xref: /openbmc/linux/kernel/bpf/verifier.c (revision 0661cb2a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all paths through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns either pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_JMP | BPF_CALL) &&
240 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242 
243 static bool bpf_pseudo_func(const struct bpf_insn *insn)
244 {
245 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 	       insn->src_reg == BPF_PSEUDO_FUNC;
247 }
248 
249 struct bpf_call_arg_meta {
250 	struct bpf_map *map_ptr;
251 	bool raw_mode;
252 	bool pkt_access;
253 	int regno;
254 	int access_size;
255 	int mem_size;
256 	u64 msize_max_value;
257 	int ref_obj_id;
258 	int func_id;
259 	struct btf *btf;
260 	u32 btf_id;
261 	struct btf *ret_btf;
262 	u32 ret_btf_id;
263 	u32 subprogno;
264 };
265 
266 struct btf *btf_vmlinux;
267 
268 static DEFINE_MUTEX(bpf_verifier_lock);
269 
270 static const struct bpf_line_info *
271 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
272 {
273 	const struct bpf_line_info *linfo;
274 	const struct bpf_prog *prog;
275 	u32 i, nr_linfo;
276 
277 	prog = env->prog;
278 	nr_linfo = prog->aux->nr_linfo;
279 
280 	if (!nr_linfo || insn_off >= prog->len)
281 		return NULL;
282 
283 	linfo = prog->aux->linfo;
284 	for (i = 1; i < nr_linfo; i++)
285 		if (insn_off < linfo[i].insn_off)
286 			break;
287 
288 	return &linfo[i - 1];
289 }
290 
291 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
292 		       va_list args)
293 {
294 	unsigned int n;
295 
296 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
297 
298 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
299 		  "verifier log line truncated - local buffer too short\n");
300 
301 	n = min(log->len_total - log->len_used - 1, n);
302 	log->kbuf[n] = '\0';
303 
304 	if (log->level == BPF_LOG_KERNEL) {
305 		pr_err("BPF:%s\n", log->kbuf);
306 		return;
307 	}
308 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
309 		log->len_used += n;
310 	else
311 		log->ubuf = NULL;
312 }
313 
314 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
315 {
316 	char zero = 0;
317 
318 	if (!bpf_verifier_log_needed(log))
319 		return;
320 
321 	log->len_used = new_pos;
322 	if (put_user(zero, log->ubuf + new_pos))
323 		log->ubuf = NULL;
324 }
325 
326 /* log_level controls verbosity level of eBPF verifier.
327  * bpf_verifier_log_write() is used to dump the verification trace to the log,
328  * so the user can figure out what's wrong with the program
329  */
330 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
331 					   const char *fmt, ...)
332 {
333 	va_list args;
334 
335 	if (!bpf_verifier_log_needed(&env->log))
336 		return;
337 
338 	va_start(args, fmt);
339 	bpf_verifier_vlog(&env->log, fmt, args);
340 	va_end(args);
341 }
342 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
343 
344 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
345 {
346 	struct bpf_verifier_env *env = private_data;
347 	va_list args;
348 
349 	if (!bpf_verifier_log_needed(&env->log))
350 		return;
351 
352 	va_start(args, fmt);
353 	bpf_verifier_vlog(&env->log, fmt, args);
354 	va_end(args);
355 }
356 
357 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
358 			    const char *fmt, ...)
359 {
360 	va_list args;
361 
362 	if (!bpf_verifier_log_needed(log))
363 		return;
364 
365 	va_start(args, fmt);
366 	bpf_verifier_vlog(log, fmt, args);
367 	va_end(args);
368 }
369 
370 static const char *ltrim(const char *s)
371 {
372 	while (isspace(*s))
373 		s++;
374 
375 	return s;
376 }
377 
378 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
379 					 u32 insn_off,
380 					 const char *prefix_fmt, ...)
381 {
382 	const struct bpf_line_info *linfo;
383 
384 	if (!bpf_verifier_log_needed(&env->log))
385 		return;
386 
387 	linfo = find_linfo(env, insn_off);
388 	if (!linfo || linfo == env->prev_linfo)
389 		return;
390 
391 	if (prefix_fmt) {
392 		va_list args;
393 
394 		va_start(args, prefix_fmt);
395 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
396 		va_end(args);
397 	}
398 
399 	verbose(env, "%s\n",
400 		ltrim(btf_name_by_offset(env->prog->aux->btf,
401 					 linfo->line_off)));
402 
403 	env->prev_linfo = linfo;
404 }
405 
406 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
407 				   struct bpf_reg_state *reg,
408 				   struct tnum *range, const char *ctx,
409 				   const char *reg_name)
410 {
411 	char tn_buf[48];
412 
413 	verbose(env, "At %s the register %s ", ctx, reg_name);
414 	if (!tnum_is_unknown(reg->var_off)) {
415 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 		verbose(env, "has value %s", tn_buf);
417 	} else {
418 		verbose(env, "has unknown scalar value");
419 	}
420 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
421 	verbose(env, " should have been in %s\n", tn_buf);
422 }
423 
424 static bool type_is_pkt_pointer(enum bpf_reg_type type)
425 {
426 	return type == PTR_TO_PACKET ||
427 	       type == PTR_TO_PACKET_META;
428 }
429 
430 static bool type_is_sk_pointer(enum bpf_reg_type type)
431 {
432 	return type == PTR_TO_SOCKET ||
433 		type == PTR_TO_SOCK_COMMON ||
434 		type == PTR_TO_TCP_SOCK ||
435 		type == PTR_TO_XDP_SOCK;
436 }
437 
438 static bool reg_type_not_null(enum bpf_reg_type type)
439 {
440 	return type == PTR_TO_SOCKET ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_MAP_VALUE ||
443 		type == PTR_TO_MAP_KEY ||
444 		type == PTR_TO_SOCK_COMMON;
445 }
446 
447 static bool reg_type_may_be_null(enum bpf_reg_type type)
448 {
449 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
450 	       type == PTR_TO_SOCKET_OR_NULL ||
451 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
452 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
453 	       type == PTR_TO_BTF_ID_OR_NULL ||
454 	       type == PTR_TO_MEM_OR_NULL ||
455 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
456 	       type == PTR_TO_RDWR_BUF_OR_NULL;
457 }
458 
459 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
460 {
461 	return reg->type == PTR_TO_MAP_VALUE &&
462 		map_value_has_spin_lock(reg->map_ptr);
463 }
464 
465 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
466 {
467 	return type == PTR_TO_SOCKET ||
468 		type == PTR_TO_SOCKET_OR_NULL ||
469 		type == PTR_TO_TCP_SOCK ||
470 		type == PTR_TO_TCP_SOCK_OR_NULL ||
471 		type == PTR_TO_MEM ||
472 		type == PTR_TO_MEM_OR_NULL;
473 }
474 
475 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
476 {
477 	return type == ARG_PTR_TO_SOCK_COMMON;
478 }
479 
480 static bool arg_type_may_be_null(enum bpf_arg_type type)
481 {
482 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
483 	       type == ARG_PTR_TO_MEM_OR_NULL ||
484 	       type == ARG_PTR_TO_CTX_OR_NULL ||
485 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
486 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
487 	       type == ARG_PTR_TO_STACK_OR_NULL;
488 }
489 
490 /* Determine whether the function releases some resources allocated by another
491  * function call. The first reference type argument will be assumed to be
492  * released by release_reference().
493  */
494 static bool is_release_function(enum bpf_func_id func_id)
495 {
496 	return func_id == BPF_FUNC_sk_release ||
497 	       func_id == BPF_FUNC_ringbuf_submit ||
498 	       func_id == BPF_FUNC_ringbuf_discard;
499 }
500 
501 static bool may_be_acquire_function(enum bpf_func_id func_id)
502 {
503 	return func_id == BPF_FUNC_sk_lookup_tcp ||
504 		func_id == BPF_FUNC_sk_lookup_udp ||
505 		func_id == BPF_FUNC_skc_lookup_tcp ||
506 		func_id == BPF_FUNC_map_lookup_elem ||
507 	        func_id == BPF_FUNC_ringbuf_reserve;
508 }
509 
510 static bool is_acquire_function(enum bpf_func_id func_id,
511 				const struct bpf_map *map)
512 {
513 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
514 
515 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
516 	    func_id == BPF_FUNC_sk_lookup_udp ||
517 	    func_id == BPF_FUNC_skc_lookup_tcp ||
518 	    func_id == BPF_FUNC_ringbuf_reserve)
519 		return true;
520 
521 	if (func_id == BPF_FUNC_map_lookup_elem &&
522 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
523 	     map_type == BPF_MAP_TYPE_SOCKHASH))
524 		return true;
525 
526 	return false;
527 }
528 
529 static bool is_ptr_cast_function(enum bpf_func_id func_id)
530 {
531 	return func_id == BPF_FUNC_tcp_sock ||
532 		func_id == BPF_FUNC_sk_fullsock ||
533 		func_id == BPF_FUNC_skc_to_tcp_sock ||
534 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
535 		func_id == BPF_FUNC_skc_to_udp6_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
541 {
542 	return BPF_CLASS(insn->code) == BPF_STX &&
543 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
544 	       insn->imm == BPF_CMPXCHG;
545 }
546 
547 /* string representation of 'enum bpf_reg_type' */
548 static const char * const reg_type_str[] = {
549 	[NOT_INIT]		= "?",
550 	[SCALAR_VALUE]		= "inv",
551 	[PTR_TO_CTX]		= "ctx",
552 	[CONST_PTR_TO_MAP]	= "map_ptr",
553 	[PTR_TO_MAP_VALUE]	= "map_value",
554 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
555 	[PTR_TO_STACK]		= "fp",
556 	[PTR_TO_PACKET]		= "pkt",
557 	[PTR_TO_PACKET_META]	= "pkt_meta",
558 	[PTR_TO_PACKET_END]	= "pkt_end",
559 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
560 	[PTR_TO_SOCKET]		= "sock",
561 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
562 	[PTR_TO_SOCK_COMMON]	= "sock_common",
563 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
564 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
565 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
566 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
567 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
568 	[PTR_TO_BTF_ID]		= "ptr_",
569 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
570 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
571 	[PTR_TO_MEM]		= "mem",
572 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
573 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
574 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
575 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
576 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
577 	[PTR_TO_FUNC]		= "func",
578 	[PTR_TO_MAP_KEY]	= "map_key",
579 };
580 
581 static char slot_type_char[] = {
582 	[STACK_INVALID]	= '?',
583 	[STACK_SPILL]	= 'r',
584 	[STACK_MISC]	= 'm',
585 	[STACK_ZERO]	= '0',
586 };
587 
588 static void print_liveness(struct bpf_verifier_env *env,
589 			   enum bpf_reg_liveness live)
590 {
591 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
592 	    verbose(env, "_");
593 	if (live & REG_LIVE_READ)
594 		verbose(env, "r");
595 	if (live & REG_LIVE_WRITTEN)
596 		verbose(env, "w");
597 	if (live & REG_LIVE_DONE)
598 		verbose(env, "D");
599 }
600 
601 static struct bpf_func_state *func(struct bpf_verifier_env *env,
602 				   const struct bpf_reg_state *reg)
603 {
604 	struct bpf_verifier_state *cur = env->cur_state;
605 
606 	return cur->frame[reg->frameno];
607 }
608 
609 static const char *kernel_type_name(const struct btf* btf, u32 id)
610 {
611 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
612 }
613 
614 static void print_verifier_state(struct bpf_verifier_env *env,
615 				 const struct bpf_func_state *state)
616 {
617 	const struct bpf_reg_state *reg;
618 	enum bpf_reg_type t;
619 	int i;
620 
621 	if (state->frameno)
622 		verbose(env, " frame%d:", state->frameno);
623 	for (i = 0; i < MAX_BPF_REG; i++) {
624 		reg = &state->regs[i];
625 		t = reg->type;
626 		if (t == NOT_INIT)
627 			continue;
628 		verbose(env, " R%d", i);
629 		print_liveness(env, reg->live);
630 		verbose(env, "=%s", reg_type_str[t]);
631 		if (t == SCALAR_VALUE && reg->precise)
632 			verbose(env, "P");
633 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
634 		    tnum_is_const(reg->var_off)) {
635 			/* reg->off should be 0 for SCALAR_VALUE */
636 			verbose(env, "%lld", reg->var_off.value + reg->off);
637 		} else {
638 			if (t == PTR_TO_BTF_ID ||
639 			    t == PTR_TO_BTF_ID_OR_NULL ||
640 			    t == PTR_TO_PERCPU_BTF_ID)
641 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
642 			verbose(env, "(id=%d", reg->id);
643 			if (reg_type_may_be_refcounted_or_null(t))
644 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
645 			if (t != SCALAR_VALUE)
646 				verbose(env, ",off=%d", reg->off);
647 			if (type_is_pkt_pointer(t))
648 				verbose(env, ",r=%d", reg->range);
649 			else if (t == CONST_PTR_TO_MAP ||
650 				 t == PTR_TO_MAP_KEY ||
651 				 t == PTR_TO_MAP_VALUE ||
652 				 t == PTR_TO_MAP_VALUE_OR_NULL)
653 				verbose(env, ",ks=%d,vs=%d",
654 					reg->map_ptr->key_size,
655 					reg->map_ptr->value_size);
656 			if (tnum_is_const(reg->var_off)) {
657 				/* Typically an immediate SCALAR_VALUE, but
658 				 * could be a pointer whose offset is too big
659 				 * for reg->off
660 				 */
661 				verbose(env, ",imm=%llx", reg->var_off.value);
662 			} else {
663 				if (reg->smin_value != reg->umin_value &&
664 				    reg->smin_value != S64_MIN)
665 					verbose(env, ",smin_value=%lld",
666 						(long long)reg->smin_value);
667 				if (reg->smax_value != reg->umax_value &&
668 				    reg->smax_value != S64_MAX)
669 					verbose(env, ",smax_value=%lld",
670 						(long long)reg->smax_value);
671 				if (reg->umin_value != 0)
672 					verbose(env, ",umin_value=%llu",
673 						(unsigned long long)reg->umin_value);
674 				if (reg->umax_value != U64_MAX)
675 					verbose(env, ",umax_value=%llu",
676 						(unsigned long long)reg->umax_value);
677 				if (!tnum_is_unknown(reg->var_off)) {
678 					char tn_buf[48];
679 
680 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
681 					verbose(env, ",var_off=%s", tn_buf);
682 				}
683 				if (reg->s32_min_value != reg->smin_value &&
684 				    reg->s32_min_value != S32_MIN)
685 					verbose(env, ",s32_min_value=%d",
686 						(int)(reg->s32_min_value));
687 				if (reg->s32_max_value != reg->smax_value &&
688 				    reg->s32_max_value != S32_MAX)
689 					verbose(env, ",s32_max_value=%d",
690 						(int)(reg->s32_max_value));
691 				if (reg->u32_min_value != reg->umin_value &&
692 				    reg->u32_min_value != U32_MIN)
693 					verbose(env, ",u32_min_value=%d",
694 						(int)(reg->u32_min_value));
695 				if (reg->u32_max_value != reg->umax_value &&
696 				    reg->u32_max_value != U32_MAX)
697 					verbose(env, ",u32_max_value=%d",
698 						(int)(reg->u32_max_value));
699 			}
700 			verbose(env, ")");
701 		}
702 	}
703 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
704 		char types_buf[BPF_REG_SIZE + 1];
705 		bool valid = false;
706 		int j;
707 
708 		for (j = 0; j < BPF_REG_SIZE; j++) {
709 			if (state->stack[i].slot_type[j] != STACK_INVALID)
710 				valid = true;
711 			types_buf[j] = slot_type_char[
712 					state->stack[i].slot_type[j]];
713 		}
714 		types_buf[BPF_REG_SIZE] = 0;
715 		if (!valid)
716 			continue;
717 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
718 		print_liveness(env, state->stack[i].spilled_ptr.live);
719 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
720 			reg = &state->stack[i].spilled_ptr;
721 			t = reg->type;
722 			verbose(env, "=%s", reg_type_str[t]);
723 			if (t == SCALAR_VALUE && reg->precise)
724 				verbose(env, "P");
725 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
726 				verbose(env, "%lld", reg->var_off.value + reg->off);
727 		} else {
728 			verbose(env, "=%s", types_buf);
729 		}
730 	}
731 	if (state->acquired_refs && state->refs[0].id) {
732 		verbose(env, " refs=%d", state->refs[0].id);
733 		for (i = 1; i < state->acquired_refs; i++)
734 			if (state->refs[i].id)
735 				verbose(env, ",%d", state->refs[i].id);
736 	}
737 	verbose(env, "\n");
738 }
739 
740 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
741  * small to hold src. This is different from krealloc since we don't want to preserve
742  * the contents of dst.
743  *
744  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
745  * not be allocated.
746  */
747 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
748 {
749 	size_t bytes;
750 
751 	if (ZERO_OR_NULL_PTR(src))
752 		goto out;
753 
754 	if (unlikely(check_mul_overflow(n, size, &bytes)))
755 		return NULL;
756 
757 	if (ksize(dst) < bytes) {
758 		kfree(dst);
759 		dst = kmalloc_track_caller(bytes, flags);
760 		if (!dst)
761 			return NULL;
762 	}
763 
764 	memcpy(dst, src, bytes);
765 out:
766 	return dst ? dst : ZERO_SIZE_PTR;
767 }
768 
769 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
770  * small to hold new_n items. new items are zeroed out if the array grows.
771  *
772  * Contrary to krealloc_array, does not free arr if new_n is zero.
773  */
774 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
775 {
776 	if (!new_n || old_n == new_n)
777 		goto out;
778 
779 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
780 	if (!arr)
781 		return NULL;
782 
783 	if (new_n > old_n)
784 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
785 
786 out:
787 	return arr ? arr : ZERO_SIZE_PTR;
788 }
789 
790 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
791 {
792 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
793 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
794 	if (!dst->refs)
795 		return -ENOMEM;
796 
797 	dst->acquired_refs = src->acquired_refs;
798 	return 0;
799 }
800 
801 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
802 {
803 	size_t n = src->allocated_stack / BPF_REG_SIZE;
804 
805 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
806 				GFP_KERNEL);
807 	if (!dst->stack)
808 		return -ENOMEM;
809 
810 	dst->allocated_stack = src->allocated_stack;
811 	return 0;
812 }
813 
814 static int resize_reference_state(struct bpf_func_state *state, size_t n)
815 {
816 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
817 				    sizeof(struct bpf_reference_state));
818 	if (!state->refs)
819 		return -ENOMEM;
820 
821 	state->acquired_refs = n;
822 	return 0;
823 }
824 
825 static int grow_stack_state(struct bpf_func_state *state, int size)
826 {
827 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
828 
829 	if (old_n >= n)
830 		return 0;
831 
832 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
833 	if (!state->stack)
834 		return -ENOMEM;
835 
836 	state->allocated_stack = size;
837 	return 0;
838 }
839 
840 /* Acquire a pointer id from the env and update the state->refs to include
841  * this new pointer reference.
842  * On success, returns a valid pointer id to associate with the register
843  * On failure, returns a negative errno.
844  */
845 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
846 {
847 	struct bpf_func_state *state = cur_func(env);
848 	int new_ofs = state->acquired_refs;
849 	int id, err;
850 
851 	err = resize_reference_state(state, state->acquired_refs + 1);
852 	if (err)
853 		return err;
854 	id = ++env->id_gen;
855 	state->refs[new_ofs].id = id;
856 	state->refs[new_ofs].insn_idx = insn_idx;
857 
858 	return id;
859 }
860 
861 /* release function corresponding to acquire_reference_state(). Idempotent. */
862 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
863 {
864 	int i, last_idx;
865 
866 	last_idx = state->acquired_refs - 1;
867 	for (i = 0; i < state->acquired_refs; i++) {
868 		if (state->refs[i].id == ptr_id) {
869 			if (last_idx && i != last_idx)
870 				memcpy(&state->refs[i], &state->refs[last_idx],
871 				       sizeof(*state->refs));
872 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
873 			state->acquired_refs--;
874 			return 0;
875 		}
876 	}
877 	return -EINVAL;
878 }
879 
880 static void free_func_state(struct bpf_func_state *state)
881 {
882 	if (!state)
883 		return;
884 	kfree(state->refs);
885 	kfree(state->stack);
886 	kfree(state);
887 }
888 
889 static void clear_jmp_history(struct bpf_verifier_state *state)
890 {
891 	kfree(state->jmp_history);
892 	state->jmp_history = NULL;
893 	state->jmp_history_cnt = 0;
894 }
895 
896 static void free_verifier_state(struct bpf_verifier_state *state,
897 				bool free_self)
898 {
899 	int i;
900 
901 	for (i = 0; i <= state->curframe; i++) {
902 		free_func_state(state->frame[i]);
903 		state->frame[i] = NULL;
904 	}
905 	clear_jmp_history(state);
906 	if (free_self)
907 		kfree(state);
908 }
909 
910 /* copy verifier state from src to dst growing dst stack space
911  * when necessary to accommodate larger src stack
912  */
913 static int copy_func_state(struct bpf_func_state *dst,
914 			   const struct bpf_func_state *src)
915 {
916 	int err;
917 
918 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
919 	err = copy_reference_state(dst, src);
920 	if (err)
921 		return err;
922 	return copy_stack_state(dst, src);
923 }
924 
925 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
926 			       const struct bpf_verifier_state *src)
927 {
928 	struct bpf_func_state *dst;
929 	int i, err;
930 
931 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
932 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
933 					    GFP_USER);
934 	if (!dst_state->jmp_history)
935 		return -ENOMEM;
936 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
937 
938 	/* if dst has more stack frames then src frame, free them */
939 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
940 		free_func_state(dst_state->frame[i]);
941 		dst_state->frame[i] = NULL;
942 	}
943 	dst_state->speculative = src->speculative;
944 	dst_state->curframe = src->curframe;
945 	dst_state->active_spin_lock = src->active_spin_lock;
946 	dst_state->branches = src->branches;
947 	dst_state->parent = src->parent;
948 	dst_state->first_insn_idx = src->first_insn_idx;
949 	dst_state->last_insn_idx = src->last_insn_idx;
950 	for (i = 0; i <= src->curframe; i++) {
951 		dst = dst_state->frame[i];
952 		if (!dst) {
953 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
954 			if (!dst)
955 				return -ENOMEM;
956 			dst_state->frame[i] = dst;
957 		}
958 		err = copy_func_state(dst, src->frame[i]);
959 		if (err)
960 			return err;
961 	}
962 	return 0;
963 }
964 
965 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
966 {
967 	while (st) {
968 		u32 br = --st->branches;
969 
970 		/* WARN_ON(br > 1) technically makes sense here,
971 		 * but see comment in push_stack(), hence:
972 		 */
973 		WARN_ONCE((int)br < 0,
974 			  "BUG update_branch_counts:branches_to_explore=%d\n",
975 			  br);
976 		if (br)
977 			break;
978 		st = st->parent;
979 	}
980 }
981 
982 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
983 		     int *insn_idx, bool pop_log)
984 {
985 	struct bpf_verifier_state *cur = env->cur_state;
986 	struct bpf_verifier_stack_elem *elem, *head = env->head;
987 	int err;
988 
989 	if (env->head == NULL)
990 		return -ENOENT;
991 
992 	if (cur) {
993 		err = copy_verifier_state(cur, &head->st);
994 		if (err)
995 			return err;
996 	}
997 	if (pop_log)
998 		bpf_vlog_reset(&env->log, head->log_pos);
999 	if (insn_idx)
1000 		*insn_idx = head->insn_idx;
1001 	if (prev_insn_idx)
1002 		*prev_insn_idx = head->prev_insn_idx;
1003 	elem = head->next;
1004 	free_verifier_state(&head->st, false);
1005 	kfree(head);
1006 	env->head = elem;
1007 	env->stack_size--;
1008 	return 0;
1009 }
1010 
1011 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1012 					     int insn_idx, int prev_insn_idx,
1013 					     bool speculative)
1014 {
1015 	struct bpf_verifier_state *cur = env->cur_state;
1016 	struct bpf_verifier_stack_elem *elem;
1017 	int err;
1018 
1019 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1020 	if (!elem)
1021 		goto err;
1022 
1023 	elem->insn_idx = insn_idx;
1024 	elem->prev_insn_idx = prev_insn_idx;
1025 	elem->next = env->head;
1026 	elem->log_pos = env->log.len_used;
1027 	env->head = elem;
1028 	env->stack_size++;
1029 	err = copy_verifier_state(&elem->st, cur);
1030 	if (err)
1031 		goto err;
1032 	elem->st.speculative |= speculative;
1033 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1034 		verbose(env, "The sequence of %d jumps is too complex.\n",
1035 			env->stack_size);
1036 		goto err;
1037 	}
1038 	if (elem->st.parent) {
1039 		++elem->st.parent->branches;
1040 		/* WARN_ON(branches > 2) technically makes sense here,
1041 		 * but
1042 		 * 1. speculative states will bump 'branches' for non-branch
1043 		 * instructions
1044 		 * 2. is_state_visited() heuristics may decide not to create
1045 		 * a new state for a sequence of branches and all such current
1046 		 * and cloned states will be pointing to a single parent state
1047 		 * which might have large 'branches' count.
1048 		 */
1049 	}
1050 	return &elem->st;
1051 err:
1052 	free_verifier_state(env->cur_state, true);
1053 	env->cur_state = NULL;
1054 	/* pop all elements and return */
1055 	while (!pop_stack(env, NULL, NULL, false));
1056 	return NULL;
1057 }
1058 
1059 #define CALLER_SAVED_REGS 6
1060 static const int caller_saved[CALLER_SAVED_REGS] = {
1061 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1062 };
1063 
1064 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1065 				struct bpf_reg_state *reg);
1066 
1067 /* This helper doesn't clear reg->id */
1068 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1069 {
1070 	reg->var_off = tnum_const(imm);
1071 	reg->smin_value = (s64)imm;
1072 	reg->smax_value = (s64)imm;
1073 	reg->umin_value = imm;
1074 	reg->umax_value = imm;
1075 
1076 	reg->s32_min_value = (s32)imm;
1077 	reg->s32_max_value = (s32)imm;
1078 	reg->u32_min_value = (u32)imm;
1079 	reg->u32_max_value = (u32)imm;
1080 }
1081 
1082 /* Mark the unknown part of a register (variable offset or scalar value) as
1083  * known to have the value @imm.
1084  */
1085 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1086 {
1087 	/* Clear id, off, and union(map_ptr, range) */
1088 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1089 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1090 	___mark_reg_known(reg, imm);
1091 }
1092 
1093 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1094 {
1095 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1096 	reg->s32_min_value = (s32)imm;
1097 	reg->s32_max_value = (s32)imm;
1098 	reg->u32_min_value = (u32)imm;
1099 	reg->u32_max_value = (u32)imm;
1100 }
1101 
1102 /* Mark the 'variable offset' part of a register as zero.  This should be
1103  * used only on registers holding a pointer type.
1104  */
1105 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1106 {
1107 	__mark_reg_known(reg, 0);
1108 }
1109 
1110 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1111 {
1112 	__mark_reg_known(reg, 0);
1113 	reg->type = SCALAR_VALUE;
1114 }
1115 
1116 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1117 				struct bpf_reg_state *regs, u32 regno)
1118 {
1119 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1120 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1121 		/* Something bad happened, let's kill all regs */
1122 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1123 			__mark_reg_not_init(env, regs + regno);
1124 		return;
1125 	}
1126 	__mark_reg_known_zero(regs + regno);
1127 }
1128 
1129 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1130 {
1131 	switch (reg->type) {
1132 	case PTR_TO_MAP_VALUE_OR_NULL: {
1133 		const struct bpf_map *map = reg->map_ptr;
1134 
1135 		if (map->inner_map_meta) {
1136 			reg->type = CONST_PTR_TO_MAP;
1137 			reg->map_ptr = map->inner_map_meta;
1138 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1139 			reg->type = PTR_TO_XDP_SOCK;
1140 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1141 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1142 			reg->type = PTR_TO_SOCKET;
1143 		} else {
1144 			reg->type = PTR_TO_MAP_VALUE;
1145 		}
1146 		break;
1147 	}
1148 	case PTR_TO_SOCKET_OR_NULL:
1149 		reg->type = PTR_TO_SOCKET;
1150 		break;
1151 	case PTR_TO_SOCK_COMMON_OR_NULL:
1152 		reg->type = PTR_TO_SOCK_COMMON;
1153 		break;
1154 	case PTR_TO_TCP_SOCK_OR_NULL:
1155 		reg->type = PTR_TO_TCP_SOCK;
1156 		break;
1157 	case PTR_TO_BTF_ID_OR_NULL:
1158 		reg->type = PTR_TO_BTF_ID;
1159 		break;
1160 	case PTR_TO_MEM_OR_NULL:
1161 		reg->type = PTR_TO_MEM;
1162 		break;
1163 	case PTR_TO_RDONLY_BUF_OR_NULL:
1164 		reg->type = PTR_TO_RDONLY_BUF;
1165 		break;
1166 	case PTR_TO_RDWR_BUF_OR_NULL:
1167 		reg->type = PTR_TO_RDWR_BUF;
1168 		break;
1169 	default:
1170 		WARN_ONCE(1, "unknown nullable register type");
1171 	}
1172 }
1173 
1174 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1175 {
1176 	return type_is_pkt_pointer(reg->type);
1177 }
1178 
1179 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1180 {
1181 	return reg_is_pkt_pointer(reg) ||
1182 	       reg->type == PTR_TO_PACKET_END;
1183 }
1184 
1185 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1186 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1187 				    enum bpf_reg_type which)
1188 {
1189 	/* The register can already have a range from prior markings.
1190 	 * This is fine as long as it hasn't been advanced from its
1191 	 * origin.
1192 	 */
1193 	return reg->type == which &&
1194 	       reg->id == 0 &&
1195 	       reg->off == 0 &&
1196 	       tnum_equals_const(reg->var_off, 0);
1197 }
1198 
1199 /* Reset the min/max bounds of a register */
1200 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1201 {
1202 	reg->smin_value = S64_MIN;
1203 	reg->smax_value = S64_MAX;
1204 	reg->umin_value = 0;
1205 	reg->umax_value = U64_MAX;
1206 
1207 	reg->s32_min_value = S32_MIN;
1208 	reg->s32_max_value = S32_MAX;
1209 	reg->u32_min_value = 0;
1210 	reg->u32_max_value = U32_MAX;
1211 }
1212 
1213 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1214 {
1215 	reg->smin_value = S64_MIN;
1216 	reg->smax_value = S64_MAX;
1217 	reg->umin_value = 0;
1218 	reg->umax_value = U64_MAX;
1219 }
1220 
1221 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1222 {
1223 	reg->s32_min_value = S32_MIN;
1224 	reg->s32_max_value = S32_MAX;
1225 	reg->u32_min_value = 0;
1226 	reg->u32_max_value = U32_MAX;
1227 }
1228 
1229 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1230 {
1231 	struct tnum var32_off = tnum_subreg(reg->var_off);
1232 
1233 	/* min signed is max(sign bit) | min(other bits) */
1234 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1235 			var32_off.value | (var32_off.mask & S32_MIN));
1236 	/* max signed is min(sign bit) | max(other bits) */
1237 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1238 			var32_off.value | (var32_off.mask & S32_MAX));
1239 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1240 	reg->u32_max_value = min(reg->u32_max_value,
1241 				 (u32)(var32_off.value | var32_off.mask));
1242 }
1243 
1244 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1245 {
1246 	/* min signed is max(sign bit) | min(other bits) */
1247 	reg->smin_value = max_t(s64, reg->smin_value,
1248 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1249 	/* max signed is min(sign bit) | max(other bits) */
1250 	reg->smax_value = min_t(s64, reg->smax_value,
1251 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1252 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1253 	reg->umax_value = min(reg->umax_value,
1254 			      reg->var_off.value | reg->var_off.mask);
1255 }
1256 
1257 static void __update_reg_bounds(struct bpf_reg_state *reg)
1258 {
1259 	__update_reg32_bounds(reg);
1260 	__update_reg64_bounds(reg);
1261 }
1262 
1263 /* Uses signed min/max values to inform unsigned, and vice-versa */
1264 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1265 {
1266 	/* Learn sign from signed bounds.
1267 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1268 	 * are the same, so combine.  This works even in the negative case, e.g.
1269 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1270 	 */
1271 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1272 		reg->s32_min_value = reg->u32_min_value =
1273 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1274 		reg->s32_max_value = reg->u32_max_value =
1275 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1276 		return;
1277 	}
1278 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1279 	 * boundary, so we must be careful.
1280 	 */
1281 	if ((s32)reg->u32_max_value >= 0) {
1282 		/* Positive.  We can't learn anything from the smin, but smax
1283 		 * is positive, hence safe.
1284 		 */
1285 		reg->s32_min_value = reg->u32_min_value;
1286 		reg->s32_max_value = reg->u32_max_value =
1287 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1288 	} else if ((s32)reg->u32_min_value < 0) {
1289 		/* Negative.  We can't learn anything from the smax, but smin
1290 		 * is negative, hence safe.
1291 		 */
1292 		reg->s32_min_value = reg->u32_min_value =
1293 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1294 		reg->s32_max_value = reg->u32_max_value;
1295 	}
1296 }
1297 
1298 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1299 {
1300 	/* Learn sign from signed bounds.
1301 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1302 	 * are the same, so combine.  This works even in the negative case, e.g.
1303 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1304 	 */
1305 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1306 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1307 							  reg->umin_value);
1308 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1309 							  reg->umax_value);
1310 		return;
1311 	}
1312 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1313 	 * boundary, so we must be careful.
1314 	 */
1315 	if ((s64)reg->umax_value >= 0) {
1316 		/* Positive.  We can't learn anything from the smin, but smax
1317 		 * is positive, hence safe.
1318 		 */
1319 		reg->smin_value = reg->umin_value;
1320 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1321 							  reg->umax_value);
1322 	} else if ((s64)reg->umin_value < 0) {
1323 		/* Negative.  We can't learn anything from the smax, but smin
1324 		 * is negative, hence safe.
1325 		 */
1326 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1327 							  reg->umin_value);
1328 		reg->smax_value = reg->umax_value;
1329 	}
1330 }
1331 
1332 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1333 {
1334 	__reg32_deduce_bounds(reg);
1335 	__reg64_deduce_bounds(reg);
1336 }
1337 
1338 /* Attempts to improve var_off based on unsigned min/max information */
1339 static void __reg_bound_offset(struct bpf_reg_state *reg)
1340 {
1341 	struct tnum var64_off = tnum_intersect(reg->var_off,
1342 					       tnum_range(reg->umin_value,
1343 							  reg->umax_value));
1344 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1345 						tnum_range(reg->u32_min_value,
1346 							   reg->u32_max_value));
1347 
1348 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1349 }
1350 
1351 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1352 {
1353 	reg->umin_value = reg->u32_min_value;
1354 	reg->umax_value = reg->u32_max_value;
1355 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1356 	 * but must be positive otherwise set to worse case bounds
1357 	 * and refine later from tnum.
1358 	 */
1359 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1360 		reg->smax_value = reg->s32_max_value;
1361 	else
1362 		reg->smax_value = U32_MAX;
1363 	if (reg->s32_min_value >= 0)
1364 		reg->smin_value = reg->s32_min_value;
1365 	else
1366 		reg->smin_value = 0;
1367 }
1368 
1369 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1370 {
1371 	/* special case when 64-bit register has upper 32-bit register
1372 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1373 	 * allowing us to use 32-bit bounds directly,
1374 	 */
1375 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1376 		__reg_assign_32_into_64(reg);
1377 	} else {
1378 		/* Otherwise the best we can do is push lower 32bit known and
1379 		 * unknown bits into register (var_off set from jmp logic)
1380 		 * then learn as much as possible from the 64-bit tnum
1381 		 * known and unknown bits. The previous smin/smax bounds are
1382 		 * invalid here because of jmp32 compare so mark them unknown
1383 		 * so they do not impact tnum bounds calculation.
1384 		 */
1385 		__mark_reg64_unbounded(reg);
1386 		__update_reg_bounds(reg);
1387 	}
1388 
1389 	/* Intersecting with the old var_off might have improved our bounds
1390 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1391 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1392 	 */
1393 	__reg_deduce_bounds(reg);
1394 	__reg_bound_offset(reg);
1395 	__update_reg_bounds(reg);
1396 }
1397 
1398 static bool __reg64_bound_s32(s64 a)
1399 {
1400 	return a > S32_MIN && a < S32_MAX;
1401 }
1402 
1403 static bool __reg64_bound_u32(u64 a)
1404 {
1405 	return a > U32_MIN && a < U32_MAX;
1406 }
1407 
1408 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1409 {
1410 	__mark_reg32_unbounded(reg);
1411 
1412 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1413 		reg->s32_min_value = (s32)reg->smin_value;
1414 		reg->s32_max_value = (s32)reg->smax_value;
1415 	}
1416 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1417 		reg->u32_min_value = (u32)reg->umin_value;
1418 		reg->u32_max_value = (u32)reg->umax_value;
1419 	}
1420 
1421 	/* Intersecting with the old var_off might have improved our bounds
1422 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1423 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1424 	 */
1425 	__reg_deduce_bounds(reg);
1426 	__reg_bound_offset(reg);
1427 	__update_reg_bounds(reg);
1428 }
1429 
1430 /* Mark a register as having a completely unknown (scalar) value. */
1431 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1432 			       struct bpf_reg_state *reg)
1433 {
1434 	/*
1435 	 * Clear type, id, off, and union(map_ptr, range) and
1436 	 * padding between 'type' and union
1437 	 */
1438 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1439 	reg->type = SCALAR_VALUE;
1440 	reg->var_off = tnum_unknown;
1441 	reg->frameno = 0;
1442 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1443 	__mark_reg_unbounded(reg);
1444 }
1445 
1446 static void mark_reg_unknown(struct bpf_verifier_env *env,
1447 			     struct bpf_reg_state *regs, u32 regno)
1448 {
1449 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1450 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1451 		/* Something bad happened, let's kill all regs except FP */
1452 		for (regno = 0; regno < BPF_REG_FP; regno++)
1453 			__mark_reg_not_init(env, regs + regno);
1454 		return;
1455 	}
1456 	__mark_reg_unknown(env, regs + regno);
1457 }
1458 
1459 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1460 				struct bpf_reg_state *reg)
1461 {
1462 	__mark_reg_unknown(env, reg);
1463 	reg->type = NOT_INIT;
1464 }
1465 
1466 static void mark_reg_not_init(struct bpf_verifier_env *env,
1467 			      struct bpf_reg_state *regs, u32 regno)
1468 {
1469 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1470 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1471 		/* Something bad happened, let's kill all regs except FP */
1472 		for (regno = 0; regno < BPF_REG_FP; regno++)
1473 			__mark_reg_not_init(env, regs + regno);
1474 		return;
1475 	}
1476 	__mark_reg_not_init(env, regs + regno);
1477 }
1478 
1479 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1480 			    struct bpf_reg_state *regs, u32 regno,
1481 			    enum bpf_reg_type reg_type,
1482 			    struct btf *btf, u32 btf_id)
1483 {
1484 	if (reg_type == SCALAR_VALUE) {
1485 		mark_reg_unknown(env, regs, regno);
1486 		return;
1487 	}
1488 	mark_reg_known_zero(env, regs, regno);
1489 	regs[regno].type = PTR_TO_BTF_ID;
1490 	regs[regno].btf = btf;
1491 	regs[regno].btf_id = btf_id;
1492 }
1493 
1494 #define DEF_NOT_SUBREG	(0)
1495 static void init_reg_state(struct bpf_verifier_env *env,
1496 			   struct bpf_func_state *state)
1497 {
1498 	struct bpf_reg_state *regs = state->regs;
1499 	int i;
1500 
1501 	for (i = 0; i < MAX_BPF_REG; i++) {
1502 		mark_reg_not_init(env, regs, i);
1503 		regs[i].live = REG_LIVE_NONE;
1504 		regs[i].parent = NULL;
1505 		regs[i].subreg_def = DEF_NOT_SUBREG;
1506 	}
1507 
1508 	/* frame pointer */
1509 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1510 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1511 	regs[BPF_REG_FP].frameno = state->frameno;
1512 }
1513 
1514 #define BPF_MAIN_FUNC (-1)
1515 static void init_func_state(struct bpf_verifier_env *env,
1516 			    struct bpf_func_state *state,
1517 			    int callsite, int frameno, int subprogno)
1518 {
1519 	state->callsite = callsite;
1520 	state->frameno = frameno;
1521 	state->subprogno = subprogno;
1522 	init_reg_state(env, state);
1523 }
1524 
1525 enum reg_arg_type {
1526 	SRC_OP,		/* register is used as source operand */
1527 	DST_OP,		/* register is used as destination operand */
1528 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1529 };
1530 
1531 static int cmp_subprogs(const void *a, const void *b)
1532 {
1533 	return ((struct bpf_subprog_info *)a)->start -
1534 	       ((struct bpf_subprog_info *)b)->start;
1535 }
1536 
1537 static int find_subprog(struct bpf_verifier_env *env, int off)
1538 {
1539 	struct bpf_subprog_info *p;
1540 
1541 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1542 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1543 	if (!p)
1544 		return -ENOENT;
1545 	return p - env->subprog_info;
1546 
1547 }
1548 
1549 static int add_subprog(struct bpf_verifier_env *env, int off)
1550 {
1551 	int insn_cnt = env->prog->len;
1552 	int ret;
1553 
1554 	if (off >= insn_cnt || off < 0) {
1555 		verbose(env, "call to invalid destination\n");
1556 		return -EINVAL;
1557 	}
1558 	ret = find_subprog(env, off);
1559 	if (ret >= 0)
1560 		return ret;
1561 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1562 		verbose(env, "too many subprograms\n");
1563 		return -E2BIG;
1564 	}
1565 	/* determine subprog starts. The end is one before the next starts */
1566 	env->subprog_info[env->subprog_cnt++].start = off;
1567 	sort(env->subprog_info, env->subprog_cnt,
1568 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1569 	return env->subprog_cnt - 1;
1570 }
1571 
1572 struct bpf_kfunc_desc {
1573 	struct btf_func_model func_model;
1574 	u32 func_id;
1575 	s32 imm;
1576 };
1577 
1578 #define MAX_KFUNC_DESCS 256
1579 struct bpf_kfunc_desc_tab {
1580 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1581 	u32 nr_descs;
1582 };
1583 
1584 static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1585 {
1586 	const struct bpf_kfunc_desc *d0 = a;
1587 	const struct bpf_kfunc_desc *d1 = b;
1588 
1589 	/* func_id is not greater than BTF_MAX_TYPE */
1590 	return d0->func_id - d1->func_id;
1591 }
1592 
1593 static const struct bpf_kfunc_desc *
1594 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1595 {
1596 	struct bpf_kfunc_desc desc = {
1597 		.func_id = func_id,
1598 	};
1599 	struct bpf_kfunc_desc_tab *tab;
1600 
1601 	tab = prog->aux->kfunc_tab;
1602 	return bsearch(&desc, tab->descs, tab->nr_descs,
1603 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1604 }
1605 
1606 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1607 {
1608 	const struct btf_type *func, *func_proto;
1609 	struct bpf_kfunc_desc_tab *tab;
1610 	struct bpf_prog_aux *prog_aux;
1611 	struct bpf_kfunc_desc *desc;
1612 	const char *func_name;
1613 	unsigned long addr;
1614 	int err;
1615 
1616 	prog_aux = env->prog->aux;
1617 	tab = prog_aux->kfunc_tab;
1618 	if (!tab) {
1619 		if (!btf_vmlinux) {
1620 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1621 			return -ENOTSUPP;
1622 		}
1623 
1624 		if (!env->prog->jit_requested) {
1625 			verbose(env, "JIT is required for calling kernel function\n");
1626 			return -ENOTSUPP;
1627 		}
1628 
1629 		if (!bpf_jit_supports_kfunc_call()) {
1630 			verbose(env, "JIT does not support calling kernel function\n");
1631 			return -ENOTSUPP;
1632 		}
1633 
1634 		if (!env->prog->gpl_compatible) {
1635 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1636 			return -EINVAL;
1637 		}
1638 
1639 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1640 		if (!tab)
1641 			return -ENOMEM;
1642 		prog_aux->kfunc_tab = tab;
1643 	}
1644 
1645 	if (find_kfunc_desc(env->prog, func_id))
1646 		return 0;
1647 
1648 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1649 		verbose(env, "too many different kernel function calls\n");
1650 		return -E2BIG;
1651 	}
1652 
1653 	func = btf_type_by_id(btf_vmlinux, func_id);
1654 	if (!func || !btf_type_is_func(func)) {
1655 		verbose(env, "kernel btf_id %u is not a function\n",
1656 			func_id);
1657 		return -EINVAL;
1658 	}
1659 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
1660 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1661 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1662 			func_id);
1663 		return -EINVAL;
1664 	}
1665 
1666 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1667 	addr = kallsyms_lookup_name(func_name);
1668 	if (!addr) {
1669 		verbose(env, "cannot find address for kernel function %s\n",
1670 			func_name);
1671 		return -EINVAL;
1672 	}
1673 
1674 	desc = &tab->descs[tab->nr_descs++];
1675 	desc->func_id = func_id;
1676 	desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1677 	err = btf_distill_func_proto(&env->log, btf_vmlinux,
1678 				     func_proto, func_name,
1679 				     &desc->func_model);
1680 	if (!err)
1681 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1682 		     kfunc_desc_cmp_by_id, NULL);
1683 	return err;
1684 }
1685 
1686 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1687 {
1688 	const struct bpf_kfunc_desc *d0 = a;
1689 	const struct bpf_kfunc_desc *d1 = b;
1690 
1691 	if (d0->imm > d1->imm)
1692 		return 1;
1693 	else if (d0->imm < d1->imm)
1694 		return -1;
1695 	return 0;
1696 }
1697 
1698 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1699 {
1700 	struct bpf_kfunc_desc_tab *tab;
1701 
1702 	tab = prog->aux->kfunc_tab;
1703 	if (!tab)
1704 		return;
1705 
1706 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1707 	     kfunc_desc_cmp_by_imm, NULL);
1708 }
1709 
1710 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1711 {
1712 	return !!prog->aux->kfunc_tab;
1713 }
1714 
1715 const struct btf_func_model *
1716 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1717 			 const struct bpf_insn *insn)
1718 {
1719 	const struct bpf_kfunc_desc desc = {
1720 		.imm = insn->imm,
1721 	};
1722 	const struct bpf_kfunc_desc *res;
1723 	struct bpf_kfunc_desc_tab *tab;
1724 
1725 	tab = prog->aux->kfunc_tab;
1726 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1727 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1728 
1729 	return res ? &res->func_model : NULL;
1730 }
1731 
1732 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1733 {
1734 	struct bpf_subprog_info *subprog = env->subprog_info;
1735 	struct bpf_insn *insn = env->prog->insnsi;
1736 	int i, ret, insn_cnt = env->prog->len;
1737 
1738 	/* Add entry function. */
1739 	ret = add_subprog(env, 0);
1740 	if (ret)
1741 		return ret;
1742 
1743 	for (i = 0; i < insn_cnt; i++, insn++) {
1744 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1745 		    !bpf_pseudo_kfunc_call(insn))
1746 			continue;
1747 
1748 		if (!env->bpf_capable) {
1749 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1750 			return -EPERM;
1751 		}
1752 
1753 		if (bpf_pseudo_func(insn)) {
1754 			ret = add_subprog(env, i + insn->imm + 1);
1755 			if (ret >= 0)
1756 				/* remember subprog */
1757 				insn[1].imm = ret;
1758 		} else if (bpf_pseudo_call(insn)) {
1759 			ret = add_subprog(env, i + insn->imm + 1);
1760 		} else {
1761 			ret = add_kfunc_call(env, insn->imm);
1762 		}
1763 
1764 		if (ret < 0)
1765 			return ret;
1766 	}
1767 
1768 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1769 	 * logic. 'subprog_cnt' should not be increased.
1770 	 */
1771 	subprog[env->subprog_cnt].start = insn_cnt;
1772 
1773 	if (env->log.level & BPF_LOG_LEVEL2)
1774 		for (i = 0; i < env->subprog_cnt; i++)
1775 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1776 
1777 	return 0;
1778 }
1779 
1780 static int check_subprogs(struct bpf_verifier_env *env)
1781 {
1782 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
1783 	struct bpf_subprog_info *subprog = env->subprog_info;
1784 	struct bpf_insn *insn = env->prog->insnsi;
1785 	int insn_cnt = env->prog->len;
1786 
1787 	/* now check that all jumps are within the same subprog */
1788 	subprog_start = subprog[cur_subprog].start;
1789 	subprog_end = subprog[cur_subprog + 1].start;
1790 	for (i = 0; i < insn_cnt; i++) {
1791 		u8 code = insn[i].code;
1792 
1793 		if (code == (BPF_JMP | BPF_CALL) &&
1794 		    insn[i].imm == BPF_FUNC_tail_call &&
1795 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1796 			subprog[cur_subprog].has_tail_call = true;
1797 		if (BPF_CLASS(code) == BPF_LD &&
1798 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1799 			subprog[cur_subprog].has_ld_abs = true;
1800 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1801 			goto next;
1802 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1803 			goto next;
1804 		off = i + insn[i].off + 1;
1805 		if (off < subprog_start || off >= subprog_end) {
1806 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1807 			return -EINVAL;
1808 		}
1809 next:
1810 		if (i == subprog_end - 1) {
1811 			/* to avoid fall-through from one subprog into another
1812 			 * the last insn of the subprog should be either exit
1813 			 * or unconditional jump back
1814 			 */
1815 			if (code != (BPF_JMP | BPF_EXIT) &&
1816 			    code != (BPF_JMP | BPF_JA)) {
1817 				verbose(env, "last insn is not an exit or jmp\n");
1818 				return -EINVAL;
1819 			}
1820 			subprog_start = subprog_end;
1821 			cur_subprog++;
1822 			if (cur_subprog < env->subprog_cnt)
1823 				subprog_end = subprog[cur_subprog + 1].start;
1824 		}
1825 	}
1826 	return 0;
1827 }
1828 
1829 /* Parentage chain of this register (or stack slot) should take care of all
1830  * issues like callee-saved registers, stack slot allocation time, etc.
1831  */
1832 static int mark_reg_read(struct bpf_verifier_env *env,
1833 			 const struct bpf_reg_state *state,
1834 			 struct bpf_reg_state *parent, u8 flag)
1835 {
1836 	bool writes = parent == state->parent; /* Observe write marks */
1837 	int cnt = 0;
1838 
1839 	while (parent) {
1840 		/* if read wasn't screened by an earlier write ... */
1841 		if (writes && state->live & REG_LIVE_WRITTEN)
1842 			break;
1843 		if (parent->live & REG_LIVE_DONE) {
1844 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1845 				reg_type_str[parent->type],
1846 				parent->var_off.value, parent->off);
1847 			return -EFAULT;
1848 		}
1849 		/* The first condition is more likely to be true than the
1850 		 * second, checked it first.
1851 		 */
1852 		if ((parent->live & REG_LIVE_READ) == flag ||
1853 		    parent->live & REG_LIVE_READ64)
1854 			/* The parentage chain never changes and
1855 			 * this parent was already marked as LIVE_READ.
1856 			 * There is no need to keep walking the chain again and
1857 			 * keep re-marking all parents as LIVE_READ.
1858 			 * This case happens when the same register is read
1859 			 * multiple times without writes into it in-between.
1860 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1861 			 * then no need to set the weak REG_LIVE_READ32.
1862 			 */
1863 			break;
1864 		/* ... then we depend on parent's value */
1865 		parent->live |= flag;
1866 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1867 		if (flag == REG_LIVE_READ64)
1868 			parent->live &= ~REG_LIVE_READ32;
1869 		state = parent;
1870 		parent = state->parent;
1871 		writes = true;
1872 		cnt++;
1873 	}
1874 
1875 	if (env->longest_mark_read_walk < cnt)
1876 		env->longest_mark_read_walk = cnt;
1877 	return 0;
1878 }
1879 
1880 /* This function is supposed to be used by the following 32-bit optimization
1881  * code only. It returns TRUE if the source or destination register operates
1882  * on 64-bit, otherwise return FALSE.
1883  */
1884 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1885 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1886 {
1887 	u8 code, class, op;
1888 
1889 	code = insn->code;
1890 	class = BPF_CLASS(code);
1891 	op = BPF_OP(code);
1892 	if (class == BPF_JMP) {
1893 		/* BPF_EXIT for "main" will reach here. Return TRUE
1894 		 * conservatively.
1895 		 */
1896 		if (op == BPF_EXIT)
1897 			return true;
1898 		if (op == BPF_CALL) {
1899 			/* BPF to BPF call will reach here because of marking
1900 			 * caller saved clobber with DST_OP_NO_MARK for which we
1901 			 * don't care the register def because they are anyway
1902 			 * marked as NOT_INIT already.
1903 			 */
1904 			if (insn->src_reg == BPF_PSEUDO_CALL)
1905 				return false;
1906 			/* Helper call will reach here because of arg type
1907 			 * check, conservatively return TRUE.
1908 			 */
1909 			if (t == SRC_OP)
1910 				return true;
1911 
1912 			return false;
1913 		}
1914 	}
1915 
1916 	if (class == BPF_ALU64 || class == BPF_JMP ||
1917 	    /* BPF_END always use BPF_ALU class. */
1918 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1919 		return true;
1920 
1921 	if (class == BPF_ALU || class == BPF_JMP32)
1922 		return false;
1923 
1924 	if (class == BPF_LDX) {
1925 		if (t != SRC_OP)
1926 			return BPF_SIZE(code) == BPF_DW;
1927 		/* LDX source must be ptr. */
1928 		return true;
1929 	}
1930 
1931 	if (class == BPF_STX) {
1932 		/* BPF_STX (including atomic variants) has multiple source
1933 		 * operands, one of which is a ptr. Check whether the caller is
1934 		 * asking about it.
