1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <uapi/linux/btf.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/bpf.h> 19 #include <linux/btf.h> 20 #include <linux/bpf_verifier.h> 21 #include <linux/filter.h> 22 #include <net/netlink.h> 23 #include <linux/file.h> 24 #include <linux/vmalloc.h> 25 #include <linux/stringify.h> 26 #include <linux/bsearch.h> 27 #include <linux/sort.h> 28 #include <linux/perf_event.h> 29 #include <linux/ctype.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #include <linux/bpf_types.h> 38 #undef BPF_PROG_TYPE 39 #undef BPF_MAP_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all pathes through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns ether pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_STACK 1024 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_PTR_UNPRIV 1UL 183 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 184 POISON_POINTER_DELTA)) 185 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 186 187 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 188 { 189 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 190 } 191 192 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 193 { 194 return aux->map_state & BPF_MAP_PTR_UNPRIV; 195 } 196 197 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 198 const struct bpf_map *map, bool unpriv) 199 { 200 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 201 unpriv |= bpf_map_ptr_unpriv(aux); 202 aux->map_state = (unsigned long)map | 203 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 204 } 205 206 struct bpf_call_arg_meta { 207 struct bpf_map *map_ptr; 208 bool raw_mode; 209 bool pkt_access; 210 int regno; 211 int access_size; 212 s64 msize_smax_value; 213 u64 msize_umax_value; 214 int ref_obj_id; 215 int func_id; 216 }; 217 218 static DEFINE_MUTEX(bpf_verifier_lock); 219 220 static const struct bpf_line_info * 221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 222 { 223 const struct bpf_line_info *linfo; 224 const struct bpf_prog *prog; 225 u32 i, nr_linfo; 226 227 prog = env->prog; 228 nr_linfo = prog->aux->nr_linfo; 229 230 if (!nr_linfo || insn_off >= prog->len) 231 return NULL; 232 233 linfo = prog->aux->linfo; 234 for (i = 1; i < nr_linfo; i++) 235 if (insn_off < linfo[i].insn_off) 236 break; 237 238 return &linfo[i - 1]; 239 } 240 241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 242 va_list args) 243 { 244 unsigned int n; 245 246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 247 248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 249 "verifier log line truncated - local buffer too short\n"); 250 251 n = min(log->len_total - log->len_used - 1, n); 252 log->kbuf[n] = '\0'; 253 254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 255 log->len_used += n; 256 else 257 log->ubuf = NULL; 258 } 259 260 /* log_level controls verbosity level of eBPF verifier. 261 * bpf_verifier_log_write() is used to dump the verification trace to the log, 262 * so the user can figure out what's wrong with the program 263 */ 264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 265 const char *fmt, ...) 266 { 267 va_list args; 268 269 if (!bpf_verifier_log_needed(&env->log)) 270 return; 271 272 va_start(args, fmt); 273 bpf_verifier_vlog(&env->log, fmt, args); 274 va_end(args); 275 } 276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 277 278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 279 { 280 struct bpf_verifier_env *env = private_data; 281 va_list args; 282 283 if (!bpf_verifier_log_needed(&env->log)) 284 return; 285 286 va_start(args, fmt); 287 bpf_verifier_vlog(&env->log, fmt, args); 288 va_end(args); 289 } 290 291 static const char *ltrim(const char *s) 292 { 293 while (isspace(*s)) 294 s++; 295 296 return s; 297 } 298 299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 300 u32 insn_off, 301 const char *prefix_fmt, ...) 302 { 303 const struct bpf_line_info *linfo; 304 305 if (!bpf_verifier_log_needed(&env->log)) 306 return; 307 308 linfo = find_linfo(env, insn_off); 309 if (!linfo || linfo == env->prev_linfo) 310 return; 311 312 if (prefix_fmt) { 313 va_list args; 314 315 va_start(args, prefix_fmt); 316 bpf_verifier_vlog(&env->log, prefix_fmt, args); 317 va_end(args); 318 } 319 320 verbose(env, "%s\n", 321 ltrim(btf_name_by_offset(env->prog->aux->btf, 322 linfo->line_off))); 323 324 env->prev_linfo = linfo; 325 } 326 327 static bool type_is_pkt_pointer(enum bpf_reg_type type) 328 { 329 return type == PTR_TO_PACKET || 330 type == PTR_TO_PACKET_META; 331 } 332 333 static bool type_is_sk_pointer(enum bpf_reg_type type) 334 { 335 return type == PTR_TO_SOCKET || 336 type == PTR_TO_SOCK_COMMON || 337 type == PTR_TO_TCP_SOCK; 338 } 339 340 static bool reg_type_may_be_null(enum bpf_reg_type type) 341 { 342 return type == PTR_TO_MAP_VALUE_OR_NULL || 343 type == PTR_TO_SOCKET_OR_NULL || 344 type == PTR_TO_SOCK_COMMON_OR_NULL || 345 type == PTR_TO_TCP_SOCK_OR_NULL; 346 } 347 348 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 349 { 350 return reg->type == PTR_TO_MAP_VALUE && 351 map_value_has_spin_lock(reg->map_ptr); 352 } 353 354 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 355 { 356 return type == PTR_TO_SOCKET || 357 type == PTR_TO_SOCKET_OR_NULL || 358 type == PTR_TO_TCP_SOCK || 359 type == PTR_TO_TCP_SOCK_OR_NULL; 360 } 361 362 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 363 { 364 return type == ARG_PTR_TO_SOCK_COMMON; 365 } 366 367 /* Determine whether the function releases some resources allocated by another 368 * function call. The first reference type argument will be assumed to be 369 * released by release_reference(). 370 */ 371 static bool is_release_function(enum bpf_func_id func_id) 372 { 373 return func_id == BPF_FUNC_sk_release; 374 } 375 376 static bool is_acquire_function(enum bpf_func_id func_id) 377 { 378 return func_id == BPF_FUNC_sk_lookup_tcp || 379 func_id == BPF_FUNC_sk_lookup_udp || 380 func_id == BPF_FUNC_skc_lookup_tcp; 381 } 382 383 static bool is_ptr_cast_function(enum bpf_func_id func_id) 384 { 385 return func_id == BPF_FUNC_tcp_sock || 386 func_id == BPF_FUNC_sk_fullsock; 387 } 388 389 /* string representation of 'enum bpf_reg_type' */ 390 static const char * const reg_type_str[] = { 391 [NOT_INIT] = "?", 392 [SCALAR_VALUE] = "inv", 393 [PTR_TO_CTX] = "ctx", 394 [CONST_PTR_TO_MAP] = "map_ptr", 395 [PTR_TO_MAP_VALUE] = "map_value", 396 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 397 [PTR_TO_STACK] = "fp", 398 [PTR_TO_PACKET] = "pkt", 399 [PTR_TO_PACKET_META] = "pkt_meta", 400 [PTR_TO_PACKET_END] = "pkt_end", 401 [PTR_TO_FLOW_KEYS] = "flow_keys", 402 [PTR_TO_SOCKET] = "sock", 403 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 404 [PTR_TO_SOCK_COMMON] = "sock_common", 405 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 406 [PTR_TO_TCP_SOCK] = "tcp_sock", 407 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 408 }; 409 410 static char slot_type_char[] = { 411 [STACK_INVALID] = '?', 412 [STACK_SPILL] = 'r', 413 [STACK_MISC] = 'm', 414 [STACK_ZERO] = '0', 415 }; 416 417 static void print_liveness(struct bpf_verifier_env *env, 418 enum bpf_reg_liveness live) 419 { 420 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 421 verbose(env, "_"); 422 if (live & REG_LIVE_READ) 423 verbose(env, "r"); 424 if (live & REG_LIVE_WRITTEN) 425 verbose(env, "w"); 426 if (live & REG_LIVE_DONE) 427 verbose(env, "D"); 428 } 429 430 static struct bpf_func_state *func(struct bpf_verifier_env *env, 431 const struct bpf_reg_state *reg) 432 { 433 struct bpf_verifier_state *cur = env->cur_state; 434 435 return cur->frame[reg->frameno]; 436 } 437 438 static void print_verifier_state(struct bpf_verifier_env *env, 439 const struct bpf_func_state *state) 440 { 441 const struct bpf_reg_state *reg; 442 enum bpf_reg_type t; 443 int i; 444 445 if (state->frameno) 446 verbose(env, " frame%d:", state->frameno); 447 for (i = 0; i < MAX_BPF_REG; i++) { 448 reg = &state->regs[i]; 449 t = reg->type; 450 if (t == NOT_INIT) 451 continue; 452 verbose(env, " R%d", i); 453 print_liveness(env, reg->live); 454 verbose(env, "=%s", reg_type_str[t]); 455 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 456 tnum_is_const(reg->var_off)) { 457 /* reg->off should be 0 for SCALAR_VALUE */ 458 verbose(env, "%lld", reg->var_off.value + reg->off); 459 if (t == PTR_TO_STACK) 460 verbose(env, ",call_%d", func(env, reg)->callsite); 461 } else { 462 verbose(env, "(id=%d", reg->id); 463 if (reg_type_may_be_refcounted_or_null(t)) 464 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 465 if (t != SCALAR_VALUE) 466 verbose(env, ",off=%d", reg->off); 467 if (type_is_pkt_pointer(t)) 468 verbose(env, ",r=%d", reg->range); 469 else if (t == CONST_PTR_TO_MAP || 470 t == PTR_TO_MAP_VALUE || 471 t == PTR_TO_MAP_VALUE_OR_NULL) 472 verbose(env, ",ks=%d,vs=%d", 473 reg->map_ptr->key_size, 474 reg->map_ptr->value_size); 475 if (tnum_is_const(reg->var_off)) { 476 /* Typically an immediate SCALAR_VALUE, but 477 * could be a pointer whose offset is too big 478 * for reg->off 479 */ 480 verbose(env, ",imm=%llx", reg->var_off.value); 481 } else { 482 if (reg->smin_value != reg->umin_value && 483 reg->smin_value != S64_MIN) 484 verbose(env, ",smin_value=%lld", 485 (long long)reg->smin_value); 486 if (reg->smax_value != reg->umax_value && 487 reg->smax_value != S64_MAX) 488 verbose(env, ",smax_value=%lld", 489 (long long)reg->smax_value); 490 if (reg->umin_value != 0) 491 verbose(env, ",umin_value=%llu", 492 (unsigned long long)reg->umin_value); 493 if (reg->umax_value != U64_MAX) 494 verbose(env, ",umax_value=%llu", 495 (unsigned long long)reg->umax_value); 496 if (!tnum_is_unknown(reg->var_off)) { 497 char tn_buf[48]; 498 499 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 500 verbose(env, ",var_off=%s", tn_buf); 501 } 502 } 503 verbose(env, ")"); 504 } 505 } 506 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 507 char types_buf[BPF_REG_SIZE + 1]; 508 bool valid = false; 509 int j; 510 511 for (j = 0; j < BPF_REG_SIZE; j++) { 512 if (state->stack[i].slot_type[j] != STACK_INVALID) 513 valid = true; 514 types_buf[j] = slot_type_char[ 515 state->stack[i].slot_type[j]]; 516 } 517 types_buf[BPF_REG_SIZE] = 0; 518 if (!valid) 519 continue; 520 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 521 print_liveness(env, state->stack[i].spilled_ptr.live); 522 if (state->stack[i].slot_type[0] == STACK_SPILL) 523 verbose(env, "=%s", 524 reg_type_str[state->stack[i].spilled_ptr.type]); 525 else 526 verbose(env, "=%s", types_buf); 527 } 528 if (state->acquired_refs && state->refs[0].id) { 529 verbose(env, " refs=%d", state->refs[0].id); 530 for (i = 1; i < state->acquired_refs; i++) 531 if (state->refs[i].id) 532 verbose(env, ",%d", state->refs[i].id); 533 } 534 verbose(env, "\n"); 535 } 536 537 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 538 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 539 const struct bpf_func_state *src) \ 540 { \ 541 if (!src->FIELD) \ 542 return 0; \ 543 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 544 /* internal bug, make state invalid to reject the program */ \ 545 memset(dst, 0, sizeof(*dst)); \ 546 return -EFAULT; \ 547 } \ 548 memcpy(dst->FIELD, src->FIELD, \ 549 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 550 return 0; \ 551 } 552 /* copy_reference_state() */ 553 COPY_STATE_FN(reference, acquired_refs, refs, 1) 554 /* copy_stack_state() */ 555 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 556 #undef COPY_STATE_FN 557 558 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 559 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 560 bool copy_old) \ 561 { \ 562 u32 old_size = state->COUNT; \ 563 struct bpf_##NAME##_state *new_##FIELD; \ 564 int slot = size / SIZE; \ 565 \ 566 if (size <= old_size || !size) { \ 567 if (copy_old) \ 568 return 0; \ 569 state->COUNT = slot * SIZE; \ 570 if (!size && old_size) { \ 571 kfree(state->FIELD); \ 572 state->FIELD = NULL; \ 573 } \ 574 return 0; \ 575 } \ 576 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 577 GFP_KERNEL); \ 578 if (!new_##FIELD) \ 579 return -ENOMEM; \ 580 if (copy_old) { \ 581 if (state->FIELD) \ 582 memcpy(new_##FIELD, state->FIELD, \ 583 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 584 memset(new_##FIELD + old_size / SIZE, 0, \ 585 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 586 } \ 587 state->COUNT = slot * SIZE; \ 588 kfree(state->FIELD); \ 589 state->FIELD = new_##FIELD; \ 590 return 0; \ 591 } 592 /* realloc_reference_state() */ 593 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 594 /* realloc_stack_state() */ 595 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 596 #undef REALLOC_STATE_FN 597 598 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 599 * make it consume minimal amount of memory. check_stack_write() access from 600 * the program calls into realloc_func_state() to grow the stack size. 601 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 602 * which realloc_stack_state() copies over. It points to previous 603 * bpf_verifier_state which is never reallocated. 604 */ 605 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 606 int refs_size, bool copy_old) 607 { 608 int err = realloc_reference_state(state, refs_size, copy_old); 609 if (err) 610 return err; 611 return realloc_stack_state(state, stack_size, copy_old); 612 } 613 614 /* Acquire a pointer id from the env and update the state->refs to include 615 * this new pointer reference. 616 * On success, returns a valid pointer id to associate with the register 617 * On failure, returns a negative errno. 618 */ 619 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 620 { 621 struct bpf_func_state *state = cur_func(env); 622 int new_ofs = state->acquired_refs; 623 int id, err; 624 625 err = realloc_reference_state(state, state->acquired_refs + 1, true); 626 if (err) 627 return err; 628 id = ++env->id_gen; 629 state->refs[new_ofs].id = id; 630 state->refs[new_ofs].insn_idx = insn_idx; 631 632 return id; 633 } 634 635 /* release function corresponding to acquire_reference_state(). Idempotent. */ 636 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 637 { 638 int i, last_idx; 639 640 last_idx = state->acquired_refs - 1; 641 for (i = 0; i < state->acquired_refs; i++) { 642 if (state->refs[i].id == ptr_id) { 643 if (last_idx && i != last_idx) 644 memcpy(&state->refs[i], &state->refs[last_idx], 645 sizeof(*state->refs)); 646 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 647 state->acquired_refs--; 648 return 0; 649 } 650 } 651 return -EINVAL; 652 } 653 654 static int transfer_reference_state(struct bpf_func_state *dst, 655 struct bpf_func_state *src) 656 { 657 int err = realloc_reference_state(dst, src->acquired_refs, false); 658 if (err) 659 return err; 660 err = copy_reference_state(dst, src); 661 if (err) 662 return err; 663 return 0; 664 } 665 666 static void free_func_state(struct bpf_func_state *state) 667 { 668 if (!state) 669 return; 670 kfree(state->refs); 671 kfree(state->stack); 672 kfree(state); 673 } 674 675 static void free_verifier_state(struct bpf_verifier_state *state, 676 bool free_self) 677 { 678 int i; 679 680 for (i = 0; i <= state->curframe; i++) { 681 free_func_state(state->frame[i]); 682 state->frame[i] = NULL; 683 } 684 if (free_self) 685 kfree(state); 686 } 687 688 /* copy verifier state from src to dst growing dst stack space 689 * when necessary to accommodate larger src stack 690 */ 691 static int copy_func_state(struct bpf_func_state *dst, 692 const struct bpf_func_state *src) 693 { 694 int err; 695 696 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 697 false); 698 if (err) 699 return err; 700 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 701 err = copy_reference_state(dst, src); 702 if (err) 703 return err; 704 return copy_stack_state(dst, src); 705 } 706 707 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 708 const struct bpf_verifier_state *src) 709 { 710 struct bpf_func_state *dst; 711 int i, err; 712 713 /* if dst has more stack frames then src frame, free them */ 714 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 715 free_func_state(dst_state->frame[i]); 716 dst_state->frame[i] = NULL; 717 } 718 dst_state->speculative = src->speculative; 719 dst_state->curframe = src->curframe; 720 dst_state->active_spin_lock = src->active_spin_lock; 721 for (i = 0; i <= src->curframe; i++) { 722 dst = dst_state->frame[i]; 723 if (!dst) { 724 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 725 if (!dst) 726 return -ENOMEM; 727 dst_state->frame[i] = dst; 728 } 729 err = copy_func_state(dst, src->frame[i]); 730 if (err) 731 return err; 732 } 733 return 0; 734 } 735 736 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 737 int *insn_idx) 738 { 739 struct bpf_verifier_state *cur = env->cur_state; 740 struct bpf_verifier_stack_elem *elem, *head = env->head; 741 int err; 742 743 if (env->head == NULL) 744 return -ENOENT; 745 746 if (cur) { 747 err = copy_verifier_state(cur, &head->st); 748 if (err) 749 return err; 750 } 751 if (insn_idx) 752 *insn_idx = head->insn_idx; 753 if (prev_insn_idx) 754 *prev_insn_idx = head->prev_insn_idx; 755 elem = head->next; 756 free_verifier_state(&head->st, false); 757 kfree(head); 758 env->head = elem; 759 env->stack_size--; 760 return 0; 761 } 762 763 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 764 int insn_idx, int prev_insn_idx, 765 bool speculative) 766 { 767 struct bpf_verifier_state *cur = env->cur_state; 768 struct bpf_verifier_stack_elem *elem; 769 int err; 770 771 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 772 if (!elem) 773 goto err; 774 775 elem->insn_idx = insn_idx; 776 elem->prev_insn_idx = prev_insn_idx; 777 elem->next = env->head; 778 env->head = elem; 779 env->stack_size++; 780 err = copy_verifier_state(&elem->st, cur); 781 if (err) 782 goto err; 783 elem->st.speculative |= speculative; 784 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 785 verbose(env, "BPF program is too complex\n"); 786 goto err; 787 } 788 return &elem->st; 789 err: 790 free_verifier_state(env->cur_state, true); 791 env->cur_state = NULL; 792 /* pop all elements and return */ 793 while (!pop_stack(env, NULL, NULL)); 794 return NULL; 795 } 796 797 #define CALLER_SAVED_REGS 6 798 static const int caller_saved[CALLER_SAVED_REGS] = { 799 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 800 }; 801 802 static void __mark_reg_not_init(struct bpf_reg_state *reg); 803 804 /* Mark the unknown part of a register (variable offset or scalar value) as 805 * known to have the value @imm. 806 */ 807 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 808 { 809 /* Clear id, off, and union(map_ptr, range) */ 810 memset(((u8 *)reg) + sizeof(reg->type), 0, 811 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 812 reg->var_off = tnum_const(imm); 813 reg->smin_value = (s64)imm; 814 reg->smax_value = (s64)imm; 815 reg->umin_value = imm; 816 reg->umax_value = imm; 817 } 818 819 /* Mark the 'variable offset' part of a register as zero. This should be 820 * used only on registers holding a pointer type. 821 */ 822 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 823 { 824 __mark_reg_known(reg, 0); 825 } 826 827 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 828 { 829 __mark_reg_known(reg, 0); 830 reg->type = SCALAR_VALUE; 831 } 832 833 static void mark_reg_known_zero(struct bpf_verifier_env *env, 834 struct bpf_reg_state *regs, u32 regno) 835 { 836 if (WARN_ON(regno >= MAX_BPF_REG)) { 837 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 838 /* Something bad happened, let's kill all regs */ 839 for (regno = 0; regno < MAX_BPF_REG; regno++) 840 __mark_reg_not_init(regs + regno); 841 return; 842 } 843 __mark_reg_known_zero(regs + regno); 844 } 845 846 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 847 { 848 return type_is_pkt_pointer(reg->type); 849 } 850 851 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 852 { 853 return reg_is_pkt_pointer(reg) || 854 reg->type == PTR_TO_PACKET_END; 855 } 856 857 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 858 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 859 enum bpf_reg_type which) 860 { 861 /* The register can already have a range from prior markings. 862 * This is fine as long as it hasn't been advanced from its 863 * origin. 864 */ 865 return reg->type == which && 866 reg->id == 0 && 867 reg->off == 0 && 868 tnum_equals_const(reg->var_off, 0); 869 } 870 871 /* Attempts to improve min/max values based on var_off information */ 872 static void __update_reg_bounds(struct bpf_reg_state *reg) 873 { 874 /* min signed is max(sign bit) | min(other bits) */ 875 reg->smin_value = max_t(s64, reg->smin_value, 876 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 877 /* max signed is min(sign bit) | max(other bits) */ 878 reg->smax_value = min_t(s64, reg->smax_value, 879 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 880 reg->umin_value = max(reg->umin_value, reg->var_off.value); 881 reg->umax_value = min(reg->umax_value, 882 reg->var_off.value | reg->var_off.mask); 883 } 884 885 /* Uses signed min/max values to inform unsigned, and vice-versa */ 886 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 887 { 888 /* Learn sign from signed bounds. 889 * If we cannot cross the sign boundary, then signed and unsigned bounds 890 * are the same, so combine. This works even in the negative case, e.g. 891 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 892 */ 893 if (reg->smin_value >= 0 || reg->smax_value < 0) { 894 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 895 reg->umin_value); 896 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 897 reg->umax_value); 898 return; 899 } 900 /* Learn sign from unsigned bounds. Signed bounds cross the sign 901 * boundary, so we must be careful. 902 */ 903 if ((s64)reg->umax_value >= 0) { 904 /* Positive. We can't learn anything from the smin, but smax 905 * is positive, hence safe. 906 */ 907 reg->smin_value = reg->umin_value; 908 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 909 reg->umax_value); 910 } else if ((s64)reg->umin_value < 0) { 911 /* Negative. We can't learn anything from the smax, but smin 912 * is negative, hence safe. 913 */ 914 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 915 reg->umin_value); 916 reg->smax_value = reg->umax_value; 917 } 918 } 919 920 /* Attempts to improve var_off based on unsigned min/max information */ 921 static void __reg_bound_offset(struct bpf_reg_state *reg) 922 { 923 reg->var_off = tnum_intersect(reg->var_off, 924 tnum_range(reg->umin_value, 925 reg->umax_value)); 926 } 927 928 /* Reset the min/max bounds of a register */ 929 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 930 { 931 reg->smin_value = S64_MIN; 932 reg->smax_value = S64_MAX; 933 reg->umin_value = 0; 934 reg->umax_value = U64_MAX; 935 } 936 937 /* Mark a register as having a completely unknown (scalar) value. */ 938 static void __mark_reg_unknown(struct bpf_reg_state *reg) 939 { 940 /* 941 * Clear type, id, off, and union(map_ptr, range) and 942 * padding between 'type' and union 943 */ 944 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 945 reg->type = SCALAR_VALUE; 946 reg->var_off = tnum_unknown; 947 reg->frameno = 0; 948 __mark_reg_unbounded(reg); 949 } 950 951 static void mark_reg_unknown(struct bpf_verifier_env *env, 952 struct bpf_reg_state *regs, u32 regno) 953 { 954 if (WARN_ON(regno >= MAX_BPF_REG)) { 955 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 956 /* Something bad happened, let's kill all regs except FP */ 957 for (regno = 0; regno < BPF_REG_FP; regno++) 958 __mark_reg_not_init(regs + regno); 959 return; 960 } 961 __mark_reg_unknown(regs + regno); 962 } 963 964 static void __mark_reg_not_init(struct bpf_reg_state *reg) 965 { 966 __mark_reg_unknown(reg); 967 reg->type = NOT_INIT; 968 } 969 970 static void mark_reg_not_init(struct bpf_verifier_env *env, 971 struct bpf_reg_state *regs, u32 regno) 972 { 973 if (WARN_ON(regno >= MAX_BPF_REG)) { 974 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 975 /* Something bad happened, let's kill all regs except FP */ 976 for (regno = 0; regno < BPF_REG_FP; regno++) 977 __mark_reg_not_init(regs + regno); 978 return; 979 } 980 __mark_reg_not_init(regs + regno); 981 } 982 983 static void init_reg_state(struct bpf_verifier_env *env, 984 struct bpf_func_state *state) 985 { 986 struct bpf_reg_state *regs = state->regs; 987 int i; 988 989 for (i = 0; i < MAX_BPF_REG; i++) { 990 mark_reg_not_init(env, regs, i); 991 regs[i].live = REG_LIVE_NONE; 992 regs[i].parent = NULL; 993 } 994 995 /* frame pointer */ 996 regs[BPF_REG_FP].type = PTR_TO_STACK; 997 mark_reg_known_zero(env, regs, BPF_REG_FP); 998 regs[BPF_REG_FP].frameno = state->frameno; 999 1000 /* 1st arg to a function */ 1001 regs[BPF_REG_1].type = PTR_TO_CTX; 1002 mark_reg_known_zero(env, regs, BPF_REG_1); 1003 } 1004 1005 #define BPF_MAIN_FUNC (-1) 1006 static void init_func_state(struct bpf_verifier_env *env, 1007 struct bpf_func_state *state, 1008 int callsite, int frameno, int subprogno) 1009 { 1010 state->callsite = callsite; 1011 state->frameno = frameno; 1012 state->subprogno = subprogno; 1013 init_reg_state(env, state); 1014 } 1015 1016 enum reg_arg_type { 1017 SRC_OP, /* register is used as source operand */ 1018 DST_OP, /* register is used as destination operand */ 1019 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1020 }; 1021 1022 static int cmp_subprogs(const void *a, const void *b) 1023 { 1024 return ((struct bpf_subprog_info *)a)->start - 1025 ((struct bpf_subprog_info *)b)->start; 1026 } 1027 1028 static int find_subprog(struct bpf_verifier_env *env, int off) 1029 { 1030 struct bpf_subprog_info *p; 1031 1032 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1033 sizeof(env->subprog_info[0]), cmp_subprogs); 1034 if (!p) 1035 return -ENOENT; 1036 return p - env->subprog_info; 1037 1038 } 1039 1040 static int add_subprog(struct bpf_verifier_env *env, int off) 1041 { 1042 int insn_cnt = env->prog->len; 1043 int ret; 1044 1045 if (off >= insn_cnt || off < 0) { 1046 verbose(env, "call to invalid destination\n"); 1047 return -EINVAL; 1048 } 1049 ret = find_subprog(env, off); 1050 if (ret >= 0) 1051 return 0; 1052 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1053 verbose(env, "too many subprograms\n"); 1054 return -E2BIG; 1055 } 1056 env->subprog_info[env->subprog_cnt++].start = off; 1057 sort(env->subprog_info, env->subprog_cnt, 1058 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1059 return 0; 1060 } 1061 1062 static int check_subprogs(struct bpf_verifier_env *env) 1063 { 1064 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1065 struct bpf_subprog_info *subprog = env->subprog_info; 1066 struct bpf_insn *insn = env->prog->insnsi; 1067 int insn_cnt = env->prog->len; 1068 1069 /* Add entry function. */ 1070 ret = add_subprog(env, 0); 1071 if (ret < 0) 1072 return ret; 1073 1074 /* determine subprog starts. The end is one before the next starts */ 1075 for (i = 0; i < insn_cnt; i++) { 1076 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1077 continue; 1078 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1079 continue; 1080 if (!env->allow_ptr_leaks) { 1081 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1082 return -EPERM; 1083 } 1084 ret = add_subprog(env, i + insn[i].imm + 1); 1085 if (ret < 0) 1086 return ret; 1087 } 1088 1089 /* Add a fake 'exit' subprog which could simplify subprog iteration 1090 * logic. 'subprog_cnt' should not be increased. 1091 */ 1092 subprog[env->subprog_cnt].start = insn_cnt; 1093 1094 if (env->log.level & BPF_LOG_LEVEL2) 1095 for (i = 0; i < env->subprog_cnt; i++) 1096 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1097 1098 /* now check that all jumps are within the same subprog */ 1099 subprog_start = subprog[cur_subprog].start; 1100 subprog_end = subprog[cur_subprog + 1].start; 1101 for (i = 0; i < insn_cnt; i++) { 1102 u8 code = insn[i].code; 1103 1104 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1105 goto next; 1106 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1107 goto next; 1108 off = i + insn[i].off + 1; 1109 if (off < subprog_start || off >= subprog_end) { 1110 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1111 return -EINVAL; 1112 } 1113 next: 1114 if (i == subprog_end - 1) { 1115 /* to avoid fall-through from one subprog into another 1116 * the last insn of the subprog should be either exit 1117 * or unconditional jump back 1118 */ 1119 if (code != (BPF_JMP | BPF_EXIT) && 1120 code != (BPF_JMP | BPF_JA)) { 1121 verbose(env, "last insn is not an exit or jmp\n"); 1122 return -EINVAL; 1123 } 1124 subprog_start = subprog_end; 1125 cur_subprog++; 1126 if (cur_subprog < env->subprog_cnt) 1127 subprog_end = subprog[cur_subprog + 1].start; 1128 } 1129 } 1130 return 0; 1131 } 1132 1133 /* Parentage chain of this register (or stack slot) should take care of all 1134 * issues like callee-saved registers, stack slot allocation time, etc. 1135 */ 1136 static int mark_reg_read(struct bpf_verifier_env *env, 1137 const struct bpf_reg_state *state, 1138 struct bpf_reg_state *parent) 1139 { 1140 bool writes = parent == state->parent; /* Observe write marks */ 1141 int cnt = 0; 1142 1143 while (parent) { 1144 /* if read wasn't screened by an earlier write ... */ 1145 if (writes && state->live & REG_LIVE_WRITTEN) 1146 break; 1147 if (parent->live & REG_LIVE_DONE) { 1148 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1149 reg_type_str[parent->type], 1150 parent->var_off.value, parent->off); 1151 return -EFAULT; 1152 } 1153 if (parent->live & REG_LIVE_READ) 1154 /* The parentage chain never changes and 1155 * this parent was already marked as LIVE_READ. 1156 * There is no need to keep walking the chain again and 1157 * keep re-marking all parents as LIVE_READ. 1158 * This case happens when the same register is read 1159 * multiple times without writes into it in-between. 