != (BPF_JMP | BPF_CALL)) 13243 continue; 13244 if (insn->src_reg == BPF_PSEUDO_CALL) 13245 continue; 13246 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 13247 ret = fixup_kfunc_call(env, insn); 13248 if (ret) 13249 return ret; 13250 continue; 13251 } 13252 13253 if (insn->imm == BPF_FUNC_get_route_realm) 13254 prog->dst_needed = 1; 13255 if (insn->imm == BPF_FUNC_get_prandom_u32) 13256 bpf_user_rnd_init_once(); 13257 if (insn->imm == BPF_FUNC_override_return) 13258 prog->kprobe_override = 1; 13259 if (insn->imm == BPF_FUNC_tail_call) { 13260 /* If we tail call into other programs, we 13261 * cannot make any assumptions since they can 13262 * be replaced dynamically during runtime in 13263 * the program array. 13264 */ 13265 prog->cb_access = 1; 13266 if (!allow_tail_call_in_subprogs(env)) 13267 prog->aux->stack_depth = MAX_BPF_STACK; 13268 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 13269 13270 /* mark bpf_tail_call as different opcode to avoid 13271 * conditional branch in the interpreter for every normal 13272 * call and to prevent accidental JITing by JIT compiler 13273 * that doesn't support bpf_tail_call yet 13274 */ 13275 insn->imm = 0; 13276 insn->code = BPF_JMP | BPF_TAIL_CALL; 13277 13278 aux = &env->insn_aux_data[i + delta]; 13279 if (env->bpf_capable && !expect_blinding && 13280 prog->jit_requested && 13281 !bpf_map_key_poisoned(aux) && 13282 !bpf_map_ptr_poisoned(aux) && 13283 !bpf_map_ptr_unpriv(aux)) { 13284 struct bpf_jit_poke_descriptor desc = { 13285 .reason = BPF_POKE_REASON_TAIL_CALL, 13286 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 13287 .tail_call.key = bpf_map_key_immediate(aux), 13288 .insn_idx = i + delta, 13289 }; 13290 13291 ret = bpf_jit_add_poke_descriptor(prog, &desc); 13292 if (ret < 0) { 13293 verbose(env, "adding tail call poke descriptor failed\n"); 13294 return ret; 13295 } 13296 13297 insn->imm = ret + 1; 13298 continue; 13299 } 13300 13301 if (!bpf_map_ptr_unpriv(aux)) 13302 continue; 13303 13304 /* instead of changing every JIT dealing with tail_call 13305 * emit two extra insns: 13306 * if (index >= max_entries) goto out; 13307 * index &= array->index_mask; 13308 * to avoid out-of-bounds cpu speculation 13309 */ 13310 if (bpf_map_ptr_poisoned(aux)) { 13311 verbose(env, "tail_call abusing map_ptr\n"); 13312 return -EINVAL; 13313 } 13314 13315 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13316 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 13317 map_ptr->max_entries, 2); 13318 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 13319 container_of(map_ptr, 13320 struct bpf_array, 13321 map)->index_mask); 13322 insn_buf[2] = *insn; 13323 cnt = 3; 13324 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13325 if (!new_prog) 13326 return -ENOMEM; 13327 13328 delta += cnt - 1; 13329 env->prog = prog = new_prog; 13330 insn = new_prog->insnsi + i + delta; 13331 continue; 13332 } 13333 13334 if (insn->imm == BPF_FUNC_timer_set_callback) { 13335 /* The verifier will process callback_fn as many times as necessary 13336 * with different maps and the register states prepared by 13337 * set_timer_callback_state will be accurate. 13338 * 13339 * The following use case is valid: 13340 * map1 is shared by prog1, prog2, prog3. 13341 * prog1 calls bpf_timer_init for some map1 elements 13342 * prog2 calls bpf_timer_set_callback for some map1 elements. 13343 * Those that were not bpf_timer_init-ed will return -EINVAL. 13344 * prog3 calls bpf_timer_start for some map1 elements. 13345 * Those that were not both bpf_timer_init-ed and 13346 * bpf_timer_set_callback-ed will return -EINVAL. 13347 */ 13348 struct bpf_insn ld_addrs[2] = { 13349 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 13350 }; 13351 13352 insn_buf[0] = ld_addrs[0]; 13353 insn_buf[1] = ld_addrs[1]; 13354 insn_buf[2] = *insn; 13355 cnt = 3; 13356 13357 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13358 if (!new_prog) 13359 return -ENOMEM; 13360 13361 delta += cnt - 1; 13362 env->prog = prog = new_prog; 13363 insn = new_prog->insnsi + i + delta; 13364 goto patch_call_imm; 13365 } 13366 13367 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 13368 * and other inlining handlers are currently limited to 64 bit 13369 * only. 13370 */ 13371 if (prog->jit_requested && BITS_PER_LONG == 64 && 13372 (insn->imm == BPF_FUNC_map_lookup_elem || 13373 insn->imm == BPF_FUNC_map_update_elem || 13374 insn->imm == BPF_FUNC_map_delete_elem || 13375 insn->imm == BPF_FUNC_map_push_elem || 13376 insn->imm == BPF_FUNC_map_pop_elem || 13377 insn->imm == BPF_FUNC_map_peek_elem || 13378 insn->imm == BPF_FUNC_redirect_map || 13379 insn->imm == BPF_FUNC_for_each_map_elem)) { 13380 aux = &env->insn_aux_data[i + delta]; 13381 if (bpf_map_ptr_poisoned(aux)) 