1935 		 */
1936 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1937 			return true;
1938 		return BPF_SIZE(code) == BPF_DW;
1939 	}
1940 
1941 	if (class == BPF_LD) {
1942 		u8 mode = BPF_MODE(code);
1943 
1944 		/* LD_IMM64 */
1945 		if (mode == BPF_IMM)
1946 			return true;
1947 
1948 		/* Both LD_IND and LD_ABS return 32-bit data. */
1949 		if (t != SRC_OP)
1950 			return  false;
1951 
1952 		/* Implicit ctx ptr. */
1953 		if (regno == BPF_REG_6)
1954 			return true;
1955 
1956 		/* Explicit source could be any width. */
1957 		return true;
1958 	}
1959 
1960 	if (class == BPF_ST)
1961 		/* The only source register for BPF_ST is a ptr. */
1962 		return true;
1963 
1964 	/* Conservatively return true at default. */
1965 	return true;
1966 }
1967 
1968 /* Return the regno defined by the insn, or -1. */
1969 static int insn_def_regno(const struct bpf_insn *insn)
1970 {
1971 	switch (BPF_CLASS(insn->code)) {
1972 	case BPF_JMP:
1973 	case BPF_JMP32:
1974 	case BPF_ST:
1975 		return -1;
1976 	case BPF_STX:
1977 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1978 		    (insn->imm & BPF_FETCH)) {
1979 			if (insn->imm == BPF_CMPXCHG)
1980 				return BPF_REG_0;
1981 			else
1982 				return insn->src_reg;
1983 		} else {
1984 			return -1;
1985 		}
1986 	default:
1987 		return insn->dst_reg;
1988 	}
1989 }
1990 
1991 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1992 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1993 {
1994 	int dst_reg = insn_def_regno(insn);
1995 
1996 	if (dst_reg == -1)
1997 		return false;
1998 
1999 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2000 }
2001 
2002 static void mark_insn_zext(struct bpf_verifier_env *env,
2003 			   struct bpf_reg_state *reg)
2004 {
2005 	s32 def_idx = reg->subreg_def;
2006 
2007 	if (def_idx == DEF_NOT_SUBREG)
2008 		return;
2009 
2010 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2011 	/* The dst will be zero extended, so won't be sub-register anymore. */
2012 	reg->subreg_def = DEF_NOT_SUBREG;
2013 }
2014 
2015 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2016 			 enum reg_arg_type t)
2017 {
2018 	struct bpf_verifier_state *vstate = env->cur_state;
2019 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2020 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2021 	struct bpf_reg_state *reg, *regs = state->regs;
2022 	bool rw64;
2023 
2024 	if (regno >= MAX_BPF_REG) {
2025 		verbose(env, "R%d is invalid\n", regno);
2026 		return -EINVAL;
2027 	}
2028 
2029 	reg = &regs[regno];
2030 	rw64 = is_reg64(env, insn, regno, reg, t);
2031 	if (t == SRC_OP) {
2032 		/* check whether register used as source operand can be read */
2033 		if (reg->type == NOT_INIT) {
2034 			verbose(env, "R%d !read_ok\n", regno);
2035 			return -EACCES;
2036 		}
2037 		/* We don't need to worry about FP liveness because it's read-only */
2038 		if (regno == BPF_REG_FP)
2039 			return 0;
2040 
2041 		if (rw64)
2042 			mark_insn_zext(env, reg);
2043 
2044 		return mark_reg_read(env, reg, reg->parent,
2045 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2046 	} else {
2047 		/* check whether register used as dest operand can be written to */
2048 		if (regno == BPF_REG_FP) {
2049 			verbose(env, "frame pointer is read only\n");
2050 			return -EACCES;
2051 		}
2052 		reg->live |= REG_LIVE_WRITTEN;
2053 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2054 		if (t == DST_OP)
2055 			mark_reg_unknown(env, regs, regno);
2056 	}
2057 	return 0;
2058 }
2059 
2060 /* for any branch, call, exit record the history of jmps in the given state */
2061 static int push_jmp_history(struct bpf_verifier_env *env,
2062 			    struct bpf_verifier_state *cur)
2063 {
2064 	u32 cnt = cur->jmp_history_cnt;
2065 	struct bpf_idx_pair *p;
2066 
2067 	cnt++;
2068 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2069 	if (!p)
2070 		return -ENOMEM;
2071 	p[cnt - 1].idx = env->insn_idx;
2072 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2073 	cur->jmp_history = p;
2074 	cur->jmp_history_cnt = cnt;
2075 	return 0;
2076 }
2077 
2078 /* Backtrack one insn at a time. If idx is not at the top of recorded
2079  * history then previous instruction came from straight line execution.
2080  */
2081 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2082 			     u32 *history)
2083 {
2084 	u32 cnt = *history;
2085 
2086 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2087 		i = st->jmp_history[cnt - 1].prev_idx;
2088 		(*history)--;
2089 	} else {
2090 		i--;
2091 	}
2092 	return i;
2093 }
2094 
2095 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2096 {
2097 	const struct btf_type *func;
2098 
2099 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2100 		return NULL;
2101 
2102 	func = btf_type_by_id(btf_vmlinux, insn->imm);
2103 	return btf_name_by_offset(btf_vmlinux, func->name_off);
2104 }
2105 
2106 /* For given verifier state backtrack_insn() is called from the last insn to
2107  * the first insn. Its purpose is to compute a bitmask of registers and
2108  * stack slots that needs precision in the parent verifier state.
2109  */
2110 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2111 			  u32 *reg_mask, u64 *stack_mask)
2112 {
2113 	const struct bpf_insn_cbs cbs = {
2114 		.cb_call	= disasm_kfunc_name,
2115 		.cb_print	= verbose,
2116 		.private_data	= env,
2117 	};
2118 	struct bpf_insn *insn = env->prog->insnsi + idx;
2119 	u8 class = BPF_CLASS(insn->code);
2120 	u8 opcode = BPF_OP(insn->code);
2121 	u8 mode = BPF_MODE(insn->code);
2122 	u32 dreg = 1u << insn->dst_reg;
2123 	u32 sreg = 1u << insn->src_reg;
2124 	u32 spi;
2125 
2126 	if (insn->code == 0)
2127 		return 0;
2128 	if (env->log.level & BPF_LOG_LEVEL) {
2129 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2130 		verbose(env, "%d: ", idx);
2131 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2132 	}
2133 
2134 	if (class == BPF_ALU || class == BPF_ALU64) {
2135 		if (!(*reg_mask & dreg))
2136 			return 0;
2137 		if (opcode == BPF_MOV) {
2138 			if (BPF_SRC(insn->code) == BPF_X) {
2139 				/* dreg = sreg
2140 				 * dreg needs precision after this insn
2141 				 * sreg needs precision before this insn
2142 				 */
2143 				*reg_mask &= ~dreg;
2144 				*reg_mask |= sreg;
2145 			} else {
2146 				/* dreg = K
2147 				 * dreg needs precision after this insn.
2148 				 * Corresponding register is already marked
2149 				 * as precise=true in this verifier state.
2150 				 * No further markings in parent are necessary
2151 				 */
2152 				*reg_mask &= ~dreg;
2153 			}
2154 		} else {
2155 			if (BPF_SRC(insn->code) == BPF_X) {
2156 				/* dreg += sreg
2157 				 * both dreg and sreg need precision
2158 				 * before this insn
2159 				 */
2160 				*reg_mask |= sreg;
2161 			} /* else dreg += K
2162 			   * dreg still needs precision before this insn
2163 			   */
2164 		}
2165 	} else if (class == BPF_LDX) {
2166 		if (!(*reg_mask & dreg))
2167 			return 0;
2168 		*reg_mask &= ~dreg;
2169 
2170 		/* scalars can only be spilled into stack w/o losing precision.
2171 		 * Load from any other memory can be zero extended.
2172 		 * The desire to keep that precision is already indicated
2173 		 * by 'precise' mark in corresponding register of this state.
2174 		 * No further tracking necessary.
2175 		 */
2176 		if (insn->src_reg != BPF_REG_FP)
2177 			return 0;
2178 		if (BPF_SIZE(insn->code) != BPF_DW)
2179 			return 0;
2180 
2181 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2182 		 * that [fp - off] slot contains scalar that needs to be
2183 		 * tracked with precision
2184 		 */
2185 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2186 		if (spi >= 64) {
2187 			verbose(env, "BUG spi %d\n", spi);
2188 			WARN_ONCE(1, "verifier backtracking bug");
2189 			return -EFAULT;
2190 		}
2191 		*stack_mask |= 1ull << spi;
2192 	} else if (class == BPF_STX || class == BPF_ST) {
2193 		if (*reg_mask & dreg)
2194 			/* stx & st shouldn't be using _scalar_ dst_reg
2195 			 * to access memory. It means backtracking
2196 			 * encountered a case of pointer subtraction.
2197 			 */
2198 			return -ENOTSUPP;
2199 		/* scalars can only be spilled into stack */
2200 		if (insn->dst_reg != BPF_REG_FP)
2201 			return 0;
2202 		if (BPF_SIZE(insn->code) != BPF_DW)
2203 			return 0;
2204 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2205 		if (spi >= 64) {
2206 			verbose(env, "BUG spi %d\n", spi);
2207 			WARN_ONCE(1, "verifier backtracking bug");
2208 			return -EFAULT;
2209 		}
2210 		if (!(*stack_mask & (1ull << spi)))
2211 			return 0;
2212 		*stack_mask &= ~(1ull << spi);
2213 		if (class == BPF_STX)
2214 			*reg_mask |= sreg;
2215 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2216 		if (opcode == BPF_CALL) {
2217 			if (insn->src_reg == BPF_PSEUDO_CALL)
2218 				return -ENOTSUPP;
2219 			/* regular helper call sets R0 */
2220 			*reg_mask &= ~1;
2221 			if (*reg_mask & 0x3f) {
2222 				/* if backtracing was looking for registers R1-R5
2223 				 * they should have been found already.
2224 				 */
2225 				verbose(env, "BUG regs %x\n", *reg_mask);
2226 				WARN_ONCE(1, "verifier backtracking bug");
2227 				return -EFAULT;
2228 			}
2229 		} else if (opcode == BPF_EXIT) {
2230 			return -ENOTSUPP;
2231 		}
2232 	} else if (class == BPF_LD) {
2233 		if (!(*reg_mask & dreg))
2234 			return 0;
2235 		*reg_mask &= ~dreg;
2236 		/* It's ld_imm64 or ld_abs or ld_ind.
2237 		 * For ld_imm64 no further tracking of precision
2238 		 * into parent is necessary
2239 		 */
2240 		if (mode == BPF_IND || mode == BPF_ABS)
2241 			/* to be analyzed */
2242 			return -ENOTSUPP;
2243 	}
2244 	return 0;
2245 }
2246 
2247 /* the scalar precision tracking algorithm:
2248  * . at the start all registers have precise=false.
2249  * . scalar ranges are tracked as normal through alu and jmp insns.
2250  * . once precise value of the scalar register is used in:
2251  *   .  ptr + scalar alu
2252  *   . if (scalar cond K|scalar)
2253  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2254  *   backtrack through the verifier states and mark all registers and
2255  *   stack slots with spilled constants that these scalar regisers
2256  *   should be precise.
2257  * . during state pruning two registers (or spilled stack slots)
2258  *   are equivalent if both are not precise.
2259  *
2260  * Note the verifier cannot simply walk register parentage chain,
2261  * since many different registers and stack slots could have been
2262  * used to compute single precise scalar.
2263  *
2264  * The approach of starting with precise=true for all registers and then
2265  * backtrack to mark a register as not precise when the verifier detects
2266  * that program doesn't care about specific value (e.g., when helper
2267  * takes register as ARG_ANYTHING parameter) is not safe.
2268  *
2269  * It's ok to walk single parentage chain of the verifier states.
2270  * It's possible that this backtracking will go all the way till 1st insn.
2271  * All other branches will be explored for needing precision later.
2272  *
2273  * The backtracking needs to deal with cases like:
2274  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2275  * r9 -= r8
2276  * r5 = r9
2277  * if r5 > 0x79f goto pc+7
2278  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2279  * r5 += 1
2280  * ...
2281  * call bpf_perf_event_output#25
2282  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2283  *
2284  * and this case:
2285  * r6 = 1
2286  * call foo // uses callee's r6 inside to compute r0
2287  * r0 += r6
2288  * if r0 == 0 goto
2289  *
2290  * to track above reg_mask/stack_mask needs to be independent for each frame.
2291  *
2292  * Also if parent's curframe > frame where backtracking started,
2293  * the verifier need to mark registers in both frames, otherwise callees
2294  * may incorrectly prune callers. This is similar to
2295  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2296  *
2297  * For now backtracking falls back into conservative marking.
2298  */
2299 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2300 				     struct bpf_verifier_state *st)
2301 {
2302 	struct bpf_func_state *func;
2303 	struct bpf_reg_state *reg;
2304 	int i, j;
2305 
2306 	/* big hammer: mark all scalars precise in this path.
2307 	 * pop_stack may still get !precise scalars.
2308 	 */
2309 	for (; st; st = st->parent)
2310 		for (i = 0; i <= st->curframe; i++) {
2311 			func = st->frame[i];
2312 			for (j = 0; j < BPF_REG_FP; j++) {
2313 				reg = &func->regs[j];
2314 				if (reg->type != SCALAR_VALUE)
2315 					continue;
2316 				reg->precise = true;
2317 			}
2318 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2319 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2320 					continue;
2321 				reg = &func->stack[j].spilled_ptr;
2322 				if (reg->type != SCALAR_VALUE)
2323 					continue;
2324 				reg->precise = true;
2325 			}
2326 		}
2327 }
2328 
2329 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2330 				  int spi)
2331 {
2332 	struct bpf_verifier_state *st = env->cur_state;
2333 	int first_idx = st->first_insn_idx;
2334 	int last_idx = env->insn_idx;
2335 	struct bpf_func_state *func;
2336 	struct bpf_reg_state *reg;
2337 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2338 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2339 	bool skip_first = true;
2340 	bool new_marks = false;
2341 	int i, err;
2342 
2343 	if (!env->bpf_capable)
2344 		return 0;
2345 
2346 	func = st->frame[st->curframe];
2347 	if (regno >= 0) {
2348 		reg = &func->regs[regno];
2349 		if (reg->type != SCALAR_VALUE) {
2350 			WARN_ONCE(1, "backtracing misuse");
2351 			return -EFAULT;
2352 		}
2353 		if (!reg->precise)
2354 			new_marks = true;
2355 		else
2356 			reg_mask = 0;
2357 		reg->precise = true;
2358 	}
2359 
2360 	while (spi >= 0) {
2361 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2362 			stack_mask = 0;
2363 			break;
2364 		}
2365 		reg = &func->stack[spi].spilled_ptr;
2366 		if (reg->type != SCALAR_VALUE) {
2367 			stack_mask = 0;
2368 			break;
2369 		}
2370 		if (!reg->precise)
2371 			new_marks = true;
2372 		else
2373 			stack_mask = 0;
2374 		reg->precise = true;
2375 		break;
2376 	}
2377 
2378 	if (!new_marks)
2379 		return 0;
2380 	if (!reg_mask && !stack_mask)
2381 		return 0;
2382 	for (;;) {
2383 		DECLARE_BITMAP(mask, 64);
2384 		u32 history = st->jmp_history_cnt;
2385 
2386 		if (env->log.level & BPF_LOG_LEVEL)
2387 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2388 		for (i = last_idx;;) {
2389 			if (skip_first) {
2390 				err = 0;
2391 				skip_first = false;
2392 			} else {
2393 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2394 			}
2395 			if (err == -ENOTSUPP) {
2396 				mark_all_scalars_precise(env, st);
2397 				return 0;
2398 			} else if (err) {
2399 				return err;
2400 			}
2401 			if (!reg_mask && !stack_mask)
2402 				/* Found assignment(s) into tracked register in this state.
2403 				 * Since this state is already marked, just return.
2404 				 * Nothing to be tracked further in the parent state.
2405 				 */
2406 				return 0;
2407 			if (i == first_idx)
2408 				break;
2409 			i = get_prev_insn_idx(st, i, &history);
2410 			if (i >= env->prog->len) {
2411 				/* This can happen if backtracking reached insn 0
2412 				 * and there are still reg_mask or stack_mask
2413 				 * to backtrack.
2414 				 * It means the backtracking missed the spot where
2415 				 * particular register was initialized with a constant.
2416 				 */
2417 				verbose(env, "BUG backtracking idx %d\n", i);
2418 				WARN_ONCE(1, "verifier backtracking bug");
2419 				return -EFAULT;
2420 			}
2421 		}
2422 		st = st->parent;
2423 		if (!st)
2424 			break;
2425 
2426 		new_marks = false;
2427 		func = st->frame[st->curframe];
2428 		bitmap_from_u64(mask, reg_mask);
2429 		for_each_set_bit(i, mask, 32) {
2430 			reg = &func->regs[i];
2431 			if (reg->type != SCALAR_VALUE) {
2432 				reg_mask &= ~(1u << i);
2433 				continue;
2434 			}
2435 			if (!reg->precise)
2436 				new_marks = true;
2437 			reg->precise = true;
2438 		}
2439 
2440 		bitmap_from_u64(mask, stack_mask);
2441 		for_each_set_bit(i, mask, 64) {
2442 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2443 				/* the sequence of instructions:
2444 				 * 2: (bf) r3 = r10
2445 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2446 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2447 				 * doesn't contain jmps. It's backtracked
2448 				 * as a single block.
2449 				 * During backtracking insn 3 is not recognized as
2450 				 * stack access, so at the end of backtracking
2451 				 * stack slot fp-8 is still marked in stack_mask.
2452 				 * However the parent state may not have accessed
2453 				 * fp-8 and it's "unallocated" stack space.
2454 				 * In such case fallback to conservative.
2455 				 */
2456 				mark_all_scalars_precise(env, st);
2457 				return 0;
2458 			}
2459 
2460 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2461 				stack_mask &= ~(1ull << i);
2462 				continue;
2463 			}
2464 			reg = &func->stack[i].spilled_ptr;
2465 			if (reg->type != SCALAR_VALUE) {
2466 				stack_mask &= ~(1ull << i);
2467 				continue;
2468 			}
2469 			if (!reg->precise)
2470 				new_marks = true;
2471 			reg->precise = true;
2472 		}
2473 		if (env->log.level & BPF_LOG_LEVEL) {
2474 			print_verifier_state(env, func);
2475 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2476 				new_marks ? "didn't have" : "already had",
2477 				reg_mask, stack_mask);
2478 		}
2479 
2480 		if (!reg_mask && !stack_mask)
2481 			break;
2482 		if (!new_marks)
2483 			break;
2484 
2485 		last_idx = st->last_insn_idx;
2486 		first_idx = st->first_insn_idx;
2487 	}
2488 	return 0;
2489 }
2490 
2491 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2492 {
2493 	return __mark_chain_precision(env, regno, -1);
2494 }
2495 
2496 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2497 {
2498 	return __mark_chain_precision(env, -1, spi);
2499 }
2500 
2501 static bool is_spillable_regtype(enum bpf_reg_type type)
2502 {
2503 	switch (type) {
2504 	case PTR_TO_MAP_VALUE:
2505 	case PTR_TO_MAP_VALUE_OR_NULL:
2506 	case PTR_TO_STACK:
2507 	case PTR_TO_CTX:
2508 	case PTR_TO_PACKET:
2509 	case PTR_TO_PACKET_META:
2510 	case PTR_TO_PACKET_END:
2511 	case PTR_TO_FLOW_KEYS:
2512 	case CONST_PTR_TO_MAP:
2513 	case PTR_TO_SOCKET:
2514 	case PTR_TO_SOCKET_OR_NULL:
2515 	case PTR_TO_SOCK_COMMON:
2516 	case PTR_TO_SOCK_COMMON_OR_NULL:
2517 	case PTR_TO_TCP_SOCK:
2518 	case PTR_TO_TCP_SOCK_OR_NULL:
2519 	case PTR_TO_XDP_SOCK:
2520 	case PTR_TO_BTF_ID:
2521 	case PTR_TO_BTF_ID_OR_NULL:
2522 	case PTR_TO_RDONLY_BUF:
2523 	case PTR_TO_RDONLY_BUF_OR_NULL:
2524 	case PTR_TO_RDWR_BUF:
2525 	case PTR_TO_RDWR_BUF_OR_NULL:
2526 	case PTR_TO_PERCPU_BTF_ID:
2527 	case PTR_TO_MEM:
2528 	case PTR_TO_MEM_OR_NULL:
2529 	case PTR_TO_FUNC:
2530 	case PTR_TO_MAP_KEY:
2531 		return true;
2532 	default:
2533 		return false;
2534 	}
2535 }
2536 
2537 /* Does this register contain a constant zero? */
2538 static bool register_is_null(struct bpf_reg_state *reg)
2539 {
2540 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2541 }
2542 
2543 static bool register_is_const(struct bpf_reg_state *reg)
2544 {
2545 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2546 }
2547 
2548 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2549 {
2550 	return tnum_is_unknown(reg->var_off) &&
2551 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2552 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2553 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2554 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2555 }
2556 
2557 static bool register_is_bounded(struct bpf_reg_state *reg)
2558 {
2559 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2560 }
2561 
2562 static bool __is_pointer_value(bool allow_ptr_leaks,
2563 			       const struct bpf_reg_state *reg)
2564 {
2565 	if (allow_ptr_leaks)
2566 		return false;
2567 
2568 	return reg->type != SCALAR_VALUE;
2569 }
2570 
2571 static void save_register_state(struct bpf_func_state *state,
2572 				int spi, struct bpf_reg_state *reg)
2573 {
2574 	int i;
2575 
2576 	state->stack[spi].spilled_ptr = *reg;
2577 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2578 
2579 	for (i = 0; i < BPF_REG_SIZE; i++)
2580 		state->stack[spi].slot_type[i] = STACK_SPILL;
2581 }
2582 
2583 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2584  * stack boundary and alignment are checked in check_mem_access()
2585  */
2586 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2587 				       /* stack frame we're writing to */
2588 				       struct bpf_func_state *state,
2589 				       int off, int size, int value_regno,
2590 				       int insn_idx)
2591 {
2592 	struct bpf_func_state *cur; /* state of the current function */
2593 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2594 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2595 	struct bpf_reg_state *reg = NULL;
2596 
2597 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2598 	if (err)
2599 		return err;
2600 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2601 	 * so it's aligned access and [off, off + size) are within stack limits
2602 	 */
2603 	if (!env->allow_ptr_leaks &&
2604 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2605 	    size != BPF_REG_SIZE) {
2606 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2607 		return -EACCES;
2608 	}
2609 
2610 	cur = env->cur_state->frame[env->cur_state->curframe];
2611 	if (value_regno >= 0)
2612 		reg = &cur->regs[value_regno];
2613 
2614 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2615 	    !register_is_null(reg) && env->bpf_capable) {
2616 		if (dst_reg != BPF_REG_FP) {
2617 			/* The backtracking logic can only recognize explicit
2618 			 * stack slot address like [fp - 8]. Other spill of
2619 			 * scalar via different register has to be conservative.
2620 			 * Backtrack from here and mark all registers as precise
2621 			 * that contributed into 'reg' being a constant.
2622 			 */
2623 			err = mark_chain_precision(env, value_regno);
2624 			if (err)
2625 				return err;
2626 		}
2627 		save_register_state(state, spi, reg);
2628 	} else if (reg && is_spillable_regtype(reg->type)) {
2629 		/* register containing pointer is being spilled into stack */
2630 		if (size != BPF_REG_SIZE) {
2631 			verbose_linfo(env, insn_idx, "; ");
2632 			verbose(env, "invalid size of register spill\n");
2633 			return -EACCES;
2634 		}
2635 
2636 		if (state != cur && reg->type == PTR_TO_STACK) {
2637 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2638 			return -EINVAL;
2639 		}
2640 
2641 		if (!env->bypass_spec_v4) {
2642 			bool sanitize = false;
2643 
2644 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2645 			    register_is_const(&state->stack[spi].spilled_ptr))
2646 				sanitize = true;
2647 			for (i = 0; i < BPF_REG_SIZE; i++)
2648 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2649 					sanitize = true;
2650 					break;
2651 				}
2652 			if (sanitize) {
2653 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2654 				int soff = (-spi - 1) * BPF_REG_SIZE;
2655 
2656 				/* detected reuse of integer stack slot with a pointer
2657 				 * which means either llvm is reusing stack slot or
2658 				 * an attacker is trying to exploit CVE-2018-3639
2659 				 * (speculative store bypass)
2660 				 * Have to sanitize that slot with preemptive
2661 				 * store of zero.
2662 				 */
2663 				if (*poff && *poff != soff) {
2664 					/* disallow programs where single insn stores
2665 					 * into two different stack slots, since verifier
2666 					 * cannot sanitize them
2667 					 */
2668 					verbose(env,
2669 						"insn %d cannot access two stack slots fp%d and fp%d",
2670 						insn_idx, *poff, soff);
2671 					return -EINVAL;
2672 				}
2673 				*poff = soff;
2674 			}
2675 		}
2676 		save_register_state(state, spi, reg);
2677 	} else {
2678 		u8 type = STACK_MISC;
2679 
2680 		/* regular write of data into stack destroys any spilled ptr */
2681 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2682 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2683 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2684 			for (i = 0; i < BPF_REG_SIZE; i++)
2685 				state->stack[spi].slot_type[i] = STACK_MISC;
2686 
2687 		/* only mark the slot as written if all 8 bytes were written
2688 		 * otherwise read propagation may incorrectly stop too soon
2689 		 * when stack slots are partially written.
2690 		 * This heuristic means that read propagation will be
2691 		 * conservative, since it will add reg_live_read marks
2692 		 * to stack slots all the way to first state when programs
2693 		 * writes+reads less than 8 bytes
2694 		 */
2695 		if (size == BPF_REG_SIZE)
2696 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2697 
2698 		/* when we zero initialize stack slots mark them as such */
2699 		if (reg && register_is_null(reg)) {
2700 			/* backtracking doesn't work for STACK_ZERO yet. */
2701 			err = mark_chain_precision(env, value_regno);
2702 			if (err)
2703 				return err;
2704 			type = STACK_ZERO;
2705 		}
2706 
2707 		/* Mark slots affected by this stack write. */
2708 		for (i = 0; i < size; i++)
2709 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2710 				type;
2711 	}
2712 	return 0;
2713 }
2714 
2715 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2716  * known to contain a variable offset.
2717  * This function checks whether the write is permitted and conservatively
2718  * tracks the effects of the write, considering that each stack slot in the
2719  * dynamic range is potentially written to.
2720  *
2721  * 'off' includes 'regno->off'.
2722  * 'value_regno' can be -1, meaning that an unknown value is being written to
2723  * the stack.
2724  *
2725  * Spilled pointers in range are not marked as written because we don't know
2726  * what's going to be actually written. This means that read propagation for
2727  * future reads cannot be terminated by this write.
2728  *
2729  * For privileged programs, uninitialized stack slots are considered
2730  * initialized by this write (even though we don't know exactly what offsets
2731  * are going to be written to). The idea is that we don't want the verifier to
2732  * reject future reads that access slots written to through variable offsets.
2733  */
2734 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2735 				     /* func where register points to */
2736 				     struct bpf_func_state *state,
2737 				     int ptr_regno, int off, int size,
2738 				     int value_regno, int insn_idx)
2739 {
2740 	struct bpf_func_state *cur; /* state of the current function */
2741 	int min_off, max_off;
2742 	int i, err;
2743 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2744 	bool writing_zero = false;
2745 	/* set if the fact that we're writing a zero is used to let any
2746 	 * stack slots remain STACK_ZERO
2747 	 */
2748 	bool zero_used = false;
2749 
2750 	cur = env->cur_state->frame[env->cur_state->curframe];
2751 	ptr_reg = &cur->regs[ptr_regno];
2752 	min_off = ptr_reg->smin_value + off;
2753 	max_off = ptr_reg->smax_value + off + size;
2754 	if (value_regno >= 0)
2755 		value_reg = &cur->regs[value_regno];
2756 	if (value_reg && register_is_null(value_reg))
2757 		writing_zero = true;
2758 
2759 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2760 	if (err)
2761 		return err;
2762 
2763 
2764 	/* Variable offset writes destroy any spilled pointers in range. */
2765 	for (i = min_off; i < max_off; i++) {
2766 		u8 new_type, *stype;
2767 		int slot, spi;
2768 
2769 		slot = -i - 1;
2770 		spi = slot / BPF_REG_SIZE;
2771 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2772 
2773 		if (!env->allow_ptr_leaks
2774 				&& *stype != NOT_INIT
2775 				&& *stype != SCALAR_VALUE) {
2776 			/* Reject the write if there's are spilled pointers in
2777 			 * range. If we didn't reject here, the ptr status
2778 			 * would be erased below (even though not all slots are
2779 			 * actually overwritten), possibly opening the door to
2780 			 * leaks.
2781 			 */
2782 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2783 				insn_idx, i);
2784 			return -EINVAL;
2785 		}
2786 
2787 		/* Erase all spilled pointers. */
2788 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2789 
2790 		/* Update the slot type. */
2791 		new_type = STACK_MISC;
2792 		if (writing_zero && *stype == STACK_ZERO) {
2793 			new_type = STACK_ZERO;
2794 			zero_used = true;
2795 		}
2796 		/* If the slot is STACK_INVALID, we check whether it's OK to
2797 		 * pretend that it will be initialized by this write. The slot
2798 		 * might not actually be written to, and so if we mark it as
2799 		 * initialized future reads might leak uninitialized memory.
2800 		 * For privileged programs, we will accept such reads to slots
2801 		 * that may or may not be written because, if we're reject
2802 		 * them, the error would be too confusing.
2803 		 */
2804 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2805 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2806 					insn_idx, i);
2807 			return -EINVAL;
2808 		}
2809 		*stype = new_type;
2810 	}
2811 	if (zero_used) {
2812 		/* backtracking doesn't work for STACK_ZERO yet. */
2813 		err = mark_chain_precision(env, value_regno);
2814 		if (err)
2815 			return err;
2816 	}
2817 	return 0;
2818 }
2819 
2820 /* When register 'dst_regno' is assigned some values from stack[min_off,
2821  * max_off), we set the register's type according to the types of the
2822  * respective stack slots. If all the stack values are known to be zeros, then
2823  * so is the destination reg. Otherwise, the register is considered to be
2824  * SCALAR. This function does not deal with register filling; the caller must
2825  * ensure that all spilled registers in the stack range have been marked as
2826  * read.
2827  */
2828 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2829 				/* func where src register points to */
2830 				struct bpf_func_state *ptr_state,
2831 				int min_off, int max_off, int dst_regno)
2832 {
2833 	struct bpf_verifier_state *vstate = env->cur_state;
2834 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2835 	int i, slot, spi;
2836 	u8 *stype;
2837 	int zeros = 0;
2838 
2839 	for (i = min_off; i < max_off; i++) {
2840 		slot = -i - 1;
2841 		spi = slot / BPF_REG_SIZE;
2842 		stype = ptr_state->stack[spi].slot_type;
2843 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2844 			break;
2845 		zeros++;
2846 	}
2847 	if (zeros == max_off - min_off) {
2848 		/* any access_size read into register is zero extended,
2849 		 * so the whole register == const_zero
2850 		 */
2851 		__mark_reg_const_zero(&state->regs[dst_regno]);
2852 		/* backtracking doesn't support STACK_ZERO yet,
2853 		 * so mark it precise here, so that later
2854 		 * backtracking can stop here.
2855 		 * Backtracking may not need this if this register
2856 		 * doesn't participate in pointer adjustment.
2857 		 * Forward propagation of precise flag is not
2858 		 * necessary either. This mark is only to stop
2859 		 * backtracking. Any register that contributed
2860 		 * to const 0 was marked precise before spill.
2861 		 */
2862 		state->regs[dst_regno].precise = true;
2863 	} else {
2864 		/* have read misc data from the stack */
2865 		mark_reg_unknown(env, state->regs, dst_regno);
2866 	}
2867 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2868 }
2869 
2870 /* Read the stack at 'off' and put the results into the register indicated by
2871  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2872  * spilled reg.
2873  *
2874  * 'dst_regno' can be -1, meaning that the read value is not going to a
2875  * register.
2876  *
2877  * The access is assumed to be within the current stack bounds.
2878  */
2879 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2880 				      /* func where src register points to */
2881 				      struct bpf_func_state *reg_state,
2882 				      int off, int size, int dst_regno)
2883 {
2884 	struct bpf_verifier_state *vstate = env->cur_state;
2885 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2886 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2887 	struct bpf_reg_state *reg;
2888 	u8 *stype;
2889 
2890 	stype = reg_state->stack[spi].slot_type;
2891 	reg = &reg_state->stack[spi].spilled_ptr;
2892 
2893 	if (stype[0] == STACK_SPILL) {
2894 		if (size != BPF_REG_SIZE) {
2895 			if (reg->type != SCALAR_VALUE) {
2896 				verbose_linfo(env, env->insn_idx, "; ");
2897 				verbose(env, "invalid size of register fill\n");
2898 				return -EACCES;
2899 			}
2900 			if (dst_regno >= 0) {
2901 				mark_reg_unknown(env, state->regs, dst_regno);
2902 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2903 			}
2904 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2905 			return 0;
2906 		}
2907 		for (i = 1; i < BPF_REG_SIZE; i++) {
2908 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2909 				verbose(env, "corrupted spill memory\n");
2910 				return -EACCES;
2911 			}
2912 		}
2913 
2914 		if (dst_regno >= 0) {
2915 			/* restore register state from stack */
2916 			state->regs[dst_regno] = *reg;
2917 			/* mark reg as written since spilled pointer state likely
2918 			 * has its liveness marks cleared by is_state_visited()
2919 			 * which resets stack/reg liveness for state transitions
2920 			 */
2921 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2922 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2923 			/* If dst_regno==-1, the caller is asking us whether
2924 			 * it is acceptable to use this value as a SCALAR_VALUE
2925 			 * (e.g. for XADD).
2926 			 * We must not allow unprivileged callers to do that
2927 			 * with spilled pointers.
2928 			 */
2929 			verbose(env, "leaking pointer from stack off %d\n",
2930 				off);
2931 			return -EACCES;
2932 		}
2933 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2934 	} else {
2935 		u8 type;
2936 
2937 		for (i = 0; i < size; i++) {
2938 			type = stype[(slot - i) % BPF_REG_SIZE];
2939 			if (type == STACK_MISC)
2940 				continue;
2941 			if (type == STACK_ZERO)
2942 				continue;
2943 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2944 				off, i, size);
2945 			return -EACCES;
2946 		}
2947 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2948 		if (dst_regno >= 0)
2949 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2950 	}
2951 	return 0;
2952 }
2953 
2954 enum stack_access_src {
2955 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2956 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2957 };
2958 
2959 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2960 					 int regno, int off, int access_size,
2961 					 bool zero_size_allowed,
2962 					 enum stack_access_src type,
2963 					 struct bpf_call_arg_meta *meta);
2964 
2965 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2966 {
2967 	return cur_regs(env) + regno;
2968 }
2969 
2970 /* Read the stack at 'ptr_regno + off' and put the result into the register
2971  * 'dst_regno'.
2972  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2973  * but not its variable offset.
2974  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2975  *
2976  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2977  * filling registers (i.e. reads of spilled register cannot be detected when
2978  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2979  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2980  * offset; for a fixed offset check_stack_read_fixed_off should be used
2981  * instead.
2982  */
2983 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2984 				    int ptr_regno, int off, int size, int dst_regno)
2985 {
2986 	/* The state of the source register. */
2987 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2988 	struct bpf_func_state *ptr_state = func(env, reg);
2989 	int err;
2990 	int min_off, max_off;
2991 
2992 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2993 	 */
2994 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2995 					    false, ACCESS_DIRECT, NULL);
2996 	if (err)
2997 		return err;
2998 
2999 	min_off = reg->smin_value + off;
3000 	max_off = reg->smax_value + off;
3001 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3002 	return 0;
3003 }
3004 
3005 /* check_stack_read dispatches to check_stack_read_fixed_off or
3006  * check_stack_read_var_off.
3007  *
3008  * The caller must ensure that the offset falls within the allocated stack
3009  * bounds.
3010  *
3011  * 'dst_regno' is a register which will receive the value from the stack. It
3012  * can be -1, meaning that the read value is not going to a register.
3013  */
3014 static int check_stack_read(struct bpf_verifier_env *env,
3015 			    int ptr_regno, int off, int size,
3016 			    int dst_regno)
3017 {
3018 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3019 	struct bpf_func_state *state = func(env, reg);
3020 	int err;
3021 	/* Some accesses are only permitted with a static offset. */
3022 	bool var_off = !tnum_is_const(reg->var_off);
3023 
3024 	/* The offset is required to be static when reads don't go to a
3025 	 * register, in order to not leak pointers (see
3026 	 * check_stack_read_fixed_off).
3027 	 */
3028 	if (dst_regno < 0 && var_off) {
3029 		char tn_buf[48];
3030 
3031 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3032 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3033 			tn_buf, off, size);
3034 		return -EACCES;
3035 	}
3036 	/* Variable offset is prohibited for unprivileged mode for simplicity
3037 	 * since it requires corresponding support in Spectre masking for stack
3038 	 * ALU. See also retrieve_ptr_limit().
3039 	 */
3040 	if (!env->bypass_spec_v1 && var_off) {
3041 		char tn_buf[48];
3042 
3043 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3044 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3045 				ptr_regno, tn_buf);
3046 		return -EACCES;
3047 	}
3048 
3049 	if (!var_off) {
3050 		off += reg->var_off.value;
3051 		err = check_stack_read_fixed_off(env, state, off, size,
3052 						 dst_regno);
3053 	} else {
3054 		/* Variable offset stack reads need more conservative handling
3055 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3056 		 * branch.
3057 		 */
3058 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3059 					       dst_regno);
3060 	}
3061 	return err;
3062 }
3063 
3064 
3065 /* check_stack_write dispatches to check_stack_write_fixed_off or
3066  * check_stack_write_var_off.
3067  *
3068  * 'ptr_regno' is the register used as a pointer into the stack.
3069  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3070  * 'value_regno' is the register whose value we're writing to the stack. It can
3071  * be -1, meaning that we're not writing from a register.
3072  *
3073  * The caller must ensure that the offset falls within the maximum stack size.
3074  */
3075 static int check_stack_write(struct bpf_verifier_env *env,
3076 			     int ptr_regno, int off, int size,
3077 			     int value_regno, int insn_idx)
3078 {
3079 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3080 	struct bpf_func_state *state = func(env, reg);
3081 	int err;
3082 
3083 	if (tnum_is_const(reg->var_off)) {
3084 		off += reg->var_off.value;
3085 		err = check_stack_write_fixed_off(env, state, off, size,
3086 						  value_regno, insn_idx);
3087 	} else {
3088 		/* Variable offset stack reads need more conservative handling
3089 		 * than fixed offset ones.
3090 		 */
3091 		err = check_stack_write_var_off(env, state,
3092 						ptr_regno, off, size,
3093 						value_regno, insn_idx);
3094 	}
3095 	return err;
3096 }
3097 
3098 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3099 				 int off, int size, enum bpf_access_type type)
3100 {
3101 	struct bpf_reg_state *regs = cur_regs(env);
3102 	struct bpf_map *map = regs[regno].map_ptr;
3103 	u32 cap = bpf_map_flags_to_cap(map);
3104 
3105 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3106 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3107 			map->value_size, off, size);
3108 		return -EACCES;
3109 	}
3110 
3111 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3112 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3113 			map->value_size, off, size);
3114 		return -EACCES;
3115 	}
3116 
3117 	return 0;
3118 }
3119 
3120 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3121 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3122 			      int off, int size, u32 mem_size,
3123 			      bool zero_size_allowed)
3124 {
3125 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3126 	struct bpf_reg_state *reg;
3127 
3128 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3129 		return 0;
3130 
3131 	reg = &cur_regs(env)[regno];
3132 	switch (reg->type) {
3133 	case PTR_TO_MAP_KEY:
3134 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3135 			mem_size, off, size);
3136 		break;
3137 	case PTR_TO_MAP_VALUE:
3138 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3139 			mem_size, off, size);
3140 		break;
3141 	case PTR_TO_PACKET:
3142 	case PTR_TO_PACKET_META:
3143 	case PTR_TO_PACKET_END:
3144 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3145 			off, size, regno, reg->id, off, mem_size);
3146 		break;
3147 	case PTR_TO_MEM:
3148 	default:
3149 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3150 			mem_size, off, size);
3151 	}
3152 
3153 	return -EACCES;
3154 }
3155 
3156 /* check read/write into a memory region with possible variable offset */
3157 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3158 				   int off, int size, u32 mem_size,
3159 				   bool zero_size_allowed)
3160 {
3161 	struct bpf_verifier_state *vstate = env->cur_state;
3162 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3163 	struct bpf_reg_state *reg = &state->regs[regno];
3164 	int err;
3165 
3166 	/* We may have adjusted the register pointing to memory region, so we
3167 	 * need to try adding each of min_value and max_value to off
3168 	 * to make sure our theoretical access will be safe.
3169 	 */
3170 	if (env->log.level & BPF_LOG_LEVEL)
3171 		print_verifier_state(env, state);
3172 
3173 	/* The minimum value is only important with signed
3174 	 * comparisons where we can't assume the floor of a
3175 	 * value is 0.  If we are using signed variables for our
3176 	 * index'es we need to make sure that whatever we use
3177 	 * will have a set floor within our range.
3178 	 */
3179 	if (reg->smin_value < 0 &&
3180 	    (reg->smin_value == S64_MIN ||
3181 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3182 	      reg->smin_value + off < 0)) {
3183 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3184 			regno);
3185 		return -EACCES;
3186 	}
3187 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3188 				 mem_size, zero_size_allowed);
3189 	if (err) {
3190 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3191 			regno);
3192 		return err;
3193 	}
3194 
3195 	/* If we haven't set a max value then we need to bail since we can't be
3196 	 * sure we won't do bad things.
3197 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3198 	 */
3199 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3200 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3201 			regno);
3202 		return -EACCES;
3203 	}
3204 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3205 				 mem_size, zero_size_allowed);
3206 	if (err) {
3207 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3208 			regno);
3209 		return err;
3210 	}
3211 
3212 	return 0;
3213 }
3214 
3215 /* check read/write into a map element with possible variable offset */
3216 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3217 			    int off, int size, bool zero_size_allowed)
3218 {
3219 	struct bpf_verifier_state *vstate = env->cur_state;
3220 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3221 	struct bpf_reg_state *reg = &state->regs[regno];
3222 	struct bpf_map *map = reg->map_ptr;
3223 	int err;
3224 
3225 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3226 				      zero_size_allowed);
3227 	if (err)
3228 		return err;
3229 
3230 	if (map_value_has_spin_lock(map)) {
3231 		u32 lock = map->spin_lock_off;
3232 
3233 		/* if any part of struct bpf_spin_lock can be touched by
3234 		 * load/store reject this program.
3235 		 * To check that [x1, x2) overlaps with [y1, y2)
3236 		 * it is sufficient to check x1 < y2 && y1 < x2.
3237 		 */
3238 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3239 		     lock < reg->umax_value + off + size) {
3240 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3241 			return -EACCES;
3242 		}
3243 	}
3244 	return err;
3245 }
3246 
3247 #define MAX_PACKET_OFF 0xffff
3248 
3249 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3250 {
3251 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3252 }
3253 
3254 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3255 				       const struct bpf_call_arg_meta *meta,
3256 				       enum bpf_access_type t)
3257 {
3258 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3259 
3260 	switch (prog_type) {
3261 	/* Program types only with direct read access go here! */
3262 	case BPF_PROG_TYPE_LWT_IN:
3263 	case BPF_PROG_TYPE_LWT_OUT:
3264 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3265 	case BPF_PROG_TYPE_SK_REUSEPORT:
3266 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3267 	case BPF_PROG_TYPE_CGROUP_SKB:
3268 		if (t == BPF_WRITE)
3269 			return false;
3270 		fallthrough;
3271 
3272 	/* Program types with direct read + write access go here! */
3273 	case BPF_PROG_TYPE_SCHED_CLS:
3274 	case BPF_PROG_TYPE_SCHED_ACT:
3275 	case BPF_PROG_TYPE_XDP:
3276 	case BPF_PROG_TYPE_LWT_XMIT:
3277 	case BPF_PROG_TYPE_SK_SKB:
3278 	case BPF_PROG_TYPE_SK_MSG:
3279 		if (meta)
3280 			return meta->pkt_access;
3281 
3282 		env->seen_direct_write = true;
3283 		return true;
3284 
3285 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3286 		if (t == BPF_WRITE)
3287 			env->seen_direct_write = true;
3288 
3289 		return true;
3290 
3291 	default:
3292 		return false;
3293 	}
3294 }
3295 
3296 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3297 			       int size, bool zero_size_allowed)
3298 {
3299 	struct bpf_reg_state *regs = cur_regs(env);
3300 	struct bpf_reg_state *reg = &regs[regno];
3301 	int err;
3302 
3303 	/* We may have added a variable offset to the packet pointer; but any
3304 	 * reg->range we have comes after that.  We are only checking the fixed
3305 	 * offset.
3306 	 */
3307 
3308 	/* We don't allow negative numbers, because we aren't tracking enough
3309 	 * detail to prove they're safe.
3310 	 */
3311 	if (reg->smin_value < 0) {
3312 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3313 			regno);
3314 		return -EACCES;
3315 	}
3316 
3317 	err = reg->range < 0 ? -EINVAL :
3318 	      __check_mem_access(env, regno, off, size, reg->range,
3319 				 zero_size_allowed);
3320 	if (err) {
3321 		verbose(env, "R%d offset is outside of the packet\n", regno);
3322 		return err;
3323 	}
3324 
3325 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3326 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3327 	 * otherwise find_good_pkt_pointers would have refused to set range info
3328 	 * that __check_mem_access would have rejected this pkt access.
3329 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3330 	 */
3331 	env->prog->aux->max_pkt_offset =
3332 		max_t(u32, env->prog->aux->max_pkt_offset,
3333 		      off + reg->umax_value + size - 1);
3334 
3335 	return err;
3336 }
3337 
3338 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3339 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3340 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3341 			    struct btf **btf, u32 *btf_id)
3342 {
3343 	struct bpf_insn_access_aux info = {
3344 		.reg_type = *reg_type,
3345 		.log = &env->log,
3346 	};
3347 
3348 	if (env->ops->is_valid_access &&
3349 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3350 		/* A non zero info.ctx_field_size indicates that this field is a
3351 		 * candidate for later verifier transformation to load the whole
3352 		 * field and then apply a mask when accessed with a narrower
3353 		 * access than actual ctx access size. A zero info.ctx_field_size
3354 		 * will only allow for whole field access and rejects any other
3355 		 * type of narrower access.
3356 		 */
3357 		*reg_type = info.reg_type;
3358 
3359 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3360 			*btf = info.btf;
3361 			*btf_id = info.btf_id;
3362 		} else {
3363 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3364 		}
3365 		/* remember the offset of last byte accessed in ctx */
3366 		if (env->prog->aux->max_ctx_offset < off + size)
3367 			env->prog->aux->max_ctx_offset = off + size;
3368 		return 0;
3369 	}
3370 
3371 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3372 	return -EACCES;
3373 }
3374 
3375 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3376 				  int size)
3377 {
3378 	if (size < 0 || off < 0 ||
3379 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3380 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3381 			off, size);
3382 		return -EACCES;
3383 	}
3384 	return 0;
3385 }
3386 
3387 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3388 			     u32 regno, int off, int size,
3389 			     enum bpf_access_type t)
3390 {
3391 	struct bpf_reg_state *regs = cur_regs(env);
3392 	struct bpf_reg_state *reg = &regs[regno];
3393 	struct bpf_insn_access_aux info = {};
3394 	bool valid;
3395 
3396 	if (reg->smin_value < 0) {
3397 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3398 			regno);
3399 		return -EACCES;
3400 	}
3401 
3402 	switch (reg->type) {
3403 	case PTR_TO_SOCK_COMMON:
3404 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3405 		break;
3406 	case PTR_TO_SOCKET:
3407 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3408 		break;
3409 	case PTR_TO_TCP_SOCK:
3410 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3411 		break;
3412 	case PTR_TO_XDP_SOCK:
3413 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3414 		break;
3415 	default:
3416 		valid = false;
3417 	}
3418 
3419 
3420 	if (valid) {
3421 		env->insn_aux_data[insn_idx].ctx_field_size =
3422 			info.ctx_field_size;
3423 		return 0;
3424 	}
3425 
3426 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3427 		regno, reg_type_str[reg->type], off, size);
3428 
3429 	return -EACCES;
3430 }
3431 
3432 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3433 {
3434 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3435 }
3436 
3437 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3438 {
3439 	const struct bpf_reg_state *reg = reg_state(env, regno);
3440 
3441 	return reg->type == PTR_TO_CTX;
3442 }
3443 
3444 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3445 {
3446 	const struct bpf_reg_state *reg = reg_state(env, regno);
3447 
3448 	return type_is_sk_pointer(reg->type);
3449 }
3450 
3451 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3452 {
3453 	const struct bpf_reg_state *reg = reg_state(env, regno);
3454 
3455 	return type_is_pkt_pointer(reg->type);
3456 }
3457 
3458 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3459 {
3460 	const struct bpf_reg_state *reg = reg_state(env, regno);
3461 
3462 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3463 	return reg->type == PTR_TO_FLOW_KEYS;
3464 }
3465 
3466 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3467 				   const struct bpf_reg_state *reg,
3468 				   int off, int size, bool strict)
3469 {
3470 	struct tnum reg_off;
3471 	int ip_align;
3472 
3473 	/* Byte size accesses are always allowed. */
3474 	if (!strict || size == 1)
3475 		return 0;
3476 
3477 	/* For platforms that do not have a Kconfig enabling
3478 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3479 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3480 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3481 	 * to this code only in strict mode where we want to emulate
3482 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3483 	 * unconditional IP align value of '2'.
3484 	 */
3485 	ip_align = 2;
3486 
3487 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3488 	if (!tnum_is_aligned(reg_off, size)) {
3489 		char tn_buf[48];
3490 
3491 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3492 		verbose(env,
3493 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3494 			ip_align, tn_buf, reg->off, off, size);
3495 		return -EACCES;
3496 	}
3497 
3498 	return 0;
3499 }
3500 
3501 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3502 				       const struct bpf_reg_state *reg,
3503 				       const char *pointer_desc,
3504 				       int off, int size, bool strict)
3505 {
3506 	struct tnum reg_off;
3507 
3508 	/* Byte size accesses are always allowed. */
3509 	if (!strict || size == 1)
3510 		return 0;
3511 
3512 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3513 	if (!tnum_is_aligned(reg_off, size)) {
3514 		char tn_buf[48];
3515 
3516 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3517 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3518 			pointer_desc, tn_buf, reg->off, off, size);
3519 		return -EACCES;
3520 	}
3521 
3522 	return 0;
3523 }
3524 
3525 static int check_ptr_alignment(struct bpf_verifier_env *env,
3526 			       const struct bpf_reg_state *reg, int off,
3527 			       int size, bool strict_alignment_once)
3528 {
3529 	bool strict = env->strict_alignment || strict_alignment_once;
3530 	const char *pointer_desc = "";
3531 
3532 	switch (reg->type) {
3533 	case PTR_TO_PACKET:
3534 	case PTR_TO_PACKET_META:
3535 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3536 		 * right in front, treat it the very same way.
3537 		 */
3538 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3539 	case PTR_TO_FLOW_KEYS:
3540 		pointer_desc = "flow keys ";
3541 		break;
3542 	case PTR_TO_MAP_KEY:
3543 		pointer_desc = "key ";
3544 		break;
3545 	case PTR_TO_MAP_VALUE:
3546 		pointer_desc = "value ";
3547 		break;
3548 	case PTR_TO_CTX:
3549 		pointer_desc = "context ";
3550 		break;
3551 	case PTR_TO_STACK:
3552 		pointer_desc = "stack ";
3553 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3554 		 * and check_stack_read_fixed_off() relies on stack accesses being
3555 		 * aligned.
3556 		 */
3557 		strict = true;
3558 		break;
3559 	case PTR_TO_SOCKET:
3560 		pointer_desc = "sock ";
3561 		break;
3562 	case PTR_TO_SOCK_COMMON:
3563 		pointer_desc = "sock_common ";
3564 		break;
3565 	case PTR_TO_TCP_SOCK:
3566 		pointer_desc = "tcp_sock ";
3567 		break;
3568 	case PTR_TO_XDP_SOCK:
3569 		pointer_desc = "xdp_sock ";
3570 		break;
3571 	default:
3572 		break;
3573 	}
3574 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3575 					   strict);
3576 }
3577 
3578 static int update_stack_depth(struct bpf_verifier_env *env,
3579 			      const struct bpf_func_state *func,
3580 			      int off)
3581 {
3582 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3583 
3584 	if (stack >= -off)
3585 		return 0;
3586 
3587 	/* update known max for given subprogram */
3588 	env->subprog_info[func->subprogno].stack_depth = -off;
3589 	return 0;
3590 }
3591 
3592 /* starting from main bpf function walk all instructions of the function
3593  * and recursively walk all callees that given function can call.
3594  * Ignore jump and exit insns.
3595  * Since recursion is prevented by check_cfg() this algorithm
3596  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3597  */
3598 static int check_max_stack_depth(struct bpf_verifier_env *env)
3599 {
3600 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3601 	struct bpf_subprog_info *subprog = env->subprog_info;
3602 	struct bpf_insn *insn = env->prog->insnsi;
3603 	bool tail_call_reachable = false;
3604 	int ret_insn[MAX_CALL_FRAMES];
3605 	int ret_prog[MAX_CALL_FRAMES];
3606 	int j;
3607 
3608 process_func:
3609 	/* protect against potential stack overflow that might happen when
3610 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3611 	 * depth for such case down to 256 so that the worst case scenario
3612 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3613 	 * 8k).
