xref: /openbmc/linux/kernel/bpf/verifier.c (revision 0c7beb2d)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <uapi/linux/btf.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/bpf.h>
19 #include <linux/btf.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/filter.h>
22 #include <net/netlink.h>
23 #include <linux/file.h>
24 #include <linux/vmalloc.h>
25 #include <linux/stringify.h>
26 #include <linux/bsearch.h>
27 #include <linux/sort.h>
28 #include <linux/perf_event.h>
29 #include <linux/ctype.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #include <linux/bpf_types.h>
38 #undef BPF_PROG_TYPE
39 #undef BPF_MAP_TYPE
40 };
41 
42 /* bpf_check() is a static code analyzer that walks eBPF program
43  * instruction by instruction and updates register/stack state.
44  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45  *
46  * The first pass is depth-first-search to check that the program is a DAG.
47  * It rejects the following programs:
48  * - larger than BPF_MAXINSNS insns
49  * - if loop is present (detected via back-edge)
50  * - unreachable insns exist (shouldn't be a forest. program = one function)
51  * - out of bounds or malformed jumps
52  * The second pass is all possible path descent from the 1st insn.
53  * Since it's analyzing all pathes through the program, the length of the
54  * analysis is limited to 64k insn, which may be hit even if total number of
55  * insn is less then 4K, but there are too many branches that change stack/regs.
56  * Number of 'branches to be analyzed' is limited to 1k
57  *
58  * On entry to each instruction, each register has a type, and the instruction
59  * changes the types of the registers depending on instruction semantics.
60  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61  * copied to R1.
62  *
63  * All registers are 64-bit.
64  * R0 - return register
65  * R1-R5 argument passing registers
66  * R6-R9 callee saved registers
67  * R10 - frame pointer read-only
68  *
69  * At the start of BPF program the register R1 contains a pointer to bpf_context
70  * and has type PTR_TO_CTX.
71  *
72  * Verifier tracks arithmetic operations on pointers in case:
73  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75  * 1st insn copies R10 (which has FRAME_PTR) type into R1
76  * and 2nd arithmetic instruction is pattern matched to recognize
77  * that it wants to construct a pointer to some element within stack.
78  * So after 2nd insn, the register R1 has type PTR_TO_STACK
79  * (and -20 constant is saved for further stack bounds checking).
80  * Meaning that this reg is a pointer to stack plus known immediate constant.
81  *
82  * Most of the time the registers have SCALAR_VALUE type, which
83  * means the register has some value, but it's not a valid pointer.
84  * (like pointer plus pointer becomes SCALAR_VALUE type)
85  *
86  * When verifier sees load or store instructions the type of base register
87  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88  * four pointer types recognized by check_mem_access() function.
89  *
90  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91  * and the range of [ptr, ptr + map's value_size) is accessible.
92  *
93  * registers used to pass values to function calls are checked against
94  * function argument constraints.
95  *
96  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97  * It means that the register type passed to this function must be
98  * PTR_TO_STACK and it will be used inside the function as
99  * 'pointer to map element key'
100  *
101  * For example the argument constraints for bpf_map_lookup_elem():
102  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103  *   .arg1_type = ARG_CONST_MAP_PTR,
104  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
105  *
106  * ret_type says that this function returns 'pointer to map elem value or null'
107  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108  * 2nd argument should be a pointer to stack, which will be used inside
109  * the helper function as a pointer to map element key.
110  *
111  * On the kernel side the helper function looks like:
112  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113  * {
114  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115  *    void *key = (void *) (unsigned long) r2;
116  *    void *value;
117  *
118  *    here kernel can access 'key' and 'map' pointers safely, knowing that
119  *    [key, key + map->key_size) bytes are valid and were initialized on
120  *    the stack of eBPF program.
121  * }
122  *
123  * Corresponding eBPF program may look like:
124  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
125  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
127  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128  * here verifier looks at prototype of map_lookup_elem() and sees:
129  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131  *
132  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134  * and were initialized prior to this call.
135  * If it's ok, then verifier allows this BPF_CALL insn and looks at
136  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138  * returns ether pointer to map value or NULL.
139  *
140  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141  * insn, the register holding that pointer in the true branch changes state to
142  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143  * branch. See check_cond_jmp_op().
144  *
145  * After the call R0 is set to return type of the function and registers R1-R5
146  * are set to NOT_INIT to indicate that they are no longer readable.
147  *
148  * The following reference types represent a potential reference to a kernel
149  * resource which, after first being allocated, must be checked and freed by
150  * the BPF program:
151  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152  *
153  * When the verifier sees a helper call return a reference type, it allocates a
154  * pointer id for the reference and stores it in the current function state.
155  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157  * passes through a NULL-check conditional. For the branch wherein the state is
158  * changed to CONST_IMM, the verifier releases the reference.
159  *
160  * For each helper function that allocates a reference, such as
161  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162  * bpf_sk_release(). When a reference type passes into the release function,
163  * the verifier also releases the reference. If any unchecked or unreleased
164  * reference remains at the end of the program, the verifier rejects it.
165  */
166 
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 	/* verifer state is 'st'
170 	 * before processing instruction 'insn_idx'
171 	 * and after processing instruction 'prev_insn_idx'
172 	 */
173 	struct bpf_verifier_state st;
174 	int insn_idx;
175 	int prev_insn_idx;
176 	struct bpf_verifier_stack_elem *next;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_STACK	1024
180 #define BPF_COMPLEXITY_LIMIT_STATES	64
181 
182 #define BPF_MAP_PTR_UNPRIV	1UL
183 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
184 					  POISON_POINTER_DELTA))
185 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
186 
187 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
188 {
189 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
190 }
191 
192 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
193 {
194 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
195 }
196 
197 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
198 			      const struct bpf_map *map, bool unpriv)
199 {
200 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
201 	unpriv |= bpf_map_ptr_unpriv(aux);
202 	aux->map_state = (unsigned long)map |
203 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
204 }
205 
206 struct bpf_call_arg_meta {
207 	struct bpf_map *map_ptr;
208 	bool raw_mode;
209 	bool pkt_access;
210 	int regno;
211 	int access_size;
212 	s64 msize_smax_value;
213 	u64 msize_umax_value;
214 	int ref_obj_id;
215 	int func_id;
216 };
217 
218 static DEFINE_MUTEX(bpf_verifier_lock);
219 
220 static const struct bpf_line_info *
221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222 {
223 	const struct bpf_line_info *linfo;
224 	const struct bpf_prog *prog;
225 	u32 i, nr_linfo;
226 
227 	prog = env->prog;
228 	nr_linfo = prog->aux->nr_linfo;
229 
230 	if (!nr_linfo || insn_off >= prog->len)
231 		return NULL;
232 
233 	linfo = prog->aux->linfo;
234 	for (i = 1; i < nr_linfo; i++)
235 		if (insn_off < linfo[i].insn_off)
236 			break;
237 
238 	return &linfo[i - 1];
239 }
240 
241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 		       va_list args)
243 {
244 	unsigned int n;
245 
246 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
247 
248 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 		  "verifier log line truncated - local buffer too short\n");
250 
251 	n = min(log->len_total - log->len_used - 1, n);
252 	log->kbuf[n] = '\0';
253 
254 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 		log->len_used += n;
256 	else
257 		log->ubuf = NULL;
258 }
259 
260 /* log_level controls verbosity level of eBPF verifier.
261  * bpf_verifier_log_write() is used to dump the verification trace to the log,
262  * so the user can figure out what's wrong with the program
263  */
264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 					   const char *fmt, ...)
266 {
267 	va_list args;
268 
269 	if (!bpf_verifier_log_needed(&env->log))
270 		return;
271 
272 	va_start(args, fmt);
273 	bpf_verifier_vlog(&env->log, fmt, args);
274 	va_end(args);
275 }
276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277 
278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279 {
280 	struct bpf_verifier_env *env = private_data;
281 	va_list args;
282 
283 	if (!bpf_verifier_log_needed(&env->log))
284 		return;
285 
286 	va_start(args, fmt);
287 	bpf_verifier_vlog(&env->log, fmt, args);
288 	va_end(args);
289 }
290 
291 static const char *ltrim(const char *s)
292 {
293 	while (isspace(*s))
294 		s++;
295 
296 	return s;
297 }
298 
299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 					 u32 insn_off,
301 					 const char *prefix_fmt, ...)
302 {
303 	const struct bpf_line_info *linfo;
304 
305 	if (!bpf_verifier_log_needed(&env->log))
306 		return;
307 
308 	linfo = find_linfo(env, insn_off);
309 	if (!linfo || linfo == env->prev_linfo)
310 		return;
311 
312 	if (prefix_fmt) {
313 		va_list args;
314 
315 		va_start(args, prefix_fmt);
316 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 		va_end(args);
318 	}
319 
320 	verbose(env, "%s\n",
321 		ltrim(btf_name_by_offset(env->prog->aux->btf,
322 					 linfo->line_off)));
323 
324 	env->prev_linfo = linfo;
325 }
326 
327 static bool type_is_pkt_pointer(enum bpf_reg_type type)
328 {
329 	return type == PTR_TO_PACKET ||
330 	       type == PTR_TO_PACKET_META;
331 }
332 
333 static bool type_is_sk_pointer(enum bpf_reg_type type)
334 {
335 	return type == PTR_TO_SOCKET ||
336 		type == PTR_TO_SOCK_COMMON ||
337 		type == PTR_TO_TCP_SOCK;
338 }
339 
340 static bool reg_type_may_be_null(enum bpf_reg_type type)
341 {
342 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
343 	       type == PTR_TO_SOCKET_OR_NULL ||
344 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
345 	       type == PTR_TO_TCP_SOCK_OR_NULL;
346 }
347 
348 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
349 {
350 	return reg->type == PTR_TO_MAP_VALUE &&
351 		map_value_has_spin_lock(reg->map_ptr);
352 }
353 
354 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
355 {
356 	return type == PTR_TO_SOCKET ||
357 		type == PTR_TO_SOCKET_OR_NULL ||
358 		type == PTR_TO_TCP_SOCK ||
359 		type == PTR_TO_TCP_SOCK_OR_NULL;
360 }
361 
362 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
363 {
364 	return type == ARG_PTR_TO_SOCK_COMMON;
365 }
366 
367 /* Determine whether the function releases some resources allocated by another
368  * function call. The first reference type argument will be assumed to be
369  * released by release_reference().
370  */
371 static bool is_release_function(enum bpf_func_id func_id)
372 {
373 	return func_id == BPF_FUNC_sk_release;
374 }
375 
376 static bool is_acquire_function(enum bpf_func_id func_id)
377 {
378 	return func_id == BPF_FUNC_sk_lookup_tcp ||
379 		func_id == BPF_FUNC_sk_lookup_udp ||
380 		func_id == BPF_FUNC_skc_lookup_tcp;
381 }
382 
383 static bool is_ptr_cast_function(enum bpf_func_id func_id)
384 {
385 	return func_id == BPF_FUNC_tcp_sock ||
386 		func_id == BPF_FUNC_sk_fullsock;
387 }
388 
389 /* string representation of 'enum bpf_reg_type' */
390 static const char * const reg_type_str[] = {
391 	[NOT_INIT]		= "?",
392 	[SCALAR_VALUE]		= "inv",
393 	[PTR_TO_CTX]		= "ctx",
394 	[CONST_PTR_TO_MAP]	= "map_ptr",
395 	[PTR_TO_MAP_VALUE]	= "map_value",
396 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
397 	[PTR_TO_STACK]		= "fp",
398 	[PTR_TO_PACKET]		= "pkt",
399 	[PTR_TO_PACKET_META]	= "pkt_meta",
400 	[PTR_TO_PACKET_END]	= "pkt_end",
401 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
402 	[PTR_TO_SOCKET]		= "sock",
403 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
404 	[PTR_TO_SOCK_COMMON]	= "sock_common",
405 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
406 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
407 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
408 };
409 
410 static char slot_type_char[] = {
411 	[STACK_INVALID]	= '?',
412 	[STACK_SPILL]	= 'r',
413 	[STACK_MISC]	= 'm',
414 	[STACK_ZERO]	= '0',
415 };
416 
417 static void print_liveness(struct bpf_verifier_env *env,
418 			   enum bpf_reg_liveness live)
419 {
420 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
421 	    verbose(env, "_");
422 	if (live & REG_LIVE_READ)
423 		verbose(env, "r");
424 	if (live & REG_LIVE_WRITTEN)
425 		verbose(env, "w");
426 	if (live & REG_LIVE_DONE)
427 		verbose(env, "D");
428 }
429 
430 static struct bpf_func_state *func(struct bpf_verifier_env *env,
431 				   const struct bpf_reg_state *reg)
432 {
433 	struct bpf_verifier_state *cur = env->cur_state;
434 
435 	return cur->frame[reg->frameno];
436 }
437 
438 static void print_verifier_state(struct bpf_verifier_env *env,
439 				 const struct bpf_func_state *state)
440 {
441 	const struct bpf_reg_state *reg;
442 	enum bpf_reg_type t;
443 	int i;
444 
445 	if (state->frameno)
446 		verbose(env, " frame%d:", state->frameno);
447 	for (i = 0; i < MAX_BPF_REG; i++) {
448 		reg = &state->regs[i];
449 		t = reg->type;
450 		if (t == NOT_INIT)
451 			continue;
452 		verbose(env, " R%d", i);
453 		print_liveness(env, reg->live);
454 		verbose(env, "=%s", reg_type_str[t]);
455 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
456 		    tnum_is_const(reg->var_off)) {
457 			/* reg->off should be 0 for SCALAR_VALUE */
458 			verbose(env, "%lld", reg->var_off.value + reg->off);
459 			if (t == PTR_TO_STACK)
460 				verbose(env, ",call_%d", func(env, reg)->callsite);
461 		} else {
462 			verbose(env, "(id=%d", reg->id);
463 			if (reg_type_may_be_refcounted_or_null(t))
464 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
465 			if (t != SCALAR_VALUE)
466 				verbose(env, ",off=%d", reg->off);
467 			if (type_is_pkt_pointer(t))
468 				verbose(env, ",r=%d", reg->range);
469 			else if (t == CONST_PTR_TO_MAP ||
470 				 t == PTR_TO_MAP_VALUE ||
471 				 t == PTR_TO_MAP_VALUE_OR_NULL)
472 				verbose(env, ",ks=%d,vs=%d",
473 					reg->map_ptr->key_size,
474 					reg->map_ptr->value_size);
475 			if (tnum_is_const(reg->var_off)) {
476 				/* Typically an immediate SCALAR_VALUE, but
477 				 * could be a pointer whose offset is too big
478 				 * for reg->off
479 				 */
480 				verbose(env, ",imm=%llx", reg->var_off.value);
481 			} else {
482 				if (reg->smin_value != reg->umin_value &&
483 				    reg->smin_value != S64_MIN)
484 					verbose(env, ",smin_value=%lld",
485 						(long long)reg->smin_value);
486 				if (reg->smax_value != reg->umax_value &&
487 				    reg->smax_value != S64_MAX)
488 					verbose(env, ",smax_value=%lld",
489 						(long long)reg->smax_value);
490 				if (reg->umin_value != 0)
491 					verbose(env, ",umin_value=%llu",
492 						(unsigned long long)reg->umin_value);
493 				if (reg->umax_value != U64_MAX)
494 					verbose(env, ",umax_value=%llu",
495 						(unsigned long long)reg->umax_value);
496 				if (!tnum_is_unknown(reg->var_off)) {
497 					char tn_buf[48];
498 
499 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
500 					verbose(env, ",var_off=%s", tn_buf);
501 				}
502 			}
503 			verbose(env, ")");
504 		}
505 	}
506 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
507 		char types_buf[BPF_REG_SIZE + 1];
508 		bool valid = false;
509 		int j;
510 
511 		for (j = 0; j < BPF_REG_SIZE; j++) {
512 			if (state->stack[i].slot_type[j] != STACK_INVALID)
513 				valid = true;
514 			types_buf[j] = slot_type_char[
515 					state->stack[i].slot_type[j]];
516 		}
517 		types_buf[BPF_REG_SIZE] = 0;
518 		if (!valid)
519 			continue;
520 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
521 		print_liveness(env, state->stack[i].spilled_ptr.live);
522 		if (state->stack[i].slot_type[0] == STACK_SPILL)
523 			verbose(env, "=%s",
524 				reg_type_str[state->stack[i].spilled_ptr.type]);
525 		else
526 			verbose(env, "=%s", types_buf);
527 	}
528 	if (state->acquired_refs && state->refs[0].id) {
529 		verbose(env, " refs=%d", state->refs[0].id);
530 		for (i = 1; i < state->acquired_refs; i++)
531 			if (state->refs[i].id)
532 				verbose(env, ",%d", state->refs[i].id);
533 	}
534 	verbose(env, "\n");
535 }
536 
537 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
538 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
539 			       const struct bpf_func_state *src)	\
540 {									\
541 	if (!src->FIELD)						\
542 		return 0;						\
543 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
544 		/* internal bug, make state invalid to reject the program */ \
545 		memset(dst, 0, sizeof(*dst));				\
546 		return -EFAULT;						\
547 	}								\
548 	memcpy(dst->FIELD, src->FIELD,					\
549 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
550 	return 0;							\
551 }
552 /* copy_reference_state() */
553 COPY_STATE_FN(reference, acquired_refs, refs, 1)
554 /* copy_stack_state() */
555 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
556 #undef COPY_STATE_FN
557 
558 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
559 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
560 				  bool copy_old)			\
561 {									\
562 	u32 old_size = state->COUNT;					\
563 	struct bpf_##NAME##_state *new_##FIELD;				\
564 	int slot = size / SIZE;						\
565 									\
566 	if (size <= old_size || !size) {				\
567 		if (copy_old)						\
568 			return 0;					\
569 		state->COUNT = slot * SIZE;				\
570 		if (!size && old_size) {				\
571 			kfree(state->FIELD);				\
572 			state->FIELD = NULL;				\
573 		}							\
574 		return 0;						\
575 	}								\
576 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
577 				    GFP_KERNEL);			\
578 	if (!new_##FIELD)						\
579 		return -ENOMEM;						\
580 	if (copy_old) {							\
581 		if (state->FIELD)					\
582 			memcpy(new_##FIELD, state->FIELD,		\
583 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
584 		memset(new_##FIELD + old_size / SIZE, 0,		\
585 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
586 	}								\
587 	state->COUNT = slot * SIZE;					\
588 	kfree(state->FIELD);						\
589 	state->FIELD = new_##FIELD;					\
590 	return 0;							\
591 }
592 /* realloc_reference_state() */
593 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
594 /* realloc_stack_state() */
595 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
596 #undef REALLOC_STATE_FN
597 
598 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
599  * make it consume minimal amount of memory. check_stack_write() access from
600  * the program calls into realloc_func_state() to grow the stack size.
601  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
602  * which realloc_stack_state() copies over. It points to previous
603  * bpf_verifier_state which is never reallocated.
604  */
605 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
606 			      int refs_size, bool copy_old)
607 {
608 	int err = realloc_reference_state(state, refs_size, copy_old);
609 	if (err)
610 		return err;
611 	return realloc_stack_state(state, stack_size, copy_old);
612 }
613 
614 /* Acquire a pointer id from the env and update the state->refs to include
615  * this new pointer reference.
616  * On success, returns a valid pointer id to associate with the register
617  * On failure, returns a negative errno.
618  */
619 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
620 {
621 	struct bpf_func_state *state = cur_func(env);
622 	int new_ofs = state->acquired_refs;
623 	int id, err;
624 
625 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
626 	if (err)
627 		return err;
628 	id = ++env->id_gen;
629 	state->refs[new_ofs].id = id;
630 	state->refs[new_ofs].insn_idx = insn_idx;
631 
632 	return id;
633 }
634 
635 /* release function corresponding to acquire_reference_state(). Idempotent. */
636 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
637 {
638 	int i, last_idx;
639 
640 	last_idx = state->acquired_refs - 1;
641 	for (i = 0; i < state->acquired_refs; i++) {
642 		if (state->refs[i].id == ptr_id) {
643 			if (last_idx && i != last_idx)
644 				memcpy(&state->refs[i], &state->refs[last_idx],
645 				       sizeof(*state->refs));
646 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
647 			state->acquired_refs--;
648 			return 0;
649 		}
650 	}
651 	return -EINVAL;
652 }
653 
654 static int transfer_reference_state(struct bpf_func_state *dst,
655 				    struct bpf_func_state *src)
656 {
657 	int err = realloc_reference_state(dst, src->acquired_refs, false);
658 	if (err)
659 		return err;
660 	err = copy_reference_state(dst, src);
661 	if (err)
662 		return err;
663 	return 0;
664 }
665 
666 static void free_func_state(struct bpf_func_state *state)
667 {
668 	if (!state)
669 		return;
670 	kfree(state->refs);
671 	kfree(state->stack);
672 	kfree(state);
673 }
674 
675 static void free_verifier_state(struct bpf_verifier_state *state,
676 				bool free_self)
677 {
678 	int i;
679 
680 	for (i = 0; i <= state->curframe; i++) {
681 		free_func_state(state->frame[i]);
682 		state->frame[i] = NULL;
683 	}
684 	if (free_self)
685 		kfree(state);
686 }
687 
688 /* copy verifier state from src to dst growing dst stack space
689  * when necessary to accommodate larger src stack
690  */
691 static int copy_func_state(struct bpf_func_state *dst,
692 			   const struct bpf_func_state *src)
693 {
694 	int err;
695 
696 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
697 				 false);
698 	if (err)
699 		return err;
700 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
701 	err = copy_reference_state(dst, src);
702 	if (err)
703 		return err;
704 	return copy_stack_state(dst, src);
705 }
706 
707 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
708 			       const struct bpf_verifier_state *src)
709 {
710 	struct bpf_func_state *dst;
711 	int i, err;
712 
713 	/* if dst has more stack frames then src frame, free them */
714 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
715 		free_func_state(dst_state->frame[i]);
716 		dst_state->frame[i] = NULL;
717 	}
718 	dst_state->speculative = src->speculative;
719 	dst_state->curframe = src->curframe;
720 	dst_state->active_spin_lock = src->active_spin_lock;
721 	for (i = 0; i <= src->curframe; i++) {
722 		dst = dst_state->frame[i];
723 		if (!dst) {
724 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
725 			if (!dst)
726 				return -ENOMEM;
727 			dst_state->frame[i] = dst;
728 		}
729 		err = copy_func_state(dst, src->frame[i]);
730 		if (err)
731 			return err;
732 	}
733 	return 0;
734 }
735 
736 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
737 		     int *insn_idx)
738 {
739 	struct bpf_verifier_state *cur = env->cur_state;
740 	struct bpf_verifier_stack_elem *elem, *head = env->head;
741 	int err;
742 
743 	if (env->head == NULL)
744 		return -ENOENT;
745 
746 	if (cur) {
747 		err = copy_verifier_state(cur, &head->st);
748 		if (err)
749 			return err;
750 	}
751 	if (insn_idx)
752 		*insn_idx = head->insn_idx;
753 	if (prev_insn_idx)
754 		*prev_insn_idx = head->prev_insn_idx;
755 	elem = head->next;
756 	free_verifier_state(&head->st, false);
757 	kfree(head);
758 	env->head = elem;
759 	env->stack_size--;
760 	return 0;
761 }
762 
763 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
764 					     int insn_idx, int prev_insn_idx,
765 					     bool speculative)
766 {
767 	struct bpf_verifier_state *cur = env->cur_state;
768 	struct bpf_verifier_stack_elem *elem;
769 	int err;
770 
771 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
772 	if (!elem)
773 		goto err;
774 
775 	elem->insn_idx = insn_idx;
776 	elem->prev_insn_idx = prev_insn_idx;
777 	elem->next = env->head;
778 	env->head = elem;
779 	env->stack_size++;
780 	err = copy_verifier_state(&elem->st, cur);
781 	if (err)
782 		goto err;
783 	elem->st.speculative |= speculative;
784 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
785 		verbose(env, "BPF program is too complex\n");
786 		goto err;
787 	}
788 	return &elem->st;
789 err:
790 	free_verifier_state(env->cur_state, true);
791 	env->cur_state = NULL;
792 	/* pop all elements and return */
793 	while (!pop_stack(env, NULL, NULL));
794 	return NULL;
795 }
796 
797 #define CALLER_SAVED_REGS 6
798 static const int caller_saved[CALLER_SAVED_REGS] = {
799 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
800 };
801 
802 static void __mark_reg_not_init(struct bpf_reg_state *reg);
803 
804 /* Mark the unknown part of a register (variable offset or scalar value) as
805  * known to have the value @imm.
806  */
807 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
808 {
809 	/* Clear id, off, and union(map_ptr, range) */
810 	memset(((u8 *)reg) + sizeof(reg->type), 0,
811 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
812 	reg->var_off = tnum_const(imm);
813 	reg->smin_value = (s64)imm;
814 	reg->smax_value = (s64)imm;
815 	reg->umin_value = imm;
816 	reg->umax_value = imm;
817 }
818 
819 /* Mark the 'variable offset' part of a register as zero.  This should be
820  * used only on registers holding a pointer type.
821  */
822 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
823 {
824 	__mark_reg_known(reg, 0);
825 }
826 
827 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
828 {
829 	__mark_reg_known(reg, 0);
830 	reg->type = SCALAR_VALUE;
831 }
832 
833 static void mark_reg_known_zero(struct bpf_verifier_env *env,
834 				struct bpf_reg_state *regs, u32 regno)
835 {
836 	if (WARN_ON(regno >= MAX_BPF_REG)) {
837 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
838 		/* Something bad happened, let's kill all regs */
839 		for (regno = 0; regno < MAX_BPF_REG; regno++)
840 			__mark_reg_not_init(regs + regno);
841 		return;
842 	}
843 	__mark_reg_known_zero(regs + regno);
844 }
845 
846 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
847 {
848 	return type_is_pkt_pointer(reg->type);
849 }
850 
851 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
852 {
853 	return reg_is_pkt_pointer(reg) ||
854 	       reg->type == PTR_TO_PACKET_END;
855 }
856 
857 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
858 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
859 				    enum bpf_reg_type which)
860 {
861 	/* The register can already have a range from prior markings.
862 	 * This is fine as long as it hasn't been advanced from its
863 	 * origin.
864 	 */
865 	return reg->type == which &&
866 	       reg->id == 0 &&
867 	       reg->off == 0 &&
868 	       tnum_equals_const(reg->var_off, 0);
869 }
870 
871 /* Attempts to improve min/max values based on var_off information */
872 static void __update_reg_bounds(struct bpf_reg_state *reg)
873 {
874 	/* min signed is max(sign bit) | min(other bits) */
875 	reg->smin_value = max_t(s64, reg->smin_value,
876 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
877 	/* max signed is min(sign bit) | max(other bits) */
878 	reg->smax_value = min_t(s64, reg->smax_value,
879 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
880 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
881 	reg->umax_value = min(reg->umax_value,
882 			      reg->var_off.value | reg->var_off.mask);
883 }
884 
885 /* Uses signed min/max values to inform unsigned, and vice-versa */
886 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
887 {
888 	/* Learn sign from signed bounds.
889 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
890 	 * are the same, so combine.  This works even in the negative case, e.g.
891 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
892 	 */
893 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
894 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
895 							  reg->umin_value);
896 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
897 							  reg->umax_value);
898 		return;
899 	}
900 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
901 	 * boundary, so we must be careful.
902 	 */
903 	if ((s64)reg->umax_value >= 0) {
904 		/* Positive.  We can't learn anything from the smin, but smax
905 		 * is positive, hence safe.
906 		 */
907 		reg->smin_value = reg->umin_value;
908 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
909 							  reg->umax_value);
910 	} else if ((s64)reg->umin_value < 0) {
911 		/* Negative.  We can't learn anything from the smax, but smin
912 		 * is negative, hence safe.
913 		 */
914 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
915 							  reg->umin_value);
916 		reg->smax_value = reg->umax_value;
917 	}
918 }
919 
920 /* Attempts to improve var_off based on unsigned min/max information */
921 static void __reg_bound_offset(struct bpf_reg_state *reg)
922 {
923 	reg->var_off = tnum_intersect(reg->var_off,
924 				      tnum_range(reg->umin_value,
925 						 reg->umax_value));
926 }
927 
928 /* Reset the min/max bounds of a register */
929 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
930 {
931 	reg->smin_value = S64_MIN;
932 	reg->smax_value = S64_MAX;
933 	reg->umin_value = 0;
934 	reg->umax_value = U64_MAX;
935 }
936 
937 /* Mark a register as having a completely unknown (scalar) value. */
938 static void __mark_reg_unknown(struct bpf_reg_state *reg)
939 {
940 	/*
941 	 * Clear type, id, off, and union(map_ptr, range) and
942 	 * padding between 'type' and union
943 	 */
944 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
945 	reg->type = SCALAR_VALUE;
946 	reg->var_off = tnum_unknown;
947 	reg->frameno = 0;
948 	__mark_reg_unbounded(reg);
949 }
950 
951 static void mark_reg_unknown(struct bpf_verifier_env *env,
952 			     struct bpf_reg_state *regs, u32 regno)
953 {
954 	if (WARN_ON(regno >= MAX_BPF_REG)) {
955 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
956 		/* Something bad happened, let's kill all regs except FP */
957 		for (regno = 0; regno < BPF_REG_FP; regno++)
958 			__mark_reg_not_init(regs + regno);
959 		return;
960 	}
961 	__mark_reg_unknown(regs + regno);
962 }
963 
964 static void __mark_reg_not_init(struct bpf_reg_state *reg)
965 {
966 	__mark_reg_unknown(reg);
967 	reg->type = NOT_INIT;
968 }
969 
970 static void mark_reg_not_init(struct bpf_verifier_env *env,
971 			      struct bpf_reg_state *regs, u32 regno)
972 {
973 	if (WARN_ON(regno >= MAX_BPF_REG)) {
974 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
975 		/* Something bad happened, let's kill all regs except FP */
976 		for (regno = 0; regno < BPF_REG_FP; regno++)
977 			__mark_reg_not_init(regs + regno);
978 		return;
979 	}
980 	__mark_reg_not_init(regs + regno);
981 }
982 
983 static void init_reg_state(struct bpf_verifier_env *env,
984 			   struct bpf_func_state *state)
985 {
986 	struct bpf_reg_state *regs = state->regs;
987 	int i;
988 
989 	for (i = 0; i < MAX_BPF_REG; i++) {
990 		mark_reg_not_init(env, regs, i);
991 		regs[i].live = REG_LIVE_NONE;
992 		regs[i].parent = NULL;
993 	}
994 
995 	/* frame pointer */
996 	regs[BPF_REG_FP].type = PTR_TO_STACK;
997 	mark_reg_known_zero(env, regs, BPF_REG_FP);
998 	regs[BPF_REG_FP].frameno = state->frameno;
999 
1000 	/* 1st arg to a function */
1001 	regs[BPF_REG_1].type = PTR_TO_CTX;
1002 	mark_reg_known_zero(env, regs, BPF_REG_1);
1003 }
1004 
1005 #define BPF_MAIN_FUNC (-1)
1006 static void init_func_state(struct bpf_verifier_env *env,
1007 			    struct bpf_func_state *state,
1008 			    int callsite, int frameno, int subprogno)
1009 {
1010 	state->callsite = callsite;
1011 	state->frameno = frameno;
1012 	state->subprogno = subprogno;
1013 	init_reg_state(env, state);
1014 }
1015 
1016 enum reg_arg_type {
1017 	SRC_OP,		/* register is used as source operand */
1018 	DST_OP,		/* register is used as destination operand */
1019 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1020 };
1021 
1022 static int cmp_subprogs(const void *a, const void *b)
1023 {
1024 	return ((struct bpf_subprog_info *)a)->start -
1025 	       ((struct bpf_subprog_info *)b)->start;
1026 }
1027 
1028 static int find_subprog(struct bpf_verifier_env *env, int off)
1029 {
1030 	struct bpf_subprog_info *p;
1031 
1032 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1033 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1034 	if (!p)
1035 		return -ENOENT;
1036 	return p - env->subprog_info;
1037 
1038 }
1039 
1040 static int add_subprog(struct bpf_verifier_env *env, int off)
1041 {
1042 	int insn_cnt = env->prog->len;
1043 	int ret;
1044 
1045 	if (off >= insn_cnt || off < 0) {
1046 		verbose(env, "call to invalid destination\n");
1047 		return -EINVAL;
1048 	}
1049 	ret = find_subprog(env, off);
1050 	if (ret >= 0)
1051 		return 0;
1052 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1053 		verbose(env, "too many subprograms\n");
1054 		return -E2BIG;
1055 	}
1056 	env->subprog_info[env->subprog_cnt++].start = off;
1057 	sort(env->subprog_info, env->subprog_cnt,
1058 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1059 	return 0;
1060 }
1061 
1062 static int check_subprogs(struct bpf_verifier_env *env)
1063 {
1064 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1065 	struct bpf_subprog_info *subprog = env->subprog_info;
1066 	struct bpf_insn *insn = env->prog->insnsi;
1067 	int insn_cnt = env->prog->len;
1068 
1069 	/* Add entry function. */
1070 	ret = add_subprog(env, 0);
1071 	if (ret < 0)
1072 		return ret;
1073 
1074 	/* determine subprog starts. The end is one before the next starts */
1075 	for (i = 0; i < insn_cnt; i++) {
1076 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1077 			continue;
1078 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1079 			continue;
1080 		if (!env->allow_ptr_leaks) {
1081 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1082 			return -EPERM;
1083 		}
1084 		ret = add_subprog(env, i + insn[i].imm + 1);
1085 		if (ret < 0)
1086 			return ret;
1087 	}
1088 
1089 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1090 	 * logic. 'subprog_cnt' should not be increased.
