xref: /openbmc/linux/kernel/bpf/verifier.c (revision 03dcb90d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 
27 #include "disasm.h"
28 
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
31 	[_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #define BPF_LINK_TYPE(_id, _name)
34 #include <linux/bpf_types.h>
35 #undef BPF_PROG_TYPE
36 #undef BPF_MAP_TYPE
37 #undef BPF_LINK_TYPE
38 };
39 
40 /* bpf_check() is a static code analyzer that walks eBPF program
41  * instruction by instruction and updates register/stack state.
42  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
43  *
44  * The first pass is depth-first-search to check that the program is a DAG.
45  * It rejects the following programs:
46  * - larger than BPF_MAXINSNS insns
47  * - if loop is present (detected via back-edge)
48  * - unreachable insns exist (shouldn't be a forest. program = one function)
49  * - out of bounds or malformed jumps
50  * The second pass is all possible path descent from the 1st insn.
51  * Since it's analyzing all paths through the program, the length of the
52  * analysis is limited to 64k insn, which may be hit even if total number of
53  * insn is less then 4K, but there are too many branches that change stack/regs.
54  * Number of 'branches to be analyzed' is limited to 1k
55  *
56  * On entry to each instruction, each register has a type, and the instruction
57  * changes the types of the registers depending on instruction semantics.
58  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
59  * copied to R1.
60  *
61  * All registers are 64-bit.
62  * R0 - return register
63  * R1-R5 argument passing registers
64  * R6-R9 callee saved registers
65  * R10 - frame pointer read-only
66  *
67  * At the start of BPF program the register R1 contains a pointer to bpf_context
68  * and has type PTR_TO_CTX.
69  *
70  * Verifier tracks arithmetic operations on pointers in case:
71  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
72  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
73  * 1st insn copies R10 (which has FRAME_PTR) type into R1
74  * and 2nd arithmetic instruction is pattern matched to recognize
75  * that it wants to construct a pointer to some element within stack.
76  * So after 2nd insn, the register R1 has type PTR_TO_STACK
77  * (and -20 constant is saved for further stack bounds checking).
78  * Meaning that this reg is a pointer to stack plus known immediate constant.
79  *
80  * Most of the time the registers have SCALAR_VALUE type, which
81  * means the register has some value, but it's not a valid pointer.
82  * (like pointer plus pointer becomes SCALAR_VALUE type)
83  *
84  * When verifier sees load or store instructions the type of base register
85  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
86  * four pointer types recognized by check_mem_access() function.
87  *
88  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
89  * and the range of [ptr, ptr + map's value_size) is accessible.
90  *
91  * registers used to pass values to function calls are checked against
92  * function argument constraints.
93  *
94  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
95  * It means that the register type passed to this function must be
96  * PTR_TO_STACK and it will be used inside the function as
97  * 'pointer to map element key'
98  *
99  * For example the argument constraints for bpf_map_lookup_elem():
100  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
101  *   .arg1_type = ARG_CONST_MAP_PTR,
102  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
103  *
104  * ret_type says that this function returns 'pointer to map elem value or null'
105  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
106  * 2nd argument should be a pointer to stack, which will be used inside
107  * the helper function as a pointer to map element key.
108  *
109  * On the kernel side the helper function looks like:
110  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
111  * {
112  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
113  *    void *key = (void *) (unsigned long) r2;
114  *    void *value;
115  *
116  *    here kernel can access 'key' and 'map' pointers safely, knowing that
117  *    [key, key + map->key_size) bytes are valid and were initialized on
118  *    the stack of eBPF program.
119  * }
120  *
121  * Corresponding eBPF program may look like:
122  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
123  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
124  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
125  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
126  * here verifier looks at prototype of map_lookup_elem() and sees:
127  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
128  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
129  *
130  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
131  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
132  * and were initialized prior to this call.
133  * If it's ok, then verifier allows this BPF_CALL insn and looks at
134  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
135  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
136  * returns either pointer to map value or NULL.
137  *
138  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
139  * insn, the register holding that pointer in the true branch changes state to
140  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
141  * branch. See check_cond_jmp_op().
142  *
143  * After the call R0 is set to return type of the function and registers R1-R5
144  * are set to NOT_INIT to indicate that they are no longer readable.
145  *
146  * The following reference types represent a potential reference to a kernel
147  * resource which, after first being allocated, must be checked and freed by
148  * the BPF program:
149  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
150  *
151  * When the verifier sees a helper call return a reference type, it allocates a
152  * pointer id for the reference and stores it in the current function state.
153  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
154  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
155  * passes through a NULL-check conditional. For the branch wherein the state is
156  * changed to CONST_IMM, the verifier releases the reference.
157  *
158  * For each helper function that allocates a reference, such as
159  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
160  * bpf_sk_release(). When a reference type passes into the release function,
161  * the verifier also releases the reference. If any unchecked or unreleased
162  * reference remains at the end of the program, the verifier rejects it.
163  */
164 
165 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
166 struct bpf_verifier_stack_elem {
167 	/* verifer state is 'st'
168 	 * before processing instruction 'insn_idx'
169 	 * and after processing instruction 'prev_insn_idx'
170 	 */
171 	struct bpf_verifier_state st;
172 	int insn_idx;
173 	int prev_insn_idx;
174 	struct bpf_verifier_stack_elem *next;
175 	/* length of verifier log at the time this state was pushed on stack */
176 	u32 log_pos;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
180 #define BPF_COMPLEXITY_LIMIT_STATES	64
181 
182 #define BPF_MAP_KEY_POISON	(1ULL << 63)
183 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
184 
185 #define BPF_MAP_PTR_UNPRIV	1UL
186 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
187 					  POISON_POINTER_DELTA))
188 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
189 
190 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
191 {
192 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
193 }
194 
195 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
196 {
197 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
198 }
199 
200 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
201 			      const struct bpf_map *map, bool unpriv)
202 {
203 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
204 	unpriv |= bpf_map_ptr_unpriv(aux);
205 	aux->map_ptr_state = (unsigned long)map |
206 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
207 }
208 
209 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_key_state & BPF_MAP_KEY_POISON;
212 }
213 
214 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
215 {
216 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
217 }
218 
219 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
220 {
221 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
222 }
223 
224 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
225 {
226 	bool poisoned = bpf_map_key_poisoned(aux);
227 
228 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
229 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
230 }
231 
232 static bool bpf_pseudo_call(const struct bpf_insn *insn)
233 {
234 	return insn->code == (BPF_JMP | BPF_CALL) &&
235 	       insn->src_reg == BPF_PSEUDO_CALL;
236 }
237 
238 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
239 {
240 	return insn->code == (BPF_JMP | BPF_CALL) &&
241 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
242 }
243 
244 struct bpf_call_arg_meta {
245 	struct bpf_map *map_ptr;
246 	bool raw_mode;
247 	bool pkt_access;
248 	u8 release_regno;
249 	int regno;
250 	int access_size;
251 	int mem_size;
252 	u64 msize_max_value;
253 	int ref_obj_id;
254 	int map_uid;
255 	int func_id;
256 	struct btf *btf;
257 	u32 btf_id;
258 	struct btf *ret_btf;
259 	u32 ret_btf_id;
260 	u32 subprogno;
261 	struct bpf_map_value_off_desc *kptr_off_desc;
262 };
263 
264 struct btf *btf_vmlinux;
265 
266 static DEFINE_MUTEX(bpf_verifier_lock);
267 
268 static const struct bpf_line_info *
269 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
270 {
271 	const struct bpf_line_info *linfo;
272 	const struct bpf_prog *prog;
273 	u32 i, nr_linfo;
274 
275 	prog = env->prog;
276 	nr_linfo = prog->aux->nr_linfo;
277 
278 	if (!nr_linfo || insn_off >= prog->len)
279 		return NULL;
280 
281 	linfo = prog->aux->linfo;
282 	for (i = 1; i < nr_linfo; i++)
283 		if (insn_off < linfo[i].insn_off)
284 			break;
285 
286 	return &linfo[i - 1];
287 }
288 
289 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
290 		       va_list args)
291 {
292 	unsigned int n;
293 
294 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
295 
296 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
297 		  "verifier log line truncated - local buffer too short\n");
298 
299 	if (log->level == BPF_LOG_KERNEL) {
300 		bool newline = n > 0 && log->kbuf[n - 1] == '\n';
301 
302 		pr_err("BPF: %s%s", log->kbuf, newline ? "" : "\n");
303 		return;
304 	}
305 
306 	n = min(log->len_total - log->len_used - 1, n);
307 	log->kbuf[n] = '\0';
308 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
309 		log->len_used += n;
310 	else
311 		log->ubuf = NULL;
312 }
313 
314 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
315 {
316 	char zero = 0;
317 
318 	if (!bpf_verifier_log_needed(log))
319 		return;
320 
321 	log->len_used = new_pos;
322 	if (put_user(zero, log->ubuf + new_pos))
323 		log->ubuf = NULL;
324 }
325 
326 /* log_level controls verbosity level of eBPF verifier.