1160 */ 1161 break; 1162 /* ... then we depend on parent's value */ 1163 parent->live |= REG_LIVE_READ; 1164 state = parent; 1165 parent = state->parent; 1166 writes = true; 1167 cnt++; 1168 } 1169 1170 if (env->longest_mark_read_walk < cnt) 1171 env->longest_mark_read_walk = cnt; 1172 return 0; 1173 } 1174 1175 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1176 enum reg_arg_type t) 1177 { 1178 struct bpf_verifier_state *vstate = env->cur_state; 1179 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1180 struct bpf_reg_state *regs = state->regs; 1181 1182 if (regno >= MAX_BPF_REG) { 1183 verbose(env, "R%d is invalid\n", regno); 1184 return -EINVAL; 1185 } 1186 1187 if (t == SRC_OP) { 1188 /* check whether register used as source operand can be read */ 1189 if (regs[regno].type == NOT_INIT) { 1190 verbose(env, "R%d !read_ok\n", regno); 1191 return -EACCES; 1192 } 1193 /* We don't need to worry about FP liveness because it's read-only */ 1194 if (regno != BPF_REG_FP) 1195 return mark_reg_read(env, ®s[regno], 1196 regs[regno].parent); 1197 } else { 1198 /* check whether register used as dest operand can be written to */ 1199 if (regno == BPF_REG_FP) { 1200 verbose(env, "frame pointer is read only\n"); 1201 return -EACCES; 1202 } 1203 regs[regno].live |= REG_LIVE_WRITTEN; 1204 if (t == DST_OP) 1205 mark_reg_unknown(env, regs, regno); 1206 } 1207 return 0; 1208 } 1209 1210 static bool is_spillable_regtype(enum bpf_reg_type type) 1211 { 1212 switch (type) { 1213 case PTR_TO_MAP_VALUE: 1214 case PTR_TO_MAP_VALUE_OR_NULL: 1215 case PTR_TO_STACK: 1216 case PTR_TO_CTX: 1217 case PTR_TO_PACKET: 1218 case PTR_TO_PACKET_META: 1219 case PTR_TO_PACKET_END: 1220 case PTR_TO_FLOW_KEYS: 1221 case CONST_PTR_TO_MAP: 1222 case PTR_TO_SOCKET: 1223 case PTR_TO_SOCKET_OR_NULL: 1224 case PTR_TO_SOCK_COMMON: 1225 case PTR_TO_SOCK_COMMON_OR_NULL: 1226 case PTR_TO_TCP_SOCK: 1227 case PTR_TO_TCP_SOCK_OR_NULL: 1228 return true; 1229 default: 1230 return false; 1231 } 1232 } 1233 1234 /* Does this register contain a constant zero? */ 1235 static bool register_is_null(struct bpf_reg_state *reg) 1236 { 1237 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1238 } 1239 1240 /* check_stack_read/write functions track spill/fill of registers, 1241 * stack boundary and alignment are checked in check_mem_access() 1242 */ 1243 static int check_stack_write(struct bpf_verifier_env *env, 1244 struct bpf_func_state *state, /* func where register points to */ 1245 int off, int size, int value_regno, int insn_idx) 1246 { 1247 struct bpf_func_state *cur; /* state of the current function */ 1248 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1249 enum bpf_reg_type type; 1250 1251 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1252 state->acquired_refs, true); 1253 if (err) 1254 return err; 1255 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1256 * so it's aligned access and [off, off + size) are within stack limits 1257 */ 1258 if (!env->allow_ptr_leaks && 1259 state->stack[spi].slot_type[0] == STACK_SPILL && 1260 size != BPF_REG_SIZE) { 1261 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1262 return -EACCES; 1263 } 1264 1265 cur = env->cur_state->frame[env->cur_state->curframe]; 1266 if (value_regno >= 0 && 1267 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1268 1269 /* register containing pointer is being spilled into stack */ 1270 if (size != BPF_REG_SIZE) { 1271 verbose(env, "invalid size of register spill\n"); 1272 return -EACCES; 1273 } 1274 1275 if (state != cur && type == PTR_TO_STACK) { 1276 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1277 return -EINVAL; 1278 } 1279 1280 /* save register state */ 1281 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1282 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1283 1284 for (i = 0; i < BPF_REG_SIZE; i++) { 1285 if (state->stack[spi].slot_type[i] == STACK_MISC && 1286 !env->allow_ptr_leaks) { 1287 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1288 int soff = (-spi - 1) * BPF_REG_SIZE; 1289 1290 /* detected reuse of integer stack slot with a pointer 1291 * which means either llvm is reusing stack slot or 1292 * an attacker is trying to exploit CVE-2018-3639 1293 * (speculative store bypass) 1294 * Have to sanitize that slot with preemptive 1295 * store of zero. 1296 */ 1297 if (*poff && *poff != soff) { 1298 /* disallow programs where single insn stores 1299 * into two different stack slots, since verifier 1300 * cannot sanitize them 1301 */ 1302 verbose(env, 1303 "insn %d cannot access two stack slots fp%d and fp%d", 1304 insn_idx, *poff, soff); 1305 return -EINVAL; 1306 } 1307 *poff = soff; 1308 } 1309 state->stack[spi].slot_type[i] = STACK_SPILL; 1310 } 1311 } else { 1312 u8 type = STACK_MISC; 1313 1314 /* regular write of data into stack destroys any spilled ptr */ 1315 state->stack[spi].spilled_ptr.type = NOT_INIT; 1316 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1317 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1318 for (i = 0; i < BPF_REG_SIZE; i++) 1319 state->stack[spi].slot_type[i] = STACK_MISC; 1320 1321 /* only mark the slot as written if all 8 bytes were written 1322 * otherwise read propagation may incorrectly stop too soon 1323 * when stack slots are partially written. 1324 * This heuristic means that read propagation will be 1325 * conservative, since it will add reg_live_read marks 1326 * to stack slots all the way to first state when programs 1327 * writes+reads less than 8 bytes 1328 */ 1329 if (size == BPF_REG_SIZE) 1330 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1331 1332 /* when we zero initialize stack slots mark them as such */ 1333 if (value_regno >= 0 && 1334 register_is_null(&cur->regs[value_regno])) 1335 type = STACK_ZERO; 1336 1337 /* Mark slots affected by this stack write. */ 1338 for (i = 0; i < size; i++) 1339 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1340 type; 1341 } 1342 return 0; 1343 } 1344 1345 static int check_stack_read(struct bpf_verifier_env *env, 1346 struct bpf_func_state *reg_state /* func where register points to */, 1347 int off, int size, int value_regno) 1348 { 1349 struct bpf_verifier_state *vstate = env->cur_state; 1350 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1351 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1352 u8 *stype; 1353 1354 if (reg_state->allocated_stack <= slot) { 1355 verbose(env, "invalid read from stack off %d+0 size %d\n", 1356 off, size); 1357 return -EACCES; 1358 } 1359 stype = reg_state->stack[spi].slot_type; 1360 1361 if (stype[0] == STACK_SPILL) { 1362 if (size != BPF_REG_SIZE) { 1363 verbose(env, "invalid size of register spill\n"); 1364 return -EACCES; 1365 } 1366 for (i = 1; i < BPF_REG_SIZE; i++) { 1367 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1368 verbose(env, "corrupted spill memory\n"); 1369 return -EACCES; 1370 } 1371 } 1372 1373 if (value_regno >= 0) { 1374 /* restore register state from stack */ 1375 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1376 /* mark reg as written since spilled pointer state likely 1377 * has its liveness marks cleared by is_state_visited() 1378 * which resets stack/reg liveness for state transitions 1379 */ 1380 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1381 } 1382 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1383 reg_state->stack[spi].spilled_ptr.parent); 1384 return 0; 1385 } else { 1386 int zeros = 0; 1387 1388 for (i = 0; i < size; i++) { 1389 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1390 continue; 1391 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1392 zeros++; 1393 continue; 1394 } 1395 verbose(env, "invalid read from stack off %d+%d size %d\n", 1396 off, i, size); 1397 return -EACCES; 1398 } 1399 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1400 reg_state->stack[spi].spilled_ptr.parent); 1401 if (value_regno >= 0) { 1402 if (zeros == size) { 1403 /* any size read into register is zero extended, 1404 * so the whole register == const_zero 1405 */ 1406 __mark_reg_const_zero(&state->regs[value_regno]); 1407 } else { 1408 /* have read misc data from the stack */ 1409 mark_reg_unknown(env, state->regs, value_regno); 1410 } 1411 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1412 } 1413 return 0; 1414 } 1415 } 1416 1417 static int check_stack_access(struct bpf_verifier_env *env, 1418 const struct bpf_reg_state *reg, 1419 int off, int size) 1420 { 1421 /* Stack accesses must be at a fixed offset, so that we 1422 * can determine what type of data were returned. See 1423 * check_stack_read(). 1424 */ 1425 if (!tnum_is_const(reg->var_off)) { 1426 char tn_buf[48]; 1427 1428 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1429 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 1430 tn_buf, off, size); 1431 return -EACCES; 1432 } 1433 1434 if (off >= 0 || off < -MAX_BPF_STACK) { 1435 verbose(env, "invalid stack off=%d size=%d\n", off, size); 1436 return -EACCES; 1437 } 1438 1439 return 0; 1440 } 1441 1442 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 1443 int off, int size, enum bpf_access_type type) 1444 { 1445 struct bpf_reg_state *regs = cur_regs(env); 1446 struct bpf_map *map = regs[regno].map_ptr; 1447 u32 cap = bpf_map_flags_to_cap(map); 1448 1449 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 1450 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 1451 map->value_size, off, size); 1452 return -EACCES; 1453 } 1454 1455 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 1456 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 1457 map->value_size, off, size); 1458 return -EACCES; 1459 } 1460 1461 return 0; 1462 } 1463 1464 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1465 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1466 int size, bool zero_size_allowed) 1467 { 1468 struct bpf_reg_state *regs = cur_regs(env); 1469 struct bpf_map *map = regs[regno].map_ptr; 1470 1471 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1472 off + size > map->value_size) { 1473 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1474 map->value_size, off, size); 1475 return -EACCES; 1476 } 1477 return 0; 1478 } 1479 1480 /* check read/write into a map element with possible variable offset */ 1481 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1482 int off, int size, bool zero_size_allowed) 1483 { 1484 struct bpf_verifier_state *vstate = env->cur_state; 1485 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1486 struct bpf_reg_state *reg = &state->regs[regno]; 1487 int err; 1488 1489 /* We may have adjusted the register to this map value, so we 1490 * need to try adding each of min_value and max_value to off 1491 * to make sure our theoretical access will be safe. 1492 */ 1493 if (env->log.level & BPF_LOG_LEVEL) 1494 print_verifier_state(env, state); 1495 1496 /* The minimum value is only important with signed 1497 * comparisons where we can't assume the floor of a 1498 * value is 0. If we are using signed variables for our 1499 * index'es we need to make sure that whatever we use 1500 * will have a set floor within our range. 1501 */ 1502 if (reg->smin_value < 0 && 1503 (reg->smin_value == S64_MIN || 1504 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 1505 reg->smin_value + off < 0)) { 1506 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1507 regno); 1508 return -EACCES; 1509 } 1510 err = __check_map_access(env, regno, reg->smin_value + off, size, 1511 zero_size_allowed); 1512 if (err) { 1513 verbose(env, "R%d min value is outside of the array range\n", 1514 regno); 1515 return err; 1516 } 1517 1518 /* If we haven't set a max value then we need to bail since we can't be 1519 * sure we won't do bad things. 1520 * If reg->umax_value + off could overflow, treat that as unbounded too. 1521 */ 1522 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1523 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1524 regno); 1525 return -EACCES; 1526 } 1527 err = __check_map_access(env, regno, reg->umax_value + off, size, 1528 zero_size_allowed); 1529 if (err) 1530 verbose(env, "R%d max value is outside of the array range\n", 1531 regno); 1532 1533 if (map_value_has_spin_lock(reg->map_ptr)) { 1534 u32 lock = reg->map_ptr->spin_lock_off; 1535 1536 /* if any part of struct bpf_spin_lock can be touched by 1537 * load/store reject this program. 1538 * To check that [x1, x2) overlaps with [y1, y2) 1539 * it is sufficient to check x1 < y2 && y1 < x2. 1540 */ 1541 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 1542 lock < reg->umax_value + off + size) { 1543 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 1544 return -EACCES; 1545 } 1546 } 1547 return err; 1548 } 1549 1550 #define MAX_PACKET_OFF 0xffff 1551 1552 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1553 const struct bpf_call_arg_meta *meta, 1554 enum bpf_access_type t) 1555 { 1556 switch (env->prog->type) { 1557 /* Program types only with direct read access go here! */ 1558 case BPF_PROG_TYPE_LWT_IN: 1559 case BPF_PROG_TYPE_LWT_OUT: 1560 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1561 case BPF_PROG_TYPE_SK_REUSEPORT: 1562 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1563 case BPF_PROG_TYPE_CGROUP_SKB: 1564 if (t == BPF_WRITE) 1565 return false; 1566 /* fallthrough */ 1567 1568 /* Program types with direct read + write access go here! */ 1569 case BPF_PROG_TYPE_SCHED_CLS: 1570 case BPF_PROG_TYPE_SCHED_ACT: 1571 case BPF_PROG_TYPE_XDP: 1572 case BPF_PROG_TYPE_LWT_XMIT: 1573 case BPF_PROG_TYPE_SK_SKB: 1574 case BPF_PROG_TYPE_SK_MSG: 1575 if (meta) 1576 return meta->pkt_access; 1577 1578 env->seen_direct_write = true; 1579 return true; 1580 default: 1581 return false; 1582 } 1583 } 1584 1585 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1586 int off, int size, bool zero_size_allowed) 1587 { 1588 struct bpf_reg_state *regs = cur_regs(env); 1589 struct bpf_reg_state *reg = ®s[regno]; 1590 1591 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1592 (u64)off + size > reg->range) { 1593 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1594 off, size, regno, reg->id, reg->off, reg->range); 1595 return -EACCES; 1596 } 1597 return 0; 1598 } 1599 1600 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1601 int size, bool zero_size_allowed) 1602 { 1603 struct bpf_reg_state *regs = cur_regs(env); 1604 struct bpf_reg_state *reg = ®s[regno]; 1605 int err; 1606 1607 /* We may have added a variable offset to the packet pointer; but any 1608 * reg->range we have comes after that. We are only checking the fixed 1609 * offset. 1610 */ 1611 1612 /* We don't allow negative numbers, because we aren't tracking enough 1613 * detail to prove they're safe. 1614 */ 1615 if (reg->smin_value < 0) { 1616 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1617 regno); 1618 return -EACCES; 1619 } 1620 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1621 if (err) { 1622 verbose(env, "R%d offset is outside of the packet\n", regno); 1623 return err; 1624 } 1625 1626 /* __check_packet_access has made sure "off + size - 1" is within u16. 1627 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1628 * otherwise find_good_pkt_pointers would have refused to set range info 1629 * that __check_packet_access would have rejected this pkt access. 1630 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1631 */ 1632 env->prog->aux->max_pkt_offset = 1633 max_t(u32, env->prog->aux->max_pkt_offset, 1634 off + reg->umax_value + size - 1); 1635 1636 return err; 1637 } 1638 1639 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1640 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1641 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1642 { 1643 struct bpf_insn_access_aux info = { 1644 .reg_type = *reg_type, 1645 }; 1646 1647 if (env->ops->is_valid_access && 1648 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1649 /* A non zero info.ctx_field_size indicates that this field is a 1650 * candidate for later verifier transformation to load the whole 1651 * field and then apply a mask when accessed with a narrower 1652 * access than actual ctx access size. A zero info.ctx_field_size 1653 * will only allow for whole field access and rejects any other 1654 * type of narrower access. 1655 */ 1656 *reg_type = info.reg_type; 1657 1658 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1659 /* remember the offset of last byte accessed in ctx */ 1660 if (env->prog->aux->max_ctx_offset < off + size) 1661 env->prog->aux->max_ctx_offset = off + size; 1662 return 0; 1663 } 1664 1665 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1666 return -EACCES; 1667 } 1668 1669 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1670 int size) 1671 { 1672 if (size < 0 || off < 0 || 1673 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1674 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1675 off, size); 1676 return -EACCES; 1677 } 1678 return 0; 1679 } 1680 1681 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 1682 u32 regno, int off, int size, 1683 enum bpf_access_type t) 1684 { 1685 struct bpf_reg_state *regs = cur_regs(env); 1686 struct bpf_reg_state *reg = ®s[regno]; 1687 struct bpf_insn_access_aux info = {}; 1688 bool valid; 1689 1690 if (reg->smin_value < 0) { 1691 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1692 regno); 1693 return -EACCES; 1694 } 1695 1696 switch (reg->type) { 1697 case PTR_TO_SOCK_COMMON: 1698 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 1699 break; 1700 case PTR_TO_SOCKET: 1701 valid = bpf_sock_is_valid_access(off, size, t, &info); 1702 break; 1703 case PTR_TO_TCP_SOCK: 1704 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 1705 break; 1706 default: 1707 valid = false; 1708 } 1709 1710 1711 if (valid) { 1712 env->insn_aux_data[insn_idx].ctx_field_size = 1713 info.ctx_field_size; 1714 return 0; 1715 } 1716 1717 verbose(env, "R%d invalid %s access off=%d size=%d\n", 1718 regno, reg_type_str[reg->type], off, size); 1719 1720 return -EACCES; 1721 } 1722 1723 static bool __is_pointer_value(bool allow_ptr_leaks, 1724 const struct bpf_reg_state *reg) 1725 { 1726 if (allow_ptr_leaks) 1727 return false; 1728 1729 return reg->type != SCALAR_VALUE; 1730 } 1731 1732 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1733 { 1734 return cur_regs(env) + regno; 1735 } 1736 1737 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1738 { 1739 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1740 } 1741 1742 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1743 { 1744 const struct bpf_reg_state *reg = reg_state(env, regno); 1745 1746 return reg->type == PTR_TO_CTX; 1747 } 1748 1749 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 1750 { 1751 const struct bpf_reg_state *reg = reg_state(env, regno); 1752 1753 return type_is_sk_pointer(reg->type); 1754 } 1755 1756 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1757 { 1758 const struct bpf_reg_state *reg = reg_state(env, regno); 1759 1760 return type_is_pkt_pointer(reg->type); 1761 } 1762 1763 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1764 { 1765 const struct bpf_reg_state *reg = reg_state(env, regno); 1766 1767 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1768 return reg->type == PTR_TO_FLOW_KEYS; 1769 } 1770 1771 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1772 const struct bpf_reg_state *reg, 1773 int off, int size, bool strict) 1774 { 1775 struct tnum reg_off; 1776 int ip_align; 1777 1778 /* Byte size accesses are always allowed. */ 1779 if (!strict || size == 1) 1780 return 0; 1781 1782 /* For platforms that do not have a Kconfig enabling 1783 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1784 * NET_IP_ALIGN is universally set to '2'. And on platforms 1785 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1786 * to this code only in strict mode where we want to emulate 1787 * the NET_IP_ALIGN==2 checking. Therefore use an 1788 * unconditional IP align value of '2'. 1789 */ 1790 ip_align = 2; 1791 1792 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1793 if (!tnum_is_aligned(reg_off, size)) { 1794 char tn_buf[48]; 1795 1796 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1797 verbose(env, 1798 "misaligned packet access off %d+%s+%d+%d size %d\n", 1799 ip_align, tn_buf, reg->off, off, size); 1800 return -EACCES; 1801 } 1802 1803 return 0; 1804 } 1805 1806 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1807 const struct bpf_reg_state *reg, 1808 const char *pointer_desc, 1809 int off, int size, bool strict) 1810 { 1811 struct tnum reg_off; 1812 1813 /* Byte size accesses are always allowed. */ 1814 if (!strict || size == 1) 1815 return 0; 1816 1817 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1818 if (!tnum_is_aligned(reg_off, size)) { 1819 char tn_buf[48]; 1820 1821 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1822 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1823 pointer_desc, tn_buf, reg->off, off, size); 1824 return -EACCES; 1825 } 1826 1827 return 0; 1828 } 1829 1830 static int check_ptr_alignment(struct bpf_verifier_env *env, 1831 const struct bpf_reg_state *reg, int off, 1832 int size, bool strict_alignment_once) 1833 { 1834 bool strict = env->strict_alignment || strict_alignment_once; 1835 const char *pointer_desc = ""; 1836 1837 switch (reg->type) { 1838 case PTR_TO_PACKET: 1839 case PTR_TO_PACKET_META: 1840 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1841 * right in front, treat it the very same way. 1842 */ 1843 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1844 case PTR_TO_FLOW_KEYS: 1845 pointer_desc = "flow keys "; 1846 break; 1847 case PTR_TO_MAP_VALUE: 1848 pointer_desc = "value "; 1849 break; 1850 case PTR_TO_CTX: 1851 pointer_desc = "context "; 1852 break; 1853 case PTR_TO_STACK: 1854 pointer_desc = "stack "; 1855 /* The stack spill tracking logic in check_stack_write() 1856 * and check_stack_read() relies on stack accesses being 1857 * aligned. 1858 */ 1859 strict = true; 1860 break; 1861 case PTR_TO_SOCKET: 1862 pointer_desc = "sock "; 1863 break; 1864 case PTR_TO_SOCK_COMMON: 1865 pointer_desc = "sock_common "; 1866 break; 1867 case PTR_TO_TCP_SOCK: 1868 pointer_desc = "tcp_sock "; 1869 break; 1870 default: 1871 break; 1872 } 1873 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1874 strict); 1875 } 1876 1877 static int update_stack_depth(struct bpf_verifier_env *env, 1878 const struct bpf_func_state *func, 1879 int off) 1880 { 1881 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1882 1883 if (stack >= -off) 1884 return 0; 1885 1886 /* update known max for given subprogram */ 1887 env->subprog_info[func->subprogno].stack_depth = -off; 1888 return 0; 1889 } 1890 1891 /* starting from main bpf function walk all instructions of the function 1892 * and recursively walk all callees that given function can call. 1893 * Ignore jump and exit insns. 1894 * Since recursion is prevented by check_cfg() this algorithm 1895 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1896 */ 1897 static int check_max_stack_depth(struct bpf_verifier_env *env) 1898 { 1899 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1900 struct bpf_subprog_info *subprog = env->subprog_info; 1901 struct bpf_insn *insn = env->prog->insnsi; 1902 int ret_insn[MAX_CALL_FRAMES]; 1903 int ret_prog[MAX_CALL_FRAMES]; 1904 1905 process_func: 1906 /* round up to 32-bytes, since this is granularity 1907 * of interpreter stack size 1908 */ 1909 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1910 if (depth > MAX_BPF_STACK) { 1911 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1912 frame + 1, depth); 1913 return -EACCES; 1914 } 1915 continue_func: 1916 subprog_end = subprog[idx + 1].start; 1917 for (; i < subprog_end; i++) { 1918 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1919 continue; 1920 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1921 continue; 1922 /* remember insn and function to return to */ 1923 ret_insn[frame] = i + 1; 1924 ret_prog[frame] = idx; 1925 1926 /* find the callee */ 1927 i = i + insn[i].imm + 1; 1928 idx = find_subprog(env, i); 1929 if (idx < 0) { 1930 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1931 i); 1932 return -EFAULT; 1933 } 1934 frame++; 1935 if (frame >= MAX_CALL_FRAMES) { 1936 verbose(env, "the call stack of %d frames is too deep !\n", 1937 frame); 1938 return -E2BIG; 1939 } 1940 goto process_func; 1941 } 1942 /* end of for() loop means the last insn of the 'subprog' 1943 * was reached. Doesn't matter whether it was JA or EXIT 1944 */ 1945 if (frame == 0) 1946 return 0; 1947 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1948 frame--; 1949 i = ret_insn[frame]; 1950 idx = ret_prog[frame]; 1951 goto continue_func; 1952 } 1953 1954 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1955 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1956 const struct bpf_insn *insn, int idx) 1957 { 1958 int start = idx + insn->imm + 1, subprog; 1959 1960 subprog = find_subprog(env, start); 1961 if (subprog < 0) { 1962 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1963 start); 1964 return -EFAULT; 1965 } 1966 return env->subprog_info[subprog].stack_depth; 1967 } 1968 #endif 1969 1970 static int check_ctx_reg(struct bpf_verifier_env *env, 1971 const struct bpf_reg_state *reg, int regno) 1972 { 1973 /* Access to ctx or passing it to a helper is only allowed in 1974 * its original, unmodified form. 1975 */ 1976 1977 if (reg->off) { 1978 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1979 regno, reg->off); 1980 return -EACCES; 1981 } 1982 1983 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1984 char tn_buf[48]; 1985 1986 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1987 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1988 return -EACCES; 1989 } 1990 1991 return 0; 1992 } 1993 1994 /* truncate register to smaller size (in bytes) 1995 * must be called with size < BPF_REG_SIZE 1996 */ 1997 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1998 { 1999 u64 mask; 2000 2001 /* clear high bits in bit representation */ 2002 reg->var_off = tnum_cast(reg->var_off, size); 2003 2004 /* fix arithmetic bounds */ 2005 mask = ((u64)1 << (size * 8)) - 1; 2006 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2007 reg->umin_value &= mask; 2008 reg->umax_value &= mask; 2009 } else { 2010 reg->umin_value = 0; 2011 reg->umax_value = mask; 2012 } 2013 reg->smin_value = reg->umin_value; 2014 reg->smax_value = reg->umax_value; 2015 } 2016 2017 /* check whether memory at (regno + off) is accessible for t = (read | write) 2018 * if t==write, value_regno is a register which value is stored into memory 2019 * if t==read, value_regno is a register which will receive the value from memory 2020 * if t==write && value_regno==-1, some unknown value is stored into memory 2021 * if t==read && value_regno==-1, don't care what we read from memory 2022 */ 2023 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2024 int off, int bpf_size, enum bpf_access_type t, 2025 int value_regno, bool strict_alignment_once) 2026 { 2027 struct bpf_reg_state *regs = cur_regs(env); 2028 struct bpf_reg_state *reg = regs + regno; 2029 struct bpf_func_state *state; 2030 int size, err = 0; 2031 2032 size = bpf_size_to_bytes(bpf_size); 2033 if (size < 0) 2034 return size; 2035 2036 /* alignment checks will add in reg->off themselves */ 2037 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2038 if (err) 2039 return err; 2040 2041 /* for access checks, reg->off is just part of off */ 2042 off += reg->off; 2043 2044 if (reg->type == PTR_TO_MAP_VALUE) { 2045 if (t == BPF_WRITE && value_regno >= 0 && 2046 is_pointer_value(env, value_regno)) { 2047 verbose(env, "R%d leaks addr into map\n", value_regno); 2048 return -EACCES; 2049 } 2050 err = check_map_access_type(env, regno, off, size, t); 2051 if (err) 2052 return err; 2053 err = check_map_access(env, regno, off, size, false); 2054 if (!err && t == BPF_READ && value_regno >= 0) 2055 mark_reg_unknown(env, regs, value_regno); 2056 2057 } else if (reg->type == PTR_TO_CTX) { 2058 enum bpf_reg_type reg_type = SCALAR_VALUE; 2059 2060 if (t == BPF_WRITE && value_regno >= 0 && 2061 is_pointer_value(env, value_regno)) { 2062 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2063 return -EACCES; 2064 } 2065 2066 err = check_ctx_reg(env, reg, regno); 2067 if (err < 0) 2068 return err; 2069 2070 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 2071 if (!err && t == BPF_READ && value_regno >= 0) { 2072 /* ctx access returns either a scalar, or a 2073 * PTR_TO_PACKET[_META,_END]. In the latter 2074 * case, we know the offset is zero. 2075 */ 2076 if (reg_type == SCALAR_VALUE) { 2077 mark_reg_unknown(env, regs, value_regno); 2078 } else { 2079 mark_reg_known_zero(env, regs, 2080 value_regno); 2081 if (reg_type_may_be_null(reg_type)) 2082 regs[value_regno].id = ++env->id_gen; 2083 } 2084 regs[value_regno].type = reg_type; 2085 } 2086 2087 } else if (reg->type == PTR_TO_STACK) { 2088 off += reg->var_off.value; 2089 err = check_stack_access(env, reg, off, size); 2090 if (err) 2091 return err; 2092 2093 state = func(env, reg); 2094 err = update_stack_depth(env, state, off); 2095 if (err) 2096 return err; 2097 2098 if (t == BPF_WRITE) 2099 err = check_stack_write(env, state, off, size, 2100 value_regno, insn_idx); 2101 else 2102 err = check_stack_read(env, state, off, size, 2103 value_regno); 2104 } else if (reg_is_pkt_pointer(reg)) { 2105 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2106 verbose(env, "cannot write into packet\n"); 2107 return -EACCES; 2108 } 2109 if (t == BPF_WRITE && value_regno >= 0 && 2110 is_pointer_value(env, value_regno)) { 2111 verbose(env, "R%d leaks addr into packet\n", 2112 value_regno); 2113 return -EACCES; 2114 } 2115 err = check_packet_access(env, regno, off, size, false); 2116 if (!err && t == BPF_READ && value_regno >= 0) 2117 mark_reg_unknown(env, regs, value_regno); 2118 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2119 if (t == BPF_WRITE && value_regno >= 0 && 2120 is_pointer_value(env, value_regno)) { 2121 verbose(env, "R%d leaks addr into flow keys\n", 2122 value_regno); 2123 return -EACCES; 2124 } 2125 2126 err = check_flow_keys_access(env, off, size); 2127 if (!err && t == BPF_READ && value_regno >= 0) 2128 mark_reg_unknown(env, regs, value_regno); 2129 } else if (type_is_sk_pointer(reg->type)) { 2130 if (t == BPF_WRITE) { 2131 verbose(env, "R%d cannot write into %s\n", 2132 regno, reg_type_str[reg->type]); 2133 return -EACCES; 2134 } 2135 err = check_sock_access(env, insn_idx, regno, off, size, t); 2136 if (!err && value_regno >= 0) 2137 mark_reg_unknown(env, regs, value_regno); 2138 } else { 2139 verbose(env, "R%d invalid mem access '%s'\n", regno, 2140 reg_type_str[reg->type]); 2141 return -EACCES; 2142 } 2143 2144 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2145 regs[value_regno].type == SCALAR_VALUE) { 2146 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2147 coerce_reg_to_size(®s[value_regno], size); 2148 } 2149 return err; 2150 } 2151 2152 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2153 { 2154 int err; 2155 2156 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2157 insn->imm != 0) { 2158 verbose(env, "BPF_XADD uses reserved fields\n"); 2159 return -EINVAL; 2160 } 2161 2162 /* check src1 operand */ 2163 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2164 if (err) 2165 return err; 2166 2167 /* check src2 operand */ 2168 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2169 if (err) 2170 return err; 2171 2172 if (is_pointer_value(env, insn->src_reg)) { 2173 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2174 return -EACCES; 2175 } 2176 2177 if (is_ctx_reg(env, insn->dst_reg) || 2178 is_pkt_reg(env, insn->dst_reg) || 2179 is_flow_key_reg(env, insn->dst_reg) || 2180 is_sk_reg(env, insn->dst_reg)) { 2181 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2182 insn->dst_reg, 2183 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2184 return -EACCES; 2185 } 2186 2187 /* check whether atomic_add can read the memory */ 2188 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2189 BPF_SIZE(insn->code), BPF_READ, -1, true); 2190 if (err) 2191 return err; 2192 2193 /* check whether atomic_add can write into the same memory */ 2194 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2195 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2196 } 2197 2198 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 2199 int off, int access_size, 2200 bool zero_size_allowed) 2201 { 2202 struct bpf_reg_state *reg = reg_state(env, regno); 2203 2204 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2205 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2206 if (tnum_is_const(reg->var_off)) { 2207 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2208 regno, off, access_size); 2209 } else { 2210 char tn_buf[48]; 2211 2212 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2213 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 2214 regno, tn_buf, access_size); 2215 } 2216 return -EACCES; 2217 } 2218 return 0; 2219 } 2220 2221 /* when register 'regno' is passed into function that will read 'access_size' 2222 * bytes from that pointer, make sure that it's within stack boundary 2223 * and all elements of stack are initialized. 