1091 	 */
1092 	subprog[env->subprog_cnt].start = insn_cnt;
1093 
1094 	if (env->log.level & BPF_LOG_LEVEL2)
1095 		for (i = 0; i < env->subprog_cnt; i++)
1096 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1097 
1098 	/* now check that all jumps are within the same subprog */
1099 	subprog_start = subprog[cur_subprog].start;
1100 	subprog_end = subprog[cur_subprog + 1].start;
1101 	for (i = 0; i < insn_cnt; i++) {
1102 		u8 code = insn[i].code;
1103 
1104 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1105 			goto next;
1106 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1107 			goto next;
1108 		off = i + insn[i].off + 1;
1109 		if (off < subprog_start || off >= subprog_end) {
1110 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1111 			return -EINVAL;
1112 		}
1113 next:
1114 		if (i == subprog_end - 1) {
1115 			/* to avoid fall-through from one subprog into another
1116 			 * the last insn of the subprog should be either exit
1117 			 * or unconditional jump back
1118 			 */
1119 			if (code != (BPF_JMP | BPF_EXIT) &&
1120 			    code != (BPF_JMP | BPF_JA)) {
1121 				verbose(env, "last insn is not an exit or jmp\n");
1122 				return -EINVAL;
1123 			}
1124 			subprog_start = subprog_end;
1125 			cur_subprog++;
1126 			if (cur_subprog < env->subprog_cnt)
1127 				subprog_end = subprog[cur_subprog + 1].start;
1128 		}
1129 	}
1130 	return 0;
1131 }
1132 
1133 /* Parentage chain of this register (or stack slot) should take care of all
1134  * issues like callee-saved registers, stack slot allocation time, etc.
1135  */
1136 static int mark_reg_read(struct bpf_verifier_env *env,
1137 			 const struct bpf_reg_state *state,
1138 			 struct bpf_reg_state *parent)
1139 {
1140 	bool writes = parent == state->parent; /* Observe write marks */
1141 	int cnt = 0;
1142 
1143 	while (parent) {
1144 		/* if read wasn't screened by an earlier write ... */
1145 		if (writes && state->live & REG_LIVE_WRITTEN)
1146 			break;
1147 		if (parent->live & REG_LIVE_DONE) {
1148 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1149 				reg_type_str[parent->type],
1150 				parent->var_off.value, parent->off);
1151 			return -EFAULT;
1152 		}
1153 		if (parent->live & REG_LIVE_READ)
1154 			/* The parentage chain never changes and
1155 			 * this parent was already marked as LIVE_READ.
1156 			 * There is no need to keep walking the chain again and
1157 			 * keep re-marking all parents as LIVE_READ.
1158 			 * This case happens when the same register is read
1159 			 * multiple times without writes into it in-between.
1160 			 */
1161 			break;
1162 		/* ... then we depend on parent's value */
1163 		parent->live |= REG_LIVE_READ;
1164 		state = parent;
1165 		parent = state->parent;
1166 		writes = true;
1167 		cnt++;
1168 	}
1169 
1170 	if (env->longest_mark_read_walk < cnt)
1171 		env->longest_mark_read_walk = cnt;
1172 	return 0;
1173 }
1174 
1175 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1176 			 enum reg_arg_type t)
1177 {
1178 	struct bpf_verifier_state *vstate = env->cur_state;
1179 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1180 	struct bpf_reg_state *regs = state->regs;
1181 
1182 	if (regno >= MAX_BPF_REG) {
1183 		verbose(env, "R%d is invalid\n", regno);
1184 		return -EINVAL;
1185 	}
1186 
1187 	if (t == SRC_OP) {
1188 		/* check whether register used as source operand can be read */
1189 		if (regs[regno].type == NOT_INIT) {
1190 			verbose(env, "R%d !read_ok\n", regno);
1191 			return -EACCES;
1192 		}
1193 		/* We don't need to worry about FP liveness because it's read-only */
1194 		if (regno != BPF_REG_FP)
1195 			return mark_reg_read(env, &regs[regno],
1196 					     regs[regno].parent);
1197 	} else {
1198 		/* check whether register used as dest operand can be written to */
1199 		if (regno == BPF_REG_FP) {
1200 			verbose(env, "frame pointer is read only\n");
1201 			return -EACCES;
1202 		}
1203 		regs[regno].live |= REG_LIVE_WRITTEN;
1204 		if (t == DST_OP)
1205 			mark_reg_unknown(env, regs, regno);
1206 	}
1207 	return 0;
1208 }
1209 
1210 static bool is_spillable_regtype(enum bpf_reg_type type)
1211 {
1212 	switch (type) {
1213 	case PTR_TO_MAP_VALUE:
1214 	case PTR_TO_MAP_VALUE_OR_NULL:
1215 	case PTR_TO_STACK:
1216 	case PTR_TO_CTX:
1217 	case PTR_TO_PACKET:
1218 	case PTR_TO_PACKET_META:
1219 	case PTR_TO_PACKET_END:
1220 	case PTR_TO_FLOW_KEYS:
1221 	case CONST_PTR_TO_MAP:
1222 	case PTR_TO_SOCKET:
1223 	case PTR_TO_SOCKET_OR_NULL:
1224 	case PTR_TO_SOCK_COMMON:
1225 	case PTR_TO_SOCK_COMMON_OR_NULL:
1226 	case PTR_TO_TCP_SOCK:
1227 	case PTR_TO_TCP_SOCK_OR_NULL:
1228 		return true;
1229 	default:
1230 		return false;
1231 	}
1232 }
1233 
1234 /* Does this register contain a constant zero? */
1235 static bool register_is_null(struct bpf_reg_state *reg)
1236 {
1237 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1238 }
1239 
1240 /* check_stack_read/write functions track spill/fill of registers,
1241  * stack boundary and alignment are checked in check_mem_access()
1242  */
1243 static int check_stack_write(struct bpf_verifier_env *env,
1244 			     struct bpf_func_state *state, /* func where register points to */
1245 			     int off, int size, int value_regno, int insn_idx)
1246 {
1247 	struct bpf_func_state *cur; /* state of the current function */
1248 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1249 	enum bpf_reg_type type;
1250 
1251 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1252 				 state->acquired_refs, true);
1253 	if (err)
1254 		return err;
1255 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1256 	 * so it's aligned access and [off, off + size) are within stack limits
1257 	 */
1258 	if (!env->allow_ptr_leaks &&
1259 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1260 	    size != BPF_REG_SIZE) {
1261 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1262 		return -EACCES;
1263 	}
1264 
1265 	cur = env->cur_state->frame[env->cur_state->curframe];
1266 	if (value_regno >= 0 &&
1267 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1268 
1269 		/* register containing pointer is being spilled into stack */
1270 		if (size != BPF_REG_SIZE) {
1271 			verbose(env, "invalid size of register spill\n");
1272 			return -EACCES;
1273 		}
1274 
1275 		if (state != cur && type == PTR_TO_STACK) {
1276 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1277 			return -EINVAL;
1278 		}
1279 
1280 		/* save register state */
1281 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1282 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1283 
1284 		for (i = 0; i < BPF_REG_SIZE; i++) {
1285 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1286 			    !env->allow_ptr_leaks) {
1287 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1288 				int soff = (-spi - 1) * BPF_REG_SIZE;
1289 
1290 				/* detected reuse of integer stack slot with a pointer
1291 				 * which means either llvm is reusing stack slot or
1292 				 * an attacker is trying to exploit CVE-2018-3639
1293 				 * (speculative store bypass)
1294 				 * Have to sanitize that slot with preemptive
1295 				 * store of zero.
1296 				 */
1297 				if (*poff && *poff != soff) {
1298 					/* disallow programs where single insn stores
1299 					 * into two different stack slots, since verifier
1300 					 * cannot sanitize them
1301 					 */
1302 					verbose(env,
1303 						"insn %d cannot access two stack slots fp%d and fp%d",
1304 						insn_idx, *poff, soff);
1305 					return -EINVAL;
1306 				}
1307 				*poff = soff;
1308 			}
1309 			state->stack[spi].slot_type[i] = STACK_SPILL;
1310 		}
1311 	} else {
1312 		u8 type = STACK_MISC;
1313 
1314 		/* regular write of data into stack destroys any spilled ptr */
1315 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1316 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1317 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1318 			for (i = 0; i < BPF_REG_SIZE; i++)
1319 				state->stack[spi].slot_type[i] = STACK_MISC;
1320 
1321 		/* only mark the slot as written if all 8 bytes were written
1322 		 * otherwise read propagation may incorrectly stop too soon
1323 		 * when stack slots are partially written.
1324 		 * This heuristic means that read propagation will be
1325 		 * conservative, since it will add reg_live_read marks
1326 		 * to stack slots all the way to first state when programs
1327 		 * writes+reads less than 8 bytes
1328 		 */
1329 		if (size == BPF_REG_SIZE)
1330 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1331 
1332 		/* when we zero initialize stack slots mark them as such */
1333 		if (value_regno >= 0 &&
1334 		    register_is_null(&cur->regs[value_regno]))
1335 			type = STACK_ZERO;
1336 
1337 		/* Mark slots affected by this stack write. */
1338 		for (i = 0; i < size; i++)
1339 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1340 				type;
1341 	}
1342 	return 0;
1343 }
1344 
1345 static int check_stack_read(struct bpf_verifier_env *env,
1346 			    struct bpf_func_state *reg_state /* func where register points to */,
1347 			    int off, int size, int value_regno)
1348 {
1349 	struct bpf_verifier_state *vstate = env->cur_state;
1350 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1351 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1352 	u8 *stype;
1353 
1354 	if (reg_state->allocated_stack <= slot) {
1355 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1356 			off, size);
1357 		return -EACCES;
1358 	}
1359 	stype = reg_state->stack[spi].slot_type;
1360 
1361 	if (stype[0] == STACK_SPILL) {
1362 		if (size != BPF_REG_SIZE) {
1363 			verbose(env, "invalid size of register spill\n");
1364 			return -EACCES;
1365 		}
1366 		for (i = 1; i < BPF_REG_SIZE; i++) {
1367 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1368 				verbose(env, "corrupted spill memory\n");
1369 				return -EACCES;
1370 			}
1371 		}
1372 
1373 		if (value_regno >= 0) {
1374 			/* restore register state from stack */
1375 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1376 			/* mark reg as written since spilled pointer state likely
1377 			 * has its liveness marks cleared by is_state_visited()
1378 			 * which resets stack/reg liveness for state transitions
1379 			 */
1380 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1381 		}
1382 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1383 			      reg_state->stack[spi].spilled_ptr.parent);
1384 		return 0;
1385 	} else {
1386 		int zeros = 0;
1387 
1388 		for (i = 0; i < size; i++) {
1389 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1390 				continue;
1391 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1392 				zeros++;
1393 				continue;
1394 			}
1395 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1396 				off, i, size);
1397 			return -EACCES;
1398 		}
1399 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1400 			      reg_state->stack[spi].spilled_ptr.parent);
1401 		if (value_regno >= 0) {
1402 			if (zeros == size) {
1403 				/* any size read into register is zero extended,
1404 				 * so the whole register == const_zero
1405 				 */
1406 				__mark_reg_const_zero(&state->regs[value_regno]);
1407 			} else {
1408 				/* have read misc data from the stack */
1409 				mark_reg_unknown(env, state->regs, value_regno);
1410 			}
1411 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1412 		}
1413 		return 0;
1414 	}
1415 }
1416 
1417 static int check_stack_access(struct bpf_verifier_env *env,
1418 			      const struct bpf_reg_state *reg,
1419 			      int off, int size)
1420 {
1421 	/* Stack accesses must be at a fixed offset, so that we
1422 	 * can determine what type of data were returned. See
1423 	 * check_stack_read().
1424 	 */
1425 	if (!tnum_is_const(reg->var_off)) {
1426 		char tn_buf[48];
1427 
1428 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1429 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
1430 			tn_buf, off, size);
1431 		return -EACCES;
1432 	}
1433 
1434 	if (off >= 0 || off < -MAX_BPF_STACK) {
1435 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
1436 		return -EACCES;
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
1443 				 int off, int size, enum bpf_access_type type)
1444 {
1445 	struct bpf_reg_state *regs = cur_regs(env);
1446 	struct bpf_map *map = regs[regno].map_ptr;
1447 	u32 cap = bpf_map_flags_to_cap(map);
1448 
1449 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
1450 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
1451 			map->value_size, off, size);
1452 		return -EACCES;
1453 	}
1454 
1455 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
1456 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
1457 			map->value_size, off, size);
1458 		return -EACCES;
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 /* check read/write into map element returned by bpf_map_lookup_elem() */
1465 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1466 			      int size, bool zero_size_allowed)
1467 {
1468 	struct bpf_reg_state *regs = cur_regs(env);
1469 	struct bpf_map *map = regs[regno].map_ptr;
1470 
1471 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1472 	    off + size > map->value_size) {
1473 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1474 			map->value_size, off, size);
1475 		return -EACCES;
1476 	}
1477 	return 0;
1478 }
1479 
1480 /* check read/write into a map element with possible variable offset */
1481 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1482 			    int off, int size, bool zero_size_allowed)
1483 {
1484 	struct bpf_verifier_state *vstate = env->cur_state;
1485 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1486 	struct bpf_reg_state *reg = &state->regs[regno];
1487 	int err;
1488 
1489 	/* We may have adjusted the register to this map value, so we
1490 	 * need to try adding each of min_value and max_value to off
1491 	 * to make sure our theoretical access will be safe.
1492 	 */
1493 	if (env->log.level & BPF_LOG_LEVEL)
1494 		print_verifier_state(env, state);
1495 
1496 	/* The minimum value is only important with signed
1497 	 * comparisons where we can't assume the floor of a
1498 	 * value is 0.  If we are using signed variables for our
1499 	 * index'es we need to make sure that whatever we use
1500 	 * will have a set floor within our range.
1501 	 */
1502 	if (reg->smin_value < 0 &&
1503 	    (reg->smin_value == S64_MIN ||
1504 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1505 	      reg->smin_value + off < 0)) {
1506 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1507 			regno);
1508 		return -EACCES;
1509 	}
1510 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1511 				 zero_size_allowed);
1512 	if (err) {
1513 		verbose(env, "R%d min value is outside of the array range\n",
1514 			regno);
1515 		return err;
1516 	}
1517 
1518 	/* If we haven't set a max value then we need to bail since we can't be
1519 	 * sure we won't do bad things.
1520 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1521 	 */
1522 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1523 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1524 			regno);
1525 		return -EACCES;
1526 	}
1527 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1528 				 zero_size_allowed);
1529 	if (err)
1530 		verbose(env, "R%d max value is outside of the array range\n",
1531 			regno);
1532 
1533 	if (map_value_has_spin_lock(reg->map_ptr)) {
1534 		u32 lock = reg->map_ptr->spin_lock_off;
1535 
1536 		/* if any part of struct bpf_spin_lock can be touched by
1537 		 * load/store reject this program.
1538 		 * To check that [x1, x2) overlaps with [y1, y2)
1539 		 * it is sufficient to check x1 < y2 && y1 < x2.
1540 		 */
1541 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1542 		     lock < reg->umax_value + off + size) {
1543 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1544 			return -EACCES;
1545 		}
1546 	}
1547 	return err;
1548 }
1549 
1550 #define MAX_PACKET_OFF 0xffff
1551 
1552 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1553 				       const struct bpf_call_arg_meta *meta,
1554 				       enum bpf_access_type t)
1555 {
1556 	switch (env->prog->type) {
1557 	/* Program types only with direct read access go here! */
1558 	case BPF_PROG_TYPE_LWT_IN:
1559 	case BPF_PROG_TYPE_LWT_OUT:
1560 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1561 	case BPF_PROG_TYPE_SK_REUSEPORT:
1562 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1563 	case BPF_PROG_TYPE_CGROUP_SKB:
1564 		if (t == BPF_WRITE)
1565 			return false;
1566 		/* fallthrough */
1567 
1568 	/* Program types with direct read + write access go here! */
1569 	case BPF_PROG_TYPE_SCHED_CLS:
1570 	case BPF_PROG_TYPE_SCHED_ACT:
1571 	case BPF_PROG_TYPE_XDP:
1572 	case BPF_PROG_TYPE_LWT_XMIT:
1573 	case BPF_PROG_TYPE_SK_SKB:
1574 	case BPF_PROG_TYPE_SK_MSG:
1575 		if (meta)
1576 			return meta->pkt_access;
1577 
1578 		env->seen_direct_write = true;
1579 		return true;
1580 	default:
1581 		return false;
1582 	}
1583 }
1584 
1585 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1586 				 int off, int size, bool zero_size_allowed)
1587 {
1588 	struct bpf_reg_state *regs = cur_regs(env);
1589 	struct bpf_reg_state *reg = &regs[regno];
1590 
1591 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1592 	    (u64)off + size > reg->range) {
1593 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1594 			off, size, regno, reg->id, reg->off, reg->range);
1595 		return -EACCES;
1596 	}
1597 	return 0;
1598 }
1599 
1600 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1601 			       int size, bool zero_size_allowed)
1602 {
1603 	struct bpf_reg_state *regs = cur_regs(env);
1604 	struct bpf_reg_state *reg = &regs[regno];
1605 	int err;
1606 
1607 	/* We may have added a variable offset to the packet pointer; but any
1608 	 * reg->range we have comes after that.  We are only checking the fixed
1609 	 * offset.
1610 	 */
1611 
1612 	/* We don't allow negative numbers, because we aren't tracking enough
1613 	 * detail to prove they're safe.
1614 	 */
1615 	if (reg->smin_value < 0) {
1616 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1617 			regno);
1618 		return -EACCES;
1619 	}
1620 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1621 	if (err) {
1622 		verbose(env, "R%d offset is outside of the packet\n", regno);
1623 		return err;
1624 	}
1625 
1626 	/* __check_packet_access has made sure "off + size - 1" is within u16.
1627 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1628 	 * otherwise find_good_pkt_pointers would have refused to set range info
1629 	 * that __check_packet_access would have rejected this pkt access.
1630 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1631 	 */
1632 	env->prog->aux->max_pkt_offset =
1633 		max_t(u32, env->prog->aux->max_pkt_offset,
1634 		      off + reg->umax_value + size - 1);
1635 
1636 	return err;
1637 }
1638 
1639 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1640 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1641 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1642 {
1643 	struct bpf_insn_access_aux info = {
1644 		.reg_type = *reg_type,
1645 	};
1646 
1647 	if (env->ops->is_valid_access &&
1648 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1649 		/* A non zero info.ctx_field_size indicates that this field is a
1650 		 * candidate for later verifier transformation to load the whole
1651 		 * field and then apply a mask when accessed with a narrower
1652 		 * access than actual ctx access size. A zero info.ctx_field_size
1653 		 * will only allow for whole field access and rejects any other
1654 		 * type of narrower access.
1655 		 */
1656 		*reg_type = info.reg_type;
1657 
1658 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1659 		/* remember the offset of last byte accessed in ctx */
1660 		if (env->prog->aux->max_ctx_offset < off + size)
1661 			env->prog->aux->max_ctx_offset = off + size;
1662 		return 0;
1663 	}
1664 
1665 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1666 	return -EACCES;
1667 }
1668 
1669 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1670 				  int size)
1671 {
1672 	if (size < 0 || off < 0 ||
1673 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1674 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1675 			off, size);
1676 		return -EACCES;
1677 	}
1678 	return 0;
1679 }
1680 
1681 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1682 			     u32 regno, int off, int size,
1683 			     enum bpf_access_type t)
1684 {
1685 	struct bpf_reg_state *regs = cur_regs(env);
1686 	struct bpf_reg_state *reg = &regs[regno];
1687 	struct bpf_insn_access_aux info = {};
1688 	bool valid;
1689 
1690 	if (reg->smin_value < 0) {
1691 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1692 			regno);
1693 		return -EACCES;
1694 	}
1695 
1696 	switch (reg->type) {
1697 	case PTR_TO_SOCK_COMMON:
1698 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1699 		break;
1700 	case PTR_TO_SOCKET:
1701 		valid = bpf_sock_is_valid_access(off, size, t, &info);
1702 		break;
1703 	case PTR_TO_TCP_SOCK:
1704 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1705 		break;
1706 	default:
1707 		valid = false;
1708 	}
1709 
1710 
1711 	if (valid) {
1712 		env->insn_aux_data[insn_idx].ctx_field_size =
1713 			info.ctx_field_size;
1714 		return 0;
1715 	}
1716 
1717 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
1718 		regno, reg_type_str[reg->type], off, size);
1719 
1720 	return -EACCES;
1721 }
1722 
1723 static bool __is_pointer_value(bool allow_ptr_leaks,
1724 			       const struct bpf_reg_state *reg)
1725 {
1726 	if (allow_ptr_leaks)
1727 		return false;
1728 
1729 	return reg->type != SCALAR_VALUE;
1730 }
1731 
1732 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1733 {
1734 	return cur_regs(env) + regno;
1735 }
1736 
1737 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1738 {
1739 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1740 }
1741 
1742 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1743 {
1744 	const struct bpf_reg_state *reg = reg_state(env, regno);
1745 
1746 	return reg->type == PTR_TO_CTX;
1747 }
1748 
1749 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1750 {
1751 	const struct bpf_reg_state *reg = reg_state(env, regno);
1752 
1753 	return type_is_sk_pointer(reg->type);
1754 }
1755 
1756 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1757 {
1758 	const struct bpf_reg_state *reg = reg_state(env, regno);
1759 
1760 	return type_is_pkt_pointer(reg->type);
1761 }
1762 
1763 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1764 {
1765 	const struct bpf_reg_state *reg = reg_state(env, regno);
1766 
1767 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1768 	return reg->type == PTR_TO_FLOW_KEYS;
1769 }
1770 
1771 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1772 				   const struct bpf_reg_state *reg,
1773 				   int off, int size, bool strict)
1774 {
1775 	struct tnum reg_off;
1776 	int ip_align;
1777 
1778 	/* Byte size accesses are always allowed. */
1779 	if (!strict || size == 1)
1780 		return 0;
1781 
1782 	/* For platforms that do not have a Kconfig enabling
1783 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1784 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1785 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1786 	 * to this code only in strict mode where we want to emulate
1787 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1788 	 * unconditional IP align value of '2'.
1789 	 */
1790 	ip_align = 2;
1791 
1792 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1793 	if (!tnum_is_aligned(reg_off, size)) {
1794 		char tn_buf[48];
1795 
1796 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1797 		verbose(env,
1798 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1799 			ip_align, tn_buf, reg->off, off, size);
1800 		return -EACCES;
1801 	}
1802 
1803 	return 0;
1804 }
1805 
1806 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1807 				       const struct bpf_reg_state *reg,
1808 				       const char *pointer_desc,
1809 				       int off, int size, bool strict)
1810 {
1811 	struct tnum reg_off;
1812 
1813 	/* Byte size accesses are always allowed. */
1814 	if (!strict || size == 1)
1815 		return 0;
1816 
1817 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1818 	if (!tnum_is_aligned(reg_off, size)) {
1819 		char tn_buf[48];
1820 
1821 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1822 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1823 			pointer_desc, tn_buf, reg->off, off, size);
1824 		return -EACCES;
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 static int check_ptr_alignment(struct bpf_verifier_env *env,
1831 			       const struct bpf_reg_state *reg, int off,
1832 			       int size, bool strict_alignment_once)
1833 {
1834 	bool strict = env->strict_alignment || strict_alignment_once;
1835 	const char *pointer_desc = "";
1836 
1837 	switch (reg->type) {
1838 	case PTR_TO_PACKET:
1839 	case PTR_TO_PACKET_META:
1840 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1841 		 * right in front, treat it the very same way.
1842 		 */
1843 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1844 	case PTR_TO_FLOW_KEYS:
1845 		pointer_desc = "flow keys ";
1846 		break;
1847 	case PTR_TO_MAP_VALUE:
1848 		pointer_desc = "value ";
1849 		break;
1850 	case PTR_TO_CTX:
1851 		pointer_desc = "context ";
1852 		break;
1853 	case PTR_TO_STACK:
1854 		pointer_desc = "stack ";
1855 		/* The stack spill tracking logic in check_stack_write()
1856 		 * and check_stack_read() relies on stack accesses being
1857 		 * aligned.
1858 		 */
1859 		strict = true;
1860 		break;
1861 	case PTR_TO_SOCKET:
1862 		pointer_desc = "sock ";
1863 		break;
1864 	case PTR_TO_SOCK_COMMON:
1865 		pointer_desc = "sock_common ";
1866 		break;
1867 	case PTR_TO_TCP_SOCK:
1868 		pointer_desc = "tcp_sock ";
1869 		break;
1870 	default:
1871 		break;
1872 	}
1873 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1874 					   strict);
1875 }
1876 
1877 static int update_stack_depth(struct bpf_verifier_env *env,
1878 			      const struct bpf_func_state *func,
1879 			      int off)
1880 {
1881 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1882 
1883 	if (stack >= -off)
1884 		return 0;
1885 
1886 	/* update known max for given subprogram */
1887 	env->subprog_info[func->subprogno].stack_depth = -off;
1888 	return 0;
1889 }
1890 
1891 /* starting from main bpf function walk all instructions of the function
1892  * and recursively walk all callees that given function can call.
1893  * Ignore jump and exit insns.
1894  * Since recursion is prevented by check_cfg() this algorithm
1895  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1896  */
1897 static int check_max_stack_depth(struct bpf_verifier_env *env)
1898 {
1899 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1900 	struct bpf_subprog_info *subprog = env->subprog_info;
1901 	struct bpf_insn *insn = env->prog->insnsi;
1902 	int ret_insn[MAX_CALL_FRAMES];
1903 	int ret_prog[MAX_CALL_FRAMES];
1904 
1905 process_func:
1906 	/* round up to 32-bytes, since this is granularity
1907 	 * of interpreter stack size
1908 	 */
1909 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1910 	if (depth > MAX_BPF_STACK) {
1911 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1912 			frame + 1, depth);
1913 		return -EACCES;
1914 	}
1915 continue_func:
1916 	subprog_end = subprog[idx + 1].start;
1917 	for (; i < subprog_end; i++) {
1918 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1919 			continue;
1920 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1921 			continue;
1922 		/* remember insn and function to return to */
1923 		ret_insn[frame] = i + 1;
1924 		ret_prog[frame] = idx;
1925 
1926 		/* find the callee */
1927 		i = i + insn[i].imm + 1;
1928 		idx = find_subprog(env, i);
1929 		if (idx < 0) {
1930 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1931 				  i);
1932 			return -EFAULT;
1933 		}
1934 		frame++;
1935 		if (frame >= MAX_CALL_FRAMES) {
1936 			verbose(env, "the call stack of %d frames is too deep !\n",
1937 				frame);
1938 			return -E2BIG;
1939 		}
1940 		goto process_func;
1941 	}
1942 	/* end of for() loop means the last insn of the 'subprog'
1943 	 * was reached. Doesn't matter whether it was JA or EXIT
1944 	 */
1945 	if (frame == 0)
1946 		return 0;
1947 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1948 	frame--;
1949 	i = ret_insn[frame];
1950 	idx = ret_prog[frame];
1951 	goto continue_func;
1952 }
1953 
1954 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1955 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1956 				  const struct bpf_insn *insn, int idx)
1957 {
1958 	int start = idx + insn->imm + 1, subprog;
1959 
1960 	subprog = find_subprog(env, start);
1961 	if (subprog < 0) {
1962 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1963 			  start);
1964 		return -EFAULT;
1965 	}
1966 	return env->subprog_info[subprog].stack_depth;
1967 }
1968 #endif
1969 
1970 static int check_ctx_reg(struct bpf_verifier_env *env,
1971 			 const struct bpf_reg_state *reg, int regno)
1972 {
1973 	/* Access to ctx or passing it to a helper is only allowed in
1974 	 * its original, unmodified form.
1975 	 */
1976 
1977 	if (reg->off) {
1978 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1979 			regno, reg->off);
1980 		return -EACCES;
1981 	}
1982 
1983 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1984 		char tn_buf[48];
1985 
1986 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1987 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1988 		return -EACCES;
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 /* truncate register to smaller size (in bytes)
1995  * must be called with size < BPF_REG_SIZE
1996  */
1997 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1998 {
1999 	u64 mask;
2000 
2001 	/* clear high bits in bit representation */
2002 	reg->var_off = tnum_cast(reg->var_off, size);
2003 
2004 	/* fix arithmetic bounds */
2005 	mask = ((u64)1 << (size * 8)) - 1;
2006 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2007 		reg->umin_value &= mask;
2008 		reg->umax_value &= mask;
2009 	} else {
2010 		reg->umin_value = 0;
2011 		reg->umax_value = mask;
2012 	}
2013 	reg->smin_value = reg->umin_value;
2014 	reg->smax_value = reg->umax_value;
2015 }
2016 
2017 /* check whether memory at (regno + off) is accessible for t = (read | write)
2018  * if t==write, value_regno is a register which value is stored into memory
2019  * if t==read, value_regno is a register which will receive the value from memory
2020  * if t==write && value_regno==-1, some unknown value is stored into memory
2021  * if t==read && value_regno==-1, don't care what we read from memory
2022  */
2023 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2024 			    int off, int bpf_size, enum bpf_access_type t,
2025 			    int value_regno, bool strict_alignment_once)
2026 {
2027 	struct bpf_reg_state *regs = cur_regs(env);
2028 	struct bpf_reg_state *reg = regs + regno;
2029 	struct bpf_func_state *state;
2030 	int size, err = 0;
2031 
2032 	size = bpf_size_to_bytes(bpf_size);
2033 	if (size < 0)
2034 		return size;
2035 
2036 	/* alignment checks will add in reg->off themselves */
2037 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2038 	if (err)
2039 		return err;
2040 
2041 	/* for access checks, reg->off is just part of off */
2042 	off += reg->off;
2043 
2044 	if (reg->type == PTR_TO_MAP_VALUE) {
2045 		if (t == BPF_WRITE && value_regno >= 0 &&
2046 		    is_pointer_value(env, value_regno)) {
2047 			verbose(env, "R%d leaks addr into map\n", value_regno);
2048 			return -EACCES;
2049 		}
2050 		err = check_map_access_type(env, regno, off, size, t);
2051 		if (err)
2052 			return err;
2053 		err = check_map_access(env, regno, off, size, false);
2054 		if (!err && t == BPF_READ && value_regno >= 0)
2055 			mark_reg_unknown(env, regs, value_regno);
2056 
2057 	} else if (reg->type == PTR_TO_CTX) {
2058 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2059 
2060 		if (t == BPF_WRITE && value_regno >= 0 &&
2061 		    is_pointer_value(env, value_regno)) {
2062 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2063 			return -EACCES;
2064 		}
2065 
2066 		err = check_ctx_reg(env, reg, regno);
2067 		if (err < 0)
2068 			return err;
2069 
2070 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2071 		if (!err && t == BPF_READ && value_regno >= 0) {
2072 			/* ctx access returns either a scalar, or a
2073 			 * PTR_TO_PACKET[_META,_END]. In the latter
2074 			 * case, we know the offset is zero.
2075 			 */
2076 			if (reg_type == SCALAR_VALUE) {
2077 				mark_reg_unknown(env, regs, value_regno);
2078 			} else {
2079 				mark_reg_known_zero(env, regs,
2080 						    value_regno);
2081 				if (reg_type_may_be_null(reg_type))
2082 					regs[value_regno].id = ++env->id_gen;
2083 			}
2084 			regs[value_regno].type = reg_type;
2085 		}
2086 
2087 	} else if (reg->type == PTR_TO_STACK) {
2088 		off += reg->var_off.value;
2089 		err = check_stack_access(env, reg, off, size);
2090 		if (err)
2091 			return err;
2092 
2093 		state = func(env, reg);
2094 		err = update_stack_depth(env, state, off);
2095 		if (err)
2096 			return err;
2097 
2098 		if (t == BPF_WRITE)
2099 			err = check_stack_write(env, state, off, size,
2100 						value_regno, insn_idx);
2101 		else
2102 			err = check_stack_read(env, state, off, size,
2103 					       value_regno);
2104 	} else if (reg_is_pkt_pointer(reg)) {
2105 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2106 			verbose(env, "cannot write into packet\n");
2107 			return -EACCES;
2108 		}
2109 		if (t == BPF_WRITE && value_regno >= 0 &&
2110 		    is_pointer_value(env, value_regno)) {
2111 			verbose(env, "R%d leaks addr into packet\n",
2112 				value_regno);
2113 			return -EACCES;
2114 		}
2115 		err = check_packet_access(env, regno, off, size, false);
2116 		if (!err && t == BPF_READ && value_regno >= 0)
2117 			mark_reg_unknown(env, regs, value_regno);
2118 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2119 		if (t == BPF_WRITE && value_regno >= 0 &&
2120 		    is_pointer_value(env, value_regno)) {
2121 			verbose(env, "R%d leaks addr into flow keys\n",
2122 				value_regno);
2123 			return -EACCES;
2124 		}
2125 
2126 		err = check_flow_keys_access(env, off, size);
2127 		if (!err && t == BPF_READ && value_regno >= 0)
2128 			mark_reg_unknown(env, regs, value_regno);
2129 	} else if (type_is_sk_pointer(reg->type)) {
2130 		if (t == BPF_WRITE) {
2131 			verbose(env, "R%d cannot write into %s\n",
2132 				regno, reg_type_str[reg->type]);
2133 			return -EACCES;
2134 		}
2135 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2136 		if (!err && value_regno >= 0)
2137 			mark_reg_unknown(env, regs, value_regno);
2138 	} else {
2139 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2140 			reg_type_str[reg->type]);
2141 		return -EACCES;
2142 	}
2143 
2144 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2145 	    regs[value_regno].type == SCALAR_VALUE) {
2146 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2147 		coerce_reg_to_size(&regs[value_regno], size);
2148 	}
2149 	return err;
2150 }
2151 
2152 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2153 {
2154 	int err;
2155 
2156 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2157 	    insn->imm != 0) {
2158 		verbose(env, "BPF_XADD uses reserved fields\n");
2159 		return -EINVAL;
2160 	}
2161 
2162 	/* check src1 operand */
2163 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2164 	if (err)
2165 		return err;
2166 
2167 	/* check src2 operand */
2168 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2169 	if (err)
2170 		return err;
2171 
2172 	if (is_pointer_value(env, insn->src_reg)) {
2173 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2174 		return -EACCES;
2175 	}
2176 
2177 	if (is_ctx_reg(env, insn->dst_reg) ||
2178 	    is_pkt_reg(env, insn->dst_reg) ||
2179 	    is_flow_key_reg(env, insn->dst_reg) ||
2180 	    is_sk_reg(env, insn->dst_reg)) {
2181 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2182 			insn->dst_reg,
2183 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2184 		return -EACCES;
2185 	}
2186 
2187 	/* check whether atomic_add can read the memory */
2188 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2189 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2190 	if (err)
2191 		return err;
2192 
2193 	/* check whether atomic_add can write into the same memory */
2194 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2195 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2196 }
2197 
2198 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2199 				  int off, int access_size,
2200 				  bool zero_size_allowed)
2201 {
2202 	struct bpf_reg_state *reg = reg_state(env, regno);
2203 
2204 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2205 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2206 		if (tnum_is_const(reg->var_off)) {
2207 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2208 				regno, off, access_size);
2209 		} else {
2210 			char tn_buf[48];
2211 
2212 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2213 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2214 				regno, tn_buf, access_size);
2215 		}
2216 		return -EACCES;
2217 	}
2218 	return 0;
2219 }
2220 
2221 /* when register 'regno' is passed into function that will read 'access_size'
2222  * bytes from that pointer, make sure that it's within stack boundary
2223  * and all elements of stack are initialized.