327  * bpf_verifier_log_write() is used to dump the verification trace to the log,
328  * so the user can figure out what's wrong with the program
329  */
330 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
331 					   const char *fmt, ...)
332 {
333 	va_list args;
334 
335 	if (!bpf_verifier_log_needed(&env->log))
336 		return;
337 
338 	va_start(args, fmt);
339 	bpf_verifier_vlog(&env->log, fmt, args);
340 	va_end(args);
341 }
342 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
343 
344 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
345 {
346 	struct bpf_verifier_env *env = private_data;
347 	va_list args;
348 
349 	if (!bpf_verifier_log_needed(&env->log))
350 		return;
351 
352 	va_start(args, fmt);
353 	bpf_verifier_vlog(&env->log, fmt, args);
354 	va_end(args);
355 }
356 
357 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
358 			    const char *fmt, ...)
359 {
360 	va_list args;
361 
362 	if (!bpf_verifier_log_needed(log))
363 		return;
364 
365 	va_start(args, fmt);
366 	bpf_verifier_vlog(log, fmt, args);
367 	va_end(args);
368 }
369 
370 static const char *ltrim(const char *s)
371 {
372 	while (isspace(*s))
373 		s++;
374 
375 	return s;
376 }
377 
378 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
379 					 u32 insn_off,
380 					 const char *prefix_fmt, ...)
381 {
382 	const struct bpf_line_info *linfo;
383 
384 	if (!bpf_verifier_log_needed(&env->log))
385 		return;
386 
387 	linfo = find_linfo(env, insn_off);
388 	if (!linfo || linfo == env->prev_linfo)
389 		return;
390 
391 	if (prefix_fmt) {
392 		va_list args;
393 
394 		va_start(args, prefix_fmt);
395 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
396 		va_end(args);
397 	}
398 
399 	verbose(env, "%s\n",
400 		ltrim(btf_name_by_offset(env->prog->aux->btf,
401 					 linfo->line_off)));
402 
403 	env->prev_linfo = linfo;
404 }
405 
406 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
407 				   struct bpf_reg_state *reg,
408 				   struct tnum *range, const char *ctx,
409 				   const char *reg_name)
410 {
411 	char tn_buf[48];
412 
413 	verbose(env, "At %s the register %s ", ctx, reg_name);
414 	if (!tnum_is_unknown(reg->var_off)) {
415 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 		verbose(env, "has value %s", tn_buf);
417 	} else {
418 		verbose(env, "has unknown scalar value");
419 	}
420 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
421 	verbose(env, " should have been in %s\n", tn_buf);
422 }
423 
424 static bool type_is_pkt_pointer(enum bpf_reg_type type)
425 {
426 	return type == PTR_TO_PACKET ||
427 	       type == PTR_TO_PACKET_META;
428 }
429 
430 static bool type_is_sk_pointer(enum bpf_reg_type type)
431 {
432 	return type == PTR_TO_SOCKET ||
433 		type == PTR_TO_SOCK_COMMON ||
434 		type == PTR_TO_TCP_SOCK ||
435 		type == PTR_TO_XDP_SOCK;
436 }
437 
438 static bool reg_type_not_null(enum bpf_reg_type type)
439 {
440 	return type == PTR_TO_SOCKET ||
441 		type == PTR_TO_TCP_SOCK ||
442 		type == PTR_TO_MAP_VALUE ||
443 		type == PTR_TO_MAP_KEY ||
444 		type == PTR_TO_SOCK_COMMON;
445 }
446 
447 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
448 {
449 	return reg->type == PTR_TO_MAP_VALUE &&
450 		map_value_has_spin_lock(reg->map_ptr);
451 }
452 
453 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
454 {
455 	return base_type(type) == PTR_TO_SOCKET ||
456 		base_type(type) == PTR_TO_TCP_SOCK ||
457 		base_type(type) == PTR_TO_MEM ||
458 		base_type(type) == PTR_TO_BTF_ID;
459 }
460 
461 static bool type_is_rdonly_mem(u32 type)
462 {
463 	return type & MEM_RDONLY;
464 }
465 
466 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
467 {
468 	return type == ARG_PTR_TO_SOCK_COMMON;
469 }
470 
471 static bool type_may_be_null(u32 type)
472 {
473 	return type & PTR_MAYBE_NULL;
474 }
475 
476 static bool may_be_acquire_function(enum bpf_func_id func_id)
477 {
478 	return func_id == BPF_FUNC_sk_lookup_tcp ||
479 		func_id == BPF_FUNC_sk_lookup_udp ||
480 		func_id == BPF_FUNC_skc_lookup_tcp ||
481 		func_id == BPF_FUNC_map_lookup_elem ||
482 	        func_id == BPF_FUNC_ringbuf_reserve;
483 }
484 
485 static bool is_acquire_function(enum bpf_func_id func_id,
486 				const struct bpf_map *map)
487 {
488 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
489 
490 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
491 	    func_id == BPF_FUNC_sk_lookup_udp ||
492 	    func_id == BPF_FUNC_skc_lookup_tcp ||
493 	    func_id == BPF_FUNC_ringbuf_reserve ||
494 	    func_id == BPF_FUNC_kptr_xchg)
495 		return true;
496 
497 	if (func_id == BPF_FUNC_map_lookup_elem &&
498 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
499 	     map_type == BPF_MAP_TYPE_SOCKHASH))
500 		return true;
501 
502 	return false;
503 }
504 
505 static bool is_ptr_cast_function(enum bpf_func_id func_id)
506 {
507 	return func_id == BPF_FUNC_tcp_sock ||
508 		func_id == BPF_FUNC_sk_fullsock ||
509 		func_id == BPF_FUNC_skc_to_tcp_sock ||
510 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
511 		func_id == BPF_FUNC_skc_to_udp6_sock ||
512 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
513 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
514 }
515 
516 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
517 {
518 	return BPF_CLASS(insn->code) == BPF_STX &&
519 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
520 	       insn->imm == BPF_CMPXCHG;
521 }
522 
523 /* string representation of 'enum bpf_reg_type'
524  *
525  * Note that reg_type_str() can not appear more than once in a single verbose()
526  * statement.
