1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 28 #include "disasm.h" 29 30 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 31 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 32 [_id] = & _name ## _verifier_ops, 33 #define BPF_MAP_TYPE(_id, _ops) 34 #define BPF_LINK_TYPE(_id, _name) 35 #include <linux/bpf_types.h> 36 #undef BPF_PROG_TYPE 37 #undef BPF_MAP_TYPE 38 #undef BPF_LINK_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all paths through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns either pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 /* length of verifier log at the time this state was pushed on stack */ 177 u32 log_pos; 178 }; 179 180 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_KEY_POISON (1ULL << 63) 184 #define BPF_MAP_KEY_SEEN (1ULL << 62) 185 186 #define BPF_MAP_PTR_UNPRIV 1UL 187 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 188 POISON_POINTER_DELTA)) 189 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 190 191 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 192 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 193 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 194 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 195 static int ref_set_non_owning(struct bpf_verifier_env *env, 196 struct bpf_reg_state *reg); 197 198 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 199 { 200 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 201 } 202 203 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 204 { 205 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 206 } 207 208 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 209 const struct bpf_map *map, bool unpriv) 210 { 211 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 212 unpriv |= bpf_map_ptr_unpriv(aux); 213 aux->map_ptr_state = (unsigned long)map | 214 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 215 } 216 217 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 218 { 219 return aux->map_key_state & BPF_MAP_KEY_POISON; 220 } 221 222 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 223 { 224 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 225 } 226 227 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 228 { 229 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 230 } 231 232 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 233 { 234 bool poisoned = bpf_map_key_poisoned(aux); 235 236 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 237 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 238 } 239 240 static bool bpf_pseudo_call(const struct bpf_insn *insn) 241 { 242 return insn->code == (BPF_JMP | BPF_CALL) && 243 insn->src_reg == BPF_PSEUDO_CALL; 244 } 245 246 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 250 } 251 252 struct bpf_call_arg_meta { 253 struct bpf_map *map_ptr; 254 bool raw_mode; 255 bool pkt_access; 256 u8 release_regno; 257 int regno; 258 int access_size; 259 int mem_size; 260 u64 msize_max_value; 261 int ref_obj_id; 262 int dynptr_id; 263 int map_uid; 264 int func_id; 265 struct btf *btf; 266 u32 btf_id; 267 struct btf *ret_btf; 268 u32 ret_btf_id; 269 u32 subprogno; 270 struct btf_field *kptr_field; 271 u8 uninit_dynptr_regno; 272 }; 273 274 struct btf *btf_vmlinux; 275 276 static DEFINE_MUTEX(bpf_verifier_lock); 277 278 static const struct bpf_line_info * 279 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 280 { 281 const struct bpf_line_info *linfo; 282 const struct bpf_prog *prog; 283 u32 i, nr_linfo; 284 285 prog = env->prog; 286 nr_linfo = prog->aux->nr_linfo; 287 288 if (!nr_linfo || insn_off >= prog->len) 289 return NULL; 290 291 linfo = prog->aux->linfo; 292 for (i = 1; i < nr_linfo; i++) 293 if (insn_off < linfo[i].insn_off) 294 break; 295 296 return &linfo[i - 1]; 297 } 298 299 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 300 va_list args) 301 { 302 unsigned int n; 303 304 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 305 306 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 307 "verifier log line truncated - local buffer too short\n"); 308 309 if (log->level == BPF_LOG_KERNEL) { 310 bool newline = n > 0 && log->kbuf[n - 1] == '\n'; 311 312 pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n"); 313 return; 314 } 315 316 n = min(log->len_total - log->len_used - 1, n); 317 log->kbuf[n] = '\0'; 318 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 319 log->len_used += n; 320 else 321 log->ubuf = NULL; 322 } 323 324 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 325 { 326 char zero = 0; 327 328 if (!bpf_verifier_log_needed(log)) 329 return; 330 331 log->len_used = new_pos; 332 if (put_user(zero, log->ubuf + new_pos)) 333 log->ubuf = NULL; 334 } 335 336 /* log_level controls verbosity level of eBPF verifier. 337 * bpf_verifier_log_write() is used to dump the verification trace to the log, 338 * so the user can figure out what's wrong with the program 339 */ 340 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 341 const char *fmt, ...) 342 { 343 va_list args; 344 345 if (!bpf_verifier_log_needed(&env->log)) 346 return; 347 348 va_start(args, fmt); 349 bpf_verifier_vlog(&env->log, fmt, args); 350 va_end(args); 351 } 352 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 353 354 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 355 { 356 struct bpf_verifier_env *env = private_data; 357 va_list args; 358 359 if (!bpf_verifier_log_needed(&env->log)) 360 return; 361 362 va_start(args, fmt); 363 bpf_verifier_vlog(&env->log, fmt, args); 364 va_end(args); 365 } 366 367 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 368 const char *fmt, ...) 369 { 370 va_list args; 371 372 if (!bpf_verifier_log_needed(log)) 373 return; 374 375 va_start(args, fmt); 376 bpf_verifier_vlog(log, fmt, args); 377 va_end(args); 378 } 379 EXPORT_SYMBOL_GPL(bpf_log); 380 381 static const char *ltrim(const char *s) 382 { 383 while (isspace(*s)) 384 s++; 385 386 return s; 387 } 388 389 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 390 u32 insn_off, 391 const char *prefix_fmt, ...) 392 { 393 const struct bpf_line_info *linfo; 394 395 if (!bpf_verifier_log_needed(&env->log)) 396 return; 397 398 linfo = find_linfo(env, insn_off); 399 if (!linfo || linfo == env->prev_linfo) 400 return; 401 402 if (prefix_fmt) { 403 va_list args; 404 405 va_start(args, prefix_fmt); 406 bpf_verifier_vlog(&env->log, prefix_fmt, args); 407 va_end(args); 408 } 409 410 verbose(env, "%s\n", 411 ltrim(btf_name_by_offset(env->prog->aux->btf, 412 linfo->line_off))); 413 414 env->prev_linfo = linfo; 415 } 416 417 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 418 struct bpf_reg_state *reg, 419 struct tnum *range, const char *ctx, 420 const char *reg_name) 421 { 422 char tn_buf[48]; 423 424 verbose(env, "At %s the register %s ", ctx, reg_name); 425 if (!tnum_is_unknown(reg->var_off)) { 426 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 427 verbose(env, "has value %s", tn_buf); 428 } else { 429 verbose(env, "has unknown scalar value"); 430 } 431 tnum_strn(tn_buf, sizeof(tn_buf), *range); 432 verbose(env, " should have been in %s\n", tn_buf); 433 } 434 435 static bool type_is_pkt_pointer(enum bpf_reg_type type) 436 { 437 type = base_type(type); 438 return type == PTR_TO_PACKET || 439 type == PTR_TO_PACKET_META; 440 } 441 442 static bool type_is_sk_pointer(enum bpf_reg_type type) 443 { 444 return type == PTR_TO_SOCKET || 445 type == PTR_TO_SOCK_COMMON || 446 type == PTR_TO_TCP_SOCK || 447 type == PTR_TO_XDP_SOCK; 448 } 449 450 static bool reg_type_not_null(enum bpf_reg_type type) 451 { 452 return type == PTR_TO_SOCKET || 453 type == PTR_TO_TCP_SOCK || 454 type == PTR_TO_MAP_VALUE || 455 type == PTR_TO_MAP_KEY || 456 type == PTR_TO_SOCK_COMMON; 457 } 458 459 static bool type_is_ptr_alloc_obj(u32 type) 460 { 461 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 462 } 463 464 static bool type_is_non_owning_ref(u32 type) 465 { 466 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 467 } 468 469 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 470 { 471 struct btf_record *rec = NULL; 472 struct btf_struct_meta *meta; 473 474 if (reg->type == PTR_TO_MAP_VALUE) { 475 rec = reg->map_ptr->record; 476 } else if (type_is_ptr_alloc_obj(reg->type)) { 477 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 478 if (meta) 479 rec = meta->record; 480 } 481 return rec; 482 } 483 484 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 485 { 486 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 487 } 488 489 static bool type_is_rdonly_mem(u32 type) 490 { 491 return type & MEM_RDONLY; 492 } 493 494 static bool type_may_be_null(u32 type) 495 { 496 return type & PTR_MAYBE_NULL; 497 } 498 499 static bool is_acquire_function(enum bpf_func_id func_id, 500 const struct bpf_map *map) 501 { 502 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 503 504 if (func_id == BPF_FUNC_sk_lookup_tcp || 505 func_id == BPF_FUNC_sk_lookup_udp || 506 func_id == BPF_FUNC_skc_lookup_tcp || 507 func_id == BPF_FUNC_ringbuf_reserve || 508 func_id == BPF_FUNC_kptr_xchg) 509 return true; 510 511 if (func_id == BPF_FUNC_map_lookup_elem && 512 (map_type == BPF_MAP_TYPE_SOCKMAP || 513 map_type == BPF_MAP_TYPE_SOCKHASH)) 514 return true; 515 516 return false; 517 } 518 519 static bool is_ptr_cast_function(enum bpf_func_id func_id) 520 { 521 return func_id == BPF_FUNC_tcp_sock || 522 func_id == BPF_FUNC_sk_fullsock || 523 func_id == BPF_FUNC_skc_to_tcp_sock || 524 func_id == BPF_FUNC_skc_to_tcp6_sock || 525 func_id == BPF_FUNC_skc_to_udp6_sock || 526 func_id == BPF_FUNC_skc_to_mptcp_sock || 527 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 528 func_id == BPF_FUNC_skc_to_tcp_request_sock; 529 } 530 531 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 532 { 533 return func_id == BPF_FUNC_dynptr_data; 534 } 535 536 static bool is_callback_calling_function(enum bpf_func_id func_id) 537 { 538 return func_id == BPF_FUNC_for_each_map_elem || 539 func_id == BPF_FUNC_timer_set_callback || 540 func_id == BPF_FUNC_find_vma || 541 func_id == BPF_FUNC_loop || 542 func_id == BPF_FUNC_user_ringbuf_drain; 543 } 544 545 static bool is_storage_get_function(enum bpf_func_id func_id) 546 { 547 return func_id == BPF_FUNC_sk_storage_get || 548 func_id == BPF_FUNC_inode_storage_get || 549 func_id == BPF_FUNC_task_storage_get || 550 func_id == BPF_FUNC_cgrp_storage_get; 551 } 552 553 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 554 const struct bpf_map *map) 555 { 556 int ref_obj_uses = 0; 557 558 if (is_ptr_cast_function(func_id)) 559 ref_obj_uses++; 560 if (is_acquire_function(func_id, map)) 561 ref_obj_uses++; 562 if (is_dynptr_ref_function(func_id)) 563 ref_obj_uses++; 564 565 return ref_obj_uses > 1; 566 } 567 568 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 569 { 570 return BPF_CLASS(insn->code) == BPF_STX && 571 BPF_MODE(insn->code) == BPF_ATOMIC && 572 insn->imm == BPF_CMPXCHG; 573 } 574 575 /* string representation of 'enum bpf_reg_type' 576 * 577 * Note that reg_type_str() can not appear more than once in a single verbose() 578 * statement. 579 */ 580 static const char *reg_type_str(struct bpf_verifier_env *env, 581 enum bpf_reg_type type) 582 { 583 char postfix[16] = {0}, prefix[64] = {0}; 584 static const char * const str[] = { 585 [NOT_INIT] = "?", 586 [SCALAR_VALUE] = "scalar", 587 [PTR_TO_CTX] = "ctx", 588 [CONST_PTR_TO_MAP] = "map_ptr", 589 [PTR_TO_MAP_VALUE] = "map_value", 590 [PTR_TO_STACK] = "fp", 591 [PTR_TO_PACKET] = "pkt", 592 [PTR_TO_PACKET_META] = "pkt_meta", 593 [PTR_TO_PACKET_END] = "pkt_end", 594 [PTR_TO_FLOW_KEYS] = "flow_keys", 595 [PTR_TO_SOCKET] = "sock", 596 [PTR_TO_SOCK_COMMON] = "sock_common", 597 [PTR_TO_TCP_SOCK] = "tcp_sock", 598 [PTR_TO_TP_BUFFER] = "tp_buffer", 599 [PTR_TO_XDP_SOCK] = "xdp_sock", 600 [PTR_TO_BTF_ID] = "ptr_", 601 [PTR_TO_MEM] = "mem", 602 [PTR_TO_BUF] = "buf", 603 [PTR_TO_FUNC] = "func", 604 [PTR_TO_MAP_KEY] = "map_key", 605 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 606 }; 607 608 if (type & PTR_MAYBE_NULL) { 609 if (base_type(type) == PTR_TO_BTF_ID) 610 strncpy(postfix, "or_null_", 16); 611 else 612 strncpy(postfix, "_or_null", 16); 613 } 614 615 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 616 type & MEM_RDONLY ? "rdonly_" : "", 617 type & MEM_RINGBUF ? "ringbuf_" : "", 618 type & MEM_USER ? "user_" : "", 619 type & MEM_PERCPU ? "percpu_" : "", 620 type & MEM_RCU ? "rcu_" : "", 621 type & PTR_UNTRUSTED ? "untrusted_" : "", 622 type & PTR_TRUSTED ? "trusted_" : "" 623 ); 624 625 snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s", 626 prefix, str[base_type(type)], postfix); 627 return env->type_str_buf; 628 } 629 630 static char slot_type_char[] = { 631 [STACK_INVALID] = '?', 632 [STACK_SPILL] = 'r', 633 [STACK_MISC] = 'm', 634 [STACK_ZERO] = '0', 635 [STACK_DYNPTR] = 'd', 636 }; 637 638 static void print_liveness(struct bpf_verifier_env *env, 639 enum bpf_reg_liveness live) 640 { 641 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 642 verbose(env, "_"); 643 if (live & REG_LIVE_READ) 644 verbose(env, "r"); 645 if (live & REG_LIVE_WRITTEN) 646 verbose(env, "w"); 647 if (live & REG_LIVE_DONE) 648 verbose(env, "D"); 649 } 650 651 static int __get_spi(s32 off) 652 { 653 return (-off - 1) / BPF_REG_SIZE; 654 } 655 656 static struct bpf_func_state *func(struct bpf_verifier_env *env, 657 const struct bpf_reg_state *reg) 658 { 659 struct bpf_verifier_state *cur = env->cur_state; 660 661 return cur->frame[reg->frameno]; 662 } 663 664 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 665 { 666 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 667 668 /* We need to check that slots between [spi - nr_slots + 1, spi] are 669 * within [0, allocated_stack). 670 * 671 * Please note that the spi grows downwards. For example, a dynptr 672 * takes the size of two stack slots; the first slot will be at 673 * spi and the second slot will be at spi - 1. 674 */ 675 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 676 } 677 678 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 679 { 680 int off, spi; 681 682 if (!tnum_is_const(reg->var_off)) { 683 verbose(env, "dynptr has to be at a constant offset\n"); 684 return -EINVAL; 685 } 686 687 off = reg->off + reg->var_off.value; 688 if (off % BPF_REG_SIZE) { 689 verbose(env, "cannot pass in dynptr at an offset=%d\n", off); 690 return -EINVAL; 691 } 692 693 spi = __get_spi(off); 694 if (spi < 1) { 695 verbose(env, "cannot pass in dynptr at an offset=%d\n", off); 696 return -EINVAL; 697 } 698 699 if (!is_spi_bounds_valid(func(env, reg), spi, BPF_DYNPTR_NR_SLOTS)) 700 return -ERANGE; 701 return spi; 702 } 703 704 static const char *kernel_type_name(const struct btf* btf, u32 id) 705 { 706 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 707 } 708 709 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 710 { 711 env->scratched_regs |= 1U << regno; 712 } 713 714 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 715 { 716 env->scratched_stack_slots |= 1ULL << spi; 717 } 718 719 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 720 { 721 return (env->scratched_regs >> regno) & 1; 722 } 723 724 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 725 { 726 return (env->scratched_stack_slots >> regno) & 1; 727 } 728 729 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 730 { 731 return env->scratched_regs || env->scratched_stack_slots; 732 } 733 734 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 735 { 736 env->scratched_regs = 0U; 737 env->scratched_stack_slots = 0ULL; 738 } 739 740 /* Used for printing the entire verifier state. */ 741 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 742 { 743 env->scratched_regs = ~0U; 744 env->scratched_stack_slots = ~0ULL; 745 } 746 747 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 748 { 749 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 750 case DYNPTR_TYPE_LOCAL: 751 return BPF_DYNPTR_TYPE_LOCAL; 752 case DYNPTR_TYPE_RINGBUF: 753 return BPF_DYNPTR_TYPE_RINGBUF; 754 default: 755 return BPF_DYNPTR_TYPE_INVALID; 756 } 757 } 758 759 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 760 { 761 return type == BPF_DYNPTR_TYPE_RINGBUF; 762 } 763 764 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 765 enum bpf_dynptr_type type, 766 bool first_slot, int dynptr_id); 767 768 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 769 struct bpf_reg_state *reg); 770 771 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 772 struct bpf_reg_state *sreg1, 773 struct bpf_reg_state *sreg2, 774 enum bpf_dynptr_type type) 775 { 776 int id = ++env->id_gen; 777 778 __mark_dynptr_reg(sreg1, type, true, id); 779 __mark_dynptr_reg(sreg2, type, false, id); 780 } 781 782 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 783 struct bpf_reg_state *reg, 784 enum bpf_dynptr_type type) 785 { 786 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 787 } 788 789 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 790 struct bpf_func_state *state, int spi); 791 792 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 793 enum bpf_arg_type arg_type, int insn_idx) 794 { 795 struct bpf_func_state *state = func(env, reg); 796 enum bpf_dynptr_type type; 797 int spi, i, id, err; 798 799 spi = dynptr_get_spi(env, reg); 800 if (spi < 0) 801 return spi; 802 803 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 804 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 805 * to ensure that for the following example: 806 * [d1][d1][d2][d2] 807 * spi 3 2 1 0 808 * So marking spi = 2 should lead to destruction of both d1 and d2. In 809 * case they do belong to same dynptr, second call won't see slot_type 810 * as STACK_DYNPTR and will simply skip destruction. 811 */ 812 err = destroy_if_dynptr_stack_slot(env, state, spi); 813 if (err) 814 return err; 815 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 816 if (err) 817 return err; 818 819 for (i = 0; i < BPF_REG_SIZE; i++) { 820 state->stack[spi].slot_type[i] = STACK_DYNPTR; 821 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 822 } 823 824 type = arg_to_dynptr_type(arg_type); 825 if (type == BPF_DYNPTR_TYPE_INVALID) 826 return -EINVAL; 827 828 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 829 &state->stack[spi - 1].spilled_ptr, type); 830 831 if (dynptr_type_refcounted(type)) { 832 /* The id is used to track proper releasing */ 833 id = acquire_reference_state(env, insn_idx); 834 if (id < 0) 835 return id; 836 837 state->stack[spi].spilled_ptr.ref_obj_id = id; 838 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 839 } 840 841 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 842 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 843 844 return 0; 845 } 846 847 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 848 { 849 struct bpf_func_state *state = func(env, reg); 850 int spi, i; 851 852 spi = dynptr_get_spi(env, reg); 853 if (spi < 0) 854 return spi; 855 856 for (i = 0; i < BPF_REG_SIZE; i++) { 857 state->stack[spi].slot_type[i] = STACK_INVALID; 858 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 859 } 860 861 /* Invalidate any slices associated with this dynptr */ 862 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) 863 WARN_ON_ONCE(release_reference(env, state->stack[spi].spilled_ptr.ref_obj_id)); 864 865 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 866 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 867 868 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 869 * 870 * While we don't allow reading STACK_INVALID, it is still possible to 871 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 872 * helpers or insns can do partial read of that part without failing, 873 * but check_stack_range_initialized, check_stack_read_var_off, and 874 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 875 * the slot conservatively. Hence we need to prevent those liveness 876 * marking walks. 877 * 878 * This was not a problem before because STACK_INVALID is only set by 879 * default (where the default reg state has its reg->parent as NULL), or 880 * in clean_live_states after REG_LIVE_DONE (at which point 881 * mark_reg_read won't walk reg->parent chain), but not randomly during 882 * verifier state exploration (like we did above). Hence, for our case 883 * parentage chain will still be live (i.e. reg->parent may be 884 * non-NULL), while earlier reg->parent was NULL, so we need 885 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 886 * done later on reads or by mark_dynptr_read as well to unnecessary 887 * mark registers in verifier state. 888 */ 889 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 890 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 891 892 return 0; 893 } 894 895 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 896 struct bpf_reg_state *reg); 897 898 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 899 struct bpf_func_state *state, int spi) 900 { 901 struct bpf_func_state *fstate; 902 struct bpf_reg_state *dreg; 903 int i, dynptr_id; 904 905 /* We always ensure that STACK_DYNPTR is never set partially, 906 * hence just checking for slot_type[0] is enough. This is 907 * different for STACK_SPILL, where it may be only set for 908 * 1 byte, so code has to use is_spilled_reg. 909 */ 910 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 911 return 0; 912 913 /* Reposition spi to first slot */ 914 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 915 spi = spi + 1; 916 917 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 918 verbose(env, "cannot overwrite referenced dynptr\n"); 919 return -EINVAL; 920 } 921 922 mark_stack_slot_scratched(env, spi); 923 mark_stack_slot_scratched(env, spi - 1); 924 925 /* Writing partially to one dynptr stack slot destroys both. */ 926 for (i = 0; i < BPF_REG_SIZE; i++) { 927 state->stack[spi].slot_type[i] = STACK_INVALID; 928 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 929 } 930 931 dynptr_id = state->stack[spi].spilled_ptr.id; 932 /* Invalidate any slices associated with this dynptr */ 933 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 934 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 935 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 936 continue; 937 if (dreg->dynptr_id == dynptr_id) { 938 if (!env->allow_ptr_leaks) 939 __mark_reg_not_init(env, dreg); 940 else 941 __mark_reg_unknown(env, dreg); 942 } 943 })); 944 945 /* Do not release reference state, we are destroying dynptr on stack, 946 * not using some helper to release it. Just reset register. 947 */ 948 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 949 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 950 951 /* Same reason as unmark_stack_slots_dynptr above */ 952 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 953 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 954 955 return 0; 956 } 957 958 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 959 int spi) 960 { 961 if (reg->type == CONST_PTR_TO_DYNPTR) 962 return false; 963 964 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 965 * will do check_mem_access to check and update stack bounds later, so 966 * return true for that case. 967 */ 968 if (spi < 0) 969 return spi == -ERANGE; 970 /* We allow overwriting existing unreferenced STACK_DYNPTR slots, see 971 * mark_stack_slots_dynptr which calls destroy_if_dynptr_stack_slot to 972 * ensure dynptr objects at the slots we are touching are completely 973 * destructed before we reinitialize them for a new one. For referenced 974 * ones, destroy_if_dynptr_stack_slot returns an error early instead of 975 * delaying it until the end where the user will get "Unreleased 976 * reference" error. 977 */ 978 return true; 979 } 980 981 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 982 int spi) 983 { 984 struct bpf_func_state *state = func(env, reg); 985 int i; 986 987 /* This already represents first slot of initialized bpf_dynptr */ 988 if (reg->type == CONST_PTR_TO_DYNPTR) 989 return true; 990 991 if (spi < 0) 992 return false; 993 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 994 return false; 995 996 for (i = 0; i < BPF_REG_SIZE; i++) { 997 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 998 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 999 return false; 1000 } 1001 1002 return true; 1003 } 1004 1005 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1006 enum bpf_arg_type arg_type) 1007 { 1008 struct bpf_func_state *state = func(env, reg); 1009 enum bpf_dynptr_type dynptr_type; 1010 int spi; 1011 1012 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1013 if (arg_type == ARG_PTR_TO_DYNPTR) 1014 return true; 1015 1016 dynptr_type = arg_to_dynptr_type(arg_type); 1017 if (reg->type == CONST_PTR_TO_DYNPTR) { 1018 return reg->dynptr.type == dynptr_type; 1019 } else { 1020 spi = dynptr_get_spi(env, reg); 1021 if (spi < 0) 1022 return false; 1023 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1024 } 1025 } 1026 1027 /* The reg state of a pointer or a bounded scalar was saved when 1028 * it was spilled to the stack. 1029 */ 1030 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1031 { 1032 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1033 } 1034 1035 static void scrub_spilled_slot(u8 *stype) 1036 { 1037 if (*stype != STACK_INVALID) 1038 *stype = STACK_MISC; 1039 } 1040 1041 static void print_verifier_state(struct bpf_verifier_env *env, 1042 const struct bpf_func_state *state, 1043 bool print_all) 1044 { 1045 const struct bpf_reg_state *reg; 1046 enum bpf_reg_type t; 1047 int i; 1048 1049 if (state->frameno) 1050 verbose(env, " frame%d:", state->frameno); 1051 for (i = 0; i < MAX_BPF_REG; i++) { 1052 reg = &state->regs[i]; 1053 t = reg->type; 1054 if (t == NOT_INIT) 1055 continue; 1056 if (!print_all && !reg_scratched(env, i)) 1057 continue; 1058 verbose(env, " R%d", i); 1059 print_liveness(env, reg->live); 1060 verbose(env, "="); 1061 if (t == SCALAR_VALUE && reg->precise) 1062 verbose(env, "P"); 1063 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1064 tnum_is_const(reg->var_off)) { 1065 /* reg->off should be 0 for SCALAR_VALUE */ 1066 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1067 verbose(env, "%lld", reg->var_off.value + reg->off); 1068 } else { 1069 const char *sep = ""; 1070 1071 verbose(env, "%s", reg_type_str(env, t)); 1072 if (base_type(t) == PTR_TO_BTF_ID) 1073 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 1074 verbose(env, "("); 1075 /* 1076 * _a stands for append, was shortened to avoid multiline statements below. 1077 * This macro is used to output a comma separated list of attributes. 1078 */ 1079 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1080 1081 if (reg->id) 1082 verbose_a("id=%d", reg->id); 1083 if (reg->ref_obj_id) 1084 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1085 if (type_is_non_owning_ref(reg->type)) 1086 verbose_a("%s", "non_own_ref"); 1087 if (t != SCALAR_VALUE) 1088 verbose_a("off=%d", reg->off); 1089 if (type_is_pkt_pointer(t)) 1090 verbose_a("r=%d", reg->range); 1091 else if (base_type(t) == CONST_PTR_TO_MAP || 1092 base_type(t) == PTR_TO_MAP_KEY || 1093 base_type(t) == PTR_TO_MAP_VALUE) 1094 verbose_a("ks=%d,vs=%d", 1095 reg->map_ptr->key_size, 1096 reg->map_ptr->value_size); 1097 if (tnum_is_const(reg->var_off)) { 1098 /* Typically an immediate SCALAR_VALUE, but 1099 * could be a pointer whose offset is too big 1100 * for reg->off 1101 */ 1102 verbose_a("imm=%llx", reg->var_off.value); 1103 } else { 1104 if (reg->smin_value != reg->umin_value && 1105 reg->smin_value != S64_MIN) 1106 verbose_a("smin=%lld", (long long)reg->smin_value); 1107 if (reg->smax_value != reg->umax_value && 1108 reg->smax_value != S64_MAX) 1109 verbose_a("smax=%lld", (long long)reg->smax_value); 1110 if (reg->umin_value != 0) 1111 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1112 if (reg->umax_value != U64_MAX) 1113 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1114 if (!tnum_is_unknown(reg->var_off)) { 1115 char tn_buf[48]; 1116 1117 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1118 verbose_a("var_off=%s", tn_buf); 1119 } 1120 if (reg->s32_min_value != reg->smin_value && 1121 reg->s32_min_value != S32_MIN) 1122 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1123 if (reg->s32_max_value != reg->smax_value && 1124 reg->s32_max_value != S32_MAX) 1125 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1126 if (reg->u32_min_value != reg->umin_value && 1127 reg->u32_min_value != U32_MIN) 1128 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1129 if (reg->u32_max_value != reg->umax_value && 1130 reg->u32_max_value != U32_MAX) 1131 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1132 } 1133 #undef verbose_a 1134 1135 verbose(env, ")"); 1136 } 1137 } 1138 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1139 char types_buf[BPF_REG_SIZE + 1]; 1140 bool valid = false; 1141 int j; 1142 1143 for (j = 0; j < BPF_REG_SIZE; j++) { 1144 if (state->stack[i].slot_type[j] != STACK_INVALID) 1145 valid = true; 1146 types_buf[j] = slot_type_char[ 1147 state->stack[i].slot_type[j]]; 1148 } 1149 types_buf[BPF_REG_SIZE] = 0; 1150 if (!valid) 1151 continue; 1152 if (!print_all && !stack_slot_scratched(env, i)) 1153 continue; 1154 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1155 print_liveness(env, state->stack[i].spilled_ptr.live); 1156 if (is_spilled_reg(&state->stack[i])) { 1157 reg = &state->stack[i].spilled_ptr; 1158 t = reg->type; 1159 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1160 if (t == SCALAR_VALUE && reg->precise) 1161 verbose(env, "P"); 1162 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1163 verbose(env, "%lld", reg->var_off.value + reg->off); 1164 } else { 1165 verbose(env, "=%s", types_buf); 1166 } 1167 } 1168 if (state->acquired_refs && state->refs[0].id) { 1169 verbose(env, " refs=%d", state->refs[0].id); 1170 for (i = 1; i < state->acquired_refs; i++) 1171 if (state->refs[i].id) 1172 verbose(env, ",%d", state->refs[i].id); 1173 } 1174 if (state->in_callback_fn) 1175 verbose(env, " cb"); 1176 if (state->in_async_callback_fn) 1177 verbose(env, " async_cb"); 1178 verbose(env, "\n"); 1179 mark_verifier_state_clean(env); 1180 } 1181 1182 static inline u32 vlog_alignment(u32 pos) 1183 { 1184 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1185 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1186 } 1187 1188 static void print_insn_state(struct bpf_verifier_env *env, 1189 const struct bpf_func_state *state) 1190 { 1191 if (env->prev_log_len && env->prev_log_len == env->log.len_used) { 1192 /* remove new line character */ 1193 bpf_vlog_reset(&env->log, env->prev_log_len - 1); 1194 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' '); 1195 } else { 1196 verbose(env, "%d:", env->insn_idx); 1197 } 1198 print_verifier_state(env, state, false); 1199 } 1200 1201 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1202 * small to hold src. This is different from krealloc since we don't want to preserve 1203 * the contents of dst. 1204 * 1205 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1206 * not be allocated. 1207 */ 1208 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1209 { 1210 size_t alloc_bytes; 1211 void *orig = dst; 1212 size_t bytes; 1213 1214 if (ZERO_OR_NULL_PTR(src)) 1215 goto out; 1216 1217 if (unlikely(check_mul_overflow(n, size, &bytes))) 1218 return NULL; 1219 1220 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1221 dst = krealloc(orig, alloc_bytes, flags); 1222 if (!dst) { 1223 kfree(orig); 1224 return NULL; 1225 } 1226 1227 memcpy(dst, src, bytes); 1228 out: 1229 return dst ? dst : ZERO_SIZE_PTR; 1230 } 1231 1232 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1233 * small to hold new_n items. new items are zeroed out if the array grows. 1234 * 1235 * Contrary to krealloc_array, does not free arr if new_n is zero. 1236 */ 1237 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1238 { 1239 size_t alloc_size; 1240 void *new_arr; 1241 1242 if (!new_n || old_n == new_n) 1243 goto out; 1244 1245 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1246 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1247 if (!new_arr) { 1248 kfree(arr); 1249 return NULL; 1250 } 1251 arr = new_arr; 1252 1253 if (new_n > old_n) 1254 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1255 1256 out: 1257 return arr ? arr : ZERO_SIZE_PTR; 1258 } 1259 1260 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1261 { 1262 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1263 sizeof(struct bpf_reference_state), GFP_KERNEL); 1264 if (!dst->refs) 1265 return -ENOMEM; 1266 1267 dst->acquired_refs = src->acquired_refs; 1268 return 0; 1269 } 1270 1271 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1272 { 1273 size_t n = src->allocated_stack / BPF_REG_SIZE; 1274 1275 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1276 GFP_KERNEL); 1277 if (!dst->stack) 1278 return -ENOMEM; 1279 1280 dst->allocated_stack = src->allocated_stack; 1281 return 0; 1282 } 1283 1284 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1285 { 1286 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1287 sizeof(struct bpf_reference_state)); 1288 if (!state->refs) 1289 return -ENOMEM; 1290 1291 state->acquired_refs = n; 1292 return 0; 1293 } 1294 1295 static int grow_stack_state(struct bpf_func_state *state, int size) 1296 { 1297 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1298 1299 if (old_n >= n) 1300 return 0; 1301 1302 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1303 if (!state->stack) 1304 return -ENOMEM; 1305 1306 state->allocated_stack = size; 1307 return 0; 1308 } 1309 1310 /* Acquire a pointer id from the env and update the state->refs to include 1311 * this new pointer reference. 1312 * On success, returns a valid pointer id to associate with the register 1313 * On failure, returns a negative errno. 1314 */ 1315 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1316 { 1317 struct bpf_func_state *state = cur_func(env); 1318 int new_ofs = state->acquired_refs; 1319 int id, err; 1320 1321 err = resize_reference_state(state, state->acquired_refs + 1); 1322 if (err) 1323 return err; 1324 id = ++env->id_gen; 1325 state->refs[new_ofs].id = id; 1326 state->refs[new_ofs].insn_idx = insn_idx; 1327 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1328 1329 return id; 1330 } 1331 1332 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1333 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1334 { 1335 int i, last_idx; 1336 1337 last_idx = state->acquired_refs - 1; 1338 for (i = 0; i < state->acquired_refs; i++) { 1339 if (state->refs[i].id == ptr_id) { 1340 /* Cannot release caller references in callbacks */ 1341 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1342 return -EINVAL; 1343 if (last_idx && i != last_idx) 1344 memcpy(&state->refs[i], &state->refs[last_idx], 1345 sizeof(*state->refs)); 1346 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1347 state->acquired_refs--; 1348 return 0; 1349 } 1350 } 1351 return -EINVAL; 1352 } 1353 1354 static void free_func_state(struct bpf_func_state *state) 1355 { 1356 if (!state) 1357 return; 1358 kfree(state->refs); 1359 kfree(state->stack); 1360 kfree(state); 1361 } 1362 1363 static void clear_jmp_history(struct bpf_verifier_state *state) 1364 { 1365 kfree(state->jmp_history); 1366 state->jmp_history = NULL; 1367 state->jmp_history_cnt = 0; 1368 } 1369 1370 static void free_verifier_state(struct bpf_verifier_state *state, 1371 bool free_self) 1372 { 1373 int i; 1374 1375 for (i = 0; i <= state->curframe; i++) { 1376 free_func_state(state->frame[i]); 1377 state->frame[i] = NULL; 1378 } 1379 clear_jmp_history(state); 1380 if (free_self) 1381 kfree(state); 1382 } 1383 1384 /* copy verifier state from src to dst growing dst stack space 1385 * when necessary to accommodate larger src stack 1386 */ 1387 static int copy_func_state(struct bpf_func_state *dst, 1388 const struct bpf_func_state *src) 1389 { 1390 int err; 1391 1392 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1393 err = copy_reference_state(dst, src); 1394 if (err) 1395 return err; 1396 return copy_stack_state(dst, src); 1397 } 1398 1399 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1400 const struct bpf_verifier_state *src) 1401 { 1402 struct bpf_func_state *dst; 1403 int i, err; 1404 1405 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1406 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1407 GFP_USER); 1408 if (!dst_state->jmp_history) 1409 return -ENOMEM; 1410 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1411 1412 /* if dst has more stack frames then src frame, free them */ 1413 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1414 free_func_state(dst_state->frame[i]); 1415 dst_state->frame[i] = NULL; 1416 } 1417 dst_state->speculative = src->speculative; 1418 dst_state->active_rcu_lock = src->active_rcu_lock; 1419 dst_state->curframe = src->curframe; 1420 dst_state->active_lock.ptr = src->active_lock.ptr; 1421 dst_state->active_lock.id = src->active_lock.id; 1422 dst_state->branches = src->branches; 1423 dst_state->parent = src->parent; 1424 dst_state->first_insn_idx = src->first_insn_idx; 1425 dst_state->last_insn_idx = src->last_insn_idx; 1426 for (i = 0; i <= src->curframe; i++) { 1427 dst = dst_state->frame[i]; 1428 if (!dst) { 1429 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1430 if (!dst) 1431 return -ENOMEM; 1432 dst_state->frame[i] = dst; 1433 } 1434 err = copy_func_state(dst, src->frame[i]); 1435 if (err) 1436 return err; 1437 } 1438 return 0; 1439 } 1440 1441 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1442 { 1443 while (st) { 1444 u32 br = --st->branches; 1445 1446 /* WARN_ON(br > 1) technically makes sense here, 1447 * but see comment in push_stack(), hence: 1448 */ 1449 WARN_ONCE((int)br < 0, 1450 "BUG update_branch_counts:branches_to_explore=%d\n", 1451 br); 1452 if (br) 1453 break; 1454 st = st->parent; 1455 } 1456 } 1457 1458 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 1459 int *insn_idx, bool pop_log) 1460 { 1461 struct bpf_verifier_state *cur = env->cur_state; 1462 struct bpf_verifier_stack_elem *elem, *head = env->head; 1463 int err; 1464 1465 if (env->head == NULL) 1466 return -ENOENT; 1467 1468 if (cur) { 1469 err = copy_verifier_state(cur, &head->st); 1470 if (err) 1471 return err; 1472 } 1473 if (pop_log) 1474 bpf_vlog_reset(&env->log, head->log_pos); 1475 if (insn_idx) 1476 *insn_idx = head->insn_idx; 1477 if (prev_insn_idx) 1478 *prev_insn_idx = head->prev_insn_idx; 1479 elem = head->next; 1480 free_verifier_state(&head->st, false); 1481 kfree(head); 1482 env->head = elem; 1483 env->stack_size--; 1484 return 0; 1485 } 1486 1487 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1488 int insn_idx, int prev_insn_idx, 1489 bool speculative) 1490 { 1491 struct bpf_verifier_state *cur = env->cur_state; 1492 struct bpf_verifier_stack_elem *elem; 1493 int err; 1494 1495 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1496 if (!elem) 1497 goto err; 1498 1499 elem->insn_idx = insn_idx; 1500 elem->prev_insn_idx = prev_insn_idx; 1501 elem->next = env->head; 1502 elem->log_pos = env->log.len_used; 1503 env->head = elem; 1504 env->stack_size++; 1505 err = copy_verifier_state(&elem->st, cur); 1506 if (err) 1507 goto err; 1508 elem->st.speculative |= speculative; 1509 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1510 verbose(env, "The sequence of %d jumps is too complex.\n", 1511 env->stack_size); 1512 goto err; 1513 } 1514 if (elem->st.parent) { 1515 ++elem->st.parent->branches; 1516 /* WARN_ON(branches > 2) technically makes sense here, 1517 * but 1518 * 1. speculative states will bump 'branches' for non-branch 1519 * instructions 1520 * 2. is_state_visited() heuristics may decide not to create 1521 * a new state for a sequence of branches and all such current 1522 * and cloned states will be pointing to a single parent state 1523 * which might have large 'branches' count. 1524 */ 1525 } 1526 return &elem->st; 1527 err: 1528 free_verifier_state(env->cur_state, true); 1529 env->cur_state = NULL; 1530 /* pop all elements and return */ 1531 while (!pop_stack(env, NULL, NULL, false)); 1532 return NULL; 1533 } 1534 1535 #define CALLER_SAVED_REGS 6 1536 static const int caller_saved[CALLER_SAVED_REGS] = { 1537 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1538 }; 1539 1540 /* This helper doesn't clear reg->id */ 1541 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1542 { 1543 reg->var_off = tnum_const(imm); 1544 reg->smin_value = (s64)imm; 1545 reg->smax_value = (s64)imm; 1546 reg->umin_value = imm; 1547 reg->umax_value = imm; 1548 1549 reg->s32_min_value = (s32)imm; 1550 reg->s32_max_value = (s32)imm; 1551 reg->u32_min_value = (u32)imm; 1552 reg->u32_max_value = (u32)imm; 1553 } 1554 1555 /* Mark the unknown part of a register (variable offset or scalar value) as 1556 * known to have the value @imm. 1557 */ 1558 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1559 { 1560 /* Clear off and union(map_ptr, range) */ 1561 memset(((u8 *)reg) + sizeof(reg->type), 0, 1562 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1563 reg->id = 0; 1564 reg->ref_obj_id = 0; 1565 ___mark_reg_known(reg, imm); 1566 } 1567 1568 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1569 { 1570 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1571 reg->s32_min_value = (s32)imm; 1572 reg->s32_max_value = (s32)imm; 1573 reg->u32_min_value = (u32)imm; 1574 reg->u32_max_value = (u32)imm; 1575 } 1576 1577 /* Mark the 'variable offset' part of a register as zero. This should be 1578 * used only on registers holding a pointer type. 1579 */ 1580 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1581 { 1582 __mark_reg_known(reg, 0); 1583 } 1584 1585 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1586 { 1587 __mark_reg_known(reg, 0); 1588 reg->type = SCALAR_VALUE; 1589 } 1590 1591 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1592 struct bpf_reg_state *regs, u32 regno) 1593 { 1594 if (WARN_ON(regno >= MAX_BPF_REG)) { 1595 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1596 /* Something bad happened, let's kill all regs */ 1597 for (regno = 0; regno < MAX_BPF_REG; regno++) 1598 __mark_reg_not_init(env, regs + regno); 1599 return; 1600 } 1601 __mark_reg_known_zero(regs + regno); 1602 } 1603 1604 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 1605 bool first_slot, int dynptr_id) 1606 { 1607 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 1608 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 1609 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 1610 */ 1611 __mark_reg_known_zero(reg); 1612 reg->type = CONST_PTR_TO_DYNPTR; 1613 /* Give each dynptr a unique id to uniquely associate slices to it. */ 1614 reg->id = dynptr_id; 1615 reg->dynptr.type = type; 1616 reg->dynptr.first_slot = first_slot; 1617 } 1618 1619 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1620 { 1621 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 1622 const struct bpf_map *map = reg->map_ptr; 1623 1624 if (map->inner_map_meta) { 1625 reg->type = CONST_PTR_TO_MAP; 1626 reg->map_ptr = map->inner_map_meta; 1627 /* transfer reg's id which is unique for every map_lookup_elem 1628 * as UID of the inner map. 1629 */ 1630 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 1631 reg->map_uid = reg->id; 1632 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1633 reg->type = PTR_TO_XDP_SOCK; 1634 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1635 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1636 reg->type = PTR_TO_SOCKET; 1637 } else { 1638 reg->type = PTR_TO_MAP_VALUE; 1639 } 1640 return; 1641 } 1642 1643 reg->type &= ~PTR_MAYBE_NULL; 1644 } 1645 1646 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 1647 struct btf_field_graph_root *ds_head) 1648 { 1649 __mark_reg_known_zero(®s[regno]); 1650 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 1651 regs[regno].btf = ds_head->btf; 1652 regs[regno].btf_id = ds_head->value_btf_id; 1653 regs[regno].off = ds_head->node_offset; 1654 } 1655 1656 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1657 { 1658 return type_is_pkt_pointer(reg->type); 1659 } 1660 1661 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1662 { 1663 return reg_is_pkt_pointer(reg) || 1664 reg->type == PTR_TO_PACKET_END; 1665 } 1666 1667 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1668 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1669 enum bpf_reg_type which) 1670 { 1671 /* The register can already have a range from prior markings. 1672 * This is fine as long as it hasn't been advanced from its 1673 * origin. 1674 */ 1675 return reg->type == which && 1676 reg->id == 0 && 1677 reg->off == 0 && 1678 tnum_equals_const(reg->var_off, 0); 1679 } 1680 1681 /* Reset the min/max bounds of a register */ 1682 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1683 { 1684 reg->smin_value = S64_MIN; 1685 reg->smax_value = S64_MAX; 1686 reg->umin_value = 0; 1687 reg->umax_value = U64_MAX; 1688 1689 reg->s32_min_value = S32_MIN; 1690 reg->s32_max_value = S32_MAX; 1691 reg->u32_min_value = 0; 1692 reg->u32_max_value = U32_MAX; 1693 } 1694 1695 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1696 { 1697 reg->smin_value = S64_MIN; 1698 reg->smax_value = S64_MAX; 1699 reg->umin_value = 0; 1700 reg->umax_value = U64_MAX; 1701 } 1702 1703 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1704 { 1705 reg->s32_min_value = S32_MIN; 1706 reg->s32_max_value = S32_MAX; 1707 reg->u32_min_value = 0; 1708 reg->u32_max_value = U32_MAX; 1709 } 1710 1711 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1712 { 1713 struct tnum var32_off = tnum_subreg(reg->var_off); 1714 1715 /* min signed is max(sign bit) | min(other bits) */ 1716 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1717 var32_off.value | (var32_off.mask & S32_MIN)); 1718 /* max signed is min(sign bit) | max(other bits) */ 1719 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1720 var32_off.value | (var32_off.mask & S32_MAX)); 1721 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1722 reg->u32_max_value = min(reg->u32_max_value, 1723 (u32)(var32_off.value | var32_off.mask)); 1724 } 1725 1726 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1727 { 1728 /* min signed is max(sign bit) | min(other bits) */ 1729 reg->smin_value = max_t(s64, reg->smin_value, 1730 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1731 /* max signed is min(sign bit) | max(other bits) */ 1732 reg->smax_value = min_t(s64, reg->smax_value, 1733 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1734 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1735 reg->umax_value = min(reg->umax_value, 1736 reg->var_off.value | reg->var_off.mask); 1737 } 1738 1739 static void __update_reg_bounds(struct bpf_reg_state *reg) 1740 { 1741 __update_reg32_bounds(reg); 1742 __update_reg64_bounds(reg); 1743 } 1744 1745 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1746 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1747 { 1748 /* Learn sign from signed bounds. 1749 * If we cannot cross the sign boundary, then signed and unsigned bounds 1750 * are the same, so combine. This works even in the negative case, e.g. 1751 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1752 */ 1753 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1754 reg->s32_min_value = reg->u32_min_value = 1755 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1756 reg->s32_max_value = reg->u32_max_value = 1757 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1758 return; 1759 } 1760 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1761 * boundary, so we must be careful. 1762 */ 1763 if ((s32)reg->u32_max_value >= 0) { 1764 /* Positive. We can't learn anything from the smin, but smax 1765 * is positive, hence safe. 1766 */ 1767 reg->s32_min_value = reg->u32_min_value; 1768 reg->s32_max_value = reg->u32_max_value = 1769 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1770 } else if ((s32)reg->u32_min_value < 0) { 1771 /* Negative. We can't learn anything from the smax, but smin 1772 * is negative, hence safe. 1773 */ 1774 reg->s32_min_value = reg->u32_min_value = 1775 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1776 reg->s32_max_value = reg->u32_max_value; 1777 } 1778 } 1779 1780 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1781 { 1782 /* Learn sign from signed bounds. 1783 * If we cannot cross the sign boundary, then signed and unsigned bounds 1784 * are the same, so combine. This works even in the negative case, e.g. 1785 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1786 */ 1787 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1788 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1789 reg->umin_value); 1790 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1791 reg->umax_value); 1792 return; 1793 } 1794 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1795 * boundary, so we must be careful. 1796 */ 1797 if ((s64)reg->umax_value >= 0) { 1798 /* Positive. We can't learn anything from the smin, but smax 1799 * is positive, hence safe. 1800 */ 1801 reg->smin_value = reg->umin_value; 1802 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1803 reg->umax_value); 1804 } else if ((s64)reg->umin_value < 0) { 1805 /* Negative. We can't learn anything from the smax, but smin 1806 * is negative, hence safe. 1807 */ 1808 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1809 reg->umin_value); 1810 reg->smax_value = reg->umax_value; 1811 } 1812 } 1813 1814 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1815 { 1816 __reg32_deduce_bounds(reg); 1817 __reg64_deduce_bounds(reg); 1818 } 1819 1820 /* Attempts to improve var_off based on unsigned min/max information */ 1821 static void __reg_bound_offset(struct bpf_reg_state *reg) 1822 { 1823 struct tnum var64_off = tnum_intersect(reg->var_off, 1824 tnum_range(reg->umin_value, 1825 reg->umax_value)); 1826 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1827 tnum_range(reg->u32_min_value, 1828 reg->u32_max_value)); 1829 1830 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1831 } 1832 1833 static void reg_bounds_sync(struct bpf_reg_state *reg) 1834 { 1835 /* We might have learned new bounds from the var_off. */ 1836 __update_reg_bounds(reg); 1837 /* We might have learned something about the sign bit. */ 1838 __reg_deduce_bounds(reg); 1839 /* We might have learned some bits from the bounds. */ 1840 __reg_bound_offset(reg); 1841 /* Intersecting with the old var_off might have improved our bounds 1842 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1843 * then new var_off is (0; 0x7f...fc) which improves our umax. 1844 */ 1845 __update_reg_bounds(reg); 1846 } 1847 1848 static bool __reg32_bound_s64(s32 a) 1849 { 1850 return a >= 0 && a <= S32_MAX; 1851 } 1852 1853 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1854 { 1855 reg->umin_value = reg->u32_min_value; 1856 reg->umax_value = reg->u32_max_value; 1857 1858 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 1859 * be positive otherwise set to worse case bounds and refine later 1860 * from tnum. 1861 */ 1862 if (__reg32_bound_s64(reg->s32_min_value) && 1863 __reg32_bound_s64(reg->s32_max_value)) { 1864 reg->smin_value = reg->s32_min_value; 1865 reg->smax_value = reg->s32_max_value; 1866 } else { 1867 reg->smin_value = 0; 1868 reg->smax_value = U32_MAX; 1869 } 1870 } 1871 1872 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1873 { 1874 /* special case when 64-bit register has upper 32-bit register 1875 * zeroed. Typically happens after zext or <<32, >>32 sequence 1876 * allowing us to use 32-bit bounds directly, 1877 */ 1878 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1879 __reg_assign_32_into_64(reg); 1880 } else { 1881 /* Otherwise the best we can do is push lower 32bit known and 1882 * unknown bits into register (var_off set from jmp logic) 1883 * then learn as much as possible from the 64-bit tnum 1884 * known and unknown bits. The previous smin/smax bounds are 1885 * invalid here because of jmp32 compare so mark them unknown 1886 * so they do not impact tnum bounds calculation. 1887 */ 1888 __mark_reg64_unbounded(reg); 1889 } 1890 reg_bounds_sync(reg); 1891 } 1892 1893 static bool __reg64_bound_s32(s64 a) 1894 { 1895 return a >= S32_MIN && a <= S32_MAX; 1896 } 1897 1898 static bool __reg64_bound_u32(u64 a) 1899 { 1900 return a >= U32_MIN && a <= U32_MAX; 1901 } 1902 1903 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1904 { 1905 __mark_reg32_unbounded(reg); 1906 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1907 reg->s32_min_value = (s32)reg->smin_value; 1908 reg->s32_max_value = (s32)reg->smax_value; 1909 } 1910 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1911 reg->u32_min_value = (u32)reg->umin_value; 1912 reg->u32_max_value = (u32)reg->umax_value; 1913 } 1914 reg_bounds_sync(reg); 1915 } 1916 1917 /* Mark a register as having a completely unknown (scalar) value. */ 1918 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1919 struct bpf_reg_state *reg) 1920 { 1921 /* 1922 * Clear type, off, and union(map_ptr, range) and 1923 * padding between 'type' and union 1924 */ 1925 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1926 reg->type = SCALAR_VALUE; 1927 reg->id = 0; 1928 reg->ref_obj_id = 0; 1929 reg->var_off = tnum_unknown; 1930 reg->frameno = 0; 1931 reg->precise = !env->bpf_capable; 1932 __mark_reg_unbounded(reg); 1933 } 1934 1935 static void mark_reg_unknown(struct bpf_verifier_env *env, 1936 struct bpf_reg_state *regs, u32 regno) 1937 { 1938 if (WARN_ON(regno >= MAX_BPF_REG)) { 1939 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1940 /* Something bad happened, let's kill all regs except FP */ 1941 for (regno = 0; regno < BPF_REG_FP; regno++) 1942 __mark_reg_not_init(env, regs + regno); 1943 return; 1944 } 1945 __mark_reg_unknown(env, regs + regno); 1946 } 1947 1948 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1949 struct bpf_reg_state *reg) 1950 { 1951 __mark_reg_unknown(env, reg); 1952 reg->type = NOT_INIT; 1953 } 1954 1955 static void mark_reg_not_init(struct bpf_verifier_env *env, 1956 struct bpf_reg_state *regs, u32 regno) 1957 { 1958 if (WARN_ON(regno >= MAX_BPF_REG)) { 1959 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1960 /* Something bad happened, let's kill all regs except FP */ 1961 for (regno = 0; regno < BPF_REG_FP; regno++) 1962 __mark_reg_not_init(env, regs + regno); 1963 return; 1964 } 1965 __mark_reg_not_init(env, regs + regno); 1966 } 1967 1968 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1969 struct bpf_reg_state *regs, u32 regno, 1970 enum bpf_reg_type reg_type, 1971 struct btf *btf, u32 btf_id, 1972 enum bpf_type_flag flag) 1973 { 1974 if (reg_type == SCALAR_VALUE) { 1975 mark_reg_unknown(env, regs, regno); 1976 return; 1977 } 1978 mark_reg_known_zero(env, regs, regno); 1979 regs[regno].type = PTR_TO_BTF_ID | flag; 1980 regs[regno].btf = btf; 1981 regs[regno].btf_id = btf_id; 1982 } 1983 1984 #define DEF_NOT_SUBREG (0) 1985 static void init_reg_state(struct bpf_verifier_env *env, 1986 struct bpf_func_state *state) 1987 { 1988 struct bpf_reg_state *regs = state->regs; 1989 int i; 1990 1991 for (i = 0; i < MAX_BPF_REG; i++) { 1992 mark_reg_not_init(env, regs, i); 1993 regs[i].live = REG_LIVE_NONE; 1994 regs[i].parent = NULL; 1995 regs[i].subreg_def = DEF_NOT_SUBREG; 1996 } 1997 1998 /* frame pointer */ 1999 regs[BPF_REG_FP].type = PTR_TO_STACK; 2000 mark_reg_known_zero(env, regs, BPF_REG_FP); 2001 regs[BPF_REG_FP].frameno = state->frameno; 2002 } 2003 2004 #define BPF_MAIN_FUNC (-1) 2005 static void init_func_state(struct bpf_verifier_env *env, 2006 struct bpf_func_state *state, 2007 int callsite, int frameno, int subprogno) 2008 { 2009 state->callsite = callsite; 2010 state->frameno = frameno; 2011 state->subprogno = subprogno; 2012 state->callback_ret_range = tnum_range(0, 0); 2013 init_reg_state(env, state); 2014 mark_verifier_state_scratched(env); 2015 } 2016 2017 /* Similar to push_stack(), but for async callbacks */ 2018 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2019 int insn_idx, int prev_insn_idx, 2020 int subprog) 2021 { 2022 struct bpf_verifier_stack_elem *elem; 2023 struct bpf_func_state *frame; 2024 2025 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2026 if (!elem) 2027 goto err; 2028 2029 elem->insn_idx = insn_idx; 2030 elem->prev_insn_idx = prev_insn_idx; 2031 elem->next = env->head; 2032 elem->log_pos = env->log.len_used; 2033 env->head = elem; 2034 env->stack_size++; 2035 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2036 verbose(env, 2037 "The sequence of %d jumps is too complex for async cb.\n", 2038 env->stack_size); 2039 goto err; 2040 } 2041 /* Unlike push_stack() do not copy_verifier_state(). 2042 * The caller state doesn't matter. 2043 * This is async callback. It starts in a fresh stack. 2044 * Initialize it similar to do_check_common(). 2045 */ 2046 elem->st.branches = 1; 2047 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2048 if (!frame) 2049 goto err; 2050 init_func_state(env, frame, 2051 BPF_MAIN_FUNC /* callsite */, 2052 0 /* frameno within this callchain */, 2053 subprog /* subprog number within this prog */); 2054 elem->st.frame[0] = frame; 2055 return &elem->st; 2056 err: 2057 free_verifier_state(env->cur_state, true); 2058 env->cur_state = NULL; 2059 /* pop all elements and return */ 2060 while (!pop_stack(env, NULL, NULL, false)); 2061 return NULL; 2062 } 2063 2064 2065 enum reg_arg_type { 2066 SRC_OP, /* register is used as source operand */ 2067 DST_OP, /* register is used as destination operand */ 2068 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2069 }; 2070 2071 static int cmp_subprogs(const void *a, const void *b) 2072 { 2073 return ((struct bpf_subprog_info *)a)->start - 2074 ((struct bpf_subprog_info *)b)->start; 2075 } 2076 2077 static int find_subprog(struct bpf_verifier_env *env, int off) 2078 { 2079 struct bpf_subprog_info *p; 2080 2081 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2082 sizeof(env->subprog_info[0]), cmp_subprogs); 2083 if (!p) 2084 return -ENOENT; 2085 return p - env->subprog_info; 2086 2087 } 2088 2089 static int add_subprog(struct bpf_verifier_env *env, int off) 2090 { 2091 int insn_cnt = env->prog->len; 2092 int ret; 2093 2094 if (off >= insn_cnt || off < 0) { 2095 verbose(env, "call to invalid destination\n"); 2096 return -EINVAL; 2097 } 2098 ret = find_subprog(env, off); 2099 if (ret >= 0) 2100 return ret; 2101 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2102 verbose(env, "too many subprograms\n"); 2103 return -E2BIG; 2104 } 2105 /* determine subprog starts. The end is one before the next starts */ 2106 env->subprog_info[env->subprog_cnt++].start = off; 2107 sort(env->subprog_info, env->subprog_cnt, 2108 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2109 return env->subprog_cnt - 1; 2110 } 2111 2112 #define MAX_KFUNC_DESCS 256 2113 #define MAX_KFUNC_BTFS 256 2114 2115 struct bpf_kfunc_desc { 2116 struct btf_func_model func_model; 2117 u32 func_id; 2118 s32 imm; 2119 u16 offset; 2120 }; 2121 2122 struct bpf_kfunc_btf { 2123 struct btf *btf; 2124 struct module *module; 2125 u16 offset; 2126 }; 2127 2128 struct bpf_kfunc_desc_tab { 2129 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2130 u32 nr_descs; 2131 }; 2132 2133 struct bpf_kfunc_btf_tab { 2134 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2135 u32 nr_descs; 2136 }; 2137 2138 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2139 { 2140 const struct bpf_kfunc_desc *d0 = a; 2141 const struct bpf_kfunc_desc *d1 = b; 2142 2143 /* func_id is not greater than BTF_MAX_TYPE */ 2144 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2145 } 2146 2147 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2148 { 2149 const struct bpf_kfunc_btf *d0 = a; 2150 const struct bpf_kfunc_btf *d1 = b; 2151 2152 return d0->offset - d1->offset; 2153 } 2154 2155 static const struct bpf_kfunc_desc * 2156 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2157 { 2158 struct bpf_kfunc_desc desc = { 2159 .func_id = func_id, 2160 .offset = offset, 2161 }; 2162 struct bpf_kfunc_desc_tab *tab; 2163 2164 tab = prog->aux->kfunc_tab; 2165 return bsearch(&desc, tab->descs, tab->nr_descs, 2166 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2167 } 2168 2169 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2170 s16 offset) 2171 { 2172 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2173 struct bpf_kfunc_btf_tab *tab; 2174 struct bpf_kfunc_btf *b; 2175 struct module *mod; 2176 struct btf *btf; 2177 int btf_fd; 2178 2179 tab = env->prog->aux->kfunc_btf_tab; 2180 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2181 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2182 if (!b) { 2183 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2184 verbose(env, "too many different module BTFs\n"); 2185 return ERR_PTR(-E2BIG); 2186 } 2187 2188 if (bpfptr_is_null(env->fd_array)) { 2189 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2190 return ERR_PTR(-EPROTO); 2191 } 2192 2193 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2194 offset * sizeof(btf_fd), 2195 sizeof(btf_fd))) 2196 return ERR_PTR(-EFAULT); 2197 2198 btf = btf_get_by_fd(btf_fd); 2199 if (IS_ERR(btf)) { 2200 verbose(env, "invalid module BTF fd specified\n"); 2201 return btf; 2202 } 2203 2204 if (!btf_is_module(btf)) { 2205 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2206 btf_put(btf); 2207 return ERR_PTR(-EINVAL); 2208 } 2209 2210 mod = btf_try_get_module(btf); 2211 if (!mod) { 2212 btf_put(btf); 2213 return ERR_PTR(-ENXIO); 2214 } 2215 2216 b = &tab->descs[tab->nr_descs++]; 2217 b->btf = btf; 2218 b->module = mod; 2219 b->offset = offset; 2220 2221 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2222 kfunc_btf_cmp_by_off, NULL); 2223 } 2224 return b->btf; 2225 } 2226 2227 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2228 { 2229 if (!tab) 2230 return; 2231 2232 while (tab->nr_descs--) { 2233 module_put(tab->descs[tab->nr_descs].module); 2234 btf_put(tab->descs[tab->nr_descs].btf); 2235 } 2236 kfree(tab); 2237 } 2238 2239 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2240 { 2241 if (offset) { 2242 if (offset < 0) { 2243 /* In the future, this can be allowed to increase limit 2244 * of fd index into fd_array, interpreted as u16. 2245 */ 2246 verbose(env, "negative offset disallowed for kernel module function call\n"); 2247 return ERR_PTR(-EINVAL); 2248 } 2249 2250 return __find_kfunc_desc_btf(env, offset); 2251 } 2252 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2253 } 2254 2255 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2256 { 2257 const struct btf_type *func, *func_proto; 2258 struct bpf_kfunc_btf_tab *btf_tab; 2259 struct bpf_kfunc_desc_tab *tab; 2260 struct bpf_prog_aux *prog_aux; 2261 struct bpf_kfunc_desc *desc; 2262 const char *func_name; 2263 struct btf *desc_btf; 2264 unsigned long call_imm; 2265 unsigned long addr; 2266 int err; 2267 2268 prog_aux = env->prog->aux; 2269 tab = prog_aux->kfunc_tab; 2270 btf_tab = prog_aux->kfunc_btf_tab; 2271 if (!tab) { 2272 if (!btf_vmlinux) { 2273 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2274 return -ENOTSUPP; 2275 } 2276 2277 if (!env->prog->jit_requested) { 2278 verbose(env, "JIT is required for calling kernel function\n"); 2279 return -ENOTSUPP; 2280 } 2281 2282 if (!bpf_jit_supports_kfunc_call()) { 2283 verbose(env, "JIT does not support calling kernel function\n"); 2284 return -ENOTSUPP; 2285 } 2286 2287 if (!env->prog->gpl_compatible) { 2288 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2289 return -EINVAL; 2290 } 2291 2292 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2293 if (!tab) 2294 return -ENOMEM; 2295 prog_aux->kfunc_tab = tab; 2296 } 2297 2298 /* func_id == 0 is always invalid, but instead of returning an error, be 2299 * conservative and wait until the code elimination pass before returning 2300 * error, so that invalid calls that get pruned out can be in BPF programs 2301 * loaded from userspace. It is also required that offset be untouched 2302 * for such calls. 2303 */ 2304 if (!func_id && !offset) 2305 return 0; 2306 2307 if (!btf_tab && offset) { 2308 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2309 if (!btf_tab) 2310 return -ENOMEM; 2311 prog_aux->kfunc_btf_tab = btf_tab; 2312 } 2313 2314 desc_btf = find_kfunc_desc_btf(env, offset); 2315 if (IS_ERR(desc_btf)) { 2316 verbose(env, "failed to find BTF for kernel function\n"); 2317 return PTR_ERR(desc_btf); 2318 } 2319 2320 if (find_kfunc_desc(env->prog, func_id, offset)) 2321 return 0; 2322 2323 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2324 verbose(env, "too many different kernel function calls\n"); 2325 return -E2BIG; 2326 } 2327 2328 func = btf_type_by_id(desc_btf, func_id); 2329 if (!func || !btf_type_is_func(func)) { 2330 verbose(env, "kernel btf_id %u is not a function\n", 2331 func_id); 2332 return -EINVAL; 2333 } 2334 func_proto = btf_type_by_id(desc_btf, func->type); 2335 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2336 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2337 func_id); 2338 return -EINVAL; 2339 } 2340 2341 func_name = btf_name_by_offset(desc_btf, func->name_off); 2342 addr = kallsyms_lookup_name(func_name); 2343 if (!addr) { 2344 verbose(env, "cannot find address for kernel function %s\n", 2345 func_name); 2346 return -EINVAL; 2347 } 2348 2349 call_imm = BPF_CALL_IMM(addr); 2350 /* Check whether or not the relative offset overflows desc->imm */ 2351 if ((unsigned long)(s32)call_imm != call_imm) { 2352 verbose(env, "address of kernel function %s is out of range\n", 2353 func_name); 2354 return -EINVAL; 2355 } 2356 2357 if (bpf_dev_bound_kfunc_id(func_id)) { 2358 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2359 if (err) 2360 return err; 2361 } 2362 2363 desc = &tab->descs[tab->nr_descs++]; 2364 desc->func_id = func_id; 2365 desc->imm = call_imm; 2366 desc->offset = offset; 2367 err = btf_distill_func_proto(&env->log, desc_btf, 2368 func_proto, func_name, 2369 &desc->func_model); 2370 if (!err) 2371 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2372 kfunc_desc_cmp_by_id_off, NULL); 2373 return err; 2374 } 2375 2376 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 2377 { 2378 const struct bpf_kfunc_desc *d0 = a; 2379 const struct bpf_kfunc_desc *d1 = b; 2380 2381 if (d0->imm > d1->imm) 2382 return 1; 2383 else if (d0->imm < d1->imm) 2384 return -1; 2385 return 0; 2386 } 2387 2388 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 2389 { 2390 struct bpf_kfunc_desc_tab *tab; 2391 2392 tab = prog->aux->kfunc_tab; 2393 if (!tab) 2394 return; 2395 2396 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2397 kfunc_desc_cmp_by_imm, NULL); 2398 } 2399 2400 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2401 { 2402 return !!prog->aux->kfunc_tab; 2403 } 2404 2405 const struct btf_func_model * 2406 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2407 const struct bpf_insn *insn) 2408 { 2409 const struct bpf_kfunc_desc desc = { 2410 .imm = insn->imm, 2411 }; 2412 const struct bpf_kfunc_desc *res; 2413 struct bpf_kfunc_desc_tab *tab; 2414 2415 tab = prog->aux->kfunc_tab; 2416 res = bsearch(&desc, tab->descs, tab->nr_descs, 2417 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 2418 2419 return res ? &res->func_model : NULL; 2420 } 2421 2422 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 2423 { 2424 struct bpf_subprog_info *subprog = env->subprog_info; 2425 struct bpf_insn *insn = env->prog->insnsi; 2426 int i, ret, insn_cnt = env->prog->len; 2427 2428 /* Add entry function. */ 2429 ret = add_subprog(env, 0); 2430 if (ret) 2431 return ret; 2432 2433 for (i = 0; i < insn_cnt; i++, insn++) { 2434 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 2435 !bpf_pseudo_kfunc_call(insn)) 2436 continue; 2437 2438 if (!env->bpf_capable) { 2439 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 2440 return -EPERM; 2441 } 2442 2443 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 2444 ret = add_subprog(env, i + insn->imm + 1); 2445 else 2446 ret = add_kfunc_call(env, insn->imm, insn->off); 2447 2448 if (ret < 0) 2449 return ret; 2450 } 2451 2452 /* Add a fake 'exit' subprog which could simplify subprog iteration 2453 * logic. 'subprog_cnt' should not be increased. 2454 */ 2455 subprog[env->subprog_cnt].start = insn_cnt; 2456 2457 if (env->log.level & BPF_LOG_LEVEL2) 2458 for (i = 0; i < env->subprog_cnt; i++) 2459 verbose(env, "func#%d @%d\n", i, subprog[i].start); 2460 2461 return 0; 2462 } 2463 2464 static int check_subprogs(struct bpf_verifier_env *env) 2465 { 2466 int i, subprog_start, subprog_end, off, cur_subprog = 0; 2467 struct bpf_subprog_info *subprog = env->subprog_info; 2468 struct bpf_insn *insn = env->prog->insnsi; 2469 int insn_cnt = env->prog->len; 2470 2471 /* now check that all jumps are within the same subprog */ 2472 subprog_start = subprog[cur_subprog].start; 2473 subprog_end = subprog[cur_subprog + 1].start; 2474 for (i = 0; i < insn_cnt; i++) { 2475 u8 code = insn[i].code; 2476 2477 if (code == (BPF_JMP | BPF_CALL) && 2478 insn[i].imm == BPF_FUNC_tail_call && 2479 insn[i].src_reg != BPF_PSEUDO_CALL) 2480 subprog[cur_subprog].has_tail_call = true; 2481 if (BPF_CLASS(code) == BPF_LD && 2482 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 2483 subprog[cur_subprog].has_ld_abs = true; 2484 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2485 goto next; 2486 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2487 goto next; 2488 off = i + insn[i].off + 1; 2489 if (off < subprog_start || off >= subprog_end) { 2490 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2491 return -EINVAL; 2492 } 2493 next: 2494 if (i == subprog_end - 1) { 2495 /* to avoid fall-through from one subprog into another 2496 * the last insn of the subprog should be either exit 2497 * or unconditional jump back 2498 */ 2499 if (code != (BPF_JMP | BPF_EXIT) && 2500 code != (BPF_JMP | BPF_JA)) { 2501 verbose(env, "last insn is not an exit or jmp\n"); 2502 return -EINVAL; 2503 } 2504 subprog_start = subprog_end; 2505 cur_subprog++; 2506 if (cur_subprog < env->subprog_cnt) 2507 subprog_end = subprog[cur_subprog + 1].start; 2508 } 2509 } 2510 return 0; 2511 } 2512 2513 /* Parentage chain of this register (or stack slot) should take care of all 2514 * issues like callee-saved registers, stack slot allocation time, etc. 2515 */ 2516 static int mark_reg_read(struct bpf_verifier_env *env, 2517 const struct bpf_reg_state *state, 2518 struct bpf_reg_state *parent, u8 flag) 2519 { 2520 bool writes = parent == state->parent; /* Observe write marks */ 2521 int cnt = 0; 2522 2523 while (parent) { 2524 /* if read wasn't screened by an earlier write ... */ 2525 if (writes && state->live & REG_LIVE_WRITTEN) 2526 break; 2527 if (parent->live & REG_LIVE_DONE) { 2528 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2529 reg_type_str(env, parent->type), 2530 parent->var_off.value, parent->off); 2531 return -EFAULT; 2532 } 2533 /* The first condition is more likely to be true than the 2534 * second, checked it first. 