2224  * Unlike most pointer bounds-checking functions, this one doesn't take an
2225  * 'off' argument, so it has to add in reg->off itself.
2226  */
2227 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2228 				int access_size, bool zero_size_allowed,
2229 				struct bpf_call_arg_meta *meta)
2230 {
2231 	struct bpf_reg_state *reg = reg_state(env, regno);
2232 	struct bpf_func_state *state = func(env, reg);
2233 	int err, min_off, max_off, i, slot, spi;
2234 
2235 	if (reg->type != PTR_TO_STACK) {
2236 		/* Allow zero-byte read from NULL, regardless of pointer type */
2237 		if (zero_size_allowed && access_size == 0 &&
2238 		    register_is_null(reg))
2239 			return 0;
2240 
2241 		verbose(env, "R%d type=%s expected=%s\n", regno,
2242 			reg_type_str[reg->type],
2243 			reg_type_str[PTR_TO_STACK]);
2244 		return -EACCES;
2245 	}
2246 
2247 	if (tnum_is_const(reg->var_off)) {
2248 		min_off = max_off = reg->var_off.value + reg->off;
2249 		err = __check_stack_boundary(env, regno, min_off, access_size,
2250 					     zero_size_allowed);
2251 		if (err)
2252 			return err;
2253 	} else {
2254 		/* Variable offset is prohibited for unprivileged mode for
2255 		 * simplicity since it requires corresponding support in
2256 		 * Spectre masking for stack ALU.
2257 		 * See also retrieve_ptr_limit().
2258 		 */
2259 		if (!env->allow_ptr_leaks) {
2260 			char tn_buf[48];
2261 
2262 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2263 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2264 				regno, tn_buf);
2265 			return -EACCES;
2266 		}
2267 		/* Only initialized buffer on stack is allowed to be accessed
2268 		 * with variable offset. With uninitialized buffer it's hard to
2269 		 * guarantee that whole memory is marked as initialized on
2270 		 * helper return since specific bounds are unknown what may
2271 		 * cause uninitialized stack leaking.
2272 		 */
2273 		if (meta && meta->raw_mode)
2274 			meta = NULL;
2275 
2276 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2277 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
2278 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
2279 				regno);
2280 			return -EACCES;
2281 		}
2282 		min_off = reg->smin_value + reg->off;
2283 		max_off = reg->smax_value + reg->off;
2284 		err = __check_stack_boundary(env, regno, min_off, access_size,
2285 					     zero_size_allowed);
2286 		if (err) {
2287 			verbose(env, "R%d min value is outside of stack bound\n",
2288 				regno);
2289 			return err;
2290 		}
2291 		err = __check_stack_boundary(env, regno, max_off, access_size,
2292 					     zero_size_allowed);
2293 		if (err) {
2294 			verbose(env, "R%d max value is outside of stack bound\n",
2295 				regno);
2296 			return err;
2297 		}
2298 	}
2299 
2300 	if (meta && meta->raw_mode) {
2301 		meta->access_size = access_size;
2302 		meta->regno = regno;
2303 		return 0;
2304 	}
2305 
2306 	for (i = min_off; i < max_off + access_size; i++) {
2307 		u8 *stype;
2308 
2309 		slot = -i - 1;
2310 		spi = slot / BPF_REG_SIZE;
2311 		if (state->allocated_stack <= slot)
2312 			goto err;
2313 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2314 		if (*stype == STACK_MISC)
2315 			goto mark;
2316 		if (*stype == STACK_ZERO) {
2317 			/* helper can write anything into the stack */
2318 			*stype = STACK_MISC;
2319 			goto mark;
2320 		}
2321 err:
2322 		if (tnum_is_const(reg->var_off)) {
2323 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2324 				min_off, i - min_off, access_size);
2325 		} else {
2326 			char tn_buf[48];
2327 
2328 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2329 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
2330 				tn_buf, i - min_off, access_size);
2331 		}
2332 		return -EACCES;
2333 mark:
2334 		/* reading any byte out of 8-byte 'spill_slot' will cause
2335 		 * the whole slot to be marked as 'read'
2336 		 */
2337 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2338 			      state->stack[spi].spilled_ptr.parent);
2339 	}
2340 	return update_stack_depth(env, state, min_off);
2341 }
2342 
2343 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2344 				   int access_size, bool zero_size_allowed,
2345 				   struct bpf_call_arg_meta *meta)
2346 {
2347 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2348 
2349 	switch (reg->type) {
2350 	case PTR_TO_PACKET:
2351 	case PTR_TO_PACKET_META:
2352 		return check_packet_access(env, regno, reg->off, access_size,
2353 					   zero_size_allowed);
2354 	case PTR_TO_MAP_VALUE:
2355 		if (check_map_access_type(env, regno, reg->off, access_size,
2356 					  meta && meta->raw_mode ? BPF_WRITE :
2357 					  BPF_READ))
2358 			return -EACCES;
2359 		return check_map_access(env, regno, reg->off, access_size,
2360 					zero_size_allowed);
2361 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2362 		return check_stack_boundary(env, regno, access_size,
2363 					    zero_size_allowed, meta);
2364 	}
2365 }
2366 
2367 /* Implementation details:
2368  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2369  * Two bpf_map_lookups (even with the same key) will have different reg->id.
2370  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2371  * value_or_null->value transition, since the verifier only cares about
2372  * the range of access to valid map value pointer and doesn't care about actual
2373  * address of the map element.
2374  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2375  * reg->id > 0 after value_or_null->value transition. By doing so
2376  * two bpf_map_lookups will be considered two different pointers that
2377  * point to different bpf_spin_locks.
2378  * The verifier allows taking only one bpf_spin_lock at a time to avoid
2379  * dead-locks.
2380  * Since only one bpf_spin_lock is allowed the checks are simpler than
2381  * reg_is_refcounted() logic. The verifier needs to remember only
2382  * one spin_lock instead of array of acquired_refs.
2383  * cur_state->active_spin_lock remembers which map value element got locked
2384  * and clears it after bpf_spin_unlock.
2385  */
2386 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2387 			     bool is_lock)
2388 {
2389 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2390 	struct bpf_verifier_state *cur = env->cur_state;
2391 	bool is_const = tnum_is_const(reg->var_off);
2392 	struct bpf_map *map = reg->map_ptr;
2393 	u64 val = reg->var_off.value;
2394 
2395 	if (reg->type != PTR_TO_MAP_VALUE) {
2396 		verbose(env, "R%d is not a pointer to map_value\n", regno);
2397 		return -EINVAL;
2398 	}
2399 	if (!is_const) {
2400 		verbose(env,
2401 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2402 			regno);
2403 		return -EINVAL;
2404 	}
2405 	if (!map->btf) {
2406 		verbose(env,
2407 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
2408 			map->name);
2409 		return -EINVAL;
2410 	}
2411 	if (!map_value_has_spin_lock(map)) {
2412 		if (map->spin_lock_off == -E2BIG)
2413 			verbose(env,
2414 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
2415 				map->name);
2416 		else if (map->spin_lock_off == -ENOENT)
2417 			verbose(env,
2418 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
2419 				map->name);
2420 		else
2421 			verbose(env,
2422 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2423 				map->name);
2424 		return -EINVAL;
2425 	}
2426 	if (map->spin_lock_off != val + reg->off) {
2427 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2428 			val + reg->off);
2429 		return -EINVAL;
2430 	}
2431 	if (is_lock) {
2432 		if (cur->active_spin_lock) {
2433 			verbose(env,
2434 				"Locking two bpf_spin_locks are not allowed\n");
2435 			return -EINVAL;
2436 		}
2437 		cur->active_spin_lock = reg->id;
2438 	} else {
2439 		if (!cur->active_spin_lock) {
2440 			verbose(env, "bpf_spin_unlock without taking a lock\n");
2441 			return -EINVAL;
2442 		}
2443 		if (cur->active_spin_lock != reg->id) {
2444 			verbose(env, "bpf_spin_unlock of different lock\n");
2445 			return -EINVAL;
2446 		}
2447 		cur->active_spin_lock = 0;
2448 	}
2449 	return 0;
2450 }
2451 
2452 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2453 {
2454 	return type == ARG_PTR_TO_MEM ||
2455 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2456 	       type == ARG_PTR_TO_UNINIT_MEM;
2457 }
2458 
2459 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2460 {
2461 	return type == ARG_CONST_SIZE ||
2462 	       type == ARG_CONST_SIZE_OR_ZERO;
2463 }
2464 
2465 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2466 			  enum bpf_arg_type arg_type,
2467 			  struct bpf_call_arg_meta *meta)
2468 {
2469 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2470 	enum bpf_reg_type expected_type, type = reg->type;
2471 	int err = 0;
2472 
2473 	if (arg_type == ARG_DONTCARE)
2474 		return 0;
2475 
2476 	err = check_reg_arg(env, regno, SRC_OP);
2477 	if (err)
2478 		return err;
2479 
2480 	if (arg_type == ARG_ANYTHING) {
2481 		if (is_pointer_value(env, regno)) {
2482 			verbose(env, "R%d leaks addr into helper function\n",
2483 				regno);
2484 			return -EACCES;
2485 		}
2486 		return 0;
2487 	}
2488 
2489 	if (type_is_pkt_pointer(type) &&
2490 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2491 		verbose(env, "helper access to the packet is not allowed\n");
2492 		return -EACCES;
2493 	}
2494 
2495 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2496 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2497 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2498 		expected_type = PTR_TO_STACK;
2499 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
2500 		    type != expected_type)
2501 			goto err_type;
2502 	} else if (arg_type == ARG_CONST_SIZE ||
2503 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2504 		expected_type = SCALAR_VALUE;
2505 		if (type != expected_type)
2506 			goto err_type;
2507 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2508 		expected_type = CONST_PTR_TO_MAP;
2509 		if (type != expected_type)
2510 			goto err_type;
2511 	} else if (arg_type == ARG_PTR_TO_CTX) {
2512 		expected_type = PTR_TO_CTX;
2513 		if (type != expected_type)
2514 			goto err_type;
2515 		err = check_ctx_reg(env, reg, regno);
2516 		if (err < 0)
2517 			return err;
2518 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2519 		expected_type = PTR_TO_SOCK_COMMON;
2520 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2521 		if (!type_is_sk_pointer(type))
2522 			goto err_type;
2523 		if (reg->ref_obj_id) {
2524 			if (meta->ref_obj_id) {
2525 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2526 					regno, reg->ref_obj_id,
2527 					meta->ref_obj_id);
2528 				return -EFAULT;
2529 			}
2530 			meta->ref_obj_id = reg->ref_obj_id;
2531 		}
2532 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2533 		if (meta->func_id == BPF_FUNC_spin_lock) {
2534 			if (process_spin_lock(env, regno, true))
2535 				return -EACCES;
2536 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
2537 			if (process_spin_lock(env, regno, false))
2538 				return -EACCES;
2539 		} else {
2540 			verbose(env, "verifier internal error\n");
2541 			return -EFAULT;
2542 		}
2543 	} else if (arg_type_is_mem_ptr(arg_type)) {
2544 		expected_type = PTR_TO_STACK;
2545 		/* One exception here. In case function allows for NULL to be
2546 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2547 		 * happens during stack boundary checking.
2548 		 */
2549 		if (register_is_null(reg) &&
2550 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2551 			/* final test in check_stack_boundary() */;
2552 		else if (!type_is_pkt_pointer(type) &&
2553 			 type != PTR_TO_MAP_VALUE &&
2554 			 type != expected_type)
2555 			goto err_type;
2556 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2557 	} else {
2558 		verbose(env, "unsupported arg_type %d\n", arg_type);
2559 		return -EFAULT;
2560 	}
2561 
2562 	if (arg_type == ARG_CONST_MAP_PTR) {
2563 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2564 		meta->map_ptr = reg->map_ptr;
2565 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2566 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2567 		 * check that [key, key + map->key_size) are within
2568 		 * stack limits and initialized
2569 		 */
2570 		if (!meta->map_ptr) {
2571 			/* in function declaration map_ptr must come before
2572 			 * map_key, so that it's verified and known before
2573 			 * we have to check map_key here. Otherwise it means
2574 			 * that kernel subsystem misconfigured verifier
2575 			 */
2576 			verbose(env, "invalid map_ptr to access map->key\n");
2577 			return -EACCES;
2578 		}
2579 		err = check_helper_mem_access(env, regno,
2580 					      meta->map_ptr->key_size, false,
2581 					      NULL);
2582 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2583 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2584 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2585 		 * check [value, value + map->value_size) validity
2586 		 */
2587 		if (!meta->map_ptr) {
2588 			/* kernel subsystem misconfigured verifier */
2589 			verbose(env, "invalid map_ptr to access map->value\n");
2590 			return -EACCES;
2591 		}
2592 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2593 		err = check_helper_mem_access(env, regno,
2594 					      meta->map_ptr->value_size, false,
2595 					      meta);
2596 	} else if (arg_type_is_mem_size(arg_type)) {
2597 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2598 
2599 		/* remember the mem_size which may be used later
2600 		 * to refine return values.
2601 		 */
2602 		meta->msize_smax_value = reg->smax_value;
2603 		meta->msize_umax_value = reg->umax_value;
2604 
2605 		/* The register is SCALAR_VALUE; the access check
2606 		 * happens using its boundaries.
2607 		 */
2608 		if (!tnum_is_const(reg->var_off))
2609 			/* For unprivileged variable accesses, disable raw
2610 			 * mode so that the program is required to
2611 			 * initialize all the memory that the helper could
2612 			 * just partially fill up.
2613 			 */
2614 			meta = NULL;
2615 
2616 		if (reg->smin_value < 0) {
2617 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2618 				regno);
2619 			return -EACCES;
2620 		}
2621 
2622 		if (reg->umin_value == 0) {
2623 			err = check_helper_mem_access(env, regno - 1, 0,
2624 						      zero_size_allowed,
2625 						      meta);
2626 			if (err)
2627 				return err;
2628 		}
2629 
2630 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2631 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2632 				regno);
2633 			return -EACCES;
2634 		}
2635 		err = check_helper_mem_access(env, regno - 1,
2636 					      reg->umax_value,
2637 					      zero_size_allowed, meta);
2638 	}
2639 
2640 	return err;
2641 err_type:
2642 	verbose(env, "R%d type=%s expected=%s\n", regno,
2643 		reg_type_str[type], reg_type_str[expected_type]);
2644 	return -EACCES;
2645 }
2646 
2647 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2648 					struct bpf_map *map, int func_id)
2649 {
2650 	if (!map)
2651 		return 0;
2652 
2653 	/* We need a two way check, first is from map perspective ... */
2654 	switch (map->map_type) {
2655 	case BPF_MAP_TYPE_PROG_ARRAY:
2656 		if (func_id != BPF_FUNC_tail_call)
2657 			goto error;
2658 		break;
2659 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2660 		if (func_id != BPF_FUNC_perf_event_read &&
2661 		    func_id != BPF_FUNC_perf_event_output &&
2662 		    func_id != BPF_FUNC_perf_event_read_value)
2663 			goto error;
2664 		break;
2665 	case BPF_MAP_TYPE_STACK_TRACE:
2666 		if (func_id != BPF_FUNC_get_stackid)
2667 			goto error;
2668 		break;
2669 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2670 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2671 		    func_id != BPF_FUNC_current_task_under_cgroup)
2672 			goto error;
2673 		break;
2674 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2675 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2676 		if (func_id != BPF_FUNC_get_local_storage)
2677 			goto error;
2678 		break;
2679 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2680 	 * allow to be modified from bpf side. So do not allow lookup elements
2681 	 * for now.
2682 	 */
2683 	case BPF_MAP_TYPE_DEVMAP:
2684 		if (func_id != BPF_FUNC_redirect_map)
2685 			goto error;
2686 		break;
2687 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2688 	 * appear.
2689 	 */
2690 	case BPF_MAP_TYPE_CPUMAP:
2691 	case BPF_MAP_TYPE_XSKMAP:
2692 		if (func_id != BPF_FUNC_redirect_map)
2693 			goto error;
2694 		break;
2695 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2696 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2697 		if (func_id != BPF_FUNC_map_lookup_elem)
2698 			goto error;
2699 		break;
2700 	case BPF_MAP_TYPE_SOCKMAP:
2701 		if (func_id != BPF_FUNC_sk_redirect_map &&
2702 		    func_id != BPF_FUNC_sock_map_update &&
2703 		    func_id != BPF_FUNC_map_delete_elem &&
2704 		    func_id != BPF_FUNC_msg_redirect_map)
2705 			goto error;
2706 		break;
2707 	case BPF_MAP_TYPE_SOCKHASH:
2708 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2709 		    func_id != BPF_FUNC_sock_hash_update &&
2710 		    func_id != BPF_FUNC_map_delete_elem &&
2711 		    func_id != BPF_FUNC_msg_redirect_hash)
2712 			goto error;
2713 		break;
2714 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2715 		if (func_id != BPF_FUNC_sk_select_reuseport)
2716 			goto error;
2717 		break;
2718 	case BPF_MAP_TYPE_QUEUE:
2719 	case BPF_MAP_TYPE_STACK:
2720 		if (func_id != BPF_FUNC_map_peek_elem &&
2721 		    func_id != BPF_FUNC_map_pop_elem &&
2722 		    func_id != BPF_FUNC_map_push_elem)
2723 			goto error;
2724 		break;
2725 	default:
2726 		break;
2727 	}
2728 
2729 	/* ... and second from the function itself. */
2730 	switch (func_id) {
2731 	case BPF_FUNC_tail_call:
2732 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2733 			goto error;
2734 		if (env->subprog_cnt > 1) {
2735 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2736 			return -EINVAL;
2737 		}
2738 		break;
2739 	case BPF_FUNC_perf_event_read:
2740 	case BPF_FUNC_perf_event_output:
2741 	case BPF_FUNC_perf_event_read_value:
2742 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2743 			goto error;
2744 		break;
2745 	case BPF_FUNC_get_stackid:
2746 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2747 			goto error;
2748 		break;
2749 	case BPF_FUNC_current_task_under_cgroup:
2750 	case BPF_FUNC_skb_under_cgroup:
2751 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2752 			goto error;
2753 		break;
2754 	case BPF_FUNC_redirect_map:
2755 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2756 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2757 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2758 			goto error;
2759 		break;
2760 	case BPF_FUNC_sk_redirect_map:
2761 	case BPF_FUNC_msg_redirect_map:
2762 	case BPF_FUNC_sock_map_update:
2763 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2764 			goto error;
2765 		break;
2766 	case BPF_FUNC_sk_redirect_hash:
2767 	case BPF_FUNC_msg_redirect_hash:
2768 	case BPF_FUNC_sock_hash_update:
2769 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2770 			goto error;
2771 		break;
2772 	case BPF_FUNC_get_local_storage:
2773 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2774 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2775 			goto error;
2776 		break;
2777 	case BPF_FUNC_sk_select_reuseport:
2778 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2779 			goto error;
2780 		break;
2781 	case BPF_FUNC_map_peek_elem:
2782 	case BPF_FUNC_map_pop_elem:
2783 	case BPF_FUNC_map_push_elem:
2784 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2785 		    map->map_type != BPF_MAP_TYPE_STACK)
2786 			goto error;
2787 		break;
2788 	default:
2789 		break;
2790 	}
2791 
2792 	return 0;
2793 error:
2794 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2795 		map->map_type, func_id_name(func_id), func_id);
2796 	return -EINVAL;
2797 }
2798 
2799 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2800 {
2801 	int count = 0;
2802 
2803 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2804 		count++;
2805 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2806 		count++;
2807 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2808 		count++;
2809 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2810 		count++;
2811 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2812 		count++;
2813 
2814 	/* We only support one arg being in raw mode at the moment,
2815 	 * which is sufficient for the helper functions we have
2816 	 * right now.
2817 	 */
2818 	return count <= 1;
2819 }
2820 
2821 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2822 				    enum bpf_arg_type arg_next)
2823 {
2824 	return (arg_type_is_mem_ptr(arg_curr) &&
2825 	        !arg_type_is_mem_size(arg_next)) ||
2826 	       (!arg_type_is_mem_ptr(arg_curr) &&
2827 		arg_type_is_mem_size(arg_next));
2828 }
2829 
2830 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2831 {
2832 	/* bpf_xxx(..., buf, len) call will access 'len'
2833 	 * bytes from memory 'buf'. Both arg types need
2834 	 * to be paired, so make sure there's no buggy
2835 	 * helper function specification.
2836 	 */
2837 	if (arg_type_is_mem_size(fn->arg1_type) ||
2838 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2839 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2840 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2841 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2842 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2843 		return false;
2844 
2845 	return true;
2846 }
2847 
2848 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
2849 {
2850 	int count = 0;
2851 
2852 	if (arg_type_may_be_refcounted(fn->arg1_type))
2853 		count++;
2854 	if (arg_type_may_be_refcounted(fn->arg2_type))
2855 		count++;
2856 	if (arg_type_may_be_refcounted(fn->arg3_type))
2857 		count++;
2858 	if (arg_type_may_be_refcounted(fn->arg4_type))
2859 		count++;
2860 	if (arg_type_may_be_refcounted(fn->arg5_type))
2861 		count++;
2862 
2863 	/* A reference acquiring function cannot acquire
2864 	 * another refcounted ptr.
2865 	 */
2866 	if (is_acquire_function(func_id) && count)
2867 		return false;
2868 
2869 	/* We only support one arg being unreferenced at the moment,
2870 	 * which is sufficient for the helper functions we have right now.
2871 	 */
2872 	return count <= 1;
2873 }
2874 
2875 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
2876 {
2877 	return check_raw_mode_ok(fn) &&
2878 	       check_arg_pair_ok(fn) &&
2879 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
2880 }
2881 
2882 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2883  * are now invalid, so turn them into unknown SCALAR_VALUE.
2884  */
2885 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2886 				     struct bpf_func_state *state)
2887 {
2888 	struct bpf_reg_state *regs = state->regs, *reg;
2889 	int i;
2890 
2891 	for (i = 0; i < MAX_BPF_REG; i++)
2892 		if (reg_is_pkt_pointer_any(&regs[i]))
2893 			mark_reg_unknown(env, regs, i);
2894 
2895 	bpf_for_each_spilled_reg(i, state, reg) {
2896 		if (!reg)
2897 			continue;
2898 		if (reg_is_pkt_pointer_any(reg))
2899 			__mark_reg_unknown(reg);
2900 	}
2901 }
2902 
2903 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2904 {
2905 	struct bpf_verifier_state *vstate = env->cur_state;
2906 	int i;
2907 
2908 	for (i = 0; i <= vstate->curframe; i++)
2909 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2910 }
2911 
2912 static void release_reg_references(struct bpf_verifier_env *env,
2913 				   struct bpf_func_state *state,
2914 				   int ref_obj_id)
2915 {
2916 	struct bpf_reg_state *regs = state->regs, *reg;
2917 	int i;
2918 
2919 	for (i = 0; i < MAX_BPF_REG; i++)
2920 		if (regs[i].ref_obj_id == ref_obj_id)
2921 			mark_reg_unknown(env, regs, i);
2922 
2923 	bpf_for_each_spilled_reg(i, state, reg) {
2924 		if (!reg)
2925 			continue;
2926 		if (reg->ref_obj_id == ref_obj_id)
2927 			__mark_reg_unknown(reg);
2928 	}
2929 }
2930 
2931 /* The pointer with the specified id has released its reference to kernel
2932  * resources. Identify all copies of the same pointer and clear the reference.
2933  */
2934 static int release_reference(struct bpf_verifier_env *env,
2935 			     int ref_obj_id)
2936 {
2937 	struct bpf_verifier_state *vstate = env->cur_state;
2938 	int err;
2939 	int i;
2940 
2941 	err = release_reference_state(cur_func(env), ref_obj_id);
2942 	if (err)
2943 		return err;
2944 
2945 	for (i = 0; i <= vstate->curframe; i++)
2946 		release_reg_references(env, vstate->frame[i], ref_obj_id);
2947 
2948 	return 0;
2949 }
2950 
2951 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2952 			   int *insn_idx)
2953 {
2954 	struct bpf_verifier_state *state = env->cur_state;
2955 	struct bpf_func_state *caller, *callee;
2956 	int i, err, subprog, target_insn;
2957 
2958 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2959 		verbose(env, "the call stack of %d frames is too deep\n",
2960 			state->curframe + 2);
2961 		return -E2BIG;
2962 	}
2963 
2964 	target_insn = *insn_idx + insn->imm;
2965 	subprog = find_subprog(env, target_insn + 1);
2966 	if (subprog < 0) {
2967 		verbose(env, "verifier bug. No program starts at insn %d\n",
2968 			target_insn + 1);
2969 		return -EFAULT;
2970 	}
2971 
2972 	caller = state->frame[state->curframe];
2973 	if (state->frame[state->curframe + 1]) {
2974 		verbose(env, "verifier bug. Frame %d already allocated\n",
2975 			state->curframe + 1);
2976 		return -EFAULT;
2977 	}
2978 
2979 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2980 	if (!callee)
2981 		return -ENOMEM;
2982 	state->frame[state->curframe + 1] = callee;
2983 
2984 	/* callee cannot access r0, r6 - r9 for reading and has to write
2985 	 * into its own stack before reading from it.
2986 	 * callee can read/write into caller's stack
2987 	 */
2988 	init_func_state(env, callee,
2989 			/* remember the callsite, it will be used by bpf_exit */
2990 			*insn_idx /* callsite */,
2991 			state->curframe + 1 /* frameno within this callchain */,
2992 			subprog /* subprog number within this prog */);
2993 
2994 	/* Transfer references to the callee */
2995 	err = transfer_reference_state(callee, caller);
2996 	if (err)
2997 		return err;
2998 
2999 	/* copy r1 - r5 args that callee can access.  The copy includes parent
3000 	 * pointers, which connects us up to the liveness chain
3001 	 */
3002 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3003 		callee->regs[i] = caller->regs[i];
3004 
3005 	/* after the call registers r0 - r5 were scratched */
3006 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3007 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
3008 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3009 	}
3010 
3011 	/* only increment it after check_reg_arg() finished */
3012 	state->curframe++;
3013 
3014 	/* and go analyze first insn of the callee */
3015 	*insn_idx = target_insn;
3016 
3017 	if (env->log.level & BPF_LOG_LEVEL) {
3018 		verbose(env, "caller:\n");
3019 		print_verifier_state(env, caller);
3020 		verbose(env, "callee:\n");
3021 		print_verifier_state(env, callee);
3022 	}
3023 	return 0;
3024 }
3025 
3026 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3027 {
3028 	struct bpf_verifier_state *state = env->cur_state;
3029 	struct bpf_func_state *caller, *callee;
3030 	struct bpf_reg_state *r0;
3031 	int err;
3032 
3033 	callee = state->frame[state->curframe];
3034 	r0 = &callee->regs[BPF_REG_0];
3035 	if (r0->type == PTR_TO_STACK) {
3036 		/* technically it's ok to return caller's stack pointer
3037 		 * (or caller's caller's pointer) back to the caller,
3038 		 * since these pointers are valid. Only current stack
3039 		 * pointer will be invalid as soon as function exits,
3040 		 * but let's be conservative
3041 		 */
3042 		verbose(env, "cannot return stack pointer to the caller\n");
3043 		return -EINVAL;
3044 	}
3045 
3046 	state->curframe--;
3047 	caller = state->frame[state->curframe];
3048 	/* return to the caller whatever r0 had in the callee */
3049 	caller->regs[BPF_REG_0] = *r0;
3050 
3051 	/* Transfer references to the caller */
3052 	err = transfer_reference_state(caller, callee);
3053 	if (err)
3054 		return err;
3055 
3056 	*insn_idx = callee->callsite + 1;
3057 	if (env->log.level & BPF_LOG_LEVEL) {
3058 		verbose(env, "returning from callee:\n");
3059 		print_verifier_state(env, callee);
3060 		verbose(env, "to caller at %d:\n", *insn_idx);
3061 		print_verifier_state(env, caller);
3062 	}
3063 	/* clear everything in the callee */
3064 	free_func_state(callee);
3065 	state->frame[state->curframe + 1] = NULL;
3066 	return 0;
3067 }
3068 
3069 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3070 				   int func_id,
3071 				   struct bpf_call_arg_meta *meta)
3072 {
3073 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3074 
3075 	if (ret_type != RET_INTEGER ||
3076 	    (func_id != BPF_FUNC_get_stack &&
3077 	     func_id != BPF_FUNC_probe_read_str))
3078 		return;
3079 
3080 	ret_reg->smax_value = meta->msize_smax_value;
3081 	ret_reg->umax_value = meta->msize_umax_value;
3082 	__reg_deduce_bounds(ret_reg);
3083 	__reg_bound_offset(ret_reg);
3084 }
3085 
3086 static int
3087 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3088 		int func_id, int insn_idx)
3089 {
3090 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3091 	struct bpf_map *map = meta->map_ptr;
3092 
3093 	if (func_id != BPF_FUNC_tail_call &&
3094 	    func_id != BPF_FUNC_map_lookup_elem &&
3095 	    func_id != BPF_FUNC_map_update_elem &&
3096 	    func_id != BPF_FUNC_map_delete_elem &&
3097 	    func_id != BPF_FUNC_map_push_elem &&
3098 	    func_id != BPF_FUNC_map_pop_elem &&
3099 	    func_id != BPF_FUNC_map_peek_elem)
3100 		return 0;
3101 
3102 	if (map == NULL) {
3103 		verbose(env, "kernel subsystem misconfigured verifier\n");
3104 		return -EINVAL;
3105 	}
3106 
3107 	/* In case of read-only, some additional restrictions
3108 	 * need to be applied in order to prevent altering the
3109 	 * state of the map from program side.
3110 	 */
3111 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3112 	    (func_id == BPF_FUNC_map_delete_elem ||
3113 	     func_id == BPF_FUNC_map_update_elem ||
3114 	     func_id == BPF_FUNC_map_push_elem ||
3115 	     func_id == BPF_FUNC_map_pop_elem)) {
3116 		verbose(env, "write into map forbidden\n");
3117 		return -EACCES;
3118 	}
3119 
3120 	if (!BPF_MAP_PTR(aux->map_state))
3121 		bpf_map_ptr_store(aux, meta->map_ptr,
3122 				  meta->map_ptr->unpriv_array);
3123 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3124 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3125 				  meta->map_ptr->unpriv_array);
3126 	return 0;
3127 }
3128 
3129 static int check_reference_leak(struct bpf_verifier_env *env)
3130 {
3131 	struct bpf_func_state *state = cur_func(env);
3132 	int i;
3133 
3134 	for (i = 0; i < state->acquired_refs; i++) {
3135 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3136 			state->refs[i].id, state->refs[i].insn_idx);
3137 	}
3138 	return state->acquired_refs ? -EINVAL : 0;
3139 }
3140 
3141 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3142 {
3143 	const struct bpf_func_proto *fn = NULL;
3144 	struct bpf_reg_state *regs;
3145 	struct bpf_call_arg_meta meta;
3146 	bool changes_data;
3147 	int i, err;
3148 
3149 	/* find function prototype */
3150 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3151 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3152 			func_id);
3153 		return -EINVAL;
3154 	}
3155 
3156 	if (env->ops->get_func_proto)
3157 		fn = env->ops->get_func_proto(func_id, env->prog);
3158 	if (!fn) {
3159 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3160 			func_id);
3161 		return -EINVAL;
3162 	}
3163 
3164 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
3165 	if (!env->prog->gpl_compatible && fn->gpl_only) {
3166 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3167 		return -EINVAL;
3168 	}
3169 
3170 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
3171 	changes_data = bpf_helper_changes_pkt_data(fn->func);
3172 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3173 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3174 			func_id_name(func_id), func_id);
3175 		return -EINVAL;
3176 	}
3177 
3178 	memset(&meta, 0, sizeof(meta));
3179 	meta.pkt_access = fn->pkt_access;
3180 
3181 	err = check_func_proto(fn, func_id);
3182 	if (err) {
3183 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3184 			func_id_name(func_id), func_id);
3185 		return err;
3186 	}
3187 
3188 	meta.func_id = func_id;
3189 	/* check args */
3190 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3191 	if (err)
3192 		return err;
3193 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3194 	if (err)
3195 		return err;
3196 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3197 	if (err)
3198 		return err;
3199 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3200 	if (err)
3201 		return err;
3202 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3203 	if (err)
3204 		return err;
3205 
3206 	err = record_func_map(env, &meta, func_id, insn_idx);
3207 	if (err)
3208 		return err;
3209 
3210 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
3211 	 * is inferred from register state.