2224 * Unlike most pointer bounds-checking functions, this one doesn't take an 2225 * 'off' argument, so it has to add in reg->off itself. 2226 */ 2227 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2228 int access_size, bool zero_size_allowed, 2229 struct bpf_call_arg_meta *meta) 2230 { 2231 struct bpf_reg_state *reg = reg_state(env, regno); 2232 struct bpf_func_state *state = func(env, reg); 2233 int err, min_off, max_off, i, slot, spi; 2234 2235 if (reg->type != PTR_TO_STACK) { 2236 /* Allow zero-byte read from NULL, regardless of pointer type */ 2237 if (zero_size_allowed && access_size == 0 && 2238 register_is_null(reg)) 2239 return 0; 2240 2241 verbose(env, "R%d type=%s expected=%s\n", regno, 2242 reg_type_str[reg->type], 2243 reg_type_str[PTR_TO_STACK]); 2244 return -EACCES; 2245 } 2246 2247 if (tnum_is_const(reg->var_off)) { 2248 min_off = max_off = reg->var_off.value + reg->off; 2249 err = __check_stack_boundary(env, regno, min_off, access_size, 2250 zero_size_allowed); 2251 if (err) 2252 return err; 2253 } else { 2254 /* Variable offset is prohibited for unprivileged mode for 2255 * simplicity since it requires corresponding support in 2256 * Spectre masking for stack ALU. 2257 * See also retrieve_ptr_limit(). 2258 */ 2259 if (!env->allow_ptr_leaks) { 2260 char tn_buf[48]; 2261 2262 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2263 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 2264 regno, tn_buf); 2265 return -EACCES; 2266 } 2267 /* Only initialized buffer on stack is allowed to be accessed 2268 * with variable offset. With uninitialized buffer it's hard to 2269 * guarantee that whole memory is marked as initialized on 2270 * helper return since specific bounds are unknown what may 2271 * cause uninitialized stack leaking. 2272 */ 2273 if (meta && meta->raw_mode) 2274 meta = NULL; 2275 2276 if (reg->smax_value >= BPF_MAX_VAR_OFF || 2277 reg->smax_value <= -BPF_MAX_VAR_OFF) { 2278 verbose(env, "R%d unbounded indirect variable offset stack access\n", 2279 regno); 2280 return -EACCES; 2281 } 2282 min_off = reg->smin_value + reg->off; 2283 max_off = reg->smax_value + reg->off; 2284 err = __check_stack_boundary(env, regno, min_off, access_size, 2285 zero_size_allowed); 2286 if (err) { 2287 verbose(env, "R%d min value is outside of stack bound\n", 2288 regno); 2289 return err; 2290 } 2291 err = __check_stack_boundary(env, regno, max_off, access_size, 2292 zero_size_allowed); 2293 if (err) { 2294 verbose(env, "R%d max value is outside of stack bound\n", 2295 regno); 2296 return err; 2297 } 2298 } 2299 2300 if (meta && meta->raw_mode) { 2301 meta->access_size = access_size; 2302 meta->regno = regno; 2303 return 0; 2304 } 2305 2306 for (i = min_off; i < max_off + access_size; i++) { 2307 u8 *stype; 2308 2309 slot = -i - 1; 2310 spi = slot / BPF_REG_SIZE; 2311 if (state->allocated_stack <= slot) 2312 goto err; 2313 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2314 if (*stype == STACK_MISC) 2315 goto mark; 2316 if (*stype == STACK_ZERO) { 2317 /* helper can write anything into the stack */ 2318 *stype = STACK_MISC; 2319 goto mark; 2320 } 2321 err: 2322 if (tnum_is_const(reg->var_off)) { 2323 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2324 min_off, i - min_off, access_size); 2325 } else { 2326 char tn_buf[48]; 2327 2328 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2329 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 2330 tn_buf, i - min_off, access_size); 2331 } 2332 return -EACCES; 2333 mark: 2334 /* reading any byte out of 8-byte 'spill_slot' will cause 2335 * the whole slot to be marked as 'read' 2336 */ 2337 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2338 state->stack[spi].spilled_ptr.parent); 2339 } 2340 return update_stack_depth(env, state, min_off); 2341 } 2342 2343 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2344 int access_size, bool zero_size_allowed, 2345 struct bpf_call_arg_meta *meta) 2346 { 2347 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2348 2349 switch (reg->type) { 2350 case PTR_TO_PACKET: 2351 case PTR_TO_PACKET_META: 2352 return check_packet_access(env, regno, reg->off, access_size, 2353 zero_size_allowed); 2354 case PTR_TO_MAP_VALUE: 2355 if (check_map_access_type(env, regno, reg->off, access_size, 2356 meta && meta->raw_mode ? BPF_WRITE : 2357 BPF_READ)) 2358 return -EACCES; 2359 return check_map_access(env, regno, reg->off, access_size, 2360 zero_size_allowed); 2361 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2362 return check_stack_boundary(env, regno, access_size, 2363 zero_size_allowed, meta); 2364 } 2365 } 2366 2367 /* Implementation details: 2368 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 2369 * Two bpf_map_lookups (even with the same key) will have different reg->id. 2370 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 2371 * value_or_null->value transition, since the verifier only cares about 2372 * the range of access to valid map value pointer and doesn't care about actual 2373 * address of the map element. 2374 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 2375 * reg->id > 0 after value_or_null->value transition. By doing so 2376 * two bpf_map_lookups will be considered two different pointers that 2377 * point to different bpf_spin_locks. 2378 * The verifier allows taking only one bpf_spin_lock at a time to avoid 2379 * dead-locks. 2380 * Since only one bpf_spin_lock is allowed the checks are simpler than 2381 * reg_is_refcounted() logic. The verifier needs to remember only 2382 * one spin_lock instead of array of acquired_refs. 2383 * cur_state->active_spin_lock remembers which map value element got locked 2384 * and clears it after bpf_spin_unlock. 2385 */ 2386 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 2387 bool is_lock) 2388 { 2389 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2390 struct bpf_verifier_state *cur = env->cur_state; 2391 bool is_const = tnum_is_const(reg->var_off); 2392 struct bpf_map *map = reg->map_ptr; 2393 u64 val = reg->var_off.value; 2394 2395 if (reg->type != PTR_TO_MAP_VALUE) { 2396 verbose(env, "R%d is not a pointer to map_value\n", regno); 2397 return -EINVAL; 2398 } 2399 if (!is_const) { 2400 verbose(env, 2401 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 2402 regno); 2403 return -EINVAL; 2404 } 2405 if (!map->btf) { 2406 verbose(env, 2407 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 2408 map->name); 2409 return -EINVAL; 2410 } 2411 if (!map_value_has_spin_lock(map)) { 2412 if (map->spin_lock_off == -E2BIG) 2413 verbose(env, 2414 "map '%s' has more than one 'struct bpf_spin_lock'\n", 2415 map->name); 2416 else if (map->spin_lock_off == -ENOENT) 2417 verbose(env, 2418 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 2419 map->name); 2420 else 2421 verbose(env, 2422 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 2423 map->name); 2424 return -EINVAL; 2425 } 2426 if (map->spin_lock_off != val + reg->off) { 2427 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 2428 val + reg->off); 2429 return -EINVAL; 2430 } 2431 if (is_lock) { 2432 if (cur->active_spin_lock) { 2433 verbose(env, 2434 "Locking two bpf_spin_locks are not allowed\n"); 2435 return -EINVAL; 2436 } 2437 cur->active_spin_lock = reg->id; 2438 } else { 2439 if (!cur->active_spin_lock) { 2440 verbose(env, "bpf_spin_unlock without taking a lock\n"); 2441 return -EINVAL; 2442 } 2443 if (cur->active_spin_lock != reg->id) { 2444 verbose(env, "bpf_spin_unlock of different lock\n"); 2445 return -EINVAL; 2446 } 2447 cur->active_spin_lock = 0; 2448 } 2449 return 0; 2450 } 2451 2452 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2453 { 2454 return type == ARG_PTR_TO_MEM || 2455 type == ARG_PTR_TO_MEM_OR_NULL || 2456 type == ARG_PTR_TO_UNINIT_MEM; 2457 } 2458 2459 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2460 { 2461 return type == ARG_CONST_SIZE || 2462 type == ARG_CONST_SIZE_OR_ZERO; 2463 } 2464 2465 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2466 enum bpf_arg_type arg_type, 2467 struct bpf_call_arg_meta *meta) 2468 { 2469 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2470 enum bpf_reg_type expected_type, type = reg->type; 2471 int err = 0; 2472 2473 if (arg_type == ARG_DONTCARE) 2474 return 0; 2475 2476 err = check_reg_arg(env, regno, SRC_OP); 2477 if (err) 2478 return err; 2479 2480 if (arg_type == ARG_ANYTHING) { 2481 if (is_pointer_value(env, regno)) { 2482 verbose(env, "R%d leaks addr into helper function\n", 2483 regno); 2484 return -EACCES; 2485 } 2486 return 0; 2487 } 2488 2489 if (type_is_pkt_pointer(type) && 2490 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2491 verbose(env, "helper access to the packet is not allowed\n"); 2492 return -EACCES; 2493 } 2494 2495 if (arg_type == ARG_PTR_TO_MAP_KEY || 2496 arg_type == ARG_PTR_TO_MAP_VALUE || 2497 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2498 expected_type = PTR_TO_STACK; 2499 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 2500 type != expected_type) 2501 goto err_type; 2502 } else if (arg_type == ARG_CONST_SIZE || 2503 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2504 expected_type = SCALAR_VALUE; 2505 if (type != expected_type) 2506 goto err_type; 2507 } else if (arg_type == ARG_CONST_MAP_PTR) { 2508 expected_type = CONST_PTR_TO_MAP; 2509 if (type != expected_type) 2510 goto err_type; 2511 } else if (arg_type == ARG_PTR_TO_CTX) { 2512 expected_type = PTR_TO_CTX; 2513 if (type != expected_type) 2514 goto err_type; 2515 err = check_ctx_reg(env, reg, regno); 2516 if (err < 0) 2517 return err; 2518 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 2519 expected_type = PTR_TO_SOCK_COMMON; 2520 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 2521 if (!type_is_sk_pointer(type)) 2522 goto err_type; 2523 if (reg->ref_obj_id) { 2524 if (meta->ref_obj_id) { 2525 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 2526 regno, reg->ref_obj_id, 2527 meta->ref_obj_id); 2528 return -EFAULT; 2529 } 2530 meta->ref_obj_id = reg->ref_obj_id; 2531 } 2532 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 2533 if (meta->func_id == BPF_FUNC_spin_lock) { 2534 if (process_spin_lock(env, regno, true)) 2535 return -EACCES; 2536 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 2537 if (process_spin_lock(env, regno, false)) 2538 return -EACCES; 2539 } else { 2540 verbose(env, "verifier internal error\n"); 2541 return -EFAULT; 2542 } 2543 } else if (arg_type_is_mem_ptr(arg_type)) { 2544 expected_type = PTR_TO_STACK; 2545 /* One exception here. In case function allows for NULL to be 2546 * passed in as argument, it's a SCALAR_VALUE type. Final test 2547 * happens during stack boundary checking. 2548 */ 2549 if (register_is_null(reg) && 2550 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2551 /* final test in check_stack_boundary() */; 2552 else if (!type_is_pkt_pointer(type) && 2553 type != PTR_TO_MAP_VALUE && 2554 type != expected_type) 2555 goto err_type; 2556 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2557 } else { 2558 verbose(env, "unsupported arg_type %d\n", arg_type); 2559 return -EFAULT; 2560 } 2561 2562 if (arg_type == ARG_CONST_MAP_PTR) { 2563 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2564 meta->map_ptr = reg->map_ptr; 2565 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2566 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2567 * check that [key, key + map->key_size) are within 2568 * stack limits and initialized 2569 */ 2570 if (!meta->map_ptr) { 2571 /* in function declaration map_ptr must come before 2572 * map_key, so that it's verified and known before 2573 * we have to check map_key here. Otherwise it means 2574 * that kernel subsystem misconfigured verifier 2575 */ 2576 verbose(env, "invalid map_ptr to access map->key\n"); 2577 return -EACCES; 2578 } 2579 err = check_helper_mem_access(env, regno, 2580 meta->map_ptr->key_size, false, 2581 NULL); 2582 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2583 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2584 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2585 * check [value, value + map->value_size) validity 2586 */ 2587 if (!meta->map_ptr) { 2588 /* kernel subsystem misconfigured verifier */ 2589 verbose(env, "invalid map_ptr to access map->value\n"); 2590 return -EACCES; 2591 } 2592 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2593 err = check_helper_mem_access(env, regno, 2594 meta->map_ptr->value_size, false, 2595 meta); 2596 } else if (arg_type_is_mem_size(arg_type)) { 2597 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2598 2599 /* remember the mem_size which may be used later 2600 * to refine return values. 2601 */ 2602 meta->msize_smax_value = reg->smax_value; 2603 meta->msize_umax_value = reg->umax_value; 2604 2605 /* The register is SCALAR_VALUE; the access check 2606 * happens using its boundaries. 2607 */ 2608 if (!tnum_is_const(reg->var_off)) 2609 /* For unprivileged variable accesses, disable raw 2610 * mode so that the program is required to 2611 * initialize all the memory that the helper could 2612 * just partially fill up. 2613 */ 2614 meta = NULL; 2615 2616 if (reg->smin_value < 0) { 2617 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2618 regno); 2619 return -EACCES; 2620 } 2621 2622 if (reg->umin_value == 0) { 2623 err = check_helper_mem_access(env, regno - 1, 0, 2624 zero_size_allowed, 2625 meta); 2626 if (err) 2627 return err; 2628 } 2629 2630 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2631 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2632 regno); 2633 return -EACCES; 2634 } 2635 err = check_helper_mem_access(env, regno - 1, 2636 reg->umax_value, 2637 zero_size_allowed, meta); 2638 } 2639 2640 return err; 2641 err_type: 2642 verbose(env, "R%d type=%s expected=%s\n", regno, 2643 reg_type_str[type], reg_type_str[expected_type]); 2644 return -EACCES; 2645 } 2646 2647 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2648 struct bpf_map *map, int func_id) 2649 { 2650 if (!map) 2651 return 0; 2652 2653 /* We need a two way check, first is from map perspective ... */ 2654 switch (map->map_type) { 2655 case BPF_MAP_TYPE_PROG_ARRAY: 2656 if (func_id != BPF_FUNC_tail_call) 2657 goto error; 2658 break; 2659 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2660 if (func_id != BPF_FUNC_perf_event_read && 2661 func_id != BPF_FUNC_perf_event_output && 2662 func_id != BPF_FUNC_perf_event_read_value) 2663 goto error; 2664 break; 2665 case BPF_MAP_TYPE_STACK_TRACE: 2666 if (func_id != BPF_FUNC_get_stackid) 2667 goto error; 2668 break; 2669 case BPF_MAP_TYPE_CGROUP_ARRAY: 2670 if (func_id != BPF_FUNC_skb_under_cgroup && 2671 func_id != BPF_FUNC_current_task_under_cgroup) 2672 goto error; 2673 break; 2674 case BPF_MAP_TYPE_CGROUP_STORAGE: 2675 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2676 if (func_id != BPF_FUNC_get_local_storage) 2677 goto error; 2678 break; 2679 /* devmap returns a pointer to a live net_device ifindex that we cannot 2680 * allow to be modified from bpf side. So do not allow lookup elements 2681 * for now. 2682 */ 2683 case BPF_MAP_TYPE_DEVMAP: 2684 if (func_id != BPF_FUNC_redirect_map) 2685 goto error; 2686 break; 2687 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2688 * appear. 2689 */ 2690 case BPF_MAP_TYPE_CPUMAP: 2691 case BPF_MAP_TYPE_XSKMAP: 2692 if (func_id != BPF_FUNC_redirect_map) 2693 goto error; 2694 break; 2695 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2696 case BPF_MAP_TYPE_HASH_OF_MAPS: 2697 if (func_id != BPF_FUNC_map_lookup_elem) 2698 goto error; 2699 break; 2700 case BPF_MAP_TYPE_SOCKMAP: 2701 if (func_id != BPF_FUNC_sk_redirect_map && 2702 func_id != BPF_FUNC_sock_map_update && 2703 func_id != BPF_FUNC_map_delete_elem && 2704 func_id != BPF_FUNC_msg_redirect_map) 2705 goto error; 2706 break; 2707 case BPF_MAP_TYPE_SOCKHASH: 2708 if (func_id != BPF_FUNC_sk_redirect_hash && 2709 func_id != BPF_FUNC_sock_hash_update && 2710 func_id != BPF_FUNC_map_delete_elem && 2711 func_id != BPF_FUNC_msg_redirect_hash) 2712 goto error; 2713 break; 2714 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2715 if (func_id != BPF_FUNC_sk_select_reuseport) 2716 goto error; 2717 break; 2718 case BPF_MAP_TYPE_QUEUE: 2719 case BPF_MAP_TYPE_STACK: 2720 if (func_id != BPF_FUNC_map_peek_elem && 2721 func_id != BPF_FUNC_map_pop_elem && 2722 func_id != BPF_FUNC_map_push_elem) 2723 goto error; 2724 break; 2725 default: 2726 break; 2727 } 2728 2729 /* ... and second from the function itself. */ 2730 switch (func_id) { 2731 case BPF_FUNC_tail_call: 2732 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2733 goto error; 2734 if (env->subprog_cnt > 1) { 2735 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2736 return -EINVAL; 2737 } 2738 break; 2739 case BPF_FUNC_perf_event_read: 2740 case BPF_FUNC_perf_event_output: 2741 case BPF_FUNC_perf_event_read_value: 2742 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2743 goto error; 2744 break; 2745 case BPF_FUNC_get_stackid: 2746 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2747 goto error; 2748 break; 2749 case BPF_FUNC_current_task_under_cgroup: 2750 case BPF_FUNC_skb_under_cgroup: 2751 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2752 goto error; 2753 break; 2754 case BPF_FUNC_redirect_map: 2755 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2756 map->map_type != BPF_MAP_TYPE_CPUMAP && 2757 map->map_type != BPF_MAP_TYPE_XSKMAP) 2758 goto error; 2759 break; 2760 case BPF_FUNC_sk_redirect_map: 2761 case BPF_FUNC_msg_redirect_map: 2762 case BPF_FUNC_sock_map_update: 2763 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2764 goto error; 2765 break; 2766 case BPF_FUNC_sk_redirect_hash: 2767 case BPF_FUNC_msg_redirect_hash: 2768 case BPF_FUNC_sock_hash_update: 2769 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2770 goto error; 2771 break; 2772 case BPF_FUNC_get_local_storage: 2773 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2774 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2775 goto error; 2776 break; 2777 case BPF_FUNC_sk_select_reuseport: 2778 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2779 goto error; 2780 break; 2781 case BPF_FUNC_map_peek_elem: 2782 case BPF_FUNC_map_pop_elem: 2783 case BPF_FUNC_map_push_elem: 2784 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2785 map->map_type != BPF_MAP_TYPE_STACK) 2786 goto error; 2787 break; 2788 default: 2789 break; 2790 } 2791 2792 return 0; 2793 error: 2794 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2795 map->map_type, func_id_name(func_id), func_id); 2796 return -EINVAL; 2797 } 2798 2799 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2800 { 2801 int count = 0; 2802 2803 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2804 count++; 2805 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2806 count++; 2807 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2808 count++; 2809 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2810 count++; 2811 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2812 count++; 2813 2814 /* We only support one arg being in raw mode at the moment, 2815 * which is sufficient for the helper functions we have 2816 * right now. 2817 */ 2818 return count <= 1; 2819 } 2820 2821 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2822 enum bpf_arg_type arg_next) 2823 { 2824 return (arg_type_is_mem_ptr(arg_curr) && 2825 !arg_type_is_mem_size(arg_next)) || 2826 (!arg_type_is_mem_ptr(arg_curr) && 2827 arg_type_is_mem_size(arg_next)); 2828 } 2829 2830 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2831 { 2832 /* bpf_xxx(..., buf, len) call will access 'len' 2833 * bytes from memory 'buf'. Both arg types need 2834 * to be paired, so make sure there's no buggy 2835 * helper function specification. 2836 */ 2837 if (arg_type_is_mem_size(fn->arg1_type) || 2838 arg_type_is_mem_ptr(fn->arg5_type) || 2839 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2840 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2841 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2842 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2843 return false; 2844 2845 return true; 2846 } 2847 2848 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 2849 { 2850 int count = 0; 2851 2852 if (arg_type_may_be_refcounted(fn->arg1_type)) 2853 count++; 2854 if (arg_type_may_be_refcounted(fn->arg2_type)) 2855 count++; 2856 if (arg_type_may_be_refcounted(fn->arg3_type)) 2857 count++; 2858 if (arg_type_may_be_refcounted(fn->arg4_type)) 2859 count++; 2860 if (arg_type_may_be_refcounted(fn->arg5_type)) 2861 count++; 2862 2863 /* A reference acquiring function cannot acquire 2864 * another refcounted ptr. 2865 */ 2866 if (is_acquire_function(func_id) && count) 2867 return false; 2868 2869 /* We only support one arg being unreferenced at the moment, 2870 * which is sufficient for the helper functions we have right now. 2871 */ 2872 return count <= 1; 2873 } 2874 2875 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 2876 { 2877 return check_raw_mode_ok(fn) && 2878 check_arg_pair_ok(fn) && 2879 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 2880 } 2881 2882 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2883 * are now invalid, so turn them into unknown SCALAR_VALUE. 2884 */ 2885 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2886 struct bpf_func_state *state) 2887 { 2888 struct bpf_reg_state *regs = state->regs, *reg; 2889 int i; 2890 2891 for (i = 0; i < MAX_BPF_REG; i++) 2892 if (reg_is_pkt_pointer_any(®s[i])) 2893 mark_reg_unknown(env, regs, i); 2894 2895 bpf_for_each_spilled_reg(i, state, reg) { 2896 if (!reg) 2897 continue; 2898 if (reg_is_pkt_pointer_any(reg)) 2899 __mark_reg_unknown(reg); 2900 } 2901 } 2902 2903 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2904 { 2905 struct bpf_verifier_state *vstate = env->cur_state; 2906 int i; 2907 2908 for (i = 0; i <= vstate->curframe; i++) 2909 __clear_all_pkt_pointers(env, vstate->frame[i]); 2910 } 2911 2912 static void release_reg_references(struct bpf_verifier_env *env, 2913 struct bpf_func_state *state, 2914 int ref_obj_id) 2915 { 2916 struct bpf_reg_state *regs = state->regs, *reg; 2917 int i; 2918 2919 for (i = 0; i < MAX_BPF_REG; i++) 2920 if (regs[i].ref_obj_id == ref_obj_id) 2921 mark_reg_unknown(env, regs, i); 2922 2923 bpf_for_each_spilled_reg(i, state, reg) { 2924 if (!reg) 2925 continue; 2926 if (reg->ref_obj_id == ref_obj_id) 2927 __mark_reg_unknown(reg); 2928 } 2929 } 2930 2931 /* The pointer with the specified id has released its reference to kernel 2932 * resources. Identify all copies of the same pointer and clear the reference. 2933 */ 2934 static int release_reference(struct bpf_verifier_env *env, 2935 int ref_obj_id) 2936 { 2937 struct bpf_verifier_state *vstate = env->cur_state; 2938 int err; 2939 int i; 2940 2941 err = release_reference_state(cur_func(env), ref_obj_id); 2942 if (err) 2943 return err; 2944 2945 for (i = 0; i <= vstate->curframe; i++) 2946 release_reg_references(env, vstate->frame[i], ref_obj_id); 2947 2948 return 0; 2949 } 2950 2951 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2952 int *insn_idx) 2953 { 2954 struct bpf_verifier_state *state = env->cur_state; 2955 struct bpf_func_state *caller, *callee; 2956 int i, err, subprog, target_insn; 2957 2958 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2959 verbose(env, "the call stack of %d frames is too deep\n", 2960 state->curframe + 2); 2961 return -E2BIG; 2962 } 2963 2964 target_insn = *insn_idx + insn->imm; 2965 subprog = find_subprog(env, target_insn + 1); 2966 if (subprog < 0) { 2967 verbose(env, "verifier bug. No program starts at insn %d\n", 2968 target_insn + 1); 2969 return -EFAULT; 2970 } 2971 2972 caller = state->frame[state->curframe]; 2973 if (state->frame[state->curframe + 1]) { 2974 verbose(env, "verifier bug. Frame %d already allocated\n", 2975 state->curframe + 1); 2976 return -EFAULT; 2977 } 2978 2979 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2980 if (!callee) 2981 return -ENOMEM; 2982 state->frame[state->curframe + 1] = callee; 2983 2984 /* callee cannot access r0, r6 - r9 for reading and has to write 2985 * into its own stack before reading from it. 2986 * callee can read/write into caller's stack 2987 */ 2988 init_func_state(env, callee, 2989 /* remember the callsite, it will be used by bpf_exit */ 2990 *insn_idx /* callsite */, 2991 state->curframe + 1 /* frameno within this callchain */, 2992 subprog /* subprog number within this prog */); 2993 2994 /* Transfer references to the callee */ 2995 err = transfer_reference_state(callee, caller); 2996 if (err) 2997 return err; 2998 2999 /* copy r1 - r5 args that callee can access. The copy includes parent 3000 * pointers, which connects us up to the liveness chain 3001 */ 3002 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3003 callee->regs[i] = caller->regs[i]; 3004 3005 /* after the call registers r0 - r5 were scratched */ 3006 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3007 mark_reg_not_init(env, caller->regs, caller_saved[i]); 3008 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3009 } 3010 3011 /* only increment it after check_reg_arg() finished */ 3012 state->curframe++; 3013 3014 /* and go analyze first insn of the callee */ 3015 *insn_idx = target_insn; 3016 3017 if (env->log.level & BPF_LOG_LEVEL) { 3018 verbose(env, "caller:\n"); 3019 print_verifier_state(env, caller); 3020 verbose(env, "callee:\n"); 3021 print_verifier_state(env, callee); 3022 } 3023 return 0; 3024 } 3025 3026 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 3027 { 3028 struct bpf_verifier_state *state = env->cur_state; 3029 struct bpf_func_state *caller, *callee; 3030 struct bpf_reg_state *r0; 3031 int err; 3032 3033 callee = state->frame[state->curframe]; 3034 r0 = &callee->regs[BPF_REG_0]; 3035 if (r0->type == PTR_TO_STACK) { 3036 /* technically it's ok to return caller's stack pointer 3037 * (or caller's caller's pointer) back to the caller, 3038 * since these pointers are valid. Only current stack 3039 * pointer will be invalid as soon as function exits, 3040 * but let's be conservative 3041 */ 3042 verbose(env, "cannot return stack pointer to the caller\n"); 3043 return -EINVAL; 3044 } 3045 3046 state->curframe--; 3047 caller = state->frame[state->curframe]; 3048 /* return to the caller whatever r0 had in the callee */ 3049 caller->regs[BPF_REG_0] = *r0; 3050 3051 /* Transfer references to the caller */ 3052 err = transfer_reference_state(caller, callee); 3053 if (err) 3054 return err; 3055 3056 *insn_idx = callee->callsite + 1; 3057 if (env->log.level & BPF_LOG_LEVEL) { 3058 verbose(env, "returning from callee:\n"); 3059 print_verifier_state(env, callee); 3060 verbose(env, "to caller at %d:\n", *insn_idx); 3061 print_verifier_state(env, caller); 3062 } 3063 /* clear everything in the callee */ 3064 free_func_state(callee); 3065 state->frame[state->curframe + 1] = NULL; 3066 return 0; 3067 } 3068 3069 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 3070 int func_id, 3071 struct bpf_call_arg_meta *meta) 3072 { 3073 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 3074 3075 if (ret_type != RET_INTEGER || 3076 (func_id != BPF_FUNC_get_stack && 3077 func_id != BPF_FUNC_probe_read_str)) 3078 return; 3079 3080 ret_reg->smax_value = meta->msize_smax_value; 3081 ret_reg->umax_value = meta->msize_umax_value; 3082 __reg_deduce_bounds(ret_reg); 3083 __reg_bound_offset(ret_reg); 3084 } 3085 3086 static int 3087 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 3088 int func_id, int insn_idx) 3089 { 3090 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 3091 struct bpf_map *map = meta->map_ptr; 3092 3093 if (func_id != BPF_FUNC_tail_call && 3094 func_id != BPF_FUNC_map_lookup_elem && 3095 func_id != BPF_FUNC_map_update_elem && 3096 func_id != BPF_FUNC_map_delete_elem && 3097 func_id != BPF_FUNC_map_push_elem && 3098 func_id != BPF_FUNC_map_pop_elem && 3099 func_id != BPF_FUNC_map_peek_elem) 3100 return 0; 3101 3102 if (map == NULL) { 3103 verbose(env, "kernel subsystem misconfigured verifier\n"); 3104 return -EINVAL; 3105 } 3106 3107 /* In case of read-only, some additional restrictions 3108 * need to be applied in order to prevent altering the 3109 * state of the map from program side. 3110 */ 3111 if ((map->map_flags & BPF_F_RDONLY_PROG) && 3112 (func_id == BPF_FUNC_map_delete_elem || 3113 func_id == BPF_FUNC_map_update_elem || 3114 func_id == BPF_FUNC_map_push_elem || 3115 func_id == BPF_FUNC_map_pop_elem)) { 3116 verbose(env, "write into map forbidden\n"); 3117 return -EACCES; 3118 } 3119 3120 if (!BPF_MAP_PTR(aux->map_state)) 3121 bpf_map_ptr_store(aux, meta->map_ptr, 3122 meta->map_ptr->unpriv_array); 3123 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 3124 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 3125 meta->map_ptr->unpriv_array); 3126 return 0; 3127 } 3128 3129 static int check_reference_leak(struct bpf_verifier_env *env) 3130 { 3131 struct bpf_func_state *state = cur_func(env); 3132 int i; 3133 3134 for (i = 0; i < state->acquired_refs; i++) { 3135 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 3136 state->refs[i].id, state->refs[i].insn_idx); 3137 } 3138 return state->acquired_refs ? -EINVAL : 0; 3139 } 3140 3141 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 3142 { 3143 const struct bpf_func_proto *fn = NULL; 3144 struct bpf_reg_state *regs; 3145 struct bpf_call_arg_meta meta; 3146 bool changes_data; 3147 int i, err; 3148 3149 /* find function prototype */ 3150 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 3151 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 3152 func_id); 3153 return -EINVAL; 3154 } 3155 3156 if (env->ops->get_func_proto) 3157 fn = env->ops->get_func_proto(func_id, env->prog); 3158 if (!fn) { 3159 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 3160 func_id); 3161 return -EINVAL; 3162 } 3163 3164 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 3165 if (!env->prog->gpl_compatible && fn->gpl_only) { 3166 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 3167 return -EINVAL; 3168 } 3169 3170 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 3171 changes_data = bpf_helper_changes_pkt_data(fn->func); 3172 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 3173 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 3174 func_id_name(func_id), func_id); 3175 return -EINVAL; 3176 } 3177 3178 memset(&meta, 0, sizeof(meta)); 3179 meta.pkt_access = fn->pkt_access; 3180 3181 err = check_func_proto(fn, func_id); 3182 if (err) { 3183 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 3184 func_id_name(func_id), func_id); 3185 return err; 3186 } 3187 3188 meta.func_id = func_id; 3189 /* check args */ 3190 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 3191 if (err) 3192 return err; 3193 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 3194 if (err) 3195 return err; 3196 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 3197 if (err) 3198 return err; 3199 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 3200 if (err) 3201 return err; 3202 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 3203 if (err) 3204 return err; 3205 3206 err = record_func_map(env, &meta, func_id, insn_idx); 3207 if (err) 3208 return err; 3209 3210 /* Mark slots with STACK_MISC in case of raw mode, stack offset 3211 * is inferred from register state. 