13382 goto patch_call_imm; 13383 13384 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13385 ops = map_ptr->ops; 13386 if (insn->imm == BPF_FUNC_map_lookup_elem && 13387 ops->map_gen_lookup) { 13388 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 13389 if (cnt == -EOPNOTSUPP) 13390 goto patch_map_ops_generic; 13391 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13392 verbose(env, "bpf verifier is misconfigured\n"); 13393 return -EINVAL; 13394 } 13395 13396 new_prog = bpf_patch_insn_data(env, i + delta, 13397 insn_buf, cnt); 13398 if (!new_prog) 13399 return -ENOMEM; 13400 13401 delta += cnt - 1; 13402 env->prog = prog = new_prog; 13403 insn = new_prog->insnsi + i + delta; 13404 continue; 13405 } 13406 13407 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 13408 (void *(*)(struct bpf_map *map, void *key))NULL)); 13409 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 13410 (int (*)(struct bpf_map *map, void *key))NULL)); 13411 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 13412 (int (*)(struct bpf_map *map, void *key, void *value, 13413 u64 flags))NULL)); 13414 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 13415 (int (*)(struct bpf_map *map, void *value, 13416 u64 flags))NULL)); 13417 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 13418 (int (*)(struct bpf_map *map, void *value))NULL)); 13419 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 13420 (int (*)(struct bpf_map *map, void *value))NULL)); 13421 BUILD_BUG_ON(!__same_type(ops->map_redirect, 13422 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 13423 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 13424 (int (*)(struct bpf_map *map, 13425 bpf_callback_t callback_fn, 13426 void *callback_ctx, 13427 u64 flags))NULL)); 13428 13429 patch_map_ops_generic: 13430 switch (insn->imm) { 13431 case BPF_FUNC_map_lookup_elem: 13432 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 13433 continue; 13434 case BPF_FUNC_map_update_elem: 13435 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 13436 continue; 13437 case BPF_FUNC_map_delete_elem: 13438 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 13439 continue; 13440 case BPF_FUNC_map_push_elem: 13441 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 13442 continue; 13443 case BPF_FUNC_map_pop_elem: 13444 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 13445 continue; 13446 case BPF_FUNC_map_peek_elem: 13447 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 13448 continue; 13449 case BPF_FUNC_redirect_map: 13450 insn->imm = BPF_CALL_IMM(ops->map_redirect); 13451 continue; 13452 case BPF_FUNC_for_each_map_elem: 13453 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 13454 continue; 13455 } 13456 13457 goto patch_call_imm; 13458 } 13459 13460 /* Implement bpf_jiffies64 inline. */ 13461 if (prog->jit_requested && BITS_PER_LONG == 64 && 13462 insn->imm == BPF_FUNC_jiffies64) { 13463 struct bpf_insn ld_jiffies_addr[2] = { 13464 BPF_LD_IMM64(BPF_REG_0, 13465 (unsigned long)&jiffies), 13466 }; 13467 13468 insn_buf[0] = ld_jiffies_addr[0]; 13469 insn_buf[1] = ld_jiffies_addr[1]; 13470 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 13471 BPF_REG_0, 0); 13472 cnt = 3; 13473 13474 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 13475 cnt); 13476 if (!new_prog) 13477 return -ENOMEM; 13478 13479 delta += cnt - 1; 13480 env->prog = prog = new_prog; 13481 insn = new_prog->insnsi + i + delta; 13482 continue; 13483 } 13484 13485 /* Implement bpf_get_func_arg inline. */ 13486 if (prog_type == BPF_PROG_TYPE_TRACING && 13487 insn->imm == BPF_FUNC_get_func_arg) { 13488 /* Load nr_args from ctx - 8 */ 13489 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13490 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 13491 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 13492 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 13493 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 13494 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 13495 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 13496 insn_buf[7] = BPF_JMP_A(1); 13497 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 13498 cnt = 9; 13499 13500 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13501 if (!new_prog) 13502 return -ENOMEM; 13503 13504 delta += cnt - 1; 13505 env->prog = prog = new_prog; 13506 insn = new_prog->insnsi + i + delta; 13507 continue; 13508 } 13509 13510 /* Implement bpf_get_func_ret inline. */ 13511 if (prog_type == BPF_PROG_TYPE_TRACING && 13512 insn->imm == BPF_FUNC_get_func_ret) { 13513 if (eatype == BPF_TRACE_FEXIT || 13514 eatype == BPF_MODIFY_RETURN) { 13515 /* Load nr_args from ctx - 8 */ 13516 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13517 