xref: /openbmc/linux/kernel/bpf/verifier.c (revision 0e407915)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 
27 #include "disasm.h"
28 
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
31 	[_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #define BPF_LINK_TYPE(_id, _name)
34 #include <linux/bpf_types.h>
35 #undef BPF_PROG_TYPE
36 #undef BPF_MAP_TYPE
37 #undef BPF_LINK_TYPE
38 };
39 
40 /* bpf_check() is a static code analyzer that walks eBPF program
41  * instruction by instruction and updates register/stack state.
42  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
43  *
44  * The first pass is depth-first-search to check that the program is a DAG.
45  * It rejects the following programs:
46  * - larger than BPF_MAXINSNS insns
47  * - if loop is present (detected via back-edge)
48  * - unreachable insns exist (shouldn't be a forest. program = one function)
49  * - out of bounds or malformed jumps
50  * The second pass is all possible path descent from the 1st insn.
51  * Since it's analyzing all paths through the program, the length of the
52  * analysis is limited to 64k insn, which may be hit even if total number of
53  * insn is less then 4K, but there are too many branches that change stack/regs.
54  * Number of 'branches to be analyzed' is limited to 1k
55  *
56  * On entry to each instruction, each register has a type, and the instruction
57  * changes the types of the registers depending on instruction semantics.
58  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
59  * copied to R1.
60  *
61  * All registers are 64-bit.
62  * R0 - return register
63  * R1-R5 argument passing registers
64  * R6-R9 callee saved registers
65  * R10 - frame pointer read-only
66  *
67  * At the start of BPF program the register R1 contains a pointer to bpf_context
68  * and has type PTR_TO_CTX.
69  *
70  * Verifier tracks arithmetic operations on pointers in case:
71  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
72  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
73  * 1st insn copies R10 (which has FRAME_PTR) type into R1
74  * and 2nd arithmetic instruction is pattern matched to recognize
75  * that it wants to construct a pointer to some element within stack.
76  * So after 2nd insn, the register R1 has type PTR_TO_STACK
77  * (and -20 constant is saved for further stack bounds checking).
78  * Meaning that this reg is a pointer to stack plus known immediate constant.
79  *
80  * Most of the time the registers have SCALAR_VALUE type, which
81  * means the register has some value, but it's not a valid pointer.
82  * (like pointer plus pointer becomes SCALAR_VALUE type)
83  *
84  * When verifier sees load or store instructions the type of base register
85  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
86  * four pointer types recognized by check_mem_access() function.
87  *
88  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
89  * and the range of [ptr, ptr + map's value_size) is accessible.
90  *
91  * registers used to pass values to function calls are checked against
92  * function argument constraints.
93  *
94  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
95  * It means that the register type passed to this function must be
96  * PTR_TO_STACK and it will be used inside the function as
97  * 'pointer to map element key'
98  *
99  * For example the argument constraints for bpf_map_lookup_elem():
100  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
101  *   .arg1_type = ARG_CONST_MAP_PTR,
102  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
103  *
104  * ret_type says that this function returns 'pointer to map elem value or null'
105  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
106  * 2nd argument should be a pointer to stack, which will be used inside
107  * the helper function as a pointer to map element key.
108  *
109  * On the kernel side the helper function looks like:
110  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
111  * {
112  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
113  *    void *key = (void *) (unsigned long) r2;
114  *    void *value;
115  *
116  *    here kernel can access 'key' and 'map' pointers safely, knowing that
117  *    [key, key + map->key_size) bytes are valid and were initialized on
118  *    the stack of eBPF program.
119  * }
120  *
121  * Corresponding eBPF program may look like:
122  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
123  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
124  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
125  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
126  * here verifier looks at prototype of map_lookup_elem() and sees:
127  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
128  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
129  *
130  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
131  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
132  * and were initialized prior to this call.
133  * If it's ok, then verifier allows this BPF_CALL insn and looks at
134  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
135  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
136  * returns either pointer to map value or NULL.
137  *
138  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
139  * insn, the register holding that pointer in the true branch changes state to
140  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
141  * branch. See check_cond_jmp_op().
142  *
143  * After the call R0 is set to return type of the function and registers R1-R5
144  * are set to NOT_INIT to indicate that they are no longer readable.
145  *
146  * The following reference types represent a potential reference to a kernel
147  * resource which, after first being allocated, must be checked and freed by
148  * the BPF program:
149  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
150  *
151  * When the verifier sees a helper call return a reference type, it allocates a
152  * pointer id for the reference and stores it in the current function state.
153  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
154  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
155  * passes through a NULL-check conditional. For the branch wherein the state is
156  * changed to CONST_IMM, the verifier releases the reference.
157  *
158  * For each helper function that allocates a reference, such as
159  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
160  * bpf_sk_release(). When a reference type passes into the release function,
161  * the verifier also releases the reference. If any unchecked or unreleased
162  * reference remains at the end of the program, the verifier rejects it.
163  */
164 
165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
166 struct bpf_verifier_stack_elem {
167 	/* verifer state is 'st'
168 	 * before processing instruction 'insn_idx'
169 	 * and after processing instruction 'prev_insn_idx'
170 	 */
171 	struct bpf_verifier_state st;
172 	int insn_idx;
173 	int prev_insn_idx;
174 	struct bpf_verifier_stack_elem *next;
175 	/* length of verifier log at the time this state was pushed on stack */
176 	u32 log_pos;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
180 #define BPF_COMPLEXITY_LIMIT_STATES	64
181 
182 #define BPF_MAP_KEY_POISON	(1ULL << 63)
183 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
184 
185 #define BPF_MAP_PTR_UNPRIV	1UL
186 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
187 					  POISON_POINTER_DELTA))
188 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
189 
190 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
191 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
192 
193 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
194 {
195 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
196 }
197 
198 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
199 {
200 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
201 }
202 
203 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
204 			      const struct bpf_map *map, bool unpriv)
205 {
206 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
207 	unpriv |= bpf_map_ptr_unpriv(aux);
208 	aux->map_ptr_state = (unsigned long)map |
209 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
210 }
211 
212 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
213 {
214 	return aux->map_key_state & BPF_MAP_KEY_POISON;
215 }
216 
217 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
218 {
219 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
220 }
221 
222 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
223 {
224 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
225 }
226 
227 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
228 {
229 	bool poisoned = bpf_map_key_poisoned(aux);
230 
231 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
232 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
233 }
234 
235 static bool bpf_pseudo_call(const struct bpf_insn *insn)
236 {
237 	return insn->code == (BPF_JMP | BPF_CALL) &&
238 	       insn->src_reg == BPF_PSEUDO_CALL;
239 }
240 
241 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
242 {
243 	return insn->code == (BPF_JMP | BPF_CALL) &&
244 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
245 }
246 
247 struct bpf_call_arg_meta {
248 	struct bpf_map *map_ptr;
249 	bool raw_mode;
250 	bool pkt_access;
251 	u8 release_regno;
252 	int regno;
253 	int access_size;
254 	int mem_size;
255 	u64 msize_max_value;
256 	int ref_obj_id;
257 	int map_uid;
258 	int func_id;
259 	struct btf *btf;
260 	u32 btf_id;
261 	struct btf *ret_btf;
262 	u32 ret_btf_id;
263 	u32 subprogno;
264 	struct bpf_map_value_off_desc *kptr_off_desc;
265 	u8 uninit_dynptr_regno;
266 };
267 
268 struct btf *btf_vmlinux;
269 
270 static DEFINE_MUTEX(bpf_verifier_lock);
271 
272 static const struct bpf_line_info *
273 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
274 {
275 	const struct bpf_line_info *linfo;
276 	const struct bpf_prog *prog;
277 	u32 i, nr_linfo;
278 
279 	prog = env->prog;
280 	nr_linfo = prog->aux->nr_linfo;
281 
282 	if (!nr_linfo || insn_off >= prog->len)
283 		return NULL;
284 
285 	linfo = prog->aux->linfo;
286 	for (i = 1; i < nr_linfo; i++)
287 		if (insn_off < linfo[i].insn_off)
288 			break;
289 
290 	return &linfo[i - 1];
291 }
292 
293 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
294 		       va_list args)
295 {
296 	unsigned int n;
297 
298 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
299 
300 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
301 		  "verifier log line truncated - local buffer too short\n");
302 
303 	if (log->level == BPF_LOG_KERNEL) {
304 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
305 
306 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
307 		return;
308 	}
309 
310 	n = min(log->len_total - log->len_used - 1, n);
311 	log->kbuf[n] = '\0';
312 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
313 		log->len_used += n;
314 	else
315 		log->ubuf = NULL;
316 }
317 
318 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
319 {
320 	char zero = 0;
321 
322 	if (!bpf_verifier_log_needed(log))
323 		return;
324 
325 	log->len_used = new_pos;
326 	if (put_user(zero, log->ubuf + new_pos))
327 		log->ubuf = NULL;
328 }
329 
330 /* log_level controls verbosity level of eBPF verifier.
331  * bpf_verifier_log_write() is used to dump the verification trace to the log,
332  * so the user can figure out what's wrong with the program
333  */
334 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
335 					   const char *fmt, ...)
336 {
337 	va_list args;
338 
339 	if (!bpf_verifier_log_needed(&env->log))
340 		return;
341 
342 	va_start(args, fmt);
343 	bpf_verifier_vlog(&env->log, fmt, args);
344 	va_end(args);
345 }
346 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
347 
348 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
349 {
350 	struct bpf_verifier_env *env = private_data;
351 	va_list args;
352 
353 	if (!bpf_verifier_log_needed(&env->log))
354 		return;
355 
356 	va_start(args, fmt);
357 	bpf_verifier_vlog(&env->log, fmt, args);
358 	va_end(args);
359 }
360 
361 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
362 			    const char *fmt, ...)
363 {
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	return type == PTR_TO_PACKET ||
431 	       type == PTR_TO_PACKET_META;
432 }
433 
434 static bool type_is_sk_pointer(enum bpf_reg_type type)
435 {
436 	return type == PTR_TO_SOCKET ||
437 		type == PTR_TO_SOCK_COMMON ||
438 		type == PTR_TO_TCP_SOCK ||
439 		type == PTR_TO_XDP_SOCK;
440 }
441 
442 static bool reg_type_not_null(enum bpf_reg_type type)
443 {
444 	return type == PTR_TO_SOCKET ||
445 		type == PTR_TO_TCP_SOCK ||
446 		type == PTR_TO_MAP_VALUE ||
447 		type == PTR_TO_MAP_KEY ||
448 		type == PTR_TO_SOCK_COMMON;
449 }
450 
451 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
452 {
453 	return reg->type == PTR_TO_MAP_VALUE &&
454 		map_value_has_spin_lock(reg->map_ptr);
455 }
456 
457 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
458 {
459 	return base_type(type) == PTR_TO_SOCKET ||
460 		base_type(type) == PTR_TO_TCP_SOCK ||
461 		base_type(type) == PTR_TO_MEM ||
462 		base_type(type) == PTR_TO_BTF_ID;
463 }
464 
465 static bool type_is_rdonly_mem(u32 type)
466 {
467 	return type & MEM_RDONLY;
468 }
469 
470 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
471 {
472 	return type == ARG_PTR_TO_SOCK_COMMON;
473 }
474 
475 static bool type_may_be_null(u32 type)
476 {
477 	return type & PTR_MAYBE_NULL;
478 }
479 
480 static bool may_be_acquire_function(enum bpf_func_id func_id)
481 {
482 	return func_id == BPF_FUNC_sk_lookup_tcp ||
483 		func_id == BPF_FUNC_sk_lookup_udp ||
484 		func_id == BPF_FUNC_skc_lookup_tcp ||
485 		func_id == BPF_FUNC_map_lookup_elem ||
486 	        func_id == BPF_FUNC_ringbuf_reserve;
487 }
488 
489 static bool is_acquire_function(enum bpf_func_id func_id,
490 				const struct bpf_map *map)
491 {
492 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
493 
494 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
495 	    func_id == BPF_FUNC_sk_lookup_udp ||
496 	    func_id == BPF_FUNC_skc_lookup_tcp ||
497 	    func_id == BPF_FUNC_ringbuf_reserve ||
498 	    func_id == BPF_FUNC_kptr_xchg)
499 		return true;
500 
501 	if (func_id == BPF_FUNC_map_lookup_elem &&
502 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
503 	     map_type == BPF_MAP_TYPE_SOCKHASH))
504 		return true;
505 
506 	return false;
507 }
508 
509 static bool is_ptr_cast_function(enum bpf_func_id func_id)
510 {
511 	return func_id == BPF_FUNC_tcp_sock ||
512 		func_id == BPF_FUNC_sk_fullsock ||
513 		func_id == BPF_FUNC_skc_to_tcp_sock ||
514 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
515 		func_id == BPF_FUNC_skc_to_udp6_sock ||
516 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
517 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
518 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
519 }
520 
521 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
522 {
523 	return BPF_CLASS(insn->code) == BPF_STX &&
524 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
525 	       insn->imm == BPF_CMPXCHG;
526 }
527 
528 /* string representation of 'enum bpf_reg_type'
529  *
530  * Note that reg_type_str() can not appear more than once in a single verbose()
531  * statement.
532  */
533 static const char *reg_type_str(struct bpf_verifier_env *env,
534 				enum bpf_reg_type type)
535 {
536 	char postfix[16] = {0}, prefix[32] = {0};
537 	static const char * const str[] = {
538 		[NOT_INIT]		= "?",
539 		[SCALAR_VALUE]		= "scalar",
540 		[PTR_TO_CTX]		= "ctx",
541 		[CONST_PTR_TO_MAP]	= "map_ptr",
542 		[PTR_TO_MAP_VALUE]	= "map_value",
543 		[PTR_TO_STACK]		= "fp",
544 		[PTR_TO_PACKET]		= "pkt",
545 		[PTR_TO_PACKET_META]	= "pkt_meta",
546 		[PTR_TO_PACKET_END]	= "pkt_end",
547 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
548 		[PTR_TO_SOCKET]		= "sock",
549 		[PTR_TO_SOCK_COMMON]	= "sock_common",
550 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
551 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
552 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
553 		[PTR_TO_BTF_ID]		= "ptr_",
554 		[PTR_TO_MEM]		= "mem",
555 		[PTR_TO_BUF]		= "buf",
556 		[PTR_TO_FUNC]		= "func",
557 		[PTR_TO_MAP_KEY]	= "map_key",
558 	};
559 
560 	if (type & PTR_MAYBE_NULL) {
561 		if (base_type(type) == PTR_TO_BTF_ID)
562 			strncpy(postfix, "or_null_", 16);
563 		else
564 			strncpy(postfix, "_or_null", 16);
565 	}
566 
567 	if (type & MEM_RDONLY)
568 		strncpy(prefix, "rdonly_", 32);
569 	if (type & MEM_ALLOC)
570 		strncpy(prefix, "alloc_", 32);
571 	if (type & MEM_USER)
572 		strncpy(prefix, "user_", 32);
573 	if (type & MEM_PERCPU)
574 		strncpy(prefix, "percpu_", 32);
575 	if (type & PTR_UNTRUSTED)
576 		strncpy(prefix, "untrusted_", 32);
577 
578 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
579 		 prefix, str[base_type(type)], postfix);
580 	return env->type_str_buf;
581 }
582 
583 static char slot_type_char[] = {
584 	[STACK_INVALID]	= '?',
585 	[STACK_SPILL]	= 'r',
586 	[STACK_MISC]	= 'm',
587 	[STACK_ZERO]	= '0',
588 	[STACK_DYNPTR]	= 'd',
589 };
590 
591 static void print_liveness(struct bpf_verifier_env *env,
592 			   enum bpf_reg_liveness live)
593 {
594 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
595 	    verbose(env, "_");
596 	if (live & REG_LIVE_READ)
597 		verbose(env, "r");
598 	if (live & REG_LIVE_WRITTEN)
599 		verbose(env, "w");
600 	if (live & REG_LIVE_DONE)
601 		verbose(env, "D");
602 }
603 
604 static int get_spi(s32 off)
605 {
606 	return (-off - 1) / BPF_REG_SIZE;
607 }
608 
609 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
610 {
611 	int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
612 
613 	/* We need to check that slots between [spi - nr_slots + 1, spi] are
614 	 * within [0, allocated_stack).
615 	 *
616 	 * Please note that the spi grows downwards. For example, a dynptr
617 	 * takes the size of two stack slots; the first slot will be at
618 	 * spi and the second slot will be at spi - 1.
619 	 */
620 	return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
621 }
622 
623 static struct bpf_func_state *func(struct bpf_verifier_env *env,
624 				   const struct bpf_reg_state *reg)
625 {
626 	struct bpf_verifier_state *cur = env->cur_state;
627 
628 	return cur->frame[reg->frameno];
629 }
630 
631 static const char *kernel_type_name(const struct btf* btf, u32 id)
632 {
633 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
634 }
635 
636 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
637 {
638 	env->scratched_regs |= 1U << regno;
639 }
640 
641 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
642 {
643 	env->scratched_stack_slots |= 1ULL << spi;
644 }
645 
646 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
647 {
648 	return (env->scratched_regs >> regno) & 1;
649 }
650 
651 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
652 {
653 	return (env->scratched_stack_slots >> regno) & 1;
654 }
655 
656 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
657 {
658 	return env->scratched_regs || env->scratched_stack_slots;
659 }
660 
661 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
662 {
663 	env->scratched_regs = 0U;
664 	env->scratched_stack_slots = 0ULL;
665 }
666 
667 /* Used for printing the entire verifier state. */
668 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
669 {
670 	env->scratched_regs = ~0U;
671 	env->scratched_stack_slots = ~0ULL;
672 }
673 
674 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
675 {
676 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
677 	case DYNPTR_TYPE_LOCAL:
678 		return BPF_DYNPTR_TYPE_LOCAL;
679 	case DYNPTR_TYPE_RINGBUF:
680 		return BPF_DYNPTR_TYPE_RINGBUF;
681 	default:
682 		return BPF_DYNPTR_TYPE_INVALID;
683 	}
684 }
685 
686 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
687 {
688 	return type == BPF_DYNPTR_TYPE_RINGBUF;
689 }
690 
691 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
692 				   enum bpf_arg_type arg_type, int insn_idx)
693 {
694 	struct bpf_func_state *state = func(env, reg);
695 	enum bpf_dynptr_type type;
696 	int spi, i, id;
697 
698 	spi = get_spi(reg->off);
699 
700 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
701 		return -EINVAL;
702 
703 	for (i = 0; i < BPF_REG_SIZE; i++) {
704 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
705 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
706 	}
707 
708 	type = arg_to_dynptr_type(arg_type);
709 	if (type == BPF_DYNPTR_TYPE_INVALID)
710 		return -EINVAL;
711 
712 	state->stack[spi].spilled_ptr.dynptr.first_slot = true;
713 	state->stack[spi].spilled_ptr.dynptr.type = type;
714 	state->stack[spi - 1].spilled_ptr.dynptr.type = type;
715 
716 	if (dynptr_type_refcounted(type)) {
717 		/* The id is used to track proper releasing */
718 		id = acquire_reference_state(env, insn_idx);
719 		if (id < 0)
720 			return id;
721 
722 		state->stack[spi].spilled_ptr.id = id;
723 		state->stack[spi - 1].spilled_ptr.id = id;
724 	}
725 
726 	return 0;
727 }
728 
729 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
730 {
731 	struct bpf_func_state *state = func(env, reg);
732 	int spi, i;
733 
734 	spi = get_spi(reg->off);
735 
736 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
737 		return -EINVAL;
738 
739 	for (i = 0; i < BPF_REG_SIZE; i++) {
740 		state->stack[spi].slot_type[i] = STACK_INVALID;
741 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
742 	}
743 
744 	/* Invalidate any slices associated with this dynptr */
745 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
746 		release_reference(env, state->stack[spi].spilled_ptr.id);
747 		state->stack[spi].spilled_ptr.id = 0;
748 		state->stack[spi - 1].spilled_ptr.id = 0;
749 	}
750 
751 	state->stack[spi].spilled_ptr.dynptr.first_slot = false;
752 	state->stack[spi].spilled_ptr.dynptr.type = 0;
753 	state->stack[spi - 1].spilled_ptr.dynptr.type = 0;
754 
755 	return 0;
756 }
757 
758 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
759 {
760 	struct bpf_func_state *state = func(env, reg);
761 	int spi = get_spi(reg->off);
762 	int i;
763 
764 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS))
765 		return true;
766 
767 	for (i = 0; i < BPF_REG_SIZE; i++) {
768 		if (state->stack[spi].slot_type[i] == STACK_DYNPTR ||
769 		    state->stack[spi - 1].slot_type[i] == STACK_DYNPTR)
770 			return false;
771 	}
772 
773 	return true;
774 }
775 
776 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
777 				     enum bpf_arg_type arg_type)
778 {
779 	struct bpf_func_state *state = func(env, reg);
780 	int spi = get_spi(reg->off);
781 	int i;
782 
783 	if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
784 	    !state->stack[spi].spilled_ptr.dynptr.first_slot)
785 		return false;
786 
787 	for (i = 0; i < BPF_REG_SIZE; i++) {
788 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
789 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
790 			return false;
791 	}
792 
793 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
794 	if (arg_type == ARG_PTR_TO_DYNPTR)
795 		return true;
796 
797 	return state->stack[spi].spilled_ptr.dynptr.type == arg_to_dynptr_type(arg_type);
798 }
799 
800 /* The reg state of a pointer or a bounded scalar was saved when
801  * it was spilled to the stack.
802  */
803 static bool is_spilled_reg(const struct bpf_stack_state *stack)
804 {
805 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
806 }
807 
808 static void scrub_spilled_slot(u8 *stype)
809 {
810 	if (*stype != STACK_INVALID)
811 		*stype = STACK_MISC;
812 }
813 
814 static void print_verifier_state(struct bpf_verifier_env *env,
815 				 const struct bpf_func_state *state,
816 				 bool print_all)
817 {
818 	const struct bpf_reg_state *reg;
819 	enum bpf_reg_type t;
820 	int i;
821 
822 	if (state->frameno)
823 		verbose(env, " frame%d:", state->frameno);
824 	for (i = 0; i < MAX_BPF_REG; i++) {
825 		reg = &state->regs[i];
826 		t = reg->type;
827 		if (t == NOT_INIT)
828 			continue;
829 		if (!print_all && !reg_scratched(env, i))
830 			continue;
831 		verbose(env, " R%d", i);
832 		print_liveness(env, reg->live);
833 		verbose(env, "=");
834 		if (t == SCALAR_VALUE && reg->precise)
835 			verbose(env, "P");
836 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
837 		    tnum_is_const(reg->var_off)) {
838 			/* reg->off should be 0 for SCALAR_VALUE */
839 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
840 			verbose(env, "%lld", reg->var_off.value + reg->off);
841 		} else {
842 			const char *sep = "";
843 
844 			verbose(env, "%s", reg_type_str(env, t));
845 			if (base_type(t) == PTR_TO_BTF_ID)
846 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
847 			verbose(env, "(");
848 /*
849  * _a stands for append, was shortened to avoid multiline statements below.
850  * This macro is used to output a comma separated list of attributes.
851  */
852 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
853 
854 			if (reg->id)
855 				verbose_a("id=%d", reg->id);
856 			if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id)
857 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
858 			if (t != SCALAR_VALUE)
859 				verbose_a("off=%d", reg->off);
860 			if (type_is_pkt_pointer(t))
861 				verbose_a("r=%d", reg->range);
862 			else if (base_type(t) == CONST_PTR_TO_MAP ||
863 				 base_type(t) == PTR_TO_MAP_KEY ||
864 				 base_type(t) == PTR_TO_MAP_VALUE)
865 				verbose_a("ks=%d,vs=%d",
866 					  reg->map_ptr->key_size,
867 					  reg->map_ptr->value_size);
868 			if (tnum_is_const(reg->var_off)) {
869 				/* Typically an immediate SCALAR_VALUE, but
870 				 * could be a pointer whose offset is too big
871 				 * for reg->off
872 				 */
873 				verbose_a("imm=%llx", reg->var_off.value);
874 			} else {
875 				if (reg->smin_value != reg->umin_value &&
876 				    reg->smin_value != S64_MIN)
877 					verbose_a("smin=%lld", (long long)reg->smin_value);
878 				if (reg->smax_value != reg->umax_value &&
879 				    reg->smax_value != S64_MAX)
880 					verbose_a("smax=%lld", (long long)reg->smax_value);
881 				if (reg->umin_value != 0)
882 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
883 				if (reg->umax_value != U64_MAX)
884 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
885 				if (!tnum_is_unknown(reg->var_off)) {
886 					char tn_buf[48];
887 
888 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
889 					verbose_a("var_off=%s", tn_buf);
890 				}
891 				if (reg->s32_min_value != reg->smin_value &&
892 				    reg->s32_min_value != S32_MIN)
893 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
894 				if (reg->s32_max_value != reg->smax_value &&
895 				    reg->s32_max_value != S32_MAX)
896 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
897 				if (reg->u32_min_value != reg->umin_value &&
898 				    reg->u32_min_value != U32_MIN)
899 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
900 				if (reg->u32_max_value != reg->umax_value &&
901 				    reg->u32_max_value != U32_MAX)
902 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
903 			}
904 #undef verbose_a
905 
906 			verbose(env, ")");
907 		}
908 	}
909 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
910 		char types_buf[BPF_REG_SIZE + 1];
911 		bool valid = false;
912 		int j;
913 
914 		for (j = 0; j < BPF_REG_SIZE; j++) {
915 			if (state->stack[i].slot_type[j] != STACK_INVALID)
916 				valid = true;
917 			types_buf[j] = slot_type_char[
918 					state->stack[i].slot_type[j]];
919 		}
920 		types_buf[BPF_REG_SIZE] = 0;
921 		if (!valid)
922 			continue;
923 		if (!print_all && !stack_slot_scratched(env, i))
924 			continue;
925 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
926 		print_liveness(env, state->stack[i].spilled_ptr.live);
927 		if (is_spilled_reg(&state->stack[i])) {
928 			reg = &state->stack[i].spilled_ptr;
929 			t = reg->type;
930 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
931 			if (t == SCALAR_VALUE && reg->precise)
932 				verbose(env, "P");
933 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
934 				verbose(env, "%lld", reg->var_off.value + reg->off);
935 		} else {
936 			verbose(env, "=%s", types_buf);
937 		}
938 	}
939 	if (state->acquired_refs && state->refs[0].id) {
940 		verbose(env, " refs=%d", state->refs[0].id);
941 		for (i = 1; i < state->acquired_refs; i++)
942 			if (state->refs[i].id)
943 				verbose(env, ",%d", state->refs[i].id);
944 	}
945 	if (state->in_callback_fn)
946 		verbose(env, " cb");
947 	if (state->in_async_callback_fn)
948 		verbose(env, " async_cb");
949 	verbose(env, "\n");
950 	mark_verifier_state_clean(env);
951 }
952 
953 static inline u32 vlog_alignment(u32 pos)
954 {
955 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
956 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
957 }
958 
959 static void print_insn_state(struct bpf_verifier_env *env,
960 			     const struct bpf_func_state *state)
961 {
962 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
963 		/* remove new line character */
964 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
965 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
966 	} else {
967 		verbose(env, "%d:", env->insn_idx);
968 	}
969 	print_verifier_state(env, state, false);
970 }
971 
972 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
973  * small to hold src. This is different from krealloc since we don't want to preserve
974  * the contents of dst.
975  *
976  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
977  * not be allocated.
978  */
979 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
980 {
981 	size_t bytes;
982 
983 	if (ZERO_OR_NULL_PTR(src))
984 		goto out;
985 
986 	if (unlikely(check_mul_overflow(n, size, &bytes)))
987 		return NULL;
988 
989 	if (ksize(dst) < bytes) {
990 		kfree(dst);
991 		dst = kmalloc_track_caller(bytes, flags);
992 		if (!dst)
993 			return NULL;
994 	}
995 
996 	memcpy(dst, src, bytes);
997 out:
998 	return dst ? dst : ZERO_SIZE_PTR;
999 }
1000 
1001 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1002  * small to hold new_n items. new items are zeroed out if the array grows.
1003  *
1004  * Contrary to krealloc_array, does not free arr if new_n is zero.
1005  */
1006 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1007 {
1008 	if (!new_n || old_n == new_n)
1009 		goto out;
1010 
1011 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
1012 	if (!arr)
1013 		return NULL;
1014 
1015 	if (new_n > old_n)
1016 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1017 
1018 out:
1019 	return arr ? arr : ZERO_SIZE_PTR;
1020 }
1021 
1022 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1023 {
1024 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1025 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1026 	if (!dst->refs)
1027 		return -ENOMEM;
1028 
1029 	dst->acquired_refs = src->acquired_refs;
1030 	return 0;
1031 }
1032 
1033 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1034 {
1035 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1036 
1037 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1038 				GFP_KERNEL);
1039 	if (!dst->stack)
1040 		return -ENOMEM;
1041 
1042 	dst->allocated_stack = src->allocated_stack;
1043 	return 0;
1044 }
1045 
1046 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1047 {
1048 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1049 				    sizeof(struct bpf_reference_state));
1050 	if (!state->refs)
1051 		return -ENOMEM;
1052 
1053 	state->acquired_refs = n;
1054 	return 0;
1055 }
1056 
1057 static int grow_stack_state(struct bpf_func_state *state, int size)
1058 {
1059 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1060 
1061 	if (old_n >= n)
1062 		return 0;
1063 
1064 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1065 	if (!state->stack)
1066 		return -ENOMEM;
1067 
1068 	state->allocated_stack = size;
1069 	return 0;
1070 }
1071 
1072 /* Acquire a pointer id from the env and update the state->refs to include
1073  * this new pointer reference.
1074  * On success, returns a valid pointer id to associate with the register
1075  * On failure, returns a negative errno.
1076  */
1077 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1078 {
1079 	struct bpf_func_state *state = cur_func(env);
1080 	int new_ofs = state->acquired_refs;
1081 	int id, err;
1082 
1083 	err = resize_reference_state(state, state->acquired_refs + 1);
1084 	if (err)
1085 		return err;
1086 	id = ++env->id_gen;
1087 	state->refs[new_ofs].id = id;
1088 	state->refs[new_ofs].insn_idx = insn_idx;
1089 
1090 	return id;
1091 }
1092 
1093 /* release function corresponding to acquire_reference_state(). Idempotent. */
1094 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1095 {
1096 	int i, last_idx;
1097 
1098 	last_idx = state->acquired_refs - 1;
1099 	for (i = 0; i < state->acquired_refs; i++) {
1100 		if (state->refs[i].id == ptr_id) {
1101 			if (last_idx && i != last_idx)
1102 				memcpy(&state->refs[i], &state->refs[last_idx],
1103 				       sizeof(*state->refs));
1104 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1105 			state->acquired_refs--;
1106 			return 0;
1107 		}
1108 	}
1109 	return -EINVAL;
1110 }
1111 
1112 static void free_func_state(struct bpf_func_state *state)
1113 {
1114 	if (!state)
1115 		return;
1116 	kfree(state->refs);
1117 	kfree(state->stack);
1118 	kfree(state);
1119 }
1120 
1121 static void clear_jmp_history(struct bpf_verifier_state *state)
1122 {
1123 	kfree(state->jmp_history);
1124 	state->jmp_history = NULL;
1125 	state->jmp_history_cnt = 0;
1126 }
1127 
1128 static void free_verifier_state(struct bpf_verifier_state *state,
1129 				bool free_self)
1130 {
1131 	int i;
1132 
1133 	for (i = 0; i <= state->curframe; i++) {
1134 		free_func_state(state->frame[i]);
1135 		state->frame[i] = NULL;
1136 	}
1137 	clear_jmp_history(state);
1138 	if (free_self)
1139 		kfree(state);
1140 }
1141 
1142 /* copy verifier state from src to dst growing dst stack space
1143  * when necessary to accommodate larger src stack
1144  */
1145 static int copy_func_state(struct bpf_func_state *dst,
1146 			   const struct bpf_func_state *src)
1147 {
1148 	int err;
1149 
1150 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1151 	err = copy_reference_state(dst, src);
1152 	if (err)
1153 		return err;
1154 	return copy_stack_state(dst, src);
1155 }
1156 
1157 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1158 			       const struct bpf_verifier_state *src)
1159 {
1160 	struct bpf_func_state *dst;
1161 	int i, err;
1162 
1163 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1164 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1165 					    GFP_USER);
1166 	if (!dst_state->jmp_history)
1167 		return -ENOMEM;
1168 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1169 
1170 	/* if dst has more stack frames then src frame, free them */
1171 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1172 		free_func_state(dst_state->frame[i]);
1173 		dst_state->frame[i] = NULL;
1174 	}
1175 	dst_state->speculative = src->speculative;
1176 	dst_state->curframe = src->curframe;
1177 	dst_state->active_spin_lock = src->active_spin_lock;
1178 	dst_state->branches = src->branches;
1179 	dst_state->parent = src->parent;
1180 	dst_state->first_insn_idx = src->first_insn_idx;
1181 	dst_state->last_insn_idx = src->last_insn_idx;
1182 	for (i = 0; i <= src->curframe; i++) {
1183 		dst = dst_state->frame[i];
1184 		if (!dst) {
1185 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1186 			if (!dst)
1187 				return -ENOMEM;
1188 			dst_state->frame[i] = dst;
1189 		}
1190 		err = copy_func_state(dst, src->frame[i]);
1191 		if (err)
1192 			return err;
1193 	}
1194 	return 0;
1195 }
1196 
1197 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1198 {
1199 	while (st) {
1200 		u32 br = --st->branches;
1201 
1202 		/* WARN_ON(br > 1) technically makes sense here,
1203 		 * but see comment in push_stack(), hence:
1204 		 */
1205 		WARN_ONCE((int)br < 0,
1206 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1207 			  br);
1208 		if (br)
1209 			break;
1210 		st = st->parent;
1211 	}
1212 }
1213 
1214 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1215 		     int *insn_idx, bool pop_log)
1216 {
1217 	struct bpf_verifier_state *cur = env->cur_state;
1218 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1219 	int err;
1220 
1221 	if (env->head == NULL)
1222 		return -ENOENT;
1223 
1224 	if (cur) {
1225 		err = copy_verifier_state(cur, &head->st);
1226 		if (err)
1227 			return err;
1228 	}
1229 	if (pop_log)
1230 		bpf_vlog_reset(&env->log, head->log_pos);
1231 	if (insn_idx)
1232 		*insn_idx = head->insn_idx;
1233 	if (prev_insn_idx)
1234 		*prev_insn_idx = head->prev_insn_idx;
1235 	elem = head->next;
1236 	free_verifier_state(&head->st, false);
1237 	kfree(head);
1238 	env->head = elem;
1239 	env->stack_size--;
1240 	return 0;
1241 }
1242 
1243 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1244 					     int insn_idx, int prev_insn_idx,
1245 					     bool speculative)
1246 {
1247 	struct bpf_verifier_state *cur = env->cur_state;
1248 	struct bpf_verifier_stack_elem *elem;
1249 	int err;
1250 
1251 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1252 	if (!elem)
1253 		goto err;
1254 
1255 	elem->insn_idx = insn_idx;
1256 	elem->prev_insn_idx = prev_insn_idx;
1257 	elem->next = env->head;
1258 	elem->log_pos = env->log.len_used;
1259 	env->head = elem;
1260 	env->stack_size++;
1261 	err = copy_verifier_state(&elem->st, cur);
1262 	if (err)
1263 		goto err;
1264 	elem->st.speculative |= speculative;
1265 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1266 		verbose(env, "The sequence of %d jumps is too complex.\n",
1267 			env->stack_size);
1268 		goto err;
1269 	}
1270 	if (elem->st.parent) {
1271 		++elem->st.parent->branches;
1272 		/* WARN_ON(branches > 2) technically makes sense here,
1273 		 * but
1274 		 * 1. speculative states will bump 'branches' for non-branch
1275 		 * instructions
1276 		 * 2. is_state_visited() heuristics may decide not to create
1277 		 * a new state for a sequence of branches and all such current
1278 		 * and cloned states will be pointing to a single parent state
1279 		 * which might have large 'branches' count.
1280 		 */
1281 	}
1282 	return &elem->st;
1283 err:
1284 	free_verifier_state(env->cur_state, true);
1285 	env->cur_state = NULL;
1286 	/* pop all elements and return */
1287 	while (!pop_stack(env, NULL, NULL, false));
1288 	return NULL;
1289 }
1290 
1291 #define CALLER_SAVED_REGS 6
1292 static const int caller_saved[CALLER_SAVED_REGS] = {
1293 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1294 };
1295 
1296 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1297 				struct bpf_reg_state *reg);
1298 
1299 /* This helper doesn't clear reg->id */
1300 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1301 {
1302 	reg->var_off = tnum_const(imm);
1303 	reg->smin_value = (s64)imm;
1304 	reg->smax_value = (s64)imm;
1305 	reg->umin_value = imm;
1306 	reg->umax_value = imm;
1307 
1308 	reg->s32_min_value = (s32)imm;
1309 	reg->s32_max_value = (s32)imm;
1310 	reg->u32_min_value = (u32)imm;
1311 	reg->u32_max_value = (u32)imm;
1312 }
1313 
1314 /* Mark the unknown part of a register (variable offset or scalar value) as
1315  * known to have the value @imm.
1316  */
1317 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1318 {
1319 	/* Clear id, off, and union(map_ptr, range) */
1320 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1321 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1322 	___mark_reg_known(reg, imm);
1323 }
1324 
1325 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1326 {
1327 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1328 	reg->s32_min_value = (s32)imm;
1329 	reg->s32_max_value = (s32)imm;
1330 	reg->u32_min_value = (u32)imm;
1331 	reg->u32_max_value = (u32)imm;
1332 }
1333 
1334 /* Mark the 'variable offset' part of a register as zero.  This should be
1335  * used only on registers holding a pointer type.
1336  */
1337 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1338 {
1339 	__mark_reg_known(reg, 0);
1340 }
1341 
1342 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1343 {
1344 	__mark_reg_known(reg, 0);
1345 	reg->type = SCALAR_VALUE;
1346 }
1347 
1348 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1349 				struct bpf_reg_state *regs, u32 regno)
1350 {
1351 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1352 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1353 		/* Something bad happened, let's kill all regs */
1354 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1355 			__mark_reg_not_init(env, regs + regno);
1356 		return;
1357 	}
1358 	__mark_reg_known_zero(regs + regno);
1359 }
1360 
1361 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1362 {
1363 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1364 		const struct bpf_map *map = reg->map_ptr;
1365 
1366 		if (map->inner_map_meta) {
1367 			reg->type = CONST_PTR_TO_MAP;
1368 			reg->map_ptr = map->inner_map_meta;
1369 			/* transfer reg's id which is unique for every map_lookup_elem
1370 			 * as UID of the inner map.
1371 			 */
1372 			if (map_value_has_timer(map->inner_map_meta))
1373 				reg->map_uid = reg->id;
1374 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1375 			reg->type = PTR_TO_XDP_SOCK;
1376 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1377 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1378 			reg->type = PTR_TO_SOCKET;
1379 		} else {
1380 			reg->type = PTR_TO_MAP_VALUE;
1381 		}
1382 		return;
1383 	}
1384 
1385 	reg->type &= ~PTR_MAYBE_NULL;
1386 }
1387 
1388 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1389 {
1390 	return type_is_pkt_pointer(reg->type);
1391 }
1392 
1393 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1394 {
1395 	return reg_is_pkt_pointer(reg) ||
1396 	       reg->type == PTR_TO_PACKET_END;
1397 }
1398 
1399 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1400 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1401 				    enum bpf_reg_type which)
1402 {
1403 	/* The register can already have a range from prior markings.
1404 	 * This is fine as long as it hasn't been advanced from its
1405 	 * origin.
1406 	 */
1407 	return reg->type == which &&
1408 	       reg->id == 0 &&
1409 	       reg->off == 0 &&
1410 	       tnum_equals_const(reg->var_off, 0);
1411 }
1412 
1413 /* Reset the min/max bounds of a register */
1414 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1415 {
1416 	reg->smin_value = S64_MIN;
1417 	reg->smax_value = S64_MAX;
1418 	reg->umin_value = 0;
1419 	reg->umax_value = U64_MAX;
1420 
1421 	reg->s32_min_value = S32_MIN;
1422 	reg->s32_max_value = S32_MAX;
1423 	reg->u32_min_value = 0;
1424 	reg->u32_max_value = U32_MAX;
1425 }
1426 
1427 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1428 {
1429 	reg->smin_value = S64_MIN;
1430 	reg->smax_value = S64_MAX;
1431 	reg->umin_value = 0;
1432 	reg->umax_value = U64_MAX;
1433 }
1434 
1435 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1436 {
1437 	reg->s32_min_value = S32_MIN;
1438 	reg->s32_max_value = S32_MAX;
1439 	reg->u32_min_value = 0;
1440 	reg->u32_max_value = U32_MAX;
1441 }
1442 
1443 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1444 {
1445 	struct tnum var32_off = tnum_subreg(reg->var_off);
1446 
1447 	/* min signed is max(sign bit) | min(other bits) */
1448 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1449 			var32_off.value | (var32_off.mask & S32_MIN));
1450 	/* max signed is min(sign bit) | max(other bits) */
1451 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1452 			var32_off.value | (var32_off.mask & S32_MAX));
1453 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1454 	reg->u32_max_value = min(reg->u32_max_value,
1455 				 (u32)(var32_off.value | var32_off.mask));
1456 }
1457 
1458 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1459 {
1460 	/* min signed is max(sign bit) | min(other bits) */
1461 	reg->smin_value = max_t(s64, reg->smin_value,
1462 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1463 	/* max signed is min(sign bit) | max(other bits) */
1464 	reg->smax_value = min_t(s64, reg->smax_value,
1465 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1466 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1467 	reg->umax_value = min(reg->umax_value,
1468 			      reg->var_off.value | reg->var_off.mask);
1469 }
1470 
1471 static void __update_reg_bounds(struct bpf_reg_state *reg)
1472 {
1473 	__update_reg32_bounds(reg);
1474 	__update_reg64_bounds(reg);
1475 }
1476 
1477 /* Uses signed min/max values to inform unsigned, and vice-versa */
1478 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1479 {
1480 	/* Learn sign from signed bounds.
1481 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1482 	 * are the same, so combine.  This works even in the negative case, e.g.
1483 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1484 	 */
1485 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1486 		reg->s32_min_value = reg->u32_min_value =
1487 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1488 		reg->s32_max_value = reg->u32_max_value =
1489 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1490 		return;
1491 	}
1492 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1493 	 * boundary, so we must be careful.
1494 	 */
1495 	if ((s32)reg->u32_max_value >= 0) {
1496 		/* Positive.  We can't learn anything from the smin, but smax
1497 		 * is positive, hence safe.
1498 		 */
1499 		reg->s32_min_value = reg->u32_min_value;
1500 		reg->s32_max_value = reg->u32_max_value =
1501 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1502 	} else if ((s32)reg->u32_min_value < 0) {
1503 		/* Negative.  We can't learn anything from the smax, but smin
1504 		 * is negative, hence safe.
1505 		 */
1506 		reg->s32_min_value = reg->u32_min_value =
1507 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1508 		reg->s32_max_value = reg->u32_max_value;
1509 	}
1510 }
1511 
1512 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1513 {
1514 	/* Learn sign from signed bounds.
1515 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1516 	 * are the same, so combine.  This works even in the negative case, e.g.
1517 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1518 	 */
1519 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1520 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1521 							  reg->umin_value);
1522 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1523 							  reg->umax_value);
1524 		return;
1525 	}
1526 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1527 	 * boundary, so we must be careful.
1528 	 */
1529 	if ((s64)reg->umax_value >= 0) {
1530 		/* Positive.  We can't learn anything from the smin, but smax
1531 		 * is positive, hence safe.
1532 		 */
1533 		reg->smin_value = reg->umin_value;
1534 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1535 							  reg->umax_value);
1536 	} else if ((s64)reg->umin_value < 0) {
1537 		/* Negative.  We can't learn anything from the smax, but smin
1538 		 * is negative, hence safe.
1539 		 */
1540 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1541 							  reg->umin_value);
1542 		reg->smax_value = reg->umax_value;
1543 	}
1544 }
1545 
1546 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1547 {
1548 	__reg32_deduce_bounds(reg);
1549 	__reg64_deduce_bounds(reg);
1550 }
1551 
1552 /* Attempts to improve var_off based on unsigned min/max information */
1553 static void __reg_bound_offset(struct bpf_reg_state *reg)
1554 {
1555 	struct tnum var64_off = tnum_intersect(reg->var_off,
1556 					       tnum_range(reg->umin_value,
1557 							  reg->umax_value));
1558 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1559 						tnum_range(reg->u32_min_value,
1560 							   reg->u32_max_value));
1561 
1562 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1563 }
1564 
1565 static void reg_bounds_sync(struct bpf_reg_state *reg)
1566 {
1567 	/* We might have learned new bounds from the var_off. */
1568 	__update_reg_bounds(reg);
1569 	/* We might have learned something about the sign bit. */
1570 	__reg_deduce_bounds(reg);
1571 	/* We might have learned some bits from the bounds. */
1572 	__reg_bound_offset(reg);
1573 	/* Intersecting with the old var_off might have improved our bounds
1574 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1575 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1576 	 */
1577 	__update_reg_bounds(reg);
1578 }
1579 
1580 static bool __reg32_bound_s64(s32 a)
1581 {
1582 	return a >= 0 && a <= S32_MAX;
1583 }
1584 
1585 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1586 {
1587 	reg->umin_value = reg->u32_min_value;
1588 	reg->umax_value = reg->u32_max_value;
1589 
1590 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1591 	 * be positive otherwise set to worse case bounds and refine later
1592 	 * from tnum.
1593 	 */
1594 	if (__reg32_bound_s64(reg->s32_min_value) &&
1595 	    __reg32_bound_s64(reg->s32_max_value)) {
1596 		reg->smin_value = reg->s32_min_value;
1597 		reg->smax_value = reg->s32_max_value;
1598 	} else {
1599 		reg->smin_value = 0;
1600 		reg->smax_value = U32_MAX;
1601 	}
1602 }
1603 
1604 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1605 {
1606 	/* special case when 64-bit register has upper 32-bit register
1607 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1608 	 * allowing us to use 32-bit bounds directly,
1609 	 */
1610 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1611 		__reg_assign_32_into_64(reg);
1612 	} else {
1613 		/* Otherwise the best we can do is push lower 32bit known and
1614 		 * unknown bits into register (var_off set from jmp logic)
1615 		 * then learn as much as possible from the 64-bit tnum
1616 		 * known and unknown bits. The previous smin/smax bounds are
1617 		 * invalid here because of jmp32 compare so mark them unknown
1618 		 * so they do not impact tnum bounds calculation.
1619 		 */
1620 		__mark_reg64_unbounded(reg);
1621 	}
1622 	reg_bounds_sync(reg);
1623 }
1624 
1625 static bool __reg64_bound_s32(s64 a)
1626 {
1627 	return a >= S32_MIN && a <= S32_MAX;
1628 }
1629 
1630 static bool __reg64_bound_u32(u64 a)
1631 {
1632 	return a >= U32_MIN && a <= U32_MAX;
1633 }
1634 
1635 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1636 {
1637 	__mark_reg32_unbounded(reg);
1638 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1639 		reg->s32_min_value = (s32)reg->smin_value;
1640 		reg->s32_max_value = (s32)reg->smax_value;
1641 	}
1642 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1643 		reg->u32_min_value = (u32)reg->umin_value;
1644 		reg->u32_max_value = (u32)reg->umax_value;
1645 	}
1646 	reg_bounds_sync(reg);
1647 }
1648 
1649 /* Mark a register as having a completely unknown (scalar) value. */
1650 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1651 			       struct bpf_reg_state *reg)
1652 {
1653 	/*
1654 	 * Clear type, id, off, and union(map_ptr, range) and
1655 	 * padding between 'type' and union
1656 	 */
1657 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1658 	reg->type = SCALAR_VALUE;
1659 	reg->var_off = tnum_unknown;
1660 	reg->frameno = 0;
1661 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1662 	__mark_reg_unbounded(reg);
1663 }
1664 
1665 static void mark_reg_unknown(struct bpf_verifier_env *env,
1666 			     struct bpf_reg_state *regs, u32 regno)
1667 {
1668 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1669 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1670 		/* Something bad happened, let's kill all regs except FP */
1671 		for (regno = 0; regno < BPF_REG_FP; regno++)
1672 			__mark_reg_not_init(env, regs + regno);
1673 		return;
1674 	}
1675 	__mark_reg_unknown(env, regs + regno);
1676 }
1677 
1678 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1679 				struct bpf_reg_state *reg)
1680 {
1681 	__mark_reg_unknown(env, reg);
1682 	reg->type = NOT_INIT;
1683 }
1684 
1685 static void mark_reg_not_init(struct bpf_verifier_env *env,
1686 			      struct bpf_reg_state *regs, u32 regno)
1687 {
1688 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1689 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1690 		/* Something bad happened, let's kill all regs except FP */
1691 		for (regno = 0; regno < BPF_REG_FP; regno++)
1692 			__mark_reg_not_init(env, regs + regno);
1693 		return;
1694 	}
1695 	__mark_reg_not_init(env, regs + regno);
1696 }
1697 
1698 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1699 			    struct bpf_reg_state *regs, u32 regno,
1700 			    enum bpf_reg_type reg_type,
1701 			    struct btf *btf, u32 btf_id,
1702 			    enum bpf_type_flag flag)
1703 {
1704 	if (reg_type == SCALAR_VALUE) {
1705 		mark_reg_unknown(env, regs, regno);
1706 		return;
1707 	}
1708 	mark_reg_known_zero(env, regs, regno);
1709 	regs[regno].type = PTR_TO_BTF_ID | flag;
1710 	regs[regno].btf = btf;
1711 	regs[regno].btf_id = btf_id;
1712 }
1713 
1714 #define DEF_NOT_SUBREG	(0)
1715 static void init_reg_state(struct bpf_verifier_env *env,
1716 			   struct bpf_func_state *state)
1717 {
1718 	struct bpf_reg_state *regs = state->regs;
1719 	int i;
1720 
1721 	for (i = 0; i < MAX_BPF_REG; i++) {
1722 		mark_reg_not_init(env, regs, i);
1723 		regs[i].live = REG_LIVE_NONE;
1724 		regs[i].parent = NULL;
1725 		regs[i].subreg_def = DEF_NOT_SUBREG;
1726 	}
1727 
1728 	/* frame pointer */
1729 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1730 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1731 	regs[BPF_REG_FP].frameno = state->frameno;
1732 }
1733 
1734 #define BPF_MAIN_FUNC (-1)
1735 static void init_func_state(struct bpf_verifier_env *env,
1736 			    struct bpf_func_state *state,
1737 			    int callsite, int frameno, int subprogno)
1738 {
1739 	state->callsite = callsite;
1740 	state->frameno = frameno;
1741 	state->subprogno = subprogno;
1742 	init_reg_state(env, state);
1743 	mark_verifier_state_scratched(env);
1744 }
1745 
1746 /* Similar to push_stack(), but for async callbacks */
1747 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1748 						int insn_idx, int prev_insn_idx,
1749 						int subprog)
1750 {
1751 	struct bpf_verifier_stack_elem *elem;
1752 	struct bpf_func_state *frame;
1753 
1754 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1755 	if (!elem)
1756 		goto err;
1757 
1758 	elem->insn_idx = insn_idx;
1759 	elem->prev_insn_idx = prev_insn_idx;
1760 	elem->next = env->head;
1761 	elem->log_pos = env->log.len_used;
1762 	env->head = elem;
1763 	env->stack_size++;
1764 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1765 		verbose(env,
1766 			"The sequence of %d jumps is too complex for async cb.\n",
1767 			env->stack_size);
1768 		goto err;
1769 	}
1770 	/* Unlike push_stack() do not copy_verifier_state().
1771 	 * The caller state doesn't matter.
1772 	 * This is async callback. It starts in a fresh stack.
1773 	 * Initialize it similar to do_check_common().
1774 	 */
1775 	elem->st.branches = 1;
1776 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1777 	if (!frame)
1778 		goto err;
1779 	init_func_state(env, frame,
1780 			BPF_MAIN_FUNC /* callsite */,
1781 			0 /* frameno within this callchain */,
1782 			subprog /* subprog number within this prog */);
1783 	elem->st.frame[0] = frame;
1784 	return &elem->st;
1785 err:
1786 	free_verifier_state(env->cur_state, true);
1787 	env->cur_state = NULL;
1788 	/* pop all elements and return */
1789 	while (!pop_stack(env, NULL, NULL, false));
1790 	return NULL;
1791 }
1792 
1793 
1794 enum reg_arg_type {
1795 	SRC_OP,		/* register is used as source operand */
1796 	DST_OP,		/* register is used as destination operand */
1797 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1798 };
1799 
1800 static int cmp_subprogs(const void *a, const void *b)
1801 {
1802 	return ((struct bpf_subprog_info *)a)->start -
1803 	       ((struct bpf_subprog_info *)b)->start;
1804 }
1805 
1806 static int find_subprog(struct bpf_verifier_env *env, int off)
1807 {
1808 	struct bpf_subprog_info *p;
1809 
1810 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1811 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1812 	if (!p)
1813 		return -ENOENT;
1814 	return p - env->subprog_info;
1815 
1816 }
1817 
1818 static int add_subprog(struct bpf_verifier_env *env, int off)
1819 {
1820 	int insn_cnt = env->prog->len;
1821 	int ret;
1822 
1823 	if (off >= insn_cnt || off < 0) {
1824 		verbose(env, "call to invalid destination\n");
1825 		return -EINVAL;
1826 	}
1827 	ret = find_subprog(env, off);
1828 	if (ret >= 0)
1829 		return ret;
1830 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1831 		verbose(env, "too many subprograms\n");
1832 		return -E2BIG;
1833 	}
1834 	/* determine subprog starts. The end is one before the next starts */
1835 	env->subprog_info[env->subprog_cnt++].start = off;
1836 	sort(env->subprog_info, env->subprog_cnt,
1837 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1838 	return env->subprog_cnt - 1;
1839 }
1840 
1841 #define MAX_KFUNC_DESCS 256
1842 #define MAX_KFUNC_BTFS	256
1843 
1844 struct bpf_kfunc_desc {
1845 	struct btf_func_model func_model;
1846 	u32 func_id;
1847 	s32 imm;
1848 	u16 offset;
1849 };
1850 
1851 struct bpf_kfunc_btf {
1852 	struct btf *btf;
1853 	struct module *module;
1854 	u16 offset;
1855 };
1856 
1857 struct bpf_kfunc_desc_tab {
1858 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1859 	u32 nr_descs;
1860 };
1861 
1862 struct bpf_kfunc_btf_tab {
1863 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1864 	u32 nr_descs;
1865 };
1866 
1867 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1868 {
1869 	const struct bpf_kfunc_desc *d0 = a;
1870 	const struct bpf_kfunc_desc *d1 = b;
1871 
1872 	/* func_id is not greater than BTF_MAX_TYPE */
1873 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1874 }
1875 
1876 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1877 {
1878 	const struct bpf_kfunc_btf *d0 = a;
1879 	const struct bpf_kfunc_btf *d1 = b;
1880 
1881 	return d0->offset - d1->offset;
1882 }
1883 
1884 static const struct bpf_kfunc_desc *
1885 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1886 {
1887 	struct bpf_kfunc_desc desc = {
1888 		.func_id = func_id,
1889 		.offset = offset,
1890 	};
1891 	struct bpf_kfunc_desc_tab *tab;
1892 
1893 	tab = prog->aux->kfunc_tab;
1894 	return bsearch(&desc, tab->descs, tab->nr_descs,
1895 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1896 }
1897 
1898 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1899 					 s16 offset)
1900 {
1901 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1902 	struct bpf_kfunc_btf_tab *tab;
1903 	struct bpf_kfunc_btf *b;
1904 	struct module *mod;
1905 	struct btf *btf;
1906 	int btf_fd;
1907 
1908 	tab = env->prog->aux->kfunc_btf_tab;
1909 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1910 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1911 	if (!b) {
1912 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1913 			verbose(env, "too many different module BTFs\n");
1914 			return ERR_PTR(-E2BIG);
1915 		}
1916 
1917 		if (bpfptr_is_null(env->fd_array)) {
1918 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1919 			return ERR_PTR(-EPROTO);
1920 		}
1921 
1922 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1923 					    offset * sizeof(btf_fd),
1924 					    sizeof(btf_fd)))
1925 			return ERR_PTR(-EFAULT);
1926 
1927 		btf = btf_get_by_fd(btf_fd);
1928 		if (IS_ERR(btf)) {
1929 			verbose(env, "invalid module BTF fd specified\n");
1930 			return btf;
1931 		}
1932 
1933 		if (!btf_is_module(btf)) {
1934 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1935 			btf_put(btf);
1936 			return ERR_PTR(-EINVAL);
1937 		}
1938 
1939 		mod = btf_try_get_module(btf);
1940 		if (!mod) {
1941 			btf_put(btf);
1942 			return ERR_PTR(-ENXIO);
1943 		}
1944 
1945 		b = &tab->descs[tab->nr_descs++];
1946 		b->btf = btf;
1947 		b->module = mod;
1948 		b->offset = offset;
1949 
1950 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1951 		     kfunc_btf_cmp_by_off, NULL);
1952 	}
1953 	return b->btf;
1954 }
1955 
1956 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1957 {
1958 	if (!tab)
1959 		return;
1960 
1961 	while (tab->nr_descs--) {
1962 		module_put(tab->descs[tab->nr_descs].module);
1963 		btf_put(tab->descs[tab->nr_descs].btf);
1964 	}
1965 	kfree(tab);
1966 }
1967 
1968 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
1969 {
1970 	if (offset) {
1971 		if (offset < 0) {
1972 			/* In the future, this can be allowed to increase limit
1973 			 * of fd index into fd_array, interpreted as u16.
1974 			 */
1975 			verbose(env, "negative offset disallowed for kernel module function call\n");
1976 			return ERR_PTR(-EINVAL);
1977 		}
1978 
1979 		return __find_kfunc_desc_btf(env, offset);
1980 	}
1981 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
1982 }
1983 
1984 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
1985 {
1986 	const struct btf_type *func, *func_proto;
1987 	struct bpf_kfunc_btf_tab *btf_tab;
1988 	struct bpf_kfunc_desc_tab *tab;
1989 	struct bpf_prog_aux *prog_aux;
1990 	struct bpf_kfunc_desc *desc;
1991 	const char *func_name;
1992 	struct btf *desc_btf;
1993 	unsigned long call_imm;
1994 	unsigned long addr;
1995 	int err;
1996 
1997 	prog_aux = env->prog->aux;
1998 	tab = prog_aux->kfunc_tab;
1999 	btf_tab = prog_aux->kfunc_btf_tab;
2000 	if (!tab) {
2001 		if (!btf_vmlinux) {
2002 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2003 			return -ENOTSUPP;
2004 		}
2005 
2006 		if (!env->prog->jit_requested) {
2007 			verbose(env, "JIT is required for calling kernel function\n");
2008 			return -ENOTSUPP;
2009 		}
2010 
2011 		if (!bpf_jit_supports_kfunc_call()) {
2012 			verbose(env, "JIT does not support calling kernel function\n");
2013 			return -ENOTSUPP;
2014 		}
2015 
2016 		if (!env->prog->gpl_compatible) {
2017 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2018 			return -EINVAL;
2019 		}
2020 
2021 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2022 		if (!tab)
2023 			return -ENOMEM;
2024 		prog_aux->kfunc_tab = tab;
2025 	}
2026 
2027 	/* func_id == 0 is always invalid, but instead of returning an error, be
2028 	 * conservative and wait until the code elimination pass before returning
2029 	 * error, so that invalid calls that get pruned out can be in BPF programs
2030 	 * loaded from userspace.  It is also required that offset be untouched
2031 	 * for such calls.
2032 	 */
2033 	if (!func_id && !offset)
2034 		return 0;
2035 
2036 	if (!btf_tab && offset) {
2037 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2038 		if (!btf_tab)
2039 			return -ENOMEM;
2040 		prog_aux->kfunc_btf_tab = btf_tab;
2041 	}
2042 
2043 	desc_btf = find_kfunc_desc_btf(env, offset);
2044 	if (IS_ERR(desc_btf)) {
2045 		verbose(env, "failed to find BTF for kernel function\n");
2046 		return PTR_ERR(desc_btf);
2047 	}
2048 
2049 	if (find_kfunc_desc(env->prog, func_id, offset))
2050 		return 0;
2051 
2052 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2053 		verbose(env, "too many different kernel function calls\n");
2054 		return -E2BIG;
2055 	}
2056 
2057 	func = btf_type_by_id(desc_btf, func_id);
2058 	if (!func || !btf_type_is_func(func)) {
2059 		verbose(env, "kernel btf_id %u is not a function\n",
2060 			func_id);
2061 		return -EINVAL;
2062 	}
2063 	func_proto = btf_type_by_id(desc_btf, func->type);
2064 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2065 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2066 			func_id);
2067 		return -EINVAL;
2068 	}
2069 
2070 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2071 	addr = kallsyms_lookup_name(func_name);
2072 	if (!addr) {
2073 		verbose(env, "cannot find address for kernel function %s\n",
2074 			func_name);
2075 		return -EINVAL;
2076 	}
2077 
2078 	call_imm = BPF_CALL_IMM(addr);
2079 	/* Check whether or not the relative offset overflows desc->imm */
2080 	if ((unsigned long)(s32)call_imm != call_imm) {
2081 		verbose(env, "address of kernel function %s is out of range\n",
2082 			func_name);
2083 		return -EINVAL;
2084 	}
2085 
2086 	desc = &tab->descs[tab->nr_descs++];
2087 	desc->func_id = func_id;
2088 	desc->imm = call_imm;
2089 	desc->offset = offset;
2090 	err = btf_distill_func_proto(&env->log, desc_btf,
2091 				     func_proto, func_name,
2092 				     &desc->func_model);
2093 	if (!err)
2094 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2095 		     kfunc_desc_cmp_by_id_off, NULL);
2096 	return err;
2097 }
2098 
2099 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
2100 {
2101 	const struct bpf_kfunc_desc *d0 = a;
2102 	const struct bpf_kfunc_desc *d1 = b;
2103 
2104 	if (d0->imm > d1->imm)
2105 		return 1;
2106 	else if (d0->imm < d1->imm)
2107 		return -1;
2108 	return 0;
2109 }
2110 
2111 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
2112 {
2113 	struct bpf_kfunc_desc_tab *tab;
2114 
2115 	tab = prog->aux->kfunc_tab;
2116 	if (!tab)
2117 		return;
2118 
2119 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2120 	     kfunc_desc_cmp_by_imm, NULL);
2121 }
2122 
2123 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2124 {
2125 	return !!prog->aux->kfunc_tab;
2126 }
2127 
2128 const struct btf_func_model *
2129 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2130 			 const struct bpf_insn *insn)
2131 {
2132 	const struct bpf_kfunc_desc desc = {
2133 		.imm = insn->imm,
2134 	};
2135 	const struct bpf_kfunc_desc *res;
2136 	struct bpf_kfunc_desc_tab *tab;
2137 
2138 	tab = prog->aux->kfunc_tab;
2139 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2140 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
2141 
2142 	return res ? &res->func_model : NULL;
2143 }
2144 
2145 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2146 {
2147 	struct bpf_subprog_info *subprog = env->subprog_info;
2148 	struct bpf_insn *insn = env->prog->insnsi;
2149 	int i, ret, insn_cnt = env->prog->len;
2150 
2151 	/* Add entry function. */
2152 	ret = add_subprog(env, 0);
2153 	if (ret)
2154 		return ret;
2155 
2156 	for (i = 0; i < insn_cnt; i++, insn++) {
2157 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2158 		    !bpf_pseudo_kfunc_call(insn))
2159 			continue;
2160 
2161 		if (!env->bpf_capable) {
2162 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2163 			return -EPERM;
2164 		}
2165 
2166 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2167 			ret = add_subprog(env, i + insn->imm + 1);
2168 		else
2169 			ret = add_kfunc_call(env, insn->imm, insn->off);
2170 
2171 		if (ret < 0)
2172 			return ret;
2173 	}
2174 
2175 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2176 	 * logic. 'subprog_cnt' should not be increased.