3212 */ 3213 for (i = 0; i < meta.access_size; i++) { 3214 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 3215 BPF_WRITE, -1, false); 3216 if (err) 3217 return err; 3218 } 3219 3220 if (func_id == BPF_FUNC_tail_call) { 3221 err = check_reference_leak(env); 3222 if (err) { 3223 verbose(env, "tail_call would lead to reference leak\n"); 3224 return err; 3225 } 3226 } else if (is_release_function(func_id)) { 3227 err = release_reference(env, meta.ref_obj_id); 3228 if (err) { 3229 verbose(env, "func %s#%d reference has not been acquired before\n", 3230 func_id_name(func_id), func_id); 3231 return err; 3232 } 3233 } 3234 3235 regs = cur_regs(env); 3236 3237 /* check that flags argument in get_local_storage(map, flags) is 0, 3238 * this is required because get_local_storage() can't return an error. 3239 */ 3240 if (func_id == BPF_FUNC_get_local_storage && 3241 !register_is_null(®s[BPF_REG_2])) { 3242 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 3243 return -EINVAL; 3244 } 3245 3246 /* reset caller saved regs */ 3247 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3248 mark_reg_not_init(env, regs, caller_saved[i]); 3249 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3250 } 3251 3252 /* update return register (already marked as written above) */ 3253 if (fn->ret_type == RET_INTEGER) { 3254 /* sets type to SCALAR_VALUE */ 3255 mark_reg_unknown(env, regs, BPF_REG_0); 3256 } else if (fn->ret_type == RET_VOID) { 3257 regs[BPF_REG_0].type = NOT_INIT; 3258 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 3259 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3260 /* There is no offset yet applied, variable or fixed */ 3261 mark_reg_known_zero(env, regs, BPF_REG_0); 3262 /* remember map_ptr, so that check_map_access() 3263 * can check 'value_size' boundary of memory access 3264 * to map element returned from bpf_map_lookup_elem() 3265 */ 3266 if (meta.map_ptr == NULL) { 3267 verbose(env, 3268 "kernel subsystem misconfigured verifier\n"); 3269 return -EINVAL; 3270 } 3271 regs[BPF_REG_0].map_ptr = meta.map_ptr; 3272 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3273 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 3274 if (map_value_has_spin_lock(meta.map_ptr)) 3275 regs[BPF_REG_0].id = ++env->id_gen; 3276 } else { 3277 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 3278 regs[BPF_REG_0].id = ++env->id_gen; 3279 } 3280 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 3281 mark_reg_known_zero(env, regs, BPF_REG_0); 3282 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 3283 regs[BPF_REG_0].id = ++env->id_gen; 3284 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 3285 mark_reg_known_zero(env, regs, BPF_REG_0); 3286 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 3287 regs[BPF_REG_0].id = ++env->id_gen; 3288 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 3289 mark_reg_known_zero(env, regs, BPF_REG_0); 3290 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 3291 regs[BPF_REG_0].id = ++env->id_gen; 3292 } else { 3293 verbose(env, "unknown return type %d of func %s#%d\n", 3294 fn->ret_type, func_id_name(func_id), func_id); 3295 return -EINVAL; 3296 } 3297 3298 if (is_ptr_cast_function(func_id)) { 3299 /* For release_reference() */ 3300 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 3301 } else if (is_acquire_function(func_id)) { 3302 int id = acquire_reference_state(env, insn_idx); 3303 3304 if (id < 0) 3305 return id; 3306 /* For mark_ptr_or_null_reg() */ 3307 regs[BPF_REG_0].id = id; 3308 /* For release_reference() */ 3309 regs[BPF_REG_0].ref_obj_id = id; 3310 } 3311 3312 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 3313 3314 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 3315 if (err) 3316 return err; 3317 3318 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 3319 const char *err_str; 3320 3321 #ifdef CONFIG_PERF_EVENTS 3322 err = get_callchain_buffers(sysctl_perf_event_max_stack); 3323 err_str = "cannot get callchain buffer for func %s#%d\n"; 3324 #else 3325 err = -ENOTSUPP; 3326 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 3327 #endif 3328 if (err) { 3329 verbose(env, err_str, func_id_name(func_id), func_id); 3330 return err; 3331 } 3332 3333 env->prog->has_callchain_buf = true; 3334 } 3335 3336 if (changes_data) 3337 clear_all_pkt_pointers(env); 3338 return 0; 3339 } 3340 3341 static bool signed_add_overflows(s64 a, s64 b) 3342 { 3343 /* Do the add in u64, where overflow is well-defined */ 3344 s64 res = (s64)((u64)a + (u64)b); 3345 3346 if (b < 0) 3347 return res > a; 3348 return res < a; 3349 } 3350 3351 static bool signed_sub_overflows(s64 a, s64 b) 3352 { 3353 /* Do the sub in u64, where overflow is well-defined */ 3354 s64 res = (s64)((u64)a - (u64)b); 3355 3356 if (b < 0) 3357 return res < a; 3358 return res > a; 3359 } 3360 3361 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 3362 const struct bpf_reg_state *reg, 3363 enum bpf_reg_type type) 3364 { 3365 bool known = tnum_is_const(reg->var_off); 3366 s64 val = reg->var_off.value; 3367 s64 smin = reg->smin_value; 3368 3369 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 3370 verbose(env, "math between %s pointer and %lld is not allowed\n", 3371 reg_type_str[type], val); 3372 return false; 3373 } 3374 3375 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 3376 verbose(env, "%s pointer offset %d is not allowed\n", 3377 reg_type_str[type], reg->off); 3378 return false; 3379 } 3380 3381 if (smin == S64_MIN) { 3382 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 3383 reg_type_str[type]); 3384 return false; 3385 } 3386 3387 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 3388 verbose(env, "value %lld makes %s pointer be out of bounds\n", 3389 smin, reg_type_str[type]); 3390 return false; 3391 } 3392 3393 return true; 3394 } 3395 3396 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 3397 { 3398 return &env->insn_aux_data[env->insn_idx]; 3399 } 3400 3401 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 3402 u32 *ptr_limit, u8 opcode, bool off_is_neg) 3403 { 3404 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 3405 (opcode == BPF_SUB && !off_is_neg); 3406 u32 off; 3407 3408 switch (ptr_reg->type) { 3409 case PTR_TO_STACK: 3410 /* Indirect variable offset stack access is prohibited in 3411 * unprivileged mode so it's not handled here. 3412 */ 3413 off = ptr_reg->off + ptr_reg->var_off.value; 3414 if (mask_to_left) 3415 *ptr_limit = MAX_BPF_STACK + off; 3416 else 3417 *ptr_limit = -off; 3418 return 0; 3419 case PTR_TO_MAP_VALUE: 3420 if (mask_to_left) { 3421 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 3422 } else { 3423 off = ptr_reg->smin_value + ptr_reg->off; 3424 *ptr_limit = ptr_reg->map_ptr->value_size - off; 3425 } 3426 return 0; 3427 default: 3428 return -EINVAL; 3429 } 3430 } 3431 3432 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 3433 const struct bpf_insn *insn) 3434 { 3435 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 3436 } 3437 3438 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 3439 u32 alu_state, u32 alu_limit) 3440 { 3441 /* If we arrived here from different branches with different 3442 * state or limits to sanitize, then this won't work. 3443 */ 3444 if (aux->alu_state && 3445 (aux->alu_state != alu_state || 3446 aux->alu_limit != alu_limit)) 3447 return -EACCES; 3448 3449 /* Corresponding fixup done in fixup_bpf_calls(). */ 3450 aux->alu_state = alu_state; 3451 aux->alu_limit = alu_limit; 3452 return 0; 3453 } 3454 3455 static int sanitize_val_alu(struct bpf_verifier_env *env, 3456 struct bpf_insn *insn) 3457 { 3458 struct bpf_insn_aux_data *aux = cur_aux(env); 3459 3460 if (can_skip_alu_sanitation(env, insn)) 3461 return 0; 3462 3463 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 3464 } 3465 3466 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 3467 struct bpf_insn *insn, 3468 const struct bpf_reg_state *ptr_reg, 3469 struct bpf_reg_state *dst_reg, 3470 bool off_is_neg) 3471 { 3472 struct bpf_verifier_state *vstate = env->cur_state; 3473 struct bpf_insn_aux_data *aux = cur_aux(env); 3474 bool ptr_is_dst_reg = ptr_reg == dst_reg; 3475 u8 opcode = BPF_OP(insn->code); 3476 u32 alu_state, alu_limit; 3477 struct bpf_reg_state tmp; 3478 bool ret; 3479 3480 if (can_skip_alu_sanitation(env, insn)) 3481 return 0; 3482 3483 /* We already marked aux for masking from non-speculative 3484 * paths, thus we got here in the first place. We only care 3485 * to explore bad access from here. 3486 */ 3487 if (vstate->speculative) 3488 goto do_sim; 3489 3490 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 3491 alu_state |= ptr_is_dst_reg ? 3492 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 3493 3494 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 3495 return 0; 3496 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 3497 return -EACCES; 3498 do_sim: 3499 /* Simulate and find potential out-of-bounds access under 3500 * speculative execution from truncation as a result of 3501 * masking when off was not within expected range. If off 3502 * sits in dst, then we temporarily need to move ptr there 3503 * to simulate dst (== 0) +/-= ptr. Needed, for example, 3504 * for cases where we use K-based arithmetic in one direction 3505 * and truncated reg-based in the other in order to explore 3506 * bad access. 3507 */ 3508 if (!ptr_is_dst_reg) { 3509 tmp = *dst_reg; 3510 *dst_reg = *ptr_reg; 3511 } 3512 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 3513 if (!ptr_is_dst_reg && ret) 3514 *dst_reg = tmp; 3515 return !ret ? -EFAULT : 0; 3516 } 3517 3518 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 3519 * Caller should also handle BPF_MOV case separately. 3520 * If we return -EACCES, caller may want to try again treating pointer as a 3521 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 3522 */ 3523 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 3524 struct bpf_insn *insn, 3525 const struct bpf_reg_state *ptr_reg, 3526 const struct bpf_reg_state *off_reg) 3527 { 3528 struct bpf_verifier_state *vstate = env->cur_state; 3529 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3530 struct bpf_reg_state *regs = state->regs, *dst_reg; 3531 bool known = tnum_is_const(off_reg->var_off); 3532 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 3533 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 3534 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 3535 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 3536 u32 dst = insn->dst_reg, src = insn->src_reg; 3537 u8 opcode = BPF_OP(insn->code); 3538 int ret; 3539 3540 dst_reg = ®s[dst]; 3541 3542 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3543 smin_val > smax_val || umin_val > umax_val) { 3544 /* Taint dst register if offset had invalid bounds derived from 3545 * e.g. dead branches. 3546 */ 3547 __mark_reg_unknown(dst_reg); 3548 return 0; 3549 } 3550 3551 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3552 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3553 verbose(env, 3554 "R%d 32-bit pointer arithmetic prohibited\n", 3555 dst); 3556 return -EACCES; 3557 } 3558 3559 switch (ptr_reg->type) { 3560 case PTR_TO_MAP_VALUE_OR_NULL: 3561 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3562 dst, reg_type_str[ptr_reg->type]); 3563 return -EACCES; 3564 case CONST_PTR_TO_MAP: 3565 case PTR_TO_PACKET_END: 3566 case PTR_TO_SOCKET: 3567 case PTR_TO_SOCKET_OR_NULL: 3568 case PTR_TO_SOCK_COMMON: 3569 case PTR_TO_SOCK_COMMON_OR_NULL: 3570 case PTR_TO_TCP_SOCK: 3571 case PTR_TO_TCP_SOCK_OR_NULL: 3572 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3573 dst, reg_type_str[ptr_reg->type]); 3574 return -EACCES; 3575 case PTR_TO_MAP_VALUE: 3576 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 3577 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 3578 off_reg == dst_reg ? dst : src); 3579 return -EACCES; 3580 } 3581 /* fall-through */ 3582 default: 3583 break; 3584 } 3585 3586 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3587 * The id may be overwritten later if we create a new variable offset. 3588 */ 3589 dst_reg->type = ptr_reg->type; 3590 dst_reg->id = ptr_reg->id; 3591 3592 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3593 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3594 return -EINVAL; 3595 3596 switch (opcode) { 3597 case BPF_ADD: 3598 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3599 if (ret < 0) { 3600 verbose(env, "R%d tried to add from different maps or paths\n", dst); 3601 return ret; 3602 } 3603 /* We can take a fixed offset as long as it doesn't overflow 3604 * the s32 'off' field 3605 */ 3606 if (known && (ptr_reg->off + smin_val == 3607 (s64)(s32)(ptr_reg->off + smin_val))) { 3608 /* pointer += K. Accumulate it into fixed offset */ 3609 dst_reg->smin_value = smin_ptr; 3610 dst_reg->smax_value = smax_ptr; 3611 dst_reg->umin_value = umin_ptr; 3612 dst_reg->umax_value = umax_ptr; 3613 dst_reg->var_off = ptr_reg->var_off; 3614 dst_reg->off = ptr_reg->off + smin_val; 3615 dst_reg->raw = ptr_reg->raw; 3616 break; 3617 } 3618 /* A new variable offset is created. Note that off_reg->off 3619 * == 0, since it's a scalar. 3620 * dst_reg gets the pointer type and since some positive 3621 * integer value was added to the pointer, give it a new 'id' 3622 * if it's a PTR_TO_PACKET. 3623 * this creates a new 'base' pointer, off_reg (variable) gets 3624 * added into the variable offset, and we copy the fixed offset 3625 * from ptr_reg. 3626 */ 3627 if (signed_add_overflows(smin_ptr, smin_val) || 3628 signed_add_overflows(smax_ptr, smax_val)) { 3629 dst_reg->smin_value = S64_MIN; 3630 dst_reg->smax_value = S64_MAX; 3631 } else { 3632 dst_reg->smin_value = smin_ptr + smin_val; 3633 dst_reg->smax_value = smax_ptr + smax_val; 3634 } 3635 if (umin_ptr + umin_val < umin_ptr || 3636 umax_ptr + umax_val < umax_ptr) { 3637 dst_reg->umin_value = 0; 3638 dst_reg->umax_value = U64_MAX; 3639 } else { 3640 dst_reg->umin_value = umin_ptr + umin_val; 3641 dst_reg->umax_value = umax_ptr + umax_val; 3642 } 3643 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3644 dst_reg->off = ptr_reg->off; 3645 dst_reg->raw = ptr_reg->raw; 3646 if (reg_is_pkt_pointer(ptr_reg)) { 3647 dst_reg->id = ++env->id_gen; 3648 /* something was added to pkt_ptr, set range to zero */ 3649 dst_reg->raw = 0; 3650 } 3651 break; 3652 case BPF_SUB: 3653 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3654 if (ret < 0) { 3655 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 3656 return ret; 3657 } 3658 if (dst_reg == off_reg) { 3659 /* scalar -= pointer. Creates an unknown scalar */ 3660 verbose(env, "R%d tried to subtract pointer from scalar\n", 3661 dst); 3662 return -EACCES; 3663 } 3664 /* We don't allow subtraction from FP, because (according to 3665 * test_verifier.c test "invalid fp arithmetic", JITs might not 3666 * be able to deal with it. 3667 */ 3668 if (ptr_reg->type == PTR_TO_STACK) { 3669 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3670 dst); 3671 return -EACCES; 3672 } 3673 if (known && (ptr_reg->off - smin_val == 3674 (s64)(s32)(ptr_reg->off - smin_val))) { 3675 /* pointer -= K. Subtract it from fixed offset */ 3676 dst_reg->smin_value = smin_ptr; 3677 dst_reg->smax_value = smax_ptr; 3678 dst_reg->umin_value = umin_ptr; 3679 dst_reg->umax_value = umax_ptr; 3680 dst_reg->var_off = ptr_reg->var_off; 3681 dst_reg->id = ptr_reg->id; 3682 dst_reg->off = ptr_reg->off - smin_val; 3683 dst_reg->raw = ptr_reg->raw; 3684 break; 3685 } 3686 /* A new variable offset is created. If the subtrahend is known 3687 * nonnegative, then any reg->range we had before is still good. 3688 */ 3689 if (signed_sub_overflows(smin_ptr, smax_val) || 3690 signed_sub_overflows(smax_ptr, smin_val)) { 3691 /* Overflow possible, we know nothing */ 3692 dst_reg->smin_value = S64_MIN; 3693 dst_reg->smax_value = S64_MAX; 3694 } else { 3695 dst_reg->smin_value = smin_ptr - smax_val; 3696 dst_reg->smax_value = smax_ptr - smin_val; 3697 } 3698 if (umin_ptr < umax_val) { 3699 /* Overflow possible, we know nothing */ 3700 dst_reg->umin_value = 0; 3701 dst_reg->umax_value = U64_MAX; 3702 } else { 3703 /* Cannot overflow (as long as bounds are consistent) */ 3704 dst_reg->umin_value = umin_ptr - umax_val; 3705 dst_reg->umax_value = umax_ptr - umin_val; 3706 } 3707 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3708 dst_reg->off = ptr_reg->off; 3709 dst_reg->raw = ptr_reg->raw; 3710 if (reg_is_pkt_pointer(ptr_reg)) { 3711 dst_reg->id = ++env->id_gen; 3712 /* something was added to pkt_ptr, set range to zero */ 3713 if (smin_val < 0) 3714 dst_reg->raw = 0; 3715 } 3716 break; 3717 case BPF_AND: 3718 case BPF_OR: 3719 case BPF_XOR: 3720 /* bitwise ops on pointers are troublesome, prohibit. */ 3721 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3722 dst, bpf_alu_string[opcode >> 4]); 3723 return -EACCES; 3724 default: 3725 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3726 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3727 dst, bpf_alu_string[opcode >> 4]); 3728 return -EACCES; 3729 } 3730 3731 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3732 return -EINVAL; 3733 3734 __update_reg_bounds(dst_reg); 3735 __reg_deduce_bounds(dst_reg); 3736 __reg_bound_offset(dst_reg); 3737 3738 /* For unprivileged we require that resulting offset must be in bounds 3739 * in order to be able to sanitize access later on. 3740 */ 3741 if (!env->allow_ptr_leaks) { 3742 if (dst_reg->type == PTR_TO_MAP_VALUE && 3743 check_map_access(env, dst, dst_reg->off, 1, false)) { 3744 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 3745 "prohibited for !root\n", dst); 3746 return -EACCES; 3747 } else if (dst_reg->type == PTR_TO_STACK && 3748 check_stack_access(env, dst_reg, dst_reg->off + 3749 dst_reg->var_off.value, 1)) { 3750 verbose(env, "R%d stack pointer arithmetic goes out of range, " 3751 "prohibited for !root\n", dst); 3752 return -EACCES; 3753 } 3754 } 3755 3756 return 0; 3757 } 3758 3759 /* WARNING: This function does calculations on 64-bit values, but the actual 3760 * execution may occur on 32-bit values. Therefore, things like bitshifts 3761 * need extra checks in the 32-bit case. 3762 */ 3763 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3764 struct bpf_insn *insn, 3765 struct bpf_reg_state *dst_reg, 3766 struct bpf_reg_state src_reg) 3767 { 3768 struct bpf_reg_state *regs = cur_regs(env); 3769 u8 opcode = BPF_OP(insn->code); 3770 bool src_known, dst_known; 3771 s64 smin_val, smax_val; 3772 u64 umin_val, umax_val; 3773 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3774 u32 dst = insn->dst_reg; 3775 int ret; 3776 3777 if (insn_bitness == 32) { 3778 /* Relevant for 32-bit RSH: Information can propagate towards 3779 * LSB, so it isn't sufficient to only truncate the output to 3780 * 32 bits. 3781 */ 3782 coerce_reg_to_size(dst_reg, 4); 3783 coerce_reg_to_size(&src_reg, 4); 3784 } 3785 3786 smin_val = src_reg.smin_value; 3787 smax_val = src_reg.smax_value; 3788 umin_val = src_reg.umin_value; 3789 umax_val = src_reg.umax_value; 3790 src_known = tnum_is_const(src_reg.var_off); 3791 dst_known = tnum_is_const(dst_reg->var_off); 3792 3793 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3794 smin_val > smax_val || umin_val > umax_val) { 3795 /* Taint dst register if offset had invalid bounds derived from 3796 * e.g. dead branches. 3797 */ 3798 __mark_reg_unknown(dst_reg); 3799 return 0; 3800 } 3801 3802 if (!src_known && 3803 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3804 __mark_reg_unknown(dst_reg); 3805 return 0; 3806 } 3807 3808 switch (opcode) { 3809 case BPF_ADD: 3810 ret = sanitize_val_alu(env, insn); 3811 if (ret < 0) { 3812 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 3813 return ret; 3814 } 3815 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3816 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3817 dst_reg->smin_value = S64_MIN; 3818 dst_reg->smax_value = S64_MAX; 3819 } else { 3820 dst_reg->smin_value += smin_val; 3821 dst_reg->smax_value += smax_val; 3822 } 3823 if (dst_reg->umin_value + umin_val < umin_val || 3824 dst_reg->umax_value + umax_val < umax_val) { 3825 dst_reg->umin_value = 0; 3826 dst_reg->umax_value = U64_MAX; 3827 } else { 3828 dst_reg->umin_value += umin_val; 3829 dst_reg->umax_value += umax_val; 3830 } 3831 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3832 break; 3833 case BPF_SUB: 3834 ret = sanitize_val_alu(env, insn); 3835 if (ret < 0) { 3836 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 3837 return ret; 3838 } 3839 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3840 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3841 /* Overflow possible, we know nothing */ 3842 dst_reg->smin_value = S64_MIN; 3843 dst_reg->smax_value = S64_MAX; 3844 } else { 3845 dst_reg->smin_value -= smax_val; 3846 dst_reg->smax_value -= smin_val; 3847 } 3848 if (dst_reg->umin_value < umax_val) { 3849 /* Overflow possible, we know nothing */ 3850 dst_reg->umin_value = 0; 3851 dst_reg->umax_value = U64_MAX; 3852 } else { 3853 /* Cannot overflow (as long as bounds are consistent) */ 3854 dst_reg->umin_value -= umax_val; 3855 dst_reg->umax_value -= umin_val; 3856 } 3857 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3858 break; 3859 case BPF_MUL: 3860 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3861 if (smin_val < 0 || dst_reg->smin_value < 0) { 3862 /* Ain't nobody got time to multiply that sign */ 3863 __mark_reg_unbounded(dst_reg); 3864 __update_reg_bounds(dst_reg); 3865 break; 3866 } 3867 /* Both values are positive, so we can work with unsigned and 3868 * copy the result to signed (unless it exceeds S64_MAX). 3869 */ 3870 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3871 /* Potential overflow, we know nothing */ 3872 __mark_reg_unbounded(dst_reg); 3873 /* (except what we can learn from the var_off) */ 3874 __update_reg_bounds(dst_reg); 3875 break; 3876 } 3877 dst_reg->umin_value *= umin_val; 3878 dst_reg->umax_value *= umax_val; 3879 if (dst_reg->umax_value > S64_MAX) { 3880 /* Overflow possible, we know nothing */ 3881 dst_reg->smin_value = S64_MIN; 3882 dst_reg->smax_value = S64_MAX; 3883 } else { 3884 dst_reg->smin_value = dst_reg->umin_value; 3885 dst_reg->smax_value = dst_reg->umax_value; 3886 } 3887 break; 3888 case BPF_AND: 3889 if (src_known && dst_known) { 3890 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3891 src_reg.var_off.value); 3892 break; 3893 } 3894 /* We get our minimum from the var_off, since that's inherently 3895 * bitwise. Our maximum is the minimum of the operands' maxima. 3896 */ 3897 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3898 dst_reg->umin_value = dst_reg->var_off.value; 3899 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3900 if (dst_reg->smin_value < 0 || smin_val < 0) { 3901 /* Lose signed bounds when ANDing negative numbers, 3902 * ain't nobody got time for that. 3903 */ 3904 dst_reg->smin_value = S64_MIN; 3905 dst_reg->smax_value = S64_MAX; 3906 } else { 3907 /* ANDing two positives gives a positive, so safe to 3908 * cast result into s64. 3909 */ 3910 dst_reg->smin_value = dst_reg->umin_value; 3911 dst_reg->smax_value = dst_reg->umax_value; 3912 } 3913 /* We may learn something more from the var_off */ 3914 __update_reg_bounds(dst_reg); 3915 break; 3916 case BPF_OR: 3917 if (src_known && dst_known) { 3918 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3919 src_reg.var_off.value); 3920 break; 3921 } 3922 /* We get our maximum from the var_off, and our minimum is the 3923 * maximum of the operands' minima 3924 */ 3925 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3926 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3927 dst_reg->umax_value = dst_reg->var_off.value | 3928 dst_reg->var_off.mask; 3929 if (dst_reg->smin_value < 0 || smin_val < 0) { 3930 /* Lose signed bounds when ORing negative numbers, 3931 * ain't nobody got time for that. 3932 */ 3933 dst_reg->smin_value = S64_MIN; 3934 dst_reg->smax_value = S64_MAX; 3935 } else { 3936 /* ORing two positives gives a positive, so safe to 3937 * cast result into s64. 3938 */ 3939 dst_reg->smin_value = dst_reg->umin_value; 3940 dst_reg->smax_value = dst_reg->umax_value; 3941 } 3942 /* We may learn something more from the var_off */ 3943 __update_reg_bounds(dst_reg); 3944 break; 3945 case BPF_LSH: 3946 if (umax_val >= insn_bitness) { 3947 /* Shifts greater than 31 or 63 are undefined. 3948 * This includes shifts by a negative number. 3949 */ 3950 mark_reg_unknown(env, regs, insn->dst_reg); 3951 break; 3952 } 3953 /* We lose all sign bit information (except what we can pick 3954 * up from var_off) 3955 */ 3956 dst_reg->smin_value = S64_MIN; 3957 dst_reg->smax_value = S64_MAX; 3958 /* If we might shift our top bit out, then we know nothing */ 3959 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3960 dst_reg->umin_value = 0; 3961 dst_reg->umax_value = U64_MAX; 3962 } else { 3963 dst_reg->umin_value <<= umin_val; 3964 dst_reg->umax_value <<= umax_val; 3965 } 3966 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3967 /* We may learn something more from the var_off */ 3968 __update_reg_bounds(dst_reg); 3969 break; 3970 case BPF_RSH: 3971 if (umax_val >= insn_bitness) { 3972 /* Shifts greater than 31 or 63 are undefined. 3973 * This includes shifts by a negative number. 3974 */ 3975 mark_reg_unknown(env, regs, insn->dst_reg); 3976 break; 3977 } 3978 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3979 * be negative, then either: 3980 * 1) src_reg might be zero, so the sign bit of the result is 3981 * unknown, so we lose our signed bounds 3982 * 2) it's known negative, thus the unsigned bounds capture the 3983 * signed bounds 3984 * 3) the signed bounds cross zero, so they tell us nothing 3985 * about the result 3986 * If the value in dst_reg is known nonnegative, then again the 3987 * unsigned bounts capture the signed bounds. 3988 * Thus, in all cases it suffices to blow away our signed bounds 3989 * and rely on inferring new ones from the unsigned bounds and 3990 * var_off of the result. 3991 */ 3992 dst_reg->smin_value = S64_MIN; 3993 dst_reg->smax_value = S64_MAX; 3994 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3995 dst_reg->umin_value >>= umax_val; 3996 dst_reg->umax_value >>= umin_val; 3997 /* We may learn something more from the var_off */ 3998 __update_reg_bounds(dst_reg); 3999 break; 4000 case BPF_ARSH: 4001 if (umax_val >= insn_bitness) { 4002 /* Shifts greater than 31 or 63 are undefined. 4003 * This includes shifts by a negative number. 4004 */ 4005 mark_reg_unknown(env, regs, insn->dst_reg); 4006 break; 4007 } 4008 4009 /* Upon reaching here, src_known is true and 4010 * umax_val is equal to umin_val. 4011 */ 4012 dst_reg->smin_value >>= umin_val; 4013 dst_reg->smax_value >>= umin_val; 4014 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 4015 4016 /* blow away the dst_reg umin_value/umax_value and rely on 4017 * dst_reg var_off to refine the result. 4018 */ 4019 dst_reg->umin_value = 0; 4020 dst_reg->umax_value = U64_MAX; 4021 __update_reg_bounds(dst_reg); 4022 break; 4023 default: 4024 mark_reg_unknown(env, regs, insn->dst_reg); 4025 break; 4026 } 4027 4028 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4029 /* 32-bit ALU ops are (32,32)->32 */ 4030 coerce_reg_to_size(dst_reg, 4); 4031 } 4032 4033 __reg_deduce_bounds(dst_reg); 4034 __reg_bound_offset(dst_reg); 4035 return 0; 4036 } 4037 4038 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 4039 * and var_off. 4040 */ 4041 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 4042 struct bpf_insn *insn) 4043 { 4044 struct bpf_verifier_state *vstate = env->cur_state; 4045 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4046 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 4047 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 4048 u8 opcode = BPF_OP(insn->code); 4049 4050 dst_reg = ®s[insn->dst_reg]; 4051 src_reg = NULL; 4052 if (dst_reg->type != SCALAR_VALUE) 4053 ptr_reg = dst_reg; 4054 if (BPF_SRC(insn->code) == BPF_X) { 4055 src_reg = ®s[insn->src_reg]; 4056 if (src_reg->type != SCALAR_VALUE) { 4057 if (dst_reg->type != SCALAR_VALUE) { 4058 /* Combining two pointers by any ALU op yields 4059 * an arbitrary scalar. Disallow all math except 4060 * pointer subtraction 4061 */ 4062 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 4063 mark_reg_unknown(env, regs, insn->dst_reg); 4064 return 0; 4065 } 4066 verbose(env, "R%d pointer %s pointer prohibited\n", 4067 insn->dst_reg, 4068 bpf_alu_string[opcode >> 4]); 4069 return -EACCES; 4070 } else { 4071 /* scalar += pointer 4072 * This is legal, but we have to reverse our 4073 * src/dest handling in computing the range 4074 */ 4075 return adjust_ptr_min_max_vals(env, insn, 4076 src_reg, dst_reg); 4077 } 4078 } else if (ptr_reg) { 4079 /* pointer += scalar */ 4080 return adjust_ptr_min_max_vals(env, insn, 4081 dst_reg, src_reg); 4082 } 4083 } else { 4084 /* Pretend the src is a reg with a known value, since we only 4085 * need to be able to read from this state. 