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 13518 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 13519 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 13520 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 13521 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 13522 cnt = 6; 13523 } else { 13524 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 13525 cnt = 1; 13526 } 13527 13528 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13529 if (!new_prog) 13530 return -ENOMEM; 13531 13532 delta += cnt - 1; 13533 env->prog = prog = new_prog; 13534 insn = new_prog->insnsi + i + delta; 13535 continue; 13536 } 13537 13538 /* Implement get_func_arg_cnt inline. */ 13539 if (prog_type == BPF_PROG_TYPE_TRACING && 13540 insn->imm == BPF_FUNC_get_func_arg_cnt) { 13541 /* Load nr_args from ctx - 8 */ 13542 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13543 13544 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13545 if (!new_prog) 13546 return -ENOMEM; 13547 13548 env->prog = prog = new_prog; 13549 insn = new_prog->insnsi + i + delta; 13550 continue; 13551 } 13552 13553 /* Implement bpf_get_func_ip inline. */ 13554 if (prog_type == BPF_PROG_TYPE_TRACING && 13555 insn->imm == BPF_FUNC_get_func_ip) { 13556 /* Load IP address from ctx - 16 */ 13557 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 13558 13559 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13560 if (!new_prog) 13561 return -ENOMEM; 13562 13563 env->prog = prog = new_prog; 13564 insn = new_prog->insnsi + i + delta; 13565 continue; 13566 } 13567 13568 patch_call_imm: 13569 fn = env->ops->get_func_proto(insn->imm, env->prog); 13570 /* all functions that have prototype and verifier allowed 13571 * programs to call them, must be real in-kernel functions 13572 */ 13573 if (!fn->func) { 13574 verbose(env, 13575 "kernel subsystem misconfigured func %s#%d\n", 13576 func_id_name(insn->imm), insn->imm); 13577 return -EFAULT; 13578 } 13579 insn->imm = fn->func - __bpf_call_base; 13580 } 13581 13582 /* Since poke tab is now finalized, publish aux to tracker. */ 13583 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13584 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13585 if (!map_ptr->ops->map_poke_track || 13586 !map_ptr->ops->map_poke_untrack || 13587 !map_ptr->ops->map_poke_run) { 13588 verbose(env, "bpf verifier is misconfigured\n"); 13589 return -EINVAL; 13590 } 13591 13592 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 13593 if (ret < 0) { 13594 verbose(env, "tracking tail call prog failed\n"); 13595 return ret; 13596 } 13597 } 13598 13599 sort_kfunc_descs_by_imm(env->prog); 13600 13601 return 0; 13602 } 13603 13604 static void free_states(struct bpf_verifier_env *env) 13605 { 13606 struct bpf_verifier_state_list *sl, *sln; 13607 int i; 13608 13609 sl = env->free_list; 13610 while (sl) { 13611 sln = sl->next; 13612 free_verifier_state(&sl->state, false); 13613 kfree(sl); 13614 sl = sln; 13615 } 13616 env->free_list = NULL; 13617 13618 if (!env->explored_states) 13619 return; 13620 13621 for (i = 0; i < state_htab_size(env); i++) { 13622 sl = env->explored_states[i]; 13623 13624 while (sl) { 13625 sln = sl->next; 13626 free_verifier_state(&sl->state, false); 13627 kfree(sl); 13628 sl = sln; 13629 } 13630 env->explored_states[i] = NULL; 13631 } 13632 } 13633 13634 static int do_check_common(struct bpf_verifier_env *env, int subprog) 13635 { 13636 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13637 struct bpf_verifier_state *state; 13638 struct bpf_reg_state *regs; 13639 int ret, i; 13640 13641 env->prev_linfo = NULL; 13642 env->pass_cnt++; 13643 13644 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 13645 if (!state) 13646 return -ENOMEM; 13647 state->curframe = 0; 13648 state->speculative = false; 13649 state->branches = 1; 13650 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 13651 if (!state->frame[0]) { 13652 kfree(state); 13653 return -ENOMEM; 13654 } 13655 env->cur_state = state; 13656 init_func_state(env, state->frame[0], 13657 BPF_MAIN_FUNC /* callsite */, 13658 0 /* frameno */, 13659 subprog); 13660 13661 regs = state->frame[state->curframe]->regs; 13662 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 13663 ret = btf_prepare_func_args(env, subprog, regs); 13664 if (ret) 13665 goto out; 13666 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 13667 if (regs[i].type == PTR_TO_CTX) 13668 mark_reg_known_zero(env, regs, i); 13669 else if (regs[i].type == SCALAR_VALUE) 13670 mark_reg_unknown(env, regs, i); 13671 else if (base_type(regs[i].type) == PTR_TO_MEM) { 13672 const u32 mem_size = regs[i].mem_size; 13673 13674 mark_reg_known_zero(env, regs, i); 13675 regs[i].mem_size = mem_size; 13676 regs[i].id = ++env->id_gen; 13677 } 13678 } 13679 } else { 13680 /* 1st arg to a function */ 13681 regs[BPF_REG_1].type = PTR_TO_CTX; 13682 mark_reg_known_zero(env, regs, BPF_REG_1); 13683 ret = btf_check_subprog_arg_match(env, subprog, regs); 13684 if (ret == -EFAULT) 13685 /* unlikely verifier bug. abort. 