2535 */ 2536 if ((parent->live & REG_LIVE_READ) == flag || 2537 parent->live & REG_LIVE_READ64) 2538 /* The parentage chain never changes and 2539 * this parent was already marked as LIVE_READ. 2540 * There is no need to keep walking the chain again and 2541 * keep re-marking all parents as LIVE_READ. 2542 * This case happens when the same register is read 2543 * multiple times without writes into it in-between. 2544 * Also, if parent has the stronger REG_LIVE_READ64 set, 2545 * then no need to set the weak REG_LIVE_READ32. 2546 */ 2547 break; 2548 /* ... then we depend on parent's value */ 2549 parent->live |= flag; 2550 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2551 if (flag == REG_LIVE_READ64) 2552 parent->live &= ~REG_LIVE_READ32; 2553 state = parent; 2554 parent = state->parent; 2555 writes = true; 2556 cnt++; 2557 } 2558 2559 if (env->longest_mark_read_walk < cnt) 2560 env->longest_mark_read_walk = cnt; 2561 return 0; 2562 } 2563 2564 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 2565 { 2566 struct bpf_func_state *state = func(env, reg); 2567 int spi, ret; 2568 2569 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 2570 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 2571 * check_kfunc_call. 2572 */ 2573 if (reg->type == CONST_PTR_TO_DYNPTR) 2574 return 0; 2575 spi = dynptr_get_spi(env, reg); 2576 if (spi < 0) 2577 return spi; 2578 /* Caller ensures dynptr is valid and initialized, which means spi is in 2579 * bounds and spi is the first dynptr slot. Simply mark stack slot as 2580 * read. 2581 */ 2582 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 2583 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 2584 if (ret) 2585 return ret; 2586 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 2587 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 2588 } 2589 2590 /* This function is supposed to be used by the following 32-bit optimization 2591 * code only. It returns TRUE if the source or destination register operates 2592 * on 64-bit, otherwise return FALSE. 2593 */ 2594 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2595 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2596 { 2597 u8 code, class, op; 2598 2599 code = insn->code; 2600 class = BPF_CLASS(code); 2601 op = BPF_OP(code); 2602 if (class == BPF_JMP) { 2603 /* BPF_EXIT for "main" will reach here. Return TRUE 2604 * conservatively. 2605 */ 2606 if (op == BPF_EXIT) 2607 return true; 2608 if (op == BPF_CALL) { 2609 /* BPF to BPF call will reach here because of marking 2610 * caller saved clobber with DST_OP_NO_MARK for which we 2611 * don't care the register def because they are anyway 2612 * marked as NOT_INIT already. 2613 */ 2614 if (insn->src_reg == BPF_PSEUDO_CALL) 2615 return false; 2616 /* Helper call will reach here because of arg type 2617 * check, conservatively return TRUE. 2618 */ 2619 if (t == SRC_OP) 2620 return true; 2621 2622 return false; 2623 } 2624 } 2625 2626 if (class == BPF_ALU64 || class == BPF_JMP || 2627 /* BPF_END always use BPF_ALU class. */ 2628 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2629 return true; 2630 2631 if (class == BPF_ALU || class == BPF_JMP32) 2632 return false; 2633 2634 if (class == BPF_LDX) { 2635 if (t != SRC_OP) 2636 return BPF_SIZE(code) == BPF_DW; 2637 /* LDX source must be ptr. */ 2638 return true; 2639 } 2640 2641 if (class == BPF_STX) { 2642 /* BPF_STX (including atomic variants) has multiple source 2643 * operands, one of which is a ptr. Check whether the caller is 2644 * asking about it. 2645 */ 2646 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2647 return true; 2648 return BPF_SIZE(code) == BPF_DW; 2649 } 2650 2651 if (class == BPF_LD) { 2652 u8 mode = BPF_MODE(code); 2653 2654 /* LD_IMM64 */ 2655 if (mode == BPF_IMM) 2656 return true; 2657 2658 /* Both LD_IND and LD_ABS return 32-bit data. */ 2659 if (t != SRC_OP) 2660 return false; 2661 2662 /* Implicit ctx ptr. */ 2663 if (regno == BPF_REG_6) 2664 return true; 2665 2666 /* Explicit source could be any width. */ 2667 return true; 2668 } 2669 2670 if (class == BPF_ST) 2671 /* The only source register for BPF_ST is a ptr. */ 2672 return true; 2673 2674 /* Conservatively return true at default. */ 2675 return true; 2676 } 2677 2678 /* Return the regno defined by the insn, or -1. */ 2679 static int insn_def_regno(const struct bpf_insn *insn) 2680 { 2681 switch (BPF_CLASS(insn->code)) { 2682 case BPF_JMP: 2683 case BPF_JMP32: 2684 case BPF_ST: 2685 return -1; 2686 case BPF_STX: 2687 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2688 (insn->imm & BPF_FETCH)) { 2689 if (insn->imm == BPF_CMPXCHG) 2690 return BPF_REG_0; 2691 else 2692 return insn->src_reg; 2693 } else { 2694 return -1; 2695 } 2696 default: 2697 return insn->dst_reg; 2698 } 2699 } 2700 2701 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2702 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2703 { 2704 int dst_reg = insn_def_regno(insn); 2705 2706 if (dst_reg == -1) 2707 return false; 2708 2709 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2710 } 2711 2712 static void mark_insn_zext(struct bpf_verifier_env *env, 2713 struct bpf_reg_state *reg) 2714 { 2715 s32 def_idx = reg->subreg_def; 2716 2717 if (def_idx == DEF_NOT_SUBREG) 2718 return; 2719 2720 env->insn_aux_data[def_idx - 1].zext_dst = true; 2721 /* The dst will be zero extended, so won't be sub-register anymore. */ 2722 reg->subreg_def = DEF_NOT_SUBREG; 2723 } 2724 2725 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2726 enum reg_arg_type t) 2727 { 2728 struct bpf_verifier_state *vstate = env->cur_state; 2729 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2730 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2731 struct bpf_reg_state *reg, *regs = state->regs; 2732 bool rw64; 2733 2734 if (regno >= MAX_BPF_REG) { 2735 verbose(env, "R%d is invalid\n", regno); 2736 return -EINVAL; 2737 } 2738 2739 mark_reg_scratched(env, regno); 2740 2741 reg = ®s[regno]; 2742 rw64 = is_reg64(env, insn, regno, reg, t); 2743 if (t == SRC_OP) { 2744 /* check whether register used as source operand can be read */ 2745 if (reg->type == NOT_INIT) { 2746 verbose(env, "R%d !read_ok\n", regno); 2747 return -EACCES; 2748 } 2749 /* We don't need to worry about FP liveness because it's read-only */ 2750 if (regno == BPF_REG_FP) 2751 return 0; 2752 2753 if (rw64) 2754 mark_insn_zext(env, reg); 2755 2756 return mark_reg_read(env, reg, reg->parent, 2757 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2758 } else { 2759 /* check whether register used as dest operand can be written to */ 2760 if (regno == BPF_REG_FP) { 2761 verbose(env, "frame pointer is read only\n"); 2762 return -EACCES; 2763 } 2764 reg->live |= REG_LIVE_WRITTEN; 2765 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2766 if (t == DST_OP) 2767 mark_reg_unknown(env, regs, regno); 2768 } 2769 return 0; 2770 } 2771 2772 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 2773 { 2774 env->insn_aux_data[idx].jmp_point = true; 2775 } 2776 2777 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 2778 { 2779 return env->insn_aux_data[insn_idx].jmp_point; 2780 } 2781 2782 /* for any branch, call, exit record the history of jmps in the given state */ 2783 static int push_jmp_history(struct bpf_verifier_env *env, 2784 struct bpf_verifier_state *cur) 2785 { 2786 u32 cnt = cur->jmp_history_cnt; 2787 struct bpf_idx_pair *p; 2788 size_t alloc_size; 2789 2790 if (!is_jmp_point(env, env->insn_idx)) 2791 return 0; 2792 2793 cnt++; 2794 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 2795 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 2796 if (!p) 2797 return -ENOMEM; 2798 p[cnt - 1].idx = env->insn_idx; 2799 p[cnt - 1].prev_idx = env->prev_insn_idx; 2800 cur->jmp_history = p; 2801 cur->jmp_history_cnt = cnt; 2802 return 0; 2803 } 2804 2805 /* Backtrack one insn at a time. If idx is not at the top of recorded 2806 * history then previous instruction came from straight line execution. 2807 */ 2808 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2809 u32 *history) 2810 { 2811 u32 cnt = *history; 2812 2813 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2814 i = st->jmp_history[cnt - 1].prev_idx; 2815 (*history)--; 2816 } else { 2817 i--; 2818 } 2819 return i; 2820 } 2821 2822 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2823 { 2824 const struct btf_type *func; 2825 struct btf *desc_btf; 2826 2827 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2828 return NULL; 2829 2830 desc_btf = find_kfunc_desc_btf(data, insn->off); 2831 if (IS_ERR(desc_btf)) 2832 return "<error>"; 2833 2834 func = btf_type_by_id(desc_btf, insn->imm); 2835 return btf_name_by_offset(desc_btf, func->name_off); 2836 } 2837 2838 /* For given verifier state backtrack_insn() is called from the last insn to 2839 * the first insn. Its purpose is to compute a bitmask of registers and 2840 * stack slots that needs precision in the parent verifier state. 2841 */ 2842 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2843 u32 *reg_mask, u64 *stack_mask) 2844 { 2845 const struct bpf_insn_cbs cbs = { 2846 .cb_call = disasm_kfunc_name, 2847 .cb_print = verbose, 2848 .private_data = env, 2849 }; 2850 struct bpf_insn *insn = env->prog->insnsi + idx; 2851 u8 class = BPF_CLASS(insn->code); 2852 u8 opcode = BPF_OP(insn->code); 2853 u8 mode = BPF_MODE(insn->code); 2854 u32 dreg = 1u << insn->dst_reg; 2855 u32 sreg = 1u << insn->src_reg; 2856 u32 spi; 2857 2858 if (insn->code == 0) 2859 return 0; 2860 if (env->log.level & BPF_LOG_LEVEL2) { 2861 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2862 verbose(env, "%d: ", idx); 2863 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2864 } 2865 2866 if (class == BPF_ALU || class == BPF_ALU64) { 2867 if (!(*reg_mask & dreg)) 2868 return 0; 2869 if (opcode == BPF_MOV) { 2870 if (BPF_SRC(insn->code) == BPF_X) { 2871 /* dreg = sreg 2872 * dreg needs precision after this insn 2873 * sreg needs precision before this insn 2874 */ 2875 *reg_mask &= ~dreg; 2876 *reg_mask |= sreg; 2877 } else { 2878 /* dreg = K 2879 * dreg needs precision after this insn. 2880 * Corresponding register is already marked 2881 * as precise=true in this verifier state. 2882 * No further markings in parent are necessary 2883 */ 2884 *reg_mask &= ~dreg; 2885 } 2886 } else { 2887 if (BPF_SRC(insn->code) == BPF_X) { 2888 /* dreg += sreg 2889 * both dreg and sreg need precision 2890 * before this insn 2891 */ 2892 *reg_mask |= sreg; 2893 } /* else dreg += K 2894 * dreg still needs precision before this insn 2895 */ 2896 } 2897 } else if (class == BPF_LDX) { 2898 if (!(*reg_mask & dreg)) 2899 return 0; 2900 *reg_mask &= ~dreg; 2901 2902 /* scalars can only be spilled into stack w/o losing precision. 2903 * Load from any other memory can be zero extended. 2904 * The desire to keep that precision is already indicated 2905 * by 'precise' mark in corresponding register of this state. 2906 * No further tracking necessary. 2907 */ 2908 if (insn->src_reg != BPF_REG_FP) 2909 return 0; 2910 2911 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2912 * that [fp - off] slot contains scalar that needs to be 2913 * tracked with precision 2914 */ 2915 spi = (-insn->off - 1) / BPF_REG_SIZE; 2916 if (spi >= 64) { 2917 verbose(env, "BUG spi %d\n", spi); 2918 WARN_ONCE(1, "verifier backtracking bug"); 2919 return -EFAULT; 2920 } 2921 *stack_mask |= 1ull << spi; 2922 } else if (class == BPF_STX || class == BPF_ST) { 2923 if (*reg_mask & dreg) 2924 /* stx & st shouldn't be using _scalar_ dst_reg 2925 * to access memory. It means backtracking 2926 * encountered a case of pointer subtraction. 2927 */ 2928 return -ENOTSUPP; 2929 /* scalars can only be spilled into stack */ 2930 if (insn->dst_reg != BPF_REG_FP) 2931 return 0; 2932 spi = (-insn->off - 1) / BPF_REG_SIZE; 2933 if (spi >= 64) { 2934 verbose(env, "BUG spi %d\n", spi); 2935 WARN_ONCE(1, "verifier backtracking bug"); 2936 return -EFAULT; 2937 } 2938 if (!(*stack_mask & (1ull << spi))) 2939 return 0; 2940 *stack_mask &= ~(1ull << spi); 2941 if (class == BPF_STX) 2942 *reg_mask |= sreg; 2943 } else if (class == BPF_JMP || class == BPF_JMP32) { 2944 if (opcode == BPF_CALL) { 2945 if (insn->src_reg == BPF_PSEUDO_CALL) 2946 return -ENOTSUPP; 2947 /* BPF helpers that invoke callback subprogs are 2948 * equivalent to BPF_PSEUDO_CALL above 2949 */ 2950 if (insn->src_reg == 0 && is_callback_calling_function(insn->imm)) 2951 return -ENOTSUPP; 2952 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 2953 * catch this error later. Make backtracking conservative 2954 * with ENOTSUPP. 2955 */ 2956 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 2957 return -ENOTSUPP; 2958 /* regular helper call sets R0 */ 2959 *reg_mask &= ~1; 2960 if (*reg_mask & 0x3f) { 2961 /* if backtracing was looking for registers R1-R5 2962 * they should have been found already. 2963 */ 2964 verbose(env, "BUG regs %x\n", *reg_mask); 2965 WARN_ONCE(1, "verifier backtracking bug"); 2966 return -EFAULT; 2967 } 2968 } else if (opcode == BPF_EXIT) { 2969 return -ENOTSUPP; 2970 } 2971 } else if (class == BPF_LD) { 2972 if (!(*reg_mask & dreg)) 2973 return 0; 2974 *reg_mask &= ~dreg; 2975 /* It's ld_imm64 or ld_abs or ld_ind. 2976 * For ld_imm64 no further tracking of precision 2977 * into parent is necessary 2978 */ 2979 if (mode == BPF_IND || mode == BPF_ABS) 2980 /* to be analyzed */ 2981 return -ENOTSUPP; 2982 } 2983 return 0; 2984 } 2985 2986 /* the scalar precision tracking algorithm: 2987 * . at the start all registers have precise=false. 2988 * . scalar ranges are tracked as normal through alu and jmp insns. 2989 * . once precise value of the scalar register is used in: 2990 * . ptr + scalar alu 2991 * . if (scalar cond K|scalar) 2992 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2993 * backtrack through the verifier states and mark all registers and 2994 * stack slots with spilled constants that these scalar regisers 2995 * should be precise. 2996 * . during state pruning two registers (or spilled stack slots) 2997 * are equivalent if both are not precise. 2998 * 2999 * Note the verifier cannot simply walk register parentage chain, 3000 * since many different registers and stack slots could have been 3001 * used to compute single precise scalar. 3002 * 3003 * The approach of starting with precise=true for all registers and then 3004 * backtrack to mark a register as not precise when the verifier detects 3005 * that program doesn't care about specific value (e.g., when helper 3006 * takes register as ARG_ANYTHING parameter) is not safe. 3007 * 3008 * It's ok to walk single parentage chain of the verifier states. 3009 * It's possible that this backtracking will go all the way till 1st insn. 3010 * All other branches will be explored for needing precision later. 3011 * 3012 * The backtracking needs to deal with cases like: 3013 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3014 * r9 -= r8 3015 * r5 = r9 3016 * if r5 > 0x79f goto pc+7 3017 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3018 * r5 += 1 3019 * ... 3020 * call bpf_perf_event_output#25 3021 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3022 * 3023 * and this case: 3024 * r6 = 1 3025 * call foo // uses callee's r6 inside to compute r0 3026 * r0 += r6 3027 * if r0 == 0 goto 3028 * 3029 * to track above reg_mask/stack_mask needs to be independent for each frame. 3030 * 3031 * Also if parent's curframe > frame where backtracking started, 3032 * the verifier need to mark registers in both frames, otherwise callees 3033 * may incorrectly prune callers. This is similar to 3034 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3035 * 3036 * For now backtracking falls back into conservative marking. 3037 */ 3038 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3039 struct bpf_verifier_state *st) 3040 { 3041 struct bpf_func_state *func; 3042 struct bpf_reg_state *reg; 3043 int i, j; 3044 3045 /* big hammer: mark all scalars precise in this path. 3046 * pop_stack may still get !precise scalars. 3047 * We also skip current state and go straight to first parent state, 3048 * because precision markings in current non-checkpointed state are 3049 * not needed. See why in the comment in __mark_chain_precision below. 3050 */ 3051 for (st = st->parent; st; st = st->parent) { 3052 for (i = 0; i <= st->curframe; i++) { 3053 func = st->frame[i]; 3054 for (j = 0; j < BPF_REG_FP; j++) { 3055 reg = &func->regs[j]; 3056 if (reg->type != SCALAR_VALUE) 3057 continue; 3058 reg->precise = true; 3059 } 3060 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3061 if (!is_spilled_reg(&func->stack[j])) 3062 continue; 3063 reg = &func->stack[j].spilled_ptr; 3064 if (reg->type != SCALAR_VALUE) 3065 continue; 3066 reg->precise = true; 3067 } 3068 } 3069 } 3070 } 3071 3072 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 3073 { 3074 struct bpf_func_state *func; 3075 struct bpf_reg_state *reg; 3076 int i, j; 3077 3078 for (i = 0; i <= st->curframe; i++) { 3079 func = st->frame[i]; 3080 for (j = 0; j < BPF_REG_FP; j++) { 3081 reg = &func->regs[j]; 3082 if (reg->type != SCALAR_VALUE) 3083 continue; 3084 reg->precise = false; 3085 } 3086 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 3087 if (!is_spilled_reg(&func->stack[j])) 3088 continue; 3089 reg = &func->stack[j].spilled_ptr; 3090 if (reg->type != SCALAR_VALUE) 3091 continue; 3092 reg->precise = false; 3093 } 3094 } 3095 } 3096 3097 /* 3098 * __mark_chain_precision() backtracks BPF program instruction sequence and 3099 * chain of verifier states making sure that register *regno* (if regno >= 0) 3100 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 3101 * SCALARS, as well as any other registers and slots that contribute to 3102 * a tracked state of given registers/stack slots, depending on specific BPF 3103 * assembly instructions (see backtrack_insns() for exact instruction handling 3104 * logic). This backtracking relies on recorded jmp_history and is able to 3105 * traverse entire chain of parent states. This process ends only when all the 3106 * necessary registers/slots and their transitive dependencies are marked as 3107 * precise. 3108 * 3109 * One important and subtle aspect is that precise marks *do not matter* in 3110 * the currently verified state (current state). It is important to understand 3111 * why this is the case. 3112 * 3113 * First, note that current state is the state that is not yet "checkpointed", 3114 * i.e., it is not yet put into env->explored_states, and it has no children 3115 * states as well. It's ephemeral, and can end up either a) being discarded if 3116 * compatible explored state is found at some point or BPF_EXIT instruction is 3117 * reached or b) checkpointed and put into env->explored_states, branching out 3118 * into one or more children states. 3119 * 3120 * In the former case, precise markings in current state are completely 3121 * ignored by state comparison code (see regsafe() for details). Only 3122 * checkpointed ("old") state precise markings are important, and if old 3123 * state's register/slot is precise, regsafe() assumes current state's 3124 * register/slot as precise and checks value ranges exactly and precisely. If 3125 * states turn out to be compatible, current state's necessary precise 3126 * markings and any required parent states' precise markings are enforced 3127 * after the fact with propagate_precision() logic, after the fact. But it's 3128 * important to realize that in this case, even after marking current state 3129 * registers/slots as precise, we immediately discard current state. So what 3130 * actually matters is any of the precise markings propagated into current 3131 * state's parent states, which are always checkpointed (due to b) case above). 3132 * As such, for scenario a) it doesn't matter if current state has precise 3133 * markings set or not. 3134 * 3135 * Now, for the scenario b), checkpointing and forking into child(ren) 3136 * state(s). Note that before current state gets to checkpointing step, any 3137 * processed instruction always assumes precise SCALAR register/slot 3138 * knowledge: if precise value or range is useful to prune jump branch, BPF 3139 * verifier takes this opportunity enthusiastically. Similarly, when 3140 * register's value is used to calculate offset or memory address, exact 3141 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 3142 * what we mentioned above about state comparison ignoring precise markings 3143 * during state comparison, BPF verifier ignores and also assumes precise 3144 * markings *at will* during instruction verification process. But as verifier 3145 * assumes precision, it also propagates any precision dependencies across 3146 * parent states, which are not yet finalized, so can be further restricted 3147 * based on new knowledge gained from restrictions enforced by their children 3148 * states. This is so that once those parent states are finalized, i.e., when 3149 * they have no more active children state, state comparison logic in 3150 * is_state_visited() would enforce strict and precise SCALAR ranges, if 3151 * required for correctness. 3152 * 3153 * To build a bit more intuition, note also that once a state is checkpointed, 3154 * the path we took to get to that state is not important. This is crucial 3155 * property for state pruning. When state is checkpointed and finalized at 3156 * some instruction index, it can be correctly and safely used to "short 3157 * circuit" any *compatible* state that reaches exactly the same instruction 3158 * index. I.e., if we jumped to that instruction from a completely different 3159 * code path than original finalized state was derived from, it doesn't 3160 * matter, current state can be discarded because from that instruction 3161 * forward having a compatible state will ensure we will safely reach the 3162 * exit. States describe preconditions for further exploration, but completely 3163 * forget the history of how we got here. 3164 * 3165 * This also means that even if we needed precise SCALAR range to get to 3166 * finalized state, but from that point forward *that same* SCALAR register is 3167 * never used in a precise context (i.e., it's precise value is not needed for 3168 * correctness), it's correct and safe to mark such register as "imprecise" 3169 * (i.e., precise marking set to false). This is what we rely on when we do 3170 * not set precise marking in current state. If no child state requires 3171 * precision for any given SCALAR register, it's safe to dictate that it can 3172 * be imprecise. If any child state does require this register to be precise, 3173 * we'll mark it precise later retroactively during precise markings 3174 * propagation from child state to parent states. 3175 * 3176 * Skipping precise marking setting in current state is a mild version of 3177 * relying on the above observation. But we can utilize this property even 3178 * more aggressively by proactively forgetting any precise marking in the 3179 * current state (which we inherited from the parent state), right before we 3180 * checkpoint it and branch off into new child state. This is done by 3181 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 3182 * finalized states which help in short circuiting more future states. 3183 */ 3184 static int __mark_chain_precision(struct bpf_verifier_env *env, int frame, int regno, 3185 int spi) 3186 { 3187 struct bpf_verifier_state *st = env->cur_state; 3188 int first_idx = st->first_insn_idx; 3189 int last_idx = env->insn_idx; 3190 struct bpf_func_state *func; 3191 struct bpf_reg_state *reg; 3192 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 3193 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 3194 bool skip_first = true; 3195 bool new_marks = false; 3196 int i, err; 3197 3198 if (!env->bpf_capable) 3199 return 0; 3200 3201 /* Do sanity checks against current state of register and/or stack 3202 * slot, but don't set precise flag in current state, as precision 3203 * tracking in the current state is unnecessary. 3204 */ 3205 func = st->frame[frame]; 3206 if (regno >= 0) { 3207 reg = &func->regs[regno]; 3208 if (reg->type != SCALAR_VALUE) { 3209 WARN_ONCE(1, "backtracing misuse"); 3210 return -EFAULT; 3211 } 3212 new_marks = true; 3213 } 3214 3215 while (spi >= 0) { 3216 if (!is_spilled_reg(&func->stack[spi])) { 3217 stack_mask = 0; 3218 break; 3219 } 3220 reg = &func->stack[spi].spilled_ptr; 3221 if (reg->type != SCALAR_VALUE) { 3222 stack_mask = 0; 3223 break; 3224 } 3225 new_marks = true; 3226 break; 3227 } 3228 3229 if (!new_marks) 3230 return 0; 3231 if (!reg_mask && !stack_mask) 3232 return 0; 3233 3234 for (;;) { 3235 DECLARE_BITMAP(mask, 64); 3236 u32 history = st->jmp_history_cnt; 3237 3238 if (env->log.level & BPF_LOG_LEVEL2) 3239 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 3240 3241 if (last_idx < 0) { 3242 /* we are at the entry into subprog, which 3243 * is expected for global funcs, but only if 3244 * requested precise registers are R1-R5 3245 * (which are global func's input arguments) 3246 */ 3247 if (st->curframe == 0 && 3248 st->frame[0]->subprogno > 0 && 3249 st->frame[0]->callsite == BPF_MAIN_FUNC && 3250 stack_mask == 0 && (reg_mask & ~0x3e) == 0) { 3251 bitmap_from_u64(mask, reg_mask); 3252 for_each_set_bit(i, mask, 32) { 3253 reg = &st->frame[0]->regs[i]; 3254 if (reg->type != SCALAR_VALUE) { 3255 reg_mask &= ~(1u << i); 3256 continue; 3257 } 3258 reg->precise = true; 3259 } 3260 return 0; 3261 } 3262 3263 verbose(env, "BUG backtracing func entry subprog %d reg_mask %x stack_mask %llx\n", 3264 st->frame[0]->subprogno, reg_mask, stack_mask); 3265 WARN_ONCE(1, "verifier backtracking bug"); 3266 return -EFAULT; 3267 } 3268 3269 for (i = last_idx;;) { 3270 if (skip_first) { 3271 err = 0; 3272 skip_first = false; 3273 } else { 3274 err = backtrack_insn(env, i, ®_mask, &stack_mask); 3275 } 3276 if (err == -ENOTSUPP) { 3277 mark_all_scalars_precise(env, st); 3278 return 0; 3279 } else if (err) { 3280 return err; 3281 } 3282 if (!reg_mask && !stack_mask) 3283 /* Found assignment(s) into tracked register in this state. 3284 * Since this state is already marked, just return. 3285 * Nothing to be tracked further in the parent state. 3286 */ 3287 return 0; 3288 if (i == first_idx) 3289 break; 3290 i = get_prev_insn_idx(st, i, &history); 3291 if (i >= env->prog->len) { 3292 /* This can happen if backtracking reached insn 0 3293 * and there are still reg_mask or stack_mask 3294 * to backtrack. 3295 * It means the backtracking missed the spot where 3296 * particular register was initialized with a constant. 3297 */ 3298 verbose(env, "BUG backtracking idx %d\n", i); 3299 WARN_ONCE(1, "verifier backtracking bug"); 3300 return -EFAULT; 3301 } 3302 } 3303 st = st->parent; 3304 if (!st) 3305 break; 3306 3307 new_marks = false; 3308 func = st->frame[frame]; 3309 bitmap_from_u64(mask, reg_mask); 3310 for_each_set_bit(i, mask, 32) { 3311 reg = &func->regs[i]; 3312 if (reg->type != SCALAR_VALUE) { 3313 reg_mask &= ~(1u << i); 3314 continue; 3315 } 3316 if (!reg->precise) 3317 new_marks = true; 3318 reg->precise = true; 3319 } 3320 3321 bitmap_from_u64(mask, stack_mask); 3322 for_each_set_bit(i, mask, 64) { 3323 if (i >= func->allocated_stack / BPF_REG_SIZE) { 3324 /* the sequence of instructions: 3325 * 2: (bf) r3 = r10 3326 * 3: (7b) *(u64 *)(r3 -8) = r0 3327 * 4: (79) r4 = *(u64 *)(r10 -8) 3328 * doesn't contain jmps. It's backtracked 3329 * as a single block. 3330 * During backtracking insn 3 is not recognized as 3331 * stack access, so at the end of backtracking 3332 * stack slot fp-8 is still marked in stack_mask. 3333 * However the parent state may not have accessed 3334 * fp-8 and it's "unallocated" stack space. 3335 * In such case fallback to conservative. 3336 */ 3337 mark_all_scalars_precise(env, st); 3338 return 0; 3339 } 3340 3341 if (!is_spilled_reg(&func->stack[i])) { 3342 stack_mask &= ~(1ull << i); 3343 continue; 3344 } 3345 reg = &func->stack[i].spilled_ptr; 3346 if (reg->type != SCALAR_VALUE) { 3347 stack_mask &= ~(1ull << i); 3348 continue; 3349 } 3350 if (!reg->precise) 3351 new_marks = true; 3352 reg->precise = true; 3353 } 3354 if (env->log.level & BPF_LOG_LEVEL2) { 3355 verbose(env, "parent %s regs=%x stack=%llx marks:", 3356 new_marks ? "didn't have" : "already had", 3357 reg_mask, stack_mask); 3358 print_verifier_state(env, func, true); 3359 } 3360 3361 if (!reg_mask && !stack_mask) 3362 break; 3363 if (!new_marks) 3364 break; 3365 3366 last_idx = st->last_insn_idx; 3367 first_idx = st->first_insn_idx; 3368 } 3369 return 0; 3370 } 3371 3372 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 3373 { 3374 return __mark_chain_precision(env, env->cur_state->curframe, regno, -1); 3375 } 3376 3377 static int mark_chain_precision_frame(struct bpf_verifier_env *env, int frame, int regno) 3378 { 3379 return __mark_chain_precision(env, frame, regno, -1); 3380 } 3381 3382 static int mark_chain_precision_stack_frame(struct bpf_verifier_env *env, int frame, int spi) 3383 { 3384 return __mark_chain_precision(env, frame, -1, spi); 3385 } 3386 3387 static bool is_spillable_regtype(enum bpf_reg_type type) 3388 { 3389 switch (base_type(type)) { 3390 case PTR_TO_MAP_VALUE: 3391 case PTR_TO_STACK: 3392 case PTR_TO_CTX: 3393 case PTR_TO_PACKET: 3394 case PTR_TO_PACKET_META: 3395 case PTR_TO_PACKET_END: 3396 case PTR_TO_FLOW_KEYS: 3397 case CONST_PTR_TO_MAP: 3398 case PTR_TO_SOCKET: 3399 case PTR_TO_SOCK_COMMON: 3400 case PTR_TO_TCP_SOCK: 3401 case PTR_TO_XDP_SOCK: 3402 case PTR_TO_BTF_ID: 3403 case PTR_TO_BUF: 3404 case PTR_TO_MEM: 3405 case PTR_TO_FUNC: 3406 case PTR_TO_MAP_KEY: 3407 return true; 3408 default: 3409 return false; 3410 } 3411 } 3412 3413 /* Does this register contain a constant zero? */ 3414 static bool register_is_null(struct bpf_reg_state *reg) 3415 { 3416 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 3417 } 3418 3419 static bool register_is_const(struct bpf_reg_state *reg) 3420 { 3421 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 3422 } 3423 3424 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 3425 { 3426 return tnum_is_unknown(reg->var_off) && 3427 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 3428 reg->umin_value == 0 && reg->umax_value == U64_MAX && 3429 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 3430 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 3431 } 3432 3433 static bool register_is_bounded(struct bpf_reg_state *reg) 3434 { 3435 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 3436 } 3437 3438 static bool __is_pointer_value(bool allow_ptr_leaks, 3439 const struct bpf_reg_state *reg) 3440 { 3441 if (allow_ptr_leaks) 3442 return false; 3443 3444 return reg->type != SCALAR_VALUE; 3445 } 3446 3447 /* Copy src state preserving dst->parent and dst->live fields */ 3448 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 3449 { 3450 struct bpf_reg_state *parent = dst->parent; 3451 enum bpf_reg_liveness live = dst->live; 3452 3453 *dst = *src; 3454 dst->parent = parent; 3455 dst->live = live; 3456 } 3457 3458 static void save_register_state(struct bpf_func_state *state, 3459 int spi, struct bpf_reg_state *reg, 3460 int size) 3461 { 3462 int i; 3463 3464 copy_register_state(&state->stack[spi].spilled_ptr, reg); 3465 if (size == BPF_REG_SIZE) 3466 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3467 3468 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 3469 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 3470 3471 /* size < 8 bytes spill */ 3472 for (; i; i--) 3473 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 3474 } 3475 3476 static bool is_bpf_st_mem(struct bpf_insn *insn) 3477 { 3478 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 3479 } 3480 3481 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 3482 * stack boundary and alignment are checked in check_mem_access() 3483 */ 3484 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 3485 /* stack frame we're writing to */ 3486 struct bpf_func_state *state, 3487 int off, int size, int value_regno, 3488 int insn_idx) 3489 { 3490 struct bpf_func_state *cur; /* state of the current function */ 3491 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 3492 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3493 struct bpf_reg_state *reg = NULL; 3494 u32 dst_reg = insn->dst_reg; 3495 3496 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 3497 if (err) 3498 return err; 3499 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 3500 * so it's aligned access and [off, off + size) are within stack limits 3501 */ 3502 if (!env->allow_ptr_leaks && 3503 state->stack[spi].slot_type[0] == STACK_SPILL && 3504 size != BPF_REG_SIZE) { 3505 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 3506 return -EACCES; 3507 } 3508 3509 cur = env->cur_state->frame[env->cur_state->curframe]; 3510 if (value_regno >= 0) 3511 reg = &cur->regs[value_regno]; 3512 if (!env->bypass_spec_v4) { 3513 bool sanitize = reg && is_spillable_regtype(reg->type); 3514 3515 for (i = 0; i < size; i++) { 3516 u8 type = state->stack[spi].slot_type[i]; 3517 3518 if (type != STACK_MISC && type != STACK_ZERO) { 3519 sanitize = true; 3520 break; 3521 } 3522 } 3523 3524 if (sanitize) 3525 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 3526 } 3527 3528 err = destroy_if_dynptr_stack_slot(env, state, spi); 3529 if (err) 3530 return err; 3531 3532 mark_stack_slot_scratched(env, spi); 3533 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 3534 !register_is_null(reg) && env->bpf_capable) { 3535 if (dst_reg != BPF_REG_FP) { 3536 /* The backtracking logic can only recognize explicit 3537 * stack slot address like [fp - 8]. Other spill of 3538 * scalar via different register has to be conservative. 3539 * Backtrack from here and mark all registers as precise 3540 * that contributed into 'reg' being a constant. 3541 */ 3542 err = mark_chain_precision(env, value_regno); 3543 if (err) 3544 return err; 3545 } 3546 save_register_state(state, spi, reg, size); 3547 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 3548 insn->imm != 0 && env->bpf_capable) { 3549 struct bpf_reg_state fake_reg = {}; 3550 3551 __mark_reg_known(&fake_reg, (u32)insn->imm); 3552 fake_reg.type = SCALAR_VALUE; 3553 save_register_state(state, spi, &fake_reg, size); 3554 } else if (reg && is_spillable_regtype(reg->type)) { 3555 /* register containing pointer is being spilled into stack */ 3556 if (size != BPF_REG_SIZE) { 3557 verbose_linfo(env, insn_idx, "; "); 3558 verbose(env, "invalid size of register spill\n"); 3559 return -EACCES; 3560 } 3561 if (state != cur && reg->type == PTR_TO_STACK) { 3562 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 3563 return -EINVAL; 3564 } 3565 save_register_state(state, spi, reg, size); 3566 } else { 3567 u8 type = STACK_MISC; 3568 3569 /* regular write of data into stack destroys any spilled ptr */ 3570 state->stack[spi].spilled_ptr.type = NOT_INIT; 3571 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 3572 if (is_spilled_reg(&state->stack[spi])) 3573 for (i = 0; i < BPF_REG_SIZE; i++) 3574 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 3575 3576 /* only mark the slot as written if all 8 bytes were written 3577 * otherwise read propagation may incorrectly stop too soon 3578 * when stack slots are partially written. 3579 * This heuristic means that read propagation will be 3580 * conservative, since it will add reg_live_read marks 3581 * to stack slots all the way to first state when programs 3582 * writes+reads less than 8 bytes 3583 */ 3584 if (size == BPF_REG_SIZE) 3585 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 3586 3587 /* when we zero initialize stack slots mark them as such */ 3588 if ((reg && register_is_null(reg)) || 3589 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 3590 /* backtracking doesn't work for STACK_ZERO yet. */ 3591 err = mark_chain_precision(env, value_regno); 3592 if (err) 3593 return err; 3594 type = STACK_ZERO; 3595 } 3596 3597 /* Mark slots affected by this stack write. */ 3598 for (i = 0; i < size; i++) 3599 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 3600 type; 3601 } 3602 return 0; 3603 } 3604 3605 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 3606 * known to contain a variable offset. 3607 * This function checks whether the write is permitted and conservatively 3608 * tracks the effects of the write, considering that each stack slot in the 3609 * dynamic range is potentially written to. 3610 * 3611 * 'off' includes 'regno->off'. 3612 * 'value_regno' can be -1, meaning that an unknown value is being written to 3613 * the stack. 3614 * 3615 * Spilled pointers in range are not marked as written because we don't know 3616 * what's going to be actually written. This means that read propagation for 3617 * future reads cannot be terminated by this write. 3618 * 3619 * For privileged programs, uninitialized stack slots are considered 3620 * initialized by this write (even though we don't know exactly what offsets 3621 * are going to be written to). The idea is that we don't want the verifier to 3622 * reject future reads that access slots written to through variable offsets. 3623 */ 3624 static int check_stack_write_var_off(struct bpf_verifier_env *env, 3625 /* func where register points to */ 3626 struct bpf_func_state *state, 3627 int ptr_regno, int off, int size, 3628 int value_regno, int insn_idx) 3629 { 3630 struct bpf_func_state *cur; /* state of the current function */ 3631 int min_off, max_off; 3632 int i, err; 3633 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 3634 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 3635 bool writing_zero = false; 3636 /* set if the fact that we're writing a zero is used to let any 3637 * stack slots remain STACK_ZERO 3638 */ 3639 bool zero_used = false; 3640 3641 cur = env->cur_state->frame[env->cur_state->curframe]; 3642 ptr_reg = &cur->regs[ptr_regno]; 3643 min_off = ptr_reg->smin_value + off; 3644 max_off = ptr_reg->smax_value + off + size; 3645 if (value_regno >= 0) 3646 value_reg = &cur->regs[value_regno]; 3647 if ((value_reg && register_is_null(value_reg)) || 3648 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 3649 writing_zero = true; 3650 3651 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 3652 if (err) 3653 return err; 3654 3655 for (i = min_off; i < max_off; i++) { 3656 int spi; 3657 3658 spi = __get_spi(i); 3659 err = destroy_if_dynptr_stack_slot(env, state, spi); 3660 if (err) 3661 return err; 3662 } 3663 3664 /* Variable offset writes destroy any spilled pointers in range. */ 3665 for (i = min_off; i < max_off; i++) { 3666 u8 new_type, *stype; 3667 int slot, spi; 3668 3669 slot = -i - 1; 3670 spi = slot / BPF_REG_SIZE; 3671 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3672 mark_stack_slot_scratched(env, spi); 3673 3674 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 3675 /* Reject the write if range we may write to has not 3676 * been initialized beforehand. If we didn't reject 3677 * here, the ptr status would be erased below (even 3678 * though not all slots are actually overwritten), 3679 * possibly opening the door to leaks. 3680 * 3681 * We do however catch STACK_INVALID case below, and 3682 * only allow reading possibly uninitialized memory 3683 * later for CAP_PERFMON, as the write may not happen to 3684 * that slot. 3685 */ 3686 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 3687 insn_idx, i); 3688 return -EINVAL; 3689 } 3690 3691 /* Erase all spilled pointers. */ 3692 state->stack[spi].spilled_ptr.type = NOT_INIT; 3693 3694 /* Update the slot type. */ 3695 new_type = STACK_MISC; 3696 if (writing_zero && *stype == STACK_ZERO) { 3697 new_type = STACK_ZERO; 3698 zero_used = true; 3699 } 3700 /* If the slot is STACK_INVALID, we check whether it's OK to 3701 * pretend that it will be initialized by this write. The slot 3702 * might not actually be written to, and so if we mark it as 3703 * initialized future reads might leak uninitialized memory. 3704 * For privileged programs, we will accept such reads to slots 3705 * that may or may not be written because, if we're reject 3706 * them, the error would be too confusing. 3707 */ 3708 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 3709 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 3710 insn_idx, i); 3711 return -EINVAL; 3712 } 3713 *stype = new_type; 3714 } 3715 if (zero_used) { 3716 /* backtracking doesn't work for STACK_ZERO yet. */ 3717 err = mark_chain_precision(env, value_regno); 3718 if (err) 3719 return err; 3720 } 3721 return 0; 3722 } 3723 3724 /* When register 'dst_regno' is assigned some values from stack[min_off, 3725 * max_off), we set the register's type according to the types of the 3726 * respective stack slots. If all the stack values are known to be zeros, then 3727 * so is the destination reg. Otherwise, the register is considered to be 3728 * SCALAR. This function does not deal with register filling; the caller must 3729 * ensure that all spilled registers in the stack range have been marked as 3730 * read. 3731 */ 3732 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3733 /* func where src register points to */ 3734 struct bpf_func_state *ptr_state, 3735 int min_off, int max_off, int dst_regno) 3736 { 3737 struct bpf_verifier_state *vstate = env->cur_state; 3738 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3739 int i, slot, spi; 3740 u8 *stype; 3741 int zeros = 0; 3742 3743 for (i = min_off; i < max_off; i++) { 3744 slot = -i - 1; 3745 spi = slot / BPF_REG_SIZE; 3746 stype = ptr_state->stack[spi].slot_type; 3747 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3748 break; 3749 zeros++; 3750 } 3751 if (zeros == max_off - min_off) { 3752 /* any access_size read into register is zero extended, 3753 * so the whole register == const_zero 3754 */ 3755 __mark_reg_const_zero(&state->regs[dst_regno]); 3756 /* backtracking doesn't support STACK_ZERO yet, 3757 * so mark it precise here, so that later 3758 * backtracking can stop here. 3759 * Backtracking may not need this if this register 3760 * doesn't participate in pointer adjustment. 3761 * Forward propagation of precise flag is not 3762 * necessary either. This mark is only to stop 3763 * backtracking. Any register that contributed 3764 * to const 0 was marked precise before spill. 3765 */ 3766 state->regs[dst_regno].precise = true; 3767 } else { 3768 /* have read misc data from the stack */ 3769 mark_reg_unknown(env, state->regs, dst_regno); 3770 } 3771 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3772 } 3773 3774 /* Read the stack at 'off' and put the results into the register indicated by 3775 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3776 * spilled reg. 3777 * 3778 * 'dst_regno' can be -1, meaning that the read value is not going to a 3779 * register. 3780 * 3781 * The access is assumed to be within the current stack bounds. 3782 */ 3783 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3784 /* func where src register points to */ 3785 struct bpf_func_state *reg_state, 3786 int off, int size, int dst_regno) 3787 { 3788 struct bpf_verifier_state *vstate = env->cur_state; 3789 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3790 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3791 struct bpf_reg_state *reg; 3792 u8 *stype, type; 3793 3794 stype = reg_state->stack[spi].slot_type; 3795 reg = ®_state->stack[spi].spilled_ptr; 3796 3797 if (is_spilled_reg(®_state->stack[spi])) { 3798 u8 spill_size = 1; 3799 3800 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3801 spill_size++; 3802 3803 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3804 if (reg->type != SCALAR_VALUE) { 3805 verbose_linfo(env, env->insn_idx, "; "); 3806 verbose(env, "invalid size of register fill\n"); 3807 return -EACCES; 3808 } 3809 3810 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3811 if (dst_regno < 0) 3812 return 0; 3813 3814 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3815 /* The earlier check_reg_arg() has decided the 3816 * subreg_def for this insn. Save it first. 3817 */ 3818 s32 subreg_def = state->regs[dst_regno].subreg_def; 3819 3820 copy_register_state(&state->regs[dst_regno], reg); 3821 state->regs[dst_regno].subreg_def = subreg_def; 3822 } else { 3823 for (i = 0; i < size; i++) { 3824 type = stype[(slot - i) % BPF_REG_SIZE]; 3825 if (type == STACK_SPILL) 3826 continue; 3827 if (type == STACK_MISC) 3828 continue; 3829 if (type == STACK_INVALID && env->allow_uninit_stack) 3830 continue; 3831 verbose(env, "invalid read from stack off %d+%d size %d\n", 3832 off, i, size); 3833 return -EACCES; 3834 } 3835 mark_reg_unknown(env, state->regs, dst_regno); 3836 } 3837 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3838 return 0; 3839 } 3840 3841 if (dst_regno >= 0) { 3842 /* restore register state from stack */ 3843 copy_register_state(&state->regs[dst_regno], reg); 3844 /* mark reg as written since spilled pointer state likely 3845 * has its liveness marks cleared by is_state_visited() 3846 * which resets stack/reg liveness for state transitions 3847 */ 3848 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3849 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3850 /* If dst_regno==-1, the caller is asking us whether 3851 * it is acceptable to use this value as a SCALAR_VALUE 3852 * (e.g. for XADD). 3853 * We must not allow unprivileged callers to do that 3854 * with spilled pointers. 3855 */ 3856 verbose(env, "leaking pointer from stack off %d\n", 3857 off); 3858 return -EACCES; 3859 } 3860 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3861 } else { 3862 for (i = 0; i < size; i++) { 3863 type = stype[(slot - i) % BPF_REG_SIZE]; 3864 if (type == STACK_MISC) 3865 continue; 3866 if (type == STACK_ZERO) 3867 continue; 3868 if (type == STACK_INVALID && env->allow_uninit_stack) 3869 continue; 3870 verbose(env, "invalid read from stack off %d+%d size %d\n", 3871 off, i, size); 3872 return -EACCES; 3873 } 3874 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3875 if (dst_regno >= 0) 3876 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3877 } 3878 return 0; 3879 } 3880 3881 enum bpf_access_src { 3882 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3883 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3884 }; 3885 3886 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3887 int regno, int off, int access_size, 3888 bool zero_size_allowed, 3889 enum bpf_access_src type, 3890 struct bpf_call_arg_meta *meta); 3891 3892 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3893 { 3894 return cur_regs(env) + regno; 3895 } 3896 3897 /* Read the stack at 'ptr_regno + off' and put the result into the register 3898 * 'dst_regno'. 3899 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3900 * but not its variable offset. 3901 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3902 * 3903 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3904 * filling registers (i.e. reads of spilled register cannot be detected when 3905 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3906 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3907 * offset; for a fixed offset check_stack_read_fixed_off should be used 3908 * instead. 3909 */ 3910 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3911 int ptr_regno, int off, int size, int dst_regno) 3912 { 3913 /* The state of the source register. */ 3914 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3915 struct bpf_func_state *ptr_state = func(env, reg); 3916 int err; 3917 int min_off, max_off; 3918 3919 /* Note that we pass a NULL meta, so raw access will not be permitted. 3920 */ 3921 err = check_stack_range_initialized(env, ptr_regno, off, size, 3922 false, ACCESS_DIRECT, NULL); 3923 if (err) 3924 return err; 3925 3926 min_off = reg->smin_value + off; 3927 max_off = reg->smax_value + off; 3928 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3929 return 0; 3930 } 3931 3932 /* check_stack_read dispatches to check_stack_read_fixed_off or 3933 * check_stack_read_var_off. 3934 * 3935 * The caller must ensure that the offset falls within the allocated stack 3936 * bounds. 3937 * 3938 * 'dst_regno' is a register which will receive the value from the stack. It 3939 * can be -1, meaning that the read value is not going to a register. 3940 */ 3941 static int check_stack_read(struct bpf_verifier_env *env, 3942 int ptr_regno, int off, int size, 3943 int dst_regno) 3944 { 3945 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3946 struct bpf_func_state *state = func(env, reg); 3947 int err; 3948 /* Some accesses are only permitted with a static offset. */ 3949 bool var_off = !tnum_is_const(reg->var_off); 3950 3951 /* The offset is required to be static when reads don't go to a 3952 * register, in order to not leak pointers (see 3953 * check_stack_read_fixed_off). 3954 */ 3955 if (dst_regno < 0 && var_off) { 3956 char tn_buf[48]; 3957 3958 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3959 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3960 tn_buf, off, size); 3961 return -EACCES; 3962 } 3963 /* Variable offset is prohibited for unprivileged mode for simplicity 3964 * since it requires corresponding support in Spectre masking for stack 3965 * ALU. See also retrieve_ptr_limit(). 3966 */ 3967 if (!env->bypass_spec_v1 && var_off) { 3968 char tn_buf[48]; 3969 3970 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3971 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3972 ptr_regno, tn_buf); 3973 return -EACCES; 3974 } 3975 3976 if (!var_off) { 3977 off += reg->var_off.value; 3978 err = check_stack_read_fixed_off(env, state, off, size, 3979 dst_regno); 3980 } else { 3981 /* Variable offset stack reads need more conservative handling 3982 * than fixed offset ones. Note that dst_regno >= 0 on this 3983 * branch. 3984 */ 3985 err = check_stack_read_var_off(env, ptr_regno, off, size, 3986 dst_regno); 3987 } 3988 return err; 3989 } 3990 3991 3992 /* check_stack_write dispatches to check_stack_write_fixed_off or 3993 * check_stack_write_var_off. 3994 * 3995 * 'ptr_regno' is the register used as a pointer into the stack. 3996 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3997 * 'value_regno' is the register whose value we're writing to the stack. It can 3998 * be -1, meaning that we're not writing from a register. 3999 * 4000 * The caller must ensure that the offset falls within the maximum stack size. 4001 */ 4002 static int check_stack_write(struct bpf_verifier_env *env, 4003 int ptr_regno, int off, int size, 4004 int value_regno, int insn_idx) 4005 { 4006 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4007 struct bpf_func_state *state = func(env, reg); 4008 int err; 4009 4010 if (tnum_is_const(reg->var_off)) { 4011 off += reg->var_off.value; 4012 err = check_stack_write_fixed_off(env, state, off, size, 4013 value_regno, insn_idx); 4014 } else { 4015 /* Variable offset stack reads need more conservative handling 4016 * than fixed offset ones. 4017 */ 4018 err = check_stack_write_var_off(env, state, 4019 ptr_regno, off, size, 4020 value_regno, insn_idx); 4021 } 4022 return err; 4023 } 4024 4025 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 4026 int off, int size, enum bpf_access_type type) 4027 { 4028 struct bpf_reg_state *regs = cur_regs(env); 4029 struct bpf_map *map = regs[regno].map_ptr; 4030 u32 cap = bpf_map_flags_to_cap(map); 4031 4032 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 4033 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 4034 map->value_size, off, size); 4035 return -EACCES; 4036 } 4037 4038 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 4039 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 4040 map->value_size, off, size); 4041 return -EACCES; 4042 } 4043 4044 return 0; 4045 } 4046 4047 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 4048 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 4049 int off, int size, u32 mem_size, 4050 bool zero_size_allowed) 4051 { 4052 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 4053 struct bpf_reg_state *reg; 4054 4055 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 4056 return 0; 4057 4058 reg = &cur_regs(env)[regno]; 4059 switch (reg->type) { 4060 case PTR_TO_MAP_KEY: 4061 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 4062 mem_size, off, size); 4063 break; 4064 case PTR_TO_MAP_VALUE: 4065 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 4066 mem_size, off, size); 4067 break; 4068 case PTR_TO_PACKET: 4069 case PTR_TO_PACKET_META: 4070 case PTR_TO_PACKET_END: 4071 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 4072 off, size, regno, reg->id, off, mem_size); 4073 break; 4074 case PTR_TO_MEM: 4075 default: 4076 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 4077 mem_size, off, size); 4078 } 4079 4080 return -EACCES; 4081 } 4082 4083 /* check read/write into a memory region with possible variable offset */ 4084 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 4085 int off, int size, u32 mem_size, 4086 bool zero_size_allowed) 4087 { 4088 struct bpf_verifier_state *vstate = env->cur_state; 4089 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4090 struct bpf_reg_state *reg = &state->regs[regno]; 4091 int err; 4092 4093 /* We may have adjusted the register pointing to memory region, so we 4094 * need to try adding each of min_value and max_value to off 4095 * to make sure our theoretical access will be safe. 4096 * 4097 * The minimum value is only important with signed 4098 * comparisons where we can't assume the floor of a 4099 * value is 0. If we are using signed variables for our 4100 * index'es we need to make sure that whatever we use 4101 * will have a set floor within our range. 4102 */ 4103 if (reg->smin_value < 0 && 4104 (reg->smin_value == S64_MIN || 4105 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 4106 reg->smin_value + off < 0)) { 4107 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4108 regno); 4109 return -EACCES; 4110 } 4111 err = __check_mem_access(env, regno, reg->smin_value + off, size, 4112 mem_size, zero_size_allowed); 4113 if (err) { 4114 verbose(env, "R%d min value is outside of the allowed memory range\n", 4115 regno); 4116 return err; 4117 } 4118 4119 /* If we haven't set a max value then we need to bail since we can't be 4120 * sure we won't do bad things. 4121 * If reg->umax_value + off could overflow, treat that as unbounded too. 4122 */ 4123 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 4124 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 4125 regno); 4126 return -EACCES; 4127 } 4128 err = __check_mem_access(env, regno, reg->umax_value + off, size, 4129 mem_size, zero_size_allowed); 4130 if (err) { 4131 verbose(env, "R%d max value is outside of the allowed memory range\n", 4132 regno); 4133 return err; 4134 } 4135 4136 return 0; 4137 } 4138 4139 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 4140 const struct bpf_reg_state *reg, int regno, 4141 bool fixed_off_ok) 4142 { 4143 /* Access to this pointer-typed register or passing it to a helper 4144 * is only allowed in its original, unmodified form. 4145 */ 4146 4147 if (reg->off < 0) { 4148 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 4149 reg_type_str(env, reg->type), regno, reg->off); 4150 return -EACCES; 4151 } 4152 4153 if (!fixed_off_ok && reg->off) { 4154 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 4155 reg_type_str(env, reg->type), regno, reg->off); 4156 return -EACCES; 4157 } 4158 4159 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4160 char tn_buf[48]; 4161 4162 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4163 verbose(env, "variable %s access var_off=%s disallowed\n", 4164 reg_type_str(env, reg->type), tn_buf); 4165 return -EACCES; 4166 } 4167 4168 return 0; 4169 } 4170 4171 int check_ptr_off_reg(struct bpf_verifier_env *env, 4172 const struct bpf_reg_state *reg, int regno) 4173 { 4174 return __check_ptr_off_reg(env, reg, regno, false); 4175 } 4176 4177 static int map_kptr_match_type(struct bpf_verifier_env *env, 4178 struct btf_field *kptr_field, 4179 struct bpf_reg_state *reg, u32 regno) 4180 { 4181 const char *targ_name = kernel_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 4182 int perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED; 4183 const char *reg_name = ""; 4184 4185 /* Only unreferenced case accepts untrusted pointers */ 4186 if (kptr_field->type == BPF_KPTR_UNREF) 4187 perm_flags |= PTR_UNTRUSTED; 4188 4189 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 4190 goto bad_type; 4191 4192 if (!btf_is_kernel(reg->btf)) { 4193 verbose(env, "R%d must point to kernel BTF\n", regno); 4194 return -EINVAL; 4195 } 4196 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 4197 reg_name = kernel_type_name(reg->btf, reg->btf_id); 4198 4199 /* For ref_ptr case, release function check should ensure we get one 4200 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 4201 * normal store of unreferenced kptr, we must ensure var_off is zero. 4202 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 4203 * reg->off and reg->ref_obj_id are not needed here. 4204 */ 4205 if (__check_ptr_off_reg(env, reg, regno, true)) 4206 return -EACCES; 4207 4208 /* A full type match is needed, as BTF can be vmlinux or module BTF, and 4209 * we also need to take into account the reg->off. 4210 * 4211 * We want to support cases like: 4212 * 4213 * struct foo { 4214 * struct bar br; 4215 * struct baz bz; 4216 * }; 4217 * 4218 * struct foo *v; 4219 * v = func(); // PTR_TO_BTF_ID 4220 * val->foo = v; // reg->off is zero, btf and btf_id match type 4221 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 4222 * // first member type of struct after comparison fails 4223 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 4224 * // to match type 4225 * 4226 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 4227 * is zero. We must also ensure that btf_struct_ids_match does not walk 4228 * the struct to match type against first member of struct, i.e. reject 4229 * second case from above. Hence, when type is BPF_KPTR_REF, we set 4230 * strict mode to true for type match. 4231 */ 4232 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4233 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 4234 kptr_field->type == BPF_KPTR_REF)) 4235 goto bad_type; 4236 return 0; 4237 bad_type: 4238 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 4239 reg_type_str(env, reg->type), reg_name); 4240 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 4241 if (kptr_field->type == BPF_KPTR_UNREF) 4242 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 4243 targ_name); 4244 else 4245 verbose(env, "\n"); 4246 return -EINVAL; 4247 } 4248 4249 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 4250 int value_regno, int insn_idx, 4251 struct btf_field *kptr_field) 4252 { 4253 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4254 int class = BPF_CLASS(insn->code); 4255 struct bpf_reg_state *val_reg; 4256 4257 /* Things we already checked for in check_map_access and caller: 4258 * - Reject cases where variable offset may touch kptr 4259 * - size of access (must be BPF_DW) 4260 * - tnum_is_const(reg->var_off) 4261 * - kptr_field->offset == off + reg->var_off.value 4262 */ 4263 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 4264 if (BPF_MODE(insn->code) != BPF_MEM) { 4265 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 4266 return -EACCES; 4267 } 4268 4269 /* We only allow loading referenced kptr, since it will be marked as 4270 * untrusted, similar to unreferenced kptr. 4271 */ 4272 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 4273 verbose(env, "store to referenced kptr disallowed\n"); 4274 return -EACCES; 4275 } 4276 4277 if (class == BPF_LDX) { 4278 val_reg = reg_state(env, value_regno); 4279 /* We can simply mark the value_regno receiving the pointer 4280 * value from map as PTR_TO_BTF_ID, with the correct type. 4281 */ 4282 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 4283 kptr_field->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED); 4284 /* For mark_ptr_or_null_reg */ 4285 val_reg->id = ++env->id_gen; 4286 } else if (class == BPF_STX) { 4287 val_reg = reg_state(env, value_regno); 4288 if (!register_is_null(val_reg) && 4289 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 4290 return -EACCES; 4291 } else if (class == BPF_ST) { 4292 if (insn->imm) { 4293 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 4294 kptr_field->offset); 4295 return -EACCES; 4296 } 4297 } else { 4298 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 4299 return -EACCES; 4300 } 4301 return 0; 4302 } 4303 4304 /* check read/write into a map element with possible variable offset */ 4305 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 4306 int off, int size, bool zero_size_allowed, 4307 enum bpf_access_src src) 4308 { 4309 struct bpf_verifier_state *vstate = env->cur_state; 4310 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4311 struct bpf_reg_state *reg = &state->regs[regno]; 4312 struct bpf_map *map = reg->map_ptr; 4313 struct btf_record *rec; 4314 int err, i; 4315 4316 err = check_mem_region_access(env, regno, off, size, map->value_size, 4317 zero_size_allowed); 4318 if (err) 4319 return err; 4320 4321 if (IS_ERR_OR_NULL(map->record)) 4322 return 0; 4323 rec = map->record; 4324 for (i = 0; i < rec->cnt; i++) { 4325 struct btf_field *field = &rec->fields[i]; 4326 u32 p = field->offset; 4327 4328 /* If any part of a field can be touched by load/store, reject 4329 * this program. To check that [x1, x2) overlaps with [y1, y2), 4330 * it is sufficient to check x1 < y2 && y1 < x2. 4331 */ 4332 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 4333 p < reg->umax_value + off + size) { 4334 switch (field->type) { 4335 case BPF_KPTR_UNREF: 4336 case BPF_KPTR_REF: 4337 if (src != ACCESS_DIRECT) { 4338 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 4339 return -EACCES; 4340 } 4341 if (!tnum_is_const(reg->var_off)) { 4342 verbose(env, "kptr access cannot have variable offset\n"); 4343 return -EACCES; 4344 } 4345 if (p != off + reg->var_off.value) { 4346 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 4347 p, off + reg->var_off.value); 4348 return -EACCES; 4349 } 4350 if (size != bpf_size_to_bytes(BPF_DW)) { 4351 verbose(env, "kptr access size must be BPF_DW\n"); 4352 return -EACCES; 4353 } 4354 break; 4355 default: 4356 verbose(env, "%s cannot be accessed directly by load/store\n", 4357 btf_field_type_name(field->type)); 4358 return -EACCES; 4359 } 4360 } 4361 } 4362 return 0; 4363 } 4364 4365 #define MAX_PACKET_OFF 0xffff 4366 4367 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 4368 const struct bpf_call_arg_meta *meta, 4369 enum bpf_access_type t) 4370 { 4371 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 4372 4373 switch (prog_type) { 4374 /* Program types only with direct read access go here! */ 4375 case BPF_PROG_TYPE_LWT_IN: 4376 case BPF_PROG_TYPE_LWT_OUT: 4377 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 4378 case BPF_PROG_TYPE_SK_REUSEPORT: 4379 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4380 case BPF_PROG_TYPE_CGROUP_SKB: 4381 if (t == BPF_WRITE) 4382 return false; 4383 fallthrough; 4384 4385 /* Program types with direct read + write access go here! */ 4386 case BPF_PROG_TYPE_SCHED_CLS: 4387 case BPF_PROG_TYPE_SCHED_ACT: 4388 case BPF_PROG_TYPE_XDP: 4389 case BPF_PROG_TYPE_LWT_XMIT: 4390 case BPF_PROG_TYPE_SK_SKB: 4391 case BPF_PROG_TYPE_SK_MSG: 4392 if (meta) 4393 return meta->pkt_access; 4394 4395 env->seen_direct_write = true; 4396 return true; 4397 4398 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 4399 if (t == BPF_WRITE) 4400 env->seen_direct_write = true; 4401 4402 return true; 4403 4404 default: 4405 return false; 4406 } 4407 } 4408 4409 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 4410 int size, bool zero_size_allowed) 4411 { 4412 struct bpf_reg_state *regs = cur_regs(env); 4413 struct bpf_reg_state *reg = ®s[regno]; 4414 int err; 4415 4416 /* We may have added a variable offset to the packet pointer; but any 4417 * reg->range we have comes after that. We are only checking the fixed 4418 * offset. 4419 */ 4420 4421 /* We don't allow negative numbers, because we aren't tracking enough 4422 * detail to prove they're safe. 4423 */ 4424 if (reg->smin_value < 0) { 4425 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4426 regno); 4427 return -EACCES; 4428 } 4429 4430 err = reg->range < 0 ? -EINVAL : 4431 __check_mem_access(env, regno, off, size, reg->range, 4432 zero_size_allowed); 4433 if (err) { 4434 verbose(env, "R%d offset is outside of the packet\n", regno); 4435 return err; 4436 } 4437 4438 /* __check_mem_access has made sure "off + size - 1" is within u16. 4439 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 4440 * otherwise find_good_pkt_pointers would have refused to set range info 4441 * that __check_mem_access would have rejected this pkt access. 4442 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 4443 */ 4444 env->prog->aux->max_pkt_offset = 4445 max_t(u32, env->prog->aux->max_pkt_offset, 4446 off + reg->umax_value + size - 1); 4447 4448 return err; 4449 } 4450 4451 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 4452 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 4453 enum bpf_access_type t, enum bpf_reg_type *reg_type, 4454 struct btf **btf, u32 *btf_id) 4455 { 4456 struct bpf_insn_access_aux info = { 4457 .reg_type = *reg_type, 4458 .log = &env->log, 4459 }; 4460 4461 if (env->ops->is_valid_access && 4462 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 4463 /* A non zero info.ctx_field_size indicates that this field is a 4464 * candidate for later verifier transformation to load the whole 4465 * field and then apply a mask when accessed with a narrower 4466 * access than actual ctx access size. A zero info.ctx_field_size 4467 * will only allow for whole field access and rejects any other 4468 * type of narrower access. 4469 */ 4470 *reg_type = info.reg_type; 4471 4472 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 4473 *btf = info.btf; 4474 *btf_id = info.btf_id; 4475 } else { 4476 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 4477 } 4478 /* remember the offset of last byte accessed in ctx */ 4479 if (env->prog->aux->max_ctx_offset < off + size) 4480 env->prog->aux->max_ctx_offset = off + size; 4481 return 0; 4482 } 4483 4484 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 4485 return -EACCES; 4486 } 4487 4488 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 4489 int size) 4490 { 4491 if (size < 0 || off < 0 || 4492 (u64)off + size > sizeof(struct bpf_flow_keys)) { 4493 verbose(env, "invalid access to flow keys off=%d size=%d\n", 4494 off, size); 4495 return -EACCES; 4496 } 4497 return 0; 4498 } 4499 4500 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 4501 u32 regno, int off, int size, 4502 enum bpf_access_type t) 4503 { 4504 struct bpf_reg_state *regs = cur_regs(env); 4505 struct bpf_reg_state *reg = ®s[regno]; 4506 struct bpf_insn_access_aux info = {}; 4507 bool valid; 4508 4509 if (reg->smin_value < 0) { 4510 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 4511 regno); 4512 return -EACCES; 4513 } 4514 4515 switch (reg->type) { 4516 case PTR_TO_SOCK_COMMON: 4517 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 4518 break; 4519 case PTR_TO_SOCKET: 4520 valid = bpf_sock_is_valid_access(off, size, t, &info); 4521 break; 4522 case PTR_TO_TCP_SOCK: 4523 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 4524 break; 4525 case PTR_TO_XDP_SOCK: 4526 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 4527 break; 4528 default: 4529 valid = false; 4530 } 4531 4532 4533 if (valid) { 4534 env->insn_aux_data[insn_idx].ctx_field_size = 4535 info.ctx_field_size; 4536 return 0; 4537 } 4538 4539 verbose(env, "R%d invalid %s access off=%d size=%d\n", 4540 regno, reg_type_str(env, reg->type), off, size); 4541 4542 return -EACCES; 4543 } 4544 4545 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 4546 { 4547 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 4548 } 4549 4550 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 4551 { 4552 const struct bpf_reg_state *reg = reg_state(env, regno); 4553 4554 return reg->type == PTR_TO_CTX; 4555 } 4556 4557 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 4558 { 4559 const struct bpf_reg_state *reg = reg_state(env, regno); 4560 4561 return type_is_sk_pointer(reg->type); 4562 } 4563 4564 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 4565 { 4566 const struct bpf_reg_state *reg = reg_state(env, regno); 4567 4568 return type_is_pkt_pointer(reg->type); 4569 } 4570 4571 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 4572 { 4573 const struct bpf_reg_state *reg = reg_state(env, regno); 4574 4575 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 4576 return reg->type == PTR_TO_FLOW_KEYS; 4577 } 4578 4579 static bool is_trusted_reg(const struct bpf_reg_state *reg) 4580 { 4581 /* A referenced register is always trusted. */ 4582 if (reg->ref_obj_id) 4583 return true; 4584 4585 /* If a register is not referenced, it is trusted if it has the 4586 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 4587 * other type modifiers may be safe, but we elect to take an opt-in 4588 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 4589 * not. 4590 * 4591 * Eventually, we should make PTR_TRUSTED the single source of truth 4592 * for whether a register is trusted. 4593 */ 4594 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 4595 !bpf_type_has_unsafe_modifiers(reg->type); 4596 } 4597 4598 static bool is_rcu_reg(const struct bpf_reg_state *reg) 4599 { 4600 return reg->type & MEM_RCU; 4601 } 4602 4603 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 4604 const struct bpf_reg_state *reg, 4605 int off, int size, bool strict) 4606 { 4607 struct tnum reg_off; 4608 int ip_align; 4609 4610 /* Byte size accesses are always allowed. */ 4611 if (!strict || size == 1) 4612 return 0; 4613 4614 /* For platforms that do not have a Kconfig enabling 4615 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 4616 * NET_IP_ALIGN is universally set to '2'. And on platforms 4617 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 4618 * to this code only in strict mode where we want to emulate 4619 * the NET_IP_ALIGN==2 checking. Therefore use an 4620 * unconditional IP align value of '2'. 