527  */
528 static const char *reg_type_str(struct bpf_verifier_env *env,
529 				enum bpf_reg_type type)
530 {
531 	char postfix[16] = {0}, prefix[32] = {0};
532 	static const char * const str[] = {
533 		[NOT_INIT]		= "?",
534 		[SCALAR_VALUE]		= "scalar",
535 		[PTR_TO_CTX]		= "ctx",
536 		[CONST_PTR_TO_MAP]	= "map_ptr",
537 		[PTR_TO_MAP_VALUE]	= "map_value",
538 		[PTR_TO_STACK]		= "fp",
539 		[PTR_TO_PACKET]		= "pkt",
540 		[PTR_TO_PACKET_META]	= "pkt_meta",
541 		[PTR_TO_PACKET_END]	= "pkt_end",
542 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
543 		[PTR_TO_SOCKET]		= "sock",
544 		[PTR_TO_SOCK_COMMON]	= "sock_common",
545 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
546 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
547 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
548 		[PTR_TO_BTF_ID]		= "ptr_",
549 		[PTR_TO_MEM]		= "mem",
550 		[PTR_TO_BUF]		= "buf",
551 		[PTR_TO_FUNC]		= "func",
552 		[PTR_TO_MAP_KEY]	= "map_key",
553 	};
554 
555 	if (type & PTR_MAYBE_NULL) {
556 		if (base_type(type) == PTR_TO_BTF_ID)
557 			strncpy(postfix, "or_null_", 16);
558 		else
559 			strncpy(postfix, "_or_null", 16);
560 	}
561 
562 	if (type & MEM_RDONLY)
563 		strncpy(prefix, "rdonly_", 32);
564 	if (type & MEM_ALLOC)
565 		strncpy(prefix, "alloc_", 32);
566 	if (type & MEM_USER)
567 		strncpy(prefix, "user_", 32);
568 	if (type & MEM_PERCPU)
569 		strncpy(prefix, "percpu_", 32);
570 	if (type & PTR_UNTRUSTED)
571 		strncpy(prefix, "untrusted_", 32);
572 
573 	snprintf(env->type_str_buf, TYPE_STR_BUF_LEN, "%s%s%s",
574 		 prefix, str[base_type(type)], postfix);
575 	return env->type_str_buf;
576 }
577 
578 static char slot_type_char[] = {
579 	[STACK_INVALID]	= '?',
580 	[STACK_SPILL]	= 'r',
581 	[STACK_MISC]	= 'm',
582 	[STACK_ZERO]	= '0',
583 };
584 
585 static void print_liveness(struct bpf_verifier_env *env,
586 			   enum bpf_reg_liveness live)
587 {
588 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
589 	    verbose(env, "_");
590 	if (live & REG_LIVE_READ)
591 		verbose(env, "r");
592 	if (live & REG_LIVE_WRITTEN)
593 		verbose(env, "w");
594 	if (live & REG_LIVE_DONE)
595 		verbose(env, "D");
596 }
597 
598 static struct bpf_func_state *func(struct bpf_verifier_env *env,
599 				   const struct bpf_reg_state *reg)
600 {
601 	struct bpf_verifier_state *cur = env->cur_state;
602 
603 	return cur->frame[reg->frameno];
604 }
605 
606 static const char *kernel_type_name(const struct btf* btf, u32 id)
607 {
608 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
609 }
610 
611 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
612 {
613 	env->scratched_regs |= 1U << regno;
614 }
615 
616 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
617 {
618 	env->scratched_stack_slots |= 1ULL << spi;
619 }
620 
621 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
622 {
623 	return (env->scratched_regs >> regno) & 1;
624 }
625 
626 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
627 {
628 	return (env->scratched_stack_slots >> regno) & 1;
629 }
630 
631 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
632 {
633 	return env->scratched_regs || env->scratched_stack_slots;
634 }
635 
636 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
637 {
638 	env->scratched_regs = 0U;
639 	env->scratched_stack_slots = 0ULL;
640 }
641 
642 /* Used for printing the entire verifier state. */
643 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
644 {
645 	env->scratched_regs = ~0U;
646 	env->scratched_stack_slots = ~0ULL;
647 }
648 
649 /* The reg state of a pointer or a bounded scalar was saved when
650  * it was spilled to the stack.
651  */
652 static bool is_spilled_reg(const struct bpf_stack_state *stack)
653 {
654 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
655 }
656 
657 static void scrub_spilled_slot(u8 *stype)
658 {
659 	if (*stype != STACK_INVALID)
660 		*stype = STACK_MISC;
661 }
662 
663 static void print_verifier_state(struct bpf_verifier_env *env,
664 				 const struct bpf_func_state *state,
665 				 bool print_all)
666 {
667 	const struct bpf_reg_state *reg;
668 	enum bpf_reg_type t;
669 	int i;
670 
671 	if (state->frameno)
672 		verbose(env, " frame%d:", state->frameno);
673 	for (i = 0; i < MAX_BPF_REG; i++) {
674 		reg = &state->regs[i];
675 		t = reg->type;
676 		if (t == NOT_INIT)
677 			continue;
678 		if (!print_all && !reg_scratched(env, i))
679 			continue;
680 		verbose(env, " R%d", i);
681 		print_liveness(env, reg->live);
682 		verbose(env, "=");
683 		if (t == SCALAR_VALUE && reg->precise)
684 			verbose(env, "P");
685 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
686 		    tnum_is_const(reg->var_off)) {
687 			/* reg->off should be 0 for SCALAR_VALUE */
688 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
689 			verbose(env, "%lld", reg->var_off.value + reg->off);
690 		} else {
691 			const char *sep = "";
692 
693 			verbose(env, "%s", reg_type_str(env, t));
694 			if (base_type(t) == PTR_TO_BTF_ID)
695 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
696 			verbose(env, "(");
697 /*
698  * _a stands for append, was shortened to avoid multiline statements below.
699  * This macro is used to output a comma separated list of attributes.
700  */
701 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
702 
703 			if (reg->id)
704 				verbose_a("id=%d", reg->id);
705 			if (reg_type_may_be_refcounted_or_null(t) && reg->ref_obj_id)
706 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
707 			if (t != SCALAR_VALUE)
708 				verbose_a("off=%d", reg->off);
709 			if (type_is_pkt_pointer(t))
710 				verbose_a("r=%d", reg->range);
711 			else if (base_type(t) == CONST_PTR_TO_MAP ||
712 				 base_type(t) == PTR_TO_MAP_KEY ||
713 				 base_type(t) == PTR_TO_MAP_VALUE)
714 				verbose_a("ks=%d,vs=%d",
715 					  reg->map_ptr->key_size,
716 					  reg->map_ptr->value_size);
717 			if (tnum_is_const(reg->var_off)) {
718 				/* Typically an immediate SCALAR_VALUE, but
719 				 * could be a pointer whose offset is too big
720 				 * for reg->off
721 				 */
722 				verbose_a("imm=%llx", reg->var_off.value);
723 			} else {
724 				if (reg->smin_value != reg->umin_value &&
725 				    reg->smin_value != S64_MIN)
726 					verbose_a("smin=%lld", (long long)reg->smin_value);
727 				if (reg->smax_value != reg->umax_value &&
728 				    reg->smax_value != S64_MAX)
729 					verbose_a("smax=%lld", (long long)reg->smax_value);
730 				if (reg->umin_value != 0)
731 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
732 				if (reg->umax_value != U64_MAX)
733 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
734 				if (!tnum_is_unknown(reg->var_off)) {
735 					char tn_buf[48];
736 
737 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
738 					verbose_a("var_off=%s", tn_buf);
739 				}
740 				if (reg->s32_min_value != reg->smin_value &&
741 				    reg->s32_min_value != S32_MIN)
742 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
743 				if (reg->s32_max_value != reg->smax_value &&
744 				    reg->s32_max_value != S32_MAX)
745 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
746 				if (reg->u32_min_value != reg->umin_value &&
747 				    reg->u32_min_value != U32_MIN)
748 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
749 				if (reg->u32_max_value != reg->umax_value &&
750 				    reg->u32_max_value != U32_MAX)
751 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
752 			}
753 #undef verbose_a
754 
755 			verbose(env, ")");
756 		}
757 	}
758 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
759 		char types_buf[BPF_REG_SIZE + 1];
760 		bool valid = false;
761 		int j;
762 
763 		for (j = 0; j < BPF_REG_SIZE; j++) {
764 			if (state->stack[i].slot_type[j] != STACK_INVALID)
765 				valid = true;
766 			types_buf[j] = slot_type_char[
767 					state->stack[i].slot_type[j]];
768 		}
769 		types_buf[BPF_REG_SIZE] = 0;
770 		if (!valid)
771 			continue;
772 		if (!print_all && !stack_slot_scratched(env, i))
773 			continue;
774 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
775 		print_liveness(env, state->stack[i].spilled_ptr.live);
776 		if (is_spilled_reg(&state->stack[i])) {
777 			reg = &state->stack[i].spilled_ptr;
778 			t = reg->type;
779 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
780 			if (t == SCALAR_VALUE && reg->precise)
781 				verbose(env, "P");
782 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
783 				verbose(env, "%lld", reg->var_off.value + reg->off);
784 		} else {
785 			verbose(env, "=%s", types_buf);
786 		}
787 	}
788 	if (state->acquired_refs && state->refs[0].id) {
789 		verbose(env, " refs=%d", state->refs[0].id);
790 		for (i = 1; i < state->acquired_refs; i++)
791 			if (state->refs[i].id)
792 				verbose(env, ",%d", state->refs[i].id);
793 	}
794 	if (state->in_callback_fn)
795 		verbose(env, " cb");
796 	if (state->in_async_callback_fn)
797 		verbose(env, " async_cb");
798 	verbose(env, "\n");
799 	mark_verifier_state_clean(env);
800 }
801 
802 static inline u32 vlog_alignment(u32 pos)
803 {
804 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
805 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
806 }
807 
808 static void print_insn_state(struct bpf_verifier_env *env,
809 			     const struct bpf_func_state *state)
810 {
811 	if (env->prev_log_len && env->prev_log_len == env->log.len_used) {
812 		/* remove new line character */
813 		bpf_vlog_reset(&env->log, env->prev_log_len - 1);
814 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_len), ' ');
815 	} else {
816 		verbose(env, "%d:", env->insn_idx);
817 	}
818 	print_verifier_state(env, state, false);
819 }
820 
821 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
822  * small to hold src. This is different from krealloc since we don't want to preserve
823  * the contents of dst.