13686 * ret == 0 and ret < 0 are sadly acceptable for 13687 * main() function due to backward compatibility. 13688 * Like socket filter program may be written as: 13689 * int bpf_prog(struct pt_regs *ctx) 13690 * and never dereference that ctx in the program. 13691 * 'struct pt_regs' is a type mismatch for socket 13692 * filter that should be using 'struct __sk_buff'. 13693 */ 13694 goto out; 13695 } 13696 13697 ret = do_check(env); 13698 out: 13699 /* check for NULL is necessary, since cur_state can be freed inside 13700 * do_check() under memory pressure. 13701 */ 13702 if (env->cur_state) { 13703 free_verifier_state(env->cur_state, true); 13704 env->cur_state = NULL; 13705 } 13706 while (!pop_stack(env, NULL, NULL, false)); 13707 if (!ret && pop_log) 13708 bpf_vlog_reset(&env->log, 0); 13709 free_states(env); 13710 return ret; 13711 } 13712 13713 /* Verify all global functions in a BPF program one by one based on their BTF. 13714 * All global functions must pass verification. Otherwise the whole program is rejected. 13715 * Consider: 13716 * int bar(int); 13717 * int foo(int f) 13718 * { 13719 * return bar(f); 13720 * } 13721 * int bar(int b) 13722 * { 13723 * ... 13724 * } 13725 * foo() will be verified first for R1=any_scalar_value. During verification it 13726 * will be assumed that bar() already verified successfully and call to bar() 13727 * from foo() will be checked for type match only. Later bar() will be verified 13728 * independently to check that it's safe for R1=any_scalar_value. 13729 */ 13730 static int do_check_subprogs(struct bpf_verifier_env *env) 13731 { 13732 struct bpf_prog_aux *aux = env->prog->aux; 13733 int i, ret; 13734 13735 if (!aux->func_info) 13736 return 0; 13737 13738 for (i = 1; i < env->subprog_cnt; i++) { 13739 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 13740 continue; 13741 env->insn_idx = env->subprog_info[i].start; 13742 WARN_ON_ONCE(env->insn_idx == 0); 13743 ret = do_check_common(env, i); 13744 if (ret) { 13745 return ret; 13746 } else if (env->log.level & BPF_LOG_LEVEL) { 13747 verbose(env, 13748 "Func#%d is safe for any args that match its prototype\n", 13749 i); 13750 } 13751 } 13752 return 0; 13753 } 13754 13755 static int do_check_main(struct bpf_verifier_env *env) 13756 { 13757 int ret; 13758 13759 env->insn_idx = 0; 13760 ret = do_check_common(env, 0); 13761 if (!ret) 13762 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 13763 return ret; 13764 } 13765 13766 13767 static void print_verification_stats(struct bpf_verifier_env *env) 13768 { 13769 int i; 13770 13771 if (env->log.level & BPF_LOG_STATS) { 13772 verbose(env, "verification time %lld usec\n", 13773 div_u64(env->verification_time, 1000)); 13774 verbose(env, "stack depth "); 13775 for (i = 0; i < env->subprog_cnt; i++) { 13776 u32 depth = env->subprog_info[i].stack_depth; 13777 13778 verbose(env, "%d", depth); 13779 if (i + 1 < env->subprog_cnt) 13780 verbose(env, "+"); 13781 } 13782 verbose(env, "\n"); 13783 } 13784 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 13785 "total_states %d peak_states %d mark_read %d\n", 13786 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 13787 env->max_states_per_insn, env->total_states, 13788 env->peak_states, env->longest_mark_read_walk); 13789 } 13790 13791 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 13792 { 13793 const struct btf_type *t, *func_proto; 13794 const struct bpf_struct_ops *st_ops; 13795 const struct btf_member *member; 13796 struct bpf_prog *prog = env->prog; 13797 u32 btf_id, member_idx; 13798 const char *mname; 13799 13800 if (!prog->gpl_compatible) { 13801 verbose(env, "struct ops programs must have a GPL compatible license\n"); 13802 return -EINVAL; 13803 } 13804 13805 btf_id = prog->aux->attach_btf_id; 13806 st_ops = bpf_struct_ops_find(btf_id); 13807 if (!st_ops) { 13808 verbose(env, "attach_btf_id %u is not a supported struct\n", 13809 btf_id); 13810 return -ENOTSUPP; 13811 } 13812 13813 t = st_ops->type; 13814 member_idx = prog->expected_attach_type; 13815 if (member_idx >= btf_type_vlen(t)) { 13816 verbose(env, "attach to invalid member idx %u of struct %s\n", 13817 member_idx, st_ops->name); 13818 return -EINVAL; 13819 } 13820 13821 member = &btf_type_member(t)[member_idx]; 13822 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 13823 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 13824 NULL); 13825 if (!func_proto) { 13826 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 