4621 */ 4622 ip_align = 2; 4623 4624 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 4625 if (!tnum_is_aligned(reg_off, size)) { 4626 char tn_buf[48]; 4627 4628 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4629 verbose(env, 4630 "misaligned packet access off %d+%s+%d+%d size %d\n", 4631 ip_align, tn_buf, reg->off, off, size); 4632 return -EACCES; 4633 } 4634 4635 return 0; 4636 } 4637 4638 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 4639 const struct bpf_reg_state *reg, 4640 const char *pointer_desc, 4641 int off, int size, bool strict) 4642 { 4643 struct tnum reg_off; 4644 4645 /* Byte size accesses are always allowed. */ 4646 if (!strict || size == 1) 4647 return 0; 4648 4649 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 4650 if (!tnum_is_aligned(reg_off, size)) { 4651 char tn_buf[48]; 4652 4653 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4654 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 4655 pointer_desc, tn_buf, reg->off, off, size); 4656 return -EACCES; 4657 } 4658 4659 return 0; 4660 } 4661 4662 static int check_ptr_alignment(struct bpf_verifier_env *env, 4663 const struct bpf_reg_state *reg, int off, 4664 int size, bool strict_alignment_once) 4665 { 4666 bool strict = env->strict_alignment || strict_alignment_once; 4667 const char *pointer_desc = ""; 4668 4669 switch (reg->type) { 4670 case PTR_TO_PACKET: 4671 case PTR_TO_PACKET_META: 4672 /* Special case, because of NET_IP_ALIGN. Given metadata sits 4673 * right in front, treat it the very same way. 4674 */ 4675 return check_pkt_ptr_alignment(env, reg, off, size, strict); 4676 case PTR_TO_FLOW_KEYS: 4677 pointer_desc = "flow keys "; 4678 break; 4679 case PTR_TO_MAP_KEY: 4680 pointer_desc = "key "; 4681 break; 4682 case PTR_TO_MAP_VALUE: 4683 pointer_desc = "value "; 4684 break; 4685 case PTR_TO_CTX: 4686 pointer_desc = "context "; 4687 break; 4688 case PTR_TO_STACK: 4689 pointer_desc = "stack "; 4690 /* The stack spill tracking logic in check_stack_write_fixed_off() 4691 * and check_stack_read_fixed_off() relies on stack accesses being 4692 * aligned. 4693 */ 4694 strict = true; 4695 break; 4696 case PTR_TO_SOCKET: 4697 pointer_desc = "sock "; 4698 break; 4699 case PTR_TO_SOCK_COMMON: 4700 pointer_desc = "sock_common "; 4701 break; 4702 case PTR_TO_TCP_SOCK: 4703 pointer_desc = "tcp_sock "; 4704 break; 4705 case PTR_TO_XDP_SOCK: 4706 pointer_desc = "xdp_sock "; 4707 break; 4708 default: 4709 break; 4710 } 4711 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 4712 strict); 4713 } 4714 4715 static int update_stack_depth(struct bpf_verifier_env *env, 4716 const struct bpf_func_state *func, 4717 int off) 4718 { 4719 u16 stack = env->subprog_info[func->subprogno].stack_depth; 4720 4721 if (stack >= -off) 4722 return 0; 4723 4724 /* update known max for given subprogram */ 4725 env->subprog_info[func->subprogno].stack_depth = -off; 4726 return 0; 4727 } 4728 4729 /* starting from main bpf function walk all instructions of the function 4730 * and recursively walk all callees that given function can call. 4731 * Ignore jump and exit insns. 4732 * Since recursion is prevented by check_cfg() this algorithm 4733 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 4734 */ 4735 static int check_max_stack_depth(struct bpf_verifier_env *env) 4736 { 4737 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 4738 struct bpf_subprog_info *subprog = env->subprog_info; 4739 struct bpf_insn *insn = env->prog->insnsi; 4740 bool tail_call_reachable = false; 4741 int ret_insn[MAX_CALL_FRAMES]; 4742 int ret_prog[MAX_CALL_FRAMES]; 4743 int j; 4744 4745 process_func: 4746 /* protect against potential stack overflow that might happen when 4747 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 4748 * depth for such case down to 256 so that the worst case scenario 4749 * would result in 8k stack size (32 which is tailcall limit * 256 = 4750 * 8k). 4751 * 4752 * To get the idea what might happen, see an example: 4753 * func1 -> sub rsp, 128 4754 * subfunc1 -> sub rsp, 256 4755 * tailcall1 -> add rsp, 256 4756 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 4757 * subfunc2 -> sub rsp, 64 4758 * subfunc22 -> sub rsp, 128 4759 * tailcall2 -> add rsp, 128 4760 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 4761 * 4762 * tailcall will unwind the current stack frame but it will not get rid 4763 * of caller's stack as shown on the example above. 4764 */ 4765 if (idx && subprog[idx].has_tail_call && depth >= 256) { 4766 verbose(env, 4767 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 4768 depth); 4769 return -EACCES; 4770 } 4771 /* round up to 32-bytes, since this is granularity 4772 * of interpreter stack size 4773 */ 4774 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4775 if (depth > MAX_BPF_STACK) { 4776 verbose(env, "combined stack size of %d calls is %d. Too large\n", 4777 frame + 1, depth); 4778 return -EACCES; 4779 } 4780 continue_func: 4781 subprog_end = subprog[idx + 1].start; 4782 for (; i < subprog_end; i++) { 4783 int next_insn; 4784 4785 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 4786 continue; 4787 /* remember insn and function to return to */ 4788 ret_insn[frame] = i + 1; 4789 ret_prog[frame] = idx; 4790 4791 /* find the callee */ 4792 next_insn = i + insn[i].imm + 1; 4793 idx = find_subprog(env, next_insn); 4794 if (idx < 0) { 4795 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4796 next_insn); 4797 return -EFAULT; 4798 } 4799 if (subprog[idx].is_async_cb) { 4800 if (subprog[idx].has_tail_call) { 4801 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 4802 return -EFAULT; 4803 } 4804 /* async callbacks don't increase bpf prog stack size */ 4805 continue; 4806 } 4807 i = next_insn; 4808 4809 if (subprog[idx].has_tail_call) 4810 tail_call_reachable = true; 4811 4812 frame++; 4813 if (frame >= MAX_CALL_FRAMES) { 4814 verbose(env, "the call stack of %d frames is too deep !\n", 4815 frame); 4816 return -E2BIG; 4817 } 4818 goto process_func; 4819 } 4820 /* if tail call got detected across bpf2bpf calls then mark each of the 4821 * currently present subprog frames as tail call reachable subprogs; 4822 * this info will be utilized by JIT so that we will be preserving the 4823 * tail call counter throughout bpf2bpf calls combined with tailcalls 4824 */ 4825 if (tail_call_reachable) 4826 for (j = 0; j < frame; j++) 4827 subprog[ret_prog[j]].tail_call_reachable = true; 4828 if (subprog[0].tail_call_reachable) 4829 env->prog->aux->tail_call_reachable = true; 4830 4831 /* end of for() loop means the last insn of the 'subprog' 4832 * was reached. Doesn't matter whether it was JA or EXIT 4833 */ 4834 if (frame == 0) 4835 return 0; 4836 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 4837 frame--; 4838 i = ret_insn[frame]; 4839 idx = ret_prog[frame]; 4840 goto continue_func; 4841 } 4842 4843 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 4844 static int get_callee_stack_depth(struct bpf_verifier_env *env, 4845 const struct bpf_insn *insn, int idx) 4846 { 4847 int start = idx + insn->imm + 1, subprog; 4848 4849 subprog = find_subprog(env, start); 4850 if (subprog < 0) { 4851 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 4852 start); 4853 return -EFAULT; 4854 } 4855 return env->subprog_info[subprog].stack_depth; 4856 } 4857 #endif 4858 4859 static int __check_buffer_access(struct bpf_verifier_env *env, 4860 const char *buf_info, 4861 const struct bpf_reg_state *reg, 4862 int regno, int off, int size) 4863 { 4864 if (off < 0) { 4865 verbose(env, 4866 "R%d invalid %s buffer access: off=%d, size=%d\n", 4867 regno, buf_info, off, size); 4868 return -EACCES; 4869 } 4870 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4871 char tn_buf[48]; 4872 4873 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4874 verbose(env, 4875 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 4876 regno, off, tn_buf); 4877 return -EACCES; 4878 } 4879 4880 return 0; 4881 } 4882 4883 static int check_tp_buffer_access(struct bpf_verifier_env *env, 4884 const struct bpf_reg_state *reg, 4885 int regno, int off, int size) 4886 { 4887 int err; 4888 4889 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 4890 if (err) 4891 return err; 4892 4893 if (off + size > env->prog->aux->max_tp_access) 4894 env->prog->aux->max_tp_access = off + size; 4895 4896 return 0; 4897 } 4898 4899 static int check_buffer_access(struct bpf_verifier_env *env, 4900 const struct bpf_reg_state *reg, 4901 int regno, int off, int size, 4902 bool zero_size_allowed, 4903 u32 *max_access) 4904 { 4905 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 4906 int err; 4907 4908 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4909 if (err) 4910 return err; 4911 4912 if (off + size > *max_access) 4913 *max_access = off + size; 4914 4915 return 0; 4916 } 4917 4918 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4919 static void zext_32_to_64(struct bpf_reg_state *reg) 4920 { 4921 reg->var_off = tnum_subreg(reg->var_off); 4922 __reg_assign_32_into_64(reg); 4923 } 4924 4925 /* truncate register to smaller size (in bytes) 4926 * must be called with size < BPF_REG_SIZE 4927 */ 4928 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4929 { 4930 u64 mask; 4931 4932 /* clear high bits in bit representation */ 4933 reg->var_off = tnum_cast(reg->var_off, size); 4934 4935 /* fix arithmetic bounds */ 4936 mask = ((u64)1 << (size * 8)) - 1; 4937 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4938 reg->umin_value &= mask; 4939 reg->umax_value &= mask; 4940 } else { 4941 reg->umin_value = 0; 4942 reg->umax_value = mask; 4943 } 4944 reg->smin_value = reg->umin_value; 4945 reg->smax_value = reg->umax_value; 4946 4947 /* If size is smaller than 32bit register the 32bit register 4948 * values are also truncated so we push 64-bit bounds into 4949 * 32-bit bounds. Above were truncated < 32-bits already. 4950 */ 4951 if (size >= 4) 4952 return; 4953 __reg_combine_64_into_32(reg); 4954 } 4955 4956 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4957 { 4958 /* A map is considered read-only if the following condition are true: 4959 * 4960 * 1) BPF program side cannot change any of the map content. The 4961 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4962 * and was set at map creation time. 4963 * 2) The map value(s) have been initialized from user space by a 4964 * loader and then "frozen", such that no new map update/delete 4965 * operations from syscall side are possible for the rest of 4966 * the map's lifetime from that point onwards. 4967 * 3) Any parallel/pending map update/delete operations from syscall 4968 * side have been completed. Only after that point, it's safe to 4969 * assume that map value(s) are immutable. 4970 */ 4971 return (map->map_flags & BPF_F_RDONLY_PROG) && 4972 READ_ONCE(map->frozen) && 4973 !bpf_map_write_active(map); 4974 } 4975 4976 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4977 { 4978 void *ptr; 4979 u64 addr; 4980 int err; 4981 4982 err = map->ops->map_direct_value_addr(map, &addr, off); 4983 if (err) 4984 return err; 4985 ptr = (void *)(long)addr + off; 4986 4987 switch (size) { 4988 case sizeof(u8): 4989 *val = (u64)*(u8 *)ptr; 4990 break; 4991 case sizeof(u16): 4992 *val = (u64)*(u16 *)ptr; 4993 break; 4994 case sizeof(u32): 4995 *val = (u64)*(u32 *)ptr; 4996 break; 4997 case sizeof(u64): 4998 *val = *(u64 *)ptr; 4999 break; 5000 default: 5001 return -EINVAL; 5002 } 5003 return 0; 5004 } 5005 5006 #define BTF_TYPE_SAFE_NESTED(__type) __PASTE(__type, __safe_fields) 5007 5008 BTF_TYPE_SAFE_NESTED(struct task_struct) { 5009 const cpumask_t *cpus_ptr; 5010 }; 5011 5012 static bool nested_ptr_is_trusted(struct bpf_verifier_env *env, 5013 struct bpf_reg_state *reg, 5014 int off) 5015 { 5016 /* If its parent is not trusted, it can't regain its trusted status. */ 5017 if (!is_trusted_reg(reg)) 5018 return false; 5019 5020 BTF_TYPE_EMIT(BTF_TYPE_SAFE_NESTED(struct task_struct)); 5021 5022 return btf_nested_type_is_trusted(&env->log, reg, off); 5023 } 5024 5025 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 5026 struct bpf_reg_state *regs, 5027 int regno, int off, int size, 5028 enum bpf_access_type atype, 5029 int value_regno) 5030 { 5031 struct bpf_reg_state *reg = regs + regno; 5032 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 5033 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 5034 enum bpf_type_flag flag = 0; 5035 u32 btf_id; 5036 int ret; 5037 5038 if (!env->allow_ptr_leaks) { 5039 verbose(env, 5040 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5041 tname); 5042 return -EPERM; 5043 } 5044 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 5045 verbose(env, 5046 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 5047 tname); 5048 return -EINVAL; 5049 } 5050 if (off < 0) { 5051 verbose(env, 5052 "R%d is ptr_%s invalid negative access: off=%d\n", 5053 regno, tname, off); 5054 return -EACCES; 5055 } 5056 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5057 char tn_buf[48]; 5058 5059 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5060 verbose(env, 5061 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 5062 regno, tname, off, tn_buf); 5063 return -EACCES; 5064 } 5065 5066 if (reg->type & MEM_USER) { 5067 verbose(env, 5068 "R%d is ptr_%s access user memory: off=%d\n", 5069 regno, tname, off); 5070 return -EACCES; 5071 } 5072 5073 if (reg->type & MEM_PERCPU) { 5074 verbose(env, 5075 "R%d is ptr_%s access percpu memory: off=%d\n", 5076 regno, tname, off); 5077 return -EACCES; 5078 } 5079 5080 if (env->ops->btf_struct_access && !type_is_alloc(reg->type)) { 5081 if (!btf_is_kernel(reg->btf)) { 5082 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 5083 return -EFAULT; 5084 } 5085 ret = env->ops->btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 5086 } else { 5087 /* Writes are permitted with default btf_struct_access for 5088 * program allocated objects (which always have ref_obj_id > 0), 5089 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 5090 */ 5091 if (atype != BPF_READ && reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 5092 verbose(env, "only read is supported\n"); 5093 return -EACCES; 5094 } 5095 5096 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 5097 !reg->ref_obj_id) { 5098 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 5099 return -EFAULT; 5100 } 5101 5102 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag); 5103 } 5104 5105 if (ret < 0) 5106 return ret; 5107 5108 /* If this is an untrusted pointer, all pointers formed by walking it 5109 * also inherit the untrusted flag. 5110 */ 5111 if (type_flag(reg->type) & PTR_UNTRUSTED) 5112 flag |= PTR_UNTRUSTED; 5113 5114 /* By default any pointer obtained from walking a trusted pointer is no 5115 * longer trusted, unless the field being accessed has explicitly been 5116 * marked as inheriting its parent's state of trust. 5117 * 5118 * An RCU-protected pointer can also be deemed trusted if we are in an 5119 * RCU read region. This case is handled below. 5120 */ 5121 if (nested_ptr_is_trusted(env, reg, off)) 5122 flag |= PTR_TRUSTED; 5123 else 5124 flag &= ~PTR_TRUSTED; 5125 5126 if (flag & MEM_RCU) { 5127 /* Mark value register as MEM_RCU only if it is protected by 5128 * bpf_rcu_read_lock() and the ptr reg is rcu or trusted. MEM_RCU 5129 * itself can already indicate trustedness inside the rcu 5130 * read lock region. Also mark rcu pointer as PTR_MAYBE_NULL since 5131 * it could be null in some cases. 5132 */ 5133 if (!env->cur_state->active_rcu_lock || 5134 !(is_trusted_reg(reg) || is_rcu_reg(reg))) 5135 flag &= ~MEM_RCU; 5136 else 5137 flag |= PTR_MAYBE_NULL; 5138 } else if (reg->type & MEM_RCU) { 5139 /* ptr (reg) is marked as MEM_RCU, but the struct field is not tagged 5140 * with __rcu. Mark the flag as PTR_UNTRUSTED conservatively. 5141 */ 5142 flag |= PTR_UNTRUSTED; 5143 } 5144 5145 if (atype == BPF_READ && value_regno >= 0) 5146 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 5147 5148 return 0; 5149 } 5150 5151 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 5152 struct bpf_reg_state *regs, 5153 int regno, int off, int size, 5154 enum bpf_access_type atype, 5155 int value_regno) 5156 { 5157 struct bpf_reg_state *reg = regs + regno; 5158 struct bpf_map *map = reg->map_ptr; 5159 struct bpf_reg_state map_reg; 5160 enum bpf_type_flag flag = 0; 5161 const struct btf_type *t; 5162 const char *tname; 5163 u32 btf_id; 5164 int ret; 5165 5166 if (!btf_vmlinux) { 5167 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 5168 return -ENOTSUPP; 5169 } 5170 5171 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 5172 verbose(env, "map_ptr access not supported for map type %d\n", 5173 map->map_type); 5174 return -ENOTSUPP; 5175 } 5176 5177 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 5178 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 5179 5180 if (!env->allow_ptr_leaks) { 5181 verbose(env, 5182 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 5183 tname); 5184 return -EPERM; 5185 } 5186 5187 if (off < 0) { 5188 verbose(env, "R%d is %s invalid negative access: off=%d\n", 5189 regno, tname, off); 5190 return -EACCES; 5191 } 5192 5193 if (atype != BPF_READ) { 5194 verbose(env, "only read from %s is supported\n", tname); 5195 return -EACCES; 5196 } 5197 5198 /* Simulate access to a PTR_TO_BTF_ID */ 5199 memset(&map_reg, 0, sizeof(map_reg)); 5200 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 5201 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag); 5202 if (ret < 0) 5203 return ret; 5204 5205 if (value_regno >= 0) 5206 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 5207 5208 return 0; 5209 } 5210 5211 /* Check that the stack access at the given offset is within bounds. The 5212 * maximum valid offset is -1. 5213 * 5214 * The minimum valid offset is -MAX_BPF_STACK for writes, and 5215 * -state->allocated_stack for reads. 5216 */ 5217 static int check_stack_slot_within_bounds(int off, 5218 struct bpf_func_state *state, 5219 enum bpf_access_type t) 5220 { 5221 int min_valid_off; 5222 5223 if (t == BPF_WRITE) 5224 min_valid_off = -MAX_BPF_STACK; 5225 else 5226 min_valid_off = -state->allocated_stack; 5227 5228 if (off < min_valid_off || off > -1) 5229 return -EACCES; 5230 return 0; 5231 } 5232 5233 /* Check that the stack access at 'regno + off' falls within the maximum stack 5234 * bounds. 5235 * 5236 * 'off' includes `regno->offset`, but not its dynamic part (if any). 5237 */ 5238 static int check_stack_access_within_bounds( 5239 struct bpf_verifier_env *env, 5240 int regno, int off, int access_size, 5241 enum bpf_access_src src, enum bpf_access_type type) 5242 { 5243 struct bpf_reg_state *regs = cur_regs(env); 5244 struct bpf_reg_state *reg = regs + regno; 5245 struct bpf_func_state *state = func(env, reg); 5246 int min_off, max_off; 5247 int err; 5248 char *err_extra; 5249 5250 if (src == ACCESS_HELPER) 5251 /* We don't know if helpers are reading or writing (or both). */ 5252 err_extra = " indirect access to"; 5253 else if (type == BPF_READ) 5254 err_extra = " read from"; 5255 else 5256 err_extra = " write to"; 5257 5258 if (tnum_is_const(reg->var_off)) { 5259 min_off = reg->var_off.value + off; 5260 if (access_size > 0) 5261 max_off = min_off + access_size - 1; 5262 else 5263 max_off = min_off; 5264 } else { 5265 if (reg->smax_value >= BPF_MAX_VAR_OFF || 5266 reg->smin_value <= -BPF_MAX_VAR_OFF) { 5267 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 5268 err_extra, regno); 5269 return -EACCES; 5270 } 5271 min_off = reg->smin_value + off; 5272 if (access_size > 0) 5273 max_off = reg->smax_value + off + access_size - 1; 5274 else 5275 max_off = min_off; 5276 } 5277 5278 err = check_stack_slot_within_bounds(min_off, state, type); 5279 if (!err) 5280 err = check_stack_slot_within_bounds(max_off, state, type); 5281 5282 if (err) { 5283 if (tnum_is_const(reg->var_off)) { 5284 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 5285 err_extra, regno, off, access_size); 5286 } else { 5287 char tn_buf[48]; 5288 5289 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5290 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 5291 err_extra, regno, tn_buf, access_size); 5292 } 5293 } 5294 return err; 5295 } 5296 5297 /* check whether memory at (regno + off) is accessible for t = (read | write) 5298 * if t==write, value_regno is a register which value is stored into memory 5299 * if t==read, value_regno is a register which will receive the value from memory 5300 * if t==write && value_regno==-1, some unknown value is stored into memory 5301 * if t==read && value_regno==-1, don't care what we read from memory 5302 */ 5303 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 5304 int off, int bpf_size, enum bpf_access_type t, 5305 int value_regno, bool strict_alignment_once) 5306 { 5307 struct bpf_reg_state *regs = cur_regs(env); 5308 struct bpf_reg_state *reg = regs + regno; 5309 struct bpf_func_state *state; 5310 int size, err = 0; 5311 5312 size = bpf_size_to_bytes(bpf_size); 5313 if (size < 0) 5314 return size; 5315 5316 /* alignment checks will add in reg->off themselves */ 5317 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 5318 if (err) 5319 return err; 5320 5321 /* for access checks, reg->off is just part of off */ 5322 off += reg->off; 5323 5324 if (reg->type == PTR_TO_MAP_KEY) { 5325 if (t == BPF_WRITE) { 5326 verbose(env, "write to change key R%d not allowed\n", regno); 5327 return -EACCES; 5328 } 5329 5330 err = check_mem_region_access(env, regno, off, size, 5331 reg->map_ptr->key_size, false); 5332 if (err) 5333 return err; 5334 if (value_regno >= 0) 5335 mark_reg_unknown(env, regs, value_regno); 5336 } else if (reg->type == PTR_TO_MAP_VALUE) { 5337 struct btf_field *kptr_field = NULL; 5338 5339 if (t == BPF_WRITE && value_regno >= 0 && 5340 is_pointer_value(env, value_regno)) { 5341 verbose(env, "R%d leaks addr into map\n", value_regno); 5342 return -EACCES; 5343 } 5344 err = check_map_access_type(env, regno, off, size, t); 5345 if (err) 5346 return err; 5347 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 5348 if (err) 5349 return err; 5350 if (tnum_is_const(reg->var_off)) 5351 kptr_field = btf_record_find(reg->map_ptr->record, 5352 off + reg->var_off.value, BPF_KPTR); 5353 if (kptr_field) { 5354 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 5355 } else if (t == BPF_READ && value_regno >= 0) { 5356 struct bpf_map *map = reg->map_ptr; 5357 5358 /* if map is read-only, track its contents as scalars */ 5359 if (tnum_is_const(reg->var_off) && 5360 bpf_map_is_rdonly(map) && 5361 map->ops->map_direct_value_addr) { 5362 int map_off = off + reg->var_off.value; 5363 u64 val = 0; 5364 5365 err = bpf_map_direct_read(map, map_off, size, 5366 &val); 5367 if (err) 5368 return err; 5369 5370 regs[value_regno].type = SCALAR_VALUE; 5371 __mark_reg_known(®s[value_regno], val); 5372 } else { 5373 mark_reg_unknown(env, regs, value_regno); 5374 } 5375 } 5376 } else if (base_type(reg->type) == PTR_TO_MEM) { 5377 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5378 5379 if (type_may_be_null(reg->type)) { 5380 verbose(env, "R%d invalid mem access '%s'\n", regno, 5381 reg_type_str(env, reg->type)); 5382 return -EACCES; 5383 } 5384 5385 if (t == BPF_WRITE && rdonly_mem) { 5386 verbose(env, "R%d cannot write into %s\n", 5387 regno, reg_type_str(env, reg->type)); 5388 return -EACCES; 5389 } 5390 5391 if (t == BPF_WRITE && value_regno >= 0 && 5392 is_pointer_value(env, value_regno)) { 5393 verbose(env, "R%d leaks addr into mem\n", value_regno); 5394 return -EACCES; 5395 } 5396 5397 err = check_mem_region_access(env, regno, off, size, 5398 reg->mem_size, false); 5399 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 5400 mark_reg_unknown(env, regs, value_regno); 5401 } else if (reg->type == PTR_TO_CTX) { 5402 enum bpf_reg_type reg_type = SCALAR_VALUE; 5403 struct btf *btf = NULL; 5404 u32 btf_id = 0; 5405 5406 if (t == BPF_WRITE && value_regno >= 0 && 5407 is_pointer_value(env, value_regno)) { 5408 verbose(env, "R%d leaks addr into ctx\n", value_regno); 5409 return -EACCES; 5410 } 5411 5412 err = check_ptr_off_reg(env, reg, regno); 5413 if (err < 0) 5414 return err; 5415 5416 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 5417 &btf_id); 5418 if (err) 5419 verbose_linfo(env, insn_idx, "; "); 5420 if (!err && t == BPF_READ && value_regno >= 0) { 5421 /* ctx access returns either a scalar, or a 5422 * PTR_TO_PACKET[_META,_END]. In the latter 5423 * case, we know the offset is zero. 5424 */ 5425 if (reg_type == SCALAR_VALUE) { 5426 mark_reg_unknown(env, regs, value_regno); 5427 } else { 5428 mark_reg_known_zero(env, regs, 5429 value_regno); 5430 if (type_may_be_null(reg_type)) 5431 regs[value_regno].id = ++env->id_gen; 5432 /* A load of ctx field could have different 5433 * actual load size with the one encoded in the 5434 * insn. When the dst is PTR, it is for sure not 5435 * a sub-register. 5436 */ 5437 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 5438 if (base_type(reg_type) == PTR_TO_BTF_ID) { 5439 regs[value_regno].btf = btf; 5440 regs[value_regno].btf_id = btf_id; 5441 } 5442 } 5443 regs[value_regno].type = reg_type; 5444 } 5445 5446 } else if (reg->type == PTR_TO_STACK) { 5447 /* Basic bounds checks. */ 5448 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 5449 if (err) 5450 return err; 5451 5452 state = func(env, reg); 5453 err = update_stack_depth(env, state, off); 5454 if (err) 5455 return err; 5456 5457 if (t == BPF_READ) 5458 err = check_stack_read(env, regno, off, size, 5459 value_regno); 5460 else 5461 err = check_stack_write(env, regno, off, size, 5462 value_regno, insn_idx); 5463 } else if (reg_is_pkt_pointer(reg)) { 5464 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 5465 verbose(env, "cannot write into packet\n"); 5466 return -EACCES; 5467 } 5468 if (t == BPF_WRITE && value_regno >= 0 && 5469 is_pointer_value(env, value_regno)) { 5470 verbose(env, "R%d leaks addr into packet\n", 5471 value_regno); 5472 return -EACCES; 5473 } 5474 err = check_packet_access(env, regno, off, size, false); 5475 if (!err && t == BPF_READ && value_regno >= 0) 5476 mark_reg_unknown(env, regs, value_regno); 5477 } else if (reg->type == PTR_TO_FLOW_KEYS) { 5478 if (t == BPF_WRITE && value_regno >= 0 && 5479 is_pointer_value(env, value_regno)) { 5480 verbose(env, "R%d leaks addr into flow keys\n", 5481 value_regno); 5482 return -EACCES; 5483 } 5484 5485 err = check_flow_keys_access(env, off, size); 5486 if (!err && t == BPF_READ && value_regno >= 0) 5487 mark_reg_unknown(env, regs, value_regno); 5488 } else if (type_is_sk_pointer(reg->type)) { 5489 if (t == BPF_WRITE) { 5490 verbose(env, "R%d cannot write into %s\n", 5491 regno, reg_type_str(env, reg->type)); 5492 return -EACCES; 5493 } 5494 err = check_sock_access(env, insn_idx, regno, off, size, t); 5495 if (!err && value_regno >= 0) 5496 mark_reg_unknown(env, regs, value_regno); 5497 } else if (reg->type == PTR_TO_TP_BUFFER) { 5498 err = check_tp_buffer_access(env, reg, regno, off, size); 5499 if (!err && t == BPF_READ && value_regno >= 0) 5500 mark_reg_unknown(env, regs, value_regno); 5501 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 5502 !type_may_be_null(reg->type)) { 5503 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 5504 value_regno); 5505 } else if (reg->type == CONST_PTR_TO_MAP) { 5506 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 5507 value_regno); 5508 } else if (base_type(reg->type) == PTR_TO_BUF) { 5509 bool rdonly_mem = type_is_rdonly_mem(reg->type); 5510 u32 *max_access; 5511 5512 if (rdonly_mem) { 5513 if (t == BPF_WRITE) { 5514 verbose(env, "R%d cannot write into %s\n", 5515 regno, reg_type_str(env, reg->type)); 5516 return -EACCES; 5517 } 5518 max_access = &env->prog->aux->max_rdonly_access; 5519 } else { 5520 max_access = &env->prog->aux->max_rdwr_access; 5521 } 5522 5523 err = check_buffer_access(env, reg, regno, off, size, false, 5524 max_access); 5525 5526 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 5527 mark_reg_unknown(env, regs, value_regno); 5528 } else { 5529 verbose(env, "R%d invalid mem access '%s'\n", regno, 5530 reg_type_str(env, reg->type)); 5531 return -EACCES; 5532 } 5533 5534 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 5535 regs[value_regno].type == SCALAR_VALUE) { 5536 /* b/h/w load zero-extends, mark upper bits as known 0 */ 5537 coerce_reg_to_size(®s[value_regno], size); 5538 } 5539 return err; 5540 } 5541 5542 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 5543 { 5544 int load_reg; 5545 int err; 5546 5547 switch (insn->imm) { 5548 case BPF_ADD: 5549 case BPF_ADD | BPF_FETCH: 5550 case BPF_AND: 5551 case BPF_AND | BPF_FETCH: 5552 case BPF_OR: 5553 case BPF_OR | BPF_FETCH: 5554 case BPF_XOR: 5555 case BPF_XOR | BPF_FETCH: 5556 case BPF_XCHG: 5557 case BPF_CMPXCHG: 5558 break; 5559 default: 5560 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 5561 return -EINVAL; 5562 } 5563 5564 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 5565 verbose(env, "invalid atomic operand size\n"); 5566 return -EINVAL; 5567 } 5568 5569 /* check src1 operand */ 5570 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5571 if (err) 5572 return err; 5573 5574 /* check src2 operand */ 5575 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5576 if (err) 5577 return err; 5578 5579 if (insn->imm == BPF_CMPXCHG) { 5580 /* Check comparison of R0 with memory location */ 5581 const u32 aux_reg = BPF_REG_0; 5582 5583 err = check_reg_arg(env, aux_reg, SRC_OP); 5584 if (err) 5585 return err; 5586 5587 if (is_pointer_value(env, aux_reg)) { 5588 verbose(env, "R%d leaks addr into mem\n", aux_reg); 5589 return -EACCES; 5590 } 5591 } 5592 5593 if (is_pointer_value(env, insn->src_reg)) { 5594 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 5595 return -EACCES; 5596 } 5597 5598 if (is_ctx_reg(env, insn->dst_reg) || 5599 is_pkt_reg(env, insn->dst_reg) || 5600 is_flow_key_reg(env, insn->dst_reg) || 5601 is_sk_reg(env, insn->dst_reg)) { 5602 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 5603 insn->dst_reg, 5604 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 5605 return -EACCES; 5606 } 5607 5608 if (insn->imm & BPF_FETCH) { 5609 if (insn->imm == BPF_CMPXCHG) 5610 load_reg = BPF_REG_0; 5611 else 5612 load_reg = insn->src_reg; 5613 5614 /* check and record load of old value */ 5615 err = check_reg_arg(env, load_reg, DST_OP); 5616 if (err) 5617 return err; 5618 } else { 5619 /* This instruction accesses a memory location but doesn't 5620 * actually load it into a register. 5621 */ 5622 load_reg = -1; 5623 } 5624 5625 /* Check whether we can read the memory, with second call for fetch 5626 * case to simulate the register fill. 5627 */ 5628 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5629 BPF_SIZE(insn->code), BPF_READ, -1, true); 5630 if (!err && load_reg >= 0) 5631 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5632 BPF_SIZE(insn->code), BPF_READ, load_reg, 5633 true); 5634 if (err) 5635 return err; 5636 5637 /* Check whether we can write into the same memory. */ 5638 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5639 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 5640 if (err) 5641 return err; 5642 5643 return 0; 5644 } 5645 5646 /* When register 'regno' is used to read the stack (either directly or through 5647 * a helper function) make sure that it's within stack boundary and, depending 5648 * on the access type, that all elements of the stack are initialized. 5649 * 5650 * 'off' includes 'regno->off', but not its dynamic part (if any). 5651 * 5652 * All registers that have been spilled on the stack in the slots within the 5653 * read offsets are marked as read. 5654 */ 5655 static int check_stack_range_initialized( 5656 struct bpf_verifier_env *env, int regno, int off, 5657 int access_size, bool zero_size_allowed, 5658 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 5659 { 5660 struct bpf_reg_state *reg = reg_state(env, regno); 5661 struct bpf_func_state *state = func(env, reg); 5662 int err, min_off, max_off, i, j, slot, spi; 5663 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 5664 enum bpf_access_type bounds_check_type; 5665 /* Some accesses can write anything into the stack, others are 5666 * read-only. 5667 */ 5668 bool clobber = false; 5669 5670 if (access_size == 0 && !zero_size_allowed) { 5671 verbose(env, "invalid zero-sized read\n"); 5672 return -EACCES; 5673 } 5674 5675 if (type == ACCESS_HELPER) { 5676 /* The bounds checks for writes are more permissive than for 5677 * reads. However, if raw_mode is not set, we'll do extra 5678 * checks below. 5679 */ 5680 bounds_check_type = BPF_WRITE; 5681 clobber = true; 5682 } else { 5683 bounds_check_type = BPF_READ; 5684 } 5685 err = check_stack_access_within_bounds(env, regno, off, access_size, 5686 type, bounds_check_type); 5687 if (err) 5688 return err; 5689 5690 5691 if (tnum_is_const(reg->var_off)) { 5692 min_off = max_off = reg->var_off.value + off; 5693 } else { 5694 /* Variable offset is prohibited for unprivileged mode for 5695 * simplicity since it requires corresponding support in 5696 * Spectre masking for stack ALU. 5697 * See also retrieve_ptr_limit(). 5698 */ 5699 if (!env->bypass_spec_v1) { 5700 char tn_buf[48]; 5701 5702 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5703 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 5704 regno, err_extra, tn_buf); 5705 return -EACCES; 5706 } 5707 /* Only initialized buffer on stack is allowed to be accessed 5708 * with variable offset. With uninitialized buffer it's hard to 5709 * guarantee that whole memory is marked as initialized on 5710 * helper return since specific bounds are unknown what may 5711 * cause uninitialized stack leaking. 5712 */ 5713 if (meta && meta->raw_mode) 5714 meta = NULL; 5715 5716 min_off = reg->smin_value + off; 5717 max_off = reg->smax_value + off; 5718 } 5719 5720 if (meta && meta->raw_mode) { 5721 /* Ensure we won't be overwriting dynptrs when simulating byte 5722 * by byte access in check_helper_call using meta.access_size. 5723 * This would be a problem if we have a helper in the future 5724 * which takes: 5725 * 5726 * helper(uninit_mem, len, dynptr) 5727 * 5728 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 5729 * may end up writing to dynptr itself when touching memory from 5730 * arg 1. This can be relaxed on a case by case basis for known 5731 * safe cases, but reject due to the possibilitiy of aliasing by 5732 * default. 5733 */ 5734 for (i = min_off; i < max_off + access_size; i++) { 5735 int stack_off = -i - 1; 5736 5737 spi = __get_spi(i); 5738 /* raw_mode may write past allocated_stack */ 5739 if (state->allocated_stack <= stack_off) 5740 continue; 5741 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 5742 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 5743 return -EACCES; 5744 } 5745 } 5746 meta->access_size = access_size; 5747 meta->regno = regno; 5748 return 0; 5749 } 5750 5751 for (i = min_off; i < max_off + access_size; i++) { 5752 u8 *stype; 5753 5754 slot = -i - 1; 5755 spi = slot / BPF_REG_SIZE; 5756 if (state->allocated_stack <= slot) 5757 goto err; 5758 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 5759 if (*stype == STACK_MISC) 5760 goto mark; 5761 if ((*stype == STACK_ZERO) || 5762 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 5763 if (clobber) { 5764 /* helper can write anything into the stack */ 5765 *stype = STACK_MISC; 5766 } 5767 goto mark; 5768 } 5769 5770 if (is_spilled_reg(&state->stack[spi]) && 5771 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 5772 env->allow_ptr_leaks)) { 5773 if (clobber) { 5774 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 5775 for (j = 0; j < BPF_REG_SIZE; j++) 5776 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 5777 } 5778 goto mark; 5779 } 5780 5781 err: 5782 if (tnum_is_const(reg->var_off)) { 5783 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 5784 err_extra, regno, min_off, i - min_off, access_size); 5785 } else { 5786 char tn_buf[48]; 5787 5788 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5789 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 5790 err_extra, regno, tn_buf, i - min_off, access_size); 5791 } 5792 return -EACCES; 5793 mark: 5794 /* reading any byte out of 8-byte 'spill_slot' will cause 5795 * the whole slot to be marked as 'read' 5796 */ 5797 mark_reg_read(env, &state->stack[spi].spilled_ptr, 5798 state->stack[spi].spilled_ptr.parent, 5799 REG_LIVE_READ64); 5800 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 5801 * be sure that whether stack slot is written to or not. Hence, 5802 * we must still conservatively propagate reads upwards even if 5803 * helper may write to the entire memory range. 5804 */ 5805 } 5806 return update_stack_depth(env, state, min_off); 5807 } 5808 5809 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 5810 int access_size, bool zero_size_allowed, 5811 struct bpf_call_arg_meta *meta) 5812 { 5813 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5814 u32 *max_access; 5815 5816 switch (base_type(reg->type)) { 5817 case PTR_TO_PACKET: 5818 case PTR_TO_PACKET_META: 5819 return check_packet_access(env, regno, reg->off, access_size, 5820 zero_size_allowed); 5821 case PTR_TO_MAP_KEY: 5822 if (meta && meta->raw_mode) { 5823 verbose(env, "R%d cannot write into %s\n", regno, 5824 reg_type_str(env, reg->type)); 5825 return -EACCES; 5826 } 5827 return check_mem_region_access(env, regno, reg->off, access_size, 5828 reg->map_ptr->key_size, false); 5829 case PTR_TO_MAP_VALUE: 5830 if (check_map_access_type(env, regno, reg->off, access_size, 5831 meta && meta->raw_mode ? BPF_WRITE : 5832 BPF_READ)) 5833 return -EACCES; 5834 return check_map_access(env, regno, reg->off, access_size, 5835 zero_size_allowed, ACCESS_HELPER); 5836 case PTR_TO_MEM: 5837 if (type_is_rdonly_mem(reg->type)) { 5838 if (meta && meta->raw_mode) { 5839 verbose(env, "R%d cannot write into %s\n", regno, 5840 reg_type_str(env, reg->type)); 5841 return -EACCES; 5842 } 5843 } 5844 return check_mem_region_access(env, regno, reg->off, 5845 access_size, reg->mem_size, 5846 zero_size_allowed); 5847 case PTR_TO_BUF: 5848 if (type_is_rdonly_mem(reg->type)) { 5849 if (meta && meta->raw_mode) { 5850 verbose(env, "R%d cannot write into %s\n", regno, 5851 reg_type_str(env, reg->type)); 5852 return -EACCES; 5853 } 5854 5855 max_access = &env->prog->aux->max_rdonly_access; 5856 } else { 5857 max_access = &env->prog->aux->max_rdwr_access; 5858 } 5859 return check_buffer_access(env, reg, regno, reg->off, 5860 access_size, zero_size_allowed, 5861 max_access); 5862 case PTR_TO_STACK: 5863 return check_stack_range_initialized( 5864 env, 5865 regno, reg->off, access_size, 5866 zero_size_allowed, ACCESS_HELPER, meta); 5867 case PTR_TO_CTX: 5868 /* in case the function doesn't know how to access the context, 5869 * (because we are in a program of type SYSCALL for example), we 5870 * can not statically check its size. 5871 * Dynamically check it now. 5872 */ 5873 if (!env->ops->convert_ctx_access) { 5874 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 5875 int offset = access_size - 1; 5876 5877 /* Allow zero-byte read from PTR_TO_CTX */ 5878 if (access_size == 0) 5879 return zero_size_allowed ? 0 : -EACCES; 5880 5881 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 5882 atype, -1, false); 5883 } 5884 5885 fallthrough; 5886 default: /* scalar_value or invalid ptr */ 5887 /* Allow zero-byte read from NULL, regardless of pointer type */ 5888 if (zero_size_allowed && access_size == 0 && 5889 register_is_null(reg)) 5890 return 0; 5891 5892 verbose(env, "R%d type=%s ", regno, 5893 reg_type_str(env, reg->type)); 5894 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 5895 return -EACCES; 5896 } 5897 } 5898 5899 static int check_mem_size_reg(struct bpf_verifier_env *env, 5900 struct bpf_reg_state *reg, u32 regno, 5901 bool zero_size_allowed, 5902 struct bpf_call_arg_meta *meta) 5903 { 5904 int err; 5905 5906 /* This is used to refine r0 return value bounds for helpers 5907 * that enforce this value as an upper bound on return values. 5908 * See do_refine_retval_range() for helpers that can refine 5909 * the return value. C type of helper is u32 so we pull register 5910 * bound from umax_value however, if negative verifier errors 5911 * out. Only upper bounds can be learned because retval is an 5912 * int type and negative retvals are allowed. 5913 */ 5914 meta->msize_max_value = reg->umax_value; 5915 5916 /* The register is SCALAR_VALUE; the access check 5917 * happens using its boundaries. 5918 */ 5919 if (!tnum_is_const(reg->var_off)) 5920 /* For unprivileged variable accesses, disable raw 5921 * mode so that the program is required to 5922 * initialize all the memory that the helper could 5923 * just partially fill up. 5924 */ 5925 meta = NULL; 5926 5927 if (reg->smin_value < 0) { 5928 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5929 regno); 5930 return -EACCES; 5931 } 5932 5933 if (reg->umin_value == 0) { 5934 err = check_helper_mem_access(env, regno - 1, 0, 5935 zero_size_allowed, 5936 meta); 5937 if (err) 5938 return err; 5939 } 5940 5941 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5942 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5943 regno); 5944 return -EACCES; 5945 } 5946 err = check_helper_mem_access(env, regno - 1, 5947 reg->umax_value, 5948 zero_size_allowed, meta); 5949 if (!err) 5950 err = mark_chain_precision(env, regno); 5951 return err; 5952 } 5953 5954 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5955 u32 regno, u32 mem_size) 5956 { 5957 bool may_be_null = type_may_be_null(reg->type); 5958 struct bpf_reg_state saved_reg; 5959 struct bpf_call_arg_meta meta; 5960 int err; 5961 5962 if (register_is_null(reg)) 5963 return 0; 5964 5965 memset(&meta, 0, sizeof(meta)); 5966 /* Assuming that the register contains a value check if the memory 5967 * access is safe. Temporarily save and restore the register's state as 5968 * the conversion shouldn't be visible to a caller. 5969 */ 5970 if (may_be_null) { 5971 saved_reg = *reg; 5972 mark_ptr_not_null_reg(reg); 5973 } 5974 5975 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 5976 /* Check access for BPF_WRITE */ 5977 meta.raw_mode = true; 5978 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 5979 5980 if (may_be_null) 5981 *reg = saved_reg; 5982 5983 return err; 5984 } 5985 5986 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 5987 u32 regno) 5988 { 5989 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 5990 bool may_be_null = type_may_be_null(mem_reg->type); 5991 struct bpf_reg_state saved_reg; 5992 struct bpf_call_arg_meta meta; 5993 int err; 5994 5995 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 5996 5997 memset(&meta, 0, sizeof(meta)); 5998 5999 if (may_be_null) { 6000 saved_reg = *mem_reg; 6001 mark_ptr_not_null_reg(mem_reg); 6002 } 6003 6004 err = check_mem_size_reg(env, reg, regno, true, &meta); 6005 /* Check access for BPF_WRITE */ 6006 meta.raw_mode = true; 6007 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 6008 6009 if (may_be_null) 6010 *mem_reg = saved_reg; 6011 return err; 6012 } 6013 6014 /* Implementation details: 6015 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 6016 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 6017 * Two bpf_map_lookups (even with the same key) will have different reg->id. 6018 * Two separate bpf_obj_new will also have different reg->id. 6019 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 6020 * clears reg->id after value_or_null->value transition, since the verifier only 6021 * cares about the range of access to valid map value pointer and doesn't care 6022 * about actual address of the map element. 6023 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 6024 * reg->id > 0 after value_or_null->value transition. By doing so 6025 * two bpf_map_lookups will be considered two different pointers that 6026 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 6027 * returned from bpf_obj_new. 6028 * The verifier allows taking only one bpf_spin_lock at a time to avoid 6029 * dead-locks. 6030 * Since only one bpf_spin_lock is allowed the checks are simpler than 6031 * reg_is_refcounted() logic. The verifier needs to remember only 6032 * one spin_lock instead of array of acquired_refs. 6033 * cur_state->active_lock remembers which map value element or allocated 6034 * object got locked and clears it after bpf_spin_unlock. 6035 */ 6036 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 6037 bool is_lock) 6038 { 6039 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6040 struct bpf_verifier_state *cur = env->cur_state; 6041 bool is_const = tnum_is_const(reg->var_off); 6042 u64 val = reg->var_off.value; 6043 struct bpf_map *map = NULL; 6044 struct btf *btf = NULL; 6045 struct btf_record *rec; 6046 6047 if (!is_const) { 6048 verbose(env, 6049 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 6050 regno); 6051 return -EINVAL; 6052 } 6053 if (reg->type == PTR_TO_MAP_VALUE) { 6054 map = reg->map_ptr; 6055 if (!map->btf) { 6056 verbose(env, 6057 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 6058 map->name); 6059 return -EINVAL; 6060 } 6061 } else { 6062 btf = reg->btf; 6063 } 6064 6065 rec = reg_btf_record(reg); 6066 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 6067 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 6068 map ? map->name : "kptr"); 6069 return -EINVAL; 6070 } 6071 if (rec->spin_lock_off != val + reg->off) { 6072 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 6073 val + reg->off, rec->spin_lock_off); 6074 return -EINVAL; 6075 } 6076 if (is_lock) { 6077 if (cur->active_lock.ptr) { 6078 verbose(env, 6079 "Locking two bpf_spin_locks are not allowed\n"); 6080 return -EINVAL; 6081 } 6082 if (map) 6083 cur->active_lock.ptr = map; 6084 else 6085 cur->active_lock.ptr = btf; 6086 cur->active_lock.id = reg->id; 6087 } else { 6088 void *ptr; 6089 6090 if (map) 6091 ptr = map; 6092 else 6093 ptr = btf; 6094 6095 if (!cur->active_lock.ptr) { 6096 verbose(env, "bpf_spin_unlock without taking a lock\n"); 6097 return -EINVAL; 6098 } 6099 if (cur->active_lock.ptr != ptr || 6100 cur->active_lock.id != reg->id) { 6101 verbose(env, "bpf_spin_unlock of different lock\n"); 6102 return -EINVAL; 6103 } 6104 6105 invalidate_non_owning_refs(env); 6106 6107 cur->active_lock.ptr = NULL; 6108 cur->active_lock.id = 0; 6109 } 6110 return 0; 6111 } 6112 6113 static int process_timer_func(struct bpf_verifier_env *env, int regno, 6114 struct bpf_call_arg_meta *meta) 6115 { 6116 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6117 bool is_const = tnum_is_const(reg->var_off); 6118 struct bpf_map *map = reg->map_ptr; 6119 u64 val = reg->var_off.value; 6120 6121 if (!is_const) { 6122 verbose(env, 6123 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 6124 regno); 6125 return -EINVAL; 6126 } 6127 if (!map->btf) { 6128 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 6129 map->name); 6130 return -EINVAL; 6131 } 6132 if (!btf_record_has_field(map->record, BPF_TIMER)) { 6133 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 6134 return -EINVAL; 6135 } 6136 if (map->record->timer_off != val + reg->off) { 6137 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 6138 val + reg->off, map->record->timer_off); 6139 return -EINVAL; 6140 } 6141 if (meta->map_ptr) { 6142 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 6143 return -EFAULT; 6144 } 6145 meta->map_uid = reg->map_uid; 6146 meta->map_ptr = map; 6147 return 0; 6148 } 6149 6150 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 6151 struct bpf_call_arg_meta *meta) 6152 { 6153 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6154 struct bpf_map *map_ptr = reg->map_ptr; 6155 struct btf_field *kptr_field; 6156 u32 kptr_off; 6157 6158 if (!tnum_is_const(reg->var_off)) { 6159 verbose(env, 6160 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 6161 regno); 6162 return -EINVAL; 6163 } 6164 if (!map_ptr->btf) { 6165 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 6166 map_ptr->name); 6167 return -EINVAL; 6168 } 6169 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 6170 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 6171 return -EINVAL; 6172 } 6173 6174 meta->map_ptr = map_ptr; 6175 kptr_off = reg->off + reg->var_off.value; 6176 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 6177 if (!kptr_field) { 6178 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 6179 return -EACCES; 6180 } 6181 if (kptr_field->type != BPF_KPTR_REF) { 6182 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 6183 return -EACCES; 6184 } 6185 meta->kptr_field = kptr_field; 6186 return 0; 6187 } 6188 6189 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 6190 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 6191 * 6192 * In both cases we deal with the first 8 bytes, but need to mark the next 8 6193 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 6194 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 6195 * 6196 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 6197 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 6198 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 6199 * mutate the view of the dynptr and also possibly destroy it. In the latter 6200 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 6201 * memory that dynptr points to. 6202 * 6203 * The verifier will keep track both levels of mutation (bpf_dynptr's in 6204 * reg->type and the memory's in reg->dynptr.type), but there is no support for 6205 * readonly dynptr view yet, hence only the first case is tracked and checked. 6206 * 6207 * This is consistent with how C applies the const modifier to a struct object, 6208 * where the pointer itself inside bpf_dynptr becomes const but not what it 6209 * points to. 6210 * 6211 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 6212 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 6213 */ 6214 int process_dynptr_func(struct bpf_verifier_env *env, int regno, 6215 enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta) 6216 { 6217 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6218 int spi = 0; 6219 6220 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 6221 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 6222 */ 6223 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 6224 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 6225 return -EFAULT; 6226 } 6227 /* CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 6228 * check_func_arg_reg_off's logic. We only need to check offset 6229 * and its alignment for PTR_TO_STACK. 6230 */ 6231 if (reg->type == PTR_TO_STACK) { 6232 spi = dynptr_get_spi(env, reg); 6233 if (spi < 0 && spi != -ERANGE) 6234 return spi; 6235 } 6236 6237 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 6238 * constructing a mutable bpf_dynptr object. 6239 * 6240 * Currently, this is only possible with PTR_TO_STACK 6241 * pointing to a region of at least 16 bytes which doesn't 6242 * contain an existing bpf_dynptr. 6243 * 6244 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 6245 * mutated or destroyed. However, the memory it points to 6246 * may be mutated. 6247 * 6248 * None - Points to a initialized dynptr that can be mutated and 6249 * destroyed, including mutation of the memory it points 6250 * to. 6251 */ 6252 if (arg_type & MEM_UNINIT) { 6253 if (!is_dynptr_reg_valid_uninit(env, reg, spi)) { 6254 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 6255 return -EINVAL; 6256 } 6257 6258 /* We only support one dynptr being uninitialized at the moment, 6259 * which is sufficient for the helper functions we have right now. 6260 */ 6261 if (meta->uninit_dynptr_regno) { 6262 verbose(env, "verifier internal error: multiple uninitialized dynptr args\n"); 6263 return -EFAULT; 6264 } 6265 6266 meta->uninit_dynptr_regno = regno; 6267 } else /* MEM_RDONLY and None case from above */ { 6268 int err; 6269 6270 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 6271 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 6272 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 6273 return -EINVAL; 6274 } 6275 6276 if (!is_dynptr_reg_valid_init(env, reg, spi)) { 6277 verbose(env, 6278 "Expected an initialized dynptr as arg #%d\n", 6279 regno); 6280 return -EINVAL; 6281 } 6282 6283 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 6284 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 6285 const char *err_extra = ""; 6286 6287 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 6288 case DYNPTR_TYPE_LOCAL: 6289 err_extra = "local"; 6290 break; 6291 case DYNPTR_TYPE_RINGBUF: 6292 err_extra = "ringbuf"; 6293 break; 6294 default: 6295 err_extra = "<unknown>"; 6296 break; 6297 } 6298 verbose(env, 6299 "Expected a dynptr of type %s as arg #%d\n", 6300 err_extra, regno); 6301 return -EINVAL; 6302 } 6303 6304 err = mark_dynptr_read(env, reg); 6305 if (err) 6306 return err; 6307 } 6308 return 0; 6309 } 6310 6311 static bool arg_type_is_mem_size(enum bpf_arg_type type) 6312 { 6313 return type == ARG_CONST_SIZE || 6314 type == ARG_CONST_SIZE_OR_ZERO; 6315 } 6316 6317 static bool arg_type_is_release(enum bpf_arg_type type) 6318 { 6319 return type & OBJ_RELEASE; 6320 } 6321 6322 static bool arg_type_is_dynptr(enum bpf_arg_type type) 6323 { 6324 return base_type(type) == ARG_PTR_TO_DYNPTR; 6325 } 6326 6327 static int int_ptr_type_to_size(enum bpf_arg_type type) 6328 { 6329 if (type == ARG_PTR_TO_INT) 6330 return sizeof(u32); 6331 else if (type == ARG_PTR_TO_LONG) 6332 return sizeof(u64); 6333 6334 return -EINVAL; 6335 } 6336 6337 static int resolve_map_arg_type(struct bpf_verifier_env *env, 6338 const struct bpf_call_arg_meta *meta, 6339 enum bpf_arg_type *arg_type) 6340 { 6341 if (!meta->map_ptr) { 6342 /* kernel subsystem misconfigured verifier */ 6343 verbose(env, "invalid map_ptr to access map->type\n"); 6344 return -EACCES; 6345 } 6346 6347 switch (meta->map_ptr->map_type) { 6348 case BPF_MAP_TYPE_SOCKMAP: 6349 case BPF_MAP_TYPE_SOCKHASH: 6350 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 6351 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 6352 } else { 6353 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 6354 return -EINVAL; 6355 } 6356 break; 6357 case BPF_MAP_TYPE_BLOOM_FILTER: 6358 if (meta->func_id == BPF_FUNC_map_peek_elem) 6359 *arg_type = ARG_PTR_TO_MAP_VALUE; 6360 break; 6361 default: 6362 break; 6363 } 6364 return 0; 6365 } 6366 6367 struct bpf_reg_types { 6368 const enum bpf_reg_type types[10]; 6369 u32 *btf_id; 6370 }; 6371 6372 static const struct bpf_reg_types sock_types = { 6373 .types = { 6374 PTR_TO_SOCK_COMMON, 6375 PTR_TO_SOCKET, 6376 PTR_TO_TCP_SOCK, 6377 PTR_TO_XDP_SOCK, 6378 }, 6379 }; 6380 6381 #ifdef CONFIG_NET 6382 static const struct bpf_reg_types btf_id_sock_common_types = { 6383 .types = { 6384 PTR_TO_SOCK_COMMON, 6385 PTR_TO_SOCKET, 6386 PTR_TO_TCP_SOCK, 6387 PTR_TO_XDP_SOCK, 6388 PTR_TO_BTF_ID, 6389 PTR_TO_BTF_ID | PTR_TRUSTED, 6390 }, 6391 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 6392 }; 6393 #endif 6394 6395 static const struct bpf_reg_types mem_types = { 6396 .types = { 6397 PTR_TO_STACK, 6398 PTR_TO_PACKET, 6399 PTR_TO_PACKET_META, 6400 PTR_TO_MAP_KEY, 6401 PTR_TO_MAP_VALUE, 6402 PTR_TO_MEM, 6403 PTR_TO_MEM | MEM_RINGBUF, 6404 PTR_TO_BUF, 6405 }, 6406 }; 6407 6408 static const struct bpf_reg_types int_ptr_types = { 6409 .types = { 6410 PTR_TO_STACK, 6411 PTR_TO_PACKET, 6412 PTR_TO_PACKET_META, 6413 PTR_TO_MAP_KEY, 6414 PTR_TO_MAP_VALUE, 6415 }, 6416 }; 6417 6418 static const struct bpf_reg_types spin_lock_types = { 6419 .types = { 6420 PTR_TO_MAP_VALUE, 6421 PTR_TO_BTF_ID | MEM_ALLOC, 6422 } 6423 }; 6424 6425 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 6426 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 6427 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 6428 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 6429 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 6430 static const struct bpf_reg_types btf_ptr_types = { 6431 .types = { 6432 PTR_TO_BTF_ID, 6433 PTR_TO_BTF_ID | PTR_TRUSTED, 6434 PTR_TO_BTF_ID | MEM_RCU, 6435 }, 6436 }; 6437 static const struct bpf_reg_types percpu_btf_ptr_types = { 6438 .types = { 6439 PTR_TO_BTF_ID | MEM_PERCPU, 6440 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 6441 } 6442 }; 6443 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 6444 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 6445 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6446 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 6447 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 6448 static const struct bpf_reg_types dynptr_types = { 6449 .types = { 6450 PTR_TO_STACK, 6451 CONST_PTR_TO_DYNPTR, 6452 } 6453 }; 6454 6455 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 6456 [ARG_PTR_TO_MAP_KEY] = &mem_types, 6457 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 6458 [ARG_CONST_SIZE] = &scalar_types, 6459 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 6460 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 6461 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 6462 [ARG_PTR_TO_CTX] = &context_types, 6463 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 6464 #ifdef CONFIG_NET 6465 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 6466 #endif 6467 [ARG_PTR_TO_SOCKET] = &fullsock_types, 6468 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 6469 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 6470 [ARG_PTR_TO_MEM] = &mem_types, 6471 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 6472 [ARG_PTR_TO_INT] = &int_ptr_types, 6473 [ARG_PTR_TO_LONG] = &int_ptr_types, 6474 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 6475 [ARG_PTR_TO_FUNC] = &func_ptr_types, 6476 [ARG_PTR_TO_STACK] = &stack_ptr_types, 6477 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 6478 [ARG_PTR_TO_TIMER] = &timer_types, 6479 [ARG_PTR_TO_KPTR] = &kptr_types, 6480 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 6481 }; 6482 6483 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 6484 enum bpf_arg_type arg_type, 6485 const u32 *arg_btf_id, 6486 struct bpf_call_arg_meta *meta) 6487 { 6488 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6489 enum bpf_reg_type expected, type = reg->type; 6490 const struct bpf_reg_types *compatible; 6491 int i, j; 6492 6493 compatible = compatible_reg_types[base_type(arg_type)]; 6494 if (!compatible) { 6495 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 6496 return -EFAULT; 6497 } 6498 6499 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 6500 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 6501 * 6502 * Same for MAYBE_NULL: 6503 * 6504 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 6505 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 6506 * 6507 * Therefore we fold these flags depending on the arg_type before comparison. 6508 */ 6509 if (arg_type & MEM_RDONLY) 6510 type &= ~MEM_RDONLY; 6511 if (arg_type & PTR_MAYBE_NULL) 6512 type &= ~PTR_MAYBE_NULL; 6513 6514 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 6515 expected = compatible->types[i]; 6516 if (expected == NOT_INIT) 6517 break; 6518 6519 if (type == expected) 6520 goto found; 6521 } 6522 6523 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 6524 for (j = 0; j + 1 < i; j++) 6525 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 6526 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 6527 return -EACCES; 6528 6529 found: 6530 if (reg->type == PTR_TO_BTF_ID || reg->type & PTR_TRUSTED) { 6531 /* For bpf_sk_release, it needs to match against first member 6532 * 'struct sock_common', hence make an exception for it. This 6533 * allows bpf_sk_release to work for multiple socket types. 6534 */ 6535 bool strict_type_match = arg_type_is_release(arg_type) && 6536 meta->func_id != BPF_FUNC_sk_release; 6537 6538 if (!arg_btf_id) { 6539 if (!compatible->btf_id) { 6540 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 6541 return -EFAULT; 6542 } 6543 arg_btf_id = compatible->btf_id; 6544 } 6545 6546 if (meta->func_id == BPF_FUNC_kptr_xchg) { 6547 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 6548 return -EACCES; 6549 } else { 6550 if (arg_btf_id == BPF_PTR_POISON) { 6551 verbose(env, "verifier internal error:"); 6552 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 6553 regno); 6554 return -EACCES; 6555 } 6556 6557 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 6558 btf_vmlinux, *arg_btf_id, 6559 strict_type_match)) { 6560 verbose(env, "R%d is of type %s but %s is expected\n", 6561 regno, kernel_type_name(reg->btf, reg->btf_id), 6562 kernel_type_name(btf_vmlinux, *arg_btf_id)); 6563 return -EACCES; 6564 } 6565 } 6566 } else if (type_is_alloc(reg->type)) { 6567 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock) { 6568 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 6569 return -EFAULT; 6570 } 6571 } 6572 6573 return 0; 6574 } 6575 6576 static struct btf_field * 6577 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 6578 { 6579 struct btf_field *field; 6580 struct btf_record *rec; 6581 6582 rec = reg_btf_record(reg); 6583 if (!rec) 6584 return NULL; 6585 6586 field = btf_record_find(rec, off, fields); 6587 if (!field) 6588 return NULL; 6589 6590 return field; 6591 } 6592 6593 int check_func_arg_reg_off(struct bpf_verifier_env *env, 6594 const struct bpf_reg_state *reg, int regno, 6595 enum bpf_arg_type arg_type) 6596 { 6597 u32 type = reg->type; 6598 6599 /* When referenced register is passed to release function, its fixed 6600 * offset must be 0. 6601 * 6602 * We will check arg_type_is_release reg has ref_obj_id when storing 6603 * meta->release_regno. 6604 */ 6605 if (arg_type_is_release(arg_type)) { 6606 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 6607 * may not directly point to the object being released, but to 6608 * dynptr pointing to such object, which might be at some offset 6609 * on the stack. In that case, we simply to fallback to the 6610 * default handling. 6611 */ 6612 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 6613 return 0; 6614 6615 if ((type_is_ptr_alloc_obj(type) || type_is_non_owning_ref(type)) && reg->off) { 6616 if (reg_find_field_offset(reg, reg->off, BPF_GRAPH_NODE_OR_ROOT)) 6617 return __check_ptr_off_reg(env, reg, regno, true); 6618 6619 verbose(env, "R%d must have zero offset when passed to release func\n", 6620 regno); 6621 verbose(env, "No graph node or root found at R%d type:%s off:%d\n", regno, 6622 kernel_type_name(reg->btf, reg->btf_id), reg->off); 6623 return -EINVAL; 6624 } 6625 6626 /* Doing check_ptr_off_reg check for the offset will catch this 6627 * because fixed_off_ok is false, but checking here allows us 6628 * to give the user a better error message. 6629 */ 6630 if (reg->off) { 6631 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 6632 regno); 6633 return -EINVAL; 6634 } 6635 return __check_ptr_off_reg(env, reg, regno, false); 6636 } 6637 6638 switch (type) { 6639 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 6640 case PTR_TO_STACK: 6641 case PTR_TO_PACKET: 6642 case PTR_TO_PACKET_META: 6643 case PTR_TO_MAP_KEY: 6644 case PTR_TO_MAP_VALUE: 6645 case PTR_TO_MEM: 6646 case PTR_TO_MEM | MEM_RDONLY: 6647 case PTR_TO_MEM | MEM_RINGBUF: 6648 case PTR_TO_BUF: 6649 case PTR_TO_BUF | MEM_RDONLY: 6650 case SCALAR_VALUE: 6651 return 0; 6652 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 6653 * fixed offset. 6654 */ 6655 case PTR_TO_BTF_ID: 6656 case PTR_TO_BTF_ID | MEM_ALLOC: 6657 case PTR_TO_BTF_ID | PTR_TRUSTED: 6658 case PTR_TO_BTF_ID | MEM_RCU: 6659 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 6660 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 6661 /* When referenced PTR_TO_BTF_ID is passed to release function, 6662 * its fixed offset must be 0. In the other cases, fixed offset 6663 * can be non-zero. This was already checked above. So pass 6664 * fixed_off_ok as true to allow fixed offset for all other 6665 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 6666 * still need to do checks instead of returning. 6667 */ 6668 return __check_ptr_off_reg(env, reg, regno, true); 6669 default: 6670 return __check_ptr_off_reg(env, reg, regno, false); 6671 } 6672 } 6673 6674 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6675 { 6676 struct bpf_func_state *state = func(env, reg); 6677 int spi; 6678 6679 if (reg->type == CONST_PTR_TO_DYNPTR) 6680 return reg->id; 6681 spi = dynptr_get_spi(env, reg); 6682 if (spi < 0) 6683 return spi; 6684 return state->stack[spi].spilled_ptr.id; 6685 } 6686 6687 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 6688 { 6689 struct bpf_func_state *state = func(env, reg); 6690 int spi; 6691 6692 if (reg->type == CONST_PTR_TO_DYNPTR) 6693 return reg->ref_obj_id; 6694 spi = dynptr_get_spi(env, reg); 6695 if (spi < 0) 6696 return spi; 6697 return state->stack[spi].spilled_ptr.ref_obj_id; 6698 } 6699 6700 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 6701 struct bpf_call_arg_meta *meta, 6702 const struct bpf_func_proto *fn) 6703 { 6704 u32 regno = BPF_REG_1 + arg; 6705 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 6706 enum bpf_arg_type arg_type = fn->arg_type[arg]; 6707 enum bpf_reg_type type = reg->type; 6708 u32 *arg_btf_id = NULL; 6709 int err = 0; 6710 6711 if (arg_type == ARG_DONTCARE) 6712 return 0; 6713 6714 err = check_reg_arg(env, regno, SRC_OP); 6715 if (err) 6716 return err; 6717 6718 if (arg_type == ARG_ANYTHING) { 6719 if (is_pointer_value(env, regno)) { 6720 verbose(env, "R%d leaks addr into helper function\n", 6721 regno); 6722 return -EACCES; 6723 } 6724 return 0; 6725 } 6726 6727 if (type_is_pkt_pointer(type) && 6728 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 6729 verbose(env, "helper access to the packet is not allowed\n"); 6730 return -EACCES; 6731 } 6732 6733 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 6734 err = resolve_map_arg_type(env, meta, &arg_type); 6735 if (err) 6736 return err; 6737 } 6738 6739 if (register_is_null(reg) && type_may_be_null(arg_type)) 6740 /* A NULL register has a SCALAR_VALUE type, so skip 6741 * type checking. 6742 */ 6743 goto skip_type_check; 6744 6745 /* arg_btf_id and arg_size are in a union. */ 6746 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 6747 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 6748 arg_btf_id = fn->arg_btf_id[arg]; 6749 6750 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 6751 if (err) 6752 return err; 6753 6754 err = check_func_arg_reg_off(env, reg, regno, arg_type); 6755 if (err) 6756 return err; 6757 6758 skip_type_check: 6759 if (arg_type_is_release(arg_type)) { 6760 if (arg_type_is_dynptr(arg_type)) { 6761 struct bpf_func_state *state = func(env, reg); 6762 int spi; 6763 6764 /* Only dynptr created on stack can be released, thus 6765 * the get_spi and stack state checks for spilled_ptr 6766 * should only be done before process_dynptr_func for 6767 * PTR_TO_STACK. 6768 */ 6769 if (reg->type == PTR_TO_STACK) { 6770 spi = dynptr_get_spi(env, reg); 6771 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 6772 verbose(env, "arg %d is an unacquired reference\n", regno); 6773 return -EINVAL; 6774 } 6775 } else { 6776 verbose(env, "cannot release unowned const bpf_dynptr\n"); 6777 return -EINVAL; 6778 } 6779 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 6780 verbose(env, "R%d must be referenced when passed to release function\n", 6781 regno); 6782 return -EINVAL; 6783 } 6784 if (meta->release_regno) { 6785 verbose(env, "verifier internal error: more than one release argument\n"); 6786 return -EFAULT; 6787 } 6788 meta->release_regno = regno; 6789 } 6790 6791 if (reg->ref_obj_id) { 6792 if (meta->ref_obj_id) { 6793 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 6794 regno, reg->ref_obj_id, 6795 meta->ref_obj_id); 6796 return -EFAULT; 6797 } 6798 meta->ref_obj_id = reg->ref_obj_id; 6799 } 6800 6801 switch (base_type(arg_type)) { 6802 case ARG_CONST_MAP_PTR: 6803 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 6804 if (meta->map_ptr) { 6805 /* Use map_uid (which is unique id of inner map) to reject: 6806 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 6807 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 6808 * if (inner_map1 && inner_map2) { 6809 * timer = bpf_map_lookup_elem(inner_map1); 6810 * if (timer) 6811 * // mismatch would have been allowed 6812 * bpf_timer_init(timer, inner_map2); 6813 * } 6814 * 6815 * Comparing map_ptr is enough to distinguish normal and outer maps. 6816 */ 6817 if (meta->map_ptr != reg->map_ptr || 6818 meta->map_uid != reg->map_uid) { 6819 verbose(env, 6820 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 6821 meta->map_uid, reg->map_uid); 6822 return -EINVAL; 6823 } 6824 } 6825 meta->map_ptr = reg->map_ptr; 6826 meta->map_uid = reg->map_uid; 6827 break; 6828 case ARG_PTR_TO_MAP_KEY: 6829 /* bpf_map_xxx(..., map_ptr, ..., key) call: 6830 * check that [key, key + map->key_size) are within 6831 * stack limits and initialized 6832 */ 6833 if (!meta->map_ptr) { 6834 /* in function declaration map_ptr must come before 6835 * map_key, so that it's verified and known before 6836 * we have to check map_key here. Otherwise it means 6837 * that kernel subsystem misconfigured verifier 6838 */ 6839 verbose(env, "invalid map_ptr to access map->key\n"); 6840 return -EACCES; 6841 } 6842 err = check_helper_mem_access(env, regno, 6843 meta->map_ptr->key_size, false, 6844 NULL); 6845 break; 6846 case ARG_PTR_TO_MAP_VALUE: 6847 if (type_may_be_null(arg_type) && register_is_null(reg)) 6848 return 0; 6849 6850 /* bpf_map_xxx(..., map_ptr, ..., value) call: 6851 * check [value, value + map->value_size) validity 6852 */ 6853 if (!meta->map_ptr) { 6854 /* kernel subsystem misconfigured verifier */ 6855 verbose(env, "invalid map_ptr to access map->value\n"); 6856 return -EACCES; 6857 } 6858 meta->raw_mode = arg_type & MEM_UNINIT; 6859 err = check_helper_mem_access(env, regno, 6860 meta->map_ptr->value_size, false, 6861 meta); 6862 break; 6863 case ARG_PTR_TO_PERCPU_BTF_ID: 6864 if (!reg->btf_id) { 6865 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 6866 return -EACCES; 6867 } 6868 meta->ret_btf = reg->btf; 6869 meta->ret_btf_id = reg->btf_id; 6870 break; 6871 case ARG_PTR_TO_SPIN_LOCK: 6872 if (in_rbtree_lock_required_cb(env)) { 6873 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 6874 return -EACCES; 6875 } 6876 if (meta->func_id == BPF_FUNC_spin_lock) { 6877 err = process_spin_lock(env, regno, true); 6878 if (err) 6879 return err; 6880 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 6881 err = process_spin_lock(env, regno, false); 6882 if (err) 6883 return err; 6884 } else { 6885 verbose(env, "verifier internal error\n"); 6886 return -EFAULT; 6887 } 6888 break; 6889 case ARG_PTR_TO_TIMER: 6890 err = process_timer_func(env, regno, meta); 6891 if (err) 6892 return err; 6893 break; 6894 case ARG_PTR_TO_FUNC: 6895 meta->subprogno = reg->subprogno; 6896 break; 6897 case ARG_PTR_TO_MEM: 6898 /* The access to this pointer is only checked when we hit the 6899 * next is_mem_size argument below. 