3212 	 */
3213 	for (i = 0; i < meta.access_size; i++) {
3214 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3215 				       BPF_WRITE, -1, false);
3216 		if (err)
3217 			return err;
3218 	}
3219 
3220 	if (func_id == BPF_FUNC_tail_call) {
3221 		err = check_reference_leak(env);
3222 		if (err) {
3223 			verbose(env, "tail_call would lead to reference leak\n");
3224 			return err;
3225 		}
3226 	} else if (is_release_function(func_id)) {
3227 		err = release_reference(env, meta.ref_obj_id);
3228 		if (err) {
3229 			verbose(env, "func %s#%d reference has not been acquired before\n",
3230 				func_id_name(func_id), func_id);
3231 			return err;
3232 		}
3233 	}
3234 
3235 	regs = cur_regs(env);
3236 
3237 	/* check that flags argument in get_local_storage(map, flags) is 0,
3238 	 * this is required because get_local_storage() can't return an error.
3239 	 */
3240 	if (func_id == BPF_FUNC_get_local_storage &&
3241 	    !register_is_null(&regs[BPF_REG_2])) {
3242 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3243 		return -EINVAL;
3244 	}
3245 
3246 	/* reset caller saved regs */
3247 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3248 		mark_reg_not_init(env, regs, caller_saved[i]);
3249 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3250 	}
3251 
3252 	/* update return register (already marked as written above) */
3253 	if (fn->ret_type == RET_INTEGER) {
3254 		/* sets type to SCALAR_VALUE */
3255 		mark_reg_unknown(env, regs, BPF_REG_0);
3256 	} else if (fn->ret_type == RET_VOID) {
3257 		regs[BPF_REG_0].type = NOT_INIT;
3258 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3259 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3260 		/* There is no offset yet applied, variable or fixed */
3261 		mark_reg_known_zero(env, regs, BPF_REG_0);
3262 		/* remember map_ptr, so that check_map_access()
3263 		 * can check 'value_size' boundary of memory access
3264 		 * to map element returned from bpf_map_lookup_elem()
3265 		 */
3266 		if (meta.map_ptr == NULL) {
3267 			verbose(env,
3268 				"kernel subsystem misconfigured verifier\n");
3269 			return -EINVAL;
3270 		}
3271 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
3272 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3273 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3274 			if (map_value_has_spin_lock(meta.map_ptr))
3275 				regs[BPF_REG_0].id = ++env->id_gen;
3276 		} else {
3277 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3278 			regs[BPF_REG_0].id = ++env->id_gen;
3279 		}
3280 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3281 		mark_reg_known_zero(env, regs, BPF_REG_0);
3282 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3283 		regs[BPF_REG_0].id = ++env->id_gen;
3284 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
3285 		mark_reg_known_zero(env, regs, BPF_REG_0);
3286 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
3287 		regs[BPF_REG_0].id = ++env->id_gen;
3288 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3289 		mark_reg_known_zero(env, regs, BPF_REG_0);
3290 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3291 		regs[BPF_REG_0].id = ++env->id_gen;
3292 	} else {
3293 		verbose(env, "unknown return type %d of func %s#%d\n",
3294 			fn->ret_type, func_id_name(func_id), func_id);
3295 		return -EINVAL;
3296 	}
3297 
3298 	if (is_ptr_cast_function(func_id)) {
3299 		/* For release_reference() */
3300 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
3301 	} else if (is_acquire_function(func_id)) {
3302 		int id = acquire_reference_state(env, insn_idx);
3303 
3304 		if (id < 0)
3305 			return id;
3306 		/* For mark_ptr_or_null_reg() */
3307 		regs[BPF_REG_0].id = id;
3308 		/* For release_reference() */
3309 		regs[BPF_REG_0].ref_obj_id = id;
3310 	}
3311 
3312 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3313 
3314 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3315 	if (err)
3316 		return err;
3317 
3318 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3319 		const char *err_str;
3320 
3321 #ifdef CONFIG_PERF_EVENTS
3322 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
3323 		err_str = "cannot get callchain buffer for func %s#%d\n";
3324 #else
3325 		err = -ENOTSUPP;
3326 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3327 #endif
3328 		if (err) {
3329 			verbose(env, err_str, func_id_name(func_id), func_id);
3330 			return err;
3331 		}
3332 
3333 		env->prog->has_callchain_buf = true;
3334 	}
3335 
3336 	if (changes_data)
3337 		clear_all_pkt_pointers(env);
3338 	return 0;
3339 }
3340 
3341 static bool signed_add_overflows(s64 a, s64 b)
3342 {
3343 	/* Do the add in u64, where overflow is well-defined */
3344 	s64 res = (s64)((u64)a + (u64)b);
3345 
3346 	if (b < 0)
3347 		return res > a;
3348 	return res < a;
3349 }
3350 
3351 static bool signed_sub_overflows(s64 a, s64 b)
3352 {
3353 	/* Do the sub in u64, where overflow is well-defined */
3354 	s64 res = (s64)((u64)a - (u64)b);
3355 
3356 	if (b < 0)
3357 		return res < a;
3358 	return res > a;
3359 }
3360 
3361 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3362 				  const struct bpf_reg_state *reg,
3363 				  enum bpf_reg_type type)
3364 {
3365 	bool known = tnum_is_const(reg->var_off);
3366 	s64 val = reg->var_off.value;
3367 	s64 smin = reg->smin_value;
3368 
3369 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3370 		verbose(env, "math between %s pointer and %lld is not allowed\n",
3371 			reg_type_str[type], val);
3372 		return false;
3373 	}
3374 
3375 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3376 		verbose(env, "%s pointer offset %d is not allowed\n",
3377 			reg_type_str[type], reg->off);
3378 		return false;
3379 	}
3380 
3381 	if (smin == S64_MIN) {
3382 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3383 			reg_type_str[type]);
3384 		return false;
3385 	}
3386 
3387 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3388 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
3389 			smin, reg_type_str[type]);
3390 		return false;
3391 	}
3392 
3393 	return true;
3394 }
3395 
3396 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3397 {
3398 	return &env->insn_aux_data[env->insn_idx];
3399 }
3400 
3401 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3402 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
3403 {
3404 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
3405 			    (opcode == BPF_SUB && !off_is_neg);
3406 	u32 off;
3407 
3408 	switch (ptr_reg->type) {
3409 	case PTR_TO_STACK:
3410 		/* Indirect variable offset stack access is prohibited in
3411 		 * unprivileged mode so it's not handled here.
3412 		 */
3413 		off = ptr_reg->off + ptr_reg->var_off.value;
3414 		if (mask_to_left)
3415 			*ptr_limit = MAX_BPF_STACK + off;
3416 		else
3417 			*ptr_limit = -off;
3418 		return 0;
3419 	case PTR_TO_MAP_VALUE:
3420 		if (mask_to_left) {
3421 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3422 		} else {
3423 			off = ptr_reg->smin_value + ptr_reg->off;
3424 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
3425 		}
3426 		return 0;
3427 	default:
3428 		return -EINVAL;
3429 	}
3430 }
3431 
3432 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3433 				    const struct bpf_insn *insn)
3434 {
3435 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3436 }
3437 
3438 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3439 				       u32 alu_state, u32 alu_limit)
3440 {
3441 	/* If we arrived here from different branches with different
3442 	 * state or limits to sanitize, then this won't work.
3443 	 */
3444 	if (aux->alu_state &&
3445 	    (aux->alu_state != alu_state ||
3446 	     aux->alu_limit != alu_limit))
3447 		return -EACCES;
3448 
3449 	/* Corresponding fixup done in fixup_bpf_calls(). */
3450 	aux->alu_state = alu_state;
3451 	aux->alu_limit = alu_limit;
3452 	return 0;
3453 }
3454 
3455 static int sanitize_val_alu(struct bpf_verifier_env *env,
3456 			    struct bpf_insn *insn)
3457 {
3458 	struct bpf_insn_aux_data *aux = cur_aux(env);
3459 
3460 	if (can_skip_alu_sanitation(env, insn))
3461 		return 0;
3462 
3463 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3464 }
3465 
3466 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3467 			    struct bpf_insn *insn,
3468 			    const struct bpf_reg_state *ptr_reg,
3469 			    struct bpf_reg_state *dst_reg,
3470 			    bool off_is_neg)
3471 {
3472 	struct bpf_verifier_state *vstate = env->cur_state;
3473 	struct bpf_insn_aux_data *aux = cur_aux(env);
3474 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
3475 	u8 opcode = BPF_OP(insn->code);
3476 	u32 alu_state, alu_limit;
3477 	struct bpf_reg_state tmp;
3478 	bool ret;
3479 
3480 	if (can_skip_alu_sanitation(env, insn))
3481 		return 0;
3482 
3483 	/* We already marked aux for masking from non-speculative
3484 	 * paths, thus we got here in the first place. We only care
3485 	 * to explore bad access from here.
3486 	 */
3487 	if (vstate->speculative)
3488 		goto do_sim;
3489 
3490 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3491 	alu_state |= ptr_is_dst_reg ?
3492 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3493 
3494 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3495 		return 0;
3496 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3497 		return -EACCES;
3498 do_sim:
3499 	/* Simulate and find potential out-of-bounds access under
3500 	 * speculative execution from truncation as a result of
3501 	 * masking when off was not within expected range. If off
3502 	 * sits in dst, then we temporarily need to move ptr there
3503 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3504 	 * for cases where we use K-based arithmetic in one direction
3505 	 * and truncated reg-based in the other in order to explore
3506 	 * bad access.
3507 	 */
3508 	if (!ptr_is_dst_reg) {
3509 		tmp = *dst_reg;
3510 		*dst_reg = *ptr_reg;
3511 	}
3512 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3513 	if (!ptr_is_dst_reg && ret)
3514 		*dst_reg = tmp;
3515 	return !ret ? -EFAULT : 0;
3516 }
3517 
3518 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3519  * Caller should also handle BPF_MOV case separately.
3520  * If we return -EACCES, caller may want to try again treating pointer as a
3521  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
3522  */
3523 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3524 				   struct bpf_insn *insn,
3525 				   const struct bpf_reg_state *ptr_reg,
3526 				   const struct bpf_reg_state *off_reg)
3527 {
3528 	struct bpf_verifier_state *vstate = env->cur_state;
3529 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3530 	struct bpf_reg_state *regs = state->regs, *dst_reg;
3531 	bool known = tnum_is_const(off_reg->var_off);
3532 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3533 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3534 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3535 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3536 	u32 dst = insn->dst_reg, src = insn->src_reg;
3537 	u8 opcode = BPF_OP(insn->code);
3538 	int ret;
3539 
3540 	dst_reg = &regs[dst];
3541 
3542 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3543 	    smin_val > smax_val || umin_val > umax_val) {
3544 		/* Taint dst register if offset had invalid bounds derived from
3545 		 * e.g. dead branches.
3546 		 */
3547 		__mark_reg_unknown(dst_reg);
3548 		return 0;
3549 	}
3550 
3551 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3552 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3553 		verbose(env,
3554 			"R%d 32-bit pointer arithmetic prohibited\n",
3555 			dst);
3556 		return -EACCES;
3557 	}
3558 
3559 	switch (ptr_reg->type) {
3560 	case PTR_TO_MAP_VALUE_OR_NULL:
3561 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3562 			dst, reg_type_str[ptr_reg->type]);
3563 		return -EACCES;
3564 	case CONST_PTR_TO_MAP:
3565 	case PTR_TO_PACKET_END:
3566 	case PTR_TO_SOCKET:
3567 	case PTR_TO_SOCKET_OR_NULL:
3568 	case PTR_TO_SOCK_COMMON:
3569 	case PTR_TO_SOCK_COMMON_OR_NULL:
3570 	case PTR_TO_TCP_SOCK:
3571 	case PTR_TO_TCP_SOCK_OR_NULL:
3572 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3573 			dst, reg_type_str[ptr_reg->type]);
3574 		return -EACCES;
3575 	case PTR_TO_MAP_VALUE:
3576 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3577 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3578 				off_reg == dst_reg ? dst : src);
3579 			return -EACCES;
3580 		}
3581 		/* fall-through */
3582 	default:
3583 		break;
3584 	}
3585 
3586 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3587 	 * The id may be overwritten later if we create a new variable offset.
3588 	 */
3589 	dst_reg->type = ptr_reg->type;
3590 	dst_reg->id = ptr_reg->id;
3591 
3592 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3593 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3594 		return -EINVAL;
3595 
3596 	switch (opcode) {
3597 	case BPF_ADD:
3598 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3599 		if (ret < 0) {
3600 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
3601 			return ret;
3602 		}
3603 		/* We can take a fixed offset as long as it doesn't overflow
3604 		 * the s32 'off' field
3605 		 */
3606 		if (known && (ptr_reg->off + smin_val ==
3607 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3608 			/* pointer += K.  Accumulate it into fixed offset */
3609 			dst_reg->smin_value = smin_ptr;
3610 			dst_reg->smax_value = smax_ptr;
3611 			dst_reg->umin_value = umin_ptr;
3612 			dst_reg->umax_value = umax_ptr;
3613 			dst_reg->var_off = ptr_reg->var_off;
3614 			dst_reg->off = ptr_reg->off + smin_val;
3615 			dst_reg->raw = ptr_reg->raw;
3616 			break;
3617 		}
3618 		/* A new variable offset is created.  Note that off_reg->off
3619 		 * == 0, since it's a scalar.
3620 		 * dst_reg gets the pointer type and since some positive
3621 		 * integer value was added to the pointer, give it a new 'id'
3622 		 * if it's a PTR_TO_PACKET.
3623 		 * this creates a new 'base' pointer, off_reg (variable) gets
3624 		 * added into the variable offset, and we copy the fixed offset
3625 		 * from ptr_reg.
3626 		 */
3627 		if (signed_add_overflows(smin_ptr, smin_val) ||
3628 		    signed_add_overflows(smax_ptr, smax_val)) {
3629 			dst_reg->smin_value = S64_MIN;
3630 			dst_reg->smax_value = S64_MAX;
3631 		} else {
3632 			dst_reg->smin_value = smin_ptr + smin_val;
3633 			dst_reg->smax_value = smax_ptr + smax_val;
3634 		}
3635 		if (umin_ptr + umin_val < umin_ptr ||
3636 		    umax_ptr + umax_val < umax_ptr) {
3637 			dst_reg->umin_value = 0;
3638 			dst_reg->umax_value = U64_MAX;
3639 		} else {
3640 			dst_reg->umin_value = umin_ptr + umin_val;
3641 			dst_reg->umax_value = umax_ptr + umax_val;
3642 		}
3643 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3644 		dst_reg->off = ptr_reg->off;
3645 		dst_reg->raw = ptr_reg->raw;
3646 		if (reg_is_pkt_pointer(ptr_reg)) {
3647 			dst_reg->id = ++env->id_gen;
3648 			/* something was added to pkt_ptr, set range to zero */
3649 			dst_reg->raw = 0;
3650 		}
3651 		break;
3652 	case BPF_SUB:
3653 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3654 		if (ret < 0) {
3655 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3656 			return ret;
3657 		}
3658 		if (dst_reg == off_reg) {
3659 			/* scalar -= pointer.  Creates an unknown scalar */
3660 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3661 				dst);
3662 			return -EACCES;
3663 		}
3664 		/* We don't allow subtraction from FP, because (according to
3665 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3666 		 * be able to deal with it.
3667 		 */
3668 		if (ptr_reg->type == PTR_TO_STACK) {
3669 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3670 				dst);
3671 			return -EACCES;
3672 		}
3673 		if (known && (ptr_reg->off - smin_val ==
3674 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3675 			/* pointer -= K.  Subtract it from fixed offset */
3676 			dst_reg->smin_value = smin_ptr;
3677 			dst_reg->smax_value = smax_ptr;
3678 			dst_reg->umin_value = umin_ptr;
3679 			dst_reg->umax_value = umax_ptr;
3680 			dst_reg->var_off = ptr_reg->var_off;
3681 			dst_reg->id = ptr_reg->id;
3682 			dst_reg->off = ptr_reg->off - smin_val;
3683 			dst_reg->raw = ptr_reg->raw;
3684 			break;
3685 		}
3686 		/* A new variable offset is created.  If the subtrahend is known
3687 		 * nonnegative, then any reg->range we had before is still good.
3688 		 */
3689 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3690 		    signed_sub_overflows(smax_ptr, smin_val)) {
3691 			/* Overflow possible, we know nothing */
3692 			dst_reg->smin_value = S64_MIN;
3693 			dst_reg->smax_value = S64_MAX;
3694 		} else {
3695 			dst_reg->smin_value = smin_ptr - smax_val;
3696 			dst_reg->smax_value = smax_ptr - smin_val;
3697 		}
3698 		if (umin_ptr < umax_val) {
3699 			/* Overflow possible, we know nothing */
3700 			dst_reg->umin_value = 0;
3701 			dst_reg->umax_value = U64_MAX;
3702 		} else {
3703 			/* Cannot overflow (as long as bounds are consistent) */
3704 			dst_reg->umin_value = umin_ptr - umax_val;
3705 			dst_reg->umax_value = umax_ptr - umin_val;
3706 		}
3707 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3708 		dst_reg->off = ptr_reg->off;
3709 		dst_reg->raw = ptr_reg->raw;
3710 		if (reg_is_pkt_pointer(ptr_reg)) {
3711 			dst_reg->id = ++env->id_gen;
3712 			/* something was added to pkt_ptr, set range to zero */
3713 			if (smin_val < 0)
3714 				dst_reg->raw = 0;
3715 		}
3716 		break;
3717 	case BPF_AND:
3718 	case BPF_OR:
3719 	case BPF_XOR:
3720 		/* bitwise ops on pointers are troublesome, prohibit. */
3721 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3722 			dst, bpf_alu_string[opcode >> 4]);
3723 		return -EACCES;
3724 	default:
3725 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3726 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3727 			dst, bpf_alu_string[opcode >> 4]);
3728 		return -EACCES;
3729 	}
3730 
3731 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3732 		return -EINVAL;
3733 
3734 	__update_reg_bounds(dst_reg);
3735 	__reg_deduce_bounds(dst_reg);
3736 	__reg_bound_offset(dst_reg);
3737 
3738 	/* For unprivileged we require that resulting offset must be in bounds
3739 	 * in order to be able to sanitize access later on.
3740 	 */
3741 	if (!env->allow_ptr_leaks) {
3742 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
3743 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
3744 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3745 				"prohibited for !root\n", dst);
3746 			return -EACCES;
3747 		} else if (dst_reg->type == PTR_TO_STACK &&
3748 			   check_stack_access(env, dst_reg, dst_reg->off +
3749 					      dst_reg->var_off.value, 1)) {
3750 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
3751 				"prohibited for !root\n", dst);
3752 			return -EACCES;
3753 		}
3754 	}
3755 
3756 	return 0;
3757 }
3758 
3759 /* WARNING: This function does calculations on 64-bit values, but the actual
3760  * execution may occur on 32-bit values. Therefore, things like bitshifts
3761  * need extra checks in the 32-bit case.
3762  */
3763 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3764 				      struct bpf_insn *insn,
3765 				      struct bpf_reg_state *dst_reg,
3766 				      struct bpf_reg_state src_reg)
3767 {
3768 	struct bpf_reg_state *regs = cur_regs(env);
3769 	u8 opcode = BPF_OP(insn->code);
3770 	bool src_known, dst_known;
3771 	s64 smin_val, smax_val;
3772 	u64 umin_val, umax_val;
3773 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3774 	u32 dst = insn->dst_reg;
3775 	int ret;
3776 
3777 	if (insn_bitness == 32) {
3778 		/* Relevant for 32-bit RSH: Information can propagate towards
3779 		 * LSB, so it isn't sufficient to only truncate the output to
3780 		 * 32 bits.
3781 		 */
3782 		coerce_reg_to_size(dst_reg, 4);
3783 		coerce_reg_to_size(&src_reg, 4);
3784 	}
3785 
3786 	smin_val = src_reg.smin_value;
3787 	smax_val = src_reg.smax_value;
3788 	umin_val = src_reg.umin_value;
3789 	umax_val = src_reg.umax_value;
3790 	src_known = tnum_is_const(src_reg.var_off);
3791 	dst_known = tnum_is_const(dst_reg->var_off);
3792 
3793 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3794 	    smin_val > smax_val || umin_val > umax_val) {
3795 		/* Taint dst register if offset had invalid bounds derived from
3796 		 * e.g. dead branches.
3797 		 */
3798 		__mark_reg_unknown(dst_reg);
3799 		return 0;
3800 	}
3801 
3802 	if (!src_known &&
3803 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3804 		__mark_reg_unknown(dst_reg);
3805 		return 0;
3806 	}
3807 
3808 	switch (opcode) {
3809 	case BPF_ADD:
3810 		ret = sanitize_val_alu(env, insn);
3811 		if (ret < 0) {
3812 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3813 			return ret;
3814 		}
3815 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3816 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3817 			dst_reg->smin_value = S64_MIN;
3818 			dst_reg->smax_value = S64_MAX;
3819 		} else {
3820 			dst_reg->smin_value += smin_val;
3821 			dst_reg->smax_value += smax_val;
3822 		}
3823 		if (dst_reg->umin_value + umin_val < umin_val ||
3824 		    dst_reg->umax_value + umax_val < umax_val) {
3825 			dst_reg->umin_value = 0;
3826 			dst_reg->umax_value = U64_MAX;
3827 		} else {
3828 			dst_reg->umin_value += umin_val;
3829 			dst_reg->umax_value += umax_val;
3830 		}
3831 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3832 		break;
3833 	case BPF_SUB:
3834 		ret = sanitize_val_alu(env, insn);
3835 		if (ret < 0) {
3836 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3837 			return ret;
3838 		}
3839 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3840 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3841 			/* Overflow possible, we know nothing */
3842 			dst_reg->smin_value = S64_MIN;
3843 			dst_reg->smax_value = S64_MAX;
3844 		} else {
3845 			dst_reg->smin_value -= smax_val;
3846 			dst_reg->smax_value -= smin_val;
3847 		}
3848 		if (dst_reg->umin_value < umax_val) {
3849 			/* Overflow possible, we know nothing */
3850 			dst_reg->umin_value = 0;
3851 			dst_reg->umax_value = U64_MAX;
3852 		} else {
3853 			/* Cannot overflow (as long as bounds are consistent) */
3854 			dst_reg->umin_value -= umax_val;
3855 			dst_reg->umax_value -= umin_val;
3856 		}
3857 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3858 		break;
3859 	case BPF_MUL:
3860 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3861 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3862 			/* Ain't nobody got time to multiply that sign */
3863 			__mark_reg_unbounded(dst_reg);
3864 			__update_reg_bounds(dst_reg);
3865 			break;
3866 		}
3867 		/* Both values are positive, so we can work with unsigned and
3868 		 * copy the result to signed (unless it exceeds S64_MAX).
3869 		 */
3870 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3871 			/* Potential overflow, we know nothing */
3872 			__mark_reg_unbounded(dst_reg);
3873 			/* (except what we can learn from the var_off) */
3874 			__update_reg_bounds(dst_reg);
3875 			break;
3876 		}
3877 		dst_reg->umin_value *= umin_val;
3878 		dst_reg->umax_value *= umax_val;
3879 		if (dst_reg->umax_value > S64_MAX) {
3880 			/* Overflow possible, we know nothing */
3881 			dst_reg->smin_value = S64_MIN;
3882 			dst_reg->smax_value = S64_MAX;
3883 		} else {
3884 			dst_reg->smin_value = dst_reg->umin_value;
3885 			dst_reg->smax_value = dst_reg->umax_value;
3886 		}
3887 		break;
3888 	case BPF_AND:
3889 		if (src_known && dst_known) {
3890 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3891 						  src_reg.var_off.value);
3892 			break;
3893 		}
3894 		/* We get our minimum from the var_off, since that's inherently
3895 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3896 		 */
3897 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3898 		dst_reg->umin_value = dst_reg->var_off.value;
3899 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3900 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3901 			/* Lose signed bounds when ANDing negative numbers,
3902 			 * ain't nobody got time for that.
3903 			 */
3904 			dst_reg->smin_value = S64_MIN;
3905 			dst_reg->smax_value = S64_MAX;
3906 		} else {
3907 			/* ANDing two positives gives a positive, so safe to
3908 			 * cast result into s64.
3909 			 */
3910 			dst_reg->smin_value = dst_reg->umin_value;
3911 			dst_reg->smax_value = dst_reg->umax_value;
3912 		}
3913 		/* We may learn something more from the var_off */
3914 		__update_reg_bounds(dst_reg);
3915 		break;
3916 	case BPF_OR:
3917 		if (src_known && dst_known) {
3918 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3919 						  src_reg.var_off.value);
3920 			break;
3921 		}
3922 		/* We get our maximum from the var_off, and our minimum is the
3923 		 * maximum of the operands' minima
3924 		 */
3925 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3926 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3927 		dst_reg->umax_value = dst_reg->var_off.value |
3928 				      dst_reg->var_off.mask;
3929 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3930 			/* Lose signed bounds when ORing negative numbers,
3931 			 * ain't nobody got time for that.
3932 			 */
3933 			dst_reg->smin_value = S64_MIN;
3934 			dst_reg->smax_value = S64_MAX;
3935 		} else {
3936 			/* ORing two positives gives a positive, so safe to
3937 			 * cast result into s64.
3938 			 */
3939 			dst_reg->smin_value = dst_reg->umin_value;
3940 			dst_reg->smax_value = dst_reg->umax_value;
3941 		}
3942 		/* We may learn something more from the var_off */
3943 		__update_reg_bounds(dst_reg);
3944 		break;
3945 	case BPF_LSH:
3946 		if (umax_val >= insn_bitness) {
3947 			/* Shifts greater than 31 or 63 are undefined.
3948 			 * This includes shifts by a negative number.
3949 			 */
3950 			mark_reg_unknown(env, regs, insn->dst_reg);
3951 			break;
3952 		}
3953 		/* We lose all sign bit information (except what we can pick
3954 		 * up from var_off)
3955 		 */
3956 		dst_reg->smin_value = S64_MIN;
3957 		dst_reg->smax_value = S64_MAX;
3958 		/* If we might shift our top bit out, then we know nothing */
3959 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3960 			dst_reg->umin_value = 0;
3961 			dst_reg->umax_value = U64_MAX;
3962 		} else {
3963 			dst_reg->umin_value <<= umin_val;
3964 			dst_reg->umax_value <<= umax_val;
3965 		}
3966 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3967 		/* We may learn something more from the var_off */
3968 		__update_reg_bounds(dst_reg);
3969 		break;
3970 	case BPF_RSH:
3971 		if (umax_val >= insn_bitness) {
3972 			/* Shifts greater than 31 or 63 are undefined.
3973 			 * This includes shifts by a negative number.
3974 			 */
3975 			mark_reg_unknown(env, regs, insn->dst_reg);
3976 			break;
3977 		}
3978 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3979 		 * be negative, then either:
3980 		 * 1) src_reg might be zero, so the sign bit of the result is
3981 		 *    unknown, so we lose our signed bounds
3982 		 * 2) it's known negative, thus the unsigned bounds capture the
3983 		 *    signed bounds
3984 		 * 3) the signed bounds cross zero, so they tell us nothing
3985 		 *    about the result
3986 		 * If the value in dst_reg is known nonnegative, then again the
3987 		 * unsigned bounts capture the signed bounds.
3988 		 * Thus, in all cases it suffices to blow away our signed bounds
3989 		 * and rely on inferring new ones from the unsigned bounds and
3990 		 * var_off of the result.
3991 		 */
3992 		dst_reg->smin_value = S64_MIN;
3993 		dst_reg->smax_value = S64_MAX;
3994 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3995 		dst_reg->umin_value >>= umax_val;
3996 		dst_reg->umax_value >>= umin_val;
3997 		/* We may learn something more from the var_off */
3998 		__update_reg_bounds(dst_reg);
3999 		break;
4000 	case BPF_ARSH:
4001 		if (umax_val >= insn_bitness) {
4002 			/* Shifts greater than 31 or 63 are undefined.
4003 			 * This includes shifts by a negative number.
4004 			 */
4005 			mark_reg_unknown(env, regs, insn->dst_reg);
4006 			break;
4007 		}
4008 
4009 		/* Upon reaching here, src_known is true and
4010 		 * umax_val is equal to umin_val.
4011 		 */
4012 		dst_reg->smin_value >>= umin_val;
4013 		dst_reg->smax_value >>= umin_val;
4014 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4015 
4016 		/* blow away the dst_reg umin_value/umax_value and rely on
4017 		 * dst_reg var_off to refine the result.
4018 		 */
4019 		dst_reg->umin_value = 0;
4020 		dst_reg->umax_value = U64_MAX;
4021 		__update_reg_bounds(dst_reg);
4022 		break;
4023 	default:
4024 		mark_reg_unknown(env, regs, insn->dst_reg);
4025 		break;
4026 	}
4027 
4028 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4029 		/* 32-bit ALU ops are (32,32)->32 */
4030 		coerce_reg_to_size(dst_reg, 4);
4031 	}
4032 
4033 	__reg_deduce_bounds(dst_reg);
4034 	__reg_bound_offset(dst_reg);
4035 	return 0;
4036 }
4037 
4038 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4039  * and var_off.
4040  */
4041 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4042 				   struct bpf_insn *insn)
4043 {
4044 	struct bpf_verifier_state *vstate = env->cur_state;
4045 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4046 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4047 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4048 	u8 opcode = BPF_OP(insn->code);
4049 
4050 	dst_reg = &regs[insn->dst_reg];
4051 	src_reg = NULL;
4052 	if (dst_reg->type != SCALAR_VALUE)
4053 		ptr_reg = dst_reg;
4054 	if (BPF_SRC(insn->code) == BPF_X) {
4055 		src_reg = &regs[insn->src_reg];
4056 		if (src_reg->type != SCALAR_VALUE) {
4057 			if (dst_reg->type != SCALAR_VALUE) {
4058 				/* Combining two pointers by any ALU op yields
4059 				 * an arbitrary scalar. Disallow all math except
4060 				 * pointer subtraction
4061 				 */
4062 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4063 					mark_reg_unknown(env, regs, insn->dst_reg);
4064 					return 0;
4065 				}
4066 				verbose(env, "R%d pointer %s pointer prohibited\n",
4067 					insn->dst_reg,
4068 					bpf_alu_string[opcode >> 4]);
4069 				return -EACCES;
4070 			} else {
4071 				/* scalar += pointer
4072 				 * This is legal, but we have to reverse our
4073 				 * src/dest handling in computing the range
4074 				 */
4075 				return adjust_ptr_min_max_vals(env, insn,
4076 							       src_reg, dst_reg);
4077 			}
4078 		} else if (ptr_reg) {
4079 			/* pointer += scalar */
4080 			return adjust_ptr_min_max_vals(env, insn,
4081 						       dst_reg, src_reg);
4082 		}
4083 	} else {
4084 		/* Pretend the src is a reg with a known value, since we only
4085 		 * need to be able to read from this state.