13827 mname, member_idx, st_ops->name); 13828 return -EINVAL; 13829 } 13830 13831 if (st_ops->check_member) { 13832 int err = st_ops->check_member(t, member); 13833 13834 if (err) { 13835 verbose(env, "attach to unsupported member %s of struct %s\n", 13836 mname, st_ops->name); 13837 return err; 13838 } 13839 } 13840 13841 prog->aux->attach_func_proto = func_proto; 13842 prog->aux->attach_func_name = mname; 13843 env->ops = st_ops->verifier_ops; 13844 13845 return 0; 13846 } 13847 #define SECURITY_PREFIX "security_" 13848 13849 static int check_attach_modify_return(unsigned long addr, const char *func_name) 13850 { 13851 if (within_error_injection_list(addr) || 13852 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 13853 return 0; 13854 13855 return -EINVAL; 13856 } 13857 13858 /* list of non-sleepable functions that are otherwise on 13859 * ALLOW_ERROR_INJECTION list 13860 */ 13861 BTF_SET_START(btf_non_sleepable_error_inject) 13862 /* Three functions below can be called from sleepable and non-sleepable context. 13863 * Assume non-sleepable from bpf safety point of view. 13864 */ 13865 BTF_ID(func, __filemap_add_folio) 13866 BTF_ID(func, should_fail_alloc_page) 13867 BTF_ID(func, should_failslab) 13868 BTF_SET_END(btf_non_sleepable_error_inject) 13869 13870 static int check_non_sleepable_error_inject(u32 btf_id) 13871 { 13872 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 13873 } 13874 13875 int bpf_check_attach_target(struct bpf_verifier_log *log, 13876 const struct bpf_prog *prog, 13877 const struct bpf_prog *tgt_prog, 13878 u32 btf_id, 13879 struct bpf_attach_target_info *tgt_info) 13880 { 13881 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 13882 const char prefix[] = "btf_trace_"; 13883 int ret = 0, subprog = -1, i; 13884 const struct btf_type *t; 13885 bool conservative = true; 13886 const char *tname; 13887 struct btf *btf; 13888 long addr = 0; 13889 13890 if (!btf_id) { 13891 bpf_log(log, "Tracing programs must provide btf_id\n"); 13892 return -EINVAL; 13893 } 13894 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 13895 if (!btf) { 13896 bpf_log(log, 13897 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 13898 return -EINVAL; 13899 } 13900 t = btf_type_by_id(btf, btf_id); 13901 if (!t) { 13902 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 13903 return -EINVAL; 13904 } 13905 tname = btf_name_by_offset(btf, t->name_off); 13906 if (!tname) { 13907 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13908 return -EINVAL; 13909 } 13910 if (tgt_prog) { 13911 struct bpf_prog_aux *aux = tgt_prog->aux; 13912 13913 for (i = 0; i < aux->func_info_cnt; i++) 13914 if (aux->func_info[i].type_id == btf_id) { 13915 subprog = i; 13916 break; 13917 } 13918 if (subprog == -1) { 13919 bpf_log(log, "Subprog %s doesn't exist\n", tname); 13920 return -EINVAL; 13921 } 13922 conservative = aux->func_info_aux[subprog].unreliable; 13923 if (prog_extension) { 13924 if (conservative) { 13925 bpf_log(log, 13926 "Cannot replace static functions\n"); 13927 return -EINVAL; 13928 } 13929 if (!prog->jit_requested) { 13930 bpf_log(log, 13931 "Extension programs should be JITed\n"); 13932 return -EINVAL; 13933 } 13934 } 13935 if (!tgt_prog->jited) { 13936 bpf_log(log, "Can attach to only JITed progs\n"); 13937 return -EINVAL; 13938 } 13939 if (tgt_prog->type == prog->type) { 13940 /* Cannot fentry/fexit another fentry/fexit program. 13941 * Cannot attach program extension to another extension. 13942 * It's ok to attach fentry/fexit to extension program. 13943 */ 13944 bpf_log(log, "Cannot recursively attach\n"); 13945 return -EINVAL; 13946 } 13947 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 13948 prog_extension && 13949 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 13950 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 13951 /* Program extensions can extend all program types 13952 * except fentry/fexit. The reason is the following. 13953 * The fentry/fexit programs are used for performance 13954 * analysis, stats and can be attached to any program 13955 * type except themselves. When extension program is 13956 * replacing XDP function it is necessary to allow 13957 * performance analysis of all functions. Both original 13958 * XDP program and its program extension. Hence 13959 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 13960 * allowed. If extending of fentry/fexit was allowed it 13961 * would be possible to create long call chain 13962 * fentry->extension->fentry->extension beyond 13963 * reasonable stack size. Hence extending fentry is not 13964 * allowed. 