6900 */ 6901 meta->raw_mode = arg_type & MEM_UNINIT; 6902 if (arg_type & MEM_FIXED_SIZE) { 6903 err = check_helper_mem_access(env, regno, 6904 fn->arg_size[arg], false, 6905 meta); 6906 } 6907 break; 6908 case ARG_CONST_SIZE: 6909 err = check_mem_size_reg(env, reg, regno, false, meta); 6910 break; 6911 case ARG_CONST_SIZE_OR_ZERO: 6912 err = check_mem_size_reg(env, reg, regno, true, meta); 6913 break; 6914 case ARG_PTR_TO_DYNPTR: 6915 err = process_dynptr_func(env, regno, arg_type, meta); 6916 if (err) 6917 return err; 6918 break; 6919 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 6920 if (!tnum_is_const(reg->var_off)) { 6921 verbose(env, "R%d is not a known constant'\n", 6922 regno); 6923 return -EACCES; 6924 } 6925 meta->mem_size = reg->var_off.value; 6926 err = mark_chain_precision(env, regno); 6927 if (err) 6928 return err; 6929 break; 6930 case ARG_PTR_TO_INT: 6931 case ARG_PTR_TO_LONG: 6932 { 6933 int size = int_ptr_type_to_size(arg_type); 6934 6935 err = check_helper_mem_access(env, regno, size, false, meta); 6936 if (err) 6937 return err; 6938 err = check_ptr_alignment(env, reg, 0, size, true); 6939 break; 6940 } 6941 case ARG_PTR_TO_CONST_STR: 6942 { 6943 struct bpf_map *map = reg->map_ptr; 6944 int map_off; 6945 u64 map_addr; 6946 char *str_ptr; 6947 6948 if (!bpf_map_is_rdonly(map)) { 6949 verbose(env, "R%d does not point to a readonly map'\n", regno); 6950 return -EACCES; 6951 } 6952 6953 if (!tnum_is_const(reg->var_off)) { 6954 verbose(env, "R%d is not a constant address'\n", regno); 6955 return -EACCES; 6956 } 6957 6958 if (!map->ops->map_direct_value_addr) { 6959 verbose(env, "no direct value access support for this map type\n"); 6960 return -EACCES; 6961 } 6962 6963 err = check_map_access(env, regno, reg->off, 6964 map->value_size - reg->off, false, 6965 ACCESS_HELPER); 6966 if (err) 6967 return err; 6968 6969 map_off = reg->off + reg->var_off.value; 6970 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 6971 if (err) { 6972 verbose(env, "direct value access on string failed\n"); 6973 return err; 6974 } 6975 6976 str_ptr = (char *)(long)(map_addr); 6977 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 6978 verbose(env, "string is not zero-terminated\n"); 6979 return -EINVAL; 6980 } 6981 break; 6982 } 6983 case ARG_PTR_TO_KPTR: 6984 err = process_kptr_func(env, regno, meta); 6985 if (err) 6986 return err; 6987 break; 6988 } 6989 6990 return err; 6991 } 6992 6993 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 6994 { 6995 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6996 enum bpf_prog_type type = resolve_prog_type(env->prog); 6997 6998 if (func_id != BPF_FUNC_map_update_elem) 6999 return false; 7000 7001 /* It's not possible to get access to a locked struct sock in these 7002 * contexts, so updating is safe. 7003 */ 7004 switch (type) { 7005 case BPF_PROG_TYPE_TRACING: 7006 if (eatype == BPF_TRACE_ITER) 7007 return true; 7008 break; 7009 case BPF_PROG_TYPE_SOCKET_FILTER: 7010 case BPF_PROG_TYPE_SCHED_CLS: 7011 case BPF_PROG_TYPE_SCHED_ACT: 7012 case BPF_PROG_TYPE_XDP: 7013 case BPF_PROG_TYPE_SK_REUSEPORT: 7014 case BPF_PROG_TYPE_FLOW_DISSECTOR: 7015 case BPF_PROG_TYPE_SK_LOOKUP: 7016 return true; 7017 default: 7018 break; 7019 } 7020 7021 verbose(env, "cannot update sockmap in this context\n"); 7022 return false; 7023 } 7024 7025 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 7026 { 7027 return env->prog->jit_requested && 7028 bpf_jit_supports_subprog_tailcalls(); 7029 } 7030 7031 static int check_map_func_compatibility(struct bpf_verifier_env *env, 7032 struct bpf_map *map, int func_id) 7033 { 7034 if (!map) 7035 return 0; 7036 7037 /* We need a two way check, first is from map perspective ... */ 7038 switch (map->map_type) { 7039 case BPF_MAP_TYPE_PROG_ARRAY: 7040 if (func_id != BPF_FUNC_tail_call) 7041 goto error; 7042 break; 7043 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 7044 if (func_id != BPF_FUNC_perf_event_read && 7045 func_id != BPF_FUNC_perf_event_output && 7046 func_id != BPF_FUNC_skb_output && 7047 func_id != BPF_FUNC_perf_event_read_value && 7048 func_id != BPF_FUNC_xdp_output) 7049 goto error; 7050 break; 7051 case BPF_MAP_TYPE_RINGBUF: 7052 if (func_id != BPF_FUNC_ringbuf_output && 7053 func_id != BPF_FUNC_ringbuf_reserve && 7054 func_id != BPF_FUNC_ringbuf_query && 7055 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 7056 func_id != BPF_FUNC_ringbuf_submit_dynptr && 7057 func_id != BPF_FUNC_ringbuf_discard_dynptr) 7058 goto error; 7059 break; 7060 case BPF_MAP_TYPE_USER_RINGBUF: 7061 if (func_id != BPF_FUNC_user_ringbuf_drain) 7062 goto error; 7063 break; 7064 case BPF_MAP_TYPE_STACK_TRACE: 7065 if (func_id != BPF_FUNC_get_stackid) 7066 goto error; 7067 break; 7068 case BPF_MAP_TYPE_CGROUP_ARRAY: 7069 if (func_id != BPF_FUNC_skb_under_cgroup && 7070 func_id != BPF_FUNC_current_task_under_cgroup) 7071 goto error; 7072 break; 7073 case BPF_MAP_TYPE_CGROUP_STORAGE: 7074 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 7075 if (func_id != BPF_FUNC_get_local_storage) 7076 goto error; 7077 break; 7078 case BPF_MAP_TYPE_DEVMAP: 7079 case BPF_MAP_TYPE_DEVMAP_HASH: 7080 if (func_id != BPF_FUNC_redirect_map && 7081 func_id != BPF_FUNC_map_lookup_elem) 7082 goto error; 7083 break; 7084 /* Restrict bpf side of cpumap and xskmap, open when use-cases 7085 * appear. 7086 */ 7087 case BPF_MAP_TYPE_CPUMAP: 7088 if (func_id != BPF_FUNC_redirect_map) 7089 goto error; 7090 break; 7091 case BPF_MAP_TYPE_XSKMAP: 7092 if (func_id != BPF_FUNC_redirect_map && 7093 func_id != BPF_FUNC_map_lookup_elem) 7094 goto error; 7095 break; 7096 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 7097 case BPF_MAP_TYPE_HASH_OF_MAPS: 7098 if (func_id != BPF_FUNC_map_lookup_elem) 7099 goto error; 7100 break; 7101 case BPF_MAP_TYPE_SOCKMAP: 7102 if (func_id != BPF_FUNC_sk_redirect_map && 7103 func_id != BPF_FUNC_sock_map_update && 7104 func_id != BPF_FUNC_map_delete_elem && 7105 func_id != BPF_FUNC_msg_redirect_map && 7106 func_id != BPF_FUNC_sk_select_reuseport && 7107 func_id != BPF_FUNC_map_lookup_elem && 7108 !may_update_sockmap(env, func_id)) 7109 goto error; 7110 break; 7111 case BPF_MAP_TYPE_SOCKHASH: 7112 if (func_id != BPF_FUNC_sk_redirect_hash && 7113 func_id != BPF_FUNC_sock_hash_update && 7114 func_id != BPF_FUNC_map_delete_elem && 7115 func_id != BPF_FUNC_msg_redirect_hash && 7116 func_id != BPF_FUNC_sk_select_reuseport && 7117 func_id != BPF_FUNC_map_lookup_elem && 7118 !may_update_sockmap(env, func_id)) 7119 goto error; 7120 break; 7121 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 7122 if (func_id != BPF_FUNC_sk_select_reuseport) 7123 goto error; 7124 break; 7125 case BPF_MAP_TYPE_QUEUE: 7126 case BPF_MAP_TYPE_STACK: 7127 if (func_id != BPF_FUNC_map_peek_elem && 7128 func_id != BPF_FUNC_map_pop_elem && 7129 func_id != BPF_FUNC_map_push_elem) 7130 goto error; 7131 break; 7132 case BPF_MAP_TYPE_SK_STORAGE: 7133 if (func_id != BPF_FUNC_sk_storage_get && 7134 func_id != BPF_FUNC_sk_storage_delete) 7135 goto error; 7136 break; 7137 case BPF_MAP_TYPE_INODE_STORAGE: 7138 if (func_id != BPF_FUNC_inode_storage_get && 7139 func_id != BPF_FUNC_inode_storage_delete) 7140 goto error; 7141 break; 7142 case BPF_MAP_TYPE_TASK_STORAGE: 7143 if (func_id != BPF_FUNC_task_storage_get && 7144 func_id != BPF_FUNC_task_storage_delete) 7145 goto error; 7146 break; 7147 case BPF_MAP_TYPE_CGRP_STORAGE: 7148 if (func_id != BPF_FUNC_cgrp_storage_get && 7149 func_id != BPF_FUNC_cgrp_storage_delete) 7150 goto error; 7151 break; 7152 case BPF_MAP_TYPE_BLOOM_FILTER: 7153 if (func_id != BPF_FUNC_map_peek_elem && 7154 func_id != BPF_FUNC_map_push_elem) 7155 goto error; 7156 break; 7157 default: 7158 break; 7159 } 7160 7161 /* ... and second from the function itself. */ 7162 switch (func_id) { 7163 case BPF_FUNC_tail_call: 7164 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 7165 goto error; 7166 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 7167 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 7168 return -EINVAL; 7169 } 7170 break; 7171 case BPF_FUNC_perf_event_read: 7172 case BPF_FUNC_perf_event_output: 7173 case BPF_FUNC_perf_event_read_value: 7174 case BPF_FUNC_skb_output: 7175 case BPF_FUNC_xdp_output: 7176 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 7177 goto error; 7178 break; 7179 case BPF_FUNC_ringbuf_output: 7180 case BPF_FUNC_ringbuf_reserve: 7181 case BPF_FUNC_ringbuf_query: 7182 case BPF_FUNC_ringbuf_reserve_dynptr: 7183 case BPF_FUNC_ringbuf_submit_dynptr: 7184 case BPF_FUNC_ringbuf_discard_dynptr: 7185 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 7186 goto error; 7187 break; 7188 case BPF_FUNC_user_ringbuf_drain: 7189 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 7190 goto error; 7191 break; 7192 case BPF_FUNC_get_stackid: 7193 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 7194 goto error; 7195 break; 7196 case BPF_FUNC_current_task_under_cgroup: 7197 case BPF_FUNC_skb_under_cgroup: 7198 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 7199 goto error; 7200 break; 7201 case BPF_FUNC_redirect_map: 7202 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 7203 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 7204 map->map_type != BPF_MAP_TYPE_CPUMAP && 7205 map->map_type != BPF_MAP_TYPE_XSKMAP) 7206 goto error; 7207 break; 7208 case BPF_FUNC_sk_redirect_map: 7209 case BPF_FUNC_msg_redirect_map: 7210 case BPF_FUNC_sock_map_update: 7211 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 7212 goto error; 7213 break; 7214 case BPF_FUNC_sk_redirect_hash: 7215 case BPF_FUNC_msg_redirect_hash: 7216 case BPF_FUNC_sock_hash_update: 7217 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 7218 goto error; 7219 break; 7220 case BPF_FUNC_get_local_storage: 7221 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 7222 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 7223 goto error; 7224 break; 7225 case BPF_FUNC_sk_select_reuseport: 7226 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 7227 map->map_type != BPF_MAP_TYPE_SOCKMAP && 7228 map->map_type != BPF_MAP_TYPE_SOCKHASH) 7229 goto error; 7230 break; 7231 case BPF_FUNC_map_pop_elem: 7232 if (map->map_type != BPF_MAP_TYPE_QUEUE && 7233 map->map_type != BPF_MAP_TYPE_STACK) 7234 goto error; 7235 break; 7236 case BPF_FUNC_map_peek_elem: 7237 case BPF_FUNC_map_push_elem: 7238 if (map->map_type != BPF_MAP_TYPE_QUEUE && 7239 map->map_type != BPF_MAP_TYPE_STACK && 7240 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 7241 goto error; 7242 break; 7243 case BPF_FUNC_map_lookup_percpu_elem: 7244 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 7245 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 7246 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 7247 goto error; 7248 break; 7249 case BPF_FUNC_sk_storage_get: 7250 case BPF_FUNC_sk_storage_delete: 7251 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 7252 goto error; 7253 break; 7254 case BPF_FUNC_inode_storage_get: 7255 case BPF_FUNC_inode_storage_delete: 7256 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 7257 goto error; 7258 break; 7259 case BPF_FUNC_task_storage_get: 7260 case BPF_FUNC_task_storage_delete: 7261 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 7262 goto error; 7263 break; 7264 case BPF_FUNC_cgrp_storage_get: 7265 case BPF_FUNC_cgrp_storage_delete: 7266 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 7267 goto error; 7268 break; 7269 default: 7270 break; 7271 } 7272 7273 return 0; 7274 error: 7275 verbose(env, "cannot pass map_type %d into func %s#%d\n", 7276 map->map_type, func_id_name(func_id), func_id); 7277 return -EINVAL; 7278 } 7279 7280 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 7281 { 7282 int count = 0; 7283 7284 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 7285 count++; 7286 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 7287 count++; 7288 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 7289 count++; 7290 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 7291 count++; 7292 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 7293 count++; 7294 7295 /* We only support one arg being in raw mode at the moment, 7296 * which is sufficient for the helper functions we have 7297 * right now. 7298 */ 7299 return count <= 1; 7300 } 7301 7302 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 7303 { 7304 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 7305 bool has_size = fn->arg_size[arg] != 0; 7306 bool is_next_size = false; 7307 7308 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 7309 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 7310 7311 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 7312 return is_next_size; 7313 7314 return has_size == is_next_size || is_next_size == is_fixed; 7315 } 7316 7317 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 7318 { 7319 /* bpf_xxx(..., buf, len) call will access 'len' 7320 * bytes from memory 'buf'. Both arg types need 7321 * to be paired, so make sure there's no buggy 7322 * helper function specification. 7323 */ 7324 if (arg_type_is_mem_size(fn->arg1_type) || 7325 check_args_pair_invalid(fn, 0) || 7326 check_args_pair_invalid(fn, 1) || 7327 check_args_pair_invalid(fn, 2) || 7328 check_args_pair_invalid(fn, 3) || 7329 check_args_pair_invalid(fn, 4)) 7330 return false; 7331 7332 return true; 7333 } 7334 7335 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 7336 { 7337 int i; 7338 7339 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 7340 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 7341 return !!fn->arg_btf_id[i]; 7342 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 7343 return fn->arg_btf_id[i] == BPF_PTR_POISON; 7344 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 7345 /* arg_btf_id and arg_size are in a union. */ 7346 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 7347 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 7348 return false; 7349 } 7350 7351 return true; 7352 } 7353 7354 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 7355 { 7356 return check_raw_mode_ok(fn) && 7357 check_arg_pair_ok(fn) && 7358 check_btf_id_ok(fn) ? 0 : -EINVAL; 7359 } 7360 7361 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 7362 * are now invalid, so turn them into unknown SCALAR_VALUE. 7363 */ 7364 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 7365 { 7366 struct bpf_func_state *state; 7367 struct bpf_reg_state *reg; 7368 7369 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7370 if (reg_is_pkt_pointer_any(reg)) 7371 __mark_reg_unknown(env, reg); 7372 })); 7373 } 7374 7375 enum { 7376 AT_PKT_END = -1, 7377 BEYOND_PKT_END = -2, 7378 }; 7379 7380 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 7381 { 7382 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7383 struct bpf_reg_state *reg = &state->regs[regn]; 7384 7385 if (reg->type != PTR_TO_PACKET) 7386 /* PTR_TO_PACKET_META is not supported yet */ 7387 return; 7388 7389 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 7390 * How far beyond pkt_end it goes is unknown. 7391 * if (!range_open) it's the case of pkt >= pkt_end 7392 * if (range_open) it's the case of pkt > pkt_end 7393 * hence this pointer is at least 1 byte bigger than pkt_end 7394 */ 7395 if (range_open) 7396 reg->range = BEYOND_PKT_END; 7397 else 7398 reg->range = AT_PKT_END; 7399 } 7400 7401 /* The pointer with the specified id has released its reference to kernel 7402 * resources. Identify all copies of the same pointer and clear the reference. 7403 */ 7404 static int release_reference(struct bpf_verifier_env *env, 7405 int ref_obj_id) 7406 { 7407 struct bpf_func_state *state; 7408 struct bpf_reg_state *reg; 7409 int err; 7410 7411 err = release_reference_state(cur_func(env), ref_obj_id); 7412 if (err) 7413 return err; 7414 7415 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 7416 if (reg->ref_obj_id == ref_obj_id) { 7417 if (!env->allow_ptr_leaks) 7418 __mark_reg_not_init(env, reg); 7419 else 7420 __mark_reg_unknown(env, reg); 7421 } 7422 })); 7423 7424 return 0; 7425 } 7426 7427 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 7428 { 7429 struct bpf_func_state *unused; 7430 struct bpf_reg_state *reg; 7431 7432 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 7433 if (type_is_non_owning_ref(reg->type)) 7434 __mark_reg_unknown(env, reg); 7435 })); 7436 } 7437 7438 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 7439 struct bpf_reg_state *regs) 7440 { 7441 int i; 7442 7443 /* after the call registers r0 - r5 were scratched */ 7444 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7445 mark_reg_not_init(env, regs, caller_saved[i]); 7446 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7447 } 7448 } 7449 7450 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 7451 struct bpf_func_state *caller, 7452 struct bpf_func_state *callee, 7453 int insn_idx); 7454 7455 static int set_callee_state(struct bpf_verifier_env *env, 7456 struct bpf_func_state *caller, 7457 struct bpf_func_state *callee, int insn_idx); 7458 7459 static bool is_callback_calling_kfunc(u32 btf_id); 7460 7461 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7462 int *insn_idx, int subprog, 7463 set_callee_state_fn set_callee_state_cb) 7464 { 7465 struct bpf_verifier_state *state = env->cur_state; 7466 struct bpf_func_info_aux *func_info_aux; 7467 struct bpf_func_state *caller, *callee; 7468 int err; 7469 bool is_global = false; 7470 7471 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 7472 verbose(env, "the call stack of %d frames is too deep\n", 7473 state->curframe + 2); 7474 return -E2BIG; 7475 } 7476 7477 caller = state->frame[state->curframe]; 7478 if (state->frame[state->curframe + 1]) { 7479 verbose(env, "verifier bug. Frame %d already allocated\n", 7480 state->curframe + 1); 7481 return -EFAULT; 7482 } 7483 7484 func_info_aux = env->prog->aux->func_info_aux; 7485 if (func_info_aux) 7486 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 7487 err = btf_check_subprog_call(env, subprog, caller->regs); 7488 if (err == -EFAULT) 7489 return err; 7490 if (is_global) { 7491 if (err) { 7492 verbose(env, "Caller passes invalid args into func#%d\n", 7493 subprog); 7494 return err; 7495 } else { 7496 if (env->log.level & BPF_LOG_LEVEL) 7497 verbose(env, 7498 "Func#%d is global and valid. Skipping.\n", 7499 subprog); 7500 clear_caller_saved_regs(env, caller->regs); 7501 7502 /* All global functions return a 64-bit SCALAR_VALUE */ 7503 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7504 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7505 7506 /* continue with next insn after call */ 7507 return 0; 7508 } 7509 } 7510 7511 /* set_callee_state is used for direct subprog calls, but we are 7512 * interested in validating only BPF helpers that can call subprogs as 7513 * callbacks 7514 */ 7515 if (set_callee_state_cb != set_callee_state) { 7516 if (bpf_pseudo_kfunc_call(insn) && 7517 !is_callback_calling_kfunc(insn->imm)) { 7518 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 7519 func_id_name(insn->imm), insn->imm); 7520 return -EFAULT; 7521 } else if (!bpf_pseudo_kfunc_call(insn) && 7522 !is_callback_calling_function(insn->imm)) { /* helper */ 7523 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 7524 func_id_name(insn->imm), insn->imm); 7525 return -EFAULT; 7526 } 7527 } 7528 7529 if (insn->code == (BPF_JMP | BPF_CALL) && 7530 insn->src_reg == 0 && 7531 insn->imm == BPF_FUNC_timer_set_callback) { 7532 struct bpf_verifier_state *async_cb; 7533 7534 /* there is no real recursion here. timer callbacks are async */ 7535 env->subprog_info[subprog].is_async_cb = true; 7536 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 7537 *insn_idx, subprog); 7538 if (!async_cb) 7539 return -EFAULT; 7540 callee = async_cb->frame[0]; 7541 callee->async_entry_cnt = caller->async_entry_cnt + 1; 7542 7543 /* Convert bpf_timer_set_callback() args into timer callback args */ 7544 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7545 if (err) 7546 return err; 7547 7548 clear_caller_saved_regs(env, caller->regs); 7549 mark_reg_unknown(env, caller->regs, BPF_REG_0); 7550 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 7551 /* continue with next insn after call */ 7552 return 0; 7553 } 7554 7555 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 7556 if (!callee) 7557 return -ENOMEM; 7558 state->frame[state->curframe + 1] = callee; 7559 7560 /* callee cannot access r0, r6 - r9 for reading and has to write 7561 * into its own stack before reading from it. 7562 * callee can read/write into caller's stack 7563 */ 7564 init_func_state(env, callee, 7565 /* remember the callsite, it will be used by bpf_exit */ 7566 *insn_idx /* callsite */, 7567 state->curframe + 1 /* frameno within this callchain */, 7568 subprog /* subprog number within this prog */); 7569 7570 /* Transfer references to the callee */ 7571 err = copy_reference_state(callee, caller); 7572 if (err) 7573 goto err_out; 7574 7575 err = set_callee_state_cb(env, caller, callee, *insn_idx); 7576 if (err) 7577 goto err_out; 7578 7579 clear_caller_saved_regs(env, caller->regs); 7580 7581 /* only increment it after check_reg_arg() finished */ 7582 state->curframe++; 7583 7584 /* and go analyze first insn of the callee */ 7585 *insn_idx = env->subprog_info[subprog].start - 1; 7586 7587 if (env->log.level & BPF_LOG_LEVEL) { 7588 verbose(env, "caller:\n"); 7589 print_verifier_state(env, caller, true); 7590 verbose(env, "callee:\n"); 7591 print_verifier_state(env, callee, true); 7592 } 7593 return 0; 7594 7595 err_out: 7596 free_func_state(callee); 7597 state->frame[state->curframe + 1] = NULL; 7598 return err; 7599 } 7600 7601 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 7602 struct bpf_func_state *caller, 7603 struct bpf_func_state *callee) 7604 { 7605 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 7606 * void *callback_ctx, u64 flags); 7607 * callback_fn(struct bpf_map *map, void *key, void *value, 7608 * void *callback_ctx); 7609 */ 7610 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7611 7612 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7613 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7614 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7615 7616 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7617 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7618 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 7619 7620 /* pointer to stack or null */ 7621 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 7622 7623 /* unused */ 7624 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7625 return 0; 7626 } 7627 7628 static int set_callee_state(struct bpf_verifier_env *env, 7629 struct bpf_func_state *caller, 7630 struct bpf_func_state *callee, int insn_idx) 7631 { 7632 int i; 7633 7634 /* copy r1 - r5 args that callee can access. The copy includes parent 7635 * pointers, which connects us up to the liveness chain 7636 */ 7637 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 7638 callee->regs[i] = caller->regs[i]; 7639 return 0; 7640 } 7641 7642 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 7643 int *insn_idx) 7644 { 7645 int subprog, target_insn; 7646 7647 target_insn = *insn_idx + insn->imm + 1; 7648 subprog = find_subprog(env, target_insn); 7649 if (subprog < 0) { 7650 verbose(env, "verifier bug. No program starts at insn %d\n", 7651 target_insn); 7652 return -EFAULT; 7653 } 7654 7655 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 7656 } 7657 7658 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 7659 struct bpf_func_state *caller, 7660 struct bpf_func_state *callee, 7661 int insn_idx) 7662 { 7663 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 7664 struct bpf_map *map; 7665 int err; 7666 7667 if (bpf_map_ptr_poisoned(insn_aux)) { 7668 verbose(env, "tail_call abusing map_ptr\n"); 7669 return -EINVAL; 7670 } 7671 7672 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 7673 if (!map->ops->map_set_for_each_callback_args || 7674 !map->ops->map_for_each_callback) { 7675 verbose(env, "callback function not allowed for map\n"); 7676 return -ENOTSUPP; 7677 } 7678 7679 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 7680 if (err) 7681 return err; 7682 7683 callee->in_callback_fn = true; 7684 callee->callback_ret_range = tnum_range(0, 1); 7685 return 0; 7686 } 7687 7688 static int set_loop_callback_state(struct bpf_verifier_env *env, 7689 struct bpf_func_state *caller, 7690 struct bpf_func_state *callee, 7691 int insn_idx) 7692 { 7693 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 7694 * u64 flags); 7695 * callback_fn(u32 index, void *callback_ctx); 7696 */ 7697 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 7698 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7699 7700 /* unused */ 7701 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7702 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7703 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7704 7705 callee->in_callback_fn = true; 7706 callee->callback_ret_range = tnum_range(0, 1); 7707 return 0; 7708 } 7709 7710 static int set_timer_callback_state(struct bpf_verifier_env *env, 7711 struct bpf_func_state *caller, 7712 struct bpf_func_state *callee, 7713 int insn_idx) 7714 { 7715 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 7716 7717 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 7718 * callback_fn(struct bpf_map *map, void *key, void *value); 7719 */ 7720 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 7721 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 7722 callee->regs[BPF_REG_1].map_ptr = map_ptr; 7723 7724 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 7725 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7726 callee->regs[BPF_REG_2].map_ptr = map_ptr; 7727 7728 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 7729 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 7730 callee->regs[BPF_REG_3].map_ptr = map_ptr; 7731 7732 /* unused */ 7733 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7734 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7735 callee->in_async_callback_fn = true; 7736 callee->callback_ret_range = tnum_range(0, 1); 7737 return 0; 7738 } 7739 7740 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 7741 struct bpf_func_state *caller, 7742 struct bpf_func_state *callee, 7743 int insn_idx) 7744 { 7745 /* bpf_find_vma(struct task_struct *task, u64 addr, 7746 * void *callback_fn, void *callback_ctx, u64 flags) 7747 * (callback_fn)(struct task_struct *task, 7748 * struct vm_area_struct *vma, void *callback_ctx); 7749 */ 7750 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 7751 7752 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 7753 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 7754 callee->regs[BPF_REG_2].btf = btf_vmlinux; 7755 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 7756 7757 /* pointer to stack or null */ 7758 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 7759 7760 /* unused */ 7761 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7762 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7763 callee->in_callback_fn = true; 7764 callee->callback_ret_range = tnum_range(0, 1); 7765 return 0; 7766 } 7767 7768 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 7769 struct bpf_func_state *caller, 7770 struct bpf_func_state *callee, 7771 int insn_idx) 7772 { 7773 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 7774 * callback_ctx, u64 flags); 7775 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 7776 */ 7777 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 7778 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 7779 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 7780 7781 /* unused */ 7782 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7783 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7784 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7785 7786 callee->in_callback_fn = true; 7787 callee->callback_ret_range = tnum_range(0, 1); 7788 return 0; 7789 } 7790 7791 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 7792 struct bpf_func_state *caller, 7793 struct bpf_func_state *callee, 7794 int insn_idx) 7795 { 7796 /* void bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node, 7797 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 7798 * 7799 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add is the same PTR_TO_BTF_ID w/ offset 7800 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 7801 * by this point, so look at 'root' 7802 */ 7803 struct btf_field *field; 7804 7805 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 7806 BPF_RB_ROOT); 7807 if (!field || !field->graph_root.value_btf_id) 7808 return -EFAULT; 7809 7810 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 7811 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 7812 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 7813 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 7814 7815 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 7816 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 7817 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 7818 callee->in_callback_fn = true; 7819 callee->callback_ret_range = tnum_range(0, 1); 7820 return 0; 7821 } 7822 7823 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 7824 7825 /* Are we currently verifying the callback for a rbtree helper that must 7826 * be called with lock held? If so, no need to complain about unreleased 7827 * lock 7828 */ 7829 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 7830 { 7831 struct bpf_verifier_state *state = env->cur_state; 7832 struct bpf_insn *insn = env->prog->insnsi; 7833 struct bpf_func_state *callee; 7834 int kfunc_btf_id; 7835 7836 if (!state->curframe) 7837 return false; 7838 7839 callee = state->frame[state->curframe]; 7840 7841 if (!callee->in_callback_fn) 7842 return false; 7843 7844 kfunc_btf_id = insn[callee->callsite].imm; 7845 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 7846 } 7847 7848 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 7849 { 7850 struct bpf_verifier_state *state = env->cur_state; 7851 struct bpf_func_state *caller, *callee; 7852 struct bpf_reg_state *r0; 7853 int err; 7854 7855 callee = state->frame[state->curframe]; 7856 r0 = &callee->regs[BPF_REG_0]; 7857 if (r0->type == PTR_TO_STACK) { 7858 /* technically it's ok to return caller's stack pointer 7859 * (or caller's caller's pointer) back to the caller, 7860 * since these pointers are valid. Only current stack 7861 * pointer will be invalid as soon as function exits, 7862 * but let's be conservative 7863 */ 7864 verbose(env, "cannot return stack pointer to the caller\n"); 7865 return -EINVAL; 7866 } 7867 7868 caller = state->frame[state->curframe - 1]; 7869 if (callee->in_callback_fn) { 7870 /* enforce R0 return value range [0, 1]. */ 7871 struct tnum range = callee->callback_ret_range; 7872 7873 if (r0->type != SCALAR_VALUE) { 7874 verbose(env, "R0 not a scalar value\n"); 7875 return -EACCES; 7876 } 7877 if (!tnum_in(range, r0->var_off)) { 7878 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 7879 return -EINVAL; 7880 } 7881 } else { 7882 /* return to the caller whatever r0 had in the callee */ 7883 caller->regs[BPF_REG_0] = *r0; 7884 } 7885 7886 /* callback_fn frame should have released its own additions to parent's 7887 * reference state at this point, or check_reference_leak would 7888 * complain, hence it must be the same as the caller. There is no need 7889 * to copy it back. 7890 */ 7891 if (!callee->in_callback_fn) { 7892 /* Transfer references to the caller */ 7893 err = copy_reference_state(caller, callee); 7894 if (err) 7895 return err; 7896 } 7897 7898 *insn_idx = callee->callsite + 1; 7899 if (env->log.level & BPF_LOG_LEVEL) { 7900 verbose(env, "returning from callee:\n"); 7901 print_verifier_state(env, callee, true); 7902 verbose(env, "to caller at %d:\n", *insn_idx); 7903 print_verifier_state(env, caller, true); 7904 } 7905 /* clear everything in the callee */ 7906 free_func_state(callee); 7907 state->frame[state->curframe--] = NULL; 7908 return 0; 7909 } 7910 7911 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 7912 int func_id, 7913 struct bpf_call_arg_meta *meta) 7914 { 7915 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 7916 7917 if (ret_type != RET_INTEGER || 7918 (func_id != BPF_FUNC_get_stack && 7919 func_id != BPF_FUNC_get_task_stack && 7920 func_id != BPF_FUNC_probe_read_str && 7921 func_id != BPF_FUNC_probe_read_kernel_str && 7922 func_id != BPF_FUNC_probe_read_user_str)) 7923 return; 7924 7925 ret_reg->smax_value = meta->msize_max_value; 7926 ret_reg->s32_max_value = meta->msize_max_value; 7927 ret_reg->smin_value = -MAX_ERRNO; 7928 ret_reg->s32_min_value = -MAX_ERRNO; 7929 reg_bounds_sync(ret_reg); 7930 } 7931 7932 static int 7933 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7934 int func_id, int insn_idx) 7935 { 7936 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7937 struct bpf_map *map = meta->map_ptr; 7938 7939 if (func_id != BPF_FUNC_tail_call && 7940 func_id != BPF_FUNC_map_lookup_elem && 7941 func_id != BPF_FUNC_map_update_elem && 7942 func_id != BPF_FUNC_map_delete_elem && 7943 func_id != BPF_FUNC_map_push_elem && 7944 func_id != BPF_FUNC_map_pop_elem && 7945 func_id != BPF_FUNC_map_peek_elem && 7946 func_id != BPF_FUNC_for_each_map_elem && 7947 func_id != BPF_FUNC_redirect_map && 7948 func_id != BPF_FUNC_map_lookup_percpu_elem) 7949 return 0; 7950 7951 if (map == NULL) { 7952 verbose(env, "kernel subsystem misconfigured verifier\n"); 7953 return -EINVAL; 7954 } 7955 7956 /* In case of read-only, some additional restrictions 7957 * need to be applied in order to prevent altering the 7958 * state of the map from program side. 7959 */ 7960 if ((map->map_flags & BPF_F_RDONLY_PROG) && 7961 (func_id == BPF_FUNC_map_delete_elem || 7962 func_id == BPF_FUNC_map_update_elem || 7963 func_id == BPF_FUNC_map_push_elem || 7964 func_id == BPF_FUNC_map_pop_elem)) { 7965 verbose(env, "write into map forbidden\n"); 7966 return -EACCES; 7967 } 7968 7969 if (!BPF_MAP_PTR(aux->map_ptr_state)) 7970 bpf_map_ptr_store(aux, meta->map_ptr, 7971 !meta->map_ptr->bypass_spec_v1); 7972 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 7973 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 7974 !meta->map_ptr->bypass_spec_v1); 7975 return 0; 7976 } 7977 7978 static int 7979 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 7980 int func_id, int insn_idx) 7981 { 7982 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 7983 struct bpf_reg_state *regs = cur_regs(env), *reg; 7984 struct bpf_map *map = meta->map_ptr; 7985 u64 val, max; 7986 int err; 7987 7988 if (func_id != BPF_FUNC_tail_call) 7989 return 0; 7990 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 7991 verbose(env, "kernel subsystem misconfigured verifier\n"); 7992 return -EINVAL; 7993 } 7994 7995 reg = ®s[BPF_REG_3]; 7996 val = reg->var_off.value; 7997 max = map->max_entries; 7998 7999 if (!(register_is_const(reg) && val < max)) { 8000 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 8001 return 0; 8002 } 8003 8004 err = mark_chain_precision(env, BPF_REG_3); 8005 if (err) 8006 return err; 8007 if (bpf_map_key_unseen(aux)) 8008 bpf_map_key_store(aux, val); 8009 else if (!bpf_map_key_poisoned(aux) && 8010 bpf_map_key_immediate(aux) != val) 8011 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 8012 return 0; 8013 } 8014 8015 static int check_reference_leak(struct bpf_verifier_env *env) 8016 { 8017 struct bpf_func_state *state = cur_func(env); 8018 bool refs_lingering = false; 8019 int i; 8020 8021 if (state->frameno && !state->in_callback_fn) 8022 return 0; 8023 8024 for (i = 0; i < state->acquired_refs; i++) { 8025 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 8026 continue; 8027 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 8028 state->refs[i].id, state->refs[i].insn_idx); 8029 refs_lingering = true; 8030 } 8031 return refs_lingering ? -EINVAL : 0; 8032 } 8033 8034 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 8035 struct bpf_reg_state *regs) 8036 { 8037 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 8038 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 8039 struct bpf_map *fmt_map = fmt_reg->map_ptr; 8040 struct bpf_bprintf_data data = {}; 8041 int err, fmt_map_off, num_args; 8042 u64 fmt_addr; 8043 char *fmt; 8044 8045 /* data must be an array of u64 */ 8046 if (data_len_reg->var_off.value % 8) 8047 return -EINVAL; 8048 num_args = data_len_reg->var_off.value / 8; 8049 8050 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 8051 * and map_direct_value_addr is set. 8052 */ 8053 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 8054 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 8055 fmt_map_off); 8056 if (err) { 8057 verbose(env, "verifier bug\n"); 8058 return -EFAULT; 8059 } 8060 fmt = (char *)(long)fmt_addr + fmt_map_off; 8061 8062 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 8063 * can focus on validating the format specifiers. 8064 */ 8065 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 8066 if (err < 0) 8067 verbose(env, "Invalid format string\n"); 8068 8069 return err; 8070 } 8071 8072 static int check_get_func_ip(struct bpf_verifier_env *env) 8073 { 8074 enum bpf_prog_type type = resolve_prog_type(env->prog); 8075 int func_id = BPF_FUNC_get_func_ip; 8076 8077 if (type == BPF_PROG_TYPE_TRACING) { 8078 if (!bpf_prog_has_trampoline(env->prog)) { 8079 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 8080 func_id_name(func_id), func_id); 8081 return -ENOTSUPP; 8082 } 8083 return 0; 8084 } else if (type == BPF_PROG_TYPE_KPROBE) { 8085 return 0; 8086 } 8087 8088 verbose(env, "func %s#%d not supported for program type %d\n", 8089 func_id_name(func_id), func_id, type); 8090 return -ENOTSUPP; 8091 } 8092 8093 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 8094 { 8095 return &env->insn_aux_data[env->insn_idx]; 8096 } 8097 8098 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 8099 { 8100 struct bpf_reg_state *regs = cur_regs(env); 8101 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 8102 bool reg_is_null = register_is_null(reg); 8103 8104 if (reg_is_null) 8105 mark_chain_precision(env, BPF_REG_4); 8106 8107 return reg_is_null; 8108 } 8109 8110 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 8111 { 8112 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 8113 8114 if (!state->initialized) { 8115 state->initialized = 1; 8116 state->fit_for_inline = loop_flag_is_zero(env); 8117 state->callback_subprogno = subprogno; 8118 return; 8119 } 8120 8121 if (!state->fit_for_inline) 8122 return; 8123 8124 state->fit_for_inline = (loop_flag_is_zero(env) && 8125 state->callback_subprogno == subprogno); 8126 } 8127 8128 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 8129 int *insn_idx_p) 8130 { 8131 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 8132 const struct bpf_func_proto *fn = NULL; 8133 enum bpf_return_type ret_type; 8134 enum bpf_type_flag ret_flag; 8135 struct bpf_reg_state *regs; 8136 struct bpf_call_arg_meta meta; 8137 int insn_idx = *insn_idx_p; 8138 bool changes_data; 8139 int i, err, func_id; 8140 8141 /* find function prototype */ 8142 func_id = insn->imm; 8143 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 8144 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 8145 func_id); 8146 return -EINVAL; 8147 } 8148 8149 if (env->ops->get_func_proto) 8150 fn = env->ops->get_func_proto(func_id, env->prog); 8151 if (!fn) { 8152 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 8153 func_id); 8154 return -EINVAL; 8155 } 8156 8157 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 8158 if (!env->prog->gpl_compatible && fn->gpl_only) { 8159 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 8160 return -EINVAL; 8161 } 8162 8163 if (fn->allowed && !fn->allowed(env->prog)) { 8164 verbose(env, "helper call is not allowed in probe\n"); 8165 return -EINVAL; 8166 } 8167 8168 if (!env->prog->aux->sleepable && fn->might_sleep) { 8169 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 8170 return -EINVAL; 8171 } 8172 8173 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 8174 changes_data = bpf_helper_changes_pkt_data(fn->func); 8175 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 8176 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 8177 func_id_name(func_id), func_id); 8178 return -EINVAL; 8179 } 8180 8181 memset(&meta, 0, sizeof(meta)); 8182 meta.pkt_access = fn->pkt_access; 8183 8184 err = check_func_proto(fn, func_id); 8185 if (err) { 8186 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 8187 func_id_name(func_id), func_id); 8188 return err; 8189 } 8190 8191 if (env->cur_state->active_rcu_lock) { 8192 if (fn->might_sleep) { 8193 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 8194 func_id_name(func_id), func_id); 8195 return -EINVAL; 8196 } 8197 8198 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 8199 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 8200 } 8201 8202 meta.func_id = func_id; 8203 /* check args */ 8204 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 8205 err = check_func_arg(env, i, &meta, fn); 8206 if (err) 8207 return err; 8208 } 8209 8210 err = record_func_map(env, &meta, func_id, insn_idx); 8211 if (err) 8212 return err; 8213 8214 err = record_func_key(env, &meta, func_id, insn_idx); 8215 if (err) 8216 return err; 8217 8218 /* Mark slots with STACK_MISC in case of raw mode, stack offset 8219 * is inferred from register state. 8220 */ 8221 for (i = 0; i < meta.access_size; i++) { 8222 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 8223 BPF_WRITE, -1, false); 8224 if (err) 8225 return err; 8226 } 8227 8228 regs = cur_regs(env); 8229 8230 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 8231 * be reinitialized by any dynptr helper. Hence, mark_stack_slots_dynptr 8232 * is safe to do directly. 8233 */ 8234 if (meta.uninit_dynptr_regno) { 8235 if (regs[meta.uninit_dynptr_regno].type == CONST_PTR_TO_DYNPTR) { 8236 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be initialized\n"); 8237 return -EFAULT; 8238 } 8239 /* we write BPF_DW bits (8 bytes) at a time */ 8240 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 8241 err = check_mem_access(env, insn_idx, meta.uninit_dynptr_regno, 8242 i, BPF_DW, BPF_WRITE, -1, false); 8243 if (err) 8244 return err; 8245 } 8246 8247 err = mark_stack_slots_dynptr(env, ®s[meta.uninit_dynptr_regno], 8248 fn->arg_type[meta.uninit_dynptr_regno - BPF_REG_1], 8249 insn_idx); 8250 if (err) 8251 return err; 8252 } 8253 8254 if (meta.release_regno) { 8255 err = -EINVAL; 8256 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 8257 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 8258 * is safe to do directly. 8259 */ 8260 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 8261 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 8262 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 8263 return -EFAULT; 8264 } 8265 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 8266 } else if (meta.ref_obj_id) { 8267 err = release_reference(env, meta.ref_obj_id); 8268 } else if (register_is_null(®s[meta.release_regno])) { 8269 /* meta.ref_obj_id can only be 0 if register that is meant to be 8270 * released is NULL, which must be > R0. 8271 */ 8272 err = 0; 8273 } 8274 if (err) { 8275 verbose(env, "func %s#%d reference has not been acquired before\n", 8276 func_id_name(func_id), func_id); 8277 return err; 8278 } 8279 } 8280 8281 switch (func_id) { 8282 case BPF_FUNC_tail_call: 8283 err = check_reference_leak(env); 8284 if (err) { 8285 verbose(env, "tail_call would lead to reference leak\n"); 8286 return err; 8287 } 8288 break; 8289 case BPF_FUNC_get_local_storage: 8290 /* check that flags argument in get_local_storage(map, flags) is 0, 8291 * this is required because get_local_storage() can't return an error. 8292 */ 8293 if (!register_is_null(®s[BPF_REG_2])) { 8294 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 8295 return -EINVAL; 8296 } 8297 break; 8298 case BPF_FUNC_for_each_map_elem: 8299 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8300 set_map_elem_callback_state); 8301 break; 8302 case BPF_FUNC_timer_set_callback: 8303 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8304 set_timer_callback_state); 8305 break; 8306 case BPF_FUNC_find_vma: 8307 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8308 set_find_vma_callback_state); 8309 break; 8310 case BPF_FUNC_snprintf: 8311 err = check_bpf_snprintf_call(env, regs); 8312 break; 8313 case BPF_FUNC_loop: 8314 update_loop_inline_state(env, meta.subprogno); 8315 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8316 set_loop_callback_state); 8317 break; 8318 case BPF_FUNC_dynptr_from_mem: 8319 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 8320 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 8321 reg_type_str(env, regs[BPF_REG_1].type)); 8322 return -EACCES; 8323 } 8324 break; 8325 case BPF_FUNC_set_retval: 8326 if (prog_type == BPF_PROG_TYPE_LSM && 8327 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 8328 if (!env->prog->aux->attach_func_proto->type) { 8329 /* Make sure programs that attach to void 8330 * hooks don't try to modify return value. 8331 */ 8332 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 8333 return -EINVAL; 8334 } 8335 } 8336 break; 8337 case BPF_FUNC_dynptr_data: 8338 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 8339 if (arg_type_is_dynptr(fn->arg_type[i])) { 8340 struct bpf_reg_state *reg = ®s[BPF_REG_1 + i]; 8341 int id, ref_obj_id; 8342 8343 if (meta.dynptr_id) { 8344 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 8345 return -EFAULT; 8346 } 8347 8348 if (meta.ref_obj_id) { 8349 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 8350 return -EFAULT; 8351 } 8352 8353 id = dynptr_id(env, reg); 8354 if (id < 0) { 8355 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 8356 return id; 8357 } 8358 8359 ref_obj_id = dynptr_ref_obj_id(env, reg); 8360 if (ref_obj_id < 0) { 8361 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 8362 return ref_obj_id; 8363 } 8364 8365 meta.dynptr_id = id; 8366 meta.ref_obj_id = ref_obj_id; 8367 break; 8368 } 8369 } 8370 if (i == MAX_BPF_FUNC_REG_ARGS) { 8371 verbose(env, "verifier internal error: no dynptr in bpf_dynptr_data()\n"); 8372 return -EFAULT; 8373 } 8374 break; 8375 case BPF_FUNC_user_ringbuf_drain: 8376 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 8377 set_user_ringbuf_callback_state); 8378 break; 8379 } 8380 8381 if (err) 8382 return err; 8383 8384 /* reset caller saved regs */ 8385 for (i = 0; i < CALLER_SAVED_REGS; i++) { 8386 mark_reg_not_init(env, regs, caller_saved[i]); 8387 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 8388 } 8389 8390 /* helper call returns 64-bit value. */ 8391 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 8392 8393 /* update return register (already marked as written above) */ 8394 ret_type = fn->ret_type; 8395 ret_flag = type_flag(ret_type); 8396 8397 switch (base_type(ret_type)) { 8398 case RET_INTEGER: 8399 /* sets type to SCALAR_VALUE */ 8400 mark_reg_unknown(env, regs, BPF_REG_0); 8401 break; 8402 case RET_VOID: 8403 regs[BPF_REG_0].type = NOT_INIT; 8404 break; 8405 case RET_PTR_TO_MAP_VALUE: 8406 /* There is no offset yet applied, variable or fixed */ 8407 mark_reg_known_zero(env, regs, BPF_REG_0); 8408 /* remember map_ptr, so that check_map_access() 8409 * can check 'value_size' boundary of memory access 8410 * to map element returned from bpf_map_lookup_elem() 8411 */ 8412 if (meta.map_ptr == NULL) { 8413 verbose(env, 8414 "kernel subsystem misconfigured verifier\n"); 8415 return -EINVAL; 8416 } 8417 regs[BPF_REG_0].map_ptr = meta.map_ptr; 8418 regs[BPF_REG_0].map_uid = meta.map_uid; 8419 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 8420 if (!type_may_be_null(ret_type) && 8421 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 8422 regs[BPF_REG_0].id = ++env->id_gen; 8423 } 8424 break; 8425 case RET_PTR_TO_SOCKET: 8426 mark_reg_known_zero(env, regs, BPF_REG_0); 8427 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 8428 break; 8429 case RET_PTR_TO_SOCK_COMMON: 8430 mark_reg_known_zero(env, regs, BPF_REG_0); 8431 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 8432 break; 8433 case RET_PTR_TO_TCP_SOCK: 8434 mark_reg_known_zero(env, regs, BPF_REG_0); 8435 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 8436 break; 8437 case RET_PTR_TO_MEM: 8438 mark_reg_known_zero(env, regs, BPF_REG_0); 8439 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8440 regs[BPF_REG_0].mem_size = meta.mem_size; 8441 break; 8442 case RET_PTR_TO_MEM_OR_BTF_ID: 8443 { 8444 const struct btf_type *t; 8445 8446 mark_reg_known_zero(env, regs, BPF_REG_0); 8447 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 8448 if (!btf_type_is_struct(t)) { 8449 u32 tsize; 8450 const struct btf_type *ret; 8451 const char *tname; 8452 8453 /* resolve the type size of ksym. */ 8454 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 8455 if (IS_ERR(ret)) { 8456 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 8457 verbose(env, "unable to resolve the size of type '%s': %ld\n", 8458 tname, PTR_ERR(ret)); 8459 return -EINVAL; 8460 } 8461 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 8462 regs[BPF_REG_0].mem_size = tsize; 8463 } else { 8464 /* MEM_RDONLY may be carried from ret_flag, but it 8465 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 8466 * it will confuse the check of PTR_TO_BTF_ID in 8467 * check_mem_access(). 8468 */ 8469 ret_flag &= ~MEM_RDONLY; 8470 8471 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8472 regs[BPF_REG_0].btf = meta.ret_btf; 8473 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 8474 } 8475 break; 8476 } 8477 case RET_PTR_TO_BTF_ID: 8478 { 8479 struct btf *ret_btf; 8480 int ret_btf_id; 8481 8482 mark_reg_known_zero(env, regs, BPF_REG_0); 8483 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 8484 if (func_id == BPF_FUNC_kptr_xchg) { 8485 ret_btf = meta.kptr_field->kptr.btf; 8486 ret_btf_id = meta.kptr_field->kptr.btf_id; 8487 } else { 8488 if (fn->ret_btf_id == BPF_PTR_POISON) { 8489 verbose(env, "verifier internal error:"); 8490 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 8491 func_id_name(func_id)); 8492 return -EINVAL; 8493 } 8494 ret_btf = btf_vmlinux; 8495 ret_btf_id = *fn->ret_btf_id; 8496 } 8497 if (ret_btf_id == 0) { 8498 verbose(env, "invalid return type %u of func %s#%d\n", 8499 base_type(ret_type), func_id_name(func_id), 8500 func_id); 8501 return -EINVAL; 8502 } 8503 regs[BPF_REG_0].btf = ret_btf; 8504 regs[BPF_REG_0].btf_id = ret_btf_id; 8505 break; 8506 } 8507 default: 8508 verbose(env, "unknown return type %u of func %s#%d\n", 8509 base_type(ret_type), func_id_name(func_id), func_id); 8510 return -EINVAL; 8511 } 8512 8513 if (type_may_be_null(regs[BPF_REG_0].type)) 8514 regs[BPF_REG_0].id = ++env->id_gen; 8515 8516 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 8517 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 8518 func_id_name(func_id), func_id); 8519 return -EFAULT; 8520 } 8521 8522 if (is_dynptr_ref_function(func_id)) 8523 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 8524 8525 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 8526 /* For release_reference() */ 8527 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 8528 } else if (is_acquire_function(func_id, meta.map_ptr)) { 8529 int id = acquire_reference_state(env, insn_idx); 8530 8531 if (id < 0) 8532 return id; 8533 /* For mark_ptr_or_null_reg() */ 8534 regs[BPF_REG_0].id = id; 8535 /* For release_reference() */ 8536 regs[BPF_REG_0].ref_obj_id = id; 8537 } 8538 8539 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 8540 8541 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 8542 if (err) 8543 return err; 8544 8545 if ((func_id == BPF_FUNC_get_stack || 8546 func_id == BPF_FUNC_get_task_stack) && 8547 !env->prog->has_callchain_buf) { 8548 const char *err_str; 8549 8550 #ifdef CONFIG_PERF_EVENTS 8551 err = get_callchain_buffers(sysctl_perf_event_max_stack); 8552 err_str = "cannot get callchain buffer for func %s#%d\n"; 8553 #else 8554 err = -ENOTSUPP; 8555 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 8556 #endif 8557 if (err) { 8558 verbose(env, err_str, func_id_name(func_id), func_id); 8559 return err; 8560 } 8561 8562 env->prog->has_callchain_buf = true; 8563 } 8564 8565 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 8566 env->prog->call_get_stack = true; 8567 8568 if (func_id == BPF_FUNC_get_func_ip) { 8569 if (check_get_func_ip(env)) 8570 return -ENOTSUPP; 8571 env->prog->call_get_func_ip = true; 8572 } 8573 8574 if (changes_data) 8575 clear_all_pkt_pointers(env); 8576 return 0; 8577 } 8578 8579 /* mark_btf_func_reg_size() is used when the reg size is determined by 8580 * the BTF func_proto's return value size and argument. 8581 */ 8582 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 8583 size_t reg_size) 8584 { 8585 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 8586 8587 if (regno == BPF_REG_0) { 8588 /* Function return value */ 8589 reg->live |= REG_LIVE_WRITTEN; 8590 reg->subreg_def = reg_size == sizeof(u64) ? 8591 DEF_NOT_SUBREG : env->insn_idx + 1; 8592 } else { 8593 /* Function argument */ 8594 if (reg_size == sizeof(u64)) { 8595 mark_insn_zext(env, reg); 8596 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 8597 } else { 8598 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 8599 } 8600 } 8601 } 8602 8603 struct bpf_kfunc_call_arg_meta { 8604 /* In parameters */ 8605 struct btf *btf; 8606 u32 func_id; 8607 u32 kfunc_flags; 8608 const struct btf_type *func_proto; 8609 const char *func_name; 8610 /* Out parameters */ 8611 u32 ref_obj_id; 8612 u8 release_regno; 8613 bool r0_rdonly; 8614 u32 ret_btf_id; 8615 u64 r0_size; 8616 u32 subprogno; 8617 struct { 8618 u64 value; 8619 bool found; 8620 } arg_constant; 8621 struct { 8622 struct btf *btf; 8623 u32 btf_id; 8624 } arg_obj_drop; 8625 struct { 8626 struct btf_field *field; 8627 } arg_list_head; 8628 struct { 8629 struct btf_field *field; 8630 } arg_rbtree_root; 8631 }; 8632 8633 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 8634 { 8635 return meta->kfunc_flags & KF_ACQUIRE; 8636 } 8637 8638 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 8639 { 8640 return meta->kfunc_flags & KF_RET_NULL; 8641 } 8642 8643 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 8644 { 8645 return meta->kfunc_flags & KF_RELEASE; 8646 } 8647 8648 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 8649 { 8650 return meta->kfunc_flags & KF_TRUSTED_ARGS; 8651 } 8652 8653 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 8654 { 8655 return meta->kfunc_flags & KF_SLEEPABLE; 8656 } 8657 8658 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 8659 { 8660 return meta->kfunc_flags & KF_DESTRUCTIVE; 8661 } 8662 8663 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 8664 { 8665 return meta->kfunc_flags & KF_RCU; 8666 } 8667 8668 static bool is_kfunc_arg_kptr_get(struct bpf_kfunc_call_arg_meta *meta, int arg) 8669 { 8670 return arg == 0 && (meta->kfunc_flags & KF_KPTR_GET); 8671 } 8672 8673 static bool __kfunc_param_match_suffix(const struct btf *btf, 8674 const struct btf_param *arg, 8675 const char *suffix) 8676 { 8677 int suffix_len = strlen(suffix), len; 8678 const char *param_name; 8679 8680 /* In the future, this can be ported to use BTF tagging */ 8681 param_name = btf_name_by_offset(btf, arg->name_off); 8682 if (str_is_empty(param_name)) 8683 return false; 8684 len = strlen(param_name); 8685 if (len < suffix_len) 8686 return false; 8687 param_name += len - suffix_len; 8688 return !strncmp(param_name, suffix, suffix_len); 8689 } 8690 8691 static bool is_kfunc_arg_mem_size(const struct btf *btf, 8692 const struct btf_param *arg, 8693 const struct bpf_reg_state *reg) 8694 { 8695 const struct btf_type *t; 8696 8697 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8698 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 8699 return false; 8700 8701 return __kfunc_param_match_suffix(btf, arg, "__sz"); 8702 } 8703 8704 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 8705 { 8706 return __kfunc_param_match_suffix(btf, arg, "__k"); 8707 } 8708 8709 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 8710 { 8711 return __kfunc_param_match_suffix(btf, arg, "__ign"); 8712 } 8713 8714 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 8715 { 8716 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 8717 } 8718 8719 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 8720 const struct btf_param *arg, 8721 const char *name) 8722 { 8723 int len, target_len = strlen(name); 8724 const char *param_name; 8725 8726 param_name = btf_name_by_offset(btf, arg->name_off); 8727 if (str_is_empty(param_name)) 8728 return false; 8729 len = strlen(param_name); 8730 if (len != target_len) 8731 return false; 8732 if (strcmp(param_name, name)) 8733 return false; 8734 8735 return true; 8736 } 8737 8738 enum { 8739 KF_ARG_DYNPTR_ID, 8740 KF_ARG_LIST_HEAD_ID, 8741 KF_ARG_LIST_NODE_ID, 8742 KF_ARG_RB_ROOT_ID, 8743 KF_ARG_RB_NODE_ID, 8744 }; 8745 8746 BTF_ID_LIST(kf_arg_btf_ids) 8747 BTF_ID(struct, bpf_dynptr_kern) 8748 BTF_ID(struct, bpf_list_head) 8749 BTF_ID(struct, bpf_list_node) 8750 BTF_ID(struct, bpf_rb_root) 8751 BTF_ID(struct, bpf_rb_node) 8752 8753 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 8754 const struct btf_param *arg, int type) 8755 { 8756 const struct btf_type *t; 8757 u32 res_id; 8758 8759 t = btf_type_skip_modifiers(btf, arg->type, NULL); 8760 if (!t) 8761 return false; 8762 if (!btf_type_is_ptr(t)) 8763 return false; 8764 t = btf_type_skip_modifiers(btf, t->type, &res_id); 8765 if (!t) 8766 return false; 8767 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 8768 } 8769 8770 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 8771 { 8772 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 8773 } 8774 8775 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 8776 { 8777 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 8778 } 8779 8780 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 8781 { 8782 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 8783 } 8784 8785 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 8786 { 8787 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 8788 } 8789 8790 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 8791 { 8792 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 8793 } 8794 8795 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 8796 const struct btf_param *arg) 8797 { 8798 const struct btf_type *t; 8799 8800 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 8801 if (!t) 8802 return false; 8803 8804 return true; 8805 } 8806 8807 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 8808 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 8809 const struct btf *btf, 8810 const struct btf_type *t, int rec) 8811 { 8812 const struct btf_type *member_type; 8813 const struct btf_member *member; 8814 u32 i; 8815 8816 if (!btf_type_is_struct(t)) 8817 return false; 8818 8819 for_each_member(i, t, member) { 8820 const struct btf_array *array; 8821 8822 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 8823 if (btf_type_is_struct(member_type)) { 8824 if (rec >= 3) { 8825 verbose(env, "max struct nesting depth exceeded\n"); 8826 return false; 8827 } 8828 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 8829 return false; 8830 continue; 8831 } 8832 if (btf_type_is_array(member_type)) { 8833 array = btf_array(member_type); 8834 if (!array->nelems) 8835 return false; 8836 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 8837 if (!btf_type_is_scalar(member_type)) 8838 return false; 8839 continue; 8840 } 8841 if (!btf_type_is_scalar(member_type)) 8842 return false; 8843 } 8844 return true; 8845 } 8846 8847 8848 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 8849 #ifdef CONFIG_NET 8850 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 8851 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8852 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 8853 #endif 8854 }; 8855 8856 enum kfunc_ptr_arg_type { 8857 KF_ARG_PTR_TO_CTX, 8858 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 8859 KF_ARG_PTR_TO_KPTR, /* PTR_TO_KPTR but type specific */ 8860 KF_ARG_PTR_TO_DYNPTR, 8861 KF_ARG_PTR_TO_LIST_HEAD, 8862 KF_ARG_PTR_TO_LIST_NODE, 8863 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 8864 KF_ARG_PTR_TO_MEM, 8865 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 8866 KF_ARG_PTR_TO_CALLBACK, 8867 KF_ARG_PTR_TO_RB_ROOT, 8868 KF_ARG_PTR_TO_RB_NODE, 8869 }; 8870 8871 enum special_kfunc_type { 8872 KF_bpf_obj_new_impl, 8873 KF_bpf_obj_drop_impl, 8874 KF_bpf_list_push_front, 8875 KF_bpf_list_push_back, 8876 KF_bpf_list_pop_front, 8877 KF_bpf_list_pop_back, 8878 KF_bpf_cast_to_kern_ctx, 8879 KF_bpf_rdonly_cast, 8880 KF_bpf_rcu_read_lock, 8881 KF_bpf_rcu_read_unlock, 8882 KF_bpf_rbtree_remove, 8883 KF_bpf_rbtree_add, 8884 KF_bpf_rbtree_first, 8885 }; 8886 8887 BTF_SET_START(special_kfunc_set) 8888 BTF_ID(func, bpf_obj_new_impl) 8889 BTF_ID(func, bpf_obj_drop_impl) 8890 BTF_ID(func, bpf_list_push_front) 8891 BTF_ID(func, bpf_list_push_back) 8892 BTF_ID(func, bpf_list_pop_front) 8893 BTF_ID(func, bpf_list_pop_back) 8894 BTF_ID(func, bpf_cast_to_kern_ctx) 8895 BTF_ID(func, bpf_rdonly_cast) 8896 BTF_ID(func, bpf_rbtree_remove) 8897 BTF_ID(func, bpf_rbtree_add) 8898 BTF_ID(func, bpf_rbtree_first) 8899 BTF_SET_END(special_kfunc_set) 8900 8901 BTF_ID_LIST(special_kfunc_list) 8902 BTF_ID(func, bpf_obj_new_impl) 8903 BTF_ID(func, bpf_obj_drop_impl) 8904 BTF_ID(func, bpf_list_push_front) 8905 BTF_ID(func, bpf_list_push_back) 8906 BTF_ID(func, bpf_list_pop_front) 8907 BTF_ID(func, bpf_list_pop_back) 8908 BTF_ID(func, bpf_cast_to_kern_ctx) 8909 BTF_ID(func, bpf_rdonly_cast) 8910 BTF_ID(func, bpf_rcu_read_lock) 8911 BTF_ID(func, bpf_rcu_read_unlock) 8912 BTF_ID(func, bpf_rbtree_remove) 8913 BTF_ID(func, bpf_rbtree_add) 8914 BTF_ID(func, bpf_rbtree_first) 8915 8916 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 8917 { 8918 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 8919 } 8920 8921 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 8922 { 8923 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 8924 } 8925 8926 static enum kfunc_ptr_arg_type 8927 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 8928 struct bpf_kfunc_call_arg_meta *meta, 8929 const struct btf_type *t, const struct btf_type *ref_t, 8930 const char *ref_tname, const struct btf_param *args, 8931 int argno, int nargs) 8932 { 8933 u32 regno = argno + 1; 8934 struct bpf_reg_state *regs = cur_regs(env); 8935 struct bpf_reg_state *reg = ®s[regno]; 8936 bool arg_mem_size = false; 8937 8938 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 8939 return KF_ARG_PTR_TO_CTX; 8940 8941 /* In this function, we verify the kfunc's BTF as per the argument type, 8942 * leaving the rest of the verification with respect to the register 8943 * type to our caller. When a set of conditions hold in the BTF type of 8944 * arguments, we resolve it to a known kfunc_ptr_arg_type. 8945 */ 8946 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 8947 return KF_ARG_PTR_TO_CTX; 8948 8949 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 8950 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 8951 8952 if (is_kfunc_arg_kptr_get(meta, argno)) { 8953 if (!btf_type_is_ptr(ref_t)) { 8954 verbose(env, "arg#0 BTF type must be a double pointer for kptr_get kfunc\n"); 8955 return -EINVAL; 8956 } 8957 ref_t = btf_type_by_id(meta->btf, ref_t->type); 8958 ref_tname = btf_name_by_offset(meta->btf, ref_t->name_off); 8959 if (!btf_type_is_struct(ref_t)) { 8960 verbose(env, "kernel function %s args#0 pointer type %s %s is not supported\n", 8961 meta->func_name, btf_type_str(ref_t), ref_tname); 8962 return -EINVAL; 8963 } 8964 return KF_ARG_PTR_TO_KPTR; 8965 } 8966 8967 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 8968 return KF_ARG_PTR_TO_DYNPTR; 8969 8970 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 8971 return KF_ARG_PTR_TO_LIST_HEAD; 8972 8973 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 8974 return KF_ARG_PTR_TO_LIST_NODE; 8975 8976 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 8977 return KF_ARG_PTR_TO_RB_ROOT; 8978 8979 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 8980 return KF_ARG_PTR_TO_RB_NODE; 8981 8982 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 8983 if (!btf_type_is_struct(ref_t)) { 8984 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 8985 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 8986 return -EINVAL; 8987 } 8988 return KF_ARG_PTR_TO_BTF_ID; 8989 } 8990 8991 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 8992 return KF_ARG_PTR_TO_CALLBACK; 8993 8994 if (argno + 1 < nargs && is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1])) 8995 arg_mem_size = true; 8996 8997 /* This is the catch all argument type of register types supported by 8998 * check_helper_mem_access. However, we only allow when argument type is 8999 * pointer to scalar, or struct composed (recursively) of scalars. When 9000 * arg_mem_size is true, the pointer can be void *. 9001 */ 9002 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 9003 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 9004 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 9005 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 9006 return -EINVAL; 9007 } 9008 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 9009 } 9010 9011 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 9012 struct bpf_reg_state *reg, 9013 const struct btf_type *ref_t, 9014 const char *ref_tname, u32 ref_id, 9015 struct bpf_kfunc_call_arg_meta *meta, 9016 int argno) 9017 { 9018 const struct btf_type *reg_ref_t; 9019 bool strict_type_match = false; 9020 const struct btf *reg_btf; 9021 const char *reg_ref_tname; 9022 u32 reg_ref_id; 9023 9024 if (base_type(reg->type) == PTR_TO_BTF_ID) { 9025 reg_btf = reg->btf; 9026 reg_ref_id = reg->btf_id; 9027 } else { 9028 reg_btf = btf_vmlinux; 9029 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 9030 } 9031 9032 /* Enforce strict type matching for calls to kfuncs that are acquiring 9033 * or releasing a reference, or are no-cast aliases. We do _not_ 9034 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 9035 * as we want to enable BPF programs to pass types that are bitwise 9036 * equivalent without forcing them to explicitly cast with something 9037 * like bpf_cast_to_kern_ctx(). 9038 * 9039 * For example, say we had a type like the following: 9040 * 9041 * struct bpf_cpumask { 9042 * cpumask_t cpumask; 9043 * refcount_t usage; 9044 * }; 9045 * 9046 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 9047 * to a struct cpumask, so it would be safe to pass a struct 9048 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 9049 * 9050 * The philosophy here is similar to how we allow scalars of different 9051 * types to be passed to kfuncs as long as the size is the same. The 9052 * only difference here is that we're simply allowing 9053 * btf_struct_ids_match() to walk the struct at the 0th offset, and 9054 * resolve types. 9055 */ 9056 if (is_kfunc_acquire(meta) || 9057 (is_kfunc_release(meta) && reg->ref_obj_id) || 9058 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 9059 strict_type_match = true; 9060 9061 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 9062 9063 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 9064 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 9065 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 9066 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 9067 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 9068 btf_type_str(reg_ref_t), reg_ref_tname); 9069 return -EINVAL; 9070 } 9071 return 0; 9072 } 9073 9074 static int process_kf_arg_ptr_to_kptr(struct bpf_verifier_env *env, 9075 struct bpf_reg_state *reg, 9076 const struct btf_type *ref_t, 9077 const char *ref_tname, 9078 struct bpf_kfunc_call_arg_meta *meta, 9079 int argno) 9080 { 9081 struct btf_field *kptr_field; 9082 9083 /* check_func_arg_reg_off allows var_off for 9084 * PTR_TO_MAP_VALUE, but we need fixed offset to find 9085 * off_desc. 9086 */ 9087 if (!tnum_is_const(reg->var_off)) { 9088 verbose(env, "arg#0 must have constant offset\n"); 9089 return -EINVAL; 9090 } 9091 9092 kptr_field = btf_record_find(reg->map_ptr->record, reg->off + reg->var_off.value, BPF_KPTR); 9093 if (!kptr_field || kptr_field->type != BPF_KPTR_REF) { 9094 verbose(env, "arg#0 no referenced kptr at map value offset=%llu\n", 9095 reg->off + reg->var_off.value); 9096 return -EINVAL; 9097 } 9098 9099 if (!btf_struct_ids_match(&env->log, meta->btf, ref_t->type, 0, kptr_field->kptr.btf, 9100 kptr_field->kptr.btf_id, true)) { 9101 verbose(env, "kernel function %s args#%d expected pointer to %s %s\n", 9102 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 9103 return -EINVAL; 9104 } 9105 return 0; 9106 } 9107 9108 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9109 { 9110 struct bpf_verifier_state *state = env->cur_state; 9111 9112 if (!state->active_lock.ptr) { 9113 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 9114 return -EFAULT; 9115 } 9116 9117 if (type_flag(reg->type) & NON_OWN_REF) { 9118 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 9119 return -EFAULT; 9120 } 9121 9122 reg->type |= NON_OWN_REF; 9123 return 0; 9124 } 9125 9126 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 9127 { 9128 struct bpf_func_state *state, *unused; 9129 struct bpf_reg_state *reg; 9130 int i; 9131 9132 state = cur_func(env); 9133 9134 if (!ref_obj_id) { 9135 verbose(env, "verifier internal error: ref_obj_id is zero for " 9136 "owning -> non-owning conversion\n"); 9137 return -EFAULT; 9138 } 9139 9140 for (i = 0; i < state->acquired_refs; i++) { 9141 if (state->refs[i].id != ref_obj_id) 9142 continue; 9143 9144 /* Clear ref_obj_id here so release_reference doesn't clobber 9145 * the whole reg 9146 */ 9147 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9148 if (reg->ref_obj_id == ref_obj_id) { 9149 reg->ref_obj_id = 0; 9150 ref_set_non_owning(env, reg); 9151 } 9152 })); 9153 return 0; 9154 } 9155 9156 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 9157 return -EFAULT; 9158 } 9159 9160 /* Implementation details: 9161 * 9162 * Each register points to some region of memory, which we define as an 9163 * allocation. Each allocation may embed a bpf_spin_lock which protects any 9164 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 9165 * allocation. The lock and the data it protects are colocated in the same 9166 * memory region. 