4086 		 */
4087 		off_reg.type = SCALAR_VALUE;
4088 		__mark_reg_known(&off_reg, insn->imm);
4089 		src_reg = &off_reg;
4090 		if (ptr_reg) /* pointer += K */
4091 			return adjust_ptr_min_max_vals(env, insn,
4092 						       ptr_reg, src_reg);
4093 	}
4094 
4095 	/* Got here implies adding two SCALAR_VALUEs */
4096 	if (WARN_ON_ONCE(ptr_reg)) {
4097 		print_verifier_state(env, state);
4098 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
4099 		return -EINVAL;
4100 	}
4101 	if (WARN_ON(!src_reg)) {
4102 		print_verifier_state(env, state);
4103 		verbose(env, "verifier internal error: no src_reg\n");
4104 		return -EINVAL;
4105 	}
4106 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4107 }
4108 
4109 /* check validity of 32-bit and 64-bit arithmetic operations */
4110 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4111 {
4112 	struct bpf_reg_state *regs = cur_regs(env);
4113 	u8 opcode = BPF_OP(insn->code);
4114 	int err;
4115 
4116 	if (opcode == BPF_END || opcode == BPF_NEG) {
4117 		if (opcode == BPF_NEG) {
4118 			if (BPF_SRC(insn->code) != 0 ||
4119 			    insn->src_reg != BPF_REG_0 ||
4120 			    insn->off != 0 || insn->imm != 0) {
4121 				verbose(env, "BPF_NEG uses reserved fields\n");
4122 				return -EINVAL;
4123 			}
4124 		} else {
4125 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4126 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4127 			    BPF_CLASS(insn->code) == BPF_ALU64) {
4128 				verbose(env, "BPF_END uses reserved fields\n");
4129 				return -EINVAL;
4130 			}
4131 		}
4132 
4133 		/* check src operand */
4134 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4135 		if (err)
4136 			return err;
4137 
4138 		if (is_pointer_value(env, insn->dst_reg)) {
4139 			verbose(env, "R%d pointer arithmetic prohibited\n",
4140 				insn->dst_reg);
4141 			return -EACCES;
4142 		}
4143 
4144 		/* check dest operand */
4145 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
4146 		if (err)
4147 			return err;
4148 
4149 	} else if (opcode == BPF_MOV) {
4150 
4151 		if (BPF_SRC(insn->code) == BPF_X) {
4152 			if (insn->imm != 0 || insn->off != 0) {
4153 				verbose(env, "BPF_MOV uses reserved fields\n");
4154 				return -EINVAL;
4155 			}
4156 
4157 			/* check src operand */
4158 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4159 			if (err)
4160 				return err;
4161 		} else {
4162 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4163 				verbose(env, "BPF_MOV uses reserved fields\n");
4164 				return -EINVAL;
4165 			}
4166 		}
4167 
4168 		/* check dest operand, mark as required later */
4169 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4170 		if (err)
4171 			return err;
4172 
4173 		if (BPF_SRC(insn->code) == BPF_X) {
4174 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
4175 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4176 
4177 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4178 				/* case: R1 = R2
4179 				 * copy register state to dest reg
4180 				 */
4181 				*dst_reg = *src_reg;
4182 				dst_reg->live |= REG_LIVE_WRITTEN;
4183 			} else {
4184 				/* R1 = (u32) R2 */
4185 				if (is_pointer_value(env, insn->src_reg)) {
4186 					verbose(env,
4187 						"R%d partial copy of pointer\n",
4188 						insn->src_reg);
4189 					return -EACCES;
4190 				} else if (src_reg->type == SCALAR_VALUE) {
4191 					*dst_reg = *src_reg;
4192 					dst_reg->live |= REG_LIVE_WRITTEN;
4193 				} else {
4194 					mark_reg_unknown(env, regs,
4195 							 insn->dst_reg);
4196 				}
4197 				coerce_reg_to_size(dst_reg, 4);
4198 			}
4199 		} else {
4200 			/* case: R = imm
4201 			 * remember the value we stored into this reg
4202 			 */
4203 			/* clear any state __mark_reg_known doesn't set */
4204 			mark_reg_unknown(env, regs, insn->dst_reg);
4205 			regs[insn->dst_reg].type = SCALAR_VALUE;
4206 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4207 				__mark_reg_known(regs + insn->dst_reg,
4208 						 insn->imm);
4209 			} else {
4210 				__mark_reg_known(regs + insn->dst_reg,
4211 						 (u32)insn->imm);
4212 			}
4213 		}
4214 
4215 	} else if (opcode > BPF_END) {
4216 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4217 		return -EINVAL;
4218 
4219 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
4220 
4221 		if (BPF_SRC(insn->code) == BPF_X) {
4222 			if (insn->imm != 0 || insn->off != 0) {
4223 				verbose(env, "BPF_ALU uses reserved fields\n");
4224 				return -EINVAL;
4225 			}
4226 			/* check src1 operand */
4227 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4228 			if (err)
4229 				return err;
4230 		} else {
4231 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4232 				verbose(env, "BPF_ALU uses reserved fields\n");
4233 				return -EINVAL;
4234 			}
4235 		}
4236 
4237 		/* check src2 operand */
4238 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4239 		if (err)
4240 			return err;
4241 
4242 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4243 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4244 			verbose(env, "div by zero\n");
4245 			return -EINVAL;
4246 		}
4247 
4248 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4249 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4250 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4251 
4252 			if (insn->imm < 0 || insn->imm >= size) {
4253 				verbose(env, "invalid shift %d\n", insn->imm);
4254 				return -EINVAL;
4255 			}
4256 		}
4257 
4258 		/* check dest operand */
4259 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4260 		if (err)
4261 			return err;
4262 
4263 		return adjust_reg_min_max_vals(env, insn);
4264 	}
4265 
4266 	return 0;
4267 }
4268 
4269 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4270 				   struct bpf_reg_state *dst_reg,
4271 				   enum bpf_reg_type type,
4272 				   bool range_right_open)
4273 {
4274 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4275 	struct bpf_reg_state *regs = state->regs, *reg;
4276 	u16 new_range;
4277 	int i, j;
4278 
4279 	if (dst_reg->off < 0 ||
4280 	    (dst_reg->off == 0 && range_right_open))
4281 		/* This doesn't give us any range */
4282 		return;
4283 
4284 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
4285 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4286 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
4287 		 * than pkt_end, but that's because it's also less than pkt.
4288 		 */
4289 		return;
4290 
4291 	new_range = dst_reg->off;
4292 	if (range_right_open)
4293 		new_range--;
4294 
4295 	/* Examples for register markings:
4296 	 *
4297 	 * pkt_data in dst register:
4298 	 *
4299 	 *   r2 = r3;
4300 	 *   r2 += 8;
4301 	 *   if (r2 > pkt_end) goto <handle exception>
4302 	 *   <access okay>
4303 	 *
4304 	 *   r2 = r3;
4305 	 *   r2 += 8;
4306 	 *   if (r2 < pkt_end) goto <access okay>
4307 	 *   <handle exception>
4308 	 *
4309 	 *   Where:
4310 	 *     r2 == dst_reg, pkt_end == src_reg
4311 	 *     r2=pkt(id=n,off=8,r=0)
4312 	 *     r3=pkt(id=n,off=0,r=0)
4313 	 *
4314 	 * pkt_data in src register:
4315 	 *
4316 	 *   r2 = r3;
4317 	 *   r2 += 8;
4318 	 *   if (pkt_end >= r2) goto <access okay>
4319 	 *   <handle exception>
4320 	 *
4321 	 *   r2 = r3;
4322 	 *   r2 += 8;
4323 	 *   if (pkt_end <= r2) goto <handle exception>
4324 	 *   <access okay>
4325 	 *
4326 	 *   Where:
4327 	 *     pkt_end == dst_reg, r2 == src_reg
4328 	 *     r2=pkt(id=n,off=8,r=0)
4329 	 *     r3=pkt(id=n,off=0,r=0)
4330 	 *
4331 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4332 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4333 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
4334 	 * the check.
4335 	 */
4336 
4337 	/* If our ids match, then we must have the same max_value.  And we
4338 	 * don't care about the other reg's fixed offset, since if it's too big
4339 	 * the range won't allow anything.
4340 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4341 	 */
4342 	for (i = 0; i < MAX_BPF_REG; i++)
4343 		if (regs[i].type == type && regs[i].id == dst_reg->id)
4344 			/* keep the maximum range already checked */
4345 			regs[i].range = max(regs[i].range, new_range);
4346 
4347 	for (j = 0; j <= vstate->curframe; j++) {
4348 		state = vstate->frame[j];
4349 		bpf_for_each_spilled_reg(i, state, reg) {
4350 			if (!reg)
4351 				continue;
4352 			if (reg->type == type && reg->id == dst_reg->id)
4353 				reg->range = max(reg->range, new_range);
4354 		}
4355 	}
4356 }
4357 
4358 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4359  * and return:
4360  *  1 - branch will be taken and "goto target" will be executed
4361  *  0 - branch will not be taken and fall-through to next insn
4362  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4363  */
4364 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4365 			   bool is_jmp32)
4366 {
4367 	struct bpf_reg_state reg_lo;
4368 	s64 sval;
4369 
4370 	if (__is_pointer_value(false, reg))
4371 		return -1;
4372 
4373 	if (is_jmp32) {
4374 		reg_lo = *reg;
4375 		reg = &reg_lo;
4376 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4377 		 * could truncate high bits and update umin/umax according to
4378 		 * information of low bits.
4379 		 */
4380 		coerce_reg_to_size(reg, 4);
4381 		/* smin/smax need special handling. For example, after coerce,
4382 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4383 		 * used as operand to JMP32. It is a negative number from s32's
4384 		 * point of view, while it is a positive number when seen as
4385 		 * s64. The smin/smax are kept as s64, therefore, when used with
4386 		 * JMP32, they need to be transformed into s32, then sign
4387 		 * extended back to s64.
4388 		 *
4389 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
4390 		 * different sign bit, then min/max relationship doesn't
4391 		 * maintain after casting into s32, for this case, set smin/smax
4392 		 * to safest range.
4393 		 */
4394 		if ((reg->umax_value ^ reg->umin_value) &
4395 		    (1ULL << 31)) {
4396 			reg->smin_value = S32_MIN;
4397 			reg->smax_value = S32_MAX;
4398 		}
4399 		reg->smin_value = (s64)(s32)reg->smin_value;
4400 		reg->smax_value = (s64)(s32)reg->smax_value;
4401 
4402 		val = (u32)val;
4403 		sval = (s64)(s32)val;
4404 	} else {
4405 		sval = (s64)val;
4406 	}
4407 
4408 	switch (opcode) {
4409 	case BPF_JEQ:
4410 		if (tnum_is_const(reg->var_off))
4411 			return !!tnum_equals_const(reg->var_off, val);
4412 		break;
4413 	case BPF_JNE:
4414 		if (tnum_is_const(reg->var_off))
4415 			return !tnum_equals_const(reg->var_off, val);
4416 		break;
4417 	case BPF_JSET:
4418 		if ((~reg->var_off.mask & reg->var_off.value) & val)
4419 			return 1;
4420 		if (!((reg->var_off.mask | reg->var_off.value) & val))
4421 			return 0;
4422 		break;
4423 	case BPF_JGT:
4424 		if (reg->umin_value > val)
4425 			return 1;
4426 		else if (reg->umax_value <= val)
4427 			return 0;
4428 		break;
4429 	case BPF_JSGT:
4430 		if (reg->smin_value > sval)
4431 			return 1;
4432 		else if (reg->smax_value < sval)
4433 			return 0;
4434 		break;
4435 	case BPF_JLT:
4436 		if (reg->umax_value < val)
4437 			return 1;
4438 		else if (reg->umin_value >= val)
4439 			return 0;
4440 		break;
4441 	case BPF_JSLT:
4442 		if (reg->smax_value < sval)
4443 			return 1;
4444 		else if (reg->smin_value >= sval)
4445 			return 0;
4446 		break;
4447 	case BPF_JGE:
4448 		if (reg->umin_value >= val)
4449 			return 1;
4450 		else if (reg->umax_value < val)
4451 			return 0;
4452 		break;
4453 	case BPF_JSGE:
4454 		if (reg->smin_value >= sval)
4455 			return 1;
4456 		else if (reg->smax_value < sval)
4457 			return 0;
4458 		break;
4459 	case BPF_JLE:
4460 		if (reg->umax_value <= val)
4461 			return 1;
4462 		else if (reg->umin_value > val)
4463 			return 0;
4464 		break;
4465 	case BPF_JSLE:
4466 		if (reg->smax_value <= sval)
4467 			return 1;
4468 		else if (reg->smin_value > sval)
4469 			return 0;
4470 		break;
4471 	}
4472 
4473 	return -1;
4474 }
4475 
4476 /* Generate min value of the high 32-bit from TNUM info. */
4477 static u64 gen_hi_min(struct tnum var)
4478 {
4479 	return var.value & ~0xffffffffULL;
4480 }
4481 
4482 /* Generate max value of the high 32-bit from TNUM info. */
4483 static u64 gen_hi_max(struct tnum var)
4484 {
4485 	return (var.value | var.mask) & ~0xffffffffULL;
4486 }
4487 
4488 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4489  * are with the same signedness.
4490  */
4491 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4492 {
4493 	return ((s32)sval >= 0 &&
4494 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4495 	       ((s32)sval < 0 &&
4496 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4497 }
4498 
4499 /* Adjusts the register min/max values in the case that the dst_reg is the
4500  * variable register that we are working on, and src_reg is a constant or we're
4501  * simply doing a BPF_K check.
4502  * In JEQ/JNE cases we also adjust the var_off values.
4503  */
4504 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4505 			    struct bpf_reg_state *false_reg, u64 val,
4506 			    u8 opcode, bool is_jmp32)
4507 {
4508 	s64 sval;
4509 
4510 	/* If the dst_reg is a pointer, we can't learn anything about its
4511 	 * variable offset from the compare (unless src_reg were a pointer into
4512 	 * the same object, but we don't bother with that.
4513 	 * Since false_reg and true_reg have the same type by construction, we
4514 	 * only need to check one of them for pointerness.
4515 	 */
4516 	if (__is_pointer_value(false, false_reg))
4517 		return;
4518 
4519 	val = is_jmp32 ? (u32)val : val;
4520 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4521 
4522 	switch (opcode) {
4523 	case BPF_JEQ:
4524 	case BPF_JNE:
4525 	{
4526 		struct bpf_reg_state *reg =
4527 			opcode == BPF_JEQ ? true_reg : false_reg;
4528 
4529 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4530 		 * if it is true we know the value for sure. Likewise for
4531 		 * BPF_JNE.
4532 		 */
4533 		if (is_jmp32) {
4534 			u64 old_v = reg->var_off.value;
4535 			u64 hi_mask = ~0xffffffffULL;
4536 
4537 			reg->var_off.value = (old_v & hi_mask) | val;
4538 			reg->var_off.mask &= hi_mask;
4539 		} else {
4540 			__mark_reg_known(reg, val);
4541 		}
4542 		break;
4543 	}
4544 	case BPF_JSET:
4545 		false_reg->var_off = tnum_and(false_reg->var_off,
4546 					      tnum_const(~val));
4547 		if (is_power_of_2(val))
4548 			true_reg->var_off = tnum_or(true_reg->var_off,
4549 						    tnum_const(val));
4550 		break;
4551 	case BPF_JGE:
4552 	case BPF_JGT:
4553 	{
4554 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
4555 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4556 
4557 		if (is_jmp32) {
4558 			false_umax += gen_hi_max(false_reg->var_off);
4559 			true_umin += gen_hi_min(true_reg->var_off);
4560 		}
4561 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4562 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4563 		break;
4564 	}
4565 	case BPF_JSGE:
4566 	case BPF_JSGT:
4567 	{
4568 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
4569 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4570 
4571 		/* If the full s64 was not sign-extended from s32 then don't
4572 		 * deduct further info.
4573 		 */
4574 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4575 			break;
4576 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4577 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4578 		break;
4579 	}
4580 	case BPF_JLE:
4581 	case BPF_JLT:
4582 	{
4583 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
4584 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4585 
4586 		if (is_jmp32) {
4587 			false_umin += gen_hi_min(false_reg->var_off);
4588 			true_umax += gen_hi_max(true_reg->var_off);
4589 		}
4590 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4591 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4592 		break;
4593 	}
4594 	case BPF_JSLE:
4595 	case BPF_JSLT:
4596 	{
4597 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
4598 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4599 
4600 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4601 			break;
4602 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4603 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4604 		break;
4605 	}
4606 	default:
4607 		break;
4608 	}
4609 
4610 	__reg_deduce_bounds(false_reg);
4611 	__reg_deduce_bounds(true_reg);
4612 	/* We might have learned some bits from the bounds. */
4613 	__reg_bound_offset(false_reg);
4614 	__reg_bound_offset(true_reg);
4615 	/* Intersecting with the old var_off might have improved our bounds
4616 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4617 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4618 	 */
4619 	__update_reg_bounds(false_reg);
4620 	__update_reg_bounds(true_reg);
4621 }
4622 
4623 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4624  * the variable reg.
4625  */
4626 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4627 				struct bpf_reg_state *false_reg, u64 val,
4628 				u8 opcode, bool is_jmp32)
4629 {
4630 	s64 sval;
4631 
4632 	if (__is_pointer_value(false, false_reg))
4633 		return;
4634 
4635 	val = is_jmp32 ? (u32)val : val;
4636 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4637 
4638 	switch (opcode) {
4639 	case BPF_JEQ:
4640 	case BPF_JNE:
4641 	{
4642 		struct bpf_reg_state *reg =
4643 			opcode == BPF_JEQ ? true_reg : false_reg;
4644 
4645 		if (is_jmp32) {
4646 			u64 old_v = reg->var_off.value;
4647 			u64 hi_mask = ~0xffffffffULL;
4648 
4649 			reg->var_off.value = (old_v & hi_mask) | val;
4650 			reg->var_off.mask &= hi_mask;
4651 		} else {
4652 			__mark_reg_known(reg, val);
4653 		}
4654 		break;
4655 	}
4656 	case BPF_JSET:
4657 		false_reg->var_off = tnum_and(false_reg->var_off,
4658 					      tnum_const(~val));
4659 		if (is_power_of_2(val))
4660 			true_reg->var_off = tnum_or(true_reg->var_off,
4661 						    tnum_const(val));
4662 		break;
4663 	case BPF_JGE:
4664 	case BPF_JGT:
4665 	{
4666 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
4667 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4668 
4669 		if (is_jmp32) {
4670 			false_umin += gen_hi_min(false_reg->var_off);
4671 			true_umax += gen_hi_max(true_reg->var_off);
4672 		}
4673 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4674 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4675 		break;
4676 	}
4677 	case BPF_JSGE:
4678 	case BPF_JSGT:
4679 	{
4680 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
4681 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4682 
4683 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4684 			break;
4685 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4686 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4687 		break;
4688 	}
4689 	case BPF_JLE:
4690 	case BPF_JLT:
4691 	{
4692 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
4693 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4694 
4695 		if (is_jmp32) {
4696 			false_umax += gen_hi_max(false_reg->var_off);
4697 			true_umin += gen_hi_min(true_reg->var_off);
4698 		}
4699 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4700 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4701 		break;
4702 	}
4703 	case BPF_JSLE:
4704 	case BPF_JSLT:
4705 	{
4706 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
4707 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4708 
4709 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4710 			break;
4711 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4712 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4713 		break;
4714 	}
4715 	default:
4716 		break;
4717 	}
4718 
4719 	__reg_deduce_bounds(false_reg);
4720 	__reg_deduce_bounds(true_reg);
4721 	/* We might have learned some bits from the bounds. */
4722 	__reg_bound_offset(false_reg);
4723 	__reg_bound_offset(true_reg);
4724 	/* Intersecting with the old var_off might have improved our bounds
4725 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4726 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4727 	 */
4728 	__update_reg_bounds(false_reg);
4729 	__update_reg_bounds(true_reg);
4730 }
4731 
4732 /* Regs are known to be equal, so intersect their min/max/var_off */
4733 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4734 				  struct bpf_reg_state *dst_reg)
4735 {
4736 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4737 							dst_reg->umin_value);
4738 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4739 							dst_reg->umax_value);
4740 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4741 							dst_reg->smin_value);
4742 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4743 							dst_reg->smax_value);
4744 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4745 							     dst_reg->var_off);
4746 	/* We might have learned new bounds from the var_off. */
4747 	__update_reg_bounds(src_reg);
4748 	__update_reg_bounds(dst_reg);
4749 	/* We might have learned something about the sign bit. */
4750 	__reg_deduce_bounds(src_reg);
4751 	__reg_deduce_bounds(dst_reg);
4752 	/* We might have learned some bits from the bounds. */
4753 	__reg_bound_offset(src_reg);
4754 	__reg_bound_offset(dst_reg);
4755 	/* Intersecting with the old var_off might have improved our bounds
4756 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4757 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4758 	 */
4759 	__update_reg_bounds(src_reg);
4760 	__update_reg_bounds(dst_reg);
4761 }
4762 
4763 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4764 				struct bpf_reg_state *true_dst,
4765 				struct bpf_reg_state *false_src,
4766 				struct bpf_reg_state *false_dst,
4767 				u8 opcode)
4768 {
4769 	switch (opcode) {
4770 	case BPF_JEQ:
4771 		__reg_combine_min_max(true_src, true_dst);
4772 		break;
4773 	case BPF_JNE:
4774 		__reg_combine_min_max(false_src, false_dst);
4775 		break;
4776 	}
4777 }
4778 
4779 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4780 				 struct bpf_reg_state *reg, u32 id,
4781 				 bool is_null)
4782 {
4783 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
4784 		/* Old offset (both fixed and variable parts) should
4785 		 * have been known-zero, because we don't allow pointer
4786 		 * arithmetic on pointers that might be NULL.
4787 		 */
4788 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4789 				 !tnum_equals_const(reg->var_off, 0) ||
4790 				 reg->off)) {
4791 			__mark_reg_known_zero(reg);
4792 			reg->off = 0;
4793 		}
4794 		if (is_null) {
4795 			reg->type = SCALAR_VALUE;
4796 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4797 			if (reg->map_ptr->inner_map_meta) {
4798 				reg->type = CONST_PTR_TO_MAP;
4799 				reg->map_ptr = reg->map_ptr->inner_map_meta;
4800 			} else {
4801 				reg->type = PTR_TO_MAP_VALUE;
4802 			}
4803 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4804 			reg->type = PTR_TO_SOCKET;
4805 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4806 			reg->type = PTR_TO_SOCK_COMMON;
4807 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4808 			reg->type = PTR_TO_TCP_SOCK;
4809 		}
4810 		if (is_null) {
4811 			/* We don't need id and ref_obj_id from this point
4812 			 * onwards anymore, thus we should better reset it,
4813 			 * so that state pruning has chances to take effect.
4814 			 */
4815 			reg->id = 0;
4816 			reg->ref_obj_id = 0;
4817 		} else if (!reg_may_point_to_spin_lock(reg)) {
4818 			/* For not-NULL ptr, reg->ref_obj_id will be reset
4819 			 * in release_reg_references().
4820 			 *
4821 			 * reg->id is still used by spin_lock ptr. Other
4822 			 * than spin_lock ptr type, reg->id can be reset.
4823 			 */
4824 			reg->id = 0;
4825 		}
4826 	}
4827 }
4828 
4829 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4830  * be folded together at some point.
4831  */
4832 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4833 				  bool is_null)
4834 {
4835 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4836 	struct bpf_reg_state *reg, *regs = state->regs;
4837 	u32 ref_obj_id = regs[regno].ref_obj_id;
4838 	u32 id = regs[regno].id;
4839 	int i, j;
4840 
4841 	if (ref_obj_id && ref_obj_id == id && is_null)
4842 		/* regs[regno] is in the " == NULL" branch.
4843 		 * No one could have freed the reference state before
4844 		 * doing the NULL check.
4845 		 */
4846 		WARN_ON_ONCE(release_reference_state(state, id));
4847 
4848 	for (i = 0; i < MAX_BPF_REG; i++)
4849 		mark_ptr_or_null_reg(state, &regs[i], id, is_null);
4850 
4851 	for (j = 0; j <= vstate->curframe; j++) {
4852 		state = vstate->frame[j];
4853 		bpf_for_each_spilled_reg(i, state, reg) {
4854 			if (!reg)
4855 				continue;
4856 			mark_ptr_or_null_reg(state, reg, id, is_null);
4857 		}
4858 	}
4859 }
4860 
4861 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4862 				   struct bpf_reg_state *dst_reg,
4863 				   struct bpf_reg_state *src_reg,
4864 				   struct bpf_verifier_state *this_branch,
4865 				   struct bpf_verifier_state *other_branch)
4866 {
4867 	if (BPF_SRC(insn->code) != BPF_X)
4868 		return false;
4869 
4870 	/* Pointers are always 64-bit. */
4871 	if (BPF_CLASS(insn->code) == BPF_JMP32)
4872 		return false;
4873 
4874 	switch (BPF_OP(insn->code)) {
4875 	case BPF_JGT:
4876 		if ((dst_reg->type == PTR_TO_PACKET &&
4877 		     src_reg->type == PTR_TO_PACKET_END) ||
4878 		    (dst_reg->type == PTR_TO_PACKET_META &&
4879 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4880 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4881 			find_good_pkt_pointers(this_branch, dst_reg,
4882 					       dst_reg->type, false);
4883 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4884 			    src_reg->type == PTR_TO_PACKET) ||
4885 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4886 			    src_reg->type == PTR_TO_PACKET_META)) {
4887 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4888 			find_good_pkt_pointers(other_branch, src_reg,
4889 					       src_reg->type, true);
4890 		} else {
4891 			return false;
4892 		}
4893 		break;
4894 	case BPF_JLT:
4895 		if ((dst_reg->type == PTR_TO_PACKET &&
4896 		     src_reg->type == PTR_TO_PACKET_END) ||
4897 		    (dst_reg->type == PTR_TO_PACKET_META &&
4898 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4899 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4900 			find_good_pkt_pointers(other_branch, dst_reg,
4901 					       dst_reg->type, true);
4902 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4903 			    src_reg->type == PTR_TO_PACKET) ||
4904 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4905 			    src_reg->type == PTR_TO_PACKET_META)) {
4906 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4907 			find_good_pkt_pointers(this_branch, src_reg,
4908 					       src_reg->type, false);
4909 		} else {
4910 			return false;
4911 		}
4912 		break;
4913 	case BPF_JGE:
4914 		if ((dst_reg->type == PTR_TO_PACKET &&
4915 		     src_reg->type == PTR_TO_PACKET_END) ||
4916 		    (dst_reg->type == PTR_TO_PACKET_META &&
4917 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4918 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4919 			find_good_pkt_pointers(this_branch, dst_reg,
4920 					       dst_reg->type, true);
4921 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4922 			    src_reg->type == PTR_TO_PACKET) ||
4923 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4924 			    src_reg->type == PTR_TO_PACKET_META)) {
4925 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4926 			find_good_pkt_pointers(other_branch, src_reg,
4927 					       src_reg->type, false);
4928 		} else {
4929 			return false;
4930 		}
4931 		break;
4932 	case BPF_JLE:
4933 		if ((dst_reg->type == PTR_TO_PACKET &&
4934 		     src_reg->type == PTR_TO_PACKET_END) ||
4935 		    (dst_reg->type == PTR_TO_PACKET_META &&
4936 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4937 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4938 			find_good_pkt_pointers(other_branch, dst_reg,
4939 					       dst_reg->type, false);
4940 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4941 			    src_reg->type == PTR_TO_PACKET) ||
4942 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4943 			    src_reg->type == PTR_TO_PACKET_META)) {
4944 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4945 			find_good_pkt_pointers(this_branch, src_reg,
4946 					       src_reg->type, true);
4947 		} else {
4948 			return false;
4949 		}
4950 		break;
4951 	default:
4952 		return false;
4953 	}
4954 
4955 	return true;
4956 }
4957 
4958 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4959 			     struct bpf_insn *insn, int *insn_idx)
4960 {
4961 	struct bpf_verifier_state *this_branch = env->cur_state;
4962 	struct bpf_verifier_state *other_branch;
4963 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4964 	struct bpf_reg_state *dst_reg, *other_branch_regs;
4965 	u8 opcode = BPF_OP(insn->code);
4966 	bool is_jmp32;
4967 	int err;
4968 
4969 	/* Only conditional jumps are expected to reach here. */
4970 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
4971 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
4972 		return -EINVAL;
4973 	}
4974 
4975 	if (BPF_SRC(insn->code) == BPF_X) {
4976 		if (insn->imm != 0) {
4977 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
4978 			return -EINVAL;
4979 		}
4980 
4981 		/* check src1 operand */
4982 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4983 		if (err)
4984 			return err;
4985 
4986 		if (is_pointer_value(env, insn->src_reg)) {
4987 			verbose(env, "R%d pointer comparison prohibited\n",
4988 				insn->src_reg);
4989 			return -EACCES;
4990 		}
4991 	} else {
4992 		if (insn->src_reg != BPF_REG_0) {
4993 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
4994 			return -EINVAL;
4995 		}
4996 	}
4997 
4998 	/* check src2 operand */
4999 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5000 	if (err)
5001 		return err;
5002 
5003 	dst_reg = &regs[insn->dst_reg];
5004 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5005 
5006 	if (BPF_SRC(insn->code) == BPF_K) {
5007 		int pred = is_branch_taken(dst_reg, insn->imm, opcode,
5008 					   is_jmp32);
5009 
5010 		if (pred == 1) {
5011 			 /* only follow the goto, ignore fall-through */
5012 			*insn_idx += insn->off;
5013 			return 0;
5014 		} else if (pred == 0) {
5015 			/* only follow fall-through branch, since
5016 			 * that's where the program will go
5017 			 */
5018 			return 0;
5019 		}
5020 	}
5021 
5022 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5023 				  false);
5024 	if (!other_branch)
5025 		return -EFAULT;
5026 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5027 
5028 	/* detect if we are comparing against a constant value so we can adjust
5029 	 * our min/max values for our dst register.
5030 	 * this is only legit if both are scalars (or pointers to the same
5031 	 * object, I suppose, but we don't support that right now), because
5032 	 * otherwise the different base pointers mean the offsets aren't
5033 	 * comparable.
5034 	 */
5035 	if (BPF_SRC(insn->code) == BPF_X) {
5036 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5037 		struct bpf_reg_state lo_reg0 = *dst_reg;
5038 		struct bpf_reg_state lo_reg1 = *src_reg;
5039 		struct bpf_reg_state *src_lo, *dst_lo;
5040 
5041 		dst_lo = &lo_reg0;
5042 		src_lo = &lo_reg1;
5043 		coerce_reg_to_size(dst_lo, 4);
5044 		coerce_reg_to_size(src_lo, 4);
5045 
5046 		if (dst_reg->type == SCALAR_VALUE &&
5047 		    src_reg->type == SCALAR_VALUE) {
5048 			if (tnum_is_const(src_reg->var_off) ||
5049 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
5050 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
5051 						dst_reg,
5052 						is_jmp32
5053 						? src_lo->var_off.value
5054 						: src_reg->var_off.value,
5055 						opcode, is_jmp32);
5056 			else if (tnum_is_const(dst_reg->var_off) ||
5057 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5058 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5059 						    src_reg,
5060 						    is_jmp32
5061 						    ? dst_lo->var_off.value
5062 						    : dst_reg->var_off.value,
5063 						    opcode, is_jmp32);
5064 			else if (!is_jmp32 &&
5065 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
5066 				/* Comparing for equality, we can combine knowledge */
5067 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
5068 						    &other_branch_regs[insn->dst_reg],
5069 						    src_reg, dst_reg, opcode);
5070 		}
5071 	} else if (dst_reg->type == SCALAR_VALUE) {
5072 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
5073 					dst_reg, insn->imm, opcode, is_jmp32);
5074 	}
5075 
5076 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5077 	 * NOTE: these optimizations below are related with pointer comparison
5078 	 *       which will never be JMP32.
5079 	 */
5080 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5081 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5082 	    reg_type_may_be_null(dst_reg->type)) {
5083 		/* Mark all identical registers in each branch as either
5084 		 * safe or unknown depending R == 0 or R != 0 conditional.
5085 		 */
5086 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5087 				      opcode == BPF_JNE);
5088 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5089 				      opcode == BPF_JEQ);
5090 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5091 					   this_branch, other_branch) &&
5092 		   is_pointer_value(env, insn->dst_reg)) {
5093 		verbose(env, "R%d pointer comparison prohibited\n",
5094 			insn->dst_reg);
5095 		return -EACCES;
5096 	}
5097 	if (env->log.level & BPF_LOG_LEVEL)
5098 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5099 	return 0;
5100 }
5101 
5102 /* verify BPF_LD_IMM64 instruction */
5103 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5104 {
5105 	struct bpf_insn_aux_data *aux = cur_aux(env);
5106 	struct bpf_reg_state *regs = cur_regs(env);
5107 	struct bpf_map *map;
5108 	int err;
5109 
5110 	if (BPF_SIZE(insn->code) != BPF_DW) {
5111 		verbose(env, "invalid BPF_LD_IMM insn\n");
5112 		return -EINVAL;
5113 	}
5114 	if (insn->off != 0) {
5115 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5116 		return -EINVAL;
5117 	}
5118 
5119 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
5120 	if (err)
5121 		return err;
5122 
5123 	if (insn->src_reg == 0) {
5124 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5125 
5126 		regs[insn->dst_reg].type = SCALAR_VALUE;
5127 		__mark_reg_known(&regs[insn->dst_reg], imm);
5128 		return 0;
5129 	}
5130 
5131 	map = env->used_maps[aux->map_index];
5132 	mark_reg_known_zero(env, regs, insn->dst_reg);
5133 	regs[insn->dst_reg].map_ptr = map;
5134 
5135 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5136 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5137 		regs[insn->dst_reg].off = aux->map_off;
5138 		if (map_value_has_spin_lock(map))
5139 			regs[insn->dst_reg].id = ++env->id_gen;
5140 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5141 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5142 	} else {
5143 		verbose(env, "bpf verifier is misconfigured\n");
5144 		return -EINVAL;
5145 	}
5146 
5147 	return 0;
5148 }
5149 
5150 static bool may_access_skb(enum bpf_prog_type type)
5151 {
5152 	switch (type) {
5153 	case BPF_PROG_TYPE_SOCKET_FILTER:
5154 	case BPF_PROG_TYPE_SCHED_CLS:
5155 	case BPF_PROG_TYPE_SCHED_ACT:
5156 		return true;
5157 	default:
5158 		return false;
5159 	}
5160 }
5161 
5162 /* verify safety of LD_ABS|LD_IND instructions:
5163  * - they can only appear in the programs where ctx == skb
5164  * - since they are wrappers of function calls, they scratch R1-R5 registers,
5165  *   preserve R6-R9, and store return value into R0
5166  *
5167  * Implicit input:
5168  *   ctx == skb == R6 == CTX
5169  *
5170  * Explicit input:
5171  *   SRC == any register
5172  *   IMM == 32-bit immediate
5173  *
5174  * Output:
5175  *   R0 - 8/16/32-bit skb data converted to cpu endianness
5176  */
5177 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5178 {
5179 	struct bpf_reg_state *regs = cur_regs(env);
5180 	u8 mode = BPF_MODE(insn->code);
5181 	int i, err;
5182 
5183 	if (!may_access_skb(env->prog->type)) {
5184 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5185 		return -EINVAL;
5186 	}
5187 
5188 	if (!env->ops->gen_ld_abs) {
5189 		verbose(env, "bpf verifier is misconfigured\n");
5190 		return -EINVAL;
5191 	}
5192 
5193 	if (env->subprog_cnt > 1) {
5194 		/* when program has LD_ABS insn JITs and interpreter assume
5195 		 * that r1 == ctx == skb which is not the case for callees
5196 		 * that can have arbitrary arguments. It's problematic
5197 		 * for main prog as well since JITs would need to analyze
5198 		 * all functions in order to make proper register save/restore
5199 		 * decisions in the main prog. Hence disallow LD_ABS with calls
5200 		 */
5201 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5202 		return -EINVAL;
5203 	}
5204 
5205 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5206 	    BPF_SIZE(insn->code) == BPF_DW ||
5207 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5208 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5209 		return -EINVAL;
5210 	}
5211 
5212 	/* check whether implicit source operand (register R6) is readable */
5213 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5214 	if (err)
5215 		return err;
5216 
5217 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5218 	 * gen_ld_abs() may terminate the program at runtime, leading to
5219 	 * reference leak.