13965 */ 13966 bpf_log(log, "Cannot extend fentry/fexit\n"); 13967 return -EINVAL; 13968 } 13969 } else { 13970 if (prog_extension) { 13971 bpf_log(log, "Cannot replace kernel functions\n"); 13972 return -EINVAL; 13973 } 13974 } 13975 13976 switch (prog->expected_attach_type) { 13977 case BPF_TRACE_RAW_TP: 13978 if (tgt_prog) { 13979 bpf_log(log, 13980 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 13981 return -EINVAL; 13982 } 13983 if (!btf_type_is_typedef(t)) { 13984 bpf_log(log, "attach_btf_id %u is not a typedef\n", 13985 btf_id); 13986 return -EINVAL; 13987 } 13988 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 13989 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 13990 btf_id, tname); 13991 return -EINVAL; 13992 } 13993 tname += sizeof(prefix) - 1; 13994 t = btf_type_by_id(btf, t->type); 13995 if (!btf_type_is_ptr(t)) 13996 /* should never happen in valid vmlinux build */ 13997 return -EINVAL; 13998 t = btf_type_by_id(btf, t->type); 13999 if (!btf_type_is_func_proto(t)) 14000 /* should never happen in valid vmlinux build */ 14001 return -EINVAL; 14002 14003 break; 14004 case BPF_TRACE_ITER: 14005 if (!btf_type_is_func(t)) { 14006 bpf_log(log, "attach_btf_id %u is not a function\n", 14007 btf_id); 14008 return -EINVAL; 14009 } 14010 t = btf_type_by_id(btf, t->type); 14011 if (!btf_type_is_func_proto(t)) 14012 return -EINVAL; 14013 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14014 if (ret) 14015 return ret; 14016 break; 14017 default: 14018 if (!prog_extension) 14019 return -EINVAL; 14020 fallthrough; 14021 case BPF_MODIFY_RETURN: 14022 case BPF_LSM_MAC: 14023 case BPF_TRACE_FENTRY: 14024 case BPF_TRACE_FEXIT: 14025 if (!btf_type_is_func(t)) { 14026 bpf_log(log, "attach_btf_id %u is not a function\n", 14027 btf_id); 14028 return -EINVAL; 14029 } 14030 if (prog_extension && 14031 btf_check_type_match(log, prog, btf, t)) 14032 return -EINVAL; 14033 t = btf_type_by_id(btf, t->type); 14034 if (!btf_type_is_func_proto(t)) 14035 return -EINVAL; 14036 14037 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 14038 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 14039 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 14040 return -EINVAL; 14041 14042 if (tgt_prog && conservative) 14043 t = NULL; 14044 14045 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 14046 if (ret < 0) 14047 return ret; 14048 14049 if (tgt_prog) { 14050 if (subprog == 0) 14051 addr = (long) tgt_prog->bpf_func; 14052 else 14053 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 14054 } else { 14055 addr = kallsyms_lookup_name(tname); 14056 if (!addr) { 14057 bpf_log(log, 14058 "The address of function %s cannot be found\n", 14059 tname); 14060 return -ENOENT; 14061 } 14062 } 14063 14064 if (prog->aux->sleepable) { 14065 ret = -EINVAL; 14066 switch (prog->type) { 14067 case BPF_PROG_TYPE_TRACING: 14068 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 14069 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 14070 */ 14071 if (!check_non_sleepable_error_inject(btf_id) && 14072 within_error_injection_list(addr)) 14073 ret = 0; 14074 break; 14075 case BPF_PROG_TYPE_LSM: 14076 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 14077 * Only some of them are sleepable. 14078 */ 14079 if (bpf_lsm_is_sleepable_hook(btf_id)) 14080 ret = 0; 14081 break; 14082 default: 14083 break; 14084 } 14085 if (ret) { 14086 bpf_log(log, "%s is not sleepable\n", tname); 14087 return ret; 14088 } 14089 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 14090 if (tgt_prog) { 14091 bpf_log(log, "can't modify return codes of BPF programs\n"); 14092 return -EINVAL; 14093 } 14094 ret = check_attach_modify_return(addr, tname); 14095 if (ret) { 14096 bpf_log(log, "%s() is not modifiable\n", tname); 14097 return ret; 14098 } 14099 } 14100 14101 break; 14102 } 14103 tgt_info->tgt_addr = addr; 14104 tgt_info->tgt_name = tname; 14105 tgt_info->tgt_type = t; 14106 return 0; 14107 } 14108 14109 BTF_SET_START(btf_id_deny) 14110 BTF_ID_UNUSED 14111 #ifdef CONFIG_SMP 14112 BTF_ID(func, migrate_disable) 14113 BTF_ID(func, migrate_enable) 14114 #endif 14115 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 14116 BTF_ID(func, rcu_read_unlock_strict) 14117 #endif 14118 BTF_SET_END(btf_id_deny) 14119 14120 static int check_attach_btf_id(struct bpf_verifier_env *env) 14121 { 14122 struct bpf_prog *prog = env->prog; 14123 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 14124 struct bpf_attach_target_info tgt_info = {}; 14125 u32 btf_id = prog->aux->attach_btf_id; 14126 struct bpf_trampoline *tr; 14127 int ret; 14128 u64 key; 14129 14130 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 14131 if (prog->aux->sleepable) 14132 /* attach_btf_id checked to be zero already */ 14133 return 0; 14134 verbose(env, "Syscall programs can only be sleepable\n"); 14135 return -EINVAL; 14136 } 14137 14138 