4086 */ 4087 off_reg.type = SCALAR_VALUE; 4088 __mark_reg_known(&off_reg, insn->imm); 4089 src_reg = &off_reg; 4090 if (ptr_reg) /* pointer += K */ 4091 return adjust_ptr_min_max_vals(env, insn, 4092 ptr_reg, src_reg); 4093 } 4094 4095 /* Got here implies adding two SCALAR_VALUEs */ 4096 if (WARN_ON_ONCE(ptr_reg)) { 4097 print_verifier_state(env, state); 4098 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 4099 return -EINVAL; 4100 } 4101 if (WARN_ON(!src_reg)) { 4102 print_verifier_state(env, state); 4103 verbose(env, "verifier internal error: no src_reg\n"); 4104 return -EINVAL; 4105 } 4106 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 4107 } 4108 4109 /* check validity of 32-bit and 64-bit arithmetic operations */ 4110 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 4111 { 4112 struct bpf_reg_state *regs = cur_regs(env); 4113 u8 opcode = BPF_OP(insn->code); 4114 int err; 4115 4116 if (opcode == BPF_END || opcode == BPF_NEG) { 4117 if (opcode == BPF_NEG) { 4118 if (BPF_SRC(insn->code) != 0 || 4119 insn->src_reg != BPF_REG_0 || 4120 insn->off != 0 || insn->imm != 0) { 4121 verbose(env, "BPF_NEG uses reserved fields\n"); 4122 return -EINVAL; 4123 } 4124 } else { 4125 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 4126 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 4127 BPF_CLASS(insn->code) == BPF_ALU64) { 4128 verbose(env, "BPF_END uses reserved fields\n"); 4129 return -EINVAL; 4130 } 4131 } 4132 4133 /* check src operand */ 4134 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4135 if (err) 4136 return err; 4137 4138 if (is_pointer_value(env, insn->dst_reg)) { 4139 verbose(env, "R%d pointer arithmetic prohibited\n", 4140 insn->dst_reg); 4141 return -EACCES; 4142 } 4143 4144 /* check dest operand */ 4145 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4146 if (err) 4147 return err; 4148 4149 } else if (opcode == BPF_MOV) { 4150 4151 if (BPF_SRC(insn->code) == BPF_X) { 4152 if (insn->imm != 0 || insn->off != 0) { 4153 verbose(env, "BPF_MOV uses reserved fields\n"); 4154 return -EINVAL; 4155 } 4156 4157 /* check src operand */ 4158 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4159 if (err) 4160 return err; 4161 } else { 4162 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4163 verbose(env, "BPF_MOV uses reserved fields\n"); 4164 return -EINVAL; 4165 } 4166 } 4167 4168 /* check dest operand, mark as required later */ 4169 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4170 if (err) 4171 return err; 4172 4173 if (BPF_SRC(insn->code) == BPF_X) { 4174 struct bpf_reg_state *src_reg = regs + insn->src_reg; 4175 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 4176 4177 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4178 /* case: R1 = R2 4179 * copy register state to dest reg 4180 */ 4181 *dst_reg = *src_reg; 4182 dst_reg->live |= REG_LIVE_WRITTEN; 4183 } else { 4184 /* R1 = (u32) R2 */ 4185 if (is_pointer_value(env, insn->src_reg)) { 4186 verbose(env, 4187 "R%d partial copy of pointer\n", 4188 insn->src_reg); 4189 return -EACCES; 4190 } else if (src_reg->type == SCALAR_VALUE) { 4191 *dst_reg = *src_reg; 4192 dst_reg->live |= REG_LIVE_WRITTEN; 4193 } else { 4194 mark_reg_unknown(env, regs, 4195 insn->dst_reg); 4196 } 4197 coerce_reg_to_size(dst_reg, 4); 4198 } 4199 } else { 4200 /* case: R = imm 4201 * remember the value we stored into this reg 4202 */ 4203 /* clear any state __mark_reg_known doesn't set */ 4204 mark_reg_unknown(env, regs, insn->dst_reg); 4205 regs[insn->dst_reg].type = SCALAR_VALUE; 4206 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4207 __mark_reg_known(regs + insn->dst_reg, 4208 insn->imm); 4209 } else { 4210 __mark_reg_known(regs + insn->dst_reg, 4211 (u32)insn->imm); 4212 } 4213 } 4214 4215 } else if (opcode > BPF_END) { 4216 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 4217 return -EINVAL; 4218 4219 } else { /* all other ALU ops: and, sub, xor, add, ... */ 4220 4221 if (BPF_SRC(insn->code) == BPF_X) { 4222 if (insn->imm != 0 || insn->off != 0) { 4223 verbose(env, "BPF_ALU uses reserved fields\n"); 4224 return -EINVAL; 4225 } 4226 /* check src1 operand */ 4227 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4228 if (err) 4229 return err; 4230 } else { 4231 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4232 verbose(env, "BPF_ALU uses reserved fields\n"); 4233 return -EINVAL; 4234 } 4235 } 4236 4237 /* check src2 operand */ 4238 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4239 if (err) 4240 return err; 4241 4242 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 4243 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 4244 verbose(env, "div by zero\n"); 4245 return -EINVAL; 4246 } 4247 4248 if ((opcode == BPF_LSH || opcode == BPF_RSH || 4249 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 4250 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 4251 4252 if (insn->imm < 0 || insn->imm >= size) { 4253 verbose(env, "invalid shift %d\n", insn->imm); 4254 return -EINVAL; 4255 } 4256 } 4257 4258 /* check dest operand */ 4259 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4260 if (err) 4261 return err; 4262 4263 return adjust_reg_min_max_vals(env, insn); 4264 } 4265 4266 return 0; 4267 } 4268 4269 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 4270 struct bpf_reg_state *dst_reg, 4271 enum bpf_reg_type type, 4272 bool range_right_open) 4273 { 4274 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4275 struct bpf_reg_state *regs = state->regs, *reg; 4276 u16 new_range; 4277 int i, j; 4278 4279 if (dst_reg->off < 0 || 4280 (dst_reg->off == 0 && range_right_open)) 4281 /* This doesn't give us any range */ 4282 return; 4283 4284 if (dst_reg->umax_value > MAX_PACKET_OFF || 4285 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 4286 /* Risk of overflow. For instance, ptr + (1<<63) may be less 4287 * than pkt_end, but that's because it's also less than pkt. 4288 */ 4289 return; 4290 4291 new_range = dst_reg->off; 4292 if (range_right_open) 4293 new_range--; 4294 4295 /* Examples for register markings: 4296 * 4297 * pkt_data in dst register: 4298 * 4299 * r2 = r3; 4300 * r2 += 8; 4301 * if (r2 > pkt_end) goto <handle exception> 4302 * <access okay> 4303 * 4304 * r2 = r3; 4305 * r2 += 8; 4306 * if (r2 < pkt_end) goto <access okay> 4307 * <handle exception> 4308 * 4309 * Where: 4310 * r2 == dst_reg, pkt_end == src_reg 4311 * r2=pkt(id=n,off=8,r=0) 4312 * r3=pkt(id=n,off=0,r=0) 4313 * 4314 * pkt_data in src register: 4315 * 4316 * r2 = r3; 4317 * r2 += 8; 4318 * if (pkt_end >= r2) goto <access okay> 4319 * <handle exception> 4320 * 4321 * r2 = r3; 4322 * r2 += 8; 4323 * if (pkt_end <= r2) goto <handle exception> 4324 * <access okay> 4325 * 4326 * Where: 4327 * pkt_end == dst_reg, r2 == src_reg 4328 * r2=pkt(id=n,off=8,r=0) 4329 * r3=pkt(id=n,off=0,r=0) 4330 * 4331 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 4332 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 4333 * and [r3, r3 + 8-1) respectively is safe to access depending on 4334 * the check. 4335 */ 4336 4337 /* If our ids match, then we must have the same max_value. And we 4338 * don't care about the other reg's fixed offset, since if it's too big 4339 * the range won't allow anything. 4340 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 4341 */ 4342 for (i = 0; i < MAX_BPF_REG; i++) 4343 if (regs[i].type == type && regs[i].id == dst_reg->id) 4344 /* keep the maximum range already checked */ 4345 regs[i].range = max(regs[i].range, new_range); 4346 4347 for (j = 0; j <= vstate->curframe; j++) { 4348 state = vstate->frame[j]; 4349 bpf_for_each_spilled_reg(i, state, reg) { 4350 if (!reg) 4351 continue; 4352 if (reg->type == type && reg->id == dst_reg->id) 4353 reg->range = max(reg->range, new_range); 4354 } 4355 } 4356 } 4357 4358 /* compute branch direction of the expression "if (reg opcode val) goto target;" 4359 * and return: 4360 * 1 - branch will be taken and "goto target" will be executed 4361 * 0 - branch will not be taken and fall-through to next insn 4362 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 4363 */ 4364 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 4365 bool is_jmp32) 4366 { 4367 struct bpf_reg_state reg_lo; 4368 s64 sval; 4369 4370 if (__is_pointer_value(false, reg)) 4371 return -1; 4372 4373 if (is_jmp32) { 4374 reg_lo = *reg; 4375 reg = ®_lo; 4376 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 4377 * could truncate high bits and update umin/umax according to 4378 * information of low bits. 4379 */ 4380 coerce_reg_to_size(reg, 4); 4381 /* smin/smax need special handling. For example, after coerce, 4382 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 4383 * used as operand to JMP32. It is a negative number from s32's 4384 * point of view, while it is a positive number when seen as 4385 * s64. The smin/smax are kept as s64, therefore, when used with 4386 * JMP32, they need to be transformed into s32, then sign 4387 * extended back to s64. 4388 * 4389 * Also, smin/smax were copied from umin/umax. If umin/umax has 4390 * different sign bit, then min/max relationship doesn't 4391 * maintain after casting into s32, for this case, set smin/smax 4392 * to safest range. 4393 */ 4394 if ((reg->umax_value ^ reg->umin_value) & 4395 (1ULL << 31)) { 4396 reg->smin_value = S32_MIN; 4397 reg->smax_value = S32_MAX; 4398 } 4399 reg->smin_value = (s64)(s32)reg->smin_value; 4400 reg->smax_value = (s64)(s32)reg->smax_value; 4401 4402 val = (u32)val; 4403 sval = (s64)(s32)val; 4404 } else { 4405 sval = (s64)val; 4406 } 4407 4408 switch (opcode) { 4409 case BPF_JEQ: 4410 if (tnum_is_const(reg->var_off)) 4411 return !!tnum_equals_const(reg->var_off, val); 4412 break; 4413 case BPF_JNE: 4414 if (tnum_is_const(reg->var_off)) 4415 return !tnum_equals_const(reg->var_off, val); 4416 break; 4417 case BPF_JSET: 4418 if ((~reg->var_off.mask & reg->var_off.value) & val) 4419 return 1; 4420 if (!((reg->var_off.mask | reg->var_off.value) & val)) 4421 return 0; 4422 break; 4423 case BPF_JGT: 4424 if (reg->umin_value > val) 4425 return 1; 4426 else if (reg->umax_value <= val) 4427 return 0; 4428 break; 4429 case BPF_JSGT: 4430 if (reg->smin_value > sval) 4431 return 1; 4432 else if (reg->smax_value < sval) 4433 return 0; 4434 break; 4435 case BPF_JLT: 4436 if (reg->umax_value < val) 4437 return 1; 4438 else if (reg->umin_value >= val) 4439 return 0; 4440 break; 4441 case BPF_JSLT: 4442 if (reg->smax_value < sval) 4443 return 1; 4444 else if (reg->smin_value >= sval) 4445 return 0; 4446 break; 4447 case BPF_JGE: 4448 if (reg->umin_value >= val) 4449 return 1; 4450 else if (reg->umax_value < val) 4451 return 0; 4452 break; 4453 case BPF_JSGE: 4454 if (reg->smin_value >= sval) 4455 return 1; 4456 else if (reg->smax_value < sval) 4457 return 0; 4458 break; 4459 case BPF_JLE: 4460 if (reg->umax_value <= val) 4461 return 1; 4462 else if (reg->umin_value > val) 4463 return 0; 4464 break; 4465 case BPF_JSLE: 4466 if (reg->smax_value <= sval) 4467 return 1; 4468 else if (reg->smin_value > sval) 4469 return 0; 4470 break; 4471 } 4472 4473 return -1; 4474 } 4475 4476 /* Generate min value of the high 32-bit from TNUM info. */ 4477 static u64 gen_hi_min(struct tnum var) 4478 { 4479 return var.value & ~0xffffffffULL; 4480 } 4481 4482 /* Generate max value of the high 32-bit from TNUM info. */ 4483 static u64 gen_hi_max(struct tnum var) 4484 { 4485 return (var.value | var.mask) & ~0xffffffffULL; 4486 } 4487 4488 /* Return true if VAL is compared with a s64 sign extended from s32, and they 4489 * are with the same signedness. 4490 */ 4491 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 4492 { 4493 return ((s32)sval >= 0 && 4494 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 4495 ((s32)sval < 0 && 4496 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 4497 } 4498 4499 /* Adjusts the register min/max values in the case that the dst_reg is the 4500 * variable register that we are working on, and src_reg is a constant or we're 4501 * simply doing a BPF_K check. 4502 * In JEQ/JNE cases we also adjust the var_off values. 4503 */ 4504 static void reg_set_min_max(struct bpf_reg_state *true_reg, 4505 struct bpf_reg_state *false_reg, u64 val, 4506 u8 opcode, bool is_jmp32) 4507 { 4508 s64 sval; 4509 4510 /* If the dst_reg is a pointer, we can't learn anything about its 4511 * variable offset from the compare (unless src_reg were a pointer into 4512 * the same object, but we don't bother with that. 4513 * Since false_reg and true_reg have the same type by construction, we 4514 * only need to check one of them for pointerness. 4515 */ 4516 if (__is_pointer_value(false, false_reg)) 4517 return; 4518 4519 val = is_jmp32 ? (u32)val : val; 4520 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4521 4522 switch (opcode) { 4523 case BPF_JEQ: 4524 case BPF_JNE: 4525 { 4526 struct bpf_reg_state *reg = 4527 opcode == BPF_JEQ ? true_reg : false_reg; 4528 4529 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 4530 * if it is true we know the value for sure. Likewise for 4531 * BPF_JNE. 4532 */ 4533 if (is_jmp32) { 4534 u64 old_v = reg->var_off.value; 4535 u64 hi_mask = ~0xffffffffULL; 4536 4537 reg->var_off.value = (old_v & hi_mask) | val; 4538 reg->var_off.mask &= hi_mask; 4539 } else { 4540 __mark_reg_known(reg, val); 4541 } 4542 break; 4543 } 4544 case BPF_JSET: 4545 false_reg->var_off = tnum_and(false_reg->var_off, 4546 tnum_const(~val)); 4547 if (is_power_of_2(val)) 4548 true_reg->var_off = tnum_or(true_reg->var_off, 4549 tnum_const(val)); 4550 break; 4551 case BPF_JGE: 4552 case BPF_JGT: 4553 { 4554 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 4555 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 4556 4557 if (is_jmp32) { 4558 false_umax += gen_hi_max(false_reg->var_off); 4559 true_umin += gen_hi_min(true_reg->var_off); 4560 } 4561 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4562 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4563 break; 4564 } 4565 case BPF_JSGE: 4566 case BPF_JSGT: 4567 { 4568 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 4569 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 4570 4571 /* If the full s64 was not sign-extended from s32 then don't 4572 * deduct further info. 4573 */ 4574 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4575 break; 4576 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4577 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4578 break; 4579 } 4580 case BPF_JLE: 4581 case BPF_JLT: 4582 { 4583 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 4584 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 4585 4586 if (is_jmp32) { 4587 false_umin += gen_hi_min(false_reg->var_off); 4588 true_umax += gen_hi_max(true_reg->var_off); 4589 } 4590 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4591 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4592 break; 4593 } 4594 case BPF_JSLE: 4595 case BPF_JSLT: 4596 { 4597 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 4598 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 4599 4600 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4601 break; 4602 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4603 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4604 break; 4605 } 4606 default: 4607 break; 4608 } 4609 4610 __reg_deduce_bounds(false_reg); 4611 __reg_deduce_bounds(true_reg); 4612 /* We might have learned some bits from the bounds. */ 4613 __reg_bound_offset(false_reg); 4614 __reg_bound_offset(true_reg); 4615 /* Intersecting with the old var_off might have improved our bounds 4616 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4617 * then new var_off is (0; 0x7f...fc) which improves our umax. 4618 */ 4619 __update_reg_bounds(false_reg); 4620 __update_reg_bounds(true_reg); 4621 } 4622 4623 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 4624 * the variable reg. 4625 */ 4626 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 4627 struct bpf_reg_state *false_reg, u64 val, 4628 u8 opcode, bool is_jmp32) 4629 { 4630 s64 sval; 4631 4632 if (__is_pointer_value(false, false_reg)) 4633 return; 4634 4635 val = is_jmp32 ? (u32)val : val; 4636 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4637 4638 switch (opcode) { 4639 case BPF_JEQ: 4640 case BPF_JNE: 4641 { 4642 struct bpf_reg_state *reg = 4643 opcode == BPF_JEQ ? true_reg : false_reg; 4644 4645 if (is_jmp32) { 4646 u64 old_v = reg->var_off.value; 4647 u64 hi_mask = ~0xffffffffULL; 4648 4649 reg->var_off.value = (old_v & hi_mask) | val; 4650 reg->var_off.mask &= hi_mask; 4651 } else { 4652 __mark_reg_known(reg, val); 4653 } 4654 break; 4655 } 4656 case BPF_JSET: 4657 false_reg->var_off = tnum_and(false_reg->var_off, 4658 tnum_const(~val)); 4659 if (is_power_of_2(val)) 4660 true_reg->var_off = tnum_or(true_reg->var_off, 4661 tnum_const(val)); 4662 break; 4663 case BPF_JGE: 4664 case BPF_JGT: 4665 { 4666 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 4667 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 4668 4669 if (is_jmp32) { 4670 false_umin += gen_hi_min(false_reg->var_off); 4671 true_umax += gen_hi_max(true_reg->var_off); 4672 } 4673 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4674 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4675 break; 4676 } 4677 case BPF_JSGE: 4678 case BPF_JSGT: 4679 { 4680 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 4681 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 4682 4683 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4684 break; 4685 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4686 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4687 break; 4688 } 4689 case BPF_JLE: 4690 case BPF_JLT: 4691 { 4692 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 4693 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 4694 4695 if (is_jmp32) { 4696 false_umax += gen_hi_max(false_reg->var_off); 4697 true_umin += gen_hi_min(true_reg->var_off); 4698 } 4699 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4700 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4701 break; 4702 } 4703 case BPF_JSLE: 4704 case BPF_JSLT: 4705 { 4706 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 4707 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 4708 4709 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4710 break; 4711 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4712 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4713 break; 4714 } 4715 default: 4716 break; 4717 } 4718 4719 __reg_deduce_bounds(false_reg); 4720 __reg_deduce_bounds(true_reg); 4721 /* We might have learned some bits from the bounds. */ 4722 __reg_bound_offset(false_reg); 4723 __reg_bound_offset(true_reg); 4724 /* Intersecting with the old var_off might have improved our bounds 4725 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4726 * then new var_off is (0; 0x7f...fc) which improves our umax. 4727 */ 4728 __update_reg_bounds(false_reg); 4729 __update_reg_bounds(true_reg); 4730 } 4731 4732 /* Regs are known to be equal, so intersect their min/max/var_off */ 4733 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 4734 struct bpf_reg_state *dst_reg) 4735 { 4736 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 4737 dst_reg->umin_value); 4738 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 4739 dst_reg->umax_value); 4740 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 4741 dst_reg->smin_value); 4742 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 4743 dst_reg->smax_value); 4744 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 4745 dst_reg->var_off); 4746 /* We might have learned new bounds from the var_off. */ 4747 __update_reg_bounds(src_reg); 4748 __update_reg_bounds(dst_reg); 4749 /* We might have learned something about the sign bit. */ 4750 __reg_deduce_bounds(src_reg); 4751 __reg_deduce_bounds(dst_reg); 4752 /* We might have learned some bits from the bounds. */ 4753 __reg_bound_offset(src_reg); 4754 __reg_bound_offset(dst_reg); 4755 /* Intersecting with the old var_off might have improved our bounds 4756 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4757 * then new var_off is (0; 0x7f...fc) which improves our umax. 4758 */ 4759 __update_reg_bounds(src_reg); 4760 __update_reg_bounds(dst_reg); 4761 } 4762 4763 static void reg_combine_min_max(struct bpf_reg_state *true_src, 4764 struct bpf_reg_state *true_dst, 4765 struct bpf_reg_state *false_src, 4766 struct bpf_reg_state *false_dst, 4767 u8 opcode) 4768 { 4769 switch (opcode) { 4770 case BPF_JEQ: 4771 __reg_combine_min_max(true_src, true_dst); 4772 break; 4773 case BPF_JNE: 4774 __reg_combine_min_max(false_src, false_dst); 4775 break; 4776 } 4777 } 4778 4779 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 4780 struct bpf_reg_state *reg, u32 id, 4781 bool is_null) 4782 { 4783 if (reg_type_may_be_null(reg->type) && reg->id == id) { 4784 /* Old offset (both fixed and variable parts) should 4785 * have been known-zero, because we don't allow pointer 4786 * arithmetic on pointers that might be NULL. 4787 */ 4788 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 4789 !tnum_equals_const(reg->var_off, 0) || 4790 reg->off)) { 4791 __mark_reg_known_zero(reg); 4792 reg->off = 0; 4793 } 4794 if (is_null) { 4795 reg->type = SCALAR_VALUE; 4796 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 4797 if (reg->map_ptr->inner_map_meta) { 4798 reg->type = CONST_PTR_TO_MAP; 4799 reg->map_ptr = reg->map_ptr->inner_map_meta; 4800 } else { 4801 reg->type = PTR_TO_MAP_VALUE; 4802 } 4803 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 4804 reg->type = PTR_TO_SOCKET; 4805 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 4806 reg->type = PTR_TO_SOCK_COMMON; 4807 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 4808 reg->type = PTR_TO_TCP_SOCK; 4809 } 4810 if (is_null) { 4811 /* We don't need id and ref_obj_id from this point 4812 * onwards anymore, thus we should better reset it, 4813 * so that state pruning has chances to take effect. 4814 */ 4815 reg->id = 0; 4816 reg->ref_obj_id = 0; 4817 } else if (!reg_may_point_to_spin_lock(reg)) { 4818 /* For not-NULL ptr, reg->ref_obj_id will be reset 4819 * in release_reg_references(). 4820 * 4821 * reg->id is still used by spin_lock ptr. Other 4822 * than spin_lock ptr type, reg->id can be reset. 4823 */ 4824 reg->id = 0; 4825 } 4826 } 4827 } 4828 4829 /* The logic is similar to find_good_pkt_pointers(), both could eventually 4830 * be folded together at some point. 4831 */ 4832 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 4833 bool is_null) 4834 { 4835 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4836 struct bpf_reg_state *reg, *regs = state->regs; 4837 u32 ref_obj_id = regs[regno].ref_obj_id; 4838 u32 id = regs[regno].id; 4839 int i, j; 4840 4841 if (ref_obj_id && ref_obj_id == id && is_null) 4842 /* regs[regno] is in the " == NULL" branch. 4843 * No one could have freed the reference state before 4844 * doing the NULL check. 4845 */ 4846 WARN_ON_ONCE(release_reference_state(state, id)); 4847 4848 for (i = 0; i < MAX_BPF_REG; i++) 4849 mark_ptr_or_null_reg(state, ®s[i], id, is_null); 4850 4851 for (j = 0; j <= vstate->curframe; j++) { 4852 state = vstate->frame[j]; 4853 bpf_for_each_spilled_reg(i, state, reg) { 4854 if (!reg) 4855 continue; 4856 mark_ptr_or_null_reg(state, reg, id, is_null); 4857 } 4858 } 4859 } 4860 4861 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4862 struct bpf_reg_state *dst_reg, 4863 struct bpf_reg_state *src_reg, 4864 struct bpf_verifier_state *this_branch, 4865 struct bpf_verifier_state *other_branch) 4866 { 4867 if (BPF_SRC(insn->code) != BPF_X) 4868 return false; 4869 4870 /* Pointers are always 64-bit. */ 4871 if (BPF_CLASS(insn->code) == BPF_JMP32) 4872 return false; 4873 4874 switch (BPF_OP(insn->code)) { 4875 case BPF_JGT: 4876 if ((dst_reg->type == PTR_TO_PACKET && 4877 src_reg->type == PTR_TO_PACKET_END) || 4878 (dst_reg->type == PTR_TO_PACKET_META && 4879 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4880 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4881 find_good_pkt_pointers(this_branch, dst_reg, 4882 dst_reg->type, false); 4883 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4884 src_reg->type == PTR_TO_PACKET) || 4885 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4886 src_reg->type == PTR_TO_PACKET_META)) { 4887 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4888 find_good_pkt_pointers(other_branch, src_reg, 4889 src_reg->type, true); 4890 } else { 4891 return false; 4892 } 4893 break; 4894 case BPF_JLT: 4895 if ((dst_reg->type == PTR_TO_PACKET && 4896 src_reg->type == PTR_TO_PACKET_END) || 4897 (dst_reg->type == PTR_TO_PACKET_META && 4898 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4899 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4900 find_good_pkt_pointers(other_branch, dst_reg, 4901 dst_reg->type, true); 4902 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4903 src_reg->type == PTR_TO_PACKET) || 4904 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4905 src_reg->type == PTR_TO_PACKET_META)) { 4906 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4907 find_good_pkt_pointers(this_branch, src_reg, 4908 src_reg->type, false); 4909 } else { 4910 return false; 4911 } 4912 break; 4913 case BPF_JGE: 4914 if ((dst_reg->type == PTR_TO_PACKET && 4915 src_reg->type == PTR_TO_PACKET_END) || 4916 (dst_reg->type == PTR_TO_PACKET_META && 4917 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4918 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 4919 find_good_pkt_pointers(this_branch, dst_reg, 4920 dst_reg->type, true); 4921 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4922 src_reg->type == PTR_TO_PACKET) || 4923 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4924 src_reg->type == PTR_TO_PACKET_META)) { 4925 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 4926 find_good_pkt_pointers(other_branch, src_reg, 4927 src_reg->type, false); 4928 } else { 4929 return false; 4930 } 4931 break; 4932 case BPF_JLE: 4933 if ((dst_reg->type == PTR_TO_PACKET && 4934 src_reg->type == PTR_TO_PACKET_END) || 4935 (dst_reg->type == PTR_TO_PACKET_META && 4936 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4937 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 4938 find_good_pkt_pointers(other_branch, dst_reg, 4939 dst_reg->type, false); 4940 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4941 src_reg->type == PTR_TO_PACKET) || 4942 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4943 src_reg->type == PTR_TO_PACKET_META)) { 4944 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 4945 find_good_pkt_pointers(this_branch, src_reg, 4946 src_reg->type, true); 4947 } else { 4948 return false; 4949 } 4950 break; 4951 default: 4952 return false; 4953 } 4954 4955 return true; 4956 } 4957 4958 static int check_cond_jmp_op(struct bpf_verifier_env *env, 4959 struct bpf_insn *insn, int *insn_idx) 4960 { 4961 struct bpf_verifier_state *this_branch = env->cur_state; 4962 struct bpf_verifier_state *other_branch; 4963 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 4964 struct bpf_reg_state *dst_reg, *other_branch_regs; 4965 u8 opcode = BPF_OP(insn->code); 4966 bool is_jmp32; 4967 int err; 4968 4969 /* Only conditional jumps are expected to reach here. */ 4970 if (opcode == BPF_JA || opcode > BPF_JSLE) { 4971 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 4972 return -EINVAL; 4973 } 4974 4975 if (BPF_SRC(insn->code) == BPF_X) { 4976 if (insn->imm != 0) { 4977 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 4978 return -EINVAL; 4979 } 4980 4981 /* check src1 operand */ 4982 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4983 if (err) 4984 return err; 4985 4986 if (is_pointer_value(env, insn->src_reg)) { 4987 verbose(env, "R%d pointer comparison prohibited\n", 4988 insn->src_reg); 4989 return -EACCES; 4990 } 4991 } else { 4992 if (insn->src_reg != BPF_REG_0) { 4993 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 4994 return -EINVAL; 4995 } 4996 } 4997 4998 /* check src2 operand */ 4999 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5000 if (err) 5001 return err; 5002 5003 dst_reg = ®s[insn->dst_reg]; 5004 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 5005 5006 if (BPF_SRC(insn->code) == BPF_K) { 5007 int pred = is_branch_taken(dst_reg, insn->imm, opcode, 5008 is_jmp32); 5009 5010 if (pred == 1) { 5011 /* only follow the goto, ignore fall-through */ 5012 *insn_idx += insn->off; 5013 return 0; 5014 } else if (pred == 0) { 5015 /* only follow fall-through branch, since 5016 * that's where the program will go 5017 */ 5018 return 0; 5019 } 5020 } 5021 5022 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 5023 false); 5024 if (!other_branch) 5025 return -EFAULT; 5026 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 5027 5028 /* detect if we are comparing against a constant value so we can adjust 5029 * our min/max values for our dst register. 5030 * this is only legit if both are scalars (or pointers to the same 5031 * object, I suppose, but we don't support that right now), because 5032 * otherwise the different base pointers mean the offsets aren't 5033 * comparable. 5034 */ 5035 if (BPF_SRC(insn->code) == BPF_X) { 5036 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 5037 struct bpf_reg_state lo_reg0 = *dst_reg; 5038 struct bpf_reg_state lo_reg1 = *src_reg; 5039 struct bpf_reg_state *src_lo, *dst_lo; 5040 5041 dst_lo = &lo_reg0; 5042 src_lo = &lo_reg1; 5043 coerce_reg_to_size(dst_lo, 4); 5044 coerce_reg_to_size(src_lo, 4); 5045 5046 if (dst_reg->type == SCALAR_VALUE && 5047 src_reg->type == SCALAR_VALUE) { 5048 if (tnum_is_const(src_reg->var_off) || 5049 (is_jmp32 && tnum_is_const(src_lo->var_off))) 5050 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5051 dst_reg, 5052 is_jmp32 5053 ? src_lo->var_off.value 5054 : src_reg->var_off.value, 5055 opcode, is_jmp32); 5056 else if (tnum_is_const(dst_reg->var_off) || 5057 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 5058 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 5059 src_reg, 5060 is_jmp32 5061 ? dst_lo->var_off.value 5062 : dst_reg->var_off.value, 5063 opcode, is_jmp32); 5064 else if (!is_jmp32 && 5065 (opcode == BPF_JEQ || opcode == BPF_JNE)) 5066 /* Comparing for equality, we can combine knowledge */ 5067 reg_combine_min_max(&other_branch_regs[insn->src_reg], 5068 &other_branch_regs[insn->dst_reg], 5069 src_reg, dst_reg, opcode); 5070 } 5071 } else if (dst_reg->type == SCALAR_VALUE) { 5072 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5073 dst_reg, insn->imm, opcode, is_jmp32); 5074 } 5075 5076 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 5077 * NOTE: these optimizations below are related with pointer comparison 5078 * which will never be JMP32. 5079 */ 5080 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 5081 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 5082 reg_type_may_be_null(dst_reg->type)) { 5083 /* Mark all identical registers in each branch as either 5084 * safe or unknown depending R == 0 or R != 0 conditional. 