3614 	 *
3615 	 * To get the idea what might happen, see an example:
3616 	 * func1 -> sub rsp, 128
3617 	 *  subfunc1 -> sub rsp, 256
3618 	 *  tailcall1 -> add rsp, 256
3619 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3620 	 *   subfunc2 -> sub rsp, 64
3621 	 *   subfunc22 -> sub rsp, 128
3622 	 *   tailcall2 -> add rsp, 128
3623 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3624 	 *
3625 	 * tailcall will unwind the current stack frame but it will not get rid
3626 	 * of caller's stack as shown on the example above.
3627 	 */
3628 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3629 		verbose(env,
3630 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3631 			depth);
3632 		return -EACCES;
3633 	}
3634 	/* round up to 32-bytes, since this is granularity
3635 	 * of interpreter stack size
3636 	 */
3637 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3638 	if (depth > MAX_BPF_STACK) {
3639 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3640 			frame + 1, depth);
3641 		return -EACCES;
3642 	}
3643 continue_func:
3644 	subprog_end = subprog[idx + 1].start;
3645 	for (; i < subprog_end; i++) {
3646 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3647 			continue;
3648 		/* remember insn and function to return to */
3649 		ret_insn[frame] = i + 1;
3650 		ret_prog[frame] = idx;
3651 
3652 		/* find the callee */
3653 		i = i + insn[i].imm + 1;
3654 		idx = find_subprog(env, i);
3655 		if (idx < 0) {
3656 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3657 				  i);
3658 			return -EFAULT;
3659 		}
3660 
3661 		if (subprog[idx].has_tail_call)
3662 			tail_call_reachable = true;
3663 
3664 		frame++;
3665 		if (frame >= MAX_CALL_FRAMES) {
3666 			verbose(env, "the call stack of %d frames is too deep !\n",
3667 				frame);
3668 			return -E2BIG;
3669 		}
3670 		goto process_func;
3671 	}
3672 	/* if tail call got detected across bpf2bpf calls then mark each of the
3673 	 * currently present subprog frames as tail call reachable subprogs;
3674 	 * this info will be utilized by JIT so that we will be preserving the
3675 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3676 	 */
3677 	if (tail_call_reachable)
3678 		for (j = 0; j < frame; j++)
3679 			subprog[ret_prog[j]].tail_call_reachable = true;
3680 	if (subprog[0].tail_call_reachable)
3681 		env->prog->aux->tail_call_reachable = true;
3682 
3683 	/* end of for() loop means the last insn of the 'subprog'
3684 	 * was reached. Doesn't matter whether it was JA or EXIT
3685 	 */
3686 	if (frame == 0)
3687 		return 0;
3688 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3689 	frame--;
3690 	i = ret_insn[frame];
3691 	idx = ret_prog[frame];
3692 	goto continue_func;
3693 }
3694 
3695 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3696 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3697 				  const struct bpf_insn *insn, int idx)
3698 {
3699 	int start = idx + insn->imm + 1, subprog;
3700 
3701 	subprog = find_subprog(env, start);
3702 	if (subprog < 0) {
3703 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3704 			  start);
3705 		return -EFAULT;
3706 	}
3707 	return env->subprog_info[subprog].stack_depth;
3708 }
3709 #endif
3710 
3711 int check_ctx_reg(struct bpf_verifier_env *env,
3712 		  const struct bpf_reg_state *reg, int regno)
3713 {
3714 	/* Access to ctx or passing it to a helper is only allowed in
3715 	 * its original, unmodified form.
3716 	 */
3717 
3718 	if (reg->off) {
3719 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3720 			regno, reg->off);
3721 		return -EACCES;
3722 	}
3723 
3724 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3725 		char tn_buf[48];
3726 
3727 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3728 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3729 		return -EACCES;
3730 	}
3731 
3732 	return 0;
3733 }
3734 
3735 static int __check_buffer_access(struct bpf_verifier_env *env,
3736 				 const char *buf_info,
3737 				 const struct bpf_reg_state *reg,
3738 				 int regno, int off, int size)
3739 {
3740 	if (off < 0) {
3741 		verbose(env,
3742 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3743 			regno, buf_info, off, size);
3744 		return -EACCES;
3745 	}
3746 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3747 		char tn_buf[48];
3748 
3749 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3750 		verbose(env,
3751 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3752 			regno, off, tn_buf);
3753 		return -EACCES;
3754 	}
3755 
3756 	return 0;
3757 }
3758 
3759 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3760 				  const struct bpf_reg_state *reg,
3761 				  int regno, int off, int size)
3762 {
3763 	int err;
3764 
3765 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3766 	if (err)
3767 		return err;
3768 
3769 	if (off + size > env->prog->aux->max_tp_access)
3770 		env->prog->aux->max_tp_access = off + size;
3771 
3772 	return 0;
3773 }
3774 
3775 static int check_buffer_access(struct bpf_verifier_env *env,
3776 			       const struct bpf_reg_state *reg,
3777 			       int regno, int off, int size,
3778 			       bool zero_size_allowed,
3779 			       const char *buf_info,
3780 			       u32 *max_access)
3781 {
3782 	int err;
3783 
3784 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3785 	if (err)
3786 		return err;
3787 
3788 	if (off + size > *max_access)
3789 		*max_access = off + size;
3790 
3791 	return 0;
3792 }
3793 
3794 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3795 static void zext_32_to_64(struct bpf_reg_state *reg)
3796 {
3797 	reg->var_off = tnum_subreg(reg->var_off);
3798 	__reg_assign_32_into_64(reg);
3799 }
3800 
3801 /* truncate register to smaller size (in bytes)
3802  * must be called with size < BPF_REG_SIZE
3803  */
3804 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3805 {
3806 	u64 mask;
3807 
3808 	/* clear high bits in bit representation */
3809 	reg->var_off = tnum_cast(reg->var_off, size);
3810 
3811 	/* fix arithmetic bounds */
3812 	mask = ((u64)1 << (size * 8)) - 1;
3813 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3814 		reg->umin_value &= mask;
3815 		reg->umax_value &= mask;
3816 	} else {
3817 		reg->umin_value = 0;
3818 		reg->umax_value = mask;
3819 	}
3820 	reg->smin_value = reg->umin_value;
3821 	reg->smax_value = reg->umax_value;
3822 
3823 	/* If size is smaller than 32bit register the 32bit register
3824 	 * values are also truncated so we push 64-bit bounds into
3825 	 * 32-bit bounds. Above were truncated < 32-bits already.
3826 	 */
3827 	if (size >= 4)
3828 		return;
3829 	__reg_combine_64_into_32(reg);
3830 }
3831 
3832 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3833 {
3834 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3835 }
3836 
3837 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3838 {
3839 	void *ptr;
3840 	u64 addr;
3841 	int err;
3842 
3843 	err = map->ops->map_direct_value_addr(map, &addr, off);
3844 	if (err)
3845 		return err;
3846 	ptr = (void *)(long)addr + off;
3847 
3848 	switch (size) {
3849 	case sizeof(u8):
3850 		*val = (u64)*(u8 *)ptr;
3851 		break;
3852 	case sizeof(u16):
3853 		*val = (u64)*(u16 *)ptr;
3854 		break;
3855 	case sizeof(u32):
3856 		*val = (u64)*(u32 *)ptr;
3857 		break;
3858 	case sizeof(u64):
3859 		*val = *(u64 *)ptr;
3860 		break;
3861 	default:
3862 		return -EINVAL;
3863 	}
3864 	return 0;
3865 }
3866 
3867 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3868 				   struct bpf_reg_state *regs,
3869 				   int regno, int off, int size,
3870 				   enum bpf_access_type atype,
3871 				   int value_regno)
3872 {
3873 	struct bpf_reg_state *reg = regs + regno;
3874 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3875 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3876 	u32 btf_id;
3877 	int ret;
3878 
3879 	if (off < 0) {
3880 		verbose(env,
3881 			"R%d is ptr_%s invalid negative access: off=%d\n",
3882 			regno, tname, off);
3883 		return -EACCES;
3884 	}
3885 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3886 		char tn_buf[48];
3887 
3888 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3889 		verbose(env,
3890 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3891 			regno, tname, off, tn_buf);
3892 		return -EACCES;
3893 	}
3894 
3895 	if (env->ops->btf_struct_access) {
3896 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3897 						  off, size, atype, &btf_id);
3898 	} else {
3899 		if (atype != BPF_READ) {
3900 			verbose(env, "only read is supported\n");
3901 			return -EACCES;
3902 		}
3903 
3904 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3905 					atype, &btf_id);
3906 	}
3907 
3908 	if (ret < 0)
3909 		return ret;
3910 
3911 	if (atype == BPF_READ && value_regno >= 0)
3912 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3913 
3914 	return 0;
3915 }
3916 
3917 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3918 				   struct bpf_reg_state *regs,
3919 				   int regno, int off, int size,
3920 				   enum bpf_access_type atype,
3921 				   int value_regno)
3922 {
3923 	struct bpf_reg_state *reg = regs + regno;
3924 	struct bpf_map *map = reg->map_ptr;
3925 	const struct btf_type *t;
3926 	const char *tname;
3927 	u32 btf_id;
3928 	int ret;
3929 
3930 	if (!btf_vmlinux) {
3931 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3932 		return -ENOTSUPP;
3933 	}
3934 
3935 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3936 		verbose(env, "map_ptr access not supported for map type %d\n",
3937 			map->map_type);
3938 		return -ENOTSUPP;
3939 	}
3940 
3941 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3942 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3943 
3944 	if (!env->allow_ptr_to_map_access) {
3945 		verbose(env,
3946 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3947 			tname);
3948 		return -EPERM;
3949 	}
3950 
3951 	if (off < 0) {
3952 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3953 			regno, tname, off);
3954 		return -EACCES;
3955 	}
3956 
3957 	if (atype != BPF_READ) {
3958 		verbose(env, "only read from %s is supported\n", tname);
3959 		return -EACCES;
3960 	}
3961 
3962 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3963 	if (ret < 0)
3964 		return ret;
3965 
3966 	if (value_regno >= 0)
3967 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3968 
3969 	return 0;
3970 }
3971 
3972 /* Check that the stack access at the given offset is within bounds. The
3973  * maximum valid offset is -1.
3974  *
3975  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3976  * -state->allocated_stack for reads.
3977  */
3978 static int check_stack_slot_within_bounds(int off,
3979 					  struct bpf_func_state *state,
3980 					  enum bpf_access_type t)
3981 {
3982 	int min_valid_off;
3983 
3984 	if (t == BPF_WRITE)
3985 		min_valid_off = -MAX_BPF_STACK;
3986 	else
3987 		min_valid_off = -state->allocated_stack;
3988 
3989 	if (off < min_valid_off || off > -1)
3990 		return -EACCES;
3991 	return 0;
3992 }
3993 
3994 /* Check that the stack access at 'regno + off' falls within the maximum stack
3995  * bounds.
3996  *
3997  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3998  */
3999 static int check_stack_access_within_bounds(
4000 		struct bpf_verifier_env *env,
4001 		int regno, int off, int access_size,
4002 		enum stack_access_src src, enum bpf_access_type type)
4003 {
4004 	struct bpf_reg_state *regs = cur_regs(env);
4005 	struct bpf_reg_state *reg = regs + regno;
4006 	struct bpf_func_state *state = func(env, reg);
4007 	int min_off, max_off;
4008 	int err;
4009 	char *err_extra;
4010 
4011 	if (src == ACCESS_HELPER)
4012 		/* We don't know if helpers are reading or writing (or both). */
4013 		err_extra = " indirect access to";
4014 	else if (type == BPF_READ)
4015 		err_extra = " read from";
4016 	else
4017 		err_extra = " write to";
4018 
4019 	if (tnum_is_const(reg->var_off)) {
4020 		min_off = reg->var_off.value + off;
4021 		if (access_size > 0)
4022 			max_off = min_off + access_size - 1;
4023 		else
4024 			max_off = min_off;
4025 	} else {
4026 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4027 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4028 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4029 				err_extra, regno);
4030 			return -EACCES;
4031 		}
4032 		min_off = reg->smin_value + off;
4033 		if (access_size > 0)
4034 			max_off = reg->smax_value + off + access_size - 1;
4035 		else
4036 			max_off = min_off;
4037 	}
4038 
4039 	err = check_stack_slot_within_bounds(min_off, state, type);
4040 	if (!err)
4041 		err = check_stack_slot_within_bounds(max_off, state, type);
4042 
4043 	if (err) {
4044 		if (tnum_is_const(reg->var_off)) {
4045 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4046 				err_extra, regno, off, access_size);
4047 		} else {
4048 			char tn_buf[48];
4049 
4050 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4051 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4052 				err_extra, regno, tn_buf, access_size);
4053 		}
4054 	}
4055 	return err;
4056 }
4057 
4058 /* check whether memory at (regno + off) is accessible for t = (read | write)
4059  * if t==write, value_regno is a register which value is stored into memory
4060  * if t==read, value_regno is a register which will receive the value from memory
4061  * if t==write && value_regno==-1, some unknown value is stored into memory
4062  * if t==read && value_regno==-1, don't care what we read from memory
4063  */
4064 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4065 			    int off, int bpf_size, enum bpf_access_type t,
4066 			    int value_regno, bool strict_alignment_once)
4067 {
4068 	struct bpf_reg_state *regs = cur_regs(env);
4069 	struct bpf_reg_state *reg = regs + regno;
4070 	struct bpf_func_state *state;
4071 	int size, err = 0;
4072 
4073 	size = bpf_size_to_bytes(bpf_size);
4074 	if (size < 0)
4075 		return size;
4076 
4077 	/* alignment checks will add in reg->off themselves */
4078 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4079 	if (err)
4080 		return err;
4081 
4082 	/* for access checks, reg->off is just part of off */
4083 	off += reg->off;
4084 
4085 	if (reg->type == PTR_TO_MAP_KEY) {
4086 		if (t == BPF_WRITE) {
4087 			verbose(env, "write to change key R%d not allowed\n", regno);
4088 			return -EACCES;
4089 		}
4090 
4091 		err = check_mem_region_access(env, regno, off, size,
4092 					      reg->map_ptr->key_size, false);
4093 		if (err)
4094 			return err;
4095 		if (value_regno >= 0)
4096 			mark_reg_unknown(env, regs, value_regno);
4097 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4098 		if (t == BPF_WRITE && value_regno >= 0 &&
4099 		    is_pointer_value(env, value_regno)) {
4100 			verbose(env, "R%d leaks addr into map\n", value_regno);
4101 			return -EACCES;
4102 		}
4103 		err = check_map_access_type(env, regno, off, size, t);
4104 		if (err)
4105 			return err;
4106 		err = check_map_access(env, regno, off, size, false);
4107 		if (!err && t == BPF_READ && value_regno >= 0) {
4108 			struct bpf_map *map = reg->map_ptr;
4109 
4110 			/* if map is read-only, track its contents as scalars */
4111 			if (tnum_is_const(reg->var_off) &&
4112 			    bpf_map_is_rdonly(map) &&
4113 			    map->ops->map_direct_value_addr) {
4114 				int map_off = off + reg->var_off.value;
4115 				u64 val = 0;
4116 
4117 				err = bpf_map_direct_read(map, map_off, size,
4118 							  &val);
4119 				if (err)
4120 					return err;
4121 
4122 				regs[value_regno].type = SCALAR_VALUE;
4123 				__mark_reg_known(&regs[value_regno], val);
4124 			} else {
4125 				mark_reg_unknown(env, regs, value_regno);
4126 			}
4127 		}
4128 	} else if (reg->type == PTR_TO_MEM) {
4129 		if (t == BPF_WRITE && value_regno >= 0 &&
4130 		    is_pointer_value(env, value_regno)) {
4131 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4132 			return -EACCES;
4133 		}
4134 		err = check_mem_region_access(env, regno, off, size,
4135 					      reg->mem_size, false);
4136 		if (!err && t == BPF_READ && value_regno >= 0)
4137 			mark_reg_unknown(env, regs, value_regno);
4138 	} else if (reg->type == PTR_TO_CTX) {
4139 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4140 		struct btf *btf = NULL;
4141 		u32 btf_id = 0;
4142 
4143 		if (t == BPF_WRITE && value_regno >= 0 &&
4144 		    is_pointer_value(env, value_regno)) {
4145 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4146 			return -EACCES;
4147 		}
4148 
4149 		err = check_ctx_reg(env, reg, regno);
4150 		if (err < 0)
4151 			return err;
4152 
4153 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4154 		if (err)
4155 			verbose_linfo(env, insn_idx, "; ");
4156 		if (!err && t == BPF_READ && value_regno >= 0) {
4157 			/* ctx access returns either a scalar, or a
4158 			 * PTR_TO_PACKET[_META,_END]. In the latter
4159 			 * case, we know the offset is zero.
4160 			 */
4161 			if (reg_type == SCALAR_VALUE) {
4162 				mark_reg_unknown(env, regs, value_regno);
4163 			} else {
4164 				mark_reg_known_zero(env, regs,
4165 						    value_regno);
4166 				if (reg_type_may_be_null(reg_type))
4167 					regs[value_regno].id = ++env->id_gen;
4168 				/* A load of ctx field could have different
4169 				 * actual load size with the one encoded in the
4170 				 * insn. When the dst is PTR, it is for sure not
4171 				 * a sub-register.
4172 				 */
4173 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4174 				if (reg_type == PTR_TO_BTF_ID ||
4175 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4176 					regs[value_regno].btf = btf;
4177 					regs[value_regno].btf_id = btf_id;
4178 				}
4179 			}
4180 			regs[value_regno].type = reg_type;
4181 		}
4182 
4183 	} else if (reg->type == PTR_TO_STACK) {
4184 		/* Basic bounds checks. */
4185 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4186 		if (err)
4187 			return err;
4188 
4189 		state = func(env, reg);
4190 		err = update_stack_depth(env, state, off);
4191 		if (err)
4192 			return err;
4193 
4194 		if (t == BPF_READ)
4195 			err = check_stack_read(env, regno, off, size,
4196 					       value_regno);
4197 		else
4198 			err = check_stack_write(env, regno, off, size,
4199 						value_regno, insn_idx);
4200 	} else if (reg_is_pkt_pointer(reg)) {
4201 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4202 			verbose(env, "cannot write into packet\n");
4203 			return -EACCES;
4204 		}
4205 		if (t == BPF_WRITE && value_regno >= 0 &&
4206 		    is_pointer_value(env, value_regno)) {
4207 			verbose(env, "R%d leaks addr into packet\n",
4208 				value_regno);
4209 			return -EACCES;
4210 		}
4211 		err = check_packet_access(env, regno, off, size, false);
4212 		if (!err && t == BPF_READ && value_regno >= 0)
4213 			mark_reg_unknown(env, regs, value_regno);
4214 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4215 		if (t == BPF_WRITE && value_regno >= 0 &&
4216 		    is_pointer_value(env, value_regno)) {
4217 			verbose(env, "R%d leaks addr into flow keys\n",
4218 				value_regno);
4219 			return -EACCES;
4220 		}
4221 
4222 		err = check_flow_keys_access(env, off, size);
4223 		if (!err && t == BPF_READ && value_regno >= 0)
4224 			mark_reg_unknown(env, regs, value_regno);
4225 	} else if (type_is_sk_pointer(reg->type)) {
4226 		if (t == BPF_WRITE) {
4227 			verbose(env, "R%d cannot write into %s\n",
4228 				regno, reg_type_str[reg->type]);
4229 			return -EACCES;
4230 		}
4231 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4232 		if (!err && value_regno >= 0)
4233 			mark_reg_unknown(env, regs, value_regno);
4234 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4235 		err = check_tp_buffer_access(env, reg, regno, off, size);
4236 		if (!err && t == BPF_READ && value_regno >= 0)
4237 			mark_reg_unknown(env, regs, value_regno);
4238 	} else if (reg->type == PTR_TO_BTF_ID) {
4239 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4240 					      value_regno);
4241 	} else if (reg->type == CONST_PTR_TO_MAP) {
4242 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4243 					      value_regno);
4244 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4245 		if (t == BPF_WRITE) {
4246 			verbose(env, "R%d cannot write into %s\n",
4247 				regno, reg_type_str[reg->type]);
4248 			return -EACCES;
4249 		}
4250 		err = check_buffer_access(env, reg, regno, off, size, false,
4251 					  "rdonly",
4252 					  &env->prog->aux->max_rdonly_access);
4253 		if (!err && value_regno >= 0)
4254 			mark_reg_unknown(env, regs, value_regno);
4255 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4256 		err = check_buffer_access(env, reg, regno, off, size, false,
4257 					  "rdwr",
4258 					  &env->prog->aux->max_rdwr_access);
4259 		if (!err && t == BPF_READ && value_regno >= 0)
4260 			mark_reg_unknown(env, regs, value_regno);
4261 	} else {
4262 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4263 			reg_type_str[reg->type]);
4264 		return -EACCES;
4265 	}
4266 
4267 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4268 	    regs[value_regno].type == SCALAR_VALUE) {
4269 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4270 		coerce_reg_to_size(&regs[value_regno], size);
4271 	}
4272 	return err;
4273 }
4274 
4275 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4276 {
4277 	int load_reg;
4278 	int err;
4279 
4280 	switch (insn->imm) {
4281 	case BPF_ADD:
4282 	case BPF_ADD | BPF_FETCH:
4283 	case BPF_AND:
4284 	case BPF_AND | BPF_FETCH:
4285 	case BPF_OR:
4286 	case BPF_OR | BPF_FETCH:
4287 	case BPF_XOR:
4288 	case BPF_XOR | BPF_FETCH:
4289 	case BPF_XCHG:
4290 	case BPF_CMPXCHG:
4291 		break;
4292 	default:
4293 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4294 		return -EINVAL;
4295 	}
4296 
4297 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4298 		verbose(env, "invalid atomic operand size\n");
4299 		return -EINVAL;
4300 	}
4301 
4302 	/* check src1 operand */
4303 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4304 	if (err)
4305 		return err;
4306 
4307 	/* check src2 operand */
4308 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4309 	if (err)
4310 		return err;
4311 
4312 	if (insn->imm == BPF_CMPXCHG) {
4313 		/* Check comparison of R0 with memory location */
4314 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4315 		if (err)
4316 			return err;
4317 	}
4318 
4319 	if (is_pointer_value(env, insn->src_reg)) {
4320 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4321 		return -EACCES;
4322 	}
4323 
4324 	if (is_ctx_reg(env, insn->dst_reg) ||
4325 	    is_pkt_reg(env, insn->dst_reg) ||
4326 	    is_flow_key_reg(env, insn->dst_reg) ||
4327 	    is_sk_reg(env, insn->dst_reg)) {
4328 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4329 			insn->dst_reg,
4330 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4331 		return -EACCES;
4332 	}
4333 
4334 	if (insn->imm & BPF_FETCH) {
4335 		if (insn->imm == BPF_CMPXCHG)
4336 			load_reg = BPF_REG_0;
4337 		else
4338 			load_reg = insn->src_reg;
4339 
4340 		/* check and record load of old value */
4341 		err = check_reg_arg(env, load_reg, DST_OP);
4342 		if (err)
4343 			return err;
4344 	} else {
4345 		/* This instruction accesses a memory location but doesn't
4346 		 * actually load it into a register.
4347 		 */
4348 		load_reg = -1;
4349 	}
4350 
4351 	/* check whether we can read the memory */
4352 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4353 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4354 	if (err)
4355 		return err;
4356 
4357 	/* check whether we can write into the same memory */
4358 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4359 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4360 	if (err)
4361 		return err;
4362 
4363 	return 0;
4364 }
4365 
4366 /* When register 'regno' is used to read the stack (either directly or through
4367  * a helper function) make sure that it's within stack boundary and, depending
4368  * on the access type, that all elements of the stack are initialized.
4369  *
4370  * 'off' includes 'regno->off', but not its dynamic part (if any).
4371  *
4372  * All registers that have been spilled on the stack in the slots within the
4373  * read offsets are marked as read.
4374  */
4375 static int check_stack_range_initialized(
4376 		struct bpf_verifier_env *env, int regno, int off,
4377 		int access_size, bool zero_size_allowed,
4378 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4379 {
4380 	struct bpf_reg_state *reg = reg_state(env, regno);
4381 	struct bpf_func_state *state = func(env, reg);
4382 	int err, min_off, max_off, i, j, slot, spi;
4383 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4384 	enum bpf_access_type bounds_check_type;
4385 	/* Some accesses can write anything into the stack, others are
4386 	 * read-only.
4387 	 */
4388 	bool clobber = false;
4389 
4390 	if (access_size == 0 && !zero_size_allowed) {
4391 		verbose(env, "invalid zero-sized read\n");
4392 		return -EACCES;
4393 	}
4394 
4395 	if (type == ACCESS_HELPER) {
4396 		/* The bounds checks for writes are more permissive than for
4397 		 * reads. However, if raw_mode is not set, we'll do extra
4398 		 * checks below.
4399 		 */
4400 		bounds_check_type = BPF_WRITE;
4401 		clobber = true;
4402 	} else {
4403 		bounds_check_type = BPF_READ;
4404 	}
4405 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4406 					       type, bounds_check_type);
4407 	if (err)
4408 		return err;
4409 
4410 
4411 	if (tnum_is_const(reg->var_off)) {
4412 		min_off = max_off = reg->var_off.value + off;
4413 	} else {
4414 		/* Variable offset is prohibited for unprivileged mode for
4415 		 * simplicity since it requires corresponding support in
4416 		 * Spectre masking for stack ALU.
4417 		 * See also retrieve_ptr_limit().
4418 		 */
4419 		if (!env->bypass_spec_v1) {
4420 			char tn_buf[48];
4421 
4422 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4423 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4424 				regno, err_extra, tn_buf);
4425 			return -EACCES;
4426 		}
4427 		/* Only initialized buffer on stack is allowed to be accessed
4428 		 * with variable offset. With uninitialized buffer it's hard to
4429 		 * guarantee that whole memory is marked as initialized on
4430 		 * helper return since specific bounds are unknown what may
4431 		 * cause uninitialized stack leaking.
4432 		 */
4433 		if (meta && meta->raw_mode)
4434 			meta = NULL;
4435 
4436 		min_off = reg->smin_value + off;
4437 		max_off = reg->smax_value + off;
4438 	}
4439 
4440 	if (meta && meta->raw_mode) {
4441 		meta->access_size = access_size;
4442 		meta->regno = regno;
4443 		return 0;
4444 	}
4445 
4446 	for (i = min_off; i < max_off + access_size; i++) {
4447 		u8 *stype;
4448 
4449 		slot = -i - 1;
4450 		spi = slot / BPF_REG_SIZE;
4451 		if (state->allocated_stack <= slot)
4452 			goto err;
4453 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4454 		if (*stype == STACK_MISC)
4455 			goto mark;
4456 		if (*stype == STACK_ZERO) {
4457 			if (clobber) {
4458 				/* helper can write anything into the stack */
4459 				*stype = STACK_MISC;
4460 			}
4461 			goto mark;
4462 		}
4463 
4464 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4465 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4466 			goto mark;
4467 
4468 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4469 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4470 		     env->allow_ptr_leaks)) {
4471 			if (clobber) {
4472 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4473 				for (j = 0; j < BPF_REG_SIZE; j++)
4474 					state->stack[spi].slot_type[j] = STACK_MISC;
4475 			}
4476 			goto mark;
4477 		}
4478 
4479 err:
4480 		if (tnum_is_const(reg->var_off)) {
4481 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4482 				err_extra, regno, min_off, i - min_off, access_size);
4483 		} else {
4484 			char tn_buf[48];
4485 
4486 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4487 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4488 				err_extra, regno, tn_buf, i - min_off, access_size);
4489 		}
4490 		return -EACCES;
4491 mark:
4492 		/* reading any byte out of 8-byte 'spill_slot' will cause
4493 		 * the whole slot to be marked as 'read'
4494 		 */
4495 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4496 			      state->stack[spi].spilled_ptr.parent,
4497 			      REG_LIVE_READ64);
4498 	}
4499 	return update_stack_depth(env, state, min_off);
4500 }
4501 
4502 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4503 				   int access_size, bool zero_size_allowed,
4504 				   struct bpf_call_arg_meta *meta)
4505 {
4506 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4507 
4508 	switch (reg->type) {
4509 	case PTR_TO_PACKET:
4510 	case PTR_TO_PACKET_META:
4511 		return check_packet_access(env, regno, reg->off, access_size,
4512 					   zero_size_allowed);
4513 	case PTR_TO_MAP_KEY:
4514 		return check_mem_region_access(env, regno, reg->off, access_size,
4515 					       reg->map_ptr->key_size, false);
4516 	case PTR_TO_MAP_VALUE:
4517 		if (check_map_access_type(env, regno, reg->off, access_size,
4518 					  meta && meta->raw_mode ? BPF_WRITE :
4519 					  BPF_READ))
4520 			return -EACCES;
4521 		return check_map_access(env, regno, reg->off, access_size,
4522 					zero_size_allowed);
4523 	case PTR_TO_MEM:
4524 		return check_mem_region_access(env, regno, reg->off,
4525 					       access_size, reg->mem_size,
4526 					       zero_size_allowed);
4527 	case PTR_TO_RDONLY_BUF:
4528 		if (meta && meta->raw_mode)
4529 			return -EACCES;
4530 		return check_buffer_access(env, reg, regno, reg->off,
4531 					   access_size, zero_size_allowed,
4532 					   "rdonly",
4533 					   &env->prog->aux->max_rdonly_access);
4534 	case PTR_TO_RDWR_BUF:
4535 		return check_buffer_access(env, reg, regno, reg->off,
4536 					   access_size, zero_size_allowed,
4537 					   "rdwr",
4538 					   &env->prog->aux->max_rdwr_access);
4539 	case PTR_TO_STACK:
4540 		return check_stack_range_initialized(
4541 				env,
4542 				regno, reg->off, access_size,
4543 				zero_size_allowed, ACCESS_HELPER, meta);
4544 	default: /* scalar_value or invalid ptr */
4545 		/* Allow zero-byte read from NULL, regardless of pointer type */
4546 		if (zero_size_allowed && access_size == 0 &&
4547 		    register_is_null(reg))
4548 			return 0;
4549 
4550 		verbose(env, "R%d type=%s expected=%s\n", regno,
4551 			reg_type_str[reg->type],
4552 			reg_type_str[PTR_TO_STACK]);
4553 		return -EACCES;
4554 	}
4555 }
4556 
4557 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4558 		   u32 regno, u32 mem_size)
4559 {
4560 	if (register_is_null(reg))
4561 		return 0;
4562 
4563 	if (reg_type_may_be_null(reg->type)) {
4564 		/* Assuming that the register contains a value check if the memory
4565 		 * access is safe. Temporarily save and restore the register's state as
4566 		 * the conversion shouldn't be visible to a caller.
4567 		 */
4568 		const struct bpf_reg_state saved_reg = *reg;
4569 		int rv;
4570 
4571 		mark_ptr_not_null_reg(reg);
4572 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4573 		*reg = saved_reg;
4574 		return rv;
4575 	}
4576 
4577 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4578 }
4579 
4580 /* Implementation details:
4581  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4582  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4583  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4584  * value_or_null->value transition, since the verifier only cares about
4585  * the range of access to valid map value pointer and doesn't care about actual
4586  * address of the map element.
4587  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4588  * reg->id > 0 after value_or_null->value transition. By doing so
4589  * two bpf_map_lookups will be considered two different pointers that
4590  * point to different bpf_spin_locks.
4591  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4592  * dead-locks.
4593  * Since only one bpf_spin_lock is allowed the checks are simpler than
4594  * reg_is_refcounted() logic. The verifier needs to remember only
4595  * one spin_lock instead of array of acquired_refs.
4596  * cur_state->active_spin_lock remembers which map value element got locked
4597  * and clears it after bpf_spin_unlock.
4598  */
4599 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4600 			     bool is_lock)
4601 {
4602 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4603 	struct bpf_verifier_state *cur = env->cur_state;
4604 	bool is_const = tnum_is_const(reg->var_off);
4605 	struct bpf_map *map = reg->map_ptr;
4606 	u64 val = reg->var_off.value;
4607 
4608 	if (!is_const) {
4609 		verbose(env,
4610 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4611 			regno);
4612 		return -EINVAL;
4613 	}
4614 	if (!map->btf) {
4615 		verbose(env,
4616 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4617 			map->name);
4618 		return -EINVAL;
4619 	}
4620 	if (!map_value_has_spin_lock(map)) {
4621 		if (map->spin_lock_off == -E2BIG)
4622 			verbose(env,
4623 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4624 				map->name);
4625 		else if (map->spin_lock_off == -ENOENT)
4626 			verbose(env,
4627 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4628 				map->name);
4629 		else
4630 			verbose(env,
4631 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4632 				map->name);
4633 		return -EINVAL;
4634 	}
4635 	if (map->spin_lock_off != val + reg->off) {
4636 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4637 			val + reg->off);
4638 		return -EINVAL;
4639 	}
4640 	if (is_lock) {
4641 		if (cur->active_spin_lock) {
4642 			verbose(env,
4643 				"Locking two bpf_spin_locks are not allowed\n");
4644 			return -EINVAL;
4645 		}
4646 		cur->active_spin_lock = reg->id;
4647 	} else {
4648 		if (!cur->active_spin_lock) {
4649 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4650 			return -EINVAL;
4651 		}
4652 		if (cur->active_spin_lock != reg->id) {
4653 			verbose(env, "bpf_spin_unlock of different lock\n");
4654 			return -EINVAL;
4655 		}
4656 		cur->active_spin_lock = 0;
4657 	}
4658 	return 0;
4659 }
4660 
4661 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4662 {
4663 	return type == ARG_PTR_TO_MEM ||
4664 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4665 	       type == ARG_PTR_TO_UNINIT_MEM;
4666 }
4667 
4668 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4669 {
4670 	return type == ARG_CONST_SIZE ||
4671 	       type == ARG_CONST_SIZE_OR_ZERO;
4672 }
4673 
4674 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4675 {
4676 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4677 }
4678 
4679 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4680 {
4681 	return type == ARG_PTR_TO_INT ||
4682 	       type == ARG_PTR_TO_LONG;
4683 }
4684 
4685 static int int_ptr_type_to_size(enum bpf_arg_type type)
4686 {
4687 	if (type == ARG_PTR_TO_INT)
4688 		return sizeof(u32);
4689 	else if (type == ARG_PTR_TO_LONG)
4690 		return sizeof(u64);
4691 
4692 	return -EINVAL;
4693 }
4694 
4695 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4696 				 const struct bpf_call_arg_meta *meta,
4697 				 enum bpf_arg_type *arg_type)
4698 {
4699 	if (!meta->map_ptr) {
4700 		/* kernel subsystem misconfigured verifier */
4701 		verbose(env, "invalid map_ptr to access map->type\n");
4702 		return -EACCES;
4703 	}
4704 
4705 	switch (meta->map_ptr->map_type) {
4706 	case BPF_MAP_TYPE_SOCKMAP:
4707 	case BPF_MAP_TYPE_SOCKHASH:
4708 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4709 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4710 		} else {
4711 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4712 			return -EINVAL;
4713 		}
4714 		break;
4715 
4716 	default:
4717 		break;
4718 	}
4719 	return 0;
4720 }
4721 
4722 struct bpf_reg_types {
4723 	const enum bpf_reg_type types[10];
4724 	u32 *btf_id;
4725 };
4726 
4727 static const struct bpf_reg_types map_key_value_types = {
4728 	.types = {
4729 		PTR_TO_STACK,
4730 		PTR_TO_PACKET,
4731 		PTR_TO_PACKET_META,
4732 		PTR_TO_MAP_KEY,
4733 		PTR_TO_MAP_VALUE,
4734 	},
4735 };
4736 
4737 static const struct bpf_reg_types sock_types = {
4738 	.types = {
4739 		PTR_TO_SOCK_COMMON,
4740 		PTR_TO_SOCKET,
4741 		PTR_TO_TCP_SOCK,
4742 		PTR_TO_XDP_SOCK,
4743 	},
4744 };
4745 
4746 #ifdef CONFIG_NET
4747 static const struct bpf_reg_types btf_id_sock_common_types = {
4748 	.types = {
4749 		PTR_TO_SOCK_COMMON,
4750 		PTR_TO_SOCKET,
4751 		PTR_TO_TCP_SOCK,
4752 		PTR_TO_XDP_SOCK,
4753 		PTR_TO_BTF_ID,
4754 	},
4755 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4756 };
4757 #endif
4758 
4759 static const struct bpf_reg_types mem_types = {
4760 	.types = {
4761 		PTR_TO_STACK,
4762 		PTR_TO_PACKET,
4763 		PTR_TO_PACKET_META,
4764 		PTR_TO_MAP_KEY,
4765 		PTR_TO_MAP_VALUE,
4766 		PTR_TO_MEM,
4767 		PTR_TO_RDONLY_BUF,
4768 		PTR_TO_RDWR_BUF,
4769 	},
4770 };
4771 
4772 static const struct bpf_reg_types int_ptr_types = {
4773 	.types = {
4774 		PTR_TO_STACK,
4775 		PTR_TO_PACKET,
4776 		PTR_TO_PACKET_META,
4777 		PTR_TO_MAP_KEY,
4778 		PTR_TO_MAP_VALUE,
4779 	},
4780 };
4781 
4782 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4783 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4784 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4785 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4786 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4787 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4788 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4789 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4790 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4791 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4792 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
4793 
4794 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4795 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4796 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4797 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4798 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4799 	[ARG_CONST_SIZE]		= &scalar_types,
4800 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4801 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4802 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4803 	[ARG_PTR_TO_CTX]		= &context_types,
4804 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4805 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4806 #ifdef CONFIG_NET
4807 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4808 #endif
4809 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4810 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4811 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4812 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4813 	[ARG_PTR_TO_MEM]		= &mem_types,
4814 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4815 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4816 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4817 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4818 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4819 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4820 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4821 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
4822 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
4823 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
4824 };
4825 
4826 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4827 			  enum bpf_arg_type arg_type,
4828 			  const u32 *arg_btf_id)
4829 {
4830 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4831 	enum bpf_reg_type expected, type = reg->type;
4832 	const struct bpf_reg_types *compatible;
4833 	int i, j;
4834 
4835 	compatible = compatible_reg_types[arg_type];
4836 	if (!compatible) {
4837 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4838 		return -EFAULT;
4839 	}
4840 
4841 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4842 		expected = compatible->types[i];
4843 		if (expected == NOT_INIT)
4844 			break;
4845 
4846 		if (type == expected)
4847 			goto found;
4848 	}
4849 
4850 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4851 	for (j = 0; j + 1 < i; j++)
4852 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4853 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4854 	return -EACCES;
4855 
4856 found:
4857 	if (type == PTR_TO_BTF_ID) {
4858 		if (!arg_btf_id) {
4859 			if (!compatible->btf_id) {
4860 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4861 				return -EFAULT;
4862 			}
4863 			arg_btf_id = compatible->btf_id;
4864 		}
4865 
4866 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4867 					  btf_vmlinux, *arg_btf_id)) {
4868 			verbose(env, "R%d is of type %s but %s is expected\n",
4869 				regno, kernel_type_name(reg->btf, reg->btf_id),
4870 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4871 			return -EACCES;
4872 		}
4873 
4874 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4875 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4876 				regno);
4877 			return -EACCES;
4878 		}
4879 	}
4880 
4881 	return 0;
4882 }
4883 
4884 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4885 			  struct bpf_call_arg_meta *meta,
4886 			  const struct bpf_func_proto *fn)
4887 {
4888 	u32 regno = BPF_REG_1 + arg;
4889 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4890 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4891 	enum bpf_reg_type type = reg->type;
4892 	int err = 0;
4893 
4894 	if (arg_type == ARG_DONTCARE)
4895 		return 0;
4896 
4897 	err = check_reg_arg(env, regno, SRC_OP);
4898 	if (err)
4899 		return err;
4900 
4901 	if (arg_type == ARG_ANYTHING) {
4902 		if (is_pointer_value(env, regno)) {
4903 			verbose(env, "R%d leaks addr into helper function\n",
4904 				regno);
4905 			return -EACCES;
4906 		}
4907 		return 0;
4908 	}
4909 
4910 	if (type_is_pkt_pointer(type) &&
4911 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4912 		verbose(env, "helper access to the packet is not allowed\n");
4913 		return -EACCES;
4914 	}
4915 
4916 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4917 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4918 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4919 		err = resolve_map_arg_type(env, meta, &arg_type);
4920 		if (err)
4921 			return err;
4922 	}
4923 
4924 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4925 		/* A NULL register has a SCALAR_VALUE type, so skip
4926 		 * type checking.
4927 		 */
4928 		goto skip_type_check;
4929 
4930 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4931 	if (err)
4932 		return err;
4933 
4934 	if (type == PTR_TO_CTX) {
4935 		err = check_ctx_reg(env, reg, regno);
4936 		if (err < 0)
4937 			return err;
4938 	}
4939 
4940 skip_type_check:
4941 	if (reg->ref_obj_id) {
4942 		if (meta->ref_obj_id) {
4943 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4944 				regno, reg->ref_obj_id,
4945 				meta->ref_obj_id);
4946 			return -EFAULT;
4947 		}
4948 		meta->ref_obj_id = reg->ref_obj_id;
4949 	}
4950 
4951 	if (arg_type == ARG_CONST_MAP_PTR) {
4952 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4953 		meta->map_ptr = reg->map_ptr;
4954 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4955 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4956 		 * check that [key, key + map->key_size) are within
4957 		 * stack limits and initialized
4958 		 */
4959 		if (!meta->map_ptr) {
4960 			/* in function declaration map_ptr must come before
4961 			 * map_key, so that it's verified and known before
4962 			 * we have to check map_key here. Otherwise it means
4963 			 * that kernel subsystem misconfigured verifier
4964 			 */
4965 			verbose(env, "invalid map_ptr to access map->key\n");
4966 			return -EACCES;
4967 		}
4968 		err = check_helper_mem_access(env, regno,
4969 					      meta->map_ptr->key_size, false,
4970 					      NULL);
4971 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4972 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4973 		    !register_is_null(reg)) ||
4974 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4975 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4976 		 * check [value, value + map->value_size) validity
4977 		 */
4978 		if (!meta->map_ptr) {
4979 			/* kernel subsystem misconfigured verifier */
4980 			verbose(env, "invalid map_ptr to access map->value\n");
4981 			return -EACCES;
4982 		}
4983 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4984 		err = check_helper_mem_access(env, regno,
4985 					      meta->map_ptr->value_size, false,
4986 					      meta);
4987 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4988 		if (!reg->btf_id) {
4989 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4990 			return -EACCES;
4991 		}
4992 		meta->ret_btf = reg->btf;
4993 		meta->ret_btf_id = reg->btf_id;
4994 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4995 		if (meta->func_id == BPF_FUNC_spin_lock) {
4996 			if (process_spin_lock(env, regno, true))
4997 				return -EACCES;
4998 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4999 			if (process_spin_lock(env, regno, false))
5000 				return -EACCES;
5001 		} else {
5002 			verbose(env, "verifier internal error\n");
5003 			return -EFAULT;
5004 		}
5005 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5006 		meta->subprogno = reg->subprogno;
5007 	} else if (arg_type_is_mem_ptr(arg_type)) {
5008 		/* The access to this pointer is only checked when we hit the
5009 		 * next is_mem_size argument below.
5010 		 */
5011 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5012 	} else if (arg_type_is_mem_size(arg_type)) {
5013 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5014 
5015 		/* This is used to refine r0 return value bounds for helpers
5016 		 * that enforce this value as an upper bound on return values.
5017 		 * See do_refine_retval_range() for helpers that can refine
5018 		 * the return value. C type of helper is u32 so we pull register
5019 		 * bound from umax_value however, if negative verifier errors
5020 		 * out. Only upper bounds can be learned because retval is an
5021 		 * int type and negative retvals are allowed.
5022 		 */
5023 		meta->msize_max_value = reg->umax_value;
5024 
5025 		/* The register is SCALAR_VALUE; the access check
5026 		 * happens using its boundaries.
5027 		 */
5028 		if (!tnum_is_const(reg->var_off))
5029 			/* For unprivileged variable accesses, disable raw
5030 			 * mode so that the program is required to
5031 			 * initialize all the memory that the helper could
5032 			 * just partially fill up.
5033 			 */
5034 			meta = NULL;
5035 
5036 		if (reg->smin_value < 0) {
5037 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5038 				regno);
5039 			return -EACCES;
5040 		}
5041 
5042 		if (reg->umin_value == 0) {
5043 			err = check_helper_mem_access(env, regno - 1, 0,
5044 						      zero_size_allowed,
5045 						      meta);
5046 			if (err)
5047 				return err;
5048 		}
5049 
5050 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5051 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5052 				regno);
5053 			return -EACCES;
5054 		}
5055 		err = check_helper_mem_access(env, regno - 1,
5056 					      reg->umax_value,
5057 					      zero_size_allowed, meta);
5058 		if (!err)
5059 			err = mark_chain_precision(env, regno);
5060 	} else if (arg_type_is_alloc_size(arg_type)) {
5061 		if (!tnum_is_const(reg->var_off)) {
5062 			verbose(env, "R%d is not a known constant'\n",
5063 				regno);
5064 			return -EACCES;
5065 		}
5066 		meta->mem_size = reg->var_off.value;
5067 	} else if (arg_type_is_int_ptr(arg_type)) {
5068 		int size = int_ptr_type_to_size(arg_type);
5069 
5070 		err = check_helper_mem_access(env, regno, size, false, meta);
5071 		if (err)
5072 			return err;
5073 		err = check_ptr_alignment(env, reg, 0, size, true);
5074 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5075 		struct bpf_map *map = reg->map_ptr;
5076 		int map_off;
5077 		u64 map_addr;
5078 		char *str_ptr;
5079 
5080 		if (!bpf_map_is_rdonly(map)) {
5081 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5082 			return -EACCES;
5083 		}
5084 
5085 		if (!tnum_is_const(reg->var_off)) {
5086 			verbose(env, "R%d is not a constant address'\n", regno);
5087 			return -EACCES;
5088 		}
5089 
5090 		if (!map->ops->map_direct_value_addr) {
5091 			verbose(env, "no direct value access support for this map type\n");
5092 			return -EACCES;
5093 		}
5094 
5095 		err = check_map_access(env, regno, reg->off,
5096 				       map->value_size - reg->off, false);
5097 		if (err)
5098 			return err;
5099 
5100 		map_off = reg->off + reg->var_off.value;
5101 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5102 		if (err) {
5103 			verbose(env, "direct value access on string failed\n");
5104 			return err;
5105 		}
5106 
5107 		str_ptr = (char *)(long)(map_addr);
5108 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5109 			verbose(env, "string is not zero-terminated\n");
5110 			return -EINVAL;
5111 		}
5112 	}
5113 
5114 	return err;
5115 }
5116 
5117 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5118 {
5119 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5120 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5121 
5122 	if (func_id != BPF_FUNC_map_update_elem)
5123 		return false;
5124 
5125 	/* It's not possible to get access to a locked struct sock in these
5126 	 * contexts, so updating is safe.
5127 	 */
5128 	switch (type) {
5129 	case BPF_PROG_TYPE_TRACING:
5130 		if (eatype == BPF_TRACE_ITER)
5131 			return true;
5132 		break;
5133 	case BPF_PROG_TYPE_SOCKET_FILTER:
5134 	case BPF_PROG_TYPE_SCHED_CLS:
5135 	case BPF_PROG_TYPE_SCHED_ACT:
5136 	case BPF_PROG_TYPE_XDP:
5137 	case BPF_PROG_TYPE_SK_REUSEPORT:
5138 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5139 	case BPF_PROG_TYPE_SK_LOOKUP:
5140 		return true;
5141 	default:
5142 		break;
5143 	}
5144 
5145 	verbose(env, "cannot update sockmap in this context\n");
5146 	return false;
5147 }
5148 
5149 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5150 {
5151 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5152 }
5153 
5154 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5155 					struct bpf_map *map, int func_id)
5156 {
5157 	if (!map)
5158 		return 0;
5159 
5160 	/* We need a two way check, first is from map perspective ... */
5161 	switch (map->map_type) {
5162 	case BPF_MAP_TYPE_PROG_ARRAY:
5163 		if (func_id != BPF_FUNC_tail_call)
5164 			goto error;
5165 		break;
5166 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5167 		if (func_id != BPF_FUNC_perf_event_read &&
5168 		    func_id != BPF_FUNC_perf_event_output &&
5169 		    func_id != BPF_FUNC_skb_output &&
5170 		    func_id != BPF_FUNC_perf_event_read_value &&
5171 		    func_id != BPF_FUNC_xdp_output)
5172 			goto error;
5173 		break;
5174 	case BPF_MAP_TYPE_RINGBUF:
5175 		if (func_id != BPF_FUNC_ringbuf_output &&
5176 		    func_id != BPF_FUNC_ringbuf_reserve &&
5177 		    func_id != BPF_FUNC_ringbuf_submit &&
5178 		    func_id != BPF_FUNC_ringbuf_discard &&
5179 		    func_id != BPF_FUNC_ringbuf_query)
5180 			goto error;
5181 		break;
5182 	case BPF_MAP_TYPE_STACK_TRACE:
5183 		if (func_id != BPF_FUNC_get_stackid)
5184 			goto error;
5185 		break;
5186 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5187 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5188 		    func_id != BPF_FUNC_current_task_under_cgroup)
5189 			goto error;
5190 		break;
5191 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5192 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5193 		if (func_id != BPF_FUNC_get_local_storage)
5194 			goto error;
5195 		break;
5196 	case BPF_MAP_TYPE_DEVMAP:
5197 	case BPF_MAP_TYPE_DEVMAP_HASH:
5198 		if (func_id != BPF_FUNC_redirect_map &&
5199 		    func_id != BPF_FUNC_map_lookup_elem)
5200 			goto error;
5201 		break;
5202 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5203 	 * appear.
5204 	 */
5205 	case BPF_MAP_TYPE_CPUMAP:
5206 		if (func_id != BPF_FUNC_redirect_map)
5207 			goto error;
5208 		break;
5209 	case BPF_MAP_TYPE_XSKMAP:
5210 		if (func_id != BPF_FUNC_redirect_map &&
5211 		    func_id != BPF_FUNC_map_lookup_elem)
5212 			goto error;
5213 		break;
5214 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5215 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5216 		if (func_id != BPF_FUNC_map_lookup_elem)
5217 			goto error;
5218 		break;
5219 	case BPF_MAP_TYPE_SOCKMAP:
5220 		if (func_id != BPF_FUNC_sk_redirect_map &&
5221 		    func_id != BPF_FUNC_sock_map_update &&
5222 		    func_id != BPF_FUNC_map_delete_elem &&
5223 		    func_id != BPF_FUNC_msg_redirect_map &&
5224 		    func_id != BPF_FUNC_sk_select_reuseport &&
5225 		    func_id != BPF_FUNC_map_lookup_elem &&
5226 		    !may_update_sockmap(env, func_id))
5227 			goto error;
5228 		break;
5229 	case BPF_MAP_TYPE_SOCKHASH:
5230 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5231 		    func_id != BPF_FUNC_sock_hash_update &&
5232 		    func_id != BPF_FUNC_map_delete_elem &&
5233 		    func_id != BPF_FUNC_msg_redirect_hash &&
5234 		    func_id != BPF_FUNC_sk_select_reuseport &&
5235 		    func_id != BPF_FUNC_map_lookup_elem &&
5236 		    !may_update_sockmap(env, func_id))
5237 			goto error;
5238 		break;
5239 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5240 		if (func_id != BPF_FUNC_sk_select_reuseport)
5241 			goto error;
5242 		break;
5243 	case BPF_MAP_TYPE_QUEUE:
5244 	case BPF_MAP_TYPE_STACK:
5245 		if (func_id != BPF_FUNC_map_peek_elem &&
5246 		    func_id != BPF_FUNC_map_pop_elem &&
5247 		    func_id != BPF_FUNC_map_push_elem)
5248 			goto error;
5249 		break;
5250 	case BPF_MAP_TYPE_SK_STORAGE:
5251 		if (func_id != BPF_FUNC_sk_storage_get &&
5252 		    func_id != BPF_FUNC_sk_storage_delete)
5253 			goto error;
5254 		break;
5255 	case BPF_MAP_TYPE_INODE_STORAGE:
5256 		if (func_id != BPF_FUNC_inode_storage_get &&
5257 		    func_id != BPF_FUNC_inode_storage_delete)
5258 			goto error;
5259 		break;
5260 	case BPF_MAP_TYPE_TASK_STORAGE:
5261 		if (func_id != BPF_FUNC_task_storage_get &&
5262 		    func_id != BPF_FUNC_task_storage_delete)
5263 			goto error;
5264 		break;
5265 	default:
5266 		break;
5267 	}
5268 
5269 	/* ... and second from the function itself. */
5270 	switch (func_id) {
5271 	case BPF_FUNC_tail_call:
5272 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5273 			goto error;
5274 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5275 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5276 			return -EINVAL;
5277 		}
5278 		break;
5279 	case BPF_FUNC_perf_event_read:
5280 	case BPF_FUNC_perf_event_output:
5281 	case BPF_FUNC_perf_event_read_value:
5282 	case BPF_FUNC_skb_output:
5283 	case BPF_FUNC_xdp_output:
5284 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5285 			goto error;
5286 		break;
5287 	case BPF_FUNC_get_stackid:
5288 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5289 			goto error;
5290 		break;
5291 	case BPF_FUNC_current_task_under_cgroup:
5292 	case BPF_FUNC_skb_under_cgroup:
5293 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5294 			goto error;
5295 		break;
5296 	case BPF_FUNC_redirect_map:
5297 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5298 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5299 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5300 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5301 			goto error;
5302 		break;
5303 	case BPF_FUNC_sk_redirect_map:
5304 	case BPF_FUNC_msg_redirect_map:
5305 	case BPF_FUNC_sock_map_update:
5306 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5307 			goto error;
5308 		break;
5309 	case BPF_FUNC_sk_redirect_hash:
5310 	case BPF_FUNC_msg_redirect_hash:
5311 	case BPF_FUNC_sock_hash_update:
5312 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5313 			goto error;
5314 		break;
5315 	case BPF_FUNC_get_local_storage:
5316 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5317 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5318 			goto error;
5319 		break;
5320 	case BPF_FUNC_sk_select_reuseport:
5321 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5322 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5323 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5324 			goto error;
5325 		break;
5326 	case BPF_FUNC_map_peek_elem:
5327 	case BPF_FUNC_map_pop_elem:
5328 	case BPF_FUNC_map_push_elem:
5329 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5330 		    map->map_type != BPF_MAP_TYPE_STACK)
5331 			goto error;
5332 		break;
5333 	case BPF_FUNC_sk_storage_get:
5334 	case BPF_FUNC_sk_storage_delete:
5335 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5336 			goto error;
5337 		break;
5338 	case BPF_FUNC_inode_storage_get:
5339 	case BPF_FUNC_inode_storage_delete:
5340 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5341 			goto error;
5342 		break;
5343 	case BPF_FUNC_task_storage_get:
5344 	case BPF_FUNC_task_storage_delete:
5345 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5346 			goto error;
5347 		break;
5348 	default:
5349 		break;
5350 	}
5351 
5352 	return 0;
5353 error:
5354 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5355 		map->map_type, func_id_name(func_id), func_id);
5356 	return -EINVAL;
5357 }
5358 
5359 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5360 {
5361 	int count = 0;
5362 
5363 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5364 		count++;
5365 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5366 		count++;
5367 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5368 		count++;
5369 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5370 		count++;
5371 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5372 		count++;
5373 
5374 	/* We only support one arg being in raw mode at the moment,
5375 	 * which is sufficient for the helper functions we have
5376 	 * right now.