9167 * 9168 * Hence, everytime a register holds a pointer value pointing to such 9169 * allocation, the verifier preserves a unique reg->id for it. 9170 * 9171 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 9172 * bpf_spin_lock is called. 9173 * 9174 * To enable this, lock state in the verifier captures two values: 9175 * active_lock.ptr = Register's type specific pointer 9176 * active_lock.id = A unique ID for each register pointer value 9177 * 9178 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 9179 * supported register types. 9180 * 9181 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 9182 * allocated objects is the reg->btf pointer. 9183 * 9184 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 9185 * can establish the provenance of the map value statically for each distinct 9186 * lookup into such maps. They always contain a single map value hence unique 9187 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 9188 * 9189 * So, in case of global variables, they use array maps with max_entries = 1, 9190 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 9191 * into the same map value as max_entries is 1, as described above). 9192 * 9193 * In case of inner map lookups, the inner map pointer has same map_ptr as the 9194 * outer map pointer (in verifier context), but each lookup into an inner map 9195 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 9196 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 9197 * will get different reg->id assigned to each lookup, hence different 9198 * active_lock.id. 9199 * 9200 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 9201 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 9202 * returned from bpf_obj_new. Each allocation receives a new reg->id. 9203 */ 9204 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 9205 { 9206 void *ptr; 9207 u32 id; 9208 9209 switch ((int)reg->type) { 9210 case PTR_TO_MAP_VALUE: 9211 ptr = reg->map_ptr; 9212 break; 9213 case PTR_TO_BTF_ID | MEM_ALLOC: 9214 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_TRUSTED: 9215 ptr = reg->btf; 9216 break; 9217 default: 9218 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 9219 return -EFAULT; 9220 } 9221 id = reg->id; 9222 9223 if (!env->cur_state->active_lock.ptr) 9224 return -EINVAL; 9225 if (env->cur_state->active_lock.ptr != ptr || 9226 env->cur_state->active_lock.id != id) { 9227 verbose(env, "held lock and object are not in the same allocation\n"); 9228 return -EINVAL; 9229 } 9230 return 0; 9231 } 9232 9233 static bool is_bpf_list_api_kfunc(u32 btf_id) 9234 { 9235 return btf_id == special_kfunc_list[KF_bpf_list_push_front] || 9236 btf_id == special_kfunc_list[KF_bpf_list_push_back] || 9237 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 9238 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 9239 } 9240 9241 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 9242 { 9243 return btf_id == special_kfunc_list[KF_bpf_rbtree_add] || 9244 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 9245 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 9246 } 9247 9248 static bool is_bpf_graph_api_kfunc(u32 btf_id) 9249 { 9250 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id); 9251 } 9252 9253 static bool is_callback_calling_kfunc(u32 btf_id) 9254 { 9255 return btf_id == special_kfunc_list[KF_bpf_rbtree_add]; 9256 } 9257 9258 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 9259 { 9260 return is_bpf_rbtree_api_kfunc(btf_id); 9261 } 9262 9263 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 9264 enum btf_field_type head_field_type, 9265 u32 kfunc_btf_id) 9266 { 9267 bool ret; 9268 9269 switch (head_field_type) { 9270 case BPF_LIST_HEAD: 9271 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 9272 break; 9273 case BPF_RB_ROOT: 9274 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 9275 break; 9276 default: 9277 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 9278 btf_field_type_name(head_field_type)); 9279 return false; 9280 } 9281 9282 if (!ret) 9283 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 9284 btf_field_type_name(head_field_type)); 9285 return ret; 9286 } 9287 9288 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 9289 enum btf_field_type node_field_type, 9290 u32 kfunc_btf_id) 9291 { 9292 bool ret; 9293 9294 switch (node_field_type) { 9295 case BPF_LIST_NODE: 9296 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front] || 9297 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back]); 9298 break; 9299 case BPF_RB_NODE: 9300 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 9301 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add]); 9302 break; 9303 default: 9304 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 9305 btf_field_type_name(node_field_type)); 9306 return false; 9307 } 9308 9309 if (!ret) 9310 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 9311 btf_field_type_name(node_field_type)); 9312 return ret; 9313 } 9314 9315 static int 9316 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 9317 struct bpf_reg_state *reg, u32 regno, 9318 struct bpf_kfunc_call_arg_meta *meta, 9319 enum btf_field_type head_field_type, 9320 struct btf_field **head_field) 9321 { 9322 const char *head_type_name; 9323 struct btf_field *field; 9324 struct btf_record *rec; 9325 u32 head_off; 9326 9327 if (meta->btf != btf_vmlinux) { 9328 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 9329 return -EFAULT; 9330 } 9331 9332 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 9333 return -EFAULT; 9334 9335 head_type_name = btf_field_type_name(head_field_type); 9336 if (!tnum_is_const(reg->var_off)) { 9337 verbose(env, 9338 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 9339 regno, head_type_name); 9340 return -EINVAL; 9341 } 9342 9343 rec = reg_btf_record(reg); 9344 head_off = reg->off + reg->var_off.value; 9345 field = btf_record_find(rec, head_off, head_field_type); 9346 if (!field) { 9347 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 9348 return -EINVAL; 9349 } 9350 9351 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 9352 if (check_reg_allocation_locked(env, reg)) { 9353 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 9354 rec->spin_lock_off, head_type_name); 9355 return -EINVAL; 9356 } 9357 9358 if (*head_field) { 9359 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 9360 return -EFAULT; 9361 } 9362 *head_field = field; 9363 return 0; 9364 } 9365 9366 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 9367 struct bpf_reg_state *reg, u32 regno, 9368 struct bpf_kfunc_call_arg_meta *meta) 9369 { 9370 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 9371 &meta->arg_list_head.field); 9372 } 9373 9374 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 9375 struct bpf_reg_state *reg, u32 regno, 9376 struct bpf_kfunc_call_arg_meta *meta) 9377 { 9378 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 9379 &meta->arg_rbtree_root.field); 9380 } 9381 9382 static int 9383 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 9384 struct bpf_reg_state *reg, u32 regno, 9385 struct bpf_kfunc_call_arg_meta *meta, 9386 enum btf_field_type head_field_type, 9387 enum btf_field_type node_field_type, 9388 struct btf_field **node_field) 9389 { 9390 const char *node_type_name; 9391 const struct btf_type *et, *t; 9392 struct btf_field *field; 9393 u32 node_off; 9394 9395 if (meta->btf != btf_vmlinux) { 9396 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 9397 return -EFAULT; 9398 } 9399 9400 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 9401 return -EFAULT; 9402 9403 node_type_name = btf_field_type_name(node_field_type); 9404 if (!tnum_is_const(reg->var_off)) { 9405 verbose(env, 9406 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 9407 regno, node_type_name); 9408 return -EINVAL; 9409 } 9410 9411 node_off = reg->off + reg->var_off.value; 9412 field = reg_find_field_offset(reg, node_off, node_field_type); 9413 if (!field || field->offset != node_off) { 9414 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 9415 return -EINVAL; 9416 } 9417 9418 field = *node_field; 9419 9420 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 9421 t = btf_type_by_id(reg->btf, reg->btf_id); 9422 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 9423 field->graph_root.value_btf_id, true)) { 9424 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 9425 "in struct %s, but arg is at offset=%d in struct %s\n", 9426 btf_field_type_name(head_field_type), 9427 btf_field_type_name(node_field_type), 9428 field->graph_root.node_offset, 9429 btf_name_by_offset(field->graph_root.btf, et->name_off), 9430 node_off, btf_name_by_offset(reg->btf, t->name_off)); 9431 return -EINVAL; 9432 } 9433 9434 if (node_off != field->graph_root.node_offset) { 9435 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 9436 node_off, btf_field_type_name(node_field_type), 9437 field->graph_root.node_offset, 9438 btf_name_by_offset(field->graph_root.btf, et->name_off)); 9439 return -EINVAL; 9440 } 9441 9442 return 0; 9443 } 9444 9445 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 9446 struct bpf_reg_state *reg, u32 regno, 9447 struct bpf_kfunc_call_arg_meta *meta) 9448 { 9449 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 9450 BPF_LIST_HEAD, BPF_LIST_NODE, 9451 &meta->arg_list_head.field); 9452 } 9453 9454 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 9455 struct bpf_reg_state *reg, u32 regno, 9456 struct bpf_kfunc_call_arg_meta *meta) 9457 { 9458 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 9459 BPF_RB_ROOT, BPF_RB_NODE, 9460 &meta->arg_rbtree_root.field); 9461 } 9462 9463 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta) 9464 { 9465 const char *func_name = meta->func_name, *ref_tname; 9466 const struct btf *btf = meta->btf; 9467 const struct btf_param *args; 9468 u32 i, nargs; 9469 int ret; 9470 9471 args = (const struct btf_param *)(meta->func_proto + 1); 9472 nargs = btf_type_vlen(meta->func_proto); 9473 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 9474 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 9475 MAX_BPF_FUNC_REG_ARGS); 9476 return -EINVAL; 9477 } 9478 9479 /* Check that BTF function arguments match actual types that the 9480 * verifier sees. 9481 */ 9482 for (i = 0; i < nargs; i++) { 9483 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 9484 const struct btf_type *t, *ref_t, *resolve_ret; 9485 enum bpf_arg_type arg_type = ARG_DONTCARE; 9486 u32 regno = i + 1, ref_id, type_size; 9487 bool is_ret_buf_sz = false; 9488 int kf_arg_type; 9489 9490 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 9491 9492 if (is_kfunc_arg_ignore(btf, &args[i])) 9493 continue; 9494 9495 if (btf_type_is_scalar(t)) { 9496 if (reg->type != SCALAR_VALUE) { 9497 verbose(env, "R%d is not a scalar\n", regno); 9498 return -EINVAL; 9499 } 9500 9501 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 9502 if (meta->arg_constant.found) { 9503 verbose(env, "verifier internal error: only one constant argument permitted\n"); 9504 return -EFAULT; 9505 } 9506 if (!tnum_is_const(reg->var_off)) { 9507 verbose(env, "R%d must be a known constant\n", regno); 9508 return -EINVAL; 9509 } 9510 ret = mark_chain_precision(env, regno); 9511 if (ret < 0) 9512 return ret; 9513 meta->arg_constant.found = true; 9514 meta->arg_constant.value = reg->var_off.value; 9515 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 9516 meta->r0_rdonly = true; 9517 is_ret_buf_sz = true; 9518 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 9519 is_ret_buf_sz = true; 9520 } 9521 9522 if (is_ret_buf_sz) { 9523 if (meta->r0_size) { 9524 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 9525 return -EINVAL; 9526 } 9527 9528 if (!tnum_is_const(reg->var_off)) { 9529 verbose(env, "R%d is not a const\n", regno); 9530 return -EINVAL; 9531 } 9532 9533 meta->r0_size = reg->var_off.value; 9534 ret = mark_chain_precision(env, regno); 9535 if (ret) 9536 return ret; 9537 } 9538 continue; 9539 } 9540 9541 if (!btf_type_is_ptr(t)) { 9542 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 9543 return -EINVAL; 9544 } 9545 9546 if (is_kfunc_trusted_args(meta) && 9547 (register_is_null(reg) || type_may_be_null(reg->type))) { 9548 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 9549 return -EACCES; 9550 } 9551 9552 if (reg->ref_obj_id) { 9553 if (is_kfunc_release(meta) && meta->ref_obj_id) { 9554 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 9555 regno, reg->ref_obj_id, 9556 meta->ref_obj_id); 9557 return -EFAULT; 9558 } 9559 meta->ref_obj_id = reg->ref_obj_id; 9560 if (is_kfunc_release(meta)) 9561 meta->release_regno = regno; 9562 } 9563 9564 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 9565 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 9566 9567 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 9568 if (kf_arg_type < 0) 9569 return kf_arg_type; 9570 9571 switch (kf_arg_type) { 9572 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 9573 case KF_ARG_PTR_TO_BTF_ID: 9574 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 9575 break; 9576 9577 if (!is_trusted_reg(reg)) { 9578 if (!is_kfunc_rcu(meta)) { 9579 verbose(env, "R%d must be referenced or trusted\n", regno); 9580 return -EINVAL; 9581 } 9582 if (!is_rcu_reg(reg)) { 9583 verbose(env, "R%d must be a rcu pointer\n", regno); 9584 return -EINVAL; 9585 } 9586 } 9587 9588 fallthrough; 9589 case KF_ARG_PTR_TO_CTX: 9590 /* Trusted arguments have the same offset checks as release arguments */ 9591 arg_type |= OBJ_RELEASE; 9592 break; 9593 case KF_ARG_PTR_TO_KPTR: 9594 case KF_ARG_PTR_TO_DYNPTR: 9595 case KF_ARG_PTR_TO_LIST_HEAD: 9596 case KF_ARG_PTR_TO_LIST_NODE: 9597 case KF_ARG_PTR_TO_RB_ROOT: 9598 case KF_ARG_PTR_TO_RB_NODE: 9599 case KF_ARG_PTR_TO_MEM: 9600 case KF_ARG_PTR_TO_MEM_SIZE: 9601 case KF_ARG_PTR_TO_CALLBACK: 9602 /* Trusted by default */ 9603 break; 9604 default: 9605 WARN_ON_ONCE(1); 9606 return -EFAULT; 9607 } 9608 9609 if (is_kfunc_release(meta) && reg->ref_obj_id) 9610 arg_type |= OBJ_RELEASE; 9611 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 9612 if (ret < 0) 9613 return ret; 9614 9615 switch (kf_arg_type) { 9616 case KF_ARG_PTR_TO_CTX: 9617 if (reg->type != PTR_TO_CTX) { 9618 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 9619 return -EINVAL; 9620 } 9621 9622 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 9623 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 9624 if (ret < 0) 9625 return -EINVAL; 9626 meta->ret_btf_id = ret; 9627 } 9628 break; 9629 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 9630 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9631 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9632 return -EINVAL; 9633 } 9634 if (!reg->ref_obj_id) { 9635 verbose(env, "allocated object must be referenced\n"); 9636 return -EINVAL; 9637 } 9638 if (meta->btf == btf_vmlinux && 9639 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 9640 meta->arg_obj_drop.btf = reg->btf; 9641 meta->arg_obj_drop.btf_id = reg->btf_id; 9642 } 9643 break; 9644 case KF_ARG_PTR_TO_KPTR: 9645 if (reg->type != PTR_TO_MAP_VALUE) { 9646 verbose(env, "arg#0 expected pointer to map value\n"); 9647 return -EINVAL; 9648 } 9649 ret = process_kf_arg_ptr_to_kptr(env, reg, ref_t, ref_tname, meta, i); 9650 if (ret < 0) 9651 return ret; 9652 break; 9653 case KF_ARG_PTR_TO_DYNPTR: 9654 if (reg->type != PTR_TO_STACK && 9655 reg->type != CONST_PTR_TO_DYNPTR) { 9656 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 9657 return -EINVAL; 9658 } 9659 9660 ret = process_dynptr_func(env, regno, ARG_PTR_TO_DYNPTR | MEM_RDONLY, NULL); 9661 if (ret < 0) 9662 return ret; 9663 break; 9664 case KF_ARG_PTR_TO_LIST_HEAD: 9665 if (reg->type != PTR_TO_MAP_VALUE && 9666 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9667 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 9668 return -EINVAL; 9669 } 9670 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 9671 verbose(env, "allocated object must be referenced\n"); 9672 return -EINVAL; 9673 } 9674 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 9675 if (ret < 0) 9676 return ret; 9677 break; 9678 case KF_ARG_PTR_TO_RB_ROOT: 9679 if (reg->type != PTR_TO_MAP_VALUE && 9680 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9681 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 9682 return -EINVAL; 9683 } 9684 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 9685 verbose(env, "allocated object must be referenced\n"); 9686 return -EINVAL; 9687 } 9688 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 9689 if (ret < 0) 9690 return ret; 9691 break; 9692 case KF_ARG_PTR_TO_LIST_NODE: 9693 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9694 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9695 return -EINVAL; 9696 } 9697 if (!reg->ref_obj_id) { 9698 verbose(env, "allocated object must be referenced\n"); 9699 return -EINVAL; 9700 } 9701 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 9702 if (ret < 0) 9703 return ret; 9704 break; 9705 case KF_ARG_PTR_TO_RB_NODE: 9706 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 9707 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 9708 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 9709 return -EINVAL; 9710 } 9711 if (in_rbtree_lock_required_cb(env)) { 9712 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 9713 return -EINVAL; 9714 } 9715 } else { 9716 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 9717 verbose(env, "arg#%d expected pointer to allocated object\n", i); 9718 return -EINVAL; 9719 } 9720 if (!reg->ref_obj_id) { 9721 verbose(env, "allocated object must be referenced\n"); 9722 return -EINVAL; 9723 } 9724 } 9725 9726 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 9727 if (ret < 0) 9728 return ret; 9729 break; 9730 case KF_ARG_PTR_TO_BTF_ID: 9731 /* Only base_type is checked, further checks are done here */ 9732 if ((base_type(reg->type) != PTR_TO_BTF_ID || 9733 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 9734 !reg2btf_ids[base_type(reg->type)]) { 9735 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 9736 verbose(env, "expected %s or socket\n", 9737 reg_type_str(env, base_type(reg->type) | 9738 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 9739 return -EINVAL; 9740 } 9741 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 9742 if (ret < 0) 9743 return ret; 9744 break; 9745 case KF_ARG_PTR_TO_MEM: 9746 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 9747 if (IS_ERR(resolve_ret)) { 9748 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 9749 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 9750 return -EINVAL; 9751 } 9752 ret = check_mem_reg(env, reg, regno, type_size); 9753 if (ret < 0) 9754 return ret; 9755 break; 9756 case KF_ARG_PTR_TO_MEM_SIZE: 9757 ret = check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1); 9758 if (ret < 0) { 9759 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 9760 return ret; 9761 } 9762 /* Skip next '__sz' argument */ 9763 i++; 9764 break; 9765 case KF_ARG_PTR_TO_CALLBACK: 9766 meta->subprogno = reg->subprogno; 9767 break; 9768 } 9769 } 9770 9771 if (is_kfunc_release(meta) && !meta->release_regno) { 9772 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 9773 func_name); 9774 return -EINVAL; 9775 } 9776 9777 return 0; 9778 } 9779 9780 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9781 int *insn_idx_p) 9782 { 9783 const struct btf_type *t, *func, *func_proto, *ptr_type; 9784 u32 i, nargs, func_id, ptr_type_id, release_ref_obj_id; 9785 struct bpf_reg_state *regs = cur_regs(env); 9786 const char *func_name, *ptr_type_name; 9787 bool sleepable, rcu_lock, rcu_unlock; 9788 struct bpf_kfunc_call_arg_meta meta; 9789 int err, insn_idx = *insn_idx_p; 9790 const struct btf_param *args; 9791 const struct btf_type *ret_t; 9792 struct btf *desc_btf; 9793 u32 *kfunc_flags; 9794 9795 /* skip for now, but return error when we find this in fixup_kfunc_call */ 9796 if (!insn->imm) 9797 return 0; 9798 9799 desc_btf = find_kfunc_desc_btf(env, insn->off); 9800 if (IS_ERR(desc_btf)) 9801 return PTR_ERR(desc_btf); 9802 9803 func_id = insn->imm; 9804 func = btf_type_by_id(desc_btf, func_id); 9805 func_name = btf_name_by_offset(desc_btf, func->name_off); 9806 func_proto = btf_type_by_id(desc_btf, func->type); 9807 9808 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog), func_id); 9809 if (!kfunc_flags) { 9810 verbose(env, "calling kernel function %s is not allowed\n", 9811 func_name); 9812 return -EACCES; 9813 } 9814 9815 /* Prepare kfunc call metadata */ 9816 memset(&meta, 0, sizeof(meta)); 9817 meta.btf = desc_btf; 9818 meta.func_id = func_id; 9819 meta.kfunc_flags = *kfunc_flags; 9820 meta.func_proto = func_proto; 9821 meta.func_name = func_name; 9822 9823 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 9824 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 9825 return -EACCES; 9826 } 9827 9828 sleepable = is_kfunc_sleepable(&meta); 9829 if (sleepable && !env->prog->aux->sleepable) { 9830 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 9831 return -EACCES; 9832 } 9833 9834 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 9835 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 9836 if ((rcu_lock || rcu_unlock) && !env->rcu_tag_supported) { 9837 verbose(env, "no vmlinux btf rcu tag support for kfunc %s\n", func_name); 9838 return -EACCES; 9839 } 9840 9841 if (env->cur_state->active_rcu_lock) { 9842 struct bpf_func_state *state; 9843 struct bpf_reg_state *reg; 9844 9845 if (rcu_lock) { 9846 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 9847 return -EINVAL; 9848 } else if (rcu_unlock) { 9849 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9850 if (reg->type & MEM_RCU) { 9851 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 9852 reg->type |= PTR_UNTRUSTED; 9853 } 9854 })); 9855 env->cur_state->active_rcu_lock = false; 9856 } else if (sleepable) { 9857 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 9858 return -EACCES; 9859 } 9860 } else if (rcu_lock) { 9861 env->cur_state->active_rcu_lock = true; 9862 } else if (rcu_unlock) { 9863 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 9864 return -EINVAL; 9865 } 9866 9867 /* Check the arguments */ 9868 err = check_kfunc_args(env, &meta); 9869 if (err < 0) 9870 return err; 9871 /* In case of release function, we get register number of refcounted 9872 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 9873 */ 9874 if (meta.release_regno) { 9875 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 9876 if (err) { 9877 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 9878 func_name, func_id); 9879 return err; 9880 } 9881 } 9882 9883 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front] || 9884 meta.func_id == special_kfunc_list[KF_bpf_list_push_back] || 9885 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) { 9886 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 9887 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 9888 if (err) { 9889 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 9890 func_name, func_id); 9891 return err; 9892 } 9893 9894 err = release_reference(env, release_ref_obj_id); 9895 if (err) { 9896 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 9897 func_name, func_id); 9898 return err; 9899 } 9900 } 9901 9902 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add]) { 9903 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 9904 set_rbtree_add_callback_state); 9905 if (err) { 9906 verbose(env, "kfunc %s#%d failed callback verification\n", 9907 func_name, func_id); 9908 return err; 9909 } 9910 } 9911 9912 for (i = 0; i < CALLER_SAVED_REGS; i++) 9913 mark_reg_not_init(env, regs, caller_saved[i]); 9914 9915 /* Check return type */ 9916 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 9917 9918 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 9919 /* Only exception is bpf_obj_new_impl */ 9920 if (meta.btf != btf_vmlinux || meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl]) { 9921 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 9922 return -EINVAL; 9923 } 9924 } 9925 9926 if (btf_type_is_scalar(t)) { 9927 mark_reg_unknown(env, regs, BPF_REG_0); 9928 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 9929 } else if (btf_type_is_ptr(t)) { 9930 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 9931 9932 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 9933 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 9934 struct btf *ret_btf; 9935 u32 ret_btf_id; 9936 9937 if (unlikely(!bpf_global_ma_set)) 9938 return -ENOMEM; 9939 9940 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 9941 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 9942 return -EINVAL; 9943 } 9944 9945 ret_btf = env->prog->aux->btf; 9946 ret_btf_id = meta.arg_constant.value; 9947 9948 /* This may be NULL due to user not supplying a BTF */ 9949 if (!ret_btf) { 9950 verbose(env, "bpf_obj_new requires prog BTF\n"); 9951 return -EINVAL; 9952 } 9953 9954 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 9955 if (!ret_t || !__btf_type_is_struct(ret_t)) { 9956 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 9957 return -EINVAL; 9958 } 9959 9960 mark_reg_known_zero(env, regs, BPF_REG_0); 9961 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 9962 regs[BPF_REG_0].btf = ret_btf; 9963 regs[BPF_REG_0].btf_id = ret_btf_id; 9964 9965 env->insn_aux_data[insn_idx].obj_new_size = ret_t->size; 9966 env->insn_aux_data[insn_idx].kptr_struct_meta = 9967 btf_find_struct_meta(ret_btf, ret_btf_id); 9968 } else if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 9969 env->insn_aux_data[insn_idx].kptr_struct_meta = 9970 btf_find_struct_meta(meta.arg_obj_drop.btf, 9971 meta.arg_obj_drop.btf_id); 9972 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 9973 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 9974 struct btf_field *field = meta.arg_list_head.field; 9975 9976 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 9977 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 9978 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 9979 struct btf_field *field = meta.arg_rbtree_root.field; 9980 9981 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 9982 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 9983 mark_reg_known_zero(env, regs, BPF_REG_0); 9984 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 9985 regs[BPF_REG_0].btf = desc_btf; 9986 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 9987 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 9988 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 9989 if (!ret_t || !btf_type_is_struct(ret_t)) { 9990 verbose(env, 9991 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 9992 return -EINVAL; 9993 } 9994 9995 mark_reg_known_zero(env, regs, BPF_REG_0); 9996 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 9997 regs[BPF_REG_0].btf = desc_btf; 9998 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 9999 } else { 10000 verbose(env, "kernel function %s unhandled dynamic return type\n", 10001 meta.func_name); 10002 return -EFAULT; 10003 } 10004 } else if (!__btf_type_is_struct(ptr_type)) { 10005 if (!meta.r0_size) { 10006 ptr_type_name = btf_name_by_offset(desc_btf, 10007 ptr_type->name_off); 10008 verbose(env, 10009 "kernel function %s returns pointer type %s %s is not supported\n", 10010 func_name, 10011 btf_type_str(ptr_type), 10012 ptr_type_name); 10013 return -EINVAL; 10014 } 10015 10016 mark_reg_known_zero(env, regs, BPF_REG_0); 10017 regs[BPF_REG_0].type = PTR_TO_MEM; 10018 regs[BPF_REG_0].mem_size = meta.r0_size; 10019 10020 if (meta.r0_rdonly) 10021 regs[BPF_REG_0].type |= MEM_RDONLY; 10022 10023 /* Ensures we don't access the memory after a release_reference() */ 10024 if (meta.ref_obj_id) 10025 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10026 } else { 10027 mark_reg_known_zero(env, regs, BPF_REG_0); 10028 regs[BPF_REG_0].btf = desc_btf; 10029 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 10030 regs[BPF_REG_0].btf_id = ptr_type_id; 10031 } 10032 10033 if (is_kfunc_ret_null(&meta)) { 10034 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 10035 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 10036 regs[BPF_REG_0].id = ++env->id_gen; 10037 } 10038 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 10039 if (is_kfunc_acquire(&meta)) { 10040 int id = acquire_reference_state(env, insn_idx); 10041 10042 if (id < 0) 10043 return id; 10044 if (is_kfunc_ret_null(&meta)) 10045 regs[BPF_REG_0].id = id; 10046 regs[BPF_REG_0].ref_obj_id = id; 10047 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 10048 ref_set_non_owning(env, ®s[BPF_REG_0]); 10049 } 10050 10051 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove]) 10052 invalidate_non_owning_refs(env); 10053 10054 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 10055 regs[BPF_REG_0].id = ++env->id_gen; 10056 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 10057 10058 nargs = btf_type_vlen(func_proto); 10059 args = (const struct btf_param *)(func_proto + 1); 10060 for (i = 0; i < nargs; i++) { 10061 u32 regno = i + 1; 10062 10063 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 10064 if (btf_type_is_ptr(t)) 10065 mark_btf_func_reg_size(env, regno, sizeof(void *)); 10066 else 10067 /* scalar. ensured by btf_check_kfunc_arg_match() */ 10068 mark_btf_func_reg_size(env, regno, t->size); 10069 } 10070 10071 return 0; 10072 } 10073 10074 static bool signed_add_overflows(s64 a, s64 b) 10075 { 10076 /* Do the add in u64, where overflow is well-defined */ 10077 s64 res = (s64)((u64)a + (u64)b); 10078 10079 if (b < 0) 10080 return res > a; 10081 return res < a; 10082 } 10083 10084 static bool signed_add32_overflows(s32 a, s32 b) 10085 { 10086 /* Do the add in u32, where overflow is well-defined */ 10087 s32 res = (s32)((u32)a + (u32)b); 10088 10089 if (b < 0) 10090 return res > a; 10091 return res < a; 10092 } 10093 10094 static bool signed_sub_overflows(s64 a, s64 b) 10095 { 10096 /* Do the sub in u64, where overflow is well-defined */ 10097 s64 res = (s64)((u64)a - (u64)b); 10098 10099 if (b < 0) 10100 return res < a; 10101 return res > a; 10102 } 10103 10104 static bool signed_sub32_overflows(s32 a, s32 b) 10105 { 10106 /* Do the sub in u32, where overflow is well-defined */ 10107 s32 res = (s32)((u32)a - (u32)b); 10108 10109 if (b < 0) 10110 return res < a; 10111 return res > a; 10112 } 10113 10114 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 10115 const struct bpf_reg_state *reg, 10116 enum bpf_reg_type type) 10117 { 10118 bool known = tnum_is_const(reg->var_off); 10119 s64 val = reg->var_off.value; 10120 s64 smin = reg->smin_value; 10121 10122 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 10123 verbose(env, "math between %s pointer and %lld is not allowed\n", 10124 reg_type_str(env, type), val); 10125 return false; 10126 } 10127 10128 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 10129 verbose(env, "%s pointer offset %d is not allowed\n", 10130 reg_type_str(env, type), reg->off); 10131 return false; 10132 } 10133 10134 if (smin == S64_MIN) { 10135 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 10136 reg_type_str(env, type)); 10137 return false; 10138 } 10139 10140 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 10141 verbose(env, "value %lld makes %s pointer be out of bounds\n", 10142 smin, reg_type_str(env, type)); 10143 return false; 10144 } 10145 10146 return true; 10147 } 10148 10149 enum { 10150 REASON_BOUNDS = -1, 10151 REASON_TYPE = -2, 10152 REASON_PATHS = -3, 10153 REASON_LIMIT = -4, 10154 REASON_STACK = -5, 10155 }; 10156 10157 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 10158 u32 *alu_limit, bool mask_to_left) 10159 { 10160 u32 max = 0, ptr_limit = 0; 10161 10162 switch (ptr_reg->type) { 10163 case PTR_TO_STACK: 10164 /* Offset 0 is out-of-bounds, but acceptable start for the 10165 * left direction, see BPF_REG_FP. Also, unknown scalar 10166 * offset where we would need to deal with min/max bounds is 10167 * currently prohibited for unprivileged. 10168 */ 10169 max = MAX_BPF_STACK + mask_to_left; 10170 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 10171 break; 10172 case PTR_TO_MAP_VALUE: 10173 max = ptr_reg->map_ptr->value_size; 10174 ptr_limit = (mask_to_left ? 10175 ptr_reg->smin_value : 10176 ptr_reg->umax_value) + ptr_reg->off; 10177 break; 10178 default: 10179 return REASON_TYPE; 10180 } 10181 10182 if (ptr_limit >= max) 10183 return REASON_LIMIT; 10184 *alu_limit = ptr_limit; 10185 return 0; 10186 } 10187 10188 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 10189 const struct bpf_insn *insn) 10190 { 10191 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 10192 } 10193 10194 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 10195 u32 alu_state, u32 alu_limit) 10196 { 10197 /* If we arrived here from different branches with different 10198 * state or limits to sanitize, then this won't work. 10199 */ 10200 if (aux->alu_state && 10201 (aux->alu_state != alu_state || 10202 aux->alu_limit != alu_limit)) 10203 return REASON_PATHS; 10204 10205 /* Corresponding fixup done in do_misc_fixups(). */ 10206 aux->alu_state = alu_state; 10207 aux->alu_limit = alu_limit; 10208 return 0; 10209 } 10210 10211 static int sanitize_val_alu(struct bpf_verifier_env *env, 10212 struct bpf_insn *insn) 10213 { 10214 struct bpf_insn_aux_data *aux = cur_aux(env); 10215 10216 if (can_skip_alu_sanitation(env, insn)) 10217 return 0; 10218 10219 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 10220 } 10221 10222 static bool sanitize_needed(u8 opcode) 10223 { 10224 return opcode == BPF_ADD || opcode == BPF_SUB; 10225 } 10226 10227 struct bpf_sanitize_info { 10228 struct bpf_insn_aux_data aux; 10229 bool mask_to_left; 10230 }; 10231 10232 static struct bpf_verifier_state * 10233 sanitize_speculative_path(struct bpf_verifier_env *env, 10234 const struct bpf_insn *insn, 10235 u32 next_idx, u32 curr_idx) 10236 { 10237 struct bpf_verifier_state *branch; 10238 struct bpf_reg_state *regs; 10239 10240 branch = push_stack(env, next_idx, curr_idx, true); 10241 if (branch && insn) { 10242 regs = branch->frame[branch->curframe]->regs; 10243 if (BPF_SRC(insn->code) == BPF_K) { 10244 mark_reg_unknown(env, regs, insn->dst_reg); 10245 } else if (BPF_SRC(insn->code) == BPF_X) { 10246 mark_reg_unknown(env, regs, insn->dst_reg); 10247 mark_reg_unknown(env, regs, insn->src_reg); 10248 } 10249 } 10250 return branch; 10251 } 10252 10253 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 10254 struct bpf_insn *insn, 10255 const struct bpf_reg_state *ptr_reg, 10256 const struct bpf_reg_state *off_reg, 10257 struct bpf_reg_state *dst_reg, 10258 struct bpf_sanitize_info *info, 10259 const bool commit_window) 10260 { 10261 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 10262 struct bpf_verifier_state *vstate = env->cur_state; 10263 bool off_is_imm = tnum_is_const(off_reg->var_off); 10264 bool off_is_neg = off_reg->smin_value < 0; 10265 bool ptr_is_dst_reg = ptr_reg == dst_reg; 10266 u8 opcode = BPF_OP(insn->code); 10267 u32 alu_state, alu_limit; 10268 struct bpf_reg_state tmp; 10269 bool ret; 10270 int err; 10271 10272 if (can_skip_alu_sanitation(env, insn)) 10273 return 0; 10274 10275 /* We already marked aux for masking from non-speculative 10276 * paths, thus we got here in the first place. We only care 10277 * to explore bad access from here. 10278 */ 10279 if (vstate->speculative) 10280 goto do_sim; 10281 10282 if (!commit_window) { 10283 if (!tnum_is_const(off_reg->var_off) && 10284 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 10285 return REASON_BOUNDS; 10286 10287 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 10288 (opcode == BPF_SUB && !off_is_neg); 10289 } 10290 10291 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 10292 if (err < 0) 10293 return err; 10294 10295 if (commit_window) { 10296 /* In commit phase we narrow the masking window based on 10297 * the observed pointer move after the simulated operation. 10298 */ 10299 alu_state = info->aux.alu_state; 10300 alu_limit = abs(info->aux.alu_limit - alu_limit); 10301 } else { 10302 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 10303 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 10304 alu_state |= ptr_is_dst_reg ? 10305 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 10306 10307 /* Limit pruning on unknown scalars to enable deep search for 10308 * potential masking differences from other program paths. 10309 */ 10310 if (!off_is_imm) 10311 env->explore_alu_limits = true; 10312 } 10313 10314 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 10315 if (err < 0) 10316 return err; 10317 do_sim: 10318 /* If we're in commit phase, we're done here given we already 10319 * pushed the truncated dst_reg into the speculative verification 10320 * stack. 10321 * 10322 * Also, when register is a known constant, we rewrite register-based 10323 * operation to immediate-based, and thus do not need masking (and as 10324 * a consequence, do not need to simulate the zero-truncation either). 10325 */ 10326 if (commit_window || off_is_imm) 10327 return 0; 10328 10329 /* Simulate and find potential out-of-bounds access under 10330 * speculative execution from truncation as a result of 10331 * masking when off was not within expected range. If off 10332 * sits in dst, then we temporarily need to move ptr there 10333 * to simulate dst (== 0) +/-= ptr. Needed, for example, 10334 * for cases where we use K-based arithmetic in one direction 10335 * and truncated reg-based in the other in order to explore 10336 * bad access. 10337 */ 10338 if (!ptr_is_dst_reg) { 10339 tmp = *dst_reg; 10340 copy_register_state(dst_reg, ptr_reg); 10341 } 10342 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 10343 env->insn_idx); 10344 if (!ptr_is_dst_reg && ret) 10345 *dst_reg = tmp; 10346 return !ret ? REASON_STACK : 0; 10347 } 10348 10349 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 10350 { 10351 struct bpf_verifier_state *vstate = env->cur_state; 10352 10353 /* If we simulate paths under speculation, we don't update the 10354 * insn as 'seen' such that when we verify unreachable paths in 10355 * the non-speculative domain, sanitize_dead_code() can still 10356 * rewrite/sanitize them. 10357 */ 10358 if (!vstate->speculative) 10359 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 10360 } 10361 10362 static int sanitize_err(struct bpf_verifier_env *env, 10363 const struct bpf_insn *insn, int reason, 10364 const struct bpf_reg_state *off_reg, 10365 const struct bpf_reg_state *dst_reg) 10366 { 10367 static const char *err = "pointer arithmetic with it prohibited for !root"; 10368 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 10369 u32 dst = insn->dst_reg, src = insn->src_reg; 10370 10371 switch (reason) { 10372 case REASON_BOUNDS: 10373 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 10374 off_reg == dst_reg ? dst : src, err); 10375 break; 10376 case REASON_TYPE: 10377 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 10378 off_reg == dst_reg ? src : dst, err); 10379 break; 10380 case REASON_PATHS: 10381 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 10382 dst, op, err); 10383 break; 10384 case REASON_LIMIT: 10385 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 10386 dst, op, err); 10387 break; 10388 case REASON_STACK: 10389 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 10390 dst, err); 10391 break; 10392 default: 10393 verbose(env, "verifier internal error: unknown reason (%d)\n", 10394 reason); 10395 break; 10396 } 10397 10398 return -EACCES; 10399 } 10400 10401 /* check that stack access falls within stack limits and that 'reg' doesn't 10402 * have a variable offset. 10403 * 10404 * Variable offset is prohibited for unprivileged mode for simplicity since it 10405 * requires corresponding support in Spectre masking for stack ALU. See also 10406 * retrieve_ptr_limit(). 10407 * 10408 * 10409 * 'off' includes 'reg->off'. 10410 */ 10411 static int check_stack_access_for_ptr_arithmetic( 10412 struct bpf_verifier_env *env, 10413 int regno, 10414 const struct bpf_reg_state *reg, 10415 int off) 10416 { 10417 if (!tnum_is_const(reg->var_off)) { 10418 char tn_buf[48]; 10419 10420 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 10421 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 10422 regno, tn_buf, off); 10423 return -EACCES; 10424 } 10425 10426 if (off >= 0 || off < -MAX_BPF_STACK) { 10427 verbose(env, "R%d stack pointer arithmetic goes out of range, " 10428 "prohibited for !root; off=%d\n", regno, off); 10429 return -EACCES; 10430 } 10431 10432 return 0; 10433 } 10434 10435 static int sanitize_check_bounds(struct bpf_verifier_env *env, 10436 const struct bpf_insn *insn, 10437 const struct bpf_reg_state *dst_reg) 10438 { 10439 u32 dst = insn->dst_reg; 10440 10441 /* For unprivileged we require that resulting offset must be in bounds 10442 * in order to be able to sanitize access later on. 10443 */ 10444 if (env->bypass_spec_v1) 10445 return 0; 10446 10447 switch (dst_reg->type) { 10448 case PTR_TO_STACK: 10449 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 10450 dst_reg->off + dst_reg->var_off.value)) 10451 return -EACCES; 10452 break; 10453 case PTR_TO_MAP_VALUE: 10454 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 10455 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 10456 "prohibited for !root\n", dst); 10457 return -EACCES; 10458 } 10459 break; 10460 default: 10461 break; 10462 } 10463 10464 return 0; 10465 } 10466 10467 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 10468 * Caller should also handle BPF_MOV case separately. 10469 * If we return -EACCES, caller may want to try again treating pointer as a 10470 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 10471 */ 10472 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 10473 struct bpf_insn *insn, 10474 const struct bpf_reg_state *ptr_reg, 10475 const struct bpf_reg_state *off_reg) 10476 { 10477 struct bpf_verifier_state *vstate = env->cur_state; 10478 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 10479 struct bpf_reg_state *regs = state->regs, *dst_reg; 10480 bool known = tnum_is_const(off_reg->var_off); 10481 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 10482 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 10483 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 10484 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 10485 struct bpf_sanitize_info info = {}; 10486 u8 opcode = BPF_OP(insn->code); 10487 u32 dst = insn->dst_reg; 10488 int ret; 10489 10490 dst_reg = ®s[dst]; 10491 10492 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 10493 smin_val > smax_val || umin_val > umax_val) { 10494 /* Taint dst register if offset had invalid bounds derived from 10495 * e.g. dead branches. 10496 */ 10497 __mark_reg_unknown(env, dst_reg); 10498 return 0; 10499 } 10500 10501 if (BPF_CLASS(insn->code) != BPF_ALU64) { 10502 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 10503 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 10504 __mark_reg_unknown(env, dst_reg); 10505 return 0; 10506 } 10507 10508 verbose(env, 10509 "R%d 32-bit pointer arithmetic prohibited\n", 10510 dst); 10511 return -EACCES; 10512 } 10513 10514 if (ptr_reg->type & PTR_MAYBE_NULL) { 10515 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 10516 dst, reg_type_str(env, ptr_reg->type)); 10517 return -EACCES; 10518 } 10519 10520 switch (base_type(ptr_reg->type)) { 10521 case CONST_PTR_TO_MAP: 10522 /* smin_val represents the known value */ 10523 if (known && smin_val == 0 && opcode == BPF_ADD) 10524 break; 10525 fallthrough; 10526 case PTR_TO_PACKET_END: 10527 case PTR_TO_SOCKET: 10528 case PTR_TO_SOCK_COMMON: 10529 case PTR_TO_TCP_SOCK: 10530 case PTR_TO_XDP_SOCK: 10531 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 10532 dst, reg_type_str(env, ptr_reg->type)); 10533 return -EACCES; 10534 default: 10535 break; 10536 } 10537 10538 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 10539 * The id may be overwritten later if we create a new variable offset. 10540 */ 10541 dst_reg->type = ptr_reg->type; 10542 dst_reg->id = ptr_reg->id; 10543 10544 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 10545 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 10546 return -EINVAL; 10547 10548 /* pointer types do not carry 32-bit bounds at the moment. */ 10549 __mark_reg32_unbounded(dst_reg); 10550 10551 if (sanitize_needed(opcode)) { 10552 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 10553 &info, false); 10554 if (ret < 0) 10555 return sanitize_err(env, insn, ret, off_reg, dst_reg); 10556 } 10557 10558 switch (opcode) { 10559 case BPF_ADD: 10560 /* We can take a fixed offset as long as it doesn't overflow 10561 * the s32 'off' field 10562 */ 10563 if (known && (ptr_reg->off + smin_val == 10564 (s64)(s32)(ptr_reg->off + smin_val))) { 10565 /* pointer += K. Accumulate it into fixed offset */ 10566 dst_reg->smin_value = smin_ptr; 10567 dst_reg->smax_value = smax_ptr; 10568 dst_reg->umin_value = umin_ptr; 10569 dst_reg->umax_value = umax_ptr; 10570 dst_reg->var_off = ptr_reg->var_off; 10571 dst_reg->off = ptr_reg->off + smin_val; 10572 dst_reg->raw = ptr_reg->raw; 10573 break; 10574 } 10575 /* A new variable offset is created. Note that off_reg->off 10576 * == 0, since it's a scalar. 10577 * dst_reg gets the pointer type and since some positive 10578 * integer value was added to the pointer, give it a new 'id' 10579 * if it's a PTR_TO_PACKET. 10580 * this creates a new 'base' pointer, off_reg (variable) gets 10581 * added into the variable offset, and we copy the fixed offset 10582 * from ptr_reg. 10583 */ 10584 if (signed_add_overflows(smin_ptr, smin_val) || 10585 signed_add_overflows(smax_ptr, smax_val)) { 10586 dst_reg->smin_value = S64_MIN; 10587 dst_reg->smax_value = S64_MAX; 10588 } else { 10589 dst_reg->smin_value = smin_ptr + smin_val; 10590 dst_reg->smax_value = smax_ptr + smax_val; 10591 } 10592 if (umin_ptr + umin_val < umin_ptr || 10593 umax_ptr + umax_val < umax_ptr) { 10594 dst_reg->umin_value = 0; 10595 dst_reg->umax_value = U64_MAX; 10596 } else { 10597 dst_reg->umin_value = umin_ptr + umin_val; 10598 dst_reg->umax_value = umax_ptr + umax_val; 10599 } 10600 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 10601 dst_reg->off = ptr_reg->off; 10602 dst_reg->raw = ptr_reg->raw; 10603 if (reg_is_pkt_pointer(ptr_reg)) { 10604 dst_reg->id = ++env->id_gen; 10605 /* something was added to pkt_ptr, set range to zero */ 10606 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 10607 } 10608 break; 10609 case BPF_SUB: 10610 if (dst_reg == off_reg) { 10611 /* scalar -= pointer. Creates an unknown scalar */ 10612 verbose(env, "R%d tried to subtract pointer from scalar\n", 10613 dst); 10614 return -EACCES; 10615 } 10616 /* We don't allow subtraction from FP, because (according to 10617 * test_verifier.c test "invalid fp arithmetic", JITs might not 10618 * be able to deal with it. 10619 */ 10620 if (ptr_reg->type == PTR_TO_STACK) { 10621 verbose(env, "R%d subtraction from stack pointer prohibited\n", 10622 dst); 10623 return -EACCES; 10624 } 10625 if (known && (ptr_reg->off - smin_val == 10626 (s64)(s32)(ptr_reg->off - smin_val))) { 10627 /* pointer -= K. Subtract it from fixed offset */ 10628 dst_reg->smin_value = smin_ptr; 10629 dst_reg->smax_value = smax_ptr; 10630 dst_reg->umin_value = umin_ptr; 10631 dst_reg->umax_value = umax_ptr; 10632 dst_reg->var_off = ptr_reg->var_off; 10633 dst_reg->id = ptr_reg->id; 10634 dst_reg->off = ptr_reg->off - smin_val; 10635 dst_reg->raw = ptr_reg->raw; 10636 break; 10637 } 10638 /* A new variable offset is created. If the subtrahend is known 10639 * nonnegative, then any reg->range we had before is still good. 10640 */ 10641 if (signed_sub_overflows(smin_ptr, smax_val) || 10642 signed_sub_overflows(smax_ptr, smin_val)) { 10643 /* Overflow possible, we know nothing */ 10644 dst_reg->smin_value = S64_MIN; 10645 dst_reg->smax_value = S64_MAX; 10646 } else { 10647 dst_reg->smin_value = smin_ptr - smax_val; 10648 dst_reg->smax_value = smax_ptr - smin_val; 10649 } 10650 if (umin_ptr < umax_val) { 10651 /* Overflow possible, we know nothing */ 10652 dst_reg->umin_value = 0; 10653 dst_reg->umax_value = U64_MAX; 10654 } else { 10655 /* Cannot overflow (as long as bounds are consistent) */ 10656 dst_reg->umin_value = umin_ptr - umax_val; 10657 dst_reg->umax_value = umax_ptr - umin_val; 10658 } 10659 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 10660 dst_reg->off = ptr_reg->off; 10661 dst_reg->raw = ptr_reg->raw; 10662 if (reg_is_pkt_pointer(ptr_reg)) { 10663 dst_reg->id = ++env->id_gen; 10664 /* something was added to pkt_ptr, set range to zero */ 10665 if (smin_val < 0) 10666 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 10667 } 10668 break; 10669 case BPF_AND: 10670 case BPF_OR: 10671 case BPF_XOR: 10672 /* bitwise ops on pointers are troublesome, prohibit. */ 10673 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 10674 dst, bpf_alu_string[opcode >> 4]); 10675 return -EACCES; 10676 default: 10677 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 10678 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 10679 dst, bpf_alu_string[opcode >> 4]); 10680 return -EACCES; 10681 } 10682 10683 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 10684 return -EINVAL; 10685 reg_bounds_sync(dst_reg); 10686 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 10687 return -EACCES; 10688 if (sanitize_needed(opcode)) { 10689 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 10690 &info, true); 10691 if (ret < 0) 10692 return sanitize_err(env, insn, ret, off_reg, dst_reg); 10693 } 10694 10695 return 0; 10696 } 10697 10698 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 10699 struct bpf_reg_state *src_reg) 10700 { 10701 s32 smin_val = src_reg->s32_min_value; 10702 s32 smax_val = src_reg->s32_max_value; 10703 u32 umin_val = src_reg->u32_min_value; 10704 u32 umax_val = src_reg->u32_max_value; 10705 10706 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 10707 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 10708 dst_reg->s32_min_value = S32_MIN; 10709 dst_reg->s32_max_value = S32_MAX; 10710 } else { 10711 dst_reg->s32_min_value += smin_val; 10712 dst_reg->s32_max_value += smax_val; 10713 } 10714 if (dst_reg->u32_min_value + umin_val < umin_val || 10715 dst_reg->u32_max_value + umax_val < umax_val) { 10716 dst_reg->u32_min_value = 0; 10717 dst_reg->u32_max_value = U32_MAX; 10718 } else { 10719 dst_reg->u32_min_value += umin_val; 10720 dst_reg->u32_max_value += umax_val; 10721 } 10722 } 10723 10724 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 10725 struct bpf_reg_state *src_reg) 10726 { 10727 s64 smin_val = src_reg->smin_value; 10728 s64 smax_val = src_reg->smax_value; 10729 u64 umin_val = src_reg->umin_value; 10730 u64 umax_val = src_reg->umax_value; 10731 10732 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 10733 signed_add_overflows(dst_reg->smax_value, smax_val)) { 10734 dst_reg->smin_value = S64_MIN; 10735 dst_reg->smax_value = S64_MAX; 10736 } else { 10737 dst_reg->smin_value += smin_val; 10738 dst_reg->smax_value += smax_val; 10739 } 10740 if (dst_reg->umin_value + umin_val < umin_val || 10741 dst_reg->umax_value + umax_val < umax_val) { 10742 dst_reg->umin_value = 0; 10743 dst_reg->umax_value = U64_MAX; 10744 } else { 10745 dst_reg->umin_value += umin_val; 10746 dst_reg->umax_value += umax_val; 10747 } 10748 } 10749 10750 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 10751 struct bpf_reg_state *src_reg) 10752 { 10753 s32 smin_val = src_reg->s32_min_value; 10754 s32 smax_val = src_reg->s32_max_value; 10755 u32 umin_val = src_reg->u32_min_value; 10756 u32 umax_val = src_reg->u32_max_value; 10757 10758 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 10759 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 10760 /* Overflow possible, we know nothing */ 10761 dst_reg->s32_min_value = S32_MIN; 10762 dst_reg->s32_max_value = S32_MAX; 10763 } else { 10764 dst_reg->s32_min_value -= smax_val; 10765 dst_reg->s32_max_value -= smin_val; 10766 } 10767 if (dst_reg->u32_min_value < umax_val) { 10768 /* Overflow possible, we know nothing */ 10769 dst_reg->u32_min_value = 0; 10770 dst_reg->u32_max_value = U32_MAX; 10771 } else { 10772 /* Cannot overflow (as long as bounds are consistent) */ 10773 dst_reg->u32_min_value -= umax_val; 10774 dst_reg->u32_max_value -= umin_val; 10775 } 10776 } 10777 10778 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 10779 struct bpf_reg_state *src_reg) 10780 { 10781 s64 smin_val = src_reg->smin_value; 10782 s64 smax_val = src_reg->smax_value; 10783 u64 umin_val = src_reg->umin_value; 10784 u64 umax_val = src_reg->umax_value; 10785 10786 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 10787 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 10788 /* Overflow possible, we know nothing */ 10789 dst_reg->smin_value = S64_MIN; 10790 dst_reg->smax_value = S64_MAX; 10791 } else { 10792 dst_reg->smin_value -= smax_val; 10793 dst_reg->smax_value -= smin_val; 10794 } 10795 if (dst_reg->umin_value < umax_val) { 10796 /* Overflow possible, we know nothing */ 10797 dst_reg->umin_value = 0; 10798 dst_reg->umax_value = U64_MAX; 10799 } else { 10800 /* Cannot overflow (as long as bounds are consistent) */ 10801 dst_reg->umin_value -= umax_val; 10802 dst_reg->umax_value -= umin_val; 10803 } 10804 } 10805 10806 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 10807 struct bpf_reg_state *src_reg) 10808 { 10809 s32 smin_val = src_reg->s32_min_value; 10810 u32 umin_val = src_reg->u32_min_value; 10811 u32 umax_val = src_reg->u32_max_value; 10812 10813 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 10814 /* Ain't nobody got time to multiply that sign */ 10815 __mark_reg32_unbounded(dst_reg); 10816 return; 10817 } 10818 /* Both values are positive, so we can work with unsigned and 10819 * copy the result to signed (unless it exceeds S32_MAX). 10820 */ 10821 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 10822 /* Potential overflow, we know nothing */ 10823 __mark_reg32_unbounded(dst_reg); 10824 return; 10825 } 10826 dst_reg->u32_min_value *= umin_val; 10827 dst_reg->u32_max_value *= umax_val; 10828 if (dst_reg->u32_max_value > S32_MAX) { 10829 /* Overflow possible, we know nothing */ 10830 dst_reg->s32_min_value = S32_MIN; 10831 dst_reg->s32_max_value = S32_MAX; 10832 } else { 10833 dst_reg->s32_min_value = dst_reg->u32_min_value; 10834 dst_reg->s32_max_value = dst_reg->u32_max_value; 10835 } 10836 } 10837 10838 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 10839 struct bpf_reg_state *src_reg) 10840 { 10841 s64 smin_val = src_reg->smin_value; 10842 u64 umin_val = src_reg->umin_value; 10843 u64 umax_val = src_reg->umax_value; 10844 10845 if (smin_val < 0 || dst_reg->smin_value < 0) { 10846 /* Ain't nobody got time to multiply that sign */ 10847 __mark_reg64_unbounded(dst_reg); 10848 return; 10849 } 10850 /* Both values are positive, so we can work with unsigned and 10851 * copy the result to signed (unless it exceeds S64_MAX). 10852 */ 10853 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 10854 /* Potential overflow, we know nothing */ 10855 __mark_reg64_unbounded(dst_reg); 10856 return; 10857 } 10858 dst_reg->umin_value *= umin_val; 10859 dst_reg->umax_value *= umax_val; 10860 if (dst_reg->umax_value > S64_MAX) { 10861 /* Overflow possible, we know nothing */ 10862 dst_reg->smin_value = S64_MIN; 10863 dst_reg->smax_value = S64_MAX; 10864 } else { 10865 dst_reg->smin_value = dst_reg->umin_value; 10866 dst_reg->smax_value = dst_reg->umax_value; 10867 } 10868 } 10869 10870 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 10871 struct bpf_reg_state *src_reg) 10872 { 10873 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10874 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10875 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10876 s32 smin_val = src_reg->s32_min_value; 10877 u32 umax_val = src_reg->u32_max_value; 10878 10879 if (src_known && dst_known) { 10880 __mark_reg32_known(dst_reg, var32_off.value); 10881 return; 10882 } 10883 10884 /* We get our minimum from the var_off, since that's inherently 10885 * bitwise. Our maximum is the minimum of the operands' maxima. 10886 */ 10887 dst_reg->u32_min_value = var32_off.value; 10888 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 10889 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10890 /* Lose signed bounds when ANDing negative numbers, 10891 * ain't nobody got time for that. 10892 */ 10893 dst_reg->s32_min_value = S32_MIN; 10894 dst_reg->s32_max_value = S32_MAX; 10895 } else { 10896 /* ANDing two positives gives a positive, so safe to 10897 * cast result into s64. 10898 */ 10899 dst_reg->s32_min_value = dst_reg->u32_min_value; 10900 dst_reg->s32_max_value = dst_reg->u32_max_value; 10901 } 10902 } 10903 10904 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 10905 struct bpf_reg_state *src_reg) 10906 { 10907 bool src_known = tnum_is_const(src_reg->var_off); 10908 bool dst_known = tnum_is_const(dst_reg->var_off); 10909 s64 smin_val = src_reg->smin_value; 10910 u64 umax_val = src_reg->umax_value; 10911 10912 if (src_known && dst_known) { 10913 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10914 return; 10915 } 10916 10917 /* We get our minimum from the var_off, since that's inherently 10918 * bitwise. Our maximum is the minimum of the operands' maxima. 10919 */ 10920 dst_reg->umin_value = dst_reg->var_off.value; 10921 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 10922 if (dst_reg->smin_value < 0 || smin_val < 0) { 10923 /* Lose signed bounds when ANDing negative numbers, 10924 * ain't nobody got time for that. 10925 */ 10926 dst_reg->smin_value = S64_MIN; 10927 dst_reg->smax_value = S64_MAX; 10928 } else { 10929 /* ANDing two positives gives a positive, so safe to 10930 * cast result into s64. 10931 */ 10932 dst_reg->smin_value = dst_reg->umin_value; 10933 dst_reg->smax_value = dst_reg->umax_value; 10934 } 10935 /* We may learn something more from the var_off */ 10936 __update_reg_bounds(dst_reg); 10937 } 10938 10939 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 10940 struct bpf_reg_state *src_reg) 10941 { 10942 bool src_known = tnum_subreg_is_const(src_reg->var_off); 10943 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 10944 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 10945 s32 smin_val = src_reg->s32_min_value; 10946 u32 umin_val = src_reg->u32_min_value; 10947 10948 if (src_known && dst_known) { 10949 __mark_reg32_known(dst_reg, var32_off.value); 10950 return; 10951 } 10952 10953 /* We get our maximum from the var_off, and our minimum is the 10954 * maximum of the operands' minima 10955 */ 10956 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 10957 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 10958 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 10959 /* Lose signed bounds when ORing negative numbers, 10960 * ain't nobody got time for that. 10961 */ 10962 dst_reg->s32_min_value = S32_MIN; 10963 dst_reg->s32_max_value = S32_MAX; 10964 } else { 10965 /* ORing two positives gives a positive, so safe to 10966 * cast result into s64. 10967 */ 10968 dst_reg->s32_min_value = dst_reg->u32_min_value; 10969 dst_reg->s32_max_value = dst_reg->u32_max_value; 10970 } 10971 } 10972 10973 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 10974 struct bpf_reg_state *src_reg) 10975 { 10976 bool src_known = tnum_is_const(src_reg->var_off); 10977 bool dst_known = tnum_is_const(dst_reg->var_off); 10978 s64 smin_val = src_reg->smin_value; 10979 u64 umin_val = src_reg->umin_value; 10980 10981 if (src_known && dst_known) { 10982 __mark_reg_known(dst_reg, dst_reg->var_off.value); 10983 return; 10984 } 10985 10986 /* We get our maximum from the var_off, and our minimum is the 10987 * maximum of the operands' minima 10988 */ 10989 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 10990 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 10991 if (dst_reg->smin_value < 0 || smin_val < 0) { 10992 /* Lose signed bounds when ORing negative numbers, 10993 * ain't nobody got time for that. 10994 */ 10995 dst_reg->smin_value = S64_MIN; 10996 dst_reg->smax_value = S64_MAX; 10997 } else { 10998 /* ORing two positives gives a positive, so safe to 10999 * cast result into s64. 11000 */ 11001 dst_reg->smin_value = dst_reg->umin_value; 11002 dst_reg->smax_value = dst_reg->umax_value; 11003 } 11004 /* We may learn something more from the var_off */ 11005 __update_reg_bounds(dst_reg); 11006 } 11007 11008 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 11009 struct bpf_reg_state *src_reg) 11010 { 11011 bool src_known = tnum_subreg_is_const(src_reg->var_off); 11012 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 11013 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 11014 s32 smin_val = src_reg->s32_min_value; 11015 11016 if (src_known && dst_known) { 11017 __mark_reg32_known(dst_reg, var32_off.value); 11018 return; 11019 } 11020 11021 /* We get both minimum and maximum from the var32_off. */ 11022 dst_reg->u32_min_value = var32_off.value; 11023 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 11024 11025 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 11026 /* XORing two positive sign numbers gives a positive, 11027 * so safe to cast u32 result into s32. 11028 */ 11029 dst_reg->s32_min_value = dst_reg->u32_min_value; 11030 dst_reg->s32_max_value = dst_reg->u32_max_value; 11031 } else { 11032 dst_reg->s32_min_value = S32_MIN; 11033 dst_reg->s32_max_value = S32_MAX; 11034 } 11035 } 11036 11037 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 11038 struct bpf_reg_state *src_reg) 11039 { 11040 bool src_known = tnum_is_const(src_reg->var_off); 11041 bool dst_known = tnum_is_const(dst_reg->var_off); 11042 s64 smin_val = src_reg->smin_value; 11043 11044 if (src_known && dst_known) { 11045 /* dst_reg->var_off.value has been updated earlier */ 11046 __mark_reg_known(dst_reg, dst_reg->var_off.value); 11047 return; 11048 } 11049 11050 /* We get both minimum and maximum from the var_off. */ 11051 dst_reg->umin_value = dst_reg->var_off.value; 11052 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 11053 11054 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 11055 /* XORing two positive sign numbers gives a positive, 11056 * so safe to cast u64 result into s64. 11057 */ 11058 dst_reg->smin_value = dst_reg->umin_value; 11059 dst_reg->smax_value = dst_reg->umax_value; 11060 } else { 11061 dst_reg->smin_value = S64_MIN; 11062 dst_reg->smax_value = S64_MAX; 11063 } 11064 11065 __update_reg_bounds(dst_reg); 11066 } 11067 11068 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 11069 u64 umin_val, u64 umax_val) 11070 { 11071 /* We lose all sign bit information (except what we can pick 11072 * up from var_off) 11073 */ 11074 dst_reg->s32_min_value = S32_MIN; 11075 dst_reg->s32_max_value = S32_MAX; 11076 /* If we might shift our top bit out, then we know nothing */ 11077 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 11078 dst_reg->u32_min_value = 0; 11079 dst_reg->u32_max_value = U32_MAX; 11080 } else { 11081 dst_reg->u32_min_value <<= umin_val; 11082 dst_reg->u32_max_value <<= umax_val; 11083 } 11084 } 11085 11086 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 11087 struct bpf_reg_state *src_reg) 11088 { 11089 u32 umax_val = src_reg->u32_max_value; 11090 u32 umin_val = src_reg->u32_min_value; 11091 /* u32 alu operation will zext upper bits */ 11092 struct tnum subreg = tnum_subreg(dst_reg->var_off); 11093 11094 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 11095 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 11096 /* Not required but being careful mark reg64 bounds as unknown so 11097 * that we are forced to pick them up from tnum and zext later and 11098 * if some path skips this step we are still safe. 11099 */ 11100 __mark_reg64_unbounded(dst_reg); 11101 __update_reg32_bounds(dst_reg); 11102 } 11103 11104 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 11105 u64 umin_val, u64 umax_val) 11106 { 11107 /* Special case <<32 because it is a common compiler pattern to sign 11108 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 11109 * positive we know this shift will also be positive so we can track 11110 * bounds correctly. Otherwise we lose all sign bit information except 11111 * what we can pick up from var_off. Perhaps we can generalize this 11112 * later to shifts of any length. 11113 */ 11114 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 11115 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 11116 else 11117 dst_reg->smax_value = S64_MAX; 11118 11119 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 11120 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 11121 else 11122 dst_reg->smin_value = S64_MIN; 11123 11124 /* If we might shift our top bit out, then we know nothing */ 11125 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 11126 dst_reg->umin_value = 0; 11127 dst_reg->umax_value = U64_MAX; 11128 } else { 11129 dst_reg->umin_value <<= umin_val; 11130 dst_reg->umax_value <<= umax_val; 11131 } 11132 } 11133 11134 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 11135 struct bpf_reg_state *src_reg) 11136 { 11137 u64 umax_val = src_reg->umax_value; 11138 u64 umin_val = src_reg->umin_value; 11139 11140 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 11141 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 11142 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 11143 11144 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 11145 /* We may learn something more from the var_off */ 11146 __update_reg_bounds(dst_reg); 11147 } 11148 11149 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 11150 struct bpf_reg_state *src_reg) 11151 { 11152 struct tnum subreg = tnum_subreg(dst_reg->var_off); 11153 u32 umax_val = src_reg->u32_max_value; 11154 u32 umin_val = src_reg->u32_min_value; 11155 11156 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 11157 * be negative, then either: 11158 * 1) src_reg might be zero, so the sign bit of the result is 11159 * unknown, so we lose our signed bounds 11160 * 2) it's known negative, thus the unsigned bounds capture the 11161 * signed bounds 11162 * 3) the signed bounds cross zero, so they tell us nothing 11163 * about the result 11164 * If the value in dst_reg is known nonnegative, then again the 11165 * unsigned bounds capture the signed bounds. 11166 * Thus, in all cases it suffices to blow away our signed bounds 11167 * and rely on inferring new ones from the unsigned bounds and 11168 * var_off of the result. 11169 */ 11170 dst_reg->s32_min_value = S32_MIN; 11171 dst_reg->s32_max_value = S32_MAX; 11172 11173 dst_reg->var_off = tnum_rshift(subreg, umin_val); 11174 dst_reg->u32_min_value >>= umax_val; 11175 dst_reg->u32_max_value >>= umin_val; 11176 11177 __mark_reg64_unbounded(dst_reg); 11178 __update_reg32_bounds(dst_reg); 11179 } 11180 11181 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 11182 struct bpf_reg_state *src_reg) 11183 { 11184 u64 umax_val = src_reg->umax_value; 11185 u64 umin_val = src_reg->umin_value; 11186 11187 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 11188 * be negative, then either: 11189 * 1) src_reg might be zero, so the sign bit of the result is 11190 * unknown, so we lose our signed bounds 11191 * 2) it's known negative, thus the unsigned bounds capture the 11192 * signed bounds 11193 * 3) the signed bounds cross zero, so they tell us nothing 11194 * about the result 11195 * If the value in dst_reg is known nonnegative, then again the 11196 * unsigned bounds capture the signed bounds. 11197 * Thus, in all cases it suffices to blow away our signed bounds 11198 * and rely on inferring new ones from the unsigned bounds and 11199 * var_off of the result. 11200 */ 11201 dst_reg->smin_value = S64_MIN; 11202 dst_reg->smax_value = S64_MAX; 11203 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 11204 dst_reg->umin_value >>= umax_val; 11205 dst_reg->umax_value >>= umin_val; 11206 11207 /* Its not easy to operate on alu32 bounds here because it depends 11208 * on bits being shifted in. Take easy way out and mark unbounded 11209 * so we can recalculate later from tnum. 11210 */ 11211 __mark_reg32_unbounded(dst_reg); 11212 __update_reg_bounds(dst_reg); 11213 } 11214 11215 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 11216 struct bpf_reg_state *src_reg) 11217 { 11218 u64 umin_val = src_reg->u32_min_value; 11219 11220 /* Upon reaching here, src_known is true and 11221 * umax_val is equal to umin_val. 11222 */ 11223 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 11224 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 11225 11226 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 11227 11228 /* blow away the dst_reg umin_value/umax_value and rely on 11229 * dst_reg var_off to refine the result. 11230 */ 11231 dst_reg->u32_min_value = 0; 11232 dst_reg->u32_max_value = U32_MAX; 11233 11234 __mark_reg64_unbounded(dst_reg); 11235 __update_reg32_bounds(dst_reg); 11236 } 11237 11238 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 11239 struct bpf_reg_state *src_reg) 11240 { 11241 u64 umin_val = src_reg->umin_value; 11242 11243 /* Upon reaching here, src_known is true and umax_val is equal 11244 * to umin_val. 11245 */ 11246 dst_reg->smin_value >>= umin_val; 11247 dst_reg->smax_value >>= umin_val; 11248 11249 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 11250 11251 /* blow away the dst_reg umin_value/umax_value and rely on 11252 * dst_reg var_off to refine the result. 