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 14139 prog->type != BPF_PROG_TYPE_LSM) { 14140 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 14141 return -EINVAL; 14142 } 14143 14144 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 14145 return check_struct_ops_btf_id(env); 14146 14147 if (prog->type != BPF_PROG_TYPE_TRACING && 14148 prog->type != BPF_PROG_TYPE_LSM && 14149 prog->type != BPF_PROG_TYPE_EXT) 14150 return 0; 14151 14152 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 14153 if (ret) 14154 return ret; 14155 14156 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 14157 /* to make freplace equivalent to their targets, they need to 14158 * inherit env->ops and expected_attach_type for the rest of the 14159 * verification 14160 */ 14161 env->ops = bpf_verifier_ops[tgt_prog->type]; 14162 prog->expected_attach_type = tgt_prog->expected_attach_type; 14163 } 14164 14165 /* store info about the attachment target that will be used later */ 14166 prog->aux->attach_func_proto = tgt_info.tgt_type; 14167 prog->aux->attach_func_name = tgt_info.tgt_name; 14168 14169 if (tgt_prog) { 14170 prog->aux->saved_dst_prog_type = tgt_prog->type; 14171 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 14172 } 14173 14174 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 14175 prog->aux->attach_btf_trace = true; 14176 return 0; 14177 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 14178 if (!bpf_iter_prog_supported(prog)) 14179 return -EINVAL; 14180 return 0; 14181 } 14182 14183 if (prog->type == BPF_PROG_TYPE_LSM) { 14184 ret = bpf_lsm_verify_prog(&env->log, prog); 14185 if (ret < 0) 14186 return ret; 14187 } else if (prog->type == BPF_PROG_TYPE_TRACING && 14188 btf_id_set_contains(&btf_id_deny, btf_id)) { 14189 return -EINVAL; 14190 } 14191 14192 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 14193 tr = bpf_trampoline_get(key, &tgt_info); 14194 if (!tr) 14195 return -ENOMEM; 14196 14197 prog->aux->dst_trampoline = tr; 14198 return 0; 14199 } 14200 14201 struct btf *bpf_get_btf_vmlinux(void) 14202 { 14203 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 14204 mutex_lock(&bpf_verifier_lock); 14205 if (!btf_vmlinux) 14206 btf_vmlinux = btf_parse_vmlinux(); 14207 mutex_unlock(&bpf_verifier_lock); 14208 } 14209 return btf_vmlinux; 14210 } 14211 14212 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 14213 { 14214 u64 start_time = ktime_get_ns(); 14215 struct bpf_verifier_env *env; 14216 struct bpf_verifier_log *log; 14217 int i, len, ret = -EINVAL; 14218 bool is_priv; 14219 14220 /* no program is valid */ 14221 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 14222 return -EINVAL; 14223 14224 /* 'struct bpf_verifier_env' can be global, but since it's not small, 14225 * allocate/free it every time bpf_check() is called 14226 */ 14227 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 14228 if (!env) 14229 return -ENOMEM; 14230 log = &env->log; 14231 14232 len = (*prog)->len; 14233 env->insn_aux_data = 14234 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 14235 ret = -ENOMEM; 14236 if (!env->insn_aux_data) 14237 goto err_free_env; 14238 for (i = 0; i < len; i++) 14239 env->insn_aux_data[i].orig_idx = i; 14240 env->prog = *prog; 14241 env->ops = bpf_verifier_ops[env->prog->type]; 14242 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 14243 is_priv = bpf_capable(); 14244 14245 bpf_get_btf_vmlinux(); 14246 14247 /* grab the mutex to protect few globals used by verifier */ 14248 if (!is_priv) 14249 mutex_lock(&bpf_verifier_lock); 14250 14251 if (attr->log_level || attr->log_buf || attr->log_size) { 14252 /* user requested verbose verifier output 14253 * and supplied buffer to store the verification trace 14254 */ 14255 log->level = attr->log_level; 14256 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 14257 log->len_total = attr->log_size; 14258 14259 /* log attributes have to be sane */ 14260 if (!bpf_verifier_log_attr_valid(log)) { 14261 ret = -EINVAL; 14262 goto err_unlock; 14263 } 14264 } 14265 14266 mark_verifier_state_clean(env); 14267 14268 if (IS_ERR(btf_vmlinux)) { 14269 /* Either gcc or pahole or kernel are broken. */ 14270 verbose(env, "in-kernel BTF is malformed\n"); 14271 ret = PTR_ERR(btf_vmlinux); 14272 goto skip_full_check; 14273 } 14274 14275 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 14276 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 14277 env->strict_alignment = true; 14278 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 14279 env->strict_alignment = false; 14280 14281 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 14282 env->allow_uninit_stack = bpf_allow_uninit_stack(); 14283 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 14284 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 