5220 	 */
5221 	err = check_reference_leak(env);
5222 	if (err) {
5223 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5224 		return err;
5225 	}
5226 
5227 	if (env->cur_state->active_spin_lock) {
5228 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5229 		return -EINVAL;
5230 	}
5231 
5232 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5233 		verbose(env,
5234 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5235 		return -EINVAL;
5236 	}
5237 
5238 	if (mode == BPF_IND) {
5239 		/* check explicit source operand */
5240 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5241 		if (err)
5242 			return err;
5243 	}
5244 
5245 	/* reset caller saved regs to unreadable */
5246 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5247 		mark_reg_not_init(env, regs, caller_saved[i]);
5248 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5249 	}
5250 
5251 	/* mark destination R0 register as readable, since it contains
5252 	 * the value fetched from the packet.
5253 	 * Already marked as written above.
5254 	 */
5255 	mark_reg_unknown(env, regs, BPF_REG_0);
5256 	return 0;
5257 }
5258 
5259 static int check_return_code(struct bpf_verifier_env *env)
5260 {
5261 	struct bpf_reg_state *reg;
5262 	struct tnum range = tnum_range(0, 1);
5263 
5264 	switch (env->prog->type) {
5265 	case BPF_PROG_TYPE_CGROUP_SKB:
5266 	case BPF_PROG_TYPE_CGROUP_SOCK:
5267 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5268 	case BPF_PROG_TYPE_SOCK_OPS:
5269 	case BPF_PROG_TYPE_CGROUP_DEVICE:
5270 		break;
5271 	default:
5272 		return 0;
5273 	}
5274 
5275 	reg = cur_regs(env) + BPF_REG_0;
5276 	if (reg->type != SCALAR_VALUE) {
5277 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5278 			reg_type_str[reg->type]);
5279 		return -EINVAL;
5280 	}
5281 
5282 	if (!tnum_in(range, reg->var_off)) {
5283 		verbose(env, "At program exit the register R0 ");
5284 		if (!tnum_is_unknown(reg->var_off)) {
5285 			char tn_buf[48];
5286 
5287 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5288 			verbose(env, "has value %s", tn_buf);
5289 		} else {
5290 			verbose(env, "has unknown scalar value");
5291 		}
5292 		verbose(env, " should have been 0 or 1\n");
5293 		return -EINVAL;
5294 	}
5295 	return 0;
5296 }
5297 
5298 /* non-recursive DFS pseudo code
5299  * 1  procedure DFS-iterative(G,v):
5300  * 2      label v as discovered
5301  * 3      let S be a stack
5302  * 4      S.push(v)
5303  * 5      while S is not empty
5304  * 6            t <- S.pop()
5305  * 7            if t is what we're looking for:
5306  * 8                return t
5307  * 9            for all edges e in G.adjacentEdges(t) do
5308  * 10               if edge e is already labelled
5309  * 11                   continue with the next edge
5310  * 12               w <- G.adjacentVertex(t,e)
5311  * 13               if vertex w is not discovered and not explored
5312  * 14                   label e as tree-edge
5313  * 15                   label w as discovered
5314  * 16                   S.push(w)
5315  * 17                   continue at 5
5316  * 18               else if vertex w is discovered
5317  * 19                   label e as back-edge
5318  * 20               else
5319  * 21                   // vertex w is explored
5320  * 22                   label e as forward- or cross-edge
5321  * 23           label t as explored
5322  * 24           S.pop()
5323  *
5324  * convention:
5325  * 0x10 - discovered
5326  * 0x11 - discovered and fall-through edge labelled
5327  * 0x12 - discovered and fall-through and branch edges labelled
5328  * 0x20 - explored
5329  */
5330 
5331 enum {
5332 	DISCOVERED = 0x10,
5333 	EXPLORED = 0x20,
5334 	FALLTHROUGH = 1,
5335 	BRANCH = 2,
5336 };
5337 
5338 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
5339 
5340 static int *insn_stack;	/* stack of insns to process */
5341 static int cur_stack;	/* current stack index */
5342 static int *insn_state;
5343 
5344 /* t, w, e - match pseudo-code above:
5345  * t - index of current instruction
5346  * w - next instruction
5347  * e - edge
5348  */
5349 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5350 {
5351 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5352 		return 0;
5353 
5354 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5355 		return 0;
5356 
5357 	if (w < 0 || w >= env->prog->len) {
5358 		verbose_linfo(env, t, "%d: ", t);
5359 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
5360 		return -EINVAL;
5361 	}
5362 
5363 	if (e == BRANCH)
5364 		/* mark branch target for state pruning */
5365 		env->explored_states[w] = STATE_LIST_MARK;
5366 
5367 	if (insn_state[w] == 0) {
5368 		/* tree-edge */
5369 		insn_state[t] = DISCOVERED | e;
5370 		insn_state[w] = DISCOVERED;
5371 		if (cur_stack >= env->prog->len)
5372 			return -E2BIG;
5373 		insn_stack[cur_stack++] = w;
5374 		return 1;
5375 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5376 		verbose_linfo(env, t, "%d: ", t);
5377 		verbose_linfo(env, w, "%d: ", w);
5378 		verbose(env, "back-edge from insn %d to %d\n", t, w);
5379 		return -EINVAL;
5380 	} else if (insn_state[w] == EXPLORED) {
5381 		/* forward- or cross-edge */
5382 		insn_state[t] = DISCOVERED | e;
5383 	} else {
5384 		verbose(env, "insn state internal bug\n");
5385 		return -EFAULT;
5386 	}
5387 	return 0;
5388 }
5389 
5390 /* non-recursive depth-first-search to detect loops in BPF program
5391  * loop == back-edge in directed graph
5392  */
5393 static int check_cfg(struct bpf_verifier_env *env)
5394 {
5395 	struct bpf_insn *insns = env->prog->insnsi;
5396 	int insn_cnt = env->prog->len;
5397 	int ret = 0;
5398 	int i, t;
5399 
5400 	insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5401 	if (!insn_state)
5402 		return -ENOMEM;
5403 
5404 	insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5405 	if (!insn_stack) {
5406 		kvfree(insn_state);
5407 		return -ENOMEM;
5408 	}
5409 
5410 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5411 	insn_stack[0] = 0; /* 0 is the first instruction */
5412 	cur_stack = 1;
5413 
5414 peek_stack:
5415 	if (cur_stack == 0)
5416 		goto check_state;
5417 	t = insn_stack[cur_stack - 1];
5418 
5419 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5420 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
5421 		u8 opcode = BPF_OP(insns[t].code);
5422 
5423 		if (opcode == BPF_EXIT) {
5424 			goto mark_explored;
5425 		} else if (opcode == BPF_CALL) {
5426 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5427 			if (ret == 1)
5428 				goto peek_stack;
5429 			else if (ret < 0)
5430 				goto err_free;
5431 			if (t + 1 < insn_cnt)
5432 				env->explored_states[t + 1] = STATE_LIST_MARK;
5433 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5434 				env->explored_states[t] = STATE_LIST_MARK;
5435 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5436 				if (ret == 1)
5437 					goto peek_stack;
5438 				else if (ret < 0)
5439 					goto err_free;
5440 			}
5441 		} else if (opcode == BPF_JA) {
5442 			if (BPF_SRC(insns[t].code) != BPF_K) {
5443 				ret = -EINVAL;
5444 				goto err_free;
5445 			}
5446 			/* unconditional jump with single edge */
5447 			ret = push_insn(t, t + insns[t].off + 1,
5448 					FALLTHROUGH, env);
5449 			if (ret == 1)
5450 				goto peek_stack;
5451 			else if (ret < 0)
5452 				goto err_free;
5453 			/* tell verifier to check for equivalent states
5454 			 * after every call and jump
5455 			 */
5456 			if (t + 1 < insn_cnt)
5457 				env->explored_states[t + 1] = STATE_LIST_MARK;
5458 		} else {
5459 			/* conditional jump with two edges */
5460 			env->explored_states[t] = STATE_LIST_MARK;
5461 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5462 			if (ret == 1)
5463 				goto peek_stack;
5464 			else if (ret < 0)
5465 				goto err_free;
5466 
5467 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5468 			if (ret == 1)
5469 				goto peek_stack;
5470 			else if (ret < 0)
5471 				goto err_free;
5472 		}
5473 	} else {
5474 		/* all other non-branch instructions with single
5475 		 * fall-through edge
5476 		 */
5477 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
5478 		if (ret == 1)
5479 			goto peek_stack;
5480 		else if (ret < 0)
5481 			goto err_free;
5482 	}
5483 
5484 mark_explored:
5485 	insn_state[t] = EXPLORED;
5486 	if (cur_stack-- <= 0) {
5487 		verbose(env, "pop stack internal bug\n");
5488 		ret = -EFAULT;
5489 		goto err_free;
5490 	}
5491 	goto peek_stack;
5492 
5493 check_state:
5494 	for (i = 0; i < insn_cnt; i++) {
5495 		if (insn_state[i] != EXPLORED) {
5496 			verbose(env, "unreachable insn %d\n", i);
5497 			ret = -EINVAL;
5498 			goto err_free;
5499 		}
5500 	}
5501 	ret = 0; /* cfg looks good */
5502 
5503 err_free:
5504 	kvfree(insn_state);
5505 	kvfree(insn_stack);
5506 	return ret;
5507 }
5508 
5509 /* The minimum supported BTF func info size */
5510 #define MIN_BPF_FUNCINFO_SIZE	8
5511 #define MAX_FUNCINFO_REC_SIZE	252
5512 
5513 static int check_btf_func(struct bpf_verifier_env *env,
5514 			  const union bpf_attr *attr,
5515 			  union bpf_attr __user *uattr)
5516 {
5517 	u32 i, nfuncs, urec_size, min_size;
5518 	u32 krec_size = sizeof(struct bpf_func_info);
5519 	struct bpf_func_info *krecord;
5520 	const struct btf_type *type;
5521 	struct bpf_prog *prog;
5522 	const struct btf *btf;
5523 	void __user *urecord;
5524 	u32 prev_offset = 0;
5525 	int ret = 0;
5526 
5527 	nfuncs = attr->func_info_cnt;
5528 	if (!nfuncs)
5529 		return 0;
5530 
5531 	if (nfuncs != env->subprog_cnt) {
5532 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5533 		return -EINVAL;
5534 	}
5535 
5536 	urec_size = attr->func_info_rec_size;
5537 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5538 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
5539 	    urec_size % sizeof(u32)) {
5540 		verbose(env, "invalid func info rec size %u\n", urec_size);
5541 		return -EINVAL;
5542 	}
5543 
5544 	prog = env->prog;
5545 	btf = prog->aux->btf;
5546 
5547 	urecord = u64_to_user_ptr(attr->func_info);
5548 	min_size = min_t(u32, krec_size, urec_size);
5549 
5550 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5551 	if (!krecord)
5552 		return -ENOMEM;
5553 
5554 	for (i = 0; i < nfuncs; i++) {
5555 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5556 		if (ret) {
5557 			if (ret == -E2BIG) {
5558 				verbose(env, "nonzero tailing record in func info");
5559 				/* set the size kernel expects so loader can zero
5560 				 * out the rest of the record.
5561 				 */
5562 				if (put_user(min_size, &uattr->func_info_rec_size))
5563 					ret = -EFAULT;
5564 			}
5565 			goto err_free;
5566 		}
5567 
5568 		if (copy_from_user(&krecord[i], urecord, min_size)) {
5569 			ret = -EFAULT;
5570 			goto err_free;
5571 		}
5572 
5573 		/* check insn_off */
5574 		if (i == 0) {
5575 			if (krecord[i].insn_off) {
5576 				verbose(env,
5577 					"nonzero insn_off %u for the first func info record",
5578 					krecord[i].insn_off);
5579 				ret = -EINVAL;
5580 				goto err_free;
5581 			}
5582 		} else if (krecord[i].insn_off <= prev_offset) {
5583 			verbose(env,
5584 				"same or smaller insn offset (%u) than previous func info record (%u)",
5585 				krecord[i].insn_off, prev_offset);
5586 			ret = -EINVAL;
5587 			goto err_free;
5588 		}
5589 
5590 		if (env->subprog_info[i].start != krecord[i].insn_off) {
5591 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5592 			ret = -EINVAL;
5593 			goto err_free;
5594 		}
5595 
5596 		/* check type_id */
5597 		type = btf_type_by_id(btf, krecord[i].type_id);
5598 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5599 			verbose(env, "invalid type id %d in func info",
5600 				krecord[i].type_id);
5601 			ret = -EINVAL;
5602 			goto err_free;
5603 		}
5604 
5605 		prev_offset = krecord[i].insn_off;
5606 		urecord += urec_size;
5607 	}
5608 
5609 	prog->aux->func_info = krecord;
5610 	prog->aux->func_info_cnt = nfuncs;
5611 	return 0;
5612 
5613 err_free:
5614 	kvfree(krecord);
5615 	return ret;
5616 }
5617 
5618 static void adjust_btf_func(struct bpf_verifier_env *env)
5619 {
5620 	int i;
5621 
5622 	if (!env->prog->aux->func_info)
5623 		return;
5624 
5625 	for (i = 0; i < env->subprog_cnt; i++)
5626 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5627 }
5628 
5629 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
5630 		sizeof(((struct bpf_line_info *)(0))->line_col))
5631 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
5632 
5633 static int check_btf_line(struct bpf_verifier_env *env,
5634 			  const union bpf_attr *attr,
5635 			  union bpf_attr __user *uattr)
5636 {
5637 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5638 	struct bpf_subprog_info *sub;
5639 	struct bpf_line_info *linfo;
5640 	struct bpf_prog *prog;
5641 	const struct btf *btf;
5642 	void __user *ulinfo;
5643 	int err;
5644 
5645 	nr_linfo = attr->line_info_cnt;
5646 	if (!nr_linfo)
5647 		return 0;
5648 
5649 	rec_size = attr->line_info_rec_size;
5650 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5651 	    rec_size > MAX_LINEINFO_REC_SIZE ||
5652 	    rec_size & (sizeof(u32) - 1))
5653 		return -EINVAL;
5654 
5655 	/* Need to zero it in case the userspace may
5656 	 * pass in a smaller bpf_line_info object.
5657 	 */
5658 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5659 			 GFP_KERNEL | __GFP_NOWARN);
5660 	if (!linfo)
5661 		return -ENOMEM;
5662 
5663 	prog = env->prog;
5664 	btf = prog->aux->btf;
5665 
5666 	s = 0;
5667 	sub = env->subprog_info;
5668 	ulinfo = u64_to_user_ptr(attr->line_info);
5669 	expected_size = sizeof(struct bpf_line_info);
5670 	ncopy = min_t(u32, expected_size, rec_size);
5671 	for (i = 0; i < nr_linfo; i++) {
5672 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5673 		if (err) {
5674 			if (err == -E2BIG) {
5675 				verbose(env, "nonzero tailing record in line_info");
5676 				if (put_user(expected_size,
5677 					     &uattr->line_info_rec_size))
5678 					err = -EFAULT;
5679 			}
5680 			goto err_free;
5681 		}
5682 
5683 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5684 			err = -EFAULT;
5685 			goto err_free;
5686 		}
5687 
5688 		/*
5689 		 * Check insn_off to ensure
5690 		 * 1) strictly increasing AND
5691 		 * 2) bounded by prog->len
5692 		 *
5693 		 * The linfo[0].insn_off == 0 check logically falls into
5694 		 * the later "missing bpf_line_info for func..." case
5695 		 * because the first linfo[0].insn_off must be the
5696 		 * first sub also and the first sub must have
5697 		 * subprog_info[0].start == 0.
5698 		 */
5699 		if ((i && linfo[i].insn_off <= prev_offset) ||
5700 		    linfo[i].insn_off >= prog->len) {
5701 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5702 				i, linfo[i].insn_off, prev_offset,
5703 				prog->len);
5704 			err = -EINVAL;
5705 			goto err_free;
5706 		}
5707 
5708 		if (!prog->insnsi[linfo[i].insn_off].code) {
5709 			verbose(env,
5710 				"Invalid insn code at line_info[%u].insn_off\n",
5711 				i);
5712 			err = -EINVAL;
5713 			goto err_free;
5714 		}
5715 
5716 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5717 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5718 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5719 			err = -EINVAL;
5720 			goto err_free;
5721 		}
5722 
5723 		if (s != env->subprog_cnt) {
5724 			if (linfo[i].insn_off == sub[s].start) {
5725 				sub[s].linfo_idx = i;
5726 				s++;
5727 			} else if (sub[s].start < linfo[i].insn_off) {
5728 				verbose(env, "missing bpf_line_info for func#%u\n", s);
5729 				err = -EINVAL;
5730 				goto err_free;
5731 			}
5732 		}
5733 
5734 		prev_offset = linfo[i].insn_off;
5735 		ulinfo += rec_size;
5736 	}
5737 
5738 	if (s != env->subprog_cnt) {
5739 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5740 			env->subprog_cnt - s, s);
5741 		err = -EINVAL;
5742 		goto err_free;
5743 	}
5744 
5745 	prog->aux->linfo = linfo;
5746 	prog->aux->nr_linfo = nr_linfo;
5747 
5748 	return 0;
5749 
5750 err_free:
5751 	kvfree(linfo);
5752 	return err;
5753 }
5754 
5755 static int check_btf_info(struct bpf_verifier_env *env,
5756 			  const union bpf_attr *attr,
5757 			  union bpf_attr __user *uattr)
5758 {
5759 	struct btf *btf;
5760 	int err;
5761 
5762 	if (!attr->func_info_cnt && !attr->line_info_cnt)
5763 		return 0;
5764 
5765 	btf = btf_get_by_fd(attr->prog_btf_fd);
5766 	if (IS_ERR(btf))
5767 		return PTR_ERR(btf);
5768 	env->prog->aux->btf = btf;
5769 
5770 	err = check_btf_func(env, attr, uattr);
5771 	if (err)
5772 		return err;
5773 
5774 	err = check_btf_line(env, attr, uattr);
5775 	if (err)
5776 		return err;
5777 
5778 	return 0;
5779 }
5780 
5781 /* check %cur's range satisfies %old's */
5782 static bool range_within(struct bpf_reg_state *old,
5783 			 struct bpf_reg_state *cur)
5784 {
5785 	return old->umin_value <= cur->umin_value &&
5786 	       old->umax_value >= cur->umax_value &&
5787 	       old->smin_value <= cur->smin_value &&
5788 	       old->smax_value >= cur->smax_value;
5789 }
5790 
5791 /* Maximum number of register states that can exist at once */
5792 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5793 struct idpair {
5794 	u32 old;
5795 	u32 cur;
5796 };
5797 
5798 /* If in the old state two registers had the same id, then they need to have
5799  * the same id in the new state as well.  But that id could be different from
5800  * the old state, so we need to track the mapping from old to new ids.
5801  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5802  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
5803  * regs with a different old id could still have new id 9, we don't care about
5804  * that.
5805  * So we look through our idmap to see if this old id has been seen before.  If
5806  * so, we require the new id to match; otherwise, we add the id pair to the map.
5807  */
5808 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
5809 {
5810 	unsigned int i;
5811 
5812 	for (i = 0; i < ID_MAP_SIZE; i++) {
5813 		if (!idmap[i].old) {
5814 			/* Reached an empty slot; haven't seen this id before */
5815 			idmap[i].old = old_id;
5816 			idmap[i].cur = cur_id;
5817 			return true;
5818 		}
5819 		if (idmap[i].old == old_id)
5820 			return idmap[i].cur == cur_id;
5821 	}
5822 	/* We ran out of idmap slots, which should be impossible */
5823 	WARN_ON_ONCE(1);
5824 	return false;
5825 }
5826 
5827 static void clean_func_state(struct bpf_verifier_env *env,
5828 			     struct bpf_func_state *st)
5829 {
5830 	enum bpf_reg_liveness live;
5831 	int i, j;
5832 
5833 	for (i = 0; i < BPF_REG_FP; i++) {
5834 		live = st->regs[i].live;
5835 		/* liveness must not touch this register anymore */
5836 		st->regs[i].live |= REG_LIVE_DONE;
5837 		if (!(live & REG_LIVE_READ))
5838 			/* since the register is unused, clear its state
5839 			 * to make further comparison simpler
5840 			 */
5841 			__mark_reg_not_init(&st->regs[i]);
5842 	}
5843 
5844 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5845 		live = st->stack[i].spilled_ptr.live;
5846 		/* liveness must not touch this stack slot anymore */
5847 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5848 		if (!(live & REG_LIVE_READ)) {
5849 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
5850 			for (j = 0; j < BPF_REG_SIZE; j++)
5851 				st->stack[i].slot_type[j] = STACK_INVALID;
5852 		}
5853 	}
5854 }
5855 
5856 static void clean_verifier_state(struct bpf_verifier_env *env,
5857 				 struct bpf_verifier_state *st)
5858 {
5859 	int i;
5860 
5861 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5862 		/* all regs in this state in all frames were already marked */
5863 		return;
5864 
5865 	for (i = 0; i <= st->curframe; i++)
5866 		clean_func_state(env, st->frame[i]);
5867 }
5868 
5869 /* the parentage chains form a tree.
5870  * the verifier states are added to state lists at given insn and
5871  * pushed into state stack for future exploration.
5872  * when the verifier reaches bpf_exit insn some of the verifer states
5873  * stored in the state lists have their final liveness state already,
5874  * but a lot of states will get revised from liveness point of view when
5875  * the verifier explores other branches.
5876  * Example:
5877  * 1: r0 = 1
5878  * 2: if r1 == 100 goto pc+1
5879  * 3: r0 = 2
5880  * 4: exit
5881  * when the verifier reaches exit insn the register r0 in the state list of
5882  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5883  * of insn 2 and goes exploring further. At the insn 4 it will walk the
5884  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5885  *
5886  * Since the verifier pushes the branch states as it sees them while exploring
5887  * the program the condition of walking the branch instruction for the second
5888  * time means that all states below this branch were already explored and
5889  * their final liveness markes are already propagated.
5890  * Hence when the verifier completes the search of state list in is_state_visited()
5891  * we can call this clean_live_states() function to mark all liveness states
5892  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5893  * will not be used.
5894  * This function also clears the registers and stack for states that !READ
5895  * to simplify state merging.
5896  *
5897  * Important note here that walking the same branch instruction in the callee
5898  * doesn't meant that the states are DONE. The verifier has to compare
5899  * the callsites
5900  */
5901 static void clean_live_states(struct bpf_verifier_env *env, int insn,
5902 			      struct bpf_verifier_state *cur)
5903 {
5904 	struct bpf_verifier_state_list *sl;
5905 	int i;
5906 
5907 	sl = env->explored_states[insn];
5908 	if (!sl)
5909 		return;
5910 
5911 	while (sl != STATE_LIST_MARK) {
5912 		if (sl->state.curframe != cur->curframe)
5913 			goto next;
5914 		for (i = 0; i <= cur->curframe; i++)
5915 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
5916 				goto next;
5917 		clean_verifier_state(env, &sl->state);
5918 next:
5919 		sl = sl->next;
5920 	}
5921 }
5922 
5923 /* Returns true if (rold safe implies rcur safe) */
5924 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
5925 		    struct idpair *idmap)
5926 {
5927 	bool equal;
5928 
5929 	if (!(rold->live & REG_LIVE_READ))
5930 		/* explored state didn't use this */
5931 		return true;
5932 
5933 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
5934 
5935 	if (rold->type == PTR_TO_STACK)
5936 		/* two stack pointers are equal only if they're pointing to
5937 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
5938 		 */
5939 		return equal && rold->frameno == rcur->frameno;
5940 
5941 	if (equal)
5942 		return true;
5943 
5944 	if (rold->type == NOT_INIT)
5945 		/* explored state can't have used this */
5946 		return true;
5947 	if (rcur->type == NOT_INIT)
5948 		return false;
5949 	switch (rold->type) {
5950 	case SCALAR_VALUE:
5951 		if (rcur->type == SCALAR_VALUE) {
5952 			/* new val must satisfy old val knowledge */
5953 			return range_within(rold, rcur) &&
5954 			       tnum_in(rold->var_off, rcur->var_off);
5955 		} else {
5956 			/* We're trying to use a pointer in place of a scalar.
5957 			 * Even if the scalar was unbounded, this could lead to
5958 			 * pointer leaks because scalars are allowed to leak
5959 			 * while pointers are not. We could make this safe in
5960 			 * special cases if root is calling us, but it's
5961 			 * probably not worth the hassle.
5962 			 */
5963 			return false;
5964 		}
5965 	case PTR_TO_MAP_VALUE:
5966 		/* If the new min/max/var_off satisfy the old ones and
5967 		 * everything else matches, we are OK.
5968 		 * 'id' is not compared, since it's only used for maps with
5969 		 * bpf_spin_lock inside map element and in such cases if
5970 		 * the rest of the prog is valid for one map element then
5971 		 * it's valid for all map elements regardless of the key
5972 		 * used in bpf_map_lookup()
5973 		 */
5974 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
5975 		       range_within(rold, rcur) &&
5976 		       tnum_in(rold->var_off, rcur->var_off);
5977 	case PTR_TO_MAP_VALUE_OR_NULL:
5978 		/* a PTR_TO_MAP_VALUE could be safe to use as a
5979 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
5980 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
5981 		 * checked, doing so could have affected others with the same
5982 		 * id, and we can't check for that because we lost the id when
5983 		 * we converted to a PTR_TO_MAP_VALUE.
5984 		 */
5985 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
5986 			return false;
5987 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
5988 			return false;
5989 		/* Check our ids match any regs they're supposed to */
5990 		return check_ids(rold->id, rcur->id, idmap);
5991 	case PTR_TO_PACKET_META:
5992 	case PTR_TO_PACKET:
5993 		if (rcur->type != rold->type)
5994 			return false;
5995 		/* We must have at least as much range as the old ptr
5996 		 * did, so that any accesses which were safe before are
5997 		 * still safe.  This is true even if old range < old off,
5998 		 * since someone could have accessed through (ptr - k), or
5999 		 * even done ptr -= k in a register, to get a safe access.
6000 		 */
6001 		if (rold->range > rcur->range)
6002 			return false;
6003 		/* If the offsets don't match, we can't trust our alignment;
6004 		 * nor can we be sure that we won't fall out of range.
6005 		 */
6006 		if (rold->off != rcur->off)
6007 			return false;
6008 		/* id relations must be preserved */
6009 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6010 			return false;
6011 		/* new val must satisfy old val knowledge */
6012 		return range_within(rold, rcur) &&
6013 		       tnum_in(rold->var_off, rcur->var_off);
6014 	case PTR_TO_CTX:
6015 	case CONST_PTR_TO_MAP:
6016 	case PTR_TO_PACKET_END:
6017 	case PTR_TO_FLOW_KEYS:
6018 	case PTR_TO_SOCKET:
6019 	case PTR_TO_SOCKET_OR_NULL:
6020 	case PTR_TO_SOCK_COMMON:
6021 	case PTR_TO_SOCK_COMMON_OR_NULL:
6022 	case PTR_TO_TCP_SOCK:
6023 	case PTR_TO_TCP_SOCK_OR_NULL:
6024 		/* Only valid matches are exact, which memcmp() above
6025 		 * would have accepted
6026 		 */
6027 	default:
6028 		/* Don't know what's going on, just say it's not safe */
6029 		return false;
6030 	}
6031 
6032 	/* Shouldn't get here; if we do, say it's not safe */
6033 	WARN_ON_ONCE(1);
6034 	return false;
6035 }
6036 
6037 static bool stacksafe(struct bpf_func_state *old,
6038 		      struct bpf_func_state *cur,
6039 		      struct idpair *idmap)
6040 {
6041 	int i, spi;
6042 
6043 	/* walk slots of the explored stack and ignore any additional
6044 	 * slots in the current stack, since explored(safe) state
6045 	 * didn't use them
6046 	 */
6047 	for (i = 0; i < old->allocated_stack; i++) {
6048 		spi = i / BPF_REG_SIZE;
6049 
6050 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6051 			i += BPF_REG_SIZE - 1;
6052 			/* explored state didn't use this */
6053 			continue;
6054 		}
6055 
6056 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6057 			continue;
6058 
6059 		/* explored stack has more populated slots than current stack
6060 		 * and these slots were used
6061 		 */
6062 		if (i >= cur->allocated_stack)
6063 			return false;
6064 
6065 		/* if old state was safe with misc data in the stack
6066 		 * it will be safe with zero-initialized stack.
6067 		 * The opposite is not true
6068 		 */
6069 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6070 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6071 			continue;
6072 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6073 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6074 			/* Ex: old explored (safe) state has STACK_SPILL in
6075 			 * this stack slot, but current has has STACK_MISC ->
6076 			 * this verifier states are not equivalent,
6077 			 * return false to continue verification of this path
6078 			 */
6079 			return false;
6080 		if (i % BPF_REG_SIZE)
6081 			continue;
6082 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
6083 			continue;
6084 		if (!regsafe(&old->stack[spi].spilled_ptr,
6085 			     &cur->stack[spi].spilled_ptr,
6086 			     idmap))
6087 			/* when explored and current stack slot are both storing
6088 			 * spilled registers, check that stored pointers types
6089 			 * are the same as well.
6090 			 * Ex: explored safe path could have stored
6091 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6092 			 * but current path has stored:
6093 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6094 			 * such verifier states are not equivalent.
6095 			 * return false to continue verification of this path
6096 			 */
6097 			return false;
6098 	}
6099 	return true;
6100 }
6101 
6102 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6103 {
6104 	if (old->acquired_refs != cur->acquired_refs)
6105 		return false;
6106 	return !memcmp(old->refs, cur->refs,
6107 		       sizeof(*old->refs) * old->acquired_refs);
6108 }
6109 
6110 /* compare two verifier states
6111  *
6112  * all states stored in state_list are known to be valid, since
6113  * verifier reached 'bpf_exit' instruction through them
6114  *
6115  * this function is called when verifier exploring different branches of
6116  * execution popped from the state stack. If it sees an old state that has
6117  * more strict register state and more strict stack state then this execution
6118  * branch doesn't need to be explored further, since verifier already
6119  * concluded that more strict state leads to valid finish.
6120  *
6121  * Therefore two states are equivalent if register state is more conservative
6122  * and explored stack state is more conservative than the current one.
6123  * Example:
6124  *       explored                   current
6125  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6126  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6127  *
6128  * In other words if current stack state (one being explored) has more
6129  * valid slots than old one that already passed validation, it means
6130  * the verifier can stop exploring and conclude that current state is valid too
6131  *
6132  * Similarly with registers. If explored state has register type as invalid
6133  * whereas register type in current state is meaningful, it means that
6134  * the current state will reach 'bpf_exit' instruction safely
6135  */
6136 static bool func_states_equal(struct bpf_func_state *old,
6137 			      struct bpf_func_state *cur)
6138 {
6139 	struct idpair *idmap;
6140 	bool ret = false;
6141 	int i;
6142 
6143 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6144 	/* If we failed to allocate the idmap, just say it's not safe */
6145 	if (!idmap)
6146 		return false;
6147 
6148 	for (i = 0; i < MAX_BPF_REG; i++) {
6149 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
6150 			goto out_free;
6151 	}
6152 
6153 	if (!stacksafe(old, cur, idmap))
6154 		goto out_free;
6155 
6156 	if (!refsafe(old, cur))
6157 		goto out_free;
6158 	ret = true;
6159 out_free:
6160 	kfree(idmap);
6161 	return ret;
6162 }
6163 
6164 static bool states_equal(struct bpf_verifier_env *env,
6165 			 struct bpf_verifier_state *old,
6166 			 struct bpf_verifier_state *cur)
6167 {
6168 	int i;
6169 
6170 	if (old->curframe != cur->curframe)
6171 		return false;
6172 
6173 	/* Verification state from speculative execution simulation
6174 	 * must never prune a non-speculative execution one.
6175 	 */
6176 	if (old->speculative && !cur->speculative)
6177 		return false;
6178 
6179 	if (old->active_spin_lock != cur->active_spin_lock)
6180 		return false;
6181 
6182 	/* for states to be equal callsites have to be the same
6183 	 * and all frame states need to be equivalent
6184 	 */
6185 	for (i = 0; i <= old->curframe; i++) {
6186 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
6187 			return false;
6188 		if (!func_states_equal(old->frame[i], cur->frame[i]))
6189 			return false;
6190 	}
6191 	return true;
6192 }
6193 
6194 /* A write screens off any subsequent reads; but write marks come from the
6195  * straight-line code between a state and its parent.  When we arrive at an
6196  * equivalent state (jump target or such) we didn't arrive by the straight-line
6197  * code, so read marks in the state must propagate to the parent regardless
6198  * of the state's write marks. That's what 'parent == state->parent' comparison
6199  * in mark_reg_read() is for.