824  *
825  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
826  * not be allocated.
827  */
828 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
829 {
830 	size_t bytes;
831 
832 	if (ZERO_OR_NULL_PTR(src))
833 		goto out;
834 
835 	if (unlikely(check_mul_overflow(n, size, &bytes)))
836 		return NULL;
837 
838 	if (ksize(dst) < bytes) {
839 		kfree(dst);
840 		dst = kmalloc_track_caller(bytes, flags);
841 		if (!dst)
842 			return NULL;
843 	}
844 
845 	memcpy(dst, src, bytes);
846 out:
847 	return dst ? dst : ZERO_SIZE_PTR;
848 }
849 
850 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
851  * small to hold new_n items. new items are zeroed out if the array grows.
852  *
853  * Contrary to krealloc_array, does not free arr if new_n is zero.
854  */
855 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
856 {
857 	if (!new_n || old_n == new_n)
858 		goto out;
859 
860 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
861 	if (!arr)
862 		return NULL;
863 
864 	if (new_n > old_n)
865 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
866 
867 out:
868 	return arr ? arr : ZERO_SIZE_PTR;
869 }
870 
871 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
872 {
873 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
874 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
875 	if (!dst->refs)
876 		return -ENOMEM;
877 
878 	dst->acquired_refs = src->acquired_refs;
879 	return 0;
880 }
881 
882 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
883 {
884 	size_t n = src->allocated_stack / BPF_REG_SIZE;
885 
886 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
887 				GFP_KERNEL);
888 	if (!dst->stack)
889 		return -ENOMEM;
890 
891 	dst->allocated_stack = src->allocated_stack;
892 	return 0;
893 }
894 
895 static int resize_reference_state(struct bpf_func_state *state, size_t n)
896 {
897 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
898 				    sizeof(struct bpf_reference_state));
899 	if (!state->refs)
900 		return -ENOMEM;
901 
902 	state->acquired_refs = n;
903 	return 0;
904 }
905 
906 static int grow_stack_state(struct bpf_func_state *state, int size)
907 {
908 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
909 
910 	if (old_n >= n)
911 		return 0;
912 
913 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
914 	if (!state->stack)
915 		return -ENOMEM;
916 
917 	state->allocated_stack = size;
918 	return 0;
919 }
920 
921 /* Acquire a pointer id from the env and update the state->refs to include
922  * this new pointer reference.
923  * On success, returns a valid pointer id to associate with the register
924  * On failure, returns a negative errno.
925  */
926 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
927 {
928 	struct bpf_func_state *state = cur_func(env);
929 	int new_ofs = state->acquired_refs;
930 	int id, err;
931 
932 	err = resize_reference_state(state, state->acquired_refs + 1);
933 	if (err)
934 		return err;
935 	id = ++env->id_gen;
936 	state->refs[new_ofs].id = id;
937 	state->refs[new_ofs].insn_idx = insn_idx;
938 
939 	return id;
940 }
941 
942 /* release function corresponding to acquire_reference_state(). Idempotent. */
943 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
944 {
945 	int i, last_idx;
946 
947 	last_idx = state->acquired_refs - 1;
948 	for (i = 0; i < state->acquired_refs; i++) {
949 		if (state->refs[i].id == ptr_id) {
950 			if (last_idx && i != last_idx)
951 				memcpy(&state->refs[i], &state->refs[last_idx],
952 				       sizeof(*state->refs));
953 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
954 			state->acquired_refs--;
955 			return 0;
956 		}
957 	}
958 	return -EINVAL;
959 }
960 
961 static void free_func_state(struct bpf_func_state *state)
962 {
963 	if (!state)
964 		return;
965 	kfree(state->refs);
966 	kfree(state->stack);
967 	kfree(state);
968 }
969 
970 static void clear_jmp_history(struct bpf_verifier_state *state)
971 {
972 	kfree(state->jmp_history);
973 	state->jmp_history = NULL;
974 	state->jmp_history_cnt = 0;
975 }
976 
977 static void free_verifier_state(struct bpf_verifier_state *state,
978 				bool free_self)
979 {
980 	int i;
981 
982 	for (i = 0; i <= state->curframe; i++) {
983 		free_func_state(state->frame[i]);
984 		state->frame[i] = NULL;
985 	}
986 	clear_jmp_history(state);
987 	if (free_self)
988 		kfree(state);
989 }
990 
991 /* copy verifier state from src to dst growing dst stack space
992  * when necessary to accommodate larger src stack
993  */
994 static int copy_func_state(struct bpf_func_state *dst,
995 			   const struct bpf_func_state *src)
996 {
997 	int err;
998 
999 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1000 	err = copy_reference_state(dst, src);
1001 	if (err)
1002 		return err;
1003 	return copy_stack_state(dst, src);
1004 }
1005 
1006 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1007 			       const struct bpf_verifier_state *src)
1008 {
1009 	struct bpf_func_state *dst;
1010 	int i, err;
1011 
1012 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1013 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1014 					    GFP_USER);
1015 	if (!dst_state->jmp_history)
1016 		return -ENOMEM;
1017 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1018 
1019 	/* if dst has more stack frames then src frame, free them */
1020 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1021 		free_func_state(dst_state->frame[i]);
1022 		dst_state->frame[i] = NULL;
1023 	}
1024 	dst_state->speculative = src->speculative;
1025 	dst_state->curframe = src->curframe;
1026 	dst_state->active_spin_lock = src->active_spin_lock;
1027 	dst_state->branches = src->branches;
1028 	dst_state->parent = src->parent;
1029 	dst_state->first_insn_idx = src->first_insn_idx;
1030 	dst_state->last_insn_idx = src->last_insn_idx;
1031 	for (i = 0; i <= src->curframe; i++) {
1032 		dst = dst_state->frame[i];
1033 		if (!dst) {
1034 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1035 			if (!dst)
1036 				return -ENOMEM;
1037 			dst_state->frame[i] = dst;
1038 		}
1039 		err = copy_func_state(dst, src->frame[i]);
1040 		if (err)
1041 			return err;
1042 	}
1043 	return 0;
1044 }
1045 
1046 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1047 {
1048 	while (st) {
1049 		u32 br = --st->branches;
1050 
1051 		/* WARN_ON(br > 1) technically makes sense here,