2177 	 */
2178 	subprog[env->subprog_cnt].start = insn_cnt;
2179 
2180 	if (env->log.level & BPF_LOG_LEVEL2)
2181 		for (i = 0; i < env->subprog_cnt; i++)
2182 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2183 
2184 	return 0;
2185 }
2186 
2187 static int check_subprogs(struct bpf_verifier_env *env)
2188 {
2189 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2190 	struct bpf_subprog_info *subprog = env->subprog_info;
2191 	struct bpf_insn *insn = env->prog->insnsi;
2192 	int insn_cnt = env->prog->len;
2193 
2194 	/* now check that all jumps are within the same subprog */
2195 	subprog_start = subprog[cur_subprog].start;
2196 	subprog_end = subprog[cur_subprog + 1].start;
2197 	for (i = 0; i < insn_cnt; i++) {
2198 		u8 code = insn[i].code;
2199 
2200 		if (code == (BPF_JMP | BPF_CALL) &&
2201 		    insn[i].imm == BPF_FUNC_tail_call &&
2202 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2203 			subprog[cur_subprog].has_tail_call = true;
2204 		if (BPF_CLASS(code) == BPF_LD &&
2205 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2206 			subprog[cur_subprog].has_ld_abs = true;
2207 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2208 			goto next;
2209 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2210 			goto next;
2211 		off = i + insn[i].off + 1;
2212 		if (off < subprog_start || off >= subprog_end) {
2213 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2214 			return -EINVAL;
2215 		}
2216 next:
2217 		if (i == subprog_end - 1) {
2218 			/* to avoid fall-through from one subprog into another
2219 			 * the last insn of the subprog should be either exit
2220 			 * or unconditional jump back
2221 			 */
2222 			if (code != (BPF_JMP | BPF_EXIT) &&
2223 			    code != (BPF_JMP | BPF_JA)) {
2224 				verbose(env, "last insn is not an exit or jmp\n");
2225 				return -EINVAL;
2226 			}
2227 			subprog_start = subprog_end;
2228 			cur_subprog++;
2229 			if (cur_subprog < env->subprog_cnt)
2230 				subprog_end = subprog[cur_subprog + 1].start;
2231 		}
2232 	}
2233 	return 0;
2234 }
2235 
2236 /* Parentage chain of this register (or stack slot) should take care of all
2237  * issues like callee-saved registers, stack slot allocation time, etc.
2238  */
2239 static int mark_reg_read(struct bpf_verifier_env *env,
2240 			 const struct bpf_reg_state *state,
2241 			 struct bpf_reg_state *parent, u8 flag)
2242 {
2243 	bool writes = parent == state->parent; /* Observe write marks */
2244 	int cnt = 0;
2245 
2246 	while (parent) {
2247 		/* if read wasn't screened by an earlier write ... */
2248 		if (writes && state->live & REG_LIVE_WRITTEN)
2249 			break;
2250 		if (parent->live & REG_LIVE_DONE) {
2251 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2252 				reg_type_str(env, parent->type),
2253 				parent->var_off.value, parent->off);
2254 			return -EFAULT;
2255 		}
2256 		/* The first condition is more likely to be true than the
2257 		 * second, checked it first.
2258 		 */
2259 		if ((parent->live & REG_LIVE_READ) == flag ||
2260 		    parent->live & REG_LIVE_READ64)
2261 			/* The parentage chain never changes and
2262 			 * this parent was already marked as LIVE_READ.
2263 			 * There is no need to keep walking the chain again and
2264 			 * keep re-marking all parents as LIVE_READ.
2265 			 * This case happens when the same register is read
2266 			 * multiple times without writes into it in-between.
2267 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2268 			 * then no need to set the weak REG_LIVE_READ32.
2269 			 */
2270 			break;
2271 		/* ... then we depend on parent's value */
2272 		parent->live |= flag;
2273 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2274 		if (flag == REG_LIVE_READ64)
2275 			parent->live &= ~REG_LIVE_READ32;
2276 		state = parent;
2277 		parent = state->parent;
2278 		writes = true;
2279 		cnt++;
2280 	}
2281 
2282 	if (env->longest_mark_read_walk < cnt)
2283 		env->longest_mark_read_walk = cnt;
2284 	return 0;
2285 }
2286 
2287 /* This function is supposed to be used by the following 32-bit optimization
2288  * code only. It returns TRUE if the source or destination register operates
2289  * on 64-bit, otherwise return FALSE.
2290  */
2291 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2292 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2293 {
2294 	u8 code, class, op;
2295 
2296 	code = insn->code;
2297 	class = BPF_CLASS(code);
2298 	op = BPF_OP(code);
2299 	if (class == BPF_JMP) {
2300 		/* BPF_EXIT for "main" will reach here. Return TRUE
2301 		 * conservatively.
2302 		 */
2303 		if (op == BPF_EXIT)
2304 			return true;
2305 		if (op == BPF_CALL) {
2306 			/* BPF to BPF call will reach here because of marking
2307 			 * caller saved clobber with DST_OP_NO_MARK for which we
2308 			 * don't care the register def because they are anyway
2309 			 * marked as NOT_INIT already.
2310 			 */
2311 			if (insn->src_reg == BPF_PSEUDO_CALL)
2312 				return false;
2313 			/* Helper call will reach here because of arg type
2314 			 * check, conservatively return TRUE.
2315 			 */
2316 			if (t == SRC_OP)
2317 				return true;
2318 
2319 			return false;
2320 		}
2321 	}
2322 
2323 	if (class == BPF_ALU64 || class == BPF_JMP ||
2324 	    /* BPF_END always use BPF_ALU class. */
2325 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2326 		return true;
2327 
2328 	if (class == BPF_ALU || class == BPF_JMP32)
2329 		return false;
2330 
2331 	if (class == BPF_LDX) {
2332 		if (t != SRC_OP)
2333 			return BPF_SIZE(code) == BPF_DW;
2334 		/* LDX source must be ptr. */
2335 		return true;
2336 	}
2337 
2338 	if (class == BPF_STX) {
2339 		/* BPF_STX (including atomic variants) has multiple source
2340 		 * operands, one of which is a ptr. Check whether the caller is
2341 		 * asking about it.
2342 		 */
2343 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2344 			return true;
2345 		return BPF_SIZE(code) == BPF_DW;
2346 	}
2347 
2348 	if (class == BPF_LD) {
2349 		u8 mode = BPF_MODE(code);
2350 
2351 		/* LD_IMM64 */
2352 		if (mode == BPF_IMM)
2353 			return true;
2354 
2355 		/* Both LD_IND and LD_ABS return 32-bit data. */
2356 		if (t != SRC_OP)
2357 			return  false;
2358 
2359 		/* Implicit ctx ptr. */
2360 		if (regno == BPF_REG_6)
2361 			return true;
2362 
2363 		/* Explicit source could be any width. */
2364 		return true;
2365 	}
2366 
2367 	if (class == BPF_ST)
2368 		/* The only source register for BPF_ST is a ptr. */
2369 		return true;
2370 
2371 	/* Conservatively return true at default. */
2372 	return true;
2373 }
2374 
2375 /* Return the regno defined by the insn, or -1. */
2376 static int insn_def_regno(const struct bpf_insn *insn)
2377 {
2378 	switch (BPF_CLASS(insn->code)) {
2379 	case BPF_JMP:
2380 	case BPF_JMP32:
2381 	case BPF_ST:
2382 		return -1;
2383 	case BPF_STX:
2384 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2385 		    (insn->imm & BPF_FETCH)) {
2386 			if (insn->imm == BPF_CMPXCHG)
2387 				return BPF_REG_0;
2388 			else
2389 				return insn->src_reg;
2390 		} else {
2391 			return -1;
2392 		}
2393 	default:
2394 		return insn->dst_reg;
2395 	}
2396 }
2397 
2398 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2399 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2400 {
2401 	int dst_reg = insn_def_regno(insn);
2402 
2403 	if (dst_reg == -1)
2404 		return false;
2405 
2406 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2407 }
2408 
2409 static void mark_insn_zext(struct bpf_verifier_env *env,
2410 			   struct bpf_reg_state *reg)
2411 {
2412 	s32 def_idx = reg->subreg_def;
2413 
2414 	if (def_idx == DEF_NOT_SUBREG)
2415 		return;
2416 
2417 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2418 	/* The dst will be zero extended, so won't be sub-register anymore. */
2419 	reg->subreg_def = DEF_NOT_SUBREG;
2420 }
2421 
2422 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2423 			 enum reg_arg_type t)
2424 {
2425 	struct bpf_verifier_state *vstate = env->cur_state;
2426 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2427 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2428 	struct bpf_reg_state *reg, *regs = state->regs;
2429 	bool rw64;
2430 
2431 	if (regno >= MAX_BPF_REG) {
2432 		verbose(env, "R%d is invalid\n", regno);
2433 		return -EINVAL;
2434 	}
2435 
2436 	mark_reg_scratched(env, regno);
2437 
2438 	reg = &regs[regno];
2439 	rw64 = is_reg64(env, insn, regno, reg, t);
2440 	if (t == SRC_OP) {
2441 		/* check whether register used as source operand can be read */
2442 		if (reg->type == NOT_INIT) {
2443 			verbose(env, "R%d !read_ok\n", regno);
2444 			return -EACCES;
2445 		}
2446 		/* We don't need to worry about FP liveness because it's read-only */
2447 		if (regno == BPF_REG_FP)
2448 			return 0;
2449 
2450 		if (rw64)
2451 			mark_insn_zext(env, reg);
2452 
2453 		return mark_reg_read(env, reg, reg->parent,
2454 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2455 	} else {
2456 		/* check whether register used as dest operand can be written to */
2457 		if (regno == BPF_REG_FP) {
2458 			verbose(env, "frame pointer is read only\n");
2459 			return -EACCES;
2460 		}
2461 		reg->live |= REG_LIVE_WRITTEN;
2462 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2463 		if (t == DST_OP)
2464 			mark_reg_unknown(env, regs, regno);
2465 	}
2466 	return 0;
2467 }
2468 
2469 /* for any branch, call, exit record the history of jmps in the given state */
2470 static int push_jmp_history(struct bpf_verifier_env *env,
2471 			    struct bpf_verifier_state *cur)
2472 {
2473 	u32 cnt = cur->jmp_history_cnt;
2474 	struct bpf_idx_pair *p;
2475 
2476 	cnt++;
2477 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2478 	if (!p)
2479 		return -ENOMEM;
2480 	p[cnt - 1].idx = env->insn_idx;
2481 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2482 	cur->jmp_history = p;
2483 	cur->jmp_history_cnt = cnt;
2484 	return 0;
2485 }
2486 
2487 /* Backtrack one insn at a time. If idx is not at the top of recorded
2488  * history then previous instruction came from straight line execution.
2489  */
2490 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2491 			     u32 *history)
2492 {
2493 	u32 cnt = *history;
2494 
2495 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2496 		i = st->jmp_history[cnt - 1].prev_idx;
2497 		(*history)--;
2498 	} else {
2499 		i--;
2500 	}
2501 	return i;
2502 }
2503 
2504 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2505 {
2506 	const struct btf_type *func;
2507 	struct btf *desc_btf;
2508 
2509 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2510 		return NULL;
2511 
2512 	desc_btf = find_kfunc_desc_btf(data, insn->off);
2513 	if (IS_ERR(desc_btf))
2514 		return "<error>";
2515 
2516 	func = btf_type_by_id(desc_btf, insn->imm);
2517 	return btf_name_by_offset(desc_btf, func->name_off);
2518 }
2519 
2520 /* For given verifier state backtrack_insn() is called from the last insn to
2521  * the first insn. Its purpose is to compute a bitmask of registers and
2522  * stack slots that needs precision in the parent verifier state.
2523  */
2524 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2525 			  u32 *reg_mask, u64 *stack_mask)
2526 {
2527 	const struct bpf_insn_cbs cbs = {
2528 		.cb_call	= disasm_kfunc_name,
2529 		.cb_print	= verbose,
2530 		.private_data	= env,
2531 	};
2532 	struct bpf_insn *insn = env->prog->insnsi + idx;
2533 	u8 class = BPF_CLASS(insn->code);
2534 	u8 opcode = BPF_OP(insn->code);
2535 	u8 mode = BPF_MODE(insn->code);
2536 	u32 dreg = 1u << insn->dst_reg;
2537 	u32 sreg = 1u << insn->src_reg;
2538 	u32 spi;
2539 
2540 	if (insn->code == 0)
2541 		return 0;
2542 	if (env->log.level & BPF_LOG_LEVEL2) {
2543 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2544 		verbose(env, "%d: ", idx);
2545 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2546 	}
2547 
2548 	if (class == BPF_ALU || class == BPF_ALU64) {
2549 		if (!(*reg_mask & dreg))
2550 			return 0;
2551 		if (opcode == BPF_MOV) {
2552 			if (BPF_SRC(insn->code) == BPF_X) {
2553 				/* dreg = sreg
2554 				 * dreg needs precision after this insn
2555 				 * sreg needs precision before this insn
2556 				 */
2557 				*reg_mask &= ~dreg;
2558 				*reg_mask |= sreg;
2559 			} else {
2560 				/* dreg = K
2561 				 * dreg needs precision after this insn.
2562 				 * Corresponding register is already marked
2563 				 * as precise=true in this verifier state.
2564 				 * No further markings in parent are necessary
2565 				 */
2566 				*reg_mask &= ~dreg;
2567 			}
2568 		} else {
2569 			if (BPF_SRC(insn->code) == BPF_X) {
2570 				/* dreg += sreg
2571 				 * both dreg and sreg need precision
2572 				 * before this insn
2573 				 */
2574 				*reg_mask |= sreg;
2575 			} /* else dreg += K
2576 			   * dreg still needs precision before this insn
2577 			   */
2578 		}
2579 	} else if (class == BPF_LDX) {
2580 		if (!(*reg_mask & dreg))
2581 			return 0;
2582 		*reg_mask &= ~dreg;
2583 
2584 		/* scalars can only be spilled into stack w/o losing precision.
2585 		 * Load from any other memory can be zero extended.
2586 		 * The desire to keep that precision is already indicated
2587 		 * by 'precise' mark in corresponding register of this state.
2588 		 * No further tracking necessary.
2589 		 */
2590 		if (insn->src_reg != BPF_REG_FP)
2591 			return 0;
2592 
2593 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2594 		 * that [fp - off] slot contains scalar that needs to be
2595 		 * tracked with precision
2596 		 */
2597 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2598 		if (spi >= 64) {
2599 			verbose(env, "BUG spi %d\n", spi);
2600 			WARN_ONCE(1, "verifier backtracking bug");
2601 			return -EFAULT;
2602 		}
2603 		*stack_mask |= 1ull << spi;
2604 	} else if (class == BPF_STX || class == BPF_ST) {
2605 		if (*reg_mask & dreg)
2606 			/* stx & st shouldn't be using _scalar_ dst_reg
2607 			 * to access memory. It means backtracking
2608 			 * encountered a case of pointer subtraction.
2609 			 */
2610 			return -ENOTSUPP;
2611 		/* scalars can only be spilled into stack */
2612 		if (insn->dst_reg != BPF_REG_FP)
2613 			return 0;
2614 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2615 		if (spi >= 64) {
2616 			verbose(env, "BUG spi %d\n", spi);
2617 			WARN_ONCE(1, "verifier backtracking bug");
2618 			return -EFAULT;
2619 		}
2620 		if (!(*stack_mask & (1ull << spi)))
2621 			return 0;
2622 		*stack_mask &= ~(1ull << spi);
2623 		if (class == BPF_STX)
2624 			*reg_mask |= sreg;
2625 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2626 		if (opcode == BPF_CALL) {
2627 			if (insn->src_reg == BPF_PSEUDO_CALL)
2628 				return -ENOTSUPP;
2629 			/* regular helper call sets R0 */
2630 			*reg_mask &= ~1;
2631 			if (*reg_mask & 0x3f) {
2632 				/* if backtracing was looking for registers R1-R5
2633 				 * they should have been found already.
2634 				 */
2635 				verbose(env, "BUG regs %x\n", *reg_mask);
2636 				WARN_ONCE(1, "verifier backtracking bug");
2637 				return -EFAULT;
2638 			}
2639 		} else if (opcode == BPF_EXIT) {
2640 			return -ENOTSUPP;
2641 		}
2642 	} else if (class == BPF_LD) {
2643 		if (!(*reg_mask & dreg))
2644 			return 0;
2645 		*reg_mask &= ~dreg;
2646 		/* It's ld_imm64 or ld_abs or ld_ind.
2647 		 * For ld_imm64 no further tracking of precision
2648 		 * into parent is necessary
2649 		 */
2650 		if (mode == BPF_IND || mode == BPF_ABS)
2651 			/* to be analyzed */
2652 			return -ENOTSUPP;
2653 	}
2654 	return 0;
2655 }
2656 
2657 /* the scalar precision tracking algorithm:
2658  * . at the start all registers have precise=false.
2659  * . scalar ranges are tracked as normal through alu and jmp insns.
2660  * . once precise value of the scalar register is used in:
2661  *   .  ptr + scalar alu
2662  *   . if (scalar cond K|scalar)
2663  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2664  *   backtrack through the verifier states and mark all registers and
2665  *   stack slots with spilled constants that these scalar regisers
2666  *   should be precise.
2667  * . during state pruning two registers (or spilled stack slots)
2668  *   are equivalent if both are not precise.
2669  *
2670  * Note the verifier cannot simply walk register parentage chain,
2671  * since many different registers and stack slots could have been
2672  * used to compute single precise scalar.
2673  *
2674  * The approach of starting with precise=true for all registers and then
2675  * backtrack to mark a register as not precise when the verifier detects
2676  * that program doesn't care about specific value (e.g., when helper
2677  * takes register as ARG_ANYTHING parameter) is not safe.
2678  *
2679  * It's ok to walk single parentage chain of the verifier states.
2680  * It's possible that this backtracking will go all the way till 1st insn.
2681  * All other branches will be explored for needing precision later.
2682  *
2683  * The backtracking needs to deal with cases like:
2684  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2685  * r9 -= r8
2686  * r5 = r9
2687  * if r5 > 0x79f goto pc+7
2688  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2689  * r5 += 1
2690  * ...
2691  * call bpf_perf_event_output#25
2692  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2693  *
2694  * and this case:
2695  * r6 = 1
2696  * call foo // uses callee's r6 inside to compute r0
2697  * r0 += r6
2698  * if r0 == 0 goto
2699  *
2700  * to track above reg_mask/stack_mask needs to be independent for each frame.
2701  *
2702  * Also if parent's curframe > frame where backtracking started,
2703  * the verifier need to mark registers in both frames, otherwise callees
2704  * may incorrectly prune callers. This is similar to
2705  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2706  *
2707  * For now backtracking falls back into conservative marking.
2708  */
2709 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2710 				     struct bpf_verifier_state *st)
2711 {
2712 	struct bpf_func_state *func;
2713 	struct bpf_reg_state *reg;
2714 	int i, j;
2715 
2716 	/* big hammer: mark all scalars precise in this path.
2717 	 * pop_stack may still get !precise scalars.
2718 	 */
2719 	for (; st; st = st->parent)
2720 		for (i = 0; i <= st->curframe; i++) {
2721 			func = st->frame[i];
2722 			for (j = 0; j < BPF_REG_FP; j++) {
2723 				reg = &func->regs[j];
2724 				if (reg->type != SCALAR_VALUE)
2725 					continue;
2726 				reg->precise = true;
2727 			}
2728 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2729 				if (!is_spilled_reg(&func->stack[j]))
2730 					continue;
2731 				reg = &func->stack[j].spilled_ptr;
2732 				if (reg->type != SCALAR_VALUE)
2733 					continue;
2734 				reg->precise = true;
2735 			}
2736 		}
2737 }
2738 
2739 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2740 				  int spi)
2741 {
2742 	struct bpf_verifier_state *st = env->cur_state;
2743 	int first_idx = st->first_insn_idx;
2744 	int last_idx = env->insn_idx;
2745 	struct bpf_func_state *func;
2746 	struct bpf_reg_state *reg;
2747 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2748 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2749 	bool skip_first = true;
2750 	bool new_marks = false;
2751 	int i, err;
2752 
2753 	if (!env->bpf_capable)
2754 		return 0;
2755 
2756 	func = st->frame[st->curframe];
2757 	if (regno >= 0) {
2758 		reg = &func->regs[regno];
2759 		if (reg->type != SCALAR_VALUE) {
2760 			WARN_ONCE(1, "backtracing misuse");
2761 			return -EFAULT;
2762 		}
2763 		if (!reg->precise)
2764 			new_marks = true;
2765 		else
2766 			reg_mask = 0;
2767 		reg->precise = true;
2768 	}
2769 
2770 	while (spi >= 0) {
2771 		if (!is_spilled_reg(&func->stack[spi])) {
2772 			stack_mask = 0;
2773 			break;
2774 		}
2775 		reg = &func->stack[spi].spilled_ptr;
2776 		if (reg->type != SCALAR_VALUE) {
2777 			stack_mask = 0;
2778 			break;
2779 		}
2780 		if (!reg->precise)
2781 			new_marks = true;
2782 		else
2783 			stack_mask = 0;
2784 		reg->precise = true;
2785 		break;
2786 	}
2787 
2788 	if (!new_marks)
2789 		return 0;
2790 	if (!reg_mask && !stack_mask)
2791 		return 0;
2792 	for (;;) {
2793 		DECLARE_BITMAP(mask, 64);
2794 		u32 history = st->jmp_history_cnt;
2795 
2796 		if (env->log.level & BPF_LOG_LEVEL2)
2797 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2798 		for (i = last_idx;;) {
2799 			if (skip_first) {
2800 				err = 0;
2801 				skip_first = false;
2802 			} else {
2803 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2804 			}
2805 			if (err == -ENOTSUPP) {
2806 				mark_all_scalars_precise(env, st);
2807 				return 0;
2808 			} else if (err) {
2809 				return err;
2810 			}
2811 			if (!reg_mask && !stack_mask)
2812 				/* Found assignment(s) into tracked register in this state.
2813 				 * Since this state is already marked, just return.
2814 				 * Nothing to be tracked further in the parent state.
2815 				 */
2816 				return 0;
2817 			if (i == first_idx)
2818 				break;
2819 			i = get_prev_insn_idx(st, i, &history);
2820 			if (i >= env->prog->len) {
2821 				/* This can happen if backtracking reached insn 0
2822 				 * and there are still reg_mask or stack_mask
2823 				 * to backtrack.
2824 				 * It means the backtracking missed the spot where
2825 				 * particular register was initialized with a constant.
2826 				 */
2827 				verbose(env, "BUG backtracking idx %d\n", i);
2828 				WARN_ONCE(1, "verifier backtracking bug");
2829 				return -EFAULT;
2830 			}
2831 		}
2832 		st = st->parent;
2833 		if (!st)
2834 			break;
2835 
2836 		new_marks = false;
2837 		func = st->frame[st->curframe];
2838 		bitmap_from_u64(mask, reg_mask);
2839 		for_each_set_bit(i, mask, 32) {
2840 			reg = &func->regs[i];
2841 			if (reg->type != SCALAR_VALUE) {
2842 				reg_mask &= ~(1u << i);
2843 				continue;
2844 			}
2845 			if (!reg->precise)
2846 				new_marks = true;
2847 			reg->precise = true;
2848 		}
2849 
2850 		bitmap_from_u64(mask, stack_mask);
2851 		for_each_set_bit(i, mask, 64) {
2852 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2853 				/* the sequence of instructions:
2854 				 * 2: (bf) r3 = r10
2855 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2856 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2857 				 * doesn't contain jmps. It's backtracked
2858 				 * as a single block.
2859 				 * During backtracking insn 3 is not recognized as
2860 				 * stack access, so at the end of backtracking
2861 				 * stack slot fp-8 is still marked in stack_mask.
2862 				 * However the parent state may not have accessed
2863 				 * fp-8 and it's "unallocated" stack space.
2864 				 * In such case fallback to conservative.
2865 				 */
2866 				mark_all_scalars_precise(env, st);
2867 				return 0;
2868 			}
2869 
2870 			if (!is_spilled_reg(&func->stack[i])) {
2871 				stack_mask &= ~(1ull << i);
2872 				continue;
2873 			}
2874 			reg = &func->stack[i].spilled_ptr;
2875 			if (reg->type != SCALAR_VALUE) {
2876 				stack_mask &= ~(1ull << i);
2877 				continue;
2878 			}
2879 			if (!reg->precise)
2880 				new_marks = true;
2881 			reg->precise = true;
2882 		}
2883 		if (env->log.level & BPF_LOG_LEVEL2) {
2884 			verbose(env, "parent %s regs=%x stack=%llx marks:",
2885 				new_marks ? "didn't have" : "already had",
2886 				reg_mask, stack_mask);
2887 			print_verifier_state(env, func, true);
2888 		}
2889 
2890 		if (!reg_mask && !stack_mask)
2891 			break;
2892 		if (!new_marks)
2893 			break;
2894 
2895 		last_idx = st->last_insn_idx;
2896 		first_idx = st->first_insn_idx;
2897 	}
2898 	return 0;
2899 }
2900 
2901 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2902 {
2903 	return __mark_chain_precision(env, regno, -1);
2904 }
2905 
2906 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2907 {
2908 	return __mark_chain_precision(env, -1, spi);
2909 }
2910 
2911 static bool is_spillable_regtype(enum bpf_reg_type type)
2912 {
2913 	switch (base_type(type)) {
2914 	case PTR_TO_MAP_VALUE:
2915 	case PTR_TO_STACK:
2916 	case PTR_TO_CTX:
2917 	case PTR_TO_PACKET:
2918 	case PTR_TO_PACKET_META:
2919 	case PTR_TO_PACKET_END:
2920 	case PTR_TO_FLOW_KEYS:
2921 	case CONST_PTR_TO_MAP:
2922 	case PTR_TO_SOCKET:
2923 	case PTR_TO_SOCK_COMMON:
2924 	case PTR_TO_TCP_SOCK:
2925 	case PTR_TO_XDP_SOCK:
2926 	case PTR_TO_BTF_ID:
2927 	case PTR_TO_BUF:
2928 	case PTR_TO_MEM:
2929 	case PTR_TO_FUNC:
2930 	case PTR_TO_MAP_KEY:
2931 		return true;
2932 	default:
2933 		return false;
2934 	}
2935 }
2936 
2937 /* Does this register contain a constant zero? */
2938 static bool register_is_null(struct bpf_reg_state *reg)
2939 {
2940 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2941 }
2942 
2943 static bool register_is_const(struct bpf_reg_state *reg)
2944 {
2945 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2946 }
2947 
2948 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2949 {
2950 	return tnum_is_unknown(reg->var_off) &&
2951 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2952 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2953 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2954 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2955 }
2956 
2957 static bool register_is_bounded(struct bpf_reg_state *reg)
2958 {
2959 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2960 }
2961 
2962 static bool __is_pointer_value(bool allow_ptr_leaks,
2963 			       const struct bpf_reg_state *reg)
2964 {
2965 	if (allow_ptr_leaks)
2966 		return false;
2967 
2968 	return reg->type != SCALAR_VALUE;
2969 }
2970 
2971 static void save_register_state(struct bpf_func_state *state,
2972 				int spi, struct bpf_reg_state *reg,
2973 				int size)
2974 {
2975 	int i;
2976 
2977 	state->stack[spi].spilled_ptr = *reg;
2978 	if (size == BPF_REG_SIZE)
2979 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2980 
2981 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2982 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2983 
2984 	/* size < 8 bytes spill */
2985 	for (; i; i--)
2986 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2987 }
2988 
2989 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2990  * stack boundary and alignment are checked in check_mem_access()
2991  */
2992 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2993 				       /* stack frame we're writing to */
2994 				       struct bpf_func_state *state,
2995 				       int off, int size, int value_regno,
2996 				       int insn_idx)
2997 {
2998 	struct bpf_func_state *cur; /* state of the current function */
2999 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
3000 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
3001 	struct bpf_reg_state *reg = NULL;
3002 
3003 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
3004 	if (err)
3005 		return err;
3006 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
3007 	 * so it's aligned access and [off, off + size) are within stack limits
3008 	 */
3009 	if (!env->allow_ptr_leaks &&
3010 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
3011 	    size != BPF_REG_SIZE) {
3012 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
3013 		return -EACCES;
3014 	}
3015 
3016 	cur = env->cur_state->frame[env->cur_state->curframe];
3017 	if (value_regno >= 0)
3018 		reg = &cur->regs[value_regno];
3019 	if (!env->bypass_spec_v4) {
3020 		bool sanitize = reg && is_spillable_regtype(reg->type);
3021 
3022 		for (i = 0; i < size; i++) {
3023 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
3024 				sanitize = true;
3025 				break;
3026 			}
3027 		}
3028 
3029 		if (sanitize)
3030 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
3031 	}
3032 
3033 	mark_stack_slot_scratched(env, spi);
3034 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
3035 	    !register_is_null(reg) && env->bpf_capable) {
3036 		if (dst_reg != BPF_REG_FP) {
3037 			/* The backtracking logic can only recognize explicit
3038 			 * stack slot address like [fp - 8]. Other spill of
3039 			 * scalar via different register has to be conservative.
3040 			 * Backtrack from here and mark all registers as precise
3041 			 * that contributed into 'reg' being a constant.
3042 			 */
3043 			err = mark_chain_precision(env, value_regno);
3044 			if (err)
3045 				return err;
3046 		}
3047 		save_register_state(state, spi, reg, size);
3048 	} else if (reg && is_spillable_regtype(reg->type)) {
3049 		/* register containing pointer is being spilled into stack */
3050 		if (size != BPF_REG_SIZE) {
3051 			verbose_linfo(env, insn_idx, "; ");
3052 			verbose(env, "invalid size of register spill\n");
3053 			return -EACCES;
3054 		}
3055 		if (state != cur && reg->type == PTR_TO_STACK) {
3056 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
3057 			return -EINVAL;
3058 		}
3059 		save_register_state(state, spi, reg, size);
3060 	} else {
3061 		u8 type = STACK_MISC;
3062 
3063 		/* regular write of data into stack destroys any spilled ptr */
3064 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3065 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
3066 		if (is_spilled_reg(&state->stack[spi]))
3067 			for (i = 0; i < BPF_REG_SIZE; i++)
3068 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
3069 
3070 		/* only mark the slot as written if all 8 bytes were written
3071 		 * otherwise read propagation may incorrectly stop too soon
3072 		 * when stack slots are partially written.
3073 		 * This heuristic means that read propagation will be
3074 		 * conservative, since it will add reg_live_read marks
3075 		 * to stack slots all the way to first state when programs
3076 		 * writes+reads less than 8 bytes
3077 		 */
3078 		if (size == BPF_REG_SIZE)
3079 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
3080 
3081 		/* when we zero initialize stack slots mark them as such */
3082 		if (reg && register_is_null(reg)) {
3083 			/* backtracking doesn't work for STACK_ZERO yet. */
3084 			err = mark_chain_precision(env, value_regno);
3085 			if (err)
3086 				return err;
3087 			type = STACK_ZERO;
3088 		}
3089 
3090 		/* Mark slots affected by this stack write. */
3091 		for (i = 0; i < size; i++)
3092 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
3093 				type;
3094 	}
3095 	return 0;
3096 }
3097 
3098 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
3099  * known to contain a variable offset.
3100  * This function checks whether the write is permitted and conservatively
3101  * tracks the effects of the write, considering that each stack slot in the
3102  * dynamic range is potentially written to.
3103  *
3104  * 'off' includes 'regno->off'.
3105  * 'value_regno' can be -1, meaning that an unknown value is being written to
3106  * the stack.
3107  *
3108  * Spilled pointers in range are not marked as written because we don't know
3109  * what's going to be actually written. This means that read propagation for
3110  * future reads cannot be terminated by this write.
3111  *
3112  * For privileged programs, uninitialized stack slots are considered
3113  * initialized by this write (even though we don't know exactly what offsets
3114  * are going to be written to). The idea is that we don't want the verifier to
3115  * reject future reads that access slots written to through variable offsets.
3116  */
3117 static int check_stack_write_var_off(struct bpf_verifier_env *env,
3118 				     /* func where register points to */
3119 				     struct bpf_func_state *state,
3120 				     int ptr_regno, int off, int size,
3121 				     int value_regno, int insn_idx)
3122 {
3123 	struct bpf_func_state *cur; /* state of the current function */
3124 	int min_off, max_off;
3125 	int i, err;
3126 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
3127 	bool writing_zero = false;
3128 	/* set if the fact that we're writing a zero is used to let any
3129 	 * stack slots remain STACK_ZERO
3130 	 */
3131 	bool zero_used = false;
3132 
3133 	cur = env->cur_state->frame[env->cur_state->curframe];
3134 	ptr_reg = &cur->regs[ptr_regno];
3135 	min_off = ptr_reg->smin_value + off;
3136 	max_off = ptr_reg->smax_value + off + size;
3137 	if (value_regno >= 0)
3138 		value_reg = &cur->regs[value_regno];
3139 	if (value_reg && register_is_null(value_reg))
3140 		writing_zero = true;
3141 
3142 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
3143 	if (err)
3144 		return err;
3145 
3146 
3147 	/* Variable offset writes destroy any spilled pointers in range. */
3148 	for (i = min_off; i < max_off; i++) {
3149 		u8 new_type, *stype;
3150 		int slot, spi;
3151 
3152 		slot = -i - 1;
3153 		spi = slot / BPF_REG_SIZE;
3154 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3155 		mark_stack_slot_scratched(env, spi);
3156 
3157 		if (!env->allow_ptr_leaks
3158 				&& *stype != NOT_INIT
3159 				&& *stype != SCALAR_VALUE) {
3160 			/* Reject the write if there's are spilled pointers in
3161 			 * range. If we didn't reject here, the ptr status
3162 			 * would be erased below (even though not all slots are
3163 			 * actually overwritten), possibly opening the door to
3164 			 * leaks.
3165 			 */
3166 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3167 				insn_idx, i);
3168 			return -EINVAL;
3169 		}
3170 
3171 		/* Erase all spilled pointers. */
3172 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3173 
3174 		/* Update the slot type. */
3175 		new_type = STACK_MISC;
3176 		if (writing_zero && *stype == STACK_ZERO) {
3177 			new_type = STACK_ZERO;
3178 			zero_used = true;
3179 		}
3180 		/* If the slot is STACK_INVALID, we check whether it's OK to
3181 		 * pretend that it will be initialized by this write. The slot
3182 		 * might not actually be written to, and so if we mark it as
3183 		 * initialized future reads might leak uninitialized memory.
3184 		 * For privileged programs, we will accept such reads to slots
3185 		 * that may or may not be written because, if we're reject
3186 		 * them, the error would be too confusing.
3187 		 */
3188 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3189 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3190 					insn_idx, i);
3191 			return -EINVAL;
3192 		}
3193 		*stype = new_type;
3194 	}
3195 	if (zero_used) {
3196 		/* backtracking doesn't work for STACK_ZERO yet. */
3197 		err = mark_chain_precision(env, value_regno);
3198 		if (err)
3199 			return err;
3200 	}
3201 	return 0;
3202 }
3203 
3204 /* When register 'dst_regno' is assigned some values from stack[min_off,
3205  * max_off), we set the register's type according to the types of the
3206  * respective stack slots. If all the stack values are known to be zeros, then
3207  * so is the destination reg. Otherwise, the register is considered to be
3208  * SCALAR. This function does not deal with register filling; the caller must
3209  * ensure that all spilled registers in the stack range have been marked as
3210  * read.
3211  */
3212 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3213 				/* func where src register points to */
3214 				struct bpf_func_state *ptr_state,
3215 				int min_off, int max_off, int dst_regno)
3216 {
3217 	struct bpf_verifier_state *vstate = env->cur_state;
3218 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3219 	int i, slot, spi;
3220 	u8 *stype;
3221 	int zeros = 0;
3222 
3223 	for (i = min_off; i < max_off; i++) {
3224 		slot = -i - 1;
3225 		spi = slot / BPF_REG_SIZE;
3226 		stype = ptr_state->stack[spi].slot_type;
3227 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3228 			break;
3229 		zeros++;
3230 	}
3231 	if (zeros == max_off - min_off) {
3232 		/* any access_size read into register is zero extended,
3233 		 * so the whole register == const_zero
3234 		 */
3235 		__mark_reg_const_zero(&state->regs[dst_regno]);
3236 		/* backtracking doesn't support STACK_ZERO yet,
3237 		 * so mark it precise here, so that later
3238 		 * backtracking can stop here.
3239 		 * Backtracking may not need this if this register
3240 		 * doesn't participate in pointer adjustment.
3241 		 * Forward propagation of precise flag is not
3242 		 * necessary either. This mark is only to stop
3243 		 * backtracking. Any register that contributed
3244 		 * to const 0 was marked precise before spill.
3245 		 */
3246 		state->regs[dst_regno].precise = true;
3247 	} else {
3248 		/* have read misc data from the stack */
3249 		mark_reg_unknown(env, state->regs, dst_regno);
3250 	}
3251 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3252 }
3253 
3254 /* Read the stack at 'off' and put the results into the register indicated by
3255  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3256  * spilled reg.
3257  *
3258  * 'dst_regno' can be -1, meaning that the read value is not going to a
3259  * register.
3260  *
3261  * The access is assumed to be within the current stack bounds.
3262  */
3263 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3264 				      /* func where src register points to */
3265 				      struct bpf_func_state *reg_state,
3266 				      int off, int size, int dst_regno)
3267 {
3268 	struct bpf_verifier_state *vstate = env->cur_state;
3269 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3270 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3271 	struct bpf_reg_state *reg;
3272 	u8 *stype, type;
3273 
3274 	stype = reg_state->stack[spi].slot_type;
3275 	reg = &reg_state->stack[spi].spilled_ptr;
3276 
3277 	if (is_spilled_reg(&reg_state->stack[spi])) {
3278 		u8 spill_size = 1;
3279 
3280 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3281 			spill_size++;
3282 
3283 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3284 			if (reg->type != SCALAR_VALUE) {
3285 				verbose_linfo(env, env->insn_idx, "; ");
3286 				verbose(env, "invalid size of register fill\n");
3287 				return -EACCES;
3288 			}
3289 
3290 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3291 			if (dst_regno < 0)
3292 				return 0;
3293 
3294 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3295 				/* The earlier check_reg_arg() has decided the
3296 				 * subreg_def for this insn.  Save it first.
3297 				 */
3298 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3299 
3300 				state->regs[dst_regno] = *reg;
3301 				state->regs[dst_regno].subreg_def = subreg_def;
3302 			} else {
3303 				for (i = 0; i < size; i++) {
3304 					type = stype[(slot - i) % BPF_REG_SIZE];
3305 					if (type == STACK_SPILL)
3306 						continue;
3307 					if (type == STACK_MISC)
3308 						continue;
3309 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3310 						off, i, size);
3311 					return -EACCES;
3312 				}
3313 				mark_reg_unknown(env, state->regs, dst_regno);
3314 			}
3315 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3316 			return 0;
3317 		}
3318 
3319 		if (dst_regno >= 0) {
3320 			/* restore register state from stack */
3321 			state->regs[dst_regno] = *reg;
3322 			/* mark reg as written since spilled pointer state likely
3323 			 * has its liveness marks cleared by is_state_visited()
3324 			 * which resets stack/reg liveness for state transitions
3325 			 */
3326 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3327 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3328 			/* If dst_regno==-1, the caller is asking us whether
3329 			 * it is acceptable to use this value as a SCALAR_VALUE
3330 			 * (e.g. for XADD).
3331 			 * We must not allow unprivileged callers to do that
3332 			 * with spilled pointers.
3333 			 */
3334 			verbose(env, "leaking pointer from stack off %d\n",
3335 				off);
3336 			return -EACCES;
3337 		}
3338 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3339 	} else {
3340 		for (i = 0; i < size; i++) {
3341 			type = stype[(slot - i) % BPF_REG_SIZE];
3342 			if (type == STACK_MISC)
3343 				continue;
3344 			if (type == STACK_ZERO)
3345 				continue;
3346 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3347 				off, i, size);
3348 			return -EACCES;
3349 		}
3350 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3351 		if (dst_regno >= 0)
3352 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3353 	}
3354 	return 0;
3355 }
3356 
3357 enum bpf_access_src {
3358 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3359 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3360 };
3361 
3362 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3363 					 int regno, int off, int access_size,
3364 					 bool zero_size_allowed,
3365 					 enum bpf_access_src type,
3366 					 struct bpf_call_arg_meta *meta);
3367 
3368 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3369 {
3370 	return cur_regs(env) + regno;
3371 }
3372 
3373 /* Read the stack at 'ptr_regno + off' and put the result into the register
3374  * 'dst_regno'.
3375  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3376  * but not its variable offset.
3377  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3378  *
3379  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3380  * filling registers (i.e. reads of spilled register cannot be detected when
3381  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3382  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3383  * offset; for a fixed offset check_stack_read_fixed_off should be used
3384  * instead.
3385  */
3386 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3387 				    int ptr_regno, int off, int size, int dst_regno)
3388 {
3389 	/* The state of the source register. */
3390 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3391 	struct bpf_func_state *ptr_state = func(env, reg);
3392 	int err;
3393 	int min_off, max_off;
3394 
3395 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3396 	 */
3397 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3398 					    false, ACCESS_DIRECT, NULL);
3399 	if (err)
3400 		return err;
3401 
3402 	min_off = reg->smin_value + off;
3403 	max_off = reg->smax_value + off;
3404 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3405 	return 0;
3406 }
3407 
3408 /* check_stack_read dispatches to check_stack_read_fixed_off or
3409  * check_stack_read_var_off.
3410  *
3411  * The caller must ensure that the offset falls within the allocated stack
3412  * bounds.
3413  *
3414  * 'dst_regno' is a register which will receive the value from the stack. It
3415  * can be -1, meaning that the read value is not going to a register.
3416  */
3417 static int check_stack_read(struct bpf_verifier_env *env,
3418 			    int ptr_regno, int off, int size,
3419 			    int dst_regno)
3420 {
3421 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3422 	struct bpf_func_state *state = func(env, reg);
3423 	int err;
3424 	/* Some accesses are only permitted with a static offset. */
3425 	bool var_off = !tnum_is_const(reg->var_off);
3426 
3427 	/* The offset is required to be static when reads don't go to a
3428 	 * register, in order to not leak pointers (see
3429 	 * check_stack_read_fixed_off).
3430 	 */
3431 	if (dst_regno < 0 && var_off) {
3432 		char tn_buf[48];
3433 
3434 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3435 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3436 			tn_buf, off, size);
3437 		return -EACCES;
3438 	}
3439 	/* Variable offset is prohibited for unprivileged mode for simplicity
3440 	 * since it requires corresponding support in Spectre masking for stack
3441 	 * ALU. See also retrieve_ptr_limit().
3442 	 */
3443 	if (!env->bypass_spec_v1 && var_off) {
3444 		char tn_buf[48];
3445 
3446 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3447 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3448 				ptr_regno, tn_buf);
3449 		return -EACCES;
3450 	}
3451 
3452 	if (!var_off) {
3453 		off += reg->var_off.value;
3454 		err = check_stack_read_fixed_off(env, state, off, size,
3455 						 dst_regno);
3456 	} else {
3457 		/* Variable offset stack reads need more conservative handling
3458 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3459 		 * branch.
3460 		 */
3461 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3462 					       dst_regno);
3463 	}
3464 	return err;
3465 }
3466 
3467 
3468 /* check_stack_write dispatches to check_stack_write_fixed_off or
3469  * check_stack_write_var_off.
3470  *
3471  * 'ptr_regno' is the register used as a pointer into the stack.
3472  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3473  * 'value_regno' is the register whose value we're writing to the stack. It can
3474  * be -1, meaning that we're not writing from a register.
3475  *
3476  * The caller must ensure that the offset falls within the maximum stack size.
3477  */
3478 static int check_stack_write(struct bpf_verifier_env *env,
3479 			     int ptr_regno, int off, int size,
3480 			     int value_regno, int insn_idx)
3481 {
3482 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3483 	struct bpf_func_state *state = func(env, reg);
3484 	int err;
3485 
3486 	if (tnum_is_const(reg->var_off)) {
3487 		off += reg->var_off.value;
3488 		err = check_stack_write_fixed_off(env, state, off, size,
3489 						  value_regno, insn_idx);
3490 	} else {
3491 		/* Variable offset stack reads need more conservative handling
3492 		 * than fixed offset ones.
3493 		 */
3494 		err = check_stack_write_var_off(env, state,
3495 						ptr_regno, off, size,
3496 						value_regno, insn_idx);
3497 	}
3498 	return err;
3499 }
3500 
3501 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3502 				 int off, int size, enum bpf_access_type type)
3503 {
3504 	struct bpf_reg_state *regs = cur_regs(env);
3505 	struct bpf_map *map = regs[regno].map_ptr;
3506 	u32 cap = bpf_map_flags_to_cap(map);
3507 
3508 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3509 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3510 			map->value_size, off, size);
3511 		return -EACCES;
3512 	}
3513 
3514 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3515 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3516 			map->value_size, off, size);
3517 		return -EACCES;
3518 	}
3519 
3520 	return 0;
3521 }
3522 
3523 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3524 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3525 			      int off, int size, u32 mem_size,
3526 			      bool zero_size_allowed)
3527 {
3528 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3529 	struct bpf_reg_state *reg;
3530 
3531 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3532 		return 0;
3533 
3534 	reg = &cur_regs(env)[regno];
3535 	switch (reg->type) {
3536 	case PTR_TO_MAP_KEY:
3537 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3538 			mem_size, off, size);
3539 		break;
3540 	case PTR_TO_MAP_VALUE:
3541 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3542 			mem_size, off, size);
3543 		break;
3544 	case PTR_TO_PACKET:
3545 	case PTR_TO_PACKET_META:
3546 	case PTR_TO_PACKET_END:
3547 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3548 			off, size, regno, reg->id, off, mem_size);
3549 		break;
3550 	case PTR_TO_MEM:
3551 	default:
3552 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3553 			mem_size, off, size);
3554 	}
3555 
3556 	return -EACCES;
3557 }
3558 
3559 /* check read/write into a memory region with possible variable offset */
3560 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3561 				   int off, int size, u32 mem_size,
3562 				   bool zero_size_allowed)
3563 {
3564 	struct bpf_verifier_state *vstate = env->cur_state;
3565 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3566 	struct bpf_reg_state *reg = &state->regs[regno];
3567 	int err;
3568 
3569 	/* We may have adjusted the register pointing to memory region, so we
3570 	 * need to try adding each of min_value and max_value to off
3571 	 * to make sure our theoretical access will be safe.
3572 	 *
3573 	 * The minimum value is only important with signed
3574 	 * comparisons where we can't assume the floor of a
3575 	 * value is 0.  If we are using signed variables for our
3576 	 * index'es we need to make sure that whatever we use
3577 	 * will have a set floor within our range.
3578 	 */
3579 	if (reg->smin_value < 0 &&
3580 	    (reg->smin_value == S64_MIN ||
3581 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3582 	      reg->smin_value + off < 0)) {
3583 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3584 			regno);
3585 		return -EACCES;
3586 	}
3587 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3588 				 mem_size, zero_size_allowed);
3589 	if (err) {
3590 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3591 			regno);
3592 		return err;
3593 	}
3594 
3595 	/* If we haven't set a max value then we need to bail since we can't be
3596 	 * sure we won't do bad things.
3597 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3598 	 */
3599 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3600 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3601 			regno);
3602 		return -EACCES;
3603 	}
3604 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3605 				 mem_size, zero_size_allowed);
3606 	if (err) {
3607 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3608 			regno);
3609 		return err;
3610 	}
3611 
3612 	return 0;
3613 }
3614 
3615 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3616 			       const struct bpf_reg_state *reg, int regno,
3617 			       bool fixed_off_ok)
3618 {
3619 	/* Access to this pointer-typed register or passing it to a helper
3620 	 * is only allowed in its original, unmodified form.
3621 	 */
3622 
3623 	if (reg->off < 0) {
3624 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3625 			reg_type_str(env, reg->type), regno, reg->off);
3626 		return -EACCES;
3627 	}
3628 
3629 	if (!fixed_off_ok && reg->off) {
3630 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3631 			reg_type_str(env, reg->type), regno, reg->off);
3632 		return -EACCES;
3633 	}
3634 
3635 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3636 		char tn_buf[48];
3637 
3638 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3639 		verbose(env, "variable %s access var_off=%s disallowed\n",
3640 			reg_type_str(env, reg->type), tn_buf);
3641 		return -EACCES;
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 int check_ptr_off_reg(struct bpf_verifier_env *env,
3648 		      const struct bpf_reg_state *reg, int regno)
3649 {
3650 	return __check_ptr_off_reg(env, reg, regno, false);
3651 }
3652 
3653 static int map_kptr_match_type(struct bpf_verifier_env *env,
3654 			       struct bpf_map_value_off_desc *off_desc,
3655 			       struct bpf_reg_state *reg, u32 regno)
3656 {
3657 	const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id);
3658 	int perm_flags = PTR_MAYBE_NULL;
3659 	const char *reg_name = "";
3660 
3661 	/* Only unreferenced case accepts untrusted pointers */
3662 	if (off_desc->type == BPF_KPTR_UNREF)
3663 		perm_flags |= PTR_UNTRUSTED;
3664 
3665 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
3666 		goto bad_type;
3667 
3668 	if (!btf_is_kernel(reg->btf)) {
3669 		verbose(env, "R%d must point to kernel BTF\n", regno);
3670 		return -EINVAL;
3671 	}
3672 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
3673 	reg_name = kernel_type_name(reg->btf, reg->btf_id);
3674 
3675 	/* For ref_ptr case, release function check should ensure we get one
3676 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3677 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
3678 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3679 	 * reg->off and reg->ref_obj_id are not needed here.
3680 	 */
3681 	if (__check_ptr_off_reg(env, reg, regno, true))
3682 		return -EACCES;
3683 
3684 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
3685 	 * we also need to take into account the reg->off.
3686 	 *
3687 	 * We want to support cases like:
3688 	 *
3689 	 * struct foo {
3690 	 *         struct bar br;
3691 	 *         struct baz bz;
3692 	 * };
3693 	 *
3694 	 * struct foo *v;
3695 	 * v = func();	      // PTR_TO_BTF_ID
3696 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
3697 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3698 	 *                    // first member type of struct after comparison fails
3699 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3700 	 *                    // to match type
3701 	 *
3702 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
3703 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
3704 	 * the struct to match type against first member of struct, i.e. reject
3705 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3706 	 * strict mode to true for type match.
3707 	 */
3708 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
3709 				  off_desc->kptr.btf, off_desc->kptr.btf_id,
3710 				  off_desc->type == BPF_KPTR_REF))
3711 		goto bad_type;
3712 	return 0;
3713 bad_type:
3714 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3715 		reg_type_str(env, reg->type), reg_name);
3716 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
3717 	if (off_desc->type == BPF_KPTR_UNREF)
3718 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3719 			targ_name);
3720 	else
3721 		verbose(env, "\n");
3722 	return -EINVAL;
3723 }
3724 
3725 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3726 				 int value_regno, int insn_idx,
3727 				 struct bpf_map_value_off_desc *off_desc)
3728 {
3729 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3730 	int class = BPF_CLASS(insn->code);
3731 	struct bpf_reg_state *val_reg;
3732 
3733 	/* Things we already checked for in check_map_access and caller:
3734 	 *  - Reject cases where variable offset may touch kptr
3735 	 *  - size of access (must be BPF_DW)
3736 	 *  - tnum_is_const(reg->var_off)
3737 	 *  - off_desc->offset == off + reg->var_off.value
3738 	 */
3739 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3740 	if (BPF_MODE(insn->code) != BPF_MEM) {
3741 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3742 		return -EACCES;
3743 	}
3744 
3745 	/* We only allow loading referenced kptr, since it will be marked as
3746 	 * untrusted, similar to unreferenced kptr.
3747 	 */
3748 	if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) {
3749 		verbose(env, "store to referenced kptr disallowed\n");
3750 		return -EACCES;
3751 	}
3752 
3753 	if (class == BPF_LDX) {
3754 		val_reg = reg_state(env, value_regno);
3755 		/* We can simply mark the value_regno receiving the pointer
3756 		 * value from map as PTR_TO_BTF_ID, with the correct type.
3757 		 */
3758 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf,
3759 				off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
3760 		/* For mark_ptr_or_null_reg */
3761 		val_reg->id = ++env->id_gen;
3762 	} else if (class == BPF_STX) {
3763 		val_reg = reg_state(env, value_regno);
3764 		if (!register_is_null(val_reg) &&
3765 		    map_kptr_match_type(env, off_desc, val_reg, value_regno))
3766 			return -EACCES;
3767 	} else if (class == BPF_ST) {
3768 		if (insn->imm) {
3769 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
3770 				off_desc->offset);
3771 			return -EACCES;
3772 		}
3773 	} else {
3774 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
3775 		return -EACCES;
3776 	}
3777 	return 0;
3778 }
3779 
3780 /* check read/write into a map element with possible variable offset */
3781 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3782 			    int off, int size, bool zero_size_allowed,
3783 			    enum bpf_access_src src)
3784 {
3785 	struct bpf_verifier_state *vstate = env->cur_state;
3786 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3787 	struct bpf_reg_state *reg = &state->regs[regno];
3788 	struct bpf_map *map = reg->map_ptr;
3789 	int err;
3790 
3791 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3792 				      zero_size_allowed);
3793 	if (err)
3794 		return err;
3795 
3796 	if (map_value_has_spin_lock(map)) {
3797 		u32 lock = map->spin_lock_off;
3798 
3799 		/* if any part of struct bpf_spin_lock can be touched by
3800 		 * load/store reject this program.
3801 		 * To check that [x1, x2) overlaps with [y1, y2)
3802 		 * it is sufficient to check x1 < y2 && y1 < x2.
3803 		 */
3804 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3805 		     lock < reg->umax_value + off + size) {
3806 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3807 			return -EACCES;
3808 		}
3809 	}
3810 	if (map_value_has_timer(map)) {
3811 		u32 t = map->timer_off;
3812 
3813 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3814 		     t < reg->umax_value + off + size) {
3815 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3816 			return -EACCES;
3817 		}
3818 	}
3819 	if (map_value_has_kptrs(map)) {
3820 		struct bpf_map_value_off *tab = map->kptr_off_tab;
3821 		int i;
3822 
3823 		for (i = 0; i < tab->nr_off; i++) {
3824 			u32 p = tab->off[i].offset;
3825 
3826 			if (reg->smin_value + off < p + sizeof(u64) &&
3827 			    p < reg->umax_value + off + size) {
3828 				if (src != ACCESS_DIRECT) {
3829 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
3830 					return -EACCES;
3831 				}
3832 				if (!tnum_is_const(reg->var_off)) {
3833 					verbose(env, "kptr access cannot have variable offset\n");
3834 					return -EACCES;
3835 				}
3836 				if (p != off + reg->var_off.value) {
3837 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
3838 						p, off + reg->var_off.value);
3839 					return -EACCES;
3840 				}
3841 				if (size != bpf_size_to_bytes(BPF_DW)) {
3842 					verbose(env, "kptr access size must be BPF_DW\n");
3843 					return -EACCES;
3844 				}
3845 				break;
3846 			}
3847 		}
3848 	}
3849 	return err;
3850 }
3851 
3852 #define MAX_PACKET_OFF 0xffff
3853 
3854 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3855 				       const struct bpf_call_arg_meta *meta,
3856 				       enum bpf_access_type t)
3857 {
3858 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3859 
3860 	switch (prog_type) {
3861 	/* Program types only with direct read access go here! */
3862 	case BPF_PROG_TYPE_LWT_IN:
3863 	case BPF_PROG_TYPE_LWT_OUT:
3864 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3865 	case BPF_PROG_TYPE_SK_REUSEPORT:
3866 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3867 	case BPF_PROG_TYPE_CGROUP_SKB:
3868 		if (t == BPF_WRITE)
3869 			return false;
3870 		fallthrough;
3871 
3872 	/* Program types with direct read + write access go here! */
3873 	case BPF_PROG_TYPE_SCHED_CLS:
3874 	case BPF_PROG_TYPE_SCHED_ACT:
3875 	case BPF_PROG_TYPE_XDP:
3876 	case BPF_PROG_TYPE_LWT_XMIT:
3877 	case BPF_PROG_TYPE_SK_SKB:
3878 	case BPF_PROG_TYPE_SK_MSG:
3879 		if (meta)
3880 			return meta->pkt_access;
3881 
3882 		env->seen_direct_write = true;
3883 		return true;
3884 
3885 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3886 		if (t == BPF_WRITE)
3887 			env->seen_direct_write = true;
3888 
3889 		return true;
3890 
3891 	default:
3892 		return false;
3893 	}
3894 }
3895 
3896 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3897 			       int size, bool zero_size_allowed)
3898 {
3899 	struct bpf_reg_state *regs = cur_regs(env);
3900 	struct bpf_reg_state *reg = &regs[regno];
3901 	int err;
3902 
3903 	/* We may have added a variable offset to the packet pointer; but any
3904 	 * reg->range we have comes after that.  We are only checking the fixed
3905 	 * offset.
3906 	 */
3907 
3908 	/* We don't allow negative numbers, because we aren't tracking enough
3909 	 * detail to prove they're safe.
3910 	 */
3911 	if (reg->smin_value < 0) {
3912 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3913 			regno);
3914 		return -EACCES;
3915 	}
3916 
3917 	err = reg->range < 0 ? -EINVAL :
3918 	      __check_mem_access(env, regno, off, size, reg->range,
3919 				 zero_size_allowed);
3920 	if (err) {
3921 		verbose(env, "R%d offset is outside of the packet\n", regno);
3922 		return err;
3923 	}
3924 
3925 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3926 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3927 	 * otherwise find_good_pkt_pointers would have refused to set range info
3928 	 * that __check_mem_access would have rejected this pkt access.
3929 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3930 	 */
3931 	env->prog->aux->max_pkt_offset =
3932 		max_t(u32, env->prog->aux->max_pkt_offset,
3933 		      off + reg->umax_value + size - 1);
3934 
3935 	return err;
3936 }
3937 
3938 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3939 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3940 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3941 			    struct btf **btf, u32 *btf_id)
3942 {
3943 	struct bpf_insn_access_aux info = {
3944 		.reg_type = *reg_type,
3945 		.log = &env->log,
3946 	};
3947 
3948 	if (env->ops->is_valid_access &&
3949 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3950 		/* A non zero info.ctx_field_size indicates that this field is a
3951 		 * candidate for later verifier transformation to load the whole
3952 		 * field and then apply a mask when accessed with a narrower
3953 		 * access than actual ctx access size. A zero info.ctx_field_size
3954 		 * will only allow for whole field access and rejects any other
3955 		 * type of narrower access.
3956 		 */
3957 		*reg_type = info.reg_type;
3958 
3959 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
3960 			*btf = info.btf;
3961 			*btf_id = info.btf_id;
3962 		} else {
3963 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3964 		}
3965 		/* remember the offset of last byte accessed in ctx */
3966 		if (env->prog->aux->max_ctx_offset < off + size)
3967 			env->prog->aux->max_ctx_offset = off + size;
3968 		return 0;
3969 	}
3970 
3971 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3972 	return -EACCES;
3973 }
3974 
3975 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3976 				  int size)
3977 {
3978 	if (size < 0 || off < 0 ||
3979 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3980 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3981 			off, size);
3982 		return -EACCES;
3983 	}
3984 	return 0;
3985 }
3986 
3987 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3988 			     u32 regno, int off, int size,
3989 			     enum bpf_access_type t)
3990 {
3991 	struct bpf_reg_state *regs = cur_regs(env);
3992 	struct bpf_reg_state *reg = &regs[regno];
3993 	struct bpf_insn_access_aux info = {};
3994 	bool valid;
3995 
3996 	if (reg->smin_value < 0) {
3997 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3998 			regno);
3999 		return -EACCES;
4000 	}
4001 
4002 	switch (reg->type) {
4003 	case PTR_TO_SOCK_COMMON:
4004 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
4005 		break;
4006 	case PTR_TO_SOCKET:
4007 		valid = bpf_sock_is_valid_access(off, size, t, &info);
4008 		break;
4009 	case PTR_TO_TCP_SOCK:
4010 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
4011 		break;
4012 	case PTR_TO_XDP_SOCK:
4013 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
4014 		break;
4015 	default:
4016 		valid = false;
4017 	}
4018 
4019 
4020 	if (valid) {
4021 		env->insn_aux_data[insn_idx].ctx_field_size =
4022 			info.ctx_field_size;
4023 		return 0;
4024 	}
4025 
4026 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
4027 		regno, reg_type_str(env, reg->type), off, size);
4028 
4029 	return -EACCES;
4030 }
4031 
4032 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
4033 {
4034 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
4035 }
4036 
4037 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
4038 {
4039 	const struct bpf_reg_state *reg = reg_state(env, regno);
4040 
4041 	return reg->type == PTR_TO_CTX;
4042 }
4043 
4044 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
4045 {
4046 	const struct bpf_reg_state *reg = reg_state(env, regno);
4047 
4048 	return type_is_sk_pointer(reg->type);
4049 }
4050 
4051 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
4052 {
4053 	const struct bpf_reg_state *reg = reg_state(env, regno);
4054 
4055 	return type_is_pkt_pointer(reg->type);
4056 }
4057 
4058 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
4059 {
4060 	const struct bpf_reg_state *reg = reg_state(env, regno);
4061 
4062 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
4063 	return reg->type == PTR_TO_FLOW_KEYS;
4064 }
4065 
4066 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
4067 				   const struct bpf_reg_state *reg,
4068 				   int off, int size, bool strict)
4069 {
4070 	struct tnum reg_off;
4071 	int ip_align;
4072 
4073 	/* Byte size accesses are always allowed. */
4074 	if (!strict || size == 1)
4075 		return 0;
4076 
4077 	/* For platforms that do not have a Kconfig enabling
4078 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
4079 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
4080 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
4081 	 * to this code only in strict mode where we want to emulate
4082 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
4083 	 * unconditional IP align value of '2'.