5377 	 */
5378 	return count <= 1;
5379 }
5380 
5381 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5382 				    enum bpf_arg_type arg_next)
5383 {
5384 	return (arg_type_is_mem_ptr(arg_curr) &&
5385 	        !arg_type_is_mem_size(arg_next)) ||
5386 	       (!arg_type_is_mem_ptr(arg_curr) &&
5387 		arg_type_is_mem_size(arg_next));
5388 }
5389 
5390 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5391 {
5392 	/* bpf_xxx(..., buf, len) call will access 'len'
5393 	 * bytes from memory 'buf'. Both arg types need
5394 	 * to be paired, so make sure there's no buggy
5395 	 * helper function specification.
5396 	 */
5397 	if (arg_type_is_mem_size(fn->arg1_type) ||
5398 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5399 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5400 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5401 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5402 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5403 		return false;
5404 
5405 	return true;
5406 }
5407 
5408 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5409 {
5410 	int count = 0;
5411 
5412 	if (arg_type_may_be_refcounted(fn->arg1_type))
5413 		count++;
5414 	if (arg_type_may_be_refcounted(fn->arg2_type))
5415 		count++;
5416 	if (arg_type_may_be_refcounted(fn->arg3_type))
5417 		count++;
5418 	if (arg_type_may_be_refcounted(fn->arg4_type))
5419 		count++;
5420 	if (arg_type_may_be_refcounted(fn->arg5_type))
5421 		count++;
5422 
5423 	/* A reference acquiring function cannot acquire
5424 	 * another refcounted ptr.
5425 	 */
5426 	if (may_be_acquire_function(func_id) && count)
5427 		return false;
5428 
5429 	/* We only support one arg being unreferenced at the moment,
5430 	 * which is sufficient for the helper functions we have right now.
5431 	 */
5432 	return count <= 1;
5433 }
5434 
5435 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5436 {
5437 	int i;
5438 
5439 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5440 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5441 			return false;
5442 
5443 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5444 			return false;
5445 	}
5446 
5447 	return true;
5448 }
5449 
5450 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5451 {
5452 	return check_raw_mode_ok(fn) &&
5453 	       check_arg_pair_ok(fn) &&
5454 	       check_btf_id_ok(fn) &&
5455 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5456 }
5457 
5458 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5459  * are now invalid, so turn them into unknown SCALAR_VALUE.
5460  */
5461 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5462 				     struct bpf_func_state *state)
5463 {
5464 	struct bpf_reg_state *regs = state->regs, *reg;
5465 	int i;
5466 
5467 	for (i = 0; i < MAX_BPF_REG; i++)
5468 		if (reg_is_pkt_pointer_any(&regs[i]))
5469 			mark_reg_unknown(env, regs, i);
5470 
5471 	bpf_for_each_spilled_reg(i, state, reg) {
5472 		if (!reg)
5473 			continue;
5474 		if (reg_is_pkt_pointer_any(reg))
5475 			__mark_reg_unknown(env, reg);
5476 	}
5477 }
5478 
5479 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5480 {
5481 	struct bpf_verifier_state *vstate = env->cur_state;
5482 	int i;
5483 
5484 	for (i = 0; i <= vstate->curframe; i++)
5485 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5486 }
5487 
5488 enum {
5489 	AT_PKT_END = -1,
5490 	BEYOND_PKT_END = -2,
5491 };
5492 
5493 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5494 {
5495 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5496 	struct bpf_reg_state *reg = &state->regs[regn];
5497 
5498 	if (reg->type != PTR_TO_PACKET)
5499 		/* PTR_TO_PACKET_META is not supported yet */
5500 		return;
5501 
5502 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5503 	 * How far beyond pkt_end it goes is unknown.
5504 	 * if (!range_open) it's the case of pkt >= pkt_end
5505 	 * if (range_open) it's the case of pkt > pkt_end
5506 	 * hence this pointer is at least 1 byte bigger than pkt_end
5507 	 */
5508 	if (range_open)
5509 		reg->range = BEYOND_PKT_END;
5510 	else
5511 		reg->range = AT_PKT_END;
5512 }
5513 
5514 static void release_reg_references(struct bpf_verifier_env *env,
5515 				   struct bpf_func_state *state,
5516 				   int ref_obj_id)
5517 {
5518 	struct bpf_reg_state *regs = state->regs, *reg;
5519 	int i;
5520 
5521 	for (i = 0; i < MAX_BPF_REG; i++)
5522 		if (regs[i].ref_obj_id == ref_obj_id)
5523 			mark_reg_unknown(env, regs, i);
5524 
5525 	bpf_for_each_spilled_reg(i, state, reg) {
5526 		if (!reg)
5527 			continue;
5528 		if (reg->ref_obj_id == ref_obj_id)
5529 			__mark_reg_unknown(env, reg);
5530 	}
5531 }
5532 
5533 /* The pointer with the specified id has released its reference to kernel
5534  * resources. Identify all copies of the same pointer and clear the reference.
5535  */
5536 static int release_reference(struct bpf_verifier_env *env,
5537 			     int ref_obj_id)
5538 {
5539 	struct bpf_verifier_state *vstate = env->cur_state;
5540 	int err;
5541 	int i;
5542 
5543 	err = release_reference_state(cur_func(env), ref_obj_id);
5544 	if (err)
5545 		return err;
5546 
5547 	for (i = 0; i <= vstate->curframe; i++)
5548 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5549 
5550 	return 0;
5551 }
5552 
5553 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5554 				    struct bpf_reg_state *regs)
5555 {
5556 	int i;
5557 
5558 	/* after the call registers r0 - r5 were scratched */
5559 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5560 		mark_reg_not_init(env, regs, caller_saved[i]);
5561 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5562 	}
5563 }
5564 
5565 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5566 				   struct bpf_func_state *caller,
5567 				   struct bpf_func_state *callee,
5568 				   int insn_idx);
5569 
5570 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5571 			     int *insn_idx, int subprog,
5572 			     set_callee_state_fn set_callee_state_cb)
5573 {
5574 	struct bpf_verifier_state *state = env->cur_state;
5575 	struct bpf_func_info_aux *func_info_aux;
5576 	struct bpf_func_state *caller, *callee;
5577 	int err;
5578 	bool is_global = false;
5579 
5580 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5581 		verbose(env, "the call stack of %d frames is too deep\n",
5582 			state->curframe + 2);
5583 		return -E2BIG;
5584 	}
5585 
5586 	caller = state->frame[state->curframe];
5587 	if (state->frame[state->curframe + 1]) {
5588 		verbose(env, "verifier bug. Frame %d already allocated\n",
5589 			state->curframe + 1);
5590 		return -EFAULT;
5591 	}
5592 
5593 	func_info_aux = env->prog->aux->func_info_aux;
5594 	if (func_info_aux)
5595 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5596 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5597 	if (err == -EFAULT)
5598 		return err;
5599 	if (is_global) {
5600 		if (err) {
5601 			verbose(env, "Caller passes invalid args into func#%d\n",
5602 				subprog);
5603 			return err;
5604 		} else {
5605 			if (env->log.level & BPF_LOG_LEVEL)
5606 				verbose(env,
5607 					"Func#%d is global and valid. Skipping.\n",
5608 					subprog);
5609 			clear_caller_saved_regs(env, caller->regs);
5610 
5611 			/* All global functions return a 64-bit SCALAR_VALUE */
5612 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5613 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5614 
5615 			/* continue with next insn after call */
5616 			return 0;
5617 		}
5618 	}
5619 
5620 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5621 	if (!callee)
5622 		return -ENOMEM;
5623 	state->frame[state->curframe + 1] = callee;
5624 
5625 	/* callee cannot access r0, r6 - r9 for reading and has to write
5626 	 * into its own stack before reading from it.
5627 	 * callee can read/write into caller's stack
5628 	 */
5629 	init_func_state(env, callee,
5630 			/* remember the callsite, it will be used by bpf_exit */
5631 			*insn_idx /* callsite */,
5632 			state->curframe + 1 /* frameno within this callchain */,
5633 			subprog /* subprog number within this prog */);
5634 
5635 	/* Transfer references to the callee */
5636 	err = copy_reference_state(callee, caller);
5637 	if (err)
5638 		return err;
5639 
5640 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5641 	if (err)
5642 		return err;
5643 
5644 	clear_caller_saved_regs(env, caller->regs);
5645 
5646 	/* only increment it after check_reg_arg() finished */
5647 	state->curframe++;
5648 
5649 	/* and go analyze first insn of the callee */
5650 	*insn_idx = env->subprog_info[subprog].start - 1;
5651 
5652 	if (env->log.level & BPF_LOG_LEVEL) {
5653 		verbose(env, "caller:\n");
5654 		print_verifier_state(env, caller);
5655 		verbose(env, "callee:\n");
5656 		print_verifier_state(env, callee);
5657 	}
5658 	return 0;
5659 }
5660 
5661 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5662 				   struct bpf_func_state *caller,
5663 				   struct bpf_func_state *callee)
5664 {
5665 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5666 	 *      void *callback_ctx, u64 flags);
5667 	 * callback_fn(struct bpf_map *map, void *key, void *value,
5668 	 *      void *callback_ctx);
5669 	 */
5670 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5671 
5672 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5673 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5674 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5675 
5676 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5677 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5678 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5679 
5680 	/* pointer to stack or null */
5681 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5682 
5683 	/* unused */
5684 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5685 	return 0;
5686 }
5687 
5688 static int set_callee_state(struct bpf_verifier_env *env,
5689 			    struct bpf_func_state *caller,
5690 			    struct bpf_func_state *callee, int insn_idx)
5691 {
5692 	int i;
5693 
5694 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5695 	 * pointers, which connects us up to the liveness chain
5696 	 */
5697 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5698 		callee->regs[i] = caller->regs[i];
5699 	return 0;
5700 }
5701 
5702 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5703 			   int *insn_idx)
5704 {
5705 	int subprog, target_insn;
5706 
5707 	target_insn = *insn_idx + insn->imm + 1;
5708 	subprog = find_subprog(env, target_insn);
5709 	if (subprog < 0) {
5710 		verbose(env, "verifier bug. No program starts at insn %d\n",
5711 			target_insn);
5712 		return -EFAULT;
5713 	}
5714 
5715 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5716 }
5717 
5718 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5719 				       struct bpf_func_state *caller,
5720 				       struct bpf_func_state *callee,
5721 				       int insn_idx)
5722 {
5723 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5724 	struct bpf_map *map;
5725 	int err;
5726 
5727 	if (bpf_map_ptr_poisoned(insn_aux)) {
5728 		verbose(env, "tail_call abusing map_ptr\n");
5729 		return -EINVAL;
5730 	}
5731 
5732 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5733 	if (!map->ops->map_set_for_each_callback_args ||
5734 	    !map->ops->map_for_each_callback) {
5735 		verbose(env, "callback function not allowed for map\n");
5736 		return -ENOTSUPP;
5737 	}
5738 
5739 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5740 	if (err)
5741 		return err;
5742 
5743 	callee->in_callback_fn = true;
5744 	return 0;
5745 }
5746 
5747 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5748 {
5749 	struct bpf_verifier_state *state = env->cur_state;
5750 	struct bpf_func_state *caller, *callee;
5751 	struct bpf_reg_state *r0;
5752 	int err;
5753 
5754 	callee = state->frame[state->curframe];
5755 	r0 = &callee->regs[BPF_REG_0];
5756 	if (r0->type == PTR_TO_STACK) {
5757 		/* technically it's ok to return caller's stack pointer
5758 		 * (or caller's caller's pointer) back to the caller,
5759 		 * since these pointers are valid. Only current stack
5760 		 * pointer will be invalid as soon as function exits,
5761 		 * but let's be conservative
5762 		 */
5763 		verbose(env, "cannot return stack pointer to the caller\n");
5764 		return -EINVAL;
5765 	}
5766 
5767 	state->curframe--;
5768 	caller = state->frame[state->curframe];
5769 	if (callee->in_callback_fn) {
5770 		/* enforce R0 return value range [0, 1]. */
5771 		struct tnum range = tnum_range(0, 1);
5772 
5773 		if (r0->type != SCALAR_VALUE) {
5774 			verbose(env, "R0 not a scalar value\n");
5775 			return -EACCES;
5776 		}
5777 		if (!tnum_in(range, r0->var_off)) {
5778 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5779 			return -EINVAL;
5780 		}
5781 	} else {
5782 		/* return to the caller whatever r0 had in the callee */
5783 		caller->regs[BPF_REG_0] = *r0;
5784 	}
5785 
5786 	/* Transfer references to the caller */
5787 	err = copy_reference_state(caller, callee);
5788 	if (err)
5789 		return err;
5790 
5791 	*insn_idx = callee->callsite + 1;
5792 	if (env->log.level & BPF_LOG_LEVEL) {
5793 		verbose(env, "returning from callee:\n");
5794 		print_verifier_state(env, callee);
5795 		verbose(env, "to caller at %d:\n", *insn_idx);
5796 		print_verifier_state(env, caller);
5797 	}
5798 	/* clear everything in the callee */
5799 	free_func_state(callee);
5800 	state->frame[state->curframe + 1] = NULL;
5801 	return 0;
5802 }
5803 
5804 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5805 				   int func_id,
5806 				   struct bpf_call_arg_meta *meta)
5807 {
5808 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5809 
5810 	if (ret_type != RET_INTEGER ||
5811 	    (func_id != BPF_FUNC_get_stack &&
5812 	     func_id != BPF_FUNC_get_task_stack &&
5813 	     func_id != BPF_FUNC_probe_read_str &&
5814 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5815 	     func_id != BPF_FUNC_probe_read_user_str))
5816 		return;
5817 
5818 	ret_reg->smax_value = meta->msize_max_value;
5819 	ret_reg->s32_max_value = meta->msize_max_value;
5820 	ret_reg->smin_value = -MAX_ERRNO;
5821 	ret_reg->s32_min_value = -MAX_ERRNO;
5822 	__reg_deduce_bounds(ret_reg);
5823 	__reg_bound_offset(ret_reg);
5824 	__update_reg_bounds(ret_reg);
5825 }
5826 
5827 static int
5828 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5829 		int func_id, int insn_idx)
5830 {
5831 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5832 	struct bpf_map *map = meta->map_ptr;
5833 
5834 	if (func_id != BPF_FUNC_tail_call &&
5835 	    func_id != BPF_FUNC_map_lookup_elem &&
5836 	    func_id != BPF_FUNC_map_update_elem &&
5837 	    func_id != BPF_FUNC_map_delete_elem &&
5838 	    func_id != BPF_FUNC_map_push_elem &&
5839 	    func_id != BPF_FUNC_map_pop_elem &&
5840 	    func_id != BPF_FUNC_map_peek_elem &&
5841 	    func_id != BPF_FUNC_for_each_map_elem &&
5842 	    func_id != BPF_FUNC_redirect_map)
5843 		return 0;
5844 
5845 	if (map == NULL) {
5846 		verbose(env, "kernel subsystem misconfigured verifier\n");
5847 		return -EINVAL;
5848 	}
5849 
5850 	/* In case of read-only, some additional restrictions
5851 	 * need to be applied in order to prevent altering the
5852 	 * state of the map from program side.
5853 	 */
5854 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5855 	    (func_id == BPF_FUNC_map_delete_elem ||
5856 	     func_id == BPF_FUNC_map_update_elem ||
5857 	     func_id == BPF_FUNC_map_push_elem ||
5858 	     func_id == BPF_FUNC_map_pop_elem)) {
5859 		verbose(env, "write into map forbidden\n");
5860 		return -EACCES;
5861 	}
5862 
5863 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5864 		bpf_map_ptr_store(aux, meta->map_ptr,
5865 				  !meta->map_ptr->bypass_spec_v1);
5866 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5867 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5868 				  !meta->map_ptr->bypass_spec_v1);
5869 	return 0;
5870 }
5871 
5872 static int
5873 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5874 		int func_id, int insn_idx)
5875 {
5876 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5877 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5878 	struct bpf_map *map = meta->map_ptr;
5879 	struct tnum range;
5880 	u64 val;
5881 	int err;
5882 
5883 	if (func_id != BPF_FUNC_tail_call)
5884 		return 0;
5885 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5886 		verbose(env, "kernel subsystem misconfigured verifier\n");
5887 		return -EINVAL;
5888 	}
5889 
5890 	range = tnum_range(0, map->max_entries - 1);
5891 	reg = &regs[BPF_REG_3];
5892 
5893 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5894 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5895 		return 0;
5896 	}
5897 
5898 	err = mark_chain_precision(env, BPF_REG_3);
5899 	if (err)
5900 		return err;
5901 
5902 	val = reg->var_off.value;
5903 	if (bpf_map_key_unseen(aux))
5904 		bpf_map_key_store(aux, val);
5905 	else if (!bpf_map_key_poisoned(aux) &&
5906 		  bpf_map_key_immediate(aux) != val)
5907 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5908 	return 0;
5909 }
5910 
5911 static int check_reference_leak(struct bpf_verifier_env *env)
5912 {
5913 	struct bpf_func_state *state = cur_func(env);
5914 	int i;
5915 
5916 	for (i = 0; i < state->acquired_refs; i++) {
5917 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5918 			state->refs[i].id, state->refs[i].insn_idx);
5919 	}
5920 	return state->acquired_refs ? -EINVAL : 0;
5921 }
5922 
5923 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
5924 				   struct bpf_reg_state *regs)
5925 {
5926 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
5927 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
5928 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
5929 	int err, fmt_map_off, num_args;
5930 	u64 fmt_addr;
5931 	char *fmt;
5932 
5933 	/* data must be an array of u64 */
5934 	if (data_len_reg->var_off.value % 8)
5935 		return -EINVAL;
5936 	num_args = data_len_reg->var_off.value / 8;
5937 
5938 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
5939 	 * and map_direct_value_addr is set.
5940 	 */
5941 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
5942 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
5943 						  fmt_map_off);
5944 	if (err) {
5945 		verbose(env, "verifier bug\n");
5946 		return -EFAULT;
5947 	}
5948 	fmt = (char *)(long)fmt_addr + fmt_map_off;
5949 
5950 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
5951 	 * can focus on validating the format specifiers.
5952 	 */
5953 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
5954 	if (err < 0)
5955 		verbose(env, "Invalid format string\n");
5956 
5957 	return err;
5958 }
5959 
5960 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5961 			     int *insn_idx_p)
5962 {
5963 	const struct bpf_func_proto *fn = NULL;
5964 	struct bpf_reg_state *regs;
5965 	struct bpf_call_arg_meta meta;
5966 	int insn_idx = *insn_idx_p;
5967 	bool changes_data;
5968 	int i, err, func_id;
5969 
5970 	/* find function prototype */
5971 	func_id = insn->imm;
5972 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5973 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5974 			func_id);
5975 		return -EINVAL;
5976 	}
5977 
5978 	if (env->ops->get_func_proto)
5979 		fn = env->ops->get_func_proto(func_id, env->prog);
5980 	if (!fn) {
5981 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5982 			func_id);
5983 		return -EINVAL;
5984 	}
5985 
5986 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5987 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5988 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5989 		return -EINVAL;
5990 	}
5991 
5992 	if (fn->allowed && !fn->allowed(env->prog)) {
5993 		verbose(env, "helper call is not allowed in probe\n");
5994 		return -EINVAL;
5995 	}
5996 
5997 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5998 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5999 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6000 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6001 			func_id_name(func_id), func_id);
6002 		return -EINVAL;
6003 	}
6004 
6005 	memset(&meta, 0, sizeof(meta));
6006 	meta.pkt_access = fn->pkt_access;
6007 
6008 	err = check_func_proto(fn, func_id);
6009 	if (err) {
6010 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6011 			func_id_name(func_id), func_id);
6012 		return err;
6013 	}
6014 
6015 	meta.func_id = func_id;
6016 	/* check args */
6017 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6018 		err = check_func_arg(env, i, &meta, fn);
6019 		if (err)
6020 			return err;
6021 	}
6022 
6023 	err = record_func_map(env, &meta, func_id, insn_idx);
6024 	if (err)
6025 		return err;
6026 
6027 	err = record_func_key(env, &meta, func_id, insn_idx);
6028 	if (err)
6029 		return err;
6030 
6031 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6032 	 * is inferred from register state.
6033 	 */
6034 	for (i = 0; i < meta.access_size; i++) {
6035 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6036 				       BPF_WRITE, -1, false);
6037 		if (err)
6038 			return err;
6039 	}
6040 
6041 	if (func_id == BPF_FUNC_tail_call) {
6042 		err = check_reference_leak(env);
6043 		if (err) {
6044 			verbose(env, "tail_call would lead to reference leak\n");
6045 			return err;
6046 		}
6047 	} else if (is_release_function(func_id)) {
6048 		err = release_reference(env, meta.ref_obj_id);
6049 		if (err) {
6050 			verbose(env, "func %s#%d reference has not been acquired before\n",
6051 				func_id_name(func_id), func_id);
6052 			return err;
6053 		}
6054 	}
6055 
6056 	regs = cur_regs(env);
6057 
6058 	/* check that flags argument in get_local_storage(map, flags) is 0,
6059 	 * this is required because get_local_storage() can't return an error.
6060 	 */
6061 	if (func_id == BPF_FUNC_get_local_storage &&
6062 	    !register_is_null(&regs[BPF_REG_2])) {
6063 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6064 		return -EINVAL;
6065 	}
6066 
6067 	if (func_id == BPF_FUNC_for_each_map_elem) {
6068 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6069 					set_map_elem_callback_state);
6070 		if (err < 0)
6071 			return -EINVAL;
6072 	}
6073 
6074 	if (func_id == BPF_FUNC_snprintf) {
6075 		err = check_bpf_snprintf_call(env, regs);
6076 		if (err < 0)
6077 			return err;
6078 	}
6079 
6080 	/* reset caller saved regs */
6081 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6082 		mark_reg_not_init(env, regs, caller_saved[i]);
6083 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6084 	}
6085 
6086 	/* helper call returns 64-bit value. */
6087 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6088 
6089 	/* update return register (already marked as written above) */
6090 	if (fn->ret_type == RET_INTEGER) {
6091 		/* sets type to SCALAR_VALUE */
6092 		mark_reg_unknown(env, regs, BPF_REG_0);
6093 	} else if (fn->ret_type == RET_VOID) {
6094 		regs[BPF_REG_0].type = NOT_INIT;
6095 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6096 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6097 		/* There is no offset yet applied, variable or fixed */
6098 		mark_reg_known_zero(env, regs, BPF_REG_0);
6099 		/* remember map_ptr, so that check_map_access()
6100 		 * can check 'value_size' boundary of memory access
6101 		 * to map element returned from bpf_map_lookup_elem()
6102 		 */
6103 		if (meta.map_ptr == NULL) {
6104 			verbose(env,
6105 				"kernel subsystem misconfigured verifier\n");
6106 			return -EINVAL;
6107 		}
6108 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6109 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6110 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6111 			if (map_value_has_spin_lock(meta.map_ptr))
6112 				regs[BPF_REG_0].id = ++env->id_gen;
6113 		} else {
6114 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6115 		}
6116 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6117 		mark_reg_known_zero(env, regs, BPF_REG_0);
6118 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6119 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6120 		mark_reg_known_zero(env, regs, BPF_REG_0);
6121 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6122 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6123 		mark_reg_known_zero(env, regs, BPF_REG_0);
6124 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6125 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6126 		mark_reg_known_zero(env, regs, BPF_REG_0);
6127 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6128 		regs[BPF_REG_0].mem_size = meta.mem_size;
6129 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6130 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6131 		const struct btf_type *t;
6132 
6133 		mark_reg_known_zero(env, regs, BPF_REG_0);
6134 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6135 		if (!btf_type_is_struct(t)) {
6136 			u32 tsize;
6137 			const struct btf_type *ret;
6138 			const char *tname;
6139 
6140 			/* resolve the type size of ksym. */
6141 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6142 			if (IS_ERR(ret)) {
6143 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6144 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6145 					tname, PTR_ERR(ret));
6146 				return -EINVAL;
6147 			}
6148 			regs[BPF_REG_0].type =
6149 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6150 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6151 			regs[BPF_REG_0].mem_size = tsize;
6152 		} else {
6153 			regs[BPF_REG_0].type =
6154 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6155 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6156 			regs[BPF_REG_0].btf = meta.ret_btf;
6157 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6158 		}
6159 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6160 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
6161 		int ret_btf_id;
6162 
6163 		mark_reg_known_zero(env, regs, BPF_REG_0);
6164 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6165 						     PTR_TO_BTF_ID :
6166 						     PTR_TO_BTF_ID_OR_NULL;
6167 		ret_btf_id = *fn->ret_btf_id;
6168 		if (ret_btf_id == 0) {
6169 			verbose(env, "invalid return type %d of func %s#%d\n",
6170 				fn->ret_type, func_id_name(func_id), func_id);
6171 			return -EINVAL;
6172 		}
6173 		/* current BPF helper definitions are only coming from
6174 		 * built-in code with type IDs from  vmlinux BTF
6175 		 */
6176 		regs[BPF_REG_0].btf = btf_vmlinux;
6177 		regs[BPF_REG_0].btf_id = ret_btf_id;
6178 	} else {
6179 		verbose(env, "unknown return type %d of func %s#%d\n",
6180 			fn->ret_type, func_id_name(func_id), func_id);
6181 		return -EINVAL;
6182 	}
6183 
6184 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
6185 		regs[BPF_REG_0].id = ++env->id_gen;
6186 
6187 	if (is_ptr_cast_function(func_id)) {
6188 		/* For release_reference() */
6189 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6190 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6191 		int id = acquire_reference_state(env, insn_idx);
6192 
6193 		if (id < 0)
6194 			return id;
6195 		/* For mark_ptr_or_null_reg() */
6196 		regs[BPF_REG_0].id = id;
6197 		/* For release_reference() */
6198 		regs[BPF_REG_0].ref_obj_id = id;
6199 	}
6200 
6201 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6202 
6203 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6204 	if (err)
6205 		return err;
6206 
6207 	if ((func_id == BPF_FUNC_get_stack ||
6208 	     func_id == BPF_FUNC_get_task_stack) &&
6209 	    !env->prog->has_callchain_buf) {
6210 		const char *err_str;
6211 
6212 #ifdef CONFIG_PERF_EVENTS
6213 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6214 		err_str = "cannot get callchain buffer for func %s#%d\n";
6215 #else
6216 		err = -ENOTSUPP;
6217 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6218 #endif
6219 		if (err) {
6220 			verbose(env, err_str, func_id_name(func_id), func_id);
6221 			return err;
6222 		}
6223 
6224 		env->prog->has_callchain_buf = true;
6225 	}
6226 
6227 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6228 		env->prog->call_get_stack = true;
6229 
6230 	if (changes_data)
6231 		clear_all_pkt_pointers(env);
6232 	return 0;
6233 }
6234 
6235 /* mark_btf_func_reg_size() is used when the reg size is determined by
6236  * the BTF func_proto's return value size and argument.
6237  */
6238 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6239 				   size_t reg_size)
6240 {
6241 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6242 
6243 	if (regno == BPF_REG_0) {
6244 		/* Function return value */
6245 		reg->live |= REG_LIVE_WRITTEN;
6246 		reg->subreg_def = reg_size == sizeof(u64) ?
6247 			DEF_NOT_SUBREG : env->insn_idx + 1;
6248 	} else {
6249 		/* Function argument */
6250 		if (reg_size == sizeof(u64)) {
6251 			mark_insn_zext(env, reg);
6252 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6253 		} else {
6254 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6255 		}
6256 	}
6257 }
6258 
6259 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6260 {
6261 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6262 	struct bpf_reg_state *regs = cur_regs(env);
6263 	const char *func_name, *ptr_type_name;
6264 	u32 i, nargs, func_id, ptr_type_id;
6265 	const struct btf_param *args;
6266 	int err;
6267 
6268 	func_id = insn->imm;
6269 	func = btf_type_by_id(btf_vmlinux, func_id);
6270 	func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6271 	func_proto = btf_type_by_id(btf_vmlinux, func->type);
6272 
6273 	if (!env->ops->check_kfunc_call ||
6274 	    !env->ops->check_kfunc_call(func_id)) {
6275 		verbose(env, "calling kernel function %s is not allowed\n",
6276 			func_name);
6277 		return -EACCES;
6278 	}
6279 
6280 	/* Check the arguments */
6281 	err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6282 	if (err)
6283 		return err;
6284 
6285 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6286 		mark_reg_not_init(env, regs, caller_saved[i]);
6287 
6288 	/* Check return type */
6289 	t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6290 	if (btf_type_is_scalar(t)) {
6291 		mark_reg_unknown(env, regs, BPF_REG_0);
6292 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6293 	} else if (btf_type_is_ptr(t)) {
6294 		ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6295 						   &ptr_type_id);
6296 		if (!btf_type_is_struct(ptr_type)) {
6297 			ptr_type_name = btf_name_by_offset(btf_vmlinux,
6298 							   ptr_type->name_off);
6299 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6300 				func_name, btf_type_str(ptr_type),
6301 				ptr_type_name);
6302 			return -EINVAL;
6303 		}
6304 		mark_reg_known_zero(env, regs, BPF_REG_0);
6305 		regs[BPF_REG_0].btf = btf_vmlinux;
6306 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6307 		regs[BPF_REG_0].btf_id = ptr_type_id;
6308 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6309 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6310 
6311 	nargs = btf_type_vlen(func_proto);
6312 	args = (const struct btf_param *)(func_proto + 1);
6313 	for (i = 0; i < nargs; i++) {
6314 		u32 regno = i + 1;
6315 
6316 		t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6317 		if (btf_type_is_ptr(t))
6318 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6319 		else
6320 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6321 			mark_btf_func_reg_size(env, regno, t->size);
6322 	}
6323 
6324 	return 0;
6325 }
6326 
6327 static bool signed_add_overflows(s64 a, s64 b)
6328 {
6329 	/* Do the add in u64, where overflow is well-defined */
6330 	s64 res = (s64)((u64)a + (u64)b);
6331 
6332 	if (b < 0)
6333 		return res > a;
6334 	return res < a;
6335 }
6336 
6337 static bool signed_add32_overflows(s32 a, s32 b)
6338 {
6339 	/* Do the add in u32, where overflow is well-defined */
6340 	s32 res = (s32)((u32)a + (u32)b);
6341 
6342 	if (b < 0)
6343 		return res > a;
6344 	return res < a;
6345 }
6346 
6347 static bool signed_sub_overflows(s64 a, s64 b)
6348 {
6349 	/* Do the sub in u64, where overflow is well-defined */
6350 	s64 res = (s64)((u64)a - (u64)b);
6351 
6352 	if (b < 0)
6353 		return res < a;
6354 	return res > a;
6355 }
6356 
6357 static bool signed_sub32_overflows(s32 a, s32 b)
6358 {
6359 	/* Do the sub in u32, where overflow is well-defined */
6360 	s32 res = (s32)((u32)a - (u32)b);
6361 
6362 	if (b < 0)
6363 		return res < a;
6364 	return res > a;
6365 }
6366 
6367 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6368 				  const struct bpf_reg_state *reg,
6369 				  enum bpf_reg_type type)
6370 {
6371 	bool known = tnum_is_const(reg->var_off);
6372 	s64 val = reg->var_off.value;
6373 	s64 smin = reg->smin_value;
6374 
6375 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6376 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6377 			reg_type_str[type], val);
6378 		return false;
6379 	}
6380 
6381 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6382 		verbose(env, "%s pointer offset %d is not allowed\n",
6383 			reg_type_str[type], reg->off);
6384 		return false;
6385 	}
6386 
6387 	if (smin == S64_MIN) {
6388 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6389 			reg_type_str[type]);
6390 		return false;
6391 	}
6392 
6393 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6394 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6395 			smin, reg_type_str[type]);
6396 		return false;
6397 	}
6398 
6399 	return true;
6400 }
6401 
6402 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6403 {
6404 	return &env->insn_aux_data[env->insn_idx];
6405 }
6406 
6407 enum {
6408 	REASON_BOUNDS	= -1,
6409 	REASON_TYPE	= -2,
6410 	REASON_PATHS	= -3,
6411 	REASON_LIMIT	= -4,
6412 	REASON_STACK	= -5,
6413 };
6414 
6415 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6416 			      u32 *alu_limit, bool mask_to_left)
6417 {
6418 	u32 max = 0, ptr_limit = 0;
6419 
6420 	switch (ptr_reg->type) {
6421 	case PTR_TO_STACK:
6422 		/* Offset 0 is out-of-bounds, but acceptable start for the
6423 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6424 		 * offset where we would need to deal with min/max bounds is
6425 		 * currently prohibited for unprivileged.
6426 		 */
6427 		max = MAX_BPF_STACK + mask_to_left;
6428 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6429 		break;
6430 	case PTR_TO_MAP_VALUE:
6431 		max = ptr_reg->map_ptr->value_size;
6432 		ptr_limit = (mask_to_left ?
6433 			     ptr_reg->smin_value :
6434 			     ptr_reg->umax_value) + ptr_reg->off;
6435 		break;
6436 	default:
6437 		return REASON_TYPE;
6438 	}
6439 
6440 	if (ptr_limit >= max)
6441 		return REASON_LIMIT;
6442 	*alu_limit = ptr_limit;
6443 	return 0;
6444 }
6445 
6446 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6447 				    const struct bpf_insn *insn)
6448 {
6449 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6450 }
6451 
6452 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6453 				       u32 alu_state, u32 alu_limit)
6454 {
6455 	/* If we arrived here from different branches with different
6456 	 * state or limits to sanitize, then this won't work.
6457 	 */
6458 	if (aux->alu_state &&
6459 	    (aux->alu_state != alu_state ||
6460 	     aux->alu_limit != alu_limit))
6461 		return REASON_PATHS;
6462 
6463 	/* Corresponding fixup done in do_misc_fixups(). */
6464 	aux->alu_state = alu_state;
6465 	aux->alu_limit = alu_limit;
6466 	return 0;
6467 }
6468 
6469 static int sanitize_val_alu(struct bpf_verifier_env *env,
6470 			    struct bpf_insn *insn)
6471 {
6472 	struct bpf_insn_aux_data *aux = cur_aux(env);
6473 
6474 	if (can_skip_alu_sanitation(env, insn))
6475 		return 0;
6476 
6477 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6478 }
6479 
6480 static bool sanitize_needed(u8 opcode)
6481 {
6482 	return opcode == BPF_ADD || opcode == BPF_SUB;
6483 }
6484 
6485 struct bpf_sanitize_info {
6486 	struct bpf_insn_aux_data aux;
6487 	bool mask_to_left;
6488 };
6489 
6490 static struct bpf_verifier_state *
6491 sanitize_speculative_path(struct bpf_verifier_env *env,
6492 			  const struct bpf_insn *insn,
6493 			  u32 next_idx, u32 curr_idx)
6494 {
6495 	struct bpf_verifier_state *branch;
6496 	struct bpf_reg_state *regs;
6497 
6498 	branch = push_stack(env, next_idx, curr_idx, true);
6499 	if (branch && insn) {
6500 		regs = branch->frame[branch->curframe]->regs;
6501 		if (BPF_SRC(insn->code) == BPF_K) {
6502 			mark_reg_unknown(env, regs, insn->dst_reg);
6503 		} else if (BPF_SRC(insn->code) == BPF_X) {
6504 			mark_reg_unknown(env, regs, insn->dst_reg);
6505 			mark_reg_unknown(env, regs, insn->src_reg);
6506 		}
6507 	}
6508 	return branch;
6509 }
6510 
6511 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6512 			    struct bpf_insn *insn,
6513 			    const struct bpf_reg_state *ptr_reg,
6514 			    const struct bpf_reg_state *off_reg,
6515 			    struct bpf_reg_state *dst_reg,
6516 			    struct bpf_sanitize_info *info,
6517 			    const bool commit_window)
6518 {
6519 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6520 	struct bpf_verifier_state *vstate = env->cur_state;
6521 	bool off_is_imm = tnum_is_const(off_reg->var_off);
6522 	bool off_is_neg = off_reg->smin_value < 0;
6523 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6524 	u8 opcode = BPF_OP(insn->code);
6525 	u32 alu_state, alu_limit;
6526 	struct bpf_reg_state tmp;
6527 	bool ret;
6528 	int err;
6529 
6530 	if (can_skip_alu_sanitation(env, insn))
6531 		return 0;
6532 
6533 	/* We already marked aux for masking from non-speculative
6534 	 * paths, thus we got here in the first place. We only care
6535 	 * to explore bad access from here.
6536 	 */
6537 	if (vstate->speculative)
6538 		goto do_sim;
6539 
6540 	if (!commit_window) {
6541 		if (!tnum_is_const(off_reg->var_off) &&
6542 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6543 			return REASON_BOUNDS;
6544 
6545 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6546 				     (opcode == BPF_SUB && !off_is_neg);
6547 	}
6548 
6549 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6550 	if (err < 0)
6551 		return err;
6552 
6553 	if (commit_window) {
6554 		/* In commit phase we narrow the masking window based on
6555 		 * the observed pointer move after the simulated operation.
6556 		 */
6557 		alu_state = info->aux.alu_state;
6558 		alu_limit = abs(info->aux.alu_limit - alu_limit);
6559 	} else {
6560 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6561 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6562 		alu_state |= ptr_is_dst_reg ?
6563 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6564 	}
6565 
6566 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6567 	if (err < 0)
6568 		return err;
6569 do_sim:
6570 	/* If we're in commit phase, we're done here given we already
6571 	 * pushed the truncated dst_reg into the speculative verification
6572 	 * stack.
6573 	 *
6574 	 * Also, when register is a known constant, we rewrite register-based
6575 	 * operation to immediate-based, and thus do not need masking (and as
6576 	 * a consequence, do not need to simulate the zero-truncation either).
6577 	 */
6578 	if (commit_window || off_is_imm)
6579 		return 0;
6580 
6581 	/* Simulate and find potential out-of-bounds access under
6582 	 * speculative execution from truncation as a result of
6583 	 * masking when off was not within expected range. If off
6584 	 * sits in dst, then we temporarily need to move ptr there
6585 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6586 	 * for cases where we use K-based arithmetic in one direction
6587 	 * and truncated reg-based in the other in order to explore
6588 	 * bad access.
6589 	 */
6590 	if (!ptr_is_dst_reg) {
6591 		tmp = *dst_reg;
6592 		*dst_reg = *ptr_reg;
6593 	}
6594 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
6595 					env->insn_idx);
6596 	if (!ptr_is_dst_reg && ret)
6597 		*dst_reg = tmp;
6598 	return !ret ? REASON_STACK : 0;
6599 }
6600 
6601 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6602 {
6603 	struct bpf_verifier_state *vstate = env->cur_state;
6604 
6605 	/* If we simulate paths under speculation, we don't update the
6606 	 * insn as 'seen' such that when we verify unreachable paths in
6607 	 * the non-speculative domain, sanitize_dead_code() can still
6608 	 * rewrite/sanitize them.
6609 	 */
6610 	if (!vstate->speculative)
6611 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6612 }
6613 
6614 static int sanitize_err(struct bpf_verifier_env *env,
6615 			const struct bpf_insn *insn, int reason,
6616 			const struct bpf_reg_state *off_reg,
6617 			const struct bpf_reg_state *dst_reg)
6618 {
6619 	static const char *err = "pointer arithmetic with it prohibited for !root";
6620 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6621 	u32 dst = insn->dst_reg, src = insn->src_reg;
6622 
6623 	switch (reason) {
6624 	case REASON_BOUNDS:
6625 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6626 			off_reg == dst_reg ? dst : src, err);
6627 		break;
6628 	case REASON_TYPE:
6629 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6630 			off_reg == dst_reg ? src : dst, err);
6631 		break;
6632 	case REASON_PATHS:
6633 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6634 			dst, op, err);
6635 		break;
6636 	case REASON_LIMIT:
6637 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6638 			dst, op, err);
6639 		break;
6640 	case REASON_STACK:
6641 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6642 			dst, err);
6643 		break;
6644 	default:
6645 		verbose(env, "verifier internal error: unknown reason (%d)\n",
6646 			reason);
6647 		break;
6648 	}
6649 
6650 	return -EACCES;
6651 }
6652 
6653 /* check that stack access falls within stack limits and that 'reg' doesn't
6654  * have a variable offset.
6655  *
6656  * Variable offset is prohibited for unprivileged mode for simplicity since it
6657  * requires corresponding support in Spectre masking for stack ALU.  See also
6658  * retrieve_ptr_limit().
6659  *
6660  *
6661  * 'off' includes 'reg->off'.
6662  */
6663 static int check_stack_access_for_ptr_arithmetic(
6664 				struct bpf_verifier_env *env,
6665 				int regno,
6666 				const struct bpf_reg_state *reg,
6667 				int off)
6668 {
6669 	if (!tnum_is_const(reg->var_off)) {
6670 		char tn_buf[48];
6671 
6672 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6673 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6674 			regno, tn_buf, off);
6675 		return -EACCES;
6676 	}
6677 
6678 	if (off >= 0 || off < -MAX_BPF_STACK) {
6679 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6680 			"prohibited for !root; off=%d\n", regno, off);
6681 		return -EACCES;
6682 	}
6683 
6684 	return 0;
6685 }
6686 
6687 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6688 				 const struct bpf_insn *insn,
6689 				 const struct bpf_reg_state *dst_reg)
6690 {
6691 	u32 dst = insn->dst_reg;
6692 
6693 	/* For unprivileged we require that resulting offset must be in bounds
6694 	 * in order to be able to sanitize access later on.
6695 	 */
6696 	if (env->bypass_spec_v1)
6697 		return 0;
6698 
6699 	switch (dst_reg->type) {
6700 	case PTR_TO_STACK:
6701 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6702 					dst_reg->off + dst_reg->var_off.value))
6703 			return -EACCES;
6704 		break;
6705 	case PTR_TO_MAP_VALUE:
6706 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6707 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6708 				"prohibited for !root\n", dst);
6709 			return -EACCES;
6710 		}
6711 		break;
6712 	default:
6713 		break;
6714 	}
6715 
6716 	return 0;
6717 }
6718 
6719 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6720  * Caller should also handle BPF_MOV case separately.
6721  * If we return -EACCES, caller may want to try again treating pointer as a
6722  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6723  */
6724 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6725 				   struct bpf_insn *insn,
6726 				   const struct bpf_reg_state *ptr_reg,
6727 				   const struct bpf_reg_state *off_reg)
6728 {
6729 	struct bpf_verifier_state *vstate = env->cur_state;
6730 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6731 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6732 	bool known = tnum_is_const(off_reg->var_off);
6733 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6734 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6735 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6736 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6737 	struct bpf_sanitize_info info = {};
6738 	u8 opcode = BPF_OP(insn->code);
6739 	u32 dst = insn->dst_reg;
6740 	int ret;
6741 
6742 	dst_reg = &regs[dst];
6743 
6744 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6745 	    smin_val > smax_val || umin_val > umax_val) {
6746 		/* Taint dst register if offset had invalid bounds derived from
6747 		 * e.g. dead branches.
6748 		 */
6749 		__mark_reg_unknown(env, dst_reg);
6750 		return 0;
6751 	}
6752 
6753 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6754 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6755 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6756 			__mark_reg_unknown(env, dst_reg);
6757 			return 0;
6758 		}
6759 
6760 		verbose(env,
6761 			"R%d 32-bit pointer arithmetic prohibited\n",
6762 			dst);
6763 		return -EACCES;
6764 	}
6765 
6766 	switch (ptr_reg->type) {
6767 	case PTR_TO_MAP_VALUE_OR_NULL:
6768 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6769 			dst, reg_type_str[ptr_reg->type]);
6770 		return -EACCES;
6771 	case CONST_PTR_TO_MAP:
6772 		/* smin_val represents the known value */
6773 		if (known && smin_val == 0 && opcode == BPF_ADD)
6774 			break;
6775 		fallthrough;
6776 	case PTR_TO_PACKET_END:
6777 	case PTR_TO_SOCKET:
6778 	case PTR_TO_SOCKET_OR_NULL:
6779 	case PTR_TO_SOCK_COMMON:
6780 	case PTR_TO_SOCK_COMMON_OR_NULL:
6781 	case PTR_TO_TCP_SOCK:
6782 	case PTR_TO_TCP_SOCK_OR_NULL:
6783 	case PTR_TO_XDP_SOCK:
6784 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6785 			dst, reg_type_str[ptr_reg->type]);
6786 		return -EACCES;
6787 	default:
6788 		break;
6789 	}
6790 
6791 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6792 	 * The id may be overwritten later if we create a new variable offset.
6793 	 */
6794 	dst_reg->type = ptr_reg->type;
6795 	dst_reg->id = ptr_reg->id;
6796 
6797 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6798 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6799 		return -EINVAL;
6800 
6801 	/* pointer types do not carry 32-bit bounds at the moment. */
6802 	__mark_reg32_unbounded(dst_reg);
6803 
6804 	if (sanitize_needed(opcode)) {
6805 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6806 				       &info, false);
6807 		if (ret < 0)
6808 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6809 	}
6810 
6811 	switch (opcode) {
6812 	case BPF_ADD:
6813 		/* We can take a fixed offset as long as it doesn't overflow
6814 		 * the s32 'off' field
6815 		 */
6816 		if (known && (ptr_reg->off + smin_val ==
6817 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6818 			/* pointer += K.  Accumulate it into fixed offset */
6819 			dst_reg->smin_value = smin_ptr;
6820 			dst_reg->smax_value = smax_ptr;
6821 			dst_reg->umin_value = umin_ptr;
6822 			dst_reg->umax_value = umax_ptr;
6823 			dst_reg->var_off = ptr_reg->var_off;
6824 			dst_reg->off = ptr_reg->off + smin_val;
6825 			dst_reg->raw = ptr_reg->raw;
6826 			break;
6827 		}
6828 		/* A new variable offset is created.  Note that off_reg->off
6829 		 * == 0, since it's a scalar.
6830 		 * dst_reg gets the pointer type and since some positive
6831 		 * integer value was added to the pointer, give it a new 'id'
6832 		 * if it's a PTR_TO_PACKET.
6833 		 * this creates a new 'base' pointer, off_reg (variable) gets
6834 		 * added into the variable offset, and we copy the fixed offset
6835 		 * from ptr_reg.
6836 		 */
6837 		if (signed_add_overflows(smin_ptr, smin_val) ||
6838 		    signed_add_overflows(smax_ptr, smax_val)) {
6839 			dst_reg->smin_value = S64_MIN;
6840 			dst_reg->smax_value = S64_MAX;
6841 		} else {
6842 			dst_reg->smin_value = smin_ptr + smin_val;
6843 			dst_reg->smax_value = smax_ptr + smax_val;
6844 		}
6845 		if (umin_ptr + umin_val < umin_ptr ||
6846 		    umax_ptr + umax_val < umax_ptr) {
6847 			dst_reg->umin_value = 0;
6848 			dst_reg->umax_value = U64_MAX;
6849 		} else {
6850 			dst_reg->umin_value = umin_ptr + umin_val;
6851 			dst_reg->umax_value = umax_ptr + umax_val;
6852 		}
6853 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6854 		dst_reg->off = ptr_reg->off;
6855 		dst_reg->raw = ptr_reg->raw;
6856 		if (reg_is_pkt_pointer(ptr_reg)) {
6857 			dst_reg->id = ++env->id_gen;
6858 			/* something was added to pkt_ptr, set range to zero */
6859 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6860 		}
6861 		break;
6862 	case BPF_SUB:
6863 		if (dst_reg == off_reg) {
6864 			/* scalar -= pointer.  Creates an unknown scalar */
6865 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6866 				dst);
6867 			return -EACCES;
6868 		}
6869 		/* We don't allow subtraction from FP, because (according to
6870 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6871 		 * be able to deal with it.
6872 		 */
6873 		if (ptr_reg->type == PTR_TO_STACK) {
6874 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6875 				dst);
6876 			return -EACCES;
6877 		}
6878 		if (known && (ptr_reg->off - smin_val ==
6879 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6880 			/* pointer -= K.  Subtract it from fixed offset */
6881 			dst_reg->smin_value = smin_ptr;
6882 			dst_reg->smax_value = smax_ptr;
6883 			dst_reg->umin_value = umin_ptr;
6884 			dst_reg->umax_value = umax_ptr;
6885 			dst_reg->var_off = ptr_reg->var_off;
6886 			dst_reg->id = ptr_reg->id;
6887 			dst_reg->off = ptr_reg->off - smin_val;
6888 			dst_reg->raw = ptr_reg->raw;
6889 			break;
6890 		}
6891 		/* A new variable offset is created.  If the subtrahend is known
6892 		 * nonnegative, then any reg->range we had before is still good.
6893 		 */
6894 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6895 		    signed_sub_overflows(smax_ptr, smin_val)) {
6896 			/* Overflow possible, we know nothing */
6897 			dst_reg->smin_value = S64_MIN;
6898 			dst_reg->smax_value = S64_MAX;
6899 		} else {
6900 			dst_reg->smin_value = smin_ptr - smax_val;
6901 			dst_reg->smax_value = smax_ptr - smin_val;
6902 		}
6903 		if (umin_ptr < umax_val) {
6904 			/* Overflow possible, we know nothing */
6905 			dst_reg->umin_value = 0;
6906 			dst_reg->umax_value = U64_MAX;
6907 		} else {
6908 			/* Cannot overflow (as long as bounds are consistent) */
6909 			dst_reg->umin_value = umin_ptr - umax_val;
6910 			dst_reg->umax_value = umax_ptr - umin_val;
6911 		}
6912 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6913 		dst_reg->off = ptr_reg->off;
6914 		dst_reg->raw = ptr_reg->raw;
6915 		if (reg_is_pkt_pointer(ptr_reg)) {
6916 			dst_reg->id = ++env->id_gen;
6917 			/* something was added to pkt_ptr, set range to zero */
6918 			if (smin_val < 0)
6919 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6920 		}
6921 		break;
6922 	case BPF_AND:
6923 	case BPF_OR:
6924 	case BPF_XOR:
6925 		/* bitwise ops on pointers are troublesome, prohibit. */
6926 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6927 			dst, bpf_alu_string[opcode >> 4]);
6928 		return -EACCES;
6929 	default:
6930 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6931 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6932 			dst, bpf_alu_string[opcode >> 4]);
6933 		return -EACCES;
6934 	}
6935 
6936 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6937 		return -EINVAL;
6938 
6939 	__update_reg_bounds(dst_reg);
6940 	__reg_deduce_bounds(dst_reg);
6941 	__reg_bound_offset(dst_reg);
6942 
6943 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6944 		return -EACCES;
6945 	if (sanitize_needed(opcode)) {
6946 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6947 				       &info, true);
6948 		if (ret < 0)
6949 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
6950 	}
6951 
6952 	return 0;
6953 }
6954 
6955 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6956 				 struct bpf_reg_state *src_reg)
6957 {
6958 	s32 smin_val = src_reg->s32_min_value;
6959 	s32 smax_val = src_reg->s32_max_value;
6960 	u32 umin_val = src_reg->u32_min_value;
6961 	u32 umax_val = src_reg->u32_max_value;
6962 
6963 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6964 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6965 		dst_reg->s32_min_value = S32_MIN;
6966 		dst_reg->s32_max_value = S32_MAX;
6967 	} else {
6968 		dst_reg->s32_min_value += smin_val;
6969 		dst_reg->s32_max_value += smax_val;
6970 	}
6971 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6972 	    dst_reg->u32_max_value + umax_val < umax_val) {
6973 		dst_reg->u32_min_value = 0;
6974 		dst_reg->u32_max_value = U32_MAX;
6975 	} else {
6976 		dst_reg->u32_min_value += umin_val;
6977 		dst_reg->u32_max_value += umax_val;
6978 	}
6979 }
6980 
6981 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6982 			       struct bpf_reg_state *src_reg)
6983 {
6984 	s64 smin_val = src_reg->smin_value;
6985 	s64 smax_val = src_reg->smax_value;
6986 	u64 umin_val = src_reg->umin_value;
6987 	u64 umax_val = src_reg->umax_value;
6988 
6989 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6990 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6991 		dst_reg->smin_value = S64_MIN;
6992 		dst_reg->smax_value = S64_MAX;
6993 	} else {
6994 		dst_reg->smin_value += smin_val;
6995 		dst_reg->smax_value += smax_val;
6996 	}
6997 	if (dst_reg->umin_value + umin_val < umin_val ||
6998 	    dst_reg->umax_value + umax_val < umax_val) {
6999 		dst_reg->umin_value = 0;
7000 		dst_reg->umax_value = U64_MAX;
7001 	} else {
7002 		dst_reg->umin_value += umin_val;
7003 		dst_reg->umax_value += umax_val;
7004 	}
7005 }
7006 
7007 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7008 				 struct bpf_reg_state *src_reg)
7009 {
7010 	s32 smin_val = src_reg->s32_min_value;
7011 	s32 smax_val = src_reg->s32_max_value;
7012 	u32 umin_val = src_reg->u32_min_value;
7013 	u32 umax_val = src_reg->u32_max_value;
7014 
7015 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7016 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7017 		/* Overflow possible, we know nothing */
7018 		dst_reg->s32_min_value = S32_MIN;
7019 		dst_reg->s32_max_value = S32_MAX;
7020 	} else {
7021 		dst_reg->s32_min_value -= smax_val;
7022 		dst_reg->s32_max_value -= smin_val;
7023 	}
7024 	if (dst_reg->u32_min_value < umax_val) {
7025 		/* Overflow possible, we know nothing */
7026 		dst_reg->u32_min_value = 0;
7027 		dst_reg->u32_max_value = U32_MAX;
7028 	} else {
7029 		/* Cannot overflow (as long as bounds are consistent) */
7030 		dst_reg->u32_min_value -= umax_val;
7031 		dst_reg->u32_max_value -= umin_val;
7032 	}
7033 }
7034 
7035 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7036 			       struct bpf_reg_state *src_reg)
7037 {
7038 	s64 smin_val = src_reg->smin_value;
7039 	s64 smax_val = src_reg->smax_value;
7040 	u64 umin_val = src_reg->umin_value;
7041 	u64 umax_val = src_reg->umax_value;
7042 
7043 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7044 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7045 		/* Overflow possible, we know nothing */
7046 		dst_reg->smin_value = S64_MIN;
7047 		dst_reg->smax_value = S64_MAX;
7048 	} else {
7049 		dst_reg->smin_value -= smax_val;
7050 		dst_reg->smax_value -= smin_val;
7051 	}
7052 	if (dst_reg->umin_value < umax_val) {
7053 		/* Overflow possible, we know nothing */
7054 		dst_reg->umin_value = 0;
7055 		dst_reg->umax_value = U64_MAX;
7056 	} else {
7057 		/* Cannot overflow (as long as bounds are consistent) */
7058 		dst_reg->umin_value -= umax_val;
7059 		dst_reg->umax_value -= umin_val;
7060 	}
7061 }
7062 
7063 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7064 				 struct bpf_reg_state *src_reg)
7065 {
7066 	s32 smin_val = src_reg->s32_min_value;
7067 	u32 umin_val = src_reg->u32_min_value;
7068 	u32 umax_val = src_reg->u32_max_value;
7069 
7070 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7071 		/* Ain't nobody got time to multiply that sign */
7072 		__mark_reg32_unbounded(dst_reg);
7073 		return;
7074 	}
7075 	/* Both values are positive, so we can work with unsigned and
7076 	 * copy the result to signed (unless it exceeds S32_MAX).