1052 		 * but see comment in push_stack(), hence:
1053 		 */
1054 		WARN_ONCE((int)br < 0,
1055 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1056 			  br);
1057 		if (br)
1058 			break;
1059 		st = st->parent;
1060 	}
1061 }
1062 
1063 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1064 		     int *insn_idx, bool pop_log)
1065 {
1066 	struct bpf_verifier_state *cur = env->cur_state;
1067 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1068 	int err;
1069 
1070 	if (env->head == NULL)
1071 		return -ENOENT;
1072 
1073 	if (cur) {
1074 		err = copy_verifier_state(cur, &head->st);
1075 		if (err)
1076 			return err;
1077 	}
1078 	if (pop_log)
1079 		bpf_vlog_reset(&env->log, head->log_pos);
1080 	if (insn_idx)
1081 		*insn_idx = head->insn_idx;
1082 	if (prev_insn_idx)
1083 		*prev_insn_idx = head->prev_insn_idx;
1084 	elem = head->next;
1085 	free_verifier_state(&head->st, false);
1086 	kfree(head);
1087 	env->head = elem;
1088 	env->stack_size--;
1089 	return 0;
1090 }
1091 
1092 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1093 					     int insn_idx, int prev_insn_idx,
1094 					     bool speculative)
1095 {
1096 	struct bpf_verifier_state *cur = env->cur_state;
1097 	struct bpf_verifier_stack_elem *elem;
1098 	int err;
1099 
1100 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1101 	if (!elem)
1102 		goto err;
1103 
1104 	elem->insn_idx = insn_idx;
1105 	elem->prev_insn_idx = prev_insn_idx;
1106 	elem->next = env->head;
1107 	elem->log_pos = env->log.len_used;
1108 	env->head = elem;
1109 	env->stack_size++;
1110 	err = copy_verifier_state(&elem->st, cur);
1111 	if (err)
1112 		goto err;
1113 	elem->st.speculative |= speculative;
1114 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1115 		verbose(env, "The sequence of %d jumps is too complex.\n",
1116 			env->stack_size);
1117 		goto err;
1118 	}
1119 	if (elem->st.parent) {
1120 		++elem->st.parent->branches;
1121 		/* WARN_ON(branches > 2) technically makes sense here,
1122 		 * but
1123 		 * 1. speculative states will bump 'branches' for non-branch
1124 		 * instructions
1125 		 * 2. is_state_visited() heuristics may decide not to create
1126 		 * a new state for a sequence of branches and all such current
1127 		 * and cloned states will be pointing to a single parent state
1128 		 * which might have large 'branches' count.
1129 		 */
1130 	}
1131 	return &elem->st;
1132 err:
1133 	free_verifier_state(env->cur_state, true);
1134 	env->cur_state = NULL;
1135 	/* pop all elements and return */
1136 	while (!pop_stack(env, NULL, NULL, false));
1137 	return NULL;
1138 }
1139 
1140 #define CALLER_SAVED_REGS 6
1141 static const int caller_saved[CALLER_SAVED_REGS] = {
1142 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1143 };
1144 
1145 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1146 				struct bpf_reg_state *reg);
1147 
1148 /* This helper doesn't clear reg->id */
1149 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1150 {
1151 	reg->var_off = tnum_const(imm);
1152 	reg->smin_value = (s64)imm;
1153 	reg->smax_value = (s64)imm;
1154 	reg->umin_value = imm;
1155 	reg->umax_value = imm;
1156 
1157 	reg->s32_min_value = (s32)imm;
1158 	reg->s32_max_value = (s32)imm;
1159 	reg->u32_min_value = (u32)imm;
1160 	reg->u32_max_value = (u32)imm;
1161 }
1162 
1163 /* Mark the unknown part of a register (variable offset or scalar value) as
1164  * known to have the value @imm.
1165  */
1166 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1167 {
1168 	/* Clear id, off, and union(map_ptr, range) */
1169 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1170 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1171 	___mark_reg_known(reg, imm);
1172 }
1173 
1174 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1175 {
1176 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1177 	reg->s32_min_value = (s32)imm;
1178 	reg->s32_max_value = (s32)imm;
1179 	reg->u32_min_value = (u32)imm;
1180 	reg->u32_max_value = (u32)imm;
1181 }
1182 
1183 /* Mark the 'variable offset' part of a register as zero.  This should be
1184  * used only on registers holding a pointer type.
1185  */
1186 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1187 {
1188 	__mark_reg_known(reg, 0);
1189 }
1190 
1191 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1192 {
1193 	__mark_reg_known(reg, 0);
1194 	reg->type = SCALAR_VALUE;
1195 }
1196 
1197 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1198 				struct bpf_reg_state *regs, u32 regno)
1199 {
1200 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1201 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1202 		/* Something bad happened, let's kill all regs */
1203 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1204 			__mark_reg_not_init(env, regs + regno);
1205 		return;
1206 	}
1207 	__mark_reg_known_zero(regs + regno);
1208 }
1209 
1210 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1211 {
1212 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1213 		const struct bpf_map *map = reg->map_ptr;
1214 
1215 		if (map->inner_map_meta) {
1216 			reg->type = CONST_PTR_TO_MAP;
1217 			reg->map_ptr = map->inner_map_meta;
1218 			/* transfer reg's id which is unique for every map_lookup_elem
1219 			 * as UID of the inner map.
1220 			 */
1221 			if (map_value_has_timer(map->inner_map_meta))
1222 				reg->map_uid = reg->id;
1223 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1224 			reg->type = PTR_TO_XDP_SOCK;
1225 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1226 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1227 			reg->type = PTR_TO_SOCKET;
1228 		} else {
1229 			reg->type = PTR_TO_MAP_VALUE;
1230 		}
1231 		return;
1232 	}
1233 
1234 	reg->type &= ~PTR_MAYBE_NULL;
1235 }
1236 
1237 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1238 {
1239 	return type_is_pkt_pointer(reg->type);
1240 }
1241 
1242 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1243 {
1244 	return reg_is_pkt_pointer(reg) ||
1245 	       reg->type == PTR_TO_PACKET_END;
1246 }
1247 
1248 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1249 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1250 				    enum bpf_reg_type which)
1251 {
1252 	/* The register can already have a range from prior markings.
1253 	 * This is fine as long as it hasn't been advanced from its
1254 	 * origin.