14285 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 14286 env->bpf_capable = bpf_capable(); 14287 14288 if (is_priv) 14289 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 14290 14291 env->explored_states = kvcalloc(state_htab_size(env), 14292 sizeof(struct bpf_verifier_state_list *), 14293 GFP_USER); 14294 ret = -ENOMEM; 14295 if (!env->explored_states) 14296 goto skip_full_check; 14297 14298 ret = add_subprog_and_kfunc(env); 14299 if (ret < 0) 14300 goto skip_full_check; 14301 14302 ret = check_subprogs(env); 14303 if (ret < 0) 14304 goto skip_full_check; 14305 14306 ret = check_btf_info(env, attr, uattr); 14307 if (ret < 0) 14308 goto skip_full_check; 14309 14310 ret = check_attach_btf_id(env); 14311 if (ret) 14312 goto skip_full_check; 14313 14314 ret = resolve_pseudo_ldimm64(env); 14315 if (ret < 0) 14316 goto skip_full_check; 14317 14318 if (bpf_prog_is_dev_bound(env->prog->aux)) { 14319 ret = bpf_prog_offload_verifier_prep(env->prog); 14320 if (ret) 14321 goto skip_full_check; 14322 } 14323 14324 ret = check_cfg(env); 14325 if (ret < 0) 14326 goto skip_full_check; 14327 14328 ret = do_check_subprogs(env); 14329 ret = ret ?: do_check_main(env); 14330 14331 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 14332 ret = bpf_prog_offload_finalize(env); 14333 14334 skip_full_check: 14335 kvfree(env->explored_states); 14336 14337 if (ret == 0) 14338 ret = check_max_stack_depth(env); 14339 14340 /* instruction rewrites happen after this point */ 14341 if (is_priv) { 14342 if (ret == 0) 14343 opt_hard_wire_dead_code_branches(env); 14344 if (ret == 0) 14345 ret = opt_remove_dead_code(env); 14346 if (ret == 0) 14347 ret = opt_remove_nops(env); 14348 } else { 14349 if (ret == 0) 14350 sanitize_dead_code(env); 14351 } 14352 14353 if (ret == 0) 14354 /* program is valid, convert *(u32*)(ctx + off) accesses */ 14355 ret = convert_ctx_accesses(env); 14356 14357 if (ret == 0) 14358 ret = do_misc_fixups(env); 14359 14360 /* do 32-bit optimization after insn patching has done so those patched 14361 * insns could be handled correctly. 14362 */ 14363 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 14364 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 14365 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 14366 : false; 14367 } 14368 14369 if (ret == 0) 14370 ret = fixup_call_args(env); 14371 14372 env->verification_time = ktime_get_ns() - start_time; 14373 print_verification_stats(env); 14374 env->prog->aux->verified_insns = env->insn_processed; 14375 14376 if (log->level && bpf_verifier_log_full(log)) 14377 ret = -ENOSPC; 14378 if (log->level && !log->ubuf) { 14379 ret = -EFAULT; 14380 goto err_release_maps; 14381 } 14382 14383 if (ret) 14384 goto err_release_maps; 14385 14386 if (env->used_map_cnt) { 14387 /* if program passed verifier, update used_maps in bpf_prog_info */ 14388 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 14389 sizeof(env->used_maps[0]), 14390 GFP_KERNEL); 14391 14392 if (!env->prog->aux->used_maps) { 14393 ret = -ENOMEM; 14394 goto err_release_maps; 14395 } 14396 14397 memcpy(env->prog->aux->used_maps, env->used_maps, 14398 sizeof(env->used_maps[0]) * env->used_map_cnt); 14399 env->prog->aux->used_map_cnt = env->used_map_cnt; 14400 } 14401 if (env->used_btf_cnt) { 14402 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 14403 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 14404 sizeof(env->used_btfs[0]), 14405 GFP_KERNEL); 14406 if (!env->prog->aux->used_btfs) { 14407 ret = -ENOMEM; 14408 goto err_release_maps; 14409 } 14410 14411 memcpy(env->prog->aux->used_btfs, env->used_btfs, 14412 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 14413 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 14414 } 14415 if (env->used_map_cnt || env->used_btf_cnt) { 14416 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 14417 * bpf_ld_imm64 instructions 14418 */ 14419 convert_pseudo_ld_imm64(env); 14420 } 14421 14422 adjust_btf_func(env); 14423 14424 err_release_maps: 14425 if (!env->prog->aux->used_maps) 14426 /* if we didn't copy map pointers into bpf_prog_info, release 14427 * them now. Otherwise free_used_maps() will release them. 14428 */ 14429 release_maps(env); 14430 if (!env->prog->aux->used_btfs) 14431 release_btfs(env); 14432 14433 /* extension progs temporarily inherit the attach_type of their targets 14434 for verification purposes, so set it back to zero before returning 14435 */ 14436 if (env->prog->type == BPF_PROG_TYPE_EXT) 14437 env->prog->expected_attach_type = 0; 14438 14439 *prog = env->prog; 14440 err_unlock: 14441 if (!is_priv) 14442 mutex_unlock(&bpf_verifier_lock); 14443 vfree(env->insn_aux_data); 14444 err_free_env: 14445 kfree(env); 14446 return ret; 14447 } 14448