7077 	 */
7078 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7079 		/* Potential overflow, we know nothing */
7080 		__mark_reg32_unbounded(dst_reg);
7081 		return;
7082 	}
7083 	dst_reg->u32_min_value *= umin_val;
7084 	dst_reg->u32_max_value *= umax_val;
7085 	if (dst_reg->u32_max_value > S32_MAX) {
7086 		/* Overflow possible, we know nothing */
7087 		dst_reg->s32_min_value = S32_MIN;
7088 		dst_reg->s32_max_value = S32_MAX;
7089 	} else {
7090 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7091 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7092 	}
7093 }
7094 
7095 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7096 			       struct bpf_reg_state *src_reg)
7097 {
7098 	s64 smin_val = src_reg->smin_value;
7099 	u64 umin_val = src_reg->umin_value;
7100 	u64 umax_val = src_reg->umax_value;
7101 
7102 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7103 		/* Ain't nobody got time to multiply that sign */
7104 		__mark_reg64_unbounded(dst_reg);
7105 		return;
7106 	}
7107 	/* Both values are positive, so we can work with unsigned and
7108 	 * copy the result to signed (unless it exceeds S64_MAX).
7109 	 */
7110 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7111 		/* Potential overflow, we know nothing */
7112 		__mark_reg64_unbounded(dst_reg);
7113 		return;
7114 	}
7115 	dst_reg->umin_value *= umin_val;
7116 	dst_reg->umax_value *= umax_val;
7117 	if (dst_reg->umax_value > S64_MAX) {
7118 		/* Overflow possible, we know nothing */
7119 		dst_reg->smin_value = S64_MIN;
7120 		dst_reg->smax_value = S64_MAX;
7121 	} else {
7122 		dst_reg->smin_value = dst_reg->umin_value;
7123 		dst_reg->smax_value = dst_reg->umax_value;
7124 	}
7125 }
7126 
7127 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7128 				 struct bpf_reg_state *src_reg)
7129 {
7130 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7131 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7132 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7133 	s32 smin_val = src_reg->s32_min_value;
7134 	u32 umax_val = src_reg->u32_max_value;
7135 
7136 	if (src_known && dst_known) {
7137 		__mark_reg32_known(dst_reg, var32_off.value);
7138 		return;
7139 	}
7140 
7141 	/* We get our minimum from the var_off, since that's inherently
7142 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7143 	 */
7144 	dst_reg->u32_min_value = var32_off.value;
7145 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7146 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7147 		/* Lose signed bounds when ANDing negative numbers,
7148 		 * ain't nobody got time for that.
7149 		 */
7150 		dst_reg->s32_min_value = S32_MIN;
7151 		dst_reg->s32_max_value = S32_MAX;
7152 	} else {
7153 		/* ANDing two positives gives a positive, so safe to
7154 		 * cast result into s64.
7155 		 */
7156 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7157 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7158 	}
7159 }
7160 
7161 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7162 			       struct bpf_reg_state *src_reg)
7163 {
7164 	bool src_known = tnum_is_const(src_reg->var_off);
7165 	bool dst_known = tnum_is_const(dst_reg->var_off);
7166 	s64 smin_val = src_reg->smin_value;
7167 	u64 umax_val = src_reg->umax_value;
7168 
7169 	if (src_known && dst_known) {
7170 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7171 		return;
7172 	}
7173 
7174 	/* We get our minimum from the var_off, since that's inherently
7175 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7176 	 */
7177 	dst_reg->umin_value = dst_reg->var_off.value;
7178 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7179 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7180 		/* Lose signed bounds when ANDing negative numbers,
7181 		 * ain't nobody got time for that.
7182 		 */
7183 		dst_reg->smin_value = S64_MIN;
7184 		dst_reg->smax_value = S64_MAX;
7185 	} else {
7186 		/* ANDing two positives gives a positive, so safe to
7187 		 * cast result into s64.
7188 		 */
7189 		dst_reg->smin_value = dst_reg->umin_value;
7190 		dst_reg->smax_value = dst_reg->umax_value;
7191 	}
7192 	/* We may learn something more from the var_off */
7193 	__update_reg_bounds(dst_reg);
7194 }
7195 
7196 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7197 				struct bpf_reg_state *src_reg)
7198 {
7199 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7200 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7201 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7202 	s32 smin_val = src_reg->s32_min_value;
7203 	u32 umin_val = src_reg->u32_min_value;
7204 
7205 	if (src_known && dst_known) {
7206 		__mark_reg32_known(dst_reg, var32_off.value);
7207 		return;
7208 	}
7209 
7210 	/* We get our maximum from the var_off, and our minimum is the
7211 	 * maximum of the operands' minima
7212 	 */
7213 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7214 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7215 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7216 		/* Lose signed bounds when ORing negative numbers,
7217 		 * ain't nobody got time for that.
7218 		 */
7219 		dst_reg->s32_min_value = S32_MIN;
7220 		dst_reg->s32_max_value = S32_MAX;
7221 	} else {
7222 		/* ORing two positives gives a positive, so safe to
7223 		 * cast result into s64.
7224 		 */
7225 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7226 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7227 	}
7228 }
7229 
7230 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7231 			      struct bpf_reg_state *src_reg)
7232 {
7233 	bool src_known = tnum_is_const(src_reg->var_off);
7234 	bool dst_known = tnum_is_const(dst_reg->var_off);
7235 	s64 smin_val = src_reg->smin_value;
7236 	u64 umin_val = src_reg->umin_value;
7237 
7238 	if (src_known && dst_known) {
7239 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7240 		return;
7241 	}
7242 
7243 	/* We get our maximum from the var_off, and our minimum is the
7244 	 * maximum of the operands' minima
7245 	 */
7246 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7247 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7248 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7249 		/* Lose signed bounds when ORing negative numbers,
7250 		 * ain't nobody got time for that.
7251 		 */
7252 		dst_reg->smin_value = S64_MIN;
7253 		dst_reg->smax_value = S64_MAX;
7254 	} else {
7255 		/* ORing two positives gives a positive, so safe to
7256 		 * cast result into s64.
7257 		 */
7258 		dst_reg->smin_value = dst_reg->umin_value;
7259 		dst_reg->smax_value = dst_reg->umax_value;
7260 	}
7261 	/* We may learn something more from the var_off */
7262 	__update_reg_bounds(dst_reg);
7263 }
7264 
7265 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7266 				 struct bpf_reg_state *src_reg)
7267 {
7268 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7269 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7270 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7271 	s32 smin_val = src_reg->s32_min_value;
7272 
7273 	if (src_known && dst_known) {
7274 		__mark_reg32_known(dst_reg, var32_off.value);
7275 		return;
7276 	}
7277 
7278 	/* We get both minimum and maximum from the var32_off. */
7279 	dst_reg->u32_min_value = var32_off.value;
7280 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7281 
7282 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7283 		/* XORing two positive sign numbers gives a positive,
7284 		 * so safe to cast u32 result into s32.
7285 		 */
7286 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7287 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7288 	} else {
7289 		dst_reg->s32_min_value = S32_MIN;
7290 		dst_reg->s32_max_value = S32_MAX;
7291 	}
7292 }
7293 
7294 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7295 			       struct bpf_reg_state *src_reg)
7296 {
7297 	bool src_known = tnum_is_const(src_reg->var_off);
7298 	bool dst_known = tnum_is_const(dst_reg->var_off);
7299 	s64 smin_val = src_reg->smin_value;
7300 
7301 	if (src_known && dst_known) {
7302 		/* dst_reg->var_off.value has been updated earlier */
7303 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7304 		return;
7305 	}
7306 
7307 	/* We get both minimum and maximum from the var_off. */
7308 	dst_reg->umin_value = dst_reg->var_off.value;
7309 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7310 
7311 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7312 		/* XORing two positive sign numbers gives a positive,
7313 		 * so safe to cast u64 result into s64.
7314 		 */
7315 		dst_reg->smin_value = dst_reg->umin_value;
7316 		dst_reg->smax_value = dst_reg->umax_value;
7317 	} else {
7318 		dst_reg->smin_value = S64_MIN;
7319 		dst_reg->smax_value = S64_MAX;
7320 	}
7321 
7322 	__update_reg_bounds(dst_reg);
7323 }
7324 
7325 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7326 				   u64 umin_val, u64 umax_val)
7327 {
7328 	/* We lose all sign bit information (except what we can pick
7329 	 * up from var_off)
7330 	 */
7331 	dst_reg->s32_min_value = S32_MIN;
7332 	dst_reg->s32_max_value = S32_MAX;
7333 	/* If we might shift our top bit out, then we know nothing */
7334 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7335 		dst_reg->u32_min_value = 0;
7336 		dst_reg->u32_max_value = U32_MAX;
7337 	} else {
7338 		dst_reg->u32_min_value <<= umin_val;
7339 		dst_reg->u32_max_value <<= umax_val;
7340 	}
7341 }
7342 
7343 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7344 				 struct bpf_reg_state *src_reg)
7345 {
7346 	u32 umax_val = src_reg->u32_max_value;
7347 	u32 umin_val = src_reg->u32_min_value;
7348 	/* u32 alu operation will zext upper bits */
7349 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7350 
7351 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7352 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7353 	/* Not required but being careful mark reg64 bounds as unknown so
7354 	 * that we are forced to pick them up from tnum and zext later and
7355 	 * if some path skips this step we are still safe.
7356 	 */
7357 	__mark_reg64_unbounded(dst_reg);
7358 	__update_reg32_bounds(dst_reg);
7359 }
7360 
7361 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7362 				   u64 umin_val, u64 umax_val)
7363 {
7364 	/* Special case <<32 because it is a common compiler pattern to sign
7365 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7366 	 * positive we know this shift will also be positive so we can track
7367 	 * bounds correctly. Otherwise we lose all sign bit information except
7368 	 * what we can pick up from var_off. Perhaps we can generalize this
7369 	 * later to shifts of any length.
7370 	 */
7371 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7372 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7373 	else
7374 		dst_reg->smax_value = S64_MAX;
7375 
7376 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7377 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7378 	else
7379 		dst_reg->smin_value = S64_MIN;
7380 
7381 	/* If we might shift our top bit out, then we know nothing */
7382 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7383 		dst_reg->umin_value = 0;
7384 		dst_reg->umax_value = U64_MAX;
7385 	} else {
7386 		dst_reg->umin_value <<= umin_val;
7387 		dst_reg->umax_value <<= umax_val;
7388 	}
7389 }
7390 
7391 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7392 			       struct bpf_reg_state *src_reg)
7393 {
7394 	u64 umax_val = src_reg->umax_value;
7395 	u64 umin_val = src_reg->umin_value;
7396 
7397 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7398 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7399 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7400 
7401 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7402 	/* We may learn something more from the var_off */
7403 	__update_reg_bounds(dst_reg);
7404 }
7405 
7406 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7407 				 struct bpf_reg_state *src_reg)
7408 {
7409 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7410 	u32 umax_val = src_reg->u32_max_value;
7411 	u32 umin_val = src_reg->u32_min_value;
7412 
7413 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7414 	 * be negative, then either:
7415 	 * 1) src_reg might be zero, so the sign bit of the result is
7416 	 *    unknown, so we lose our signed bounds
7417 	 * 2) it's known negative, thus the unsigned bounds capture the
7418 	 *    signed bounds
7419 	 * 3) the signed bounds cross zero, so they tell us nothing
7420 	 *    about the result
7421 	 * If the value in dst_reg is known nonnegative, then again the
7422 	 * unsigned bounds capture the signed bounds.
7423 	 * Thus, in all cases it suffices to blow away our signed bounds
7424 	 * and rely on inferring new ones from the unsigned bounds and
7425 	 * var_off of the result.
7426 	 */
7427 	dst_reg->s32_min_value = S32_MIN;
7428 	dst_reg->s32_max_value = S32_MAX;
7429 
7430 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7431 	dst_reg->u32_min_value >>= umax_val;
7432 	dst_reg->u32_max_value >>= umin_val;
7433 
7434 	__mark_reg64_unbounded(dst_reg);
7435 	__update_reg32_bounds(dst_reg);
7436 }
7437 
7438 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7439 			       struct bpf_reg_state *src_reg)
7440 {
7441 	u64 umax_val = src_reg->umax_value;
7442 	u64 umin_val = src_reg->umin_value;
7443 
7444 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7445 	 * be negative, then either:
7446 	 * 1) src_reg might be zero, so the sign bit of the result is
7447 	 *    unknown, so we lose our signed bounds
7448 	 * 2) it's known negative, thus the unsigned bounds capture the
7449 	 *    signed bounds
7450 	 * 3) the signed bounds cross zero, so they tell us nothing
7451 	 *    about the result
7452 	 * If the value in dst_reg is known nonnegative, then again the
7453 	 * unsigned bounds capture the signed bounds.
7454 	 * Thus, in all cases it suffices to blow away our signed bounds
7455 	 * and rely on inferring new ones from the unsigned bounds and
7456 	 * var_off of the result.
7457 	 */
7458 	dst_reg->smin_value = S64_MIN;
7459 	dst_reg->smax_value = S64_MAX;
7460 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7461 	dst_reg->umin_value >>= umax_val;
7462 	dst_reg->umax_value >>= umin_val;
7463 
7464 	/* Its not easy to operate on alu32 bounds here because it depends
7465 	 * on bits being shifted in. Take easy way out and mark unbounded
7466 	 * so we can recalculate later from tnum.
7467 	 */
7468 	__mark_reg32_unbounded(dst_reg);
7469 	__update_reg_bounds(dst_reg);
7470 }
7471 
7472 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7473 				  struct bpf_reg_state *src_reg)
7474 {
7475 	u64 umin_val = src_reg->u32_min_value;
7476 
7477 	/* Upon reaching here, src_known is true and
7478 	 * umax_val is equal to umin_val.
7479 	 */
7480 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7481 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7482 
7483 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7484 
7485 	/* blow away the dst_reg umin_value/umax_value and rely on
7486 	 * dst_reg var_off to refine the result.
7487 	 */
7488 	dst_reg->u32_min_value = 0;
7489 	dst_reg->u32_max_value = U32_MAX;
7490 
7491 	__mark_reg64_unbounded(dst_reg);
7492 	__update_reg32_bounds(dst_reg);
7493 }
7494 
7495 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7496 				struct bpf_reg_state *src_reg)
7497 {
7498 	u64 umin_val = src_reg->umin_value;
7499 
7500 	/* Upon reaching here, src_known is true and umax_val is equal
7501 	 * to umin_val.
7502 	 */
7503 	dst_reg->smin_value >>= umin_val;
7504 	dst_reg->smax_value >>= umin_val;
7505 
7506 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7507 
7508 	/* blow away the dst_reg umin_value/umax_value and rely on
7509 	 * dst_reg var_off to refine the result.
7510 	 */
7511 	dst_reg->umin_value = 0;
7512 	dst_reg->umax_value = U64_MAX;
7513 
7514 	/* Its not easy to operate on alu32 bounds here because it depends
7515 	 * on bits being shifted in from upper 32-bits. Take easy way out
7516 	 * and mark unbounded so we can recalculate later from tnum.
7517 	 */
7518 	__mark_reg32_unbounded(dst_reg);
7519 	__update_reg_bounds(dst_reg);
7520 }
7521 
7522 /* WARNING: This function does calculations on 64-bit values, but the actual
7523  * execution may occur on 32-bit values. Therefore, things like bitshifts
7524  * need extra checks in the 32-bit case.
7525  */
7526 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7527 				      struct bpf_insn *insn,
7528 				      struct bpf_reg_state *dst_reg,
7529 				      struct bpf_reg_state src_reg)
7530 {
7531 	struct bpf_reg_state *regs = cur_regs(env);
7532 	u8 opcode = BPF_OP(insn->code);
7533 	bool src_known;
7534 	s64 smin_val, smax_val;
7535 	u64 umin_val, umax_val;
7536 	s32 s32_min_val, s32_max_val;
7537 	u32 u32_min_val, u32_max_val;
7538 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7539 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7540 	int ret;
7541 
7542 	smin_val = src_reg.smin_value;
7543 	smax_val = src_reg.smax_value;
7544 	umin_val = src_reg.umin_value;
7545 	umax_val = src_reg.umax_value;
7546 
7547 	s32_min_val = src_reg.s32_min_value;
7548 	s32_max_val = src_reg.s32_max_value;
7549 	u32_min_val = src_reg.u32_min_value;
7550 	u32_max_val = src_reg.u32_max_value;
7551 
7552 	if (alu32) {
7553 		src_known = tnum_subreg_is_const(src_reg.var_off);
7554 		if ((src_known &&
7555 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7556 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7557 			/* Taint dst register if offset had invalid bounds
7558 			 * derived from e.g. dead branches.
7559 			 */
7560 			__mark_reg_unknown(env, dst_reg);
7561 			return 0;
7562 		}
7563 	} else {
7564 		src_known = tnum_is_const(src_reg.var_off);
7565 		if ((src_known &&
7566 		     (smin_val != smax_val || umin_val != umax_val)) ||
7567 		    smin_val > smax_val || umin_val > umax_val) {
7568 			/* Taint dst register if offset had invalid bounds
7569 			 * derived from e.g. dead branches.
7570 			 */
7571 			__mark_reg_unknown(env, dst_reg);
7572 			return 0;
7573 		}
7574 	}
7575 
7576 	if (!src_known &&
7577 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7578 		__mark_reg_unknown(env, dst_reg);
7579 		return 0;
7580 	}
7581 
7582 	if (sanitize_needed(opcode)) {
7583 		ret = sanitize_val_alu(env, insn);
7584 		if (ret < 0)
7585 			return sanitize_err(env, insn, ret, NULL, NULL);
7586 	}
7587 
7588 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7589 	 * There are two classes of instructions: The first class we track both
7590 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7591 	 * greatest amount of precision when alu operations are mixed with jmp32
7592 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7593 	 * and BPF_OR. This is possible because these ops have fairly easy to
7594 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7595 	 * See alu32 verifier tests for examples. The second class of
7596 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7597 	 * with regards to tracking sign/unsigned bounds because the bits may
7598 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7599 	 * the reg unbounded in the subreg bound space and use the resulting
7600 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7601 	 */
7602 	switch (opcode) {
7603 	case BPF_ADD:
7604 		scalar32_min_max_add(dst_reg, &src_reg);
7605 		scalar_min_max_add(dst_reg, &src_reg);
7606 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7607 		break;
7608 	case BPF_SUB:
7609 		scalar32_min_max_sub(dst_reg, &src_reg);
7610 		scalar_min_max_sub(dst_reg, &src_reg);
7611 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7612 		break;
7613 	case BPF_MUL:
7614 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7615 		scalar32_min_max_mul(dst_reg, &src_reg);
7616 		scalar_min_max_mul(dst_reg, &src_reg);
7617 		break;
7618 	case BPF_AND:
7619 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7620 		scalar32_min_max_and(dst_reg, &src_reg);
7621 		scalar_min_max_and(dst_reg, &src_reg);
7622 		break;
7623 	case BPF_OR:
7624 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7625 		scalar32_min_max_or(dst_reg, &src_reg);
7626 		scalar_min_max_or(dst_reg, &src_reg);
7627 		break;
7628 	case BPF_XOR:
7629 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7630 		scalar32_min_max_xor(dst_reg, &src_reg);
7631 		scalar_min_max_xor(dst_reg, &src_reg);
7632 		break;
7633 	case BPF_LSH:
7634 		if (umax_val >= insn_bitness) {
7635 			/* Shifts greater than 31 or 63 are undefined.
7636 			 * This includes shifts by a negative number.
7637 			 */
7638 			mark_reg_unknown(env, regs, insn->dst_reg);
7639 			break;
7640 		}
7641 		if (alu32)
7642 			scalar32_min_max_lsh(dst_reg, &src_reg);
7643 		else
7644 			scalar_min_max_lsh(dst_reg, &src_reg);
7645 		break;
7646 	case BPF_RSH:
7647 		if (umax_val >= insn_bitness) {
7648 			/* Shifts greater than 31 or 63 are undefined.
7649 			 * This includes shifts by a negative number.
7650 			 */
7651 			mark_reg_unknown(env, regs, insn->dst_reg);
7652 			break;
7653 		}
7654 		if (alu32)
7655 			scalar32_min_max_rsh(dst_reg, &src_reg);
7656 		else
7657 			scalar_min_max_rsh(dst_reg, &src_reg);
7658 		break;
7659 	case BPF_ARSH:
7660 		if (umax_val >= insn_bitness) {
7661 			/* Shifts greater than 31 or 63 are undefined.
7662 			 * This includes shifts by a negative number.
7663 			 */
7664 			mark_reg_unknown(env, regs, insn->dst_reg);
7665 			break;
7666 		}
7667 		if (alu32)
7668 			scalar32_min_max_arsh(dst_reg, &src_reg);
7669 		else
7670 			scalar_min_max_arsh(dst_reg, &src_reg);
7671 		break;
7672 	default:
7673 		mark_reg_unknown(env, regs, insn->dst_reg);
7674 		break;
7675 	}
7676 
7677 	/* ALU32 ops are zero extended into 64bit register */
7678 	if (alu32)
7679 		zext_32_to_64(dst_reg);
7680 
7681 	__update_reg_bounds(dst_reg);
7682 	__reg_deduce_bounds(dst_reg);
7683 	__reg_bound_offset(dst_reg);
7684 	return 0;
7685 }
7686 
7687 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7688  * and var_off.
7689  */
7690 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7691 				   struct bpf_insn *insn)
7692 {
7693 	struct bpf_verifier_state *vstate = env->cur_state;
7694 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7695 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7696 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7697 	u8 opcode = BPF_OP(insn->code);
7698 	int err;
7699 
7700 	dst_reg = &regs[insn->dst_reg];
7701 	src_reg = NULL;
7702 	if (dst_reg->type != SCALAR_VALUE)
7703 		ptr_reg = dst_reg;
7704 	else
7705 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7706 		 * incorrectly propagated into other registers by find_equal_scalars()
7707 		 */
7708 		dst_reg->id = 0;
7709 	if (BPF_SRC(insn->code) == BPF_X) {
7710 		src_reg = &regs[insn->src_reg];
7711 		if (src_reg->type != SCALAR_VALUE) {
7712 			if (dst_reg->type != SCALAR_VALUE) {
7713 				/* Combining two pointers by any ALU op yields
7714 				 * an arbitrary scalar. Disallow all math except
7715 				 * pointer subtraction
7716 				 */
7717 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7718 					mark_reg_unknown(env, regs, insn->dst_reg);
7719 					return 0;
7720 				}
7721 				verbose(env, "R%d pointer %s pointer prohibited\n",
7722 					insn->dst_reg,
7723 					bpf_alu_string[opcode >> 4]);
7724 				return -EACCES;
7725 			} else {
7726 				/* scalar += pointer
7727 				 * This is legal, but we have to reverse our
7728 				 * src/dest handling in computing the range
7729 				 */
7730 				err = mark_chain_precision(env, insn->dst_reg);
7731 				if (err)
7732 					return err;
7733 				return adjust_ptr_min_max_vals(env, insn,
7734 							       src_reg, dst_reg);
7735 			}
7736 		} else if (ptr_reg) {
7737 			/* pointer += scalar */
7738 			err = mark_chain_precision(env, insn->src_reg);
7739 			if (err)
7740 				return err;
7741 			return adjust_ptr_min_max_vals(env, insn,
7742 						       dst_reg, src_reg);
7743 		}
7744 	} else {
7745 		/* Pretend the src is a reg with a known value, since we only
7746 		 * need to be able to read from this state.
7747 		 */
7748 		off_reg.type = SCALAR_VALUE;
7749 		__mark_reg_known(&off_reg, insn->imm);
7750 		src_reg = &off_reg;
7751 		if (ptr_reg) /* pointer += K */
7752 			return adjust_ptr_min_max_vals(env, insn,
7753 						       ptr_reg, src_reg);
7754 	}
7755 
7756 	/* Got here implies adding two SCALAR_VALUEs */
7757 	if (WARN_ON_ONCE(ptr_reg)) {
7758 		print_verifier_state(env, state);
7759 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7760 		return -EINVAL;
7761 	}
7762 	if (WARN_ON(!src_reg)) {
7763 		print_verifier_state(env, state);
7764 		verbose(env, "verifier internal error: no src_reg\n");
7765 		return -EINVAL;
7766 	}
7767 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7768 }
7769 
7770 /* check validity of 32-bit and 64-bit arithmetic operations */
7771 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7772 {
7773 	struct bpf_reg_state *regs = cur_regs(env);
7774 	u8 opcode = BPF_OP(insn->code);
7775 	int err;
7776 
7777 	if (opcode == BPF_END || opcode == BPF_NEG) {
7778 		if (opcode == BPF_NEG) {
7779 			if (BPF_SRC(insn->code) != 0 ||
7780 			    insn->src_reg != BPF_REG_0 ||
7781 			    insn->off != 0 || insn->imm != 0) {
7782 				verbose(env, "BPF_NEG uses reserved fields\n");
7783 				return -EINVAL;
7784 			}
7785 		} else {
7786 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7787 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7788 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7789 				verbose(env, "BPF_END uses reserved fields\n");
7790 				return -EINVAL;
7791 			}
7792 		}
7793 
7794 		/* check src operand */
7795 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7796 		if (err)
7797 			return err;
7798 
7799 		if (is_pointer_value(env, insn->dst_reg)) {
7800 			verbose(env, "R%d pointer arithmetic prohibited\n",
7801 				insn->dst_reg);
7802 			return -EACCES;
7803 		}
7804 
7805 		/* check dest operand */
7806 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7807 		if (err)
7808 			return err;
7809 
7810 	} else if (opcode == BPF_MOV) {
7811 
7812 		if (BPF_SRC(insn->code) == BPF_X) {
7813 			if (insn->imm != 0 || insn->off != 0) {
7814 				verbose(env, "BPF_MOV uses reserved fields\n");
7815 				return -EINVAL;
7816 			}
7817 
7818 			/* check src operand */
7819 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7820 			if (err)
7821 				return err;
7822 		} else {
7823 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7824 				verbose(env, "BPF_MOV uses reserved fields\n");
7825 				return -EINVAL;
7826 			}
7827 		}
7828 
7829 		/* check dest operand, mark as required later */
7830 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7831 		if (err)
7832 			return err;
7833 
7834 		if (BPF_SRC(insn->code) == BPF_X) {
7835 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7836 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7837 
7838 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7839 				/* case: R1 = R2
7840 				 * copy register state to dest reg
7841 				 */
7842 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7843 					/* Assign src and dst registers the same ID
7844 					 * that will be used by find_equal_scalars()
7845 					 * to propagate min/max range.
7846 					 */
7847 					src_reg->id = ++env->id_gen;
7848 				*dst_reg = *src_reg;
7849 				dst_reg->live |= REG_LIVE_WRITTEN;
7850 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7851 			} else {
7852 				/* R1 = (u32) R2 */
7853 				if (is_pointer_value(env, insn->src_reg)) {
7854 					verbose(env,
7855 						"R%d partial copy of pointer\n",
7856 						insn->src_reg);
7857 					return -EACCES;
7858 				} else if (src_reg->type == SCALAR_VALUE) {
7859 					*dst_reg = *src_reg;
7860 					/* Make sure ID is cleared otherwise
7861 					 * dst_reg min/max could be incorrectly
7862 					 * propagated into src_reg by find_equal_scalars()
7863 					 */
7864 					dst_reg->id = 0;
7865 					dst_reg->live |= REG_LIVE_WRITTEN;
7866 					dst_reg->subreg_def = env->insn_idx + 1;
7867 				} else {
7868 					mark_reg_unknown(env, regs,
7869 							 insn->dst_reg);
7870 				}
7871 				zext_32_to_64(dst_reg);
7872 			}
7873 		} else {
7874 			/* case: R = imm
7875 			 * remember the value we stored into this reg
7876 			 */
7877 			/* clear any state __mark_reg_known doesn't set */
7878 			mark_reg_unknown(env, regs, insn->dst_reg);
7879 			regs[insn->dst_reg].type = SCALAR_VALUE;
7880 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7881 				__mark_reg_known(regs + insn->dst_reg,
7882 						 insn->imm);
7883 			} else {
7884 				__mark_reg_known(regs + insn->dst_reg,
7885 						 (u32)insn->imm);
7886 			}
7887 		}
7888 
7889 	} else if (opcode > BPF_END) {
7890 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7891 		return -EINVAL;
7892 
7893 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7894 
7895 		if (BPF_SRC(insn->code) == BPF_X) {
7896 			if (insn->imm != 0 || insn->off != 0) {
7897 				verbose(env, "BPF_ALU uses reserved fields\n");
7898 				return -EINVAL;
7899 			}
7900 			/* check src1 operand */
7901 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7902 			if (err)
7903 				return err;
7904 		} else {
7905 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7906 				verbose(env, "BPF_ALU uses reserved fields\n");
7907 				return -EINVAL;
7908 			}
7909 		}
7910 
7911 		/* check src2 operand */
7912 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7913 		if (err)
7914 			return err;
7915 
7916 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7917 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7918 			verbose(env, "div by zero\n");
7919 			return -EINVAL;
7920 		}
7921 
7922 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7923 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7924 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7925 
7926 			if (insn->imm < 0 || insn->imm >= size) {
7927 				verbose(env, "invalid shift %d\n", insn->imm);
7928 				return -EINVAL;
7929 			}
7930 		}
7931 
7932 		/* check dest operand */
7933 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7934 		if (err)
7935 			return err;
7936 
7937 		return adjust_reg_min_max_vals(env, insn);
7938 	}
7939 
7940 	return 0;
7941 }
7942 
7943 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7944 				     struct bpf_reg_state *dst_reg,
7945 				     enum bpf_reg_type type, int new_range)
7946 {
7947 	struct bpf_reg_state *reg;
7948 	int i;
7949 
7950 	for (i = 0; i < MAX_BPF_REG; i++) {
7951 		reg = &state->regs[i];
7952 		if (reg->type == type && reg->id == dst_reg->id)
7953 			/* keep the maximum range already checked */
7954 			reg->range = max(reg->range, new_range);
7955 	}
7956 
7957 	bpf_for_each_spilled_reg(i, state, reg) {
7958 		if (!reg)
7959 			continue;
7960 		if (reg->type == type && reg->id == dst_reg->id)
7961 			reg->range = max(reg->range, new_range);
7962 	}
7963 }
7964 
7965 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7966 				   struct bpf_reg_state *dst_reg,
7967 				   enum bpf_reg_type type,
7968 				   bool range_right_open)
7969 {
7970 	int new_range, i;
7971 
7972 	if (dst_reg->off < 0 ||
7973 	    (dst_reg->off == 0 && range_right_open))
7974 		/* This doesn't give us any range */
7975 		return;
7976 
7977 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7978 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7979 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7980 		 * than pkt_end, but that's because it's also less than pkt.
7981 		 */
7982 		return;
7983 
7984 	new_range = dst_reg->off;
7985 	if (range_right_open)
7986 		new_range--;
7987 
7988 	/* Examples for register markings:
7989 	 *
7990 	 * pkt_data in dst register:
7991 	 *
7992 	 *   r2 = r3;
7993 	 *   r2 += 8;
7994 	 *   if (r2 > pkt_end) goto <handle exception>
7995 	 *   <access okay>
7996 	 *
7997 	 *   r2 = r3;
7998 	 *   r2 += 8;
7999 	 *   if (r2 < pkt_end) goto <access okay>
8000 	 *   <handle exception>
8001 	 *
8002 	 *   Where:
8003 	 *     r2 == dst_reg, pkt_end == src_reg
8004 	 *     r2=pkt(id=n,off=8,r=0)
8005 	 *     r3=pkt(id=n,off=0,r=0)
8006 	 *
8007 	 * pkt_data in src register:
8008 	 *
8009 	 *   r2 = r3;
8010 	 *   r2 += 8;
8011 	 *   if (pkt_end >= r2) goto <access okay>
8012 	 *   <handle exception>
8013 	 *
8014 	 *   r2 = r3;
8015 	 *   r2 += 8;
8016 	 *   if (pkt_end <= r2) goto <handle exception>
8017 	 *   <access okay>
8018 	 *
8019 	 *   Where:
8020 	 *     pkt_end == dst_reg, r2 == src_reg
8021 	 *     r2=pkt(id=n,off=8,r=0)
8022 	 *     r3=pkt(id=n,off=0,r=0)
8023 	 *
8024 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8025 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8026 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
8027 	 * the check.
8028 	 */
8029 
8030 	/* If our ids match, then we must have the same max_value.  And we
8031 	 * don't care about the other reg's fixed offset, since if it's too big
8032 	 * the range won't allow anything.
8033 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8034 	 */
8035 	for (i = 0; i <= vstate->curframe; i++)
8036 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8037 					 new_range);
8038 }
8039 
8040 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8041 {
8042 	struct tnum subreg = tnum_subreg(reg->var_off);
8043 	s32 sval = (s32)val;
8044 
8045 	switch (opcode) {
8046 	case BPF_JEQ:
8047 		if (tnum_is_const(subreg))
8048 			return !!tnum_equals_const(subreg, val);
8049 		break;
8050 	case BPF_JNE:
8051 		if (tnum_is_const(subreg))
8052 			return !tnum_equals_const(subreg, val);
8053 		break;
8054 	case BPF_JSET:
8055 		if ((~subreg.mask & subreg.value) & val)
8056 			return 1;
8057 		if (!((subreg.mask | subreg.value) & val))
8058 			return 0;
8059 		break;
8060 	case BPF_JGT:
8061 		if (reg->u32_min_value > val)
8062 			return 1;
8063 		else if (reg->u32_max_value <= val)
8064 			return 0;
8065 		break;
8066 	case BPF_JSGT:
8067 		if (reg->s32_min_value > sval)
8068 			return 1;
8069 		else if (reg->s32_max_value <= sval)
8070 			return 0;
8071 		break;
8072 	case BPF_JLT:
8073 		if (reg->u32_max_value < val)
8074 			return 1;
8075 		else if (reg->u32_min_value >= val)
8076 			return 0;
8077 		break;
8078 	case BPF_JSLT:
8079 		if (reg->s32_max_value < sval)
8080 			return 1;
8081 		else if (reg->s32_min_value >= sval)
8082 			return 0;
8083 		break;
8084 	case BPF_JGE:
8085 		if (reg->u32_min_value >= val)
8086 			return 1;
8087 		else if (reg->u32_max_value < val)
8088 			return 0;
8089 		break;
8090 	case BPF_JSGE:
8091 		if (reg->s32_min_value >= sval)
8092 			return 1;
8093 		else if (reg->s32_max_value < sval)
8094 			return 0;
8095 		break;
8096 	case BPF_JLE:
8097 		if (reg->u32_max_value <= val)
8098 			return 1;
8099 		else if (reg->u32_min_value > val)
8100 			return 0;
8101 		break;
8102 	case BPF_JSLE:
8103 		if (reg->s32_max_value <= sval)
8104 			return 1;
8105 		else if (reg->s32_min_value > sval)
8106 			return 0;
8107 		break;
8108 	}
8109 
8110 	return -1;
8111 }
8112 
8113 
8114 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8115 {
8116 	s64 sval = (s64)val;
8117 
8118 	switch (opcode) {
8119 	case BPF_JEQ:
8120 		if (tnum_is_const(reg->var_off))
8121 			return !!tnum_equals_const(reg->var_off, val);
8122 		break;
8123 	case BPF_JNE:
8124 		if (tnum_is_const(reg->var_off))
8125 			return !tnum_equals_const(reg->var_off, val);
8126 		break;
8127 	case BPF_JSET:
8128 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8129 			return 1;
8130 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8131 			return 0;
8132 		break;
8133 	case BPF_JGT:
8134 		if (reg->umin_value > val)
8135 			return 1;
8136 		else if (reg->umax_value <= val)
8137 			return 0;
8138 		break;
8139 	case BPF_JSGT:
8140 		if (reg->smin_value > sval)
8141 			return 1;
8142 		else if (reg->smax_value <= sval)
8143 			return 0;
8144 		break;
8145 	case BPF_JLT:
8146 		if (reg->umax_value < val)
8147 			return 1;
8148 		else if (reg->umin_value >= val)
8149 			return 0;
8150 		break;
8151 	case BPF_JSLT:
8152 		if (reg->smax_value < sval)
8153 			return 1;
8154 		else if (reg->smin_value >= sval)
8155 			return 0;
8156 		break;
8157 	case BPF_JGE:
8158 		if (reg->umin_value >= val)
8159 			return 1;
8160 		else if (reg->umax_value < val)
8161 			return 0;
8162 		break;
8163 	case BPF_JSGE:
8164 		if (reg->smin_value >= sval)
8165 			return 1;
8166 		else if (reg->smax_value < sval)
8167 			return 0;
8168 		break;
8169 	case BPF_JLE:
8170 		if (reg->umax_value <= val)
8171 			return 1;
8172 		else if (reg->umin_value > val)
8173 			return 0;
8174 		break;
8175 	case BPF_JSLE:
8176 		if (reg->smax_value <= sval)
8177 			return 1;
8178 		else if (reg->smin_value > sval)
8179 			return 0;
8180 		break;
8181 	}
8182 
8183 	return -1;
8184 }
8185 
8186 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8187  * and return:
8188  *  1 - branch will be taken and "goto target" will be executed
8189  *  0 - branch will not be taken and fall-through to next insn
8190  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8191  *      range [0,10]
8192  */
8193 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8194 			   bool is_jmp32)
8195 {
8196 	if (__is_pointer_value(false, reg)) {
8197 		if (!reg_type_not_null(reg->type))
8198 			return -1;
8199 
8200 		/* If pointer is valid tests against zero will fail so we can
8201 		 * use this to direct branch taken.
8202 		 */
8203 		if (val != 0)
8204 			return -1;
8205 
8206 		switch (opcode) {
8207 		case BPF_JEQ:
8208 			return 0;
8209 		case BPF_JNE:
8210 			return 1;
8211 		default:
8212 			return -1;
8213 		}
8214 	}
8215 
8216 	if (is_jmp32)
8217 		return is_branch32_taken(reg, val, opcode);
8218 	return is_branch64_taken(reg, val, opcode);
8219 }
8220 
8221 static int flip_opcode(u32 opcode)
8222 {
8223 	/* How can we transform "a <op> b" into "b <op> a"? */
8224 	static const u8 opcode_flip[16] = {
8225 		/* these stay the same */
8226 		[BPF_JEQ  >> 4] = BPF_JEQ,
8227 		[BPF_JNE  >> 4] = BPF_JNE,
8228 		[BPF_JSET >> 4] = BPF_JSET,
8229 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8230 		[BPF_JGE  >> 4] = BPF_JLE,
8231 		[BPF_JGT  >> 4] = BPF_JLT,
8232 		[BPF_JLE  >> 4] = BPF_JGE,
8233 		[BPF_JLT  >> 4] = BPF_JGT,
8234 		[BPF_JSGE >> 4] = BPF_JSLE,
8235 		[BPF_JSGT >> 4] = BPF_JSLT,
8236 		[BPF_JSLE >> 4] = BPF_JSGE,
8237 		[BPF_JSLT >> 4] = BPF_JSGT
8238 	};
8239 	return opcode_flip[opcode >> 4];
8240 }
8241 
8242 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8243 				   struct bpf_reg_state *src_reg,
8244 				   u8 opcode)
8245 {
8246 	struct bpf_reg_state *pkt;
8247 
8248 	if (src_reg->type == PTR_TO_PACKET_END) {
8249 		pkt = dst_reg;
8250 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8251 		pkt = src_reg;
8252 		opcode = flip_opcode(opcode);
8253 	} else {
8254 		return -1;
8255 	}
8256 
8257 	if (pkt->range >= 0)
8258 		return -1;
8259 
8260 	switch (opcode) {
8261 	case BPF_JLE:
8262 		/* pkt <= pkt_end */
8263 		fallthrough;
8264 	case BPF_JGT:
8265 		/* pkt > pkt_end */
8266 		if (pkt->range == BEYOND_PKT_END)
8267 			/* pkt has at last one extra byte beyond pkt_end */
8268 			return opcode == BPF_JGT;
8269 		break;
8270 	case BPF_JLT:
8271 		/* pkt < pkt_end */
8272 		fallthrough;
8273 	case BPF_JGE:
8274 		/* pkt >= pkt_end */
8275 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8276 			return opcode == BPF_JGE;
8277 		break;
8278 	}
8279 	return -1;
8280 }
8281 
8282 /* Adjusts the register min/max values in the case that the dst_reg is the
8283  * variable register that we are working on, and src_reg is a constant or we're
8284  * simply doing a BPF_K check.
8285  * In JEQ/JNE cases we also adjust the var_off values.
8286  */
8287 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8288 			    struct bpf_reg_state *false_reg,
8289 			    u64 val, u32 val32,
8290 			    u8 opcode, bool is_jmp32)
8291 {
8292 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8293 	struct tnum false_64off = false_reg->var_off;
8294 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8295 	struct tnum true_64off = true_reg->var_off;
8296 	s64 sval = (s64)val;
8297 	s32 sval32 = (s32)val32;
8298 
8299 	/* If the dst_reg is a pointer, we can't learn anything about its
8300 	 * variable offset from the compare (unless src_reg were a pointer into
8301 	 * the same object, but we don't bother with that.
8302 	 * Since false_reg and true_reg have the same type by construction, we
8303 	 * only need to check one of them for pointerness.
8304 	 */
8305 	if (__is_pointer_value(false, false_reg))
8306 		return;
8307 
8308 	switch (opcode) {
8309 	case BPF_JEQ:
8310 	case BPF_JNE:
8311 	{
8312 		struct bpf_reg_state *reg =
8313 			opcode == BPF_JEQ ? true_reg : false_reg;
8314 
8315 		/* JEQ/JNE comparison doesn't change the register equivalence.
8316 		 * r1 = r2;
8317 		 * if (r1 == 42) goto label;
8318 		 * ...
8319 		 * label: // here both r1 and r2 are known to be 42.
8320 		 *
8321 		 * Hence when marking register as known preserve it's ID.
8322 		 */
8323 		if (is_jmp32)
8324 			__mark_reg32_known(reg, val32);
8325 		else
8326 			___mark_reg_known(reg, val);
8327 		break;
8328 	}
8329 	case BPF_JSET:
8330 		if (is_jmp32) {
8331 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8332 			if (is_power_of_2(val32))
8333 				true_32off = tnum_or(true_32off,
8334 						     tnum_const(val32));
8335 		} else {
8336 			false_64off = tnum_and(false_64off, tnum_const(~val));
8337 			if (is_power_of_2(val))
8338 				true_64off = tnum_or(true_64off,
8339 						     tnum_const(val));
8340 		}
8341 		break;
8342 	case BPF_JGE:
8343 	case BPF_JGT:
8344 	{
8345 		if (is_jmp32) {
8346 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8347 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8348 
8349 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8350 						       false_umax);
8351 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8352 						      true_umin);
8353 		} else {
8354 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8355 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8356 
8357 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8358 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8359 		}
8360 		break;
8361 	}
8362 	case BPF_JSGE:
8363 	case BPF_JSGT:
8364 	{
8365 		if (is_jmp32) {
8366 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8367 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8368 
8369 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8370 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8371 		} else {
8372 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8373 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8374 
8375 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8376 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8377 		}
8378 		break;
8379 	}
8380 	case BPF_JLE:
8381 	case BPF_JLT:
8382 	{
8383 		if (is_jmp32) {
8384 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8385 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8386 
8387 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8388 						       false_umin);
8389 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8390 						      true_umax);
8391 		} else {
8392 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8393 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8394 
8395 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8396 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8397 		}
8398 		break;
8399 	}
8400 	case BPF_JSLE:
8401 	case BPF_JSLT:
8402 	{
8403 		if (is_jmp32) {
8404 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8405 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8406 
8407 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8408 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8409 		} else {
8410 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8411 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8412 
8413 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8414 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8415 		}
8416 		break;
8417 	}
8418 	default:
8419 		return;
8420 	}
8421 
8422 	if (is_jmp32) {
8423 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8424 					     tnum_subreg(false_32off));
8425 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8426 					    tnum_subreg(true_32off));
8427 		__reg_combine_32_into_64(false_reg);
8428 		__reg_combine_32_into_64(true_reg);
8429 	} else {
8430 		false_reg->var_off = false_64off;
8431 		true_reg->var_off = true_64off;
8432 		__reg_combine_64_into_32(false_reg);
8433 		__reg_combine_64_into_32(true_reg);
8434 	}
8435 }
8436 
8437 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8438  * the variable reg.
8439  */
8440 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8441 				struct bpf_reg_state *false_reg,
8442 				u64 val, u32 val32,
8443 				u8 opcode, bool is_jmp32)
8444 {
8445 	opcode = flip_opcode(opcode);
8446 	/* This uses zero as "not present in table"; luckily the zero opcode,
8447 	 * BPF_JA, can't get here.
8448 	 */
8449 	if (opcode)
8450 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8451 }
8452 
8453 /* Regs are known to be equal, so intersect their min/max/var_off */
8454 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8455 				  struct bpf_reg_state *dst_reg)
8456 {
8457 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8458 							dst_reg->umin_value);
8459 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8460 							dst_reg->umax_value);
8461 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8462 							dst_reg->smin_value);
8463 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8464 							dst_reg->smax_value);
8465 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8466 							     dst_reg->var_off);
8467 	/* We might have learned new bounds from the var_off. */
8468 	__update_reg_bounds(src_reg);
8469 	__update_reg_bounds(dst_reg);
8470 	/* We might have learned something about the sign bit. */
8471 	__reg_deduce_bounds(src_reg);
8472 	__reg_deduce_bounds(dst_reg);
8473 	/* We might have learned some bits from the bounds. */
8474 	__reg_bound_offset(src_reg);
8475 	__reg_bound_offset(dst_reg);
8476 	/* Intersecting with the old var_off might have improved our bounds
8477 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8478 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8479 	 */
8480 	__update_reg_bounds(src_reg);
8481 	__update_reg_bounds(dst_reg);
8482 }
8483 
8484 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8485 				struct bpf_reg_state *true_dst,
8486 				struct bpf_reg_state *false_src,
8487 				struct bpf_reg_state *false_dst,
8488 				u8 opcode)
8489 {
8490 	switch (opcode) {
8491 	case BPF_JEQ:
8492 		__reg_combine_min_max(true_src, true_dst);
8493 		break;
8494 	case BPF_JNE:
8495 		__reg_combine_min_max(false_src, false_dst);
8496 		break;
8497 	}
8498 }
8499 
8500 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8501 				 struct bpf_reg_state *reg, u32 id,
8502 				 bool is_null)
8503 {
8504 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8505 	    !WARN_ON_ONCE(!reg->id)) {
8506 		/* Old offset (both fixed and variable parts) should
8507 		 * have been known-zero, because we don't allow pointer
8508 		 * arithmetic on pointers that might be NULL.
8509 		 */
8510 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8511 				 !tnum_equals_const(reg->var_off, 0) ||
8512 				 reg->off)) {
8513 			__mark_reg_known_zero(reg);
8514 			reg->off = 0;
8515 		}
8516 		if (is_null) {
8517 			reg->type = SCALAR_VALUE;
8518 			/* We don't need id and ref_obj_id from this point
8519 			 * onwards anymore, thus we should better reset it,
8520 			 * so that state pruning has chances to take effect.
8521 			 */
8522 			reg->id = 0;
8523 			reg->ref_obj_id = 0;
8524 
8525 			return;
8526 		}
8527 
8528 		mark_ptr_not_null_reg(reg);
8529 
8530 		if (!reg_may_point_to_spin_lock(reg)) {
8531 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8532 			 * in release_reg_references().
8533 			 *
8534 			 * reg->id is still used by spin_lock ptr. Other
8535 			 * than spin_lock ptr type, reg->id can be reset.
8536 			 */
8537 			reg->id = 0;
8538 		}
8539 	}
8540 }
8541 
8542 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8543 				    bool is_null)
8544 {
8545 	struct bpf_reg_state *reg;
8546 	int i;
8547 
8548 	for (i = 0; i < MAX_BPF_REG; i++)
8549 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8550 
8551 	bpf_for_each_spilled_reg(i, state, reg) {
8552 		if (!reg)
8553 			continue;
8554 		mark_ptr_or_null_reg(state, reg, id, is_null);
8555 	}
8556 }
8557 
8558 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8559  * be folded together at some point.
8560  */
8561 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8562 				  bool is_null)
8563 {
8564 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8565 	struct bpf_reg_state *regs = state->regs;
8566 	u32 ref_obj_id = regs[regno].ref_obj_id;
8567 	u32 id = regs[regno].id;
8568 	int i;
8569 
8570 	if (ref_obj_id && ref_obj_id == id && is_null)
8571 		/* regs[regno] is in the " == NULL" branch.
8572 		 * No one could have freed the reference state before
8573 		 * doing the NULL check.