6200  */
6201 static int propagate_liveness(struct bpf_verifier_env *env,
6202 			      const struct bpf_verifier_state *vstate,
6203 			      struct bpf_verifier_state *vparent)
6204 {
6205 	int i, frame, err = 0;
6206 	struct bpf_func_state *state, *parent;
6207 
6208 	if (vparent->curframe != vstate->curframe) {
6209 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
6210 		     vparent->curframe, vstate->curframe);
6211 		return -EFAULT;
6212 	}
6213 	/* Propagate read liveness of registers... */
6214 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6215 	for (frame = 0; frame <= vstate->curframe; frame++) {
6216 		/* We don't need to worry about FP liveness, it's read-only */
6217 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6218 			if (vparent->frame[frame]->regs[i].live & REG_LIVE_READ)
6219 				continue;
6220 			if (vstate->frame[frame]->regs[i].live & REG_LIVE_READ) {
6221 				err = mark_reg_read(env, &vstate->frame[frame]->regs[i],
6222 						    &vparent->frame[frame]->regs[i]);
6223 				if (err)
6224 					return err;
6225 			}
6226 		}
6227 	}
6228 
6229 	/* ... and stack slots */
6230 	for (frame = 0; frame <= vstate->curframe; frame++) {
6231 		state = vstate->frame[frame];
6232 		parent = vparent->frame[frame];
6233 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6234 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6235 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
6236 				continue;
6237 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
6238 				mark_reg_read(env, &state->stack[i].spilled_ptr,
6239 					      &parent->stack[i].spilled_ptr);
6240 		}
6241 	}
6242 	return err;
6243 }
6244 
6245 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6246 {
6247 	struct bpf_verifier_state_list *new_sl;
6248 	struct bpf_verifier_state_list *sl, **pprev;
6249 	struct bpf_verifier_state *cur = env->cur_state, *new;
6250 	int i, j, err, states_cnt = 0;
6251 
6252 	pprev = &env->explored_states[insn_idx];
6253 	sl = *pprev;
6254 
6255 	if (!sl)
6256 		/* this 'insn_idx' instruction wasn't marked, so we will not
6257 		 * be doing state search here
6258 		 */
6259 		return 0;
6260 
6261 	clean_live_states(env, insn_idx, cur);
6262 
6263 	while (sl != STATE_LIST_MARK) {
6264 		if (states_equal(env, &sl->state, cur)) {
6265 			sl->hit_cnt++;
6266 			/* reached equivalent register/stack state,
6267 			 * prune the search.
6268 			 * Registers read by the continuation are read by us.
6269 			 * If we have any write marks in env->cur_state, they
6270 			 * will prevent corresponding reads in the continuation
6271 			 * from reaching our parent (an explored_state).  Our
6272 			 * own state will get the read marks recorded, but
6273 			 * they'll be immediately forgotten as we're pruning
6274 			 * this state and will pop a new one.
6275 			 */
6276 			err = propagate_liveness(env, &sl->state, cur);
6277 			if (err)
6278 				return err;
6279 			return 1;
6280 		}
6281 		states_cnt++;
6282 		sl->miss_cnt++;
6283 		/* heuristic to determine whether this state is beneficial
6284 		 * to keep checking from state equivalence point of view.
6285 		 * Higher numbers increase max_states_per_insn and verification time,
6286 		 * but do not meaningfully decrease insn_processed.
6287 		 */
6288 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
6289 			/* the state is unlikely to be useful. Remove it to
6290 			 * speed up verification
6291 			 */
6292 			*pprev = sl->next;
6293 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
6294 				free_verifier_state(&sl->state, false);
6295 				kfree(sl);
6296 				env->peak_states--;
6297 			} else {
6298 				/* cannot free this state, since parentage chain may
6299 				 * walk it later. Add it for free_list instead to
6300 				 * be freed at the end of verification
6301 				 */
6302 				sl->next = env->free_list;
6303 				env->free_list = sl;
6304 			}
6305 			sl = *pprev;
6306 			continue;
6307 		}
6308 		pprev = &sl->next;
6309 		sl = *pprev;
6310 	}
6311 
6312 	if (env->max_states_per_insn < states_cnt)
6313 		env->max_states_per_insn = states_cnt;
6314 
6315 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6316 		return 0;
6317 
6318 	/* there were no equivalent states, remember current one.
6319 	 * technically the current state is not proven to be safe yet,
6320 	 * but it will either reach outer most bpf_exit (which means it's safe)
6321 	 * or it will be rejected. Since there are no loops, we won't be
6322 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6323 	 * again on the way to bpf_exit
6324 	 */
6325 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6326 	if (!new_sl)
6327 		return -ENOMEM;
6328 	env->total_states++;
6329 	env->peak_states++;
6330 
6331 	/* add new state to the head of linked list */
6332 	new = &new_sl->state;
6333 	err = copy_verifier_state(new, cur);
6334 	if (err) {
6335 		free_verifier_state(new, false);
6336 		kfree(new_sl);
6337 		return err;
6338 	}
6339 	new_sl->next = env->explored_states[insn_idx];
6340 	env->explored_states[insn_idx] = new_sl;
6341 	/* connect new state to parentage chain. Current frame needs all
6342 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
6343 	 * to the stack implicitly by JITs) so in callers' frames connect just
6344 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6345 	 * the state of the call instruction (with WRITTEN set), and r0 comes
6346 	 * from callee with its full parentage chain, anyway.
6347 	 */
6348 	for (j = 0; j <= cur->curframe; j++)
6349 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6350 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6351 	/* clear write marks in current state: the writes we did are not writes
6352 	 * our child did, so they don't screen off its reads from us.
6353 	 * (There are no read marks in current state, because reads always mark
6354 	 * their parent and current state never has children yet.  Only
6355 	 * explored_states can get read marks.)
6356 	 */
6357 	for (i = 0; i < BPF_REG_FP; i++)
6358 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6359 
6360 	/* all stack frames are accessible from callee, clear them all */
6361 	for (j = 0; j <= cur->curframe; j++) {
6362 		struct bpf_func_state *frame = cur->frame[j];
6363 		struct bpf_func_state *newframe = new->frame[j];
6364 
6365 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6366 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6367 			frame->stack[i].spilled_ptr.parent =
6368 						&newframe->stack[i].spilled_ptr;
6369 		}
6370 	}
6371 	return 0;
6372 }
6373 
6374 /* Return true if it's OK to have the same insn return a different type. */
6375 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6376 {
6377 	switch (type) {
6378 	case PTR_TO_CTX:
6379 	case PTR_TO_SOCKET:
6380 	case PTR_TO_SOCKET_OR_NULL:
6381 	case PTR_TO_SOCK_COMMON:
6382 	case PTR_TO_SOCK_COMMON_OR_NULL:
6383 	case PTR_TO_TCP_SOCK:
6384 	case PTR_TO_TCP_SOCK_OR_NULL:
6385 		return false;
6386 	default:
6387 		return true;
6388 	}
6389 }
6390 
6391 /* If an instruction was previously used with particular pointer types, then we
6392  * need to be careful to avoid cases such as the below, where it may be ok
6393  * for one branch accessing the pointer, but not ok for the other branch:
6394  *
6395  * R1 = sock_ptr
6396  * goto X;
6397  * ...
6398  * R1 = some_other_valid_ptr;
6399  * goto X;
6400  * ...
6401  * R2 = *(u32 *)(R1 + 0);
6402  */
6403 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6404 {
6405 	return src != prev && (!reg_type_mismatch_ok(src) ||
6406 			       !reg_type_mismatch_ok(prev));
6407 }
6408 
6409 static int do_check(struct bpf_verifier_env *env)
6410 {
6411 	struct bpf_verifier_state *state;
6412 	struct bpf_insn *insns = env->prog->insnsi;
6413 	struct bpf_reg_state *regs;
6414 	int insn_cnt = env->prog->len;
6415 	bool do_print_state = false;
6416 
6417 	env->prev_linfo = NULL;
6418 
6419 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6420 	if (!state)
6421 		return -ENOMEM;
6422 	state->curframe = 0;
6423 	state->speculative = false;
6424 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6425 	if (!state->frame[0]) {
6426 		kfree(state);
6427 		return -ENOMEM;
6428 	}
6429 	env->cur_state = state;
6430 	init_func_state(env, state->frame[0],
6431 			BPF_MAIN_FUNC /* callsite */,
6432 			0 /* frameno */,
6433 			0 /* subprogno, zero == main subprog */);
6434 
6435 	for (;;) {
6436 		struct bpf_insn *insn;
6437 		u8 class;
6438 		int err;
6439 
6440 		if (env->insn_idx >= insn_cnt) {
6441 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
6442 				env->insn_idx, insn_cnt);
6443 			return -EFAULT;
6444 		}
6445 
6446 		insn = &insns[env->insn_idx];
6447 		class = BPF_CLASS(insn->code);
6448 
6449 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6450 			verbose(env,
6451 				"BPF program is too large. Processed %d insn\n",
6452 				env->insn_processed);
6453 			return -E2BIG;
6454 		}
6455 
6456 		err = is_state_visited(env, env->insn_idx);
6457 		if (err < 0)
6458 			return err;
6459 		if (err == 1) {
6460 			/* found equivalent state, can prune the search */
6461 			if (env->log.level & BPF_LOG_LEVEL) {
6462 				if (do_print_state)
6463 					verbose(env, "\nfrom %d to %d%s: safe\n",
6464 						env->prev_insn_idx, env->insn_idx,
6465 						env->cur_state->speculative ?
6466 						" (speculative execution)" : "");
6467 				else
6468 					verbose(env, "%d: safe\n", env->insn_idx);
6469 			}
6470 			goto process_bpf_exit;
6471 		}
6472 
6473 		if (signal_pending(current))
6474 			return -EAGAIN;
6475 
6476 		if (need_resched())
6477 			cond_resched();
6478 
6479 		if (env->log.level & BPF_LOG_LEVEL2 ||
6480 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
6481 			if (env->log.level & BPF_LOG_LEVEL2)
6482 				verbose(env, "%d:", env->insn_idx);
6483 			else
6484 				verbose(env, "\nfrom %d to %d%s:",
6485 					env->prev_insn_idx, env->insn_idx,
6486 					env->cur_state->speculative ?
6487 					" (speculative execution)" : "");
6488 			print_verifier_state(env, state->frame[state->curframe]);
6489 			do_print_state = false;
6490 		}
6491 
6492 		if (env->log.level & BPF_LOG_LEVEL) {
6493 			const struct bpf_insn_cbs cbs = {
6494 				.cb_print	= verbose,
6495 				.private_data	= env,
6496 			};
6497 
6498 			verbose_linfo(env, env->insn_idx, "; ");
6499 			verbose(env, "%d: ", env->insn_idx);
6500 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6501 		}
6502 
6503 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
6504 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6505 							   env->prev_insn_idx);
6506 			if (err)
6507 				return err;
6508 		}
6509 
6510 		regs = cur_regs(env);
6511 		env->insn_aux_data[env->insn_idx].seen = true;
6512 
6513 		if (class == BPF_ALU || class == BPF_ALU64) {
6514 			err = check_alu_op(env, insn);
6515 			if (err)
6516 				return err;
6517 
6518 		} else if (class == BPF_LDX) {
6519 			enum bpf_reg_type *prev_src_type, src_reg_type;
6520 
6521 			/* check for reserved fields is already done */
6522 
6523 			/* check src operand */
6524 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6525 			if (err)
6526 				return err;
6527 
6528 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6529 			if (err)
6530 				return err;
6531 
6532 			src_reg_type = regs[insn->src_reg].type;
6533 
6534 			/* check that memory (src_reg + off) is readable,
6535 			 * the state of dst_reg will be updated by this func
6536 			 */
6537 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
6538 					       insn->off, BPF_SIZE(insn->code),
6539 					       BPF_READ, insn->dst_reg, false);
6540 			if (err)
6541 				return err;
6542 
6543 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6544 
6545 			if (*prev_src_type == NOT_INIT) {
6546 				/* saw a valid insn
6547 				 * dst_reg = *(u32 *)(src_reg + off)
6548 				 * save type to validate intersecting paths
6549 				 */
6550 				*prev_src_type = src_reg_type;
6551 
6552 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6553 				/* ABuser program is trying to use the same insn
6554 				 * dst_reg = *(u32*) (src_reg + off)
6555 				 * with different pointer types:
6556 				 * src_reg == ctx in one branch and
6557 				 * src_reg == stack|map in some other branch.
6558 				 * Reject it.
6559 				 */
6560 				verbose(env, "same insn cannot be used with different pointers\n");
6561 				return -EINVAL;
6562 			}
6563 
6564 		} else if (class == BPF_STX) {
6565 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
6566 
6567 			if (BPF_MODE(insn->code) == BPF_XADD) {
6568 				err = check_xadd(env, env->insn_idx, insn);
6569 				if (err)
6570 					return err;
6571 				env->insn_idx++;
6572 				continue;
6573 			}
6574 
6575 			/* check src1 operand */
6576 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6577 			if (err)
6578 				return err;
6579 			/* check src2 operand */
6580 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6581 			if (err)
6582 				return err;
6583 
6584 			dst_reg_type = regs[insn->dst_reg].type;
6585 
6586 			/* check that memory (dst_reg + off) is writeable */
6587 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6588 					       insn->off, BPF_SIZE(insn->code),
6589 					       BPF_WRITE, insn->src_reg, false);
6590 			if (err)
6591 				return err;
6592 
6593 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6594 
6595 			if (*prev_dst_type == NOT_INIT) {
6596 				*prev_dst_type = dst_reg_type;
6597 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6598 				verbose(env, "same insn cannot be used with different pointers\n");
6599 				return -EINVAL;
6600 			}
6601 
6602 		} else if (class == BPF_ST) {
6603 			if (BPF_MODE(insn->code) != BPF_MEM ||
6604 			    insn->src_reg != BPF_REG_0) {
6605 				verbose(env, "BPF_ST uses reserved fields\n");
6606 				return -EINVAL;
6607 			}
6608 			/* check src operand */
6609 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6610 			if (err)
6611 				return err;
6612 
6613 			if (is_ctx_reg(env, insn->dst_reg)) {
6614 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6615 					insn->dst_reg,
6616 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
6617 				return -EACCES;
6618 			}
6619 
6620 			/* check that memory (dst_reg + off) is writeable */
6621 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6622 					       insn->off, BPF_SIZE(insn->code),
6623 					       BPF_WRITE, -1, false);
6624 			if (err)
6625 				return err;
6626 
6627 		} else if (class == BPF_JMP || class == BPF_JMP32) {
6628 			u8 opcode = BPF_OP(insn->code);
6629 
6630 			if (opcode == BPF_CALL) {
6631 				if (BPF_SRC(insn->code) != BPF_K ||
6632 				    insn->off != 0 ||
6633 				    (insn->src_reg != BPF_REG_0 &&
6634 				     insn->src_reg != BPF_PSEUDO_CALL) ||
6635 				    insn->dst_reg != BPF_REG_0 ||
6636 				    class == BPF_JMP32) {
6637 					verbose(env, "BPF_CALL uses reserved fields\n");
6638 					return -EINVAL;
6639 				}
6640 
6641 				if (env->cur_state->active_spin_lock &&
6642 				    (insn->src_reg == BPF_PSEUDO_CALL ||
6643 				     insn->imm != BPF_FUNC_spin_unlock)) {
6644 					verbose(env, "function calls are not allowed while holding a lock\n");
6645 					return -EINVAL;
6646 				}
6647 				if (insn->src_reg == BPF_PSEUDO_CALL)
6648 					err = check_func_call(env, insn, &env->insn_idx);
6649 				else
6650 					err = check_helper_call(env, insn->imm, env->insn_idx);
6651 				if (err)
6652 					return err;
6653 
6654 			} else if (opcode == BPF_JA) {
6655 				if (BPF_SRC(insn->code) != BPF_K ||
6656 				    insn->imm != 0 ||
6657 				    insn->src_reg != BPF_REG_0 ||
6658 				    insn->dst_reg != BPF_REG_0 ||
6659 				    class == BPF_JMP32) {
6660 					verbose(env, "BPF_JA uses reserved fields\n");
6661 					return -EINVAL;
6662 				}
6663 
6664 				env->insn_idx += insn->off + 1;
6665 				continue;
6666 
6667 			} else if (opcode == BPF_EXIT) {
6668 				if (BPF_SRC(insn->code) != BPF_K ||
6669 				    insn->imm != 0 ||
6670 				    insn->src_reg != BPF_REG_0 ||
6671 				    insn->dst_reg != BPF_REG_0 ||
6672 				    class == BPF_JMP32) {
6673 					verbose(env, "BPF_EXIT uses reserved fields\n");
6674 					return -EINVAL;
6675 				}
6676 
6677 				if (env->cur_state->active_spin_lock) {
6678 					verbose(env, "bpf_spin_unlock is missing\n");
6679 					return -EINVAL;
6680 				}
6681 
6682 				if (state->curframe) {
6683 					/* exit from nested function */
6684 					env->prev_insn_idx = env->insn_idx;
6685 					err = prepare_func_exit(env, &env->insn_idx);
6686 					if (err)
6687 						return err;
6688 					do_print_state = true;
6689 					continue;
6690 				}
6691 
6692 				err = check_reference_leak(env);
6693 				if (err)
6694 					return err;
6695 
6696 				/* eBPF calling convetion is such that R0 is used
6697 				 * to return the value from eBPF program.
6698 				 * Make sure that it's readable at this time
6699 				 * of bpf_exit, which means that program wrote
6700 				 * something into it earlier
6701 				 */
6702 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6703 				if (err)
6704 					return err;
6705 
6706 				if (is_pointer_value(env, BPF_REG_0)) {
6707 					verbose(env, "R0 leaks addr as return value\n");
6708 					return -EACCES;
6709 				}
6710 
6711 				err = check_return_code(env);
6712 				if (err)
6713 					return err;
6714 process_bpf_exit:
6715 				err = pop_stack(env, &env->prev_insn_idx,
6716 						&env->insn_idx);
6717 				if (err < 0) {
6718 					if (err != -ENOENT)
6719 						return err;
6720 					break;
6721 				} else {
6722 					do_print_state = true;
6723 					continue;
6724 				}
6725 			} else {
6726 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
6727 				if (err)
6728 					return err;
6729 			}
6730 		} else if (class == BPF_LD) {
6731 			u8 mode = BPF_MODE(insn->code);
6732 
6733 			if (mode == BPF_ABS || mode == BPF_IND) {
6734 				err = check_ld_abs(env, insn);
6735 				if (err)
6736 					return err;
6737 
6738 			} else if (mode == BPF_IMM) {
6739 				err = check_ld_imm(env, insn);
6740 				if (err)
6741 					return err;
6742 
6743 				env->insn_idx++;
6744 				env->insn_aux_data[env->insn_idx].seen = true;
6745 			} else {
6746 				verbose(env, "invalid BPF_LD mode\n");
6747 				return -EINVAL;
6748 			}
6749 		} else {
6750 			verbose(env, "unknown insn class %d\n", class);
6751 			return -EINVAL;
6752 		}
6753 
6754 		env->insn_idx++;
6755 	}
6756 
6757 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
6758 	return 0;
6759 }
6760 
6761 static int check_map_prealloc(struct bpf_map *map)
6762 {
6763 	return (map->map_type != BPF_MAP_TYPE_HASH &&
6764 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6765 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
6766 		!(map->map_flags & BPF_F_NO_PREALLOC);
6767 }
6768 
6769 static bool is_tracing_prog_type(enum bpf_prog_type type)
6770 {
6771 	switch (type) {
6772 	case BPF_PROG_TYPE_KPROBE:
6773 	case BPF_PROG_TYPE_TRACEPOINT:
6774 	case BPF_PROG_TYPE_PERF_EVENT:
6775 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6776 		return true;
6777 	default:
6778 		return false;
6779 	}
6780 }
6781 
6782 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6783 					struct bpf_map *map,
6784 					struct bpf_prog *prog)
6785 
6786 {
6787 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6788 	 * preallocated hash maps, since doing memory allocation
6789 	 * in overflow_handler can crash depending on where nmi got
6790 	 * triggered.
6791 	 */
6792 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6793 		if (!check_map_prealloc(map)) {
6794 			verbose(env, "perf_event programs can only use preallocated hash map\n");
6795 			return -EINVAL;
6796 		}
6797 		if (map->inner_map_meta &&
6798 		    !check_map_prealloc(map->inner_map_meta)) {
6799 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
6800 			return -EINVAL;
6801 		}
6802 	}
6803 
6804 	if ((is_tracing_prog_type(prog->type) ||
6805 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6806 	    map_value_has_spin_lock(map)) {
6807 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6808 		return -EINVAL;
6809 	}
6810 
6811 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
6812 	    !bpf_offload_prog_map_match(prog, map)) {
6813 		verbose(env, "offload device mismatch between prog and map\n");
6814 		return -EINVAL;
6815 	}
6816 
6817 	return 0;
6818 }
6819 
6820 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6821 {
6822 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6823 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6824 }
6825 
6826 /* look for pseudo eBPF instructions that access map FDs and
6827  * replace them with actual map pointers
6828  */
6829 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
6830 {
6831 	struct bpf_insn *insn = env->prog->insnsi;
6832 	int insn_cnt = env->prog->len;
6833 	int i, j, err;
6834 
6835 	err = bpf_prog_calc_tag(env->prog);
6836 	if (err)
6837 		return err;
6838 
6839 	for (i = 0; i < insn_cnt; i++, insn++) {
6840 		if (BPF_CLASS(insn->code) == BPF_LDX &&
6841 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
6842 			verbose(env, "BPF_LDX uses reserved fields\n");
6843 			return -EINVAL;
6844 		}
6845 
6846 		if (BPF_CLASS(insn->code) == BPF_STX &&
6847 		    ((BPF_MODE(insn->code) != BPF_MEM &&
6848 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
6849 			verbose(env, "BPF_STX uses reserved fields\n");
6850 			return -EINVAL;
6851 		}
6852 
6853 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6854 			struct bpf_insn_aux_data *aux;
6855 			struct bpf_map *map;
6856 			struct fd f;
6857 			u64 addr;
6858 
6859 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
6860 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6861 			    insn[1].off != 0) {
6862 				verbose(env, "invalid bpf_ld_imm64 insn\n");
6863 				return -EINVAL;
6864 			}
6865 
6866 			if (insn[0].src_reg == 0)
6867 				/* valid generic load 64-bit imm */
6868 				goto next_insn;
6869 
6870 			/* In final convert_pseudo_ld_imm64() step, this is
6871 			 * converted into regular 64-bit imm load insn.
6872 			 */
6873 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
6874 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
6875 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
6876 			     insn[1].imm != 0)) {
6877 				verbose(env,
6878 					"unrecognized bpf_ld_imm64 insn\n");
6879 				return -EINVAL;
6880 			}
6881 
6882 			f = fdget(insn[0].imm);
6883 			map = __bpf_map_get(f);
6884 			if (IS_ERR(map)) {
6885 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
6886 					insn[0].imm);
6887 				return PTR_ERR(map);
6888 			}
6889 
6890 			err = check_map_prog_compatibility(env, map, env->prog);
6891 			if (err) {
6892 				fdput(f);
6893 				return err;
6894 			}
6895 
6896 			aux = &env->insn_aux_data[i];
6897 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6898 				addr = (unsigned long)map;
6899 			} else {
6900 				u32 off = insn[1].imm;
6901 
6902 				if (off >= BPF_MAX_VAR_OFF) {
6903 					verbose(env, "direct value offset of %u is not allowed\n", off);
6904 					fdput(f);
6905 					return -EINVAL;
6906 				}
6907 
6908 				if (!map->ops->map_direct_value_addr) {
6909 					verbose(env, "no direct value access support for this map type\n");
6910 					fdput(f);
6911 					return -EINVAL;
6912 				}
6913 
6914 				err = map->ops->map_direct_value_addr(map, &addr, off);
6915 				if (err) {
6916 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
6917 						map->value_size, off);
6918 					fdput(f);
6919 					return err;
6920 				}
6921 
6922 				aux->map_off = off;
6923 				addr += off;
6924 			}
6925 
6926 			insn[0].imm = (u32)addr;
6927 			insn[1].imm = addr >> 32;
6928 
6929 			/* check whether we recorded this map already */
6930 			for (j = 0; j < env->used_map_cnt; j++) {
6931 				if (env->used_maps[j] == map) {
6932 					aux->map_index = j;
6933 					fdput(f);
6934 					goto next_insn;
6935 				}
6936 			}
6937 
6938 			if (env->used_map_cnt >= MAX_USED_MAPS) {
6939 				fdput(f);
6940 				return -E2BIG;
6941 			}
6942 
6943 			/* hold the map. If the program is rejected by verifier,
6944 			 * the map will be released by release_maps() or it
6945 			 * will be used by the valid program until it's unloaded
6946 			 * and all maps are released in free_used_maps()
6947 			 */
6948 			map = bpf_map_inc(map, false);
6949 			if (IS_ERR(map)) {
6950 				fdput(f);
6951 				return PTR_ERR(map);
6952 			}
6953 
6954 			aux->map_index = env->used_map_cnt;
6955 			env->used_maps[env->used_map_cnt++] = map;
6956 
6957 			if (bpf_map_is_cgroup_storage(map) &&
6958 			    bpf_cgroup_storage_assign(env->prog, map)) {
6959 				verbose(env, "only one cgroup storage of each type is allowed\n");
6960 				fdput(f);
6961 				return -EBUSY;
6962 			}
6963 
6964 			fdput(f);
6965 next_insn:
6966 			insn++;
6967 			i++;
6968 			continue;
6969 		}
6970 
6971 		/* Basic sanity check before we invest more work here. */
6972 		if (!bpf_opcode_in_insntable(insn->code)) {
6973 			verbose(env, "unknown opcode %02x\n", insn->code);
6974 			return -EINVAL;
6975 		}
6976 	}
6977 
6978 	/* now all pseudo BPF_LD_IMM64 instructions load valid
6979 	 * 'struct bpf_map *' into a register instead of user map_fd.
6980 	 * These pointers will be used later by verifier to validate map access.
6981 	 */
6982 	return 0;
6983 }
6984 
6985 /* drop refcnt of maps used by the rejected program */
6986 static void release_maps(struct bpf_verifier_env *env)
6987 {
6988 	enum bpf_cgroup_storage_type stype;
6989 	int i;
6990 
6991 	for_each_cgroup_storage_type(stype) {
6992 		if (!env->prog->aux->cgroup_storage[stype])
6993 			continue;
6994 		bpf_cgroup_storage_release(env->prog,
6995 			env->prog->aux->cgroup_storage[stype]);
6996 	}
6997 
6998 	for (i = 0; i < env->used_map_cnt; i++)
6999 		bpf_map_put(env->used_maps[i]);
7000 }
7001 
7002 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
7003 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
7004 {
7005 	struct bpf_insn *insn = env->prog->insnsi;
7006 	int insn_cnt = env->prog->len;
7007 	int i;
7008 
7009 	for (i = 0; i < insn_cnt; i++, insn++)
7010 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7011 			insn->src_reg = 0;
7012 }
7013 
7014 /* single env->prog->insni[off] instruction was replaced with the range
7015  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
7016  * [0, off) and [off, end) to new locations, so the patched range stays zero
7017  */
7018 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
7019 				u32 off, u32 cnt)
7020 {
7021 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
7022 	int i;
7023 
7024 	if (cnt == 1)
7025 		return 0;
7026 	new_data = vzalloc(array_size(prog_len,
7027 				      sizeof(struct bpf_insn_aux_data)));
7028 	if (!new_data)
7029 		return -ENOMEM;
7030 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
7031 	memcpy(new_data + off + cnt - 1, old_data + off,
7032 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
7033 	for (i = off; i < off + cnt - 1; i++)
7034 		new_data[i].seen = true;
7035 	env->insn_aux_data = new_data;
7036 	vfree(old_data);
7037 	return 0;
7038 }
7039 
7040 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
7041 {
7042 	int i;
7043 
7044 	if (len == 1)
7045 		return;
7046 	/* NOTE: fake 'exit' subprog should be updated as well. */
7047 	for (i = 0; i <= env->subprog_cnt; i++) {
7048 		if (env->subprog_info[i].start <= off)
7049 			continue;
7050 		env->subprog_info[i].start += len - 1;
7051 	}
7052 }
7053 
7054 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
7055 					    const struct bpf_insn *patch, u32 len)
7056 {
7057 	struct bpf_prog *new_prog;
7058 
7059 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
7060 	if (IS_ERR(new_prog)) {
7061 		if (PTR_ERR(new_prog) == -ERANGE)
7062 			verbose(env,
7063 				"insn %d cannot be patched due to 16-bit range\n",
7064 				env->insn_aux_data[off].orig_idx);
7065 		return NULL;
7066 	}
7067 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
7068 		return NULL;
7069 	adjust_subprog_starts(env, off, len);
7070 	return new_prog;
7071 }
7072 
7073 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
7074 					      u32 off, u32 cnt)
7075 {
7076 	int i, j;
7077 
7078 	/* find first prog starting at or after off (first to remove) */
7079 	for (i = 0; i < env->subprog_cnt; i++)
7080 		if (env->subprog_info[i].start >= off)
7081 			break;
7082 	/* find first prog starting at or after off + cnt (first to stay) */
7083 	for (j = i; j < env->subprog_cnt; j++)
7084 		if (env->subprog_info[j].start >= off + cnt)
7085 			break;
7086 	/* if j doesn't start exactly at off + cnt, we are just removing
7087 	 * the front of previous prog
7088 	 */
7089 	if (env->subprog_info[j].start != off + cnt)
7090 		j--;
7091 
7092 	if (j > i) {
7093 		struct bpf_prog_aux *aux = env->prog->aux;
7094 		int move;
7095 
7096 		/* move fake 'exit' subprog as well */
7097 		move = env->subprog_cnt + 1 - j;
7098 
7099 		memmove(env->subprog_info + i,
7100 			env->subprog_info + j,
7101 			sizeof(*env->subprog_info) * move);
7102 		env->subprog_cnt -= j - i;
7103 
7104 		/* remove func_info */
7105 		if (aux->func_info) {
7106 			move = aux->func_info_cnt - j;
7107 
7108 			memmove(aux->func_info + i,
7109 				aux->func_info + j,
7110 				sizeof(*aux->func_info) * move);
7111 			aux->func_info_cnt -= j - i;
7112 			/* func_info->insn_off is set after all code rewrites,
7113 			 * in adjust_btf_func() - no need to adjust
7114 			 */
7115 		}
7116 	} else {
7117 		/* convert i from "first prog to remove" to "first to adjust" */
7118 		if (env->subprog_info[i].start == off)
7119 			i++;
7120 	}
7121 
7122 	/* update fake 'exit' subprog as well */
7123 	for (; i <= env->subprog_cnt; i++)
7124 		env->subprog_info[i].start -= cnt;
7125 
7126 	return 0;
7127 }
7128 
7129 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
7130 				      u32 cnt)
7131 {
7132 	struct bpf_prog *prog = env->prog;
7133 	u32 i, l_off, l_cnt, nr_linfo;
7134 	struct bpf_line_info *linfo;
7135 
7136 	nr_linfo = prog->aux->nr_linfo;
7137 	if (!nr_linfo)
7138 		return 0;
7139 
7140 	linfo = prog->aux->linfo;
7141 
7142 	/* find first line info to remove, count lines to be removed */
7143 	for (i = 0; i < nr_linfo; i++)
7144 		if (linfo[i].insn_off >= off)
7145 			break;
7146 
7147 	l_off = i;
7148 	l_cnt = 0;
7149 	for (; i < nr_linfo; i++)
7150 		if (linfo[i].insn_off < off + cnt)
7151 			l_cnt++;
7152 		else
7153 			break;
7154 
7155 	/* First live insn doesn't match first live linfo, it needs to "inherit"
7156 	 * last removed linfo.  prog is already modified, so prog->len == off
7157 	 * means no live instructions after (tail of the program was removed).
7158 	 */
7159 	if (prog->len != off && l_cnt &&
7160 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
7161 		l_cnt--;
7162 		linfo[--i].insn_off = off + cnt;
7163 	}
7164 
7165 	/* remove the line info which refer to the removed instructions */
7166 	if (l_cnt) {
7167 		memmove(linfo + l_off, linfo + i,
7168 			sizeof(*linfo) * (nr_linfo - i));
7169 
7170 		prog->aux->nr_linfo -= l_cnt;
7171 		nr_linfo = prog->aux->nr_linfo;
7172 	}
7173 
7174 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
7175 	for (i = l_off; i < nr_linfo; i++)
7176 		linfo[i].insn_off -= cnt;
7177 
7178 	/* fix up all subprogs (incl. 'exit') which start >= off */
7179 	for (i = 0; i <= env->subprog_cnt; i++)
7180 		if (env->subprog_info[i].linfo_idx > l_off) {
7181 			/* program may have started in the removed region but
7182 			 * may not be fully removed
7183 			 */
7184 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
7185 				env->subprog_info[i].linfo_idx -= l_cnt;
7186 			else
7187 				env->subprog_info[i].linfo_idx = l_off;
7188 		}
7189 
7190 	return 0;
7191 }
7192 
7193 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7194 {
7195 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7196 	unsigned int orig_prog_len = env->prog->len;
7197 	int err;
7198 
7199 	if (bpf_prog_is_dev_bound(env->prog->aux))
7200 		bpf_prog_offload_remove_insns(env, off, cnt);
7201 
7202 	err = bpf_remove_insns(env->prog, off, cnt);
7203 	if (err)
7204 		return err;
7205 
7206 	err = adjust_subprog_starts_after_remove(env, off, cnt);
7207 	if (err)
7208 		return err;
7209 
7210 	err = bpf_adj_linfo_after_remove(env, off, cnt);
7211 	if (err)
7212 		return err;
7213 
7214 	memmove(aux_data + off,	aux_data + off + cnt,
7215 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
7216 
7217 	return 0;
7218 }
7219 
7220 /* The verifier does more data flow analysis than llvm and will not
7221  * explore branches that are dead at run time. Malicious programs can
7222  * have dead code too. Therefore replace all dead at-run-time code
7223  * with 'ja -1'.