11253 */ 11254 dst_reg->umin_value = 0; 11255 dst_reg->umax_value = U64_MAX; 11256 11257 /* Its not easy to operate on alu32 bounds here because it depends 11258 * on bits being shifted in from upper 32-bits. Take easy way out 11259 * and mark unbounded so we can recalculate later from tnum. 11260 */ 11261 __mark_reg32_unbounded(dst_reg); 11262 __update_reg_bounds(dst_reg); 11263 } 11264 11265 /* WARNING: This function does calculations on 64-bit values, but the actual 11266 * execution may occur on 32-bit values. Therefore, things like bitshifts 11267 * need extra checks in the 32-bit case. 11268 */ 11269 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 11270 struct bpf_insn *insn, 11271 struct bpf_reg_state *dst_reg, 11272 struct bpf_reg_state src_reg) 11273 { 11274 struct bpf_reg_state *regs = cur_regs(env); 11275 u8 opcode = BPF_OP(insn->code); 11276 bool src_known; 11277 s64 smin_val, smax_val; 11278 u64 umin_val, umax_val; 11279 s32 s32_min_val, s32_max_val; 11280 u32 u32_min_val, u32_max_val; 11281 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 11282 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 11283 int ret; 11284 11285 smin_val = src_reg.smin_value; 11286 smax_val = src_reg.smax_value; 11287 umin_val = src_reg.umin_value; 11288 umax_val = src_reg.umax_value; 11289 11290 s32_min_val = src_reg.s32_min_value; 11291 s32_max_val = src_reg.s32_max_value; 11292 u32_min_val = src_reg.u32_min_value; 11293 u32_max_val = src_reg.u32_max_value; 11294 11295 if (alu32) { 11296 src_known = tnum_subreg_is_const(src_reg.var_off); 11297 if ((src_known && 11298 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 11299 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 11300 /* Taint dst register if offset had invalid bounds 11301 * derived from e.g. dead branches. 11302 */ 11303 __mark_reg_unknown(env, dst_reg); 11304 return 0; 11305 } 11306 } else { 11307 src_known = tnum_is_const(src_reg.var_off); 11308 if ((src_known && 11309 (smin_val != smax_val || umin_val != umax_val)) || 11310 smin_val > smax_val || umin_val > umax_val) { 11311 /* Taint dst register if offset had invalid bounds 11312 * derived from e.g. dead branches. 11313 */ 11314 __mark_reg_unknown(env, dst_reg); 11315 return 0; 11316 } 11317 } 11318 11319 if (!src_known && 11320 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 11321 __mark_reg_unknown(env, dst_reg); 11322 return 0; 11323 } 11324 11325 if (sanitize_needed(opcode)) { 11326 ret = sanitize_val_alu(env, insn); 11327 if (ret < 0) 11328 return sanitize_err(env, insn, ret, NULL, NULL); 11329 } 11330 11331 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 11332 * There are two classes of instructions: The first class we track both 11333 * alu32 and alu64 sign/unsigned bounds independently this provides the 11334 * greatest amount of precision when alu operations are mixed with jmp32 11335 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 11336 * and BPF_OR. This is possible because these ops have fairly easy to 11337 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 11338 * See alu32 verifier tests for examples. The second class of 11339 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 11340 * with regards to tracking sign/unsigned bounds because the bits may 11341 * cross subreg boundaries in the alu64 case. When this happens we mark 11342 * the reg unbounded in the subreg bound space and use the resulting 11343 * tnum to calculate an approximation of the sign/unsigned bounds. 11344 */ 11345 switch (opcode) { 11346 case BPF_ADD: 11347 scalar32_min_max_add(dst_reg, &src_reg); 11348 scalar_min_max_add(dst_reg, &src_reg); 11349 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 11350 break; 11351 case BPF_SUB: 11352 scalar32_min_max_sub(dst_reg, &src_reg); 11353 scalar_min_max_sub(dst_reg, &src_reg); 11354 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 11355 break; 11356 case BPF_MUL: 11357 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 11358 scalar32_min_max_mul(dst_reg, &src_reg); 11359 scalar_min_max_mul(dst_reg, &src_reg); 11360 break; 11361 case BPF_AND: 11362 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 11363 scalar32_min_max_and(dst_reg, &src_reg); 11364 scalar_min_max_and(dst_reg, &src_reg); 11365 break; 11366 case BPF_OR: 11367 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 11368 scalar32_min_max_or(dst_reg, &src_reg); 11369 scalar_min_max_or(dst_reg, &src_reg); 11370 break; 11371 case BPF_XOR: 11372 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 11373 scalar32_min_max_xor(dst_reg, &src_reg); 11374 scalar_min_max_xor(dst_reg, &src_reg); 11375 break; 11376 case BPF_LSH: 11377 if (umax_val >= insn_bitness) { 11378 /* Shifts greater than 31 or 63 are undefined. 11379 * This includes shifts by a negative number. 11380 */ 11381 mark_reg_unknown(env, regs, insn->dst_reg); 11382 break; 11383 } 11384 if (alu32) 11385 scalar32_min_max_lsh(dst_reg, &src_reg); 11386 else 11387 scalar_min_max_lsh(dst_reg, &src_reg); 11388 break; 11389 case BPF_RSH: 11390 if (umax_val >= insn_bitness) { 11391 /* Shifts greater than 31 or 63 are undefined. 11392 * This includes shifts by a negative number. 11393 */ 11394 mark_reg_unknown(env, regs, insn->dst_reg); 11395 break; 11396 } 11397 if (alu32) 11398 scalar32_min_max_rsh(dst_reg, &src_reg); 11399 else 11400 scalar_min_max_rsh(dst_reg, &src_reg); 11401 break; 11402 case BPF_ARSH: 11403 if (umax_val >= insn_bitness) { 11404 /* Shifts greater than 31 or 63 are undefined. 11405 * This includes shifts by a negative number. 11406 */ 11407 mark_reg_unknown(env, regs, insn->dst_reg); 11408 break; 11409 } 11410 if (alu32) 11411 scalar32_min_max_arsh(dst_reg, &src_reg); 11412 else 11413 scalar_min_max_arsh(dst_reg, &src_reg); 11414 break; 11415 default: 11416 mark_reg_unknown(env, regs, insn->dst_reg); 11417 break; 11418 } 11419 11420 /* ALU32 ops are zero extended into 64bit register */ 11421 if (alu32) 11422 zext_32_to_64(dst_reg); 11423 reg_bounds_sync(dst_reg); 11424 return 0; 11425 } 11426 11427 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 11428 * and var_off. 11429 */ 11430 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 11431 struct bpf_insn *insn) 11432 { 11433 struct bpf_verifier_state *vstate = env->cur_state; 11434 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 11435 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 11436 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 11437 u8 opcode = BPF_OP(insn->code); 11438 int err; 11439 11440 dst_reg = ®s[insn->dst_reg]; 11441 src_reg = NULL; 11442 if (dst_reg->type != SCALAR_VALUE) 11443 ptr_reg = dst_reg; 11444 else 11445 /* Make sure ID is cleared otherwise dst_reg min/max could be 11446 * incorrectly propagated into other registers by find_equal_scalars() 11447 */ 11448 dst_reg->id = 0; 11449 if (BPF_SRC(insn->code) == BPF_X) { 11450 src_reg = ®s[insn->src_reg]; 11451 if (src_reg->type != SCALAR_VALUE) { 11452 if (dst_reg->type != SCALAR_VALUE) { 11453 /* Combining two pointers by any ALU op yields 11454 * an arbitrary scalar. Disallow all math except 11455 * pointer subtraction 11456 */ 11457 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 11458 mark_reg_unknown(env, regs, insn->dst_reg); 11459 return 0; 11460 } 11461 verbose(env, "R%d pointer %s pointer prohibited\n", 11462 insn->dst_reg, 11463 bpf_alu_string[opcode >> 4]); 11464 return -EACCES; 11465 } else { 11466 /* scalar += pointer 11467 * This is legal, but we have to reverse our 11468 * src/dest handling in computing the range 11469 */ 11470 err = mark_chain_precision(env, insn->dst_reg); 11471 if (err) 11472 return err; 11473 return adjust_ptr_min_max_vals(env, insn, 11474 src_reg, dst_reg); 11475 } 11476 } else if (ptr_reg) { 11477 /* pointer += scalar */ 11478 err = mark_chain_precision(env, insn->src_reg); 11479 if (err) 11480 return err; 11481 return adjust_ptr_min_max_vals(env, insn, 11482 dst_reg, src_reg); 11483 } else if (dst_reg->precise) { 11484 /* if dst_reg is precise, src_reg should be precise as well */ 11485 err = mark_chain_precision(env, insn->src_reg); 11486 if (err) 11487 return err; 11488 } 11489 } else { 11490 /* Pretend the src is a reg with a known value, since we only 11491 * need to be able to read from this state. 11492 */ 11493 off_reg.type = SCALAR_VALUE; 11494 __mark_reg_known(&off_reg, insn->imm); 11495 src_reg = &off_reg; 11496 if (ptr_reg) /* pointer += K */ 11497 return adjust_ptr_min_max_vals(env, insn, 11498 ptr_reg, src_reg); 11499 } 11500 11501 /* Got here implies adding two SCALAR_VALUEs */ 11502 if (WARN_ON_ONCE(ptr_reg)) { 11503 print_verifier_state(env, state, true); 11504 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 11505 return -EINVAL; 11506 } 11507 if (WARN_ON(!src_reg)) { 11508 print_verifier_state(env, state, true); 11509 verbose(env, "verifier internal error: no src_reg\n"); 11510 return -EINVAL; 11511 } 11512 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 11513 } 11514 11515 /* check validity of 32-bit and 64-bit arithmetic operations */ 11516 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 11517 { 11518 struct bpf_reg_state *regs = cur_regs(env); 11519 u8 opcode = BPF_OP(insn->code); 11520 int err; 11521 11522 if (opcode == BPF_END || opcode == BPF_NEG) { 11523 if (opcode == BPF_NEG) { 11524 if (BPF_SRC(insn->code) != BPF_K || 11525 insn->src_reg != BPF_REG_0 || 11526 insn->off != 0 || insn->imm != 0) { 11527 verbose(env, "BPF_NEG uses reserved fields\n"); 11528 return -EINVAL; 11529 } 11530 } else { 11531 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 11532 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 11533 BPF_CLASS(insn->code) == BPF_ALU64) { 11534 verbose(env, "BPF_END uses reserved fields\n"); 11535 return -EINVAL; 11536 } 11537 } 11538 11539 /* check src operand */ 11540 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11541 if (err) 11542 return err; 11543 11544 if (is_pointer_value(env, insn->dst_reg)) { 11545 verbose(env, "R%d pointer arithmetic prohibited\n", 11546 insn->dst_reg); 11547 return -EACCES; 11548 } 11549 11550 /* check dest operand */ 11551 err = check_reg_arg(env, insn->dst_reg, DST_OP); 11552 if (err) 11553 return err; 11554 11555 } else if (opcode == BPF_MOV) { 11556 11557 if (BPF_SRC(insn->code) == BPF_X) { 11558 if (insn->imm != 0 || insn->off != 0) { 11559 verbose(env, "BPF_MOV uses reserved fields\n"); 11560 return -EINVAL; 11561 } 11562 11563 /* check src operand */ 11564 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11565 if (err) 11566 return err; 11567 } else { 11568 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 11569 verbose(env, "BPF_MOV uses reserved fields\n"); 11570 return -EINVAL; 11571 } 11572 } 11573 11574 /* check dest operand, mark as required later */ 11575 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11576 if (err) 11577 return err; 11578 11579 if (BPF_SRC(insn->code) == BPF_X) { 11580 struct bpf_reg_state *src_reg = regs + insn->src_reg; 11581 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 11582 11583 if (BPF_CLASS(insn->code) == BPF_ALU64) { 11584 /* case: R1 = R2 11585 * copy register state to dest reg 11586 */ 11587 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 11588 /* Assign src and dst registers the same ID 11589 * that will be used by find_equal_scalars() 11590 * to propagate min/max range. 11591 */ 11592 src_reg->id = ++env->id_gen; 11593 copy_register_state(dst_reg, src_reg); 11594 dst_reg->live |= REG_LIVE_WRITTEN; 11595 dst_reg->subreg_def = DEF_NOT_SUBREG; 11596 } else { 11597 /* R1 = (u32) R2 */ 11598 if (is_pointer_value(env, insn->src_reg)) { 11599 verbose(env, 11600 "R%d partial copy of pointer\n", 11601 insn->src_reg); 11602 return -EACCES; 11603 } else if (src_reg->type == SCALAR_VALUE) { 11604 copy_register_state(dst_reg, src_reg); 11605 /* Make sure ID is cleared otherwise 11606 * dst_reg min/max could be incorrectly 11607 * propagated into src_reg by find_equal_scalars() 11608 */ 11609 dst_reg->id = 0; 11610 dst_reg->live |= REG_LIVE_WRITTEN; 11611 dst_reg->subreg_def = env->insn_idx + 1; 11612 } else { 11613 mark_reg_unknown(env, regs, 11614 insn->dst_reg); 11615 } 11616 zext_32_to_64(dst_reg); 11617 reg_bounds_sync(dst_reg); 11618 } 11619 } else { 11620 /* case: R = imm 11621 * remember the value we stored into this reg 11622 */ 11623 /* clear any state __mark_reg_known doesn't set */ 11624 mark_reg_unknown(env, regs, insn->dst_reg); 11625 regs[insn->dst_reg].type = SCALAR_VALUE; 11626 if (BPF_CLASS(insn->code) == BPF_ALU64) { 11627 __mark_reg_known(regs + insn->dst_reg, 11628 insn->imm); 11629 } else { 11630 __mark_reg_known(regs + insn->dst_reg, 11631 (u32)insn->imm); 11632 } 11633 } 11634 11635 } else if (opcode > BPF_END) { 11636 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 11637 return -EINVAL; 11638 11639 } else { /* all other ALU ops: and, sub, xor, add, ... */ 11640 11641 if (BPF_SRC(insn->code) == BPF_X) { 11642 if (insn->imm != 0 || insn->off != 0) { 11643 verbose(env, "BPF_ALU uses reserved fields\n"); 11644 return -EINVAL; 11645 } 11646 /* check src1 operand */ 11647 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11648 if (err) 11649 return err; 11650 } else { 11651 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 11652 verbose(env, "BPF_ALU uses reserved fields\n"); 11653 return -EINVAL; 11654 } 11655 } 11656 11657 /* check src2 operand */ 11658 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11659 if (err) 11660 return err; 11661 11662 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 11663 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 11664 verbose(env, "div by zero\n"); 11665 return -EINVAL; 11666 } 11667 11668 if ((opcode == BPF_LSH || opcode == BPF_RSH || 11669 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 11670 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 11671 11672 if (insn->imm < 0 || insn->imm >= size) { 11673 verbose(env, "invalid shift %d\n", insn->imm); 11674 return -EINVAL; 11675 } 11676 } 11677 11678 /* check dest operand */ 11679 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11680 if (err) 11681 return err; 11682 11683 return adjust_reg_min_max_vals(env, insn); 11684 } 11685 11686 return 0; 11687 } 11688 11689 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 11690 struct bpf_reg_state *dst_reg, 11691 enum bpf_reg_type type, 11692 bool range_right_open) 11693 { 11694 struct bpf_func_state *state; 11695 struct bpf_reg_state *reg; 11696 int new_range; 11697 11698 if (dst_reg->off < 0 || 11699 (dst_reg->off == 0 && range_right_open)) 11700 /* This doesn't give us any range */ 11701 return; 11702 11703 if (dst_reg->umax_value > MAX_PACKET_OFF || 11704 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 11705 /* Risk of overflow. For instance, ptr + (1<<63) may be less 11706 * than pkt_end, but that's because it's also less than pkt. 11707 */ 11708 return; 11709 11710 new_range = dst_reg->off; 11711 if (range_right_open) 11712 new_range++; 11713 11714 /* Examples for register markings: 11715 * 11716 * pkt_data in dst register: 11717 * 11718 * r2 = r3; 11719 * r2 += 8; 11720 * if (r2 > pkt_end) goto <handle exception> 11721 * <access okay> 11722 * 11723 * r2 = r3; 11724 * r2 += 8; 11725 * if (r2 < pkt_end) goto <access okay> 11726 * <handle exception> 11727 * 11728 * Where: 11729 * r2 == dst_reg, pkt_end == src_reg 11730 * r2=pkt(id=n,off=8,r=0) 11731 * r3=pkt(id=n,off=0,r=0) 11732 * 11733 * pkt_data in src register: 11734 * 11735 * r2 = r3; 11736 * r2 += 8; 11737 * if (pkt_end >= r2) goto <access okay> 11738 * <handle exception> 11739 * 11740 * r2 = r3; 11741 * r2 += 8; 11742 * if (pkt_end <= r2) goto <handle exception> 11743 * <access okay> 11744 * 11745 * Where: 11746 * pkt_end == dst_reg, r2 == src_reg 11747 * r2=pkt(id=n,off=8,r=0) 11748 * r3=pkt(id=n,off=0,r=0) 11749 * 11750 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 11751 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 11752 * and [r3, r3 + 8-1) respectively is safe to access depending on 11753 * the check. 11754 */ 11755 11756 /* If our ids match, then we must have the same max_value. And we 11757 * don't care about the other reg's fixed offset, since if it's too big 11758 * the range won't allow anything. 11759 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 11760 */ 11761 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 11762 if (reg->type == type && reg->id == dst_reg->id) 11763 /* keep the maximum range already checked */ 11764 reg->range = max(reg->range, new_range); 11765 })); 11766 } 11767 11768 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 11769 { 11770 struct tnum subreg = tnum_subreg(reg->var_off); 11771 s32 sval = (s32)val; 11772 11773 switch (opcode) { 11774 case BPF_JEQ: 11775 if (tnum_is_const(subreg)) 11776 return !!tnum_equals_const(subreg, val); 11777 break; 11778 case BPF_JNE: 11779 if (tnum_is_const(subreg)) 11780 return !tnum_equals_const(subreg, val); 11781 break; 11782 case BPF_JSET: 11783 if ((~subreg.mask & subreg.value) & val) 11784 return 1; 11785 if (!((subreg.mask | subreg.value) & val)) 11786 return 0; 11787 break; 11788 case BPF_JGT: 11789 if (reg->u32_min_value > val) 11790 return 1; 11791 else if (reg->u32_max_value <= val) 11792 return 0; 11793 break; 11794 case BPF_JSGT: 11795 if (reg->s32_min_value > sval) 11796 return 1; 11797 else if (reg->s32_max_value <= sval) 11798 return 0; 11799 break; 11800 case BPF_JLT: 11801 if (reg->u32_max_value < val) 11802 return 1; 11803 else if (reg->u32_min_value >= val) 11804 return 0; 11805 break; 11806 case BPF_JSLT: 11807 if (reg->s32_max_value < sval) 11808 return 1; 11809 else if (reg->s32_min_value >= sval) 11810 return 0; 11811 break; 11812 case BPF_JGE: 11813 if (reg->u32_min_value >= val) 11814 return 1; 11815 else if (reg->u32_max_value < val) 11816 return 0; 11817 break; 11818 case BPF_JSGE: 11819 if (reg->s32_min_value >= sval) 11820 return 1; 11821 else if (reg->s32_max_value < sval) 11822 return 0; 11823 break; 11824 case BPF_JLE: 11825 if (reg->u32_max_value <= val) 11826 return 1; 11827 else if (reg->u32_min_value > val) 11828 return 0; 11829 break; 11830 case BPF_JSLE: 11831 if (reg->s32_max_value <= sval) 11832 return 1; 11833 else if (reg->s32_min_value > sval) 11834 return 0; 11835 break; 11836 } 11837 11838 return -1; 11839 } 11840 11841 11842 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 11843 { 11844 s64 sval = (s64)val; 11845 11846 switch (opcode) { 11847 case BPF_JEQ: 11848 if (tnum_is_const(reg->var_off)) 11849 return !!tnum_equals_const(reg->var_off, val); 11850 break; 11851 case BPF_JNE: 11852 if (tnum_is_const(reg->var_off)) 11853 return !tnum_equals_const(reg->var_off, val); 11854 break; 11855 case BPF_JSET: 11856 if ((~reg->var_off.mask & reg->var_off.value) & val) 11857 return 1; 11858 if (!((reg->var_off.mask | reg->var_off.value) & val)) 11859 return 0; 11860 break; 11861 case BPF_JGT: 11862 if (reg->umin_value > val) 11863 return 1; 11864 else if (reg->umax_value <= val) 11865 return 0; 11866 break; 11867 case BPF_JSGT: 11868 if (reg->smin_value > sval) 11869 return 1; 11870 else if (reg->smax_value <= sval) 11871 return 0; 11872 break; 11873 case BPF_JLT: 11874 if (reg->umax_value < val) 11875 return 1; 11876 else if (reg->umin_value >= val) 11877 return 0; 11878 break; 11879 case BPF_JSLT: 11880 if (reg->smax_value < sval) 11881 return 1; 11882 else if (reg->smin_value >= sval) 11883 return 0; 11884 break; 11885 case BPF_JGE: 11886 if (reg->umin_value >= val) 11887 return 1; 11888 else if (reg->umax_value < val) 11889 return 0; 11890 break; 11891 case BPF_JSGE: 11892 if (reg->smin_value >= sval) 11893 return 1; 11894 else if (reg->smax_value < sval) 11895 return 0; 11896 break; 11897 case BPF_JLE: 11898 if (reg->umax_value <= val) 11899 return 1; 11900 else if (reg->umin_value > val) 11901 return 0; 11902 break; 11903 case BPF_JSLE: 11904 if (reg->smax_value <= sval) 11905 return 1; 11906 else if (reg->smin_value > sval) 11907 return 0; 11908 break; 11909 } 11910 11911 return -1; 11912 } 11913 11914 /* compute branch direction of the expression "if (reg opcode val) goto target;" 11915 * and return: 11916 * 1 - branch will be taken and "goto target" will be executed 11917 * 0 - branch will not be taken and fall-through to next insn 11918 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 11919 * range [0,10] 11920 */ 11921 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 11922 bool is_jmp32) 11923 { 11924 if (__is_pointer_value(false, reg)) { 11925 if (!reg_type_not_null(reg->type)) 11926 return -1; 11927 11928 /* If pointer is valid tests against zero will fail so we can 11929 * use this to direct branch taken. 11930 */ 11931 if (val != 0) 11932 return -1; 11933 11934 switch (opcode) { 11935 case BPF_JEQ: 11936 return 0; 11937 case BPF_JNE: 11938 return 1; 11939 default: 11940 return -1; 11941 } 11942 } 11943 11944 if (is_jmp32) 11945 return is_branch32_taken(reg, val, opcode); 11946 return is_branch64_taken(reg, val, opcode); 11947 } 11948 11949 static int flip_opcode(u32 opcode) 11950 { 11951 /* How can we transform "a <op> b" into "b <op> a"? */ 11952 static const u8 opcode_flip[16] = { 11953 /* these stay the same */ 11954 [BPF_JEQ >> 4] = BPF_JEQ, 11955 [BPF_JNE >> 4] = BPF_JNE, 11956 [BPF_JSET >> 4] = BPF_JSET, 11957 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 11958 [BPF_JGE >> 4] = BPF_JLE, 11959 [BPF_JGT >> 4] = BPF_JLT, 11960 [BPF_JLE >> 4] = BPF_JGE, 11961 [BPF_JLT >> 4] = BPF_JGT, 11962 [BPF_JSGE >> 4] = BPF_JSLE, 11963 [BPF_JSGT >> 4] = BPF_JSLT, 11964 [BPF_JSLE >> 4] = BPF_JSGE, 11965 [BPF_JSLT >> 4] = BPF_JSGT 11966 }; 11967 return opcode_flip[opcode >> 4]; 11968 } 11969 11970 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 11971 struct bpf_reg_state *src_reg, 11972 u8 opcode) 11973 { 11974 struct bpf_reg_state *pkt; 11975 11976 if (src_reg->type == PTR_TO_PACKET_END) { 11977 pkt = dst_reg; 11978 } else if (dst_reg->type == PTR_TO_PACKET_END) { 11979 pkt = src_reg; 11980 opcode = flip_opcode(opcode); 11981 } else { 11982 return -1; 11983 } 11984 11985 if (pkt->range >= 0) 11986 return -1; 11987 11988 switch (opcode) { 11989 case BPF_JLE: 11990 /* pkt <= pkt_end */ 11991 fallthrough; 11992 case BPF_JGT: 11993 /* pkt > pkt_end */ 11994 if (pkt->range == BEYOND_PKT_END) 11995 /* pkt has at last one extra byte beyond pkt_end */ 11996 return opcode == BPF_JGT; 11997 break; 11998 case BPF_JLT: 11999 /* pkt < pkt_end */ 12000 fallthrough; 12001 case BPF_JGE: 12002 /* pkt >= pkt_end */ 12003 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 12004 return opcode == BPF_JGE; 12005 break; 12006 } 12007 return -1; 12008 } 12009 12010 /* Adjusts the register min/max values in the case that the dst_reg is the 12011 * variable register that we are working on, and src_reg is a constant or we're 12012 * simply doing a BPF_K check. 12013 * In JEQ/JNE cases we also adjust the var_off values. 12014 */ 12015 static void reg_set_min_max(struct bpf_reg_state *true_reg, 12016 struct bpf_reg_state *false_reg, 12017 u64 val, u32 val32, 12018 u8 opcode, bool is_jmp32) 12019 { 12020 struct tnum false_32off = tnum_subreg(false_reg->var_off); 12021 struct tnum false_64off = false_reg->var_off; 12022 struct tnum true_32off = tnum_subreg(true_reg->var_off); 12023 struct tnum true_64off = true_reg->var_off; 12024 s64 sval = (s64)val; 12025 s32 sval32 = (s32)val32; 12026 12027 /* If the dst_reg is a pointer, we can't learn anything about its 12028 * variable offset from the compare (unless src_reg were a pointer into 12029 * the same object, but we don't bother with that. 12030 * Since false_reg and true_reg have the same type by construction, we 12031 * only need to check one of them for pointerness. 12032 */ 12033 if (__is_pointer_value(false, false_reg)) 12034 return; 12035 12036 switch (opcode) { 12037 /* JEQ/JNE comparison doesn't change the register equivalence. 12038 * 12039 * r1 = r2; 12040 * if (r1 == 42) goto label; 12041 * ... 12042 * label: // here both r1 and r2 are known to be 42. 12043 * 12044 * Hence when marking register as known preserve it's ID. 12045 */ 12046 case BPF_JEQ: 12047 if (is_jmp32) { 12048 __mark_reg32_known(true_reg, val32); 12049 true_32off = tnum_subreg(true_reg->var_off); 12050 } else { 12051 ___mark_reg_known(true_reg, val); 12052 true_64off = true_reg->var_off; 12053 } 12054 break; 12055 case BPF_JNE: 12056 if (is_jmp32) { 12057 __mark_reg32_known(false_reg, val32); 12058 false_32off = tnum_subreg(false_reg->var_off); 12059 } else { 12060 ___mark_reg_known(false_reg, val); 12061 false_64off = false_reg->var_off; 12062 } 12063 break; 12064 case BPF_JSET: 12065 if (is_jmp32) { 12066 false_32off = tnum_and(false_32off, tnum_const(~val32)); 12067 if (is_power_of_2(val32)) 12068 true_32off = tnum_or(true_32off, 12069 tnum_const(val32)); 12070 } else { 12071 false_64off = tnum_and(false_64off, tnum_const(~val)); 12072 if (is_power_of_2(val)) 12073 true_64off = tnum_or(true_64off, 12074 tnum_const(val)); 12075 } 12076 break; 12077 case BPF_JGE: 12078 case BPF_JGT: 12079 { 12080 if (is_jmp32) { 12081 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 12082 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 12083 12084 false_reg->u32_max_value = min(false_reg->u32_max_value, 12085 false_umax); 12086 true_reg->u32_min_value = max(true_reg->u32_min_value, 12087 true_umin); 12088 } else { 12089 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 12090 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 12091 12092 false_reg->umax_value = min(false_reg->umax_value, false_umax); 12093 true_reg->umin_value = max(true_reg->umin_value, true_umin); 12094 } 12095 break; 12096 } 12097 case BPF_JSGE: 12098 case BPF_JSGT: 12099 { 12100 if (is_jmp32) { 12101 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 12102 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 12103 12104 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 12105 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 12106 } else { 12107 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 12108 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 12109 12110 false_reg->smax_value = min(false_reg->smax_value, false_smax); 12111 true_reg->smin_value = max(true_reg->smin_value, true_smin); 12112 } 12113 break; 12114 } 12115 case BPF_JLE: 12116 case BPF_JLT: 12117 { 12118 if (is_jmp32) { 12119 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 12120 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 12121 12122 false_reg->u32_min_value = max(false_reg->u32_min_value, 12123 false_umin); 12124 true_reg->u32_max_value = min(true_reg->u32_max_value, 12125 true_umax); 12126 } else { 12127 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 12128 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 12129 12130 false_reg->umin_value = max(false_reg->umin_value, false_umin); 12131 true_reg->umax_value = min(true_reg->umax_value, true_umax); 12132 } 12133 break; 12134 } 12135 case BPF_JSLE: 12136 case BPF_JSLT: 12137 { 12138 if (is_jmp32) { 12139 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 12140 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 12141 12142 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 12143 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 12144 } else { 12145 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 12146 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 12147 12148 false_reg->smin_value = max(false_reg->smin_value, false_smin); 12149 true_reg->smax_value = min(true_reg->smax_value, true_smax); 12150 } 12151 break; 12152 } 12153 default: 12154 return; 12155 } 12156 12157 if (is_jmp32) { 12158 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 12159 tnum_subreg(false_32off)); 12160 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 12161 tnum_subreg(true_32off)); 12162 __reg_combine_32_into_64(false_reg); 12163 __reg_combine_32_into_64(true_reg); 12164 } else { 12165 false_reg->var_off = false_64off; 12166 true_reg->var_off = true_64off; 12167 __reg_combine_64_into_32(false_reg); 12168 __reg_combine_64_into_32(true_reg); 12169 } 12170 } 12171 12172 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 12173 * the variable reg. 12174 */ 12175 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 12176 struct bpf_reg_state *false_reg, 12177 u64 val, u32 val32, 12178 u8 opcode, bool is_jmp32) 12179 { 12180 opcode = flip_opcode(opcode); 12181 /* This uses zero as "not present in table"; luckily the zero opcode, 12182 * BPF_JA, can't get here. 12183 */ 12184 if (opcode) 12185 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 12186 } 12187 12188 /* Regs are known to be equal, so intersect their min/max/var_off */ 12189 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 12190 struct bpf_reg_state *dst_reg) 12191 { 12192 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 12193 dst_reg->umin_value); 12194 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 12195 dst_reg->umax_value); 12196 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 12197 dst_reg->smin_value); 12198 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 12199 dst_reg->smax_value); 12200 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 12201 dst_reg->var_off); 12202 reg_bounds_sync(src_reg); 12203 reg_bounds_sync(dst_reg); 12204 } 12205 12206 static void reg_combine_min_max(struct bpf_reg_state *true_src, 12207 struct bpf_reg_state *true_dst, 12208 struct bpf_reg_state *false_src, 12209 struct bpf_reg_state *false_dst, 12210 u8 opcode) 12211 { 12212 switch (opcode) { 12213 case BPF_JEQ: 12214 __reg_combine_min_max(true_src, true_dst); 12215 break; 12216 case BPF_JNE: 12217 __reg_combine_min_max(false_src, false_dst); 12218 break; 12219 } 12220 } 12221 12222 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 12223 struct bpf_reg_state *reg, u32 id, 12224 bool is_null) 12225 { 12226 if (type_may_be_null(reg->type) && reg->id == id && 12227 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 12228 /* Old offset (both fixed and variable parts) should have been 12229 * known-zero, because we don't allow pointer arithmetic on 12230 * pointers that might be NULL. If we see this happening, don't 12231 * convert the register. 12232 * 12233 * But in some cases, some helpers that return local kptrs 12234 * advance offset for the returned pointer. In those cases, it 12235 * is fine to expect to see reg->off. 12236 */ 12237 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 12238 return; 12239 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 12240 WARN_ON_ONCE(reg->off)) 12241 return; 12242 12243 if (is_null) { 12244 reg->type = SCALAR_VALUE; 12245 /* We don't need id and ref_obj_id from this point 12246 * onwards anymore, thus we should better reset it, 12247 * so that state pruning has chances to take effect. 12248 */ 12249 reg->id = 0; 12250 reg->ref_obj_id = 0; 12251 12252 return; 12253 } 12254 12255 mark_ptr_not_null_reg(reg); 12256 12257 if (!reg_may_point_to_spin_lock(reg)) { 12258 /* For not-NULL ptr, reg->ref_obj_id will be reset 12259 * in release_reference(). 12260 * 12261 * reg->id is still used by spin_lock ptr. Other 12262 * than spin_lock ptr type, reg->id can be reset. 12263 */ 12264 reg->id = 0; 12265 } 12266 } 12267 } 12268 12269 /* The logic is similar to find_good_pkt_pointers(), both could eventually 12270 * be folded together at some point. 12271 */ 12272 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 12273 bool is_null) 12274 { 12275 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12276 struct bpf_reg_state *regs = state->regs, *reg; 12277 u32 ref_obj_id = regs[regno].ref_obj_id; 12278 u32 id = regs[regno].id; 12279 12280 if (ref_obj_id && ref_obj_id == id && is_null) 12281 /* regs[regno] is in the " == NULL" branch. 12282 * No one could have freed the reference state before 12283 * doing the NULL check. 12284 */ 12285 WARN_ON_ONCE(release_reference_state(state, id)); 12286 12287 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 12288 mark_ptr_or_null_reg(state, reg, id, is_null); 12289 })); 12290 } 12291 12292 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 12293 struct bpf_reg_state *dst_reg, 12294 struct bpf_reg_state *src_reg, 12295 struct bpf_verifier_state *this_branch, 12296 struct bpf_verifier_state *other_branch) 12297 { 12298 if (BPF_SRC(insn->code) != BPF_X) 12299 return false; 12300 12301 /* Pointers are always 64-bit. */ 12302 if (BPF_CLASS(insn->code) == BPF_JMP32) 12303 return false; 12304 12305 switch (BPF_OP(insn->code)) { 12306 case BPF_JGT: 12307 if ((dst_reg->type == PTR_TO_PACKET && 12308 src_reg->type == PTR_TO_PACKET_END) || 12309 (dst_reg->type == PTR_TO_PACKET_META && 12310 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12311 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 12312 find_good_pkt_pointers(this_branch, dst_reg, 12313 dst_reg->type, false); 12314 mark_pkt_end(other_branch, insn->dst_reg, true); 12315 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12316 src_reg->type == PTR_TO_PACKET) || 12317 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12318 src_reg->type == PTR_TO_PACKET_META)) { 12319 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 12320 find_good_pkt_pointers(other_branch, src_reg, 12321 src_reg->type, true); 12322 mark_pkt_end(this_branch, insn->src_reg, false); 12323 } else { 12324 return false; 12325 } 12326 break; 12327 case BPF_JLT: 12328 if ((dst_reg->type == PTR_TO_PACKET && 12329 src_reg->type == PTR_TO_PACKET_END) || 12330 (dst_reg->type == PTR_TO_PACKET_META && 12331 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12332 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 12333 find_good_pkt_pointers(other_branch, dst_reg, 12334 dst_reg->type, true); 12335 mark_pkt_end(this_branch, insn->dst_reg, false); 12336 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12337 src_reg->type == PTR_TO_PACKET) || 12338 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12339 src_reg->type == PTR_TO_PACKET_META)) { 12340 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 12341 find_good_pkt_pointers(this_branch, src_reg, 12342 src_reg->type, false); 12343 mark_pkt_end(other_branch, insn->src_reg, true); 12344 } else { 12345 return false; 12346 } 12347 break; 12348 case BPF_JGE: 12349 if ((dst_reg->type == PTR_TO_PACKET && 12350 src_reg->type == PTR_TO_PACKET_END) || 12351 (dst_reg->type == PTR_TO_PACKET_META && 12352 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12353 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 12354 find_good_pkt_pointers(this_branch, dst_reg, 12355 dst_reg->type, true); 12356 mark_pkt_end(other_branch, insn->dst_reg, false); 12357 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12358 src_reg->type == PTR_TO_PACKET) || 12359 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12360 src_reg->type == PTR_TO_PACKET_META)) { 12361 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 12362 find_good_pkt_pointers(other_branch, src_reg, 12363 src_reg->type, false); 12364 mark_pkt_end(this_branch, insn->src_reg, true); 12365 } else { 12366 return false; 12367 } 12368 break; 12369 case BPF_JLE: 12370 if ((dst_reg->type == PTR_TO_PACKET && 12371 src_reg->type == PTR_TO_PACKET_END) || 12372 (dst_reg->type == PTR_TO_PACKET_META && 12373 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 12374 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 12375 find_good_pkt_pointers(other_branch, dst_reg, 12376 dst_reg->type, false); 12377 mark_pkt_end(this_branch, insn->dst_reg, true); 12378 } else if ((dst_reg->type == PTR_TO_PACKET_END && 12379 src_reg->type == PTR_TO_PACKET) || 12380 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 12381 src_reg->type == PTR_TO_PACKET_META)) { 12382 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 12383 find_good_pkt_pointers(this_branch, src_reg, 12384 src_reg->type, true); 12385 mark_pkt_end(other_branch, insn->src_reg, false); 12386 } else { 12387 return false; 12388 } 12389 break; 12390 default: 12391 return false; 12392 } 12393 12394 return true; 12395 } 12396 12397 static void find_equal_scalars(struct bpf_verifier_state *vstate, 12398 struct bpf_reg_state *known_reg) 12399 { 12400 struct bpf_func_state *state; 12401 struct bpf_reg_state *reg; 12402 12403 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 12404 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 12405 copy_register_state(reg, known_reg); 12406 })); 12407 } 12408 12409 static int check_cond_jmp_op(struct bpf_verifier_env *env, 12410 struct bpf_insn *insn, int *insn_idx) 12411 { 12412 struct bpf_verifier_state *this_branch = env->cur_state; 12413 struct bpf_verifier_state *other_branch; 12414 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 12415 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 12416 struct bpf_reg_state *eq_branch_regs; 12417 u8 opcode = BPF_OP(insn->code); 12418 bool is_jmp32; 12419 int pred = -1; 12420 int err; 12421 12422 /* Only conditional jumps are expected to reach here. */ 12423 if (opcode == BPF_JA || opcode > BPF_JSLE) { 12424 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 12425 return -EINVAL; 12426 } 12427 12428 if (BPF_SRC(insn->code) == BPF_X) { 12429 if (insn->imm != 0) { 12430 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 12431 return -EINVAL; 12432 } 12433 12434 /* check src1 operand */ 12435 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12436 if (err) 12437 return err; 12438 12439 if (is_pointer_value(env, insn->src_reg)) { 12440 verbose(env, "R%d pointer comparison prohibited\n", 12441 insn->src_reg); 12442 return -EACCES; 12443 } 12444 src_reg = ®s[insn->src_reg]; 12445 } else { 12446 if (insn->src_reg != BPF_REG_0) { 12447 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 12448 return -EINVAL; 12449 } 12450 } 12451 12452 /* check src2 operand */ 12453 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 12454 if (err) 12455 return err; 12456 12457 dst_reg = ®s[insn->dst_reg]; 12458 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 12459 12460 if (BPF_SRC(insn->code) == BPF_K) { 12461 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 12462 } else if (src_reg->type == SCALAR_VALUE && 12463 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 12464 pred = is_branch_taken(dst_reg, 12465 tnum_subreg(src_reg->var_off).value, 12466 opcode, 12467 is_jmp32); 12468 } else if (src_reg->type == SCALAR_VALUE && 12469 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 12470 pred = is_branch_taken(dst_reg, 12471 src_reg->var_off.value, 12472 opcode, 12473 is_jmp32); 12474 } else if (reg_is_pkt_pointer_any(dst_reg) && 12475 reg_is_pkt_pointer_any(src_reg) && 12476 !is_jmp32) { 12477 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 12478 } 12479 12480 if (pred >= 0) { 12481 /* If we get here with a dst_reg pointer type it is because 12482 * above is_branch_taken() special cased the 0 comparison. 12483 */ 12484 if (!__is_pointer_value(false, dst_reg)) 12485 err = mark_chain_precision(env, insn->dst_reg); 12486 if (BPF_SRC(insn->code) == BPF_X && !err && 12487 !__is_pointer_value(false, src_reg)) 12488 err = mark_chain_precision(env, insn->src_reg); 12489 if (err) 12490 return err; 12491 } 12492 12493 if (pred == 1) { 12494 /* Only follow the goto, ignore fall-through. If needed, push 12495 * the fall-through branch for simulation under speculative 12496 * execution. 12497 */ 12498 if (!env->bypass_spec_v1 && 12499 !sanitize_speculative_path(env, insn, *insn_idx + 1, 12500 *insn_idx)) 12501 return -EFAULT; 12502 *insn_idx += insn->off; 12503 return 0; 12504 } else if (pred == 0) { 12505 /* Only follow the fall-through branch, since that's where the 12506 * program will go. If needed, push the goto branch for 12507 * simulation under speculative execution. 12508 */ 12509 if (!env->bypass_spec_v1 && 12510 !sanitize_speculative_path(env, insn, 12511 *insn_idx + insn->off + 1, 12512 *insn_idx)) 12513 return -EFAULT; 12514 return 0; 12515 } 12516 12517 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 12518 false); 12519 if (!other_branch) 12520 return -EFAULT; 12521 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 12522 12523 /* detect if we are comparing against a constant value so we can adjust 12524 * our min/max values for our dst register. 12525 * this is only legit if both are scalars (or pointers to the same 12526 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 12527 * because otherwise the different base pointers mean the offsets aren't 12528 * comparable. 12529 */ 12530 if (BPF_SRC(insn->code) == BPF_X) { 12531 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 12532 12533 if (dst_reg->type == SCALAR_VALUE && 12534 src_reg->type == SCALAR_VALUE) { 12535 if (tnum_is_const(src_reg->var_off) || 12536 (is_jmp32 && 12537 tnum_is_const(tnum_subreg(src_reg->var_off)))) 12538 reg_set_min_max(&other_branch_regs[insn->dst_reg], 12539 dst_reg, 12540 src_reg->var_off.value, 12541 tnum_subreg(src_reg->var_off).value, 12542 opcode, is_jmp32); 12543 else if (tnum_is_const(dst_reg->var_off) || 12544 (is_jmp32 && 12545 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 12546 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 12547 src_reg, 12548 dst_reg->var_off.value, 12549 tnum_subreg(dst_reg->var_off).value, 12550 opcode, is_jmp32); 12551 else if (!is_jmp32 && 12552 (opcode == BPF_JEQ || opcode == BPF_JNE)) 12553 /* Comparing for equality, we can combine knowledge */ 12554 reg_combine_min_max(&other_branch_regs[insn->src_reg], 12555 &other_branch_regs[insn->dst_reg], 12556 src_reg, dst_reg, opcode); 12557 if (src_reg->id && 12558 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 12559 find_equal_scalars(this_branch, src_reg); 12560 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 12561 } 12562 12563 } 12564 } else if (dst_reg->type == SCALAR_VALUE) { 12565 reg_set_min_max(&other_branch_regs[insn->dst_reg], 12566 dst_reg, insn->imm, (u32)insn->imm, 12567 opcode, is_jmp32); 12568 } 12569 12570 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 12571 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 12572 find_equal_scalars(this_branch, dst_reg); 12573 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 12574 } 12575 12576 /* if one pointer register is compared to another pointer 12577 * register check if PTR_MAYBE_NULL could be lifted. 12578 * E.g. register A - maybe null 12579 * register B - not null 12580 * for JNE A, B, ... - A is not null in the false branch; 12581 * for JEQ A, B, ... - A is not null in the true branch. 12582 * 12583 * Since PTR_TO_BTF_ID points to a kernel struct that does 12584 * not need to be null checked by the BPF program, i.e., 12585 * could be null even without PTR_MAYBE_NULL marking, so 12586 * only propagate nullness when neither reg is that type. 12587 */ 12588 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 12589 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 12590 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 12591 base_type(src_reg->type) != PTR_TO_BTF_ID && 12592 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 12593 eq_branch_regs = NULL; 12594 switch (opcode) { 12595 case BPF_JEQ: 12596 eq_branch_regs = other_branch_regs; 12597 break; 12598 case BPF_JNE: 12599 eq_branch_regs = regs; 12600 break; 12601 default: 12602 /* do nothing */ 12603 break; 12604 } 12605 if (eq_branch_regs) { 12606 if (type_may_be_null(src_reg->type)) 12607 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 12608 else 12609 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 12610 } 12611 } 12612 12613 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 12614 * NOTE: these optimizations below are related with pointer comparison 12615 * which will never be JMP32. 12616 */ 12617 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 12618 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 12619 type_may_be_null(dst_reg->type)) { 12620 /* Mark all identical registers in each branch as either 12621 * safe or unknown depending R == 0 or R != 0 conditional. 12622 */ 12623 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 12624 opcode == BPF_JNE); 12625 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 12626 opcode == BPF_JEQ); 12627 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 12628 this_branch, other_branch) && 12629 is_pointer_value(env, insn->dst_reg)) { 12630 verbose(env, "R%d pointer comparison prohibited\n", 12631 insn->dst_reg); 12632 return -EACCES; 12633 } 12634 if (env->log.level & BPF_LOG_LEVEL) 12635 print_insn_state(env, this_branch->frame[this_branch->curframe]); 12636 return 0; 12637 } 12638 12639 /* verify BPF_LD_IMM64 instruction */ 12640 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 12641 { 12642 struct bpf_insn_aux_data *aux = cur_aux(env); 12643 struct bpf_reg_state *regs = cur_regs(env); 12644 struct bpf_reg_state *dst_reg; 12645 struct bpf_map *map; 12646 int err; 12647 12648 if (BPF_SIZE(insn->code) != BPF_DW) { 12649 verbose(env, "invalid BPF_LD_IMM insn\n"); 12650 return -EINVAL; 12651 } 12652 if (insn->off != 0) { 12653 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 12654 return -EINVAL; 12655 } 12656 12657 err = check_reg_arg(env, insn->dst_reg, DST_OP); 12658 if (err) 12659 return err; 12660 12661 dst_reg = ®s[insn->dst_reg]; 12662 if (insn->src_reg == 0) { 12663 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 12664 12665 dst_reg->type = SCALAR_VALUE; 12666 __mark_reg_known(®s[insn->dst_reg], imm); 12667 return 0; 12668 } 12669 12670 /* All special src_reg cases are listed below. From this point onwards 12671 * we either succeed and assign a corresponding dst_reg->type after 12672 * zeroing the offset, or fail and reject the program. 12673 */ 12674 mark_reg_known_zero(env, regs, insn->dst_reg); 12675 12676 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 12677 dst_reg->type = aux->btf_var.reg_type; 12678 switch (base_type(dst_reg->type)) { 12679 case PTR_TO_MEM: 12680 dst_reg->mem_size = aux->btf_var.mem_size; 12681 break; 12682 case PTR_TO_BTF_ID: 12683 dst_reg->btf = aux->btf_var.btf; 12684 dst_reg->btf_id = aux->btf_var.btf_id; 12685 break; 12686 default: 12687 verbose(env, "bpf verifier is misconfigured\n"); 12688 return -EFAULT; 12689 } 12690 return 0; 12691 } 12692 12693 if (insn->src_reg == BPF_PSEUDO_FUNC) { 12694 struct bpf_prog_aux *aux = env->prog->aux; 12695 u32 subprogno = find_subprog(env, 12696 env->insn_idx + insn->imm + 1); 12697 12698 if (!aux->func_info) { 12699 verbose(env, "missing btf func_info\n"); 12700 return -EINVAL; 12701 } 12702 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 12703 verbose(env, "callback function not static\n"); 12704 return -EINVAL; 12705 } 12706 12707 dst_reg->type = PTR_TO_FUNC; 12708 dst_reg->subprogno = subprogno; 12709 return 0; 12710 } 12711 12712 map = env->used_maps[aux->map_index]; 12713 dst_reg->map_ptr = map; 12714 12715 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 12716 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 12717 dst_reg->type = PTR_TO_MAP_VALUE; 12718 dst_reg->off = aux->map_off; 12719 WARN_ON_ONCE(map->max_entries != 1); 12720 /* We want reg->id to be same (0) as map_value is not distinct */ 12721 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 12722 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 12723 dst_reg->type = CONST_PTR_TO_MAP; 12724 } else { 12725 verbose(env, "bpf verifier is misconfigured\n"); 12726 return -EINVAL; 12727 } 12728 12729 return 0; 12730 } 12731 12732 static bool may_access_skb(enum bpf_prog_type type) 12733 { 12734 switch (type) { 12735 case BPF_PROG_TYPE_SOCKET_FILTER: 12736 case BPF_PROG_TYPE_SCHED_CLS: 12737 case BPF_PROG_TYPE_SCHED_ACT: 12738 return true; 12739 default: 12740 return false; 12741 } 12742 } 12743 12744 /* verify safety of LD_ABS|LD_IND instructions: 12745 * - they can only appear in the programs where ctx == skb 12746 * - since they are wrappers of function calls, they scratch R1-R5 registers, 12747 * preserve R6-R9, and store return value into R0 12748 * 12749 * Implicit input: 12750 * ctx == skb == R6 == CTX 12751 * 12752 * Explicit input: 12753 * SRC == any register 12754 * IMM == 32-bit immediate 12755 * 12756 * Output: 12757 * R0 - 8/16/32-bit skb data converted to cpu endianness 12758 */ 12759 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 12760 { 12761 struct bpf_reg_state *regs = cur_regs(env); 12762 static const int ctx_reg = BPF_REG_6; 12763 u8 mode = BPF_MODE(insn->code); 12764 int i, err; 12765 12766 if (!may_access_skb(resolve_prog_type(env->prog))) { 12767 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 12768 return -EINVAL; 12769 } 12770 12771 if (!env->ops->gen_ld_abs) { 12772 verbose(env, "bpf verifier is misconfigured\n"); 12773 return -EINVAL; 12774 } 12775 12776 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 12777 BPF_SIZE(insn->code) == BPF_DW || 12778 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 12779 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 12780 return -EINVAL; 12781 } 12782 12783 /* check whether implicit source operand (register R6) is readable */ 12784 err = check_reg_arg(env, ctx_reg, SRC_OP); 12785 if (err) 12786 return err; 12787 12788 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 12789 * gen_ld_abs() may terminate the program at runtime, leading to 12790 * reference leak. 12791 */ 12792 err = check_reference_leak(env); 12793 if (err) { 12794 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 12795 return err; 12796 } 12797 12798 if (env->cur_state->active_lock.ptr) { 12799 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 12800 return -EINVAL; 12801 } 12802 12803 if (env->cur_state->active_rcu_lock) { 12804 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 12805 return -EINVAL; 12806 } 12807 12808 if (regs[ctx_reg].type != PTR_TO_CTX) { 12809 verbose(env, 12810 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 12811 return -EINVAL; 12812 } 12813 12814 if (mode == BPF_IND) { 12815 /* check explicit source operand */ 12816 err = check_reg_arg(env, insn->src_reg, SRC_OP); 12817 if (err) 12818 return err; 12819 } 12820 12821 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 12822 if (err < 0) 12823 return err; 12824 12825 /* reset caller saved regs to unreadable */ 12826 for (i = 0; i < CALLER_SAVED_REGS; i++) { 12827 mark_reg_not_init(env, regs, caller_saved[i]); 12828 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 12829 } 12830 12831 /* mark destination R0 register as readable, since it contains 12832 * the value fetched from the packet. 12833 * Already marked as written above. 12834 */ 12835 mark_reg_unknown(env, regs, BPF_REG_0); 12836 /* ld_abs load up to 32-bit skb data. */ 12837 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 12838 return 0; 12839 } 12840 12841 static int check_return_code(struct bpf_verifier_env *env) 12842 { 12843 struct tnum enforce_attach_type_range = tnum_unknown; 12844 const struct bpf_prog *prog = env->prog; 12845 struct bpf_reg_state *reg; 12846 struct tnum range = tnum_range(0, 1); 12847 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 12848 int err; 12849 struct bpf_func_state *frame = env->cur_state->frame[0]; 12850 const bool is_subprog = frame->subprogno; 12851 12852 /* LSM and struct_ops func-ptr's return type could be "void" */ 12853 if (!is_subprog) { 12854 switch (prog_type) { 12855 case BPF_PROG_TYPE_LSM: 12856 if (prog->expected_attach_type == BPF_LSM_CGROUP) 12857 /* See below, can be 0 or 0-1 depending on hook. */ 12858 break; 12859 fallthrough; 12860 case BPF_PROG_TYPE_STRUCT_OPS: 12861 if (!prog->aux->attach_func_proto->type) 12862 return 0; 12863 break; 12864 default: 12865 break; 12866 } 12867 } 12868 12869 /* eBPF calling convention is such that R0 is used 12870 * to return the value from eBPF program. 12871 * Make sure that it's readable at this time 12872 * of bpf_exit, which means that program wrote 12873 * something into it earlier 12874 */ 12875 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 12876 if (err) 12877 return err; 12878 12879 if (is_pointer_value(env, BPF_REG_0)) { 12880 verbose(env, "R0 leaks addr as return value\n"); 12881 return -EACCES; 12882 } 12883 12884 reg = cur_regs(env) + BPF_REG_0; 12885 12886 if (frame->in_async_callback_fn) { 12887 /* enforce return zero from async callbacks like timer */ 12888 if (reg->type != SCALAR_VALUE) { 12889 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 12890 reg_type_str(env, reg->type)); 12891 return -EINVAL; 12892 } 12893 12894 if (!tnum_in(tnum_const(0), reg->var_off)) { 12895 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 12896 return -EINVAL; 12897 } 12898 return 0; 12899 } 12900 12901 if (is_subprog) { 12902 if (reg->type != SCALAR_VALUE) { 12903 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 12904 reg_type_str(env, reg->type)); 12905 return -EINVAL; 12906 } 12907 return 0; 12908 } 12909 12910 switch (prog_type) { 12911 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 12912 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 12913 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 12914 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 12915 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 12916 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 12917 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 12918 range = tnum_range(1, 1); 12919 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 12920 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 12921 range = tnum_range(0, 3); 12922 break; 12923 case BPF_PROG_TYPE_CGROUP_SKB: 12924 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 12925 range = tnum_range(0, 3); 12926 enforce_attach_type_range = tnum_range(2, 3); 12927 } 12928 break; 12929 case BPF_PROG_TYPE_CGROUP_SOCK: 12930 case BPF_PROG_TYPE_SOCK_OPS: 12931 case BPF_PROG_TYPE_CGROUP_DEVICE: 12932 case BPF_PROG_TYPE_CGROUP_SYSCTL: 12933 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 12934 break; 12935 case BPF_PROG_TYPE_RAW_TRACEPOINT: 12936 if (!env->prog->aux->attach_btf_id) 12937 return 0; 12938 range = tnum_const(0); 12939 break; 12940 case BPF_PROG_TYPE_TRACING: 12941 switch (env->prog->expected_attach_type) { 12942 case BPF_TRACE_FENTRY: 12943 case BPF_TRACE_FEXIT: 12944 range = tnum_const(0); 12945 break; 12946 case BPF_TRACE_RAW_TP: 12947 case BPF_MODIFY_RETURN: 12948 return 0; 12949 case BPF_TRACE_ITER: 12950 break; 12951 default: 12952 return -ENOTSUPP; 12953 } 12954 break; 12955 case BPF_PROG_TYPE_SK_LOOKUP: 12956 range = tnum_range(SK_DROP, SK_PASS); 12957 break; 12958 12959 case BPF_PROG_TYPE_LSM: 12960 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 12961 /* Regular BPF_PROG_TYPE_LSM programs can return 12962 * any value. 12963 */ 12964 return 0; 12965 } 12966 if (!env->prog->aux->attach_func_proto->type) { 12967 /* Make sure programs that attach to void 12968 * hooks don't try to modify return value. 12969 */ 12970 range = tnum_range(1, 1); 12971 } 12972 break; 12973 12974 case BPF_PROG_TYPE_EXT: 12975 /* freplace program can return anything as its return value 12976 * depends on the to-be-replaced kernel func or bpf program. 12977 */ 12978 default: 12979 return 0; 12980 } 12981 12982 if (reg->type != SCALAR_VALUE) { 12983 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 12984 reg_type_str(env, reg->type)); 12985 return -EINVAL; 12986 } 12987 12988 if (!tnum_in(range, reg->var_off)) { 12989 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 12990 if (prog->expected_attach_type == BPF_LSM_CGROUP && 12991 prog_type == BPF_PROG_TYPE_LSM && 12992 !prog->aux->attach_func_proto->type) 12993 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 12994 return -EINVAL; 12995 } 12996 12997 if (!tnum_is_unknown(enforce_attach_type_range) && 12998 tnum_in(enforce_attach_type_range, reg->var_off)) 12999 env->prog->enforce_expected_attach_type = 1; 13000 return 0; 13001 } 13002 13003 /* non-recursive DFS pseudo code 13004 * 1 procedure DFS-iterative(G,v): 13005 * 2 label v as discovered 13006 * 3 let S be a stack 13007 * 4 S.push(v) 13008 * 5 while S is not empty 13009 * 6 t <- S.peek() 13010 * 7 if t is what we're looking for: 13011 * 8 return t 13012 * 9 for all edges e in G.adjacentEdges(t) do 13013 * 10 if edge e is already labelled 13014 * 11 continue with the next edge 13015 * 12 w <- G.adjacentVertex(t,e) 13016 * 13 if vertex w is not discovered and not explored 13017 * 14 label e as tree-edge 13018 * 15 label w as discovered 13019 * 16 S.push(w) 13020 * 17 continue at 5 13021 * 18 else if vertex w is discovered 13022 * 19 label e as back-edge 13023 * 20 else 13024 * 21 // vertex w is explored 13025 * 22 label e as forward- or cross-edge 13026 * 23 label t as explored 13027 * 24 S.pop() 13028 * 13029 * convention: 13030 * 0x10 - discovered 13031 * 0x11 - discovered and fall-through edge labelled 13032 * 0x12 - discovered and fall-through and branch edges labelled 13033 * 0x20 - explored 13034 */ 13035 13036 enum { 13037 DISCOVERED = 0x10, 13038 EXPLORED = 0x20, 13039 FALLTHROUGH = 1, 13040 BRANCH = 2, 13041 }; 13042 13043 static u32 state_htab_size(struct bpf_verifier_env *env) 13044 { 13045 return env->prog->len; 13046 } 13047 13048 static struct bpf_verifier_state_list **explored_state( 13049 struct bpf_verifier_env *env, 13050 int idx) 13051 { 13052 struct bpf_verifier_state *cur = env->cur_state; 13053 struct bpf_func_state *state = cur->frame[cur->curframe]; 13054 13055 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 13056 } 13057 13058 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 13059 { 13060 env->insn_aux_data[idx].prune_point = true; 13061 } 13062 13063 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 13064 { 13065 return env->insn_aux_data[insn_idx].prune_point; 13066 } 13067 13068 enum { 13069 DONE_EXPLORING = 0, 13070 KEEP_EXPLORING = 1, 13071 }; 13072 13073 /* t, w, e - match pseudo-code above: 13074 * t - index of current instruction 13075 * w - next instruction 13076 * e - edge 13077 */ 13078 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 13079 bool loop_ok) 13080 { 13081 int *insn_stack = env->cfg.insn_stack; 13082 int *insn_state = env->cfg.insn_state; 13083 13084 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 13085 return DONE_EXPLORING; 13086 13087 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 13088 return DONE_EXPLORING; 13089 13090 if (w < 0 || w >= env->prog->len) { 13091 verbose_linfo(env, t, "%d: ", t); 13092 verbose(env, "jump out of range from insn %d to %d\n", t, w); 13093 return -EINVAL; 13094 } 13095 13096 if (e == BRANCH) { 13097 /* mark branch target for state pruning */ 13098 mark_prune_point(env, w); 13099 mark_jmp_point(env, w); 13100 } 13101 13102 if (insn_state[w] == 0) { 13103 /* tree-edge */ 13104 insn_state[t] = DISCOVERED | e; 13105 insn_state[w] = DISCOVERED; 13106 if (env->cfg.cur_stack >= env->prog->len) 13107 return -E2BIG; 13108 insn_stack[env->cfg.cur_stack++] = w; 13109 return KEEP_EXPLORING; 13110 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 13111 if (loop_ok && env->bpf_capable) 13112 return DONE_EXPLORING; 13113 verbose_linfo(env, t, "%d: ", t); 13114 verbose_linfo(env, w, "%d: ", w); 13115 verbose(env, "back-edge from insn %d to %d\n", t, w); 13116 return -EINVAL; 13117 } else if (insn_state[w] == EXPLORED) { 13118 /* forward- or cross-edge */ 13119 insn_state[t] = DISCOVERED | e; 13120 } else { 13121 verbose(env, "insn state internal bug\n"); 13122 return -EFAULT; 13123 } 13124 return DONE_EXPLORING; 13125 } 13126 13127 static int visit_func_call_insn(int t, struct bpf_insn *insns, 13128 struct bpf_verifier_env *env, 13129 bool visit_callee) 13130 { 13131 int ret; 13132 13133 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 13134 if (ret) 13135 return ret; 13136 13137 mark_prune_point(env, t + 1); 13138 /* when we exit from subprog, we need to record non-linear history */ 13139 mark_jmp_point(env, t + 1); 13140 13141 if (visit_callee) { 13142 mark_prune_point(env, t); 13143 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 13144 /* It's ok to allow recursion from CFG point of 13145 * view. __check_func_call() will do the actual 13146 * check. 13147 */ 13148 bpf_pseudo_func(insns + t)); 13149 } 13150 return ret; 13151 } 13152 13153 /* Visits the instruction at index t and returns one of the following: 13154 * < 0 - an error occurred 13155 * DONE_EXPLORING - the instruction was fully explored 13156 * KEEP_EXPLORING - there is still work to be done before it is fully explored 13157 */ 13158 static int visit_insn(int t, struct bpf_verifier_env *env) 13159 { 13160 struct bpf_insn *insns = env->prog->insnsi; 13161 int ret; 13162 13163 if (bpf_pseudo_func(insns + t)) 13164 return visit_func_call_insn(t, insns, env, true); 13165 13166 /* All non-branch instructions have a single fall-through edge. */ 13167 if (BPF_CLASS(insns[t].code) != BPF_JMP && 13168 BPF_CLASS(insns[t].code) != BPF_JMP32) 13169 return push_insn(t, t + 1, FALLTHROUGH, env, false); 13170 13171 switch (BPF_OP(insns[t].code)) { 13172 case BPF_EXIT: 13173 return DONE_EXPLORING; 13174 13175 case BPF_CALL: 13176 if (insns[t].imm == BPF_FUNC_timer_set_callback) 13177 /* Mark this call insn as a prune point to trigger 13178 * is_state_visited() check before call itself is 13179 * processed by __check_func_call(). Otherwise new 13180 * async state will be pushed for further exploration. 13181 */ 13182 mark_prune_point(env, t); 13183 return visit_func_call_insn(t, insns, env, 13184 insns[t].src_reg == BPF_PSEUDO_CALL); 13185 13186 case BPF_JA: 13187 if (BPF_SRC(insns[t].code) != BPF_K) 13188 return -EINVAL; 13189 13190 /* unconditional jump with single edge */ 13191 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 13192 true); 13193 if (ret) 13194 return ret; 13195 13196 mark_prune_point(env, t + insns[t].off + 1); 13197 mark_jmp_point(env, t + insns[t].off + 1); 13198 13199 return ret; 13200 13201 default: 13202 /* conditional jump with two edges */ 13203 mark_prune_point(env, t); 13204 13205 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 13206 if (ret) 13207 return ret; 13208 13209 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 13210 } 13211 } 13212 13213 /* non-recursive depth-first-search to detect loops in BPF program 13214 * loop == back-edge in directed graph 13215 */ 13216 static int check_cfg(struct bpf_verifier_env *env) 13217 { 13218 int insn_cnt = env->prog->len; 13219 int *insn_stack, *insn_state; 13220 int ret = 0; 13221 int i; 13222 13223 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 13224 if (!insn_state) 13225 return -ENOMEM; 13226 13227 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 13228 if (!insn_stack) { 13229 kvfree(insn_state); 13230 return -ENOMEM; 13231 } 13232 13233 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 13234 insn_stack[0] = 0; /* 0 is the first instruction */ 13235 env->cfg.cur_stack = 1; 13236 13237 while (env->cfg.cur_stack > 0) { 13238 int t = insn_stack[env->cfg.cur_stack - 1]; 13239 13240 ret = visit_insn(t, env); 13241 switch (ret) { 13242 case DONE_EXPLORING: 13243 insn_state[t] = EXPLORED; 13244 env->cfg.cur_stack--; 13245 break; 13246 case KEEP_EXPLORING: 13247 break; 13248 default: 13249 if (ret > 0) { 13250 verbose(env, "visit_insn internal bug\n"); 13251 ret = -EFAULT; 13252 } 13253 goto err_free; 13254 } 13255 } 13256 13257 if (env->cfg.cur_stack < 0) { 13258 verbose(env, "pop stack internal bug\n"); 13259 ret = -EFAULT; 13260 goto err_free; 13261 } 13262 13263 for (i = 0; i < insn_cnt; i++) { 13264 if (insn_state[i] != EXPLORED) { 13265 verbose(env, "unreachable insn %d\n", i); 13266 ret = -EINVAL; 13267 goto err_free; 13268 } 13269 } 13270 ret = 0; /* cfg looks good */ 13271 13272 err_free: 13273 kvfree(insn_state); 13274 kvfree(insn_stack); 13275 env->cfg.insn_state = env->cfg.insn_stack = NULL; 13276 return ret; 13277 } 13278 13279 static int check_abnormal_return(struct bpf_verifier_env *env) 13280 { 13281 int i; 13282 13283 for (i = 1; i < env->subprog_cnt; i++) { 13284 if (env->subprog_info[i].has_ld_abs) { 13285 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 13286 return -EINVAL; 13287 } 13288 if (env->subprog_info[i].has_tail_call) { 13289 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 13290 return -EINVAL; 13291 } 13292 } 13293 return 0; 13294 } 13295 13296 /* The minimum supported BTF func info size */ 13297 #define MIN_BPF_FUNCINFO_SIZE 8 13298 #define MAX_FUNCINFO_REC_SIZE 252 13299 13300 static int check_btf_func(struct bpf_verifier_env *env, 13301 const union bpf_attr *attr, 13302 bpfptr_t uattr) 13303 { 13304 const struct btf_type *type, *func_proto, *ret_type; 13305 u32 i, nfuncs, urec_size, min_size; 13306 u32 krec_size = sizeof(struct bpf_func_info); 13307 struct bpf_func_info *krecord; 13308 struct bpf_func_info_aux *info_aux = NULL; 13309 struct bpf_prog *prog; 13310 const struct btf *btf; 13311 bpfptr_t urecord; 13312 u32 prev_offset = 0; 13313 bool scalar_return; 13314 int ret = -ENOMEM; 13315 13316 nfuncs = attr->func_info_cnt; 13317 if (!nfuncs) { 13318 if (check_abnormal_return(env)) 13319 return -EINVAL; 13320 return 0; 13321 } 13322 13323 if (nfuncs != env->subprog_cnt) { 13324 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 13325 return -EINVAL; 13326 } 13327 13328 urec_size = attr->func_info_rec_size; 13329 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 13330 urec_size > MAX_FUNCINFO_REC_SIZE || 13331 urec_size % sizeof(u32)) { 13332 verbose(env, "invalid func info rec size %u\n", urec_size); 13333 return -EINVAL; 13334 } 13335 13336 prog = env->prog; 13337 btf = prog->aux->btf; 13338 13339 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 13340 min_size = min_t(u32, krec_size, urec_size); 13341 13342 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 13343 if (!krecord) 13344 return -ENOMEM; 13345 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 13346 if (!info_aux) 13347 goto err_free; 13348 13349 for (i = 0; i < nfuncs; i++) { 13350 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 13351 if (ret) { 13352 if (ret == -E2BIG) { 13353 verbose(env, "nonzero tailing record in func info"); 13354 /* set the size kernel expects so loader can zero 13355 * out the rest of the record. 13356 */ 13357 if (copy_to_bpfptr_offset(uattr, 13358 offsetof(union bpf_attr, func_info_rec_size), 13359 &min_size, sizeof(min_size))) 13360 ret = -EFAULT; 13361 } 13362 goto err_free; 13363 } 13364 13365 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 13366 ret = -EFAULT; 13367 goto err_free; 13368 } 13369 13370 /* check insn_off */ 13371 ret = -EINVAL; 13372 if (i == 0) { 13373 if (krecord[i].insn_off) { 13374 verbose(env, 13375 "nonzero insn_off %u for the first func info record", 13376 krecord[i].insn_off); 13377 goto err_free; 13378 } 13379 } else if (krecord[i].insn_off <= prev_offset) { 13380 verbose(env, 13381 "same or smaller insn offset (%u) than previous func info record (%u)", 13382 krecord[i].insn_off, prev_offset); 13383 goto err_free; 13384 } 13385 13386 if (env->subprog_info[i].start != krecord[i].insn_off) { 13387 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 13388 goto err_free; 13389 } 13390 13391 /* check type_id */ 13392 type = btf_type_by_id(btf, krecord[i].type_id); 13393 if (!type || !btf_type_is_func(type)) { 13394 verbose(env, "invalid type id %d in func info", 13395 krecord[i].type_id); 13396 goto err_free; 13397 } 13398 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 13399 13400 func_proto = btf_type_by_id(btf, type->type); 13401 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 13402 /* btf_func_check() already verified it during BTF load */ 13403 goto err_free; 13404 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 13405 scalar_return = 13406 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 13407 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 13408 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 13409 goto err_free; 13410 } 13411 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 13412 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 13413 goto err_free; 13414 } 13415 13416 prev_offset = krecord[i].insn_off; 13417 bpfptr_add(&urecord, urec_size); 13418 } 13419 13420 prog->aux->func_info = krecord; 13421 prog->aux->func_info_cnt = nfuncs; 13422 prog->aux->func_info_aux = info_aux; 13423 return 0; 13424 13425 err_free: 13426 kvfree(krecord); 13427 kfree(info_aux); 13428 return ret; 13429 } 13430 13431 static void adjust_btf_func(struct bpf_verifier_env *env) 13432 { 13433 struct bpf_prog_aux *aux = env->prog->aux; 13434 int i; 13435 13436 if (!aux->func_info) 13437 return; 13438 13439 for (i = 0; i < env->subprog_cnt; i++) 13440 aux->func_info[i].insn_off = env->subprog_info[i].start; 13441 } 13442 13443 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 13444 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 13445 13446 static int check_btf_line(struct bpf_verifier_env *env, 13447 const union bpf_attr *attr, 13448 bpfptr_t uattr) 13449 { 13450 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 13451 struct bpf_subprog_info *sub; 13452 struct bpf_line_info *linfo; 13453 struct bpf_prog *prog; 13454 const struct btf *btf; 13455 bpfptr_t ulinfo; 13456 int err; 13457 13458 nr_linfo = attr->line_info_cnt; 13459 if (!nr_linfo) 13460 return 0; 13461 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 13462 return -EINVAL; 13463 13464 rec_size = attr->line_info_rec_size; 13465 if (rec_size < MIN_BPF_LINEINFO_SIZE || 13466 rec_size > MAX_LINEINFO_REC_SIZE || 13467 rec_size & (sizeof(u32) - 1)) 13468 return -EINVAL; 13469 13470 /* Need to zero it in case the userspace may 13471 * pass in a smaller bpf_line_info object. 13472 */ 13473 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 13474 GFP_KERNEL | __GFP_NOWARN); 13475 if (!linfo) 13476 return -ENOMEM; 13477 13478 prog = env->prog; 13479 btf = prog->aux->btf; 13480 13481 s = 0; 13482 sub = env->subprog_info; 13483 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 13484 expected_size = sizeof(struct bpf_line_info); 13485 ncopy = min_t(u32, expected_size, rec_size); 13486 for (i = 0; i < nr_linfo; i++) { 13487 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 13488 if (err) { 13489 if (err == -E2BIG) { 13490 verbose(env, "nonzero tailing record in line_info"); 13491 if (copy_to_bpfptr_offset(uattr, 13492 offsetof(union bpf_attr, line_info_rec_size), 13493 &expected_size, sizeof(expected_size))) 13494 err = -EFAULT; 13495 } 13496 goto err_free; 13497 } 13498 13499 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 13500 err = -EFAULT; 13501 goto err_free; 13502 } 13503 13504 /* 13505 * Check insn_off to ensure 13506 * 1) strictly increasing AND 13507 * 2) bounded by prog->len 13508 * 13509 * The linfo[0].insn_off == 0 check logically falls into 13510 * the later "missing bpf_line_info for func..." case 13511 * because the first linfo[0].insn_off must be the 13512 * first sub also and the first sub must have 13513 * subprog_info[0].start == 0. 