8574 		 */
8575 		WARN_ON_ONCE(release_reference_state(state, id));
8576 
8577 	for (i = 0; i <= vstate->curframe; i++)
8578 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8579 }
8580 
8581 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8582 				   struct bpf_reg_state *dst_reg,
8583 				   struct bpf_reg_state *src_reg,
8584 				   struct bpf_verifier_state *this_branch,
8585 				   struct bpf_verifier_state *other_branch)
8586 {
8587 	if (BPF_SRC(insn->code) != BPF_X)
8588 		return false;
8589 
8590 	/* Pointers are always 64-bit. */
8591 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8592 		return false;
8593 
8594 	switch (BPF_OP(insn->code)) {
8595 	case BPF_JGT:
8596 		if ((dst_reg->type == PTR_TO_PACKET &&
8597 		     src_reg->type == PTR_TO_PACKET_END) ||
8598 		    (dst_reg->type == PTR_TO_PACKET_META &&
8599 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8600 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8601 			find_good_pkt_pointers(this_branch, dst_reg,
8602 					       dst_reg->type, false);
8603 			mark_pkt_end(other_branch, insn->dst_reg, true);
8604 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8605 			    src_reg->type == PTR_TO_PACKET) ||
8606 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8607 			    src_reg->type == PTR_TO_PACKET_META)) {
8608 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8609 			find_good_pkt_pointers(other_branch, src_reg,
8610 					       src_reg->type, true);
8611 			mark_pkt_end(this_branch, insn->src_reg, false);
8612 		} else {
8613 			return false;
8614 		}
8615 		break;
8616 	case BPF_JLT:
8617 		if ((dst_reg->type == PTR_TO_PACKET &&
8618 		     src_reg->type == PTR_TO_PACKET_END) ||
8619 		    (dst_reg->type == PTR_TO_PACKET_META &&
8620 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8621 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8622 			find_good_pkt_pointers(other_branch, dst_reg,
8623 					       dst_reg->type, true);
8624 			mark_pkt_end(this_branch, insn->dst_reg, false);
8625 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8626 			    src_reg->type == PTR_TO_PACKET) ||
8627 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8628 			    src_reg->type == PTR_TO_PACKET_META)) {
8629 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8630 			find_good_pkt_pointers(this_branch, src_reg,
8631 					       src_reg->type, false);
8632 			mark_pkt_end(other_branch, insn->src_reg, true);
8633 		} else {
8634 			return false;
8635 		}
8636 		break;
8637 	case BPF_JGE:
8638 		if ((dst_reg->type == PTR_TO_PACKET &&
8639 		     src_reg->type == PTR_TO_PACKET_END) ||
8640 		    (dst_reg->type == PTR_TO_PACKET_META &&
8641 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8642 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8643 			find_good_pkt_pointers(this_branch, dst_reg,
8644 					       dst_reg->type, true);
8645 			mark_pkt_end(other_branch, insn->dst_reg, false);
8646 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8647 			    src_reg->type == PTR_TO_PACKET) ||
8648 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8649 			    src_reg->type == PTR_TO_PACKET_META)) {
8650 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8651 			find_good_pkt_pointers(other_branch, src_reg,
8652 					       src_reg->type, false);
8653 			mark_pkt_end(this_branch, insn->src_reg, true);
8654 		} else {
8655 			return false;
8656 		}
8657 		break;
8658 	case BPF_JLE:
8659 		if ((dst_reg->type == PTR_TO_PACKET &&
8660 		     src_reg->type == PTR_TO_PACKET_END) ||
8661 		    (dst_reg->type == PTR_TO_PACKET_META &&
8662 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8663 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8664 			find_good_pkt_pointers(other_branch, dst_reg,
8665 					       dst_reg->type, false);
8666 			mark_pkt_end(this_branch, insn->dst_reg, true);
8667 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8668 			    src_reg->type == PTR_TO_PACKET) ||
8669 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8670 			    src_reg->type == PTR_TO_PACKET_META)) {
8671 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8672 			find_good_pkt_pointers(this_branch, src_reg,
8673 					       src_reg->type, true);
8674 			mark_pkt_end(other_branch, insn->src_reg, false);
8675 		} else {
8676 			return false;
8677 		}
8678 		break;
8679 	default:
8680 		return false;
8681 	}
8682 
8683 	return true;
8684 }
8685 
8686 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8687 			       struct bpf_reg_state *known_reg)
8688 {
8689 	struct bpf_func_state *state;
8690 	struct bpf_reg_state *reg;
8691 	int i, j;
8692 
8693 	for (i = 0; i <= vstate->curframe; i++) {
8694 		state = vstate->frame[i];
8695 		for (j = 0; j < MAX_BPF_REG; j++) {
8696 			reg = &state->regs[j];
8697 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8698 				*reg = *known_reg;
8699 		}
8700 
8701 		bpf_for_each_spilled_reg(j, state, reg) {
8702 			if (!reg)
8703 				continue;
8704 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8705 				*reg = *known_reg;
8706 		}
8707 	}
8708 }
8709 
8710 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8711 			     struct bpf_insn *insn, int *insn_idx)
8712 {
8713 	struct bpf_verifier_state *this_branch = env->cur_state;
8714 	struct bpf_verifier_state *other_branch;
8715 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8716 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8717 	u8 opcode = BPF_OP(insn->code);
8718 	bool is_jmp32;
8719 	int pred = -1;
8720 	int err;
8721 
8722 	/* Only conditional jumps are expected to reach here. */
8723 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8724 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8725 		return -EINVAL;
8726 	}
8727 
8728 	if (BPF_SRC(insn->code) == BPF_X) {
8729 		if (insn->imm != 0) {
8730 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8731 			return -EINVAL;
8732 		}
8733 
8734 		/* check src1 operand */
8735 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8736 		if (err)
8737 			return err;
8738 
8739 		if (is_pointer_value(env, insn->src_reg)) {
8740 			verbose(env, "R%d pointer comparison prohibited\n",
8741 				insn->src_reg);
8742 			return -EACCES;
8743 		}
8744 		src_reg = &regs[insn->src_reg];
8745 	} else {
8746 		if (insn->src_reg != BPF_REG_0) {
8747 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8748 			return -EINVAL;
8749 		}
8750 	}
8751 
8752 	/* check src2 operand */
8753 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8754 	if (err)
8755 		return err;
8756 
8757 	dst_reg = &regs[insn->dst_reg];
8758 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8759 
8760 	if (BPF_SRC(insn->code) == BPF_K) {
8761 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8762 	} else if (src_reg->type == SCALAR_VALUE &&
8763 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8764 		pred = is_branch_taken(dst_reg,
8765 				       tnum_subreg(src_reg->var_off).value,
8766 				       opcode,
8767 				       is_jmp32);
8768 	} else if (src_reg->type == SCALAR_VALUE &&
8769 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8770 		pred = is_branch_taken(dst_reg,
8771 				       src_reg->var_off.value,
8772 				       opcode,
8773 				       is_jmp32);
8774 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8775 		   reg_is_pkt_pointer_any(src_reg) &&
8776 		   !is_jmp32) {
8777 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8778 	}
8779 
8780 	if (pred >= 0) {
8781 		/* If we get here with a dst_reg pointer type it is because
8782 		 * above is_branch_taken() special cased the 0 comparison.
8783 		 */
8784 		if (!__is_pointer_value(false, dst_reg))
8785 			err = mark_chain_precision(env, insn->dst_reg);
8786 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8787 		    !__is_pointer_value(false, src_reg))
8788 			err = mark_chain_precision(env, insn->src_reg);
8789 		if (err)
8790 			return err;
8791 	}
8792 
8793 	if (pred == 1) {
8794 		/* Only follow the goto, ignore fall-through. If needed, push
8795 		 * the fall-through branch for simulation under speculative
8796 		 * execution.
8797 		 */
8798 		if (!env->bypass_spec_v1 &&
8799 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
8800 					       *insn_idx))
8801 			return -EFAULT;
8802 		*insn_idx += insn->off;
8803 		return 0;
8804 	} else if (pred == 0) {
8805 		/* Only follow the fall-through branch, since that's where the
8806 		 * program will go. If needed, push the goto branch for
8807 		 * simulation under speculative execution.
8808 		 */
8809 		if (!env->bypass_spec_v1 &&
8810 		    !sanitize_speculative_path(env, insn,
8811 					       *insn_idx + insn->off + 1,
8812 					       *insn_idx))
8813 			return -EFAULT;
8814 		return 0;
8815 	}
8816 
8817 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8818 				  false);
8819 	if (!other_branch)
8820 		return -EFAULT;
8821 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8822 
8823 	/* detect if we are comparing against a constant value so we can adjust
8824 	 * our min/max values for our dst register.
8825 	 * this is only legit if both are scalars (or pointers to the same
8826 	 * object, I suppose, but we don't support that right now), because
8827 	 * otherwise the different base pointers mean the offsets aren't
8828 	 * comparable.
8829 	 */
8830 	if (BPF_SRC(insn->code) == BPF_X) {
8831 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8832 
8833 		if (dst_reg->type == SCALAR_VALUE &&
8834 		    src_reg->type == SCALAR_VALUE) {
8835 			if (tnum_is_const(src_reg->var_off) ||
8836 			    (is_jmp32 &&
8837 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8838 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8839 						dst_reg,
8840 						src_reg->var_off.value,
8841 						tnum_subreg(src_reg->var_off).value,
8842 						opcode, is_jmp32);
8843 			else if (tnum_is_const(dst_reg->var_off) ||
8844 				 (is_jmp32 &&
8845 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8846 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8847 						    src_reg,
8848 						    dst_reg->var_off.value,
8849 						    tnum_subreg(dst_reg->var_off).value,
8850 						    opcode, is_jmp32);
8851 			else if (!is_jmp32 &&
8852 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8853 				/* Comparing for equality, we can combine knowledge */
8854 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8855 						    &other_branch_regs[insn->dst_reg],
8856 						    src_reg, dst_reg, opcode);
8857 			if (src_reg->id &&
8858 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8859 				find_equal_scalars(this_branch, src_reg);
8860 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8861 			}
8862 
8863 		}
8864 	} else if (dst_reg->type == SCALAR_VALUE) {
8865 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8866 					dst_reg, insn->imm, (u32)insn->imm,
8867 					opcode, is_jmp32);
8868 	}
8869 
8870 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8871 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8872 		find_equal_scalars(this_branch, dst_reg);
8873 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8874 	}
8875 
8876 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8877 	 * NOTE: these optimizations below are related with pointer comparison
8878 	 *       which will never be JMP32.
8879 	 */
8880 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8881 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8882 	    reg_type_may_be_null(dst_reg->type)) {
8883 		/* Mark all identical registers in each branch as either
8884 		 * safe or unknown depending R == 0 or R != 0 conditional.
8885 		 */
8886 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8887 				      opcode == BPF_JNE);
8888 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8889 				      opcode == BPF_JEQ);
8890 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8891 					   this_branch, other_branch) &&
8892 		   is_pointer_value(env, insn->dst_reg)) {
8893 		verbose(env, "R%d pointer comparison prohibited\n",
8894 			insn->dst_reg);
8895 		return -EACCES;
8896 	}
8897 	if (env->log.level & BPF_LOG_LEVEL)
8898 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8899 	return 0;
8900 }
8901 
8902 /* verify BPF_LD_IMM64 instruction */
8903 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8904 {
8905 	struct bpf_insn_aux_data *aux = cur_aux(env);
8906 	struct bpf_reg_state *regs = cur_regs(env);
8907 	struct bpf_reg_state *dst_reg;
8908 	struct bpf_map *map;
8909 	int err;
8910 
8911 	if (BPF_SIZE(insn->code) != BPF_DW) {
8912 		verbose(env, "invalid BPF_LD_IMM insn\n");
8913 		return -EINVAL;
8914 	}
8915 	if (insn->off != 0) {
8916 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8917 		return -EINVAL;
8918 	}
8919 
8920 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8921 	if (err)
8922 		return err;
8923 
8924 	dst_reg = &regs[insn->dst_reg];
8925 	if (insn->src_reg == 0) {
8926 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8927 
8928 		dst_reg->type = SCALAR_VALUE;
8929 		__mark_reg_known(&regs[insn->dst_reg], imm);
8930 		return 0;
8931 	}
8932 
8933 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8934 		mark_reg_known_zero(env, regs, insn->dst_reg);
8935 
8936 		dst_reg->type = aux->btf_var.reg_type;
8937 		switch (dst_reg->type) {
8938 		case PTR_TO_MEM:
8939 			dst_reg->mem_size = aux->btf_var.mem_size;
8940 			break;
8941 		case PTR_TO_BTF_ID:
8942 		case PTR_TO_PERCPU_BTF_ID:
8943 			dst_reg->btf = aux->btf_var.btf;
8944 			dst_reg->btf_id = aux->btf_var.btf_id;
8945 			break;
8946 		default:
8947 			verbose(env, "bpf verifier is misconfigured\n");
8948 			return -EFAULT;
8949 		}
8950 		return 0;
8951 	}
8952 
8953 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
8954 		struct bpf_prog_aux *aux = env->prog->aux;
8955 		u32 subprogno = insn[1].imm;
8956 
8957 		if (!aux->func_info) {
8958 			verbose(env, "missing btf func_info\n");
8959 			return -EINVAL;
8960 		}
8961 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8962 			verbose(env, "callback function not static\n");
8963 			return -EINVAL;
8964 		}
8965 
8966 		dst_reg->type = PTR_TO_FUNC;
8967 		dst_reg->subprogno = subprogno;
8968 		return 0;
8969 	}
8970 
8971 	map = env->used_maps[aux->map_index];
8972 	mark_reg_known_zero(env, regs, insn->dst_reg);
8973 	dst_reg->map_ptr = map;
8974 
8975 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
8976 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
8977 		dst_reg->type = PTR_TO_MAP_VALUE;
8978 		dst_reg->off = aux->map_off;
8979 		if (map_value_has_spin_lock(map))
8980 			dst_reg->id = ++env->id_gen;
8981 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
8982 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
8983 		dst_reg->type = CONST_PTR_TO_MAP;
8984 	} else {
8985 		verbose(env, "bpf verifier is misconfigured\n");
8986 		return -EINVAL;
8987 	}
8988 
8989 	return 0;
8990 }
8991 
8992 static bool may_access_skb(enum bpf_prog_type type)
8993 {
8994 	switch (type) {
8995 	case BPF_PROG_TYPE_SOCKET_FILTER:
8996 	case BPF_PROG_TYPE_SCHED_CLS:
8997 	case BPF_PROG_TYPE_SCHED_ACT:
8998 		return true;
8999 	default:
9000 		return false;
9001 	}
9002 }
9003 
9004 /* verify safety of LD_ABS|LD_IND instructions:
9005  * - they can only appear in the programs where ctx == skb
9006  * - since they are wrappers of function calls, they scratch R1-R5 registers,
9007  *   preserve R6-R9, and store return value into R0
9008  *
9009  * Implicit input:
9010  *   ctx == skb == R6 == CTX
9011  *
9012  * Explicit input:
9013  *   SRC == any register
9014  *   IMM == 32-bit immediate
9015  *
9016  * Output:
9017  *   R0 - 8/16/32-bit skb data converted to cpu endianness
9018  */
9019 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9020 {
9021 	struct bpf_reg_state *regs = cur_regs(env);
9022 	static const int ctx_reg = BPF_REG_6;
9023 	u8 mode = BPF_MODE(insn->code);
9024 	int i, err;
9025 
9026 	if (!may_access_skb(resolve_prog_type(env->prog))) {
9027 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9028 		return -EINVAL;
9029 	}
9030 
9031 	if (!env->ops->gen_ld_abs) {
9032 		verbose(env, "bpf verifier is misconfigured\n");
9033 		return -EINVAL;
9034 	}
9035 
9036 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9037 	    BPF_SIZE(insn->code) == BPF_DW ||
9038 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9039 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9040 		return -EINVAL;
9041 	}
9042 
9043 	/* check whether implicit source operand (register R6) is readable */
9044 	err = check_reg_arg(env, ctx_reg, SRC_OP);
9045 	if (err)
9046 		return err;
9047 
9048 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9049 	 * gen_ld_abs() may terminate the program at runtime, leading to
9050 	 * reference leak.
9051 	 */
9052 	err = check_reference_leak(env);
9053 	if (err) {
9054 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9055 		return err;
9056 	}
9057 
9058 	if (env->cur_state->active_spin_lock) {
9059 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9060 		return -EINVAL;
9061 	}
9062 
9063 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9064 		verbose(env,
9065 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9066 		return -EINVAL;
9067 	}
9068 
9069 	if (mode == BPF_IND) {
9070 		/* check explicit source operand */
9071 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9072 		if (err)
9073 			return err;
9074 	}
9075 
9076 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9077 	if (err < 0)
9078 		return err;
9079 
9080 	/* reset caller saved regs to unreadable */
9081 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9082 		mark_reg_not_init(env, regs, caller_saved[i]);
9083 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9084 	}
9085 
9086 	/* mark destination R0 register as readable, since it contains
9087 	 * the value fetched from the packet.
9088 	 * Already marked as written above.
9089 	 */
9090 	mark_reg_unknown(env, regs, BPF_REG_0);
9091 	/* ld_abs load up to 32-bit skb data. */
9092 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9093 	return 0;
9094 }
9095 
9096 static int check_return_code(struct bpf_verifier_env *env)
9097 {
9098 	struct tnum enforce_attach_type_range = tnum_unknown;
9099 	const struct bpf_prog *prog = env->prog;
9100 	struct bpf_reg_state *reg;
9101 	struct tnum range = tnum_range(0, 1);
9102 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9103 	int err;
9104 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
9105 
9106 	/* LSM and struct_ops func-ptr's return type could be "void" */
9107 	if (!is_subprog &&
9108 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9109 	     prog_type == BPF_PROG_TYPE_LSM) &&
9110 	    !prog->aux->attach_func_proto->type)
9111 		return 0;
9112 
9113 	/* eBPF calling convention is such that R0 is used
9114 	 * to return the value from eBPF program.
9115 	 * Make sure that it's readable at this time
9116 	 * of bpf_exit, which means that program wrote
9117 	 * something into it earlier
9118 	 */
9119 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9120 	if (err)
9121 		return err;
9122 
9123 	if (is_pointer_value(env, BPF_REG_0)) {
9124 		verbose(env, "R0 leaks addr as return value\n");
9125 		return -EACCES;
9126 	}
9127 
9128 	reg = cur_regs(env) + BPF_REG_0;
9129 	if (is_subprog) {
9130 		if (reg->type != SCALAR_VALUE) {
9131 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9132 				reg_type_str[reg->type]);
9133 			return -EINVAL;
9134 		}
9135 		return 0;
9136 	}
9137 
9138 	switch (prog_type) {
9139 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9140 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9141 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9142 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9143 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9144 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9145 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9146 			range = tnum_range(1, 1);
9147 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9148 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9149 			range = tnum_range(0, 3);
9150 		break;
9151 	case BPF_PROG_TYPE_CGROUP_SKB:
9152 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9153 			range = tnum_range(0, 3);
9154 			enforce_attach_type_range = tnum_range(2, 3);
9155 		}
9156 		break;
9157 	case BPF_PROG_TYPE_CGROUP_SOCK:
9158 	case BPF_PROG_TYPE_SOCK_OPS:
9159 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9160 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9161 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9162 		break;
9163 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9164 		if (!env->prog->aux->attach_btf_id)
9165 			return 0;
9166 		range = tnum_const(0);
9167 		break;
9168 	case BPF_PROG_TYPE_TRACING:
9169 		switch (env->prog->expected_attach_type) {
9170 		case BPF_TRACE_FENTRY:
9171 		case BPF_TRACE_FEXIT:
9172 			range = tnum_const(0);
9173 			break;
9174 		case BPF_TRACE_RAW_TP:
9175 		case BPF_MODIFY_RETURN:
9176 			return 0;
9177 		case BPF_TRACE_ITER:
9178 			break;
9179 		default:
9180 			return -ENOTSUPP;
9181 		}
9182 		break;
9183 	case BPF_PROG_TYPE_SK_LOOKUP:
9184 		range = tnum_range(SK_DROP, SK_PASS);
9185 		break;
9186 	case BPF_PROG_TYPE_EXT:
9187 		/* freplace program can return anything as its return value
9188 		 * depends on the to-be-replaced kernel func or bpf program.
9189 		 */
9190 	default:
9191 		return 0;
9192 	}
9193 
9194 	if (reg->type != SCALAR_VALUE) {
9195 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9196 			reg_type_str[reg->type]);
9197 		return -EINVAL;
9198 	}
9199 
9200 	if (!tnum_in(range, reg->var_off)) {
9201 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9202 		return -EINVAL;
9203 	}
9204 
9205 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9206 	    tnum_in(enforce_attach_type_range, reg->var_off))
9207 		env->prog->enforce_expected_attach_type = 1;
9208 	return 0;
9209 }
9210 
9211 /* non-recursive DFS pseudo code
9212  * 1  procedure DFS-iterative(G,v):
9213  * 2      label v as discovered
9214  * 3      let S be a stack
9215  * 4      S.push(v)
9216  * 5      while S is not empty
9217  * 6            t <- S.pop()
9218  * 7            if t is what we're looking for:
9219  * 8                return t
9220  * 9            for all edges e in G.adjacentEdges(t) do
9221  * 10               if edge e is already labelled
9222  * 11                   continue with the next edge
9223  * 12               w <- G.adjacentVertex(t,e)
9224  * 13               if vertex w is not discovered and not explored
9225  * 14                   label e as tree-edge
9226  * 15                   label w as discovered
9227  * 16                   S.push(w)
9228  * 17                   continue at 5
9229  * 18               else if vertex w is discovered
9230  * 19                   label e as back-edge
9231  * 20               else
9232  * 21                   // vertex w is explored
9233  * 22                   label e as forward- or cross-edge
9234  * 23           label t as explored
9235  * 24           S.pop()
9236  *
9237  * convention:
9238  * 0x10 - discovered
9239  * 0x11 - discovered and fall-through edge labelled
9240  * 0x12 - discovered and fall-through and branch edges labelled
9241  * 0x20 - explored
9242  */
9243 
9244 enum {
9245 	DISCOVERED = 0x10,
9246 	EXPLORED = 0x20,
9247 	FALLTHROUGH = 1,
9248 	BRANCH = 2,
9249 };
9250 
9251 static u32 state_htab_size(struct bpf_verifier_env *env)
9252 {
9253 	return env->prog->len;
9254 }
9255 
9256 static struct bpf_verifier_state_list **explored_state(
9257 					struct bpf_verifier_env *env,
9258 					int idx)
9259 {
9260 	struct bpf_verifier_state *cur = env->cur_state;
9261 	struct bpf_func_state *state = cur->frame[cur->curframe];
9262 
9263 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9264 }
9265 
9266 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9267 {
9268 	env->insn_aux_data[idx].prune_point = true;
9269 }
9270 
9271 enum {
9272 	DONE_EXPLORING = 0,
9273 	KEEP_EXPLORING = 1,
9274 };
9275 
9276 /* t, w, e - match pseudo-code above:
9277  * t - index of current instruction
9278  * w - next instruction
9279  * e - edge
9280  */
9281 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9282 		     bool loop_ok)
9283 {
9284 	int *insn_stack = env->cfg.insn_stack;
9285 	int *insn_state = env->cfg.insn_state;
9286 
9287 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9288 		return DONE_EXPLORING;
9289 
9290 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9291 		return DONE_EXPLORING;
9292 
9293 	if (w < 0 || w >= env->prog->len) {
9294 		verbose_linfo(env, t, "%d: ", t);
9295 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9296 		return -EINVAL;
9297 	}
9298 
9299 	if (e == BRANCH)
9300 		/* mark branch target for state pruning */
9301 		init_explored_state(env, w);
9302 
9303 	if (insn_state[w] == 0) {
9304 		/* tree-edge */
9305 		insn_state[t] = DISCOVERED | e;
9306 		insn_state[w] = DISCOVERED;
9307 		if (env->cfg.cur_stack >= env->prog->len)
9308 			return -E2BIG;
9309 		insn_stack[env->cfg.cur_stack++] = w;
9310 		return KEEP_EXPLORING;
9311 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9312 		if (loop_ok && env->bpf_capable)
9313 			return DONE_EXPLORING;
9314 		verbose_linfo(env, t, "%d: ", t);
9315 		verbose_linfo(env, w, "%d: ", w);
9316 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9317 		return -EINVAL;
9318 	} else if (insn_state[w] == EXPLORED) {
9319 		/* forward- or cross-edge */
9320 		insn_state[t] = DISCOVERED | e;
9321 	} else {
9322 		verbose(env, "insn state internal bug\n");
9323 		return -EFAULT;
9324 	}
9325 	return DONE_EXPLORING;
9326 }
9327 
9328 static int visit_func_call_insn(int t, int insn_cnt,
9329 				struct bpf_insn *insns,
9330 				struct bpf_verifier_env *env,
9331 				bool visit_callee)
9332 {
9333 	int ret;
9334 
9335 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9336 	if (ret)
9337 		return ret;
9338 
9339 	if (t + 1 < insn_cnt)
9340 		init_explored_state(env, t + 1);
9341 	if (visit_callee) {
9342 		init_explored_state(env, t);
9343 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
9344 				env, false);
9345 	}
9346 	return ret;
9347 }
9348 
9349 /* Visits the instruction at index t and returns one of the following:
9350  *  < 0 - an error occurred
9351  *  DONE_EXPLORING - the instruction was fully explored
9352  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9353  */
9354 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9355 {
9356 	struct bpf_insn *insns = env->prog->insnsi;
9357 	int ret;
9358 
9359 	if (bpf_pseudo_func(insns + t))
9360 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9361 
9362 	/* All non-branch instructions have a single fall-through edge. */
9363 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9364 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9365 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9366 
9367 	switch (BPF_OP(insns[t].code)) {
9368 	case BPF_EXIT:
9369 		return DONE_EXPLORING;
9370 
9371 	case BPF_CALL:
9372 		return visit_func_call_insn(t, insn_cnt, insns, env,
9373 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9374 
9375 	case BPF_JA:
9376 		if (BPF_SRC(insns[t].code) != BPF_K)
9377 			return -EINVAL;
9378 
9379 		/* unconditional jump with single edge */
9380 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9381 				true);
9382 		if (ret)
9383 			return ret;
9384 
9385 		/* unconditional jmp is not a good pruning point,
9386 		 * but it's marked, since backtracking needs
9387 		 * to record jmp history in is_state_visited().
9388 		 */
9389 		init_explored_state(env, t + insns[t].off + 1);
9390 		/* tell verifier to check for equivalent states
9391 		 * after every call and jump
9392 		 */
9393 		if (t + 1 < insn_cnt)
9394 			init_explored_state(env, t + 1);
9395 
9396 		return ret;
9397 
9398 	default:
9399 		/* conditional jump with two edges */
9400 		init_explored_state(env, t);
9401 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9402 		if (ret)
9403 			return ret;
9404 
9405 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9406 	}
9407 }
9408 
9409 /* non-recursive depth-first-search to detect loops in BPF program
9410  * loop == back-edge in directed graph
9411  */
9412 static int check_cfg(struct bpf_verifier_env *env)
9413 {
9414 	int insn_cnt = env->prog->len;
9415 	int *insn_stack, *insn_state;
9416 	int ret = 0;
9417 	int i;
9418 
9419 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9420 	if (!insn_state)
9421 		return -ENOMEM;
9422 
9423 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9424 	if (!insn_stack) {
9425 		kvfree(insn_state);
9426 		return -ENOMEM;
9427 	}
9428 
9429 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9430 	insn_stack[0] = 0; /* 0 is the first instruction */
9431 	env->cfg.cur_stack = 1;
9432 
9433 	while (env->cfg.cur_stack > 0) {
9434 		int t = insn_stack[env->cfg.cur_stack - 1];
9435 
9436 		ret = visit_insn(t, insn_cnt, env);
9437 		switch (ret) {
9438 		case DONE_EXPLORING:
9439 			insn_state[t] = EXPLORED;
9440 			env->cfg.cur_stack--;
9441 			break;
9442 		case KEEP_EXPLORING:
9443 			break;
9444 		default:
9445 			if (ret > 0) {
9446 				verbose(env, "visit_insn internal bug\n");
9447 				ret = -EFAULT;
9448 			}
9449 			goto err_free;
9450 		}
9451 	}
9452 
9453 	if (env->cfg.cur_stack < 0) {
9454 		verbose(env, "pop stack internal bug\n");
9455 		ret = -EFAULT;
9456 		goto err_free;
9457 	}
9458 
9459 	for (i = 0; i < insn_cnt; i++) {
9460 		if (insn_state[i] != EXPLORED) {
9461 			verbose(env, "unreachable insn %d\n", i);
9462 			ret = -EINVAL;
9463 			goto err_free;
9464 		}
9465 	}
9466 	ret = 0; /* cfg looks good */
9467 
9468 err_free:
9469 	kvfree(insn_state);
9470 	kvfree(insn_stack);
9471 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
9472 	return ret;
9473 }
9474 
9475 static int check_abnormal_return(struct bpf_verifier_env *env)
9476 {
9477 	int i;
9478 
9479 	for (i = 1; i < env->subprog_cnt; i++) {
9480 		if (env->subprog_info[i].has_ld_abs) {
9481 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9482 			return -EINVAL;
9483 		}
9484 		if (env->subprog_info[i].has_tail_call) {
9485 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9486 			return -EINVAL;
9487 		}
9488 	}
9489 	return 0;
9490 }
9491 
9492 /* The minimum supported BTF func info size */
9493 #define MIN_BPF_FUNCINFO_SIZE	8
9494 #define MAX_FUNCINFO_REC_SIZE	252
9495 
9496 static int check_btf_func(struct bpf_verifier_env *env,
9497 			  const union bpf_attr *attr,
9498 			  bpfptr_t uattr)
9499 {
9500 	const struct btf_type *type, *func_proto, *ret_type;
9501 	u32 i, nfuncs, urec_size, min_size;
9502 	u32 krec_size = sizeof(struct bpf_func_info);
9503 	struct bpf_func_info *krecord;
9504 	struct bpf_func_info_aux *info_aux = NULL;
9505 	struct bpf_prog *prog;
9506 	const struct btf *btf;
9507 	bpfptr_t urecord;
9508 	u32 prev_offset = 0;
9509 	bool scalar_return;
9510 	int ret = -ENOMEM;
9511 
9512 	nfuncs = attr->func_info_cnt;
9513 	if (!nfuncs) {
9514 		if (check_abnormal_return(env))
9515 			return -EINVAL;
9516 		return 0;
9517 	}
9518 
9519 	if (nfuncs != env->subprog_cnt) {
9520 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9521 		return -EINVAL;
9522 	}
9523 
9524 	urec_size = attr->func_info_rec_size;
9525 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9526 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
9527 	    urec_size % sizeof(u32)) {
9528 		verbose(env, "invalid func info rec size %u\n", urec_size);
9529 		return -EINVAL;
9530 	}
9531 
9532 	prog = env->prog;
9533 	btf = prog->aux->btf;
9534 
9535 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
9536 	min_size = min_t(u32, krec_size, urec_size);
9537 
9538 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9539 	if (!krecord)
9540 		return -ENOMEM;
9541 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9542 	if (!info_aux)
9543 		goto err_free;
9544 
9545 	for (i = 0; i < nfuncs; i++) {
9546 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9547 		if (ret) {
9548 			if (ret == -E2BIG) {
9549 				verbose(env, "nonzero tailing record in func info");
9550 				/* set the size kernel expects so loader can zero
9551 				 * out the rest of the record.
9552 				 */
9553 				if (copy_to_bpfptr_offset(uattr,
9554 							  offsetof(union bpf_attr, func_info_rec_size),
9555 							  &min_size, sizeof(min_size)))
9556 					ret = -EFAULT;
9557 			}
9558 			goto err_free;
9559 		}
9560 
9561 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
9562 			ret = -EFAULT;
9563 			goto err_free;
9564 		}
9565 
9566 		/* check insn_off */
9567 		ret = -EINVAL;
9568 		if (i == 0) {
9569 			if (krecord[i].insn_off) {
9570 				verbose(env,
9571 					"nonzero insn_off %u for the first func info record",
9572 					krecord[i].insn_off);
9573 				goto err_free;
9574 			}
9575 		} else if (krecord[i].insn_off <= prev_offset) {
9576 			verbose(env,
9577 				"same or smaller insn offset (%u) than previous func info record (%u)",
9578 				krecord[i].insn_off, prev_offset);
9579 			goto err_free;
9580 		}
9581 
9582 		if (env->subprog_info[i].start != krecord[i].insn_off) {
9583 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9584 			goto err_free;
9585 		}
9586 
9587 		/* check type_id */
9588 		type = btf_type_by_id(btf, krecord[i].type_id);
9589 		if (!type || !btf_type_is_func(type)) {
9590 			verbose(env, "invalid type id %d in func info",
9591 				krecord[i].type_id);
9592 			goto err_free;
9593 		}
9594 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9595 
9596 		func_proto = btf_type_by_id(btf, type->type);
9597 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9598 			/* btf_func_check() already verified it during BTF load */
9599 			goto err_free;
9600 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9601 		scalar_return =
9602 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9603 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9604 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9605 			goto err_free;
9606 		}
9607 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9608 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9609 			goto err_free;
9610 		}
9611 
9612 		prev_offset = krecord[i].insn_off;
9613 		bpfptr_add(&urecord, urec_size);
9614 	}
9615 
9616 	prog->aux->func_info = krecord;
9617 	prog->aux->func_info_cnt = nfuncs;
9618 	prog->aux->func_info_aux = info_aux;
9619 	return 0;
9620 
9621 err_free:
9622 	kvfree(krecord);
9623 	kfree(info_aux);
9624 	return ret;
9625 }
9626 
9627 static void adjust_btf_func(struct bpf_verifier_env *env)
9628 {
9629 	struct bpf_prog_aux *aux = env->prog->aux;
9630 	int i;
9631 
9632 	if (!aux->func_info)
9633 		return;
9634 
9635 	for (i = 0; i < env->subprog_cnt; i++)
9636 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9637 }
9638 
9639 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9640 		sizeof(((struct bpf_line_info *)(0))->line_col))
9641 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9642 
9643 static int check_btf_line(struct bpf_verifier_env *env,
9644 			  const union bpf_attr *attr,
9645 			  bpfptr_t uattr)
9646 {
9647 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9648 	struct bpf_subprog_info *sub;
9649 	struct bpf_line_info *linfo;
9650 	struct bpf_prog *prog;
9651 	const struct btf *btf;
9652 	bpfptr_t ulinfo;
9653 	int err;
9654 
9655 	nr_linfo = attr->line_info_cnt;
9656 	if (!nr_linfo)
9657 		return 0;
9658 
9659 	rec_size = attr->line_info_rec_size;
9660 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9661 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9662 	    rec_size & (sizeof(u32) - 1))
9663 		return -EINVAL;
9664 
9665 	/* Need to zero it in case the userspace may
9666 	 * pass in a smaller bpf_line_info object.
9667 	 */
9668 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9669 			 GFP_KERNEL | __GFP_NOWARN);
9670 	if (!linfo)
9671 		return -ENOMEM;
9672 
9673 	prog = env->prog;
9674 	btf = prog->aux->btf;
9675 
9676 	s = 0;
9677 	sub = env->subprog_info;
9678 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
9679 	expected_size = sizeof(struct bpf_line_info);
9680 	ncopy = min_t(u32, expected_size, rec_size);
9681 	for (i = 0; i < nr_linfo; i++) {
9682 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9683 		if (err) {
9684 			if (err == -E2BIG) {
9685 				verbose(env, "nonzero tailing record in line_info");
9686 				if (copy_to_bpfptr_offset(uattr,
9687 							  offsetof(union bpf_attr, line_info_rec_size),
9688 							  &expected_size, sizeof(expected_size)))
9689 					err = -EFAULT;
9690 			}
9691 			goto err_free;
9692 		}
9693 
9694 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
9695 			err = -EFAULT;
9696 			goto err_free;
9697 		}
9698 
9699 		/*
9700 		 * Check insn_off to ensure
9701 		 * 1) strictly increasing AND
9702 		 * 2) bounded by prog->len
9703 		 *
9704 		 * The linfo[0].insn_off == 0 check logically falls into
9705 		 * the later "missing bpf_line_info for func..." case
9706 		 * because the first linfo[0].insn_off must be the
9707 		 * first sub also and the first sub must have
9708 		 * subprog_info[0].start == 0.
9709 		 */
9710 		if ((i && linfo[i].insn_off <= prev_offset) ||
9711 		    linfo[i].insn_off >= prog->len) {
9712 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9713 				i, linfo[i].insn_off, prev_offset,
9714 				prog->len);
9715 			err = -EINVAL;
9716 			goto err_free;
9717 		}
9718 
9719 		if (!prog->insnsi[linfo[i].insn_off].code) {
9720 			verbose(env,
9721 				"Invalid insn code at line_info[%u].insn_off\n",
9722 				i);
9723 			err = -EINVAL;
9724 			goto err_free;
9725 		}
9726 
9727 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9728 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9729 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9730 			err = -EINVAL;
9731 			goto err_free;
9732 		}
9733 
9734 		if (s != env->subprog_cnt) {
9735 			if (linfo[i].insn_off == sub[s].start) {
9736 				sub[s].linfo_idx = i;
9737 				s++;
9738 			} else if (sub[s].start < linfo[i].insn_off) {
9739 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9740 				err = -EINVAL;
9741 				goto err_free;
9742 			}
9743 		}
9744 
9745 		prev_offset = linfo[i].insn_off;
9746 		bpfptr_add(&ulinfo, rec_size);
9747 	}
9748 
9749 	if (s != env->subprog_cnt) {
9750 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9751 			env->subprog_cnt - s, s);
9752 		err = -EINVAL;
9753 		goto err_free;
9754 	}
9755 
9756 	prog->aux->linfo = linfo;
9757 	prog->aux->nr_linfo = nr_linfo;
9758 
9759 	return 0;
9760 
9761 err_free:
9762 	kvfree(linfo);
9763 	return err;
9764 }
9765 
9766 static int check_btf_info(struct bpf_verifier_env *env,
9767 			  const union bpf_attr *attr,
9768 			  bpfptr_t uattr)
9769 {
9770 	struct btf *btf;
9771 	int err;
9772 
9773 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9774 		if (check_abnormal_return(env))
9775 			return -EINVAL;
9776 		return 0;
9777 	}
9778 
9779 	btf = btf_get_by_fd(attr->prog_btf_fd);
9780 	if (IS_ERR(btf))
9781 		return PTR_ERR(btf);
9782 	if (btf_is_kernel(btf)) {
9783 		btf_put(btf);
9784 		return -EACCES;
9785 	}
9786 	env->prog->aux->btf = btf;
9787 
9788 	err = check_btf_func(env, attr, uattr);
9789 	if (err)
9790 		return err;
9791 
9792 	err = check_btf_line(env, attr, uattr);
9793 	if (err)
9794 		return err;
9795 
9796 	return 0;
9797 }
9798 
9799 /* check %cur's range satisfies %old's */
9800 static bool range_within(struct bpf_reg_state *old,
9801 			 struct bpf_reg_state *cur)
9802 {
9803 	return old->umin_value <= cur->umin_value &&
9804 	       old->umax_value >= cur->umax_value &&
9805 	       old->smin_value <= cur->smin_value &&
9806 	       old->smax_value >= cur->smax_value &&
9807 	       old->u32_min_value <= cur->u32_min_value &&
9808 	       old->u32_max_value >= cur->u32_max_value &&
9809 	       old->s32_min_value <= cur->s32_min_value &&
9810 	       old->s32_max_value >= cur->s32_max_value;
9811 }
9812 
9813 /* If in the old state two registers had the same id, then they need to have
9814  * the same id in the new state as well.  But that id could be different from
9815  * the old state, so we need to track the mapping from old to new ids.
9816  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9817  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9818  * regs with a different old id could still have new id 9, we don't care about
9819  * that.
9820  * So we look through our idmap to see if this old id has been seen before.  If
9821  * so, we require the new id to match; otherwise, we add the id pair to the map.
9822  */
9823 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
9824 {
9825 	unsigned int i;
9826 
9827 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
9828 		if (!idmap[i].old) {
9829 			/* Reached an empty slot; haven't seen this id before */
9830 			idmap[i].old = old_id;
9831 			idmap[i].cur = cur_id;
9832 			return true;
9833 		}
9834 		if (idmap[i].old == old_id)
9835 			return idmap[i].cur == cur_id;
9836 	}
9837 	/* We ran out of idmap slots, which should be impossible */
9838 	WARN_ON_ONCE(1);
9839 	return false;
9840 }
9841 
9842 static void clean_func_state(struct bpf_verifier_env *env,
9843 			     struct bpf_func_state *st)
9844 {
9845 	enum bpf_reg_liveness live;
9846 	int i, j;
9847 
9848 	for (i = 0; i < BPF_REG_FP; i++) {
9849 		live = st->regs[i].live;
9850 		/* liveness must not touch this register anymore */
9851 		st->regs[i].live |= REG_LIVE_DONE;
9852 		if (!(live & REG_LIVE_READ))
9853 			/* since the register is unused, clear its state
9854 			 * to make further comparison simpler
9855 			 */
9856 			__mark_reg_not_init(env, &st->regs[i]);
9857 	}
9858 
9859 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9860 		live = st->stack[i].spilled_ptr.live;
9861 		/* liveness must not touch this stack slot anymore */
9862 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9863 		if (!(live & REG_LIVE_READ)) {
9864 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9865 			for (j = 0; j < BPF_REG_SIZE; j++)
9866 				st->stack[i].slot_type[j] = STACK_INVALID;
9867 		}
9868 	}
9869 }
9870 
9871 static void clean_verifier_state(struct bpf_verifier_env *env,
9872 				 struct bpf_verifier_state *st)
9873 {
9874 	int i;
9875 
9876 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9877 		/* all regs in this state in all frames were already marked */
9878 		return;
9879 
9880 	for (i = 0; i <= st->curframe; i++)
9881 		clean_func_state(env, st->frame[i]);
9882 }
9883 
9884 /* the parentage chains form a tree.
9885  * the verifier states are added to state lists at given insn and
9886  * pushed into state stack for future exploration.
9887  * when the verifier reaches bpf_exit insn some of the verifer states
9888  * stored in the state lists have their final liveness state already,
9889  * but a lot of states will get revised from liveness point of view when
9890  * the verifier explores other branches.
9891  * Example:
9892  * 1: r0 = 1
9893  * 2: if r1 == 100 goto pc+1
9894  * 3: r0 = 2
9895  * 4: exit
9896  * when the verifier reaches exit insn the register r0 in the state list of
9897  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9898  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9899  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9900  *
9901  * Since the verifier pushes the branch states as it sees them while exploring
9902  * the program the condition of walking the branch instruction for the second
9903  * time means that all states below this branch were already explored and
9904  * their final liveness marks are already propagated.
9905  * Hence when the verifier completes the search of state list in is_state_visited()
9906  * we can call this clean_live_states() function to mark all liveness states
9907  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9908  * will not be used.
9909  * This function also clears the registers and stack for states that !READ
9910  * to simplify state merging.
9911  *
9912  * Important note here that walking the same branch instruction in the callee
9913  * doesn't meant that the states are DONE. The verifier has to compare
9914  * the callsites
9915  */
9916 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9917 			      struct bpf_verifier_state *cur)
9918 {
9919 	struct bpf_verifier_state_list *sl;
9920 	int i;
9921 
9922 	sl = *explored_state(env, insn);
9923 	while (sl) {
9924 		if (sl->state.branches)
9925 			goto next;
9926 		if (sl->state.insn_idx != insn ||
9927 		    sl->state.curframe != cur->curframe)
9928 			goto next;
9929 		for (i = 0; i <= cur->curframe; i++)
9930 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9931 				goto next;
9932 		clean_verifier_state(env, &sl->state);
9933 next:
9934 		sl = sl->next;
9935 	}
9936 }
9937 
9938 /* Returns true if (rold safe implies rcur safe) */
9939 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9940 		    struct bpf_id_pair *idmap)
9941 {
9942 	bool equal;
9943 
9944 	if (!(rold->live & REG_LIVE_READ))
9945 		/* explored state didn't use this */
9946 		return true;
9947 
9948 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9949 
9950 	if (rold->type == PTR_TO_STACK)
9951 		/* two stack pointers are equal only if they're pointing to
9952 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9953 		 */
9954 		return equal && rold->frameno == rcur->frameno;
9955 
9956 	if (equal)
9957 		return true;
9958 
9959 	if (rold->type == NOT_INIT)
9960 		/* explored state can't have used this */
9961 		return true;
9962 	if (rcur->type == NOT_INIT)
9963 		return false;
9964 	switch (rold->type) {
9965 	case SCALAR_VALUE:
9966 		if (rcur->type == SCALAR_VALUE) {
9967 			if (!rold->precise && !rcur->precise)
9968 				return true;
9969 			/* new val must satisfy old val knowledge */
9970 			return range_within(rold, rcur) &&
9971 			       tnum_in(rold->var_off, rcur->var_off);
9972 		} else {
9973 			/* We're trying to use a pointer in place of a scalar.
9974 			 * Even if the scalar was unbounded, this could lead to
9975 			 * pointer leaks because scalars are allowed to leak
9976 			 * while pointers are not. We could make this safe in
9977 			 * special cases if root is calling us, but it's
9978 			 * probably not worth the hassle.
9979 			 */
9980 			return false;
9981 		}
9982 	case PTR_TO_MAP_KEY:
9983 	case PTR_TO_MAP_VALUE:
9984 		/* If the new min/max/var_off satisfy the old ones and
9985 		 * everything else matches, we are OK.
9986 		 * 'id' is not compared, since it's only used for maps with
9987 		 * bpf_spin_lock inside map element and in such cases if
9988 		 * the rest of the prog is valid for one map element then
9989 		 * it's valid for all map elements regardless of the key
9990 		 * used in bpf_map_lookup()
9991 		 */
9992 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9993 		       range_within(rold, rcur) &&
9994 		       tnum_in(rold->var_off, rcur->var_off);
9995 	case PTR_TO_MAP_VALUE_OR_NULL:
9996 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9997 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9998 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9999 		 * checked, doing so could have affected others with the same
10000 		 * id, and we can't check for that because we lost the id when
10001 		 * we converted to a PTR_TO_MAP_VALUE.
10002 		 */
10003 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10004 			return false;
10005 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10006 			return false;
10007 		/* Check our ids match any regs they're supposed to */
10008 		return check_ids(rold->id, rcur->id, idmap);
10009 	case PTR_TO_PACKET_META:
10010 	case PTR_TO_PACKET:
10011 		if (rcur->type != rold->type)
10012 			return false;
10013 		/* We must have at least as much range as the old ptr
10014 		 * did, so that any accesses which were safe before are
10015 		 * still safe.  This is true even if old range < old off,
10016 		 * since someone could have accessed through (ptr - k), or
10017 		 * even done ptr -= k in a register, to get a safe access.
10018 		 */
10019 		if (rold->range > rcur->range)
10020 			return false;
10021 		/* If the offsets don't match, we can't trust our alignment;
10022 		 * nor can we be sure that we won't fall out of range.
10023 		 */
10024 		if (rold->off != rcur->off)
10025 			return false;
10026 		/* id relations must be preserved */
10027 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10028 			return false;
10029 		/* new val must satisfy old val knowledge */
10030 		return range_within(rold, rcur) &&
10031 		       tnum_in(rold->var_off, rcur->var_off);
10032 	case PTR_TO_CTX:
10033 	case CONST_PTR_TO_MAP:
10034 	case PTR_TO_PACKET_END:
10035 	case PTR_TO_FLOW_KEYS:
10036 	case PTR_TO_SOCKET:
10037 	case PTR_TO_SOCKET_OR_NULL:
10038 	case PTR_TO_SOCK_COMMON:
10039 	case PTR_TO_SOCK_COMMON_OR_NULL:
10040 	case PTR_TO_TCP_SOCK:
10041 	case PTR_TO_TCP_SOCK_OR_NULL:
10042 	case PTR_TO_XDP_SOCK:
10043 		/* Only valid matches are exact, which memcmp() above
10044 		 * would have accepted
10045 		 */
10046 	default:
10047 		/* Don't know what's going on, just say it's not safe */
10048 		return false;
10049 	}
10050 
10051 	/* Shouldn't get here; if we do, say it's not safe */
10052 	WARN_ON_ONCE(1);
10053 	return false;
10054 }
10055 
10056 static bool stacksafe(struct bpf_func_state *old,
10057 		      struct bpf_func_state *cur,
10058 		      struct bpf_id_pair *idmap)
10059 {
10060 	int i, spi;
10061 
10062 	/* walk slots of the explored stack and ignore any additional
10063 	 * slots in the current stack, since explored(safe) state
10064 	 * didn't use them
10065 	 */
10066 	for (i = 0; i < old->allocated_stack; i++) {
10067 		spi = i / BPF_REG_SIZE;
10068 
10069 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10070 			i += BPF_REG_SIZE - 1;
10071 			/* explored state didn't use this */
10072 			continue;
10073 		}
10074 
10075 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10076 			continue;
10077 
10078 		/* explored stack has more populated slots than current stack
10079 		 * and these slots were used
10080 		 */
10081 		if (i >= cur->allocated_stack)
10082 			return false;
10083 
10084 		/* if old state was safe with misc data in the stack
10085 		 * it will be safe with zero-initialized stack.
10086 		 * The opposite is not true
10087 		 */
10088 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10089 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10090 			continue;
10091 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10092 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10093 			/* Ex: old explored (safe) state has STACK_SPILL in
10094 			 * this stack slot, but current has STACK_MISC ->
10095 			 * this verifier states are not equivalent,
10096 			 * return false to continue verification of this path
10097 			 */
10098 			return false;
10099 		if (i % BPF_REG_SIZE)
10100 			continue;
10101 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
10102 			continue;
10103 		if (!regsafe(&old->stack[spi].spilled_ptr,
10104 			     &cur->stack[spi].spilled_ptr,
10105 			     idmap))
10106 			/* when explored and current stack slot are both storing
10107 			 * spilled registers, check that stored pointers types
10108 			 * are the same as well.
10109 			 * Ex: explored safe path could have stored
10110 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10111 			 * but current path has stored:
10112 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10113 			 * such verifier states are not equivalent.
10114 			 * return false to continue verification of this path
10115 			 */
10116 			return false;
10117 	}
10118 	return true;
10119 }
10120 
10121 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10122 {
10123 	if (old->acquired_refs != cur->acquired_refs)
10124 		return false;
10125 	return !memcmp(old->refs, cur->refs,
10126 		       sizeof(*old->refs) * old->acquired_refs);
10127 }
10128 
10129 /* compare two verifier states
10130  *
10131  * all states stored in state_list are known to be valid, since
10132  * verifier reached 'bpf_exit' instruction through them
10133  *
10134  * this function is called when verifier exploring different branches of
10135  * execution popped from the state stack. If it sees an old state that has
10136  * more strict register state and more strict stack state then this execution
10137  * branch doesn't need to be explored further, since verifier already
10138  * concluded that more strict state leads to valid finish.
10139  *
10140  * Therefore two states are equivalent if register state is more conservative
10141  * and explored stack state is more conservative than the current one.
10142  * Example:
10143  *       explored                   current
10144  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10145  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10146  *
10147  * In other words if current stack state (one being explored) has more
10148  * valid slots than old one that already passed validation, it means
10149  * the verifier can stop exploring and conclude that current state is valid too
10150  *
10151  * Similarly with registers. If explored state has register type as invalid
10152  * whereas register type in current state is meaningful, it means that
10153  * the current state will reach 'bpf_exit' instruction safely
10154  */
10155 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10156 			      struct bpf_func_state *cur)
10157 {
10158 	int i;
10159 
10160 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10161 	for (i = 0; i < MAX_BPF_REG; i++)
10162 		if (!regsafe(&old->regs[i], &cur->regs[i], env->idmap_scratch))
10163 			return false;
10164 
10165 	if (!stacksafe(old, cur, env->idmap_scratch))
10166 		return false;
10167 
10168 	if (!refsafe(old, cur))
10169 		return false;
10170 
10171 	return true;
10172 }
10173 
10174 static bool states_equal(struct bpf_verifier_env *env,
10175 			 struct bpf_verifier_state *old,
10176 			 struct bpf_verifier_state *cur)
10177 {
10178 	int i;
10179 
10180 	if (old->curframe != cur->curframe)
10181 		return false;
10182 
10183 	/* Verification state from speculative execution simulation
10184 	 * must never prune a non-speculative execution one.
10185 	 */
10186 	if (old->speculative && !cur->speculative)
10187 		return false;
10188 
10189 	if (old->active_spin_lock != cur->active_spin_lock)
10190 		return false;
10191 
10192 	/* for states to be equal callsites have to be the same
10193 	 * and all frame states need to be equivalent
10194 	 */
10195 	for (i = 0; i <= old->curframe; i++) {
10196 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10197 			return false;
10198 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10199 			return false;
10200 	}
10201 	return true;
10202 }
10203 
10204 /* Return 0 if no propagation happened. Return negative error code if error
10205  * happened. Otherwise, return the propagated bit.
10206  */
10207 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10208 				  struct bpf_reg_state *reg,
10209 				  struct bpf_reg_state *parent_reg)
10210 {
10211 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10212 	u8 flag = reg->live & REG_LIVE_READ;
10213 	int err;
10214 
10215 	/* When comes here, read flags of PARENT_REG or REG could be any of
10216 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10217 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10218 	 */
10219 	if (parent_flag == REG_LIVE_READ64 ||
10220 	    /* Or if there is no read flag from REG. */
10221 	    !flag ||
10222 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10223 	    parent_flag == flag)
10224 		return 0;
10225 
10226 	err = mark_reg_read(env, reg, parent_reg, flag);
10227 	if (err)
10228 		return err;
10229 
10230 	return flag;
10231 }
10232 
10233 /* A write screens off any subsequent reads; but write marks come from the
10234  * straight-line code between a state and its parent.  When we arrive at an
10235  * equivalent state (jump target or such) we didn't arrive by the straight-line
10236  * code, so read marks in the state must propagate to the parent regardless
10237  * of the state's write marks. That's what 'parent == state->parent' comparison
10238  * in mark_reg_read() is for.