4084 	 */
4085 	ip_align = 2;
4086 
4087 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
4088 	if (!tnum_is_aligned(reg_off, size)) {
4089 		char tn_buf[48];
4090 
4091 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4092 		verbose(env,
4093 			"misaligned packet access off %d+%s+%d+%d size %d\n",
4094 			ip_align, tn_buf, reg->off, off, size);
4095 		return -EACCES;
4096 	}
4097 
4098 	return 0;
4099 }
4100 
4101 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
4102 				       const struct bpf_reg_state *reg,
4103 				       const char *pointer_desc,
4104 				       int off, int size, bool strict)
4105 {
4106 	struct tnum reg_off;
4107 
4108 	/* Byte size accesses are always allowed. */
4109 	if (!strict || size == 1)
4110 		return 0;
4111 
4112 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
4113 	if (!tnum_is_aligned(reg_off, size)) {
4114 		char tn_buf[48];
4115 
4116 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4117 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
4118 			pointer_desc, tn_buf, reg->off, off, size);
4119 		return -EACCES;
4120 	}
4121 
4122 	return 0;
4123 }
4124 
4125 static int check_ptr_alignment(struct bpf_verifier_env *env,
4126 			       const struct bpf_reg_state *reg, int off,
4127 			       int size, bool strict_alignment_once)
4128 {
4129 	bool strict = env->strict_alignment || strict_alignment_once;
4130 	const char *pointer_desc = "";
4131 
4132 	switch (reg->type) {
4133 	case PTR_TO_PACKET:
4134 	case PTR_TO_PACKET_META:
4135 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
4136 		 * right in front, treat it the very same way.
4137 		 */
4138 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
4139 	case PTR_TO_FLOW_KEYS:
4140 		pointer_desc = "flow keys ";
4141 		break;
4142 	case PTR_TO_MAP_KEY:
4143 		pointer_desc = "key ";
4144 		break;
4145 	case PTR_TO_MAP_VALUE:
4146 		pointer_desc = "value ";
4147 		break;
4148 	case PTR_TO_CTX:
4149 		pointer_desc = "context ";
4150 		break;
4151 	case PTR_TO_STACK:
4152 		pointer_desc = "stack ";
4153 		/* The stack spill tracking logic in check_stack_write_fixed_off()
4154 		 * and check_stack_read_fixed_off() relies on stack accesses being
4155 		 * aligned.
4156 		 */
4157 		strict = true;
4158 		break;
4159 	case PTR_TO_SOCKET:
4160 		pointer_desc = "sock ";
4161 		break;
4162 	case PTR_TO_SOCK_COMMON:
4163 		pointer_desc = "sock_common ";
4164 		break;
4165 	case PTR_TO_TCP_SOCK:
4166 		pointer_desc = "tcp_sock ";
4167 		break;
4168 	case PTR_TO_XDP_SOCK:
4169 		pointer_desc = "xdp_sock ";
4170 		break;
4171 	default:
4172 		break;
4173 	}
4174 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4175 					   strict);
4176 }
4177 
4178 static int update_stack_depth(struct bpf_verifier_env *env,
4179 			      const struct bpf_func_state *func,
4180 			      int off)
4181 {
4182 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
4183 
4184 	if (stack >= -off)
4185 		return 0;
4186 
4187 	/* update known max for given subprogram */
4188 	env->subprog_info[func->subprogno].stack_depth = -off;
4189 	return 0;
4190 }
4191 
4192 /* starting from main bpf function walk all instructions of the function
4193  * and recursively walk all callees that given function can call.
4194  * Ignore jump and exit insns.
4195  * Since recursion is prevented by check_cfg() this algorithm
4196  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4197  */
4198 static int check_max_stack_depth(struct bpf_verifier_env *env)
4199 {
4200 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4201 	struct bpf_subprog_info *subprog = env->subprog_info;
4202 	struct bpf_insn *insn = env->prog->insnsi;
4203 	bool tail_call_reachable = false;
4204 	int ret_insn[MAX_CALL_FRAMES];
4205 	int ret_prog[MAX_CALL_FRAMES];
4206 	int j;
4207 
4208 process_func:
4209 	/* protect against potential stack overflow that might happen when
4210 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4211 	 * depth for such case down to 256 so that the worst case scenario
4212 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
4213 	 * 8k).
4214 	 *
4215 	 * To get the idea what might happen, see an example:
4216 	 * func1 -> sub rsp, 128
4217 	 *  subfunc1 -> sub rsp, 256
4218 	 *  tailcall1 -> add rsp, 256
4219 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4220 	 *   subfunc2 -> sub rsp, 64
4221 	 *   subfunc22 -> sub rsp, 128
4222 	 *   tailcall2 -> add rsp, 128
4223 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4224 	 *
4225 	 * tailcall will unwind the current stack frame but it will not get rid
4226 	 * of caller's stack as shown on the example above.
4227 	 */
4228 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
4229 		verbose(env,
4230 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4231 			depth);
4232 		return -EACCES;
4233 	}
4234 	/* round up to 32-bytes, since this is granularity
4235 	 * of interpreter stack size
4236 	 */
4237 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4238 	if (depth > MAX_BPF_STACK) {
4239 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
4240 			frame + 1, depth);
4241 		return -EACCES;
4242 	}
4243 continue_func:
4244 	subprog_end = subprog[idx + 1].start;
4245 	for (; i < subprog_end; i++) {
4246 		int next_insn;
4247 
4248 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4249 			continue;
4250 		/* remember insn and function to return to */
4251 		ret_insn[frame] = i + 1;
4252 		ret_prog[frame] = idx;
4253 
4254 		/* find the callee */
4255 		next_insn = i + insn[i].imm + 1;
4256 		idx = find_subprog(env, next_insn);
4257 		if (idx < 0) {
4258 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4259 				  next_insn);
4260 			return -EFAULT;
4261 		}
4262 		if (subprog[idx].is_async_cb) {
4263 			if (subprog[idx].has_tail_call) {
4264 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4265 				return -EFAULT;
4266 			}
4267 			 /* async callbacks don't increase bpf prog stack size */
4268 			continue;
4269 		}
4270 		i = next_insn;
4271 
4272 		if (subprog[idx].has_tail_call)
4273 			tail_call_reachable = true;
4274 
4275 		frame++;
4276 		if (frame >= MAX_CALL_FRAMES) {
4277 			verbose(env, "the call stack of %d frames is too deep !\n",
4278 				frame);
4279 			return -E2BIG;
4280 		}
4281 		goto process_func;
4282 	}
4283 	/* if tail call got detected across bpf2bpf calls then mark each of the
4284 	 * currently present subprog frames as tail call reachable subprogs;
4285 	 * this info will be utilized by JIT so that we will be preserving the
4286 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
4287 	 */
4288 	if (tail_call_reachable)
4289 		for (j = 0; j < frame; j++)
4290 			subprog[ret_prog[j]].tail_call_reachable = true;
4291 	if (subprog[0].tail_call_reachable)
4292 		env->prog->aux->tail_call_reachable = true;
4293 
4294 	/* end of for() loop means the last insn of the 'subprog'
4295 	 * was reached. Doesn't matter whether it was JA or EXIT
4296 	 */
4297 	if (frame == 0)
4298 		return 0;
4299 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4300 	frame--;
4301 	i = ret_insn[frame];
4302 	idx = ret_prog[frame];
4303 	goto continue_func;
4304 }
4305 
4306 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
4307 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4308 				  const struct bpf_insn *insn, int idx)
4309 {
4310 	int start = idx + insn->imm + 1, subprog;
4311 
4312 	subprog = find_subprog(env, start);
4313 	if (subprog < 0) {
4314 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4315 			  start);
4316 		return -EFAULT;
4317 	}
4318 	return env->subprog_info[subprog].stack_depth;
4319 }
4320 #endif
4321 
4322 static int __check_buffer_access(struct bpf_verifier_env *env,
4323 				 const char *buf_info,
4324 				 const struct bpf_reg_state *reg,
4325 				 int regno, int off, int size)
4326 {
4327 	if (off < 0) {
4328 		verbose(env,
4329 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4330 			regno, buf_info, off, size);
4331 		return -EACCES;
4332 	}
4333 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4334 		char tn_buf[48];
4335 
4336 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4337 		verbose(env,
4338 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4339 			regno, off, tn_buf);
4340 		return -EACCES;
4341 	}
4342 
4343 	return 0;
4344 }
4345 
4346 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4347 				  const struct bpf_reg_state *reg,
4348 				  int regno, int off, int size)
4349 {
4350 	int err;
4351 
4352 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4353 	if (err)
4354 		return err;
4355 
4356 	if (off + size > env->prog->aux->max_tp_access)
4357 		env->prog->aux->max_tp_access = off + size;
4358 
4359 	return 0;
4360 }
4361 
4362 static int check_buffer_access(struct bpf_verifier_env *env,
4363 			       const struct bpf_reg_state *reg,
4364 			       int regno, int off, int size,
4365 			       bool zero_size_allowed,
4366 			       u32 *max_access)
4367 {
4368 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4369 	int err;
4370 
4371 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4372 	if (err)
4373 		return err;
4374 
4375 	if (off + size > *max_access)
4376 		*max_access = off + size;
4377 
4378 	return 0;
4379 }
4380 
4381 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4382 static void zext_32_to_64(struct bpf_reg_state *reg)
4383 {
4384 	reg->var_off = tnum_subreg(reg->var_off);
4385 	__reg_assign_32_into_64(reg);
4386 }
4387 
4388 /* truncate register to smaller size (in bytes)
4389  * must be called with size < BPF_REG_SIZE
4390  */
4391 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4392 {
4393 	u64 mask;
4394 
4395 	/* clear high bits in bit representation */
4396 	reg->var_off = tnum_cast(reg->var_off, size);
4397 
4398 	/* fix arithmetic bounds */
4399 	mask = ((u64)1 << (size * 8)) - 1;
4400 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4401 		reg->umin_value &= mask;
4402 		reg->umax_value &= mask;
4403 	} else {
4404 		reg->umin_value = 0;
4405 		reg->umax_value = mask;
4406 	}
4407 	reg->smin_value = reg->umin_value;
4408 	reg->smax_value = reg->umax_value;
4409 
4410 	/* If size is smaller than 32bit register the 32bit register
4411 	 * values are also truncated so we push 64-bit bounds into
4412 	 * 32-bit bounds. Above were truncated < 32-bits already.
4413 	 */
4414 	if (size >= 4)
4415 		return;
4416 	__reg_combine_64_into_32(reg);
4417 }
4418 
4419 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4420 {
4421 	/* A map is considered read-only if the following condition are true:
4422 	 *
4423 	 * 1) BPF program side cannot change any of the map content. The
4424 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4425 	 *    and was set at map creation time.
4426 	 * 2) The map value(s) have been initialized from user space by a
4427 	 *    loader and then "frozen", such that no new map update/delete
4428 	 *    operations from syscall side are possible for the rest of
4429 	 *    the map's lifetime from that point onwards.
4430 	 * 3) Any parallel/pending map update/delete operations from syscall
4431 	 *    side have been completed. Only after that point, it's safe to
4432 	 *    assume that map value(s) are immutable.
4433 	 */
4434 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4435 	       READ_ONCE(map->frozen) &&
4436 	       !bpf_map_write_active(map);
4437 }
4438 
4439 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4440 {
4441 	void *ptr;
4442 	u64 addr;
4443 	int err;
4444 
4445 	err = map->ops->map_direct_value_addr(map, &addr, off);
4446 	if (err)
4447 		return err;
4448 	ptr = (void *)(long)addr + off;
4449 
4450 	switch (size) {
4451 	case sizeof(u8):
4452 		*val = (u64)*(u8 *)ptr;
4453 		break;
4454 	case sizeof(u16):
4455 		*val = (u64)*(u16 *)ptr;
4456 		break;
4457 	case sizeof(u32):
4458 		*val = (u64)*(u32 *)ptr;
4459 		break;
4460 	case sizeof(u64):
4461 		*val = *(u64 *)ptr;
4462 		break;
4463 	default:
4464 		return -EINVAL;
4465 	}
4466 	return 0;
4467 }
4468 
4469 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4470 				   struct bpf_reg_state *regs,
4471 				   int regno, int off, int size,
4472 				   enum bpf_access_type atype,
4473 				   int value_regno)
4474 {
4475 	struct bpf_reg_state *reg = regs + regno;
4476 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4477 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4478 	enum bpf_type_flag flag = 0;
4479 	u32 btf_id;
4480 	int ret;
4481 
4482 	if (off < 0) {
4483 		verbose(env,
4484 			"R%d is ptr_%s invalid negative access: off=%d\n",
4485 			regno, tname, off);
4486 		return -EACCES;
4487 	}
4488 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4489 		char tn_buf[48];
4490 
4491 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4492 		verbose(env,
4493 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4494 			regno, tname, off, tn_buf);
4495 		return -EACCES;
4496 	}
4497 
4498 	if (reg->type & MEM_USER) {
4499 		verbose(env,
4500 			"R%d is ptr_%s access user memory: off=%d\n",
4501 			regno, tname, off);
4502 		return -EACCES;
4503 	}
4504 
4505 	if (reg->type & MEM_PERCPU) {
4506 		verbose(env,
4507 			"R%d is ptr_%s access percpu memory: off=%d\n",
4508 			regno, tname, off);
4509 		return -EACCES;
4510 	}
4511 
4512 	if (env->ops->btf_struct_access) {
4513 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4514 						  off, size, atype, &btf_id, &flag);
4515 	} else {
4516 		if (atype != BPF_READ) {
4517 			verbose(env, "only read is supported\n");
4518 			return -EACCES;
4519 		}
4520 
4521 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4522 					atype, &btf_id, &flag);
4523 	}
4524 
4525 	if (ret < 0)
4526 		return ret;
4527 
4528 	/* If this is an untrusted pointer, all pointers formed by walking it
4529 	 * also inherit the untrusted flag.
4530 	 */
4531 	if (type_flag(reg->type) & PTR_UNTRUSTED)
4532 		flag |= PTR_UNTRUSTED;
4533 
4534 	if (atype == BPF_READ && value_regno >= 0)
4535 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
4536 
4537 	return 0;
4538 }
4539 
4540 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4541 				   struct bpf_reg_state *regs,
4542 				   int regno, int off, int size,
4543 				   enum bpf_access_type atype,
4544 				   int value_regno)
4545 {
4546 	struct bpf_reg_state *reg = regs + regno;
4547 	struct bpf_map *map = reg->map_ptr;
4548 	enum bpf_type_flag flag = 0;
4549 	const struct btf_type *t;
4550 	const char *tname;
4551 	u32 btf_id;
4552 	int ret;
4553 
4554 	if (!btf_vmlinux) {
4555 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4556 		return -ENOTSUPP;
4557 	}
4558 
4559 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4560 		verbose(env, "map_ptr access not supported for map type %d\n",
4561 			map->map_type);
4562 		return -ENOTSUPP;
4563 	}
4564 
4565 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4566 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4567 
4568 	if (!env->allow_ptr_to_map_access) {
4569 		verbose(env,
4570 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4571 			tname);
4572 		return -EPERM;
4573 	}
4574 
4575 	if (off < 0) {
4576 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4577 			regno, tname, off);
4578 		return -EACCES;
4579 	}
4580 
4581 	if (atype != BPF_READ) {
4582 		verbose(env, "only read from %s is supported\n", tname);
4583 		return -EACCES;
4584 	}
4585 
4586 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag);
4587 	if (ret < 0)
4588 		return ret;
4589 
4590 	if (value_regno >= 0)
4591 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
4592 
4593 	return 0;
4594 }
4595 
4596 /* Check that the stack access at the given offset is within bounds. The
4597  * maximum valid offset is -1.
4598  *
4599  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4600  * -state->allocated_stack for reads.
4601  */
4602 static int check_stack_slot_within_bounds(int off,
4603 					  struct bpf_func_state *state,
4604 					  enum bpf_access_type t)
4605 {
4606 	int min_valid_off;
4607 
4608 	if (t == BPF_WRITE)
4609 		min_valid_off = -MAX_BPF_STACK;
4610 	else
4611 		min_valid_off = -state->allocated_stack;
4612 
4613 	if (off < min_valid_off || off > -1)
4614 		return -EACCES;
4615 	return 0;
4616 }
4617 
4618 /* Check that the stack access at 'regno + off' falls within the maximum stack
4619  * bounds.
4620  *
4621  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4622  */
4623 static int check_stack_access_within_bounds(
4624 		struct bpf_verifier_env *env,
4625 		int regno, int off, int access_size,
4626 		enum bpf_access_src src, enum bpf_access_type type)
4627 {
4628 	struct bpf_reg_state *regs = cur_regs(env);
4629 	struct bpf_reg_state *reg = regs + regno;
4630 	struct bpf_func_state *state = func(env, reg);
4631 	int min_off, max_off;
4632 	int err;
4633 	char *err_extra;
4634 
4635 	if (src == ACCESS_HELPER)
4636 		/* We don't know if helpers are reading or writing (or both). */
4637 		err_extra = " indirect access to";
4638 	else if (type == BPF_READ)
4639 		err_extra = " read from";
4640 	else
4641 		err_extra = " write to";
4642 
4643 	if (tnum_is_const(reg->var_off)) {
4644 		min_off = reg->var_off.value + off;
4645 		if (access_size > 0)
4646 			max_off = min_off + access_size - 1;
4647 		else
4648 			max_off = min_off;
4649 	} else {
4650 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4651 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4652 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4653 				err_extra, regno);
4654 			return -EACCES;
4655 		}
4656 		min_off = reg->smin_value + off;
4657 		if (access_size > 0)
4658 			max_off = reg->smax_value + off + access_size - 1;
4659 		else
4660 			max_off = min_off;
4661 	}
4662 
4663 	err = check_stack_slot_within_bounds(min_off, state, type);
4664 	if (!err)
4665 		err = check_stack_slot_within_bounds(max_off, state, type);
4666 
4667 	if (err) {
4668 		if (tnum_is_const(reg->var_off)) {
4669 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4670 				err_extra, regno, off, access_size);
4671 		} else {
4672 			char tn_buf[48];
4673 
4674 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4675 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4676 				err_extra, regno, tn_buf, access_size);
4677 		}
4678 	}
4679 	return err;
4680 }
4681 
4682 /* check whether memory at (regno + off) is accessible for t = (read | write)
4683  * if t==write, value_regno is a register which value is stored into memory
4684  * if t==read, value_regno is a register which will receive the value from memory
4685  * if t==write && value_regno==-1, some unknown value is stored into memory
4686  * if t==read && value_regno==-1, don't care what we read from memory
4687  */
4688 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4689 			    int off, int bpf_size, enum bpf_access_type t,
4690 			    int value_regno, bool strict_alignment_once)
4691 {
4692 	struct bpf_reg_state *regs = cur_regs(env);
4693 	struct bpf_reg_state *reg = regs + regno;
4694 	struct bpf_func_state *state;
4695 	int size, err = 0;
4696 
4697 	size = bpf_size_to_bytes(bpf_size);
4698 	if (size < 0)
4699 		return size;
4700 
4701 	/* alignment checks will add in reg->off themselves */
4702 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4703 	if (err)
4704 		return err;
4705 
4706 	/* for access checks, reg->off is just part of off */
4707 	off += reg->off;
4708 
4709 	if (reg->type == PTR_TO_MAP_KEY) {
4710 		if (t == BPF_WRITE) {
4711 			verbose(env, "write to change key R%d not allowed\n", regno);
4712 			return -EACCES;
4713 		}
4714 
4715 		err = check_mem_region_access(env, regno, off, size,
4716 					      reg->map_ptr->key_size, false);
4717 		if (err)
4718 			return err;
4719 		if (value_regno >= 0)
4720 			mark_reg_unknown(env, regs, value_regno);
4721 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4722 		struct bpf_map_value_off_desc *kptr_off_desc = NULL;
4723 
4724 		if (t == BPF_WRITE && value_regno >= 0 &&
4725 		    is_pointer_value(env, value_regno)) {
4726 			verbose(env, "R%d leaks addr into map\n", value_regno);
4727 			return -EACCES;
4728 		}
4729 		err = check_map_access_type(env, regno, off, size, t);
4730 		if (err)
4731 			return err;
4732 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
4733 		if (err)
4734 			return err;
4735 		if (tnum_is_const(reg->var_off))
4736 			kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr,
4737 								  off + reg->var_off.value);
4738 		if (kptr_off_desc) {
4739 			err = check_map_kptr_access(env, regno, value_regno, insn_idx,
4740 						    kptr_off_desc);
4741 		} else if (t == BPF_READ && value_regno >= 0) {
4742 			struct bpf_map *map = reg->map_ptr;
4743 
4744 			/* if map is read-only, track its contents as scalars */
4745 			if (tnum_is_const(reg->var_off) &&
4746 			    bpf_map_is_rdonly(map) &&
4747 			    map->ops->map_direct_value_addr) {
4748 				int map_off = off + reg->var_off.value;
4749 				u64 val = 0;
4750 
4751 				err = bpf_map_direct_read(map, map_off, size,
4752 							  &val);
4753 				if (err)
4754 					return err;
4755 
4756 				regs[value_regno].type = SCALAR_VALUE;
4757 				__mark_reg_known(&regs[value_regno], val);
4758 			} else {
4759 				mark_reg_unknown(env, regs, value_regno);
4760 			}
4761 		}
4762 	} else if (base_type(reg->type) == PTR_TO_MEM) {
4763 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4764 
4765 		if (type_may_be_null(reg->type)) {
4766 			verbose(env, "R%d invalid mem access '%s'\n", regno,
4767 				reg_type_str(env, reg->type));
4768 			return -EACCES;
4769 		}
4770 
4771 		if (t == BPF_WRITE && rdonly_mem) {
4772 			verbose(env, "R%d cannot write into %s\n",
4773 				regno, reg_type_str(env, reg->type));
4774 			return -EACCES;
4775 		}
4776 
4777 		if (t == BPF_WRITE && value_regno >= 0 &&
4778 		    is_pointer_value(env, value_regno)) {
4779 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4780 			return -EACCES;
4781 		}
4782 
4783 		err = check_mem_region_access(env, regno, off, size,
4784 					      reg->mem_size, false);
4785 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
4786 			mark_reg_unknown(env, regs, value_regno);
4787 	} else if (reg->type == PTR_TO_CTX) {
4788 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4789 		struct btf *btf = NULL;
4790 		u32 btf_id = 0;
4791 
4792 		if (t == BPF_WRITE && value_regno >= 0 &&
4793 		    is_pointer_value(env, value_regno)) {
4794 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4795 			return -EACCES;
4796 		}
4797 
4798 		err = check_ptr_off_reg(env, reg, regno);
4799 		if (err < 0)
4800 			return err;
4801 
4802 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
4803 				       &btf_id);
4804 		if (err)
4805 			verbose_linfo(env, insn_idx, "; ");
4806 		if (!err && t == BPF_READ && value_regno >= 0) {
4807 			/* ctx access returns either a scalar, or a
4808 			 * PTR_TO_PACKET[_META,_END]. In the latter
4809 			 * case, we know the offset is zero.
4810 			 */
4811 			if (reg_type == SCALAR_VALUE) {
4812 				mark_reg_unknown(env, regs, value_regno);
4813 			} else {
4814 				mark_reg_known_zero(env, regs,
4815 						    value_regno);
4816 				if (type_may_be_null(reg_type))
4817 					regs[value_regno].id = ++env->id_gen;
4818 				/* A load of ctx field could have different
4819 				 * actual load size with the one encoded in the
4820 				 * insn. When the dst is PTR, it is for sure not
4821 				 * a sub-register.
4822 				 */
4823 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4824 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
4825 					regs[value_regno].btf = btf;
4826 					regs[value_regno].btf_id = btf_id;
4827 				}
4828 			}
4829 			regs[value_regno].type = reg_type;
4830 		}
4831 
4832 	} else if (reg->type == PTR_TO_STACK) {
4833 		/* Basic bounds checks. */
4834 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4835 		if (err)
4836 			return err;
4837 
4838 		state = func(env, reg);
4839 		err = update_stack_depth(env, state, off);
4840 		if (err)
4841 			return err;
4842 
4843 		if (t == BPF_READ)
4844 			err = check_stack_read(env, regno, off, size,
4845 					       value_regno);
4846 		else
4847 			err = check_stack_write(env, regno, off, size,
4848 						value_regno, insn_idx);
4849 	} else if (reg_is_pkt_pointer(reg)) {
4850 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4851 			verbose(env, "cannot write into packet\n");
4852 			return -EACCES;
4853 		}
4854 		if (t == BPF_WRITE && value_regno >= 0 &&
4855 		    is_pointer_value(env, value_regno)) {
4856 			verbose(env, "R%d leaks addr into packet\n",
4857 				value_regno);
4858 			return -EACCES;
4859 		}
4860 		err = check_packet_access(env, regno, off, size, false);
4861 		if (!err && t == BPF_READ && value_regno >= 0)
4862 			mark_reg_unknown(env, regs, value_regno);
4863 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4864 		if (t == BPF_WRITE && value_regno >= 0 &&
4865 		    is_pointer_value(env, value_regno)) {
4866 			verbose(env, "R%d leaks addr into flow keys\n",
4867 				value_regno);
4868 			return -EACCES;
4869 		}
4870 
4871 		err = check_flow_keys_access(env, off, size);
4872 		if (!err && t == BPF_READ && value_regno >= 0)
4873 			mark_reg_unknown(env, regs, value_regno);
4874 	} else if (type_is_sk_pointer(reg->type)) {
4875 		if (t == BPF_WRITE) {
4876 			verbose(env, "R%d cannot write into %s\n",
4877 				regno, reg_type_str(env, reg->type));
4878 			return -EACCES;
4879 		}
4880 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4881 		if (!err && value_regno >= 0)
4882 			mark_reg_unknown(env, regs, value_regno);
4883 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4884 		err = check_tp_buffer_access(env, reg, regno, off, size);
4885 		if (!err && t == BPF_READ && value_regno >= 0)
4886 			mark_reg_unknown(env, regs, value_regno);
4887 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
4888 		   !type_may_be_null(reg->type)) {
4889 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4890 					      value_regno);
4891 	} else if (reg->type == CONST_PTR_TO_MAP) {
4892 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4893 					      value_regno);
4894 	} else if (base_type(reg->type) == PTR_TO_BUF) {
4895 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4896 		u32 *max_access;
4897 
4898 		if (rdonly_mem) {
4899 			if (t == BPF_WRITE) {
4900 				verbose(env, "R%d cannot write into %s\n",
4901 					regno, reg_type_str(env, reg->type));
4902 				return -EACCES;
4903 			}
4904 			max_access = &env->prog->aux->max_rdonly_access;
4905 		} else {
4906 			max_access = &env->prog->aux->max_rdwr_access;
4907 		}
4908 
4909 		err = check_buffer_access(env, reg, regno, off, size, false,
4910 					  max_access);
4911 
4912 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4913 			mark_reg_unknown(env, regs, value_regno);
4914 	} else {
4915 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4916 			reg_type_str(env, reg->type));
4917 		return -EACCES;
4918 	}
4919 
4920 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4921 	    regs[value_regno].type == SCALAR_VALUE) {
4922 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4923 		coerce_reg_to_size(&regs[value_regno], size);
4924 	}
4925 	return err;
4926 }
4927 
4928 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4929 {
4930 	int load_reg;
4931 	int err;
4932 
4933 	switch (insn->imm) {
4934 	case BPF_ADD:
4935 	case BPF_ADD | BPF_FETCH:
4936 	case BPF_AND:
4937 	case BPF_AND | BPF_FETCH:
4938 	case BPF_OR:
4939 	case BPF_OR | BPF_FETCH:
4940 	case BPF_XOR:
4941 	case BPF_XOR | BPF_FETCH:
4942 	case BPF_XCHG:
4943 	case BPF_CMPXCHG:
4944 		break;
4945 	default:
4946 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4947 		return -EINVAL;
4948 	}
4949 
4950 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4951 		verbose(env, "invalid atomic operand size\n");
4952 		return -EINVAL;
4953 	}
4954 
4955 	/* check src1 operand */
4956 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4957 	if (err)
4958 		return err;
4959 
4960 	/* check src2 operand */
4961 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4962 	if (err)
4963 		return err;
4964 
4965 	if (insn->imm == BPF_CMPXCHG) {
4966 		/* Check comparison of R0 with memory location */
4967 		const u32 aux_reg = BPF_REG_0;
4968 
4969 		err = check_reg_arg(env, aux_reg, SRC_OP);
4970 		if (err)
4971 			return err;
4972 
4973 		if (is_pointer_value(env, aux_reg)) {
4974 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
4975 			return -EACCES;
4976 		}
4977 	}
4978 
4979 	if (is_pointer_value(env, insn->src_reg)) {
4980 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4981 		return -EACCES;
4982 	}
4983 
4984 	if (is_ctx_reg(env, insn->dst_reg) ||
4985 	    is_pkt_reg(env, insn->dst_reg) ||
4986 	    is_flow_key_reg(env, insn->dst_reg) ||
4987 	    is_sk_reg(env, insn->dst_reg)) {
4988 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4989 			insn->dst_reg,
4990 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
4991 		return -EACCES;
4992 	}
4993 
4994 	if (insn->imm & BPF_FETCH) {
4995 		if (insn->imm == BPF_CMPXCHG)
4996 			load_reg = BPF_REG_0;
4997 		else
4998 			load_reg = insn->src_reg;
4999 
5000 		/* check and record load of old value */
5001 		err = check_reg_arg(env, load_reg, DST_OP);
5002 		if (err)
5003 			return err;
5004 	} else {
5005 		/* This instruction accesses a memory location but doesn't
5006 		 * actually load it into a register.
5007 		 */
5008 		load_reg = -1;
5009 	}
5010 
5011 	/* Check whether we can read the memory, with second call for fetch
5012 	 * case to simulate the register fill.
5013 	 */
5014 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5015 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
5016 	if (!err && load_reg >= 0)
5017 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5018 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
5019 				       true);
5020 	if (err)
5021 		return err;
5022 
5023 	/* Check whether we can write into the same memory. */
5024 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
5025 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
5026 	if (err)
5027 		return err;
5028 
5029 	return 0;
5030 }
5031 
5032 /* When register 'regno' is used to read the stack (either directly or through
5033  * a helper function) make sure that it's within stack boundary and, depending
5034  * on the access type, that all elements of the stack are initialized.
5035  *
5036  * 'off' includes 'regno->off', but not its dynamic part (if any).
5037  *
5038  * All registers that have been spilled on the stack in the slots within the
5039  * read offsets are marked as read.
5040  */
5041 static int check_stack_range_initialized(
5042 		struct bpf_verifier_env *env, int regno, int off,
5043 		int access_size, bool zero_size_allowed,
5044 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
5045 {
5046 	struct bpf_reg_state *reg = reg_state(env, regno);
5047 	struct bpf_func_state *state = func(env, reg);
5048 	int err, min_off, max_off, i, j, slot, spi;
5049 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
5050 	enum bpf_access_type bounds_check_type;
5051 	/* Some accesses can write anything into the stack, others are
5052 	 * read-only.
5053 	 */
5054 	bool clobber = false;
5055 
5056 	if (access_size == 0 && !zero_size_allowed) {
5057 		verbose(env, "invalid zero-sized read\n");
5058 		return -EACCES;
5059 	}
5060 
5061 	if (type == ACCESS_HELPER) {
5062 		/* The bounds checks for writes are more permissive than for
5063 		 * reads. However, if raw_mode is not set, we'll do extra
5064 		 * checks below.
5065 		 */
5066 		bounds_check_type = BPF_WRITE;
5067 		clobber = true;
5068 	} else {
5069 		bounds_check_type = BPF_READ;
5070 	}
5071 	err = check_stack_access_within_bounds(env, regno, off, access_size,
5072 					       type, bounds_check_type);
5073 	if (err)
5074 		return err;
5075 
5076 
5077 	if (tnum_is_const(reg->var_off)) {
5078 		min_off = max_off = reg->var_off.value + off;
5079 	} else {
5080 		/* Variable offset is prohibited for unprivileged mode for
5081 		 * simplicity since it requires corresponding support in
5082 		 * Spectre masking for stack ALU.
5083 		 * See also retrieve_ptr_limit().
5084 		 */
5085 		if (!env->bypass_spec_v1) {
5086 			char tn_buf[48];
5087 
5088 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5089 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
5090 				regno, err_extra, tn_buf);
5091 			return -EACCES;
5092 		}
5093 		/* Only initialized buffer on stack is allowed to be accessed
5094 		 * with variable offset. With uninitialized buffer it's hard to
5095 		 * guarantee that whole memory is marked as initialized on
5096 		 * helper return since specific bounds are unknown what may
5097 		 * cause uninitialized stack leaking.
5098 		 */
5099 		if (meta && meta->raw_mode)
5100 			meta = NULL;
5101 
5102 		min_off = reg->smin_value + off;
5103 		max_off = reg->smax_value + off;
5104 	}
5105 
5106 	if (meta && meta->raw_mode) {
5107 		meta->access_size = access_size;
5108 		meta->regno = regno;
5109 		return 0;
5110 	}
5111 
5112 	for (i = min_off; i < max_off + access_size; i++) {
5113 		u8 *stype;
5114 
5115 		slot = -i - 1;
5116 		spi = slot / BPF_REG_SIZE;
5117 		if (state->allocated_stack <= slot)
5118 			goto err;
5119 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
5120 		if (*stype == STACK_MISC)
5121 			goto mark;
5122 		if (*stype == STACK_ZERO) {
5123 			if (clobber) {
5124 				/* helper can write anything into the stack */
5125 				*stype = STACK_MISC;
5126 			}
5127 			goto mark;
5128 		}
5129 
5130 		if (is_spilled_reg(&state->stack[spi]) &&
5131 		    base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID)
5132 			goto mark;
5133 
5134 		if (is_spilled_reg(&state->stack[spi]) &&
5135 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
5136 		     env->allow_ptr_leaks)) {
5137 			if (clobber) {
5138 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
5139 				for (j = 0; j < BPF_REG_SIZE; j++)
5140 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
5141 			}
5142 			goto mark;
5143 		}
5144 
5145 err:
5146 		if (tnum_is_const(reg->var_off)) {
5147 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
5148 				err_extra, regno, min_off, i - min_off, access_size);
5149 		} else {
5150 			char tn_buf[48];
5151 
5152 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5153 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5154 				err_extra, regno, tn_buf, i - min_off, access_size);
5155 		}
5156 		return -EACCES;
5157 mark:
5158 		/* reading any byte out of 8-byte 'spill_slot' will cause
5159 		 * the whole slot to be marked as 'read'
5160 		 */
5161 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
5162 			      state->stack[spi].spilled_ptr.parent,
5163 			      REG_LIVE_READ64);
5164 	}
5165 	return update_stack_depth(env, state, min_off);
5166 }
5167 
5168 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5169 				   int access_size, bool zero_size_allowed,
5170 				   struct bpf_call_arg_meta *meta)
5171 {
5172 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5173 	u32 *max_access;
5174 
5175 	switch (base_type(reg->type)) {
5176 	case PTR_TO_PACKET:
5177 	case PTR_TO_PACKET_META:
5178 		return check_packet_access(env, regno, reg->off, access_size,
5179 					   zero_size_allowed);
5180 	case PTR_TO_MAP_KEY:
5181 		if (meta && meta->raw_mode) {
5182 			verbose(env, "R%d cannot write into %s\n", regno,
5183 				reg_type_str(env, reg->type));
5184 			return -EACCES;
5185 		}
5186 		return check_mem_region_access(env, regno, reg->off, access_size,
5187 					       reg->map_ptr->key_size, false);
5188 	case PTR_TO_MAP_VALUE:
5189 		if (check_map_access_type(env, regno, reg->off, access_size,
5190 					  meta && meta->raw_mode ? BPF_WRITE :
5191 					  BPF_READ))
5192 			return -EACCES;
5193 		return check_map_access(env, regno, reg->off, access_size,
5194 					zero_size_allowed, ACCESS_HELPER);
5195 	case PTR_TO_MEM:
5196 		if (type_is_rdonly_mem(reg->type)) {
5197 			if (meta && meta->raw_mode) {
5198 				verbose(env, "R%d cannot write into %s\n", regno,
5199 					reg_type_str(env, reg->type));
5200 				return -EACCES;
5201 			}
5202 		}
5203 		return check_mem_region_access(env, regno, reg->off,
5204 					       access_size, reg->mem_size,
5205 					       zero_size_allowed);
5206 	case PTR_TO_BUF:
5207 		if (type_is_rdonly_mem(reg->type)) {
5208 			if (meta && meta->raw_mode) {
5209 				verbose(env, "R%d cannot write into %s\n", regno,
5210 					reg_type_str(env, reg->type));
5211 				return -EACCES;
5212 			}
5213 
5214 			max_access = &env->prog->aux->max_rdonly_access;
5215 		} else {
5216 			max_access = &env->prog->aux->max_rdwr_access;
5217 		}
5218 		return check_buffer_access(env, reg, regno, reg->off,
5219 					   access_size, zero_size_allowed,
5220 					   max_access);
5221 	case PTR_TO_STACK:
5222 		return check_stack_range_initialized(
5223 				env,
5224 				regno, reg->off, access_size,
5225 				zero_size_allowed, ACCESS_HELPER, meta);
5226 	default: /* scalar_value or invalid ptr */
5227 		/* Allow zero-byte read from NULL, regardless of pointer type */
5228 		if (zero_size_allowed && access_size == 0 &&
5229 		    register_is_null(reg))
5230 			return 0;
5231 
5232 		verbose(env, "R%d type=%s ", regno,
5233 			reg_type_str(env, reg->type));
5234 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5235 		return -EACCES;
5236 	}
5237 }
5238 
5239 static int check_mem_size_reg(struct bpf_verifier_env *env,
5240 			      struct bpf_reg_state *reg, u32 regno,
5241 			      bool zero_size_allowed,
5242 			      struct bpf_call_arg_meta *meta)
5243 {
5244 	int err;
5245 
5246 	/* This is used to refine r0 return value bounds for helpers
5247 	 * that enforce this value as an upper bound on return values.
5248 	 * See do_refine_retval_range() for helpers that can refine
5249 	 * the return value. C type of helper is u32 so we pull register
5250 	 * bound from umax_value however, if negative verifier errors
5251 	 * out. Only upper bounds can be learned because retval is an
5252 	 * int type and negative retvals are allowed.
5253 	 */
5254 	meta->msize_max_value = reg->umax_value;
5255 
5256 	/* The register is SCALAR_VALUE; the access check
5257 	 * happens using its boundaries.
5258 	 */
5259 	if (!tnum_is_const(reg->var_off))
5260 		/* For unprivileged variable accesses, disable raw
5261 		 * mode so that the program is required to
5262 		 * initialize all the memory that the helper could
5263 		 * just partially fill up.
5264 		 */
5265 		meta = NULL;
5266 
5267 	if (reg->smin_value < 0) {
5268 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5269 			regno);
5270 		return -EACCES;
5271 	}
5272 
5273 	if (reg->umin_value == 0) {
5274 		err = check_helper_mem_access(env, regno - 1, 0,
5275 					      zero_size_allowed,
5276 					      meta);
5277 		if (err)
5278 			return err;
5279 	}
5280 
5281 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5282 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5283 			regno);
5284 		return -EACCES;
5285 	}
5286 	err = check_helper_mem_access(env, regno - 1,
5287 				      reg->umax_value,
5288 				      zero_size_allowed, meta);
5289 	if (!err)
5290 		err = mark_chain_precision(env, regno);
5291 	return err;
5292 }
5293 
5294 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5295 		   u32 regno, u32 mem_size)
5296 {
5297 	bool may_be_null = type_may_be_null(reg->type);
5298 	struct bpf_reg_state saved_reg;
5299 	struct bpf_call_arg_meta meta;
5300 	int err;
5301 
5302 	if (register_is_null(reg))
5303 		return 0;
5304 
5305 	memset(&meta, 0, sizeof(meta));
5306 	/* Assuming that the register contains a value check if the memory
5307 	 * access is safe. Temporarily save and restore the register's state as
5308 	 * the conversion shouldn't be visible to a caller.
5309 	 */
5310 	if (may_be_null) {
5311 		saved_reg = *reg;
5312 		mark_ptr_not_null_reg(reg);
5313 	}
5314 
5315 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5316 	/* Check access for BPF_WRITE */
5317 	meta.raw_mode = true;
5318 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5319 
5320 	if (may_be_null)
5321 		*reg = saved_reg;
5322 
5323 	return err;
5324 }
5325 
5326 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5327 			     u32 regno)
5328 {
5329 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5330 	bool may_be_null = type_may_be_null(mem_reg->type);
5331 	struct bpf_reg_state saved_reg;
5332 	struct bpf_call_arg_meta meta;
5333 	int err;
5334 
5335 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5336 
5337 	memset(&meta, 0, sizeof(meta));
5338 
5339 	if (may_be_null) {
5340 		saved_reg = *mem_reg;
5341 		mark_ptr_not_null_reg(mem_reg);
5342 	}
5343 
5344 	err = check_mem_size_reg(env, reg, regno, true, &meta);
5345 	/* Check access for BPF_WRITE */
5346 	meta.raw_mode = true;
5347 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5348 
5349 	if (may_be_null)
5350 		*mem_reg = saved_reg;
5351 	return err;
5352 }
5353 
5354 /* Implementation details:
5355  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
5356  * Two bpf_map_lookups (even with the same key) will have different reg->id.
5357  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
5358  * value_or_null->value transition, since the verifier only cares about
5359  * the range of access to valid map value pointer and doesn't care about actual
5360  * address of the map element.
5361  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5362  * reg->id > 0 after value_or_null->value transition. By doing so
5363  * two bpf_map_lookups will be considered two different pointers that
5364  * point to different bpf_spin_locks.
5365  * The verifier allows taking only one bpf_spin_lock at a time to avoid
5366  * dead-locks.
5367  * Since only one bpf_spin_lock is allowed the checks are simpler than
5368  * reg_is_refcounted() logic. The verifier needs to remember only
5369  * one spin_lock instead of array of acquired_refs.
5370  * cur_state->active_spin_lock remembers which map value element got locked
5371  * and clears it after bpf_spin_unlock.
5372  */
5373 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5374 			     bool is_lock)
5375 {
5376 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5377 	struct bpf_verifier_state *cur = env->cur_state;
5378 	bool is_const = tnum_is_const(reg->var_off);
5379 	struct bpf_map *map = reg->map_ptr;
5380 	u64 val = reg->var_off.value;
5381 
5382 	if (!is_const) {
5383 		verbose(env,
5384 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5385 			regno);
5386 		return -EINVAL;
5387 	}
5388 	if (!map->btf) {
5389 		verbose(env,
5390 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
5391 			map->name);
5392 		return -EINVAL;
5393 	}
5394 	if (!map_value_has_spin_lock(map)) {
5395 		if (map->spin_lock_off == -E2BIG)
5396 			verbose(env,
5397 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
5398 				map->name);
5399 		else if (map->spin_lock_off == -ENOENT)
5400 			verbose(env,
5401 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
5402 				map->name);
5403 		else
5404 			verbose(env,
5405 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
5406 				map->name);
5407 		return -EINVAL;
5408 	}
5409 	if (map->spin_lock_off != val + reg->off) {
5410 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
5411 			val + reg->off);
5412 		return -EINVAL;
5413 	}
5414 	if (is_lock) {
5415 		if (cur->active_spin_lock) {
5416 			verbose(env,
5417 				"Locking two bpf_spin_locks are not allowed\n");
5418 			return -EINVAL;
5419 		}
5420 		cur->active_spin_lock = reg->id;
5421 	} else {
5422 		if (!cur->active_spin_lock) {
5423 			verbose(env, "bpf_spin_unlock without taking a lock\n");
5424 			return -EINVAL;
5425 		}
5426 		if (cur->active_spin_lock != reg->id) {
5427 			verbose(env, "bpf_spin_unlock of different lock\n");
5428 			return -EINVAL;
5429 		}
5430 		cur->active_spin_lock = 0;
5431 	}
5432 	return 0;
5433 }
5434 
5435 static int process_timer_func(struct bpf_verifier_env *env, int regno,
5436 			      struct bpf_call_arg_meta *meta)
5437 {
5438 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5439 	bool is_const = tnum_is_const(reg->var_off);
5440 	struct bpf_map *map = reg->map_ptr;
5441 	u64 val = reg->var_off.value;
5442 
5443 	if (!is_const) {
5444 		verbose(env,
5445 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5446 			regno);
5447 		return -EINVAL;
5448 	}
5449 	if (!map->btf) {
5450 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5451 			map->name);
5452 		return -EINVAL;
5453 	}
5454 	if (!map_value_has_timer(map)) {
5455 		if (map->timer_off == -E2BIG)
5456 			verbose(env,
5457 				"map '%s' has more than one 'struct bpf_timer'\n",
5458 				map->name);
5459 		else if (map->timer_off == -ENOENT)
5460 			verbose(env,
5461 				"map '%s' doesn't have 'struct bpf_timer'\n",
5462 				map->name);
5463 		else
5464 			verbose(env,
5465 				"map '%s' is not a struct type or bpf_timer is mangled\n",
5466 				map->name);
5467 		return -EINVAL;
5468 	}
5469 	if (map->timer_off != val + reg->off) {
5470 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5471 			val + reg->off, map->timer_off);
5472 		return -EINVAL;
5473 	}
5474 	if (meta->map_ptr) {
5475 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5476 		return -EFAULT;
5477 	}
5478 	meta->map_uid = reg->map_uid;
5479 	meta->map_ptr = map;
5480 	return 0;
5481 }
5482 
5483 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5484 			     struct bpf_call_arg_meta *meta)
5485 {
5486 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5487 	struct bpf_map_value_off_desc *off_desc;
5488 	struct bpf_map *map_ptr = reg->map_ptr;
5489 	u32 kptr_off;
5490 	int ret;
5491 
5492 	if (!tnum_is_const(reg->var_off)) {
5493 		verbose(env,
5494 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5495 			regno);
5496 		return -EINVAL;
5497 	}
5498 	if (!map_ptr->btf) {
5499 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5500 			map_ptr->name);
5501 		return -EINVAL;
5502 	}
5503 	if (!map_value_has_kptrs(map_ptr)) {
5504 		ret = PTR_ERR_OR_ZERO(map_ptr->kptr_off_tab);
5505 		if (ret == -E2BIG)
5506 			verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name,
5507 				BPF_MAP_VALUE_OFF_MAX);
5508 		else if (ret == -EEXIST)
5509 			verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name);
5510 		else
5511 			verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
5512 		return -EINVAL;
5513 	}
5514 
5515 	meta->map_ptr = map_ptr;
5516 	kptr_off = reg->off + reg->var_off.value;
5517 	off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off);
5518 	if (!off_desc) {
5519 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5520 		return -EACCES;
5521 	}
5522 	if (off_desc->type != BPF_KPTR_REF) {
5523 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5524 		return -EACCES;
5525 	}
5526 	meta->kptr_off_desc = off_desc;
5527 	return 0;
5528 }
5529 
5530 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5531 {
5532 	return type == ARG_CONST_SIZE ||
5533 	       type == ARG_CONST_SIZE_OR_ZERO;
5534 }
5535 
5536 static bool arg_type_is_release(enum bpf_arg_type type)
5537 {
5538 	return type & OBJ_RELEASE;
5539 }
5540 
5541 static bool arg_type_is_dynptr(enum bpf_arg_type type)
5542 {
5543 	return base_type(type) == ARG_PTR_TO_DYNPTR;
5544 }
5545 
5546 static int int_ptr_type_to_size(enum bpf_arg_type type)
5547 {
5548 	if (type == ARG_PTR_TO_INT)
5549 		return sizeof(u32);
5550 	else if (type == ARG_PTR_TO_LONG)
5551 		return sizeof(u64);
5552 
5553 	return -EINVAL;
5554 }
5555 
5556 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5557 				 const struct bpf_call_arg_meta *meta,
5558 				 enum bpf_arg_type *arg_type)
5559 {
5560 	if (!meta->map_ptr) {
5561 		/* kernel subsystem misconfigured verifier */
5562 		verbose(env, "invalid map_ptr to access map->type\n");
5563 		return -EACCES;
5564 	}
5565 
5566 	switch (meta->map_ptr->map_type) {
5567 	case BPF_MAP_TYPE_SOCKMAP:
5568 	case BPF_MAP_TYPE_SOCKHASH:
5569 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5570 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5571 		} else {
5572 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5573 			return -EINVAL;
5574 		}
5575 		break;
5576 	case BPF_MAP_TYPE_BLOOM_FILTER:
5577 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5578 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5579 		break;
5580 	default:
5581 		break;
5582 	}
5583 	return 0;
5584 }
5585 
5586 struct bpf_reg_types {
5587 	const enum bpf_reg_type types[10];
5588 	u32 *btf_id;
5589 };
5590 
5591 static const struct bpf_reg_types map_key_value_types = {
5592 	.types = {
5593 		PTR_TO_STACK,
5594 		PTR_TO_PACKET,
5595 		PTR_TO_PACKET_META,
5596 		PTR_TO_MAP_KEY,
5597 		PTR_TO_MAP_VALUE,
5598 	},
5599 };
5600 
5601 static const struct bpf_reg_types sock_types = {
5602 	.types = {
5603 		PTR_TO_SOCK_COMMON,
5604 		PTR_TO_SOCKET,
5605 		PTR_TO_TCP_SOCK,
5606 		PTR_TO_XDP_SOCK,
5607 	},
5608 };
5609 
5610 #ifdef CONFIG_NET
5611 static const struct bpf_reg_types btf_id_sock_common_types = {
5612 	.types = {
5613 		PTR_TO_SOCK_COMMON,
5614 		PTR_TO_SOCKET,
5615 		PTR_TO_TCP_SOCK,
5616 		PTR_TO_XDP_SOCK,
5617 		PTR_TO_BTF_ID,
5618 	},
5619 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5620 };
5621 #endif
5622 
5623 static const struct bpf_reg_types mem_types = {
5624 	.types = {
5625 		PTR_TO_STACK,
5626 		PTR_TO_PACKET,
5627 		PTR_TO_PACKET_META,
5628 		PTR_TO_MAP_KEY,
5629 		PTR_TO_MAP_VALUE,
5630 		PTR_TO_MEM,
5631 		PTR_TO_MEM | MEM_ALLOC,
5632 		PTR_TO_BUF,
5633 	},
5634 };
5635 
5636 static const struct bpf_reg_types int_ptr_types = {
5637 	.types = {
5638 		PTR_TO_STACK,
5639 		PTR_TO_PACKET,
5640 		PTR_TO_PACKET_META,
5641 		PTR_TO_MAP_KEY,
5642 		PTR_TO_MAP_VALUE,
5643 	},
5644 };
5645 
5646 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5647 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5648 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5649 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
5650 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5651 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5652 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5653 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
5654 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5655 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5656 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5657 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5658 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
5659 
5660 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5661 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
5662 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
5663 	[ARG_CONST_SIZE]		= &scalar_types,
5664 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5665 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5666 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
5667 	[ARG_PTR_TO_CTX]		= &context_types,
5668 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
5669 #ifdef CONFIG_NET
5670 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
5671 #endif
5672 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
5673 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
5674 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
5675 	[ARG_PTR_TO_MEM]		= &mem_types,
5676 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
5677 	[ARG_PTR_TO_INT]		= &int_ptr_types,
5678 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
5679 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
5680 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
5681 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
5682 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
5683 	[ARG_PTR_TO_TIMER]		= &timer_types,
5684 	[ARG_PTR_TO_KPTR]		= &kptr_types,
5685 	[ARG_PTR_TO_DYNPTR]		= &stack_ptr_types,
5686 };
5687 
5688 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5689 			  enum bpf_arg_type arg_type,
5690 			  const u32 *arg_btf_id,
5691 			  struct bpf_call_arg_meta *meta)
5692 {
5693 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5694 	enum bpf_reg_type expected, type = reg->type;
5695 	const struct bpf_reg_types *compatible;
5696 	int i, j;
5697 
5698 	compatible = compatible_reg_types[base_type(arg_type)];
5699 	if (!compatible) {
5700 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5701 		return -EFAULT;
5702 	}
5703 
5704 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5705 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5706 	 *
5707 	 * Same for MAYBE_NULL:
5708 	 *
5709 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5710 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5711 	 *
5712 	 * Therefore we fold these flags depending on the arg_type before comparison.
5713 	 */
5714 	if (arg_type & MEM_RDONLY)
5715 		type &= ~MEM_RDONLY;
5716 	if (arg_type & PTR_MAYBE_NULL)
5717 		type &= ~PTR_MAYBE_NULL;
5718 
5719 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5720 		expected = compatible->types[i];
5721 		if (expected == NOT_INIT)
5722 			break;
5723 
5724 		if (type == expected)
5725 			goto found;
5726 	}
5727 
5728 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
5729 	for (j = 0; j + 1 < i; j++)
5730 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5731 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
5732 	return -EACCES;
5733 
5734 found:
5735 	if (reg->type == PTR_TO_BTF_ID) {
5736 		/* For bpf_sk_release, it needs to match against first member
5737 		 * 'struct sock_common', hence make an exception for it. This
5738 		 * allows bpf_sk_release to work for multiple socket types.
5739 		 */
5740 		bool strict_type_match = arg_type_is_release(arg_type) &&
5741 					 meta->func_id != BPF_FUNC_sk_release;
5742 
5743 		if (!arg_btf_id) {
5744 			if (!compatible->btf_id) {
5745 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5746 				return -EFAULT;
5747 			}
5748 			arg_btf_id = compatible->btf_id;
5749 		}
5750 
5751 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
5752 			if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno))
5753 				return -EACCES;
5754 		} else if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5755 						 btf_vmlinux, *arg_btf_id,
5756 						 strict_type_match)) {
5757 			verbose(env, "R%d is of type %s but %s is expected\n",
5758 				regno, kernel_type_name(reg->btf, reg->btf_id),
5759 				kernel_type_name(btf_vmlinux, *arg_btf_id));
5760 			return -EACCES;
5761 		}
5762 	}
5763 
5764 	return 0;
5765 }
5766 
5767 int check_func_arg_reg_off(struct bpf_verifier_env *env,
5768 			   const struct bpf_reg_state *reg, int regno,
5769 			   enum bpf_arg_type arg_type)
5770 {
5771 	enum bpf_reg_type type = reg->type;
5772 	bool fixed_off_ok = false;
5773 
5774 	switch ((u32)type) {
5775 	/* Pointer types where reg offset is explicitly allowed: */
5776 	case PTR_TO_STACK:
5777 		if (arg_type_is_dynptr(arg_type) && reg->off % BPF_REG_SIZE) {
5778 			verbose(env, "cannot pass in dynptr at an offset\n");
5779 			return -EINVAL;
5780 		}
5781 		fallthrough;
5782 	case PTR_TO_PACKET:
5783 	case PTR_TO_PACKET_META:
5784 	case PTR_TO_MAP_KEY:
5785 	case PTR_TO_MAP_VALUE:
5786 	case PTR_TO_MEM:
5787 	case PTR_TO_MEM | MEM_RDONLY:
5788 	case PTR_TO_MEM | MEM_ALLOC:
5789 	case PTR_TO_BUF:
5790 	case PTR_TO_BUF | MEM_RDONLY:
5791 	case SCALAR_VALUE:
5792 		/* Some of the argument types nevertheless require a
5793 		 * zero register offset.
5794 		 */
5795 		if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM)
5796 			return 0;
5797 		break;
5798 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
5799 	 * fixed offset.
5800 	 */
5801 	case PTR_TO_BTF_ID:
5802 		/* When referenced PTR_TO_BTF_ID is passed to release function,
5803 		 * it's fixed offset must be 0.	In the other cases, fixed offset
5804 		 * can be non-zero.
5805 		 */
5806 		if (arg_type_is_release(arg_type) && reg->off) {
5807 			verbose(env, "R%d must have zero offset when passed to release func\n",
5808 				regno);
5809 			return -EINVAL;
5810 		}
5811 		/* For arg is release pointer, fixed_off_ok must be false, but
5812 		 * we already checked and rejected reg->off != 0 above, so set
5813 		 * to true to allow fixed offset for all other cases.
5814 		 */
5815 		fixed_off_ok = true;
5816 		break;
5817 	default:
5818 		break;
5819 	}
5820 	return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
5821 }
5822 
5823 static u32 stack_slot_get_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
5824 {
5825 	struct bpf_func_state *state = func(env, reg);
5826 	int spi = get_spi(reg->off);
5827 
5828 	return state->stack[spi].spilled_ptr.id;
5829 }
5830 
5831 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5832 			  struct bpf_call_arg_meta *meta,
5833 			  const struct bpf_func_proto *fn)
5834 {
5835 	u32 regno = BPF_REG_1 + arg;
5836 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5837 	enum bpf_arg_type arg_type = fn->arg_type[arg];
5838 	enum bpf_reg_type type = reg->type;
5839 	u32 *arg_btf_id = NULL;
5840 	int err = 0;
5841 
5842 	if (arg_type == ARG_DONTCARE)
5843 		return 0;
5844 
5845 	err = check_reg_arg(env, regno, SRC_OP);
5846 	if (err)
5847 		return err;
5848 
5849 	if (arg_type == ARG_ANYTHING) {
5850 		if (is_pointer_value(env, regno)) {
5851 			verbose(env, "R%d leaks addr into helper function\n",
5852 				regno);
5853 			return -EACCES;
5854 		}
5855 		return 0;
5856 	}
5857 
5858 	if (type_is_pkt_pointer(type) &&
5859 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5860 		verbose(env, "helper access to the packet is not allowed\n");
5861 		return -EACCES;
5862 	}
5863 
5864 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
5865 		err = resolve_map_arg_type(env, meta, &arg_type);
5866 		if (err)
5867 			return err;
5868 	}
5869 
5870 	if (register_is_null(reg) && type_may_be_null(arg_type))
5871 		/* A NULL register has a SCALAR_VALUE type, so skip
5872 		 * type checking.
5873 		 */
5874 		goto skip_type_check;
5875 
5876 	/* arg_btf_id and arg_size are in a union. */
5877 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID)
5878 		arg_btf_id = fn->arg_btf_id[arg];
5879 
5880 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
5881 	if (err)
5882 		return err;
5883 
5884 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
5885 	if (err)
5886 		return err;
5887 
5888 skip_type_check:
5889 	if (arg_type_is_release(arg_type)) {
5890 		if (arg_type_is_dynptr(arg_type)) {
5891 			struct bpf_func_state *state = func(env, reg);
5892 			int spi = get_spi(reg->off);
5893 
5894 			if (!is_spi_bounds_valid(state, spi, BPF_DYNPTR_NR_SLOTS) ||
5895 			    !state->stack[spi].spilled_ptr.id) {
5896 				verbose(env, "arg %d is an unacquired reference\n", regno);
5897 				return -EINVAL;
5898 			}
5899 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
5900 			verbose(env, "R%d must be referenced when passed to release function\n",
5901 				regno);
5902 			return -EINVAL;
5903 		}
5904 		if (meta->release_regno) {
5905 			verbose(env, "verifier internal error: more than one release argument\n");
5906 			return -EFAULT;
5907 		}
5908 		meta->release_regno = regno;
5909 	}
5910 
5911 	if (reg->ref_obj_id) {
5912 		if (meta->ref_obj_id) {
5913 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5914 				regno, reg->ref_obj_id,
5915 				meta->ref_obj_id);
5916 			return -EFAULT;
5917 		}
5918 		meta->ref_obj_id = reg->ref_obj_id;
5919 	}
5920 
5921 	switch (base_type(arg_type)) {
5922 	case ARG_CONST_MAP_PTR:
5923 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5924 		if (meta->map_ptr) {
5925 			/* Use map_uid (which is unique id of inner map) to reject:
5926 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5927 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5928 			 * if (inner_map1 && inner_map2) {
5929 			 *     timer = bpf_map_lookup_elem(inner_map1);
5930 			 *     if (timer)
5931 			 *         // mismatch would have been allowed
5932 			 *         bpf_timer_init(timer, inner_map2);
5933 			 * }
5934 			 *
5935 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
5936 			 */
5937 			if (meta->map_ptr != reg->map_ptr ||
5938 			    meta->map_uid != reg->map_uid) {
5939 				verbose(env,
5940 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5941 					meta->map_uid, reg->map_uid);
5942 				return -EINVAL;
5943 			}
5944 		}
5945 		meta->map_ptr = reg->map_ptr;
5946 		meta->map_uid = reg->map_uid;
5947 		break;
5948 	case ARG_PTR_TO_MAP_KEY:
5949 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
5950 		 * check that [key, key + map->key_size) are within
5951 		 * stack limits and initialized
5952 		 */
5953 		if (!meta->map_ptr) {
5954 			/* in function declaration map_ptr must come before
5955 			 * map_key, so that it's verified and known before
5956 			 * we have to check map_key here. Otherwise it means
5957 			 * that kernel subsystem misconfigured verifier
5958 			 */
5959 			verbose(env, "invalid map_ptr to access map->key\n");
5960 			return -EACCES;
5961 		}
5962 		err = check_helper_mem_access(env, regno,
5963 					      meta->map_ptr->key_size, false,
5964 					      NULL);
5965 		break;
5966 	case ARG_PTR_TO_MAP_VALUE:
5967 		if (type_may_be_null(arg_type) && register_is_null(reg))
5968 			return 0;
5969 
5970 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
5971 		 * check [value, value + map->value_size) validity
5972 		 */
5973 		if (!meta->map_ptr) {
5974 			/* kernel subsystem misconfigured verifier */
5975 			verbose(env, "invalid map_ptr to access map->value\n");
5976 			return -EACCES;
5977 		}
5978 		meta->raw_mode = arg_type & MEM_UNINIT;
5979 		err = check_helper_mem_access(env, regno,
5980 					      meta->map_ptr->value_size, false,
5981 					      meta);
5982 		break;
5983 	case ARG_PTR_TO_PERCPU_BTF_ID:
5984 		if (!reg->btf_id) {
5985 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5986 			return -EACCES;
5987 		}
5988 		meta->ret_btf = reg->btf;
5989 		meta->ret_btf_id = reg->btf_id;
5990 		break;
5991 	case ARG_PTR_TO_SPIN_LOCK:
5992 		if (meta->func_id == BPF_FUNC_spin_lock) {
5993 			if (process_spin_lock(env, regno, true))
5994 				return -EACCES;
5995 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
5996 			if (process_spin_lock(env, regno, false))
5997 				return -EACCES;
5998 		} else {
5999 			verbose(env, "verifier internal error\n");
6000 			return -EFAULT;
6001 		}
6002 		break;
6003 	case ARG_PTR_TO_TIMER:
6004 		if (process_timer_func(env, regno, meta))
6005 			return -EACCES;
6006 		break;
6007 	case ARG_PTR_TO_FUNC:
6008 		meta->subprogno = reg->subprogno;
6009 		break;
6010 	case ARG_PTR_TO_MEM:
6011 		/* The access to this pointer is only checked when we hit the
6012 		 * next is_mem_size argument below.