13514 */ 13515 if ((i && linfo[i].insn_off <= prev_offset) || 13516 linfo[i].insn_off >= prog->len) { 13517 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 13518 i, linfo[i].insn_off, prev_offset, 13519 prog->len); 13520 err = -EINVAL; 13521 goto err_free; 13522 } 13523 13524 if (!prog->insnsi[linfo[i].insn_off].code) { 13525 verbose(env, 13526 "Invalid insn code at line_info[%u].insn_off\n", 13527 i); 13528 err = -EINVAL; 13529 goto err_free; 13530 } 13531 13532 if (!btf_name_by_offset(btf, linfo[i].line_off) || 13533 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 13534 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 13535 err = -EINVAL; 13536 goto err_free; 13537 } 13538 13539 if (s != env->subprog_cnt) { 13540 if (linfo[i].insn_off == sub[s].start) { 13541 sub[s].linfo_idx = i; 13542 s++; 13543 } else if (sub[s].start < linfo[i].insn_off) { 13544 verbose(env, "missing bpf_line_info for func#%u\n", s); 13545 err = -EINVAL; 13546 goto err_free; 13547 } 13548 } 13549 13550 prev_offset = linfo[i].insn_off; 13551 bpfptr_add(&ulinfo, rec_size); 13552 } 13553 13554 if (s != env->subprog_cnt) { 13555 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 13556 env->subprog_cnt - s, s); 13557 err = -EINVAL; 13558 goto err_free; 13559 } 13560 13561 prog->aux->linfo = linfo; 13562 prog->aux->nr_linfo = nr_linfo; 13563 13564 return 0; 13565 13566 err_free: 13567 kvfree(linfo); 13568 return err; 13569 } 13570 13571 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 13572 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 13573 13574 static int check_core_relo(struct bpf_verifier_env *env, 13575 const union bpf_attr *attr, 13576 bpfptr_t uattr) 13577 { 13578 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 13579 struct bpf_core_relo core_relo = {}; 13580 struct bpf_prog *prog = env->prog; 13581 const struct btf *btf = prog->aux->btf; 13582 struct bpf_core_ctx ctx = { 13583 .log = &env->log, 13584 .btf = btf, 13585 }; 13586 bpfptr_t u_core_relo; 13587 int err; 13588 13589 nr_core_relo = attr->core_relo_cnt; 13590 if (!nr_core_relo) 13591 return 0; 13592 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 13593 return -EINVAL; 13594 13595 rec_size = attr->core_relo_rec_size; 13596 if (rec_size < MIN_CORE_RELO_SIZE || 13597 rec_size > MAX_CORE_RELO_SIZE || 13598 rec_size % sizeof(u32)) 13599 return -EINVAL; 13600 13601 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 13602 expected_size = sizeof(struct bpf_core_relo); 13603 ncopy = min_t(u32, expected_size, rec_size); 13604 13605 /* Unlike func_info and line_info, copy and apply each CO-RE 13606 * relocation record one at a time. 13607 */ 13608 for (i = 0; i < nr_core_relo; i++) { 13609 /* future proofing when sizeof(bpf_core_relo) changes */ 13610 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 13611 if (err) { 13612 if (err == -E2BIG) { 13613 verbose(env, "nonzero tailing record in core_relo"); 13614 if (copy_to_bpfptr_offset(uattr, 13615 offsetof(union bpf_attr, core_relo_rec_size), 13616 &expected_size, sizeof(expected_size))) 13617 err = -EFAULT; 13618 } 13619 break; 13620 } 13621 13622 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 13623 err = -EFAULT; 13624 break; 13625 } 13626 13627 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 13628 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 13629 i, core_relo.insn_off, prog->len); 13630 err = -EINVAL; 13631 break; 13632 } 13633 13634 err = bpf_core_apply(&ctx, &core_relo, i, 13635 &prog->insnsi[core_relo.insn_off / 8]); 13636 if (err) 13637 break; 13638 bpfptr_add(&u_core_relo, rec_size); 13639 } 13640 return err; 13641 } 13642 13643 static int check_btf_info(struct bpf_verifier_env *env, 13644 const union bpf_attr *attr, 13645 bpfptr_t uattr) 13646 { 13647 struct btf *btf; 13648 int err; 13649 13650 if (!attr->func_info_cnt && !attr->line_info_cnt) { 13651 if (check_abnormal_return(env)) 13652 return -EINVAL; 13653 return 0; 13654 } 13655 13656 btf = btf_get_by_fd(attr->prog_btf_fd); 13657 if (IS_ERR(btf)) 13658 return PTR_ERR(btf); 13659 if (btf_is_kernel(btf)) { 13660 btf_put(btf); 13661 return -EACCES; 13662 } 13663 env->prog->aux->btf = btf; 13664 13665 err = check_btf_func(env, attr, uattr); 13666 if (err) 13667 return err; 13668 13669 err = check_btf_line(env, attr, uattr); 13670 if (err) 13671 return err; 13672 13673 err = check_core_relo(env, attr, uattr); 13674 if (err) 13675 return err; 13676 13677 return 0; 13678 } 13679 13680 /* check %cur's range satisfies %old's */ 13681 static bool range_within(struct bpf_reg_state *old, 13682 struct bpf_reg_state *cur) 13683 { 13684 return old->umin_value <= cur->umin_value && 13685 old->umax_value >= cur->umax_value && 13686 old->smin_value <= cur->smin_value && 13687 old->smax_value >= cur->smax_value && 13688 old->u32_min_value <= cur->u32_min_value && 13689 old->u32_max_value >= cur->u32_max_value && 13690 old->s32_min_value <= cur->s32_min_value && 13691 old->s32_max_value >= cur->s32_max_value; 13692 } 13693 13694 /* If in the old state two registers had the same id, then they need to have 13695 * the same id in the new state as well. But that id could be different from 13696 * the old state, so we need to track the mapping from old to new ids. 13697 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 13698 * regs with old id 5 must also have new id 9 for the new state to be safe. But 13699 * regs with a different old id could still have new id 9, we don't care about 13700 * that. 13701 * So we look through our idmap to see if this old id has been seen before. If 13702 * so, we require the new id to match; otherwise, we add the id pair to the map. 13703 */ 13704 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 13705 { 13706 unsigned int i; 13707 13708 /* either both IDs should be set or both should be zero */ 13709 if (!!old_id != !!cur_id) 13710 return false; 13711 13712 if (old_id == 0) /* cur_id == 0 as well */ 13713 return true; 13714 13715 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 13716 if (!idmap[i].old) { 13717 /* Reached an empty slot; haven't seen this id before */ 13718 idmap[i].old = old_id; 13719 idmap[i].cur = cur_id; 13720 return true; 13721 } 13722 if (idmap[i].old == old_id) 13723 return idmap[i].cur == cur_id; 13724 } 13725 /* We ran out of idmap slots, which should be impossible */ 13726 WARN_ON_ONCE(1); 13727 return false; 13728 } 13729 13730 static void clean_func_state(struct bpf_verifier_env *env, 13731 struct bpf_func_state *st) 13732 { 13733 enum bpf_reg_liveness live; 13734 int i, j; 13735 13736 for (i = 0; i < BPF_REG_FP; i++) { 13737 live = st->regs[i].live; 13738 /* liveness must not touch this register anymore */ 13739 st->regs[i].live |= REG_LIVE_DONE; 13740 if (!(live & REG_LIVE_READ)) 13741 /* since the register is unused, clear its state 13742 * to make further comparison simpler 13743 */ 13744 __mark_reg_not_init(env, &st->regs[i]); 13745 } 13746 13747 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 13748 live = st->stack[i].spilled_ptr.live; 13749 /* liveness must not touch this stack slot anymore */ 13750 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 13751 if (!(live & REG_LIVE_READ)) { 13752 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 13753 for (j = 0; j < BPF_REG_SIZE; j++) 13754 st->stack[i].slot_type[j] = STACK_INVALID; 13755 } 13756 } 13757 } 13758 13759 static void clean_verifier_state(struct bpf_verifier_env *env, 13760 struct bpf_verifier_state *st) 13761 { 13762 int i; 13763 13764 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 13765 /* all regs in this state in all frames were already marked */ 13766 return; 13767 13768 for (i = 0; i <= st->curframe; i++) 13769 clean_func_state(env, st->frame[i]); 13770 } 13771 13772 /* the parentage chains form a tree. 13773 * the verifier states are added to state lists at given insn and 13774 * pushed into state stack for future exploration. 13775 * when the verifier reaches bpf_exit insn some of the verifer states 13776 * stored in the state lists have their final liveness state already, 13777 * but a lot of states will get revised from liveness point of view when 13778 * the verifier explores other branches. 13779 * Example: 13780 * 1: r0 = 1 13781 * 2: if r1 == 100 goto pc+1 13782 * 3: r0 = 2 13783 * 4: exit 13784 * when the verifier reaches exit insn the register r0 in the state list of 13785 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 13786 * of insn 2 and goes exploring further. At the insn 4 it will walk the 13787 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 13788 * 13789 * Since the verifier pushes the branch states as it sees them while exploring 13790 * the program the condition of walking the branch instruction for the second 13791 * time means that all states below this branch were already explored and 13792 * their final liveness marks are already propagated. 13793 * Hence when the verifier completes the search of state list in is_state_visited() 13794 * we can call this clean_live_states() function to mark all liveness states 13795 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 13796 * will not be used. 13797 * This function also clears the registers and stack for states that !READ 13798 * to simplify state merging. 13799 * 13800 * Important note here that walking the same branch instruction in the callee 13801 * doesn't meant that the states are DONE. The verifier has to compare 13802 * the callsites 13803 */ 13804 static void clean_live_states(struct bpf_verifier_env *env, int insn, 13805 struct bpf_verifier_state *cur) 13806 { 13807 struct bpf_verifier_state_list *sl; 13808 int i; 13809 13810 sl = *explored_state(env, insn); 13811 while (sl) { 13812 if (sl->state.branches) 13813 goto next; 13814 if (sl->state.insn_idx != insn || 13815 sl->state.curframe != cur->curframe) 13816 goto next; 13817 for (i = 0; i <= cur->curframe; i++) 13818 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 13819 goto next; 13820 clean_verifier_state(env, &sl->state); 13821 next: 13822 sl = sl->next; 13823 } 13824 } 13825 13826 static bool regs_exact(const struct bpf_reg_state *rold, 13827 const struct bpf_reg_state *rcur, 13828 struct bpf_id_pair *idmap) 13829 { 13830 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 13831 check_ids(rold->id, rcur->id, idmap) && 13832 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 13833 } 13834 13835 /* Returns true if (rold safe implies rcur safe) */ 13836 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 13837 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 13838 { 13839 if (!(rold->live & REG_LIVE_READ)) 13840 /* explored state didn't use this */ 13841 return true; 13842 if (rold->type == NOT_INIT) 13843 /* explored state can't have used this */ 13844 return true; 13845 if (rcur->type == NOT_INIT) 13846 return false; 13847 13848 /* Enforce that register types have to match exactly, including their 13849 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 13850 * rule. 13851 * 13852 * One can make a point that using a pointer register as unbounded 13853 * SCALAR would be technically acceptable, but this could lead to 13854 * pointer leaks because scalars are allowed to leak while pointers 13855 * are not. We could make this safe in special cases if root is 13856 * calling us, but it's probably not worth the hassle. 13857 * 13858 * Also, register types that are *not* MAYBE_NULL could technically be 13859 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 13860 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 13861 * to the same map). 13862 * However, if the old MAYBE_NULL register then got NULL checked, 13863 * doing so could have affected others with the same id, and we can't 13864 * check for that because we lost the id when we converted to 13865 * a non-MAYBE_NULL variant. 13866 * So, as a general rule we don't allow mixing MAYBE_NULL and 13867 * non-MAYBE_NULL registers as well. 13868 */ 13869 if (rold->type != rcur->type) 13870 return false; 13871 13872 switch (base_type(rold->type)) { 13873 case SCALAR_VALUE: 13874 if (regs_exact(rold, rcur, idmap)) 13875 return true; 13876 if (env->explore_alu_limits) 13877 return false; 13878 if (!rold->precise) 13879 return true; 13880 /* new val must satisfy old val knowledge */ 13881 return range_within(rold, rcur) && 13882 tnum_in(rold->var_off, rcur->var_off); 13883 case PTR_TO_MAP_KEY: 13884 case PTR_TO_MAP_VALUE: 13885 /* If the new min/max/var_off satisfy the old ones and 13886 * everything else matches, we are OK. 13887 */ 13888 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 13889 range_within(rold, rcur) && 13890 tnum_in(rold->var_off, rcur->var_off) && 13891 check_ids(rold->id, rcur->id, idmap); 13892 case PTR_TO_PACKET_META: 13893 case PTR_TO_PACKET: 13894 /* We must have at least as much range as the old ptr 13895 * did, so that any accesses which were safe before are 13896 * still safe. This is true even if old range < old off, 13897 * since someone could have accessed through (ptr - k), or 13898 * even done ptr -= k in a register, to get a safe access. 13899 */ 13900 if (rold->range > rcur->range) 13901 return false; 13902 /* If the offsets don't match, we can't trust our alignment; 13903 * nor can we be sure that we won't fall out of range. 13904 */ 13905 if (rold->off != rcur->off) 13906 return false; 13907 /* id relations must be preserved */ 13908 if (!check_ids(rold->id, rcur->id, idmap)) 13909 return false; 13910 /* new val must satisfy old val knowledge */ 13911 return range_within(rold, rcur) && 13912 tnum_in(rold->var_off, rcur->var_off); 13913 case PTR_TO_STACK: 13914 /* two stack pointers are equal only if they're pointing to 13915 * the same stack frame, since fp-8 in foo != fp-8 in bar 13916 */ 13917 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 13918 default: 13919 return regs_exact(rold, rcur, idmap); 13920 } 13921 } 13922 13923 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 13924 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 13925 { 13926 int i, spi; 13927 13928 /* walk slots of the explored stack and ignore any additional 13929 * slots in the current stack, since explored(safe) state 13930 * didn't use them 13931 */ 13932 for (i = 0; i < old->allocated_stack; i++) { 13933 spi = i / BPF_REG_SIZE; 13934 13935 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 13936 i += BPF_REG_SIZE - 1; 13937 /* explored state didn't use this */ 13938 continue; 13939 } 13940 13941 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 13942 continue; 13943 13944 if (env->allow_uninit_stack && 13945 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 13946 continue; 13947 13948 /* explored stack has more populated slots than current stack 13949 * and these slots were used 13950 */ 13951 if (i >= cur->allocated_stack) 13952 return false; 13953 13954 /* if old state was safe with misc data in the stack 13955 * it will be safe with zero-initialized stack. 13956 * The opposite is not true 13957 */ 13958 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 13959 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 13960 continue; 13961 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 13962 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 13963 /* Ex: old explored (safe) state has STACK_SPILL in 13964 * this stack slot, but current has STACK_MISC -> 13965 * this verifier states are not equivalent, 13966 * return false to continue verification of this path 13967 */ 13968 return false; 13969 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 13970 continue; 13971 /* Both old and cur are having same slot_type */ 13972 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 13973 case STACK_SPILL: 13974 /* when explored and current stack slot are both storing 13975 * spilled registers, check that stored pointers types 13976 * are the same as well. 13977 * Ex: explored safe path could have stored 13978 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 13979 * but current path has stored: 13980 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 13981 * such verifier states are not equivalent. 13982 * return false to continue verification of this path 13983 */ 13984 if (!regsafe(env, &old->stack[spi].spilled_ptr, 13985 &cur->stack[spi].spilled_ptr, idmap)) 13986 return false; 13987 break; 13988 case STACK_DYNPTR: 13989 { 13990 const struct bpf_reg_state *old_reg, *cur_reg; 13991 13992 old_reg = &old->stack[spi].spilled_ptr; 13993 cur_reg = &cur->stack[spi].spilled_ptr; 13994 if (old_reg->dynptr.type != cur_reg->dynptr.type || 13995 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 13996 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 13997 return false; 13998 break; 13999 } 14000 case STACK_MISC: 14001 case STACK_ZERO: 14002 case STACK_INVALID: 14003 continue; 14004 /* Ensure that new unhandled slot types return false by default */ 14005 default: 14006 return false; 14007 } 14008 } 14009 return true; 14010 } 14011 14012 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 14013 struct bpf_id_pair *idmap) 14014 { 14015 int i; 14016 14017 if (old->acquired_refs != cur->acquired_refs) 14018 return false; 14019 14020 for (i = 0; i < old->acquired_refs; i++) { 14021 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 14022 return false; 14023 } 14024 14025 return true; 14026 } 14027 14028 /* compare two verifier states 14029 * 14030 * all states stored in state_list are known to be valid, since 14031 * verifier reached 'bpf_exit' instruction through them 14032 * 14033 * this function is called when verifier exploring different branches of 14034 * execution popped from the state stack. If it sees an old state that has 14035 * more strict register state and more strict stack state then this execution 14036 * branch doesn't need to be explored further, since verifier already 14037 * concluded that more strict state leads to valid finish. 14038 * 14039 * Therefore two states are equivalent if register state is more conservative 14040 * and explored stack state is more conservative than the current one. 14041 * Example: 14042 * explored current 14043 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 14044 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 14045 * 14046 * In other words if current stack state (one being explored) has more 14047 * valid slots than old one that already passed validation, it means 14048 * the verifier can stop exploring and conclude that current state is valid too 14049 * 14050 * Similarly with registers. If explored state has register type as invalid 14051 * whereas register type in current state is meaningful, it means that 14052 * the current state will reach 'bpf_exit' instruction safely 14053 */ 14054 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 14055 struct bpf_func_state *cur) 14056 { 14057 int i; 14058 14059 for (i = 0; i < MAX_BPF_REG; i++) 14060 if (!regsafe(env, &old->regs[i], &cur->regs[i], 14061 env->idmap_scratch)) 14062 return false; 14063 14064 if (!stacksafe(env, old, cur, env->idmap_scratch)) 14065 return false; 14066 14067 if (!refsafe(old, cur, env->idmap_scratch)) 14068 return false; 14069 14070 return true; 14071 } 14072 14073 static bool states_equal(struct bpf_verifier_env *env, 14074 struct bpf_verifier_state *old, 14075 struct bpf_verifier_state *cur) 14076 { 14077 int i; 14078 14079 if (old->curframe != cur->curframe) 14080 return false; 14081 14082 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 14083 14084 /* Verification state from speculative execution simulation 14085 * must never prune a non-speculative execution one. 14086 */ 14087 if (old->speculative && !cur->speculative) 14088 return false; 14089 14090 if (old->active_lock.ptr != cur->active_lock.ptr) 14091 return false; 14092 14093 /* Old and cur active_lock's have to be either both present 14094 * or both absent. 14095 */ 14096 if (!!old->active_lock.id != !!cur->active_lock.id) 14097 return false; 14098 14099 if (old->active_lock.id && 14100 !check_ids(old->active_lock.id, cur->active_lock.id, env->idmap_scratch)) 14101 return false; 14102 14103 if (old->active_rcu_lock != cur->active_rcu_lock) 14104 return false; 14105 14106 /* for states to be equal callsites have to be the same 14107 * and all frame states need to be equivalent 14108 */ 14109 for (i = 0; i <= old->curframe; i++) { 14110 if (old->frame[i]->callsite != cur->frame[i]->callsite) 14111 return false; 14112 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 14113 return false; 14114 } 14115 return true; 14116 } 14117 14118 /* Return 0 if no propagation happened. Return negative error code if error 14119 * happened. Otherwise, return the propagated bit. 14120 */ 14121 static int propagate_liveness_reg(struct bpf_verifier_env *env, 14122 struct bpf_reg_state *reg, 14123 struct bpf_reg_state *parent_reg) 14124 { 14125 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 14126 u8 flag = reg->live & REG_LIVE_READ; 14127 int err; 14128 14129 /* When comes here, read flags of PARENT_REG or REG could be any of 14130 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 14131 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 14132 */ 14133 if (parent_flag == REG_LIVE_READ64 || 14134 /* Or if there is no read flag from REG. */ 14135 !flag || 14136 /* Or if the read flag from REG is the same as PARENT_REG. */ 14137 parent_flag == flag) 14138 return 0; 14139 14140 err = mark_reg_read(env, reg, parent_reg, flag); 14141 if (err) 14142 return err; 14143 14144 return flag; 14145 } 14146 14147 /* A write screens off any subsequent reads; but write marks come from the 14148 * straight-line code between a state and its parent. When we arrive at an 14149 * equivalent state (jump target or such) we didn't arrive by the straight-line 14150 * code, so read marks in the state must propagate to the parent regardless 14151 * of the state's write marks. That's what 'parent == state->parent' comparison 14152 * in mark_reg_read() is for. 14153 */ 14154 static int propagate_liveness(struct bpf_verifier_env *env, 14155 const struct bpf_verifier_state *vstate, 14156 struct bpf_verifier_state *vparent) 14157 { 14158 struct bpf_reg_state *state_reg, *parent_reg; 14159 struct bpf_func_state *state, *parent; 14160 int i, frame, err = 0; 14161 14162 if (vparent->curframe != vstate->curframe) { 14163 WARN(1, "propagate_live: parent frame %d current frame %d\n", 14164 vparent->curframe, vstate->curframe); 14165 return -EFAULT; 14166 } 14167 /* Propagate read liveness of registers... */ 14168 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 14169 for (frame = 0; frame <= vstate->curframe; frame++) { 14170 parent = vparent->frame[frame]; 14171 state = vstate->frame[frame]; 14172 parent_reg = parent->regs; 14173 state_reg = state->regs; 14174 /* We don't need to worry about FP liveness, it's read-only */ 14175 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 14176 err = propagate_liveness_reg(env, &state_reg[i], 14177 &parent_reg[i]); 14178 if (err < 0) 14179 return err; 14180 if (err == REG_LIVE_READ64) 14181 mark_insn_zext(env, &parent_reg[i]); 14182 } 14183 14184 /* Propagate stack slots. */ 14185 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 14186 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 14187 parent_reg = &parent->stack[i].spilled_ptr; 14188 state_reg = &state->stack[i].spilled_ptr; 14189 err = propagate_liveness_reg(env, state_reg, 14190 parent_reg); 14191 if (err < 0) 14192 return err; 14193 } 14194 } 14195 return 0; 14196 } 14197 14198 /* find precise scalars in the previous equivalent state and 14199 * propagate them into the current state 14200 */ 14201 static int propagate_precision(struct bpf_verifier_env *env, 14202 const struct bpf_verifier_state *old) 14203 { 14204 struct bpf_reg_state *state_reg; 14205 struct bpf_func_state *state; 14206 int i, err = 0, fr; 14207 14208 for (fr = old->curframe; fr >= 0; fr--) { 14209 state = old->frame[fr]; 14210 state_reg = state->regs; 14211 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 14212 if (state_reg->type != SCALAR_VALUE || 14213 !state_reg->precise) 14214 continue; 14215 if (env->log.level & BPF_LOG_LEVEL2) 14216 verbose(env, "frame %d: propagating r%d\n", i, fr); 14217 err = mark_chain_precision_frame(env, fr, i); 14218 if (err < 0) 14219 return err; 14220 } 14221 14222 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 14223 if (!is_spilled_reg(&state->stack[i])) 14224 continue; 14225 state_reg = &state->stack[i].spilled_ptr; 14226 if (state_reg->type != SCALAR_VALUE || 14227 !state_reg->precise) 14228 continue; 14229 if (env->log.level & BPF_LOG_LEVEL2) 14230 verbose(env, "frame %d: propagating fp%d\n", 14231 (-i - 1) * BPF_REG_SIZE, fr); 14232 err = mark_chain_precision_stack_frame(env, fr, i); 14233 if (err < 0) 14234 return err; 14235 } 14236 } 14237 return 0; 14238 } 14239 14240 static bool states_maybe_looping(struct bpf_verifier_state *old, 14241 struct bpf_verifier_state *cur) 14242 { 14243 struct bpf_func_state *fold, *fcur; 14244 int i, fr = cur->curframe; 14245 14246 if (old->curframe != fr) 14247 return false; 14248 14249 fold = old->frame[fr]; 14250 fcur = cur->frame[fr]; 14251 for (i = 0; i < MAX_BPF_REG; i++) 14252 if (memcmp(&fold->regs[i], &fcur->regs[i], 14253 offsetof(struct bpf_reg_state, parent))) 14254 return false; 14255 return true; 14256 } 14257 14258 14259 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 14260 { 14261 struct bpf_verifier_state_list *new_sl; 14262 struct bpf_verifier_state_list *sl, **pprev; 14263 struct bpf_verifier_state *cur = env->cur_state, *new; 14264 int i, j, err, states_cnt = 0; 14265 bool add_new_state = env->test_state_freq ? true : false; 14266 14267 /* bpf progs typically have pruning point every 4 instructions 14268 * http://vger.kernel.org/bpfconf2019.html#session-1 14269 * Do not add new state for future pruning if the verifier hasn't seen 14270 * at least 2 jumps and at least 8 instructions. 14271 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 14272 * In tests that amounts to up to 50% reduction into total verifier 14273 * memory consumption and 20% verifier time speedup. 14274 */ 14275 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 14276 env->insn_processed - env->prev_insn_processed >= 8) 14277 add_new_state = true; 14278 14279 pprev = explored_state(env, insn_idx); 14280 sl = *pprev; 14281 14282 clean_live_states(env, insn_idx, cur); 14283 14284 while (sl) { 14285 states_cnt++; 14286 if (sl->state.insn_idx != insn_idx) 14287 goto next; 14288 14289 if (sl->state.branches) { 14290 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 14291 14292 if (frame->in_async_callback_fn && 14293 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 14294 /* Different async_entry_cnt means that the verifier is 14295 * processing another entry into async callback. 14296 * Seeing the same state is not an indication of infinite 14297 * loop or infinite recursion. 14298 * But finding the same state doesn't mean that it's safe 14299 * to stop processing the current state. The previous state 14300 * hasn't yet reached bpf_exit, since state.branches > 0. 14301 * Checking in_async_callback_fn alone is not enough either. 14302 * Since the verifier still needs to catch infinite loops 14303 * inside async callbacks. 14304 */ 14305 } else if (states_maybe_looping(&sl->state, cur) && 14306 states_equal(env, &sl->state, cur)) { 14307 verbose_linfo(env, insn_idx, "; "); 14308 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 14309 return -EINVAL; 14310 } 14311 /* if the verifier is processing a loop, avoid adding new state 14312 * too often, since different loop iterations have distinct 14313 * states and may not help future pruning. 14314 * This threshold shouldn't be too low to make sure that 14315 * a loop with large bound will be rejected quickly. 14316 * The most abusive loop will be: 14317 * r1 += 1 14318 * if r1 < 1000000 goto pc-2 14319 * 1M insn_procssed limit / 100 == 10k peak states. 14320 * This threshold shouldn't be too high either, since states 14321 * at the end of the loop are likely to be useful in pruning. 14322 */ 14323 if (env->jmps_processed - env->prev_jmps_processed < 20 && 14324 env->insn_processed - env->prev_insn_processed < 100) 14325 add_new_state = false; 14326 goto miss; 14327 } 14328 if (states_equal(env, &sl->state, cur)) { 14329 sl->hit_cnt++; 14330 /* reached equivalent register/stack state, 14331 * prune the search. 14332 * Registers read by the continuation are read by us. 14333 * If we have any write marks in env->cur_state, they 14334 * will prevent corresponding reads in the continuation 14335 * from reaching our parent (an explored_state). Our 14336 * own state will get the read marks recorded, but 14337 * they'll be immediately forgotten as we're pruning 14338 * this state and will pop a new one. 14339 */ 14340 err = propagate_liveness(env, &sl->state, cur); 14341 14342 /* if previous state reached the exit with precision and 14343 * current state is equivalent to it (except precsion marks) 14344 * the precision needs to be propagated back in 14345 * the current state. 14346 */ 14347 err = err ? : push_jmp_history(env, cur); 14348 err = err ? : propagate_precision(env, &sl->state); 14349 if (err) 14350 return err; 14351 return 1; 14352 } 14353 miss: 14354 /* when new state is not going to be added do not increase miss count. 14355 * Otherwise several loop iterations will remove the state 14356 * recorded earlier. The goal of these heuristics is to have 14357 * states from some iterations of the loop (some in the beginning 14358 * and some at the end) to help pruning. 14359 */ 14360 if (add_new_state) 14361 sl->miss_cnt++; 14362 /* heuristic to determine whether this state is beneficial 14363 * to keep checking from state equivalence point of view. 14364 * Higher numbers increase max_states_per_insn and verification time, 14365 * but do not meaningfully decrease insn_processed. 14366 */ 14367 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 14368 /* the state is unlikely to be useful. Remove it to 14369 * speed up verification 14370 */ 14371 *pprev = sl->next; 14372 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 14373 u32 br = sl->state.branches; 14374 14375 WARN_ONCE(br, 14376 "BUG live_done but branches_to_explore %d\n", 14377 br); 14378 free_verifier_state(&sl->state, false); 14379 kfree(sl); 14380 env->peak_states--; 14381 } else { 14382 /* cannot free this state, since parentage chain may 14383 * walk it later. Add it for free_list instead to 14384 * be freed at the end of verification 14385 */ 14386 sl->next = env->free_list; 14387 env->free_list = sl; 14388 } 14389 sl = *pprev; 14390 continue; 14391 } 14392 next: 14393 pprev = &sl->next; 14394 sl = *pprev; 14395 } 14396 14397 if (env->max_states_per_insn < states_cnt) 14398 env->max_states_per_insn = states_cnt; 14399 14400 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 14401 return 0; 14402 14403 if (!add_new_state) 14404 return 0; 14405 14406 /* There were no equivalent states, remember the current one. 14407 * Technically the current state is not proven to be safe yet, 14408 * but it will either reach outer most bpf_exit (which means it's safe) 14409 * or it will be rejected. When there are no loops the verifier won't be 14410 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 14411 * again on the way to bpf_exit. 14412 * When looping the sl->state.branches will be > 0 and this state 14413 * will not be considered for equivalence until branches == 0. 14414 */ 14415 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 14416 if (!new_sl) 14417 return -ENOMEM; 14418 env->total_states++; 14419 env->peak_states++; 14420 env->prev_jmps_processed = env->jmps_processed; 14421 env->prev_insn_processed = env->insn_processed; 14422 14423 /* forget precise markings we inherited, see __mark_chain_precision */ 14424 if (env->bpf_capable) 14425 mark_all_scalars_imprecise(env, cur); 14426 14427 /* add new state to the head of linked list */ 14428 new = &new_sl->state; 14429 err = copy_verifier_state(new, cur); 14430 if (err) { 14431 free_verifier_state(new, false); 14432 kfree(new_sl); 14433 return err; 14434 } 14435 new->insn_idx = insn_idx; 14436 WARN_ONCE(new->branches != 1, 14437 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 14438 14439 cur->parent = new; 14440 cur->first_insn_idx = insn_idx; 14441 clear_jmp_history(cur); 14442 new_sl->next = *explored_state(env, insn_idx); 14443 *explored_state(env, insn_idx) = new_sl; 14444 /* connect new state to parentage chain. Current frame needs all 14445 * registers connected. Only r6 - r9 of the callers are alive (pushed 14446 * to the stack implicitly by JITs) so in callers' frames connect just 14447 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 14448 * the state of the call instruction (with WRITTEN set), and r0 comes 14449 * from callee with its full parentage chain, anyway. 14450 */ 14451 /* clear write marks in current state: the writes we did are not writes 14452 * our child did, so they don't screen off its reads from us. 14453 * (There are no read marks in current state, because reads always mark 14454 * their parent and current state never has children yet. Only 14455 * explored_states can get read marks.) 14456 */ 14457 for (j = 0; j <= cur->curframe; j++) { 14458 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 14459 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 14460 for (i = 0; i < BPF_REG_FP; i++) 14461 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 14462 } 14463 14464 /* all stack frames are accessible from callee, clear them all */ 14465 for (j = 0; j <= cur->curframe; j++) { 14466 struct bpf_func_state *frame = cur->frame[j]; 14467 struct bpf_func_state *newframe = new->frame[j]; 14468 14469 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 14470 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 14471 frame->stack[i].spilled_ptr.parent = 14472 &newframe->stack[i].spilled_ptr; 14473 } 14474 } 14475 return 0; 14476 } 14477 14478 /* Return true if it's OK to have the same insn return a different type. */ 14479 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 14480 { 14481 switch (base_type(type)) { 14482 case PTR_TO_CTX: 14483 case PTR_TO_SOCKET: 14484 case PTR_TO_SOCK_COMMON: 14485 case PTR_TO_TCP_SOCK: 14486 case PTR_TO_XDP_SOCK: 14487 case PTR_TO_BTF_ID: 14488 return false; 14489 default: 14490 return true; 14491 } 14492 } 14493 14494 /* If an instruction was previously used with particular pointer types, then we 14495 * need to be careful to avoid cases such as the below, where it may be ok 14496 * for one branch accessing the pointer, but not ok for the other branch: 14497 * 14498 * R1 = sock_ptr 14499 * goto X; 14500 * ... 14501 * R1 = some_other_valid_ptr; 14502 * goto X; 14503 * ... 14504 * R2 = *(u32 *)(R1 + 0); 14505 */ 14506 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 14507 { 14508 return src != prev && (!reg_type_mismatch_ok(src) || 14509 !reg_type_mismatch_ok(prev)); 14510 } 14511 14512 static int do_check(struct bpf_verifier_env *env) 14513 { 14514 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 14515 struct bpf_verifier_state *state = env->cur_state; 14516 struct bpf_insn *insns = env->prog->insnsi; 14517 struct bpf_reg_state *regs; 14518 int insn_cnt = env->prog->len; 14519 bool do_print_state = false; 14520 int prev_insn_idx = -1; 14521 14522 for (;;) { 14523 struct bpf_insn *insn; 14524 u8 class; 14525 int err; 14526 14527 env->prev_insn_idx = prev_insn_idx; 14528 if (env->insn_idx >= insn_cnt) { 14529 verbose(env, "invalid insn idx %d insn_cnt %d\n", 14530 env->insn_idx, insn_cnt); 14531 return -EFAULT; 14532 } 14533 14534 insn = &insns[env->insn_idx]; 14535 class = BPF_CLASS(insn->code); 14536 14537 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 14538 verbose(env, 14539 "BPF program is too large. Processed %d insn\n", 14540 env->insn_processed); 14541 return -E2BIG; 14542 } 14543 14544 state->last_insn_idx = env->prev_insn_idx; 14545 14546 if (is_prune_point(env, env->insn_idx)) { 14547 err = is_state_visited(env, env->insn_idx); 14548 if (err < 0) 14549 return err; 14550 if (err == 1) { 14551 /* found equivalent state, can prune the search */ 14552 if (env->log.level & BPF_LOG_LEVEL) { 14553 if (do_print_state) 14554 verbose(env, "\nfrom %d to %d%s: safe\n", 14555 env->prev_insn_idx, env->insn_idx, 14556 env->cur_state->speculative ? 14557 " (speculative execution)" : ""); 14558 else 14559 verbose(env, "%d: safe\n", env->insn_idx); 14560 } 14561 goto process_bpf_exit; 14562 } 14563 } 14564 14565 if (is_jmp_point(env, env->insn_idx)) { 14566 err = push_jmp_history(env, state); 14567 if (err) 14568 return err; 14569 } 14570 14571 if (signal_pending(current)) 14572 return -EAGAIN; 14573 14574 if (need_resched()) 14575 cond_resched(); 14576 14577 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 14578 verbose(env, "\nfrom %d to %d%s:", 14579 env->prev_insn_idx, env->insn_idx, 14580 env->cur_state->speculative ? 14581 " (speculative execution)" : ""); 14582 print_verifier_state(env, state->frame[state->curframe], true); 14583 do_print_state = false; 14584 } 14585 14586 if (env->log.level & BPF_LOG_LEVEL) { 14587 const struct bpf_insn_cbs cbs = { 14588 .cb_call = disasm_kfunc_name, 14589 .cb_print = verbose, 14590 .private_data = env, 14591 }; 14592 14593 if (verifier_state_scratched(env)) 14594 print_insn_state(env, state->frame[state->curframe]); 14595 14596 verbose_linfo(env, env->insn_idx, "; "); 14597 env->prev_log_len = env->log.len_used; 14598 verbose(env, "%d: ", env->insn_idx); 14599 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 14600 env->prev_insn_print_len = env->log.len_used - env->prev_log_len; 14601 env->prev_log_len = env->log.len_used; 14602 } 14603 14604 if (bpf_prog_is_offloaded(env->prog->aux)) { 14605 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 14606 env->prev_insn_idx); 14607 if (err) 14608 return err; 14609 } 14610 14611 regs = cur_regs(env); 14612 sanitize_mark_insn_seen(env); 14613 prev_insn_idx = env->insn_idx; 14614 14615 if (class == BPF_ALU || class == BPF_ALU64) { 14616 err = check_alu_op(env, insn); 14617 if (err) 14618 return err; 14619 14620 } else if (class == BPF_LDX) { 14621 enum bpf_reg_type *prev_src_type, src_reg_type; 14622 14623 /* check for reserved fields is already done */ 14624 14625 /* check src operand */ 14626 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14627 if (err) 14628 return err; 14629 14630 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 14631 if (err) 14632 return err; 14633 14634 src_reg_type = regs[insn->src_reg].type; 14635 14636 /* check that memory (src_reg + off) is readable, 14637 * the state of dst_reg will be updated by this func 14638 */ 14639 err = check_mem_access(env, env->insn_idx, insn->src_reg, 14640 insn->off, BPF_SIZE(insn->code), 14641 BPF_READ, insn->dst_reg, false); 14642 if (err) 14643 return err; 14644 14645 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 14646 14647 if (*prev_src_type == NOT_INIT) { 14648 /* saw a valid insn 14649 * dst_reg = *(u32 *)(src_reg + off) 14650 * save type to validate intersecting paths 14651 */ 14652 *prev_src_type = src_reg_type; 14653 14654 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 14655 /* ABuser program is trying to use the same insn 14656 * dst_reg = *(u32*) (src_reg + off) 14657 * with different pointer types: 14658 * src_reg == ctx in one branch and 14659 * src_reg == stack|map in some other branch. 14660 * Reject it. 14661 */ 14662 verbose(env, "same insn cannot be used with different pointers\n"); 14663 return -EINVAL; 14664 } 14665 14666 } else if (class == BPF_STX) { 14667 enum bpf_reg_type *prev_dst_type, dst_reg_type; 14668 14669 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 14670 err = check_atomic(env, env->insn_idx, insn); 14671 if (err) 14672 return err; 14673 env->insn_idx++; 14674 continue; 14675 } 14676 14677 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 14678 verbose(env, "BPF_STX uses reserved fields\n"); 14679 return -EINVAL; 14680 } 14681 14682 /* check src1 operand */ 14683 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14684 if (err) 14685 return err; 14686 /* check src2 operand */ 14687 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14688 if (err) 14689 return err; 14690 14691 dst_reg_type = regs[insn->dst_reg].type; 14692 14693 /* check that memory (dst_reg + off) is writeable */ 14694 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 14695 insn->off, BPF_SIZE(insn->code), 14696 BPF_WRITE, insn->src_reg, false); 14697 if (err) 14698 return err; 14699 14700 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 14701 14702 if (*prev_dst_type == NOT_INIT) { 14703 *prev_dst_type = dst_reg_type; 14704 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 14705 verbose(env, "same insn cannot be used with different pointers\n"); 14706 return -EINVAL; 14707 } 14708 14709 } else if (class == BPF_ST) { 14710 if (BPF_MODE(insn->code) != BPF_MEM || 14711 insn->src_reg != BPF_REG_0) { 14712 verbose(env, "BPF_ST uses reserved fields\n"); 14713 return -EINVAL; 14714 } 14715 /* check src operand */ 14716 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14717 if (err) 14718 return err; 14719 14720 if (is_ctx_reg(env, insn->dst_reg)) { 14721 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 14722 insn->dst_reg, 14723 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 14724 return -EACCES; 14725 } 14726 14727 /* check that memory (dst_reg + off) is writeable */ 14728 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 14729 insn->off, BPF_SIZE(insn->code), 14730 BPF_WRITE, -1, false); 14731 if (err) 14732 return err; 14733 14734 } else if (class == BPF_JMP || class == BPF_JMP32) { 14735 u8 opcode = BPF_OP(insn->code); 14736 14737 env->jmps_processed++; 14738 if (opcode == BPF_CALL) { 14739 if (BPF_SRC(insn->code) != BPF_K || 14740 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 14741 && insn->off != 0) || 14742 (insn->src_reg != BPF_REG_0 && 14743 insn->src_reg != BPF_PSEUDO_CALL && 14744 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 14745 insn->dst_reg != BPF_REG_0 || 14746 class == BPF_JMP32) { 14747 verbose(env, "BPF_CALL uses reserved fields\n"); 14748 return -EINVAL; 14749 } 14750 14751 if (env->cur_state->active_lock.ptr) { 14752 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 14753 (insn->src_reg == BPF_PSEUDO_CALL) || 14754 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 14755 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 14756 verbose(env, "function calls are not allowed while holding a lock\n"); 14757 return -EINVAL; 14758 } 14759 } 14760 if (insn->src_reg == BPF_PSEUDO_CALL) 14761 err = check_func_call(env, insn, &env->insn_idx); 14762 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 14763 err = check_kfunc_call(env, insn, &env->insn_idx); 14764 else 14765 err = check_helper_call(env, insn, &env->insn_idx); 14766 if (err) 14767 return err; 14768 } else if (opcode == BPF_JA) { 14769 if (BPF_SRC(insn->code) != BPF_K || 14770 insn->imm != 0 || 14771 insn->src_reg != BPF_REG_0 || 14772 insn->dst_reg != BPF_REG_0 || 14773 class == BPF_JMP32) { 14774 verbose(env, "BPF_JA uses reserved fields\n"); 14775 return -EINVAL; 14776 } 14777 14778 env->insn_idx += insn->off + 1; 14779 continue; 14780 14781 } else if (opcode == BPF_EXIT) { 14782 if (BPF_SRC(insn->code) != BPF_K || 14783 insn->imm != 0 || 14784 insn->src_reg != BPF_REG_0 || 14785 insn->dst_reg != BPF_REG_0 || 14786 class == BPF_JMP32) { 14787 verbose(env, "BPF_EXIT uses reserved fields\n"); 14788 return -EINVAL; 14789 } 14790 14791 if (env->cur_state->active_lock.ptr && 14792 !in_rbtree_lock_required_cb(env)) { 14793 verbose(env, "bpf_spin_unlock is missing\n"); 14794 return -EINVAL; 14795 } 14796 14797 if (env->cur_state->active_rcu_lock) { 14798 verbose(env, "bpf_rcu_read_unlock is missing\n"); 14799 return -EINVAL; 14800 } 14801 14802 /* We must do check_reference_leak here before 14803 * prepare_func_exit to handle the case when 14804 * state->curframe > 0, it may be a callback 14805 * function, for which reference_state must 14806 * match caller reference state when it exits. 14807 */ 14808 err = check_reference_leak(env); 14809 if (err) 14810 return err; 14811 14812 if (state->curframe) { 14813 /* exit from nested function */ 14814 err = prepare_func_exit(env, &env->insn_idx); 14815 if (err) 14816 return err; 14817 do_print_state = true; 14818 continue; 14819 } 14820 14821 err = check_return_code(env); 14822 if (err) 14823 return err; 14824 process_bpf_exit: 14825 mark_verifier_state_scratched(env); 14826 update_branch_counts(env, env->cur_state); 14827 err = pop_stack(env, &prev_insn_idx, 14828 &env->insn_idx, pop_log); 14829 if (err < 0) { 14830 if (err != -ENOENT) 14831 return err; 14832 break; 14833 } else { 14834 do_print_state = true; 14835 continue; 14836 } 14837 } else { 14838 err = check_cond_jmp_op(env, insn, &env->insn_idx); 14839 if (err) 14840 return err; 14841 } 14842 } else if (class == BPF_LD) { 14843 u8 mode = BPF_MODE(insn->code); 14844 14845 if (mode == BPF_ABS || mode == BPF_IND) { 14846 err = check_ld_abs(env, insn); 14847 if (err) 14848 return err; 14849 14850 } else if (mode == BPF_IMM) { 14851 err = check_ld_imm(env, insn); 14852 if (err) 14853 return err; 14854 14855 env->insn_idx++; 14856 sanitize_mark_insn_seen(env); 14857 } else { 14858 verbose(env, "invalid BPF_LD mode\n"); 14859 return -EINVAL; 14860 } 14861 } else { 14862 verbose(env, "unknown insn class %d\n", class); 14863 return -EINVAL; 14864 } 14865 14866 env->insn_idx++; 14867 } 14868 14869 return 0; 14870 } 14871 14872 static int find_btf_percpu_datasec(struct btf *btf) 14873 { 14874 const struct btf_type *t; 14875 const char *tname; 14876 int i, n; 14877 14878 /* 14879 * Both vmlinux and module each have their own ".data..percpu" 14880 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 14881 * types to look at only module's own BTF types. 14882 */ 14883 n = btf_nr_types(btf); 14884 if (btf_is_module(btf)) 14885 i = btf_nr_types(btf_vmlinux); 14886 else 14887 i = 1; 14888 14889 for(; i < n; i++) { 14890 t = btf_type_by_id(btf, i); 14891 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 14892 continue; 14893 14894 tname = btf_name_by_offset(btf, t->name_off); 14895 if (!strcmp(tname, ".data..percpu")) 14896 return i; 14897 } 14898 14899 return -ENOENT; 14900 } 14901 14902 /* replace pseudo btf_id with kernel symbol address */ 14903 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 14904 struct bpf_insn *insn, 14905 struct bpf_insn_aux_data *aux) 14906 { 14907 const struct btf_var_secinfo *vsi; 14908 const struct btf_type *datasec; 14909 struct btf_mod_pair *btf_mod; 14910 const struct btf_type *t; 14911 const char *sym_name; 14912 bool percpu = false; 14913 u32 type, id = insn->imm; 14914 struct btf *btf; 14915 s32 datasec_id; 14916 u64 addr; 14917 int i, btf_fd, err; 14918 14919 btf_fd = insn[1].imm; 14920 if (btf_fd) { 14921 btf = btf_get_by_fd(btf_fd); 14922 if (IS_ERR(btf)) { 14923 verbose(env, "invalid module BTF object FD specified.\n"); 14924 return -EINVAL; 14925 } 14926 } else { 14927 if (!btf_vmlinux) { 14928 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 14929 return -EINVAL; 14930 } 14931 btf = btf_vmlinux; 14932 btf_get(btf); 14933 } 14934 14935 t = btf_type_by_id(btf, id); 14936 if (!t) { 14937 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 14938 err = -ENOENT; 14939 goto err_put; 14940 } 14941 14942 if (!btf_type_is_var(t)) { 14943 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 14944 err = -EINVAL; 14945 goto err_put; 14946 } 14947 14948 sym_name = btf_name_by_offset(btf, t->name_off); 14949 addr = kallsyms_lookup_name(sym_name); 14950 if (!addr) { 14951 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 14952 sym_name); 14953 err = -ENOENT; 14954 goto err_put; 14955 } 14956 14957 datasec_id = find_btf_percpu_datasec(btf); 14958 if (datasec_id > 0) { 14959 datasec = btf_type_by_id(btf, datasec_id); 14960 for_each_vsi(i, datasec, vsi) { 14961 if (vsi->type == id) { 14962 percpu = true; 14963 break; 14964 } 14965 } 14966 } 14967 14968 insn[0].imm = (u32)addr; 14969 insn[1].imm = addr >> 32; 14970 14971 type = t->type; 14972 t = btf_type_skip_modifiers(btf, type, NULL); 14973 if (percpu) { 14974 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 14975 aux->btf_var.btf = btf; 14976 aux->btf_var.btf_id = type; 14977 } else if (!btf_type_is_struct(t)) { 14978 const struct btf_type *ret; 14979 const char *tname; 14980 u32 tsize; 14981 14982 /* resolve the type size of ksym. */ 14983 ret = btf_resolve_size(btf, t, &tsize); 14984 if (IS_ERR(ret)) { 14985 tname = btf_name_by_offset(btf, t->name_off); 14986 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 14987 tname, PTR_ERR(ret)); 14988 err = -EINVAL; 14989 goto err_put; 14990 } 14991 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 14992 aux->btf_var.mem_size = tsize; 14993 } else { 14994 aux->btf_var.reg_type = PTR_TO_BTF_ID; 14995 aux->btf_var.btf = btf; 14996 aux->btf_var.btf_id = type; 14997 } 14998 14999 /* check whether we recorded this BTF (and maybe module) already */ 15000 for (i = 0; i < env->used_btf_cnt; i++) { 15001 if (env->used_btfs[i].btf == btf) { 15002 btf_put(btf); 15003 return 0; 15004 } 15005 } 15006 15007 if (env->used_btf_cnt >= MAX_USED_BTFS) { 15008 err = -E2BIG; 15009 goto err_put; 15010 } 15011 15012 btf_mod = &env->used_btfs[env->used_btf_cnt]; 15013 btf_mod->btf = btf; 15014 btf_mod->module = NULL; 15015 15016 /* if we reference variables from kernel module, bump its refcount */ 15017 if (btf_is_module(btf)) { 15018 btf_mod->module = btf_try_get_module(btf); 15019 if (!btf_mod->module) { 15020 err = -ENXIO; 15021 goto err_put; 15022 } 15023 } 15024 15025 env->used_btf_cnt++; 15026 15027 return 0; 15028 err_put: 15029 btf_put(btf); 15030 return err; 15031 } 15032 15033 static bool is_tracing_prog_type(enum bpf_prog_type type) 15034 { 15035 switch (type) { 15036 case BPF_PROG_TYPE_KPROBE: 15037 case BPF_PROG_TYPE_TRACEPOINT: 15038 case BPF_PROG_TYPE_PERF_EVENT: 15039 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15040 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 15041 return true; 15042 default: 15043 return false; 15044 } 15045 } 15046 15047 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 15048 struct bpf_map *map, 15049 struct bpf_prog *prog) 15050 15051 { 15052 enum bpf_prog_type prog_type = resolve_prog_type(prog); 15053 15054 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 15055 btf_record_has_field(map->record, BPF_RB_ROOT)) { 15056 if (is_tracing_prog_type(prog_type)) { 15057 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 15058 return -EINVAL; 15059 } 15060 } 15061 15062 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 15063 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 15064 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 15065 return -EINVAL; 15066 } 15067 15068 if (is_tracing_prog_type(prog_type)) { 15069 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 15070 return -EINVAL; 15071 } 15072 15073 if (prog->aux->sleepable) { 15074 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 15075 return -EINVAL; 15076 } 15077 } 15078 15079 if (btf_record_has_field(map->record, BPF_TIMER)) { 15080 if (is_tracing_prog_type(prog_type)) { 15081 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 15082 return -EINVAL; 15083 } 15084 } 15085 15086 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 15087 !bpf_offload_prog_map_match(prog, map)) { 15088 verbose(env, "offload device mismatch between prog and map\n"); 15089 return -EINVAL; 15090 } 15091 15092 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 15093 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 15094 return -EINVAL; 15095 } 15096 15097 if (prog->aux->sleepable) 15098 switch (map->map_type) { 15099 case BPF_MAP_TYPE_HASH: 15100 case BPF_MAP_TYPE_LRU_HASH: 15101 case BPF_MAP_TYPE_ARRAY: 15102 case BPF_MAP_TYPE_PERCPU_HASH: 15103 case BPF_MAP_TYPE_PERCPU_ARRAY: 15104 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 15105 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 15106 case BPF_MAP_TYPE_HASH_OF_MAPS: 15107 case BPF_MAP_TYPE_RINGBUF: 15108 case BPF_MAP_TYPE_USER_RINGBUF: 15109 case BPF_MAP_TYPE_INODE_STORAGE: 15110 case BPF_MAP_TYPE_SK_STORAGE: 15111 case BPF_MAP_TYPE_TASK_STORAGE: 15112 case BPF_MAP_TYPE_CGRP_STORAGE: 15113 break; 15114 default: 15115 verbose(env, 15116 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 15117 return -EINVAL; 15118 } 15119 15120 return 0; 15121 } 15122 15123 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 15124 { 15125 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 15126 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 15127 } 15128 15129 /* find and rewrite pseudo imm in ld_imm64 instructions: 15130 * 15131 * 1. if it accesses map FD, replace it with actual map pointer. 15132 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 15133 * 15134 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 15135 */ 15136 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 15137 { 15138 struct bpf_insn *insn = env->prog->insnsi; 15139 int insn_cnt = env->prog->len; 15140 int i, j, err; 15141 15142 err = bpf_prog_calc_tag(env->prog); 15143 if (err) 15144 return err; 15145 15146 for (i = 0; i < insn_cnt; i++, insn++) { 15147 if (BPF_CLASS(insn->code) == BPF_LDX && 15148 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 15149 verbose(env, "BPF_LDX uses reserved fields\n"); 15150 return -EINVAL; 15151 } 15152 15153 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 15154 struct bpf_insn_aux_data *aux; 15155 struct bpf_map *map; 15156 struct fd f; 15157 u64 addr; 15158 u32 fd; 15159 15160 if (i == insn_cnt - 1 || insn[1].code != 0 || 15161 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 15162 insn[1].off != 0) { 15163 verbose(env, "invalid bpf_ld_imm64 insn\n"); 15164 return -EINVAL; 15165 } 15166 15167 if (insn[0].src_reg == 0) 15168 /* valid generic load 64-bit imm */ 15169 goto next_insn; 15170 15171 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 15172 aux = &env->insn_aux_data[i]; 15173 err = check_pseudo_btf_id(env, insn, aux); 15174 if (err) 15175 return err; 15176 goto next_insn; 15177 } 15178 15179 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 15180 aux = &env->insn_aux_data[i]; 15181 aux->ptr_type = PTR_TO_FUNC; 15182 goto next_insn; 15183 } 15184 15185 /* In final convert_pseudo_ld_imm64() step, this is 15186 * converted into regular 64-bit imm load insn. 15187 */ 15188 switch (insn[0].src_reg) { 15189 case BPF_PSEUDO_MAP_VALUE: 15190 case BPF_PSEUDO_MAP_IDX_VALUE: 15191 break; 15192 case BPF_PSEUDO_MAP_FD: 15193 case BPF_PSEUDO_MAP_IDX: 15194 if (insn[1].imm == 0) 15195 break; 15196 fallthrough; 15197 default: 15198 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 15199 return -EINVAL; 15200 } 15201 15202 switch (insn[0].src_reg) { 15203 case BPF_PSEUDO_MAP_IDX_VALUE: 15204 case BPF_PSEUDO_MAP_IDX: 15205 if (bpfptr_is_null(env->fd_array)) { 15206 verbose(env, "fd_idx without fd_array is invalid\n"); 15207 return -EPROTO; 15208 } 15209 if (copy_from_bpfptr_offset(&fd, env->fd_array, 15210 insn[0].imm * sizeof(fd), 15211 sizeof(fd))) 15212 return -EFAULT; 15213 break; 15214 default: 15215 fd = insn[0].imm; 15216 break; 15217 } 15218 15219 f = fdget(fd); 15220 map = __bpf_map_get(f); 15221 if (IS_ERR(map)) { 15222 verbose(env, "fd %d is not pointing to valid bpf_map\n", 15223 insn[0].imm); 15224 return PTR_ERR(map); 15225 } 15226 15227 err = check_map_prog_compatibility(env, map, env->prog); 15228 if (err) { 15229 fdput(f); 15230 return err; 15231 } 15232 15233 aux = &env->insn_aux_data[i]; 15234 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 15235 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 15236 addr = (unsigned long)map; 15237 } else { 15238 u32 off = insn[1].imm; 15239 15240 if (off >= BPF_MAX_VAR_OFF) { 15241 verbose(env, "direct value offset of %u is not allowed\n", off); 15242 fdput(f); 15243 return -EINVAL; 15244 } 15245 15246 if (!map->ops->map_direct_value_addr) { 15247 verbose(env, "no direct value access support for this map type\n"); 15248 fdput(f); 15249 return -EINVAL; 15250 } 15251 15252 err = map->ops->map_direct_value_addr(map, &addr, off); 15253 if (err) { 15254 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 15255 map->value_size, off); 15256 fdput(f); 15257 return err; 15258 } 15259 15260 aux->map_off = off; 15261 addr += off; 15262 } 15263 15264 insn[0].imm = (u32)addr; 15265 insn[1].imm = addr >> 32; 15266 15267 /* check whether we recorded this map already */ 15268 for (j = 0; j < env->used_map_cnt; j++) { 15269 if (env->used_maps[j] == map) { 15270 aux->map_index = j; 15271 fdput(f); 15272 goto next_insn; 15273 } 15274 } 15275 15276 if (env->used_map_cnt >= MAX_USED_MAPS) { 15277 fdput(f); 15278 return -E2BIG; 15279 } 15280 15281 /* hold the map. If the program is rejected by verifier, 15282 * the map will be released by release_maps() or it 15283 * will be used by the valid program until it's unloaded 15284 * and all maps are released in free_used_maps() 15285 */ 15286 bpf_map_inc(map); 15287 15288 aux->map_index = env->used_map_cnt; 15289 env->used_maps[env->used_map_cnt++] = map; 15290 15291 if (bpf_map_is_cgroup_storage(map) && 15292 bpf_cgroup_storage_assign(env->prog->aux, map)) { 15293 verbose(env, "only one cgroup storage of each type is allowed\n"); 15294 fdput(f); 15295 return -EBUSY; 15296 } 15297 15298 fdput(f); 15299 next_insn: 15300 insn++; 15301 i++; 15302 continue; 15303 } 15304 15305 /* Basic sanity check before we invest more work here. */ 15306 if (!bpf_opcode_in_insntable(insn->code)) { 15307 verbose(env, "unknown opcode %02x\n", insn->code); 15308 return -EINVAL; 15309 } 15310 } 15311 15312 /* now all pseudo BPF_LD_IMM64 instructions load valid 15313 * 'struct bpf_map *' into a register instead of user map_fd. 15314 * These pointers will be used later by verifier to validate map access. 15315 */ 15316 return 0; 15317 } 15318 15319 /* drop refcnt of maps used by the rejected program */ 15320 static void release_maps(struct bpf_verifier_env *env) 15321 { 15322 __bpf_free_used_maps(env->prog->aux, env->used_maps, 15323 env->used_map_cnt); 15324 } 15325 15326 /* drop refcnt of maps used by the rejected program */ 15327 static void release_btfs(struct bpf_verifier_env *env) 15328 { 15329 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 15330 env->used_btf_cnt); 15331 } 15332 15333 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 15334 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 15335 { 15336 struct bpf_insn *insn = env->prog->insnsi; 15337 int insn_cnt = env->prog->len; 15338 int i; 15339 15340 for (i = 0; i < insn_cnt; i++, insn++) { 15341 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 15342 continue; 15343 if (insn->src_reg == BPF_PSEUDO_FUNC) 15344 continue; 15345 insn->src_reg = 0; 15346 } 15347 } 15348 15349 /* single env->prog->insni[off] instruction was replaced with the range 15350 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 15351 * [0, off) and [off, end) to new locations, so the patched range stays zero 15352 */ 15353 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 15354 struct bpf_insn_aux_data *new_data, 15355 struct bpf_prog *new_prog, u32 off, u32 cnt) 15356 { 15357 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 15358 struct bpf_insn *insn = new_prog->insnsi; 15359 u32 old_seen = old_data[off].seen; 15360 u32 prog_len; 15361 int i; 15362 15363 /* aux info at OFF always needs adjustment, no matter fast path 15364 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 15365 * original insn at old prog. 15366 */ 15367 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 15368 15369 if (cnt == 1) 15370 return; 15371 prog_len = new_prog->len; 15372 15373 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 15374 memcpy(new_data + off + cnt - 1, old_data + off, 15375 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 15376 for (i = off; i < off + cnt - 1; i++) { 15377 /* Expand insni[off]'s seen count to the patched range. */ 15378 new_data[i].seen = old_seen; 15379 new_data[i].zext_dst = insn_has_def32(env, insn + i); 15380 } 15381 env->insn_aux_data = new_data; 15382 vfree(old_data); 15383 } 15384 15385 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 15386 { 15387 int i; 15388 15389 if (len == 1) 15390 return; 15391 /* NOTE: fake 'exit' subprog should be updated as well. */ 15392 for (i = 0; i <= env->subprog_cnt; i++) { 15393 if (env->subprog_info[i].start <= off) 15394 continue; 15395 env->subprog_info[i].start += len - 1; 15396 } 15397 } 15398 15399 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 15400 { 15401 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 15402 int i, sz = prog->aux->size_poke_tab; 15403 struct bpf_jit_poke_descriptor *desc; 15404 15405 for (i = 0; i < sz; i++) { 15406 desc = &tab[i]; 15407 if (desc->insn_idx <= off) 15408 continue; 15409 desc->insn_idx += len - 1; 15410 } 15411 } 15412 15413 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 15414 const struct bpf_insn *patch, u32 len) 15415 { 15416 struct bpf_prog *new_prog; 15417 struct bpf_insn_aux_data *new_data = NULL; 15418 15419 if (len > 1) { 15420 new_data = vzalloc(array_size(env->prog->len + len - 1, 15421 sizeof(struct bpf_insn_aux_data))); 15422 if (!new_data) 15423 return NULL; 15424 } 15425 15426 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 15427 if (IS_ERR(new_prog)) { 15428 if (PTR_ERR(new_prog) == -ERANGE) 15429 verbose(env, 15430 "insn %d cannot be patched due to 16-bit range\n", 15431 env->insn_aux_data[off].orig_idx); 15432 vfree(new_data); 15433 return NULL; 15434 } 15435 adjust_insn_aux_data(env, new_data, new_prog, off, len); 15436 adjust_subprog_starts(env, off, len); 15437 adjust_poke_descs(new_prog, off, len); 15438 return new_prog; 15439 } 15440 15441 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 15442 u32 off, u32 cnt) 15443 { 15444 int i, j; 15445 15446 /* find first prog starting at or after off (first to remove) */ 15447 for (i = 0; i < env->subprog_cnt; i++) 15448 if (env->subprog_info[i].start >= off) 15449 break; 15450 /* find first prog starting at or after off + cnt (first to stay) */ 15451 for (j = i; j < env->subprog_cnt; j++) 15452 if (env->subprog_info[j].start >= off + cnt) 15453 break; 15454 /* if j doesn't start exactly at off + cnt, we are just removing 15455 * the front of previous prog 15456 */ 15457 if (env->subprog_info[j].start != off + cnt) 15458 j--; 15459 15460 if (j > i) { 15461 struct bpf_prog_aux *aux = env->prog->aux; 15462 int move; 15463 15464 /* move fake 'exit' subprog as well */ 15465 move = env->subprog_cnt + 1 - j; 15466 15467 memmove(env->subprog_info + i, 15468 env->subprog_info + j, 15469 sizeof(*env->subprog_info) * move); 15470 env->subprog_cnt -= j - i; 15471 15472 /* remove func_info */ 15473 if (aux->func_info) { 15474 move = aux->func_info_cnt - j; 15475 15476 memmove(aux->func_info + i, 15477 aux->func_info + j, 15478 sizeof(*aux->func_info) * move); 15479 aux->func_info_cnt -= j - i; 15480 /* func_info->insn_off is set after all code rewrites, 15481 * in adjust_btf_func() - no need to adjust 15482 */ 15483 } 15484 } else { 15485 /* convert i from "first prog to remove" to "first to adjust" */ 15486 if (env->subprog_info[i].start == off) 15487 i++; 15488 } 15489 15490 /* update fake 'exit' subprog as well */ 15491 for (; i <= env->subprog_cnt; i++) 15492 env->subprog_info[i].start -= cnt; 15493 15494 return 0; 15495 } 15496 15497 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 15498 u32 cnt) 15499 { 15500 struct bpf_prog *prog = env->prog; 15501 u32 i, l_off, l_cnt, nr_linfo; 15502 struct bpf_line_info *linfo; 15503 15504 nr_linfo = prog->aux->nr_linfo; 15505 if (!nr_linfo) 15506 return 0; 15507 15508 linfo = prog->aux->linfo; 15509 15510 /* find first line info to remove, count lines to be removed */ 15511 for (i = 0; i < nr_linfo; i++) 15512 if (linfo[i].insn_off >= off) 15513 break; 15514 15515 l_off = i; 15516 l_cnt = 0; 15517 for (; i < nr_linfo; i++) 15518 if (linfo[i].insn_off < off + cnt) 15519 l_cnt++; 15520 else 15521 break; 15522 15523 /* First live insn doesn't match first live linfo, it needs to "inherit" 15524 * last removed linfo. prog is already modified, so prog->len == off 15525 * means no live instructions after (tail of the program was removed). 15526 */ 15527 if (prog->len != off && l_cnt && 15528 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 15529 l_cnt--; 15530 linfo[--i].insn_off = off + cnt; 15531 } 15532 15533 /* remove the line info which refer to the removed instructions */ 15534 if (l_cnt) { 15535 memmove(linfo + l_off, linfo + i, 15536 sizeof(*linfo) * (nr_linfo - i)); 15537 15538 prog->aux->nr_linfo -= l_cnt; 15539 nr_linfo = prog->aux->nr_linfo; 15540 } 15541 15542 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 15543 for (i = l_off; i < nr_linfo; i++) 15544 linfo[i].insn_off -= cnt; 15545 15546 /* fix up all subprogs (incl. 'exit') which start >= off */ 15547 for (i = 0; i <= env->subprog_cnt; i++) 15548 if (env->subprog_info[i].linfo_idx > l_off) { 15549 /* program may have started in the removed region but 15550 * may not be fully removed 15551 */ 15552 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 15553 env->subprog_info[i].linfo_idx -= l_cnt; 15554 else 15555 env->subprog_info[i].linfo_idx = l_off; 15556 } 15557 15558 return 0; 15559 } 15560 15561 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 15562 { 15563 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15564 unsigned int orig_prog_len = env->prog->len; 15565 int err; 15566 15567 if (bpf_prog_is_offloaded(env->prog->aux)) 15568 bpf_prog_offload_remove_insns(env, off, cnt); 15569 15570 err = bpf_remove_insns(env->prog, off, cnt); 15571 if (err) 15572 return err; 15573 15574 err = adjust_subprog_starts_after_remove(env, off, cnt); 15575 if (err) 15576 return err; 15577 15578 err = bpf_adj_linfo_after_remove(env, off, cnt); 15579 if (err) 15580 return err; 15581 15582 memmove(aux_data + off, aux_data + off + cnt, 15583 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 15584 15585 return 0; 15586 } 15587 15588 /* The verifier does more data flow analysis than llvm and will not 15589 * explore branches that are dead at run time. Malicious programs can 15590 * have dead code too. Therefore replace all dead at-run-time code 15591 * with 'ja -1'. 15592 * 15593 * Just nops are not optimal, e.g. if they would sit at the end of the 15594 * program and through another bug we would manage to jump there, then 15595 * we'd execute beyond program memory otherwise. Returning exception 15596 * code also wouldn't work since we can have subprogs where the dead 15597 * code could be located. 15598 */ 15599 static void sanitize_dead_code(struct bpf_verifier_env *env) 15600 { 15601 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15602 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 15603 struct bpf_insn *insn = env->prog->insnsi; 15604 const int insn_cnt = env->prog->len; 15605 int i; 15606 15607 for (i = 0; i < insn_cnt; i++) { 15608 if (aux_data[i].seen) 15609 continue; 15610 memcpy(insn + i, &trap, sizeof(trap)); 15611 aux_data[i].zext_dst = false; 15612 } 15613 } 15614 15615 static bool insn_is_cond_jump(u8 code) 15616 { 15617 u8 op; 15618 15619 if (BPF_CLASS(code) == BPF_JMP32) 15620 return true; 15621 15622 if (BPF_CLASS(code) != BPF_JMP) 15623 return false; 15624 15625 op = BPF_OP(code); 15626 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 15627 } 15628 15629 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 15630 { 15631 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15632 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 15633 struct bpf_insn *insn = env->prog->insnsi; 15634 const int insn_cnt = env->prog->len; 15635 int i; 15636 15637 for (i = 0; i < insn_cnt; i++, insn++) { 15638 if (!insn_is_cond_jump(insn->code)) 15639 continue; 15640 15641 if (!aux_data[i + 1].seen) 15642 ja.off = insn->off; 15643 else if (!aux_data[i + 1 + insn->off].seen) 15644 ja.off = 0; 15645 else 15646 continue; 15647 15648 if (bpf_prog_is_offloaded(env->prog->aux)) 15649 bpf_prog_offload_replace_insn(env, i, &ja); 15650 15651 memcpy(insn, &ja, sizeof(ja)); 15652 } 15653 } 15654 15655 static int opt_remove_dead_code(struct bpf_verifier_env *env) 15656 { 15657 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 15658 int insn_cnt = env->prog->len; 15659 int i, err; 15660 15661 for (i = 0; i < insn_cnt; i++) { 15662 int j; 15663 15664 j = 0; 15665 while (i + j < insn_cnt && !aux_data[i + j].seen) 15666 j++; 15667 if (!j) 15668 continue; 15669 15670 err = verifier_remove_insns(env, i, j); 15671 if (err) 15672 return err; 15673 insn_cnt = env->prog->len; 15674 } 15675 15676 return 0; 15677 } 15678 15679 static int opt_remove_nops(struct bpf_verifier_env *env) 15680 { 15681 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 15682 struct bpf_insn *insn = env->prog->insnsi; 15683 int insn_cnt = env->prog->len; 15684 int i, err; 15685 15686 for (i = 0; i < insn_cnt; i++) { 15687 if (memcmp(&insn[i], &ja, sizeof(ja))) 15688 continue; 15689 15690 err = verifier_remove_insns(env, i, 1); 15691 if (err) 15692 return err; 15693 insn_cnt--; 15694 i--; 15695 } 15696 15697 return 0; 15698 } 15699 15700 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 15701 const union bpf_attr *attr) 15702 { 15703 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 15704 struct bpf_insn_aux_data *aux = env->insn_aux_data; 15705 int i, patch_len, delta = 0, len = env->prog->len; 15706 struct bpf_insn *insns = env->prog->insnsi; 15707 struct bpf_prog *new_prog; 15708 bool rnd_hi32; 15709 15710 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 15711 zext_patch[1] = BPF_ZEXT_REG(0); 15712 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 15713 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 15714 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 15715 for (i = 0; i < len; i++) { 15716 int adj_idx = i + delta; 15717 struct bpf_insn insn; 15718 int load_reg; 15719 15720 insn = insns[adj_idx]; 15721 load_reg = insn_def_regno(&insn); 15722 if (!aux[adj_idx].zext_dst) { 15723 u8 code, class; 15724 u32 imm_rnd; 15725 15726 if (!rnd_hi32) 15727 continue; 15728 15729 code = insn.code; 15730 class = BPF_CLASS(code); 15731 if (load_reg == -1) 15732 continue; 15733 15734 /* NOTE: arg "reg" (the fourth one) is only used for 15735 * BPF_STX + SRC_OP, so it is safe to pass NULL 15736 * here. 15737 */ 15738 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 15739 if (class == BPF_LD && 15740 BPF_MODE(code) == BPF_IMM) 15741 i++; 15742 continue; 15743 } 15744 15745 /* ctx load could be transformed into wider load. */ 15746 if (class == BPF_LDX && 15747 aux[adj_idx].ptr_type == PTR_TO_CTX) 15748 continue; 15749 15750 imm_rnd = get_random_u32(); 15751 rnd_hi32_patch[0] = insn; 15752 rnd_hi32_patch[1].imm = imm_rnd; 15753 rnd_hi32_patch[3].dst_reg = load_reg; 15754 patch = rnd_hi32_patch; 15755 patch_len = 4; 15756 goto apply_patch_buffer; 15757 } 15758 15759 /* Add in an zero-extend instruction if a) the JIT has requested 15760 * it or b) it's a CMPXCHG. 