7224  *
7225  * Just nops are not optimal, e.g. if they would sit at the end of the
7226  * program and through another bug we would manage to jump there, then
7227  * we'd execute beyond program memory otherwise. Returning exception
7228  * code also wouldn't work since we can have subprogs where the dead
7229  * code could be located.
7230  */
7231 static void sanitize_dead_code(struct bpf_verifier_env *env)
7232 {
7233 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7234 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7235 	struct bpf_insn *insn = env->prog->insnsi;
7236 	const int insn_cnt = env->prog->len;
7237 	int i;
7238 
7239 	for (i = 0; i < insn_cnt; i++) {
7240 		if (aux_data[i].seen)
7241 			continue;
7242 		memcpy(insn + i, &trap, sizeof(trap));
7243 	}
7244 }
7245 
7246 static bool insn_is_cond_jump(u8 code)
7247 {
7248 	u8 op;
7249 
7250 	if (BPF_CLASS(code) == BPF_JMP32)
7251 		return true;
7252 
7253 	if (BPF_CLASS(code) != BPF_JMP)
7254 		return false;
7255 
7256 	op = BPF_OP(code);
7257 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7258 }
7259 
7260 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7261 {
7262 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7263 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7264 	struct bpf_insn *insn = env->prog->insnsi;
7265 	const int insn_cnt = env->prog->len;
7266 	int i;
7267 
7268 	for (i = 0; i < insn_cnt; i++, insn++) {
7269 		if (!insn_is_cond_jump(insn->code))
7270 			continue;
7271 
7272 		if (!aux_data[i + 1].seen)
7273 			ja.off = insn->off;
7274 		else if (!aux_data[i + 1 + insn->off].seen)
7275 			ja.off = 0;
7276 		else
7277 			continue;
7278 
7279 		if (bpf_prog_is_dev_bound(env->prog->aux))
7280 			bpf_prog_offload_replace_insn(env, i, &ja);
7281 
7282 		memcpy(insn, &ja, sizeof(ja));
7283 	}
7284 }
7285 
7286 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7287 {
7288 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7289 	int insn_cnt = env->prog->len;
7290 	int i, err;
7291 
7292 	for (i = 0; i < insn_cnt; i++) {
7293 		int j;
7294 
7295 		j = 0;
7296 		while (i + j < insn_cnt && !aux_data[i + j].seen)
7297 			j++;
7298 		if (!j)
7299 			continue;
7300 
7301 		err = verifier_remove_insns(env, i, j);
7302 		if (err)
7303 			return err;
7304 		insn_cnt = env->prog->len;
7305 	}
7306 
7307 	return 0;
7308 }
7309 
7310 static int opt_remove_nops(struct bpf_verifier_env *env)
7311 {
7312 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7313 	struct bpf_insn *insn = env->prog->insnsi;
7314 	int insn_cnt = env->prog->len;
7315 	int i, err;
7316 
7317 	for (i = 0; i < insn_cnt; i++) {
7318 		if (memcmp(&insn[i], &ja, sizeof(ja)))
7319 			continue;
7320 
7321 		err = verifier_remove_insns(env, i, 1);
7322 		if (err)
7323 			return err;
7324 		insn_cnt--;
7325 		i--;
7326 	}
7327 
7328 	return 0;
7329 }
7330 
7331 /* convert load instructions that access fields of a context type into a
7332  * sequence of instructions that access fields of the underlying structure:
7333  *     struct __sk_buff    -> struct sk_buff
7334  *     struct bpf_sock_ops -> struct sock
7335  */
7336 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7337 {
7338 	const struct bpf_verifier_ops *ops = env->ops;
7339 	int i, cnt, size, ctx_field_size, delta = 0;
7340 	const int insn_cnt = env->prog->len;
7341 	struct bpf_insn insn_buf[16], *insn;
7342 	u32 target_size, size_default, off;
7343 	struct bpf_prog *new_prog;
7344 	enum bpf_access_type type;
7345 	bool is_narrower_load;
7346 
7347 	if (ops->gen_prologue || env->seen_direct_write) {
7348 		if (!ops->gen_prologue) {
7349 			verbose(env, "bpf verifier is misconfigured\n");
7350 			return -EINVAL;
7351 		}
7352 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7353 					env->prog);
7354 		if (cnt >= ARRAY_SIZE(insn_buf)) {
7355 			verbose(env, "bpf verifier is misconfigured\n");
7356 			return -EINVAL;
7357 		} else if (cnt) {
7358 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7359 			if (!new_prog)
7360 				return -ENOMEM;
7361 
7362 			env->prog = new_prog;
7363 			delta += cnt - 1;
7364 		}
7365 	}
7366 
7367 	if (bpf_prog_is_dev_bound(env->prog->aux))
7368 		return 0;
7369 
7370 	insn = env->prog->insnsi + delta;
7371 
7372 	for (i = 0; i < insn_cnt; i++, insn++) {
7373 		bpf_convert_ctx_access_t convert_ctx_access;
7374 
7375 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7376 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7377 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7378 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7379 			type = BPF_READ;
7380 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7381 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7382 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7383 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7384 			type = BPF_WRITE;
7385 		else
7386 			continue;
7387 
7388 		if (type == BPF_WRITE &&
7389 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
7390 			struct bpf_insn patch[] = {
7391 				/* Sanitize suspicious stack slot with zero.
7392 				 * There are no memory dependencies for this store,
7393 				 * since it's only using frame pointer and immediate
7394 				 * constant of zero
7395 				 */
7396 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7397 					   env->insn_aux_data[i + delta].sanitize_stack_off,
7398 					   0),
7399 				/* the original STX instruction will immediately
7400 				 * overwrite the same stack slot with appropriate value
7401 				 */
7402 				*insn,
7403 			};
7404 
7405 			cnt = ARRAY_SIZE(patch);
7406 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7407 			if (!new_prog)
7408 				return -ENOMEM;
7409 
7410 			delta    += cnt - 1;
7411 			env->prog = new_prog;
7412 			insn      = new_prog->insnsi + i + delta;
7413 			continue;
7414 		}
7415 
7416 		switch (env->insn_aux_data[i + delta].ptr_type) {
7417 		case PTR_TO_CTX:
7418 			if (!ops->convert_ctx_access)
7419 				continue;
7420 			convert_ctx_access = ops->convert_ctx_access;
7421 			break;
7422 		case PTR_TO_SOCKET:
7423 		case PTR_TO_SOCK_COMMON:
7424 			convert_ctx_access = bpf_sock_convert_ctx_access;
7425 			break;
7426 		case PTR_TO_TCP_SOCK:
7427 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7428 			break;
7429 		default:
7430 			continue;
7431 		}
7432 
7433 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7434 		size = BPF_LDST_BYTES(insn);
7435 
7436 		/* If the read access is a narrower load of the field,
7437 		 * convert to a 4/8-byte load, to minimum program type specific
7438 		 * convert_ctx_access changes. If conversion is successful,
7439 		 * we will apply proper mask to the result.
7440 		 */
7441 		is_narrower_load = size < ctx_field_size;
7442 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7443 		off = insn->off;
7444 		if (is_narrower_load) {
7445 			u8 size_code;
7446 
7447 			if (type == BPF_WRITE) {
7448 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7449 				return -EINVAL;
7450 			}
7451 
7452 			size_code = BPF_H;
7453 			if (ctx_field_size == 4)
7454 				size_code = BPF_W;
7455 			else if (ctx_field_size == 8)
7456 				size_code = BPF_DW;
7457 
7458 			insn->off = off & ~(size_default - 1);
7459 			insn->code = BPF_LDX | BPF_MEM | size_code;
7460 		}
7461 
7462 		target_size = 0;
7463 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7464 					 &target_size);
7465 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7466 		    (ctx_field_size && !target_size)) {
7467 			verbose(env, "bpf verifier is misconfigured\n");
7468 			return -EINVAL;
7469 		}
7470 
7471 		if (is_narrower_load && size < target_size) {
7472 			u8 shift = (off & (size_default - 1)) * 8;
7473 
7474 			if (ctx_field_size <= 4) {
7475 				if (shift)
7476 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7477 									insn->dst_reg,
7478 									shift);
7479 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7480 								(1 << size * 8) - 1);
7481 			} else {
7482 				if (shift)
7483 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7484 									insn->dst_reg,
7485 									shift);
7486 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7487 								(1 << size * 8) - 1);
7488 			}
7489 		}
7490 
7491 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7492 		if (!new_prog)
7493 			return -ENOMEM;
7494 
7495 		delta += cnt - 1;
7496 
7497 		/* keep walking new program and skip insns we just inserted */
7498 		env->prog = new_prog;
7499 		insn      = new_prog->insnsi + i + delta;
7500 	}
7501 
7502 	return 0;
7503 }
7504 
7505 static int jit_subprogs(struct bpf_verifier_env *env)
7506 {
7507 	struct bpf_prog *prog = env->prog, **func, *tmp;
7508 	int i, j, subprog_start, subprog_end = 0, len, subprog;
7509 	struct bpf_insn *insn;
7510 	void *old_bpf_func;
7511 	int err;
7512 
7513 	if (env->subprog_cnt <= 1)
7514 		return 0;
7515 
7516 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7517 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7518 		    insn->src_reg != BPF_PSEUDO_CALL)
7519 			continue;
7520 		/* Upon error here we cannot fall back to interpreter but
7521 		 * need a hard reject of the program. Thus -EFAULT is
7522 		 * propagated in any case.
7523 		 */
7524 		subprog = find_subprog(env, i + insn->imm + 1);
7525 		if (subprog < 0) {
7526 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7527 				  i + insn->imm + 1);
7528 			return -EFAULT;
7529 		}
7530 		/* temporarily remember subprog id inside insn instead of
7531 		 * aux_data, since next loop will split up all insns into funcs
7532 		 */
7533 		insn->off = subprog;
7534 		/* remember original imm in case JIT fails and fallback
7535 		 * to interpreter will be needed
7536 		 */
7537 		env->insn_aux_data[i].call_imm = insn->imm;
7538 		/* point imm to __bpf_call_base+1 from JITs point of view */
7539 		insn->imm = 1;
7540 	}
7541 
7542 	err = bpf_prog_alloc_jited_linfo(prog);
7543 	if (err)
7544 		goto out_undo_insn;
7545 
7546 	err = -ENOMEM;
7547 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7548 	if (!func)
7549 		goto out_undo_insn;
7550 
7551 	for (i = 0; i < env->subprog_cnt; i++) {
7552 		subprog_start = subprog_end;
7553 		subprog_end = env->subprog_info[i + 1].start;
7554 
7555 		len = subprog_end - subprog_start;
7556 		/* BPF_PROG_RUN doesn't call subprogs directly,
7557 		 * hence main prog stats include the runtime of subprogs.
7558 		 * subprogs don't have IDs and not reachable via prog_get_next_id
7559 		 * func[i]->aux->stats will never be accessed and stays NULL
7560 		 */
7561 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7562 		if (!func[i])
7563 			goto out_free;
7564 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7565 		       len * sizeof(struct bpf_insn));
7566 		func[i]->type = prog->type;
7567 		func[i]->len = len;
7568 		if (bpf_prog_calc_tag(func[i]))
7569 			goto out_free;
7570 		func[i]->is_func = 1;
7571 		func[i]->aux->func_idx = i;
7572 		/* the btf and func_info will be freed only at prog->aux */
7573 		func[i]->aux->btf = prog->aux->btf;
7574 		func[i]->aux->func_info = prog->aux->func_info;
7575 
7576 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
7577 		 * Long term would need debug info to populate names
7578 		 */
7579 		func[i]->aux->name[0] = 'F';
7580 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7581 		func[i]->jit_requested = 1;
7582 		func[i]->aux->linfo = prog->aux->linfo;
7583 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7584 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7585 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7586 		func[i] = bpf_int_jit_compile(func[i]);
7587 		if (!func[i]->jited) {
7588 			err = -ENOTSUPP;
7589 			goto out_free;
7590 		}
7591 		cond_resched();
7592 	}
7593 	/* at this point all bpf functions were successfully JITed
7594 	 * now populate all bpf_calls with correct addresses and
7595 	 * run last pass of JIT
7596 	 */
7597 	for (i = 0; i < env->subprog_cnt; i++) {
7598 		insn = func[i]->insnsi;
7599 		for (j = 0; j < func[i]->len; j++, insn++) {
7600 			if (insn->code != (BPF_JMP | BPF_CALL) ||
7601 			    insn->src_reg != BPF_PSEUDO_CALL)
7602 				continue;
7603 			subprog = insn->off;
7604 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
7605 				func[subprog]->bpf_func -
7606 				__bpf_call_base;
7607 		}
7608 
7609 		/* we use the aux data to keep a list of the start addresses
7610 		 * of the JITed images for each function in the program
7611 		 *
7612 		 * for some architectures, such as powerpc64, the imm field
7613 		 * might not be large enough to hold the offset of the start
7614 		 * address of the callee's JITed image from __bpf_call_base
7615 		 *
7616 		 * in such cases, we can lookup the start address of a callee
7617 		 * by using its subprog id, available from the off field of
7618 		 * the call instruction, as an index for this list
7619 		 */
7620 		func[i]->aux->func = func;
7621 		func[i]->aux->func_cnt = env->subprog_cnt;
7622 	}
7623 	for (i = 0; i < env->subprog_cnt; i++) {
7624 		old_bpf_func = func[i]->bpf_func;
7625 		tmp = bpf_int_jit_compile(func[i]);
7626 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7627 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
7628 			err = -ENOTSUPP;
7629 			goto out_free;
7630 		}
7631 		cond_resched();
7632 	}
7633 
7634 	/* finally lock prog and jit images for all functions and
7635 	 * populate kallsysm
7636 	 */
7637 	for (i = 0; i < env->subprog_cnt; i++) {
7638 		bpf_prog_lock_ro(func[i]);
7639 		bpf_prog_kallsyms_add(func[i]);
7640 	}
7641 
7642 	/* Last step: make now unused interpreter insns from main
7643 	 * prog consistent for later dump requests, so they can
7644 	 * later look the same as if they were interpreted only.
7645 	 */
7646 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7647 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7648 		    insn->src_reg != BPF_PSEUDO_CALL)
7649 			continue;
7650 		insn->off = env->insn_aux_data[i].call_imm;
7651 		subprog = find_subprog(env, i + insn->off + 1);
7652 		insn->imm = subprog;
7653 	}
7654 
7655 	prog->jited = 1;
7656 	prog->bpf_func = func[0]->bpf_func;
7657 	prog->aux->func = func;
7658 	prog->aux->func_cnt = env->subprog_cnt;
7659 	bpf_prog_free_unused_jited_linfo(prog);
7660 	return 0;
7661 out_free:
7662 	for (i = 0; i < env->subprog_cnt; i++)
7663 		if (func[i])
7664 			bpf_jit_free(func[i]);
7665 	kfree(func);
7666 out_undo_insn:
7667 	/* cleanup main prog to be interpreted */
7668 	prog->jit_requested = 0;
7669 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7670 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7671 		    insn->src_reg != BPF_PSEUDO_CALL)
7672 			continue;
7673 		insn->off = 0;
7674 		insn->imm = env->insn_aux_data[i].call_imm;
7675 	}
7676 	bpf_prog_free_jited_linfo(prog);
7677 	return err;
7678 }
7679 
7680 static int fixup_call_args(struct bpf_verifier_env *env)
7681 {
7682 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7683 	struct bpf_prog *prog = env->prog;
7684 	struct bpf_insn *insn = prog->insnsi;
7685 	int i, depth;
7686 #endif
7687 	int err = 0;
7688 
7689 	if (env->prog->jit_requested &&
7690 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
7691 		err = jit_subprogs(env);
7692 		if (err == 0)
7693 			return 0;
7694 		if (err == -EFAULT)
7695 			return err;
7696 	}
7697 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7698 	for (i = 0; i < prog->len; i++, insn++) {
7699 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7700 		    insn->src_reg != BPF_PSEUDO_CALL)
7701 			continue;
7702 		depth = get_callee_stack_depth(env, insn, i);
7703 		if (depth < 0)
7704 			return depth;
7705 		bpf_patch_call_args(insn, depth);
7706 	}
7707 	err = 0;
7708 #endif
7709 	return err;
7710 }
7711 
7712 /* fixup insn->imm field of bpf_call instructions
7713  * and inline eligible helpers as explicit sequence of BPF instructions
7714  *
7715  * this function is called after eBPF program passed verification
7716  */
7717 static int fixup_bpf_calls(struct bpf_verifier_env *env)
7718 {
7719 	struct bpf_prog *prog = env->prog;
7720 	struct bpf_insn *insn = prog->insnsi;
7721 	const struct bpf_func_proto *fn;
7722 	const int insn_cnt = prog->len;
7723 	const struct bpf_map_ops *ops;
7724 	struct bpf_insn_aux_data *aux;
7725 	struct bpf_insn insn_buf[16];
7726 	struct bpf_prog *new_prog;
7727 	struct bpf_map *map_ptr;
7728 	int i, cnt, delta = 0;
7729 
7730 	for (i = 0; i < insn_cnt; i++, insn++) {
7731 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7732 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7733 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
7734 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7735 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7736 			struct bpf_insn mask_and_div[] = {
7737 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7738 				/* Rx div 0 -> 0 */
7739 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7740 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7741 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7742 				*insn,
7743 			};
7744 			struct bpf_insn mask_and_mod[] = {
7745 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7746 				/* Rx mod 0 -> Rx */
7747 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7748 				*insn,
7749 			};
7750 			struct bpf_insn *patchlet;
7751 
7752 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7753 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7754 				patchlet = mask_and_div + (is64 ? 1 : 0);
7755 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7756 			} else {
7757 				patchlet = mask_and_mod + (is64 ? 1 : 0);
7758 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7759 			}
7760 
7761 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
7762 			if (!new_prog)
7763 				return -ENOMEM;
7764 
7765 			delta    += cnt - 1;
7766 			env->prog = prog = new_prog;
7767 			insn      = new_prog->insnsi + i + delta;
7768 			continue;
7769 		}
7770 
7771 		if (BPF_CLASS(insn->code) == BPF_LD &&
7772 		    (BPF_MODE(insn->code) == BPF_ABS ||
7773 		     BPF_MODE(insn->code) == BPF_IND)) {
7774 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
7775 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7776 				verbose(env, "bpf verifier is misconfigured\n");
7777 				return -EINVAL;
7778 			}
7779 
7780 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7781 			if (!new_prog)
7782 				return -ENOMEM;
7783 
7784 			delta    += cnt - 1;
7785 			env->prog = prog = new_prog;
7786 			insn      = new_prog->insnsi + i + delta;
7787 			continue;
7788 		}
7789 
7790 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7791 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7792 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7793 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7794 			struct bpf_insn insn_buf[16];
7795 			struct bpf_insn *patch = &insn_buf[0];
7796 			bool issrc, isneg;
7797 			u32 off_reg;
7798 
7799 			aux = &env->insn_aux_data[i + delta];
7800 			if (!aux->alu_state ||
7801 			    aux->alu_state == BPF_ALU_NON_POINTER)
7802 				continue;
7803 
7804 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7805 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7806 				BPF_ALU_SANITIZE_SRC;
7807 
7808 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
7809 			if (isneg)
7810 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7811 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7812 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7813 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7814 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7815 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7816 			if (issrc) {
7817 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7818 							 off_reg);
7819 				insn->src_reg = BPF_REG_AX;
7820 			} else {
7821 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7822 							 BPF_REG_AX);
7823 			}
7824 			if (isneg)
7825 				insn->code = insn->code == code_add ?
7826 					     code_sub : code_add;
7827 			*patch++ = *insn;
7828 			if (issrc && isneg)
7829 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7830 			cnt = patch - insn_buf;
7831 
7832 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7833 			if (!new_prog)
7834 				return -ENOMEM;
7835 
7836 			delta    += cnt - 1;
7837 			env->prog = prog = new_prog;
7838 			insn      = new_prog->insnsi + i + delta;
7839 			continue;
7840 		}
7841 
7842 		if (insn->code != (BPF_JMP | BPF_CALL))
7843 			continue;
7844 		if (insn->src_reg == BPF_PSEUDO_CALL)
7845 			continue;
7846 
7847 		if (insn->imm == BPF_FUNC_get_route_realm)
7848 			prog->dst_needed = 1;
7849 		if (insn->imm == BPF_FUNC_get_prandom_u32)
7850 			bpf_user_rnd_init_once();
7851 		if (insn->imm == BPF_FUNC_override_return)
7852 			prog->kprobe_override = 1;
7853 		if (insn->imm == BPF_FUNC_tail_call) {
7854 			/* If we tail call into other programs, we
7855 			 * cannot make any assumptions since they can
7856 			 * be replaced dynamically during runtime in
7857 			 * the program array.
7858 			 */
7859 			prog->cb_access = 1;
7860 			env->prog->aux->stack_depth = MAX_BPF_STACK;
7861 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7862 
7863 			/* mark bpf_tail_call as different opcode to avoid
7864 			 * conditional branch in the interpeter for every normal
7865 			 * call and to prevent accidental JITing by JIT compiler
7866 			 * that doesn't support bpf_tail_call yet
7867 			 */
7868 			insn->imm = 0;
7869 			insn->code = BPF_JMP | BPF_TAIL_CALL;
7870 
7871 			aux = &env->insn_aux_data[i + delta];
7872 			if (!bpf_map_ptr_unpriv(aux))
7873 				continue;
7874 
7875 			/* instead of changing every JIT dealing with tail_call
7876 			 * emit two extra insns:
7877 			 * if (index >= max_entries) goto out;
7878 			 * index &= array->index_mask;
7879 			 * to avoid out-of-bounds cpu speculation
7880 			 */
7881 			if (bpf_map_ptr_poisoned(aux)) {
7882 				verbose(env, "tail_call abusing map_ptr\n");
7883 				return -EINVAL;
7884 			}
7885 
7886 			map_ptr = BPF_MAP_PTR(aux->map_state);
7887 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
7888 						  map_ptr->max_entries, 2);
7889 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
7890 						    container_of(map_ptr,
7891 								 struct bpf_array,
7892 								 map)->index_mask);
7893 			insn_buf[2] = *insn;
7894 			cnt = 3;
7895 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7896 			if (!new_prog)
7897 				return -ENOMEM;
7898 
7899 			delta    += cnt - 1;
7900 			env->prog = prog = new_prog;
7901 			insn      = new_prog->insnsi + i + delta;
7902 			continue;
7903 		}
7904 
7905 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
7906 		 * and other inlining handlers are currently limited to 64 bit
7907 		 * only.
7908 		 */
7909 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
7910 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
7911 		     insn->imm == BPF_FUNC_map_update_elem ||
7912 		     insn->imm == BPF_FUNC_map_delete_elem ||
7913 		     insn->imm == BPF_FUNC_map_push_elem   ||
7914 		     insn->imm == BPF_FUNC_map_pop_elem    ||
7915 		     insn->imm == BPF_FUNC_map_peek_elem)) {
7916 			aux = &env->insn_aux_data[i + delta];
7917 			if (bpf_map_ptr_poisoned(aux))
7918 				goto patch_call_imm;
7919 
7920 			map_ptr = BPF_MAP_PTR(aux->map_state);
7921 			ops = map_ptr->ops;
7922 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
7923 			    ops->map_gen_lookup) {
7924 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
7925 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7926 					verbose(env, "bpf verifier is misconfigured\n");
7927 					return -EINVAL;
7928 				}
7929 
7930 				new_prog = bpf_patch_insn_data(env, i + delta,
7931 							       insn_buf, cnt);
7932 				if (!new_prog)
7933 					return -ENOMEM;
7934 
7935 				delta    += cnt - 1;
7936 				env->prog = prog = new_prog;
7937 				insn      = new_prog->insnsi + i + delta;
7938 				continue;
7939 			}
7940 
7941 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
7942 				     (void *(*)(struct bpf_map *map, void *key))NULL));
7943 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
7944 				     (int (*)(struct bpf_map *map, void *key))NULL));
7945 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
7946 				     (int (*)(struct bpf_map *map, void *key, void *value,
7947 					      u64 flags))NULL));
7948 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
7949 				     (int (*)(struct bpf_map *map, void *value,
7950 					      u64 flags))NULL));
7951 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
7952 				     (int (*)(struct bpf_map *map, void *value))NULL));
7953 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
7954 				     (int (*)(struct bpf_map *map, void *value))NULL));
7955 
7956 			switch (insn->imm) {
7957 			case BPF_FUNC_map_lookup_elem:
7958 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
7959 					    __bpf_call_base;
7960 				continue;
7961 			case BPF_FUNC_map_update_elem:
7962 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
7963 					    __bpf_call_base;
7964 				continue;
7965 			case BPF_FUNC_map_delete_elem:
7966 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
7967 					    __bpf_call_base;
7968 				continue;
7969 			case BPF_FUNC_map_push_elem:
7970 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
7971 					    __bpf_call_base;
7972 				continue;
7973 			case BPF_FUNC_map_pop_elem:
7974 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
7975 					    __bpf_call_base;
7976 				continue;
7977 			case BPF_FUNC_map_peek_elem:
7978 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
7979 					    __bpf_call_base;
7980 				continue;
7981 			}
7982 
7983 			goto patch_call_imm;
7984 		}
7985 
7986 patch_call_imm:
7987 		fn = env->ops->get_func_proto(insn->imm, env->prog);
7988 		/* all functions that have prototype and verifier allowed
7989 		 * programs to call them, must be real in-kernel functions
7990 		 */
7991 		if (!fn->func) {
7992 			verbose(env,
7993 				"kernel subsystem misconfigured func %s#%d\n",
7994 				func_id_name(insn->imm), insn->imm);
7995 			return -EFAULT;
7996 		}
7997 		insn->imm = fn->func - __bpf_call_base;
7998 	}
7999 
8000 	return 0;
8001 }
8002 
8003 static void free_states(struct bpf_verifier_env *env)
8004 {
8005 	struct bpf_verifier_state_list *sl, *sln;
8006 	int i;
8007 
8008 	sl = env->free_list;
8009 	while (sl) {
8010 		sln = sl->next;
8011 		free_verifier_state(&sl->state, false);
8012 		kfree(sl);
8013 		sl = sln;
8014 	}
8015 
8016 	if (!env->explored_states)
8017 		return;
8018 
8019 	for (i = 0; i < env->prog->len; i++) {
8020 		sl = env->explored_states[i];
8021 
8022 		if (sl)
8023 			while (sl != STATE_LIST_MARK) {
8024 				sln = sl->next;
8025 				free_verifier_state(&sl->state, false);
8026 				kfree(sl);
8027 				sl = sln;
8028 			}
8029 	}
8030 
8031 	kvfree(env->explored_states);
8032 }
8033 
8034 static void print_verification_stats(struct bpf_verifier_env *env)
8035 {
8036 	int i;
8037 
8038 	if (env->log.level & BPF_LOG_STATS) {
8039 		verbose(env, "verification time %lld usec\n",
8040 			div_u64(env->verification_time, 1000));
8041 		verbose(env, "stack depth ");
8042 		for (i = 0; i < env->subprog_cnt; i++) {
8043 			u32 depth = env->subprog_info[i].stack_depth;
8044 
8045 			verbose(env, "%d", depth);
8046 			if (i + 1 < env->subprog_cnt)
8047 				verbose(env, "+");
8048 		}
8049 		verbose(env, "\n");
8050 	}
8051 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
8052 		"total_states %d peak_states %d mark_read %d\n",
8053 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
8054 		env->max_states_per_insn, env->total_states,
8055 		env->peak_states, env->longest_mark_read_walk);
8056 }
8057 
8058 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
8059 	      union bpf_attr __user *uattr)
8060 {
8061 	u64 start_time = ktime_get_ns();
8062 	struct bpf_verifier_env *env;
8063 	struct bpf_verifier_log *log;
8064 	int i, len, ret = -EINVAL;
8065 	bool is_priv;
8066 
8067 	/* no program is valid */
8068 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
8069 		return -EINVAL;
8070 
8071 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
8072 	 * allocate/free it every time bpf_check() is called
8073 	 */
8074 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
8075 	if (!env)
8076 		return -ENOMEM;
8077 	log = &env->log;
8078 
8079 	len = (*prog)->len;
8080 	env->insn_aux_data =
8081 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
8082 	ret = -ENOMEM;
8083 	if (!env->insn_aux_data)
8084 		goto err_free_env;
8085 	for (i = 0; i < len; i++)
8086 		env->insn_aux_data[i].orig_idx = i;
8087 	env->prog = *prog;
8088 	env->ops = bpf_verifier_ops[env->prog->type];
8089 
8090 	/* grab the mutex to protect few globals used by verifier */
8091 	mutex_lock(&bpf_verifier_lock);
8092 
8093 	if (attr->log_level || attr->log_buf || attr->log_size) {
8094 		/* user requested verbose verifier output
8095 		 * and supplied buffer to store the verification trace
8096 		 */
8097 		log->level = attr->log_level;
8098 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
8099 		log->len_total = attr->log_size;
8100 
8101 		ret = -EINVAL;
8102 		/* log attributes have to be sane */
8103 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
8104 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
8105 			goto err_unlock;
8106 	}
8107 
8108 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
8109 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
8110 		env->strict_alignment = true;
8111 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
8112 		env->strict_alignment = false;
8113 
8114 	is_priv = capable(CAP_SYS_ADMIN);
8115 	env->allow_ptr_leaks = is_priv;
8116 
8117 	ret = replace_map_fd_with_map_ptr(env);
8118 	if (ret < 0)
8119 		goto skip_full_check;
8120 
8121 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
8122 		ret = bpf_prog_offload_verifier_prep(env->prog);
8123 		if (ret)
8124 			goto skip_full_check;
8125 	}
8126 
8127 	env->explored_states = kvcalloc(env->prog->len,
8128 				       sizeof(struct bpf_verifier_state_list *),
8129 				       GFP_USER);
8130 	ret = -ENOMEM;
8131 	if (!env->explored_states)
8132 		goto skip_full_check;
8133 
8134 	ret = check_subprogs(env);
8135 	if (ret < 0)
8136 		goto skip_full_check;
8137 
8138 	ret = check_btf_info(env, attr, uattr);
8139 	if (ret < 0)
8140 		goto skip_full_check;
8141 
8142 	ret = check_cfg(env);
8143 	if (ret < 0)
8144 		goto skip_full_check;
8145 
8146 	ret = do_check(env);
8147 	if (env->cur_state) {
8148 		free_verifier_state(env->cur_state, true);
8149 		env->cur_state = NULL;
8150 	}
8151 
8152 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
8153 		ret = bpf_prog_offload_finalize(env);
8154 
8155 skip_full_check:
8156 	while (!pop_stack(env, NULL, NULL));
8157 	free_states(env);
8158 
8159 	if (ret == 0)
8160 		ret = check_max_stack_depth(env);
8161 
8162 	/* instruction rewrites happen after this point */
8163 	if (is_priv) {
8164 		if (ret == 0)
8165 			opt_hard_wire_dead_code_branches(env);
8166 		if (ret == 0)
8167 			ret = opt_remove_dead_code(env);
8168 		if (ret == 0)
8169 			ret = opt_remove_nops(env);
8170 	} else {
8171 		if (ret == 0)
8172 			sanitize_dead_code(env);
8173 	}
8174 
8175 	if (ret == 0)
8176 		/* program is valid, convert *(u32*)(ctx + off) accesses */
8177 		ret = convert_ctx_accesses(env);
8178 
8179 	if (ret == 0)
8180 		ret = fixup_bpf_calls(env);
8181 
8182 	if (ret == 0)
8183 		ret = fixup_call_args(env);
8184 
8185 	env->verification_time = ktime_get_ns() - start_time;
8186 	print_verification_stats(env);
8187 
8188 	if (log->level && bpf_verifier_log_full(log))
8189 		ret = -ENOSPC;
8190 	if (log->level && !log->ubuf) {
8191 		ret = -EFAULT;
8192 		goto err_release_maps;
8193 	}
8194 
8195 	if (ret == 0 && env->used_map_cnt) {
8196 		/* if program passed verifier, update used_maps in bpf_prog_info */
8197 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
8198 							  sizeof(env->used_maps[0]),
8199 							  GFP_KERNEL);
8200 
8201 		if (!env->prog->aux->used_maps) {
8202 			ret = -ENOMEM;
8203 			goto err_release_maps;
8204 		}
8205 
8206 		memcpy(env->prog->aux->used_maps, env->used_maps,
8207 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
8208 		env->prog->aux->used_map_cnt = env->used_map_cnt;
8209 
8210 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
8211 		 * bpf_ld_imm64 instructions
8212 		 */
8213 		convert_pseudo_ld_imm64(env);
8214 	}
8215 
8216 	if (ret == 0)
8217 		adjust_btf_func(env);
8218 
8219 err_release_maps:
8220 	if (!env->prog->aux->used_maps)
8221 		/* if we didn't copy map pointers into bpf_prog_info, release
8222 		 * them now. Otherwise free_used_maps() will release them.
8223 		 */
8224 		release_maps(env);
8225 	*prog = env->prog;
8226 err_unlock:
8227 	mutex_unlock(&bpf_verifier_lock);
8228 	vfree(env->insn_aux_data);
8229 err_free_env:
8230 	kfree(env);
8231 	return ret;
8232 }
8233