6013 		 */
6014 		meta->raw_mode = arg_type & MEM_UNINIT;
6015 		if (arg_type & MEM_FIXED_SIZE) {
6016 			err = check_helper_mem_access(env, regno,
6017 						      fn->arg_size[arg], false,
6018 						      meta);
6019 		}
6020 		break;
6021 	case ARG_CONST_SIZE:
6022 		err = check_mem_size_reg(env, reg, regno, false, meta);
6023 		break;
6024 	case ARG_CONST_SIZE_OR_ZERO:
6025 		err = check_mem_size_reg(env, reg, regno, true, meta);
6026 		break;
6027 	case ARG_PTR_TO_DYNPTR:
6028 		if (arg_type & MEM_UNINIT) {
6029 			if (!is_dynptr_reg_valid_uninit(env, reg)) {
6030 				verbose(env, "Dynptr has to be an uninitialized dynptr\n");
6031 				return -EINVAL;
6032 			}
6033 
6034 			/* We only support one dynptr being uninitialized at the moment,
6035 			 * which is sufficient for the helper functions we have right now.
6036 			 */
6037 			if (meta->uninit_dynptr_regno) {
6038 				verbose(env, "verifier internal error: multiple uninitialized dynptr args\n");
6039 				return -EFAULT;
6040 			}
6041 
6042 			meta->uninit_dynptr_regno = regno;
6043 		} else if (!is_dynptr_reg_valid_init(env, reg, arg_type)) {
6044 			const char *err_extra = "";
6045 
6046 			switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
6047 			case DYNPTR_TYPE_LOCAL:
6048 				err_extra = "local ";
6049 				break;
6050 			case DYNPTR_TYPE_RINGBUF:
6051 				err_extra = "ringbuf ";
6052 				break;
6053 			default:
6054 				break;
6055 			}
6056 
6057 			verbose(env, "Expected an initialized %sdynptr as arg #%d\n",
6058 				err_extra, arg + 1);
6059 			return -EINVAL;
6060 		}
6061 		break;
6062 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
6063 		if (!tnum_is_const(reg->var_off)) {
6064 			verbose(env, "R%d is not a known constant'\n",
6065 				regno);
6066 			return -EACCES;
6067 		}
6068 		meta->mem_size = reg->var_off.value;
6069 		err = mark_chain_precision(env, regno);
6070 		if (err)
6071 			return err;
6072 		break;
6073 	case ARG_PTR_TO_INT:
6074 	case ARG_PTR_TO_LONG:
6075 	{
6076 		int size = int_ptr_type_to_size(arg_type);
6077 
6078 		err = check_helper_mem_access(env, regno, size, false, meta);
6079 		if (err)
6080 			return err;
6081 		err = check_ptr_alignment(env, reg, 0, size, true);
6082 		break;
6083 	}
6084 	case ARG_PTR_TO_CONST_STR:
6085 	{
6086 		struct bpf_map *map = reg->map_ptr;
6087 		int map_off;
6088 		u64 map_addr;
6089 		char *str_ptr;
6090 
6091 		if (!bpf_map_is_rdonly(map)) {
6092 			verbose(env, "R%d does not point to a readonly map'\n", regno);
6093 			return -EACCES;
6094 		}
6095 
6096 		if (!tnum_is_const(reg->var_off)) {
6097 			verbose(env, "R%d is not a constant address'\n", regno);
6098 			return -EACCES;
6099 		}
6100 
6101 		if (!map->ops->map_direct_value_addr) {
6102 			verbose(env, "no direct value access support for this map type\n");
6103 			return -EACCES;
6104 		}
6105 
6106 		err = check_map_access(env, regno, reg->off,
6107 				       map->value_size - reg->off, false,
6108 				       ACCESS_HELPER);
6109 		if (err)
6110 			return err;
6111 
6112 		map_off = reg->off + reg->var_off.value;
6113 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
6114 		if (err) {
6115 			verbose(env, "direct value access on string failed\n");
6116 			return err;
6117 		}
6118 
6119 		str_ptr = (char *)(long)(map_addr);
6120 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
6121 			verbose(env, "string is not zero-terminated\n");
6122 			return -EINVAL;
6123 		}
6124 		break;
6125 	}
6126 	case ARG_PTR_TO_KPTR:
6127 		if (process_kptr_func(env, regno, meta))
6128 			return -EACCES;
6129 		break;
6130 	}
6131 
6132 	return err;
6133 }
6134 
6135 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
6136 {
6137 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6138 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6139 
6140 	if (func_id != BPF_FUNC_map_update_elem)
6141 		return false;
6142 
6143 	/* It's not possible to get access to a locked struct sock in these
6144 	 * contexts, so updating is safe.
6145 	 */
6146 	switch (type) {
6147 	case BPF_PROG_TYPE_TRACING:
6148 		if (eatype == BPF_TRACE_ITER)
6149 			return true;
6150 		break;
6151 	case BPF_PROG_TYPE_SOCKET_FILTER:
6152 	case BPF_PROG_TYPE_SCHED_CLS:
6153 	case BPF_PROG_TYPE_SCHED_ACT:
6154 	case BPF_PROG_TYPE_XDP:
6155 	case BPF_PROG_TYPE_SK_REUSEPORT:
6156 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
6157 	case BPF_PROG_TYPE_SK_LOOKUP:
6158 		return true;
6159 	default:
6160 		break;
6161 	}
6162 
6163 	verbose(env, "cannot update sockmap in this context\n");
6164 	return false;
6165 }
6166 
6167 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
6168 {
6169 	return env->prog->jit_requested &&
6170 	       bpf_jit_supports_subprog_tailcalls();
6171 }
6172 
6173 static int check_map_func_compatibility(struct bpf_verifier_env *env,
6174 					struct bpf_map *map, int func_id)
6175 {
6176 	if (!map)
6177 		return 0;
6178 
6179 	/* We need a two way check, first is from map perspective ... */
6180 	switch (map->map_type) {
6181 	case BPF_MAP_TYPE_PROG_ARRAY:
6182 		if (func_id != BPF_FUNC_tail_call)
6183 			goto error;
6184 		break;
6185 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
6186 		if (func_id != BPF_FUNC_perf_event_read &&
6187 		    func_id != BPF_FUNC_perf_event_output &&
6188 		    func_id != BPF_FUNC_skb_output &&
6189 		    func_id != BPF_FUNC_perf_event_read_value &&
6190 		    func_id != BPF_FUNC_xdp_output)
6191 			goto error;
6192 		break;
6193 	case BPF_MAP_TYPE_RINGBUF:
6194 		if (func_id != BPF_FUNC_ringbuf_output &&
6195 		    func_id != BPF_FUNC_ringbuf_reserve &&
6196 		    func_id != BPF_FUNC_ringbuf_query &&
6197 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
6198 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
6199 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
6200 			goto error;
6201 		break;
6202 	case BPF_MAP_TYPE_STACK_TRACE:
6203 		if (func_id != BPF_FUNC_get_stackid)
6204 			goto error;
6205 		break;
6206 	case BPF_MAP_TYPE_CGROUP_ARRAY:
6207 		if (func_id != BPF_FUNC_skb_under_cgroup &&
6208 		    func_id != BPF_FUNC_current_task_under_cgroup)
6209 			goto error;
6210 		break;
6211 	case BPF_MAP_TYPE_CGROUP_STORAGE:
6212 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
6213 		if (func_id != BPF_FUNC_get_local_storage)
6214 			goto error;
6215 		break;
6216 	case BPF_MAP_TYPE_DEVMAP:
6217 	case BPF_MAP_TYPE_DEVMAP_HASH:
6218 		if (func_id != BPF_FUNC_redirect_map &&
6219 		    func_id != BPF_FUNC_map_lookup_elem)
6220 			goto error;
6221 		break;
6222 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
6223 	 * appear.
6224 	 */
6225 	case BPF_MAP_TYPE_CPUMAP:
6226 		if (func_id != BPF_FUNC_redirect_map)
6227 			goto error;
6228 		break;
6229 	case BPF_MAP_TYPE_XSKMAP:
6230 		if (func_id != BPF_FUNC_redirect_map &&
6231 		    func_id != BPF_FUNC_map_lookup_elem)
6232 			goto error;
6233 		break;
6234 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6235 	case BPF_MAP_TYPE_HASH_OF_MAPS:
6236 		if (func_id != BPF_FUNC_map_lookup_elem)
6237 			goto error;
6238 		break;
6239 	case BPF_MAP_TYPE_SOCKMAP:
6240 		if (func_id != BPF_FUNC_sk_redirect_map &&
6241 		    func_id != BPF_FUNC_sock_map_update &&
6242 		    func_id != BPF_FUNC_map_delete_elem &&
6243 		    func_id != BPF_FUNC_msg_redirect_map &&
6244 		    func_id != BPF_FUNC_sk_select_reuseport &&
6245 		    func_id != BPF_FUNC_map_lookup_elem &&
6246 		    !may_update_sockmap(env, func_id))
6247 			goto error;
6248 		break;
6249 	case BPF_MAP_TYPE_SOCKHASH:
6250 		if (func_id != BPF_FUNC_sk_redirect_hash &&
6251 		    func_id != BPF_FUNC_sock_hash_update &&
6252 		    func_id != BPF_FUNC_map_delete_elem &&
6253 		    func_id != BPF_FUNC_msg_redirect_hash &&
6254 		    func_id != BPF_FUNC_sk_select_reuseport &&
6255 		    func_id != BPF_FUNC_map_lookup_elem &&
6256 		    !may_update_sockmap(env, func_id))
6257 			goto error;
6258 		break;
6259 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6260 		if (func_id != BPF_FUNC_sk_select_reuseport)
6261 			goto error;
6262 		break;
6263 	case BPF_MAP_TYPE_QUEUE:
6264 	case BPF_MAP_TYPE_STACK:
6265 		if (func_id != BPF_FUNC_map_peek_elem &&
6266 		    func_id != BPF_FUNC_map_pop_elem &&
6267 		    func_id != BPF_FUNC_map_push_elem)
6268 			goto error;
6269 		break;
6270 	case BPF_MAP_TYPE_SK_STORAGE:
6271 		if (func_id != BPF_FUNC_sk_storage_get &&
6272 		    func_id != BPF_FUNC_sk_storage_delete)
6273 			goto error;
6274 		break;
6275 	case BPF_MAP_TYPE_INODE_STORAGE:
6276 		if (func_id != BPF_FUNC_inode_storage_get &&
6277 		    func_id != BPF_FUNC_inode_storage_delete)
6278 			goto error;
6279 		break;
6280 	case BPF_MAP_TYPE_TASK_STORAGE:
6281 		if (func_id != BPF_FUNC_task_storage_get &&
6282 		    func_id != BPF_FUNC_task_storage_delete)
6283 			goto error;
6284 		break;
6285 	case BPF_MAP_TYPE_BLOOM_FILTER:
6286 		if (func_id != BPF_FUNC_map_peek_elem &&
6287 		    func_id != BPF_FUNC_map_push_elem)
6288 			goto error;
6289 		break;
6290 	default:
6291 		break;
6292 	}
6293 
6294 	/* ... and second from the function itself. */
6295 	switch (func_id) {
6296 	case BPF_FUNC_tail_call:
6297 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6298 			goto error;
6299 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6300 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
6301 			return -EINVAL;
6302 		}
6303 		break;
6304 	case BPF_FUNC_perf_event_read:
6305 	case BPF_FUNC_perf_event_output:
6306 	case BPF_FUNC_perf_event_read_value:
6307 	case BPF_FUNC_skb_output:
6308 	case BPF_FUNC_xdp_output:
6309 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6310 			goto error;
6311 		break;
6312 	case BPF_FUNC_ringbuf_output:
6313 	case BPF_FUNC_ringbuf_reserve:
6314 	case BPF_FUNC_ringbuf_query:
6315 	case BPF_FUNC_ringbuf_reserve_dynptr:
6316 	case BPF_FUNC_ringbuf_submit_dynptr:
6317 	case BPF_FUNC_ringbuf_discard_dynptr:
6318 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6319 			goto error;
6320 		break;
6321 	case BPF_FUNC_get_stackid:
6322 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6323 			goto error;
6324 		break;
6325 	case BPF_FUNC_current_task_under_cgroup:
6326 	case BPF_FUNC_skb_under_cgroup:
6327 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6328 			goto error;
6329 		break;
6330 	case BPF_FUNC_redirect_map:
6331 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6332 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
6333 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
6334 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
6335 			goto error;
6336 		break;
6337 	case BPF_FUNC_sk_redirect_map:
6338 	case BPF_FUNC_msg_redirect_map:
6339 	case BPF_FUNC_sock_map_update:
6340 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6341 			goto error;
6342 		break;
6343 	case BPF_FUNC_sk_redirect_hash:
6344 	case BPF_FUNC_msg_redirect_hash:
6345 	case BPF_FUNC_sock_hash_update:
6346 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
6347 			goto error;
6348 		break;
6349 	case BPF_FUNC_get_local_storage:
6350 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6351 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
6352 			goto error;
6353 		break;
6354 	case BPF_FUNC_sk_select_reuseport:
6355 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6356 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6357 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
6358 			goto error;
6359 		break;
6360 	case BPF_FUNC_map_pop_elem:
6361 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6362 		    map->map_type != BPF_MAP_TYPE_STACK)
6363 			goto error;
6364 		break;
6365 	case BPF_FUNC_map_peek_elem:
6366 	case BPF_FUNC_map_push_elem:
6367 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6368 		    map->map_type != BPF_MAP_TYPE_STACK &&
6369 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6370 			goto error;
6371 		break;
6372 	case BPF_FUNC_map_lookup_percpu_elem:
6373 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
6374 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6375 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
6376 			goto error;
6377 		break;
6378 	case BPF_FUNC_sk_storage_get:
6379 	case BPF_FUNC_sk_storage_delete:
6380 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6381 			goto error;
6382 		break;
6383 	case BPF_FUNC_inode_storage_get:
6384 	case BPF_FUNC_inode_storage_delete:
6385 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6386 			goto error;
6387 		break;
6388 	case BPF_FUNC_task_storage_get:
6389 	case BPF_FUNC_task_storage_delete:
6390 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6391 			goto error;
6392 		break;
6393 	default:
6394 		break;
6395 	}
6396 
6397 	return 0;
6398 error:
6399 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
6400 		map->map_type, func_id_name(func_id), func_id);
6401 	return -EINVAL;
6402 }
6403 
6404 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
6405 {
6406 	int count = 0;
6407 
6408 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
6409 		count++;
6410 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
6411 		count++;
6412 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
6413 		count++;
6414 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
6415 		count++;
6416 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
6417 		count++;
6418 
6419 	/* We only support one arg being in raw mode at the moment,
6420 	 * which is sufficient for the helper functions we have
6421 	 * right now.
6422 	 */
6423 	return count <= 1;
6424 }
6425 
6426 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
6427 {
6428 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
6429 	bool has_size = fn->arg_size[arg] != 0;
6430 	bool is_next_size = false;
6431 
6432 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
6433 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
6434 
6435 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
6436 		return is_next_size;
6437 
6438 	return has_size == is_next_size || is_next_size == is_fixed;
6439 }
6440 
6441 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6442 {
6443 	/* bpf_xxx(..., buf, len) call will access 'len'
6444 	 * bytes from memory 'buf'. Both arg types need
6445 	 * to be paired, so make sure there's no buggy
6446 	 * helper function specification.
6447 	 */
6448 	if (arg_type_is_mem_size(fn->arg1_type) ||
6449 	    check_args_pair_invalid(fn, 0) ||
6450 	    check_args_pair_invalid(fn, 1) ||
6451 	    check_args_pair_invalid(fn, 2) ||
6452 	    check_args_pair_invalid(fn, 3) ||
6453 	    check_args_pair_invalid(fn, 4))
6454 		return false;
6455 
6456 	return true;
6457 }
6458 
6459 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
6460 {
6461 	int count = 0;
6462 
6463 	if (arg_type_may_be_refcounted(fn->arg1_type))
6464 		count++;
6465 	if (arg_type_may_be_refcounted(fn->arg2_type))
6466 		count++;
6467 	if (arg_type_may_be_refcounted(fn->arg3_type))
6468 		count++;
6469 	if (arg_type_may_be_refcounted(fn->arg4_type))
6470 		count++;
6471 	if (arg_type_may_be_refcounted(fn->arg5_type))
6472 		count++;
6473 
6474 	/* A reference acquiring function cannot acquire
6475 	 * another refcounted ptr.
6476 	 */
6477 	if (may_be_acquire_function(func_id) && count)
6478 		return false;
6479 
6480 	/* We only support one arg being unreferenced at the moment,
6481 	 * which is sufficient for the helper functions we have right now.
6482 	 */
6483 	return count <= 1;
6484 }
6485 
6486 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6487 {
6488 	int i;
6489 
6490 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
6491 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
6492 			return false;
6493 
6494 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
6495 		    /* arg_btf_id and arg_size are in a union. */
6496 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
6497 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
6498 			return false;
6499 	}
6500 
6501 	return true;
6502 }
6503 
6504 static int check_func_proto(const struct bpf_func_proto *fn, int func_id,
6505 			    struct bpf_call_arg_meta *meta)
6506 {
6507 	return check_raw_mode_ok(fn) &&
6508 	       check_arg_pair_ok(fn) &&
6509 	       check_btf_id_ok(fn) &&
6510 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
6511 }
6512 
6513 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6514  * are now invalid, so turn them into unknown SCALAR_VALUE.
6515  */
6516 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
6517 				     struct bpf_func_state *state)
6518 {
6519 	struct bpf_reg_state *regs = state->regs, *reg;
6520 	int i;
6521 
6522 	for (i = 0; i < MAX_BPF_REG; i++)
6523 		if (reg_is_pkt_pointer_any(&regs[i]))
6524 			mark_reg_unknown(env, regs, i);
6525 
6526 	bpf_for_each_spilled_reg(i, state, reg) {
6527 		if (!reg)
6528 			continue;
6529 		if (reg_is_pkt_pointer_any(reg))
6530 			__mark_reg_unknown(env, reg);
6531 	}
6532 }
6533 
6534 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
6535 {
6536 	struct bpf_verifier_state *vstate = env->cur_state;
6537 	int i;
6538 
6539 	for (i = 0; i <= vstate->curframe; i++)
6540 		__clear_all_pkt_pointers(env, vstate->frame[i]);
6541 }
6542 
6543 enum {
6544 	AT_PKT_END = -1,
6545 	BEYOND_PKT_END = -2,
6546 };
6547 
6548 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6549 {
6550 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6551 	struct bpf_reg_state *reg = &state->regs[regn];
6552 
6553 	if (reg->type != PTR_TO_PACKET)
6554 		/* PTR_TO_PACKET_META is not supported yet */
6555 		return;
6556 
6557 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6558 	 * How far beyond pkt_end it goes is unknown.
6559 	 * if (!range_open) it's the case of pkt >= pkt_end
6560 	 * if (range_open) it's the case of pkt > pkt_end
6561 	 * hence this pointer is at least 1 byte bigger than pkt_end
6562 	 */
6563 	if (range_open)
6564 		reg->range = BEYOND_PKT_END;
6565 	else
6566 		reg->range = AT_PKT_END;
6567 }
6568 
6569 static void release_reg_references(struct bpf_verifier_env *env,
6570 				   struct bpf_func_state *state,
6571 				   int ref_obj_id)
6572 {
6573 	struct bpf_reg_state *regs = state->regs, *reg;
6574 	int i;
6575 
6576 	for (i = 0; i < MAX_BPF_REG; i++)
6577 		if (regs[i].ref_obj_id == ref_obj_id)
6578 			mark_reg_unknown(env, regs, i);
6579 
6580 	bpf_for_each_spilled_reg(i, state, reg) {
6581 		if (!reg)
6582 			continue;
6583 		if (reg->ref_obj_id == ref_obj_id)
6584 			__mark_reg_unknown(env, reg);
6585 	}
6586 }
6587 
6588 /* The pointer with the specified id has released its reference to kernel
6589  * resources. Identify all copies of the same pointer and clear the reference.
6590  */
6591 static int release_reference(struct bpf_verifier_env *env,
6592 			     int ref_obj_id)
6593 {
6594 	struct bpf_verifier_state *vstate = env->cur_state;
6595 	int err;
6596 	int i;
6597 
6598 	err = release_reference_state(cur_func(env), ref_obj_id);
6599 	if (err)
6600 		return err;
6601 
6602 	for (i = 0; i <= vstate->curframe; i++)
6603 		release_reg_references(env, vstate->frame[i], ref_obj_id);
6604 
6605 	return 0;
6606 }
6607 
6608 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6609 				    struct bpf_reg_state *regs)
6610 {
6611 	int i;
6612 
6613 	/* after the call registers r0 - r5 were scratched */
6614 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6615 		mark_reg_not_init(env, regs, caller_saved[i]);
6616 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6617 	}
6618 }
6619 
6620 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6621 				   struct bpf_func_state *caller,
6622 				   struct bpf_func_state *callee,
6623 				   int insn_idx);
6624 
6625 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6626 			     int *insn_idx, int subprog,
6627 			     set_callee_state_fn set_callee_state_cb)
6628 {
6629 	struct bpf_verifier_state *state = env->cur_state;
6630 	struct bpf_func_info_aux *func_info_aux;
6631 	struct bpf_func_state *caller, *callee;
6632 	int err;
6633 	bool is_global = false;
6634 
6635 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
6636 		verbose(env, "the call stack of %d frames is too deep\n",
6637 			state->curframe + 2);
6638 		return -E2BIG;
6639 	}
6640 
6641 	caller = state->frame[state->curframe];
6642 	if (state->frame[state->curframe + 1]) {
6643 		verbose(env, "verifier bug. Frame %d already allocated\n",
6644 			state->curframe + 1);
6645 		return -EFAULT;
6646 	}
6647 
6648 	func_info_aux = env->prog->aux->func_info_aux;
6649 	if (func_info_aux)
6650 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6651 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
6652 	if (err == -EFAULT)
6653 		return err;
6654 	if (is_global) {
6655 		if (err) {
6656 			verbose(env, "Caller passes invalid args into func#%d\n",
6657 				subprog);
6658 			return err;
6659 		} else {
6660 			if (env->log.level & BPF_LOG_LEVEL)
6661 				verbose(env,
6662 					"Func#%d is global and valid. Skipping.\n",
6663 					subprog);
6664 			clear_caller_saved_regs(env, caller->regs);
6665 
6666 			/* All global functions return a 64-bit SCALAR_VALUE */
6667 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
6668 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6669 
6670 			/* continue with next insn after call */
6671 			return 0;
6672 		}
6673 	}
6674 
6675 	if (insn->code == (BPF_JMP | BPF_CALL) &&
6676 	    insn->src_reg == 0 &&
6677 	    insn->imm == BPF_FUNC_timer_set_callback) {
6678 		struct bpf_verifier_state *async_cb;
6679 
6680 		/* there is no real recursion here. timer callbacks are async */
6681 		env->subprog_info[subprog].is_async_cb = true;
6682 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6683 					 *insn_idx, subprog);
6684 		if (!async_cb)
6685 			return -EFAULT;
6686 		callee = async_cb->frame[0];
6687 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
6688 
6689 		/* Convert bpf_timer_set_callback() args into timer callback args */
6690 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
6691 		if (err)
6692 			return err;
6693 
6694 		clear_caller_saved_regs(env, caller->regs);
6695 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
6696 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6697 		/* continue with next insn after call */
6698 		return 0;
6699 	}
6700 
6701 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6702 	if (!callee)
6703 		return -ENOMEM;
6704 	state->frame[state->curframe + 1] = callee;
6705 
6706 	/* callee cannot access r0, r6 - r9 for reading and has to write
6707 	 * into its own stack before reading from it.
6708 	 * callee can read/write into caller's stack
6709 	 */
6710 	init_func_state(env, callee,
6711 			/* remember the callsite, it will be used by bpf_exit */
6712 			*insn_idx /* callsite */,
6713 			state->curframe + 1 /* frameno within this callchain */,
6714 			subprog /* subprog number within this prog */);
6715 
6716 	/* Transfer references to the callee */
6717 	err = copy_reference_state(callee, caller);
6718 	if (err)
6719 		return err;
6720 
6721 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
6722 	if (err)
6723 		return err;
6724 
6725 	clear_caller_saved_regs(env, caller->regs);
6726 
6727 	/* only increment it after check_reg_arg() finished */
6728 	state->curframe++;
6729 
6730 	/* and go analyze first insn of the callee */
6731 	*insn_idx = env->subprog_info[subprog].start - 1;
6732 
6733 	if (env->log.level & BPF_LOG_LEVEL) {
6734 		verbose(env, "caller:\n");
6735 		print_verifier_state(env, caller, true);
6736 		verbose(env, "callee:\n");
6737 		print_verifier_state(env, callee, true);
6738 	}
6739 	return 0;
6740 }
6741 
6742 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6743 				   struct bpf_func_state *caller,
6744 				   struct bpf_func_state *callee)
6745 {
6746 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6747 	 *      void *callback_ctx, u64 flags);
6748 	 * callback_fn(struct bpf_map *map, void *key, void *value,
6749 	 *      void *callback_ctx);
6750 	 */
6751 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6752 
6753 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6754 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6755 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6756 
6757 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6758 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6759 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6760 
6761 	/* pointer to stack or null */
6762 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6763 
6764 	/* unused */
6765 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6766 	return 0;
6767 }
6768 
6769 static int set_callee_state(struct bpf_verifier_env *env,
6770 			    struct bpf_func_state *caller,
6771 			    struct bpf_func_state *callee, int insn_idx)
6772 {
6773 	int i;
6774 
6775 	/* copy r1 - r5 args that callee can access.  The copy includes parent
6776 	 * pointers, which connects us up to the liveness chain
6777 	 */
6778 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6779 		callee->regs[i] = caller->regs[i];
6780 	return 0;
6781 }
6782 
6783 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6784 			   int *insn_idx)
6785 {
6786 	int subprog, target_insn;
6787 
6788 	target_insn = *insn_idx + insn->imm + 1;
6789 	subprog = find_subprog(env, target_insn);
6790 	if (subprog < 0) {
6791 		verbose(env, "verifier bug. No program starts at insn %d\n",
6792 			target_insn);
6793 		return -EFAULT;
6794 	}
6795 
6796 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6797 }
6798 
6799 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6800 				       struct bpf_func_state *caller,
6801 				       struct bpf_func_state *callee,
6802 				       int insn_idx)
6803 {
6804 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6805 	struct bpf_map *map;
6806 	int err;
6807 
6808 	if (bpf_map_ptr_poisoned(insn_aux)) {
6809 		verbose(env, "tail_call abusing map_ptr\n");
6810 		return -EINVAL;
6811 	}
6812 
6813 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6814 	if (!map->ops->map_set_for_each_callback_args ||
6815 	    !map->ops->map_for_each_callback) {
6816 		verbose(env, "callback function not allowed for map\n");
6817 		return -ENOTSUPP;
6818 	}
6819 
6820 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6821 	if (err)
6822 		return err;
6823 
6824 	callee->in_callback_fn = true;
6825 	return 0;
6826 }
6827 
6828 static int set_loop_callback_state(struct bpf_verifier_env *env,
6829 				   struct bpf_func_state *caller,
6830 				   struct bpf_func_state *callee,
6831 				   int insn_idx)
6832 {
6833 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6834 	 *	    u64 flags);
6835 	 * callback_fn(u32 index, void *callback_ctx);
6836 	 */
6837 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6838 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6839 
6840 	/* unused */
6841 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6842 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6843 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6844 
6845 	callee->in_callback_fn = true;
6846 	return 0;
6847 }
6848 
6849 static int set_timer_callback_state(struct bpf_verifier_env *env,
6850 				    struct bpf_func_state *caller,
6851 				    struct bpf_func_state *callee,
6852 				    int insn_idx)
6853 {
6854 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6855 
6856 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6857 	 * callback_fn(struct bpf_map *map, void *key, void *value);
6858 	 */
6859 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6860 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6861 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
6862 
6863 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6864 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6865 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
6866 
6867 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6868 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6869 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
6870 
6871 	/* unused */
6872 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6873 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6874 	callee->in_async_callback_fn = true;
6875 	return 0;
6876 }
6877 
6878 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6879 				       struct bpf_func_state *caller,
6880 				       struct bpf_func_state *callee,
6881 				       int insn_idx)
6882 {
6883 	/* bpf_find_vma(struct task_struct *task, u64 addr,
6884 	 *               void *callback_fn, void *callback_ctx, u64 flags)
6885 	 * (callback_fn)(struct task_struct *task,
6886 	 *               struct vm_area_struct *vma, void *callback_ctx);
6887 	 */
6888 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6889 
6890 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6891 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6892 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
6893 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
6894 
6895 	/* pointer to stack or null */
6896 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6897 
6898 	/* unused */
6899 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6900 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6901 	callee->in_callback_fn = true;
6902 	return 0;
6903 }
6904 
6905 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6906 {
6907 	struct bpf_verifier_state *state = env->cur_state;
6908 	struct bpf_func_state *caller, *callee;
6909 	struct bpf_reg_state *r0;
6910 	int err;
6911 
6912 	callee = state->frame[state->curframe];
6913 	r0 = &callee->regs[BPF_REG_0];
6914 	if (r0->type == PTR_TO_STACK) {
6915 		/* technically it's ok to return caller's stack pointer
6916 		 * (or caller's caller's pointer) back to the caller,
6917 		 * since these pointers are valid. Only current stack
6918 		 * pointer will be invalid as soon as function exits,
6919 		 * but let's be conservative
6920 		 */
6921 		verbose(env, "cannot return stack pointer to the caller\n");
6922 		return -EINVAL;
6923 	}
6924 
6925 	state->curframe--;
6926 	caller = state->frame[state->curframe];
6927 	if (callee->in_callback_fn) {
6928 		/* enforce R0 return value range [0, 1]. */
6929 		struct tnum range = tnum_range(0, 1);
6930 
6931 		if (r0->type != SCALAR_VALUE) {
6932 			verbose(env, "R0 not a scalar value\n");
6933 			return -EACCES;
6934 		}
6935 		if (!tnum_in(range, r0->var_off)) {
6936 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6937 			return -EINVAL;
6938 		}
6939 	} else {
6940 		/* return to the caller whatever r0 had in the callee */
6941 		caller->regs[BPF_REG_0] = *r0;
6942 	}
6943 
6944 	/* Transfer references to the caller */
6945 	err = copy_reference_state(caller, callee);
6946 	if (err)
6947 		return err;
6948 
6949 	*insn_idx = callee->callsite + 1;
6950 	if (env->log.level & BPF_LOG_LEVEL) {
6951 		verbose(env, "returning from callee:\n");
6952 		print_verifier_state(env, callee, true);
6953 		verbose(env, "to caller at %d:\n", *insn_idx);
6954 		print_verifier_state(env, caller, true);
6955 	}
6956 	/* clear everything in the callee */
6957 	free_func_state(callee);
6958 	state->frame[state->curframe + 1] = NULL;
6959 	return 0;
6960 }
6961 
6962 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6963 				   int func_id,
6964 				   struct bpf_call_arg_meta *meta)
6965 {
6966 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6967 
6968 	if (ret_type != RET_INTEGER ||
6969 	    (func_id != BPF_FUNC_get_stack &&
6970 	     func_id != BPF_FUNC_get_task_stack &&
6971 	     func_id != BPF_FUNC_probe_read_str &&
6972 	     func_id != BPF_FUNC_probe_read_kernel_str &&
6973 	     func_id != BPF_FUNC_probe_read_user_str))
6974 		return;
6975 
6976 	ret_reg->smax_value = meta->msize_max_value;
6977 	ret_reg->s32_max_value = meta->msize_max_value;
6978 	ret_reg->smin_value = -MAX_ERRNO;
6979 	ret_reg->s32_min_value = -MAX_ERRNO;
6980 	reg_bounds_sync(ret_reg);
6981 }
6982 
6983 static int
6984 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6985 		int func_id, int insn_idx)
6986 {
6987 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6988 	struct bpf_map *map = meta->map_ptr;
6989 
6990 	if (func_id != BPF_FUNC_tail_call &&
6991 	    func_id != BPF_FUNC_map_lookup_elem &&
6992 	    func_id != BPF_FUNC_map_update_elem &&
6993 	    func_id != BPF_FUNC_map_delete_elem &&
6994 	    func_id != BPF_FUNC_map_push_elem &&
6995 	    func_id != BPF_FUNC_map_pop_elem &&
6996 	    func_id != BPF_FUNC_map_peek_elem &&
6997 	    func_id != BPF_FUNC_for_each_map_elem &&
6998 	    func_id != BPF_FUNC_redirect_map &&
6999 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
7000 		return 0;
7001 
7002 	if (map == NULL) {
7003 		verbose(env, "kernel subsystem misconfigured verifier\n");
7004 		return -EINVAL;
7005 	}
7006 
7007 	/* In case of read-only, some additional restrictions
7008 	 * need to be applied in order to prevent altering the
7009 	 * state of the map from program side.
7010 	 */
7011 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
7012 	    (func_id == BPF_FUNC_map_delete_elem ||
7013 	     func_id == BPF_FUNC_map_update_elem ||
7014 	     func_id == BPF_FUNC_map_push_elem ||
7015 	     func_id == BPF_FUNC_map_pop_elem)) {
7016 		verbose(env, "write into map forbidden\n");
7017 		return -EACCES;
7018 	}
7019 
7020 	if (!BPF_MAP_PTR(aux->map_ptr_state))
7021 		bpf_map_ptr_store(aux, meta->map_ptr,
7022 				  !meta->map_ptr->bypass_spec_v1);
7023 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
7024 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
7025 				  !meta->map_ptr->bypass_spec_v1);
7026 	return 0;
7027 }
7028 
7029 static int
7030 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
7031 		int func_id, int insn_idx)
7032 {
7033 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
7034 	struct bpf_reg_state *regs = cur_regs(env), *reg;
7035 	struct bpf_map *map = meta->map_ptr;
7036 	u64 val, max;
7037 	int err;
7038 
7039 	if (func_id != BPF_FUNC_tail_call)
7040 		return 0;
7041 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
7042 		verbose(env, "kernel subsystem misconfigured verifier\n");
7043 		return -EINVAL;
7044 	}
7045 
7046 	reg = &regs[BPF_REG_3];
7047 	val = reg->var_off.value;
7048 	max = map->max_entries;
7049 
7050 	if (!(register_is_const(reg) && val < max)) {
7051 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7052 		return 0;
7053 	}
7054 
7055 	err = mark_chain_precision(env, BPF_REG_3);
7056 	if (err)
7057 		return err;
7058 	if (bpf_map_key_unseen(aux))
7059 		bpf_map_key_store(aux, val);
7060 	else if (!bpf_map_key_poisoned(aux) &&
7061 		  bpf_map_key_immediate(aux) != val)
7062 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
7063 	return 0;
7064 }
7065 
7066 static int check_reference_leak(struct bpf_verifier_env *env)
7067 {
7068 	struct bpf_func_state *state = cur_func(env);
7069 	int i;
7070 
7071 	for (i = 0; i < state->acquired_refs; i++) {
7072 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
7073 			state->refs[i].id, state->refs[i].insn_idx);
7074 	}
7075 	return state->acquired_refs ? -EINVAL : 0;
7076 }
7077 
7078 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
7079 				   struct bpf_reg_state *regs)
7080 {
7081 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
7082 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
7083 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
7084 	int err, fmt_map_off, num_args;
7085 	u64 fmt_addr;
7086 	char *fmt;
7087 
7088 	/* data must be an array of u64 */
7089 	if (data_len_reg->var_off.value % 8)
7090 		return -EINVAL;
7091 	num_args = data_len_reg->var_off.value / 8;
7092 
7093 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
7094 	 * and map_direct_value_addr is set.
7095 	 */
7096 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
7097 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
7098 						  fmt_map_off);
7099 	if (err) {
7100 		verbose(env, "verifier bug\n");
7101 		return -EFAULT;
7102 	}
7103 	fmt = (char *)(long)fmt_addr + fmt_map_off;
7104 
7105 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
7106 	 * can focus on validating the format specifiers.
7107 	 */
7108 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
7109 	if (err < 0)
7110 		verbose(env, "Invalid format string\n");
7111 
7112 	return err;
7113 }
7114 
7115 static int check_get_func_ip(struct bpf_verifier_env *env)
7116 {
7117 	enum bpf_prog_type type = resolve_prog_type(env->prog);
7118 	int func_id = BPF_FUNC_get_func_ip;
7119 
7120 	if (type == BPF_PROG_TYPE_TRACING) {
7121 		if (!bpf_prog_has_trampoline(env->prog)) {
7122 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
7123 				func_id_name(func_id), func_id);
7124 			return -ENOTSUPP;
7125 		}
7126 		return 0;
7127 	} else if (type == BPF_PROG_TYPE_KPROBE) {
7128 		return 0;
7129 	}
7130 
7131 	verbose(env, "func %s#%d not supported for program type %d\n",
7132 		func_id_name(func_id), func_id, type);
7133 	return -ENOTSUPP;
7134 }
7135 
7136 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7137 {
7138 	return &env->insn_aux_data[env->insn_idx];
7139 }
7140 
7141 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
7142 {
7143 	struct bpf_reg_state *regs = cur_regs(env);
7144 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
7145 	bool reg_is_null = register_is_null(reg);
7146 
7147 	if (reg_is_null)
7148 		mark_chain_precision(env, BPF_REG_4);
7149 
7150 	return reg_is_null;
7151 }
7152 
7153 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
7154 {
7155 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
7156 
7157 	if (!state->initialized) {
7158 		state->initialized = 1;
7159 		state->fit_for_inline = loop_flag_is_zero(env);
7160 		state->callback_subprogno = subprogno;
7161 		return;
7162 	}
7163 
7164 	if (!state->fit_for_inline)
7165 		return;
7166 
7167 	state->fit_for_inline = (loop_flag_is_zero(env) &&
7168 				 state->callback_subprogno == subprogno);
7169 }
7170 
7171 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7172 			     int *insn_idx_p)
7173 {
7174 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7175 	const struct bpf_func_proto *fn = NULL;
7176 	enum bpf_return_type ret_type;
7177 	enum bpf_type_flag ret_flag;
7178 	struct bpf_reg_state *regs;
7179 	struct bpf_call_arg_meta meta;
7180 	int insn_idx = *insn_idx_p;
7181 	bool changes_data;
7182 	int i, err, func_id;
7183 
7184 	/* find function prototype */
7185 	func_id = insn->imm;
7186 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
7187 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
7188 			func_id);
7189 		return -EINVAL;
7190 	}
7191 
7192 	if (env->ops->get_func_proto)
7193 		fn = env->ops->get_func_proto(func_id, env->prog);
7194 	if (!fn) {
7195 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
7196 			func_id);
7197 		return -EINVAL;
7198 	}
7199 
7200 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
7201 	if (!env->prog->gpl_compatible && fn->gpl_only) {
7202 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
7203 		return -EINVAL;
7204 	}
7205 
7206 	if (fn->allowed && !fn->allowed(env->prog)) {
7207 		verbose(env, "helper call is not allowed in probe\n");
7208 		return -EINVAL;
7209 	}
7210 
7211 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
7212 	changes_data = bpf_helper_changes_pkt_data(fn->func);
7213 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
7214 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
7215 			func_id_name(func_id), func_id);
7216 		return -EINVAL;
7217 	}
7218 
7219 	memset(&meta, 0, sizeof(meta));
7220 	meta.pkt_access = fn->pkt_access;
7221 
7222 	err = check_func_proto(fn, func_id, &meta);
7223 	if (err) {
7224 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
7225 			func_id_name(func_id), func_id);
7226 		return err;
7227 	}
7228 
7229 	meta.func_id = func_id;
7230 	/* check args */
7231 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7232 		err = check_func_arg(env, i, &meta, fn);
7233 		if (err)
7234 			return err;
7235 	}
7236 
7237 	err = record_func_map(env, &meta, func_id, insn_idx);
7238 	if (err)
7239 		return err;
7240 
7241 	err = record_func_key(env, &meta, func_id, insn_idx);
7242 	if (err)
7243 		return err;
7244 
7245 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
7246 	 * is inferred from register state.
7247 	 */
7248 	for (i = 0; i < meta.access_size; i++) {
7249 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
7250 				       BPF_WRITE, -1, false);
7251 		if (err)
7252 			return err;
7253 	}
7254 
7255 	regs = cur_regs(env);
7256 
7257 	if (meta.uninit_dynptr_regno) {
7258 		/* we write BPF_DW bits (8 bytes) at a time */
7259 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7260 			err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno,
7261 					       i, BPF_DW, BPF_WRITE, -1, false);
7262 			if (err)
7263 				return err;
7264 		}
7265 
7266 		err = mark_stack_slots_dynptr(env, &regs[meta.uninit_dynptr_regno],
7267 					      fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1],
7268 					      insn_idx);
7269 		if (err)
7270 			return err;
7271 	}
7272 
7273 	if (meta.release_regno) {
7274 		err = -EINVAL;
7275 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1]))
7276 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
7277 		else if (meta.ref_obj_id)
7278 			err = release_reference(env, meta.ref_obj_id);
7279 		/* meta.ref_obj_id can only be 0 if register that is meant to be
7280 		 * released is NULL, which must be > R0.
7281 		 */
7282 		else if (register_is_null(&regs[meta.release_regno]))
7283 			err = 0;
7284 		if (err) {
7285 			verbose(env, "func %s#%d reference has not been acquired before\n",
7286 				func_id_name(func_id), func_id);
7287 			return err;
7288 		}
7289 	}
7290 
7291 	switch (func_id) {
7292 	case BPF_FUNC_tail_call:
7293 		err = check_reference_leak(env);
7294 		if (err) {
7295 			verbose(env, "tail_call would lead to reference leak\n");
7296 			return err;
7297 		}
7298 		break;
7299 	case BPF_FUNC_get_local_storage:
7300 		/* check that flags argument in get_local_storage(map, flags) is 0,
7301 		 * this is required because get_local_storage() can't return an error.
7302 		 */
7303 		if (!register_is_null(&regs[BPF_REG_2])) {
7304 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7305 			return -EINVAL;
7306 		}
7307 		break;
7308 	case BPF_FUNC_for_each_map_elem:
7309 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7310 					set_map_elem_callback_state);
7311 		break;
7312 	case BPF_FUNC_timer_set_callback:
7313 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7314 					set_timer_callback_state);
7315 		break;
7316 	case BPF_FUNC_find_vma:
7317 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7318 					set_find_vma_callback_state);
7319 		break;
7320 	case BPF_FUNC_snprintf:
7321 		err = check_bpf_snprintf_call(env, regs);
7322 		break;
7323 	case BPF_FUNC_loop:
7324 		update_loop_inline_state(env, meta.subprogno);
7325 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7326 					set_loop_callback_state);
7327 		break;
7328 	case BPF_FUNC_dynptr_from_mem:
7329 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
7330 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
7331 				reg_type_str(env, regs[BPF_REG_1].type));
7332 			return -EACCES;
7333 		}
7334 		break;
7335 	case BPF_FUNC_set_retval:
7336 		if (prog_type == BPF_PROG_TYPE_LSM &&
7337 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
7338 			if (!env->prog->aux->attach_func_proto->type) {
7339 				/* Make sure programs that attach to void
7340 				 * hooks don't try to modify return value.
7341 				 */
7342 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
7343 				return -EINVAL;
7344 			}
7345 		}
7346 		break;
7347 	}
7348 
7349 	if (err)
7350 		return err;
7351 
7352 	/* reset caller saved regs */
7353 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7354 		mark_reg_not_init(env, regs, caller_saved[i]);
7355 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7356 	}
7357 
7358 	/* helper call returns 64-bit value. */
7359 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7360 
7361 	/* update return register (already marked as written above) */
7362 	ret_type = fn->ret_type;
7363 	ret_flag = type_flag(fn->ret_type);
7364 	if (ret_type == RET_INTEGER) {
7365 		/* sets type to SCALAR_VALUE */
7366 		mark_reg_unknown(env, regs, BPF_REG_0);
7367 	} else if (ret_type == RET_VOID) {
7368 		regs[BPF_REG_0].type = NOT_INIT;
7369 	} else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
7370 		/* There is no offset yet applied, variable or fixed */
7371 		mark_reg_known_zero(env, regs, BPF_REG_0);
7372 		/* remember map_ptr, so that check_map_access()
7373 		 * can check 'value_size' boundary of memory access
7374 		 * to map element returned from bpf_map_lookup_elem()
7375 		 */
7376 		if (meta.map_ptr == NULL) {
7377 			verbose(env,
7378 				"kernel subsystem misconfigured verifier\n");
7379 			return -EINVAL;
7380 		}
7381 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
7382 		regs[BPF_REG_0].map_uid = meta.map_uid;
7383 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7384 		if (!type_may_be_null(ret_type) &&
7385 		    map_value_has_spin_lock(meta.map_ptr)) {
7386 			regs[BPF_REG_0].id = ++env->id_gen;
7387 		}
7388 	} else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
7389 		mark_reg_known_zero(env, regs, BPF_REG_0);
7390 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
7391 	} else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
7392 		mark_reg_known_zero(env, regs, BPF_REG_0);
7393 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
7394 	} else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
7395 		mark_reg_known_zero(env, regs, BPF_REG_0);
7396 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
7397 	} else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
7398 		mark_reg_known_zero(env, regs, BPF_REG_0);
7399 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7400 		regs[BPF_REG_0].mem_size = meta.mem_size;
7401 	} else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
7402 		const struct btf_type *t;
7403 
7404 		mark_reg_known_zero(env, regs, BPF_REG_0);
7405 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
7406 		if (!btf_type_is_struct(t)) {
7407 			u32 tsize;
7408 			const struct btf_type *ret;
7409 			const char *tname;
7410 
7411 			/* resolve the type size of ksym. */
7412 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
7413 			if (IS_ERR(ret)) {
7414 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
7415 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
7416 					tname, PTR_ERR(ret));
7417 				return -EINVAL;
7418 			}
7419 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7420 			regs[BPF_REG_0].mem_size = tsize;
7421 		} else {
7422 			/* MEM_RDONLY may be carried from ret_flag, but it
7423 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7424 			 * it will confuse the check of PTR_TO_BTF_ID in
7425 			 * check_mem_access().
7426 			 */
7427 			ret_flag &= ~MEM_RDONLY;
7428 
7429 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7430 			regs[BPF_REG_0].btf = meta.ret_btf;
7431 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7432 		}
7433 	} else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
7434 		struct btf *ret_btf;
7435 		int ret_btf_id;
7436 
7437 		mark_reg_known_zero(env, regs, BPF_REG_0);
7438 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7439 		if (func_id == BPF_FUNC_kptr_xchg) {
7440 			ret_btf = meta.kptr_off_desc->kptr.btf;
7441 			ret_btf_id = meta.kptr_off_desc->kptr.btf_id;
7442 		} else {
7443 			ret_btf = btf_vmlinux;
7444 			ret_btf_id = *fn->ret_btf_id;
7445 		}
7446 		if (ret_btf_id == 0) {
7447 			verbose(env, "invalid return type %u of func %s#%d\n",
7448 				base_type(ret_type), func_id_name(func_id),
7449 				func_id);
7450 			return -EINVAL;
7451 		}
7452 		regs[BPF_REG_0].btf = ret_btf;
7453 		regs[BPF_REG_0].btf_id = ret_btf_id;
7454 	} else {
7455 		verbose(env, "unknown return type %u of func %s#%d\n",
7456 			base_type(ret_type), func_id_name(func_id), func_id);
7457 		return -EINVAL;
7458 	}
7459 
7460 	if (type_may_be_null(regs[BPF_REG_0].type))
7461 		regs[BPF_REG_0].id = ++env->id_gen;
7462 
7463 	if (is_ptr_cast_function(func_id)) {
7464 		/* For release_reference() */
7465 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7466 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
7467 		int id = acquire_reference_state(env, insn_idx);
7468 
7469 		if (id < 0)
7470 			return id;
7471 		/* For mark_ptr_or_null_reg() */
7472 		regs[BPF_REG_0].id = id;
7473 		/* For release_reference() */
7474 		regs[BPF_REG_0].ref_obj_id = id;
7475 	} else if (func_id == BPF_FUNC_dynptr_data) {
7476 		int dynptr_id = 0, i;
7477 
7478 		/* Find the id of the dynptr we're acquiring a reference to */
7479 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
7480 			if (arg_type_is_dynptr(fn->arg_type[i])) {
7481 				if (dynptr_id) {
7482 					verbose(env, "verifier internal error: multiple dynptr args in func\n");
7483 					return -EFAULT;
7484 				}
7485 				dynptr_id = stack_slot_get_id(env, &regs[BPF_REG_1 + i]);
7486 			}
7487 		}
7488 		/* For release_reference() */
7489 		regs[BPF_REG_0].ref_obj_id = dynptr_id;
7490 	}
7491 
7492 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7493 
7494 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
7495 	if (err)
7496 		return err;
7497 
7498 	if ((func_id == BPF_FUNC_get_stack ||
7499 	     func_id == BPF_FUNC_get_task_stack) &&
7500 	    !env->prog->has_callchain_buf) {
7501 		const char *err_str;
7502 
7503 #ifdef CONFIG_PERF_EVENTS
7504 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
7505 		err_str = "cannot get callchain buffer for func %s#%d\n";
7506 #else
7507 		err = -ENOTSUPP;
7508 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7509 #endif
7510 		if (err) {
7511 			verbose(env, err_str, func_id_name(func_id), func_id);
7512 			return err;
7513 		}
7514 
7515 		env->prog->has_callchain_buf = true;
7516 	}
7517 
7518 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7519 		env->prog->call_get_stack = true;
7520 
7521 	if (func_id == BPF_FUNC_get_func_ip) {
7522 		if (check_get_func_ip(env))
7523 			return -ENOTSUPP;
7524 		env->prog->call_get_func_ip = true;
7525 	}
7526 
7527 	if (changes_data)
7528 		clear_all_pkt_pointers(env);
7529 	return 0;
7530 }
7531 
7532 /* mark_btf_func_reg_size() is used when the reg size is determined by
7533  * the BTF func_proto's return value size and argument.
7534  */
7535 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7536 				   size_t reg_size)
7537 {
7538 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
7539 
7540 	if (regno == BPF_REG_0) {
7541 		/* Function return value */
7542 		reg->live |= REG_LIVE_WRITTEN;
7543 		reg->subreg_def = reg_size == sizeof(u64) ?
7544 			DEF_NOT_SUBREG : env->insn_idx + 1;
7545 	} else {
7546 		/* Function argument */
7547 		if (reg_size == sizeof(u64)) {
7548 			mark_insn_zext(env, reg);
7549 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7550 		} else {
7551 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7552 		}
7553 	}
7554 }
7555 
7556 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7557 			    int *insn_idx_p)
7558 {
7559 	const struct btf_type *t, *func, *func_proto, *ptr_type;
7560 	struct bpf_reg_state *regs = cur_regs(env);
7561 	const char *func_name, *ptr_type_name;
7562 	u32 i, nargs, func_id, ptr_type_id;
7563 	int err, insn_idx = *insn_idx_p;
7564 	const struct btf_param *args;
7565 	struct btf *desc_btf;
7566 	u32 *kfunc_flags;
7567 	bool acq;
7568 
7569 	/* skip for now, but return error when we find this in fixup_kfunc_call */
7570 	if (!insn->imm)
7571 		return 0;
7572 
7573 	desc_btf = find_kfunc_desc_btf(env, insn->off);
7574 	if (IS_ERR(desc_btf))
7575 		return PTR_ERR(desc_btf);
7576 
7577 	func_id = insn->imm;
7578 	func = btf_type_by_id(desc_btf, func_id);
7579 	func_name = btf_name_by_offset(desc_btf, func->name_off);
7580 	func_proto = btf_type_by_id(desc_btf, func->type);
7581 
7582 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id);
7583 	if (!kfunc_flags) {
7584 		verbose(env, "calling kernel function %s is not allowed\n",
7585 			func_name);
7586 		return -EACCES;
7587 	}
7588 	acq = *kfunc_flags & KF_ACQUIRE;
7589 
7590 	/* Check the arguments */
7591 	err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs, *kfunc_flags);
7592 	if (err < 0)
7593 		return err;
7594 	/* In case of release function, we get register number of refcounted
7595 	 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now
7596 	 */
7597 	if (err) {
7598 		err = release_reference(env, regs[err].ref_obj_id);
7599 		if (err) {
7600 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
7601 				func_name, func_id);
7602 			return err;
7603 		}
7604 	}
7605 
7606 	for (i = 0; i < CALLER_SAVED_REGS; i++)
7607 		mark_reg_not_init(env, regs, caller_saved[i]);
7608 
7609 	/* Check return type */
7610 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
7611 
7612 	if (acq && !btf_type_is_ptr(t)) {
7613 		verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
7614 		return -EINVAL;
7615 	}
7616 
7617 	if (btf_type_is_scalar(t)) {
7618 		mark_reg_unknown(env, regs, BPF_REG_0);
7619 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
7620 	} else if (btf_type_is_ptr(t)) {
7621 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
7622 						   &ptr_type_id);
7623 		if (!btf_type_is_struct(ptr_type)) {
7624 			ptr_type_name = btf_name_by_offset(desc_btf,
7625 							   ptr_type->name_off);
7626 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
7627 				func_name, btf_type_str(ptr_type),
7628 				ptr_type_name);
7629 			return -EINVAL;
7630 		}
7631 		mark_reg_known_zero(env, regs, BPF_REG_0);
7632 		regs[BPF_REG_0].btf = desc_btf;
7633 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
7634 		regs[BPF_REG_0].btf_id = ptr_type_id;
7635 		if (*kfunc_flags & KF_RET_NULL) {
7636 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
7637 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
7638 			regs[BPF_REG_0].id = ++env->id_gen;
7639 		}
7640 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
7641 		if (acq) {
7642 			int id = acquire_reference_state(env, insn_idx);
7643 
7644 			if (id < 0)
7645 				return id;
7646 			regs[BPF_REG_0].id = id;
7647 			regs[BPF_REG_0].ref_obj_id = id;
7648 		}
7649 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
7650 
7651 	nargs = btf_type_vlen(func_proto);
7652 	args = (const struct btf_param *)(func_proto + 1);
7653 	for (i = 0; i < nargs; i++) {
7654 		u32 regno = i + 1;
7655 
7656 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
7657 		if (btf_type_is_ptr(t))
7658 			mark_btf_func_reg_size(env, regno, sizeof(void *));
7659 		else
7660 			/* scalar. ensured by btf_check_kfunc_arg_match() */
7661 			mark_btf_func_reg_size(env, regno, t->size);
7662 	}
7663 
7664 	return 0;
7665 }
7666 
7667 static bool signed_add_overflows(s64 a, s64 b)
7668 {
7669 	/* Do the add in u64, where overflow is well-defined */
7670 	s64 res = (s64)((u64)a + (u64)b);
7671 
7672 	if (b < 0)
7673 		return res > a;
7674 	return res < a;
7675 }
7676 
7677 static bool signed_add32_overflows(s32 a, s32 b)
7678 {
7679 	/* Do the add in u32, where overflow is well-defined */
7680 	s32 res = (s32)((u32)a + (u32)b);
7681 
7682 	if (b < 0)
7683 		return res > a;
7684 	return res < a;
7685 }
7686 
7687 static bool signed_sub_overflows(s64 a, s64 b)
7688 {
7689 	/* Do the sub in u64, where overflow is well-defined */
7690 	s64 res = (s64)((u64)a - (u64)b);
7691 
7692 	if (b < 0)
7693 		return res < a;
7694 	return res > a;
7695 }
7696 
7697 static bool signed_sub32_overflows(s32 a, s32 b)
7698 {
7699 	/* Do the sub in u32, where overflow is well-defined */
7700 	s32 res = (s32)((u32)a - (u32)b);
7701 
7702 	if (b < 0)
7703 		return res < a;
7704 	return res > a;
7705 }
7706 
7707 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
7708 				  const struct bpf_reg_state *reg,
7709 				  enum bpf_reg_type type)
7710 {
7711 	bool known = tnum_is_const(reg->var_off);
7712 	s64 val = reg->var_off.value;
7713 	s64 smin = reg->smin_value;
7714 
7715 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
7716 		verbose(env, "math between %s pointer and %lld is not allowed\n",
7717 			reg_type_str(env, type), val);
7718 		return false;
7719 	}
7720 
7721 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
7722 		verbose(env, "%s pointer offset %d is not allowed\n",
7723 			reg_type_str(env, type), reg->off);
7724 		return false;
7725 	}
7726 
7727 	if (smin == S64_MIN) {
7728 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
7729 			reg_type_str(env, type));
7730 		return false;
7731 	}
7732 
7733 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
7734 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
7735 			smin, reg_type_str(env, type));
7736 		return false;
7737 	}
7738 
7739 	return true;
7740 }
7741 
7742 enum {
7743 	REASON_BOUNDS	= -1,
7744 	REASON_TYPE	= -2,
7745 	REASON_PATHS	= -3,
7746 	REASON_LIMIT	= -4,
7747 	REASON_STACK	= -5,
7748 };
7749 
7750 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
7751 			      u32 *alu_limit, bool mask_to_left)
7752 {
7753 	u32 max = 0, ptr_limit = 0;
7754 
7755 	switch (ptr_reg->type) {
7756 	case PTR_TO_STACK:
7757 		/* Offset 0 is out-of-bounds, but acceptable start for the
7758 		 * left direction, see BPF_REG_FP. Also, unknown scalar
7759 		 * offset where we would need to deal with min/max bounds is
7760 		 * currently prohibited for unprivileged.
7761 		 */
7762 		max = MAX_BPF_STACK + mask_to_left;
7763 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
7764 		break;
7765 	case PTR_TO_MAP_VALUE:
7766 		max = ptr_reg->map_ptr->value_size;
7767 		ptr_limit = (mask_to_left ?
7768 			     ptr_reg->smin_value :
7769 			     ptr_reg->umax_value) + ptr_reg->off;
7770 		break;
7771 	default:
7772 		return REASON_TYPE;
7773 	}
7774 
7775 	if (ptr_limit >= max)
7776 		return REASON_LIMIT;
7777 	*alu_limit = ptr_limit;
7778 	return 0;
7779 }
7780 
7781 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
7782 				    const struct bpf_insn *insn)
7783 {
7784 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
7785 }
7786 
7787 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
7788 				       u32 alu_state, u32 alu_limit)
7789 {
7790 	/* If we arrived here from different branches with different
7791 	 * state or limits to sanitize, then this won't work.
7792 	 */
7793 	if (aux->alu_state &&
7794 	    (aux->alu_state != alu_state ||
7795 	     aux->alu_limit != alu_limit))
7796 		return REASON_PATHS;
7797 
7798 	/* Corresponding fixup done in do_misc_fixups(). */
7799 	aux->alu_state = alu_state;
7800 	aux->alu_limit = alu_limit;
7801 	return 0;
7802 }
7803 
7804 static int sanitize_val_alu(struct bpf_verifier_env *env,
7805 			    struct bpf_insn *insn)
7806 {
7807 	struct bpf_insn_aux_data *aux = cur_aux(env);
7808 
7809 	if (can_skip_alu_sanitation(env, insn))
7810 		return 0;
7811 
7812 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
7813 }
7814 
7815 static bool sanitize_needed(u8 opcode)
7816 {
7817 	return opcode == BPF_ADD || opcode == BPF_SUB;
7818 }
7819 
7820 struct bpf_sanitize_info {
7821 	struct bpf_insn_aux_data aux;
7822 	bool mask_to_left;
7823 };
7824 
7825 static struct bpf_verifier_state *
7826 sanitize_speculative_path(struct bpf_verifier_env *env,
7827 			  const struct bpf_insn *insn,
7828 			  u32 next_idx, u32 curr_idx)
7829 {
7830 	struct bpf_verifier_state *branch;
7831 	struct bpf_reg_state *regs;
7832 
7833 	branch = push_stack(env, next_idx, curr_idx, true);
7834 	if (branch && insn) {
7835 		regs = branch->frame[branch->curframe]->regs;
7836 		if (BPF_SRC(insn->code) == BPF_K) {
7837 			mark_reg_unknown(env, regs, insn->dst_reg);
7838 		} else if (BPF_SRC(insn->code) == BPF_X) {
7839 			mark_reg_unknown(env, regs, insn->dst_reg);
7840 			mark_reg_unknown(env, regs, insn->src_reg);
7841 		}
7842 	}
7843 	return branch;
7844 }
7845 
7846 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7847 			    struct bpf_insn *insn,
7848 			    const struct bpf_reg_state *ptr_reg,
7849 			    const struct bpf_reg_state *off_reg,
7850 			    struct bpf_reg_state *dst_reg,
7851 			    struct bpf_sanitize_info *info,
7852 			    const bool commit_window)
7853 {
7854 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
7855 	struct bpf_verifier_state *vstate = env->cur_state;
7856 	bool off_is_imm = tnum_is_const(off_reg->var_off);
7857 	bool off_is_neg = off_reg->smin_value < 0;
7858 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
7859 	u8 opcode = BPF_OP(insn->code);
7860 	u32 alu_state, alu_limit;
7861 	struct bpf_reg_state tmp;
7862 	bool ret;
7863 	int err;
7864 
7865 	if (can_skip_alu_sanitation(env, insn))
7866 		return 0;
7867 
7868 	/* We already marked aux for masking from non-speculative
7869 	 * paths, thus we got here in the first place. We only care
7870 	 * to explore bad access from here.