15761 * 15762 * The latter is because: BPF_CMPXCHG always loads a value into 15763 * R0, therefore always zero-extends. However some archs' 15764 * equivalent instruction only does this load when the 15765 * comparison is successful. This detail of CMPXCHG is 15766 * orthogonal to the general zero-extension behaviour of the 15767 * CPU, so it's treated independently of bpf_jit_needs_zext. 15768 */ 15769 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 15770 continue; 15771 15772 /* Zero-extension is done by the caller. */ 15773 if (bpf_pseudo_kfunc_call(&insn)) 15774 continue; 15775 15776 if (WARN_ON(load_reg == -1)) { 15777 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 15778 return -EFAULT; 15779 } 15780 15781 zext_patch[0] = insn; 15782 zext_patch[1].dst_reg = load_reg; 15783 zext_patch[1].src_reg = load_reg; 15784 patch = zext_patch; 15785 patch_len = 2; 15786 apply_patch_buffer: 15787 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 15788 if (!new_prog) 15789 return -ENOMEM; 15790 env->prog = new_prog; 15791 insns = new_prog->insnsi; 15792 aux = env->insn_aux_data; 15793 delta += patch_len - 1; 15794 } 15795 15796 return 0; 15797 } 15798 15799 /* convert load instructions that access fields of a context type into a 15800 * sequence of instructions that access fields of the underlying structure: 15801 * struct __sk_buff -> struct sk_buff 15802 * struct bpf_sock_ops -> struct sock 15803 */ 15804 static int convert_ctx_accesses(struct bpf_verifier_env *env) 15805 { 15806 const struct bpf_verifier_ops *ops = env->ops; 15807 int i, cnt, size, ctx_field_size, delta = 0; 15808 const int insn_cnt = env->prog->len; 15809 struct bpf_insn insn_buf[16], *insn; 15810 u32 target_size, size_default, off; 15811 struct bpf_prog *new_prog; 15812 enum bpf_access_type type; 15813 bool is_narrower_load; 15814 15815 if (ops->gen_prologue || env->seen_direct_write) { 15816 if (!ops->gen_prologue) { 15817 verbose(env, "bpf verifier is misconfigured\n"); 15818 return -EINVAL; 15819 } 15820 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 15821 env->prog); 15822 if (cnt >= ARRAY_SIZE(insn_buf)) { 15823 verbose(env, "bpf verifier is misconfigured\n"); 15824 return -EINVAL; 15825 } else if (cnt) { 15826 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 15827 if (!new_prog) 15828 return -ENOMEM; 15829 15830 env->prog = new_prog; 15831 delta += cnt - 1; 15832 } 15833 } 15834 15835 if (bpf_prog_is_offloaded(env->prog->aux)) 15836 return 0; 15837 15838 insn = env->prog->insnsi + delta; 15839 15840 for (i = 0; i < insn_cnt; i++, insn++) { 15841 bpf_convert_ctx_access_t convert_ctx_access; 15842 bool ctx_access; 15843 15844 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 15845 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 15846 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 15847 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 15848 type = BPF_READ; 15849 ctx_access = true; 15850 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 15851 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 15852 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 15853 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 15854 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 15855 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 15856 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 15857 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 15858 type = BPF_WRITE; 15859 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 15860 } else { 15861 continue; 15862 } 15863 15864 if (type == BPF_WRITE && 15865 env->insn_aux_data[i + delta].sanitize_stack_spill) { 15866 struct bpf_insn patch[] = { 15867 *insn, 15868 BPF_ST_NOSPEC(), 15869 }; 15870 15871 cnt = ARRAY_SIZE(patch); 15872 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 15873 if (!new_prog) 15874 return -ENOMEM; 15875 15876 delta += cnt - 1; 15877 env->prog = new_prog; 15878 insn = new_prog->insnsi + i + delta; 15879 continue; 15880 } 15881 15882 if (!ctx_access) 15883 continue; 15884 15885 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 15886 case PTR_TO_CTX: 15887 if (!ops->convert_ctx_access) 15888 continue; 15889 convert_ctx_access = ops->convert_ctx_access; 15890 break; 15891 case PTR_TO_SOCKET: 15892 case PTR_TO_SOCK_COMMON: 15893 convert_ctx_access = bpf_sock_convert_ctx_access; 15894 break; 15895 case PTR_TO_TCP_SOCK: 15896 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 15897 break; 15898 case PTR_TO_XDP_SOCK: 15899 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 15900 break; 15901 case PTR_TO_BTF_ID: 15902 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 15903 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 15904 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 15905 * be said once it is marked PTR_UNTRUSTED, hence we must handle 15906 * any faults for loads into such types. BPF_WRITE is disallowed 15907 * for this case. 15908 */ 15909 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 15910 if (type == BPF_READ) { 15911 insn->code = BPF_LDX | BPF_PROBE_MEM | 15912 BPF_SIZE((insn)->code); 15913 env->prog->aux->num_exentries++; 15914 } 15915 continue; 15916 default: 15917 continue; 15918 } 15919 15920 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 15921 size = BPF_LDST_BYTES(insn); 15922 15923 /* If the read access is a narrower load of the field, 15924 * convert to a 4/8-byte load, to minimum program type specific 15925 * convert_ctx_access changes. If conversion is successful, 15926 * we will apply proper mask to the result. 15927 */ 15928 is_narrower_load = size < ctx_field_size; 15929 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 15930 off = insn->off; 15931 if (is_narrower_load) { 15932 u8 size_code; 15933 15934 if (type == BPF_WRITE) { 15935 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 15936 return -EINVAL; 15937 } 15938 15939 size_code = BPF_H; 15940 if (ctx_field_size == 4) 15941 size_code = BPF_W; 15942 else if (ctx_field_size == 8) 15943 size_code = BPF_DW; 15944 15945 insn->off = off & ~(size_default - 1); 15946 insn->code = BPF_LDX | BPF_MEM | size_code; 15947 } 15948 15949 target_size = 0; 15950 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 15951 &target_size); 15952 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 15953 (ctx_field_size && !target_size)) { 15954 verbose(env, "bpf verifier is misconfigured\n"); 15955 return -EINVAL; 15956 } 15957 15958 if (is_narrower_load && size < target_size) { 15959 u8 shift = bpf_ctx_narrow_access_offset( 15960 off, size, size_default) * 8; 15961 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 15962 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 15963 return -EINVAL; 15964 } 15965 if (ctx_field_size <= 4) { 15966 if (shift) 15967 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 15968 insn->dst_reg, 15969 shift); 15970 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 15971 (1 << size * 8) - 1); 15972 } else { 15973 if (shift) 15974 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 15975 insn->dst_reg, 15976 shift); 15977 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 15978 (1ULL << size * 8) - 1); 15979 } 15980 } 15981 15982 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 15983 if (!new_prog) 15984 return -ENOMEM; 15985 15986 delta += cnt - 1; 15987 15988 /* keep walking new program and skip insns we just inserted */ 15989 env->prog = new_prog; 15990 insn = new_prog->insnsi + i + delta; 15991 } 15992 15993 return 0; 15994 } 15995 15996 static int jit_subprogs(struct bpf_verifier_env *env) 15997 { 15998 struct bpf_prog *prog = env->prog, **func, *tmp; 15999 int i, j, subprog_start, subprog_end = 0, len, subprog; 16000 struct bpf_map *map_ptr; 16001 struct bpf_insn *insn; 16002 void *old_bpf_func; 16003 int err, num_exentries; 16004 16005 if (env->subprog_cnt <= 1) 16006 return 0; 16007 16008 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 16009 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 16010 continue; 16011 16012 /* Upon error here we cannot fall back to interpreter but 16013 * need a hard reject of the program. Thus -EFAULT is 16014 * propagated in any case. 16015 */ 16016 subprog = find_subprog(env, i + insn->imm + 1); 16017 if (subprog < 0) { 16018 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 16019 i + insn->imm + 1); 16020 return -EFAULT; 16021 } 16022 /* temporarily remember subprog id inside insn instead of 16023 * aux_data, since next loop will split up all insns into funcs 16024 */ 16025 insn->off = subprog; 16026 /* remember original imm in case JIT fails and fallback 16027 * to interpreter will be needed 16028 */ 16029 env->insn_aux_data[i].call_imm = insn->imm; 16030 /* point imm to __bpf_call_base+1 from JITs point of view */ 16031 insn->imm = 1; 16032 if (bpf_pseudo_func(insn)) 16033 /* jit (e.g. x86_64) may emit fewer instructions 16034 * if it learns a u32 imm is the same as a u64 imm. 16035 * Force a non zero here. 16036 */ 16037 insn[1].imm = 1; 16038 } 16039 16040 err = bpf_prog_alloc_jited_linfo(prog); 16041 if (err) 16042 goto out_undo_insn; 16043 16044 err = -ENOMEM; 16045 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 16046 if (!func) 16047 goto out_undo_insn; 16048 16049 for (i = 0; i < env->subprog_cnt; i++) { 16050 subprog_start = subprog_end; 16051 subprog_end = env->subprog_info[i + 1].start; 16052 16053 len = subprog_end - subprog_start; 16054 /* bpf_prog_run() doesn't call subprogs directly, 16055 * hence main prog stats include the runtime of subprogs. 16056 * subprogs don't have IDs and not reachable via prog_get_next_id 16057 * func[i]->stats will never be accessed and stays NULL 16058 */ 16059 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 16060 if (!func[i]) 16061 goto out_free; 16062 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 16063 len * sizeof(struct bpf_insn)); 16064 func[i]->type = prog->type; 16065 func[i]->len = len; 16066 if (bpf_prog_calc_tag(func[i])) 16067 goto out_free; 16068 func[i]->is_func = 1; 16069 func[i]->aux->func_idx = i; 16070 /* Below members will be freed only at prog->aux */ 16071 func[i]->aux->btf = prog->aux->btf; 16072 func[i]->aux->func_info = prog->aux->func_info; 16073 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 16074 func[i]->aux->poke_tab = prog->aux->poke_tab; 16075 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 16076 16077 for (j = 0; j < prog->aux->size_poke_tab; j++) { 16078 struct bpf_jit_poke_descriptor *poke; 16079 16080 poke = &prog->aux->poke_tab[j]; 16081 if (poke->insn_idx < subprog_end && 16082 poke->insn_idx >= subprog_start) 16083 poke->aux = func[i]->aux; 16084 } 16085 16086 func[i]->aux->name[0] = 'F'; 16087 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 16088 func[i]->jit_requested = 1; 16089 func[i]->blinding_requested = prog->blinding_requested; 16090 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 16091 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 16092 func[i]->aux->linfo = prog->aux->linfo; 16093 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 16094 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 16095 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 16096 num_exentries = 0; 16097 insn = func[i]->insnsi; 16098 for (j = 0; j < func[i]->len; j++, insn++) { 16099 if (BPF_CLASS(insn->code) == BPF_LDX && 16100 BPF_MODE(insn->code) == BPF_PROBE_MEM) 16101 num_exentries++; 16102 } 16103 func[i]->aux->num_exentries = num_exentries; 16104 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 16105 func[i] = bpf_int_jit_compile(func[i]); 16106 if (!func[i]->jited) { 16107 err = -ENOTSUPP; 16108 goto out_free; 16109 } 16110 cond_resched(); 16111 } 16112 16113 /* at this point all bpf functions were successfully JITed 16114 * now populate all bpf_calls with correct addresses and 16115 * run last pass of JIT 16116 */ 16117 for (i = 0; i < env->subprog_cnt; i++) { 16118 insn = func[i]->insnsi; 16119 for (j = 0; j < func[i]->len; j++, insn++) { 16120 if (bpf_pseudo_func(insn)) { 16121 subprog = insn->off; 16122 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 16123 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 16124 continue; 16125 } 16126 if (!bpf_pseudo_call(insn)) 16127 continue; 16128 subprog = insn->off; 16129 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 16130 } 16131 16132 /* we use the aux data to keep a list of the start addresses 16133 * of the JITed images for each function in the program 16134 * 16135 * for some architectures, such as powerpc64, the imm field 16136 * might not be large enough to hold the offset of the start 16137 * address of the callee's JITed image from __bpf_call_base 16138 * 16139 * in such cases, we can lookup the start address of a callee 16140 * by using its subprog id, available from the off field of 16141 * the call instruction, as an index for this list 16142 */ 16143 func[i]->aux->func = func; 16144 func[i]->aux->func_cnt = env->subprog_cnt; 16145 } 16146 for (i = 0; i < env->subprog_cnt; i++) { 16147 old_bpf_func = func[i]->bpf_func; 16148 tmp = bpf_int_jit_compile(func[i]); 16149 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 16150 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 16151 err = -ENOTSUPP; 16152 goto out_free; 16153 } 16154 cond_resched(); 16155 } 16156 16157 /* finally lock prog and jit images for all functions and 16158 * populate kallsysm 16159 */ 16160 for (i = 0; i < env->subprog_cnt; i++) { 16161 bpf_prog_lock_ro(func[i]); 16162 bpf_prog_kallsyms_add(func[i]); 16163 } 16164 16165 /* Last step: make now unused interpreter insns from main 16166 * prog consistent for later dump requests, so they can 16167 * later look the same as if they were interpreted only. 16168 */ 16169 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 16170 if (bpf_pseudo_func(insn)) { 16171 insn[0].imm = env->insn_aux_data[i].call_imm; 16172 insn[1].imm = insn->off; 16173 insn->off = 0; 16174 continue; 16175 } 16176 if (!bpf_pseudo_call(insn)) 16177 continue; 16178 insn->off = env->insn_aux_data[i].call_imm; 16179 subprog = find_subprog(env, i + insn->off + 1); 16180 insn->imm = subprog; 16181 } 16182 16183 prog->jited = 1; 16184 prog->bpf_func = func[0]->bpf_func; 16185 prog->jited_len = func[0]->jited_len; 16186 prog->aux->func = func; 16187 prog->aux->func_cnt = env->subprog_cnt; 16188 bpf_prog_jit_attempt_done(prog); 16189 return 0; 16190 out_free: 16191 /* We failed JIT'ing, so at this point we need to unregister poke 16192 * descriptors from subprogs, so that kernel is not attempting to 16193 * patch it anymore as we're freeing the subprog JIT memory. 16194 */ 16195 for (i = 0; i < prog->aux->size_poke_tab; i++) { 16196 map_ptr = prog->aux->poke_tab[i].tail_call.map; 16197 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 16198 } 16199 /* At this point we're guaranteed that poke descriptors are not 16200 * live anymore. We can just unlink its descriptor table as it's 16201 * released with the main prog. 16202 */ 16203 for (i = 0; i < env->subprog_cnt; i++) { 16204 if (!func[i]) 16205 continue; 16206 func[i]->aux->poke_tab = NULL; 16207 bpf_jit_free(func[i]); 16208 } 16209 kfree(func); 16210 out_undo_insn: 16211 /* cleanup main prog to be interpreted */ 16212 prog->jit_requested = 0; 16213 prog->blinding_requested = 0; 16214 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 16215 if (!bpf_pseudo_call(insn)) 16216 continue; 16217 insn->off = 0; 16218 insn->imm = env->insn_aux_data[i].call_imm; 16219 } 16220 bpf_prog_jit_attempt_done(prog); 16221 return err; 16222 } 16223 16224 static int fixup_call_args(struct bpf_verifier_env *env) 16225 { 16226 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 16227 struct bpf_prog *prog = env->prog; 16228 struct bpf_insn *insn = prog->insnsi; 16229 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 16230 int i, depth; 16231 #endif 16232 int err = 0; 16233 16234 if (env->prog->jit_requested && 16235 !bpf_prog_is_offloaded(env->prog->aux)) { 16236 err = jit_subprogs(env); 16237 if (err == 0) 16238 return 0; 16239 if (err == -EFAULT) 16240 return err; 16241 } 16242 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 16243 if (has_kfunc_call) { 16244 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 16245 return -EINVAL; 16246 } 16247 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 16248 /* When JIT fails the progs with bpf2bpf calls and tail_calls 16249 * have to be rejected, since interpreter doesn't support them yet. 16250 */ 16251 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 16252 return -EINVAL; 16253 } 16254 for (i = 0; i < prog->len; i++, insn++) { 16255 if (bpf_pseudo_func(insn)) { 16256 /* When JIT fails the progs with callback calls 16257 * have to be rejected, since interpreter doesn't support them yet. 16258 */ 16259 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 16260 return -EINVAL; 16261 } 16262 16263 if (!bpf_pseudo_call(insn)) 16264 continue; 16265 depth = get_callee_stack_depth(env, insn, i); 16266 if (depth < 0) 16267 return depth; 16268 bpf_patch_call_args(insn, depth); 16269 } 16270 err = 0; 16271 #endif 16272 return err; 16273 } 16274 16275 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 16276 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 16277 { 16278 const struct bpf_kfunc_desc *desc; 16279 void *xdp_kfunc; 16280 16281 if (!insn->imm) { 16282 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 16283 return -EINVAL; 16284 } 16285 16286 *cnt = 0; 16287 16288 if (bpf_dev_bound_kfunc_id(insn->imm)) { 16289 xdp_kfunc = bpf_dev_bound_resolve_kfunc(env->prog, insn->imm); 16290 if (xdp_kfunc) { 16291 insn->imm = BPF_CALL_IMM(xdp_kfunc); 16292 return 0; 16293 } 16294 16295 /* fallback to default kfunc when not supported by netdev */ 16296 } 16297 16298 /* insn->imm has the btf func_id. Replace it with 16299 * an address (relative to __bpf_call_base). 16300 */ 16301 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 16302 if (!desc) { 16303 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 16304 insn->imm); 16305 return -EFAULT; 16306 } 16307 16308 insn->imm = desc->imm; 16309 if (insn->off) 16310 return 0; 16311 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 16312 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 16313 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 16314 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 16315 16316 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 16317 insn_buf[1] = addr[0]; 16318 insn_buf[2] = addr[1]; 16319 insn_buf[3] = *insn; 16320 *cnt = 4; 16321 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 16322 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 16323 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 16324 16325 insn_buf[0] = addr[0]; 16326 insn_buf[1] = addr[1]; 16327 insn_buf[2] = *insn; 16328 *cnt = 3; 16329 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 16330 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 16331 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 16332 *cnt = 1; 16333 } 16334 return 0; 16335 } 16336 16337 /* Do various post-verification rewrites in a single program pass. 16338 * These rewrites simplify JIT and interpreter implementations. 16339 */ 16340 static int do_misc_fixups(struct bpf_verifier_env *env) 16341 { 16342 struct bpf_prog *prog = env->prog; 16343 enum bpf_attach_type eatype = prog->expected_attach_type; 16344 enum bpf_prog_type prog_type = resolve_prog_type(prog); 16345 struct bpf_insn *insn = prog->insnsi; 16346 const struct bpf_func_proto *fn; 16347 const int insn_cnt = prog->len; 16348 const struct bpf_map_ops *ops; 16349 struct bpf_insn_aux_data *aux; 16350 struct bpf_insn insn_buf[16]; 16351 struct bpf_prog *new_prog; 16352 struct bpf_map *map_ptr; 16353 int i, ret, cnt, delta = 0; 16354 16355 for (i = 0; i < insn_cnt; i++, insn++) { 16356 /* Make divide-by-zero exceptions impossible. */ 16357 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 16358 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 16359 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 16360 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 16361 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 16362 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 16363 struct bpf_insn *patchlet; 16364 struct bpf_insn chk_and_div[] = { 16365 /* [R,W]x div 0 -> 0 */ 16366 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 16367 BPF_JNE | BPF_K, insn->src_reg, 16368 0, 2, 0), 16369 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 16370 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 16371 *insn, 16372 }; 16373 struct bpf_insn chk_and_mod[] = { 16374 /* [R,W]x mod 0 -> [R,W]x */ 16375 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 16376 BPF_JEQ | BPF_K, insn->src_reg, 16377 0, 1 + (is64 ? 0 : 1), 0), 16378 *insn, 16379 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 16380 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 16381 }; 16382 16383 patchlet = isdiv ? chk_and_div : chk_and_mod; 16384 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 16385 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 16386 16387 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 16388 if (!new_prog) 16389 return -ENOMEM; 16390 16391 delta += cnt - 1; 16392 env->prog = prog = new_prog; 16393 insn = new_prog->insnsi + i + delta; 16394 continue; 16395 } 16396 16397 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 16398 if (BPF_CLASS(insn->code) == BPF_LD && 16399 (BPF_MODE(insn->code) == BPF_ABS || 16400 BPF_MODE(insn->code) == BPF_IND)) { 16401 cnt = env->ops->gen_ld_abs(insn, insn_buf); 16402 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 16403 verbose(env, "bpf verifier is misconfigured\n"); 16404 return -EINVAL; 16405 } 16406 16407 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16408 if (!new_prog) 16409 return -ENOMEM; 16410 16411 delta += cnt - 1; 16412 env->prog = prog = new_prog; 16413 insn = new_prog->insnsi + i + delta; 16414 continue; 16415 } 16416 16417 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 16418 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 16419 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 16420 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 16421 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 16422 struct bpf_insn *patch = &insn_buf[0]; 16423 bool issrc, isneg, isimm; 16424 u32 off_reg; 16425 16426 aux = &env->insn_aux_data[i + delta]; 16427 if (!aux->alu_state || 16428 aux->alu_state == BPF_ALU_NON_POINTER) 16429 continue; 16430 16431 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 16432 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 16433 BPF_ALU_SANITIZE_SRC; 16434 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 16435 16436 off_reg = issrc ? insn->src_reg : insn->dst_reg; 16437 if (isimm) { 16438 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 16439 } else { 16440 if (isneg) 16441 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 16442 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 16443 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 16444 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 16445 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 16446 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 16447 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 16448 } 16449 if (!issrc) 16450 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 16451 insn->src_reg = BPF_REG_AX; 16452 if (isneg) 16453 insn->code = insn->code == code_add ? 16454 code_sub : code_add; 16455 *patch++ = *insn; 16456 if (issrc && isneg && !isimm) 16457 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 16458 cnt = patch - insn_buf; 16459 16460 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16461 if (!new_prog) 16462 return -ENOMEM; 16463 16464 delta += cnt - 1; 16465 env->prog = prog = new_prog; 16466 insn = new_prog->insnsi + i + delta; 16467 continue; 16468 } 16469 16470 if (insn->code != (BPF_JMP | BPF_CALL)) 16471 continue; 16472 if (insn->src_reg == BPF_PSEUDO_CALL) 16473 continue; 16474 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 16475 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 16476 if (ret) 16477 return ret; 16478 if (cnt == 0) 16479 continue; 16480 16481 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16482 if (!new_prog) 16483 return -ENOMEM; 16484 16485 delta += cnt - 1; 16486 env->prog = prog = new_prog; 16487 insn = new_prog->insnsi + i + delta; 16488 continue; 16489 } 16490 16491 if (insn->imm == BPF_FUNC_get_route_realm) 16492 prog->dst_needed = 1; 16493 if (insn->imm == BPF_FUNC_get_prandom_u32) 16494 bpf_user_rnd_init_once(); 16495 if (insn->imm == BPF_FUNC_override_return) 16496 prog->kprobe_override = 1; 16497 if (insn->imm == BPF_FUNC_tail_call) { 16498 /* If we tail call into other programs, we 16499 * cannot make any assumptions since they can 16500 * be replaced dynamically during runtime in 16501 * the program array. 16502 */ 16503 prog->cb_access = 1; 16504 if (!allow_tail_call_in_subprogs(env)) 16505 prog->aux->stack_depth = MAX_BPF_STACK; 16506 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 16507 16508 /* mark bpf_tail_call as different opcode to avoid 16509 * conditional branch in the interpreter for every normal 16510 * call and to prevent accidental JITing by JIT compiler 16511 * that doesn't support bpf_tail_call yet 16512 */ 16513 insn->imm = 0; 16514 insn->code = BPF_JMP | BPF_TAIL_CALL; 16515 16516 aux = &env->insn_aux_data[i + delta]; 16517 if (env->bpf_capable && !prog->blinding_requested && 16518 prog->jit_requested && 16519 !bpf_map_key_poisoned(aux) && 16520 !bpf_map_ptr_poisoned(aux) && 16521 !bpf_map_ptr_unpriv(aux)) { 16522 struct bpf_jit_poke_descriptor desc = { 16523 .reason = BPF_POKE_REASON_TAIL_CALL, 16524 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 16525 .tail_call.key = bpf_map_key_immediate(aux), 16526 .insn_idx = i + delta, 16527 }; 16528 16529 ret = bpf_jit_add_poke_descriptor(prog, &desc); 16530 if (ret < 0) { 16531 verbose(env, "adding tail call poke descriptor failed\n"); 16532 return ret; 16533 } 16534 16535 insn->imm = ret + 1; 16536 continue; 16537 } 16538 16539 if (!bpf_map_ptr_unpriv(aux)) 16540 continue; 16541 16542 /* instead of changing every JIT dealing with tail_call 16543 * emit two extra insns: 16544 * if (index >= max_entries) goto out; 16545 * index &= array->index_mask; 16546 * to avoid out-of-bounds cpu speculation 16547 */ 16548 if (bpf_map_ptr_poisoned(aux)) { 16549 verbose(env, "tail_call abusing map_ptr\n"); 16550 return -EINVAL; 16551 } 16552 16553 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 16554 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 16555 map_ptr->max_entries, 2); 16556 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 16557 container_of(map_ptr, 16558 struct bpf_array, 16559 map)->index_mask); 16560 insn_buf[2] = *insn; 16561 cnt = 3; 16562 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16563 if (!new_prog) 16564 return -ENOMEM; 16565 16566 delta += cnt - 1; 16567 env->prog = prog = new_prog; 16568 insn = new_prog->insnsi + i + delta; 16569 continue; 16570 } 16571 16572 if (insn->imm == BPF_FUNC_timer_set_callback) { 16573 /* The verifier will process callback_fn as many times as necessary 16574 * with different maps and the register states prepared by 16575 * set_timer_callback_state will be accurate. 16576 * 16577 * The following use case is valid: 16578 * map1 is shared by prog1, prog2, prog3. 16579 * prog1 calls bpf_timer_init for some map1 elements 16580 * prog2 calls bpf_timer_set_callback for some map1 elements. 16581 * Those that were not bpf_timer_init-ed will return -EINVAL. 16582 * prog3 calls bpf_timer_start for some map1 elements. 16583 * Those that were not both bpf_timer_init-ed and 16584 * bpf_timer_set_callback-ed will return -EINVAL. 16585 */ 16586 struct bpf_insn ld_addrs[2] = { 16587 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 16588 }; 16589 16590 insn_buf[0] = ld_addrs[0]; 16591 insn_buf[1] = ld_addrs[1]; 16592 insn_buf[2] = *insn; 16593 cnt = 3; 16594 16595 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16596 if (!new_prog) 16597 return -ENOMEM; 16598 16599 delta += cnt - 1; 16600 env->prog = prog = new_prog; 16601 insn = new_prog->insnsi + i + delta; 16602 goto patch_call_imm; 16603 } 16604 16605 if (is_storage_get_function(insn->imm)) { 16606 if (!env->prog->aux->sleepable || 16607 env->insn_aux_data[i + delta].storage_get_func_atomic) 16608 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 16609 else 16610 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 16611 insn_buf[1] = *insn; 16612 cnt = 2; 16613 16614 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16615 if (!new_prog) 16616 return -ENOMEM; 16617 16618 delta += cnt - 1; 16619 env->prog = prog = new_prog; 16620 insn = new_prog->insnsi + i + delta; 16621 goto patch_call_imm; 16622 } 16623 16624 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 16625 * and other inlining handlers are currently limited to 64 bit 16626 * only. 16627 */ 16628 if (prog->jit_requested && BITS_PER_LONG == 64 && 16629 (insn->imm == BPF_FUNC_map_lookup_elem || 16630 insn->imm == BPF_FUNC_map_update_elem || 16631 insn->imm == BPF_FUNC_map_delete_elem || 16632 insn->imm == BPF_FUNC_map_push_elem || 16633 insn->imm == BPF_FUNC_map_pop_elem || 16634 insn->imm == BPF_FUNC_map_peek_elem || 16635 insn->imm == BPF_FUNC_redirect_map || 16636 insn->imm == BPF_FUNC_for_each_map_elem || 16637 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 16638 aux = &env->insn_aux_data[i + delta]; 16639 if (bpf_map_ptr_poisoned(aux)) 16640 goto patch_call_imm; 16641 16642 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 16643 ops = map_ptr->ops; 16644 if (insn->imm == BPF_FUNC_map_lookup_elem && 16645 ops->map_gen_lookup) { 16646 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 16647 if (cnt == -EOPNOTSUPP) 16648 goto patch_map_ops_generic; 16649 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 16650 verbose(env, "bpf verifier is misconfigured\n"); 16651 return -EINVAL; 16652 } 16653 16654 new_prog = bpf_patch_insn_data(env, i + delta, 16655 insn_buf, cnt); 16656 if (!new_prog) 16657 return -ENOMEM; 16658 16659 delta += cnt - 1; 16660 env->prog = prog = new_prog; 16661 insn = new_prog->insnsi + i + delta; 16662 continue; 16663 } 16664 16665 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 16666 (void *(*)(struct bpf_map *map, void *key))NULL)); 16667 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 16668 (int (*)(struct bpf_map *map, void *key))NULL)); 16669 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 16670 (int (*)(struct bpf_map *map, void *key, void *value, 16671 u64 flags))NULL)); 16672 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 16673 (int (*)(struct bpf_map *map, void *value, 16674 u64 flags))NULL)); 16675 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 16676 (int (*)(struct bpf_map *map, void *value))NULL)); 16677 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 16678 (int (*)(struct bpf_map *map, void *value))NULL)); 16679 BUILD_BUG_ON(!__same_type(ops->map_redirect, 16680 (int (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 16681 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 16682 (int (*)(struct bpf_map *map, 16683 bpf_callback_t callback_fn, 16684 void *callback_ctx, 16685 u64 flags))NULL)); 16686 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 16687 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 16688 16689 patch_map_ops_generic: 16690 switch (insn->imm) { 16691 case BPF_FUNC_map_lookup_elem: 16692 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 16693 continue; 16694 case BPF_FUNC_map_update_elem: 16695 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 16696 continue; 16697 case BPF_FUNC_map_delete_elem: 16698 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 16699 continue; 16700 case BPF_FUNC_map_push_elem: 16701 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 16702 continue; 16703 case BPF_FUNC_map_pop_elem: 16704 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 16705 continue; 16706 case BPF_FUNC_map_peek_elem: 16707 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 16708 continue; 16709 case BPF_FUNC_redirect_map: 16710 insn->imm = BPF_CALL_IMM(ops->map_redirect); 16711 continue; 16712 case BPF_FUNC_for_each_map_elem: 16713 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 16714 continue; 16715 case BPF_FUNC_map_lookup_percpu_elem: 16716 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 16717 continue; 16718 } 16719 16720 goto patch_call_imm; 16721 } 16722 16723 /* Implement bpf_jiffies64 inline. */ 16724 if (prog->jit_requested && BITS_PER_LONG == 64 && 16725 insn->imm == BPF_FUNC_jiffies64) { 16726 struct bpf_insn ld_jiffies_addr[2] = { 16727 BPF_LD_IMM64(BPF_REG_0, 16728 (unsigned long)&jiffies), 16729 }; 16730 16731 insn_buf[0] = ld_jiffies_addr[0]; 16732 insn_buf[1] = ld_jiffies_addr[1]; 16733 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 16734 BPF_REG_0, 0); 16735 cnt = 3; 16736 16737 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 16738 cnt); 16739 if (!new_prog) 16740 return -ENOMEM; 16741 16742 delta += cnt - 1; 16743 env->prog = prog = new_prog; 16744 insn = new_prog->insnsi + i + delta; 16745 continue; 16746 } 16747 16748 /* Implement bpf_get_func_arg inline. */ 16749 if (prog_type == BPF_PROG_TYPE_TRACING && 16750 insn->imm == BPF_FUNC_get_func_arg) { 16751 /* Load nr_args from ctx - 8 */ 16752 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 16753 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 16754 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 16755 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 16756 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 16757 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 16758 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 16759 insn_buf[7] = BPF_JMP_A(1); 16760 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 16761 cnt = 9; 16762 16763 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16764 if (!new_prog) 16765 return -ENOMEM; 16766 16767 delta += cnt - 1; 16768 env->prog = prog = new_prog; 16769 insn = new_prog->insnsi + i + delta; 16770 continue; 16771 } 16772 16773 /* Implement bpf_get_func_ret inline. */ 16774 if (prog_type == BPF_PROG_TYPE_TRACING && 16775 insn->imm == BPF_FUNC_get_func_ret) { 16776 if (eatype == BPF_TRACE_FEXIT || 16777 eatype == BPF_MODIFY_RETURN) { 16778 /* Load nr_args from ctx - 8 */ 16779 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 16780 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 16781 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 16782 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 16783 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 16784 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 16785 cnt = 6; 16786 } else { 16787 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 16788 cnt = 1; 16789 } 16790 16791 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 16792 if (!new_prog) 16793 return -ENOMEM; 16794 16795 delta += cnt - 1; 16796 env->prog = prog = new_prog; 16797 insn = new_prog->insnsi + i + delta; 16798 continue; 16799 } 16800 16801 /* Implement get_func_arg_cnt inline. */ 16802 if (prog_type == BPF_PROG_TYPE_TRACING && 16803 insn->imm == BPF_FUNC_get_func_arg_cnt) { 16804 /* Load nr_args from ctx - 8 */ 16805 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 16806 16807 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16808 if (!new_prog) 16809 return -ENOMEM; 16810 16811 env->prog = prog = new_prog; 16812 insn = new_prog->insnsi + i + delta; 16813 continue; 16814 } 16815 16816 /* Implement bpf_get_func_ip inline. */ 16817 if (prog_type == BPF_PROG_TYPE_TRACING && 16818 insn->imm == BPF_FUNC_get_func_ip) { 16819 /* Load IP address from ctx - 16 */ 16820 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 16821 16822 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 16823 if (!new_prog) 16824 return -ENOMEM; 16825 16826 env->prog = prog = new_prog; 16827 insn = new_prog->insnsi + i + delta; 16828 continue; 16829 } 16830 16831 patch_call_imm: 16832 fn = env->ops->get_func_proto(insn->imm, env->prog); 16833 /* all functions that have prototype and verifier allowed 16834 * programs to call them, must be real in-kernel functions 16835 */ 16836 if (!fn->func) { 16837 verbose(env, 16838 "kernel subsystem misconfigured func %s#%d\n", 16839 func_id_name(insn->imm), insn->imm); 16840 return -EFAULT; 16841 } 16842 insn->imm = fn->func - __bpf_call_base; 16843 } 16844 16845 /* Since poke tab is now finalized, publish aux to tracker. */ 16846 for (i = 0; i < prog->aux->size_poke_tab; i++) { 16847 map_ptr = prog->aux->poke_tab[i].tail_call.map; 16848 if (!map_ptr->ops->map_poke_track || 16849 !map_ptr->ops->map_poke_untrack || 16850 !map_ptr->ops->map_poke_run) { 16851 verbose(env, "bpf verifier is misconfigured\n"); 16852 return -EINVAL; 16853 } 16854 16855 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 16856 if (ret < 0) { 16857 verbose(env, "tracking tail call prog failed\n"); 16858 return ret; 16859 } 16860 } 16861 16862 sort_kfunc_descs_by_imm(env->prog); 16863 16864 return 0; 16865 } 16866 16867 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 16868 int position, 16869 s32 stack_base, 16870 u32 callback_subprogno, 16871 u32 *cnt) 16872 { 16873 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 16874 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 16875 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 16876 int reg_loop_max = BPF_REG_6; 16877 int reg_loop_cnt = BPF_REG_7; 16878 int reg_loop_ctx = BPF_REG_8; 16879 16880 struct bpf_prog *new_prog; 16881 u32 callback_start; 16882 u32 call_insn_offset; 16883 s32 callback_offset; 16884 16885 /* This represents an inlined version of bpf_iter.c:bpf_loop, 16886 * be careful to modify this code in sync. 16887 */ 16888 struct bpf_insn insn_buf[] = { 16889 /* Return error and jump to the end of the patch if 16890 * expected number of iterations is too big. 16891 */ 16892 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 16893 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 16894 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 16895 /* spill R6, R7, R8 to use these as loop vars */ 16896 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 16897 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 16898 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 16899 /* initialize loop vars */ 16900 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 16901 BPF_MOV32_IMM(reg_loop_cnt, 0), 16902 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 16903 /* loop header, 16904 * if reg_loop_cnt >= reg_loop_max skip the loop body 16905 */ 16906 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 16907 /* callback call, 16908 * correct callback offset would be set after patching 16909 */ 16910 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 16911 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 16912 BPF_CALL_REL(0), 16913 /* increment loop counter */ 16914 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 16915 /* jump to loop header if callback returned 0 */ 16916 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 16917 /* return value of bpf_loop, 16918 * set R0 to the number of iterations 16919 */ 16920 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 16921 /* restore original values of R6, R7, R8 */ 16922 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 16923 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 16924 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 16925 }; 16926 16927 *cnt = ARRAY_SIZE(insn_buf); 16928 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 16929 if (!new_prog) 16930 return new_prog; 16931 16932 /* callback start is known only after patching */ 16933 callback_start = env->subprog_info[callback_subprogno].start; 16934 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 16935 call_insn_offset = position + 12; 16936 callback_offset = callback_start - call_insn_offset - 1; 16937 new_prog->insnsi[call_insn_offset].imm = callback_offset; 16938 16939 return new_prog; 16940 } 16941 16942 static bool is_bpf_loop_call(struct bpf_insn *insn) 16943 { 16944 return insn->code == (BPF_JMP | BPF_CALL) && 16945 insn->src_reg == 0 && 16946 insn->imm == BPF_FUNC_loop; 16947 } 16948 16949 /* For all sub-programs in the program (including main) check 16950 * insn_aux_data to see if there are bpf_loop calls that require 16951 * inlining. If such calls are found the calls are replaced with a 16952 * sequence of instructions produced by `inline_bpf_loop` function and 16953 * subprog stack_depth is increased by the size of 3 registers. 16954 * This stack space is used to spill values of the R6, R7, R8. These 16955 * registers are used to store the loop bound, counter and context 16956 * variables. 16957 */ 16958 static int optimize_bpf_loop(struct bpf_verifier_env *env) 16959 { 16960 struct bpf_subprog_info *subprogs = env->subprog_info; 16961 int i, cur_subprog = 0, cnt, delta = 0; 16962 struct bpf_insn *insn = env->prog->insnsi; 16963 int insn_cnt = env->prog->len; 16964 u16 stack_depth = subprogs[cur_subprog].stack_depth; 16965 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16966 u16 stack_depth_extra = 0; 16967 16968 for (i = 0; i < insn_cnt; i++, insn++) { 16969 struct bpf_loop_inline_state *inline_state = 16970 &env->insn_aux_data[i + delta].loop_inline_state; 16971 16972 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 16973 struct bpf_prog *new_prog; 16974 16975 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 16976 new_prog = inline_bpf_loop(env, 16977 i + delta, 16978 -(stack_depth + stack_depth_extra), 16979 inline_state->callback_subprogno, 16980 &cnt); 16981 if (!new_prog) 16982 return -ENOMEM; 16983 16984 delta += cnt - 1; 16985 env->prog = new_prog; 16986 insn = new_prog->insnsi + i + delta; 16987 } 16988 16989 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 16990 subprogs[cur_subprog].stack_depth += stack_depth_extra; 16991 cur_subprog++; 16992 stack_depth = subprogs[cur_subprog].stack_depth; 16993 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 16994 stack_depth_extra = 0; 16995 } 16996 } 16997 16998 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 16999 17000 return 0; 17001 } 17002 17003 static void free_states(struct bpf_verifier_env *env) 17004 { 17005 struct bpf_verifier_state_list *sl, *sln; 17006 int i; 17007 17008 sl = env->free_list; 17009 while (sl) { 17010 sln = sl->next; 17011 free_verifier_state(&sl->state, false); 17012 kfree(sl); 17013 sl = sln; 17014 } 17015 env->free_list = NULL; 17016 17017 if (!env->explored_states) 17018 return; 17019 17020 for (i = 0; i < state_htab_size(env); i++) { 17021 sl = env->explored_states[i]; 17022 17023 while (sl) { 17024 sln = sl->next; 17025 free_verifier_state(&sl->state, false); 17026 kfree(sl); 17027 sl = sln; 17028 } 17029 env->explored_states[i] = NULL; 17030 } 17031 } 17032 17033 static int do_check_common(struct bpf_verifier_env *env, int subprog) 17034 { 17035 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 17036 struct bpf_verifier_state *state; 17037 struct bpf_reg_state *regs; 17038 int ret, i; 17039 17040 env->prev_linfo = NULL; 17041 env->pass_cnt++; 17042 17043 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 17044 if (!state) 17045 return -ENOMEM; 17046 state->curframe = 0; 17047 state->speculative = false; 17048 state->branches = 1; 17049 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 17050 if (!state->frame[0]) { 17051 kfree(state); 17052 return -ENOMEM; 17053 } 17054 env->cur_state = state; 17055 init_func_state(env, state->frame[0], 17056 BPF_MAIN_FUNC /* callsite */, 17057 0 /* frameno */, 17058 subprog); 17059 state->first_insn_idx = env->subprog_info[subprog].start; 17060 state->last_insn_idx = -1; 17061 17062 regs = state->frame[state->curframe]->regs; 17063 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 17064 ret = btf_prepare_func_args(env, subprog, regs); 17065 if (ret) 17066 goto out; 17067 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 17068 if (regs[i].type == PTR_TO_CTX) 17069 mark_reg_known_zero(env, regs, i); 17070 else if (regs[i].type == SCALAR_VALUE) 17071 mark_reg_unknown(env, regs, i); 17072 else if (base_type(regs[i].type) == PTR_TO_MEM) { 17073 const u32 mem_size = regs[i].mem_size; 17074 17075 mark_reg_known_zero(env, regs, i); 17076 regs[i].mem_size = mem_size; 17077 regs[i].id = ++env->id_gen; 17078 } 17079 } 17080 } else { 17081 /* 1st arg to a function */ 17082 regs[BPF_REG_1].type = PTR_TO_CTX; 17083 mark_reg_known_zero(env, regs, BPF_REG_1); 17084 ret = btf_check_subprog_arg_match(env, subprog, regs); 17085 if (ret == -EFAULT) 17086 /* unlikely verifier bug. abort. 17087 * ret == 0 and ret < 0 are sadly acceptable for 17088 * main() function due to backward compatibility. 17089 * Like socket filter program may be written as: 17090 * int bpf_prog(struct pt_regs *ctx) 17091 * and never dereference that ctx in the program. 17092 * 'struct pt_regs' is a type mismatch for socket 17093 * filter that should be using 'struct __sk_buff'. 17094 */ 17095 goto out; 17096 } 17097 17098 ret = do_check(env); 17099 out: 17100 /* check for NULL is necessary, since cur_state can be freed inside 17101 * do_check() under memory pressure. 17102 */ 17103 if (env->cur_state) { 17104 free_verifier_state(env->cur_state, true); 17105 env->cur_state = NULL; 17106 } 17107 while (!pop_stack(env, NULL, NULL, false)); 17108 if (!ret && pop_log) 17109 bpf_vlog_reset(&env->log, 0); 17110 free_states(env); 17111 return ret; 17112 } 17113 17114 /* Verify all global functions in a BPF program one by one based on their BTF. 17115 * All global functions must pass verification. Otherwise the whole program is rejected. 17116 * Consider: 17117 * int bar(int); 17118 * int foo(int f) 17119 * { 17120 * return bar(f); 17121 * } 17122 * int bar(int b) 17123 * { 17124 * ... 17125 * } 17126 * foo() will be verified first for R1=any_scalar_value. During verification it 17127 * will be assumed that bar() already verified successfully and call to bar() 17128 * from foo() will be checked for type match only. Later bar() will be verified 17129 * independently to check that it's safe for R1=any_scalar_value. 17130 */ 17131 static int do_check_subprogs(struct bpf_verifier_env *env) 17132 { 17133 struct bpf_prog_aux *aux = env->prog->aux; 17134 int i, ret; 17135 17136 if (!aux->func_info) 17137 return 0; 17138 17139 for (i = 1; i < env->subprog_cnt; i++) { 17140 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 17141 continue; 17142 env->insn_idx = env->subprog_info[i].start; 17143 WARN_ON_ONCE(env->insn_idx == 0); 17144 ret = do_check_common(env, i); 17145 if (ret) { 17146 return ret; 17147 } else if (env->log.level & BPF_LOG_LEVEL) { 17148 verbose(env, 17149 "Func#%d is safe for any args that match its prototype\n", 17150 i); 17151 } 17152 } 17153 return 0; 17154 } 17155 17156 static int do_check_main(struct bpf_verifier_env *env) 17157 { 17158 int ret; 17159 17160 env->insn_idx = 0; 17161 ret = do_check_common(env, 0); 17162 if (!ret) 17163 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 17164 return ret; 17165 } 17166 17167 17168 static void print_verification_stats(struct bpf_verifier_env *env) 17169 { 17170 int i; 17171 17172 if (env->log.level & BPF_LOG_STATS) { 17173 verbose(env, "verification time %lld usec\n", 17174 div_u64(env->verification_time, 1000)); 17175 verbose(env, "stack depth "); 17176 for (i = 0; i < env->subprog_cnt; i++) { 17177 u32 depth = env->subprog_info[i].stack_depth; 17178 17179 verbose(env, "%d", depth); 17180 if (i + 1 < env->subprog_cnt) 17181 verbose(env, "+"); 17182 } 17183 verbose(env, "\n"); 17184 } 17185 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 17186 "total_states %d peak_states %d mark_read %d\n", 17187 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 17188 env->max_states_per_insn, env->total_states, 17189 env->peak_states, env->longest_mark_read_walk); 17190 } 17191 17192 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 17193 { 17194 const struct btf_type *t, *func_proto; 17195 const struct bpf_struct_ops *st_ops; 17196 const struct btf_member *member; 17197 struct bpf_prog *prog = env->prog; 17198 u32 btf_id, member_idx; 17199 const char *mname; 17200 17201 if (!prog->gpl_compatible) { 17202 verbose(env, "struct ops programs must have a GPL compatible license\n"); 17203 return -EINVAL; 17204 } 17205 17206 btf_id = prog->aux->attach_btf_id; 17207 st_ops = bpf_struct_ops_find(btf_id); 17208 if (!st_ops) { 17209 verbose(env, "attach_btf_id %u is not a supported struct\n", 17210 btf_id); 17211 return -ENOTSUPP; 17212 } 17213 17214 t = st_ops->type; 17215 member_idx = prog->expected_attach_type; 17216 if (member_idx >= btf_type_vlen(t)) { 17217 verbose(env, "attach to invalid member idx %u of struct %s\n", 17218 member_idx, st_ops->name); 17219 return -EINVAL; 17220 } 17221 17222 member = &btf_type_member(t)[member_idx]; 17223 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 17224 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 17225 NULL); 17226 if (!func_proto) { 17227 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 17228 mname, member_idx, st_ops->name); 17229 return -EINVAL; 17230 } 17231 17232 if (st_ops->check_member) { 17233 int err = st_ops->check_member(t, member, prog); 17234 17235 if (err) { 17236 verbose(env, "attach to unsupported member %s of struct %s\n", 17237 mname, st_ops->name); 17238 return err; 17239 } 17240 } 17241 17242 prog->aux->attach_func_proto = func_proto; 17243 prog->aux->attach_func_name = mname; 17244 env->ops = st_ops->verifier_ops; 17245 17246 return 0; 17247 } 17248 #define SECURITY_PREFIX "security_" 17249 17250 static int check_attach_modify_return(unsigned long addr, const char *func_name) 17251 { 17252 if (within_error_injection_list(addr) || 17253 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 17254 return 0; 17255 17256 return -EINVAL; 17257 } 17258 17259 /* list of non-sleepable functions that are otherwise on 17260 * ALLOW_ERROR_INJECTION list 17261 */ 17262 BTF_SET_START(btf_non_sleepable_error_inject) 17263 /* Three functions below can be called from sleepable and non-sleepable context. 17264 * Assume non-sleepable from bpf safety point of view. 17265 */ 17266 BTF_ID(func, __filemap_add_folio) 17267 BTF_ID(func, should_fail_alloc_page) 17268 BTF_ID(func, should_failslab) 17269 BTF_SET_END(btf_non_sleepable_error_inject) 17270 17271 static int check_non_sleepable_error_inject(u32 btf_id) 17272 { 17273 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 17274 } 17275 17276 int bpf_check_attach_target(struct bpf_verifier_log *log, 17277 const struct bpf_prog *prog, 17278 const struct bpf_prog *tgt_prog, 17279 u32 btf_id, 17280 struct bpf_attach_target_info *tgt_info) 17281 { 17282 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 17283 const char prefix[] = "btf_trace_"; 17284 int ret = 0, subprog = -1, i; 17285 const struct btf_type *t; 17286 bool conservative = true; 17287 const char *tname; 17288 struct btf *btf; 17289 long addr = 0; 17290 17291 if (!btf_id) { 17292 bpf_log(log, "Tracing programs must provide btf_id\n"); 17293 return -EINVAL; 17294 } 17295 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 17296 if (!btf) { 17297 bpf_log(log, 17298 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 17299 return -EINVAL; 17300 } 17301 t = btf_type_by_id(btf, btf_id); 17302 if (!t) { 17303 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 17304 return -EINVAL; 17305 } 17306 tname = btf_name_by_offset(btf, t->name_off); 17307 if (!tname) { 17308 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 17309 return -EINVAL; 17310 } 17311 if (tgt_prog) { 17312 struct bpf_prog_aux *aux = tgt_prog->aux; 17313 17314 if (bpf_prog_is_dev_bound(prog->aux) && 17315 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 17316 bpf_log(log, "Target program bound device mismatch"); 17317 return -EINVAL; 17318 } 17319 17320 for (i = 0; i < aux->func_info_cnt; i++) 17321 if (aux->func_info[i].type_id == btf_id) { 17322 subprog = i; 17323 break; 17324 } 17325 if (subprog == -1) { 17326 bpf_log(log, "Subprog %s doesn't exist\n", tname); 17327 return -EINVAL; 17328 } 17329 conservative = aux->func_info_aux[subprog].unreliable; 17330 if (prog_extension) { 17331 if (conservative) { 17332 bpf_log(log, 17333 "Cannot replace static functions\n"); 17334 return -EINVAL; 17335 } 17336 if (!prog->jit_requested) { 17337 bpf_log(log, 17338 "Extension programs should be JITed\n"); 17339 return -EINVAL; 17340 } 17341 } 17342 if (!tgt_prog->jited) { 17343 bpf_log(log, "Can attach to only JITed progs\n"); 17344 return -EINVAL; 17345 } 17346 if (tgt_prog->type == prog->type) { 17347 /* Cannot fentry/fexit another fentry/fexit program. 17348 * Cannot attach program extension to another extension. 17349 * It's ok to attach fentry/fexit to extension program. 17350 */ 17351 bpf_log(log, "Cannot recursively attach\n"); 17352 return -EINVAL; 17353 } 17354 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 17355 prog_extension && 17356 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 17357 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 17358 /* Program extensions can extend all program types 17359 * except fentry/fexit. The reason is the following. 17360 * The fentry/fexit programs are used for performance 17361 * analysis, stats and can be attached to any program 17362 * type except themselves. When extension program is 17363 * replacing XDP function it is necessary to allow 17364 * performance analysis of all functions. Both original 17365 * XDP program and its program extension. Hence 17366 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 17367 * allowed. If extending of fentry/fexit was allowed it 17368 * would be possible to create long call chain 17369 * fentry->extension->fentry->extension beyond 17370 * reasonable stack size. Hence extending fentry is not 17371 * allowed. 17372 */ 17373 bpf_log(log, "Cannot extend fentry/fexit\n"); 17374 return -EINVAL; 17375 } 17376 } else { 17377 if (prog_extension) { 17378 bpf_log(log, "Cannot replace kernel functions\n"); 17379 return -EINVAL; 17380 } 17381 } 17382 17383 switch (prog->expected_attach_type) { 17384 case BPF_TRACE_RAW_TP: 17385 if (tgt_prog) { 17386 bpf_log(log, 17387 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 17388 return -EINVAL; 17389 } 17390 if (!btf_type_is_typedef(t)) { 17391 bpf_log(log, "attach_btf_id %u is not a typedef\n", 17392 btf_id); 17393 return -EINVAL; 17394 } 17395 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 17396 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 17397 btf_id, tname); 17398 return -EINVAL; 17399 } 17400 tname += sizeof(prefix) - 1; 17401 t = btf_type_by_id(btf, t->type); 17402 if (!btf_type_is_ptr(t)) 17403 /* should never happen in valid vmlinux build */ 17404 return -EINVAL; 17405 t = btf_type_by_id(btf, t->type); 17406 if (!btf_type_is_func_proto(t)) 17407 /* should never happen in valid vmlinux build */ 17408 return -EINVAL; 17409 17410 break; 17411 case BPF_TRACE_ITER: 17412 if (!btf_type_is_func(t)) { 17413 bpf_log(log, "attach_btf_id %u is not a function\n", 17414 btf_id); 17415 return -EINVAL; 17416 } 17417 t = btf_type_by_id(btf, t->type); 17418 if (!btf_type_is_func_proto(t)) 17419 return -EINVAL; 17420 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 17421 if (ret) 17422 return ret; 17423 break; 17424 default: 17425 if (!prog_extension) 17426 return -EINVAL; 17427 fallthrough; 17428 case BPF_MODIFY_RETURN: 17429 case BPF_LSM_MAC: 17430 case BPF_LSM_CGROUP: 17431 case BPF_TRACE_FENTRY: 17432 case BPF_TRACE_FEXIT: 17433 if (!btf_type_is_func(t)) { 17434 bpf_log(log, "attach_btf_id %u is not a function\n", 17435 btf_id); 17436 return -EINVAL; 17437 } 17438 if (prog_extension && 17439 btf_check_type_match(log, prog, btf, t)) 17440 return -EINVAL; 17441 t = btf_type_by_id(btf, t->type); 17442 if (!btf_type_is_func_proto(t)) 17443 return -EINVAL; 17444 17445 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 17446 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 17447 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 17448 return -EINVAL; 17449 17450 if (tgt_prog && conservative) 17451 t = NULL; 17452 17453 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 17454 if (ret < 0) 17455 return ret; 17456 17457 if (tgt_prog) { 17458 if (subprog == 0) 17459 addr = (long) tgt_prog->bpf_func; 17460 else 17461 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 17462 } else { 17463 addr = kallsyms_lookup_name(tname); 17464 if (!addr) { 17465 bpf_log(log, 17466 "The address of function %s cannot be found\n", 17467 tname); 17468 return -ENOENT; 17469 } 17470 } 17471 17472 if (prog->aux->sleepable) { 17473 ret = -EINVAL; 17474 switch (prog->type) { 17475 case BPF_PROG_TYPE_TRACING: 17476 17477 /* fentry/fexit/fmod_ret progs can be sleepable if they are 17478 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 17479 */ 17480 if (!check_non_sleepable_error_inject(btf_id) && 17481 within_error_injection_list(addr)) 17482 ret = 0; 17483 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 17484 * in the fmodret id set with the KF_SLEEPABLE flag. 17485 */ 17486 else { 17487 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id); 17488 17489 if (flags && (*flags & KF_SLEEPABLE)) 17490 ret = 0; 17491 } 17492 break; 17493 case BPF_PROG_TYPE_LSM: 17494 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 17495 * Only some of them are sleepable. 17496 */ 17497 if (bpf_lsm_is_sleepable_hook(btf_id)) 17498 ret = 0; 17499 break; 17500 default: 17501 break; 17502 } 17503 if (ret) { 17504 bpf_log(log, "%s is not sleepable\n", tname); 17505 return ret; 17506 } 17507 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 17508 if (tgt_prog) { 17509 bpf_log(log, "can't modify return codes of BPF programs\n"); 17510 return -EINVAL; 17511 } 17512 ret = -EINVAL; 17513 if (btf_kfunc_is_modify_return(btf, btf_id) || 17514 !check_attach_modify_return(addr, tname)) 17515 ret = 0; 17516 if (ret) { 17517 bpf_log(log, "%s() is not modifiable\n", tname); 17518 return ret; 17519 } 17520 } 17521 17522 break; 17523 } 17524 tgt_info->tgt_addr = addr; 17525 tgt_info->tgt_name = tname; 17526 tgt_info->tgt_type = t; 17527 return 0; 17528 } 17529 17530 BTF_SET_START(btf_id_deny) 17531 BTF_ID_UNUSED 17532 #ifdef CONFIG_SMP 17533 BTF_ID(func, migrate_disable) 17534 BTF_ID(func, migrate_enable) 17535 #endif 17536 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 17537 BTF_ID(func, rcu_read_unlock_strict) 17538 #endif 17539 BTF_SET_END(btf_id_deny) 17540 17541 static bool can_be_sleepable(struct bpf_prog *prog) 17542 { 17543 if (prog->type == BPF_PROG_TYPE_TRACING) { 17544 switch (prog->expected_attach_type) { 17545 case BPF_TRACE_FENTRY: 17546 case BPF_TRACE_FEXIT: 17547 case BPF_MODIFY_RETURN: 17548 case BPF_TRACE_ITER: 17549 return true; 17550 default: 17551 return false; 17552 } 17553 } 17554 return prog->type == BPF_PROG_TYPE_LSM || 17555 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 17556 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 17557 } 17558 17559 static int check_attach_btf_id(struct bpf_verifier_env *env) 17560 { 17561 struct bpf_prog *prog = env->prog; 17562 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 17563 struct bpf_attach_target_info tgt_info = {}; 17564 u32 btf_id = prog->aux->attach_btf_id; 17565 struct bpf_trampoline *tr; 17566 int ret; 17567 u64 key; 17568 17569 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 17570 if (prog->aux->sleepable) 17571 /* attach_btf_id checked to be zero already */ 17572 return 0; 17573 verbose(env, "Syscall programs can only be sleepable\n"); 17574 return -EINVAL; 17575 } 17576 17577 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 17578 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 17579 return -EINVAL; 17580 } 17581 17582 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 17583 return check_struct_ops_btf_id(env); 17584 17585 if (prog->type != BPF_PROG_TYPE_TRACING && 17586 prog->type != BPF_PROG_TYPE_LSM && 17587 prog->type != BPF_PROG_TYPE_EXT) 17588 return 0; 17589 17590 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 17591 if (ret) 17592 return ret; 17593 17594 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 17595 /* to make freplace equivalent to their targets, they need to 17596 * inherit env->ops and expected_attach_type for the rest of the 17597 * verification 17598 */ 17599 env->ops = bpf_verifier_ops[tgt_prog->type]; 17600 prog->expected_attach_type = tgt_prog->expected_attach_type; 17601 } 17602 17603 /* store info about the attachment target that will be used later */ 17604 prog->aux->attach_func_proto = tgt_info.tgt_type; 17605 prog->aux->attach_func_name = tgt_info.tgt_name; 17606 17607 if (tgt_prog) { 17608 prog->aux->saved_dst_prog_type = tgt_prog->type; 17609 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 17610 } 17611 17612 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 17613 prog->aux->attach_btf_trace = true; 17614 return 0; 17615 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 17616 if (!bpf_iter_prog_supported(prog)) 17617 return -EINVAL; 17618 return 0; 17619 } 17620 17621 if (prog->type == BPF_PROG_TYPE_LSM) { 17622 ret = bpf_lsm_verify_prog(&env->log, prog); 17623 if (ret < 0) 17624 return ret; 17625 } else if (prog->type == BPF_PROG_TYPE_TRACING && 17626 btf_id_set_contains(&btf_id_deny, btf_id)) { 17627 return -EINVAL; 17628 } 17629 17630 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 17631 tr = bpf_trampoline_get(key, &tgt_info); 17632 if (!tr) 17633 return -ENOMEM; 17634 17635 prog->aux->dst_trampoline = tr; 17636 return 0; 17637 } 17638 17639 struct btf *bpf_get_btf_vmlinux(void) 17640 { 17641 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 17642 mutex_lock(&bpf_verifier_lock); 17643 if (!btf_vmlinux) 17644 btf_vmlinux = btf_parse_vmlinux(); 17645 mutex_unlock(&bpf_verifier_lock); 17646 } 17647 return btf_vmlinux; 17648 } 17649 17650 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 17651 { 17652 u64 start_time = ktime_get_ns(); 17653 struct bpf_verifier_env *env; 17654 struct bpf_verifier_log *log; 17655 int i, len, ret = -EINVAL; 17656 bool is_priv; 17657 17658 /* no program is valid */ 17659 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 17660 return -EINVAL; 17661 17662 /* 'struct bpf_verifier_env' can be global, but since it's not small, 17663 * allocate/free it every time bpf_check() is called 17664 */ 17665 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 17666 if (!env) 17667 return -ENOMEM; 17668 log = &env->log; 17669 17670 len = (*prog)->len; 17671 env->insn_aux_data = 17672 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 17673 ret = -ENOMEM; 17674 if (!env->insn_aux_data) 17675 goto err_free_env; 17676 for (i = 0; i < len; i++) 17677 env->insn_aux_data[i].orig_idx = i; 17678 env->prog = *prog; 17679 env->ops = bpf_verifier_ops[env->prog->type]; 17680 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 17681 is_priv = bpf_capable(); 17682 17683 bpf_get_btf_vmlinux(); 17684 17685 /* grab the mutex to protect few globals used by verifier */ 17686 if (!is_priv) 17687 mutex_lock(&bpf_verifier_lock); 17688 17689 if (attr->log_level || attr->log_buf || attr->log_size) { 17690 /* user requested verbose verifier output 17691 * and supplied buffer to store the verification trace 17692 */ 17693 log->level = attr->log_level; 17694 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 17695 log->len_total = attr->log_size; 17696 17697 /* log attributes have to be sane */ 17698 if (!bpf_verifier_log_attr_valid(log)) { 17699 ret = -EINVAL; 17700 goto err_unlock; 17701 } 17702 } 17703 17704 mark_verifier_state_clean(env); 17705 17706 if (IS_ERR(btf_vmlinux)) { 17707 /* Either gcc or pahole or kernel are broken. */ 17708 verbose(env, "in-kernel BTF is malformed\n"); 17709 ret = PTR_ERR(btf_vmlinux); 17710 goto skip_full_check; 17711 } 17712 17713 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 17714 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 17715 env->strict_alignment = true; 17716 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 17717 env->strict_alignment = false; 17718 17719 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 17720 env->allow_uninit_stack = bpf_allow_uninit_stack(); 17721 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 17722 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 17723 env->bpf_capable = bpf_capable(); 17724 env->rcu_tag_supported = btf_vmlinux && 17725 btf_find_by_name_kind(btf_vmlinux, "rcu", BTF_KIND_TYPE_TAG) > 0; 17726 17727 if (is_priv) 17728 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 17729 17730 env->explored_states = kvcalloc(state_htab_size(env), 17731 sizeof(struct bpf_verifier_state_list *), 17732 GFP_USER); 17733 ret = -ENOMEM; 17734 if (!env->explored_states) 17735 goto skip_full_check; 17736 17737 ret = add_subprog_and_kfunc(env); 17738 if (ret < 0) 17739 goto skip_full_check; 17740 17741 ret = check_subprogs(env); 17742 if (ret < 0) 17743 goto skip_full_check; 17744 17745 ret = check_btf_info(env, attr, uattr); 17746 if (ret < 0) 17747 goto skip_full_check; 17748 17749 ret = check_attach_btf_id(env); 17750 if (ret) 17751 goto skip_full_check; 17752 17753 ret = resolve_pseudo_ldimm64(env); 17754 if (ret < 0) 17755 goto skip_full_check; 17756 17757 if (bpf_prog_is_offloaded(env->prog->aux)) { 17758 ret = bpf_prog_offload_verifier_prep(env->prog); 17759 if (ret) 17760 goto skip_full_check; 17761 } 17762 17763 ret = check_cfg(env); 17764 if (ret < 0) 17765 goto skip_full_check; 17766 17767 ret = do_check_subprogs(env); 17768 ret = ret ?: do_check_main(env); 17769 17770 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 17771 ret = bpf_prog_offload_finalize(env); 17772 17773 skip_full_check: 17774 kvfree(env->explored_states); 17775 17776 if (ret == 0) 17777 ret = check_max_stack_depth(env); 17778 17779 /* instruction rewrites happen after this point */ 17780 if (ret == 0) 17781 ret = optimize_bpf_loop(env); 17782 17783 if (is_priv) { 17784 if (ret == 0) 17785 opt_hard_wire_dead_code_branches(env); 17786 if (ret == 0) 17787 ret = opt_remove_dead_code(env); 17788 if (ret == 0) 17789 ret = opt_remove_nops(env); 17790 } else { 17791 if (ret == 0) 17792 sanitize_dead_code(env); 17793 } 17794 17795 if (ret == 0) 17796 /* program is valid, convert *(u32*)(ctx + off) accesses */ 17797 ret = convert_ctx_accesses(env); 17798 17799 if (ret == 0) 17800 ret = do_misc_fixups(env); 17801 17802 /* do 32-bit optimization after insn patching has done so those patched 17803 * insns could be handled correctly. 17804 */ 17805 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 17806 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 17807 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 17808 : false; 17809 } 17810 17811 if (ret == 0) 17812 ret = fixup_call_args(env); 17813 17814 env->verification_time = ktime_get_ns() - start_time; 17815 print_verification_stats(env); 17816 env->prog->aux->verified_insns = env->insn_processed; 17817 17818 if (log->level && bpf_verifier_log_full(log)) 17819 ret = -ENOSPC; 17820 if (log->level && !log->ubuf) { 17821 ret = -EFAULT; 17822 goto err_release_maps; 17823 } 17824 17825 if (ret) 17826 goto err_release_maps; 17827 17828 if (env->used_map_cnt) { 17829 /* if program passed verifier, update used_maps in bpf_prog_info */ 17830 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 17831 sizeof(env->used_maps[0]), 17832 GFP_KERNEL); 17833 17834 if (!env->prog->aux->used_maps) { 17835 ret = -ENOMEM; 17836 goto err_release_maps; 17837 } 17838 17839 memcpy(env->prog->aux->used_maps, env->used_maps, 17840 sizeof(env->used_maps[0]) * env->used_map_cnt); 17841 env->prog->aux->used_map_cnt = env->used_map_cnt; 17842 } 17843 if (env->used_btf_cnt) { 17844 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 17845 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 17846 sizeof(env->used_btfs[0]), 17847 GFP_KERNEL); 17848 if (!env->prog->aux->used_btfs) { 17849 ret = -ENOMEM; 17850 goto err_release_maps; 17851 } 17852 17853 memcpy(env->prog->aux->used_btfs, env->used_btfs, 17854 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 17855 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 17856 } 17857 if (env->used_map_cnt || env->used_btf_cnt) { 17858 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 17859 * bpf_ld_imm64 instructions 17860 */ 17861 convert_pseudo_ld_imm64(env); 17862 } 17863 17864 adjust_btf_func(env); 17865 17866 err_release_maps: 17867 if (!env->prog->aux->used_maps) 17868 /* if we didn't copy map pointers into bpf_prog_info, release 17869 * them now. Otherwise free_used_maps() will release them. 17870 */ 17871 release_maps(env); 17872 if (!env->prog->aux->used_btfs) 17873 release_btfs(env); 17874 17875 /* extension progs temporarily inherit the attach_type of their targets 17876 for verification purposes, so set it back to zero before returning 17877 */ 17878 if (env->prog->type == BPF_PROG_TYPE_EXT) 17879 env->prog->expected_attach_type = 0; 17880 17881 *prog = env->prog; 17882 err_unlock: 17883 if (!is_priv) 17884 mutex_unlock(&bpf_verifier_lock); 17885 vfree(env->insn_aux_data); 17886 err_free_env: 17887 kfree(env); 17888 return ret; 17889 } 17890