1255 	 */
1256 	return reg->type == which &&
1257 	       reg->id == 0 &&
1258 	       reg->off == 0 &&
1259 	       tnum_equals_const(reg->var_off, 0);
1260 }
1261 
1262 /* Reset the min/max bounds of a register */
1263 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1264 {
1265 	reg->smin_value = S64_MIN;
1266 	reg->smax_value = S64_MAX;
1267 	reg->umin_value = 0;
1268 	reg->umax_value = U64_MAX;
1269 
1270 	reg->s32_min_value = S32_MIN;
1271 	reg->s32_max_value = S32_MAX;
1272 	reg->u32_min_value = 0;
1273 	reg->u32_max_value = U32_MAX;
1274 }
1275 
1276 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1277 {
1278 	reg->smin_value = S64_MIN;
1279 	reg->smax_value = S64_MAX;
1280 	reg->umin_value = 0;
1281 	reg->umax_value = U64_MAX;
1282 }
1283 
1284 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1285 {
1286 	reg->s32_min_value = S32_MIN;
1287 	reg->s32_max_value = S32_MAX;
1288 	reg->u32_min_value = 0;
1289 	reg->u32_max_value = U32_MAX;
1290 }
1291 
1292 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1293 {
1294 	struct tnum var32_off = tnum_subreg(reg->var_off);
1295 
1296 	/* min signed is max(sign bit) | min(other bits) */
1297 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1298 			var32_off.value | (var32_off.mask & S32_MIN));
1299 	/* max signed is min(sign bit) | max(other bits) */
1300 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1301 			var32_off.value | (var32_off.mask & S32_MAX));
1302 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1303 	reg->u32_max_value = min(reg->u32_max_value,
1304 				 (u32)(var32_off.value | var32_off.mask));
1305 }
1306 
1307 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1308 {
1309 	/* min signed is max(sign bit) | min(other bits) */
1310 	reg->smin_value = max_t(s64, reg->smin_value,
1311 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1312 	/* max signed is min(sign bit) | max(other bits) */
1313 	reg->smax_value = min_t(s64, reg->smax_value,
1314 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1315 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1316 	reg->umax_value = min(reg->umax_value,
1317 			      reg->var_off.value | reg->var_off.mask);
1318 }
1319 
1320 static void __update_reg_bounds(struct bpf_reg_state *reg)
1321 {
1322 	__update_reg32_bounds(reg);
1323 	__update_reg64_bounds(reg);
1324 }
1325 
1326 /* Uses signed min/max values to inform unsigned, and vice-versa */
1327 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1328 {
1329 	/* Learn sign from signed bounds.
1330 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1331 	 * are the same, so combine.  This works even in the negative case, e.g.
1332 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1333 	 */
1334 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1335 		reg->s32_min_value = reg->u32_min_value =
1336 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1337 		reg->s32_max_value = reg->u32_max_value =
1338 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1339 		return;
1340 	}
1341 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1342 	 * boundary, so we must be careful.
1343 	 */
1344 	if ((s32)reg->u32_max_value >= 0) {
1345 		/* Positive.  We can't learn anything from the smin, but smax
1346 		 * is positive, hence safe.
1347 		 */
1348 		reg->s32_min_value = reg->u32_min_value;
1349 		reg->s32_max_value = reg->u32_max_value =
1350 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1351 	} else if ((s32)reg->u32_min_value < 0) {
1352 		/* Negative.  We can't learn anything from the smax, but smin
1353 		 * is negative, hence safe.
1354 		 */
1355 		reg->s32_min_value = reg->u32_min_value =
1356 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1357 		reg->s32_max_value = reg->u32_max_value;
1358 	}
1359 }
1360 
1361 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1362 {
1363 	/* Learn sign from signed bounds.
1364 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1365 	 * are the same, so combine.  This works even in the negative case, e.g.
1366 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1367 	 */
1368 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1369 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1370 							  reg->umin_value);
1371 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1372 							  reg->umax_value);
1373 		return;
1374 	}
1375 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1376 	 * boundary, so we must be careful.
1377 	 */
1378 	if ((s64)reg->umax_value >= 0) {
1379 		/* Positive.  We can't learn anything from the smin, but smax
1380 		 * is positive, hence safe.
1381 		 */
1382 		reg->smin_value = reg->umin_value;
1383 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1384 							  reg->umax_value);
1385 	} else if ((s64)reg->umin_value < 0) {
1386 		/* Negative.  We can't learn anything from the smax, but smin
1387 		 * is negative, hence safe.
1388 		 */
1389 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1390 							  reg->umin_value);
1391 		reg->smax_value = reg->umax_value;
1392 	}
1393 }
1394 
1395 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1396 {
1397 	__reg32_deduce_bounds(reg);
1398 	__reg64_deduce_bounds(reg);
1399 }
1400 
1401 /* Attempts to improve var_off based on unsigned min/max information */
1402 static void __reg_bound_offset(struct bpf_reg_state *reg)
1403 {
1404 	struct tnum var64_off = tnum_intersect(reg->var_off,
1405 					       tnum_range(reg->umin_value,
1406 							  reg->umax_value));
1407 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1408 						tnum_range(reg->u32_min_value,
1409 							   reg->u32_max_value));
1410 
1411 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1412 }
1413 
1414 static bool __reg32_bound_s64(s32 a)
1415 {
1416 	return a >= 0 && a <= S32_MAX;
1417 }
1418 
1419 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1420 {
1421 	reg->umin_value = reg->u32_min_value;
1422 	reg->umax_value = reg->u32_max_value;
1423 
1424 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
1425 	 * be positive otherwise set to worse case bounds and refine later
1426 	 * from tnum.
1427 	 */
1428 	if (__reg32_bound_s64(reg->s32_min_value) &&
1429 	    __reg32_bound_s64(reg->s32_max_value)) {
1430 		reg->smin_value = reg->s32_min_value;
1431 		reg->smax_value = reg->s32_max_value;
1432 	} else {
1433 		reg->smin_value = 0;
1434 		reg->smax_value = U32_MAX;
1435 	}
1436 }
1437 
1438 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1439 {
1440 	/* special case when 64-bit register has upper 32-bit register
1441 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1442 	 * allowing us to use 32-bit bounds directly,
1443 	 */
1444 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1445 		__reg_assign_32_into_64(reg);
1446 	} else {
1447 		/* Otherwise the best we can do is push lower 32bit known and
1448 		 * unknown bits into register (var_off set from jmp logic)
1449 		 * then learn as much as possible from the 64-bit tnum
1450 		 * known and unknown bits. The previous smin/smax bounds are
1451 		 * invalid here because of jmp32 compare so mark them unknown
1452 		 * so they do not impact tnum bounds calculation.