7871 	 */
7872 	if (vstate->speculative)
7873 		goto do_sim;
7874 
7875 	if (!commit_window) {
7876 		if (!tnum_is_const(off_reg->var_off) &&
7877 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7878 			return REASON_BOUNDS;
7879 
7880 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
7881 				     (opcode == BPF_SUB && !off_is_neg);
7882 	}
7883 
7884 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
7885 	if (err < 0)
7886 		return err;
7887 
7888 	if (commit_window) {
7889 		/* In commit phase we narrow the masking window based on
7890 		 * the observed pointer move after the simulated operation.
7891 		 */
7892 		alu_state = info->aux.alu_state;
7893 		alu_limit = abs(info->aux.alu_limit - alu_limit);
7894 	} else {
7895 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
7896 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7897 		alu_state |= ptr_is_dst_reg ?
7898 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
7899 
7900 		/* Limit pruning on unknown scalars to enable deep search for
7901 		 * potential masking differences from other program paths.
7902 		 */
7903 		if (!off_is_imm)
7904 			env->explore_alu_limits = true;
7905 	}
7906 
7907 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7908 	if (err < 0)
7909 		return err;
7910 do_sim:
7911 	/* If we're in commit phase, we're done here given we already
7912 	 * pushed the truncated dst_reg into the speculative verification
7913 	 * stack.
7914 	 *
7915 	 * Also, when register is a known constant, we rewrite register-based
7916 	 * operation to immediate-based, and thus do not need masking (and as
7917 	 * a consequence, do not need to simulate the zero-truncation either).
7918 	 */
7919 	if (commit_window || off_is_imm)
7920 		return 0;
7921 
7922 	/* Simulate and find potential out-of-bounds access under
7923 	 * speculative execution from truncation as a result of
7924 	 * masking when off was not within expected range. If off
7925 	 * sits in dst, then we temporarily need to move ptr there
7926 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7927 	 * for cases where we use K-based arithmetic in one direction
7928 	 * and truncated reg-based in the other in order to explore
7929 	 * bad access.
7930 	 */
7931 	if (!ptr_is_dst_reg) {
7932 		tmp = *dst_reg;
7933 		*dst_reg = *ptr_reg;
7934 	}
7935 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7936 					env->insn_idx);
7937 	if (!ptr_is_dst_reg && ret)
7938 		*dst_reg = tmp;
7939 	return !ret ? REASON_STACK : 0;
7940 }
7941 
7942 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7943 {
7944 	struct bpf_verifier_state *vstate = env->cur_state;
7945 
7946 	/* If we simulate paths under speculation, we don't update the
7947 	 * insn as 'seen' such that when we verify unreachable paths in
7948 	 * the non-speculative domain, sanitize_dead_code() can still
7949 	 * rewrite/sanitize them.
7950 	 */
7951 	if (!vstate->speculative)
7952 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7953 }
7954 
7955 static int sanitize_err(struct bpf_verifier_env *env,
7956 			const struct bpf_insn *insn, int reason,
7957 			const struct bpf_reg_state *off_reg,
7958 			const struct bpf_reg_state *dst_reg)
7959 {
7960 	static const char *err = "pointer arithmetic with it prohibited for !root";
7961 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7962 	u32 dst = insn->dst_reg, src = insn->src_reg;
7963 
7964 	switch (reason) {
7965 	case REASON_BOUNDS:
7966 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7967 			off_reg == dst_reg ? dst : src, err);
7968 		break;
7969 	case REASON_TYPE:
7970 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7971 			off_reg == dst_reg ? src : dst, err);
7972 		break;
7973 	case REASON_PATHS:
7974 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7975 			dst, op, err);
7976 		break;
7977 	case REASON_LIMIT:
7978 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7979 			dst, op, err);
7980 		break;
7981 	case REASON_STACK:
7982 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7983 			dst, err);
7984 		break;
7985 	default:
7986 		verbose(env, "verifier internal error: unknown reason (%d)\n",
7987 			reason);
7988 		break;
7989 	}
7990 
7991 	return -EACCES;
7992 }
7993 
7994 /* check that stack access falls within stack limits and that 'reg' doesn't
7995  * have a variable offset.
7996  *
7997  * Variable offset is prohibited for unprivileged mode for simplicity since it
7998  * requires corresponding support in Spectre masking for stack ALU.  See also
7999  * retrieve_ptr_limit().
8000  *
8001  *
8002  * 'off' includes 'reg->off'.
8003  */
8004 static int check_stack_access_for_ptr_arithmetic(
8005 				struct bpf_verifier_env *env,
8006 				int regno,
8007 				const struct bpf_reg_state *reg,
8008 				int off)
8009 {
8010 	if (!tnum_is_const(reg->var_off)) {
8011 		char tn_buf[48];
8012 
8013 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8014 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
8015 			regno, tn_buf, off);
8016 		return -EACCES;
8017 	}
8018 
8019 	if (off >= 0 || off < -MAX_BPF_STACK) {
8020 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
8021 			"prohibited for !root; off=%d\n", regno, off);
8022 		return -EACCES;
8023 	}
8024 
8025 	return 0;
8026 }
8027 
8028 static int sanitize_check_bounds(struct bpf_verifier_env *env,
8029 				 const struct bpf_insn *insn,
8030 				 const struct bpf_reg_state *dst_reg)
8031 {
8032 	u32 dst = insn->dst_reg;
8033 
8034 	/* For unprivileged we require that resulting offset must be in bounds
8035 	 * in order to be able to sanitize access later on.
8036 	 */
8037 	if (env->bypass_spec_v1)
8038 		return 0;
8039 
8040 	switch (dst_reg->type) {
8041 	case PTR_TO_STACK:
8042 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
8043 					dst_reg->off + dst_reg->var_off.value))
8044 			return -EACCES;
8045 		break;
8046 	case PTR_TO_MAP_VALUE:
8047 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
8048 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
8049 				"prohibited for !root\n", dst);
8050 			return -EACCES;
8051 		}
8052 		break;
8053 	default:
8054 		break;
8055 	}
8056 
8057 	return 0;
8058 }
8059 
8060 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
8061  * Caller should also handle BPF_MOV case separately.
8062  * If we return -EACCES, caller may want to try again treating pointer as a
8063  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
8064  */
8065 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
8066 				   struct bpf_insn *insn,
8067 				   const struct bpf_reg_state *ptr_reg,
8068 				   const struct bpf_reg_state *off_reg)
8069 {
8070 	struct bpf_verifier_state *vstate = env->cur_state;
8071 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8072 	struct bpf_reg_state *regs = state->regs, *dst_reg;
8073 	bool known = tnum_is_const(off_reg->var_off);
8074 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
8075 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
8076 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
8077 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
8078 	struct bpf_sanitize_info info = {};
8079 	u8 opcode = BPF_OP(insn->code);
8080 	u32 dst = insn->dst_reg;
8081 	int ret;
8082 
8083 	dst_reg = &regs[dst];
8084 
8085 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
8086 	    smin_val > smax_val || umin_val > umax_val) {
8087 		/* Taint dst register if offset had invalid bounds derived from
8088 		 * e.g. dead branches.
8089 		 */
8090 		__mark_reg_unknown(env, dst_reg);
8091 		return 0;
8092 	}
8093 
8094 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
8095 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
8096 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8097 			__mark_reg_unknown(env, dst_reg);
8098 			return 0;
8099 		}
8100 
8101 		verbose(env,
8102 			"R%d 32-bit pointer arithmetic prohibited\n",
8103 			dst);
8104 		return -EACCES;
8105 	}
8106 
8107 	if (ptr_reg->type & PTR_MAYBE_NULL) {
8108 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
8109 			dst, reg_type_str(env, ptr_reg->type));
8110 		return -EACCES;
8111 	}
8112 
8113 	switch (base_type(ptr_reg->type)) {
8114 	case CONST_PTR_TO_MAP:
8115 		/* smin_val represents the known value */
8116 		if (known && smin_val == 0 && opcode == BPF_ADD)
8117 			break;
8118 		fallthrough;
8119 	case PTR_TO_PACKET_END:
8120 	case PTR_TO_SOCKET:
8121 	case PTR_TO_SOCK_COMMON:
8122 	case PTR_TO_TCP_SOCK:
8123 	case PTR_TO_XDP_SOCK:
8124 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
8125 			dst, reg_type_str(env, ptr_reg->type));
8126 		return -EACCES;
8127 	default:
8128 		break;
8129 	}
8130 
8131 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
8132 	 * The id may be overwritten later if we create a new variable offset.
8133 	 */
8134 	dst_reg->type = ptr_reg->type;
8135 	dst_reg->id = ptr_reg->id;
8136 
8137 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
8138 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
8139 		return -EINVAL;
8140 
8141 	/* pointer types do not carry 32-bit bounds at the moment. */
8142 	__mark_reg32_unbounded(dst_reg);
8143 
8144 	if (sanitize_needed(opcode)) {
8145 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
8146 				       &info, false);
8147 		if (ret < 0)
8148 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
8149 	}
8150 
8151 	switch (opcode) {
8152 	case BPF_ADD:
8153 		/* We can take a fixed offset as long as it doesn't overflow
8154 		 * the s32 'off' field
8155 		 */
8156 		if (known && (ptr_reg->off + smin_val ==
8157 			      (s64)(s32)(ptr_reg->off + smin_val))) {
8158 			/* pointer += K.  Accumulate it into fixed offset */
8159 			dst_reg->smin_value = smin_ptr;
8160 			dst_reg->smax_value = smax_ptr;
8161 			dst_reg->umin_value = umin_ptr;
8162 			dst_reg->umax_value = umax_ptr;
8163 			dst_reg->var_off = ptr_reg->var_off;
8164 			dst_reg->off = ptr_reg->off + smin_val;
8165 			dst_reg->raw = ptr_reg->raw;
8166 			break;
8167 		}
8168 		/* A new variable offset is created.  Note that off_reg->off
8169 		 * == 0, since it's a scalar.
8170 		 * dst_reg gets the pointer type and since some positive
8171 		 * integer value was added to the pointer, give it a new 'id'
8172 		 * if it's a PTR_TO_PACKET.
8173 		 * this creates a new 'base' pointer, off_reg (variable) gets
8174 		 * added into the variable offset, and we copy the fixed offset
8175 		 * from ptr_reg.
8176 		 */
8177 		if (signed_add_overflows(smin_ptr, smin_val) ||
8178 		    signed_add_overflows(smax_ptr, smax_val)) {
8179 			dst_reg->smin_value = S64_MIN;
8180 			dst_reg->smax_value = S64_MAX;
8181 		} else {
8182 			dst_reg->smin_value = smin_ptr + smin_val;
8183 			dst_reg->smax_value = smax_ptr + smax_val;
8184 		}
8185 		if (umin_ptr + umin_val < umin_ptr ||
8186 		    umax_ptr + umax_val < umax_ptr) {
8187 			dst_reg->umin_value = 0;
8188 			dst_reg->umax_value = U64_MAX;
8189 		} else {
8190 			dst_reg->umin_value = umin_ptr + umin_val;
8191 			dst_reg->umax_value = umax_ptr + umax_val;
8192 		}
8193 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
8194 		dst_reg->off = ptr_reg->off;
8195 		dst_reg->raw = ptr_reg->raw;
8196 		if (reg_is_pkt_pointer(ptr_reg)) {
8197 			dst_reg->id = ++env->id_gen;
8198 			/* something was added to pkt_ptr, set range to zero */
8199 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8200 		}
8201 		break;
8202 	case BPF_SUB:
8203 		if (dst_reg == off_reg) {
8204 			/* scalar -= pointer.  Creates an unknown scalar */
8205 			verbose(env, "R%d tried to subtract pointer from scalar\n",
8206 				dst);
8207 			return -EACCES;
8208 		}
8209 		/* We don't allow subtraction from FP, because (according to
8210 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
8211 		 * be able to deal with it.
8212 		 */
8213 		if (ptr_reg->type == PTR_TO_STACK) {
8214 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
8215 				dst);
8216 			return -EACCES;
8217 		}
8218 		if (known && (ptr_reg->off - smin_val ==
8219 			      (s64)(s32)(ptr_reg->off - smin_val))) {
8220 			/* pointer -= K.  Subtract it from fixed offset */
8221 			dst_reg->smin_value = smin_ptr;
8222 			dst_reg->smax_value = smax_ptr;
8223 			dst_reg->umin_value = umin_ptr;
8224 			dst_reg->umax_value = umax_ptr;
8225 			dst_reg->var_off = ptr_reg->var_off;
8226 			dst_reg->id = ptr_reg->id;
8227 			dst_reg->off = ptr_reg->off - smin_val;
8228 			dst_reg->raw = ptr_reg->raw;
8229 			break;
8230 		}
8231 		/* A new variable offset is created.  If the subtrahend is known
8232 		 * nonnegative, then any reg->range we had before is still good.
8233 		 */
8234 		if (signed_sub_overflows(smin_ptr, smax_val) ||
8235 		    signed_sub_overflows(smax_ptr, smin_val)) {
8236 			/* Overflow possible, we know nothing */
8237 			dst_reg->smin_value = S64_MIN;
8238 			dst_reg->smax_value = S64_MAX;
8239 		} else {
8240 			dst_reg->smin_value = smin_ptr - smax_val;
8241 			dst_reg->smax_value = smax_ptr - smin_val;
8242 		}
8243 		if (umin_ptr < umax_val) {
8244 			/* Overflow possible, we know nothing */
8245 			dst_reg->umin_value = 0;
8246 			dst_reg->umax_value = U64_MAX;
8247 		} else {
8248 			/* Cannot overflow (as long as bounds are consistent) */
8249 			dst_reg->umin_value = umin_ptr - umax_val;
8250 			dst_reg->umax_value = umax_ptr - umin_val;
8251 		}
8252 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
8253 		dst_reg->off = ptr_reg->off;
8254 		dst_reg->raw = ptr_reg->raw;
8255 		if (reg_is_pkt_pointer(ptr_reg)) {
8256 			dst_reg->id = ++env->id_gen;
8257 			/* something was added to pkt_ptr, set range to zero */
8258 			if (smin_val < 0)
8259 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
8260 		}
8261 		break;
8262 	case BPF_AND:
8263 	case BPF_OR:
8264 	case BPF_XOR:
8265 		/* bitwise ops on pointers are troublesome, prohibit. */
8266 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
8267 			dst, bpf_alu_string[opcode >> 4]);
8268 		return -EACCES;
8269 	default:
8270 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
8271 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
8272 			dst, bpf_alu_string[opcode >> 4]);
8273 		return -EACCES;
8274 	}
8275 
8276 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
8277 		return -EINVAL;
8278 	reg_bounds_sync(dst_reg);
8279 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
8280 		return -EACCES;
8281 	if (sanitize_needed(opcode)) {
8282 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
8283 				       &info, true);
8284 		if (ret < 0)
8285 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
8286 	}
8287 
8288 	return 0;
8289 }
8290 
8291 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
8292 				 struct bpf_reg_state *src_reg)
8293 {
8294 	s32 smin_val = src_reg->s32_min_value;
8295 	s32 smax_val = src_reg->s32_max_value;
8296 	u32 umin_val = src_reg->u32_min_value;
8297 	u32 umax_val = src_reg->u32_max_value;
8298 
8299 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
8300 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
8301 		dst_reg->s32_min_value = S32_MIN;
8302 		dst_reg->s32_max_value = S32_MAX;
8303 	} else {
8304 		dst_reg->s32_min_value += smin_val;
8305 		dst_reg->s32_max_value += smax_val;
8306 	}
8307 	if (dst_reg->u32_min_value + umin_val < umin_val ||
8308 	    dst_reg->u32_max_value + umax_val < umax_val) {
8309 		dst_reg->u32_min_value = 0;
8310 		dst_reg->u32_max_value = U32_MAX;
8311 	} else {
8312 		dst_reg->u32_min_value += umin_val;
8313 		dst_reg->u32_max_value += umax_val;
8314 	}
8315 }
8316 
8317 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
8318 			       struct bpf_reg_state *src_reg)
8319 {
8320 	s64 smin_val = src_reg->smin_value;
8321 	s64 smax_val = src_reg->smax_value;
8322 	u64 umin_val = src_reg->umin_value;
8323 	u64 umax_val = src_reg->umax_value;
8324 
8325 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
8326 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
8327 		dst_reg->smin_value = S64_MIN;
8328 		dst_reg->smax_value = S64_MAX;
8329 	} else {
8330 		dst_reg->smin_value += smin_val;
8331 		dst_reg->smax_value += smax_val;
8332 	}
8333 	if (dst_reg->umin_value + umin_val < umin_val ||
8334 	    dst_reg->umax_value + umax_val < umax_val) {
8335 		dst_reg->umin_value = 0;
8336 		dst_reg->umax_value = U64_MAX;
8337 	} else {
8338 		dst_reg->umin_value += umin_val;
8339 		dst_reg->umax_value += umax_val;
8340 	}
8341 }
8342 
8343 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
8344 				 struct bpf_reg_state *src_reg)
8345 {
8346 	s32 smin_val = src_reg->s32_min_value;
8347 	s32 smax_val = src_reg->s32_max_value;
8348 	u32 umin_val = src_reg->u32_min_value;
8349 	u32 umax_val = src_reg->u32_max_value;
8350 
8351 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
8352 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
8353 		/* Overflow possible, we know nothing */
8354 		dst_reg->s32_min_value = S32_MIN;
8355 		dst_reg->s32_max_value = S32_MAX;
8356 	} else {
8357 		dst_reg->s32_min_value -= smax_val;
8358 		dst_reg->s32_max_value -= smin_val;
8359 	}
8360 	if (dst_reg->u32_min_value < umax_val) {
8361 		/* Overflow possible, we know nothing */
8362 		dst_reg->u32_min_value = 0;
8363 		dst_reg->u32_max_value = U32_MAX;
8364 	} else {
8365 		/* Cannot overflow (as long as bounds are consistent) */
8366 		dst_reg->u32_min_value -= umax_val;
8367 		dst_reg->u32_max_value -= umin_val;
8368 	}
8369 }
8370 
8371 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
8372 			       struct bpf_reg_state *src_reg)
8373 {
8374 	s64 smin_val = src_reg->smin_value;
8375 	s64 smax_val = src_reg->smax_value;
8376 	u64 umin_val = src_reg->umin_value;
8377 	u64 umax_val = src_reg->umax_value;
8378 
8379 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
8380 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
8381 		/* Overflow possible, we know nothing */
8382 		dst_reg->smin_value = S64_MIN;
8383 		dst_reg->smax_value = S64_MAX;
8384 	} else {
8385 		dst_reg->smin_value -= smax_val;
8386 		dst_reg->smax_value -= smin_val;
8387 	}
8388 	if (dst_reg->umin_value < umax_val) {
8389 		/* Overflow possible, we know nothing */
8390 		dst_reg->umin_value = 0;
8391 		dst_reg->umax_value = U64_MAX;
8392 	} else {
8393 		/* Cannot overflow (as long as bounds are consistent) */
8394 		dst_reg->umin_value -= umax_val;
8395 		dst_reg->umax_value -= umin_val;
8396 	}
8397 }
8398 
8399 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
8400 				 struct bpf_reg_state *src_reg)
8401 {
8402 	s32 smin_val = src_reg->s32_min_value;
8403 	u32 umin_val = src_reg->u32_min_value;
8404 	u32 umax_val = src_reg->u32_max_value;
8405 
8406 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
8407 		/* Ain't nobody got time to multiply that sign */
8408 		__mark_reg32_unbounded(dst_reg);
8409 		return;
8410 	}
8411 	/* Both values are positive, so we can work with unsigned and
8412 	 * copy the result to signed (unless it exceeds S32_MAX).
8413 	 */
8414 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
8415 		/* Potential overflow, we know nothing */
8416 		__mark_reg32_unbounded(dst_reg);
8417 		return;
8418 	}
8419 	dst_reg->u32_min_value *= umin_val;
8420 	dst_reg->u32_max_value *= umax_val;
8421 	if (dst_reg->u32_max_value > S32_MAX) {
8422 		/* Overflow possible, we know nothing */
8423 		dst_reg->s32_min_value = S32_MIN;
8424 		dst_reg->s32_max_value = S32_MAX;
8425 	} else {
8426 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8427 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8428 	}
8429 }
8430 
8431 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
8432 			       struct bpf_reg_state *src_reg)
8433 {
8434 	s64 smin_val = src_reg->smin_value;
8435 	u64 umin_val = src_reg->umin_value;
8436 	u64 umax_val = src_reg->umax_value;
8437 
8438 	if (smin_val < 0 || dst_reg->smin_value < 0) {
8439 		/* Ain't nobody got time to multiply that sign */
8440 		__mark_reg64_unbounded(dst_reg);
8441 		return;
8442 	}
8443 	/* Both values are positive, so we can work with unsigned and
8444 	 * copy the result to signed (unless it exceeds S64_MAX).
8445 	 */
8446 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
8447 		/* Potential overflow, we know nothing */
8448 		__mark_reg64_unbounded(dst_reg);
8449 		return;
8450 	}
8451 	dst_reg->umin_value *= umin_val;
8452 	dst_reg->umax_value *= umax_val;
8453 	if (dst_reg->umax_value > S64_MAX) {
8454 		/* Overflow possible, we know nothing */
8455 		dst_reg->smin_value = S64_MIN;
8456 		dst_reg->smax_value = S64_MAX;
8457 	} else {
8458 		dst_reg->smin_value = dst_reg->umin_value;
8459 		dst_reg->smax_value = dst_reg->umax_value;
8460 	}
8461 }
8462 
8463 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
8464 				 struct bpf_reg_state *src_reg)
8465 {
8466 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8467 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8468 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8469 	s32 smin_val = src_reg->s32_min_value;
8470 	u32 umax_val = src_reg->u32_max_value;
8471 
8472 	if (src_known && dst_known) {
8473 		__mark_reg32_known(dst_reg, var32_off.value);
8474 		return;
8475 	}
8476 
8477 	/* We get our minimum from the var_off, since that's inherently
8478 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
8479 	 */
8480 	dst_reg->u32_min_value = var32_off.value;
8481 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
8482 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8483 		/* Lose signed bounds when ANDing negative numbers,
8484 		 * ain't nobody got time for that.
8485 		 */
8486 		dst_reg->s32_min_value = S32_MIN;
8487 		dst_reg->s32_max_value = S32_MAX;
8488 	} else {
8489 		/* ANDing two positives gives a positive, so safe to
8490 		 * cast result into s64.
8491 		 */
8492 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8493 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8494 	}
8495 }
8496 
8497 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
8498 			       struct bpf_reg_state *src_reg)
8499 {
8500 	bool src_known = tnum_is_const(src_reg->var_off);
8501 	bool dst_known = tnum_is_const(dst_reg->var_off);
8502 	s64 smin_val = src_reg->smin_value;
8503 	u64 umax_val = src_reg->umax_value;
8504 
8505 	if (src_known && dst_known) {
8506 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8507 		return;
8508 	}
8509 
8510 	/* We get our minimum from the var_off, since that's inherently
8511 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
8512 	 */
8513 	dst_reg->umin_value = dst_reg->var_off.value;
8514 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
8515 	if (dst_reg->smin_value < 0 || smin_val < 0) {
8516 		/* Lose signed bounds when ANDing negative numbers,
8517 		 * ain't nobody got time for that.
8518 		 */
8519 		dst_reg->smin_value = S64_MIN;
8520 		dst_reg->smax_value = S64_MAX;
8521 	} else {
8522 		/* ANDing two positives gives a positive, so safe to
8523 		 * cast result into s64.
8524 		 */
8525 		dst_reg->smin_value = dst_reg->umin_value;
8526 		dst_reg->smax_value = dst_reg->umax_value;
8527 	}
8528 	/* We may learn something more from the var_off */
8529 	__update_reg_bounds(dst_reg);
8530 }
8531 
8532 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
8533 				struct bpf_reg_state *src_reg)
8534 {
8535 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8536 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8537 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8538 	s32 smin_val = src_reg->s32_min_value;
8539 	u32 umin_val = src_reg->u32_min_value;
8540 
8541 	if (src_known && dst_known) {
8542 		__mark_reg32_known(dst_reg, var32_off.value);
8543 		return;
8544 	}
8545 
8546 	/* We get our maximum from the var_off, and our minimum is the
8547 	 * maximum of the operands' minima
8548 	 */
8549 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
8550 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8551 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8552 		/* Lose signed bounds when ORing negative numbers,
8553 		 * ain't nobody got time for that.
8554 		 */
8555 		dst_reg->s32_min_value = S32_MIN;
8556 		dst_reg->s32_max_value = S32_MAX;
8557 	} else {
8558 		/* ORing two positives gives a positive, so safe to
8559 		 * cast result into s64.
8560 		 */
8561 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8562 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8563 	}
8564 }
8565 
8566 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
8567 			      struct bpf_reg_state *src_reg)
8568 {
8569 	bool src_known = tnum_is_const(src_reg->var_off);
8570 	bool dst_known = tnum_is_const(dst_reg->var_off);
8571 	s64 smin_val = src_reg->smin_value;
8572 	u64 umin_val = src_reg->umin_value;
8573 
8574 	if (src_known && dst_known) {
8575 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8576 		return;
8577 	}
8578 
8579 	/* We get our maximum from the var_off, and our minimum is the
8580 	 * maximum of the operands' minima
8581 	 */
8582 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
8583 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8584 	if (dst_reg->smin_value < 0 || smin_val < 0) {
8585 		/* Lose signed bounds when ORing negative numbers,
8586 		 * ain't nobody got time for that.
8587 		 */
8588 		dst_reg->smin_value = S64_MIN;
8589 		dst_reg->smax_value = S64_MAX;
8590 	} else {
8591 		/* ORing two positives gives a positive, so safe to
8592 		 * cast result into s64.
8593 		 */
8594 		dst_reg->smin_value = dst_reg->umin_value;
8595 		dst_reg->smax_value = dst_reg->umax_value;
8596 	}
8597 	/* We may learn something more from the var_off */
8598 	__update_reg_bounds(dst_reg);
8599 }
8600 
8601 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
8602 				 struct bpf_reg_state *src_reg)
8603 {
8604 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8605 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8606 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8607 	s32 smin_val = src_reg->s32_min_value;
8608 
8609 	if (src_known && dst_known) {
8610 		__mark_reg32_known(dst_reg, var32_off.value);
8611 		return;
8612 	}
8613 
8614 	/* We get both minimum and maximum from the var32_off. */
8615 	dst_reg->u32_min_value = var32_off.value;
8616 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8617 
8618 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
8619 		/* XORing two positive sign numbers gives a positive,
8620 		 * so safe to cast u32 result into s32.
8621 		 */
8622 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8623 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8624 	} else {
8625 		dst_reg->s32_min_value = S32_MIN;
8626 		dst_reg->s32_max_value = S32_MAX;
8627 	}
8628 }
8629 
8630 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
8631 			       struct bpf_reg_state *src_reg)
8632 {
8633 	bool src_known = tnum_is_const(src_reg->var_off);
8634 	bool dst_known = tnum_is_const(dst_reg->var_off);
8635 	s64 smin_val = src_reg->smin_value;
8636 
8637 	if (src_known && dst_known) {
8638 		/* dst_reg->var_off.value has been updated earlier */
8639 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8640 		return;
8641 	}
8642 
8643 	/* We get both minimum and maximum from the var_off. */
8644 	dst_reg->umin_value = dst_reg->var_off.value;
8645 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8646 
8647 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
8648 		/* XORing two positive sign numbers gives a positive,
8649 		 * so safe to cast u64 result into s64.
8650 		 */
8651 		dst_reg->smin_value = dst_reg->umin_value;
8652 		dst_reg->smax_value = dst_reg->umax_value;
8653 	} else {
8654 		dst_reg->smin_value = S64_MIN;
8655 		dst_reg->smax_value = S64_MAX;
8656 	}
8657 
8658 	__update_reg_bounds(dst_reg);
8659 }
8660 
8661 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8662 				   u64 umin_val, u64 umax_val)
8663 {
8664 	/* We lose all sign bit information (except what we can pick
8665 	 * up from var_off)
8666 	 */
8667 	dst_reg->s32_min_value = S32_MIN;
8668 	dst_reg->s32_max_value = S32_MAX;
8669 	/* If we might shift our top bit out, then we know nothing */
8670 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
8671 		dst_reg->u32_min_value = 0;
8672 		dst_reg->u32_max_value = U32_MAX;
8673 	} else {
8674 		dst_reg->u32_min_value <<= umin_val;
8675 		dst_reg->u32_max_value <<= umax_val;
8676 	}
8677 }
8678 
8679 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8680 				 struct bpf_reg_state *src_reg)
8681 {
8682 	u32 umax_val = src_reg->u32_max_value;
8683 	u32 umin_val = src_reg->u32_min_value;
8684 	/* u32 alu operation will zext upper bits */
8685 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
8686 
8687 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8688 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
8689 	/* Not required but being careful mark reg64 bounds as unknown so
8690 	 * that we are forced to pick them up from tnum and zext later and
8691 	 * if some path skips this step we are still safe.
8692 	 */
8693 	__mark_reg64_unbounded(dst_reg);
8694 	__update_reg32_bounds(dst_reg);
8695 }
8696 
8697 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
8698 				   u64 umin_val, u64 umax_val)
8699 {
8700 	/* Special case <<32 because it is a common compiler pattern to sign
8701 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
8702 	 * positive we know this shift will also be positive so we can track
8703 	 * bounds correctly. Otherwise we lose all sign bit information except
8704 	 * what we can pick up from var_off. Perhaps we can generalize this
8705 	 * later to shifts of any length.
8706 	 */
8707 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
8708 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
8709 	else
8710 		dst_reg->smax_value = S64_MAX;
8711 
8712 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
8713 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
8714 	else
8715 		dst_reg->smin_value = S64_MIN;
8716 
8717 	/* If we might shift our top bit out, then we know nothing */
8718 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
8719 		dst_reg->umin_value = 0;
8720 		dst_reg->umax_value = U64_MAX;
8721 	} else {
8722 		dst_reg->umin_value <<= umin_val;
8723 		dst_reg->umax_value <<= umax_val;
8724 	}
8725 }
8726 
8727 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
8728 			       struct bpf_reg_state *src_reg)
8729 {
8730 	u64 umax_val = src_reg->umax_value;
8731 	u64 umin_val = src_reg->umin_value;
8732 
8733 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
8734 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
8735 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8736 
8737 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
8738 	/* We may learn something more from the var_off */
8739 	__update_reg_bounds(dst_reg);
8740 }
8741 
8742 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
8743 				 struct bpf_reg_state *src_reg)
8744 {
8745 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
8746 	u32 umax_val = src_reg->u32_max_value;
8747 	u32 umin_val = src_reg->u32_min_value;
8748 
8749 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
8750 	 * be negative, then either:
8751 	 * 1) src_reg might be zero, so the sign bit of the result is
8752 	 *    unknown, so we lose our signed bounds
8753 	 * 2) it's known negative, thus the unsigned bounds capture the
8754 	 *    signed bounds
8755 	 * 3) the signed bounds cross zero, so they tell us nothing
8756 	 *    about the result
8757 	 * If the value in dst_reg is known nonnegative, then again the
8758 	 * unsigned bounds capture the signed bounds.
8759 	 * Thus, in all cases it suffices to blow away our signed bounds
8760 	 * and rely on inferring new ones from the unsigned bounds and
8761 	 * var_off of the result.
8762 	 */
8763 	dst_reg->s32_min_value = S32_MIN;
8764 	dst_reg->s32_max_value = S32_MAX;
8765 
8766 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
8767 	dst_reg->u32_min_value >>= umax_val;
8768 	dst_reg->u32_max_value >>= umin_val;
8769 
8770 	__mark_reg64_unbounded(dst_reg);
8771 	__update_reg32_bounds(dst_reg);
8772 }
8773 
8774 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
8775 			       struct bpf_reg_state *src_reg)
8776 {
8777 	u64 umax_val = src_reg->umax_value;
8778 	u64 umin_val = src_reg->umin_value;
8779 
8780 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
8781 	 * be negative, then either:
8782 	 * 1) src_reg might be zero, so the sign bit of the result is
8783 	 *    unknown, so we lose our signed bounds
8784 	 * 2) it's known negative, thus the unsigned bounds capture the
8785 	 *    signed bounds
8786 	 * 3) the signed bounds cross zero, so they tell us nothing
8787 	 *    about the result
8788 	 * If the value in dst_reg is known nonnegative, then again the
8789 	 * unsigned bounds capture the signed bounds.
8790 	 * Thus, in all cases it suffices to blow away our signed bounds
8791 	 * and rely on inferring new ones from the unsigned bounds and
8792 	 * var_off of the result.
8793 	 */
8794 	dst_reg->smin_value = S64_MIN;
8795 	dst_reg->smax_value = S64_MAX;
8796 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
8797 	dst_reg->umin_value >>= umax_val;
8798 	dst_reg->umax_value >>= umin_val;
8799 
8800 	/* Its not easy to operate on alu32 bounds here because it depends
8801 	 * on bits being shifted in. Take easy way out and mark unbounded
8802 	 * so we can recalculate later from tnum.
8803 	 */
8804 	__mark_reg32_unbounded(dst_reg);
8805 	__update_reg_bounds(dst_reg);
8806 }
8807 
8808 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8809 				  struct bpf_reg_state *src_reg)
8810 {
8811 	u64 umin_val = src_reg->u32_min_value;
8812 
8813 	/* Upon reaching here, src_known is true and
8814 	 * umax_val is equal to umin_val.
8815 	 */
8816 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8817 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
8818 
8819 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8820 
8821 	/* blow away the dst_reg umin_value/umax_value and rely on
8822 	 * dst_reg var_off to refine the result.
8823 	 */
8824 	dst_reg->u32_min_value = 0;
8825 	dst_reg->u32_max_value = U32_MAX;
8826 
8827 	__mark_reg64_unbounded(dst_reg);
8828 	__update_reg32_bounds(dst_reg);
8829 }
8830 
8831 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8832 				struct bpf_reg_state *src_reg)
8833 {
8834 	u64 umin_val = src_reg->umin_value;
8835 
8836 	/* Upon reaching here, src_known is true and umax_val is equal
8837 	 * to umin_val.
8838 	 */
8839 	dst_reg->smin_value >>= umin_val;
8840 	dst_reg->smax_value >>= umin_val;
8841 
8842 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
8843 
8844 	/* blow away the dst_reg umin_value/umax_value and rely on
8845 	 * dst_reg var_off to refine the result.
8846 	 */
8847 	dst_reg->umin_value = 0;
8848 	dst_reg->umax_value = U64_MAX;
8849 
8850 	/* Its not easy to operate on alu32 bounds here because it depends
8851 	 * on bits being shifted in from upper 32-bits. Take easy way out
8852 	 * and mark unbounded so we can recalculate later from tnum.
8853 	 */
8854 	__mark_reg32_unbounded(dst_reg);
8855 	__update_reg_bounds(dst_reg);
8856 }
8857 
8858 /* WARNING: This function does calculations on 64-bit values, but the actual
8859  * execution may occur on 32-bit values. Therefore, things like bitshifts
8860  * need extra checks in the 32-bit case.
8861  */
8862 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8863 				      struct bpf_insn *insn,
8864 				      struct bpf_reg_state *dst_reg,
8865 				      struct bpf_reg_state src_reg)
8866 {
8867 	struct bpf_reg_state *regs = cur_regs(env);
8868 	u8 opcode = BPF_OP(insn->code);
8869 	bool src_known;
8870 	s64 smin_val, smax_val;
8871 	u64 umin_val, umax_val;
8872 	s32 s32_min_val, s32_max_val;
8873 	u32 u32_min_val, u32_max_val;
8874 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
8875 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
8876 	int ret;
8877 
8878 	smin_val = src_reg.smin_value;
8879 	smax_val = src_reg.smax_value;
8880 	umin_val = src_reg.umin_value;
8881 	umax_val = src_reg.umax_value;
8882 
8883 	s32_min_val = src_reg.s32_min_value;
8884 	s32_max_val = src_reg.s32_max_value;
8885 	u32_min_val = src_reg.u32_min_value;
8886 	u32_max_val = src_reg.u32_max_value;
8887 
8888 	if (alu32) {
8889 		src_known = tnum_subreg_is_const(src_reg.var_off);
8890 		if ((src_known &&
8891 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8892 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8893 			/* Taint dst register if offset had invalid bounds
8894 			 * derived from e.g. dead branches.
8895 			 */
8896 			__mark_reg_unknown(env, dst_reg);
8897 			return 0;
8898 		}
8899 	} else {
8900 		src_known = tnum_is_const(src_reg.var_off);
8901 		if ((src_known &&
8902 		     (smin_val != smax_val || umin_val != umax_val)) ||
8903 		    smin_val > smax_val || umin_val > umax_val) {
8904 			/* Taint dst register if offset had invalid bounds
8905 			 * derived from e.g. dead branches.
8906 			 */
8907 			__mark_reg_unknown(env, dst_reg);
8908 			return 0;
8909 		}
8910 	}
8911 
8912 	if (!src_known &&
8913 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
8914 		__mark_reg_unknown(env, dst_reg);
8915 		return 0;
8916 	}
8917 
8918 	if (sanitize_needed(opcode)) {
8919 		ret = sanitize_val_alu(env, insn);
8920 		if (ret < 0)
8921 			return sanitize_err(env, insn, ret, NULL, NULL);
8922 	}
8923 
8924 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8925 	 * There are two classes of instructions: The first class we track both
8926 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
8927 	 * greatest amount of precision when alu operations are mixed with jmp32
8928 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8929 	 * and BPF_OR. This is possible because these ops have fairly easy to
8930 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8931 	 * See alu32 verifier tests for examples. The second class of
8932 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8933 	 * with regards to tracking sign/unsigned bounds because the bits may
8934 	 * cross subreg boundaries in the alu64 case. When this happens we mark
8935 	 * the reg unbounded in the subreg bound space and use the resulting
8936 	 * tnum to calculate an approximation of the sign/unsigned bounds.
8937 	 */
8938 	switch (opcode) {
8939 	case BPF_ADD:
8940 		scalar32_min_max_add(dst_reg, &src_reg);
8941 		scalar_min_max_add(dst_reg, &src_reg);
8942 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
8943 		break;
8944 	case BPF_SUB:
8945 		scalar32_min_max_sub(dst_reg, &src_reg);
8946 		scalar_min_max_sub(dst_reg, &src_reg);
8947 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
8948 		break;
8949 	case BPF_MUL:
8950 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8951 		scalar32_min_max_mul(dst_reg, &src_reg);
8952 		scalar_min_max_mul(dst_reg, &src_reg);
8953 		break;
8954 	case BPF_AND:
8955 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8956 		scalar32_min_max_and(dst_reg, &src_reg);
8957 		scalar_min_max_and(dst_reg, &src_reg);
8958 		break;
8959 	case BPF_OR:
8960 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8961 		scalar32_min_max_or(dst_reg, &src_reg);
8962 		scalar_min_max_or(dst_reg, &src_reg);
8963 		break;
8964 	case BPF_XOR:
8965 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8966 		scalar32_min_max_xor(dst_reg, &src_reg);
8967 		scalar_min_max_xor(dst_reg, &src_reg);
8968 		break;
8969 	case BPF_LSH:
8970 		if (umax_val >= insn_bitness) {
8971 			/* Shifts greater than 31 or 63 are undefined.
8972 			 * This includes shifts by a negative number.
8973 			 */
8974 			mark_reg_unknown(env, regs, insn->dst_reg);
8975 			break;
8976 		}
8977 		if (alu32)
8978 			scalar32_min_max_lsh(dst_reg, &src_reg);
8979 		else
8980 			scalar_min_max_lsh(dst_reg, &src_reg);
8981 		break;
8982 	case BPF_RSH:
8983 		if (umax_val >= insn_bitness) {
8984 			/* Shifts greater than 31 or 63 are undefined.
8985 			 * This includes shifts by a negative number.
8986 			 */
8987 			mark_reg_unknown(env, regs, insn->dst_reg);
8988 			break;
8989 		}
8990 		if (alu32)
8991 			scalar32_min_max_rsh(dst_reg, &src_reg);
8992 		else
8993 			scalar_min_max_rsh(dst_reg, &src_reg);
8994 		break;
8995 	case BPF_ARSH:
8996 		if (umax_val >= insn_bitness) {
8997 			/* Shifts greater than 31 or 63 are undefined.
8998 			 * This includes shifts by a negative number.
8999 			 */
9000 			mark_reg_unknown(env, regs, insn->dst_reg);
9001 			break;
9002 		}
9003 		if (alu32)
9004 			scalar32_min_max_arsh(dst_reg, &src_reg);
9005 		else
9006 			scalar_min_max_arsh(dst_reg, &src_reg);
9007 		break;
9008 	default:
9009 		mark_reg_unknown(env, regs, insn->dst_reg);
9010 		break;
9011 	}
9012 
9013 	/* ALU32 ops are zero extended into 64bit register */
9014 	if (alu32)
9015 		zext_32_to_64(dst_reg);
9016 	reg_bounds_sync(dst_reg);
9017 	return 0;
9018 }
9019 
9020 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
9021  * and var_off.
9022  */
9023 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
9024 				   struct bpf_insn *insn)
9025 {
9026 	struct bpf_verifier_state *vstate = env->cur_state;
9027 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9028 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
9029 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
9030 	u8 opcode = BPF_OP(insn->code);
9031 	int err;
9032 
9033 	dst_reg = &regs[insn->dst_reg];
9034 	src_reg = NULL;
9035 	if (dst_reg->type != SCALAR_VALUE)
9036 		ptr_reg = dst_reg;
9037 	else
9038 		/* Make sure ID is cleared otherwise dst_reg min/max could be
9039 		 * incorrectly propagated into other registers by find_equal_scalars()
9040 		 */
9041 		dst_reg->id = 0;
9042 	if (BPF_SRC(insn->code) == BPF_X) {
9043 		src_reg = &regs[insn->src_reg];
9044 		if (src_reg->type != SCALAR_VALUE) {
9045 			if (dst_reg->type != SCALAR_VALUE) {
9046 				/* Combining two pointers by any ALU op yields
9047 				 * an arbitrary scalar. Disallow all math except
9048 				 * pointer subtraction
9049 				 */
9050 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
9051 					mark_reg_unknown(env, regs, insn->dst_reg);
9052 					return 0;
9053 				}
9054 				verbose(env, "R%d pointer %s pointer prohibited\n",
9055 					insn->dst_reg,
9056 					bpf_alu_string[opcode >> 4]);
9057 				return -EACCES;
9058 			} else {
9059 				/* scalar += pointer
9060 				 * This is legal, but we have to reverse our
9061 				 * src/dest handling in computing the range
9062 				 */
9063 				err = mark_chain_precision(env, insn->dst_reg);
9064 				if (err)
9065 					return err;
9066 				return adjust_ptr_min_max_vals(env, insn,
9067 							       src_reg, dst_reg);
9068 			}
9069 		} else if (ptr_reg) {
9070 			/* pointer += scalar */
9071 			err = mark_chain_precision(env, insn->src_reg);
9072 			if (err)
9073 				return err;
9074 			return adjust_ptr_min_max_vals(env, insn,
9075 						       dst_reg, src_reg);
9076 		}
9077 	} else {
9078 		/* Pretend the src is a reg with a known value, since we only
9079 		 * need to be able to read from this state.
9080 		 */
9081 		off_reg.type = SCALAR_VALUE;
9082 		__mark_reg_known(&off_reg, insn->imm);
9083 		src_reg = &off_reg;
9084 		if (ptr_reg) /* pointer += K */
9085 			return adjust_ptr_min_max_vals(env, insn,
9086 						       ptr_reg, src_reg);
9087 	}
9088 
9089 	/* Got here implies adding two SCALAR_VALUEs */
9090 	if (WARN_ON_ONCE(ptr_reg)) {
9091 		print_verifier_state(env, state, true);
9092 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
9093 		return -EINVAL;
9094 	}
9095 	if (WARN_ON(!src_reg)) {
9096 		print_verifier_state(env, state, true);
9097 		verbose(env, "verifier internal error: no src_reg\n");
9098 		return -EINVAL;
9099 	}
9100 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
9101 }
9102 
9103 /* check validity of 32-bit and 64-bit arithmetic operations */
9104 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
9105 {
9106 	struct bpf_reg_state *regs = cur_regs(env);
9107 	u8 opcode = BPF_OP(insn->code);
9108 	int err;
9109 
9110 	if (opcode == BPF_END || opcode == BPF_NEG) {
9111 		if (opcode == BPF_NEG) {
9112 			if (BPF_SRC(insn->code) != BPF_K ||
9113 			    insn->src_reg != BPF_REG_0 ||
9114 			    insn->off != 0 || insn->imm != 0) {
9115 				verbose(env, "BPF_NEG uses reserved fields\n");
9116 				return -EINVAL;
9117 			}
9118 		} else {
9119 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
9120 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
9121 			    BPF_CLASS(insn->code) == BPF_ALU64) {
9122 				verbose(env, "BPF_END uses reserved fields\n");
9123 				return -EINVAL;
9124 			}
9125 		}
9126 
9127 		/* check src operand */
9128 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9129 		if (err)
9130 			return err;
9131 
9132 		if (is_pointer_value(env, insn->dst_reg)) {
9133 			verbose(env, "R%d pointer arithmetic prohibited\n",
9134 				insn->dst_reg);
9135 			return -EACCES;
9136 		}
9137 
9138 		/* check dest operand */
9139 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
9140 		if (err)
9141 			return err;
9142 
9143 	} else if (opcode == BPF_MOV) {
9144 
9145 		if (BPF_SRC(insn->code) == BPF_X) {
9146 			if (insn->imm != 0 || insn->off != 0) {
9147 				verbose(env, "BPF_MOV uses reserved fields\n");
9148 				return -EINVAL;
9149 			}
9150 
9151 			/* check src operand */
9152 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9153 			if (err)
9154 				return err;
9155 		} else {
9156 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9157 				verbose(env, "BPF_MOV uses reserved fields\n");
9158 				return -EINVAL;
9159 			}
9160 		}
9161 
9162 		/* check dest operand, mark as required later */
9163 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9164 		if (err)
9165 			return err;
9166 
9167 		if (BPF_SRC(insn->code) == BPF_X) {
9168 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
9169 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
9170 
9171 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
9172 				/* case: R1 = R2
9173 				 * copy register state to dest reg
9174 				 */
9175 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
9176 					/* Assign src and dst registers the same ID
9177 					 * that will be used by find_equal_scalars()
9178 					 * to propagate min/max range.
9179 					 */
9180 					src_reg->id = ++env->id_gen;
9181 				*dst_reg = *src_reg;
9182 				dst_reg->live |= REG_LIVE_WRITTEN;
9183 				dst_reg->subreg_def = DEF_NOT_SUBREG;
9184 			} else {
9185 				/* R1 = (u32) R2 */
9186 				if (is_pointer_value(env, insn->src_reg)) {
9187 					verbose(env,
9188 						"R%d partial copy of pointer\n",
9189 						insn->src_reg);
9190 					return -EACCES;
9191 				} else if (src_reg->type == SCALAR_VALUE) {
9192 					*dst_reg = *src_reg;
9193 					/* Make sure ID is cleared otherwise
9194 					 * dst_reg min/max could be incorrectly
9195 					 * propagated into src_reg by find_equal_scalars()
9196 					 */
9197 					dst_reg->id = 0;
9198 					dst_reg->live |= REG_LIVE_WRITTEN;
9199 					dst_reg->subreg_def = env->insn_idx + 1;
9200 				} else {
9201 					mark_reg_unknown(env, regs,
9202 							 insn->dst_reg);
9203 				}
9204 				zext_32_to_64(dst_reg);
9205 				reg_bounds_sync(dst_reg);
9206 			}
9207 		} else {
9208 			/* case: R = imm
9209 			 * remember the value we stored into this reg
9210 			 */
9211 			/* clear any state __mark_reg_known doesn't set */
9212 			mark_reg_unknown(env, regs, insn->dst_reg);
9213 			regs[insn->dst_reg].type = SCALAR_VALUE;
9214 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
9215 				__mark_reg_known(regs + insn->dst_reg,
9216 						 insn->imm);
9217 			} else {
9218 				__mark_reg_known(regs + insn->dst_reg,
9219 						 (u32)insn->imm);
9220 			}
9221 		}
9222 
9223 	} else if (opcode > BPF_END) {
9224 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
9225 		return -EINVAL;
9226 
9227 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
9228 
9229 		if (BPF_SRC(insn->code) == BPF_X) {
9230 			if (insn->imm != 0 || insn->off != 0) {
9231 				verbose(env, "BPF_ALU uses reserved fields\n");
9232 				return -EINVAL;
9233 			}
9234 			/* check src1 operand */
9235 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9236 			if (err)
9237 				return err;
9238 		} else {
9239 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
9240 				verbose(env, "BPF_ALU uses reserved fields\n");
9241 				return -EINVAL;
9242 			}
9243 		}
9244 
9245 		/* check src2 operand */
9246 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9247 		if (err)
9248 			return err;
9249 
9250 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
9251 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
9252 			verbose(env, "div by zero\n");
9253 			return -EINVAL;
9254 		}
9255 
9256 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
9257 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
9258 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
9259 
9260 			if (insn->imm < 0 || insn->imm >= size) {
9261 				verbose(env, "invalid shift %d\n", insn->imm);
9262 				return -EINVAL;
9263 			}
9264 		}
9265 
9266 		/* check dest operand */
9267 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9268 		if (err)
9269 			return err;
9270 
9271 		return adjust_reg_min_max_vals(env, insn);
9272 	}
9273 
9274 	return 0;
9275 }
9276 
9277 static void __find_good_pkt_pointers(struct bpf_func_state *state,
9278 				     struct bpf_reg_state *dst_reg,
9279 				     enum bpf_reg_type type, int new_range)
9280 {
9281 	struct bpf_reg_state *reg;
9282 	int i;
9283 
9284 	for (i = 0; i < MAX_BPF_REG; i++) {
9285 		reg = &state->regs[i];
9286 		if (reg->type == type && reg->id == dst_reg->id)
9287 			/* keep the maximum range already checked */
9288 			reg->range = max(reg->range, new_range);
9289 	}
9290 
9291 	bpf_for_each_spilled_reg(i, state, reg) {
9292 		if (!reg)
9293 			continue;
9294 		if (reg->type == type && reg->id == dst_reg->id)
9295 			reg->range = max(reg->range, new_range);
9296 	}
9297 }
9298 
9299 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
9300 				   struct bpf_reg_state *dst_reg,
9301 				   enum bpf_reg_type type,
9302 				   bool range_right_open)
9303 {
9304 	int new_range, i;
9305 
9306 	if (dst_reg->off < 0 ||
9307 	    (dst_reg->off == 0 && range_right_open))
9308 		/* This doesn't give us any range */
9309 		return;
9310 
9311 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
9312 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
9313 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
9314 		 * than pkt_end, but that's because it's also less than pkt.
9315 		 */
9316 		return;
9317 
9318 	new_range = dst_reg->off;
9319 	if (range_right_open)
9320 		new_range++;
9321 
9322 	/* Examples for register markings:
9323 	 *
9324 	 * pkt_data in dst register:
9325 	 *
9326 	 *   r2 = r3;
9327 	 *   r2 += 8;
9328 	 *   if (r2 > pkt_end) goto <handle exception>
9329 	 *   <access okay>
9330 	 *
9331 	 *   r2 = r3;
9332 	 *   r2 += 8;
9333 	 *   if (r2 < pkt_end) goto <access okay>
9334 	 *   <handle exception>
9335 	 *
9336 	 *   Where:
9337 	 *     r2 == dst_reg, pkt_end == src_reg
9338 	 *     r2=pkt(id=n,off=8,r=0)
9339 	 *     r3=pkt(id=n,off=0,r=0)
9340 	 *
9341 	 * pkt_data in src register:
9342 	 *
9343 	 *   r2 = r3;
9344 	 *   r2 += 8;
9345 	 *   if (pkt_end >= r2) goto <access okay>
9346 	 *   <handle exception>
9347 	 *
9348 	 *   r2 = r3;
9349 	 *   r2 += 8;
9350 	 *   if (pkt_end <= r2) goto <handle exception>
9351 	 *   <access okay>
9352 	 *
9353 	 *   Where:
9354 	 *     pkt_end == dst_reg, r2 == src_reg
9355 	 *     r2=pkt(id=n,off=8,r=0)
9356 	 *     r3=pkt(id=n,off=0,r=0)
9357 	 *
9358 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
9359 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
9360 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
9361 	 * the check.
9362 	 */
9363 
9364 	/* If our ids match, then we must have the same max_value.  And we
9365 	 * don't care about the other reg's fixed offset, since if it's too big
9366 	 * the range won't allow anything.
9367 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
9368 	 */
9369 	for (i = 0; i <= vstate->curframe; i++)
9370 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
9371 					 new_range);
9372 }
9373 
9374 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
9375 {
9376 	struct tnum subreg = tnum_subreg(reg->var_off);
9377 	s32 sval = (s32)val;
9378 
9379 	switch (opcode) {
9380 	case BPF_JEQ:
9381 		if (tnum_is_const(subreg))
9382 			return !!tnum_equals_const(subreg, val);
9383 		break;
9384 	case BPF_JNE:
9385 		if (tnum_is_const(subreg))
9386 			return !tnum_equals_const(subreg, val);
9387 		break;
9388 	case BPF_JSET:
9389 		if ((~subreg.mask & subreg.value) & val)
9390 			return 1;
9391 		if (!((subreg.mask | subreg.value) & val))
9392 			return 0;
9393 		break;
9394 	case BPF_JGT:
9395 		if (reg->u32_min_value > val)
9396 			return 1;
9397 		else if (reg->u32_max_value <= val)
9398 			return 0;
9399 		break;
9400 	case BPF_JSGT:
9401 		if (reg->s32_min_value > sval)
9402 			return 1;
9403 		else if (reg->s32_max_value <= sval)
9404 			return 0;
9405 		break;
9406 	case BPF_JLT:
9407 		if (reg->u32_max_value < val)
9408 			return 1;
9409 		else if (reg->u32_min_value >= val)
9410 			return 0;
9411 		break;
9412 	case BPF_JSLT:
9413 		if (reg->s32_max_value < sval)
9414 			return 1;
9415 		else if (reg->s32_min_value >= sval)
9416 			return 0;
9417 		break;
9418 	case BPF_JGE:
9419 		if (reg->u32_min_value >= val)
9420 			return 1;
9421 		else if (reg->u32_max_value < val)
9422 			return 0;
9423 		break;
9424 	case BPF_JSGE:
9425 		if (reg->s32_min_value >= sval)
9426 			return 1;
9427 		else if (reg->s32_max_value < sval)
9428 			return 0;
9429 		break;
9430 	case BPF_JLE:
9431 		if (reg->u32_max_value <= val)
9432 			return 1;
9433 		else if (reg->u32_min_value > val)
9434 			return 0;
9435 		break;
9436 	case BPF_JSLE:
9437 		if (reg->s32_max_value <= sval)
9438 			return 1;
9439 		else if (reg->s32_min_value > sval)
9440 			return 0;
9441 		break;
9442 	}
9443 
9444 	return -1;
9445 }
9446 
9447 
9448 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
9449 {
9450 	s64 sval = (s64)val;
9451 
9452 	switch (opcode) {
9453 	case BPF_JEQ:
9454 		if (tnum_is_const(reg->var_off))
9455 			return !!tnum_equals_const(reg->var_off, val);
9456 		break;
9457 	case BPF_JNE:
9458 		if (tnum_is_const(reg->var_off))
9459 			return !tnum_equals_const(reg->var_off, val);
9460 		break;
9461 	case BPF_JSET:
9462 		if ((~reg->var_off.mask & reg->var_off.value) & val)
9463 			return 1;
9464 		if (!((reg->var_off.mask | reg->var_off.value) & val))
9465 			return 0;
9466 		break;
9467 	case BPF_JGT:
9468 		if (reg->umin_value > val)
9469 			return 1;
9470 		else if (reg->umax_value <= val)
9471 			return 0;
9472 		break;
9473 	case BPF_JSGT:
9474 		if (reg->smin_value > sval)
9475 			return 1;
9476 		else if (reg->smax_value <= sval)
9477 			return 0;
9478 		break;
9479 	case BPF_JLT:
9480 		if (reg->umax_value < val)
9481 			return 1;
9482 		else if (reg->umin_value >= val)
9483 			return 0;
9484 		break;
9485 	case BPF_JSLT:
9486 		if (reg->smax_value < sval)
9487 			return 1;
9488 		else if (reg->smin_value >= sval)
9489 			return 0;
9490 		break;
9491 	case BPF_JGE:
9492 		if (reg->umin_value >= val)
9493 			return 1;
9494 		else if (reg->umax_value < val)
9495 			return 0;
9496 		break;
9497 	case BPF_JSGE:
9498 		if (reg->smin_value >= sval)
9499 			return 1;
9500 		else if (reg->smax_value < sval)
9501 			return 0;
9502 		break;
9503 	case BPF_JLE:
9504 		if (reg->umax_value <= val)
9505 			return 1;
9506 		else if (reg->umin_value > val)
9507 			return 0;
9508 		break;
9509 	case BPF_JSLE:
9510 		if (reg->smax_value <= sval)
9511 			return 1;
9512 		else if (reg->smin_value > sval)
9513 			return 0;
9514 		break;
9515 	}
9516 
9517 	return -1;
9518 }
9519 
9520 /* compute branch direction of the expression "if (reg opcode val) goto target;"
9521  * and return:
9522  *  1 - branch will be taken and "goto target" will be executed
9523  *  0 - branch will not be taken and fall-through to next insn
9524  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
9525  *      range [0,10]
9526  */
9527 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
9528 			   bool is_jmp32)
9529 {
9530 	if (__is_pointer_value(false, reg)) {
9531 		if (!reg_type_not_null(reg->type))
9532 			return -1;
9533 
9534 		/* If pointer is valid tests against zero will fail so we can
9535 		 * use this to direct branch taken.
9536 		 */
9537 		if (val != 0)
9538 			return -1;
9539 
9540 		switch (opcode) {
9541 		case BPF_JEQ:
9542 			return 0;
9543 		case BPF_JNE:
9544 			return 1;
9545 		default:
9546 			return -1;
9547 		}
9548 	}
9549 
9550 	if (is_jmp32)
9551 		return is_branch32_taken(reg, val, opcode);
9552 	return is_branch64_taken(reg, val, opcode);
9553 }
9554 
9555 static int flip_opcode(u32 opcode)
9556 {
9557 	/* How can we transform "a <op> b" into "b <op> a"? */
9558 	static const u8 opcode_flip[16] = {
9559 		/* these stay the same */
9560 		[BPF_JEQ  >> 4] = BPF_JEQ,
9561 		[BPF_JNE  >> 4] = BPF_JNE,
9562 		[BPF_JSET >> 4] = BPF_JSET,
9563 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
9564 		[BPF_JGE  >> 4] = BPF_JLE,
9565 		[BPF_JGT  >> 4] = BPF_JLT,
9566 		[BPF_JLE  >> 4] = BPF_JGE,
9567 		[BPF_JLT  >> 4] = BPF_JGT,
9568 		[BPF_JSGE >> 4] = BPF_JSLE,
9569 		[BPF_JSGT >> 4] = BPF_JSLT,
9570 		[BPF_JSLE >> 4] = BPF_JSGE,
9571 		[BPF_JSLT >> 4] = BPF_JSGT
9572 	};
9573 	return opcode_flip[opcode >> 4];
9574 }
9575 
9576 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
9577 				   struct bpf_reg_state *src_reg,
9578 				   u8 opcode)
9579 {
9580 	struct bpf_reg_state *pkt;
9581 
9582 	if (src_reg->type == PTR_TO_PACKET_END) {
9583 		pkt = dst_reg;
9584 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
9585 		pkt = src_reg;
9586 		opcode = flip_opcode(opcode);
9587 	} else {
9588 		return -1;
9589 	}
9590 
9591 	if (pkt->range >= 0)
9592 		return -1;
9593 
9594 	switch (opcode) {
9595 	case BPF_JLE:
9596 		/* pkt <= pkt_end */
9597 		fallthrough;
9598 	case BPF_JGT:
9599 		/* pkt > pkt_end */
9600 		if (pkt->range == BEYOND_PKT_END)
9601 			/* pkt has at last one extra byte beyond pkt_end */
9602 			return opcode == BPF_JGT;
9603 		break;
9604 	case BPF_JLT:
9605 		/* pkt < pkt_end */
9606 		fallthrough;
9607 	case BPF_JGE:
9608 		/* pkt >= pkt_end */
9609 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
9610 			return opcode == BPF_JGE;
9611 		break;
9612 	}
9613 	return -1;
9614 }
9615 
9616 /* Adjusts the register min/max values in the case that the dst_reg is the
9617  * variable register that we are working on, and src_reg is a constant or we're
9618  * simply doing a BPF_K check.
9619  * In JEQ/JNE cases we also adjust the var_off values.
9620  */
9621 static void reg_set_min_max(struct bpf_reg_state *true_reg,
9622 			    struct bpf_reg_state *false_reg,
9623 			    u64 val, u32 val32,
9624 			    u8 opcode, bool is_jmp32)
9625 {
9626 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
9627 	struct tnum false_64off = false_reg->var_off;
9628 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
9629 	struct tnum true_64off = true_reg->var_off;
9630 	s64 sval = (s64)val;
9631 	s32 sval32 = (s32)val32;
9632 
9633 	/* If the dst_reg is a pointer, we can't learn anything about its
9634 	 * variable offset from the compare (unless src_reg were a pointer into
9635 	 * the same object, but we don't bother with that.
9636 	 * Since false_reg and true_reg have the same type by construction, we
9637 	 * only need to check one of them for pointerness.
9638 	 */
9639 	if (__is_pointer_value(false, false_reg))
9640 		return;
9641 
9642 	switch (opcode) {
9643 	/* JEQ/JNE comparison doesn't change the register equivalence.
9644 	 *
9645 	 * r1 = r2;
9646 	 * if (r1 == 42) goto label;
9647 	 * ...
9648 	 * label: // here both r1 and r2 are known to be 42.
9649 	 *
9650 	 * Hence when marking register as known preserve it's ID.