10239  */
10240 static int propagate_liveness(struct bpf_verifier_env *env,
10241 			      const struct bpf_verifier_state *vstate,
10242 			      struct bpf_verifier_state *vparent)
10243 {
10244 	struct bpf_reg_state *state_reg, *parent_reg;
10245 	struct bpf_func_state *state, *parent;
10246 	int i, frame, err = 0;
10247 
10248 	if (vparent->curframe != vstate->curframe) {
10249 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10250 		     vparent->curframe, vstate->curframe);
10251 		return -EFAULT;
10252 	}
10253 	/* Propagate read liveness of registers... */
10254 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10255 	for (frame = 0; frame <= vstate->curframe; frame++) {
10256 		parent = vparent->frame[frame];
10257 		state = vstate->frame[frame];
10258 		parent_reg = parent->regs;
10259 		state_reg = state->regs;
10260 		/* We don't need to worry about FP liveness, it's read-only */
10261 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10262 			err = propagate_liveness_reg(env, &state_reg[i],
10263 						     &parent_reg[i]);
10264 			if (err < 0)
10265 				return err;
10266 			if (err == REG_LIVE_READ64)
10267 				mark_insn_zext(env, &parent_reg[i]);
10268 		}
10269 
10270 		/* Propagate stack slots. */
10271 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10272 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10273 			parent_reg = &parent->stack[i].spilled_ptr;
10274 			state_reg = &state->stack[i].spilled_ptr;
10275 			err = propagate_liveness_reg(env, state_reg,
10276 						     parent_reg);
10277 			if (err < 0)
10278 				return err;
10279 		}
10280 	}
10281 	return 0;
10282 }
10283 
10284 /* find precise scalars in the previous equivalent state and
10285  * propagate them into the current state
10286  */
10287 static int propagate_precision(struct bpf_verifier_env *env,
10288 			       const struct bpf_verifier_state *old)
10289 {
10290 	struct bpf_reg_state *state_reg;
10291 	struct bpf_func_state *state;
10292 	int i, err = 0;
10293 
10294 	state = old->frame[old->curframe];
10295 	state_reg = state->regs;
10296 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10297 		if (state_reg->type != SCALAR_VALUE ||
10298 		    !state_reg->precise)
10299 			continue;
10300 		if (env->log.level & BPF_LOG_LEVEL2)
10301 			verbose(env, "propagating r%d\n", i);
10302 		err = mark_chain_precision(env, i);
10303 		if (err < 0)
10304 			return err;
10305 	}
10306 
10307 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10308 		if (state->stack[i].slot_type[0] != STACK_SPILL)
10309 			continue;
10310 		state_reg = &state->stack[i].spilled_ptr;
10311 		if (state_reg->type != SCALAR_VALUE ||
10312 		    !state_reg->precise)
10313 			continue;
10314 		if (env->log.level & BPF_LOG_LEVEL2)
10315 			verbose(env, "propagating fp%d\n",
10316 				(-i - 1) * BPF_REG_SIZE);
10317 		err = mark_chain_precision_stack(env, i);
10318 		if (err < 0)
10319 			return err;
10320 	}
10321 	return 0;
10322 }
10323 
10324 static bool states_maybe_looping(struct bpf_verifier_state *old,
10325 				 struct bpf_verifier_state *cur)
10326 {
10327 	struct bpf_func_state *fold, *fcur;
10328 	int i, fr = cur->curframe;
10329 
10330 	if (old->curframe != fr)
10331 		return false;
10332 
10333 	fold = old->frame[fr];
10334 	fcur = cur->frame[fr];
10335 	for (i = 0; i < MAX_BPF_REG; i++)
10336 		if (memcmp(&fold->regs[i], &fcur->regs[i],
10337 			   offsetof(struct bpf_reg_state, parent)))
10338 			return false;
10339 	return true;
10340 }
10341 
10342 
10343 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10344 {
10345 	struct bpf_verifier_state_list *new_sl;
10346 	struct bpf_verifier_state_list *sl, **pprev;
10347 	struct bpf_verifier_state *cur = env->cur_state, *new;
10348 	int i, j, err, states_cnt = 0;
10349 	bool add_new_state = env->test_state_freq ? true : false;
10350 
10351 	cur->last_insn_idx = env->prev_insn_idx;
10352 	if (!env->insn_aux_data[insn_idx].prune_point)
10353 		/* this 'insn_idx' instruction wasn't marked, so we will not
10354 		 * be doing state search here
10355 		 */
10356 		return 0;
10357 
10358 	/* bpf progs typically have pruning point every 4 instructions
10359 	 * http://vger.kernel.org/bpfconf2019.html#session-1
10360 	 * Do not add new state for future pruning if the verifier hasn't seen
10361 	 * at least 2 jumps and at least 8 instructions.
10362 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10363 	 * In tests that amounts to up to 50% reduction into total verifier
10364 	 * memory consumption and 20% verifier time speedup.
10365 	 */
10366 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10367 	    env->insn_processed - env->prev_insn_processed >= 8)
10368 		add_new_state = true;
10369 
10370 	pprev = explored_state(env, insn_idx);
10371 	sl = *pprev;
10372 
10373 	clean_live_states(env, insn_idx, cur);
10374 
10375 	while (sl) {
10376 		states_cnt++;
10377 		if (sl->state.insn_idx != insn_idx)
10378 			goto next;
10379 		if (sl->state.branches) {
10380 			if (states_maybe_looping(&sl->state, cur) &&
10381 			    states_equal(env, &sl->state, cur)) {
10382 				verbose_linfo(env, insn_idx, "; ");
10383 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10384 				return -EINVAL;
10385 			}
10386 			/* if the verifier is processing a loop, avoid adding new state
10387 			 * too often, since different loop iterations have distinct
10388 			 * states and may not help future pruning.
10389 			 * This threshold shouldn't be too low to make sure that
10390 			 * a loop with large bound will be rejected quickly.
10391 			 * The most abusive loop will be:
10392 			 * r1 += 1
10393 			 * if r1 < 1000000 goto pc-2
10394 			 * 1M insn_procssed limit / 100 == 10k peak states.
10395 			 * This threshold shouldn't be too high either, since states
10396 			 * at the end of the loop are likely to be useful in pruning.
10397 			 */
10398 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10399 			    env->insn_processed - env->prev_insn_processed < 100)
10400 				add_new_state = false;
10401 			goto miss;
10402 		}
10403 		if (states_equal(env, &sl->state, cur)) {
10404 			sl->hit_cnt++;
10405 			/* reached equivalent register/stack state,
10406 			 * prune the search.
10407 			 * Registers read by the continuation are read by us.
10408 			 * If we have any write marks in env->cur_state, they
10409 			 * will prevent corresponding reads in the continuation
10410 			 * from reaching our parent (an explored_state).  Our
10411 			 * own state will get the read marks recorded, but
10412 			 * they'll be immediately forgotten as we're pruning
10413 			 * this state and will pop a new one.
10414 			 */
10415 			err = propagate_liveness(env, &sl->state, cur);
10416 
10417 			/* if previous state reached the exit with precision and
10418 			 * current state is equivalent to it (except precsion marks)
10419 			 * the precision needs to be propagated back in
10420 			 * the current state.
10421 			 */
10422 			err = err ? : push_jmp_history(env, cur);
10423 			err = err ? : propagate_precision(env, &sl->state);
10424 			if (err)
10425 				return err;
10426 			return 1;
10427 		}
10428 miss:
10429 		/* when new state is not going to be added do not increase miss count.
10430 		 * Otherwise several loop iterations will remove the state
10431 		 * recorded earlier. The goal of these heuristics is to have
10432 		 * states from some iterations of the loop (some in the beginning
10433 		 * and some at the end) to help pruning.
10434 		 */
10435 		if (add_new_state)
10436 			sl->miss_cnt++;
10437 		/* heuristic to determine whether this state is beneficial
10438 		 * to keep checking from state equivalence point of view.
10439 		 * Higher numbers increase max_states_per_insn and verification time,
10440 		 * but do not meaningfully decrease insn_processed.
10441 		 */
10442 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10443 			/* the state is unlikely to be useful. Remove it to
10444 			 * speed up verification
10445 			 */
10446 			*pprev = sl->next;
10447 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10448 				u32 br = sl->state.branches;
10449 
10450 				WARN_ONCE(br,
10451 					  "BUG live_done but branches_to_explore %d\n",
10452 					  br);
10453 				free_verifier_state(&sl->state, false);
10454 				kfree(sl);
10455 				env->peak_states--;
10456 			} else {
10457 				/* cannot free this state, since parentage chain may
10458 				 * walk it later. Add it for free_list instead to
10459 				 * be freed at the end of verification
10460 				 */
10461 				sl->next = env->free_list;
10462 				env->free_list = sl;
10463 			}
10464 			sl = *pprev;
10465 			continue;
10466 		}
10467 next:
10468 		pprev = &sl->next;
10469 		sl = *pprev;
10470 	}
10471 
10472 	if (env->max_states_per_insn < states_cnt)
10473 		env->max_states_per_insn = states_cnt;
10474 
10475 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10476 		return push_jmp_history(env, cur);
10477 
10478 	if (!add_new_state)
10479 		return push_jmp_history(env, cur);
10480 
10481 	/* There were no equivalent states, remember the current one.
10482 	 * Technically the current state is not proven to be safe yet,
10483 	 * but it will either reach outer most bpf_exit (which means it's safe)
10484 	 * or it will be rejected. When there are no loops the verifier won't be
10485 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10486 	 * again on the way to bpf_exit.
10487 	 * When looping the sl->state.branches will be > 0 and this state
10488 	 * will not be considered for equivalence until branches == 0.
10489 	 */
10490 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10491 	if (!new_sl)
10492 		return -ENOMEM;
10493 	env->total_states++;
10494 	env->peak_states++;
10495 	env->prev_jmps_processed = env->jmps_processed;
10496 	env->prev_insn_processed = env->insn_processed;
10497 
10498 	/* add new state to the head of linked list */
10499 	new = &new_sl->state;
10500 	err = copy_verifier_state(new, cur);
10501 	if (err) {
10502 		free_verifier_state(new, false);
10503 		kfree(new_sl);
10504 		return err;
10505 	}
10506 	new->insn_idx = insn_idx;
10507 	WARN_ONCE(new->branches != 1,
10508 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10509 
10510 	cur->parent = new;
10511 	cur->first_insn_idx = insn_idx;
10512 	clear_jmp_history(cur);
10513 	new_sl->next = *explored_state(env, insn_idx);
10514 	*explored_state(env, insn_idx) = new_sl;
10515 	/* connect new state to parentage chain. Current frame needs all
10516 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
10517 	 * to the stack implicitly by JITs) so in callers' frames connect just
10518 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10519 	 * the state of the call instruction (with WRITTEN set), and r0 comes
10520 	 * from callee with its full parentage chain, anyway.
10521 	 */
10522 	/* clear write marks in current state: the writes we did are not writes
10523 	 * our child did, so they don't screen off its reads from us.
10524 	 * (There are no read marks in current state, because reads always mark
10525 	 * their parent and current state never has children yet.  Only
10526 	 * explored_states can get read marks.)
10527 	 */
10528 	for (j = 0; j <= cur->curframe; j++) {
10529 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10530 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10531 		for (i = 0; i < BPF_REG_FP; i++)
10532 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10533 	}
10534 
10535 	/* all stack frames are accessible from callee, clear them all */
10536 	for (j = 0; j <= cur->curframe; j++) {
10537 		struct bpf_func_state *frame = cur->frame[j];
10538 		struct bpf_func_state *newframe = new->frame[j];
10539 
10540 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10541 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10542 			frame->stack[i].spilled_ptr.parent =
10543 						&newframe->stack[i].spilled_ptr;
10544 		}
10545 	}
10546 	return 0;
10547 }
10548 
10549 /* Return true if it's OK to have the same insn return a different type. */
10550 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10551 {
10552 	switch (type) {
10553 	case PTR_TO_CTX:
10554 	case PTR_TO_SOCKET:
10555 	case PTR_TO_SOCKET_OR_NULL:
10556 	case PTR_TO_SOCK_COMMON:
10557 	case PTR_TO_SOCK_COMMON_OR_NULL:
10558 	case PTR_TO_TCP_SOCK:
10559 	case PTR_TO_TCP_SOCK_OR_NULL:
10560 	case PTR_TO_XDP_SOCK:
10561 	case PTR_TO_BTF_ID:
10562 	case PTR_TO_BTF_ID_OR_NULL:
10563 		return false;
10564 	default:
10565 		return true;
10566 	}
10567 }
10568 
10569 /* If an instruction was previously used with particular pointer types, then we
10570  * need to be careful to avoid cases such as the below, where it may be ok
10571  * for one branch accessing the pointer, but not ok for the other branch:
10572  *
10573  * R1 = sock_ptr
10574  * goto X;
10575  * ...
10576  * R1 = some_other_valid_ptr;
10577  * goto X;
10578  * ...
10579  * R2 = *(u32 *)(R1 + 0);
10580  */
10581 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10582 {
10583 	return src != prev && (!reg_type_mismatch_ok(src) ||
10584 			       !reg_type_mismatch_ok(prev));
10585 }
10586 
10587 static int do_check(struct bpf_verifier_env *env)
10588 {
10589 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10590 	struct bpf_verifier_state *state = env->cur_state;
10591 	struct bpf_insn *insns = env->prog->insnsi;
10592 	struct bpf_reg_state *regs;
10593 	int insn_cnt = env->prog->len;
10594 	bool do_print_state = false;
10595 	int prev_insn_idx = -1;
10596 
10597 	for (;;) {
10598 		struct bpf_insn *insn;
10599 		u8 class;
10600 		int err;
10601 
10602 		env->prev_insn_idx = prev_insn_idx;
10603 		if (env->insn_idx >= insn_cnt) {
10604 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
10605 				env->insn_idx, insn_cnt);
10606 			return -EFAULT;
10607 		}
10608 
10609 		insn = &insns[env->insn_idx];
10610 		class = BPF_CLASS(insn->code);
10611 
10612 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10613 			verbose(env,
10614 				"BPF program is too large. Processed %d insn\n",
10615 				env->insn_processed);
10616 			return -E2BIG;
10617 		}
10618 
10619 		err = is_state_visited(env, env->insn_idx);
10620 		if (err < 0)
10621 			return err;
10622 		if (err == 1) {
10623 			/* found equivalent state, can prune the search */
10624 			if (env->log.level & BPF_LOG_LEVEL) {
10625 				if (do_print_state)
10626 					verbose(env, "\nfrom %d to %d%s: safe\n",
10627 						env->prev_insn_idx, env->insn_idx,
10628 						env->cur_state->speculative ?
10629 						" (speculative execution)" : "");
10630 				else
10631 					verbose(env, "%d: safe\n", env->insn_idx);
10632 			}
10633 			goto process_bpf_exit;
10634 		}
10635 
10636 		if (signal_pending(current))
10637 			return -EAGAIN;
10638 
10639 		if (need_resched())
10640 			cond_resched();
10641 
10642 		if (env->log.level & BPF_LOG_LEVEL2 ||
10643 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10644 			if (env->log.level & BPF_LOG_LEVEL2)
10645 				verbose(env, "%d:", env->insn_idx);
10646 			else
10647 				verbose(env, "\nfrom %d to %d%s:",
10648 					env->prev_insn_idx, env->insn_idx,
10649 					env->cur_state->speculative ?
10650 					" (speculative execution)" : "");
10651 			print_verifier_state(env, state->frame[state->curframe]);
10652 			do_print_state = false;
10653 		}
10654 
10655 		if (env->log.level & BPF_LOG_LEVEL) {
10656 			const struct bpf_insn_cbs cbs = {
10657 				.cb_call	= disasm_kfunc_name,
10658 				.cb_print	= verbose,
10659 				.private_data	= env,
10660 			};
10661 
10662 			verbose_linfo(env, env->insn_idx, "; ");
10663 			verbose(env, "%d: ", env->insn_idx);
10664 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10665 		}
10666 
10667 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10668 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10669 							   env->prev_insn_idx);
10670 			if (err)
10671 				return err;
10672 		}
10673 
10674 		regs = cur_regs(env);
10675 		sanitize_mark_insn_seen(env);
10676 		prev_insn_idx = env->insn_idx;
10677 
10678 		if (class == BPF_ALU || class == BPF_ALU64) {
10679 			err = check_alu_op(env, insn);
10680 			if (err)
10681 				return err;
10682 
10683 		} else if (class == BPF_LDX) {
10684 			enum bpf_reg_type *prev_src_type, src_reg_type;
10685 
10686 			/* check for reserved fields is already done */
10687 
10688 			/* check src operand */
10689 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10690 			if (err)
10691 				return err;
10692 
10693 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10694 			if (err)
10695 				return err;
10696 
10697 			src_reg_type = regs[insn->src_reg].type;
10698 
10699 			/* check that memory (src_reg + off) is readable,
10700 			 * the state of dst_reg will be updated by this func
10701 			 */
10702 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10703 					       insn->off, BPF_SIZE(insn->code),
10704 					       BPF_READ, insn->dst_reg, false);
10705 			if (err)
10706 				return err;
10707 
10708 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10709 
10710 			if (*prev_src_type == NOT_INIT) {
10711 				/* saw a valid insn
10712 				 * dst_reg = *(u32 *)(src_reg + off)
10713 				 * save type to validate intersecting paths
10714 				 */
10715 				*prev_src_type = src_reg_type;
10716 
10717 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10718 				/* ABuser program is trying to use the same insn
10719 				 * dst_reg = *(u32*) (src_reg + off)
10720 				 * with different pointer types:
10721 				 * src_reg == ctx in one branch and
10722 				 * src_reg == stack|map in some other branch.
10723 				 * Reject it.
10724 				 */
10725 				verbose(env, "same insn cannot be used with different pointers\n");
10726 				return -EINVAL;
10727 			}
10728 
10729 		} else if (class == BPF_STX) {
10730 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10731 
10732 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10733 				err = check_atomic(env, env->insn_idx, insn);
10734 				if (err)
10735 					return err;
10736 				env->insn_idx++;
10737 				continue;
10738 			}
10739 
10740 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10741 				verbose(env, "BPF_STX uses reserved fields\n");
10742 				return -EINVAL;
10743 			}
10744 
10745 			/* check src1 operand */
10746 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10747 			if (err)
10748 				return err;
10749 			/* check src2 operand */
10750 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10751 			if (err)
10752 				return err;
10753 
10754 			dst_reg_type = regs[insn->dst_reg].type;
10755 
10756 			/* check that memory (dst_reg + off) is writeable */
10757 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10758 					       insn->off, BPF_SIZE(insn->code),
10759 					       BPF_WRITE, insn->src_reg, false);
10760 			if (err)
10761 				return err;
10762 
10763 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10764 
10765 			if (*prev_dst_type == NOT_INIT) {
10766 				*prev_dst_type = dst_reg_type;
10767 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10768 				verbose(env, "same insn cannot be used with different pointers\n");
10769 				return -EINVAL;
10770 			}
10771 
10772 		} else if (class == BPF_ST) {
10773 			if (BPF_MODE(insn->code) != BPF_MEM ||
10774 			    insn->src_reg != BPF_REG_0) {
10775 				verbose(env, "BPF_ST uses reserved fields\n");
10776 				return -EINVAL;
10777 			}
10778 			/* check src operand */
10779 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10780 			if (err)
10781 				return err;
10782 
10783 			if (is_ctx_reg(env, insn->dst_reg)) {
10784 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10785 					insn->dst_reg,
10786 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10787 				return -EACCES;
10788 			}
10789 
10790 			/* check that memory (dst_reg + off) is writeable */
10791 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10792 					       insn->off, BPF_SIZE(insn->code),
10793 					       BPF_WRITE, -1, false);
10794 			if (err)
10795 				return err;
10796 
10797 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10798 			u8 opcode = BPF_OP(insn->code);
10799 
10800 			env->jmps_processed++;
10801 			if (opcode == BPF_CALL) {
10802 				if (BPF_SRC(insn->code) != BPF_K ||
10803 				    insn->off != 0 ||
10804 				    (insn->src_reg != BPF_REG_0 &&
10805 				     insn->src_reg != BPF_PSEUDO_CALL &&
10806 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
10807 				    insn->dst_reg != BPF_REG_0 ||
10808 				    class == BPF_JMP32) {
10809 					verbose(env, "BPF_CALL uses reserved fields\n");
10810 					return -EINVAL;
10811 				}
10812 
10813 				if (env->cur_state->active_spin_lock &&
10814 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10815 				     insn->imm != BPF_FUNC_spin_unlock)) {
10816 					verbose(env, "function calls are not allowed while holding a lock\n");
10817 					return -EINVAL;
10818 				}
10819 				if (insn->src_reg == BPF_PSEUDO_CALL)
10820 					err = check_func_call(env, insn, &env->insn_idx);
10821 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
10822 					err = check_kfunc_call(env, insn);
10823 				else
10824 					err = check_helper_call(env, insn, &env->insn_idx);
10825 				if (err)
10826 					return err;
10827 			} else if (opcode == BPF_JA) {
10828 				if (BPF_SRC(insn->code) != BPF_K ||
10829 				    insn->imm != 0 ||
10830 				    insn->src_reg != BPF_REG_0 ||
10831 				    insn->dst_reg != BPF_REG_0 ||
10832 				    class == BPF_JMP32) {
10833 					verbose(env, "BPF_JA uses reserved fields\n");
10834 					return -EINVAL;
10835 				}
10836 
10837 				env->insn_idx += insn->off + 1;
10838 				continue;
10839 
10840 			} else if (opcode == BPF_EXIT) {
10841 				if (BPF_SRC(insn->code) != BPF_K ||
10842 				    insn->imm != 0 ||
10843 				    insn->src_reg != BPF_REG_0 ||
10844 				    insn->dst_reg != BPF_REG_0 ||
10845 				    class == BPF_JMP32) {
10846 					verbose(env, "BPF_EXIT uses reserved fields\n");
10847 					return -EINVAL;
10848 				}
10849 
10850 				if (env->cur_state->active_spin_lock) {
10851 					verbose(env, "bpf_spin_unlock is missing\n");
10852 					return -EINVAL;
10853 				}
10854 
10855 				if (state->curframe) {
10856 					/* exit from nested function */
10857 					err = prepare_func_exit(env, &env->insn_idx);
10858 					if (err)
10859 						return err;
10860 					do_print_state = true;
10861 					continue;
10862 				}
10863 
10864 				err = check_reference_leak(env);
10865 				if (err)
10866 					return err;
10867 
10868 				err = check_return_code(env);
10869 				if (err)
10870 					return err;
10871 process_bpf_exit:
10872 				update_branch_counts(env, env->cur_state);
10873 				err = pop_stack(env, &prev_insn_idx,
10874 						&env->insn_idx, pop_log);
10875 				if (err < 0) {
10876 					if (err != -ENOENT)
10877 						return err;
10878 					break;
10879 				} else {
10880 					do_print_state = true;
10881 					continue;
10882 				}
10883 			} else {
10884 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10885 				if (err)
10886 					return err;
10887 			}
10888 		} else if (class == BPF_LD) {
10889 			u8 mode = BPF_MODE(insn->code);
10890 
10891 			if (mode == BPF_ABS || mode == BPF_IND) {
10892 				err = check_ld_abs(env, insn);
10893 				if (err)
10894 					return err;
10895 
10896 			} else if (mode == BPF_IMM) {
10897 				err = check_ld_imm(env, insn);
10898 				if (err)
10899 					return err;
10900 
10901 				env->insn_idx++;
10902 				sanitize_mark_insn_seen(env);
10903 			} else {
10904 				verbose(env, "invalid BPF_LD mode\n");
10905 				return -EINVAL;
10906 			}
10907 		} else {
10908 			verbose(env, "unknown insn class %d\n", class);
10909 			return -EINVAL;
10910 		}
10911 
10912 		env->insn_idx++;
10913 	}
10914 
10915 	return 0;
10916 }
10917 
10918 static int find_btf_percpu_datasec(struct btf *btf)
10919 {
10920 	const struct btf_type *t;
10921 	const char *tname;
10922 	int i, n;
10923 
10924 	/*
10925 	 * Both vmlinux and module each have their own ".data..percpu"
10926 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10927 	 * types to look at only module's own BTF types.
10928 	 */
10929 	n = btf_nr_types(btf);
10930 	if (btf_is_module(btf))
10931 		i = btf_nr_types(btf_vmlinux);
10932 	else
10933 		i = 1;
10934 
10935 	for(; i < n; i++) {
10936 		t = btf_type_by_id(btf, i);
10937 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10938 			continue;
10939 
10940 		tname = btf_name_by_offset(btf, t->name_off);
10941 		if (!strcmp(tname, ".data..percpu"))
10942 			return i;
10943 	}
10944 
10945 	return -ENOENT;
10946 }
10947 
10948 /* replace pseudo btf_id with kernel symbol address */
10949 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10950 			       struct bpf_insn *insn,
10951 			       struct bpf_insn_aux_data *aux)
10952 {
10953 	const struct btf_var_secinfo *vsi;
10954 	const struct btf_type *datasec;
10955 	struct btf_mod_pair *btf_mod;
10956 	const struct btf_type *t;
10957 	const char *sym_name;
10958 	bool percpu = false;
10959 	u32 type, id = insn->imm;
10960 	struct btf *btf;
10961 	s32 datasec_id;
10962 	u64 addr;
10963 	int i, btf_fd, err;
10964 
10965 	btf_fd = insn[1].imm;
10966 	if (btf_fd) {
10967 		btf = btf_get_by_fd(btf_fd);
10968 		if (IS_ERR(btf)) {
10969 			verbose(env, "invalid module BTF object FD specified.\n");
10970 			return -EINVAL;
10971 		}
10972 	} else {
10973 		if (!btf_vmlinux) {
10974 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10975 			return -EINVAL;
10976 		}
10977 		btf = btf_vmlinux;
10978 		btf_get(btf);
10979 	}
10980 
10981 	t = btf_type_by_id(btf, id);
10982 	if (!t) {
10983 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10984 		err = -ENOENT;
10985 		goto err_put;
10986 	}
10987 
10988 	if (!btf_type_is_var(t)) {
10989 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10990 		err = -EINVAL;
10991 		goto err_put;
10992 	}
10993 
10994 	sym_name = btf_name_by_offset(btf, t->name_off);
10995 	addr = kallsyms_lookup_name(sym_name);
10996 	if (!addr) {
10997 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10998 			sym_name);
10999 		err = -ENOENT;
11000 		goto err_put;
11001 	}
11002 
11003 	datasec_id = find_btf_percpu_datasec(btf);
11004 	if (datasec_id > 0) {
11005 		datasec = btf_type_by_id(btf, datasec_id);
11006 		for_each_vsi(i, datasec, vsi) {
11007 			if (vsi->type == id) {
11008 				percpu = true;
11009 				break;
11010 			}
11011 		}
11012 	}
11013 
11014 	insn[0].imm = (u32)addr;
11015 	insn[1].imm = addr >> 32;
11016 
11017 	type = t->type;
11018 	t = btf_type_skip_modifiers(btf, type, NULL);
11019 	if (percpu) {
11020 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11021 		aux->btf_var.btf = btf;
11022 		aux->btf_var.btf_id = type;
11023 	} else if (!btf_type_is_struct(t)) {
11024 		const struct btf_type *ret;
11025 		const char *tname;
11026 		u32 tsize;
11027 
11028 		/* resolve the type size of ksym. */
11029 		ret = btf_resolve_size(btf, t, &tsize);
11030 		if (IS_ERR(ret)) {
11031 			tname = btf_name_by_offset(btf, t->name_off);
11032 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11033 				tname, PTR_ERR(ret));
11034 			err = -EINVAL;
11035 			goto err_put;
11036 		}
11037 		aux->btf_var.reg_type = PTR_TO_MEM;
11038 		aux->btf_var.mem_size = tsize;
11039 	} else {
11040 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
11041 		aux->btf_var.btf = btf;
11042 		aux->btf_var.btf_id = type;
11043 	}
11044 
11045 	/* check whether we recorded this BTF (and maybe module) already */
11046 	for (i = 0; i < env->used_btf_cnt; i++) {
11047 		if (env->used_btfs[i].btf == btf) {
11048 			btf_put(btf);
11049 			return 0;
11050 		}
11051 	}
11052 
11053 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11054 		err = -E2BIG;
11055 		goto err_put;
11056 	}
11057 
11058 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11059 	btf_mod->btf = btf;
11060 	btf_mod->module = NULL;
11061 
11062 	/* if we reference variables from kernel module, bump its refcount */
11063 	if (btf_is_module(btf)) {
11064 		btf_mod->module = btf_try_get_module(btf);
11065 		if (!btf_mod->module) {
11066 			err = -ENXIO;
11067 			goto err_put;
11068 		}
11069 	}
11070 
11071 	env->used_btf_cnt++;
11072 
11073 	return 0;
11074 err_put:
11075 	btf_put(btf);
11076 	return err;
11077 }
11078 
11079 static int check_map_prealloc(struct bpf_map *map)
11080 {
11081 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11082 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11083 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11084 		!(map->map_flags & BPF_F_NO_PREALLOC);
11085 }
11086 
11087 static bool is_tracing_prog_type(enum bpf_prog_type type)
11088 {
11089 	switch (type) {
11090 	case BPF_PROG_TYPE_KPROBE:
11091 	case BPF_PROG_TYPE_TRACEPOINT:
11092 	case BPF_PROG_TYPE_PERF_EVENT:
11093 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11094 		return true;
11095 	default:
11096 		return false;
11097 	}
11098 }
11099 
11100 static bool is_preallocated_map(struct bpf_map *map)
11101 {
11102 	if (!check_map_prealloc(map))
11103 		return false;
11104 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11105 		return false;
11106 	return true;
11107 }
11108 
11109 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11110 					struct bpf_map *map,
11111 					struct bpf_prog *prog)
11112 
11113 {
11114 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11115 	/*
11116 	 * Validate that trace type programs use preallocated hash maps.
11117 	 *
11118 	 * For programs attached to PERF events this is mandatory as the
11119 	 * perf NMI can hit any arbitrary code sequence.
11120 	 *
11121 	 * All other trace types using preallocated hash maps are unsafe as
11122 	 * well because tracepoint or kprobes can be inside locked regions
11123 	 * of the memory allocator or at a place where a recursion into the
11124 	 * memory allocator would see inconsistent state.
11125 	 *
11126 	 * On RT enabled kernels run-time allocation of all trace type
11127 	 * programs is strictly prohibited due to lock type constraints. On
11128 	 * !RT kernels it is allowed for backwards compatibility reasons for
11129 	 * now, but warnings are emitted so developers are made aware of
11130 	 * the unsafety and can fix their programs before this is enforced.
11131 	 */
11132 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11133 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11134 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11135 			return -EINVAL;
11136 		}
11137 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11138 			verbose(env, "trace type programs can only use preallocated hash map\n");
11139 			return -EINVAL;
11140 		}
11141 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11142 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11143 	}
11144 
11145 	if (map_value_has_spin_lock(map)) {
11146 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11147 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11148 			return -EINVAL;
11149 		}
11150 
11151 		if (is_tracing_prog_type(prog_type)) {
11152 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11153 			return -EINVAL;
11154 		}
11155 
11156 		if (prog->aux->sleepable) {
11157 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11158 			return -EINVAL;
11159 		}
11160 	}
11161 
11162 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11163 	    !bpf_offload_prog_map_match(prog, map)) {
11164 		verbose(env, "offload device mismatch between prog and map\n");
11165 		return -EINVAL;
11166 	}
11167 
11168 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11169 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11170 		return -EINVAL;
11171 	}
11172 
11173 	if (prog->aux->sleepable)
11174 		switch (map->map_type) {
11175 		case BPF_MAP_TYPE_HASH:
11176 		case BPF_MAP_TYPE_LRU_HASH:
11177 		case BPF_MAP_TYPE_ARRAY:
11178 		case BPF_MAP_TYPE_PERCPU_HASH:
11179 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11180 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11181 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11182 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11183 			if (!is_preallocated_map(map)) {
11184 				verbose(env,
11185 					"Sleepable programs can only use preallocated maps\n");
11186 				return -EINVAL;
11187 			}
11188 			break;
11189 		case BPF_MAP_TYPE_RINGBUF:
11190 			break;
11191 		default:
11192 			verbose(env,
11193 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11194 			return -EINVAL;
11195 		}
11196 
11197 	return 0;
11198 }
11199 
11200 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11201 {
11202 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11203 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11204 }
11205 
11206 /* find and rewrite pseudo imm in ld_imm64 instructions:
11207  *
11208  * 1. if it accesses map FD, replace it with actual map pointer.
11209  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11210  *
11211  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11212  */
11213 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11214 {
11215 	struct bpf_insn *insn = env->prog->insnsi;
11216 	int insn_cnt = env->prog->len;
11217 	int i, j, err;
11218 
11219 	err = bpf_prog_calc_tag(env->prog);
11220 	if (err)
11221 		return err;
11222 
11223 	for (i = 0; i < insn_cnt; i++, insn++) {
11224 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11225 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11226 			verbose(env, "BPF_LDX uses reserved fields\n");
11227 			return -EINVAL;
11228 		}
11229 
11230 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11231 			struct bpf_insn_aux_data *aux;
11232 			struct bpf_map *map;
11233 			struct fd f;
11234 			u64 addr;
11235 			u32 fd;
11236 
11237 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11238 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11239 			    insn[1].off != 0) {
11240 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11241 				return -EINVAL;
11242 			}
11243 
11244 			if (insn[0].src_reg == 0)
11245 				/* valid generic load 64-bit imm */
11246 				goto next_insn;
11247 
11248 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11249 				aux = &env->insn_aux_data[i];
11250 				err = check_pseudo_btf_id(env, insn, aux);
11251 				if (err)
11252 					return err;
11253 				goto next_insn;
11254 			}
11255 
11256 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11257 				aux = &env->insn_aux_data[i];
11258 				aux->ptr_type = PTR_TO_FUNC;
11259 				goto next_insn;
11260 			}
11261 
11262 			/* In final convert_pseudo_ld_imm64() step, this is
11263 			 * converted into regular 64-bit imm load insn.
11264 			 */
11265 			switch (insn[0].src_reg) {
11266 			case BPF_PSEUDO_MAP_VALUE:
11267 			case BPF_PSEUDO_MAP_IDX_VALUE:
11268 				break;
11269 			case BPF_PSEUDO_MAP_FD:
11270 			case BPF_PSEUDO_MAP_IDX:
11271 				if (insn[1].imm == 0)
11272 					break;
11273 				fallthrough;
11274 			default:
11275 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11276 				return -EINVAL;
11277 			}
11278 
11279 			switch (insn[0].src_reg) {
11280 			case BPF_PSEUDO_MAP_IDX_VALUE:
11281 			case BPF_PSEUDO_MAP_IDX:
11282 				if (bpfptr_is_null(env->fd_array)) {
11283 					verbose(env, "fd_idx without fd_array is invalid\n");
11284 					return -EPROTO;
11285 				}
11286 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11287 							    insn[0].imm * sizeof(fd),
11288 							    sizeof(fd)))
11289 					return -EFAULT;
11290 				break;
11291 			default:
11292 				fd = insn[0].imm;
11293 				break;
11294 			}
11295 
11296 			f = fdget(fd);
11297 			map = __bpf_map_get(f);
11298 			if (IS_ERR(map)) {
11299 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11300 					insn[0].imm);
11301 				return PTR_ERR(map);
11302 			}
11303 
11304 			err = check_map_prog_compatibility(env, map, env->prog);
11305 			if (err) {
11306 				fdput(f);
11307 				return err;
11308 			}
11309 
11310 			aux = &env->insn_aux_data[i];
11311 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11312 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11313 				addr = (unsigned long)map;
11314 			} else {
11315 				u32 off = insn[1].imm;
11316 
11317 				if (off >= BPF_MAX_VAR_OFF) {
11318 					verbose(env, "direct value offset of %u is not allowed\n", off);
11319 					fdput(f);
11320 					return -EINVAL;
11321 				}
11322 
11323 				if (!map->ops->map_direct_value_addr) {
11324 					verbose(env, "no direct value access support for this map type\n");
11325 					fdput(f);
11326 					return -EINVAL;
11327 				}
11328 
11329 				err = map->ops->map_direct_value_addr(map, &addr, off);
11330 				if (err) {
11331 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11332 						map->value_size, off);
11333 					fdput(f);
11334 					return err;
11335 				}
11336 
11337 				aux->map_off = off;
11338 				addr += off;
11339 			}
11340 
11341 			insn[0].imm = (u32)addr;
11342 			insn[1].imm = addr >> 32;
11343 
11344 			/* check whether we recorded this map already */
11345 			for (j = 0; j < env->used_map_cnt; j++) {
11346 				if (env->used_maps[j] == map) {
11347 					aux->map_index = j;
11348 					fdput(f);
11349 					goto next_insn;
11350 				}
11351 			}
11352 
11353 			if (env->used_map_cnt >= MAX_USED_MAPS) {
11354 				fdput(f);
11355 				return -E2BIG;
11356 			}
11357 
11358 			/* hold the map. If the program is rejected by verifier,
11359 			 * the map will be released by release_maps() or it
11360 			 * will be used by the valid program until it's unloaded
11361 			 * and all maps are released in free_used_maps()
11362 			 */
11363 			bpf_map_inc(map);
11364 
11365 			aux->map_index = env->used_map_cnt;
11366 			env->used_maps[env->used_map_cnt++] = map;
11367 
11368 			if (bpf_map_is_cgroup_storage(map) &&
11369 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
11370 				verbose(env, "only one cgroup storage of each type is allowed\n");
11371 				fdput(f);
11372 				return -EBUSY;
11373 			}
11374 
11375 			fdput(f);
11376 next_insn:
11377 			insn++;
11378 			i++;
11379 			continue;
11380 		}
11381 
11382 		/* Basic sanity check before we invest more work here. */
11383 		if (!bpf_opcode_in_insntable(insn->code)) {
11384 			verbose(env, "unknown opcode %02x\n", insn->code);
11385 			return -EINVAL;
11386 		}
11387 	}
11388 
11389 	/* now all pseudo BPF_LD_IMM64 instructions load valid
11390 	 * 'struct bpf_map *' into a register instead of user map_fd.
11391 	 * These pointers will be used later by verifier to validate map access.
11392 	 */
11393 	return 0;
11394 }
11395 
11396 /* drop refcnt of maps used by the rejected program */
11397 static void release_maps(struct bpf_verifier_env *env)
11398 {
11399 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
11400 			     env->used_map_cnt);
11401 }
11402 
11403 /* drop refcnt of maps used by the rejected program */
11404 static void release_btfs(struct bpf_verifier_env *env)
11405 {
11406 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11407 			     env->used_btf_cnt);
11408 }
11409 
11410 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11411 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11412 {
11413 	struct bpf_insn *insn = env->prog->insnsi;
11414 	int insn_cnt = env->prog->len;
11415 	int i;
11416 
11417 	for (i = 0; i < insn_cnt; i++, insn++) {
11418 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11419 			continue;
11420 		if (insn->src_reg == BPF_PSEUDO_FUNC)
11421 			continue;
11422 		insn->src_reg = 0;
11423 	}
11424 }
11425 
11426 /* single env->prog->insni[off] instruction was replaced with the range
11427  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11428  * [0, off) and [off, end) to new locations, so the patched range stays zero
11429  */
11430 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
11431 				struct bpf_prog *new_prog, u32 off, u32 cnt)
11432 {
11433 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
11434 	struct bpf_insn *insn = new_prog->insnsi;
11435 	u32 old_seen = old_data[off].seen;
11436 	u32 prog_len;
11437 	int i;
11438 
11439 	/* aux info at OFF always needs adjustment, no matter fast path
11440 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11441 	 * original insn at old prog.
11442 	 */
11443 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11444 
11445 	if (cnt == 1)
11446 		return 0;
11447 	prog_len = new_prog->len;
11448 	new_data = vzalloc(array_size(prog_len,
11449 				      sizeof(struct bpf_insn_aux_data)));
11450 	if (!new_data)
11451 		return -ENOMEM;
11452 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11453 	memcpy(new_data + off + cnt - 1, old_data + off,
11454 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11455 	for (i = off; i < off + cnt - 1; i++) {
11456 		/* Expand insni[off]'s seen count to the patched range. */
11457 		new_data[i].seen = old_seen;
11458 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
11459 	}
11460 	env->insn_aux_data = new_data;
11461 	vfree(old_data);
11462 	return 0;
11463 }
11464 
11465 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11466 {
11467 	int i;
11468 
11469 	if (len == 1)
11470 		return;
11471 	/* NOTE: fake 'exit' subprog should be updated as well. */
11472 	for (i = 0; i <= env->subprog_cnt; i++) {
11473 		if (env->subprog_info[i].start <= off)
11474 			continue;
11475 		env->subprog_info[i].start += len - 1;
11476 	}
11477 }
11478 
11479 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
11480 {
11481 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11482 	int i, sz = prog->aux->size_poke_tab;
11483 	struct bpf_jit_poke_descriptor *desc;
11484 
11485 	for (i = 0; i < sz; i++) {
11486 		desc = &tab[i];
11487 		if (desc->insn_idx <= off)
11488 			continue;
11489 		desc->insn_idx += len - 1;
11490 	}
11491 }
11492 
11493 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11494 					    const struct bpf_insn *patch, u32 len)
11495 {
11496 	struct bpf_prog *new_prog;
11497 
11498 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11499 	if (IS_ERR(new_prog)) {
11500 		if (PTR_ERR(new_prog) == -ERANGE)
11501 			verbose(env,
11502 				"insn %d cannot be patched due to 16-bit range\n",
11503 				env->insn_aux_data[off].orig_idx);
11504 		return NULL;
11505 	}
11506 	if (adjust_insn_aux_data(env, new_prog, off, len))
11507 		return NULL;
11508 	adjust_subprog_starts(env, off, len);
11509 	adjust_poke_descs(new_prog, off, len);
11510 	return new_prog;
11511 }
11512 
11513 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11514 					      u32 off, u32 cnt)
11515 {
11516 	int i, j;
11517 
11518 	/* find first prog starting at or after off (first to remove) */
11519 	for (i = 0; i < env->subprog_cnt; i++)
11520 		if (env->subprog_info[i].start >= off)
11521 			break;
11522 	/* find first prog starting at or after off + cnt (first to stay) */
11523 	for (j = i; j < env->subprog_cnt; j++)
11524 		if (env->subprog_info[j].start >= off + cnt)
11525 			break;
11526 	/* if j doesn't start exactly at off + cnt, we are just removing
11527 	 * the front of previous prog
11528 	 */
11529 	if (env->subprog_info[j].start != off + cnt)
11530 		j--;
11531 
11532 	if (j > i) {
11533 		struct bpf_prog_aux *aux = env->prog->aux;
11534 		int move;
11535 
11536 		/* move fake 'exit' subprog as well */
11537 		move = env->subprog_cnt + 1 - j;
11538 
11539 		memmove(env->subprog_info + i,
11540 			env->subprog_info + j,
11541 			sizeof(*env->subprog_info) * move);
11542 		env->subprog_cnt -= j - i;
11543 
11544 		/* remove func_info */
11545 		if (aux->func_info) {
11546 			move = aux->func_info_cnt - j;
11547 
11548 			memmove(aux->func_info + i,
11549 				aux->func_info + j,
11550 				sizeof(*aux->func_info) * move);
11551 			aux->func_info_cnt -= j - i;
11552 			/* func_info->insn_off is set after all code rewrites,
11553 			 * in adjust_btf_func() - no need to adjust
11554 			 */
11555 		}
11556 	} else {
11557 		/* convert i from "first prog to remove" to "first to adjust" */
11558 		if (env->subprog_info[i].start == off)
11559 			i++;
11560 	}
11561 
11562 	/* update fake 'exit' subprog as well */
11563 	for (; i <= env->subprog_cnt; i++)
11564 		env->subprog_info[i].start -= cnt;
11565 
11566 	return 0;
11567 }
11568 
11569 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11570 				      u32 cnt)
11571 {
11572 	struct bpf_prog *prog = env->prog;
11573 	u32 i, l_off, l_cnt, nr_linfo;
11574 	struct bpf_line_info *linfo;
11575 
11576 	nr_linfo = prog->aux->nr_linfo;
11577 	if (!nr_linfo)
11578 		return 0;
11579 
11580 	linfo = prog->aux->linfo;
11581 
11582 	/* find first line info to remove, count lines to be removed */
11583 	for (i = 0; i < nr_linfo; i++)
11584 		if (linfo[i].insn_off >= off)
11585 			break;
11586 
11587 	l_off = i;
11588 	l_cnt = 0;
11589 	for (; i < nr_linfo; i++)
11590 		if (linfo[i].insn_off < off + cnt)
11591 			l_cnt++;
11592 		else
11593 			break;
11594 
11595 	/* First live insn doesn't match first live linfo, it needs to "inherit"
11596 	 * last removed linfo.  prog is already modified, so prog->len == off
11597 	 * means no live instructions after (tail of the program was removed).
11598 	 */
11599 	if (prog->len != off && l_cnt &&
11600 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11601 		l_cnt--;
11602 		linfo[--i].insn_off = off + cnt;
11603 	}
11604 
11605 	/* remove the line info which refer to the removed instructions */
11606 	if (l_cnt) {
11607 		memmove(linfo + l_off, linfo + i,
11608 			sizeof(*linfo) * (nr_linfo - i));
11609 
11610 		prog->aux->nr_linfo -= l_cnt;
11611 		nr_linfo = prog->aux->nr_linfo;
11612 	}
11613 
11614 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
11615 	for (i = l_off; i < nr_linfo; i++)
11616 		linfo[i].insn_off -= cnt;
11617 
11618 	/* fix up all subprogs (incl. 'exit') which start >= off */
11619 	for (i = 0; i <= env->subprog_cnt; i++)
11620 		if (env->subprog_info[i].linfo_idx > l_off) {
11621 			/* program may have started in the removed region but
11622 			 * may not be fully removed
11623 			 */
11624 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11625 				env->subprog_info[i].linfo_idx -= l_cnt;
11626 			else
11627 				env->subprog_info[i].linfo_idx = l_off;
11628 		}
11629 
11630 	return 0;
11631 }
11632 
11633 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11634 {
11635 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11636 	unsigned int orig_prog_len = env->prog->len;
11637 	int err;
11638 
11639 	if (bpf_prog_is_dev_bound(env->prog->aux))
11640 		bpf_prog_offload_remove_insns(env, off, cnt);
11641 
11642 	err = bpf_remove_insns(env->prog, off, cnt);
11643 	if (err)
11644 		return err;
11645 
11646 	err = adjust_subprog_starts_after_remove(env, off, cnt);
11647 	if (err)
11648 		return err;
11649 
11650 	err = bpf_adj_linfo_after_remove(env, off, cnt);
11651 	if (err)
11652 		return err;
11653 
11654 	memmove(aux_data + off,	aux_data + off + cnt,
11655 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
11656 
11657 	return 0;
11658 }
11659 
11660 /* The verifier does more data flow analysis than llvm and will not
11661  * explore branches that are dead at run time. Malicious programs can
11662  * have dead code too. Therefore replace all dead at-run-time code
11663  * with 'ja -1'.
11664  *
11665  * Just nops are not optimal, e.g. if they would sit at the end of the
11666  * program and through another bug we would manage to jump there, then
11667  * we'd execute beyond program memory otherwise. Returning exception
11668  * code also wouldn't work since we can have subprogs where the dead
11669  * code could be located.
11670  */
11671 static void sanitize_dead_code(struct bpf_verifier_env *env)
11672 {
11673 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11674 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11675 	struct bpf_insn *insn = env->prog->insnsi;
11676 	const int insn_cnt = env->prog->len;
11677 	int i;
11678 
11679 	for (i = 0; i < insn_cnt; i++) {
11680 		if (aux_data[i].seen)
11681 			continue;
11682 		memcpy(insn + i, &trap, sizeof(trap));
11683 	}
11684 }
11685 
11686 static bool insn_is_cond_jump(u8 code)
11687 {
11688 	u8 op;
11689 
11690 	if (BPF_CLASS(code) == BPF_JMP32)
11691 		return true;
11692 
11693 	if (BPF_CLASS(code) != BPF_JMP)
11694 		return false;
11695 
11696 	op = BPF_OP(code);
11697 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11698 }
11699 
11700 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11701 {
11702 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11703 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11704 	struct bpf_insn *insn = env->prog->insnsi;
11705 	const int insn_cnt = env->prog->len;
11706 	int i;
11707 
11708 	for (i = 0; i < insn_cnt; i++, insn++) {
11709 		if (!insn_is_cond_jump(insn->code))
11710 			continue;
11711 
11712 		if (!aux_data[i + 1].seen)
11713 			ja.off = insn->off;
11714 		else if (!aux_data[i + 1 + insn->off].seen)
11715 			ja.off = 0;
11716 		else
11717 			continue;
11718 
11719 		if (bpf_prog_is_dev_bound(env->prog->aux))
11720 			bpf_prog_offload_replace_insn(env, i, &ja);
11721 
11722 		memcpy(insn, &ja, sizeof(ja));
11723 	}
11724 }
11725 
11726 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11727 {
11728 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11729 	int insn_cnt = env->prog->len;
11730 	int i, err;
11731 
11732 	for (i = 0; i < insn_cnt; i++) {
11733 		int j;
11734 
11735 		j = 0;
11736 		while (i + j < insn_cnt && !aux_data[i + j].seen)
11737 			j++;
11738 		if (!j)
11739 			continue;
11740 
11741 		err = verifier_remove_insns(env, i, j);
11742 		if (err)
11743 			return err;
11744 		insn_cnt = env->prog->len;
11745 	}
11746 
11747 	return 0;
11748 }
11749 
11750 static int opt_remove_nops(struct bpf_verifier_env *env)
11751 {
11752 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11753 	struct bpf_insn *insn = env->prog->insnsi;
11754 	int insn_cnt = env->prog->len;
11755 	int i, err;
11756 
11757 	for (i = 0; i < insn_cnt; i++) {
11758 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11759 			continue;
11760 
11761 		err = verifier_remove_insns(env, i, 1);
11762 		if (err)
11763 			return err;
11764 		insn_cnt--;
11765 		i--;
11766 	}
11767 
11768 	return 0;
11769 }
11770 
11771 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11772 					 const union bpf_attr *attr)
11773 {
11774 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11775 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11776 	int i, patch_len, delta = 0, len = env->prog->len;
11777 	struct bpf_insn *insns = env->prog->insnsi;
11778 	struct bpf_prog *new_prog;
11779 	bool rnd_hi32;
11780 
11781 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11782 	zext_patch[1] = BPF_ZEXT_REG(0);
11783 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11784 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11785 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11786 	for (i = 0; i < len; i++) {
11787 		int adj_idx = i + delta;
11788 		struct bpf_insn insn;
11789 		int load_reg;
11790 
11791 		insn = insns[adj_idx];
11792 		load_reg = insn_def_regno(&insn);
11793 		if (!aux[adj_idx].zext_dst) {
11794 			u8 code, class;
11795 			u32 imm_rnd;
11796 
11797 			if (!rnd_hi32)
11798 				continue;
11799 
11800 			code = insn.code;
11801 			class = BPF_CLASS(code);
11802 			if (load_reg == -1)
11803 				continue;
11804 
11805 			/* NOTE: arg "reg" (the fourth one) is only used for
11806 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
11807 			 *       here.
11808 			 */
11809 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11810 				if (class == BPF_LD &&
11811 				    BPF_MODE(code) == BPF_IMM)
11812 					i++;
11813 				continue;
11814 			}
11815 
11816 			/* ctx load could be transformed into wider load. */
11817 			if (class == BPF_LDX &&
11818 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11819 				continue;
11820 
11821 			imm_rnd = get_random_int();
11822 			rnd_hi32_patch[0] = insn;
11823 			rnd_hi32_patch[1].imm = imm_rnd;
11824 			rnd_hi32_patch[3].dst_reg = load_reg;
11825 			patch = rnd_hi32_patch;
11826 			patch_len = 4;
11827 			goto apply_patch_buffer;
11828 		}
11829 
11830 		/* Add in an zero-extend instruction if a) the JIT has requested
11831 		 * it or b) it's a CMPXCHG.
11832 		 *
11833 		 * The latter is because: BPF_CMPXCHG always loads a value into
11834 		 * R0, therefore always zero-extends. However some archs'
11835 		 * equivalent instruction only does this load when the
11836 		 * comparison is successful. This detail of CMPXCHG is
11837 		 * orthogonal to the general zero-extension behaviour of the
11838 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
11839 		 */
11840 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11841 			continue;
11842 
11843 		if (WARN_ON(load_reg == -1)) {
11844 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11845 			return -EFAULT;
11846 		}
11847 
11848 		zext_patch[0] = insn;
11849 		zext_patch[1].dst_reg = load_reg;
11850 		zext_patch[1].src_reg = load_reg;
11851 		patch = zext_patch;
11852 		patch_len = 2;
11853 apply_patch_buffer:
11854 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11855 		if (!new_prog)
11856 			return -ENOMEM;
11857 		env->prog = new_prog;
11858 		insns = new_prog->insnsi;
11859 		aux = env->insn_aux_data;
11860 		delta += patch_len - 1;
11861 	}
11862 
11863 	return 0;
11864 }
11865 
11866 /* convert load instructions that access fields of a context type into a
11867  * sequence of instructions that access fields of the underlying structure:
11868  *     struct __sk_buff    -> struct sk_buff
11869  *     struct bpf_sock_ops -> struct sock
11870  */
11871 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11872 {
11873 	const struct bpf_verifier_ops *ops = env->ops;
11874 	int i, cnt, size, ctx_field_size, delta = 0;
11875 	const int insn_cnt = env->prog->len;
11876 	struct bpf_insn insn_buf[16], *insn;
11877 	u32 target_size, size_default, off;
11878 	struct bpf_prog *new_prog;
11879 	enum bpf_access_type type;
11880 	bool is_narrower_load;
11881 
11882 	if (ops->gen_prologue || env->seen_direct_write) {
11883 		if (!ops->gen_prologue) {
11884 			verbose(env, "bpf verifier is misconfigured\n");
11885 			return -EINVAL;
11886 		}
11887 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11888 					env->prog);
11889 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11890 			verbose(env, "bpf verifier is misconfigured\n");
11891 			return -EINVAL;
11892 		} else if (cnt) {
11893 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11894 			if (!new_prog)
11895 				return -ENOMEM;
11896 
11897 			env->prog = new_prog;
11898 			delta += cnt - 1;
11899 		}
11900 	}
11901 
11902 	if (bpf_prog_is_dev_bound(env->prog->aux))
11903 		return 0;
11904 
11905 	insn = env->prog->insnsi + delta;
11906 
11907 	for (i = 0; i < insn_cnt; i++, insn++) {
11908 		bpf_convert_ctx_access_t convert_ctx_access;
11909 
11910 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11911 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11912 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11913 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11914 			type = BPF_READ;
11915 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11916 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11917 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11918 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11919 			type = BPF_WRITE;
11920 		else
11921 			continue;
11922 
11923 		if (type == BPF_WRITE &&
11924 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
11925 			struct bpf_insn patch[] = {
11926 				/* Sanitize suspicious stack slot with zero.
11927 				 * There are no memory dependencies for this store,
11928 				 * since it's only using frame pointer and immediate
11929 				 * constant of zero
11930 				 */
11931 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11932 					   env->insn_aux_data[i + delta].sanitize_stack_off,
11933 					   0),
11934 				/* the original STX instruction will immediately
11935 				 * overwrite the same stack slot with appropriate value
11936 				 */
11937 				*insn,
11938 			};
11939 
11940 			cnt = ARRAY_SIZE(patch);
11941 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11942 			if (!new_prog)
11943 				return -ENOMEM;
11944 
11945 			delta    += cnt - 1;
11946 			env->prog = new_prog;
11947 			insn      = new_prog->insnsi + i + delta;
11948 			continue;
11949 		}
11950 
11951 		switch (env->insn_aux_data[i + delta].ptr_type) {
11952 		case PTR_TO_CTX:
11953 			if (!ops->convert_ctx_access)
11954 				continue;
11955 			convert_ctx_access = ops->convert_ctx_access;
11956 			break;
11957 		case PTR_TO_SOCKET:
11958 		case PTR_TO_SOCK_COMMON:
11959 			convert_ctx_access = bpf_sock_convert_ctx_access;
11960 			break;
11961 		case PTR_TO_TCP_SOCK:
11962 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11963 			break;
11964 		case PTR_TO_XDP_SOCK:
11965 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11966 			break;
11967 		case PTR_TO_BTF_ID:
11968 			if (type == BPF_READ) {
11969 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11970 					BPF_SIZE((insn)->code);
11971 				env->prog->aux->num_exentries++;
11972 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11973 				verbose(env, "Writes through BTF pointers are not allowed\n");
11974 				return -EINVAL;
11975 			}
11976 			continue;
11977 		default:
11978 			continue;
11979 		}
11980 
11981 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11982 		size = BPF_LDST_BYTES(insn);
11983 
11984 		/* If the read access is a narrower load of the field,
11985 		 * convert to a 4/8-byte load, to minimum program type specific
11986 		 * convert_ctx_access changes. If conversion is successful,
11987 		 * we will apply proper mask to the result.