1453 		 */
1454 		__mark_reg64_unbounded(reg);
1455 		__update_reg_bounds(reg);
1456 	}
1457 
1458 	/* Intersecting with the old var_off might have improved our bounds
1459 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1460 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1461 	 */
1462 	__reg_deduce_bounds(reg);
1463 	__reg_bound_offset(reg);
1464 	__update_reg_bounds(reg);
1465 }
1466 
1467 static bool __reg64_bound_s32(s64 a)
1468 {
1469 	return a >= S32_MIN && a <= S32_MAX;
1470 }
1471 
1472 static bool __reg64_bound_u32(u64 a)
1473 {
1474 	return a >= U32_MIN && a <= U32_MAX;
1475 }
1476 
1477 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1478 {
1479 	__mark_reg32_unbounded(reg);
1480 
1481 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1482 		reg->s32_min_value = (s32)reg->smin_value;
1483 		reg->s32_max_value = (s32)reg->smax_value;
1484 	}
1485 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1486 		reg->u32_min_value = (u32)reg->umin_value;
1487 		reg->u32_max_value = (u32)reg->umax_value;
1488 	}
1489 
1490 	/* Intersecting with the old var_off might have improved our bounds
1491 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1492 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1493 	 */
1494 	__reg_deduce_bounds(reg);
1495 	__reg_bound_offset(reg);
1496 	__update_reg_bounds(reg);
1497 }
1498 
1499 /* Mark a register as having a completely unknown (scalar) value. */
1500 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1501 			       struct bpf_reg_state *reg)
1502 {
1503 	/*
1504 	 * Clear type, id, off, and union(map_ptr, range) and
1505 	 * padding between 'type' and union
1506 	 */
1507 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1508 	reg->type = SCALAR_VALUE;
1509 	reg->var_off = tnum_unknown;
1510 	reg->frameno = 0;
1511 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1512 	__mark_reg_unbounded(reg);
1513 }
1514 
1515 static void mark_reg_unknown(struct bpf_verifier_env *env,
1516 			     struct bpf_reg_state *regs, u32 regno)
1517 {
1518 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1519 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1520 		/* Something bad happened, let's kill all regs except FP */
1521 		for (regno = 0; regno < BPF_REG_FP; regno++)
1522 			__mark_reg_not_init(env, regs + regno);
1523 		return;
1524 	}
1525 	__mark_reg_unknown(env, regs + regno);
1526 }
1527 
1528 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1529 				struct bpf_reg_state *reg)
1530 {
1531 	__mark_reg_unknown(env, reg);
1532 	reg->type = NOT_INIT;
1533 }
1534 
1535 static void mark_reg_not_init(struct bpf_verifier_env *env,
1536 			      struct bpf_reg_state *regs, u32 regno)
1537 {
1538 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1539 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1540 		/* Something bad happened, let's kill all regs except FP */
1541 		for (regno = 0; regno < BPF_REG_FP; regno++)
1542 			__mark_reg_not_init(env, regs + regno);
1543 		return;
1544 	}
1545 	__mark_reg_not_init(env, regs + regno);
1546 }
1547 
1548 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1549 			    struct bpf_reg_state *regs, u32 regno,
1550 			    enum bpf_reg_type reg_type,
1551 			    struct btf *btf, u32 btf_id,
1552 			    enum bpf_type_flag flag)
1553 {
1554 	if (reg_type == SCALAR_VALUE) {
1555 		mark_reg_unknown(env, regs, regno);
1556 		return;
1557 	}
1558 	mark_reg_known_zero(env, regs, regno);
1559 	regs[regno].type = PTR_TO_BTF_ID | flag;
1560 	regs[regno].btf = btf;
1561 	regs[regno].btf_id = btf_id;
1562 }
1563 
1564 #define DEF_NOT_SUBREG	(0)
1565 static void init_reg_state(struct bpf_verifier_env *env,
1566 			   struct bpf_func_state *state)
1567 {
1568 	struct bpf_reg_state *regs = state->regs;
1569 	int i;
1570 
1571 	for (i = 0; i < MAX_BPF_REG; i++) {
1572 		mark_reg_not_init(env, regs, i);
1573 		regs[i].live = REG_LIVE_NONE;
1574 		regs[i].parent = NULL;
1575 		regs[i].subreg_def = DEF_NOT_SUBREG;
1576 	}
1577 
1578 	/* frame pointer */
1579 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1580 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1581 	regs[BPF_REG_FP].frameno = state->frameno;
1582 }
1583 
1584 #define BPF_MAIN_FUNC (-1)
1585 static void init_func_state(struct bpf_verifier_env *env,
1586 			    struct bpf_func_state *state,
1587 			    int callsite, int frameno, int subprogno)
1588 {
1589 	state->callsite = callsite;
1590 	state->frameno = frameno;
1591 	state->subprogno = subprogno;
1592 	init_reg_state(env, state);
1593 	mark_verifier_state_scratched(env);
1594 }
1595 
1596 /* Similar to push_stack(), but for async callbacks */
1597 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1598 						int insn_idx, int prev_insn_idx,
1599 						int subprog)
1600 {
1601 	struct bpf_verifier_stack_elem *elem;
1602 	struct bpf_func_state *frame;
1603 
1604 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1605 	if (!elem)
1606 		goto err;
1607 
1608 	elem->insn_idx = insn_idx;
1609 	elem->prev_insn_idx = prev_insn_idx;
1610 	elem->next = env->head;
1611 	elem->log_pos = env->log.len_used;
1612 	env->head = elem;
1613 	env->stack_size++;
1614 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1615 		verbose(env,
1616 			"The sequence of %d jumps is too complex for async cb.\n",
1617 			env->stack_size);
1618 		goto err;
1619 	}
1620 	/* Unlike push_stack() do not copy_verifier_state().
1621 	 * The caller state doesn't matter.
1622 	 * This is async callback. It starts in a fresh stack.
1623 	 * Initialize it similar to do_check_common().
1624 	 */
1625 	elem->st.branches = 1;
1626 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1627 	if (!frame)
1628 		goto err;
1629 	init_func_state(env, frame,
1630 			BPF_MAIN_FUNC /* callsite */,
1631 			0 /* frameno within this callchain */,
1632 			subprog /* subprog number within this prog */);
1633 	elem->st.frame[0] = frame;
1634 	return &elem->st;
1635 err:
1636 	free_verifier_state(env->cur_state, true);
1637 	env->cur_state = NULL;
1638 	/* pop all elements and return */
1639 	while (!pop_stack(env, NULL, NULL, false));
1640 	return NULL;
1641 }
1642 
1643 
1644 enum reg_arg_type {
1645 	SRC_OP,		/* register is used as source operand */
1646 	DST_OP,		/* register is used as destination operand */
1647 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1648 };
1649 
1650 static int cmp_subprogs(const void *a, const void *b)
1651 {
1652 	return ((struct bpf_subprog_info *)a)->start -
1653 	       ((struct bpf_subprog_info *)b)->start;
1654 }
1655 
1656 static int find_subprog(struct bpf_verifier_env *env, int off)
1657 {
1658 	struct bpf_subprog_info *p;
1659 
1660 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1661 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1662 	if (!p)
1663 		return -ENOENT;
1664 	return p - env->subprog_info;
1665 
1666 }
1667 
1668 static int add_subprog(struct bpf_verifier_env *env, int off)
1669 {
1670 	int insn_cnt = env->prog->len;
1671 	int ret;
1672 
1673 	if (off >= insn_cnt || off < 0) {
1674 		verbose(env, "call to invalid destination\n");
1675 		return -EINVAL;
1676 	}
1677 	ret = find_subprog(env, off);
1678 	if (ret >= 0)
1679 		return ret;
1680 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1681 		verbose(env, "too many subprograms\n");
1682 		return -E2BIG;
1683 	}
1684 	/* determine subprog starts. The end is one before the next starts */
1685 	env->subprog_info[env->subprog_cnt++].start = off;
1686 	sort(env->subprog_info, env->subprog_cnt,
1687 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1688 	return env->subprog_cnt - 1;
1689 }
1690 
1691 #define MAX_KFUNC_DESCS 256
1692 #define MAX_KFUNC_BTFS	256
1693 
1694 struct bpf_kfunc_desc {
1695 	struct btf_func_model func_model;
1696 	u32 func_id;
1697 	s32 imm;
1698 	u16 offset;
1699 };
1700 
1701 struct bpf_kfunc_btf {
1702 	struct btf *btf;
1703 	struct module *module;
1704 	u16 offset;
1705 };
1706 
1707 struct bpf_kfunc_desc_tab {
1708 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1709 	u32 nr_descs;
1710 };
1711 
1712 struct bpf_kfunc_btf_tab {
1713 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1714 	u32 nr_descs;
1715 };
1716 
1717 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1718 {
1719 	const struct bpf_kfunc_desc *d0 = a;
1720 	const struct bpf_kfunc_desc *d1 = b;
1721 
1722 	/* func_id is not greater than BTF_MAX_TYPE */
1723 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1724 }
1725 
1726 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1727 {
1728 	const struct bpf_kfunc_btf *d0 = a;
1729 	const struct bpf_kfunc_btf *d1 = b;
1730 
1731 	return d0->offset - d1->offset;
1732 }
1733 
1734 static const struct bpf_kfunc_desc *
1735 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1736 {
1737 	struct bpf_kfunc_desc desc = {
1738 		.func_id = func_id,
1739 		.offset = offset,
1740 	};
1741 	struct bpf_kfunc_desc_tab *tab;
1742 
1743 	tab = prog->aux->kfunc_tab;
1744 	return bsearch(&desc, tab->descs, tab->nr_descs,
1745 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1746 }
1747 
1748 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1749 					 s16 offset)
1750 {
1751 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1752 	struct bpf_kfunc_btf_tab *tab;
1753 	struct bpf_kfunc_btf *b;
1754 	struct module *mod;
1755 	struct btf *btf;
1756 	int btf_fd;
1757 
1758 	tab = env->prog->aux->kfunc_btf_tab;
1759 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1760 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1761 	if (!b) {
1762 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1763 			verbose(env, "too many different module BTFs\n");
1764 			return ERR_PTR(-E2BIG);
1765 		}
1766 
1767 		if (bpfptr_is_null(env->fd_array)) {
1768 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1769 			return ERR_PTR(-EPROTO);
1770 		}
1771 
1772 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1773 					    offset * sizeof(btf_fd),
1774 					    sizeof(btf_fd)))
1775 			return ERR_PTR(-EFAULT);
1776 
1777 		btf = btf_get_by_fd(btf_fd);
1778 		if (IS_ERR(btf)) {
1779 			verbose(env, "invalid module BTF fd specified\n");
1780 			return btf;
1781 		}
1782 
1783 		if (!btf_is_module(btf)) {
1784 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1785 			btf_put(btf);
1786 			return ERR_PTR(-EINVAL);
1787 		}
1788 
1789 		mod = btf_try_get_module(btf);
1790 		if (!mod) {
1791 			btf_put(btf);
1792 			return ERR_PTR(-ENXIO);
1793 		}
1794 
1795 		b = &tab->descs[tab->nr_descs++];
1796 		b->btf = btf;
1797 		b->module = mod;
1798 		b->offset = offset;
1799 
1800 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1801 		     kfunc_btf_cmp_by_off, NULL);
1802 	}
1803 	return b->btf;
1804 }
1805 
1806 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1807 {
1808 	if (!tab)
1809 		return;
1810 
1811 	while (tab->nr_descs--) {
1812 		module_put(tab->descs[tab->nr_descs].module);
1813 		btf_put(tab->descs[tab->nr_descs].btf);
1814 	}
1815 	kfree(tab);
1816 }
1817 
1818 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
1819 				       u32 func_id, s16 offset)
1820 {
1821 	if (offset) {
1822 		if (offset < 0) {
1823 			/* In the future, this can be allowed to increase limit
1824 			 * of fd index into fd_array, interpreted as u16.