9651 	 */
9652 	case BPF_JEQ:
9653 		if (is_jmp32) {
9654 			__mark_reg32_known(true_reg, val32);
9655 			true_32off = tnum_subreg(true_reg->var_off);
9656 		} else {
9657 			___mark_reg_known(true_reg, val);
9658 			true_64off = true_reg->var_off;
9659 		}
9660 		break;
9661 	case BPF_JNE:
9662 		if (is_jmp32) {
9663 			__mark_reg32_known(false_reg, val32);
9664 			false_32off = tnum_subreg(false_reg->var_off);
9665 		} else {
9666 			___mark_reg_known(false_reg, val);
9667 			false_64off = false_reg->var_off;
9668 		}
9669 		break;
9670 	case BPF_JSET:
9671 		if (is_jmp32) {
9672 			false_32off = tnum_and(false_32off, tnum_const(~val32));
9673 			if (is_power_of_2(val32))
9674 				true_32off = tnum_or(true_32off,
9675 						     tnum_const(val32));
9676 		} else {
9677 			false_64off = tnum_and(false_64off, tnum_const(~val));
9678 			if (is_power_of_2(val))
9679 				true_64off = tnum_or(true_64off,
9680 						     tnum_const(val));
9681 		}
9682 		break;
9683 	case BPF_JGE:
9684 	case BPF_JGT:
9685 	{
9686 		if (is_jmp32) {
9687 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
9688 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
9689 
9690 			false_reg->u32_max_value = min(false_reg->u32_max_value,
9691 						       false_umax);
9692 			true_reg->u32_min_value = max(true_reg->u32_min_value,
9693 						      true_umin);
9694 		} else {
9695 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
9696 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
9697 
9698 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
9699 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
9700 		}
9701 		break;
9702 	}
9703 	case BPF_JSGE:
9704 	case BPF_JSGT:
9705 	{
9706 		if (is_jmp32) {
9707 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
9708 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
9709 
9710 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
9711 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
9712 		} else {
9713 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
9714 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
9715 
9716 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
9717 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
9718 		}
9719 		break;
9720 	}
9721 	case BPF_JLE:
9722 	case BPF_JLT:
9723 	{
9724 		if (is_jmp32) {
9725 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
9726 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
9727 
9728 			false_reg->u32_min_value = max(false_reg->u32_min_value,
9729 						       false_umin);
9730 			true_reg->u32_max_value = min(true_reg->u32_max_value,
9731 						      true_umax);
9732 		} else {
9733 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
9734 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
9735 
9736 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
9737 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
9738 		}
9739 		break;
9740 	}
9741 	case BPF_JSLE:
9742 	case BPF_JSLT:
9743 	{
9744 		if (is_jmp32) {
9745 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
9746 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
9747 
9748 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
9749 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
9750 		} else {
9751 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
9752 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
9753 
9754 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
9755 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
9756 		}
9757 		break;
9758 	}
9759 	default:
9760 		return;
9761 	}
9762 
9763 	if (is_jmp32) {
9764 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
9765 					     tnum_subreg(false_32off));
9766 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
9767 					    tnum_subreg(true_32off));
9768 		__reg_combine_32_into_64(false_reg);
9769 		__reg_combine_32_into_64(true_reg);
9770 	} else {
9771 		false_reg->var_off = false_64off;
9772 		true_reg->var_off = true_64off;
9773 		__reg_combine_64_into_32(false_reg);
9774 		__reg_combine_64_into_32(true_reg);
9775 	}
9776 }
9777 
9778 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
9779  * the variable reg.
9780  */
9781 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
9782 				struct bpf_reg_state *false_reg,
9783 				u64 val, u32 val32,
9784 				u8 opcode, bool is_jmp32)
9785 {
9786 	opcode = flip_opcode(opcode);
9787 	/* This uses zero as "not present in table"; luckily the zero opcode,
9788 	 * BPF_JA, can't get here.
9789 	 */
9790 	if (opcode)
9791 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
9792 }
9793 
9794 /* Regs are known to be equal, so intersect their min/max/var_off */
9795 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
9796 				  struct bpf_reg_state *dst_reg)
9797 {
9798 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
9799 							dst_reg->umin_value);
9800 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
9801 							dst_reg->umax_value);
9802 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
9803 							dst_reg->smin_value);
9804 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
9805 							dst_reg->smax_value);
9806 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
9807 							     dst_reg->var_off);
9808 	reg_bounds_sync(src_reg);
9809 	reg_bounds_sync(dst_reg);
9810 }
9811 
9812 static void reg_combine_min_max(struct bpf_reg_state *true_src,
9813 				struct bpf_reg_state *true_dst,
9814 				struct bpf_reg_state *false_src,
9815 				struct bpf_reg_state *false_dst,
9816 				u8 opcode)
9817 {
9818 	switch (opcode) {
9819 	case BPF_JEQ:
9820 		__reg_combine_min_max(true_src, true_dst);
9821 		break;
9822 	case BPF_JNE:
9823 		__reg_combine_min_max(false_src, false_dst);
9824 		break;
9825 	}
9826 }
9827 
9828 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9829 				 struct bpf_reg_state *reg, u32 id,
9830 				 bool is_null)
9831 {
9832 	if (type_may_be_null(reg->type) && reg->id == id &&
9833 	    !WARN_ON_ONCE(!reg->id)) {
9834 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9835 				 !tnum_equals_const(reg->var_off, 0) ||
9836 				 reg->off)) {
9837 			/* Old offset (both fixed and variable parts) should
9838 			 * have been known-zero, because we don't allow pointer
9839 			 * arithmetic on pointers that might be NULL. If we
9840 			 * see this happening, don't convert the register.
9841 			 */
9842 			return;
9843 		}
9844 		if (is_null) {
9845 			reg->type = SCALAR_VALUE;
9846 			/* We don't need id and ref_obj_id from this point
9847 			 * onwards anymore, thus we should better reset it,
9848 			 * so that state pruning has chances to take effect.
9849 			 */
9850 			reg->id = 0;
9851 			reg->ref_obj_id = 0;
9852 
9853 			return;
9854 		}
9855 
9856 		mark_ptr_not_null_reg(reg);
9857 
9858 		if (!reg_may_point_to_spin_lock(reg)) {
9859 			/* For not-NULL ptr, reg->ref_obj_id will be reset
9860 			 * in release_reg_references().
9861 			 *
9862 			 * reg->id is still used by spin_lock ptr. Other
9863 			 * than spin_lock ptr type, reg->id can be reset.
9864 			 */
9865 			reg->id = 0;
9866 		}
9867 	}
9868 }
9869 
9870 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
9871 				    bool is_null)
9872 {
9873 	struct bpf_reg_state *reg;
9874 	int i;
9875 
9876 	for (i = 0; i < MAX_BPF_REG; i++)
9877 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
9878 
9879 	bpf_for_each_spilled_reg(i, state, reg) {
9880 		if (!reg)
9881 			continue;
9882 		mark_ptr_or_null_reg(state, reg, id, is_null);
9883 	}
9884 }
9885 
9886 /* The logic is similar to find_good_pkt_pointers(), both could eventually
9887  * be folded together at some point.
9888  */
9889 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9890 				  bool is_null)
9891 {
9892 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9893 	struct bpf_reg_state *regs = state->regs;
9894 	u32 ref_obj_id = regs[regno].ref_obj_id;
9895 	u32 id = regs[regno].id;
9896 	int i;
9897 
9898 	if (ref_obj_id && ref_obj_id == id && is_null)
9899 		/* regs[regno] is in the " == NULL" branch.
9900 		 * No one could have freed the reference state before
9901 		 * doing the NULL check.
9902 		 */
9903 		WARN_ON_ONCE(release_reference_state(state, id));
9904 
9905 	for (i = 0; i <= vstate->curframe; i++)
9906 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
9907 }
9908 
9909 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9910 				   struct bpf_reg_state *dst_reg,
9911 				   struct bpf_reg_state *src_reg,
9912 				   struct bpf_verifier_state *this_branch,
9913 				   struct bpf_verifier_state *other_branch)
9914 {
9915 	if (BPF_SRC(insn->code) != BPF_X)
9916 		return false;
9917 
9918 	/* Pointers are always 64-bit. */
9919 	if (BPF_CLASS(insn->code) == BPF_JMP32)
9920 		return false;
9921 
9922 	switch (BPF_OP(insn->code)) {
9923 	case BPF_JGT:
9924 		if ((dst_reg->type == PTR_TO_PACKET &&
9925 		     src_reg->type == PTR_TO_PACKET_END) ||
9926 		    (dst_reg->type == PTR_TO_PACKET_META &&
9927 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9928 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9929 			find_good_pkt_pointers(this_branch, dst_reg,
9930 					       dst_reg->type, false);
9931 			mark_pkt_end(other_branch, insn->dst_reg, true);
9932 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9933 			    src_reg->type == PTR_TO_PACKET) ||
9934 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9935 			    src_reg->type == PTR_TO_PACKET_META)) {
9936 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
9937 			find_good_pkt_pointers(other_branch, src_reg,
9938 					       src_reg->type, true);
9939 			mark_pkt_end(this_branch, insn->src_reg, false);
9940 		} else {
9941 			return false;
9942 		}
9943 		break;
9944 	case BPF_JLT:
9945 		if ((dst_reg->type == PTR_TO_PACKET &&
9946 		     src_reg->type == PTR_TO_PACKET_END) ||
9947 		    (dst_reg->type == PTR_TO_PACKET_META &&
9948 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9949 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9950 			find_good_pkt_pointers(other_branch, dst_reg,
9951 					       dst_reg->type, true);
9952 			mark_pkt_end(this_branch, insn->dst_reg, false);
9953 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9954 			    src_reg->type == PTR_TO_PACKET) ||
9955 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9956 			    src_reg->type == PTR_TO_PACKET_META)) {
9957 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
9958 			find_good_pkt_pointers(this_branch, src_reg,
9959 					       src_reg->type, false);
9960 			mark_pkt_end(other_branch, insn->src_reg, true);
9961 		} else {
9962 			return false;
9963 		}
9964 		break;
9965 	case BPF_JGE:
9966 		if ((dst_reg->type == PTR_TO_PACKET &&
9967 		     src_reg->type == PTR_TO_PACKET_END) ||
9968 		    (dst_reg->type == PTR_TO_PACKET_META &&
9969 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9970 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9971 			find_good_pkt_pointers(this_branch, dst_reg,
9972 					       dst_reg->type, true);
9973 			mark_pkt_end(other_branch, insn->dst_reg, false);
9974 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9975 			    src_reg->type == PTR_TO_PACKET) ||
9976 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9977 			    src_reg->type == PTR_TO_PACKET_META)) {
9978 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9979 			find_good_pkt_pointers(other_branch, src_reg,
9980 					       src_reg->type, false);
9981 			mark_pkt_end(this_branch, insn->src_reg, true);
9982 		} else {
9983 			return false;
9984 		}
9985 		break;
9986 	case BPF_JLE:
9987 		if ((dst_reg->type == PTR_TO_PACKET &&
9988 		     src_reg->type == PTR_TO_PACKET_END) ||
9989 		    (dst_reg->type == PTR_TO_PACKET_META &&
9990 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9991 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9992 			find_good_pkt_pointers(other_branch, dst_reg,
9993 					       dst_reg->type, false);
9994 			mark_pkt_end(this_branch, insn->dst_reg, true);
9995 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9996 			    src_reg->type == PTR_TO_PACKET) ||
9997 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9998 			    src_reg->type == PTR_TO_PACKET_META)) {
9999 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
10000 			find_good_pkt_pointers(this_branch, src_reg,
10001 					       src_reg->type, true);
10002 			mark_pkt_end(other_branch, insn->src_reg, false);
10003 		} else {
10004 			return false;
10005 		}
10006 		break;
10007 	default:
10008 		return false;
10009 	}
10010 
10011 	return true;
10012 }
10013 
10014 static void find_equal_scalars(struct bpf_verifier_state *vstate,
10015 			       struct bpf_reg_state *known_reg)
10016 {
10017 	struct bpf_func_state *state;
10018 	struct bpf_reg_state *reg;
10019 	int i, j;
10020 
10021 	for (i = 0; i <= vstate->curframe; i++) {
10022 		state = vstate->frame[i];
10023 		for (j = 0; j < MAX_BPF_REG; j++) {
10024 			reg = &state->regs[j];
10025 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
10026 				*reg = *known_reg;
10027 		}
10028 
10029 		bpf_for_each_spilled_reg(j, state, reg) {
10030 			if (!reg)
10031 				continue;
10032 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
10033 				*reg = *known_reg;
10034 		}
10035 	}
10036 }
10037 
10038 static int check_cond_jmp_op(struct bpf_verifier_env *env,
10039 			     struct bpf_insn *insn, int *insn_idx)
10040 {
10041 	struct bpf_verifier_state *this_branch = env->cur_state;
10042 	struct bpf_verifier_state *other_branch;
10043 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
10044 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
10045 	u8 opcode = BPF_OP(insn->code);
10046 	bool is_jmp32;
10047 	int pred = -1;
10048 	int err;
10049 
10050 	/* Only conditional jumps are expected to reach here. */
10051 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
10052 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
10053 		return -EINVAL;
10054 	}
10055 
10056 	if (BPF_SRC(insn->code) == BPF_X) {
10057 		if (insn->imm != 0) {
10058 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10059 			return -EINVAL;
10060 		}
10061 
10062 		/* check src1 operand */
10063 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
10064 		if (err)
10065 			return err;
10066 
10067 		if (is_pointer_value(env, insn->src_reg)) {
10068 			verbose(env, "R%d pointer comparison prohibited\n",
10069 				insn->src_reg);
10070 			return -EACCES;
10071 		}
10072 		src_reg = &regs[insn->src_reg];
10073 	} else {
10074 		if (insn->src_reg != BPF_REG_0) {
10075 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
10076 			return -EINVAL;
10077 		}
10078 	}
10079 
10080 	/* check src2 operand */
10081 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10082 	if (err)
10083 		return err;
10084 
10085 	dst_reg = &regs[insn->dst_reg];
10086 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
10087 
10088 	if (BPF_SRC(insn->code) == BPF_K) {
10089 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
10090 	} else if (src_reg->type == SCALAR_VALUE &&
10091 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
10092 		pred = is_branch_taken(dst_reg,
10093 				       tnum_subreg(src_reg->var_off).value,
10094 				       opcode,
10095 				       is_jmp32);
10096 	} else if (src_reg->type == SCALAR_VALUE &&
10097 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
10098 		pred = is_branch_taken(dst_reg,
10099 				       src_reg->var_off.value,
10100 				       opcode,
10101 				       is_jmp32);
10102 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
10103 		   reg_is_pkt_pointer_any(src_reg) &&
10104 		   !is_jmp32) {
10105 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
10106 	}
10107 
10108 	if (pred >= 0) {
10109 		/* If we get here with a dst_reg pointer type it is because
10110 		 * above is_branch_taken() special cased the 0 comparison.
10111 		 */
10112 		if (!__is_pointer_value(false, dst_reg))
10113 			err = mark_chain_precision(env, insn->dst_reg);
10114 		if (BPF_SRC(insn->code) == BPF_X && !err &&
10115 		    !__is_pointer_value(false, src_reg))
10116 			err = mark_chain_precision(env, insn->src_reg);
10117 		if (err)
10118 			return err;
10119 	}
10120 
10121 	if (pred == 1) {
10122 		/* Only follow the goto, ignore fall-through. If needed, push
10123 		 * the fall-through branch for simulation under speculative
10124 		 * execution.
10125 		 */
10126 		if (!env->bypass_spec_v1 &&
10127 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
10128 					       *insn_idx))
10129 			return -EFAULT;
10130 		*insn_idx += insn->off;
10131 		return 0;
10132 	} else if (pred == 0) {
10133 		/* Only follow the fall-through branch, since that's where the
10134 		 * program will go. If needed, push the goto branch for
10135 		 * simulation under speculative execution.
10136 		 */
10137 		if (!env->bypass_spec_v1 &&
10138 		    !sanitize_speculative_path(env, insn,
10139 					       *insn_idx + insn->off + 1,
10140 					       *insn_idx))
10141 			return -EFAULT;
10142 		return 0;
10143 	}
10144 
10145 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
10146 				  false);
10147 	if (!other_branch)
10148 		return -EFAULT;
10149 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
10150 
10151 	/* detect if we are comparing against a constant value so we can adjust
10152 	 * our min/max values for our dst register.
10153 	 * this is only legit if both are scalars (or pointers to the same
10154 	 * object, I suppose, but we don't support that right now), because
10155 	 * otherwise the different base pointers mean the offsets aren't
10156 	 * comparable.
10157 	 */
10158 	if (BPF_SRC(insn->code) == BPF_X) {
10159 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
10160 
10161 		if (dst_reg->type == SCALAR_VALUE &&
10162 		    src_reg->type == SCALAR_VALUE) {
10163 			if (tnum_is_const(src_reg->var_off) ||
10164 			    (is_jmp32 &&
10165 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
10166 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
10167 						dst_reg,
10168 						src_reg->var_off.value,
10169 						tnum_subreg(src_reg->var_off).value,
10170 						opcode, is_jmp32);
10171 			else if (tnum_is_const(dst_reg->var_off) ||
10172 				 (is_jmp32 &&
10173 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
10174 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
10175 						    src_reg,
10176 						    dst_reg->var_off.value,
10177 						    tnum_subreg(dst_reg->var_off).value,
10178 						    opcode, is_jmp32);
10179 			else if (!is_jmp32 &&
10180 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
10181 				/* Comparing for equality, we can combine knowledge */
10182 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
10183 						    &other_branch_regs[insn->dst_reg],
10184 						    src_reg, dst_reg, opcode);
10185 			if (src_reg->id &&
10186 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
10187 				find_equal_scalars(this_branch, src_reg);
10188 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
10189 			}
10190 
10191 		}
10192 	} else if (dst_reg->type == SCALAR_VALUE) {
10193 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
10194 					dst_reg, insn->imm, (u32)insn->imm,
10195 					opcode, is_jmp32);
10196 	}
10197 
10198 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
10199 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
10200 		find_equal_scalars(this_branch, dst_reg);
10201 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
10202 	}
10203 
10204 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
10205 	 * NOTE: these optimizations below are related with pointer comparison
10206 	 *       which will never be JMP32.
10207 	 */
10208 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
10209 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
10210 	    type_may_be_null(dst_reg->type)) {
10211 		/* Mark all identical registers in each branch as either
10212 		 * safe or unknown depending R == 0 or R != 0 conditional.
10213 		 */
10214 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
10215 				      opcode == BPF_JNE);
10216 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
10217 				      opcode == BPF_JEQ);
10218 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
10219 					   this_branch, other_branch) &&
10220 		   is_pointer_value(env, insn->dst_reg)) {
10221 		verbose(env, "R%d pointer comparison prohibited\n",
10222 			insn->dst_reg);
10223 		return -EACCES;
10224 	}
10225 	if (env->log.level & BPF_LOG_LEVEL)
10226 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
10227 	return 0;
10228 }
10229 
10230 /* verify BPF_LD_IMM64 instruction */
10231 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
10232 {
10233 	struct bpf_insn_aux_data *aux = cur_aux(env);
10234 	struct bpf_reg_state *regs = cur_regs(env);
10235 	struct bpf_reg_state *dst_reg;
10236 	struct bpf_map *map;
10237 	int err;
10238 
10239 	if (BPF_SIZE(insn->code) != BPF_DW) {
10240 		verbose(env, "invalid BPF_LD_IMM insn\n");
10241 		return -EINVAL;
10242 	}
10243 	if (insn->off != 0) {
10244 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
10245 		return -EINVAL;
10246 	}
10247 
10248 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
10249 	if (err)
10250 		return err;
10251 
10252 	dst_reg = &regs[insn->dst_reg];
10253 	if (insn->src_reg == 0) {
10254 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
10255 
10256 		dst_reg->type = SCALAR_VALUE;
10257 		__mark_reg_known(&regs[insn->dst_reg], imm);
10258 		return 0;
10259 	}
10260 
10261 	/* All special src_reg cases are listed below. From this point onwards
10262 	 * we either succeed and assign a corresponding dst_reg->type after
10263 	 * zeroing the offset, or fail and reject the program.
10264 	 */
10265 	mark_reg_known_zero(env, regs, insn->dst_reg);
10266 
10267 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
10268 		dst_reg->type = aux->btf_var.reg_type;
10269 		switch (base_type(dst_reg->type)) {
10270 		case PTR_TO_MEM:
10271 			dst_reg->mem_size = aux->btf_var.mem_size;
10272 			break;
10273 		case PTR_TO_BTF_ID:
10274 			dst_reg->btf = aux->btf_var.btf;
10275 			dst_reg->btf_id = aux->btf_var.btf_id;
10276 			break;
10277 		default:
10278 			verbose(env, "bpf verifier is misconfigured\n");
10279 			return -EFAULT;
10280 		}
10281 		return 0;
10282 	}
10283 
10284 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
10285 		struct bpf_prog_aux *aux = env->prog->aux;
10286 		u32 subprogno = find_subprog(env,
10287 					     env->insn_idx + insn->imm + 1);
10288 
10289 		if (!aux->func_info) {
10290 			verbose(env, "missing btf func_info\n");
10291 			return -EINVAL;
10292 		}
10293 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
10294 			verbose(env, "callback function not static\n");
10295 			return -EINVAL;
10296 		}
10297 
10298 		dst_reg->type = PTR_TO_FUNC;
10299 		dst_reg->subprogno = subprogno;
10300 		return 0;
10301 	}
10302 
10303 	map = env->used_maps[aux->map_index];
10304 	dst_reg->map_ptr = map;
10305 
10306 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
10307 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
10308 		dst_reg->type = PTR_TO_MAP_VALUE;
10309 		dst_reg->off = aux->map_off;
10310 		if (map_value_has_spin_lock(map))
10311 			dst_reg->id = ++env->id_gen;
10312 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
10313 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
10314 		dst_reg->type = CONST_PTR_TO_MAP;
10315 	} else {
10316 		verbose(env, "bpf verifier is misconfigured\n");
10317 		return -EINVAL;
10318 	}
10319 
10320 	return 0;
10321 }
10322 
10323 static bool may_access_skb(enum bpf_prog_type type)
10324 {
10325 	switch (type) {
10326 	case BPF_PROG_TYPE_SOCKET_FILTER:
10327 	case BPF_PROG_TYPE_SCHED_CLS:
10328 	case BPF_PROG_TYPE_SCHED_ACT:
10329 		return true;
10330 	default:
10331 		return false;
10332 	}
10333 }
10334 
10335 /* verify safety of LD_ABS|LD_IND instructions:
10336  * - they can only appear in the programs where ctx == skb
10337  * - since they are wrappers of function calls, they scratch R1-R5 registers,
10338  *   preserve R6-R9, and store return value into R0
10339  *
10340  * Implicit input:
10341  *   ctx == skb == R6 == CTX
10342  *
10343  * Explicit input:
10344  *   SRC == any register
10345  *   IMM == 32-bit immediate
10346  *
10347  * Output:
10348  *   R0 - 8/16/32-bit skb data converted to cpu endianness
10349  */
10350 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
10351 {
10352 	struct bpf_reg_state *regs = cur_regs(env);
10353 	static const int ctx_reg = BPF_REG_6;
10354 	u8 mode = BPF_MODE(insn->code);
10355 	int i, err;
10356 
10357 	if (!may_access_skb(resolve_prog_type(env->prog))) {
10358 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
10359 		return -EINVAL;
10360 	}
10361 
10362 	if (!env->ops->gen_ld_abs) {
10363 		verbose(env, "bpf verifier is misconfigured\n");
10364 		return -EINVAL;
10365 	}
10366 
10367 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
10368 	    BPF_SIZE(insn->code) == BPF_DW ||
10369 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
10370 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
10371 		return -EINVAL;
10372 	}
10373 
10374 	/* check whether implicit source operand (register R6) is readable */
10375 	err = check_reg_arg(env, ctx_reg, SRC_OP);
10376 	if (err)
10377 		return err;
10378 
10379 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
10380 	 * gen_ld_abs() may terminate the program at runtime, leading to
10381 	 * reference leak.
10382 	 */
10383 	err = check_reference_leak(env);
10384 	if (err) {
10385 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
10386 		return err;
10387 	}
10388 
10389 	if (env->cur_state->active_spin_lock) {
10390 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
10391 		return -EINVAL;
10392 	}
10393 
10394 	if (regs[ctx_reg].type != PTR_TO_CTX) {
10395 		verbose(env,
10396 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
10397 		return -EINVAL;
10398 	}
10399 
10400 	if (mode == BPF_IND) {
10401 		/* check explicit source operand */
10402 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
10403 		if (err)
10404 			return err;
10405 	}
10406 
10407 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
10408 	if (err < 0)
10409 		return err;
10410 
10411 	/* reset caller saved regs to unreadable */
10412 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10413 		mark_reg_not_init(env, regs, caller_saved[i]);
10414 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10415 	}
10416 
10417 	/* mark destination R0 register as readable, since it contains
10418 	 * the value fetched from the packet.
10419 	 * Already marked as written above.
10420 	 */
10421 	mark_reg_unknown(env, regs, BPF_REG_0);
10422 	/* ld_abs load up to 32-bit skb data. */
10423 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
10424 	return 0;
10425 }
10426 
10427 static int check_return_code(struct bpf_verifier_env *env)
10428 {
10429 	struct tnum enforce_attach_type_range = tnum_unknown;
10430 	const struct bpf_prog *prog = env->prog;
10431 	struct bpf_reg_state *reg;
10432 	struct tnum range = tnum_range(0, 1);
10433 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10434 	int err;
10435 	struct bpf_func_state *frame = env->cur_state->frame[0];
10436 	const bool is_subprog = frame->subprogno;
10437 
10438 	/* LSM and struct_ops func-ptr's return type could be "void" */
10439 	if (!is_subprog) {
10440 		switch (prog_type) {
10441 		case BPF_PROG_TYPE_LSM:
10442 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
10443 				/* See below, can be 0 or 0-1 depending on hook. */
10444 				break;
10445 			fallthrough;
10446 		case BPF_PROG_TYPE_STRUCT_OPS:
10447 			if (!prog->aux->attach_func_proto->type)
10448 				return 0;
10449 			break;
10450 		default:
10451 			break;
10452 		}
10453 	}
10454 
10455 	/* eBPF calling convention is such that R0 is used
10456 	 * to return the value from eBPF program.
10457 	 * Make sure that it's readable at this time
10458 	 * of bpf_exit, which means that program wrote
10459 	 * something into it earlier
10460 	 */
10461 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
10462 	if (err)
10463 		return err;
10464 
10465 	if (is_pointer_value(env, BPF_REG_0)) {
10466 		verbose(env, "R0 leaks addr as return value\n");
10467 		return -EACCES;
10468 	}
10469 
10470 	reg = cur_regs(env) + BPF_REG_0;
10471 
10472 	if (frame->in_async_callback_fn) {
10473 		/* enforce return zero from async callbacks like timer */
10474 		if (reg->type != SCALAR_VALUE) {
10475 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
10476 				reg_type_str(env, reg->type));
10477 			return -EINVAL;
10478 		}
10479 
10480 		if (!tnum_in(tnum_const(0), reg->var_off)) {
10481 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
10482 			return -EINVAL;
10483 		}
10484 		return 0;
10485 	}
10486 
10487 	if (is_subprog) {
10488 		if (reg->type != SCALAR_VALUE) {
10489 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
10490 				reg_type_str(env, reg->type));
10491 			return -EINVAL;
10492 		}
10493 		return 0;
10494 	}
10495 
10496 	switch (prog_type) {
10497 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
10498 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
10499 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
10500 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
10501 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
10502 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
10503 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
10504 			range = tnum_range(1, 1);
10505 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
10506 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
10507 			range = tnum_range(0, 3);
10508 		break;
10509 	case BPF_PROG_TYPE_CGROUP_SKB:
10510 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
10511 			range = tnum_range(0, 3);
10512 			enforce_attach_type_range = tnum_range(2, 3);
10513 		}
10514 		break;
10515 	case BPF_PROG_TYPE_CGROUP_SOCK:
10516 	case BPF_PROG_TYPE_SOCK_OPS:
10517 	case BPF_PROG_TYPE_CGROUP_DEVICE:
10518 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
10519 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
10520 		break;
10521 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10522 		if (!env->prog->aux->attach_btf_id)
10523 			return 0;
10524 		range = tnum_const(0);
10525 		break;
10526 	case BPF_PROG_TYPE_TRACING:
10527 		switch (env->prog->expected_attach_type) {
10528 		case BPF_TRACE_FENTRY:
10529 		case BPF_TRACE_FEXIT:
10530 			range = tnum_const(0);
10531 			break;
10532 		case BPF_TRACE_RAW_TP:
10533 		case BPF_MODIFY_RETURN:
10534 			return 0;
10535 		case BPF_TRACE_ITER:
10536 			break;
10537 		default:
10538 			return -ENOTSUPP;
10539 		}
10540 		break;
10541 	case BPF_PROG_TYPE_SK_LOOKUP:
10542 		range = tnum_range(SK_DROP, SK_PASS);
10543 		break;
10544 
10545 	case BPF_PROG_TYPE_LSM:
10546 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
10547 			/* Regular BPF_PROG_TYPE_LSM programs can return
10548 			 * any value.
10549 			 */
10550 			return 0;
10551 		}
10552 		if (!env->prog->aux->attach_func_proto->type) {
10553 			/* Make sure programs that attach to void
10554 			 * hooks don't try to modify return value.
10555 			 */
10556 			range = tnum_range(1, 1);
10557 		}
10558 		break;
10559 
10560 	case BPF_PROG_TYPE_EXT:
10561 		/* freplace program can return anything as its return value
10562 		 * depends on the to-be-replaced kernel func or bpf program.
10563 		 */
10564 	default:
10565 		return 0;
10566 	}
10567 
10568 	if (reg->type != SCALAR_VALUE) {
10569 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
10570 			reg_type_str(env, reg->type));
10571 		return -EINVAL;
10572 	}
10573 
10574 	if (!tnum_in(range, reg->var_off)) {
10575 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
10576 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
10577 		    prog_type == BPF_PROG_TYPE_LSM &&
10578 		    !prog->aux->attach_func_proto->type)
10579 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10580 		return -EINVAL;
10581 	}
10582 
10583 	if (!tnum_is_unknown(enforce_attach_type_range) &&
10584 	    tnum_in(enforce_attach_type_range, reg->var_off))
10585 		env->prog->enforce_expected_attach_type = 1;
10586 	return 0;
10587 }
10588 
10589 /* non-recursive DFS pseudo code
10590  * 1  procedure DFS-iterative(G,v):
10591  * 2      label v as discovered
10592  * 3      let S be a stack
10593  * 4      S.push(v)
10594  * 5      while S is not empty
10595  * 6            t <- S.pop()
10596  * 7            if t is what we're looking for:
10597  * 8                return t
10598  * 9            for all edges e in G.adjacentEdges(t) do
10599  * 10               if edge e is already labelled
10600  * 11                   continue with the next edge
10601  * 12               w <- G.adjacentVertex(t,e)
10602  * 13               if vertex w is not discovered and not explored
10603  * 14                   label e as tree-edge
10604  * 15                   label w as discovered
10605  * 16                   S.push(w)
10606  * 17                   continue at 5
10607  * 18               else if vertex w is discovered
10608  * 19                   label e as back-edge
10609  * 20               else
10610  * 21                   // vertex w is explored
10611  * 22                   label e as forward- or cross-edge
10612  * 23           label t as explored
10613  * 24           S.pop()
10614  *
10615  * convention:
10616  * 0x10 - discovered
10617  * 0x11 - discovered and fall-through edge labelled
10618  * 0x12 - discovered and fall-through and branch edges labelled
10619  * 0x20 - explored
10620  */
10621 
10622 enum {
10623 	DISCOVERED = 0x10,
10624 	EXPLORED = 0x20,
10625 	FALLTHROUGH = 1,
10626 	BRANCH = 2,
10627 };
10628 
10629 static u32 state_htab_size(struct bpf_verifier_env *env)
10630 {
10631 	return env->prog->len;
10632 }
10633 
10634 static struct bpf_verifier_state_list **explored_state(
10635 					struct bpf_verifier_env *env,
10636 					int idx)
10637 {
10638 	struct bpf_verifier_state *cur = env->cur_state;
10639 	struct bpf_func_state *state = cur->frame[cur->curframe];
10640 
10641 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
10642 }
10643 
10644 static void init_explored_state(struct bpf_verifier_env *env, int idx)
10645 {
10646 	env->insn_aux_data[idx].prune_point = true;
10647 }
10648 
10649 enum {
10650 	DONE_EXPLORING = 0,
10651 	KEEP_EXPLORING = 1,
10652 };
10653 
10654 /* t, w, e - match pseudo-code above:
10655  * t - index of current instruction
10656  * w - next instruction
10657  * e - edge
10658  */
10659 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
10660 		     bool loop_ok)
10661 {
10662 	int *insn_stack = env->cfg.insn_stack;
10663 	int *insn_state = env->cfg.insn_state;
10664 
10665 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
10666 		return DONE_EXPLORING;
10667 
10668 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
10669 		return DONE_EXPLORING;
10670 
10671 	if (w < 0 || w >= env->prog->len) {
10672 		verbose_linfo(env, t, "%d: ", t);
10673 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
10674 		return -EINVAL;
10675 	}
10676 
10677 	if (e == BRANCH)
10678 		/* mark branch target for state pruning */
10679 		init_explored_state(env, w);
10680 
10681 	if (insn_state[w] == 0) {
10682 		/* tree-edge */
10683 		insn_state[t] = DISCOVERED | e;
10684 		insn_state[w] = DISCOVERED;
10685 		if (env->cfg.cur_stack >= env->prog->len)
10686 			return -E2BIG;
10687 		insn_stack[env->cfg.cur_stack++] = w;
10688 		return KEEP_EXPLORING;
10689 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
10690 		if (loop_ok && env->bpf_capable)
10691 			return DONE_EXPLORING;
10692 		verbose_linfo(env, t, "%d: ", t);
10693 		verbose_linfo(env, w, "%d: ", w);
10694 		verbose(env, "back-edge from insn %d to %d\n", t, w);
10695 		return -EINVAL;
10696 	} else if (insn_state[w] == EXPLORED) {
10697 		/* forward- or cross-edge */
10698 		insn_state[t] = DISCOVERED | e;
10699 	} else {
10700 		verbose(env, "insn state internal bug\n");
10701 		return -EFAULT;
10702 	}
10703 	return DONE_EXPLORING;
10704 }
10705 
10706 static int visit_func_call_insn(int t, int insn_cnt,
10707 				struct bpf_insn *insns,
10708 				struct bpf_verifier_env *env,
10709 				bool visit_callee)
10710 {
10711 	int ret;
10712 
10713 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
10714 	if (ret)
10715 		return ret;
10716 
10717 	if (t + 1 < insn_cnt)
10718 		init_explored_state(env, t + 1);
10719 	if (visit_callee) {
10720 		init_explored_state(env, t);
10721 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
10722 				/* It's ok to allow recursion from CFG point of
10723 				 * view. __check_func_call() will do the actual
10724 				 * check.
10725 				 */
10726 				bpf_pseudo_func(insns + t));
10727 	}
10728 	return ret;
10729 }
10730 
10731 /* Visits the instruction at index t and returns one of the following:
10732  *  < 0 - an error occurred
10733  *  DONE_EXPLORING - the instruction was fully explored
10734  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
10735  */
10736 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
10737 {
10738 	struct bpf_insn *insns = env->prog->insnsi;
10739 	int ret;
10740 
10741 	if (bpf_pseudo_func(insns + t))
10742 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
10743 
10744 	/* All non-branch instructions have a single fall-through edge. */
10745 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
10746 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
10747 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
10748 
10749 	switch (BPF_OP(insns[t].code)) {
10750 	case BPF_EXIT:
10751 		return DONE_EXPLORING;
10752 
10753 	case BPF_CALL:
10754 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
10755 			/* Mark this call insn to trigger is_state_visited() check
10756 			 * before call itself is processed by __check_func_call().
10757 			 * Otherwise new async state will be pushed for further
10758 			 * exploration.
10759 			 */
10760 			init_explored_state(env, t);
10761 		return visit_func_call_insn(t, insn_cnt, insns, env,
10762 					    insns[t].src_reg == BPF_PSEUDO_CALL);
10763 
10764 	case BPF_JA:
10765 		if (BPF_SRC(insns[t].code) != BPF_K)
10766 			return -EINVAL;
10767 
10768 		/* unconditional jump with single edge */
10769 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
10770 				true);
10771 		if (ret)
10772 			return ret;
10773 
10774 		/* unconditional jmp is not a good pruning point,
10775 		 * but it's marked, since backtracking needs
10776 		 * to record jmp history in is_state_visited().
10777 		 */
10778 		init_explored_state(env, t + insns[t].off + 1);
10779 		/* tell verifier to check for equivalent states
10780 		 * after every call and jump
10781 		 */
10782 		if (t + 1 < insn_cnt)
10783 			init_explored_state(env, t + 1);
10784 
10785 		return ret;
10786 
10787 	default:
10788 		/* conditional jump with two edges */
10789 		init_explored_state(env, t);
10790 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
10791 		if (ret)
10792 			return ret;
10793 
10794 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
10795 	}
10796 }
10797 
10798 /* non-recursive depth-first-search to detect loops in BPF program
10799  * loop == back-edge in directed graph
10800  */
10801 static int check_cfg(struct bpf_verifier_env *env)
10802 {
10803 	int insn_cnt = env->prog->len;
10804 	int *insn_stack, *insn_state;
10805 	int ret = 0;
10806 	int i;
10807 
10808 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10809 	if (!insn_state)
10810 		return -ENOMEM;
10811 
10812 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10813 	if (!insn_stack) {
10814 		kvfree(insn_state);
10815 		return -ENOMEM;
10816 	}
10817 
10818 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
10819 	insn_stack[0] = 0; /* 0 is the first instruction */
10820 	env->cfg.cur_stack = 1;
10821 
10822 	while (env->cfg.cur_stack > 0) {
10823 		int t = insn_stack[env->cfg.cur_stack - 1];
10824 
10825 		ret = visit_insn(t, insn_cnt, env);
10826 		switch (ret) {
10827 		case DONE_EXPLORING:
10828 			insn_state[t] = EXPLORED;
10829 			env->cfg.cur_stack--;
10830 			break;
10831 		case KEEP_EXPLORING:
10832 			break;
10833 		default:
10834 			if (ret > 0) {
10835 				verbose(env, "visit_insn internal bug\n");
10836 				ret = -EFAULT;
10837 			}
10838 			goto err_free;
10839 		}
10840 	}
10841 
10842 	if (env->cfg.cur_stack < 0) {
10843 		verbose(env, "pop stack internal bug\n");
10844 		ret = -EFAULT;
10845 		goto err_free;
10846 	}
10847 
10848 	for (i = 0; i < insn_cnt; i++) {
10849 		if (insn_state[i] != EXPLORED) {
10850 			verbose(env, "unreachable insn %d\n", i);
10851 			ret = -EINVAL;
10852 			goto err_free;
10853 		}
10854 	}
10855 	ret = 0; /* cfg looks good */
10856 
10857 err_free:
10858 	kvfree(insn_state);
10859 	kvfree(insn_stack);
10860 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
10861 	return ret;
10862 }
10863 
10864 static int check_abnormal_return(struct bpf_verifier_env *env)
10865 {
10866 	int i;
10867 
10868 	for (i = 1; i < env->subprog_cnt; i++) {
10869 		if (env->subprog_info[i].has_ld_abs) {
10870 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10871 			return -EINVAL;
10872 		}
10873 		if (env->subprog_info[i].has_tail_call) {
10874 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10875 			return -EINVAL;
10876 		}
10877 	}
10878 	return 0;
10879 }
10880 
10881 /* The minimum supported BTF func info size */
10882 #define MIN_BPF_FUNCINFO_SIZE	8
10883 #define MAX_FUNCINFO_REC_SIZE	252
10884 
10885 static int check_btf_func(struct bpf_verifier_env *env,
10886 			  const union bpf_attr *attr,
10887 			  bpfptr_t uattr)
10888 {
10889 	const struct btf_type *type, *func_proto, *ret_type;
10890 	u32 i, nfuncs, urec_size, min_size;
10891 	u32 krec_size = sizeof(struct bpf_func_info);
10892 	struct bpf_func_info *krecord;
10893 	struct bpf_func_info_aux *info_aux = NULL;
10894 	struct bpf_prog *prog;
10895 	const struct btf *btf;
10896 	bpfptr_t urecord;
10897 	u32 prev_offset = 0;
10898 	bool scalar_return;
10899 	int ret = -ENOMEM;
10900 
10901 	nfuncs = attr->func_info_cnt;
10902 	if (!nfuncs) {
10903 		if (check_abnormal_return(env))
10904 			return -EINVAL;
10905 		return 0;
10906 	}
10907 
10908 	if (nfuncs != env->subprog_cnt) {
10909 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10910 		return -EINVAL;
10911 	}
10912 
10913 	urec_size = attr->func_info_rec_size;
10914 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10915 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
10916 	    urec_size % sizeof(u32)) {
10917 		verbose(env, "invalid func info rec size %u\n", urec_size);
10918 		return -EINVAL;
10919 	}
10920 
10921 	prog = env->prog;
10922 	btf = prog->aux->btf;
10923 
10924 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
10925 	min_size = min_t(u32, krec_size, urec_size);
10926 
10927 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
10928 	if (!krecord)
10929 		return -ENOMEM;
10930 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10931 	if (!info_aux)
10932 		goto err_free;
10933 
10934 	for (i = 0; i < nfuncs; i++) {
10935 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10936 		if (ret) {
10937 			if (ret == -E2BIG) {
10938 				verbose(env, "nonzero tailing record in func info");
10939 				/* set the size kernel expects so loader can zero
10940 				 * out the rest of the record.
10941 				 */
10942 				if (copy_to_bpfptr_offset(uattr,
10943 							  offsetof(union bpf_attr, func_info_rec_size),
10944 							  &min_size, sizeof(min_size)))
10945 					ret = -EFAULT;
10946 			}
10947 			goto err_free;
10948 		}
10949 
10950 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
10951 			ret = -EFAULT;
10952 			goto err_free;
10953 		}
10954 
10955 		/* check insn_off */
10956 		ret = -EINVAL;
10957 		if (i == 0) {
10958 			if (krecord[i].insn_off) {
10959 				verbose(env,
10960 					"nonzero insn_off %u for the first func info record",
10961 					krecord[i].insn_off);
10962 				goto err_free;
10963 			}
10964 		} else if (krecord[i].insn_off <= prev_offset) {
10965 			verbose(env,
10966 				"same or smaller insn offset (%u) than previous func info record (%u)",
10967 				krecord[i].insn_off, prev_offset);
10968 			goto err_free;
10969 		}
10970 
10971 		if (env->subprog_info[i].start != krecord[i].insn_off) {
10972 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
10973 			goto err_free;
10974 		}
10975 
10976 		/* check type_id */
10977 		type = btf_type_by_id(btf, krecord[i].type_id);
10978 		if (!type || !btf_type_is_func(type)) {
10979 			verbose(env, "invalid type id %d in func info",
10980 				krecord[i].type_id);
10981 			goto err_free;
10982 		}
10983 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
10984 
10985 		func_proto = btf_type_by_id(btf, type->type);
10986 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10987 			/* btf_func_check() already verified it during BTF load */
10988 			goto err_free;
10989 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10990 		scalar_return =
10991 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
10992 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10993 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10994 			goto err_free;
10995 		}
10996 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10997 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10998 			goto err_free;
10999 		}
11000 
11001 		prev_offset = krecord[i].insn_off;
11002 		bpfptr_add(&urecord, urec_size);
11003 	}
11004 
11005 	prog->aux->func_info = krecord;
11006 	prog->aux->func_info_cnt = nfuncs;
11007 	prog->aux->func_info_aux = info_aux;
11008 	return 0;
11009 
11010 err_free:
11011 	kvfree(krecord);
11012 	kfree(info_aux);
11013 	return ret;
11014 }
11015 
11016 static void adjust_btf_func(struct bpf_verifier_env *env)
11017 {
11018 	struct bpf_prog_aux *aux = env->prog->aux;
11019 	int i;
11020 
11021 	if (!aux->func_info)
11022 		return;
11023 
11024 	for (i = 0; i < env->subprog_cnt; i++)
11025 		aux->func_info[i].insn_off = env->subprog_info[i].start;
11026 }
11027 
11028 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
11029 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
11030 
11031 static int check_btf_line(struct bpf_verifier_env *env,
11032 			  const union bpf_attr *attr,
11033 			  bpfptr_t uattr)
11034 {
11035 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
11036 	struct bpf_subprog_info *sub;
11037 	struct bpf_line_info *linfo;
11038 	struct bpf_prog *prog;
11039 	const struct btf *btf;
11040 	bpfptr_t ulinfo;
11041 	int err;
11042 
11043 	nr_linfo = attr->line_info_cnt;
11044 	if (!nr_linfo)
11045 		return 0;
11046 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
11047 		return -EINVAL;
11048 
11049 	rec_size = attr->line_info_rec_size;
11050 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
11051 	    rec_size > MAX_LINEINFO_REC_SIZE ||
11052 	    rec_size & (sizeof(u32) - 1))
11053 		return -EINVAL;
11054 
11055 	/* Need to zero it in case the userspace may
11056 	 * pass in a smaller bpf_line_info object.
11057 	 */
11058 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
11059 			 GFP_KERNEL | __GFP_NOWARN);
11060 	if (!linfo)
11061 		return -ENOMEM;
11062 
11063 	prog = env->prog;
11064 	btf = prog->aux->btf;
11065 
11066 	s = 0;
11067 	sub = env->subprog_info;
11068 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
11069 	expected_size = sizeof(struct bpf_line_info);
11070 	ncopy = min_t(u32, expected_size, rec_size);
11071 	for (i = 0; i < nr_linfo; i++) {
11072 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
11073 		if (err) {
11074 			if (err == -E2BIG) {
11075 				verbose(env, "nonzero tailing record in line_info");
11076 				if (copy_to_bpfptr_offset(uattr,
11077 							  offsetof(union bpf_attr, line_info_rec_size),
11078 							  &expected_size, sizeof(expected_size)))
11079 					err = -EFAULT;
11080 			}
11081 			goto err_free;
11082 		}
11083 
11084 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
11085 			err = -EFAULT;
11086 			goto err_free;
11087 		}
11088 
11089 		/*
11090 		 * Check insn_off to ensure
11091 		 * 1) strictly increasing AND
11092 		 * 2) bounded by prog->len
11093 		 *
11094 		 * The linfo[0].insn_off == 0 check logically falls into
11095 		 * the later "missing bpf_line_info for func..." case
11096 		 * because the first linfo[0].insn_off must be the
11097 		 * first sub also and the first sub must have
11098 		 * subprog_info[0].start == 0.
11099 		 */
11100 		if ((i && linfo[i].insn_off <= prev_offset) ||
11101 		    linfo[i].insn_off >= prog->len) {
11102 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
11103 				i, linfo[i].insn_off, prev_offset,
11104 				prog->len);
11105 			err = -EINVAL;
11106 			goto err_free;
11107 		}
11108 
11109 		if (!prog->insnsi[linfo[i].insn_off].code) {
11110 			verbose(env,
11111 				"Invalid insn code at line_info[%u].insn_off\n",
11112 				i);
11113 			err = -EINVAL;
11114 			goto err_free;
11115 		}
11116 
11117 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
11118 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
11119 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
11120 			err = -EINVAL;
11121 			goto err_free;
11122 		}
11123 
11124 		if (s != env->subprog_cnt) {
11125 			if (linfo[i].insn_off == sub[s].start) {
11126 				sub[s].linfo_idx = i;
11127 				s++;
11128 			} else if (sub[s].start < linfo[i].insn_off) {
11129 				verbose(env, "missing bpf_line_info for func#%u\n", s);
11130 				err = -EINVAL;
11131 				goto err_free;
11132 			}
11133 		}
11134 
11135 		prev_offset = linfo[i].insn_off;
11136 		bpfptr_add(&ulinfo, rec_size);
11137 	}
11138 
11139 	if (s != env->subprog_cnt) {
11140 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
11141 			env->subprog_cnt - s, s);
11142 		err = -EINVAL;
11143 		goto err_free;
11144 	}
11145 
11146 	prog->aux->linfo = linfo;
11147 	prog->aux->nr_linfo = nr_linfo;
11148 
11149 	return 0;
11150 
11151 err_free:
11152 	kvfree(linfo);
11153 	return err;
11154 }
11155 
11156 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
11157 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
11158 
11159 static int check_core_relo(struct bpf_verifier_env *env,
11160 			   const union bpf_attr *attr,
11161 			   bpfptr_t uattr)
11162 {
11163 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
11164 	struct bpf_core_relo core_relo = {};
11165 	struct bpf_prog *prog = env->prog;
11166 	const struct btf *btf = prog->aux->btf;
11167 	struct bpf_core_ctx ctx = {
11168 		.log = &env->log,
11169 		.btf = btf,
11170 	};
11171 	bpfptr_t u_core_relo;
11172 	int err;
11173 
11174 	nr_core_relo = attr->core_relo_cnt;
11175 	if (!nr_core_relo)
11176 		return 0;
11177 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
11178 		return -EINVAL;
11179 
11180 	rec_size = attr->core_relo_rec_size;
11181 	if (rec_size < MIN_CORE_RELO_SIZE ||
11182 	    rec_size > MAX_CORE_RELO_SIZE ||
11183 	    rec_size % sizeof(u32))
11184 		return -EINVAL;
11185 
11186 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
11187 	expected_size = sizeof(struct bpf_core_relo);
11188 	ncopy = min_t(u32, expected_size, rec_size);
11189 
11190 	/* Unlike func_info and line_info, copy and apply each CO-RE
11191 	 * relocation record one at a time.
11192 	 */
11193 	for (i = 0; i < nr_core_relo; i++) {
11194 		/* future proofing when sizeof(bpf_core_relo) changes */
11195 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
11196 		if (err) {
11197 			if (err == -E2BIG) {
11198 				verbose(env, "nonzero tailing record in core_relo");
11199 				if (copy_to_bpfptr_offset(uattr,
11200 							  offsetof(union bpf_attr, core_relo_rec_size),
11201 							  &expected_size, sizeof(expected_size)))
11202 					err = -EFAULT;
11203 			}
11204 			break;
11205 		}
11206 
11207 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
11208 			err = -EFAULT;
11209 			break;
11210 		}
11211 
11212 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
11213 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
11214 				i, core_relo.insn_off, prog->len);
11215 			err = -EINVAL;
11216 			break;
11217 		}
11218 
11219 		err = bpf_core_apply(&ctx, &core_relo, i,
11220 				     &prog->insnsi[core_relo.insn_off / 8]);
11221 		if (err)
11222 			break;
11223 		bpfptr_add(&u_core_relo, rec_size);
11224 	}
11225 	return err;
11226 }
11227 
11228 static int check_btf_info(struct bpf_verifier_env *env,
11229 			  const union bpf_attr *attr,
11230 			  bpfptr_t uattr)
11231 {
11232 	struct btf *btf;
11233 	int err;
11234 
11235 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
11236 		if (check_abnormal_return(env))
11237 			return -EINVAL;
11238 		return 0;
11239 	}
11240 
11241 	btf = btf_get_by_fd(attr->prog_btf_fd);
11242 	if (IS_ERR(btf))
11243 		return PTR_ERR(btf);
11244 	if (btf_is_kernel(btf)) {
11245 		btf_put(btf);
11246 		return -EACCES;
11247 	}
11248 	env->prog->aux->btf = btf;
11249 
11250 	err = check_btf_func(env, attr, uattr);
11251 	if (err)
11252 		return err;
11253 
11254 	err = check_btf_line(env, attr, uattr);
11255 	if (err)
11256 		return err;
11257 
11258 	err = check_core_relo(env, attr, uattr);
11259 	if (err)
11260 		return err;
11261 
11262 	return 0;
11263 }
11264 
11265 /* check %cur's range satisfies %old's */
11266 static bool range_within(struct bpf_reg_state *old,
11267 			 struct bpf_reg_state *cur)
11268 {
11269 	return old->umin_value <= cur->umin_value &&
11270 	       old->umax_value >= cur->umax_value &&
11271 	       old->smin_value <= cur->smin_value &&
11272 	       old->smax_value >= cur->smax_value &&
11273 	       old->u32_min_value <= cur->u32_min_value &&
11274 	       old->u32_max_value >= cur->u32_max_value &&
11275 	       old->s32_min_value <= cur->s32_min_value &&
11276 	       old->s32_max_value >= cur->s32_max_value;
11277 }
11278 
11279 /* If in the old state two registers had the same id, then they need to have
11280  * the same id in the new state as well.  But that id could be different from
11281  * the old state, so we need to track the mapping from old to new ids.
11282  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
11283  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
11284  * regs with a different old id could still have new id 9, we don't care about
11285  * that.
11286  * So we look through our idmap to see if this old id has been seen before.  If
11287  * so, we require the new id to match; otherwise, we add the id pair to the map.
11288  */
11289 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
11290 {
11291 	unsigned int i;
11292 
11293 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
11294 		if (!idmap[i].old) {
11295 			/* Reached an empty slot; haven't seen this id before */
11296 			idmap[i].old = old_id;
11297 			idmap[i].cur = cur_id;
11298 			return true;
11299 		}
11300 		if (idmap[i].old == old_id)
11301 			return idmap[i].cur == cur_id;
11302 	}
11303 	/* We ran out of idmap slots, which should be impossible */
11304 	WARN_ON_ONCE(1);
11305 	return false;
11306 }
11307 
11308 static void clean_func_state(struct bpf_verifier_env *env,
11309 			     struct bpf_func_state *st)
11310 {
11311 	enum bpf_reg_liveness live;
11312 	int i, j;
11313 
11314 	for (i = 0; i < BPF_REG_FP; i++) {
11315 		live = st->regs[i].live;
11316 		/* liveness must not touch this register anymore */
11317 		st->regs[i].live |= REG_LIVE_DONE;
11318 		if (!(live & REG_LIVE_READ))
11319 			/* since the register is unused, clear its state
11320 			 * to make further comparison simpler
11321 			 */
11322 			__mark_reg_not_init(env, &st->regs[i]);
11323 	}
11324 
11325 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
11326 		live = st->stack[i].spilled_ptr.live;
11327 		/* liveness must not touch this stack slot anymore */
11328 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
11329 		if (!(live & REG_LIVE_READ)) {
11330 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
11331 			for (j = 0; j < BPF_REG_SIZE; j++)
11332 				st->stack[i].slot_type[j] = STACK_INVALID;
11333 		}
11334 	}
11335 }
11336 
11337 static void clean_verifier_state(struct bpf_verifier_env *env,
11338 				 struct bpf_verifier_state *st)
11339 {
11340 	int i;
11341 
11342 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
11343 		/* all regs in this state in all frames were already marked */
11344 		return;
11345 
11346 	for (i = 0; i <= st->curframe; i++)
11347 		clean_func_state(env, st->frame[i]);
11348 }
11349 
11350 /* the parentage chains form a tree.
11351  * the verifier states are added to state lists at given insn and
11352  * pushed into state stack for future exploration.
11353  * when the verifier reaches bpf_exit insn some of the verifer states
11354  * stored in the state lists have their final liveness state already,
11355  * but a lot of states will get revised from liveness point of view when
11356  * the verifier explores other branches.
11357  * Example:
11358  * 1: r0 = 1
11359  * 2: if r1 == 100 goto pc+1
11360  * 3: r0 = 2
11361  * 4: exit
11362  * when the verifier reaches exit insn the register r0 in the state list of
11363  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
11364  * of insn 2 and goes exploring further. At the insn 4 it will walk the
11365  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
11366  *
11367  * Since the verifier pushes the branch states as it sees them while exploring
11368  * the program the condition of walking the branch instruction for the second
11369  * time means that all states below this branch were already explored and
11370  * their final liveness marks are already propagated.
11371  * Hence when the verifier completes the search of state list in is_state_visited()
11372  * we can call this clean_live_states() function to mark all liveness states
11373  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
11374  * will not be used.
11375  * This function also clears the registers and stack for states that !READ
11376  * to simplify state merging.
11377  *
11378  * Important note here that walking the same branch instruction in the callee
11379  * doesn't meant that the states are DONE. The verifier has to compare
11380  * the callsites
11381  */
11382 static void clean_live_states(struct bpf_verifier_env *env, int insn,
11383 			      struct bpf_verifier_state *cur)
11384 {
11385 	struct bpf_verifier_state_list *sl;
11386 	int i;
11387 
11388 	sl = *explored_state(env, insn);
11389 	while (sl) {
11390 		if (sl->state.branches)
11391 			goto next;
11392 		if (sl->state.insn_idx != insn ||
11393 		    sl->state.curframe != cur->curframe)
11394 			goto next;
11395 		for (i = 0; i <= cur->curframe; i++)
11396 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
11397 				goto next;
11398 		clean_verifier_state(env, &sl->state);
11399 next:
11400 		sl = sl->next;
11401 	}
11402 }
11403 
11404 /* Returns true if (rold safe implies rcur safe) */
11405 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
11406 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
11407 {
11408 	bool equal;
11409 
11410 	if (!(rold->live & REG_LIVE_READ))
11411 		/* explored state didn't use this */
11412 		return true;
11413 
11414 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
11415 
11416 	if (rold->type == PTR_TO_STACK)
11417 		/* two stack pointers are equal only if they're pointing to
11418 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
11419 		 */
11420 		return equal && rold->frameno == rcur->frameno;
11421 
11422 	if (equal)
11423 		return true;
11424 
11425 	if (rold->type == NOT_INIT)
11426 		/* explored state can't have used this */
11427 		return true;
11428 	if (rcur->type == NOT_INIT)
11429 		return false;
11430 	switch (base_type(rold->type)) {
11431 	case SCALAR_VALUE:
11432 		if (env->explore_alu_limits)
11433 			return false;
11434 		if (rcur->type == SCALAR_VALUE) {
11435 			if (!rold->precise && !rcur->precise)
11436 				return true;
11437 			/* new val must satisfy old val knowledge */
11438 			return range_within(rold, rcur) &&
11439 			       tnum_in(rold->var_off, rcur->var_off);
11440 		} else {
11441 			/* We're trying to use a pointer in place of a scalar.
11442 			 * Even if the scalar was unbounded, this could lead to
11443 			 * pointer leaks because scalars are allowed to leak
11444 			 * while pointers are not. We could make this safe in
11445 			 * special cases if root is calling us, but it's
11446 			 * probably not worth the hassle.
11447 			 */
11448 			return false;
11449 		}
11450 	case PTR_TO_MAP_KEY:
11451 	case PTR_TO_MAP_VALUE:
11452 		/* a PTR_TO_MAP_VALUE could be safe to use as a
11453 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
11454 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
11455 		 * checked, doing so could have affected others with the same
11456 		 * id, and we can't check for that because we lost the id when
11457 		 * we converted to a PTR_TO_MAP_VALUE.
11458 		 */
11459 		if (type_may_be_null(rold->type)) {
11460 			if (!type_may_be_null(rcur->type))
11461 				return false;
11462 			if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
11463 				return false;
11464 			/* Check our ids match any regs they're supposed to */
11465 			return check_ids(rold->id, rcur->id, idmap);
11466 		}
11467 
11468 		/* If the new min/max/var_off satisfy the old ones and
11469 		 * everything else matches, we are OK.
11470 		 * 'id' is not compared, since it's only used for maps with
11471 		 * bpf_spin_lock inside map element and in such cases if
11472 		 * the rest of the prog is valid for one map element then
11473 		 * it's valid for all map elements regardless of the key
11474 		 * used in bpf_map_lookup()
11475 		 */
11476 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
11477 		       range_within(rold, rcur) &&
11478 		       tnum_in(rold->var_off, rcur->var_off);
11479 	case PTR_TO_PACKET_META:
11480 	case PTR_TO_PACKET:
11481 		if (rcur->type != rold->type)
11482 			return false;
11483 		/* We must have at least as much range as the old ptr
11484 		 * did, so that any accesses which were safe before are
11485 		 * still safe.  This is true even if old range < old off,
11486 		 * since someone could have accessed through (ptr - k), or
11487 		 * even done ptr -= k in a register, to get a safe access.
11488 		 */
11489 		if (rold->range > rcur->range)
11490 			return false;
11491 		/* If the offsets don't match, we can't trust our alignment;
11492 		 * nor can we be sure that we won't fall out of range.
11493 		 */
11494 		if (rold->off != rcur->off)
11495 			return false;
11496 		/* id relations must be preserved */
11497 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
11498 			return false;
11499 		/* new val must satisfy old val knowledge */
11500 		return range_within(rold, rcur) &&
11501 		       tnum_in(rold->var_off, rcur->var_off);
11502 	case PTR_TO_CTX:
11503 	case CONST_PTR_TO_MAP:
11504 	case PTR_TO_PACKET_END:
11505 	case PTR_TO_FLOW_KEYS:
11506 	case PTR_TO_SOCKET:
11507 	case PTR_TO_SOCK_COMMON:
11508 	case PTR_TO_TCP_SOCK:
11509 	case PTR_TO_XDP_SOCK:
11510 		/* Only valid matches are exact, which memcmp() above
11511 		 * would have accepted
11512 		 */
11513 	default:
11514 		/* Don't know what's going on, just say it's not safe */
11515 		return false;
11516 	}
11517 
11518 	/* Shouldn't get here; if we do, say it's not safe */
11519 	WARN_ON_ONCE(1);
11520 	return false;
11521 }
11522 
11523 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
11524 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
11525 {
11526 	int i, spi;
11527 
11528 	/* walk slots of the explored stack and ignore any additional
11529 	 * slots in the current stack, since explored(safe) state
11530 	 * didn't use them
11531 	 */
11532 	for (i = 0; i < old->allocated_stack; i++) {
11533 		spi = i / BPF_REG_SIZE;
11534 
11535 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
11536 			i += BPF_REG_SIZE - 1;
11537 			/* explored state didn't use this */
11538 			continue;
11539 		}
11540 
11541 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
11542 			continue;
11543 
11544 		/* explored stack has more populated slots than current stack
11545 		 * and these slots were used
11546 		 */
11547 		if (i >= cur->allocated_stack)
11548 			return false;
11549 
11550 		/* if old state was safe with misc data in the stack
11551 		 * it will be safe with zero-initialized stack.
11552 		 * The opposite is not true
11553 		 */
11554 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
11555 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
11556 			continue;
11557 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
11558 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
11559 			/* Ex: old explored (safe) state has STACK_SPILL in
11560 			 * this stack slot, but current has STACK_MISC ->
11561 			 * this verifier states are not equivalent,
11562 			 * return false to continue verification of this path
11563 			 */
11564 			return false;
11565 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
11566 			continue;
11567 		if (!is_spilled_reg(&old->stack[spi]))
11568 			continue;
11569 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
11570 			     &cur->stack[spi].spilled_ptr, idmap))
11571 			/* when explored and current stack slot are both storing
11572 			 * spilled registers, check that stored pointers types
11573 			 * are the same as well.