5085 */ 5086 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 5087 opcode == BPF_JNE); 5088 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 5089 opcode == BPF_JEQ); 5090 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 5091 this_branch, other_branch) && 5092 is_pointer_value(env, insn->dst_reg)) { 5093 verbose(env, "R%d pointer comparison prohibited\n", 5094 insn->dst_reg); 5095 return -EACCES; 5096 } 5097 if (env->log.level & BPF_LOG_LEVEL) 5098 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 5099 return 0; 5100 } 5101 5102 /* verify BPF_LD_IMM64 instruction */ 5103 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 5104 { 5105 struct bpf_insn_aux_data *aux = cur_aux(env); 5106 struct bpf_reg_state *regs = cur_regs(env); 5107 struct bpf_map *map; 5108 int err; 5109 5110 if (BPF_SIZE(insn->code) != BPF_DW) { 5111 verbose(env, "invalid BPF_LD_IMM insn\n"); 5112 return -EINVAL; 5113 } 5114 if (insn->off != 0) { 5115 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 5116 return -EINVAL; 5117 } 5118 5119 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5120 if (err) 5121 return err; 5122 5123 if (insn->src_reg == 0) { 5124 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 5125 5126 regs[insn->dst_reg].type = SCALAR_VALUE; 5127 __mark_reg_known(®s[insn->dst_reg], imm); 5128 return 0; 5129 } 5130 5131 map = env->used_maps[aux->map_index]; 5132 mark_reg_known_zero(env, regs, insn->dst_reg); 5133 regs[insn->dst_reg].map_ptr = map; 5134 5135 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 5136 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 5137 regs[insn->dst_reg].off = aux->map_off; 5138 if (map_value_has_spin_lock(map)) 5139 regs[insn->dst_reg].id = ++env->id_gen; 5140 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 5141 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 5142 } else { 5143 verbose(env, "bpf verifier is misconfigured\n"); 5144 return -EINVAL; 5145 } 5146 5147 return 0; 5148 } 5149 5150 static bool may_access_skb(enum bpf_prog_type type) 5151 { 5152 switch (type) { 5153 case BPF_PROG_TYPE_SOCKET_FILTER: 5154 case BPF_PROG_TYPE_SCHED_CLS: 5155 case BPF_PROG_TYPE_SCHED_ACT: 5156 return true; 5157 default: 5158 return false; 5159 } 5160 } 5161 5162 /* verify safety of LD_ABS|LD_IND instructions: 5163 * - they can only appear in the programs where ctx == skb 5164 * - since they are wrappers of function calls, they scratch R1-R5 registers, 5165 * preserve R6-R9, and store return value into R0 5166 * 5167 * Implicit input: 5168 * ctx == skb == R6 == CTX 5169 * 5170 * Explicit input: 5171 * SRC == any register 5172 * IMM == 32-bit immediate 5173 * 5174 * Output: 5175 * R0 - 8/16/32-bit skb data converted to cpu endianness 5176 */ 5177 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 5178 { 5179 struct bpf_reg_state *regs = cur_regs(env); 5180 u8 mode = BPF_MODE(insn->code); 5181 int i, err; 5182 5183 if (!may_access_skb(env->prog->type)) { 5184 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 5185 return -EINVAL; 5186 } 5187 5188 if (!env->ops->gen_ld_abs) { 5189 verbose(env, "bpf verifier is misconfigured\n"); 5190 return -EINVAL; 5191 } 5192 5193 if (env->subprog_cnt > 1) { 5194 /* when program has LD_ABS insn JITs and interpreter assume 5195 * that r1 == ctx == skb which is not the case for callees 5196 * that can have arbitrary arguments. It's problematic 5197 * for main prog as well since JITs would need to analyze 5198 * all functions in order to make proper register save/restore 5199 * decisions in the main prog. Hence disallow LD_ABS with calls 5200 */ 5201 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 5202 return -EINVAL; 5203 } 5204 5205 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 5206 BPF_SIZE(insn->code) == BPF_DW || 5207 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 5208 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 5209 return -EINVAL; 5210 } 5211 5212 /* check whether implicit source operand (register R6) is readable */ 5213 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 5214 if (err) 5215 return err; 5216 5217 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 5218 * gen_ld_abs() may terminate the program at runtime, leading to 5219 * reference leak. 5220 */ 5221 err = check_reference_leak(env); 5222 if (err) { 5223 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 5224 return err; 5225 } 5226 5227 if (env->cur_state->active_spin_lock) { 5228 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 5229 return -EINVAL; 5230 } 5231 5232 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 5233 verbose(env, 5234 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 5235 return -EINVAL; 5236 } 5237 5238 if (mode == BPF_IND) { 5239 /* check explicit source operand */ 5240 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5241 if (err) 5242 return err; 5243 } 5244 5245 /* reset caller saved regs to unreadable */ 5246 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5247 mark_reg_not_init(env, regs, caller_saved[i]); 5248 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5249 } 5250 5251 /* mark destination R0 register as readable, since it contains 5252 * the value fetched from the packet. 5253 * Already marked as written above. 5254 */ 5255 mark_reg_unknown(env, regs, BPF_REG_0); 5256 return 0; 5257 } 5258 5259 static int check_return_code(struct bpf_verifier_env *env) 5260 { 5261 struct bpf_reg_state *reg; 5262 struct tnum range = tnum_range(0, 1); 5263 5264 switch (env->prog->type) { 5265 case BPF_PROG_TYPE_CGROUP_SKB: 5266 case BPF_PROG_TYPE_CGROUP_SOCK: 5267 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 5268 case BPF_PROG_TYPE_SOCK_OPS: 5269 case BPF_PROG_TYPE_CGROUP_DEVICE: 5270 break; 5271 default: 5272 return 0; 5273 } 5274 5275 reg = cur_regs(env) + BPF_REG_0; 5276 if (reg->type != SCALAR_VALUE) { 5277 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 5278 reg_type_str[reg->type]); 5279 return -EINVAL; 5280 } 5281 5282 if (!tnum_in(range, reg->var_off)) { 5283 verbose(env, "At program exit the register R0 "); 5284 if (!tnum_is_unknown(reg->var_off)) { 5285 char tn_buf[48]; 5286 5287 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5288 verbose(env, "has value %s", tn_buf); 5289 } else { 5290 verbose(env, "has unknown scalar value"); 5291 } 5292 verbose(env, " should have been 0 or 1\n"); 5293 return -EINVAL; 5294 } 5295 return 0; 5296 } 5297 5298 /* non-recursive DFS pseudo code 5299 * 1 procedure DFS-iterative(G,v): 5300 * 2 label v as discovered 5301 * 3 let S be a stack 5302 * 4 S.push(v) 5303 * 5 while S is not empty 5304 * 6 t <- S.pop() 5305 * 7 if t is what we're looking for: 5306 * 8 return t 5307 * 9 for all edges e in G.adjacentEdges(t) do 5308 * 10 if edge e is already labelled 5309 * 11 continue with the next edge 5310 * 12 w <- G.adjacentVertex(t,e) 5311 * 13 if vertex w is not discovered and not explored 5312 * 14 label e as tree-edge 5313 * 15 label w as discovered 5314 * 16 S.push(w) 5315 * 17 continue at 5 5316 * 18 else if vertex w is discovered 5317 * 19 label e as back-edge 5318 * 20 else 5319 * 21 // vertex w is explored 5320 * 22 label e as forward- or cross-edge 5321 * 23 label t as explored 5322 * 24 S.pop() 5323 * 5324 * convention: 5325 * 0x10 - discovered 5326 * 0x11 - discovered and fall-through edge labelled 5327 * 0x12 - discovered and fall-through and branch edges labelled 5328 * 0x20 - explored 5329 */ 5330 5331 enum { 5332 DISCOVERED = 0x10, 5333 EXPLORED = 0x20, 5334 FALLTHROUGH = 1, 5335 BRANCH = 2, 5336 }; 5337 5338 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 5339 5340 static int *insn_stack; /* stack of insns to process */ 5341 static int cur_stack; /* current stack index */ 5342 static int *insn_state; 5343 5344 /* t, w, e - match pseudo-code above: 5345 * t - index of current instruction 5346 * w - next instruction 5347 * e - edge 5348 */ 5349 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 5350 { 5351 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 5352 return 0; 5353 5354 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 5355 return 0; 5356 5357 if (w < 0 || w >= env->prog->len) { 5358 verbose_linfo(env, t, "%d: ", t); 5359 verbose(env, "jump out of range from insn %d to %d\n", t, w); 5360 return -EINVAL; 5361 } 5362 5363 if (e == BRANCH) 5364 /* mark branch target for state pruning */ 5365 env->explored_states[w] = STATE_LIST_MARK; 5366 5367 if (insn_state[w] == 0) { 5368 /* tree-edge */ 5369 insn_state[t] = DISCOVERED | e; 5370 insn_state[w] = DISCOVERED; 5371 if (cur_stack >= env->prog->len) 5372 return -E2BIG; 5373 insn_stack[cur_stack++] = w; 5374 return 1; 5375 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 5376 verbose_linfo(env, t, "%d: ", t); 5377 verbose_linfo(env, w, "%d: ", w); 5378 verbose(env, "back-edge from insn %d to %d\n", t, w); 5379 return -EINVAL; 5380 } else if (insn_state[w] == EXPLORED) { 5381 /* forward- or cross-edge */ 5382 insn_state[t] = DISCOVERED | e; 5383 } else { 5384 verbose(env, "insn state internal bug\n"); 5385 return -EFAULT; 5386 } 5387 return 0; 5388 } 5389 5390 /* non-recursive depth-first-search to detect loops in BPF program 5391 * loop == back-edge in directed graph 5392 */ 5393 static int check_cfg(struct bpf_verifier_env *env) 5394 { 5395 struct bpf_insn *insns = env->prog->insnsi; 5396 int insn_cnt = env->prog->len; 5397 int ret = 0; 5398 int i, t; 5399 5400 insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5401 if (!insn_state) 5402 return -ENOMEM; 5403 5404 insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5405 if (!insn_stack) { 5406 kvfree(insn_state); 5407 return -ENOMEM; 5408 } 5409 5410 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 5411 insn_stack[0] = 0; /* 0 is the first instruction */ 5412 cur_stack = 1; 5413 5414 peek_stack: 5415 if (cur_stack == 0) 5416 goto check_state; 5417 t = insn_stack[cur_stack - 1]; 5418 5419 if (BPF_CLASS(insns[t].code) == BPF_JMP || 5420 BPF_CLASS(insns[t].code) == BPF_JMP32) { 5421 u8 opcode = BPF_OP(insns[t].code); 5422 5423 if (opcode == BPF_EXIT) { 5424 goto mark_explored; 5425 } else if (opcode == BPF_CALL) { 5426 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5427 if (ret == 1) 5428 goto peek_stack; 5429 else if (ret < 0) 5430 goto err_free; 5431 if (t + 1 < insn_cnt) 5432 env->explored_states[t + 1] = STATE_LIST_MARK; 5433 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 5434 env->explored_states[t] = STATE_LIST_MARK; 5435 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 5436 if (ret == 1) 5437 goto peek_stack; 5438 else if (ret < 0) 5439 goto err_free; 5440 } 5441 } else if (opcode == BPF_JA) { 5442 if (BPF_SRC(insns[t].code) != BPF_K) { 5443 ret = -EINVAL; 5444 goto err_free; 5445 } 5446 /* unconditional jump with single edge */ 5447 ret = push_insn(t, t + insns[t].off + 1, 5448 FALLTHROUGH, env); 5449 if (ret == 1) 5450 goto peek_stack; 5451 else if (ret < 0) 5452 goto err_free; 5453 /* tell verifier to check for equivalent states 5454 * after every call and jump 5455 */ 5456 if (t + 1 < insn_cnt) 5457 env->explored_states[t + 1] = STATE_LIST_MARK; 5458 } else { 5459 /* conditional jump with two edges */ 5460 env->explored_states[t] = STATE_LIST_MARK; 5461 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5462 if (ret == 1) 5463 goto peek_stack; 5464 else if (ret < 0) 5465 goto err_free; 5466 5467 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 5468 if (ret == 1) 5469 goto peek_stack; 5470 else if (ret < 0) 5471 goto err_free; 5472 } 5473 } else { 5474 /* all other non-branch instructions with single 5475 * fall-through edge 5476 */ 5477 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5478 if (ret == 1) 5479 goto peek_stack; 5480 else if (ret < 0) 5481 goto err_free; 5482 } 5483 5484 mark_explored: 5485 insn_state[t] = EXPLORED; 5486 if (cur_stack-- <= 0) { 5487 verbose(env, "pop stack internal bug\n"); 5488 ret = -EFAULT; 5489 goto err_free; 5490 } 5491 goto peek_stack; 5492 5493 check_state: 5494 for (i = 0; i < insn_cnt; i++) { 5495 if (insn_state[i] != EXPLORED) { 5496 verbose(env, "unreachable insn %d\n", i); 5497 ret = -EINVAL; 5498 goto err_free; 5499 } 5500 } 5501 ret = 0; /* cfg looks good */ 5502 5503 err_free: 5504 kvfree(insn_state); 5505 kvfree(insn_stack); 5506 return ret; 5507 } 5508 5509 /* The minimum supported BTF func info size */ 5510 #define MIN_BPF_FUNCINFO_SIZE 8 5511 #define MAX_FUNCINFO_REC_SIZE 252 5512 5513 static int check_btf_func(struct bpf_verifier_env *env, 5514 const union bpf_attr *attr, 5515 union bpf_attr __user *uattr) 5516 { 5517 u32 i, nfuncs, urec_size, min_size; 5518 u32 krec_size = sizeof(struct bpf_func_info); 5519 struct bpf_func_info *krecord; 5520 const struct btf_type *type; 5521 struct bpf_prog *prog; 5522 const struct btf *btf; 5523 void __user *urecord; 5524 u32 prev_offset = 0; 5525 int ret = 0; 5526 5527 nfuncs = attr->func_info_cnt; 5528 if (!nfuncs) 5529 return 0; 5530 5531 if (nfuncs != env->subprog_cnt) { 5532 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 5533 return -EINVAL; 5534 } 5535 5536 urec_size = attr->func_info_rec_size; 5537 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 5538 urec_size > MAX_FUNCINFO_REC_SIZE || 5539 urec_size % sizeof(u32)) { 5540 verbose(env, "invalid func info rec size %u\n", urec_size); 5541 return -EINVAL; 5542 } 5543 5544 prog = env->prog; 5545 btf = prog->aux->btf; 5546 5547 urecord = u64_to_user_ptr(attr->func_info); 5548 min_size = min_t(u32, krec_size, urec_size); 5549 5550 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 5551 if (!krecord) 5552 return -ENOMEM; 5553 5554 for (i = 0; i < nfuncs; i++) { 5555 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 5556 if (ret) { 5557 if (ret == -E2BIG) { 5558 verbose(env, "nonzero tailing record in func info"); 5559 /* set the size kernel expects so loader can zero 5560 * out the rest of the record. 5561 */ 5562 if (put_user(min_size, &uattr->func_info_rec_size)) 5563 ret = -EFAULT; 5564 } 5565 goto err_free; 5566 } 5567 5568 if (copy_from_user(&krecord[i], urecord, min_size)) { 5569 ret = -EFAULT; 5570 goto err_free; 5571 } 5572 5573 /* check insn_off */ 5574 if (i == 0) { 5575 if (krecord[i].insn_off) { 5576 verbose(env, 5577 "nonzero insn_off %u for the first func info record", 5578 krecord[i].insn_off); 5579 ret = -EINVAL; 5580 goto err_free; 5581 } 5582 } else if (krecord[i].insn_off <= prev_offset) { 5583 verbose(env, 5584 "same or smaller insn offset (%u) than previous func info record (%u)", 5585 krecord[i].insn_off, prev_offset); 5586 ret = -EINVAL; 5587 goto err_free; 5588 } 5589 5590 if (env->subprog_info[i].start != krecord[i].insn_off) { 5591 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 5592 ret = -EINVAL; 5593 goto err_free; 5594 } 5595 5596 /* check type_id */ 5597 type = btf_type_by_id(btf, krecord[i].type_id); 5598 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 5599 verbose(env, "invalid type id %d in func info", 5600 krecord[i].type_id); 5601 ret = -EINVAL; 5602 goto err_free; 5603 } 5604 5605 prev_offset = krecord[i].insn_off; 5606 urecord += urec_size; 5607 } 5608 5609 prog->aux->func_info = krecord; 5610 prog->aux->func_info_cnt = nfuncs; 5611 return 0; 5612 5613 err_free: 5614 kvfree(krecord); 5615 return ret; 5616 } 5617 5618 static void adjust_btf_func(struct bpf_verifier_env *env) 5619 { 5620 int i; 5621 5622 if (!env->prog->aux->func_info) 5623 return; 5624 5625 for (i = 0; i < env->subprog_cnt; i++) 5626 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 5627 } 5628 5629 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 5630 sizeof(((struct bpf_line_info *)(0))->line_col)) 5631 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 5632 5633 static int check_btf_line(struct bpf_verifier_env *env, 5634 const union bpf_attr *attr, 5635 union bpf_attr __user *uattr) 5636 { 5637 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 5638 struct bpf_subprog_info *sub; 5639 struct bpf_line_info *linfo; 5640 struct bpf_prog *prog; 5641 const struct btf *btf; 5642 void __user *ulinfo; 5643 int err; 5644 5645 nr_linfo = attr->line_info_cnt; 5646 if (!nr_linfo) 5647 return 0; 5648 5649 rec_size = attr->line_info_rec_size; 5650 if (rec_size < MIN_BPF_LINEINFO_SIZE || 5651 rec_size > MAX_LINEINFO_REC_SIZE || 5652 rec_size & (sizeof(u32) - 1)) 5653 return -EINVAL; 5654 5655 /* Need to zero it in case the userspace may 5656 * pass in a smaller bpf_line_info object. 5657 */ 5658 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 5659 GFP_KERNEL | __GFP_NOWARN); 5660 if (!linfo) 5661 return -ENOMEM; 5662 5663 prog = env->prog; 5664 btf = prog->aux->btf; 5665 5666 s = 0; 5667 sub = env->subprog_info; 5668 ulinfo = u64_to_user_ptr(attr->line_info); 5669 expected_size = sizeof(struct bpf_line_info); 5670 ncopy = min_t(u32, expected_size, rec_size); 5671 for (i = 0; i < nr_linfo; i++) { 5672 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 5673 if (err) { 5674 if (err == -E2BIG) { 5675 verbose(env, "nonzero tailing record in line_info"); 5676 if (put_user(expected_size, 5677 &uattr->line_info_rec_size)) 5678 err = -EFAULT; 5679 } 5680 goto err_free; 5681 } 5682 5683 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 5684 err = -EFAULT; 5685 goto err_free; 5686 } 5687 5688 /* 5689 * Check insn_off to ensure 5690 * 1) strictly increasing AND 5691 * 2) bounded by prog->len 5692 * 5693 * The linfo[0].insn_off == 0 check logically falls into 5694 * the later "missing bpf_line_info for func..." case 5695 * because the first linfo[0].insn_off must be the 5696 * first sub also and the first sub must have 5697 * subprog_info[0].start == 0. 5698 */ 5699 if ((i && linfo[i].insn_off <= prev_offset) || 5700 linfo[i].insn_off >= prog->len) { 5701 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 5702 i, linfo[i].insn_off, prev_offset, 5703 prog->len); 5704 err = -EINVAL; 5705 goto err_free; 5706 } 5707 5708 if (!prog->insnsi[linfo[i].insn_off].code) { 5709 verbose(env, 5710 "Invalid insn code at line_info[%u].insn_off\n", 5711 i); 5712 err = -EINVAL; 5713 goto err_free; 5714 } 5715 5716 if (!btf_name_by_offset(btf, linfo[i].line_off) || 5717 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 5718 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 5719 err = -EINVAL; 5720 goto err_free; 5721 } 5722 5723 if (s != env->subprog_cnt) { 5724 if (linfo[i].insn_off == sub[s].start) { 5725 sub[s].linfo_idx = i; 5726 s++; 5727 } else if (sub[s].start < linfo[i].insn_off) { 5728 verbose(env, "missing bpf_line_info for func#%u\n", s); 5729 err = -EINVAL; 5730 goto err_free; 5731 } 5732 } 5733 5734 prev_offset = linfo[i].insn_off; 5735 ulinfo += rec_size; 5736 } 5737 5738 if (s != env->subprog_cnt) { 5739 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 5740 env->subprog_cnt - s, s); 5741 err = -EINVAL; 5742 goto err_free; 5743 } 5744 5745 prog->aux->linfo = linfo; 5746 prog->aux->nr_linfo = nr_linfo; 5747 5748 return 0; 5749 5750 err_free: 5751 kvfree(linfo); 5752 return err; 5753 } 5754 5755 static int check_btf_info(struct bpf_verifier_env *env, 5756 const union bpf_attr *attr, 5757 union bpf_attr __user *uattr) 5758 { 5759 struct btf *btf; 5760 int err; 5761 5762 if (!attr->func_info_cnt && !attr->line_info_cnt) 5763 return 0; 5764 5765 btf = btf_get_by_fd(attr->prog_btf_fd); 5766 if (IS_ERR(btf)) 5767 return PTR_ERR(btf); 5768 env->prog->aux->btf = btf; 5769 5770 err = check_btf_func(env, attr, uattr); 5771 if (err) 5772 return err; 5773 5774 err = check_btf_line(env, attr, uattr); 5775 if (err) 5776 return err; 5777 5778 return 0; 5779 } 5780 5781 /* check %cur's range satisfies %old's */ 5782 static bool range_within(struct bpf_reg_state *old, 5783 struct bpf_reg_state *cur) 5784 { 5785 return old->umin_value <= cur->umin_value && 5786 old->umax_value >= cur->umax_value && 5787 old->smin_value <= cur->smin_value && 5788 old->smax_value >= cur->smax_value; 5789 } 5790 5791 /* Maximum number of register states that can exist at once */ 5792 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 5793 struct idpair { 5794 u32 old; 5795 u32 cur; 5796 }; 5797 5798 /* If in the old state two registers had the same id, then they need to have 5799 * the same id in the new state as well. But that id could be different from 5800 * the old state, so we need to track the mapping from old to new ids. 5801 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 5802 * regs with old id 5 must also have new id 9 for the new state to be safe. But 5803 * regs with a different old id could still have new id 9, we don't care about 5804 * that. 5805 * So we look through our idmap to see if this old id has been seen before. If 5806 * so, we require the new id to match; otherwise, we add the id pair to the map. 5807 */ 5808 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 5809 { 5810 unsigned int i; 5811 5812 for (i = 0; i < ID_MAP_SIZE; i++) { 5813 if (!idmap[i].old) { 5814 /* Reached an empty slot; haven't seen this id before */ 5815 idmap[i].old = old_id; 5816 idmap[i].cur = cur_id; 5817 return true; 5818 } 5819 if (idmap[i].old == old_id) 5820 return idmap[i].cur == cur_id; 5821 } 5822 /* We ran out of idmap slots, which should be impossible */ 5823 WARN_ON_ONCE(1); 5824 return false; 5825 } 5826 5827 static void clean_func_state(struct bpf_verifier_env *env, 5828 struct bpf_func_state *st) 5829 { 5830 enum bpf_reg_liveness live; 5831 int i, j; 5832 5833 for (i = 0; i < BPF_REG_FP; i++) { 5834 live = st->regs[i].live; 5835 /* liveness must not touch this register anymore */ 5836 st->regs[i].live |= REG_LIVE_DONE; 5837 if (!(live & REG_LIVE_READ)) 5838 /* since the register is unused, clear its state 5839 * to make further comparison simpler 5840 */ 5841 __mark_reg_not_init(&st->regs[i]); 5842 } 5843 5844 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 5845 live = st->stack[i].spilled_ptr.live; 5846 /* liveness must not touch this stack slot anymore */ 5847 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 5848 if (!(live & REG_LIVE_READ)) { 5849 __mark_reg_not_init(&st->stack[i].spilled_ptr); 5850 for (j = 0; j < BPF_REG_SIZE; j++) 5851 st->stack[i].slot_type[j] = STACK_INVALID; 5852 } 5853 } 5854 } 5855 5856 static void clean_verifier_state(struct bpf_verifier_env *env, 5857 struct bpf_verifier_state *st) 5858 { 5859 int i; 5860 5861 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 5862 /* all regs in this state in all frames were already marked */ 5863 return; 5864 5865 for (i = 0; i <= st->curframe; i++) 5866 clean_func_state(env, st->frame[i]); 5867 } 5868 5869 /* the parentage chains form a tree. 5870 * the verifier states are added to state lists at given insn and 5871 * pushed into state stack for future exploration. 5872 * when the verifier reaches bpf_exit insn some of the verifer states 5873 * stored in the state lists have their final liveness state already, 5874 * but a lot of states will get revised from liveness point of view when 5875 * the verifier explores other branches. 5876 * Example: 5877 * 1: r0 = 1 5878 * 2: if r1 == 100 goto pc+1 5879 * 3: r0 = 2 5880 * 4: exit 5881 * when the verifier reaches exit insn the register r0 in the state list of 5882 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 5883 * of insn 2 and goes exploring further. At the insn 4 it will walk the 5884 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 5885 * 5886 * Since the verifier pushes the branch states as it sees them while exploring 5887 * the program the condition of walking the branch instruction for the second 5888 * time means that all states below this branch were already explored and 5889 * their final liveness markes are already propagated. 5890 * Hence when the verifier completes the search of state list in is_state_visited() 5891 * we can call this clean_live_states() function to mark all liveness states 5892 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 5893 * will not be used. 5894 * This function also clears the registers and stack for states that !READ 5895 * to simplify state merging. 5896 * 5897 * Important note here that walking the same branch instruction in the callee 5898 * doesn't meant that the states are DONE. The verifier has to compare 5899 * the callsites 5900 */ 5901 static void clean_live_states(struct bpf_verifier_env *env, int insn, 5902 struct bpf_verifier_state *cur) 5903 { 5904 struct bpf_verifier_state_list *sl; 5905 int i; 5906 5907 sl = env->explored_states[insn]; 5908 if (!sl) 5909 return; 5910 5911 while (sl != STATE_LIST_MARK) { 5912 if (sl->state.curframe != cur->curframe) 5913 goto next; 5914 for (i = 0; i <= cur->curframe; i++) 5915 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 5916 goto next; 5917 clean_verifier_state(env, &sl->state); 5918 next: 5919 sl = sl->next; 5920 } 5921 } 5922 5923 /* Returns true if (rold safe implies rcur safe) */ 5924 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 5925 struct idpair *idmap) 5926 { 5927 bool equal; 5928 5929 if (!(rold->live & REG_LIVE_READ)) 5930 /* explored state didn't use this */ 5931 return true; 5932 5933 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 5934 5935 if (rold->type == PTR_TO_STACK) 5936 /* two stack pointers are equal only if they're pointing to 5937 * the same stack frame, since fp-8 in foo != fp-8 in bar 5938 */ 5939 return equal && rold->frameno == rcur->frameno; 5940 5941 if (equal) 5942 return true; 5943 5944 if (rold->type == NOT_INIT) 5945 /* explored state can't have used this */ 5946 return true; 5947 if (rcur->type == NOT_INIT) 5948 return false; 5949 switch (rold->type) { 5950 case SCALAR_VALUE: 5951 if (rcur->type == SCALAR_VALUE) { 5952 /* new val must satisfy old val knowledge */ 5953 return range_within(rold, rcur) && 5954 tnum_in(rold->var_off, rcur->var_off); 5955 } else { 5956 /* We're trying to use a pointer in place of a scalar. 5957 * Even if the scalar was unbounded, this could lead to 5958 * pointer leaks because scalars are allowed to leak 5959 * while pointers are not. We could make this safe in 5960 * special cases if root is calling us, but it's 5961 * probably not worth the hassle. 5962 */ 5963 return false; 5964 } 5965 case PTR_TO_MAP_VALUE: 5966 /* If the new min/max/var_off satisfy the old ones and 5967 * everything else matches, we are OK. 5968 * 'id' is not compared, since it's only used for maps with 5969 * bpf_spin_lock inside map element and in such cases if 5970 * the rest of the prog is valid for one map element then 5971 * it's valid for all map elements regardless of the key 5972 * used in bpf_map_lookup() 5973 */ 5974 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 5975 range_within(rold, rcur) && 5976 tnum_in(rold->var_off, rcur->var_off); 5977 case PTR_TO_MAP_VALUE_OR_NULL: 5978 /* a PTR_TO_MAP_VALUE could be safe to use as a 5979 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 5980 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 5981 * checked, doing so could have affected others with the same 5982 * id, and we can't check for that because we lost the id when 5983 * we converted to a PTR_TO_MAP_VALUE. 5984 */ 5985 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 5986 return false; 5987 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 5988 return false; 5989 /* Check our ids match any regs they're supposed to */ 5990 return check_ids(rold->id, rcur->id, idmap); 5991 case PTR_TO_PACKET_META: 5992 case PTR_TO_PACKET: 5993 if (rcur->type != rold->type) 5994 return false; 5995 /* We must have at least as much range as the old ptr 5996 * did, so that any accesses which were safe before are 5997 * still safe. This is true even if old range < old off, 5998 * since someone could have accessed through (ptr - k), or 5999 * even done ptr -= k in a register, to get a safe access. 6000 */ 6001 if (rold->range > rcur->range) 6002 return false; 6003 /* If the offsets don't match, we can't trust our alignment; 6004 * nor can we be sure that we won't fall out of range. 6005 */ 6006 if (rold->off != rcur->off) 6007 return false; 6008 /* id relations must be preserved */ 6009 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 6010 return false; 6011 /* new val must satisfy old val knowledge */ 6012 return range_within(rold, rcur) && 6013 tnum_in(rold->var_off, rcur->var_off); 6014 case PTR_TO_CTX: 6015 case CONST_PTR_TO_MAP: 6016 case PTR_TO_PACKET_END: 6017 case PTR_TO_FLOW_KEYS: 6018 case PTR_TO_SOCKET: 6019 case PTR_TO_SOCKET_OR_NULL: 6020 case PTR_TO_SOCK_COMMON: 6021 case PTR_TO_SOCK_COMMON_OR_NULL: 6022 case PTR_TO_TCP_SOCK: 6023 case PTR_TO_TCP_SOCK_OR_NULL: 6024 /* Only valid matches are exact, which memcmp() above 6025 * would have accepted 6026 */ 6027 default: 6028 /* Don't know what's going on, just say it's not safe */ 6029 return false; 6030 } 6031 6032 /* Shouldn't get here; if we do, say it's not safe */ 6033 WARN_ON_ONCE(1); 6034 return false; 6035 } 6036 6037 static bool stacksafe(struct bpf_func_state *old, 6038 struct bpf_func_state *cur, 6039 struct idpair *idmap) 6040 { 6041 int i, spi; 6042 6043 /* walk slots of the explored stack and ignore any additional 6044 * slots in the current stack, since explored(safe) state 6045 * didn't use them 6046 */ 6047 for (i = 0; i < old->allocated_stack; i++) { 6048 spi = i / BPF_REG_SIZE; 6049 6050 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 6051 i += BPF_REG_SIZE - 1; 6052 /* explored state didn't use this */ 6053 continue; 6054 } 6055 6056 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 6057 continue; 6058 6059 /* explored stack has more populated slots than current stack 6060 * and these slots were used 6061 */ 6062 if (i >= cur->allocated_stack) 6063 return false; 6064 6065 /* if old state was safe with misc data in the stack 6066 * it will be safe with zero-initialized stack. 6067 * The opposite is not true 6068 */ 6069 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 6070 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 6071 continue; 6072 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 6073 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 6074 /* Ex: old explored (safe) state has STACK_SPILL in 6075 * this stack slot, but current has has STACK_MISC -> 6076 * this verifier states are not equivalent, 6077 * return false to continue verification of this path 6078 */ 6079 return false; 6080 if (i % BPF_REG_SIZE) 6081 continue; 6082 if (old->stack[spi].slot_type[0] != STACK_SPILL) 6083 continue; 6084 if (!regsafe(&old->stack[spi].spilled_ptr, 6085 &cur->stack[spi].spilled_ptr, 6086 idmap)) 6087 /* when explored and current stack slot are both storing 6088 * spilled registers, check that stored pointers types 6089 * are the same as well. 6090 * Ex: explored safe path could have stored 6091 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 6092 * but current path has stored: 6093 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 6094 * such verifier states are not equivalent. 6095 * return false to continue verification of this path 6096 */ 6097 return false; 6098 } 6099 return true; 6100 } 6101 6102 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 6103 { 6104 if (old->acquired_refs != cur->acquired_refs) 6105 return false; 6106 return !memcmp(old->refs, cur->refs, 6107 sizeof(*old->refs) * old->acquired_refs); 6108 } 6109 6110 /* compare two verifier states 6111 * 6112 * all states stored in state_list are known to be valid, since 6113 * verifier reached 'bpf_exit' instruction through them 6114 * 6115 * this function is called when verifier exploring different branches of 6116 * execution popped from the state stack. If it sees an old state that has 6117 * more strict register state and more strict stack state then this execution 6118 * branch doesn't need to be explored further, since verifier already 6119 * concluded that more strict state leads to valid finish. 