11988 		 */
11989 		is_narrower_load = size < ctx_field_size;
11990 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11991 		off = insn->off;
11992 		if (is_narrower_load) {
11993 			u8 size_code;
11994 
11995 			if (type == BPF_WRITE) {
11996 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11997 				return -EINVAL;
11998 			}
11999 
12000 			size_code = BPF_H;
12001 			if (ctx_field_size == 4)
12002 				size_code = BPF_W;
12003 			else if (ctx_field_size == 8)
12004 				size_code = BPF_DW;
12005 
12006 			insn->off = off & ~(size_default - 1);
12007 			insn->code = BPF_LDX | BPF_MEM | size_code;
12008 		}
12009 
12010 		target_size = 0;
12011 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12012 					 &target_size);
12013 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12014 		    (ctx_field_size && !target_size)) {
12015 			verbose(env, "bpf verifier is misconfigured\n");
12016 			return -EINVAL;
12017 		}
12018 
12019 		if (is_narrower_load && size < target_size) {
12020 			u8 shift = bpf_ctx_narrow_access_offset(
12021 				off, size, size_default) * 8;
12022 			if (ctx_field_size <= 4) {
12023 				if (shift)
12024 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12025 									insn->dst_reg,
12026 									shift);
12027 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12028 								(1 << size * 8) - 1);
12029 			} else {
12030 				if (shift)
12031 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12032 									insn->dst_reg,
12033 									shift);
12034 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12035 								(1ULL << size * 8) - 1);
12036 			}
12037 		}
12038 
12039 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12040 		if (!new_prog)
12041 			return -ENOMEM;
12042 
12043 		delta += cnt - 1;
12044 
12045 		/* keep walking new program and skip insns we just inserted */
12046 		env->prog = new_prog;
12047 		insn      = new_prog->insnsi + i + delta;
12048 	}
12049 
12050 	return 0;
12051 }
12052 
12053 static int jit_subprogs(struct bpf_verifier_env *env)
12054 {
12055 	struct bpf_prog *prog = env->prog, **func, *tmp;
12056 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12057 	struct bpf_map *map_ptr;
12058 	struct bpf_insn *insn;
12059 	void *old_bpf_func;
12060 	int err, num_exentries;
12061 
12062 	if (env->subprog_cnt <= 1)
12063 		return 0;
12064 
12065 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12066 		if (bpf_pseudo_func(insn)) {
12067 			env->insn_aux_data[i].call_imm = insn->imm;
12068 			/* subprog is encoded in insn[1].imm */
12069 			continue;
12070 		}
12071 
12072 		if (!bpf_pseudo_call(insn))
12073 			continue;
12074 		/* Upon error here we cannot fall back to interpreter but
12075 		 * need a hard reject of the program. Thus -EFAULT is
12076 		 * propagated in any case.
12077 		 */
12078 		subprog = find_subprog(env, i + insn->imm + 1);
12079 		if (subprog < 0) {
12080 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12081 				  i + insn->imm + 1);
12082 			return -EFAULT;
12083 		}
12084 		/* temporarily remember subprog id inside insn instead of
12085 		 * aux_data, since next loop will split up all insns into funcs
12086 		 */
12087 		insn->off = subprog;
12088 		/* remember original imm in case JIT fails and fallback
12089 		 * to interpreter will be needed
12090 		 */
12091 		env->insn_aux_data[i].call_imm = insn->imm;
12092 		/* point imm to __bpf_call_base+1 from JITs point of view */
12093 		insn->imm = 1;
12094 	}
12095 
12096 	err = bpf_prog_alloc_jited_linfo(prog);
12097 	if (err)
12098 		goto out_undo_insn;
12099 
12100 	err = -ENOMEM;
12101 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12102 	if (!func)
12103 		goto out_undo_insn;
12104 
12105 	for (i = 0; i < env->subprog_cnt; i++) {
12106 		subprog_start = subprog_end;
12107 		subprog_end = env->subprog_info[i + 1].start;
12108 
12109 		len = subprog_end - subprog_start;
12110 		/* BPF_PROG_RUN doesn't call subprogs directly,
12111 		 * hence main prog stats include the runtime of subprogs.
12112 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12113 		 * func[i]->stats will never be accessed and stays NULL
12114 		 */
12115 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12116 		if (!func[i])
12117 			goto out_free;
12118 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12119 		       len * sizeof(struct bpf_insn));
12120 		func[i]->type = prog->type;
12121 		func[i]->len = len;
12122 		if (bpf_prog_calc_tag(func[i]))
12123 			goto out_free;
12124 		func[i]->is_func = 1;
12125 		func[i]->aux->func_idx = i;
12126 		/* Below members will be freed only at prog->aux */
12127 		func[i]->aux->btf = prog->aux->btf;
12128 		func[i]->aux->func_info = prog->aux->func_info;
12129 		func[i]->aux->poke_tab = prog->aux->poke_tab;
12130 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12131 
12132 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12133 			struct bpf_jit_poke_descriptor *poke;
12134 
12135 			poke = &prog->aux->poke_tab[j];
12136 			if (poke->insn_idx < subprog_end &&
12137 			    poke->insn_idx >= subprog_start)
12138 				poke->aux = func[i]->aux;
12139 		}
12140 
12141 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12142 		 * Long term would need debug info to populate names
12143 		 */
12144 		func[i]->aux->name[0] = 'F';
12145 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12146 		func[i]->jit_requested = 1;
12147 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12148 		func[i]->aux->linfo = prog->aux->linfo;
12149 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12150 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12151 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12152 		num_exentries = 0;
12153 		insn = func[i]->insnsi;
12154 		for (j = 0; j < func[i]->len; j++, insn++) {
12155 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12156 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12157 				num_exentries++;
12158 		}
12159 		func[i]->aux->num_exentries = num_exentries;
12160 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12161 		func[i] = bpf_int_jit_compile(func[i]);
12162 		if (!func[i]->jited) {
12163 			err = -ENOTSUPP;
12164 			goto out_free;
12165 		}
12166 		cond_resched();
12167 	}
12168 
12169 	/* at this point all bpf functions were successfully JITed
12170 	 * now populate all bpf_calls with correct addresses and
12171 	 * run last pass of JIT
12172 	 */
12173 	for (i = 0; i < env->subprog_cnt; i++) {
12174 		insn = func[i]->insnsi;
12175 		for (j = 0; j < func[i]->len; j++, insn++) {
12176 			if (bpf_pseudo_func(insn)) {
12177 				subprog = insn[1].imm;
12178 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12179 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12180 				continue;
12181 			}
12182 			if (!bpf_pseudo_call(insn))
12183 				continue;
12184 			subprog = insn->off;
12185 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12186 				    __bpf_call_base;
12187 		}
12188 
12189 		/* we use the aux data to keep a list of the start addresses
12190 		 * of the JITed images for each function in the program
12191 		 *
12192 		 * for some architectures, such as powerpc64, the imm field
12193 		 * might not be large enough to hold the offset of the start
12194 		 * address of the callee's JITed image from __bpf_call_base
12195 		 *
12196 		 * in such cases, we can lookup the start address of a callee
12197 		 * by using its subprog id, available from the off field of
12198 		 * the call instruction, as an index for this list
12199 		 */
12200 		func[i]->aux->func = func;
12201 		func[i]->aux->func_cnt = env->subprog_cnt;
12202 	}
12203 	for (i = 0; i < env->subprog_cnt; i++) {
12204 		old_bpf_func = func[i]->bpf_func;
12205 		tmp = bpf_int_jit_compile(func[i]);
12206 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12207 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12208 			err = -ENOTSUPP;
12209 			goto out_free;
12210 		}
12211 		cond_resched();
12212 	}
12213 
12214 	/* finally lock prog and jit images for all functions and
12215 	 * populate kallsysm
12216 	 */
12217 	for (i = 0; i < env->subprog_cnt; i++) {
12218 		bpf_prog_lock_ro(func[i]);
12219 		bpf_prog_kallsyms_add(func[i]);
12220 	}
12221 
12222 	/* Last step: make now unused interpreter insns from main
12223 	 * prog consistent for later dump requests, so they can
12224 	 * later look the same as if they were interpreted only.
12225 	 */
12226 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12227 		if (bpf_pseudo_func(insn)) {
12228 			insn[0].imm = env->insn_aux_data[i].call_imm;
12229 			insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12230 			continue;
12231 		}
12232 		if (!bpf_pseudo_call(insn))
12233 			continue;
12234 		insn->off = env->insn_aux_data[i].call_imm;
12235 		subprog = find_subprog(env, i + insn->off + 1);
12236 		insn->imm = subprog;
12237 	}
12238 
12239 	prog->jited = 1;
12240 	prog->bpf_func = func[0]->bpf_func;
12241 	prog->aux->func = func;
12242 	prog->aux->func_cnt = env->subprog_cnt;
12243 	bpf_prog_jit_attempt_done(prog);
12244 	return 0;
12245 out_free:
12246 	/* We failed JIT'ing, so at this point we need to unregister poke
12247 	 * descriptors from subprogs, so that kernel is not attempting to
12248 	 * patch it anymore as we're freeing the subprog JIT memory.
12249 	 */
12250 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12251 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12252 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12253 	}
12254 	/* At this point we're guaranteed that poke descriptors are not
12255 	 * live anymore. We can just unlink its descriptor table as it's
12256 	 * released with the main prog.
12257 	 */
12258 	for (i = 0; i < env->subprog_cnt; i++) {
12259 		if (!func[i])
12260 			continue;
12261 		func[i]->aux->poke_tab = NULL;
12262 		bpf_jit_free(func[i]);
12263 	}
12264 	kfree(func);
12265 out_undo_insn:
12266 	/* cleanup main prog to be interpreted */
12267 	prog->jit_requested = 0;
12268 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12269 		if (!bpf_pseudo_call(insn))
12270 			continue;
12271 		insn->off = 0;
12272 		insn->imm = env->insn_aux_data[i].call_imm;
12273 	}
12274 	bpf_prog_jit_attempt_done(prog);
12275 	return err;
12276 }
12277 
12278 static int fixup_call_args(struct bpf_verifier_env *env)
12279 {
12280 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12281 	struct bpf_prog *prog = env->prog;
12282 	struct bpf_insn *insn = prog->insnsi;
12283 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12284 	int i, depth;
12285 #endif
12286 	int err = 0;
12287 
12288 	if (env->prog->jit_requested &&
12289 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12290 		err = jit_subprogs(env);
12291 		if (err == 0)
12292 			return 0;
12293 		if (err == -EFAULT)
12294 			return err;
12295 	}
12296 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12297 	if (has_kfunc_call) {
12298 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12299 		return -EINVAL;
12300 	}
12301 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12302 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
12303 		 * have to be rejected, since interpreter doesn't support them yet.
12304 		 */
12305 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12306 		return -EINVAL;
12307 	}
12308 	for (i = 0; i < prog->len; i++, insn++) {
12309 		if (bpf_pseudo_func(insn)) {
12310 			/* When JIT fails the progs with callback calls
12311 			 * have to be rejected, since interpreter doesn't support them yet.
12312 			 */
12313 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
12314 			return -EINVAL;
12315 		}
12316 
12317 		if (!bpf_pseudo_call(insn))
12318 			continue;
12319 		depth = get_callee_stack_depth(env, insn, i);
12320 		if (depth < 0)
12321 			return depth;
12322 		bpf_patch_call_args(insn, depth);
12323 	}
12324 	err = 0;
12325 #endif
12326 	return err;
12327 }
12328 
12329 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12330 			    struct bpf_insn *insn)
12331 {
12332 	const struct bpf_kfunc_desc *desc;
12333 
12334 	/* insn->imm has the btf func_id. Replace it with
12335 	 * an address (relative to __bpf_base_call).
12336 	 */
12337 	desc = find_kfunc_desc(env->prog, insn->imm);
12338 	if (!desc) {
12339 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12340 			insn->imm);
12341 		return -EFAULT;
12342 	}
12343 
12344 	insn->imm = desc->imm;
12345 
12346 	return 0;
12347 }
12348 
12349 /* Do various post-verification rewrites in a single program pass.
12350  * These rewrites simplify JIT and interpreter implementations.
12351  */
12352 static int do_misc_fixups(struct bpf_verifier_env *env)
12353 {
12354 	struct bpf_prog *prog = env->prog;
12355 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
12356 	struct bpf_insn *insn = prog->insnsi;
12357 	const struct bpf_func_proto *fn;
12358 	const int insn_cnt = prog->len;
12359 	const struct bpf_map_ops *ops;
12360 	struct bpf_insn_aux_data *aux;
12361 	struct bpf_insn insn_buf[16];
12362 	struct bpf_prog *new_prog;
12363 	struct bpf_map *map_ptr;
12364 	int i, ret, cnt, delta = 0;
12365 
12366 	for (i = 0; i < insn_cnt; i++, insn++) {
12367 		/* Make divide-by-zero exceptions impossible. */
12368 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12369 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12370 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12371 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12372 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12373 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12374 			struct bpf_insn *patchlet;
12375 			struct bpf_insn chk_and_div[] = {
12376 				/* [R,W]x div 0 -> 0 */
12377 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12378 					     BPF_JNE | BPF_K, insn->src_reg,
12379 					     0, 2, 0),
12380 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12381 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12382 				*insn,
12383 			};
12384 			struct bpf_insn chk_and_mod[] = {
12385 				/* [R,W]x mod 0 -> [R,W]x */
12386 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12387 					     BPF_JEQ | BPF_K, insn->src_reg,
12388 					     0, 1 + (is64 ? 0 : 1), 0),
12389 				*insn,
12390 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12391 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12392 			};
12393 
12394 			patchlet = isdiv ? chk_and_div : chk_and_mod;
12395 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12396 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12397 
12398 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12399 			if (!new_prog)
12400 				return -ENOMEM;
12401 
12402 			delta    += cnt - 1;
12403 			env->prog = prog = new_prog;
12404 			insn      = new_prog->insnsi + i + delta;
12405 			continue;
12406 		}
12407 
12408 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12409 		if (BPF_CLASS(insn->code) == BPF_LD &&
12410 		    (BPF_MODE(insn->code) == BPF_ABS ||
12411 		     BPF_MODE(insn->code) == BPF_IND)) {
12412 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
12413 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12414 				verbose(env, "bpf verifier is misconfigured\n");
12415 				return -EINVAL;
12416 			}
12417 
12418 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12419 			if (!new_prog)
12420 				return -ENOMEM;
12421 
12422 			delta    += cnt - 1;
12423 			env->prog = prog = new_prog;
12424 			insn      = new_prog->insnsi + i + delta;
12425 			continue;
12426 		}
12427 
12428 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
12429 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12430 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12431 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12432 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12433 			struct bpf_insn *patch = &insn_buf[0];
12434 			bool issrc, isneg, isimm;
12435 			u32 off_reg;
12436 
12437 			aux = &env->insn_aux_data[i + delta];
12438 			if (!aux->alu_state ||
12439 			    aux->alu_state == BPF_ALU_NON_POINTER)
12440 				continue;
12441 
12442 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12443 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12444 				BPF_ALU_SANITIZE_SRC;
12445 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12446 
12447 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
12448 			if (isimm) {
12449 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12450 			} else {
12451 				if (isneg)
12452 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12453 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12454 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12455 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12456 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12457 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12458 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12459 			}
12460 			if (!issrc)
12461 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12462 			insn->src_reg = BPF_REG_AX;
12463 			if (isneg)
12464 				insn->code = insn->code == code_add ?
12465 					     code_sub : code_add;
12466 			*patch++ = *insn;
12467 			if (issrc && isneg && !isimm)
12468 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12469 			cnt = patch - insn_buf;
12470 
12471 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12472 			if (!new_prog)
12473 				return -ENOMEM;
12474 
12475 			delta    += cnt - 1;
12476 			env->prog = prog = new_prog;
12477 			insn      = new_prog->insnsi + i + delta;
12478 			continue;
12479 		}
12480 
12481 		if (insn->code != (BPF_JMP | BPF_CALL))
12482 			continue;
12483 		if (insn->src_reg == BPF_PSEUDO_CALL)
12484 			continue;
12485 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12486 			ret = fixup_kfunc_call(env, insn);
12487 			if (ret)
12488 				return ret;
12489 			continue;
12490 		}
12491 
12492 		if (insn->imm == BPF_FUNC_get_route_realm)
12493 			prog->dst_needed = 1;
12494 		if (insn->imm == BPF_FUNC_get_prandom_u32)
12495 			bpf_user_rnd_init_once();
12496 		if (insn->imm == BPF_FUNC_override_return)
12497 			prog->kprobe_override = 1;
12498 		if (insn->imm == BPF_FUNC_tail_call) {
12499 			/* If we tail call into other programs, we
12500 			 * cannot make any assumptions since they can
12501 			 * be replaced dynamically during runtime in
12502 			 * the program array.
12503 			 */
12504 			prog->cb_access = 1;
12505 			if (!allow_tail_call_in_subprogs(env))
12506 				prog->aux->stack_depth = MAX_BPF_STACK;
12507 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
12508 
12509 			/* mark bpf_tail_call as different opcode to avoid
12510 			 * conditional branch in the interpreter for every normal
12511 			 * call and to prevent accidental JITing by JIT compiler
12512 			 * that doesn't support bpf_tail_call yet
12513 			 */
12514 			insn->imm = 0;
12515 			insn->code = BPF_JMP | BPF_TAIL_CALL;
12516 
12517 			aux = &env->insn_aux_data[i + delta];
12518 			if (env->bpf_capable && !expect_blinding &&
12519 			    prog->jit_requested &&
12520 			    !bpf_map_key_poisoned(aux) &&
12521 			    !bpf_map_ptr_poisoned(aux) &&
12522 			    !bpf_map_ptr_unpriv(aux)) {
12523 				struct bpf_jit_poke_descriptor desc = {
12524 					.reason = BPF_POKE_REASON_TAIL_CALL,
12525 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12526 					.tail_call.key = bpf_map_key_immediate(aux),
12527 					.insn_idx = i + delta,
12528 				};
12529 
12530 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
12531 				if (ret < 0) {
12532 					verbose(env, "adding tail call poke descriptor failed\n");
12533 					return ret;
12534 				}
12535 
12536 				insn->imm = ret + 1;
12537 				continue;
12538 			}
12539 
12540 			if (!bpf_map_ptr_unpriv(aux))
12541 				continue;
12542 
12543 			/* instead of changing every JIT dealing with tail_call
12544 			 * emit two extra insns:
12545 			 * if (index >= max_entries) goto out;
12546 			 * index &= array->index_mask;
12547 			 * to avoid out-of-bounds cpu speculation
12548 			 */
12549 			if (bpf_map_ptr_poisoned(aux)) {
12550 				verbose(env, "tail_call abusing map_ptr\n");
12551 				return -EINVAL;
12552 			}
12553 
12554 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12555 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12556 						  map_ptr->max_entries, 2);
12557 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12558 						    container_of(map_ptr,
12559 								 struct bpf_array,
12560 								 map)->index_mask);
12561 			insn_buf[2] = *insn;
12562 			cnt = 3;
12563 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12564 			if (!new_prog)
12565 				return -ENOMEM;
12566 
12567 			delta    += cnt - 1;
12568 			env->prog = prog = new_prog;
12569 			insn      = new_prog->insnsi + i + delta;
12570 			continue;
12571 		}
12572 
12573 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12574 		 * and other inlining handlers are currently limited to 64 bit
12575 		 * only.
12576 		 */
12577 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12578 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
12579 		     insn->imm == BPF_FUNC_map_update_elem ||
12580 		     insn->imm == BPF_FUNC_map_delete_elem ||
12581 		     insn->imm == BPF_FUNC_map_push_elem   ||
12582 		     insn->imm == BPF_FUNC_map_pop_elem    ||
12583 		     insn->imm == BPF_FUNC_map_peek_elem   ||
12584 		     insn->imm == BPF_FUNC_redirect_map)) {
12585 			aux = &env->insn_aux_data[i + delta];
12586 			if (bpf_map_ptr_poisoned(aux))
12587 				goto patch_call_imm;
12588 
12589 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12590 			ops = map_ptr->ops;
12591 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
12592 			    ops->map_gen_lookup) {
12593 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12594 				if (cnt == -EOPNOTSUPP)
12595 					goto patch_map_ops_generic;
12596 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12597 					verbose(env, "bpf verifier is misconfigured\n");
12598 					return -EINVAL;
12599 				}
12600 
12601 				new_prog = bpf_patch_insn_data(env, i + delta,
12602 							       insn_buf, cnt);
12603 				if (!new_prog)
12604 					return -ENOMEM;
12605 
12606 				delta    += cnt - 1;
12607 				env->prog = prog = new_prog;
12608 				insn      = new_prog->insnsi + i + delta;
12609 				continue;
12610 			}
12611 
12612 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12613 				     (void *(*)(struct bpf_map *map, void *key))NULL));
12614 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12615 				     (int (*)(struct bpf_map *map, void *key))NULL));
12616 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12617 				     (int (*)(struct bpf_map *map, void *key, void *value,
12618 					      u64 flags))NULL));
12619 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12620 				     (int (*)(struct bpf_map *map, void *value,
12621 					      u64 flags))NULL));
12622 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12623 				     (int (*)(struct bpf_map *map, void *value))NULL));
12624 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12625 				     (int (*)(struct bpf_map *map, void *value))NULL));
12626 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
12627 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12628 
12629 patch_map_ops_generic:
12630 			switch (insn->imm) {
12631 			case BPF_FUNC_map_lookup_elem:
12632 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12633 					    __bpf_call_base;
12634 				continue;
12635 			case BPF_FUNC_map_update_elem:
12636 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12637 					    __bpf_call_base;
12638 				continue;
12639 			case BPF_FUNC_map_delete_elem:
12640 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12641 					    __bpf_call_base;
12642 				continue;
12643 			case BPF_FUNC_map_push_elem:
12644 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12645 					    __bpf_call_base;
12646 				continue;
12647 			case BPF_FUNC_map_pop_elem:
12648 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12649 					    __bpf_call_base;
12650 				continue;
12651 			case BPF_FUNC_map_peek_elem:
12652 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12653 					    __bpf_call_base;
12654 				continue;
12655 			case BPF_FUNC_redirect_map:
12656 				insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12657 					    __bpf_call_base;
12658 				continue;
12659 			}
12660 
12661 			goto patch_call_imm;
12662 		}
12663 
12664 		/* Implement bpf_jiffies64 inline. */
12665 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12666 		    insn->imm == BPF_FUNC_jiffies64) {
12667 			struct bpf_insn ld_jiffies_addr[2] = {
12668 				BPF_LD_IMM64(BPF_REG_0,
12669 					     (unsigned long)&jiffies),
12670 			};
12671 
12672 			insn_buf[0] = ld_jiffies_addr[0];
12673 			insn_buf[1] = ld_jiffies_addr[1];
12674 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12675 						  BPF_REG_0, 0);
12676 			cnt = 3;
12677 
12678 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12679 						       cnt);
12680 			if (!new_prog)
12681 				return -ENOMEM;
12682 
12683 			delta    += cnt - 1;
12684 			env->prog = prog = new_prog;
12685 			insn      = new_prog->insnsi + i + delta;
12686 			continue;
12687 		}
12688 
12689 patch_call_imm:
12690 		fn = env->ops->get_func_proto(insn->imm, env->prog);
12691 		/* all functions that have prototype and verifier allowed
12692 		 * programs to call them, must be real in-kernel functions
12693 		 */
12694 		if (!fn->func) {
12695 			verbose(env,
12696 				"kernel subsystem misconfigured func %s#%d\n",
12697 				func_id_name(insn->imm), insn->imm);
12698 			return -EFAULT;
12699 		}
12700 		insn->imm = fn->func - __bpf_call_base;
12701 	}
12702 
12703 	/* Since poke tab is now finalized, publish aux to tracker. */
12704 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12705 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12706 		if (!map_ptr->ops->map_poke_track ||
12707 		    !map_ptr->ops->map_poke_untrack ||
12708 		    !map_ptr->ops->map_poke_run) {
12709 			verbose(env, "bpf verifier is misconfigured\n");
12710 			return -EINVAL;
12711 		}
12712 
12713 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12714 		if (ret < 0) {
12715 			verbose(env, "tracking tail call prog failed\n");
12716 			return ret;
12717 		}
12718 	}
12719 
12720 	sort_kfunc_descs_by_imm(env->prog);
12721 
12722 	return 0;
12723 }
12724 
12725 static void free_states(struct bpf_verifier_env *env)
12726 {
12727 	struct bpf_verifier_state_list *sl, *sln;
12728 	int i;
12729 
12730 	sl = env->free_list;
12731 	while (sl) {
12732 		sln = sl->next;
12733 		free_verifier_state(&sl->state, false);
12734 		kfree(sl);
12735 		sl = sln;
12736 	}
12737 	env->free_list = NULL;
12738 
12739 	if (!env->explored_states)
12740 		return;
12741 
12742 	for (i = 0; i < state_htab_size(env); i++) {
12743 		sl = env->explored_states[i];
12744 
12745 		while (sl) {
12746 			sln = sl->next;
12747 			free_verifier_state(&sl->state, false);
12748 			kfree(sl);
12749 			sl = sln;
12750 		}
12751 		env->explored_states[i] = NULL;
12752 	}
12753 }
12754 
12755 /* The verifier is using insn_aux_data[] to store temporary data during
12756  * verification and to store information for passes that run after the
12757  * verification like dead code sanitization. do_check_common() for subprogram N
12758  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
12759  * temporary data after do_check_common() finds that subprogram N cannot be
12760  * verified independently. pass_cnt counts the number of times
12761  * do_check_common() was run and insn->aux->seen tells the pass number
12762  * insn_aux_data was touched. These variables are compared to clear temporary
12763  * data from failed pass. For testing and experiments do_check_common() can be
12764  * run multiple times even when prior attempt to verify is unsuccessful.
12765  *
12766  * Note that special handling is needed on !env->bypass_spec_v1 if this is
12767  * ever called outside of error path with subsequent program rejection.
12768  */
12769 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
12770 {
12771 	struct bpf_insn *insn = env->prog->insnsi;
12772 	struct bpf_insn_aux_data *aux;
12773 	int i, class;
12774 
12775 	for (i = 0; i < env->prog->len; i++) {
12776 		class = BPF_CLASS(insn[i].code);
12777 		if (class != BPF_LDX && class != BPF_STX)
12778 			continue;
12779 		aux = &env->insn_aux_data[i];
12780 		if (aux->seen != env->pass_cnt)
12781 			continue;
12782 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
12783 	}
12784 }
12785 
12786 static int do_check_common(struct bpf_verifier_env *env, int subprog)
12787 {
12788 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12789 	struct bpf_verifier_state *state;
12790 	struct bpf_reg_state *regs;
12791 	int ret, i;
12792 
12793 	env->prev_linfo = NULL;
12794 	env->pass_cnt++;
12795 
12796 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12797 	if (!state)
12798 		return -ENOMEM;
12799 	state->curframe = 0;
12800 	state->speculative = false;
12801 	state->branches = 1;
12802 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12803 	if (!state->frame[0]) {
12804 		kfree(state);
12805 		return -ENOMEM;
12806 	}
12807 	env->cur_state = state;
12808 	init_func_state(env, state->frame[0],
12809 			BPF_MAIN_FUNC /* callsite */,
12810 			0 /* frameno */,
12811 			subprog);
12812 
12813 	regs = state->frame[state->curframe]->regs;
12814 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12815 		ret = btf_prepare_func_args(env, subprog, regs);
12816 		if (ret)
12817 			goto out;
12818 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12819 			if (regs[i].type == PTR_TO_CTX)
12820 				mark_reg_known_zero(env, regs, i);
12821 			else if (regs[i].type == SCALAR_VALUE)
12822 				mark_reg_unknown(env, regs, i);
12823 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12824 				const u32 mem_size = regs[i].mem_size;
12825 
12826 				mark_reg_known_zero(env, regs, i);
12827 				regs[i].mem_size = mem_size;
12828 				regs[i].id = ++env->id_gen;
12829 			}
12830 		}
12831 	} else {
12832 		/* 1st arg to a function */
12833 		regs[BPF_REG_1].type = PTR_TO_CTX;
12834 		mark_reg_known_zero(env, regs, BPF_REG_1);
12835 		ret = btf_check_subprog_arg_match(env, subprog, regs);
12836 		if (ret == -EFAULT)
12837 			/* unlikely verifier bug. abort.
12838 			 * ret == 0 and ret < 0 are sadly acceptable for
12839 			 * main() function due to backward compatibility.
12840 			 * Like socket filter program may be written as:
12841 			 * int bpf_prog(struct pt_regs *ctx)
12842 			 * and never dereference that ctx in the program.
12843 			 * 'struct pt_regs' is a type mismatch for socket
12844 			 * filter that should be using 'struct __sk_buff'.
12845 			 */
12846 			goto out;
12847 	}
12848 
12849 	ret = do_check(env);
12850 out:
12851 	/* check for NULL is necessary, since cur_state can be freed inside
12852 	 * do_check() under memory pressure.
12853 	 */
12854 	if (env->cur_state) {
12855 		free_verifier_state(env->cur_state, true);
12856 		env->cur_state = NULL;
12857 	}
12858 	while (!pop_stack(env, NULL, NULL, false));
12859 	if (!ret && pop_log)
12860 		bpf_vlog_reset(&env->log, 0);
12861 	free_states(env);
12862 	if (ret)
12863 		/* clean aux data in case subprog was rejected */
12864 		sanitize_insn_aux_data(env);
12865 	return ret;
12866 }
12867 
12868 /* Verify all global functions in a BPF program one by one based on their BTF.
12869  * All global functions must pass verification. Otherwise the whole program is rejected.
12870  * Consider:
12871  * int bar(int);
12872  * int foo(int f)
12873  * {
12874  *    return bar(f);
12875  * }
12876  * int bar(int b)
12877  * {
12878  *    ...
12879  * }
12880  * foo() will be verified first for R1=any_scalar_value. During verification it
12881  * will be assumed that bar() already verified successfully and call to bar()
12882  * from foo() will be checked for type match only. Later bar() will be verified
12883  * independently to check that it's safe for R1=any_scalar_value.
12884  */
12885 static int do_check_subprogs(struct bpf_verifier_env *env)
12886 {
12887 	struct bpf_prog_aux *aux = env->prog->aux;
12888 	int i, ret;
12889 
12890 	if (!aux->func_info)
12891 		return 0;
12892 
12893 	for (i = 1; i < env->subprog_cnt; i++) {
12894 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12895 			continue;
12896 		env->insn_idx = env->subprog_info[i].start;
12897 		WARN_ON_ONCE(env->insn_idx == 0);
12898 		ret = do_check_common(env, i);
12899 		if (ret) {
12900 			return ret;
12901 		} else if (env->log.level & BPF_LOG_LEVEL) {
12902 			verbose(env,
12903 				"Func#%d is safe for any args that match its prototype\n",
12904 				i);
12905 		}
12906 	}
12907 	return 0;
12908 }
12909 
12910 static int do_check_main(struct bpf_verifier_env *env)
12911 {
12912 	int ret;
12913 
12914 	env->insn_idx = 0;
12915 	ret = do_check_common(env, 0);
12916 	if (!ret)
12917 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12918 	return ret;
12919 }
12920 
12921 
12922 static void print_verification_stats(struct bpf_verifier_env *env)
12923 {
12924 	int i;
12925 
12926 	if (env->log.level & BPF_LOG_STATS) {
12927 		verbose(env, "verification time %lld usec\n",
12928 			div_u64(env->verification_time, 1000));
12929 		verbose(env, "stack depth ");
12930 		for (i = 0; i < env->subprog_cnt; i++) {
12931 			u32 depth = env->subprog_info[i].stack_depth;
12932 
12933 			verbose(env, "%d", depth);
12934 			if (i + 1 < env->subprog_cnt)
12935 				verbose(env, "+");
12936 		}
12937 		verbose(env, "\n");
12938 	}
12939 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12940 		"total_states %d peak_states %d mark_read %d\n",
12941 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12942 		env->max_states_per_insn, env->total_states,
12943 		env->peak_states, env->longest_mark_read_walk);
12944 }
12945 
12946 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12947 {
12948 	const struct btf_type *t, *func_proto;
12949 	const struct bpf_struct_ops *st_ops;
12950 	const struct btf_member *member;
12951 	struct bpf_prog *prog = env->prog;
12952 	u32 btf_id, member_idx;
12953 	const char *mname;
12954 
12955 	if (!prog->gpl_compatible) {
12956 		verbose(env, "struct ops programs must have a GPL compatible license\n");
12957 		return -EINVAL;
12958 	}
12959 
12960 	btf_id = prog->aux->attach_btf_id;
12961 	st_ops = bpf_struct_ops_find(btf_id);
12962 	if (!st_ops) {
12963 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12964 			btf_id);
12965 		return -ENOTSUPP;
12966 	}
12967 
12968 	t = st_ops->type;
12969 	member_idx = prog->expected_attach_type;
12970 	if (member_idx >= btf_type_vlen(t)) {
12971 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12972 			member_idx, st_ops->name);
12973 		return -EINVAL;
12974 	}
12975 
12976 	member = &btf_type_member(t)[member_idx];
12977 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12978 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12979 					       NULL);
12980 	if (!func_proto) {
12981 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12982 			mname, member_idx, st_ops->name);
12983 		return -EINVAL;
12984 	}
12985 
12986 	if (st_ops->check_member) {
12987 		int err = st_ops->check_member(t, member);
12988 
12989 		if (err) {
12990 			verbose(env, "attach to unsupported member %s of struct %s\n",
12991 				mname, st_ops->name);
12992 			return err;
12993 		}
12994 	}
12995 
12996 	prog->aux->attach_func_proto = func_proto;
12997 	prog->aux->attach_func_name = mname;
12998 	env->ops = st_ops->verifier_ops;
12999 
13000 	return 0;
13001 }
13002 #define SECURITY_PREFIX "security_"
13003 
13004 static int check_attach_modify_return(unsigned long addr, const char *func_name)
13005 {
13006 	if (within_error_injection_list(addr) ||
13007 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13008 		return 0;
13009 
13010 	return -EINVAL;
13011 }
13012 
13013 /* list of non-sleepable functions that are otherwise on
13014  * ALLOW_ERROR_INJECTION list
13015  */
13016 BTF_SET_START(btf_non_sleepable_error_inject)
13017 /* Three functions below can be called from sleepable and non-sleepable context.
13018  * Assume non-sleepable from bpf safety point of view.
13019  */
13020 BTF_ID(func, __add_to_page_cache_locked)
13021 BTF_ID(func, should_fail_alloc_page)
13022 BTF_ID(func, should_failslab)
13023 BTF_SET_END(btf_non_sleepable_error_inject)
13024 
13025 static int check_non_sleepable_error_inject(u32 btf_id)
13026 {
13027 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13028 }
13029 
13030 int bpf_check_attach_target(struct bpf_verifier_log *log,
13031 			    const struct bpf_prog *prog,
13032 			    const struct bpf_prog *tgt_prog,
13033 			    u32 btf_id,
13034 			    struct bpf_attach_target_info *tgt_info)
13035 {
13036 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13037 	const char prefix[] = "btf_trace_";
13038 	int ret = 0, subprog = -1, i;
13039 	const struct btf_type *t;
13040 	bool conservative = true;
13041 	const char *tname;
13042 	struct btf *btf;
13043 	long addr = 0;
13044 
13045 	if (!btf_id) {
13046 		bpf_log(log, "Tracing programs must provide btf_id\n");
13047 		return -EINVAL;
13048 	}
13049 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13050 	if (!btf) {
13051 		bpf_log(log,
13052 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13053 		return -EINVAL;
13054 	}
13055 	t = btf_type_by_id(btf, btf_id);
13056 	if (!t) {
13057 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13058 		return -EINVAL;
13059 	}
13060 	tname = btf_name_by_offset(btf, t->name_off);
13061 	if (!tname) {
13062 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13063 		return -EINVAL;
13064 	}
13065 	if (tgt_prog) {
13066 		struct bpf_prog_aux *aux = tgt_prog->aux;
13067 
13068 		for (i = 0; i < aux->func_info_cnt; i++)
13069 			if (aux->func_info[i].type_id == btf_id) {
13070 				subprog = i;
13071 				break;
13072 			}
13073 		if (subprog == -1) {
13074 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13075 			return -EINVAL;
13076 		}
13077 		conservative = aux->func_info_aux[subprog].unreliable;
13078 		if (prog_extension) {
13079 			if (conservative) {
13080 				bpf_log(log,
13081 					"Cannot replace static functions\n");
13082 				return -EINVAL;
13083 			}
13084 			if (!prog->jit_requested) {
13085 				bpf_log(log,
13086 					"Extension programs should be JITed\n");
13087 				return -EINVAL;
13088 			}
13089 		}
13090 		if (!tgt_prog->jited) {
13091 			bpf_log(log, "Can attach to only JITed progs\n");
13092 			return -EINVAL;
13093 		}
13094 		if (tgt_prog->type == prog->type) {
13095 			/* Cannot fentry/fexit another fentry/fexit program.
13096 			 * Cannot attach program extension to another extension.
13097 			 * It's ok to attach fentry/fexit to extension program.
13098 			 */
13099 			bpf_log(log, "Cannot recursively attach\n");
13100 			return -EINVAL;
13101 		}
13102 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13103 		    prog_extension &&
13104 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13105 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13106 			/* Program extensions can extend all program types
13107 			 * except fentry/fexit. The reason is the following.
13108 			 * The fentry/fexit programs are used for performance
13109 			 * analysis, stats and can be attached to any program
13110 			 * type except themselves. When extension program is
13111 			 * replacing XDP function it is necessary to allow
13112 			 * performance analysis of all functions. Both original
13113 			 * XDP program and its program extension. Hence
13114 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13115 			 * allowed. If extending of fentry/fexit was allowed it
13116 			 * would be possible to create long call chain
13117 			 * fentry->extension->fentry->extension beyond
13118 			 * reasonable stack size. Hence extending fentry is not
13119 			 * allowed.
13120 			 */
13121 			bpf_log(log, "Cannot extend fentry/fexit\n");
13122 			return -EINVAL;
13123 		}
13124 	} else {
13125 		if (prog_extension) {
13126 			bpf_log(log, "Cannot replace kernel functions\n");
13127 			return -EINVAL;
13128 		}
13129 	}
13130 
13131 	switch (prog->expected_attach_type) {
13132 	case BPF_TRACE_RAW_TP:
13133 		if (tgt_prog) {
13134 			bpf_log(log,
13135 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13136 			return -EINVAL;
13137 		}
13138 		if (!btf_type_is_typedef(t)) {
13139 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13140 				btf_id);
13141 			return -EINVAL;
13142 		}
13143 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13144 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13145 				btf_id, tname);
13146 			return -EINVAL;
13147 		}
13148 		tname += sizeof(prefix) - 1;
13149 		t = btf_type_by_id(btf, t->type);
13150 		if (!btf_type_is_ptr(t))
13151 			/* should never happen in valid vmlinux build */
13152 			return -EINVAL;
13153 		t = btf_type_by_id(btf, t->type);
13154 		if (!btf_type_is_func_proto(t))
13155 			/* should never happen in valid vmlinux build */
13156 			return -EINVAL;
13157 
13158 		break;
13159 	case BPF_TRACE_ITER:
13160 		if (!btf_type_is_func(t)) {
13161 			bpf_log(log, "attach_btf_id %u is not a function\n",
13162 				btf_id);
13163 			return -EINVAL;
13164 		}
13165 		t = btf_type_by_id(btf, t->type);
13166 		if (!btf_type_is_func_proto(t))
13167 			return -EINVAL;
13168 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13169 		if (ret)
13170 			return ret;
13171 		break;
13172 	default:
13173 		if (!prog_extension)
13174 			return -EINVAL;
13175 		fallthrough;
13176 	case BPF_MODIFY_RETURN:
13177 	case BPF_LSM_MAC:
13178 	case BPF_TRACE_FENTRY:
13179 	case BPF_TRACE_FEXIT:
13180 		if (!btf_type_is_func(t)) {
13181 			bpf_log(log, "attach_btf_id %u is not a function\n",
13182 				btf_id);
13183 			return -EINVAL;
13184 		}
13185 		if (prog_extension &&
13186 		    btf_check_type_match(log, prog, btf, t))
13187 			return -EINVAL;
13188 		t = btf_type_by_id(btf, t->type);
13189 		if (!btf_type_is_func_proto(t))
13190 			return -EINVAL;
13191 
13192 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13193 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13194 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13195 			return -EINVAL;
13196 
13197 		if (tgt_prog && conservative)
13198 			t = NULL;
13199 
13200 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13201 		if (ret < 0)
13202 			return ret;
13203 
13204 		if (tgt_prog) {
13205 			if (subprog == 0)
13206 				addr = (long) tgt_prog->bpf_func;
13207 			else
13208 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13209 		} else {
13210 			addr = kallsyms_lookup_name(tname);
13211 			if (!addr) {
13212 				bpf_log(log,
13213 					"The address of function %s cannot be found\n",
13214 					tname);
13215 				return -ENOENT;
13216 			}
13217 		}
13218 
13219 		if (prog->aux->sleepable) {
13220 			ret = -EINVAL;
13221 			switch (prog->type) {
13222 			case BPF_PROG_TYPE_TRACING:
13223 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
13224 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13225 				 */
13226 				if (!check_non_sleepable_error_inject(btf_id) &&
13227 				    within_error_injection_list(addr))
13228 					ret = 0;
13229 				break;
13230 			case BPF_PROG_TYPE_LSM:
13231 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
13232 				 * Only some of them are sleepable.
13233 				 */
13234 				if (bpf_lsm_is_sleepable_hook(btf_id))
13235 					ret = 0;
13236 				break;
13237 			default:
13238 				break;
13239 			}
13240 			if (ret) {
13241 				bpf_log(log, "%s is not sleepable\n", tname);
13242 				return ret;
13243 			}
13244 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13245 			if (tgt_prog) {
13246 				bpf_log(log, "can't modify return codes of BPF programs\n");
13247 				return -EINVAL;
13248 			}
13249 			ret = check_attach_modify_return(addr, tname);
13250 			if (ret) {
13251 				bpf_log(log, "%s() is not modifiable\n", tname);
13252 				return ret;
13253 			}
13254 		}
13255 
13256 		break;
13257 	}
13258 	tgt_info->tgt_addr = addr;
13259 	tgt_info->tgt_name = tname;
13260 	tgt_info->tgt_type = t;
13261 	return 0;
13262 }
13263 
13264 BTF_SET_START(btf_id_deny)
13265 BTF_ID_UNUSED
13266 #ifdef CONFIG_SMP
13267 BTF_ID(func, migrate_disable)
13268 BTF_ID(func, migrate_enable)
13269 #endif
13270 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13271 BTF_ID(func, rcu_read_unlock_strict)
13272 #endif
13273 BTF_SET_END(btf_id_deny)
13274 
13275 static int check_attach_btf_id(struct bpf_verifier_env *env)
13276 {
13277 	struct bpf_prog *prog = env->prog;
13278 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13279 	struct bpf_attach_target_info tgt_info = {};
13280 	u32 btf_id = prog->aux->attach_btf_id;
13281 	struct bpf_trampoline *tr;
13282 	int ret;
13283 	u64 key;
13284 
13285 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13286 		if (prog->aux->sleepable)
13287 			/* attach_btf_id checked to be zero already */
13288 			return 0;
13289 		verbose(env, "Syscall programs can only be sleepable\n");
13290 		return -EINVAL;
13291 	}
13292 
13293 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13294 	    prog->type != BPF_PROG_TYPE_LSM) {
13295 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13296 		return -EINVAL;
13297 	}
13298 
13299 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13300 		return check_struct_ops_btf_id(env);
13301 
13302 	if (prog->type != BPF_PROG_TYPE_TRACING &&
13303 	    prog->type != BPF_PROG_TYPE_LSM &&
13304 	    prog->type != BPF_PROG_TYPE_EXT)
13305 		return 0;
13306 
13307 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13308 	if (ret)
13309 		return ret;
13310 
13311 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13312 		/* to make freplace equivalent to their targets, they need to
13313 		 * inherit env->ops and expected_attach_type for the rest of the
13314 		 * verification
13315 		 */
13316 		env->ops = bpf_verifier_ops[tgt_prog->type];
13317 		prog->expected_attach_type = tgt_prog->expected_attach_type;
13318 	}
13319 
13320 	/* store info about the attachment target that will be used later */
13321 	prog->aux->attach_func_proto = tgt_info.tgt_type;
13322 	prog->aux->attach_func_name = tgt_info.tgt_name;
13323 
13324 	if (tgt_prog) {
13325 		prog->aux->saved_dst_prog_type = tgt_prog->type;
13326 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13327 	}
13328 
13329 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13330 		prog->aux->attach_btf_trace = true;
13331 		return 0;
13332 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13333 		if (!bpf_iter_prog_supported(prog))
13334 			return -EINVAL;
13335 		return 0;
13336 	}
13337 
13338 	if (prog->type == BPF_PROG_TYPE_LSM) {
13339 		ret = bpf_lsm_verify_prog(&env->log, prog);
13340 		if (ret < 0)
13341 			return ret;
13342 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
13343 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
13344 		return -EINVAL;
13345 	}
13346 
13347 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13348 	tr = bpf_trampoline_get(key, &tgt_info);
13349 	if (!tr)
13350 		return -ENOMEM;
13351 
13352 	prog->aux->dst_trampoline = tr;
13353 	return 0;
13354 }
13355 
13356 struct btf *bpf_get_btf_vmlinux(void)
13357 {
13358 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13359 		mutex_lock(&bpf_verifier_lock);
13360 		if (!btf_vmlinux)
13361 			btf_vmlinux = btf_parse_vmlinux();
13362 		mutex_unlock(&bpf_verifier_lock);
13363 	}
13364 	return btf_vmlinux;
13365 }
13366 
13367 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13368 {
13369 	u64 start_time = ktime_get_ns();
13370 	struct bpf_verifier_env *env;
13371 	struct bpf_verifier_log *log;
13372 	int i, len, ret = -EINVAL;
13373 	bool is_priv;
13374 
13375 	/* no program is valid */
13376 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13377 		return -EINVAL;
13378 
13379 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
13380 	 * allocate/free it every time bpf_check() is called
13381 	 */
13382 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13383 	if (!env)
13384 		return -ENOMEM;
13385 	log = &env->log;
13386 
13387 	len = (*prog)->len;
13388 	env->insn_aux_data =
13389 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13390 	ret = -ENOMEM;
13391 	if (!env->insn_aux_data)
13392 		goto err_free_env;
13393 	for (i = 0; i < len; i++)
13394 		env->insn_aux_data[i].orig_idx = i;
13395 	env->prog = *prog;
13396 	env->ops = bpf_verifier_ops[env->prog->type];
13397 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13398 	is_priv = bpf_capable();
13399 
13400 	bpf_get_btf_vmlinux();
13401 
13402 	/* grab the mutex to protect few globals used by verifier */
13403 	if (!is_priv)
13404 		mutex_lock(&bpf_verifier_lock);
13405 
13406 	if (attr->log_level || attr->log_buf || attr->log_size) {
13407 		/* user requested verbose verifier output
13408 		 * and supplied buffer to store the verification trace
13409 		 */
13410 		log->level = attr->log_level;
13411 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13412 		log->len_total = attr->log_size;
13413 
13414 		ret = -EINVAL;
13415 		/* log attributes have to be sane */
13416 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13417 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13418 			goto err_unlock;
13419 	}
13420 
13421 	if (IS_ERR(btf_vmlinux)) {
13422 		/* Either gcc or pahole or kernel are broken. */
13423 		verbose(env, "in-kernel BTF is malformed\n");
13424 		ret = PTR_ERR(btf_vmlinux);
13425 		goto skip_full_check;
13426 	}
13427 
13428 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13429 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13430 		env->strict_alignment = true;
13431 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13432 		env->strict_alignment = false;
13433 
13434 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13435 	env->allow_uninit_stack = bpf_allow_uninit_stack();
13436 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13437 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
13438 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
13439 	env->bpf_capable = bpf_capable();
13440 
13441 	if (is_priv)
13442 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13443 
13444 	env->explored_states = kvcalloc(state_htab_size(env),
13445 				       sizeof(struct bpf_verifier_state_list *),
13446 				       GFP_USER);
13447 	ret = -ENOMEM;
13448 	if (!env->explored_states)
13449 		goto skip_full_check;
13450 
13451 	ret = add_subprog_and_kfunc(env);
13452 	if (ret < 0)
13453 		goto skip_full_check;
13454 
13455 	ret = check_subprogs(env);
13456 	if (ret < 0)
13457 		goto skip_full_check;
13458 
13459 	ret = check_btf_info(env, attr, uattr);
13460 	if (ret < 0)
13461 		goto skip_full_check;
13462 
13463 	ret = check_attach_btf_id(env);
13464 	if (ret)
13465 		goto skip_full_check;
13466 
13467 	ret = resolve_pseudo_ldimm64(env);
13468 	if (ret < 0)
13469 		goto skip_full_check;
13470 
13471 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
13472 		ret = bpf_prog_offload_verifier_prep(env->prog);
13473 		if (ret)
13474 			goto skip_full_check;
13475 	}
13476 
13477 	ret = check_cfg(env);
13478 	if (ret < 0)
13479 		goto skip_full_check;
13480 
13481 	ret = do_check_subprogs(env);
13482 	ret = ret ?: do_check_main(env);
13483 
13484 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13485 		ret = bpf_prog_offload_finalize(env);
13486 
13487 skip_full_check:
13488 	kvfree(env->explored_states);
13489 
13490 	if (ret == 0)
13491 		ret = check_max_stack_depth(env);
13492 
13493 	/* instruction rewrites happen after this point */
13494 	if (is_priv) {
13495 		if (ret == 0)
13496 			opt_hard_wire_dead_code_branches(env);
13497 		if (ret == 0)
13498 			ret = opt_remove_dead_code(env);
13499 		if (ret == 0)
13500 			ret = opt_remove_nops(env);
13501 	} else {
13502 		if (ret == 0)
13503 			sanitize_dead_code(env);
13504 	}
13505 
13506 	if (ret == 0)
13507 		/* program is valid, convert *(u32*)(ctx + off) accesses */
13508 		ret = convert_ctx_accesses(env);
13509 
13510 	if (ret == 0)
13511 		ret = do_misc_fixups(env);
13512 
13513 	/* do 32-bit optimization after insn patching has done so those patched
13514 	 * insns could be handled correctly.
13515 	 */
13516 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13517 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13518 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13519 								     : false;
13520 	}
13521 
13522 	if (ret == 0)
13523 		ret = fixup_call_args(env);
13524 
13525 	env->verification_time = ktime_get_ns() - start_time;
13526 	print_verification_stats(env);
13527 
13528 	if (log->level && bpf_verifier_log_full(log))
13529 		ret = -ENOSPC;
13530 	if (log->level && !log->ubuf) {
13531 		ret = -EFAULT;
13532 		goto err_release_maps;
13533 	}
13534 
13535 	if (ret)
13536 		goto err_release_maps;
13537 
13538 	if (env->used_map_cnt) {
13539 		/* if program passed verifier, update used_maps in bpf_prog_info */
13540 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13541 							  sizeof(env->used_maps[0]),
13542 							  GFP_KERNEL);
13543 
13544 		if (!env->prog->aux->used_maps) {
13545 			ret = -ENOMEM;
13546 			goto err_release_maps;
13547 		}
13548 
13549 		memcpy(env->prog->aux->used_maps, env->used_maps,
13550 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
13551 		env->prog->aux->used_map_cnt = env->used_map_cnt;
13552 	}
13553 	if (env->used_btf_cnt) {
13554 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
13555 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13556 							  sizeof(env->used_btfs[0]),
13557 							  GFP_KERNEL);
13558 		if (!env->prog->aux->used_btfs) {
13559 			ret = -ENOMEM;
13560 			goto err_release_maps;
13561 		}
13562 
13563 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
13564 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13565 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13566 	}
13567 	if (env->used_map_cnt || env->used_btf_cnt) {
13568 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
13569 		 * bpf_ld_imm64 instructions
13570 		 */
13571 		convert_pseudo_ld_imm64(env);
13572 	}
13573 
13574 	adjust_btf_func(env);
13575 
13576 err_release_maps:
13577 	if (!env->prog->aux->used_maps)
13578 		/* if we didn't copy map pointers into bpf_prog_info, release
13579 		 * them now. Otherwise free_used_maps() will release them.
13580 		 */
13581 		release_maps(env);
13582 	if (!env->prog->aux->used_btfs)
13583 		release_btfs(env);
13584 
13585 	/* extension progs temporarily inherit the attach_type of their targets
13586 	   for verification purposes, so set it back to zero before returning
13587 	 */
13588 	if (env->prog->type == BPF_PROG_TYPE_EXT)
13589 		env->prog->expected_attach_type = 0;
13590 
13591 	*prog = env->prog;
13592 err_unlock:
13593 	if (!is_priv)
13594 		mutex_unlock(&bpf_verifier_lock);
13595 	vfree(env->insn_aux_data);
13596 err_free_env:
13597 	kfree(env);
13598 	return ret;
13599 }
13600