11574 			 * Ex: explored safe path could have stored
11575 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
11576 			 * but current path has stored:
11577 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
11578 			 * such verifier states are not equivalent.
11579 			 * return false to continue verification of this path
11580 			 */
11581 			return false;
11582 	}
11583 	return true;
11584 }
11585 
11586 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
11587 {
11588 	if (old->acquired_refs != cur->acquired_refs)
11589 		return false;
11590 	return !memcmp(old->refs, cur->refs,
11591 		       sizeof(*old->refs) * old->acquired_refs);
11592 }
11593 
11594 /* compare two verifier states
11595  *
11596  * all states stored in state_list are known to be valid, since
11597  * verifier reached 'bpf_exit' instruction through them
11598  *
11599  * this function is called when verifier exploring different branches of
11600  * execution popped from the state stack. If it sees an old state that has
11601  * more strict register state and more strict stack state then this execution
11602  * branch doesn't need to be explored further, since verifier already
11603  * concluded that more strict state leads to valid finish.
11604  *
11605  * Therefore two states are equivalent if register state is more conservative
11606  * and explored stack state is more conservative than the current one.
11607  * Example:
11608  *       explored                   current
11609  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
11610  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
11611  *
11612  * In other words if current stack state (one being explored) has more
11613  * valid slots than old one that already passed validation, it means
11614  * the verifier can stop exploring and conclude that current state is valid too
11615  *
11616  * Similarly with registers. If explored state has register type as invalid
11617  * whereas register type in current state is meaningful, it means that
11618  * the current state will reach 'bpf_exit' instruction safely
11619  */
11620 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
11621 			      struct bpf_func_state *cur)
11622 {
11623 	int i;
11624 
11625 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
11626 	for (i = 0; i < MAX_BPF_REG; i++)
11627 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
11628 			     env->idmap_scratch))
11629 			return false;
11630 
11631 	if (!stacksafe(env, old, cur, env->idmap_scratch))
11632 		return false;
11633 
11634 	if (!refsafe(old, cur))
11635 		return false;
11636 
11637 	return true;
11638 }
11639 
11640 static bool states_equal(struct bpf_verifier_env *env,
11641 			 struct bpf_verifier_state *old,
11642 			 struct bpf_verifier_state *cur)
11643 {
11644 	int i;
11645 
11646 	if (old->curframe != cur->curframe)
11647 		return false;
11648 
11649 	/* Verification state from speculative execution simulation
11650 	 * must never prune a non-speculative execution one.
11651 	 */
11652 	if (old->speculative && !cur->speculative)
11653 		return false;
11654 
11655 	if (old->active_spin_lock != cur->active_spin_lock)
11656 		return false;
11657 
11658 	/* for states to be equal callsites have to be the same
11659 	 * and all frame states need to be equivalent
11660 	 */
11661 	for (i = 0; i <= old->curframe; i++) {
11662 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
11663 			return false;
11664 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
11665 			return false;
11666 	}
11667 	return true;
11668 }
11669 
11670 /* Return 0 if no propagation happened. Return negative error code if error
11671  * happened. Otherwise, return the propagated bit.
11672  */
11673 static int propagate_liveness_reg(struct bpf_verifier_env *env,
11674 				  struct bpf_reg_state *reg,
11675 				  struct bpf_reg_state *parent_reg)
11676 {
11677 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
11678 	u8 flag = reg->live & REG_LIVE_READ;
11679 	int err;
11680 
11681 	/* When comes here, read flags of PARENT_REG or REG could be any of
11682 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
11683 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
11684 	 */
11685 	if (parent_flag == REG_LIVE_READ64 ||
11686 	    /* Or if there is no read flag from REG. */
11687 	    !flag ||
11688 	    /* Or if the read flag from REG is the same as PARENT_REG. */
11689 	    parent_flag == flag)
11690 		return 0;
11691 
11692 	err = mark_reg_read(env, reg, parent_reg, flag);
11693 	if (err)
11694 		return err;
11695 
11696 	return flag;
11697 }
11698 
11699 /* A write screens off any subsequent reads; but write marks come from the
11700  * straight-line code between a state and its parent.  When we arrive at an
11701  * equivalent state (jump target or such) we didn't arrive by the straight-line
11702  * code, so read marks in the state must propagate to the parent regardless
11703  * of the state's write marks. That's what 'parent == state->parent' comparison
11704  * in mark_reg_read() is for.
11705  */
11706 static int propagate_liveness(struct bpf_verifier_env *env,
11707 			      const struct bpf_verifier_state *vstate,
11708 			      struct bpf_verifier_state *vparent)
11709 {
11710 	struct bpf_reg_state *state_reg, *parent_reg;
11711 	struct bpf_func_state *state, *parent;
11712 	int i, frame, err = 0;
11713 
11714 	if (vparent->curframe != vstate->curframe) {
11715 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
11716 		     vparent->curframe, vstate->curframe);
11717 		return -EFAULT;
11718 	}
11719 	/* Propagate read liveness of registers... */
11720 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
11721 	for (frame = 0; frame <= vstate->curframe; frame++) {
11722 		parent = vparent->frame[frame];
11723 		state = vstate->frame[frame];
11724 		parent_reg = parent->regs;
11725 		state_reg = state->regs;
11726 		/* We don't need to worry about FP liveness, it's read-only */
11727 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
11728 			err = propagate_liveness_reg(env, &state_reg[i],
11729 						     &parent_reg[i]);
11730 			if (err < 0)
11731 				return err;
11732 			if (err == REG_LIVE_READ64)
11733 				mark_insn_zext(env, &parent_reg[i]);
11734 		}
11735 
11736 		/* Propagate stack slots. */
11737 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
11738 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
11739 			parent_reg = &parent->stack[i].spilled_ptr;
11740 			state_reg = &state->stack[i].spilled_ptr;
11741 			err = propagate_liveness_reg(env, state_reg,
11742 						     parent_reg);
11743 			if (err < 0)
11744 				return err;
11745 		}
11746 	}
11747 	return 0;
11748 }
11749 
11750 /* find precise scalars in the previous equivalent state and
11751  * propagate them into the current state
11752  */
11753 static int propagate_precision(struct bpf_verifier_env *env,
11754 			       const struct bpf_verifier_state *old)
11755 {
11756 	struct bpf_reg_state *state_reg;
11757 	struct bpf_func_state *state;
11758 	int i, err = 0;
11759 
11760 	state = old->frame[old->curframe];
11761 	state_reg = state->regs;
11762 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
11763 		if (state_reg->type != SCALAR_VALUE ||
11764 		    !state_reg->precise)
11765 			continue;
11766 		if (env->log.level & BPF_LOG_LEVEL2)
11767 			verbose(env, "propagating r%d\n", i);
11768 		err = mark_chain_precision(env, i);
11769 		if (err < 0)
11770 			return err;
11771 	}
11772 
11773 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
11774 		if (!is_spilled_reg(&state->stack[i]))
11775 			continue;
11776 		state_reg = &state->stack[i].spilled_ptr;
11777 		if (state_reg->type != SCALAR_VALUE ||
11778 		    !state_reg->precise)
11779 			continue;
11780 		if (env->log.level & BPF_LOG_LEVEL2)
11781 			verbose(env, "propagating fp%d\n",
11782 				(-i - 1) * BPF_REG_SIZE);
11783 		err = mark_chain_precision_stack(env, i);
11784 		if (err < 0)
11785 			return err;
11786 	}
11787 	return 0;
11788 }
11789 
11790 static bool states_maybe_looping(struct bpf_verifier_state *old,
11791 				 struct bpf_verifier_state *cur)
11792 {
11793 	struct bpf_func_state *fold, *fcur;
11794 	int i, fr = cur->curframe;
11795 
11796 	if (old->curframe != fr)
11797 		return false;
11798 
11799 	fold = old->frame[fr];
11800 	fcur = cur->frame[fr];
11801 	for (i = 0; i < MAX_BPF_REG; i++)
11802 		if (memcmp(&fold->regs[i], &fcur->regs[i],
11803 			   offsetof(struct bpf_reg_state, parent)))
11804 			return false;
11805 	return true;
11806 }
11807 
11808 
11809 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
11810 {
11811 	struct bpf_verifier_state_list *new_sl;
11812 	struct bpf_verifier_state_list *sl, **pprev;
11813 	struct bpf_verifier_state *cur = env->cur_state, *new;
11814 	int i, j, err, states_cnt = 0;
11815 	bool add_new_state = env->test_state_freq ? true : false;
11816 
11817 	cur->last_insn_idx = env->prev_insn_idx;
11818 	if (!env->insn_aux_data[insn_idx].prune_point)
11819 		/* this 'insn_idx' instruction wasn't marked, so we will not
11820 		 * be doing state search here
11821 		 */
11822 		return 0;
11823 
11824 	/* bpf progs typically have pruning point every 4 instructions
11825 	 * http://vger.kernel.org/bpfconf2019.html#session-1
11826 	 * Do not add new state for future pruning if the verifier hasn't seen
11827 	 * at least 2 jumps and at least 8 instructions.
11828 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
11829 	 * In tests that amounts to up to 50% reduction into total verifier
11830 	 * memory consumption and 20% verifier time speedup.
11831 	 */
11832 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
11833 	    env->insn_processed - env->prev_insn_processed >= 8)
11834 		add_new_state = true;
11835 
11836 	pprev = explored_state(env, insn_idx);
11837 	sl = *pprev;
11838 
11839 	clean_live_states(env, insn_idx, cur);
11840 
11841 	while (sl) {
11842 		states_cnt++;
11843 		if (sl->state.insn_idx != insn_idx)
11844 			goto next;
11845 
11846 		if (sl->state.branches) {
11847 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
11848 
11849 			if (frame->in_async_callback_fn &&
11850 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
11851 				/* Different async_entry_cnt means that the verifier is
11852 				 * processing another entry into async callback.
11853 				 * Seeing the same state is not an indication of infinite
11854 				 * loop or infinite recursion.
11855 				 * But finding the same state doesn't mean that it's safe
11856 				 * to stop processing the current state. The previous state
11857 				 * hasn't yet reached bpf_exit, since state.branches > 0.
11858 				 * Checking in_async_callback_fn alone is not enough either.
11859 				 * Since the verifier still needs to catch infinite loops
11860 				 * inside async callbacks.
11861 				 */
11862 			} else if (states_maybe_looping(&sl->state, cur) &&
11863 				   states_equal(env, &sl->state, cur)) {
11864 				verbose_linfo(env, insn_idx, "; ");
11865 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11866 				return -EINVAL;
11867 			}
11868 			/* if the verifier is processing a loop, avoid adding new state
11869 			 * too often, since different loop iterations have distinct
11870 			 * states and may not help future pruning.
11871 			 * This threshold shouldn't be too low to make sure that
11872 			 * a loop with large bound will be rejected quickly.
11873 			 * The most abusive loop will be:
11874 			 * r1 += 1
11875 			 * if r1 < 1000000 goto pc-2
11876 			 * 1M insn_procssed limit / 100 == 10k peak states.
11877 			 * This threshold shouldn't be too high either, since states
11878 			 * at the end of the loop are likely to be useful in pruning.
11879 			 */
11880 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11881 			    env->insn_processed - env->prev_insn_processed < 100)
11882 				add_new_state = false;
11883 			goto miss;
11884 		}
11885 		if (states_equal(env, &sl->state, cur)) {
11886 			sl->hit_cnt++;
11887 			/* reached equivalent register/stack state,
11888 			 * prune the search.
11889 			 * Registers read by the continuation are read by us.
11890 			 * If we have any write marks in env->cur_state, they
11891 			 * will prevent corresponding reads in the continuation
11892 			 * from reaching our parent (an explored_state).  Our
11893 			 * own state will get the read marks recorded, but
11894 			 * they'll be immediately forgotten as we're pruning
11895 			 * this state and will pop a new one.
11896 			 */
11897 			err = propagate_liveness(env, &sl->state, cur);
11898 
11899 			/* if previous state reached the exit with precision and
11900 			 * current state is equivalent to it (except precsion marks)
11901 			 * the precision needs to be propagated back in
11902 			 * the current state.
11903 			 */
11904 			err = err ? : push_jmp_history(env, cur);
11905 			err = err ? : propagate_precision(env, &sl->state);
11906 			if (err)
11907 				return err;
11908 			return 1;
11909 		}
11910 miss:
11911 		/* when new state is not going to be added do not increase miss count.
11912 		 * Otherwise several loop iterations will remove the state
11913 		 * recorded earlier. The goal of these heuristics is to have
11914 		 * states from some iterations of the loop (some in the beginning
11915 		 * and some at the end) to help pruning.
11916 		 */
11917 		if (add_new_state)
11918 			sl->miss_cnt++;
11919 		/* heuristic to determine whether this state is beneficial
11920 		 * to keep checking from state equivalence point of view.
11921 		 * Higher numbers increase max_states_per_insn and verification time,
11922 		 * but do not meaningfully decrease insn_processed.
11923 		 */
11924 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
11925 			/* the state is unlikely to be useful. Remove it to
11926 			 * speed up verification
11927 			 */
11928 			*pprev = sl->next;
11929 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
11930 				u32 br = sl->state.branches;
11931 
11932 				WARN_ONCE(br,
11933 					  "BUG live_done but branches_to_explore %d\n",
11934 					  br);
11935 				free_verifier_state(&sl->state, false);
11936 				kfree(sl);
11937 				env->peak_states--;
11938 			} else {
11939 				/* cannot free this state, since parentage chain may
11940 				 * walk it later. Add it for free_list instead to
11941 				 * be freed at the end of verification
11942 				 */
11943 				sl->next = env->free_list;
11944 				env->free_list = sl;
11945 			}
11946 			sl = *pprev;
11947 			continue;
11948 		}
11949 next:
11950 		pprev = &sl->next;
11951 		sl = *pprev;
11952 	}
11953 
11954 	if (env->max_states_per_insn < states_cnt)
11955 		env->max_states_per_insn = states_cnt;
11956 
11957 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
11958 		return push_jmp_history(env, cur);
11959 
11960 	if (!add_new_state)
11961 		return push_jmp_history(env, cur);
11962 
11963 	/* There were no equivalent states, remember the current one.
11964 	 * Technically the current state is not proven to be safe yet,
11965 	 * but it will either reach outer most bpf_exit (which means it's safe)
11966 	 * or it will be rejected. When there are no loops the verifier won't be
11967 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
11968 	 * again on the way to bpf_exit.
11969 	 * When looping the sl->state.branches will be > 0 and this state
11970 	 * will not be considered for equivalence until branches == 0.
11971 	 */
11972 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
11973 	if (!new_sl)
11974 		return -ENOMEM;
11975 	env->total_states++;
11976 	env->peak_states++;
11977 	env->prev_jmps_processed = env->jmps_processed;
11978 	env->prev_insn_processed = env->insn_processed;
11979 
11980 	/* add new state to the head of linked list */
11981 	new = &new_sl->state;
11982 	err = copy_verifier_state(new, cur);
11983 	if (err) {
11984 		free_verifier_state(new, false);
11985 		kfree(new_sl);
11986 		return err;
11987 	}
11988 	new->insn_idx = insn_idx;
11989 	WARN_ONCE(new->branches != 1,
11990 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
11991 
11992 	cur->parent = new;
11993 	cur->first_insn_idx = insn_idx;
11994 	clear_jmp_history(cur);
11995 	new_sl->next = *explored_state(env, insn_idx);
11996 	*explored_state(env, insn_idx) = new_sl;
11997 	/* connect new state to parentage chain. Current frame needs all
11998 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
11999 	 * to the stack implicitly by JITs) so in callers' frames connect just
12000 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
12001 	 * the state of the call instruction (with WRITTEN set), and r0 comes
12002 	 * from callee with its full parentage chain, anyway.
12003 	 */
12004 	/* clear write marks in current state: the writes we did are not writes
12005 	 * our child did, so they don't screen off its reads from us.
12006 	 * (There are no read marks in current state, because reads always mark
12007 	 * their parent and current state never has children yet.  Only
12008 	 * explored_states can get read marks.)
12009 	 */
12010 	for (j = 0; j <= cur->curframe; j++) {
12011 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
12012 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
12013 		for (i = 0; i < BPF_REG_FP; i++)
12014 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
12015 	}
12016 
12017 	/* all stack frames are accessible from callee, clear them all */
12018 	for (j = 0; j <= cur->curframe; j++) {
12019 		struct bpf_func_state *frame = cur->frame[j];
12020 		struct bpf_func_state *newframe = new->frame[j];
12021 
12022 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
12023 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
12024 			frame->stack[i].spilled_ptr.parent =
12025 						&newframe->stack[i].spilled_ptr;
12026 		}
12027 	}
12028 	return 0;
12029 }
12030 
12031 /* Return true if it's OK to have the same insn return a different type. */
12032 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
12033 {
12034 	switch (base_type(type)) {
12035 	case PTR_TO_CTX:
12036 	case PTR_TO_SOCKET:
12037 	case PTR_TO_SOCK_COMMON:
12038 	case PTR_TO_TCP_SOCK:
12039 	case PTR_TO_XDP_SOCK:
12040 	case PTR_TO_BTF_ID:
12041 		return false;
12042 	default:
12043 		return true;
12044 	}
12045 }
12046 
12047 /* If an instruction was previously used with particular pointer types, then we
12048  * need to be careful to avoid cases such as the below, where it may be ok
12049  * for one branch accessing the pointer, but not ok for the other branch:
12050  *
12051  * R1 = sock_ptr
12052  * goto X;
12053  * ...
12054  * R1 = some_other_valid_ptr;
12055  * goto X;
12056  * ...
12057  * R2 = *(u32 *)(R1 + 0);
12058  */
12059 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
12060 {
12061 	return src != prev && (!reg_type_mismatch_ok(src) ||
12062 			       !reg_type_mismatch_ok(prev));
12063 }
12064 
12065 static int do_check(struct bpf_verifier_env *env)
12066 {
12067 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12068 	struct bpf_verifier_state *state = env->cur_state;
12069 	struct bpf_insn *insns = env->prog->insnsi;
12070 	struct bpf_reg_state *regs;
12071 	int insn_cnt = env->prog->len;
12072 	bool do_print_state = false;
12073 	int prev_insn_idx = -1;
12074 
12075 	for (;;) {
12076 		struct bpf_insn *insn;
12077 		u8 class;
12078 		int err;
12079 
12080 		env->prev_insn_idx = prev_insn_idx;
12081 		if (env->insn_idx >= insn_cnt) {
12082 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
12083 				env->insn_idx, insn_cnt);
12084 			return -EFAULT;
12085 		}
12086 
12087 		insn = &insns[env->insn_idx];
12088 		class = BPF_CLASS(insn->code);
12089 
12090 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
12091 			verbose(env,
12092 				"BPF program is too large. Processed %d insn\n",
12093 				env->insn_processed);
12094 			return -E2BIG;
12095 		}
12096 
12097 		err = is_state_visited(env, env->insn_idx);
12098 		if (err < 0)
12099 			return err;
12100 		if (err == 1) {
12101 			/* found equivalent state, can prune the search */
12102 			if (env->log.level & BPF_LOG_LEVEL) {
12103 				if (do_print_state)
12104 					verbose(env, "\nfrom %d to %d%s: safe\n",
12105 						env->prev_insn_idx, env->insn_idx,
12106 						env->cur_state->speculative ?
12107 						" (speculative execution)" : "");
12108 				else
12109 					verbose(env, "%d: safe\n", env->insn_idx);
12110 			}
12111 			goto process_bpf_exit;
12112 		}
12113 
12114 		if (signal_pending(current))
12115 			return -EAGAIN;
12116 
12117 		if (need_resched())
12118 			cond_resched();
12119 
12120 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
12121 			verbose(env, "\nfrom %d to %d%s:",
12122 				env->prev_insn_idx, env->insn_idx,
12123 				env->cur_state->speculative ?
12124 				" (speculative execution)" : "");
12125 			print_verifier_state(env, state->frame[state->curframe], true);
12126 			do_print_state = false;
12127 		}
12128 
12129 		if (env->log.level & BPF_LOG_LEVEL) {
12130 			const struct bpf_insn_cbs cbs = {
12131 				.cb_call	= disasm_kfunc_name,
12132 				.cb_print	= verbose,
12133 				.private_data	= env,
12134 			};
12135 
12136 			if (verifier_state_scratched(env))
12137 				print_insn_state(env, state->frame[state->curframe]);
12138 
12139 			verbose_linfo(env, env->insn_idx, "; ");
12140 			env->prev_log_len = env->log.len_used;
12141 			verbose(env, "%d: ", env->insn_idx);
12142 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
12143 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
12144 			env->prev_log_len = env->log.len_used;
12145 		}
12146 
12147 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
12148 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
12149 							   env->prev_insn_idx);
12150 			if (err)
12151 				return err;
12152 		}
12153 
12154 		regs = cur_regs(env);
12155 		sanitize_mark_insn_seen(env);
12156 		prev_insn_idx = env->insn_idx;
12157 
12158 		if (class == BPF_ALU || class == BPF_ALU64) {
12159 			err = check_alu_op(env, insn);
12160 			if (err)
12161 				return err;
12162 
12163 		} else if (class == BPF_LDX) {
12164 			enum bpf_reg_type *prev_src_type, src_reg_type;
12165 
12166 			/* check for reserved fields is already done */
12167 
12168 			/* check src operand */
12169 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12170 			if (err)
12171 				return err;
12172 
12173 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
12174 			if (err)
12175 				return err;
12176 
12177 			src_reg_type = regs[insn->src_reg].type;
12178 
12179 			/* check that memory (src_reg + off) is readable,
12180 			 * the state of dst_reg will be updated by this func
12181 			 */
12182 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
12183 					       insn->off, BPF_SIZE(insn->code),
12184 					       BPF_READ, insn->dst_reg, false);
12185 			if (err)
12186 				return err;
12187 
12188 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12189 
12190 			if (*prev_src_type == NOT_INIT) {
12191 				/* saw a valid insn
12192 				 * dst_reg = *(u32 *)(src_reg + off)
12193 				 * save type to validate intersecting paths
12194 				 */
12195 				*prev_src_type = src_reg_type;
12196 
12197 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
12198 				/* ABuser program is trying to use the same insn
12199 				 * dst_reg = *(u32*) (src_reg + off)
12200 				 * with different pointer types:
12201 				 * src_reg == ctx in one branch and
12202 				 * src_reg == stack|map in some other branch.
12203 				 * Reject it.
12204 				 */
12205 				verbose(env, "same insn cannot be used with different pointers\n");
12206 				return -EINVAL;
12207 			}
12208 
12209 		} else if (class == BPF_STX) {
12210 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
12211 
12212 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
12213 				err = check_atomic(env, env->insn_idx, insn);
12214 				if (err)
12215 					return err;
12216 				env->insn_idx++;
12217 				continue;
12218 			}
12219 
12220 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
12221 				verbose(env, "BPF_STX uses reserved fields\n");
12222 				return -EINVAL;
12223 			}
12224 
12225 			/* check src1 operand */
12226 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
12227 			if (err)
12228 				return err;
12229 			/* check src2 operand */
12230 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12231 			if (err)
12232 				return err;
12233 
12234 			dst_reg_type = regs[insn->dst_reg].type;
12235 
12236 			/* check that memory (dst_reg + off) is writeable */
12237 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12238 					       insn->off, BPF_SIZE(insn->code),
12239 					       BPF_WRITE, insn->src_reg, false);
12240 			if (err)
12241 				return err;
12242 
12243 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
12244 
12245 			if (*prev_dst_type == NOT_INIT) {
12246 				*prev_dst_type = dst_reg_type;
12247 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
12248 				verbose(env, "same insn cannot be used with different pointers\n");
12249 				return -EINVAL;
12250 			}
12251 
12252 		} else if (class == BPF_ST) {
12253 			if (BPF_MODE(insn->code) != BPF_MEM ||
12254 			    insn->src_reg != BPF_REG_0) {
12255 				verbose(env, "BPF_ST uses reserved fields\n");
12256 				return -EINVAL;
12257 			}
12258 			/* check src operand */
12259 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
12260 			if (err)
12261 				return err;
12262 
12263 			if (is_ctx_reg(env, insn->dst_reg)) {
12264 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
12265 					insn->dst_reg,
12266 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
12267 				return -EACCES;
12268 			}
12269 
12270 			/* check that memory (dst_reg + off) is writeable */
12271 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
12272 					       insn->off, BPF_SIZE(insn->code),
12273 					       BPF_WRITE, -1, false);
12274 			if (err)
12275 				return err;
12276 
12277 		} else if (class == BPF_JMP || class == BPF_JMP32) {
12278 			u8 opcode = BPF_OP(insn->code);
12279 
12280 			env->jmps_processed++;
12281 			if (opcode == BPF_CALL) {
12282 				if (BPF_SRC(insn->code) != BPF_K ||
12283 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
12284 				     && insn->off != 0) ||
12285 				    (insn->src_reg != BPF_REG_0 &&
12286 				     insn->src_reg != BPF_PSEUDO_CALL &&
12287 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
12288 				    insn->dst_reg != BPF_REG_0 ||
12289 				    class == BPF_JMP32) {
12290 					verbose(env, "BPF_CALL uses reserved fields\n");
12291 					return -EINVAL;
12292 				}
12293 
12294 				if (env->cur_state->active_spin_lock &&
12295 				    (insn->src_reg == BPF_PSEUDO_CALL ||
12296 				     insn->imm != BPF_FUNC_spin_unlock)) {
12297 					verbose(env, "function calls are not allowed while holding a lock\n");
12298 					return -EINVAL;
12299 				}
12300 				if (insn->src_reg == BPF_PSEUDO_CALL)
12301 					err = check_func_call(env, insn, &env->insn_idx);
12302 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
12303 					err = check_kfunc_call(env, insn, &env->insn_idx);
12304 				else
12305 					err = check_helper_call(env, insn, &env->insn_idx);
12306 				if (err)
12307 					return err;
12308 			} else if (opcode == BPF_JA) {
12309 				if (BPF_SRC(insn->code) != BPF_K ||
12310 				    insn->imm != 0 ||
12311 				    insn->src_reg != BPF_REG_0 ||
12312 				    insn->dst_reg != BPF_REG_0 ||
12313 				    class == BPF_JMP32) {
12314 					verbose(env, "BPF_JA uses reserved fields\n");
12315 					return -EINVAL;
12316 				}
12317 
12318 				env->insn_idx += insn->off + 1;
12319 				continue;
12320 
12321 			} else if (opcode == BPF_EXIT) {
12322 				if (BPF_SRC(insn->code) != BPF_K ||
12323 				    insn->imm != 0 ||
12324 				    insn->src_reg != BPF_REG_0 ||
12325 				    insn->dst_reg != BPF_REG_0 ||
12326 				    class == BPF_JMP32) {
12327 					verbose(env, "BPF_EXIT uses reserved fields\n");
12328 					return -EINVAL;
12329 				}
12330 
12331 				if (env->cur_state->active_spin_lock) {
12332 					verbose(env, "bpf_spin_unlock is missing\n");
12333 					return -EINVAL;
12334 				}
12335 
12336 				if (state->curframe) {
12337 					/* exit from nested function */
12338 					err = prepare_func_exit(env, &env->insn_idx);
12339 					if (err)
12340 						return err;
12341 					do_print_state = true;
12342 					continue;
12343 				}
12344 
12345 				err = check_reference_leak(env);
12346 				if (err)
12347 					return err;
12348 
12349 				err = check_return_code(env);
12350 				if (err)
12351 					return err;
12352 process_bpf_exit:
12353 				mark_verifier_state_scratched(env);
12354 				update_branch_counts(env, env->cur_state);
12355 				err = pop_stack(env, &prev_insn_idx,
12356 						&env->insn_idx, pop_log);
12357 				if (err < 0) {
12358 					if (err != -ENOENT)
12359 						return err;
12360 					break;
12361 				} else {
12362 					do_print_state = true;
12363 					continue;
12364 				}
12365 			} else {
12366 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
12367 				if (err)
12368 					return err;
12369 			}
12370 		} else if (class == BPF_LD) {
12371 			u8 mode = BPF_MODE(insn->code);
12372 
12373 			if (mode == BPF_ABS || mode == BPF_IND) {
12374 				err = check_ld_abs(env, insn);
12375 				if (err)
12376 					return err;
12377 
12378 			} else if (mode == BPF_IMM) {
12379 				err = check_ld_imm(env, insn);
12380 				if (err)
12381 					return err;
12382 
12383 				env->insn_idx++;
12384 				sanitize_mark_insn_seen(env);
12385 			} else {
12386 				verbose(env, "invalid BPF_LD mode\n");
12387 				return -EINVAL;
12388 			}
12389 		} else {
12390 			verbose(env, "unknown insn class %d\n", class);
12391 			return -EINVAL;
12392 		}
12393 
12394 		env->insn_idx++;
12395 	}
12396 
12397 	return 0;
12398 }
12399 
12400 static int find_btf_percpu_datasec(struct btf *btf)
12401 {
12402 	const struct btf_type *t;
12403 	const char *tname;
12404 	int i, n;
12405 
12406 	/*
12407 	 * Both vmlinux and module each have their own ".data..percpu"
12408 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
12409 	 * types to look at only module's own BTF types.
12410 	 */
12411 	n = btf_nr_types(btf);
12412 	if (btf_is_module(btf))
12413 		i = btf_nr_types(btf_vmlinux);
12414 	else
12415 		i = 1;
12416 
12417 	for(; i < n; i++) {
12418 		t = btf_type_by_id(btf, i);
12419 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
12420 			continue;
12421 
12422 		tname = btf_name_by_offset(btf, t->name_off);
12423 		if (!strcmp(tname, ".data..percpu"))
12424 			return i;
12425 	}
12426 
12427 	return -ENOENT;
12428 }
12429 
12430 /* replace pseudo btf_id with kernel symbol address */
12431 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
12432 			       struct bpf_insn *insn,
12433 			       struct bpf_insn_aux_data *aux)
12434 {
12435 	const struct btf_var_secinfo *vsi;
12436 	const struct btf_type *datasec;
12437 	struct btf_mod_pair *btf_mod;
12438 	const struct btf_type *t;
12439 	const char *sym_name;
12440 	bool percpu = false;
12441 	u32 type, id = insn->imm;
12442 	struct btf *btf;
12443 	s32 datasec_id;
12444 	u64 addr;
12445 	int i, btf_fd, err;
12446 
12447 	btf_fd = insn[1].imm;
12448 	if (btf_fd) {
12449 		btf = btf_get_by_fd(btf_fd);
12450 		if (IS_ERR(btf)) {
12451 			verbose(env, "invalid module BTF object FD specified.\n");
12452 			return -EINVAL;
12453 		}
12454 	} else {
12455 		if (!btf_vmlinux) {
12456 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
12457 			return -EINVAL;
12458 		}
12459 		btf = btf_vmlinux;
12460 		btf_get(btf);
12461 	}
12462 
12463 	t = btf_type_by_id(btf, id);
12464 	if (!t) {
12465 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
12466 		err = -ENOENT;
12467 		goto err_put;
12468 	}
12469 
12470 	if (!btf_type_is_var(t)) {
12471 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
12472 		err = -EINVAL;
12473 		goto err_put;
12474 	}
12475 
12476 	sym_name = btf_name_by_offset(btf, t->name_off);
12477 	addr = kallsyms_lookup_name(sym_name);
12478 	if (!addr) {
12479 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
12480 			sym_name);
12481 		err = -ENOENT;
12482 		goto err_put;
12483 	}
12484 
12485 	datasec_id = find_btf_percpu_datasec(btf);
12486 	if (datasec_id > 0) {
12487 		datasec = btf_type_by_id(btf, datasec_id);
12488 		for_each_vsi(i, datasec, vsi) {
12489 			if (vsi->type == id) {
12490 				percpu = true;
12491 				break;
12492 			}
12493 		}
12494 	}
12495 
12496 	insn[0].imm = (u32)addr;
12497 	insn[1].imm = addr >> 32;
12498 
12499 	type = t->type;
12500 	t = btf_type_skip_modifiers(btf, type, NULL);
12501 	if (percpu) {
12502 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
12503 		aux->btf_var.btf = btf;
12504 		aux->btf_var.btf_id = type;
12505 	} else if (!btf_type_is_struct(t)) {
12506 		const struct btf_type *ret;
12507 		const char *tname;
12508 		u32 tsize;
12509 
12510 		/* resolve the type size of ksym. */
12511 		ret = btf_resolve_size(btf, t, &tsize);
12512 		if (IS_ERR(ret)) {
12513 			tname = btf_name_by_offset(btf, t->name_off);
12514 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
12515 				tname, PTR_ERR(ret));
12516 			err = -EINVAL;
12517 			goto err_put;
12518 		}
12519 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
12520 		aux->btf_var.mem_size = tsize;
12521 	} else {
12522 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
12523 		aux->btf_var.btf = btf;
12524 		aux->btf_var.btf_id = type;
12525 	}
12526 
12527 	/* check whether we recorded this BTF (and maybe module) already */
12528 	for (i = 0; i < env->used_btf_cnt; i++) {
12529 		if (env->used_btfs[i].btf == btf) {
12530 			btf_put(btf);
12531 			return 0;
12532 		}
12533 	}
12534 
12535 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
12536 		err = -E2BIG;
12537 		goto err_put;
12538 	}
12539 
12540 	btf_mod = &env->used_btfs[env->used_btf_cnt];
12541 	btf_mod->btf = btf;
12542 	btf_mod->module = NULL;
12543 
12544 	/* if we reference variables from kernel module, bump its refcount */
12545 	if (btf_is_module(btf)) {
12546 		btf_mod->module = btf_try_get_module(btf);
12547 		if (!btf_mod->module) {
12548 			err = -ENXIO;
12549 			goto err_put;
12550 		}
12551 	}
12552 
12553 	env->used_btf_cnt++;
12554 
12555 	return 0;
12556 err_put:
12557 	btf_put(btf);
12558 	return err;
12559 }
12560 
12561 static int check_map_prealloc(struct bpf_map *map)
12562 {
12563 	return (map->map_type != BPF_MAP_TYPE_HASH &&
12564 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
12565 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
12566 		!(map->map_flags & BPF_F_NO_PREALLOC);
12567 }
12568 
12569 static bool is_tracing_prog_type(enum bpf_prog_type type)
12570 {
12571 	switch (type) {
12572 	case BPF_PROG_TYPE_KPROBE:
12573 	case BPF_PROG_TYPE_TRACEPOINT:
12574 	case BPF_PROG_TYPE_PERF_EVENT:
12575 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
12576 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
12577 		return true;
12578 	default:
12579 		return false;
12580 	}
12581 }
12582 
12583 static bool is_preallocated_map(struct bpf_map *map)
12584 {
12585 	if (!check_map_prealloc(map))
12586 		return false;
12587 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
12588 		return false;
12589 	return true;
12590 }
12591 
12592 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
12593 					struct bpf_map *map,
12594 					struct bpf_prog *prog)
12595 
12596 {
12597 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
12598 	/*
12599 	 * Validate that trace type programs use preallocated hash maps.
12600 	 *
12601 	 * For programs attached to PERF events this is mandatory as the
12602 	 * perf NMI can hit any arbitrary code sequence.
12603 	 *
12604 	 * All other trace types using preallocated hash maps are unsafe as
12605 	 * well because tracepoint or kprobes can be inside locked regions
12606 	 * of the memory allocator or at a place where a recursion into the
12607 	 * memory allocator would see inconsistent state.
12608 	 *
12609 	 * On RT enabled kernels run-time allocation of all trace type
12610 	 * programs is strictly prohibited due to lock type constraints. On
12611 	 * !RT kernels it is allowed for backwards compatibility reasons for
12612 	 * now, but warnings are emitted so developers are made aware of
12613 	 * the unsafety and can fix their programs before this is enforced.
12614 	 */
12615 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
12616 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
12617 			verbose(env, "perf_event programs can only use preallocated hash map\n");
12618 			return -EINVAL;
12619 		}
12620 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
12621 			verbose(env, "trace type programs can only use preallocated hash map\n");
12622 			return -EINVAL;
12623 		}
12624 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
12625 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
12626 	}
12627 
12628 	if (map_value_has_spin_lock(map)) {
12629 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
12630 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
12631 			return -EINVAL;
12632 		}
12633 
12634 		if (is_tracing_prog_type(prog_type)) {
12635 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
12636 			return -EINVAL;
12637 		}
12638 
12639 		if (prog->aux->sleepable) {
12640 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
12641 			return -EINVAL;
12642 		}
12643 	}
12644 
12645 	if (map_value_has_timer(map)) {
12646 		if (is_tracing_prog_type(prog_type)) {
12647 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
12648 			return -EINVAL;
12649 		}
12650 	}
12651 
12652 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
12653 	    !bpf_offload_prog_map_match(prog, map)) {
12654 		verbose(env, "offload device mismatch between prog and map\n");
12655 		return -EINVAL;
12656 	}
12657 
12658 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
12659 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
12660 		return -EINVAL;
12661 	}
12662 
12663 	if (prog->aux->sleepable)
12664 		switch (map->map_type) {
12665 		case BPF_MAP_TYPE_HASH:
12666 		case BPF_MAP_TYPE_LRU_HASH:
12667 		case BPF_MAP_TYPE_ARRAY:
12668 		case BPF_MAP_TYPE_PERCPU_HASH:
12669 		case BPF_MAP_TYPE_PERCPU_ARRAY:
12670 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
12671 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
12672 		case BPF_MAP_TYPE_HASH_OF_MAPS:
12673 			if (!is_preallocated_map(map)) {
12674 				verbose(env,
12675 					"Sleepable programs can only use preallocated maps\n");
12676 				return -EINVAL;
12677 			}
12678 			break;
12679 		case BPF_MAP_TYPE_RINGBUF:
12680 		case BPF_MAP_TYPE_INODE_STORAGE:
12681 		case BPF_MAP_TYPE_SK_STORAGE:
12682 		case BPF_MAP_TYPE_TASK_STORAGE:
12683 			break;
12684 		default:
12685 			verbose(env,
12686 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
12687 			return -EINVAL;
12688 		}
12689 
12690 	return 0;
12691 }
12692 
12693 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
12694 {
12695 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
12696 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
12697 }
12698 
12699 /* find and rewrite pseudo imm in ld_imm64 instructions:
12700  *
12701  * 1. if it accesses map FD, replace it with actual map pointer.
12702  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
12703  *
12704  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
12705  */
12706 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
12707 {
12708 	struct bpf_insn *insn = env->prog->insnsi;
12709 	int insn_cnt = env->prog->len;
12710 	int i, j, err;
12711 
12712 	err = bpf_prog_calc_tag(env->prog);
12713 	if (err)
12714 		return err;
12715 
12716 	for (i = 0; i < insn_cnt; i++, insn++) {
12717 		if (BPF_CLASS(insn->code) == BPF_LDX &&
12718 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
12719 			verbose(env, "BPF_LDX uses reserved fields\n");
12720 			return -EINVAL;
12721 		}
12722 
12723 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
12724 			struct bpf_insn_aux_data *aux;
12725 			struct bpf_map *map;
12726 			struct fd f;
12727 			u64 addr;
12728 			u32 fd;
12729 
12730 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
12731 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
12732 			    insn[1].off != 0) {
12733 				verbose(env, "invalid bpf_ld_imm64 insn\n");
12734 				return -EINVAL;
12735 			}
12736 
12737 			if (insn[0].src_reg == 0)
12738 				/* valid generic load 64-bit imm */
12739 				goto next_insn;
12740 
12741 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
12742 				aux = &env->insn_aux_data[i];
12743 				err = check_pseudo_btf_id(env, insn, aux);
12744 				if (err)
12745 					return err;
12746 				goto next_insn;
12747 			}
12748 
12749 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
12750 				aux = &env->insn_aux_data[i];
12751 				aux->ptr_type = PTR_TO_FUNC;
12752 				goto next_insn;
12753 			}
12754 
12755 			/* In final convert_pseudo_ld_imm64() step, this is
12756 			 * converted into regular 64-bit imm load insn.
12757 			 */
12758 			switch (insn[0].src_reg) {
12759 			case BPF_PSEUDO_MAP_VALUE:
12760 			case BPF_PSEUDO_MAP_IDX_VALUE:
12761 				break;
12762 			case BPF_PSEUDO_MAP_FD:
12763 			case BPF_PSEUDO_MAP_IDX:
12764 				if (insn[1].imm == 0)
12765 					break;
12766 				fallthrough;
12767 			default:
12768 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
12769 				return -EINVAL;
12770 			}
12771 
12772 			switch (insn[0].src_reg) {
12773 			case BPF_PSEUDO_MAP_IDX_VALUE:
12774 			case BPF_PSEUDO_MAP_IDX:
12775 				if (bpfptr_is_null(env->fd_array)) {
12776 					verbose(env, "fd_idx without fd_array is invalid\n");
12777 					return -EPROTO;
12778 				}
12779 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
12780 							    insn[0].imm * sizeof(fd),
12781 							    sizeof(fd)))
12782 					return -EFAULT;
12783 				break;
12784 			default:
12785 				fd = insn[0].imm;
12786 				break;
12787 			}
12788 
12789 			f = fdget(fd);
12790 			map = __bpf_map_get(f);
12791 			if (IS_ERR(map)) {
12792 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
12793 					insn[0].imm);
12794 				return PTR_ERR(map);
12795 			}
12796 
12797 			err = check_map_prog_compatibility(env, map, env->prog);
12798 			if (err) {
12799 				fdput(f);
12800 				return err;
12801 			}
12802 
12803 			aux = &env->insn_aux_data[i];
12804 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
12805 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
12806 				addr = (unsigned long)map;
12807 			} else {
12808 				u32 off = insn[1].imm;
12809 
12810 				if (off >= BPF_MAX_VAR_OFF) {
12811 					verbose(env, "direct value offset of %u is not allowed\n", off);
12812 					fdput(f);
12813 					return -EINVAL;
12814 				}
12815 
12816 				if (!map->ops->map_direct_value_addr) {
12817 					verbose(env, "no direct value access support for this map type\n");
12818 					fdput(f);
12819 					return -EINVAL;
12820 				}
12821 
12822 				err = map->ops->map_direct_value_addr(map, &addr, off);
12823 				if (err) {
12824 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
12825 						map->value_size, off);
12826 					fdput(f);
12827 					return err;
12828 				}
12829 
12830 				aux->map_off = off;
12831 				addr += off;
12832 			}
12833 
12834 			insn[0].imm = (u32)addr;
12835 			insn[1].imm = addr >> 32;
12836 
12837 			/* check whether we recorded this map already */
12838 			for (j = 0; j < env->used_map_cnt; j++) {
12839 				if (env->used_maps[j] == map) {
12840 					aux->map_index = j;
12841 					fdput(f);
12842 					goto next_insn;
12843 				}
12844 			}
12845 
12846 			if (env->used_map_cnt >= MAX_USED_MAPS) {
12847 				fdput(f);
12848 				return -E2BIG;
12849 			}
12850 
12851 			/* hold the map. If the program is rejected by verifier,
12852 			 * the map will be released by release_maps() or it
12853 			 * will be used by the valid program until it's unloaded
12854 			 * and all maps are released in free_used_maps()
12855 			 */
12856 			bpf_map_inc(map);
12857 
12858 			aux->map_index = env->used_map_cnt;
12859 			env->used_maps[env->used_map_cnt++] = map;
12860 
12861 			if (bpf_map_is_cgroup_storage(map) &&
12862 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
12863 				verbose(env, "only one cgroup storage of each type is allowed\n");
12864 				fdput(f);
12865 				return -EBUSY;
12866 			}
12867 
12868 			fdput(f);
12869 next_insn:
12870 			insn++;
12871 			i++;
12872 			continue;
12873 		}
12874 
12875 		/* Basic sanity check before we invest more work here. */
12876 		if (!bpf_opcode_in_insntable(insn->code)) {
12877 			verbose(env, "unknown opcode %02x\n", insn->code);
12878 			return -EINVAL;
12879 		}
12880 	}
12881 
12882 	/* now all pseudo BPF_LD_IMM64 instructions load valid
12883 	 * 'struct bpf_map *' into a register instead of user map_fd.
12884 	 * These pointers will be used later by verifier to validate map access.
12885 	 */
12886 	return 0;
12887 }
12888 
12889 /* drop refcnt of maps used by the rejected program */
12890 static void release_maps(struct bpf_verifier_env *env)
12891 {
12892 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
12893 			     env->used_map_cnt);
12894 }
12895 
12896 /* drop refcnt of maps used by the rejected program */
12897 static void release_btfs(struct bpf_verifier_env *env)
12898 {
12899 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12900 			     env->used_btf_cnt);
12901 }
12902 
12903 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
12904 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
12905 {
12906 	struct bpf_insn *insn = env->prog->insnsi;
12907 	int insn_cnt = env->prog->len;
12908 	int i;
12909 
12910 	for (i = 0; i < insn_cnt; i++, insn++) {
12911 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12912 			continue;
12913 		if (insn->src_reg == BPF_PSEUDO_FUNC)
12914 			continue;
12915 		insn->src_reg = 0;
12916 	}
12917 }
12918 
12919 /* single env->prog->insni[off] instruction was replaced with the range
12920  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
12921  * [0, off) and [off, end) to new locations, so the patched range stays zero
12922  */
12923 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12924 				 struct bpf_insn_aux_data *new_data,
12925 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
12926 {
12927 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
12928 	struct bpf_insn *insn = new_prog->insnsi;
12929 	u32 old_seen = old_data[off].seen;
12930 	u32 prog_len;
12931 	int i;
12932 
12933 	/* aux info at OFF always needs adjustment, no matter fast path
12934 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
12935 	 * original insn at old prog.
12936 	 */
12937 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
12938 
12939 	if (cnt == 1)
12940 		return;
12941 	prog_len = new_prog->len;
12942 
12943 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
12944 	memcpy(new_data + off + cnt - 1, old_data + off,
12945 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
12946 	for (i = off; i < off + cnt - 1; i++) {
12947 		/* Expand insni[off]'s seen count to the patched range. */
12948 		new_data[i].seen = old_seen;
12949 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
12950 	}
12951 	env->insn_aux_data = new_data;
12952 	vfree(old_data);
12953 }
12954 
12955 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
12956 {
12957 	int i;
12958 
12959 	if (len == 1)
12960 		return;
12961 	/* NOTE: fake 'exit' subprog should be updated as well. */
12962 	for (i = 0; i <= env->subprog_cnt; i++) {
12963 		if (env->subprog_info[i].start <= off)
12964 			continue;
12965 		env->subprog_info[i].start += len - 1;
12966 	}
12967 }
12968 
12969 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
12970 {
12971 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12972 	int i, sz = prog->aux->size_poke_tab;
12973 	struct bpf_jit_poke_descriptor *desc;
12974 
12975 	for (i = 0; i < sz; i++) {
12976 		desc = &tab[i];
12977 		if (desc->insn_idx <= off)
12978 			continue;
12979 		desc->insn_idx += len - 1;
12980 	}
12981 }
12982 
12983 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12984 					    const struct bpf_insn *patch, u32 len)
12985 {
12986 	struct bpf_prog *new_prog;
12987 	struct bpf_insn_aux_data *new_data = NULL;
12988 
12989 	if (len > 1) {
12990 		new_data = vzalloc(array_size(env->prog->len + len - 1,
12991 					      sizeof(struct bpf_insn_aux_data)));
12992 		if (!new_data)
12993 			return NULL;
12994 	}
12995 
12996 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
12997 	if (IS_ERR(new_prog)) {
12998 		if (PTR_ERR(new_prog) == -ERANGE)
12999 			verbose(env,
13000 				"insn %d cannot be patched due to 16-bit range\n",
13001 				env->insn_aux_data[off].orig_idx);
13002 		vfree(new_data);
13003 		return NULL;
13004 	}
13005 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
13006 	adjust_subprog_starts(env, off, len);
13007 	adjust_poke_descs(new_prog, off, len);
13008 	return new_prog;
13009 }
13010 
13011 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
13012 					      u32 off, u32 cnt)
13013 {
13014 	int i, j;
13015 
13016 	/* find first prog starting at or after off (first to remove) */
13017 	for (i = 0; i < env->subprog_cnt; i++)
13018 		if (env->subprog_info[i].start >= off)
13019 			break;
13020 	/* find first prog starting at or after off + cnt (first to stay) */
13021 	for (j = i; j < env->subprog_cnt; j++)
13022 		if (env->subprog_info[j].start >= off + cnt)
13023 			break;
13024 	/* if j doesn't start exactly at off + cnt, we are just removing
13025 	 * the front of previous prog
13026 	 */
13027 	if (env->subprog_info[j].start != off + cnt)
13028 		j--;
13029 
13030 	if (j > i) {
13031 		struct bpf_prog_aux *aux = env->prog->aux;
13032 		int move;
13033 
13034 		/* move fake 'exit' subprog as well */
13035 		move = env->subprog_cnt + 1 - j;
13036 
13037 		memmove(env->subprog_info + i,
13038 			env->subprog_info + j,
13039 			sizeof(*env->subprog_info) * move);
13040 		env->subprog_cnt -= j - i;
13041 
13042 		/* remove func_info */
13043 		if (aux->func_info) {
13044 			move = aux->func_info_cnt - j;
13045 
13046 			memmove(aux->func_info + i,
13047 				aux->func_info + j,
13048 				sizeof(*aux->func_info) * move);
13049 			aux->func_info_cnt -= j - i;
13050 			/* func_info->insn_off is set after all code rewrites,
13051 			 * in adjust_btf_func() - no need to adjust
13052 			 */
13053 		}
13054 	} else {
13055 		/* convert i from "first prog to remove" to "first to adjust" */
13056 		if (env->subprog_info[i].start == off)
13057 			i++;
13058 	}
13059 
13060 	/* update fake 'exit' subprog as well */
13061 	for (; i <= env->subprog_cnt; i++)
13062 		env->subprog_info[i].start -= cnt;
13063 
13064 	return 0;
13065 }
13066 
13067 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
13068 				      u32 cnt)
13069 {
13070 	struct bpf_prog *prog = env->prog;
13071 	u32 i, l_off, l_cnt, nr_linfo;
13072 	struct bpf_line_info *linfo;
13073 
13074 	nr_linfo = prog->aux->nr_linfo;
13075 	if (!nr_linfo)
13076 		return 0;
13077 
13078 	linfo = prog->aux->linfo;
13079 
13080 	/* find first line info to remove, count lines to be removed */
13081 	for (i = 0; i < nr_linfo; i++)
13082 		if (linfo[i].insn_off >= off)
13083 			break;
13084 
13085 	l_off = i;
13086 	l_cnt = 0;
13087 	for (; i < nr_linfo; i++)
13088 		if (linfo[i].insn_off < off + cnt)
13089 			l_cnt++;
13090 		else
13091 			break;
13092 
13093 	/* First live insn doesn't match first live linfo, it needs to "inherit"
13094 	 * last removed linfo.  prog is already modified, so prog->len == off
13095 	 * means no live instructions after (tail of the program was removed).
13096 	 */
13097 	if (prog->len != off && l_cnt &&
13098 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
13099 		l_cnt--;
13100 		linfo[--i].insn_off = off + cnt;
13101 	}
13102 
13103 	/* remove the line info which refer to the removed instructions */
13104 	if (l_cnt) {
13105 		memmove(linfo + l_off, linfo + i,
13106 			sizeof(*linfo) * (nr_linfo - i));
13107 
13108 		prog->aux->nr_linfo -= l_cnt;
13109 		nr_linfo = prog->aux->nr_linfo;
13110 	}
13111 
13112 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
13113 	for (i = l_off; i < nr_linfo; i++)
13114 		linfo[i].insn_off -= cnt;
13115 
13116 	/* fix up all subprogs (incl. 'exit') which start >= off */
13117 	for (i = 0; i <= env->subprog_cnt; i++)
13118 		if (env->subprog_info[i].linfo_idx > l_off) {
13119 			/* program may have started in the removed region but
13120 			 * may not be fully removed
13121 			 */
13122 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
13123 				env->subprog_info[i].linfo_idx -= l_cnt;
13124 			else
13125 				env->subprog_info[i].linfo_idx = l_off;
13126 		}
13127 
13128 	return 0;
13129 }
13130 
13131 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
13132 {
13133 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13134 	unsigned int orig_prog_len = env->prog->len;
13135 	int err;
13136 
13137 	if (bpf_prog_is_dev_bound(env->prog->aux))
13138 		bpf_prog_offload_remove_insns(env, off, cnt);
13139 
13140 	err = bpf_remove_insns(env->prog, off, cnt);
13141 	if (err)
13142 		return err;
13143 
13144 	err = adjust_subprog_starts_after_remove(env, off, cnt);
13145 	if (err)
13146 		return err;
13147 
13148 	err = bpf_adj_linfo_after_remove(env, off, cnt);
13149 	if (err)
13150 		return err;
13151 
13152 	memmove(aux_data + off,	aux_data + off + cnt,
13153 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
13154 
13155 	return 0;
13156 }
13157 
13158 /* The verifier does more data flow analysis than llvm and will not
13159  * explore branches that are dead at run time. Malicious programs can
13160  * have dead code too. Therefore replace all dead at-run-time code
13161  * with 'ja -1'.
13162  *
13163  * Just nops are not optimal, e.g. if they would sit at the end of the
13164  * program and through another bug we would manage to jump there, then
13165  * we'd execute beyond program memory otherwise. Returning exception
13166  * code also wouldn't work since we can have subprogs where the dead
13167  * code could be located.
13168  */
13169 static void sanitize_dead_code(struct bpf_verifier_env *env)
13170 {
13171 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13172 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
13173 	struct bpf_insn *insn = env->prog->insnsi;
13174 	const int insn_cnt = env->prog->len;
13175 	int i;
13176 
13177 	for (i = 0; i < insn_cnt; i++) {
13178 		if (aux_data[i].seen)
13179 			continue;
13180 		memcpy(insn + i, &trap, sizeof(trap));
13181 		aux_data[i].zext_dst = false;
13182 	}
13183 }
13184 
13185 static bool insn_is_cond_jump(u8 code)
13186 {
13187 	u8 op;
13188 
13189 	if (BPF_CLASS(code) == BPF_JMP32)
13190 		return true;
13191 
13192 	if (BPF_CLASS(code) != BPF_JMP)
13193 		return false;
13194 
13195 	op = BPF_OP(code);
13196 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
13197 }
13198 
13199 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
13200 {
13201 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13202 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13203 	struct bpf_insn *insn = env->prog->insnsi;
13204 	const int insn_cnt = env->prog->len;
13205 	int i;
13206 
13207 	for (i = 0; i < insn_cnt; i++, insn++) {
13208 		if (!insn_is_cond_jump(insn->code))
13209 			continue;
13210 
13211 		if (!aux_data[i + 1].seen)
13212 			ja.off = insn->off;
13213 		else if (!aux_data[i + 1 + insn->off].seen)
13214 			ja.off = 0;
13215 		else
13216 			continue;
13217 
13218 		if (bpf_prog_is_dev_bound(env->prog->aux))
13219 			bpf_prog_offload_replace_insn(env, i, &ja);
13220 
13221 		memcpy(insn, &ja, sizeof(ja));
13222 	}
13223 }
13224 
13225 static int opt_remove_dead_code(struct bpf_verifier_env *env)
13226 {
13227 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
13228 	int insn_cnt = env->prog->len;
13229 	int i, err;
13230 
13231 	for (i = 0; i < insn_cnt; i++) {
13232 		int j;
13233 
13234 		j = 0;
13235 		while (i + j < insn_cnt && !aux_data[i + j].seen)
13236 			j++;
13237 		if (!j)
13238 			continue;
13239 
13240 		err = verifier_remove_insns(env, i, j);
13241 		if (err)
13242 			return err;
13243 		insn_cnt = env->prog->len;
13244 	}
13245 
13246 	return 0;
13247 }
13248 
13249 static int opt_remove_nops(struct bpf_verifier_env *env)
13250 {
13251 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
13252 	struct bpf_insn *insn = env->prog->insnsi;
13253 	int insn_cnt = env->prog->len;
13254 	int i, err;
13255 
13256 	for (i = 0; i < insn_cnt; i++) {
13257 		if (memcmp(&insn[i], &ja, sizeof(ja)))
13258 			continue;
13259 
13260 		err = verifier_remove_insns(env, i, 1);
13261 		if (err)
13262 			return err;
13263 		insn_cnt--;
13264 		i--;
13265 	}
13266 
13267 	return 0;
13268 }
13269 
13270 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
13271 					 const union bpf_attr *attr)
13272 {
13273 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
13274 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
13275 	int i, patch_len, delta = 0, len = env->prog->len;
13276 	struct bpf_insn *insns = env->prog->insnsi;
13277 	struct bpf_prog *new_prog;
13278 	bool rnd_hi32;
13279 
13280 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
13281 	zext_patch[1] = BPF_ZEXT_REG(0);
13282 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
13283 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
13284 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
13285 	for (i = 0; i < len; i++) {
13286 		int adj_idx = i + delta;
13287 		struct bpf_insn insn;
13288 		int load_reg;
13289 
13290 		insn = insns[adj_idx];
13291 		load_reg = insn_def_regno(&insn);
13292 		if (!aux[adj_idx].zext_dst) {
13293 			u8 code, class;
13294 			u32 imm_rnd;
13295 
13296 			if (!rnd_hi32)
13297 				continue;
13298 
13299 			code = insn.code;
13300 			class = BPF_CLASS(code);
13301 			if (load_reg == -1)
13302 				continue;
13303 
13304 			/* NOTE: arg "reg" (the fourth one) is only used for
13305 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
13306 			 *       here.
13307 			 */
13308 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
13309 				if (class == BPF_LD &&
13310 				    BPF_MODE(code) == BPF_IMM)
13311 					i++;
13312 				continue;
13313 			}
13314 
13315 			/* ctx load could be transformed into wider load. */
13316 			if (class == BPF_LDX &&
13317 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
13318 				continue;
13319 
13320 			imm_rnd = get_random_int();
13321 			rnd_hi32_patch[0] = insn;
13322 			rnd_hi32_patch[1].imm = imm_rnd;
13323 			rnd_hi32_patch[3].dst_reg = load_reg;
13324 			patch = rnd_hi32_patch;
13325 			patch_len = 4;
13326 			goto apply_patch_buffer;
13327 		}
13328 
13329 		/* Add in an zero-extend instruction if a) the JIT has requested
13330 		 * it or b) it's a CMPXCHG.
13331 		 *
13332 		 * The latter is because: BPF_CMPXCHG always loads a value into
13333 		 * R0, therefore always zero-extends. However some archs'
13334 		 * equivalent instruction only does this load when the
13335 		 * comparison is successful. This detail of CMPXCHG is
13336 		 * orthogonal to the general zero-extension behaviour of the
13337 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
13338 		 */
13339 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
13340 			continue;
13341 
13342 		if (WARN_ON(load_reg == -1)) {
13343 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
13344 			return -EFAULT;
13345 		}
13346 
13347 		zext_patch[0] = insn;
13348 		zext_patch[1].dst_reg = load_reg;
13349 		zext_patch[1].src_reg = load_reg;
13350 		patch = zext_patch;
13351 		patch_len = 2;
13352 apply_patch_buffer:
13353 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
13354 		if (!new_prog)
13355 			return -ENOMEM;
13356 		env->prog = new_prog;
13357 		insns = new_prog->insnsi;
13358 		aux = env->insn_aux_data;
13359 		delta += patch_len - 1;
13360 	}
13361 
13362 	return 0;
13363 }
13364 
13365 /* convert load instructions that access fields of a context type into a
13366  * sequence of instructions that access fields of the underlying structure:
13367  *     struct __sk_buff    -> struct sk_buff
13368  *     struct bpf_sock_ops -> struct sock
13369  */
13370 static int convert_ctx_accesses(struct bpf_verifier_env *env)
13371 {
13372 	const struct bpf_verifier_ops *ops = env->ops;
13373 	int i, cnt, size, ctx_field_size, delta = 0;
13374 	const int insn_cnt = env->prog->len;
13375 	struct bpf_insn insn_buf[16], *insn;
13376 	u32 target_size, size_default, off;
13377 	struct bpf_prog *new_prog;
13378 	enum bpf_access_type type;
13379 	bool is_narrower_load;
13380 
13381 	if (ops->gen_prologue || env->seen_direct_write) {
13382 		if (!ops->gen_prologue) {
13383 			verbose(env, "bpf verifier is misconfigured\n");
13384 			return -EINVAL;
13385 		}
13386 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
13387 					env->prog);
13388 		if (cnt >= ARRAY_SIZE(insn_buf)) {
13389 			verbose(env, "bpf verifier is misconfigured\n");
13390 			return -EINVAL;
13391 		} else if (cnt) {
13392 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
13393 			if (!new_prog)
13394 				return -ENOMEM;
13395 
13396 			env->prog = new_prog;
13397 			delta += cnt - 1;
13398 		}
13399 	}
13400 
13401 	if (bpf_prog_is_dev_bound(env->prog->aux))
13402 		return 0;
13403 
13404 	insn = env->prog->insnsi + delta;
13405 
13406 	for (i = 0; i < insn_cnt; i++, insn++) {
13407 		bpf_convert_ctx_access_t convert_ctx_access;
13408 		bool ctx_access;
13409 
13410 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
13411 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
13412 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
13413 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
13414 			type = BPF_READ;
13415 			ctx_access = true;
13416 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
13417 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
13418 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
13419 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
13420 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
13421 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
13422 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
13423 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
13424 			type = BPF_WRITE;
13425 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
13426 		} else {
13427 			continue;
13428 		}
13429 
13430 		if (type == BPF_WRITE &&
13431 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
13432 			struct bpf_insn patch[] = {
13433 				*insn,
13434 				BPF_ST_NOSPEC(),
13435 			};
13436 
13437 			cnt = ARRAY_SIZE(patch);
13438 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
13439 			if (!new_prog)
13440 				return -ENOMEM;
13441 
13442 			delta    += cnt - 1;
13443 			env->prog = new_prog;
13444 			insn      = new_prog->insnsi + i + delta;
13445 			continue;
13446 		}
13447 
13448 		if (!ctx_access)
13449 			continue;
13450 
13451 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
13452 		case PTR_TO_CTX:
13453 			if (!ops->convert_ctx_access)
13454 				continue;
13455 			convert_ctx_access = ops->convert_ctx_access;
13456 			break;
13457 		case PTR_TO_SOCKET:
13458 		case PTR_TO_SOCK_COMMON:
13459 			convert_ctx_access = bpf_sock_convert_ctx_access;
13460 			break;
13461 		case PTR_TO_TCP_SOCK:
13462 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
13463 			break;
13464 		case PTR_TO_XDP_SOCK:
13465 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
13466 			break;
13467 		case PTR_TO_BTF_ID:
13468 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
13469 			if (type == BPF_READ) {
13470 				insn->code = BPF_LDX | BPF_PROBE_MEM |
13471 					BPF_SIZE((insn)->code);
13472 				env->prog->aux->num_exentries++;
13473 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
13474 				verbose(env, "Writes through BTF pointers are not allowed\n");
13475 				return -EINVAL;
13476 			}
13477 			continue;
13478 		default:
13479 			continue;
13480 		}
13481 
13482 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
13483 		size = BPF_LDST_BYTES(insn);
13484 
13485 		/* If the read access is a narrower load of the field,
13486 		 * convert to a 4/8-byte load, to minimum program type specific
13487 		 * convert_ctx_access changes. If conversion is successful,
13488 		 * we will apply proper mask to the result.