6120 * 6121 * Therefore two states are equivalent if register state is more conservative 6122 * and explored stack state is more conservative than the current one. 6123 * Example: 6124 * explored current 6125 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 6126 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 6127 * 6128 * In other words if current stack state (one being explored) has more 6129 * valid slots than old one that already passed validation, it means 6130 * the verifier can stop exploring and conclude that current state is valid too 6131 * 6132 * Similarly with registers. If explored state has register type as invalid 6133 * whereas register type in current state is meaningful, it means that 6134 * the current state will reach 'bpf_exit' instruction safely 6135 */ 6136 static bool func_states_equal(struct bpf_func_state *old, 6137 struct bpf_func_state *cur) 6138 { 6139 struct idpair *idmap; 6140 bool ret = false; 6141 int i; 6142 6143 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 6144 /* If we failed to allocate the idmap, just say it's not safe */ 6145 if (!idmap) 6146 return false; 6147 6148 for (i = 0; i < MAX_BPF_REG; i++) { 6149 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 6150 goto out_free; 6151 } 6152 6153 if (!stacksafe(old, cur, idmap)) 6154 goto out_free; 6155 6156 if (!refsafe(old, cur)) 6157 goto out_free; 6158 ret = true; 6159 out_free: 6160 kfree(idmap); 6161 return ret; 6162 } 6163 6164 static bool states_equal(struct bpf_verifier_env *env, 6165 struct bpf_verifier_state *old, 6166 struct bpf_verifier_state *cur) 6167 { 6168 int i; 6169 6170 if (old->curframe != cur->curframe) 6171 return false; 6172 6173 /* Verification state from speculative execution simulation 6174 * must never prune a non-speculative execution one. 6175 */ 6176 if (old->speculative && !cur->speculative) 6177 return false; 6178 6179 if (old->active_spin_lock != cur->active_spin_lock) 6180 return false; 6181 6182 /* for states to be equal callsites have to be the same 6183 * and all frame states need to be equivalent 6184 */ 6185 for (i = 0; i <= old->curframe; i++) { 6186 if (old->frame[i]->callsite != cur->frame[i]->callsite) 6187 return false; 6188 if (!func_states_equal(old->frame[i], cur->frame[i])) 6189 return false; 6190 } 6191 return true; 6192 } 6193 6194 /* A write screens off any subsequent reads; but write marks come from the 6195 * straight-line code between a state and its parent. When we arrive at an 6196 * equivalent state (jump target or such) we didn't arrive by the straight-line 6197 * code, so read marks in the state must propagate to the parent regardless 6198 * of the state's write marks. That's what 'parent == state->parent' comparison 6199 * in mark_reg_read() is for. 6200 */ 6201 static int propagate_liveness(struct bpf_verifier_env *env, 6202 const struct bpf_verifier_state *vstate, 6203 struct bpf_verifier_state *vparent) 6204 { 6205 int i, frame, err = 0; 6206 struct bpf_func_state *state, *parent; 6207 6208 if (vparent->curframe != vstate->curframe) { 6209 WARN(1, "propagate_live: parent frame %d current frame %d\n", 6210 vparent->curframe, vstate->curframe); 6211 return -EFAULT; 6212 } 6213 /* Propagate read liveness of registers... */ 6214 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 6215 for (frame = 0; frame <= vstate->curframe; frame++) { 6216 /* We don't need to worry about FP liveness, it's read-only */ 6217 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 6218 if (vparent->frame[frame]->regs[i].live & REG_LIVE_READ) 6219 continue; 6220 if (vstate->frame[frame]->regs[i].live & REG_LIVE_READ) { 6221 err = mark_reg_read(env, &vstate->frame[frame]->regs[i], 6222 &vparent->frame[frame]->regs[i]); 6223 if (err) 6224 return err; 6225 } 6226 } 6227 } 6228 6229 /* ... and stack slots */ 6230 for (frame = 0; frame <= vstate->curframe; frame++) { 6231 state = vstate->frame[frame]; 6232 parent = vparent->frame[frame]; 6233 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 6234 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 6235 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 6236 continue; 6237 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 6238 mark_reg_read(env, &state->stack[i].spilled_ptr, 6239 &parent->stack[i].spilled_ptr); 6240 } 6241 } 6242 return err; 6243 } 6244 6245 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 6246 { 6247 struct bpf_verifier_state_list *new_sl; 6248 struct bpf_verifier_state_list *sl, **pprev; 6249 struct bpf_verifier_state *cur = env->cur_state, *new; 6250 int i, j, err, states_cnt = 0; 6251 6252 pprev = &env->explored_states[insn_idx]; 6253 sl = *pprev; 6254 6255 if (!sl) 6256 /* this 'insn_idx' instruction wasn't marked, so we will not 6257 * be doing state search here 6258 */ 6259 return 0; 6260 6261 clean_live_states(env, insn_idx, cur); 6262 6263 while (sl != STATE_LIST_MARK) { 6264 if (states_equal(env, &sl->state, cur)) { 6265 sl->hit_cnt++; 6266 /* reached equivalent register/stack state, 6267 * prune the search. 6268 * Registers read by the continuation are read by us. 6269 * If we have any write marks in env->cur_state, they 6270 * will prevent corresponding reads in the continuation 6271 * from reaching our parent (an explored_state). Our 6272 * own state will get the read marks recorded, but 6273 * they'll be immediately forgotten as we're pruning 6274 * this state and will pop a new one. 6275 */ 6276 err = propagate_liveness(env, &sl->state, cur); 6277 if (err) 6278 return err; 6279 return 1; 6280 } 6281 states_cnt++; 6282 sl->miss_cnt++; 6283 /* heuristic to determine whether this state is beneficial 6284 * to keep checking from state equivalence point of view. 6285 * Higher numbers increase max_states_per_insn and verification time, 6286 * but do not meaningfully decrease insn_processed. 6287 */ 6288 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 6289 /* the state is unlikely to be useful. Remove it to 6290 * speed up verification 6291 */ 6292 *pprev = sl->next; 6293 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 6294 free_verifier_state(&sl->state, false); 6295 kfree(sl); 6296 env->peak_states--; 6297 } else { 6298 /* cannot free this state, since parentage chain may 6299 * walk it later. Add it for free_list instead to 6300 * be freed at the end of verification 6301 */ 6302 sl->next = env->free_list; 6303 env->free_list = sl; 6304 } 6305 sl = *pprev; 6306 continue; 6307 } 6308 pprev = &sl->next; 6309 sl = *pprev; 6310 } 6311 6312 if (env->max_states_per_insn < states_cnt) 6313 env->max_states_per_insn = states_cnt; 6314 6315 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 6316 return 0; 6317 6318 /* there were no equivalent states, remember current one. 6319 * technically the current state is not proven to be safe yet, 6320 * but it will either reach outer most bpf_exit (which means it's safe) 6321 * or it will be rejected. Since there are no loops, we won't be 6322 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 6323 * again on the way to bpf_exit 6324 */ 6325 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 6326 if (!new_sl) 6327 return -ENOMEM; 6328 env->total_states++; 6329 env->peak_states++; 6330 6331 /* add new state to the head of linked list */ 6332 new = &new_sl->state; 6333 err = copy_verifier_state(new, cur); 6334 if (err) { 6335 free_verifier_state(new, false); 6336 kfree(new_sl); 6337 return err; 6338 } 6339 new_sl->next = env->explored_states[insn_idx]; 6340 env->explored_states[insn_idx] = new_sl; 6341 /* connect new state to parentage chain. Current frame needs all 6342 * registers connected. Only r6 - r9 of the callers are alive (pushed 6343 * to the stack implicitly by JITs) so in callers' frames connect just 6344 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 6345 * the state of the call instruction (with WRITTEN set), and r0 comes 6346 * from callee with its full parentage chain, anyway. 6347 */ 6348 for (j = 0; j <= cur->curframe; j++) 6349 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 6350 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 6351 /* clear write marks in current state: the writes we did are not writes 6352 * our child did, so they don't screen off its reads from us. 6353 * (There are no read marks in current state, because reads always mark 6354 * their parent and current state never has children yet. Only 6355 * explored_states can get read marks.) 6356 */ 6357 for (i = 0; i < BPF_REG_FP; i++) 6358 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 6359 6360 /* all stack frames are accessible from callee, clear them all */ 6361 for (j = 0; j <= cur->curframe; j++) { 6362 struct bpf_func_state *frame = cur->frame[j]; 6363 struct bpf_func_state *newframe = new->frame[j]; 6364 6365 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 6366 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 6367 frame->stack[i].spilled_ptr.parent = 6368 &newframe->stack[i].spilled_ptr; 6369 } 6370 } 6371 return 0; 6372 } 6373 6374 /* Return true if it's OK to have the same insn return a different type. */ 6375 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 6376 { 6377 switch (type) { 6378 case PTR_TO_CTX: 6379 case PTR_TO_SOCKET: 6380 case PTR_TO_SOCKET_OR_NULL: 6381 case PTR_TO_SOCK_COMMON: 6382 case PTR_TO_SOCK_COMMON_OR_NULL: 6383 case PTR_TO_TCP_SOCK: 6384 case PTR_TO_TCP_SOCK_OR_NULL: 6385 return false; 6386 default: 6387 return true; 6388 } 6389 } 6390 6391 /* If an instruction was previously used with particular pointer types, then we 6392 * need to be careful to avoid cases such as the below, where it may be ok 6393 * for one branch accessing the pointer, but not ok for the other branch: 6394 * 6395 * R1 = sock_ptr 6396 * goto X; 6397 * ... 6398 * R1 = some_other_valid_ptr; 6399 * goto X; 6400 * ... 6401 * R2 = *(u32 *)(R1 + 0); 6402 */ 6403 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 6404 { 6405 return src != prev && (!reg_type_mismatch_ok(src) || 6406 !reg_type_mismatch_ok(prev)); 6407 } 6408 6409 static int do_check(struct bpf_verifier_env *env) 6410 { 6411 struct bpf_verifier_state *state; 6412 struct bpf_insn *insns = env->prog->insnsi; 6413 struct bpf_reg_state *regs; 6414 int insn_cnt = env->prog->len; 6415 bool do_print_state = false; 6416 6417 env->prev_linfo = NULL; 6418 6419 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 6420 if (!state) 6421 return -ENOMEM; 6422 state->curframe = 0; 6423 state->speculative = false; 6424 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 6425 if (!state->frame[0]) { 6426 kfree(state); 6427 return -ENOMEM; 6428 } 6429 env->cur_state = state; 6430 init_func_state(env, state->frame[0], 6431 BPF_MAIN_FUNC /* callsite */, 6432 0 /* frameno */, 6433 0 /* subprogno, zero == main subprog */); 6434 6435 for (;;) { 6436 struct bpf_insn *insn; 6437 u8 class; 6438 int err; 6439 6440 if (env->insn_idx >= insn_cnt) { 6441 verbose(env, "invalid insn idx %d insn_cnt %d\n", 6442 env->insn_idx, insn_cnt); 6443 return -EFAULT; 6444 } 6445 6446 insn = &insns[env->insn_idx]; 6447 class = BPF_CLASS(insn->code); 6448 6449 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 6450 verbose(env, 6451 "BPF program is too large. Processed %d insn\n", 6452 env->insn_processed); 6453 return -E2BIG; 6454 } 6455 6456 err = is_state_visited(env, env->insn_idx); 6457 if (err < 0) 6458 return err; 6459 if (err == 1) { 6460 /* found equivalent state, can prune the search */ 6461 if (env->log.level & BPF_LOG_LEVEL) { 6462 if (do_print_state) 6463 verbose(env, "\nfrom %d to %d%s: safe\n", 6464 env->prev_insn_idx, env->insn_idx, 6465 env->cur_state->speculative ? 6466 " (speculative execution)" : ""); 6467 else 6468 verbose(env, "%d: safe\n", env->insn_idx); 6469 } 6470 goto process_bpf_exit; 6471 } 6472 6473 if (signal_pending(current)) 6474 return -EAGAIN; 6475 6476 if (need_resched()) 6477 cond_resched(); 6478 6479 if (env->log.level & BPF_LOG_LEVEL2 || 6480 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 6481 if (env->log.level & BPF_LOG_LEVEL2) 6482 verbose(env, "%d:", env->insn_idx); 6483 else 6484 verbose(env, "\nfrom %d to %d%s:", 6485 env->prev_insn_idx, env->insn_idx, 6486 env->cur_state->speculative ? 6487 " (speculative execution)" : ""); 6488 print_verifier_state(env, state->frame[state->curframe]); 6489 do_print_state = false; 6490 } 6491 6492 if (env->log.level & BPF_LOG_LEVEL) { 6493 const struct bpf_insn_cbs cbs = { 6494 .cb_print = verbose, 6495 .private_data = env, 6496 }; 6497 6498 verbose_linfo(env, env->insn_idx, "; "); 6499 verbose(env, "%d: ", env->insn_idx); 6500 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 6501 } 6502 6503 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6504 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 6505 env->prev_insn_idx); 6506 if (err) 6507 return err; 6508 } 6509 6510 regs = cur_regs(env); 6511 env->insn_aux_data[env->insn_idx].seen = true; 6512 6513 if (class == BPF_ALU || class == BPF_ALU64) { 6514 err = check_alu_op(env, insn); 6515 if (err) 6516 return err; 6517 6518 } else if (class == BPF_LDX) { 6519 enum bpf_reg_type *prev_src_type, src_reg_type; 6520 6521 /* check for reserved fields is already done */ 6522 6523 /* check src operand */ 6524 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6525 if (err) 6526 return err; 6527 6528 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6529 if (err) 6530 return err; 6531 6532 src_reg_type = regs[insn->src_reg].type; 6533 6534 /* check that memory (src_reg + off) is readable, 6535 * the state of dst_reg will be updated by this func 6536 */ 6537 err = check_mem_access(env, env->insn_idx, insn->src_reg, 6538 insn->off, BPF_SIZE(insn->code), 6539 BPF_READ, insn->dst_reg, false); 6540 if (err) 6541 return err; 6542 6543 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6544 6545 if (*prev_src_type == NOT_INIT) { 6546 /* saw a valid insn 6547 * dst_reg = *(u32 *)(src_reg + off) 6548 * save type to validate intersecting paths 6549 */ 6550 *prev_src_type = src_reg_type; 6551 6552 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 6553 /* ABuser program is trying to use the same insn 6554 * dst_reg = *(u32*) (src_reg + off) 6555 * with different pointer types: 6556 * src_reg == ctx in one branch and 6557 * src_reg == stack|map in some other branch. 6558 * Reject it. 6559 */ 6560 verbose(env, "same insn cannot be used with different pointers\n"); 6561 return -EINVAL; 6562 } 6563 6564 } else if (class == BPF_STX) { 6565 enum bpf_reg_type *prev_dst_type, dst_reg_type; 6566 6567 if (BPF_MODE(insn->code) == BPF_XADD) { 6568 err = check_xadd(env, env->insn_idx, insn); 6569 if (err) 6570 return err; 6571 env->insn_idx++; 6572 continue; 6573 } 6574 6575 /* check src1 operand */ 6576 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6577 if (err) 6578 return err; 6579 /* check src2 operand */ 6580 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6581 if (err) 6582 return err; 6583 6584 dst_reg_type = regs[insn->dst_reg].type; 6585 6586 /* check that memory (dst_reg + off) is writeable */ 6587 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6588 insn->off, BPF_SIZE(insn->code), 6589 BPF_WRITE, insn->src_reg, false); 6590 if (err) 6591 return err; 6592 6593 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6594 6595 if (*prev_dst_type == NOT_INIT) { 6596 *prev_dst_type = dst_reg_type; 6597 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 6598 verbose(env, "same insn cannot be used with different pointers\n"); 6599 return -EINVAL; 6600 } 6601 6602 } else if (class == BPF_ST) { 6603 if (BPF_MODE(insn->code) != BPF_MEM || 6604 insn->src_reg != BPF_REG_0) { 6605 verbose(env, "BPF_ST uses reserved fields\n"); 6606 return -EINVAL; 6607 } 6608 /* check src operand */ 6609 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6610 if (err) 6611 return err; 6612 6613 if (is_ctx_reg(env, insn->dst_reg)) { 6614 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 6615 insn->dst_reg, 6616 reg_type_str[reg_state(env, insn->dst_reg)->type]); 6617 return -EACCES; 6618 } 6619 6620 /* check that memory (dst_reg + off) is writeable */ 6621 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6622 insn->off, BPF_SIZE(insn->code), 6623 BPF_WRITE, -1, false); 6624 if (err) 6625 return err; 6626 6627 } else if (class == BPF_JMP || class == BPF_JMP32) { 6628 u8 opcode = BPF_OP(insn->code); 6629 6630 if (opcode == BPF_CALL) { 6631 if (BPF_SRC(insn->code) != BPF_K || 6632 insn->off != 0 || 6633 (insn->src_reg != BPF_REG_0 && 6634 insn->src_reg != BPF_PSEUDO_CALL) || 6635 insn->dst_reg != BPF_REG_0 || 6636 class == BPF_JMP32) { 6637 verbose(env, "BPF_CALL uses reserved fields\n"); 6638 return -EINVAL; 6639 } 6640 6641 if (env->cur_state->active_spin_lock && 6642 (insn->src_reg == BPF_PSEUDO_CALL || 6643 insn->imm != BPF_FUNC_spin_unlock)) { 6644 verbose(env, "function calls are not allowed while holding a lock\n"); 6645 return -EINVAL; 6646 } 6647 if (insn->src_reg == BPF_PSEUDO_CALL) 6648 err = check_func_call(env, insn, &env->insn_idx); 6649 else 6650 err = check_helper_call(env, insn->imm, env->insn_idx); 6651 if (err) 6652 return err; 6653 6654 } else if (opcode == BPF_JA) { 6655 if (BPF_SRC(insn->code) != BPF_K || 6656 insn->imm != 0 || 6657 insn->src_reg != BPF_REG_0 || 6658 insn->dst_reg != BPF_REG_0 || 6659 class == BPF_JMP32) { 6660 verbose(env, "BPF_JA uses reserved fields\n"); 6661 return -EINVAL; 6662 } 6663 6664 env->insn_idx += insn->off + 1; 6665 continue; 6666 6667 } else if (opcode == BPF_EXIT) { 6668 if (BPF_SRC(insn->code) != BPF_K || 6669 insn->imm != 0 || 6670 insn->src_reg != BPF_REG_0 || 6671 insn->dst_reg != BPF_REG_0 || 6672 class == BPF_JMP32) { 6673 verbose(env, "BPF_EXIT uses reserved fields\n"); 6674 return -EINVAL; 6675 } 6676 6677 if (env->cur_state->active_spin_lock) { 6678 verbose(env, "bpf_spin_unlock is missing\n"); 6679 return -EINVAL; 6680 } 6681 6682 if (state->curframe) { 6683 /* exit from nested function */ 6684 env->prev_insn_idx = env->insn_idx; 6685 err = prepare_func_exit(env, &env->insn_idx); 6686 if (err) 6687 return err; 6688 do_print_state = true; 6689 continue; 6690 } 6691 6692 err = check_reference_leak(env); 6693 if (err) 6694 return err; 6695 6696 /* eBPF calling convetion is such that R0 is used 6697 * to return the value from eBPF program. 6698 * Make sure that it's readable at this time 6699 * of bpf_exit, which means that program wrote 6700 * something into it earlier 6701 */ 6702 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 6703 if (err) 6704 return err; 6705 6706 if (is_pointer_value(env, BPF_REG_0)) { 6707 verbose(env, "R0 leaks addr as return value\n"); 6708 return -EACCES; 6709 } 6710 6711 err = check_return_code(env); 6712 if (err) 6713 return err; 6714 process_bpf_exit: 6715 err = pop_stack(env, &env->prev_insn_idx, 6716 &env->insn_idx); 6717 if (err < 0) { 6718 if (err != -ENOENT) 6719 return err; 6720 break; 6721 } else { 6722 do_print_state = true; 6723 continue; 6724 } 6725 } else { 6726 err = check_cond_jmp_op(env, insn, &env->insn_idx); 6727 if (err) 6728 return err; 6729 } 6730 } else if (class == BPF_LD) { 6731 u8 mode = BPF_MODE(insn->code); 6732 6733 if (mode == BPF_ABS || mode == BPF_IND) { 6734 err = check_ld_abs(env, insn); 6735 if (err) 6736 return err; 6737 6738 } else if (mode == BPF_IMM) { 6739 err = check_ld_imm(env, insn); 6740 if (err) 6741 return err; 6742 6743 env->insn_idx++; 6744 env->insn_aux_data[env->insn_idx].seen = true; 6745 } else { 6746 verbose(env, "invalid BPF_LD mode\n"); 6747 return -EINVAL; 6748 } 6749 } else { 6750 verbose(env, "unknown insn class %d\n", class); 6751 return -EINVAL; 6752 } 6753 6754 env->insn_idx++; 6755 } 6756 6757 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 6758 return 0; 6759 } 6760 6761 static int check_map_prealloc(struct bpf_map *map) 6762 { 6763 return (map->map_type != BPF_MAP_TYPE_HASH && 6764 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6765 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 6766 !(map->map_flags & BPF_F_NO_PREALLOC); 6767 } 6768 6769 static bool is_tracing_prog_type(enum bpf_prog_type type) 6770 { 6771 switch (type) { 6772 case BPF_PROG_TYPE_KPROBE: 6773 case BPF_PROG_TYPE_TRACEPOINT: 6774 case BPF_PROG_TYPE_PERF_EVENT: 6775 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6776 return true; 6777 default: 6778 return false; 6779 } 6780 } 6781 6782 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 6783 struct bpf_map *map, 6784 struct bpf_prog *prog) 6785 6786 { 6787 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 6788 * preallocated hash maps, since doing memory allocation 6789 * in overflow_handler can crash depending on where nmi got 6790 * triggered. 6791 */ 6792 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 6793 if (!check_map_prealloc(map)) { 6794 verbose(env, "perf_event programs can only use preallocated hash map\n"); 6795 return -EINVAL; 6796 } 6797 if (map->inner_map_meta && 6798 !check_map_prealloc(map->inner_map_meta)) { 6799 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 6800 return -EINVAL; 6801 } 6802 } 6803 6804 if ((is_tracing_prog_type(prog->type) || 6805 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 6806 map_value_has_spin_lock(map)) { 6807 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 6808 return -EINVAL; 6809 } 6810 6811 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 6812 !bpf_offload_prog_map_match(prog, map)) { 6813 verbose(env, "offload device mismatch between prog and map\n"); 6814 return -EINVAL; 6815 } 6816 6817 return 0; 6818 } 6819 6820 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 6821 { 6822 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 6823 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 6824 } 6825 6826 /* look for pseudo eBPF instructions that access map FDs and 6827 * replace them with actual map pointers 6828 */ 6829 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 6830 { 6831 struct bpf_insn *insn = env->prog->insnsi; 6832 int insn_cnt = env->prog->len; 6833 int i, j, err; 6834 6835 err = bpf_prog_calc_tag(env->prog); 6836 if (err) 6837 return err; 6838 6839 for (i = 0; i < insn_cnt; i++, insn++) { 6840 if (BPF_CLASS(insn->code) == BPF_LDX && 6841 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 6842 verbose(env, "BPF_LDX uses reserved fields\n"); 6843 return -EINVAL; 6844 } 6845 6846 if (BPF_CLASS(insn->code) == BPF_STX && 6847 ((BPF_MODE(insn->code) != BPF_MEM && 6848 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 6849 verbose(env, "BPF_STX uses reserved fields\n"); 6850 return -EINVAL; 6851 } 6852 6853 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 6854 struct bpf_insn_aux_data *aux; 6855 struct bpf_map *map; 6856 struct fd f; 6857 u64 addr; 6858 6859 if (i == insn_cnt - 1 || insn[1].code != 0 || 6860 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 6861 insn[1].off != 0) { 6862 verbose(env, "invalid bpf_ld_imm64 insn\n"); 6863 return -EINVAL; 6864 } 6865 6866 if (insn[0].src_reg == 0) 6867 /* valid generic load 64-bit imm */ 6868 goto next_insn; 6869 6870 /* In final convert_pseudo_ld_imm64() step, this is 6871 * converted into regular 64-bit imm load insn. 6872 */ 6873 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 6874 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 6875 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 6876 insn[1].imm != 0)) { 6877 verbose(env, 6878 "unrecognized bpf_ld_imm64 insn\n"); 6879 return -EINVAL; 6880 } 6881 6882 f = fdget(insn[0].imm); 6883 map = __bpf_map_get(f); 6884 if (IS_ERR(map)) { 6885 verbose(env, "fd %d is not pointing to valid bpf_map\n", 6886 insn[0].imm); 6887 return PTR_ERR(map); 6888 } 6889 6890 err = check_map_prog_compatibility(env, map, env->prog); 6891 if (err) { 6892 fdput(f); 6893 return err; 6894 } 6895 6896 aux = &env->insn_aux_data[i]; 6897 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 6898 addr = (unsigned long)map; 6899 } else { 6900 u32 off = insn[1].imm; 6901 6902 if (off >= BPF_MAX_VAR_OFF) { 6903 verbose(env, "direct value offset of %u is not allowed\n", off); 6904 fdput(f); 6905 return -EINVAL; 6906 } 6907 6908 if (!map->ops->map_direct_value_addr) { 6909 verbose(env, "no direct value access support for this map type\n"); 6910 fdput(f); 6911 return -EINVAL; 6912 } 6913 6914 err = map->ops->map_direct_value_addr(map, &addr, off); 6915 if (err) { 6916 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 6917 map->value_size, off); 6918 fdput(f); 6919 return err; 6920 } 6921 6922 aux->map_off = off; 6923 addr += off; 6924 } 6925 6926 insn[0].imm = (u32)addr; 6927 insn[1].imm = addr >> 32; 6928 6929 /* check whether we recorded this map already */ 6930 for (j = 0; j < env->used_map_cnt; j++) { 6931 if (env->used_maps[j] == map) { 6932 aux->map_index = j; 6933 fdput(f); 6934 goto next_insn; 6935 } 6936 } 6937 6938 if (env->used_map_cnt >= MAX_USED_MAPS) { 6939 fdput(f); 6940 return -E2BIG; 6941 } 6942 6943 /* hold the map. If the program is rejected by verifier, 6944 * the map will be released by release_maps() or it 6945 * will be used by the valid program until it's unloaded 6946 * and all maps are released in free_used_maps() 6947 */ 6948 map = bpf_map_inc(map, false); 6949 if (IS_ERR(map)) { 6950 fdput(f); 6951 return PTR_ERR(map); 6952 } 6953 6954 aux->map_index = env->used_map_cnt; 6955 env->used_maps[env->used_map_cnt++] = map; 6956 6957 if (bpf_map_is_cgroup_storage(map) && 6958 bpf_cgroup_storage_assign(env->prog, map)) { 6959 verbose(env, "only one cgroup storage of each type is allowed\n"); 6960 fdput(f); 6961 return -EBUSY; 6962 } 6963 6964 fdput(f); 6965 next_insn: 6966 insn++; 6967 i++; 6968 continue; 6969 } 6970 6971 /* Basic sanity check before we invest more work here. */ 6972 if (!bpf_opcode_in_insntable(insn->code)) { 6973 verbose(env, "unknown opcode %02x\n", insn->code); 6974 return -EINVAL; 6975 } 6976 } 6977 6978 /* now all pseudo BPF_LD_IMM64 instructions load valid 6979 * 'struct bpf_map *' into a register instead of user map_fd. 6980 * These pointers will be used later by verifier to validate map access. 6981 */ 6982 return 0; 6983 } 6984 6985 /* drop refcnt of maps used by the rejected program */ 6986 static void release_maps(struct bpf_verifier_env *env) 6987 { 6988 enum bpf_cgroup_storage_type stype; 6989 int i; 6990 6991 for_each_cgroup_storage_type(stype) { 6992 if (!env->prog->aux->cgroup_storage[stype]) 6993 continue; 6994 bpf_cgroup_storage_release(env->prog, 6995 env->prog->aux->cgroup_storage[stype]); 6996 } 6997 6998 for (i = 0; i < env->used_map_cnt; i++) 6999 bpf_map_put(env->used_maps[i]); 7000 } 7001 7002 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 7003 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 7004 { 7005 struct bpf_insn *insn = env->prog->insnsi; 7006 int insn_cnt = env->prog->len; 7007 int i; 7008 7009 for (i = 0; i < insn_cnt; i++, insn++) 7010 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 7011 insn->src_reg = 0; 7012 } 7013 7014 /* single env->prog->insni[off] instruction was replaced with the range 7015 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 7016 * [0, off) and [off, end) to new locations, so the patched range stays zero 7017 */ 7018 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 7019 u32 off, u32 cnt) 7020 { 7021 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 7022 int i; 7023 7024 if (cnt == 1) 7025 return 0; 7026 new_data = vzalloc(array_size(prog_len, 7027 sizeof(struct bpf_insn_aux_data))); 7028 if (!new_data) 7029 return -ENOMEM; 7030 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 7031 memcpy(new_data + off + cnt - 1, old_data + off, 7032 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 7033 for (i = off; i < off + cnt - 1; i++) 7034 new_data[i].seen = true; 7035 env->insn_aux_data = new_data; 7036 vfree(old_data); 7037 return 0; 7038 } 7039 7040 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 7041 { 7042 int i; 7043 7044 if (len == 1) 7045 return; 7046 /* NOTE: fake 'exit' subprog should be updated as well. */ 7047 for (i = 0; i <= env->subprog_cnt; i++) { 7048 if (env->subprog_info[i].start <= off) 7049 continue; 7050 env->subprog_info[i].start += len - 1; 7051 } 7052 } 7053 7054 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 7055 const struct bpf_insn *patch, u32 len) 7056 { 7057 struct bpf_prog *new_prog; 7058 7059 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 7060 if (IS_ERR(new_prog)) { 7061 if (PTR_ERR(new_prog) == -ERANGE) 7062 verbose(env, 7063 "insn %d cannot be patched due to 16-bit range\n", 7064 env->insn_aux_data[off].orig_idx); 7065 return NULL; 7066 } 7067 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 7068 return NULL; 7069 adjust_subprog_starts(env, off, len); 7070 return new_prog; 7071 } 7072 7073 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 7074 u32 off, u32 cnt) 7075 { 7076 int i, j; 7077 7078 /* find first prog starting at or after off (first to remove) */ 7079 for (i = 0; i < env->subprog_cnt; i++) 7080 if (env->subprog_info[i].start >= off) 7081 break; 7082 /* find first prog starting at or after off + cnt (first to stay) */ 7083 for (j = i; j < env->subprog_cnt; j++) 7084 if (env->subprog_info[j].start >= off + cnt) 7085 break; 7086 /* if j doesn't start exactly at off + cnt, we are just removing 7087 * the front of previous prog 7088 */ 7089 if (env->subprog_info[j].start != off + cnt) 7090 j--; 7091 7092 if (j > i) { 7093 struct bpf_prog_aux *aux = env->prog->aux; 7094 int move; 7095 7096 /* move fake 'exit' subprog as well */ 7097 move = env->subprog_cnt + 1 - j; 7098 7099 memmove(env->subprog_info + i, 7100 env->subprog_info + j, 7101 sizeof(*env->subprog_info) * move); 7102 env->subprog_cnt -= j - i; 7103 7104 /* remove func_info */ 7105 if (aux->func_info) { 7106 move = aux->func_info_cnt - j; 7107 7108 memmove(aux->func_info + i, 7109 aux->func_info + j, 7110 sizeof(*aux->func_info) * move); 7111 aux->func_info_cnt -= j - i; 7112 /* func_info->insn_off is set after all code rewrites, 7113 * in adjust_btf_func() - no need to adjust 7114 */ 7115 } 7116 } else { 7117 /* convert i from "first prog to remove" to "first to adjust" */ 7118 if (env->subprog_info[i].start == off) 7119 i++; 7120 } 7121 7122 /* update fake 'exit' subprog as well */ 7123 for (; i <= env->subprog_cnt; i++) 7124 env->subprog_info[i].start -= cnt; 7125 7126 return 0; 7127 } 7128 7129 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 7130 u32 cnt) 7131 { 7132 struct bpf_prog *prog = env->prog; 7133 u32 i, l_off, l_cnt, nr_linfo; 7134 struct bpf_line_info *linfo; 7135 7136 nr_linfo = prog->aux->nr_linfo; 7137 if (!nr_linfo) 7138 return 0; 7139 7140 linfo = prog->aux->linfo; 7141 7142 /* find first line info to remove, count lines to be removed */ 7143 for (i = 0; i < nr_linfo; i++) 7144 if (linfo[i].insn_off >= off) 7145 break; 7146 7147 l_off = i; 7148 l_cnt = 0; 7149 for (; i < nr_linfo; i++) 7150 if (linfo[i].insn_off < off + cnt) 7151 l_cnt++; 7152 else 7153 break; 7154 7155 /* First live insn doesn't match first live linfo, it needs to "inherit" 7156 * last removed linfo. prog is already modified, so prog->len == off 7157 * means no live instructions after (tail of the program was removed). 7158 */ 7159 if (prog->len != off && l_cnt && 7160 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 7161 l_cnt--; 7162 linfo[--i].insn_off = off + cnt; 7163 } 7164 7165 /* remove the line info which refer to the removed instructions */ 7166 if (l_cnt) { 7167 memmove(linfo + l_off, linfo + i, 7168 sizeof(*linfo) * (nr_linfo - i)); 7169 7170 prog->aux->nr_linfo -= l_cnt; 7171 nr_linfo = prog->aux->nr_linfo; 7172 } 7173 7174 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 7175 for (i = l_off; i < nr_linfo; i++) 7176 linfo[i].insn_off -= cnt; 7177 7178 /* fix up all subprogs (incl. 'exit') which start >= off */ 7179 for (i = 0; i <= env->subprog_cnt; i++) 7180 if (env->subprog_info[i].linfo_idx > l_off) { 7181 /* program may have started in the removed region but 7182 * may not be fully removed 7183 */ 7184 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 7185 env->subprog_info[i].linfo_idx -= l_cnt; 7186 else 7187 env->subprog_info[i].linfo_idx = l_off; 7188 } 7189 7190 return 0; 7191 } 7192 7193 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 7194 { 7195 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7196 unsigned int orig_prog_len = env->prog->len; 7197 int err; 7198 7199 if (bpf_prog_is_dev_bound(env->prog->aux)) 7200 bpf_prog_offload_remove_insns(env, off, cnt); 7201 7202 err = bpf_remove_insns(env->prog, off, cnt); 7203 if (err) 7204 return err; 7205 7206 err = adjust_subprog_starts_after_remove(env, off, cnt); 7207 if (err) 7208 return err; 7209 7210 err = bpf_adj_linfo_after_remove(env, off, cnt); 7211 if (err) 7212 return err; 7213 7214 memmove(aux_data + off, aux_data + off + cnt, 7215 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 7216 7217 return 0; 7218 } 7219 7220 /* The verifier does more data flow analysis than llvm and will not 7221 * explore branches that are dead at run time. Malicious programs can 7222 * have dead code too. Therefore replace all dead at-run-time code 7223 * with 'ja -1'. 7224 * 7225 * Just nops are not optimal, e.g. if they would sit at the end of the 7226 * program and through another bug we would manage to jump there, then 7227 * we'd execute beyond program memory otherwise. Returning exception 7228 * code also wouldn't work since we can have subprogs where the dead 7229 * code could be located. 7230 */ 7231 static void sanitize_dead_code(struct bpf_verifier_env *env) 7232 { 7233 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7234 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 7235 struct bpf_insn *insn = env->prog->insnsi; 7236 const int insn_cnt = env->prog->len; 7237 int i; 7238 7239 for (i = 0; i < insn_cnt; i++) { 7240 if (aux_data[i].seen) 7241 continue; 7242 memcpy(insn + i, &trap, sizeof(trap)); 7243 } 7244 } 7245 7246 static bool insn_is_cond_jump(u8 code) 7247 { 7248 u8 op; 7249 7250 if (BPF_CLASS(code) == BPF_JMP32) 7251 return true; 7252 7253 if (BPF_CLASS(code) != BPF_JMP) 7254 return false; 7255 7256 op = BPF_OP(code); 7257 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 7258 } 7259 7260 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 7261 { 7262 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7263 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7264 struct bpf_insn *insn = env->prog->insnsi; 7265 const int insn_cnt = env->prog->len; 7266 int i; 7267 7268 for (i = 0; i < insn_cnt; i++, insn++) { 7269 if (!insn_is_cond_jump(insn->code)) 7270 continue; 7271 7272 if (!aux_data[i + 1].seen) 7273 ja.off = insn->off; 7274 else if (!aux_data[i + 1 + insn->off].seen) 7275 ja.off = 0; 7276 else 7277 continue; 7278 7279 if (bpf_prog_is_dev_bound(env->prog->aux)) 7280 bpf_prog_offload_replace_insn(env, i, &ja); 7281 7282 memcpy(insn, &ja, sizeof(ja)); 7283 } 7284 } 7285 7286 static int opt_remove_dead_code(struct bpf_verifier_env *env) 7287 { 7288 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7289 int insn_cnt = env->prog->len; 7290 int i, err; 7291 7292 for (i = 0; i < insn_cnt; i++) { 7293 int j; 7294 7295 j = 0; 7296 while (i + j < insn_cnt && !aux_data[i + j].seen) 7297 j++; 7298 if (!j) 7299 continue; 7300 7301 err = verifier_remove_insns(env, i, j); 7302 if (err) 7303 return err; 7304 insn_cnt = env->prog->len; 7305 } 7306 7307 return 0; 7308 } 7309 7310 static int opt_remove_nops(struct bpf_verifier_env *env) 7311 { 7312 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7313 struct bpf_insn *insn = env->prog->insnsi; 7314 int insn_cnt = env->prog->len; 7315 int i, err; 7316 7317 for (i = 0; i < insn_cnt; i++) { 7318 if (memcmp(&insn[i], &ja, sizeof(ja))) 7319 continue; 7320 7321 err = verifier_remove_insns(env, i, 1); 7322 if (err) 7323 return err; 7324 insn_cnt--; 7325 i--; 7326 } 7327 7328 return 0; 7329 } 7330 7331 /* convert load instructions that access fields of a context type into a 7332 * sequence of instructions that access fields of the underlying structure: 7333 * struct __sk_buff -> struct sk_buff 7334 * struct bpf_sock_ops -> struct sock 7335 */ 7336 static int convert_ctx_accesses(struct bpf_verifier_env *env) 7337 { 7338 const struct bpf_verifier_ops *ops = env->ops; 7339 int i, cnt, size, ctx_field_size, delta = 0; 7340 const int insn_cnt = env->prog->len; 7341 struct bpf_insn insn_buf[16], *insn; 7342 u32 target_size, size_default, off; 7343 struct bpf_prog *new_prog; 7344 enum bpf_access_type type; 7345 bool is_narrower_load; 7346 7347 if (ops->gen_prologue || env->seen_direct_write) { 7348 if (!ops->gen_prologue) { 7349 verbose(env, "bpf verifier is misconfigured\n"); 7350 return -EINVAL; 7351 } 7352 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 7353 env->prog); 7354 if (cnt >= ARRAY_SIZE(insn_buf)) { 7355 verbose(env, "bpf verifier is misconfigured\n"); 7356 return -EINVAL; 7357 } else if (cnt) { 7358 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 7359 if (!new_prog) 7360 return -ENOMEM; 7361 7362 env->prog = new_prog; 7363 delta += cnt - 1; 7364 } 7365 } 7366 7367 if (bpf_prog_is_dev_bound(env->prog->aux)) 7368 return 0; 7369 7370 insn = env->prog->insnsi + delta; 7371 7372 for (i = 0; i < insn_cnt; i++, insn++) { 7373 bpf_convert_ctx_access_t convert_ctx_access; 7374 7375 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 7376 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 7377 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 7378 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 7379 type = BPF_READ; 7380 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 7381 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 7382 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 7383 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 7384 type = BPF_WRITE; 7385 else 7386 continue; 7387 7388 if (type == BPF_WRITE && 7389 env->insn_aux_data[i + delta].sanitize_stack_off) { 7390 struct bpf_insn patch[] = { 7391 /* Sanitize suspicious stack slot with zero. 7392 * There are no memory dependencies for this store, 7393 * since it's only using frame pointer and immediate 7394 * constant of zero 7395 */ 7396 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 7397 env->insn_aux_data[i + delta].sanitize_stack_off, 7398 0), 7399 /* the original STX instruction will immediately 7400 * overwrite the same stack slot with appropriate value 7401 */ 7402 *insn, 7403 }; 7404 7405 cnt = ARRAY_SIZE(patch); 7406 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 7407 if (!new_prog) 7408 return -ENOMEM; 7409 7410 delta += cnt - 1; 7411 env->prog = new_prog; 7412 insn = new_prog->insnsi + i + delta; 7413 continue; 7414 } 7415 7416 switch (env->insn_aux_data[i + delta].ptr_type) { 7417 case PTR_TO_CTX: 7418 if (!ops->convert_ctx_access) 7419 continue; 7420 convert_ctx_access = ops->convert_ctx_access; 7421 break; 7422 case PTR_TO_SOCKET: 7423 case PTR_TO_SOCK_COMMON: 7424 convert_ctx_access = bpf_sock_convert_ctx_access; 7425 break; 7426 case PTR_TO_TCP_SOCK: 7427 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 7428 break; 7429 default: 7430 continue; 7431 } 7432 7433 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 7434 size = BPF_LDST_BYTES(insn); 7435 7436 /* If the read access is a narrower load of the field, 7437 * convert to a 4/8-byte load, to minimum program type specific 7438 * convert_ctx_access changes. If conversion is successful, 7439 * we will apply proper mask to the result. 7440 */ 7441 is_narrower_load = size < ctx_field_size; 7442 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 7443 off = insn->off; 7444 if (is_narrower_load) { 7445 u8 size_code; 7446 7447 if (type == BPF_WRITE) { 7448 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 7449 return -EINVAL; 7450 } 7451 7452 size_code = BPF_H; 7453 if (ctx_field_size == 4) 7454 size_code = BPF_W; 7455 else if (ctx_field_size == 8) 7456 size_code = BPF_DW; 7457 7458 insn->off = off & ~(size_default - 1); 7459 insn->code = BPF_LDX | BPF_MEM | size_code; 7460 } 7461 7462 target_size = 0; 7463 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 7464 &target_size); 7465 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 7466 (ctx_field_size && !target_size)) { 7467 verbose(env, "bpf verifier is misconfigured\n"); 7468 return -EINVAL; 7469 } 7470 7471 if (is_narrower_load && size < target_size) { 7472 u8 shift = (off & (size_default - 1)) * 8; 7473 7474 if (ctx_field_size <= 4) { 7475 if (shift) 7476 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 7477 insn->dst_reg, 7478 shift); 7479 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 7480 (1 << size * 8) - 1); 7481 } else { 7482 if (shift) 7483 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 7484 insn->dst_reg, 7485 shift); 7486 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 7487 (1 << size * 8) - 1); 7488 } 7489 } 7490 7491 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7492 if (!new_prog) 7493 return -ENOMEM; 7494 7495 delta += cnt - 1; 7496 7497 /* keep walking new program and skip insns we just inserted */ 7498 env->prog = new_prog; 7499 insn = new_prog->insnsi + i + delta; 7500 } 7501 7502 return 0; 7503 } 7504 7505 static int jit_subprogs(struct bpf_verifier_env *env) 7506 { 7507 struct bpf_prog *prog = env->prog, **func, *tmp; 7508 int i, j, subprog_start, subprog_end = 0, len, subprog; 7509 struct bpf_insn *insn; 7510 void *old_bpf_func; 7511 int err; 7512 7513 if (env->subprog_cnt <= 1) 7514 return 0; 7515 7516 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7517 if (insn->code != (BPF_JMP | BPF_CALL) || 7518 insn->src_reg != BPF_PSEUDO_CALL) 7519 continue; 7520 /* Upon error here we cannot fall back to interpreter but 7521 * need a hard reject of the program. Thus -EFAULT is 7522 * propagated in any case. 7523 */ 7524 subprog = find_subprog(env, i + insn->imm + 1); 7525 if (subprog < 0) { 7526 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 7527 i + insn->imm + 1); 7528 return -EFAULT; 7529 } 7530 /* temporarily remember subprog id inside insn instead of 7531 * aux_data, since next loop will split up all insns into funcs 7532 */ 7533 insn->off = subprog; 7534 /* remember original imm in case JIT fails and fallback 7535 * to interpreter will be needed 7536 */ 7537 env->insn_aux_data[i].call_imm = insn->imm; 7538 /* point imm to __bpf_call_base+1 from JITs point of view */ 7539 insn->imm = 1; 7540 } 7541 7542 err = bpf_prog_alloc_jited_linfo(prog); 7543 if (err) 7544 goto out_undo_insn; 7545 7546 err = -ENOMEM; 7547 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 7548 if (!func) 7549 goto out_undo_insn; 7550 7551 for (i = 0; i < env->subprog_cnt; i++) { 7552 subprog_start = subprog_end; 7553 subprog_end = env->subprog_info[i + 1].start; 7554 7555 len = subprog_end - subprog_start; 7556 /* BPF_PROG_RUN doesn't call subprogs directly, 7557 * hence main prog stats include the runtime of subprogs. 7558 * subprogs don't have IDs and not reachable via prog_get_next_id 7559 * func[i]->aux->stats will never be accessed and stays NULL 7560 */ 7561 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 7562 if (!func[i]) 7563 goto out_free; 7564 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 7565 len * sizeof(struct bpf_insn)); 7566 func[i]->type = prog->type; 7567 func[i]->len = len; 7568 if (bpf_prog_calc_tag(func[i])) 7569 goto out_free; 7570 func[i]->is_func = 1; 7571 func[i]->aux->func_idx = i; 7572 /* the btf and func_info will be freed only at prog->aux */ 7573 func[i]->aux->btf = prog->aux->btf; 7574 func[i]->aux->func_info = prog->aux->func_info; 7575 7576 /* Use bpf_prog_F_tag to indicate functions in stack traces. 7577 * Long term would need debug info to populate names 7578 */ 7579 func[i]->aux->name[0] = 'F'; 7580 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 7581 func[i]->jit_requested = 1; 7582 func[i]->aux->linfo = prog->aux->linfo; 7583 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 7584 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 7585 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 7586 func[i] = bpf_int_jit_compile(func[i]); 7587 if (!func[i]->jited) { 7588 err = -ENOTSUPP; 7589 goto out_free; 7590 } 7591 cond_resched(); 7592 } 7593 /* at this point all bpf functions were successfully JITed 7594 * now populate all bpf_calls with correct addresses and 7595 * run last pass of JIT 7596 */ 7597 for (i = 0; i < env->subprog_cnt; i++) { 7598 insn = func[i]->insnsi; 7599 for (j = 0; j < func[i]->len; j++, insn++) { 7600 if (insn->code != (BPF_JMP | BPF_CALL) || 7601 insn->src_reg != BPF_PSEUDO_CALL) 7602 continue; 7603 subprog = insn->off; 7604 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 7605 func[subprog]->bpf_func - 7606 __bpf_call_base; 7607 } 7608 7609 /* we use the aux data to keep a list of the start addresses 7610 * of the JITed images for each function in the program 7611 * 7612 * for some architectures, such as powerpc64, the imm field 7613 * might not be large enough to hold the offset of the start 7614 * address of the callee's JITed image from __bpf_call_base 7615 * 7616 * in such cases, we can lookup the start address of a callee 7617 * by using its subprog id, available from the off field of 7618 * the call instruction, as an index for this list 7619 */ 7620 func[i]->aux->func = func; 7621 func[i]->aux->func_cnt = env->subprog_cnt; 7622 } 7623 for (i = 0; i < env->subprog_cnt; i++) { 7624 old_bpf_func = func[i]->bpf_func; 7625 tmp = bpf_int_jit_compile(func[i]); 7626 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 7627 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 7628 err = -ENOTSUPP; 7629 goto out_free; 7630 } 7631 cond_resched(); 7632 } 7633 7634 /* finally lock prog and jit images for all functions and 7635 * populate kallsysm 7636 */ 7637 for (i = 0; i < env->subprog_cnt; i++) { 7638 bpf_prog_lock_ro(func[i]); 7639 bpf_prog_kallsyms_add(func[i]); 7640 } 7641 7642 /* Last step: make now unused interpreter insns from main 7643 * prog consistent for later dump requests, so they can 7644 * later look the same as if they were interpreted only. 7645 */ 7646 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7647 if (insn->code != (BPF_JMP | BPF_CALL) || 7648 insn->src_reg != BPF_PSEUDO_CALL) 7649 continue; 7650 insn->off = env->insn_aux_data[i].call_imm; 7651 subprog = find_subprog(env, i + insn->off + 1); 7652 insn->imm = subprog; 7653 } 7654 7655 prog->jited = 1; 7656 prog->bpf_func = func[0]->bpf_func; 7657 prog->aux->func = func; 7658 prog->aux->func_cnt = env->subprog_cnt; 7659 bpf_prog_free_unused_jited_linfo(prog); 7660 return 0; 7661 out_free: 7662 for (i = 0; i < env->subprog_cnt; i++) 7663 if (func[i]) 7664 bpf_jit_free(func[i]); 7665 kfree(func); 7666 out_undo_insn: 7667 /* cleanup main prog to be interpreted */ 7668 prog->jit_requested = 0; 7669 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7670 if (insn->code != (BPF_JMP | BPF_CALL) || 7671 insn->src_reg != BPF_PSEUDO_CALL) 7672 continue; 7673 insn->off = 0; 7674 insn->imm = env->insn_aux_data[i].call_imm; 7675 } 7676 bpf_prog_free_jited_linfo(prog); 7677 return err; 7678 } 7679 7680 static int fixup_call_args(struct bpf_verifier_env *env) 7681 { 7682 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 7683 struct bpf_prog *prog = env->prog; 7684 struct bpf_insn *insn = prog->insnsi; 7685 int i, depth; 7686 #endif 7687 int err = 0; 7688 7689 if (env->prog->jit_requested && 7690 !bpf_prog_is_dev_bound(env->prog->aux)) { 7691 err = jit_subprogs(env); 7692 if (err == 0) 7693 return 0; 7694 if (err == -EFAULT) 7695 return err; 7696 } 7697 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 7698 for (i = 0; i < prog->len; i++, insn++) { 7699 if (insn->code != (BPF_JMP | BPF_CALL) || 7700 insn->src_reg != BPF_PSEUDO_CALL) 7701 continue; 7702 depth = get_callee_stack_depth(env, insn, i); 7703 if (depth < 0) 7704 return depth; 7705 bpf_patch_call_args(insn, depth); 7706 } 7707 err = 0; 7708 #endif 7709 return err; 7710 } 7711 7712 /* fixup insn->imm field of bpf_call instructions 7713 * and inline eligible helpers as explicit sequence of BPF instructions 7714 * 7715 * this function is called after eBPF program passed verification 7716 */ 7717 static int fixup_bpf_calls(struct bpf_verifier_env *env) 7718 { 7719 struct bpf_prog *prog = env->prog; 7720 struct bpf_insn *insn = prog->insnsi; 7721 const struct bpf_func_proto *fn; 7722 const int insn_cnt = prog->len; 7723 const struct bpf_map_ops *ops; 7724 struct bpf_insn_aux_data *aux; 7725 struct bpf_insn insn_buf[16]; 7726 struct bpf_prog *new_prog; 7727 struct bpf_map *map_ptr; 7728 int i, cnt, delta = 0; 7729 7730 for (i = 0; i < insn_cnt; i++, insn++) { 7731 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 7732 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 7733 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 7734 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 7735 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 7736 struct bpf_insn mask_and_div[] = { 7737 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 7738 /* Rx div 0 -> 0 */ 7739 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 7740 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 7741 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 7742 *insn, 7743 }; 7744 struct bpf_insn mask_and_mod[] = { 7745 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 7746 /* Rx mod 0 -> Rx */ 7747 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 7748 *insn, 7749 }; 7750 struct bpf_insn *patchlet; 7751 7752 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 7753 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 7754 patchlet = mask_and_div + (is64 ? 1 : 0); 7755 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 7756 } else { 7757 patchlet = mask_and_mod + (is64 ? 1 : 0); 7758 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 7759 } 7760 7761 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 7762 if (!new_prog) 7763 return -ENOMEM; 7764 7765 delta += cnt - 1; 7766 env->prog = prog = new_prog; 7767 insn = new_prog->insnsi + i + delta; 7768 continue; 7769 } 7770 7771 if (BPF_CLASS(insn->code) == BPF_LD && 7772 (BPF_MODE(insn->code) == BPF_ABS || 7773 BPF_MODE(insn->code) == BPF_IND)) { 7774 cnt = env->ops->gen_ld_abs(insn, insn_buf); 7775 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 7776 verbose(env, "bpf verifier is misconfigured\n"); 7777 return -EINVAL; 7778 } 7779 7780 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7781 if (!new_prog) 7782 return -ENOMEM; 7783 7784 delta += cnt - 1; 7785 env->prog = prog = new_prog; 7786 insn = new_prog->insnsi + i + delta; 7787 continue; 7788 } 7789 7790 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 7791 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 7792 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 7793 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 7794 struct bpf_insn insn_buf[16]; 7795 struct bpf_insn *patch = &insn_buf[0]; 7796 bool issrc, isneg; 7797 u32 off_reg; 7798 7799 aux = &env->insn_aux_data[i + delta]; 7800 if (!aux->alu_state || 7801 aux->alu_state == BPF_ALU_NON_POINTER) 7802 continue; 7803 7804 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 7805 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 7806 BPF_ALU_SANITIZE_SRC; 7807 7808 off_reg = issrc ? insn->src_reg : insn->dst_reg; 7809 if (isneg) 7810 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 7811 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 7812 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 7813 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 7814 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 7815 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 7816 if (issrc) { 7817 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 7818 off_reg); 7819 insn->src_reg = BPF_REG_AX; 7820 } else { 7821 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 7822 BPF_REG_AX); 7823 } 7824 if (isneg) 7825 insn->code = insn->code == code_add ? 7826 code_sub : code_add; 7827 *patch++ = *insn; 7828 if (issrc && isneg) 7829 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 7830 cnt = patch - insn_buf; 7831 7832 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7833 if (!new_prog) 7834 return -ENOMEM; 7835 7836 delta += cnt - 1; 7837 env->prog = prog = new_prog; 7838 insn = new_prog->insnsi + i + delta; 7839 continue; 7840 } 7841 7842 if (insn->code != (BPF_JMP | BPF_CALL)) 7843 continue; 7844 if (insn->src_reg == BPF_PSEUDO_CALL) 7845 continue; 7846 7847 if (insn->imm == BPF_FUNC_get_route_realm) 7848 prog->dst_needed = 1; 7849 if (insn->imm == BPF_FUNC_get_prandom_u32) 7850 bpf_user_rnd_init_once(); 7851 if (insn->imm == BPF_FUNC_override_return) 7852 prog->kprobe_override = 1; 7853 if (insn->imm == BPF_FUNC_tail_call) { 7854 /* If we tail call into other programs, we 7855 * cannot make any assumptions since they can 7856 * be replaced dynamically during runtime in 7857 * the program array. 7858 */ 7859 prog->cb_access = 1; 7860 env->prog->aux->stack_depth = MAX_BPF_STACK; 7861 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 7862 7863 /* mark bpf_tail_call as different opcode to avoid 7864 * conditional branch in the interpeter for every normal 7865 * call and to prevent accidental JITing by JIT compiler 7866 * that doesn't support bpf_tail_call yet 7867 */ 7868 insn->imm = 0; 7869 insn->code = BPF_JMP | BPF_TAIL_CALL; 7870 7871 aux = &env->insn_aux_data[i + delta]; 7872 if (!bpf_map_ptr_unpriv(aux)) 7873 continue; 7874 7875 /* instead of changing every JIT dealing with tail_call 7876 * emit two extra insns: 7877 * if (index >= max_entries) goto out; 7878 * index &= array->index_mask; 7879 * to avoid out-of-bounds cpu speculation 7880 */ 7881 if (bpf_map_ptr_poisoned(aux)) { 7882 verbose(env, "tail_call abusing map_ptr\n"); 7883 return -EINVAL; 7884 } 7885 7886 map_ptr = BPF_MAP_PTR(aux->map_state); 7887 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 7888 map_ptr->max_entries, 2); 7889 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 7890 container_of(map_ptr, 7891 struct bpf_array, 7892 map)->index_mask); 7893 insn_buf[2] = *insn; 7894 cnt = 3; 7895 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7896 if (!new_prog) 7897 return -ENOMEM; 7898 7899 delta += cnt - 1; 7900 env->prog = prog = new_prog; 7901 insn = new_prog->insnsi + i + delta; 7902 continue; 7903 } 7904 7905 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 7906 * and other inlining handlers are currently limited to 64 bit 7907 * only. 7908 */ 7909 if (prog->jit_requested && BITS_PER_LONG == 64 && 7910 (insn->imm == BPF_FUNC_map_lookup_elem || 7911 insn->imm == BPF_FUNC_map_update_elem || 7912 insn->imm == BPF_FUNC_map_delete_elem || 7913 insn->imm == BPF_FUNC_map_push_elem || 7914 insn->imm == BPF_FUNC_map_pop_elem || 7915 insn->imm == BPF_FUNC_map_peek_elem)) { 7916 aux = &env->insn_aux_data[i + delta]; 7917 if (bpf_map_ptr_poisoned(aux)) 7918 goto patch_call_imm; 7919 7920 map_ptr = BPF_MAP_PTR(aux->map_state); 7921 ops = map_ptr->ops; 7922 if (insn->imm == BPF_FUNC_map_lookup_elem && 7923 ops->map_gen_lookup) { 7924 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 7925 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 7926 verbose(env, "bpf verifier is misconfigured\n"); 7927 return -EINVAL; 7928 } 7929 7930 new_prog = bpf_patch_insn_data(env, i + delta, 7931 insn_buf, cnt); 7932 if (!new_prog) 7933 return -ENOMEM; 7934 7935 delta += cnt - 1; 7936 env->prog = prog = new_prog; 7937 insn = new_prog->insnsi + i + delta; 7938 continue; 7939 } 7940 7941 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 7942 (void *(*)(struct bpf_map *map, void *key))NULL)); 7943 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 7944 (int (*)(struct bpf_map *map, void *key))NULL)); 7945 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 7946 (int (*)(struct bpf_map *map, void *key, void *value, 7947 u64 flags))NULL)); 7948 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 7949 (int (*)(struct bpf_map *map, void *value, 7950 u64 flags))NULL)); 7951 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 7952 (int (*)(struct bpf_map *map, void *value))NULL)); 7953 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 7954 (int (*)(struct bpf_map *map, void *value))NULL)); 7955 7956 switch (insn->imm) { 7957 case BPF_FUNC_map_lookup_elem: 7958 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 7959 __bpf_call_base; 7960 continue; 7961 case BPF_FUNC_map_update_elem: 7962 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 7963 __bpf_call_base; 7964 continue; 7965 case BPF_FUNC_map_delete_elem: 7966 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 7967 __bpf_call_base; 7968 continue; 7969 case BPF_FUNC_map_push_elem: 7970 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 7971 __bpf_call_base; 7972 continue; 7973 case BPF_FUNC_map_pop_elem: 7974 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 7975 __bpf_call_base; 7976 continue; 7977 case BPF_FUNC_map_peek_elem: 7978 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 7979 __bpf_call_base; 7980 continue; 7981 } 7982 7983 goto patch_call_imm; 7984 } 7985 7986 patch_call_imm: 7987 fn = env->ops->get_func_proto(insn->imm, env->prog); 7988 /* all functions that have prototype and verifier allowed 7989 * programs to call them, must be real in-kernel functions 7990 */ 7991 if (!fn->func) { 7992 verbose(env, 7993 "kernel subsystem misconfigured func %s#%d\n", 7994 func_id_name(insn->imm), insn->imm); 7995 return -EFAULT; 7996 } 7997 insn->imm = fn->func - __bpf_call_base; 7998 } 7999 8000 return 0; 8001 } 8002 8003 static void free_states(struct bpf_verifier_env *env) 8004 { 8005 struct bpf_verifier_state_list *sl, *sln; 8006 int i; 8007 8008 sl = env->free_list; 8009 while (sl) { 8010 sln = sl->next; 8011 free_verifier_state(&sl->state, false); 8012 kfree(sl); 8013 sl = sln; 8014 } 8015 8016 if (!env->explored_states) 8017 return; 8018 8019 for (i = 0; i < env->prog->len; i++) { 8020 sl = env->explored_states[i]; 8021 8022 if (sl) 8023 while (sl != STATE_LIST_MARK) { 8024 sln = sl->next; 8025 free_verifier_state(&sl->state, false); 8026 kfree(sl); 8027 sl = sln; 8028 } 8029 } 8030 8031 kvfree(env->explored_states); 8032 } 8033 8034 static void print_verification_stats(struct bpf_verifier_env *env) 8035 { 8036 int i; 8037 8038 if (env->log.level & BPF_LOG_STATS) { 8039 verbose(env, "verification time %lld usec\n", 8040 div_u64(env->verification_time, 1000)); 8041 verbose(env, "stack depth "); 8042 for (i = 0; i < env->subprog_cnt; i++) { 8043 u32 depth = env->subprog_info[i].stack_depth; 8044 8045 verbose(env, "%d", depth); 8046 if (i + 1 < env->subprog_cnt) 8047 verbose(env, "+"); 8048 } 8049 verbose(env, "\n"); 8050 } 8051 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 8052 "total_states %d peak_states %d mark_read %d\n", 8053 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 8054 env->max_states_per_insn, env->total_states, 8055 env->peak_states, env->longest_mark_read_walk); 8056 } 8057 8058 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 8059 union bpf_attr __user *uattr) 8060 { 8061 u64 start_time = ktime_get_ns(); 8062 struct bpf_verifier_env *env; 8063 struct bpf_verifier_log *log; 8064 int i, len, ret = -EINVAL; 8065 bool is_priv; 8066 8067 /* no program is valid */ 8068 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 8069 return -EINVAL; 8070 8071 /* 'struct bpf_verifier_env' can be global, but since it's not small, 8072 * allocate/free it every time bpf_check() is called 8073 */ 8074 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 8075 if (!env) 8076 return -ENOMEM; 8077 log = &env->log; 8078 8079 len = (*prog)->len; 8080 env->insn_aux_data = 8081 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 8082 ret = -ENOMEM; 8083 if (!env->insn_aux_data) 8084 goto err_free_env; 8085 for (i = 0; i < len; i++) 8086 env->insn_aux_data[i].orig_idx = i; 8087 env->prog = *prog; 8088 env->ops = bpf_verifier_ops[env->prog->type]; 8089 8090 /* grab the mutex to protect few globals used by verifier */ 8091 mutex_lock(&bpf_verifier_lock); 8092 8093 if (attr->log_level || attr->log_buf || attr->log_size) { 8094 /* user requested verbose verifier output 8095 * and supplied buffer to store the verification trace 8096 */ 8097 log->level = attr->log_level; 8098 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 8099 log->len_total = attr->log_size; 8100 8101 ret = -EINVAL; 8102 /* log attributes have to be sane */ 8103 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 8104 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 8105 goto err_unlock; 8106 } 8107 8108 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 8109 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 8110 env->strict_alignment = true; 8111 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 8112 env->strict_alignment = false; 8113 8114 is_priv = capable(CAP_SYS_ADMIN); 8115 env->allow_ptr_leaks = is_priv; 8116 8117 ret = replace_map_fd_with_map_ptr(env); 8118 if (ret < 0) 8119 goto skip_full_check; 8120 8121 if (bpf_prog_is_dev_bound(env->prog->aux)) { 8122 ret = bpf_prog_offload_verifier_prep(env->prog); 8123 if (ret) 8124 goto skip_full_check; 8125 } 8126 8127 env->explored_states = kvcalloc(env->prog->len, 8128 sizeof(struct bpf_verifier_state_list *), 8129 GFP_USER); 8130 ret = -ENOMEM; 8131 if (!env->explored_states) 8132 goto skip_full_check; 8133 8134 ret = check_subprogs(env); 8135 if (ret < 0) 8136 goto skip_full_check; 8137 8138 ret = check_btf_info(env, attr, uattr); 8139 if (ret < 0) 8140 goto skip_full_check; 8141 8142 ret = check_cfg(env); 8143 if (ret < 0) 8144 goto skip_full_check; 8145 8146 ret = do_check(env); 8147 if (env->cur_state) { 8148 free_verifier_state(env->cur_state, true); 8149 env->cur_state = NULL; 8150 } 8151 8152 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 8153 ret = bpf_prog_offload_finalize(env); 8154 8155 skip_full_check: 8156 while (!pop_stack(env, NULL, NULL)); 8157 free_states(env); 8158 8159 if (ret == 0) 8160 ret = check_max_stack_depth(env); 8161 8162 /* instruction rewrites happen after this point */ 8163 if (is_priv) { 8164 if (ret == 0) 8165 opt_hard_wire_dead_code_branches(env); 8166 if (ret == 0) 8167 ret = opt_remove_dead_code(env); 8168 if (ret == 0) 8169 ret = opt_remove_nops(env); 8170 } else { 8171 if (ret == 0) 8172 sanitize_dead_code(env); 8173 } 8174 8175 if (ret == 0) 8176 /* program is valid, convert *(u32*)(ctx + off) accesses */ 8177 ret = convert_ctx_accesses(env); 8178 8179 if (ret == 0) 8180 ret = fixup_bpf_calls(env); 8181 8182 if (ret == 0) 8183 ret = fixup_call_args(env); 8184 8185 env->verification_time = ktime_get_ns() - start_time; 8186 print_verification_stats(env); 8187 8188 if (log->level && bpf_verifier_log_full(log)) 8189 ret = -ENOSPC; 8190 if (log->level && !log->ubuf) { 8191 ret = -EFAULT; 8192 goto err_release_maps; 8193 } 8194 8195 if (ret == 0 && env->used_map_cnt) { 8196 /* if program passed verifier, update used_maps in bpf_prog_info */ 8197 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 8198 sizeof(env->used_maps[0]), 8199 GFP_KERNEL); 8200 8201 if (!env->prog->aux->used_maps) { 8202 ret = -ENOMEM; 8203 goto err_release_maps; 8204 } 8205 8206 memcpy(env->prog->aux->used_maps, env->used_maps, 8207 sizeof(env->used_maps[0]) * env->used_map_cnt); 8208 env->prog->aux->used_map_cnt = env->used_map_cnt; 8209 8210 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 8211 * bpf_ld_imm64 instructions 8212 */ 8213 convert_pseudo_ld_imm64(env); 8214 } 8215 8216 if (ret == 0) 8217 adjust_btf_func(env); 8218 8219 err_release_maps: 8220 if (!env->prog->aux->used_maps) 8221 /* if we didn't copy map pointers into bpf_prog_info, release 8222 * them now. Otherwise free_used_maps() will release them. 8223 */ 8224 release_maps(env); 8225 *prog = env->prog; 8226 err_unlock: 8227 mutex_unlock(&bpf_verifier_lock); 8228 vfree(env->insn_aux_data); 8229 err_free_env: 8230 kfree(env); 8231 return ret; 8232 } 8233