13489 		 */
13490 		is_narrower_load = size < ctx_field_size;
13491 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
13492 		off = insn->off;
13493 		if (is_narrower_load) {
13494 			u8 size_code;
13495 
13496 			if (type == BPF_WRITE) {
13497 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
13498 				return -EINVAL;
13499 			}
13500 
13501 			size_code = BPF_H;
13502 			if (ctx_field_size == 4)
13503 				size_code = BPF_W;
13504 			else if (ctx_field_size == 8)
13505 				size_code = BPF_DW;
13506 
13507 			insn->off = off & ~(size_default - 1);
13508 			insn->code = BPF_LDX | BPF_MEM | size_code;
13509 		}
13510 
13511 		target_size = 0;
13512 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
13513 					 &target_size);
13514 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
13515 		    (ctx_field_size && !target_size)) {
13516 			verbose(env, "bpf verifier is misconfigured\n");
13517 			return -EINVAL;
13518 		}
13519 
13520 		if (is_narrower_load && size < target_size) {
13521 			u8 shift = bpf_ctx_narrow_access_offset(
13522 				off, size, size_default) * 8;
13523 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
13524 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
13525 				return -EINVAL;
13526 			}
13527 			if (ctx_field_size <= 4) {
13528 				if (shift)
13529 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
13530 									insn->dst_reg,
13531 									shift);
13532 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
13533 								(1 << size * 8) - 1);
13534 			} else {
13535 				if (shift)
13536 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
13537 									insn->dst_reg,
13538 									shift);
13539 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
13540 								(1ULL << size * 8) - 1);
13541 			}
13542 		}
13543 
13544 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13545 		if (!new_prog)
13546 			return -ENOMEM;
13547 
13548 		delta += cnt - 1;
13549 
13550 		/* keep walking new program and skip insns we just inserted */
13551 		env->prog = new_prog;
13552 		insn      = new_prog->insnsi + i + delta;
13553 	}
13554 
13555 	return 0;
13556 }
13557 
13558 static int jit_subprogs(struct bpf_verifier_env *env)
13559 {
13560 	struct bpf_prog *prog = env->prog, **func, *tmp;
13561 	int i, j, subprog_start, subprog_end = 0, len, subprog;
13562 	struct bpf_map *map_ptr;
13563 	struct bpf_insn *insn;
13564 	void *old_bpf_func;
13565 	int err, num_exentries;
13566 
13567 	if (env->subprog_cnt <= 1)
13568 		return 0;
13569 
13570 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13571 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
13572 			continue;
13573 
13574 		/* Upon error here we cannot fall back to interpreter but
13575 		 * need a hard reject of the program. Thus -EFAULT is
13576 		 * propagated in any case.
13577 		 */
13578 		subprog = find_subprog(env, i + insn->imm + 1);
13579 		if (subprog < 0) {
13580 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
13581 				  i + insn->imm + 1);
13582 			return -EFAULT;
13583 		}
13584 		/* temporarily remember subprog id inside insn instead of
13585 		 * aux_data, since next loop will split up all insns into funcs
13586 		 */
13587 		insn->off = subprog;
13588 		/* remember original imm in case JIT fails and fallback
13589 		 * to interpreter will be needed
13590 		 */
13591 		env->insn_aux_data[i].call_imm = insn->imm;
13592 		/* point imm to __bpf_call_base+1 from JITs point of view */
13593 		insn->imm = 1;
13594 		if (bpf_pseudo_func(insn))
13595 			/* jit (e.g. x86_64) may emit fewer instructions
13596 			 * if it learns a u32 imm is the same as a u64 imm.
13597 			 * Force a non zero here.
13598 			 */
13599 			insn[1].imm = 1;
13600 	}
13601 
13602 	err = bpf_prog_alloc_jited_linfo(prog);
13603 	if (err)
13604 		goto out_undo_insn;
13605 
13606 	err = -ENOMEM;
13607 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
13608 	if (!func)
13609 		goto out_undo_insn;
13610 
13611 	for (i = 0; i < env->subprog_cnt; i++) {
13612 		subprog_start = subprog_end;
13613 		subprog_end = env->subprog_info[i + 1].start;
13614 
13615 		len = subprog_end - subprog_start;
13616 		/* bpf_prog_run() doesn't call subprogs directly,
13617 		 * hence main prog stats include the runtime of subprogs.
13618 		 * subprogs don't have IDs and not reachable via prog_get_next_id
13619 		 * func[i]->stats will never be accessed and stays NULL
13620 		 */
13621 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
13622 		if (!func[i])
13623 			goto out_free;
13624 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
13625 		       len * sizeof(struct bpf_insn));
13626 		func[i]->type = prog->type;
13627 		func[i]->len = len;
13628 		if (bpf_prog_calc_tag(func[i]))
13629 			goto out_free;
13630 		func[i]->is_func = 1;
13631 		func[i]->aux->func_idx = i;
13632 		/* Below members will be freed only at prog->aux */
13633 		func[i]->aux->btf = prog->aux->btf;
13634 		func[i]->aux->func_info = prog->aux->func_info;
13635 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
13636 		func[i]->aux->poke_tab = prog->aux->poke_tab;
13637 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
13638 
13639 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
13640 			struct bpf_jit_poke_descriptor *poke;
13641 
13642 			poke = &prog->aux->poke_tab[j];
13643 			if (poke->insn_idx < subprog_end &&
13644 			    poke->insn_idx >= subprog_start)
13645 				poke->aux = func[i]->aux;
13646 		}
13647 
13648 		func[i]->aux->name[0] = 'F';
13649 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
13650 		func[i]->jit_requested = 1;
13651 		func[i]->blinding_requested = prog->blinding_requested;
13652 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
13653 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
13654 		func[i]->aux->linfo = prog->aux->linfo;
13655 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
13656 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
13657 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
13658 		num_exentries = 0;
13659 		insn = func[i]->insnsi;
13660 		for (j = 0; j < func[i]->len; j++, insn++) {
13661 			if (BPF_CLASS(insn->code) == BPF_LDX &&
13662 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
13663 				num_exentries++;
13664 		}
13665 		func[i]->aux->num_exentries = num_exentries;
13666 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
13667 		func[i] = bpf_int_jit_compile(func[i]);
13668 		if (!func[i]->jited) {
13669 			err = -ENOTSUPP;
13670 			goto out_free;
13671 		}
13672 		cond_resched();
13673 	}
13674 
13675 	/* at this point all bpf functions were successfully JITed
13676 	 * now populate all bpf_calls with correct addresses and
13677 	 * run last pass of JIT
13678 	 */
13679 	for (i = 0; i < env->subprog_cnt; i++) {
13680 		insn = func[i]->insnsi;
13681 		for (j = 0; j < func[i]->len; j++, insn++) {
13682 			if (bpf_pseudo_func(insn)) {
13683 				subprog = insn->off;
13684 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
13685 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
13686 				continue;
13687 			}
13688 			if (!bpf_pseudo_call(insn))
13689 				continue;
13690 			subprog = insn->off;
13691 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
13692 		}
13693 
13694 		/* we use the aux data to keep a list of the start addresses
13695 		 * of the JITed images for each function in the program
13696 		 *
13697 		 * for some architectures, such as powerpc64, the imm field
13698 		 * might not be large enough to hold the offset of the start
13699 		 * address of the callee's JITed image from __bpf_call_base
13700 		 *
13701 		 * in such cases, we can lookup the start address of a callee
13702 		 * by using its subprog id, available from the off field of
13703 		 * the call instruction, as an index for this list
13704 		 */
13705 		func[i]->aux->func = func;
13706 		func[i]->aux->func_cnt = env->subprog_cnt;
13707 	}
13708 	for (i = 0; i < env->subprog_cnt; i++) {
13709 		old_bpf_func = func[i]->bpf_func;
13710 		tmp = bpf_int_jit_compile(func[i]);
13711 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
13712 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
13713 			err = -ENOTSUPP;
13714 			goto out_free;
13715 		}
13716 		cond_resched();
13717 	}
13718 
13719 	/* finally lock prog and jit images for all functions and
13720 	 * populate kallsysm
13721 	 */
13722 	for (i = 0; i < env->subprog_cnt; i++) {
13723 		bpf_prog_lock_ro(func[i]);
13724 		bpf_prog_kallsyms_add(func[i]);
13725 	}
13726 
13727 	/* Last step: make now unused interpreter insns from main
13728 	 * prog consistent for later dump requests, so they can
13729 	 * later look the same as if they were interpreted only.
13730 	 */
13731 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13732 		if (bpf_pseudo_func(insn)) {
13733 			insn[0].imm = env->insn_aux_data[i].call_imm;
13734 			insn[1].imm = insn->off;
13735 			insn->off = 0;
13736 			continue;
13737 		}
13738 		if (!bpf_pseudo_call(insn))
13739 			continue;
13740 		insn->off = env->insn_aux_data[i].call_imm;
13741 		subprog = find_subprog(env, i + insn->off + 1);
13742 		insn->imm = subprog;
13743 	}
13744 
13745 	prog->jited = 1;
13746 	prog->bpf_func = func[0]->bpf_func;
13747 	prog->jited_len = func[0]->jited_len;
13748 	prog->aux->func = func;
13749 	prog->aux->func_cnt = env->subprog_cnt;
13750 	bpf_prog_jit_attempt_done(prog);
13751 	return 0;
13752 out_free:
13753 	/* We failed JIT'ing, so at this point we need to unregister poke
13754 	 * descriptors from subprogs, so that kernel is not attempting to
13755 	 * patch it anymore as we're freeing the subprog JIT memory.
13756 	 */
13757 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13758 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13759 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
13760 	}
13761 	/* At this point we're guaranteed that poke descriptors are not
13762 	 * live anymore. We can just unlink its descriptor table as it's
13763 	 * released with the main prog.
13764 	 */
13765 	for (i = 0; i < env->subprog_cnt; i++) {
13766 		if (!func[i])
13767 			continue;
13768 		func[i]->aux->poke_tab = NULL;
13769 		bpf_jit_free(func[i]);
13770 	}
13771 	kfree(func);
13772 out_undo_insn:
13773 	/* cleanup main prog to be interpreted */
13774 	prog->jit_requested = 0;
13775 	prog->blinding_requested = 0;
13776 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13777 		if (!bpf_pseudo_call(insn))
13778 			continue;
13779 		insn->off = 0;
13780 		insn->imm = env->insn_aux_data[i].call_imm;
13781 	}
13782 	bpf_prog_jit_attempt_done(prog);
13783 	return err;
13784 }
13785 
13786 static int fixup_call_args(struct bpf_verifier_env *env)
13787 {
13788 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13789 	struct bpf_prog *prog = env->prog;
13790 	struct bpf_insn *insn = prog->insnsi;
13791 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
13792 	int i, depth;
13793 #endif
13794 	int err = 0;
13795 
13796 	if (env->prog->jit_requested &&
13797 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
13798 		err = jit_subprogs(env);
13799 		if (err == 0)
13800 			return 0;
13801 		if (err == -EFAULT)
13802 			return err;
13803 	}
13804 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13805 	if (has_kfunc_call) {
13806 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
13807 		return -EINVAL;
13808 	}
13809 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
13810 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
13811 		 * have to be rejected, since interpreter doesn't support them yet.
13812 		 */
13813 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
13814 		return -EINVAL;
13815 	}
13816 	for (i = 0; i < prog->len; i++, insn++) {
13817 		if (bpf_pseudo_func(insn)) {
13818 			/* When JIT fails the progs with callback calls
13819 			 * have to be rejected, since interpreter doesn't support them yet.
13820 			 */
13821 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
13822 			return -EINVAL;
13823 		}
13824 
13825 		if (!bpf_pseudo_call(insn))
13826 			continue;
13827 		depth = get_callee_stack_depth(env, insn, i);
13828 		if (depth < 0)
13829 			return depth;
13830 		bpf_patch_call_args(insn, depth);
13831 	}
13832 	err = 0;
13833 #endif
13834 	return err;
13835 }
13836 
13837 static int fixup_kfunc_call(struct bpf_verifier_env *env,
13838 			    struct bpf_insn *insn)
13839 {
13840 	const struct bpf_kfunc_desc *desc;
13841 
13842 	if (!insn->imm) {
13843 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
13844 		return -EINVAL;
13845 	}
13846 
13847 	/* insn->imm has the btf func_id. Replace it with
13848 	 * an address (relative to __bpf_base_call).
13849 	 */
13850 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
13851 	if (!desc) {
13852 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
13853 			insn->imm);
13854 		return -EFAULT;
13855 	}
13856 
13857 	insn->imm = desc->imm;
13858 
13859 	return 0;
13860 }
13861 
13862 /* Do various post-verification rewrites in a single program pass.
13863  * These rewrites simplify JIT and interpreter implementations.
13864  */
13865 static int do_misc_fixups(struct bpf_verifier_env *env)
13866 {
13867 	struct bpf_prog *prog = env->prog;
13868 	enum bpf_attach_type eatype = prog->expected_attach_type;
13869 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
13870 	struct bpf_insn *insn = prog->insnsi;
13871 	const struct bpf_func_proto *fn;
13872 	const int insn_cnt = prog->len;
13873 	const struct bpf_map_ops *ops;
13874 	struct bpf_insn_aux_data *aux;
13875 	struct bpf_insn insn_buf[16];
13876 	struct bpf_prog *new_prog;
13877 	struct bpf_map *map_ptr;
13878 	int i, ret, cnt, delta = 0;
13879 
13880 	for (i = 0; i < insn_cnt; i++, insn++) {
13881 		/* Make divide-by-zero exceptions impossible. */
13882 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13883 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13884 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
13885 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
13886 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
13887 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13888 			struct bpf_insn *patchlet;
13889 			struct bpf_insn chk_and_div[] = {
13890 				/* [R,W]x div 0 -> 0 */
13891 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13892 					     BPF_JNE | BPF_K, insn->src_reg,
13893 					     0, 2, 0),
13894 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13895 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13896 				*insn,
13897 			};
13898 			struct bpf_insn chk_and_mod[] = {
13899 				/* [R,W]x mod 0 -> [R,W]x */
13900 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13901 					     BPF_JEQ | BPF_K, insn->src_reg,
13902 					     0, 1 + (is64 ? 0 : 1), 0),
13903 				*insn,
13904 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13905 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
13906 			};
13907 
13908 			patchlet = isdiv ? chk_and_div : chk_and_mod;
13909 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
13910 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
13911 
13912 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
13913 			if (!new_prog)
13914 				return -ENOMEM;
13915 
13916 			delta    += cnt - 1;
13917 			env->prog = prog = new_prog;
13918 			insn      = new_prog->insnsi + i + delta;
13919 			continue;
13920 		}
13921 
13922 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
13923 		if (BPF_CLASS(insn->code) == BPF_LD &&
13924 		    (BPF_MODE(insn->code) == BPF_ABS ||
13925 		     BPF_MODE(insn->code) == BPF_IND)) {
13926 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
13927 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13928 				verbose(env, "bpf verifier is misconfigured\n");
13929 				return -EINVAL;
13930 			}
13931 
13932 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13933 			if (!new_prog)
13934 				return -ENOMEM;
13935 
13936 			delta    += cnt - 1;
13937 			env->prog = prog = new_prog;
13938 			insn      = new_prog->insnsi + i + delta;
13939 			continue;
13940 		}
13941 
13942 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
13943 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
13944 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
13945 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
13946 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
13947 			struct bpf_insn *patch = &insn_buf[0];
13948 			bool issrc, isneg, isimm;
13949 			u32 off_reg;
13950 
13951 			aux = &env->insn_aux_data[i + delta];
13952 			if (!aux->alu_state ||
13953 			    aux->alu_state == BPF_ALU_NON_POINTER)
13954 				continue;
13955 
13956 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
13957 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
13958 				BPF_ALU_SANITIZE_SRC;
13959 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
13960 
13961 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
13962 			if (isimm) {
13963 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13964 			} else {
13965 				if (isneg)
13966 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13967 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13968 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
13969 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
13970 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
13971 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
13972 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
13973 			}
13974 			if (!issrc)
13975 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13976 			insn->src_reg = BPF_REG_AX;
13977 			if (isneg)
13978 				insn->code = insn->code == code_add ?
13979 					     code_sub : code_add;
13980 			*patch++ = *insn;
13981 			if (issrc && isneg && !isimm)
13982 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13983 			cnt = patch - insn_buf;
13984 
13985 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13986 			if (!new_prog)
13987 				return -ENOMEM;
13988 
13989 			delta    += cnt - 1;
13990 			env->prog = prog = new_prog;
13991 			insn      = new_prog->insnsi + i + delta;
13992 			continue;
13993 		}
13994 
13995 		if (insn->code != (BPF_JMP | BPF_CALL))
13996 			continue;
13997 		if (insn->src_reg == BPF_PSEUDO_CALL)
13998 			continue;
13999 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14000 			ret = fixup_kfunc_call(env, insn);
14001 			if (ret)
14002 				return ret;
14003 			continue;
14004 		}
14005 
14006 		if (insn->imm == BPF_FUNC_get_route_realm)
14007 			prog->dst_needed = 1;
14008 		if (insn->imm == BPF_FUNC_get_prandom_u32)
14009 			bpf_user_rnd_init_once();
14010 		if (insn->imm == BPF_FUNC_override_return)
14011 			prog->kprobe_override = 1;
14012 		if (insn->imm == BPF_FUNC_tail_call) {
14013 			/* If we tail call into other programs, we
14014 			 * cannot make any assumptions since they can
14015 			 * be replaced dynamically during runtime in
14016 			 * the program array.
14017 			 */
14018 			prog->cb_access = 1;
14019 			if (!allow_tail_call_in_subprogs(env))
14020 				prog->aux->stack_depth = MAX_BPF_STACK;
14021 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
14022 
14023 			/* mark bpf_tail_call as different opcode to avoid
14024 			 * conditional branch in the interpreter for every normal
14025 			 * call and to prevent accidental JITing by JIT compiler
14026 			 * that doesn't support bpf_tail_call yet
14027 			 */
14028 			insn->imm = 0;
14029 			insn->code = BPF_JMP | BPF_TAIL_CALL;
14030 
14031 			aux = &env->insn_aux_data[i + delta];
14032 			if (env->bpf_capable && !prog->blinding_requested &&
14033 			    prog->jit_requested &&
14034 			    !bpf_map_key_poisoned(aux) &&
14035 			    !bpf_map_ptr_poisoned(aux) &&
14036 			    !bpf_map_ptr_unpriv(aux)) {
14037 				struct bpf_jit_poke_descriptor desc = {
14038 					.reason = BPF_POKE_REASON_TAIL_CALL,
14039 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
14040 					.tail_call.key = bpf_map_key_immediate(aux),
14041 					.insn_idx = i + delta,
14042 				};
14043 
14044 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
14045 				if (ret < 0) {
14046 					verbose(env, "adding tail call poke descriptor failed\n");
14047 					return ret;
14048 				}
14049 
14050 				insn->imm = ret + 1;
14051 				continue;
14052 			}
14053 
14054 			if (!bpf_map_ptr_unpriv(aux))
14055 				continue;
14056 
14057 			/* instead of changing every JIT dealing with tail_call
14058 			 * emit two extra insns:
14059 			 * if (index >= max_entries) goto out;
14060 			 * index &= array->index_mask;
14061 			 * to avoid out-of-bounds cpu speculation
14062 			 */
14063 			if (bpf_map_ptr_poisoned(aux)) {
14064 				verbose(env, "tail_call abusing map_ptr\n");
14065 				return -EINVAL;
14066 			}
14067 
14068 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14069 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
14070 						  map_ptr->max_entries, 2);
14071 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
14072 						    container_of(map_ptr,
14073 								 struct bpf_array,
14074 								 map)->index_mask);
14075 			insn_buf[2] = *insn;
14076 			cnt = 3;
14077 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14078 			if (!new_prog)
14079 				return -ENOMEM;
14080 
14081 			delta    += cnt - 1;
14082 			env->prog = prog = new_prog;
14083 			insn      = new_prog->insnsi + i + delta;
14084 			continue;
14085 		}
14086 
14087 		if (insn->imm == BPF_FUNC_timer_set_callback) {
14088 			/* The verifier will process callback_fn as many times as necessary
14089 			 * with different maps and the register states prepared by
14090 			 * set_timer_callback_state will be accurate.
14091 			 *
14092 			 * The following use case is valid:
14093 			 *   map1 is shared by prog1, prog2, prog3.
14094 			 *   prog1 calls bpf_timer_init for some map1 elements
14095 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
14096 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
14097 			 *   prog3 calls bpf_timer_start for some map1 elements.
14098 			 *     Those that were not both bpf_timer_init-ed and
14099 			 *     bpf_timer_set_callback-ed will return -EINVAL.
14100 			 */
14101 			struct bpf_insn ld_addrs[2] = {
14102 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
14103 			};
14104 
14105 			insn_buf[0] = ld_addrs[0];
14106 			insn_buf[1] = ld_addrs[1];
14107 			insn_buf[2] = *insn;
14108 			cnt = 3;
14109 
14110 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14111 			if (!new_prog)
14112 				return -ENOMEM;
14113 
14114 			delta    += cnt - 1;
14115 			env->prog = prog = new_prog;
14116 			insn      = new_prog->insnsi + i + delta;
14117 			goto patch_call_imm;
14118 		}
14119 
14120 		if (insn->imm == BPF_FUNC_task_storage_get ||
14121 		    insn->imm == BPF_FUNC_sk_storage_get ||
14122 		    insn->imm == BPF_FUNC_inode_storage_get) {
14123 			if (env->prog->aux->sleepable)
14124 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
14125 			else
14126 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
14127 			insn_buf[1] = *insn;
14128 			cnt = 2;
14129 
14130 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14131 			if (!new_prog)
14132 				return -ENOMEM;
14133 
14134 			delta += cnt - 1;
14135 			env->prog = prog = new_prog;
14136 			insn = new_prog->insnsi + i + delta;
14137 			goto patch_call_imm;
14138 		}
14139 
14140 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
14141 		 * and other inlining handlers are currently limited to 64 bit
14142 		 * only.
14143 		 */
14144 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
14145 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
14146 		     insn->imm == BPF_FUNC_map_update_elem ||
14147 		     insn->imm == BPF_FUNC_map_delete_elem ||
14148 		     insn->imm == BPF_FUNC_map_push_elem   ||
14149 		     insn->imm == BPF_FUNC_map_pop_elem    ||
14150 		     insn->imm == BPF_FUNC_map_peek_elem   ||
14151 		     insn->imm == BPF_FUNC_redirect_map    ||
14152 		     insn->imm == BPF_FUNC_for_each_map_elem ||
14153 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
14154 			aux = &env->insn_aux_data[i + delta];
14155 			if (bpf_map_ptr_poisoned(aux))
14156 				goto patch_call_imm;
14157 
14158 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
14159 			ops = map_ptr->ops;
14160 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
14161 			    ops->map_gen_lookup) {
14162 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
14163 				if (cnt == -EOPNOTSUPP)
14164 					goto patch_map_ops_generic;
14165 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
14166 					verbose(env, "bpf verifier is misconfigured\n");
14167 					return -EINVAL;
14168 				}
14169 
14170 				new_prog = bpf_patch_insn_data(env, i + delta,
14171 							       insn_buf, cnt);
14172 				if (!new_prog)
14173 					return -ENOMEM;
14174 
14175 				delta    += cnt - 1;
14176 				env->prog = prog = new_prog;
14177 				insn      = new_prog->insnsi + i + delta;
14178 				continue;
14179 			}
14180 
14181 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
14182 				     (void *(*)(struct bpf_map *map, void *key))NULL));
14183 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
14184 				     (int (*)(struct bpf_map *map, void *key))NULL));
14185 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
14186 				     (int (*)(struct bpf_map *map, void *key, void *value,
14187 					      u64 flags))NULL));
14188 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
14189 				     (int (*)(struct bpf_map *map, void *value,
14190 					      u64 flags))NULL));
14191 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
14192 				     (int (*)(struct bpf_map *map, void *value))NULL));
14193 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
14194 				     (int (*)(struct bpf_map *map, void *value))NULL));
14195 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
14196 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
14197 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
14198 				     (int (*)(struct bpf_map *map,
14199 					      bpf_callback_t callback_fn,
14200 					      void *callback_ctx,
14201 					      u64 flags))NULL));
14202 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
14203 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
14204 
14205 patch_map_ops_generic:
14206 			switch (insn->imm) {
14207 			case BPF_FUNC_map_lookup_elem:
14208 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
14209 				continue;
14210 			case BPF_FUNC_map_update_elem:
14211 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
14212 				continue;
14213 			case BPF_FUNC_map_delete_elem:
14214 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
14215 				continue;
14216 			case BPF_FUNC_map_push_elem:
14217 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
14218 				continue;
14219 			case BPF_FUNC_map_pop_elem:
14220 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
14221 				continue;
14222 			case BPF_FUNC_map_peek_elem:
14223 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
14224 				continue;
14225 			case BPF_FUNC_redirect_map:
14226 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
14227 				continue;
14228 			case BPF_FUNC_for_each_map_elem:
14229 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
14230 				continue;
14231 			case BPF_FUNC_map_lookup_percpu_elem:
14232 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
14233 				continue;
14234 			}
14235 
14236 			goto patch_call_imm;
14237 		}
14238 
14239 		/* Implement bpf_jiffies64 inline. */
14240 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
14241 		    insn->imm == BPF_FUNC_jiffies64) {
14242 			struct bpf_insn ld_jiffies_addr[2] = {
14243 				BPF_LD_IMM64(BPF_REG_0,
14244 					     (unsigned long)&jiffies),
14245 			};
14246 
14247 			insn_buf[0] = ld_jiffies_addr[0];
14248 			insn_buf[1] = ld_jiffies_addr[1];
14249 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
14250 						  BPF_REG_0, 0);
14251 			cnt = 3;
14252 
14253 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
14254 						       cnt);
14255 			if (!new_prog)
14256 				return -ENOMEM;
14257 
14258 			delta    += cnt - 1;
14259 			env->prog = prog = new_prog;
14260 			insn      = new_prog->insnsi + i + delta;
14261 			continue;
14262 		}
14263 
14264 		/* Implement bpf_get_func_arg inline. */
14265 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14266 		    insn->imm == BPF_FUNC_get_func_arg) {
14267 			/* Load nr_args from ctx - 8 */
14268 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14269 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
14270 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
14271 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
14272 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
14273 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14274 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
14275 			insn_buf[7] = BPF_JMP_A(1);
14276 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
14277 			cnt = 9;
14278 
14279 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14280 			if (!new_prog)
14281 				return -ENOMEM;
14282 
14283 			delta    += cnt - 1;
14284 			env->prog = prog = new_prog;
14285 			insn      = new_prog->insnsi + i + delta;
14286 			continue;
14287 		}
14288 
14289 		/* Implement bpf_get_func_ret inline. */
14290 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14291 		    insn->imm == BPF_FUNC_get_func_ret) {
14292 			if (eatype == BPF_TRACE_FEXIT ||
14293 			    eatype == BPF_MODIFY_RETURN) {
14294 				/* Load nr_args from ctx - 8 */
14295 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14296 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
14297 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
14298 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
14299 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
14300 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
14301 				cnt = 6;
14302 			} else {
14303 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
14304 				cnt = 1;
14305 			}
14306 
14307 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
14308 			if (!new_prog)
14309 				return -ENOMEM;
14310 
14311 			delta    += cnt - 1;
14312 			env->prog = prog = new_prog;
14313 			insn      = new_prog->insnsi + i + delta;
14314 			continue;
14315 		}
14316 
14317 		/* Implement get_func_arg_cnt inline. */
14318 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14319 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
14320 			/* Load nr_args from ctx - 8 */
14321 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
14322 
14323 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14324 			if (!new_prog)
14325 				return -ENOMEM;
14326 
14327 			env->prog = prog = new_prog;
14328 			insn      = new_prog->insnsi + i + delta;
14329 			continue;
14330 		}
14331 
14332 		/* Implement bpf_get_func_ip inline. */
14333 		if (prog_type == BPF_PROG_TYPE_TRACING &&
14334 		    insn->imm == BPF_FUNC_get_func_ip) {
14335 			/* Load IP address from ctx - 16 */
14336 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
14337 
14338 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
14339 			if (!new_prog)
14340 				return -ENOMEM;
14341 
14342 			env->prog = prog = new_prog;
14343 			insn      = new_prog->insnsi + i + delta;
14344 			continue;
14345 		}
14346 
14347 patch_call_imm:
14348 		fn = env->ops->get_func_proto(insn->imm, env->prog);
14349 		/* all functions that have prototype and verifier allowed
14350 		 * programs to call them, must be real in-kernel functions
14351 		 */
14352 		if (!fn->func) {
14353 			verbose(env,
14354 				"kernel subsystem misconfigured func %s#%d\n",
14355 				func_id_name(insn->imm), insn->imm);
14356 			return -EFAULT;
14357 		}
14358 		insn->imm = fn->func - __bpf_call_base;
14359 	}
14360 
14361 	/* Since poke tab is now finalized, publish aux to tracker. */
14362 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
14363 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
14364 		if (!map_ptr->ops->map_poke_track ||
14365 		    !map_ptr->ops->map_poke_untrack ||
14366 		    !map_ptr->ops->map_poke_run) {
14367 			verbose(env, "bpf verifier is misconfigured\n");
14368 			return -EINVAL;
14369 		}
14370 
14371 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
14372 		if (ret < 0) {
14373 			verbose(env, "tracking tail call prog failed\n");
14374 			return ret;
14375 		}
14376 	}
14377 
14378 	sort_kfunc_descs_by_imm(env->prog);
14379 
14380 	return 0;
14381 }
14382 
14383 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
14384 					int position,
14385 					s32 stack_base,
14386 					u32 callback_subprogno,
14387 					u32 *cnt)
14388 {
14389 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
14390 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
14391 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
14392 	int reg_loop_max = BPF_REG_6;
14393 	int reg_loop_cnt = BPF_REG_7;
14394 	int reg_loop_ctx = BPF_REG_8;
14395 
14396 	struct bpf_prog *new_prog;
14397 	u32 callback_start;
14398 	u32 call_insn_offset;
14399 	s32 callback_offset;
14400 
14401 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
14402 	 * be careful to modify this code in sync.
14403 	 */
14404 	struct bpf_insn insn_buf[] = {
14405 		/* Return error and jump to the end of the patch if
14406 		 * expected number of iterations is too big.
14407 		 */
14408 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
14409 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
14410 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
14411 		/* spill R6, R7, R8 to use these as loop vars */
14412 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
14413 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
14414 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
14415 		/* initialize loop vars */
14416 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
14417 		BPF_MOV32_IMM(reg_loop_cnt, 0),
14418 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
14419 		/* loop header,
14420 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
14421 		 */
14422 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
14423 		/* callback call,
14424 		 * correct callback offset would be set after patching
14425 		 */
14426 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
14427 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
14428 		BPF_CALL_REL(0),
14429 		/* increment loop counter */
14430 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
14431 		/* jump to loop header if callback returned 0 */
14432 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
14433 		/* return value of bpf_loop,
14434 		 * set R0 to the number of iterations
14435 		 */
14436 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
14437 		/* restore original values of R6, R7, R8 */
14438 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
14439 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
14440 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
14441 	};
14442 
14443 	*cnt = ARRAY_SIZE(insn_buf);
14444 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
14445 	if (!new_prog)
14446 		return new_prog;
14447 
14448 	/* callback start is known only after patching */
14449 	callback_start = env->subprog_info[callback_subprogno].start;
14450 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
14451 	call_insn_offset = position + 12;
14452 	callback_offset = callback_start - call_insn_offset - 1;
14453 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
14454 
14455 	return new_prog;
14456 }
14457 
14458 static bool is_bpf_loop_call(struct bpf_insn *insn)
14459 {
14460 	return insn->code == (BPF_JMP | BPF_CALL) &&
14461 		insn->src_reg == 0 &&
14462 		insn->imm == BPF_FUNC_loop;
14463 }
14464 
14465 /* For all sub-programs in the program (including main) check
14466  * insn_aux_data to see if there are bpf_loop calls that require
14467  * inlining. If such calls are found the calls are replaced with a
14468  * sequence of instructions produced by `inline_bpf_loop` function and
14469  * subprog stack_depth is increased by the size of 3 registers.
14470  * This stack space is used to spill values of the R6, R7, R8.  These
14471  * registers are used to store the loop bound, counter and context
14472  * variables.
14473  */
14474 static int optimize_bpf_loop(struct bpf_verifier_env *env)
14475 {
14476 	struct bpf_subprog_info *subprogs = env->subprog_info;
14477 	int i, cur_subprog = 0, cnt, delta = 0;
14478 	struct bpf_insn *insn = env->prog->insnsi;
14479 	int insn_cnt = env->prog->len;
14480 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
14481 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14482 	u16 stack_depth_extra = 0;
14483 
14484 	for (i = 0; i < insn_cnt; i++, insn++) {
14485 		struct bpf_loop_inline_state *inline_state =
14486 			&env->insn_aux_data[i + delta].loop_inline_state;
14487 
14488 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
14489 			struct bpf_prog *new_prog;
14490 
14491 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
14492 			new_prog = inline_bpf_loop(env,
14493 						   i + delta,
14494 						   -(stack_depth + stack_depth_extra),
14495 						   inline_state->callback_subprogno,
14496 						   &cnt);
14497 			if (!new_prog)
14498 				return -ENOMEM;
14499 
14500 			delta     += cnt - 1;
14501 			env->prog  = new_prog;
14502 			insn       = new_prog->insnsi + i + delta;
14503 		}
14504 
14505 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
14506 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
14507 			cur_subprog++;
14508 			stack_depth = subprogs[cur_subprog].stack_depth;
14509 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
14510 			stack_depth_extra = 0;
14511 		}
14512 	}
14513 
14514 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14515 
14516 	return 0;
14517 }
14518 
14519 static void free_states(struct bpf_verifier_env *env)
14520 {
14521 	struct bpf_verifier_state_list *sl, *sln;
14522 	int i;
14523 
14524 	sl = env->free_list;
14525 	while (sl) {
14526 		sln = sl->next;
14527 		free_verifier_state(&sl->state, false);
14528 		kfree(sl);
14529 		sl = sln;
14530 	}
14531 	env->free_list = NULL;
14532 
14533 	if (!env->explored_states)
14534 		return;
14535 
14536 	for (i = 0; i < state_htab_size(env); i++) {
14537 		sl = env->explored_states[i];
14538 
14539 		while (sl) {
14540 			sln = sl->next;
14541 			free_verifier_state(&sl->state, false);
14542 			kfree(sl);
14543 			sl = sln;
14544 		}
14545 		env->explored_states[i] = NULL;
14546 	}
14547 }
14548 
14549 static int do_check_common(struct bpf_verifier_env *env, int subprog)
14550 {
14551 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
14552 	struct bpf_verifier_state *state;
14553 	struct bpf_reg_state *regs;
14554 	int ret, i;
14555 
14556 	env->prev_linfo = NULL;
14557 	env->pass_cnt++;
14558 
14559 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
14560 	if (!state)
14561 		return -ENOMEM;
14562 	state->curframe = 0;
14563 	state->speculative = false;
14564 	state->branches = 1;
14565 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
14566 	if (!state->frame[0]) {
14567 		kfree(state);
14568 		return -ENOMEM;
14569 	}
14570 	env->cur_state = state;
14571 	init_func_state(env, state->frame[0],
14572 			BPF_MAIN_FUNC /* callsite */,
14573 			0 /* frameno */,
14574 			subprog);
14575 
14576 	regs = state->frame[state->curframe]->regs;
14577 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
14578 		ret = btf_prepare_func_args(env, subprog, regs);
14579 		if (ret)
14580 			goto out;
14581 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
14582 			if (regs[i].type == PTR_TO_CTX)
14583 				mark_reg_known_zero(env, regs, i);
14584 			else if (regs[i].type == SCALAR_VALUE)
14585 				mark_reg_unknown(env, regs, i);
14586 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
14587 				const u32 mem_size = regs[i].mem_size;
14588 
14589 				mark_reg_known_zero(env, regs, i);
14590 				regs[i].mem_size = mem_size;
14591 				regs[i].id = ++env->id_gen;
14592 			}
14593 		}
14594 	} else {
14595 		/* 1st arg to a function */
14596 		regs[BPF_REG_1].type = PTR_TO_CTX;
14597 		mark_reg_known_zero(env, regs, BPF_REG_1);
14598 		ret = btf_check_subprog_arg_match(env, subprog, regs);
14599 		if (ret == -EFAULT)
14600 			/* unlikely verifier bug. abort.
14601 			 * ret == 0 and ret < 0 are sadly acceptable for
14602 			 * main() function due to backward compatibility.
14603 			 * Like socket filter program may be written as:
14604 			 * int bpf_prog(struct pt_regs *ctx)
14605 			 * and never dereference that ctx in the program.
14606 			 * 'struct pt_regs' is a type mismatch for socket
14607 			 * filter that should be using 'struct __sk_buff'.
14608 			 */
14609 			goto out;
14610 	}
14611 
14612 	ret = do_check(env);
14613 out:
14614 	/* check for NULL is necessary, since cur_state can be freed inside
14615 	 * do_check() under memory pressure.
14616 	 */
14617 	if (env->cur_state) {
14618 		free_verifier_state(env->cur_state, true);
14619 		env->cur_state = NULL;
14620 	}
14621 	while (!pop_stack(env, NULL, NULL, false));
14622 	if (!ret && pop_log)
14623 		bpf_vlog_reset(&env->log, 0);
14624 	free_states(env);
14625 	return ret;
14626 }
14627 
14628 /* Verify all global functions in a BPF program one by one based on their BTF.
14629  * All global functions must pass verification. Otherwise the whole program is rejected.
14630  * Consider:
14631  * int bar(int);
14632  * int foo(int f)
14633  * {
14634  *    return bar(f);
14635  * }
14636  * int bar(int b)
14637  * {
14638  *    ...
14639  * }
14640  * foo() will be verified first for R1=any_scalar_value. During verification it
14641  * will be assumed that bar() already verified successfully and call to bar()
14642  * from foo() will be checked for type match only. Later bar() will be verified
14643  * independently to check that it's safe for R1=any_scalar_value.
14644  */
14645 static int do_check_subprogs(struct bpf_verifier_env *env)
14646 {
14647 	struct bpf_prog_aux *aux = env->prog->aux;
14648 	int i, ret;
14649 
14650 	if (!aux->func_info)
14651 		return 0;
14652 
14653 	for (i = 1; i < env->subprog_cnt; i++) {
14654 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
14655 			continue;
14656 		env->insn_idx = env->subprog_info[i].start;
14657 		WARN_ON_ONCE(env->insn_idx == 0);
14658 		ret = do_check_common(env, i);
14659 		if (ret) {
14660 			return ret;
14661 		} else if (env->log.level & BPF_LOG_LEVEL) {
14662 			verbose(env,
14663 				"Func#%d is safe for any args that match its prototype\n",
14664 				i);
14665 		}
14666 	}
14667 	return 0;
14668 }
14669 
14670 static int do_check_main(struct bpf_verifier_env *env)
14671 {
14672 	int ret;
14673 
14674 	env->insn_idx = 0;
14675 	ret = do_check_common(env, 0);
14676 	if (!ret)
14677 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14678 	return ret;
14679 }
14680 
14681 
14682 static void print_verification_stats(struct bpf_verifier_env *env)
14683 {
14684 	int i;
14685 
14686 	if (env->log.level & BPF_LOG_STATS) {
14687 		verbose(env, "verification time %lld usec\n",
14688 			div_u64(env->verification_time, 1000));
14689 		verbose(env, "stack depth ");
14690 		for (i = 0; i < env->subprog_cnt; i++) {
14691 			u32 depth = env->subprog_info[i].stack_depth;
14692 
14693 			verbose(env, "%d", depth);
14694 			if (i + 1 < env->subprog_cnt)
14695 				verbose(env, "+");
14696 		}
14697 		verbose(env, "\n");
14698 	}
14699 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
14700 		"total_states %d peak_states %d mark_read %d\n",
14701 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
14702 		env->max_states_per_insn, env->total_states,
14703 		env->peak_states, env->longest_mark_read_walk);
14704 }
14705 
14706 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
14707 {
14708 	const struct btf_type *t, *func_proto;
14709 	const struct bpf_struct_ops *st_ops;
14710 	const struct btf_member *member;
14711 	struct bpf_prog *prog = env->prog;
14712 	u32 btf_id, member_idx;
14713 	const char *mname;
14714 
14715 	if (!prog->gpl_compatible) {
14716 		verbose(env, "struct ops programs must have a GPL compatible license\n");
14717 		return -EINVAL;
14718 	}
14719 
14720 	btf_id = prog->aux->attach_btf_id;
14721 	st_ops = bpf_struct_ops_find(btf_id);
14722 	if (!st_ops) {
14723 		verbose(env, "attach_btf_id %u is not a supported struct\n",
14724 			btf_id);
14725 		return -ENOTSUPP;
14726 	}
14727 
14728 	t = st_ops->type;
14729 	member_idx = prog->expected_attach_type;
14730 	if (member_idx >= btf_type_vlen(t)) {
14731 		verbose(env, "attach to invalid member idx %u of struct %s\n",
14732 			member_idx, st_ops->name);
14733 		return -EINVAL;
14734 	}
14735 
14736 	member = &btf_type_member(t)[member_idx];
14737 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
14738 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
14739 					       NULL);
14740 	if (!func_proto) {
14741 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
14742 			mname, member_idx, st_ops->name);
14743 		return -EINVAL;
14744 	}
14745 
14746 	if (st_ops->check_member) {
14747 		int err = st_ops->check_member(t, member);
14748 
14749 		if (err) {
14750 			verbose(env, "attach to unsupported member %s of struct %s\n",
14751 				mname, st_ops->name);
14752 			return err;
14753 		}
14754 	}
14755 
14756 	prog->aux->attach_func_proto = func_proto;
14757 	prog->aux->attach_func_name = mname;
14758 	env->ops = st_ops->verifier_ops;
14759 
14760 	return 0;
14761 }
14762 #define SECURITY_PREFIX "security_"
14763 
14764 static int check_attach_modify_return(unsigned long addr, const char *func_name)
14765 {
14766 	if (within_error_injection_list(addr) ||
14767 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
14768 		return 0;
14769 
14770 	return -EINVAL;
14771 }
14772 
14773 /* list of non-sleepable functions that are otherwise on
14774  * ALLOW_ERROR_INJECTION list
14775  */
14776 BTF_SET_START(btf_non_sleepable_error_inject)
14777 /* Three functions below can be called from sleepable and non-sleepable context.
14778  * Assume non-sleepable from bpf safety point of view.
14779  */
14780 BTF_ID(func, __filemap_add_folio)
14781 BTF_ID(func, should_fail_alloc_page)
14782 BTF_ID(func, should_failslab)
14783 BTF_SET_END(btf_non_sleepable_error_inject)
14784 
14785 static int check_non_sleepable_error_inject(u32 btf_id)
14786 {
14787 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
14788 }
14789 
14790 int bpf_check_attach_target(struct bpf_verifier_log *log,
14791 			    const struct bpf_prog *prog,
14792 			    const struct bpf_prog *tgt_prog,
14793 			    u32 btf_id,
14794 			    struct bpf_attach_target_info *tgt_info)
14795 {
14796 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
14797 	const char prefix[] = "btf_trace_";
14798 	int ret = 0, subprog = -1, i;
14799 	const struct btf_type *t;
14800 	bool conservative = true;
14801 	const char *tname;
14802 	struct btf *btf;
14803 	long addr = 0;
14804 
14805 	if (!btf_id) {
14806 		bpf_log(log, "Tracing programs must provide btf_id\n");
14807 		return -EINVAL;
14808 	}
14809 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
14810 	if (!btf) {
14811 		bpf_log(log,
14812 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
14813 		return -EINVAL;
14814 	}
14815 	t = btf_type_by_id(btf, btf_id);
14816 	if (!t) {
14817 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
14818 		return -EINVAL;
14819 	}
14820 	tname = btf_name_by_offset(btf, t->name_off);
14821 	if (!tname) {
14822 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
14823 		return -EINVAL;
14824 	}
14825 	if (tgt_prog) {
14826 		struct bpf_prog_aux *aux = tgt_prog->aux;
14827 
14828 		for (i = 0; i < aux->func_info_cnt; i++)
14829 			if (aux->func_info[i].type_id == btf_id) {
14830 				subprog = i;
14831 				break;
14832 			}
14833 		if (subprog == -1) {
14834 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
14835 			return -EINVAL;
14836 		}
14837 		conservative = aux->func_info_aux[subprog].unreliable;
14838 		if (prog_extension) {
14839 			if (conservative) {
14840 				bpf_log(log,
14841 					"Cannot replace static functions\n");
14842 				return -EINVAL;
14843 			}
14844 			if (!prog->jit_requested) {
14845 				bpf_log(log,
14846 					"Extension programs should be JITed\n");
14847 				return -EINVAL;
14848 			}
14849 		}
14850 		if (!tgt_prog->jited) {
14851 			bpf_log(log, "Can attach to only JITed progs\n");
14852 			return -EINVAL;
14853 		}
14854 		if (tgt_prog->type == prog->type) {
14855 			/* Cannot fentry/fexit another fentry/fexit program.
14856 			 * Cannot attach program extension to another extension.
14857 			 * It's ok to attach fentry/fexit to extension program.
14858 			 */
14859 			bpf_log(log, "Cannot recursively attach\n");
14860 			return -EINVAL;
14861 		}
14862 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
14863 		    prog_extension &&
14864 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
14865 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
14866 			/* Program extensions can extend all program types
14867 			 * except fentry/fexit. The reason is the following.
14868 			 * The fentry/fexit programs are used for performance
14869 			 * analysis, stats and can be attached to any program
14870 			 * type except themselves. When extension program is
14871 			 * replacing XDP function it is necessary to allow
14872 			 * performance analysis of all functions. Both original
14873 			 * XDP program and its program extension. Hence
14874 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
14875 			 * allowed. If extending of fentry/fexit was allowed it
14876 			 * would be possible to create long call chain
14877 			 * fentry->extension->fentry->extension beyond
14878 			 * reasonable stack size. Hence extending fentry is not
14879 			 * allowed.
14880 			 */
14881 			bpf_log(log, "Cannot extend fentry/fexit\n");
14882 			return -EINVAL;
14883 		}
14884 	} else {
14885 		if (prog_extension) {
14886 			bpf_log(log, "Cannot replace kernel functions\n");
14887 			return -EINVAL;
14888 		}
14889 	}
14890 
14891 	switch (prog->expected_attach_type) {
14892 	case BPF_TRACE_RAW_TP:
14893 		if (tgt_prog) {
14894 			bpf_log(log,
14895 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
14896 			return -EINVAL;
14897 		}
14898 		if (!btf_type_is_typedef(t)) {
14899 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
14900 				btf_id);
14901 			return -EINVAL;
14902 		}
14903 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
14904 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
14905 				btf_id, tname);
14906 			return -EINVAL;
14907 		}
14908 		tname += sizeof(prefix) - 1;
14909 		t = btf_type_by_id(btf, t->type);
14910 		if (!btf_type_is_ptr(t))
14911 			/* should never happen in valid vmlinux build */
14912 			return -EINVAL;
14913 		t = btf_type_by_id(btf, t->type);
14914 		if (!btf_type_is_func_proto(t))
14915 			/* should never happen in valid vmlinux build */
14916 			return -EINVAL;
14917 
14918 		break;
14919 	case BPF_TRACE_ITER:
14920 		if (!btf_type_is_func(t)) {
14921 			bpf_log(log, "attach_btf_id %u is not a function\n",
14922 				btf_id);
14923 			return -EINVAL;
14924 		}
14925 		t = btf_type_by_id(btf, t->type);
14926 		if (!btf_type_is_func_proto(t))
14927 			return -EINVAL;
14928 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14929 		if (ret)
14930 			return ret;
14931 		break;
14932 	default:
14933 		if (!prog_extension)
14934 			return -EINVAL;
14935 		fallthrough;
14936 	case BPF_MODIFY_RETURN:
14937 	case BPF_LSM_MAC:
14938 	case BPF_LSM_CGROUP:
14939 	case BPF_TRACE_FENTRY:
14940 	case BPF_TRACE_FEXIT:
14941 		if (!btf_type_is_func(t)) {
14942 			bpf_log(log, "attach_btf_id %u is not a function\n",
14943 				btf_id);
14944 			return -EINVAL;
14945 		}
14946 		if (prog_extension &&
14947 		    btf_check_type_match(log, prog, btf, t))
14948 			return -EINVAL;
14949 		t = btf_type_by_id(btf, t->type);
14950 		if (!btf_type_is_func_proto(t))
14951 			return -EINVAL;
14952 
14953 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
14954 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
14955 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
14956 			return -EINVAL;
14957 
14958 		if (tgt_prog && conservative)
14959 			t = NULL;
14960 
14961 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14962 		if (ret < 0)
14963 			return ret;
14964 
14965 		if (tgt_prog) {
14966 			if (subprog == 0)
14967 				addr = (long) tgt_prog->bpf_func;
14968 			else
14969 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
14970 		} else {
14971 			addr = kallsyms_lookup_name(tname);
14972 			if (!addr) {
14973 				bpf_log(log,
14974 					"The address of function %s cannot be found\n",
14975 					tname);
14976 				return -ENOENT;
14977 			}
14978 		}
14979 
14980 		if (prog->aux->sleepable) {
14981 			ret = -EINVAL;
14982 			switch (prog->type) {
14983 			case BPF_PROG_TYPE_TRACING:
14984 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
14985 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
14986 				 */
14987 				if (!check_non_sleepable_error_inject(btf_id) &&
14988 				    within_error_injection_list(addr))
14989 					ret = 0;
14990 				break;
14991 			case BPF_PROG_TYPE_LSM:
14992 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
14993 				 * Only some of them are sleepable.
14994 				 */
14995 				if (bpf_lsm_is_sleepable_hook(btf_id))
14996 					ret = 0;
14997 				break;
14998 			default:
14999 				break;
15000 			}
15001 			if (ret) {
15002 				bpf_log(log, "%s is not sleepable\n", tname);
15003 				return ret;
15004 			}
15005 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
15006 			if (tgt_prog) {
15007 				bpf_log(log, "can't modify return codes of BPF programs\n");
15008 				return -EINVAL;
15009 			}
15010 			ret = check_attach_modify_return(addr, tname);
15011 			if (ret) {
15012 				bpf_log(log, "%s() is not modifiable\n", tname);
15013 				return ret;
15014 			}
15015 		}
15016 
15017 		break;
15018 	}
15019 	tgt_info->tgt_addr = addr;
15020 	tgt_info->tgt_name = tname;
15021 	tgt_info->tgt_type = t;
15022 	return 0;
15023 }
15024 
15025 BTF_SET_START(btf_id_deny)
15026 BTF_ID_UNUSED
15027 #ifdef CONFIG_SMP
15028 BTF_ID(func, migrate_disable)
15029 BTF_ID(func, migrate_enable)
15030 #endif
15031 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
15032 BTF_ID(func, rcu_read_unlock_strict)
15033 #endif
15034 BTF_SET_END(btf_id_deny)
15035 
15036 static int check_attach_btf_id(struct bpf_verifier_env *env)
15037 {
15038 	struct bpf_prog *prog = env->prog;
15039 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
15040 	struct bpf_attach_target_info tgt_info = {};
15041 	u32 btf_id = prog->aux->attach_btf_id;
15042 	struct bpf_trampoline *tr;
15043 	int ret;
15044 	u64 key;
15045 
15046 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
15047 		if (prog->aux->sleepable)
15048 			/* attach_btf_id checked to be zero already */
15049 			return 0;
15050 		verbose(env, "Syscall programs can only be sleepable\n");
15051 		return -EINVAL;
15052 	}
15053 
15054 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
15055 	    prog->type != BPF_PROG_TYPE_LSM && prog->type != BPF_PROG_TYPE_KPROBE) {
15056 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, and kprobe/uprobe programs can be sleepable\n");
15057 		return -EINVAL;
15058 	}
15059 
15060 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
15061 		return check_struct_ops_btf_id(env);
15062 
15063 	if (prog->type != BPF_PROG_TYPE_TRACING &&
15064 	    prog->type != BPF_PROG_TYPE_LSM &&
15065 	    prog->type != BPF_PROG_TYPE_EXT)
15066 		return 0;
15067 
15068 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
15069 	if (ret)
15070 		return ret;
15071 
15072 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
15073 		/* to make freplace equivalent to their targets, they need to
15074 		 * inherit env->ops and expected_attach_type for the rest of the
15075 		 * verification
15076 		 */
15077 		env->ops = bpf_verifier_ops[tgt_prog->type];
15078 		prog->expected_attach_type = tgt_prog->expected_attach_type;
15079 	}
15080 
15081 	/* store info about the attachment target that will be used later */
15082 	prog->aux->attach_func_proto = tgt_info.tgt_type;
15083 	prog->aux->attach_func_name = tgt_info.tgt_name;
15084 
15085 	if (tgt_prog) {
15086 		prog->aux->saved_dst_prog_type = tgt_prog->type;
15087 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
15088 	}
15089 
15090 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
15091 		prog->aux->attach_btf_trace = true;
15092 		return 0;
15093 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
15094 		if (!bpf_iter_prog_supported(prog))
15095 			return -EINVAL;
15096 		return 0;
15097 	}
15098 
15099 	if (prog->type == BPF_PROG_TYPE_LSM) {
15100 		ret = bpf_lsm_verify_prog(&env->log, prog);
15101 		if (ret < 0)
15102 			return ret;
15103 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
15104 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
15105 		return -EINVAL;
15106 	}
15107 
15108 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
15109 	tr = bpf_trampoline_get(key, &tgt_info);
15110 	if (!tr)
15111 		return -ENOMEM;
15112 
15113 	prog->aux->dst_trampoline = tr;
15114 	return 0;
15115 }
15116 
15117 struct btf *bpf_get_btf_vmlinux(void)
15118 {
15119 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
15120 		mutex_lock(&bpf_verifier_lock);
15121 		if (!btf_vmlinux)
15122 			btf_vmlinux = btf_parse_vmlinux();
15123 		mutex_unlock(&bpf_verifier_lock);
15124 	}
15125 	return btf_vmlinux;
15126 }
15127 
15128 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
15129 {
15130 	u64 start_time = ktime_get_ns();
15131 	struct bpf_verifier_env *env;
15132 	struct bpf_verifier_log *log;
15133 	int i, len, ret = -EINVAL;
15134 	bool is_priv;
15135 
15136 	/* no program is valid */
15137 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
15138 		return -EINVAL;
15139 
15140 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
15141 	 * allocate/free it every time bpf_check() is called
15142 	 */
15143 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
15144 	if (!env)
15145 		return -ENOMEM;
15146 	log = &env->log;
15147 
15148 	len = (*prog)->len;
15149 	env->insn_aux_data =
15150 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
15151 	ret = -ENOMEM;
15152 	if (!env->insn_aux_data)
15153 		goto err_free_env;
15154 	for (i = 0; i < len; i++)
15155 		env->insn_aux_data[i].orig_idx = i;
15156 	env->prog = *prog;
15157 	env->ops = bpf_verifier_ops[env->prog->type];
15158 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
15159 	is_priv = bpf_capable();
15160 
15161 	bpf_get_btf_vmlinux();
15162 
15163 	/* grab the mutex to protect few globals used by verifier */
15164 	if (!is_priv)
15165 		mutex_lock(&bpf_verifier_lock);
15166 
15167 	if (attr->log_level || attr->log_buf || attr->log_size) {
15168 		/* user requested verbose verifier output
15169 		 * and supplied buffer to store the verification trace
15170 		 */
15171 		log->level = attr->log_level;
15172 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
15173 		log->len_total = attr->log_size;
15174 
15175 		/* log attributes have to be sane */
15176 		if (!bpf_verifier_log_attr_valid(log)) {
15177 			ret = -EINVAL;
15178 			goto err_unlock;
15179 		}
15180 	}
15181 
15182 	mark_verifier_state_clean(env);
15183 
15184 	if (IS_ERR(btf_vmlinux)) {
15185 		/* Either gcc or pahole or kernel are broken. */
15186 		verbose(env, "in-kernel BTF is malformed\n");
15187 		ret = PTR_ERR(btf_vmlinux);
15188 		goto skip_full_check;
15189 	}
15190 
15191 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
15192 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
15193 		env->strict_alignment = true;
15194 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
15195 		env->strict_alignment = false;
15196 
15197 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
15198 	env->allow_uninit_stack = bpf_allow_uninit_stack();
15199 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
15200 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
15201 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
15202 	env->bpf_capable = bpf_capable();
15203 
15204 	if (is_priv)
15205 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
15206 
15207 	env->explored_states = kvcalloc(state_htab_size(env),
15208 				       sizeof(struct bpf_verifier_state_list *),
15209 				       GFP_USER);
15210 	ret = -ENOMEM;
15211 	if (!env->explored_states)
15212 		goto skip_full_check;
15213 
15214 	ret = add_subprog_and_kfunc(env);
15215 	if (ret < 0)
15216 		goto skip_full_check;
15217 
15218 	ret = check_subprogs(env);
15219 	if (ret < 0)
15220 		goto skip_full_check;
15221 
15222 	ret = check_btf_info(env, attr, uattr);
15223 	if (ret < 0)
15224 		goto skip_full_check;
15225 
15226 	ret = check_attach_btf_id(env);
15227 	if (ret)
15228 		goto skip_full_check;
15229 
15230 	ret = resolve_pseudo_ldimm64(env);
15231 	if (ret < 0)
15232 		goto skip_full_check;
15233 
15234 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
15235 		ret = bpf_prog_offload_verifier_prep(env->prog);
15236 		if (ret)
15237 			goto skip_full_check;
15238 	}
15239 
15240 	ret = check_cfg(env);
15241 	if (ret < 0)
15242 		goto skip_full_check;
15243 
15244 	ret = do_check_subprogs(env);
15245 	ret = ret ?: do_check_main(env);
15246 
15247 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
15248 		ret = bpf_prog_offload_finalize(env);
15249 
15250 skip_full_check:
15251 	kvfree(env->explored_states);
15252 
15253 	if (ret == 0)
15254 		ret = check_max_stack_depth(env);
15255 
15256 	/* instruction rewrites happen after this point */
15257 	if (ret == 0)
15258 		ret = optimize_bpf_loop(env);
15259 
15260 	if (is_priv) {
15261 		if (ret == 0)
15262 			opt_hard_wire_dead_code_branches(env);
15263 		if (ret == 0)
15264 			ret = opt_remove_dead_code(env);
15265 		if (ret == 0)
15266 			ret = opt_remove_nops(env);
15267 	} else {
15268 		if (ret == 0)
15269 			sanitize_dead_code(env);
15270 	}
15271 
15272 	if (ret == 0)
15273 		/* program is valid, convert *(u32*)(ctx + off) accesses */
15274 		ret = convert_ctx_accesses(env);
15275 
15276 	if (ret == 0)
15277 		ret = do_misc_fixups(env);
15278 
15279 	/* do 32-bit optimization after insn patching has done so those patched
15280 	 * insns could be handled correctly.
15281 	 */
15282 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
15283 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
15284 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
15285 								     : false;
15286 	}
15287 
15288 	if (ret == 0)
15289 		ret = fixup_call_args(env);
15290 
15291 	env->verification_time = ktime_get_ns() - start_time;
15292 	print_verification_stats(env);
15293 	env->prog->aux->verified_insns = env->insn_processed;
15294 
15295 	if (log->level && bpf_verifier_log_full(log))
15296 		ret = -ENOSPC;
15297 	if (log->level && !log->ubuf) {
15298 		ret = -EFAULT;
15299 		goto err_release_maps;
15300 	}
15301 
15302 	if (ret)
15303 		goto err_release_maps;
15304 
15305 	if (env->used_map_cnt) {
15306 		/* if program passed verifier, update used_maps in bpf_prog_info */
15307 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
15308 							  sizeof(env->used_maps[0]),
15309 							  GFP_KERNEL);
15310 
15311 		if (!env->prog->aux->used_maps) {
15312 			ret = -ENOMEM;
15313 			goto err_release_maps;
15314 		}
15315 
15316 		memcpy(env->prog->aux->used_maps, env->used_maps,
15317 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
15318 		env->prog->aux->used_map_cnt = env->used_map_cnt;
15319 	}
15320 	if (env->used_btf_cnt) {
15321 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
15322 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
15323 							  sizeof(env->used_btfs[0]),
15324 							  GFP_KERNEL);
15325 		if (!env->prog->aux->used_btfs) {
15326 			ret = -ENOMEM;
15327 			goto err_release_maps;
15328 		}
15329 
15330 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
15331 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
15332 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
15333 	}
15334 	if (env->used_map_cnt || env->used_btf_cnt) {
15335 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
15336 		 * bpf_ld_imm64 instructions
15337 		 */
15338 		convert_pseudo_ld_imm64(env);
15339 	}
15340 
15341 	adjust_btf_func(env);
15342 
15343 err_release_maps:
15344 	if (!env->prog->aux->used_maps)
15345 		/* if we didn't copy map pointers into bpf_prog_info, release
15346 		 * them now. Otherwise free_used_maps() will release them.
15347 		 */
15348 		release_maps(env);
15349 	if (!env->prog->aux->used_btfs)
15350 		release_btfs(env);
15351 
15352 	/* extension progs temporarily inherit the attach_type of their targets
15353 	   for verification purposes, so set it back to zero before returning
15354 	 */
15355 	if (env->prog->type == BPF_PROG_TYPE_EXT)
15356 		env->prog->expected_attach_type = 0;
15357 
15358 	*prog = env->prog;
15359 err_unlock:
15360 	if (!is_priv)
15361 		mutex_unlock(&bpf_verifier_lock);
15362 	vfree(env->insn_aux_data);
15363 err_free_env:
15364 	kfree(env);
15365 	return ret;
15366 }
15367