1825 			 */
1826 			verbose(env, "negative offset disallowed for kernel module function call\n");
1827 			return ERR_PTR(-EINVAL);
1828 		}
1829 
1830 		return __find_kfunc_desc_btf(env, offset);
1831 	}
1832 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
1833 }
1834 
1835 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
1836 {
1837 	const struct btf_type *func, *func_proto;
1838 	struct bpf_kfunc_btf_tab *btf_tab;
1839 	struct bpf_kfunc_desc_tab *tab;
1840 	struct bpf_prog_aux *prog_aux;
1841 	struct bpf_kfunc_desc *desc;
1842 	const char *func_name;
1843 	struct btf *desc_btf;
1844 	unsigned long call_imm;
1845 	unsigned long addr;
1846 	int err;
1847 
1848 	prog_aux = env->prog->aux;
1849 	tab = prog_aux->kfunc_tab;
1850 	btf_tab = prog_aux->kfunc_btf_tab;
1851 	if (!tab) {
1852 		if (!btf_vmlinux) {
1853 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1854 			return -ENOTSUPP;
1855 		}
1856 
1857 		if (!env->prog->jit_requested) {
1858 			verbose(env, "JIT is required for calling kernel function\n");
1859 			return -ENOTSUPP;
1860 		}
1861 
1862 		if (!bpf_jit_supports_kfunc_call()) {
1863 			verbose(env, "JIT does not support calling kernel function\n");
1864 			return -ENOTSUPP;
1865 		}
1866 
1867 		if (!env->prog->gpl_compatible) {
1868 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1869 			return -EINVAL;
1870 		}
1871 
1872 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1873 		if (!tab)
1874 			return -ENOMEM;
1875 		prog_aux->kfunc_tab = tab;
1876 	}
1877 
1878 	/* func_id == 0 is always invalid, but instead of returning an error, be
1879 	 * conservative and wait until the code elimination pass before returning
1880 	 * error, so that invalid calls that get pruned out can be in BPF programs
1881 	 * loaded from userspace.  It is also required that offset be untouched
1882 	 * for such calls.
1883 	 */
1884 	if (!func_id && !offset)
1885 		return 0;
1886 
1887 	if (!btf_tab && offset) {
1888 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1889 		if (!btf_tab)
1890 			return -ENOMEM;
1891 		prog_aux->kfunc_btf_tab = btf_tab;
1892 	}
1893 
1894 	desc_btf = find_kfunc_desc_btf(env, func_id, offset);
1895 	if (IS_ERR(desc_btf)) {
1896 		verbose(env, "failed to find BTF for kernel function\n");
1897 		return PTR_ERR(desc_btf);
1898 	}
1899 
1900 	if (find_kfunc_desc(env->prog, func_id, offset))
1901 		return 0;
1902 
1903 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1904 		verbose(env, "too many different kernel function calls\n");
1905 		return -E2BIG;
1906 	}
1907 
1908 	func = btf_type_by_id(desc_btf, func_id);
1909 	if (!func || !btf_type_is_func(func)) {
1910 		verbose(env, "kernel btf_id %u is not a function\n",
1911 			func_id);
1912 		return -EINVAL;
1913 	}
1914 	func_proto = btf_type_by_id(desc_btf, func->type);
1915 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1916 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1917 			func_id);
1918 		return -EINVAL;
1919 	}
1920 
1921 	func_name = btf_name_by_offset(desc_btf, func->name_off);
1922 	addr = kallsyms_lookup_name(func_name);
1923 	if (!addr) {
1924 		verbose(env, "cannot find address for kernel function %s\n",
1925 			func_name);
1926 		return -EINVAL;
1927 	}
1928 
1929 	call_imm = BPF_CALL_IMM(addr);
1930 	/* Check whether or not the relative offset overflows desc->imm */
1931 	if ((unsigned long)(s32)call_imm != call_imm) {
1932 		verbose(env, "address of kernel function %s is out of range\n",
1933 			func_name);
1934 		return -EINVAL;
1935 	}
1936 
1937 	desc = &tab->descs[tab->nr_descs++];
1938 	desc->func_id = func_id;
1939 	desc->imm = call_imm;
1940 	desc->offset = offset;
1941 	err = btf_distill_func_proto(&env->log, desc_btf,
1942 				     func_proto, func_name,
1943 				     &desc->func_model);
1944 	if (!err)
1945 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1946 		     kfunc_desc_cmp_by_id_off, NULL);
1947 	return err;
1948 }
1949 
1950 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1951 {
1952 	const struct bpf_kfunc_desc *d0 = a;
1953 	const struct bpf_kfunc_desc *d1 = b;
1954 
1955 	if (d0->imm > d1->imm)
1956 		return 1;
1957 	else if (d0->imm < d1->imm)
1958 		return -1;
1959 	return 0;
1960 }
1961 
1962 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1963 {
1964 	struct bpf_kfunc_desc_tab *tab;
1965 
1966 	tab = prog->aux->kfunc_tab;
1967 	if (!tab)
1968 		return;
1969 
1970 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1971 	     kfunc_desc_cmp_by_imm, NULL);
1972 }
1973 
1974 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1975 {
1976 	return !!prog->aux->kfunc_tab;
1977 }
1978 
1979 const struct btf_func_model *
1980 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1981 			 const struct bpf_insn *insn)
1982 {
1983 	const struct bpf_kfunc_desc desc = {
1984 		.imm = insn->imm,
1985 	};
1986 	const struct bpf_kfunc_desc *res;
1987 	struct bpf_kfunc_desc_tab *tab;
1988 
1989 	tab = prog->aux->kfunc_tab;
1990 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1991 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1992 
1993 	return res ? &res->func_model : NULL;
1994 }
1995 
1996 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1997 {
1998 	struct bpf_subprog_info *subprog = env->subprog_info;
1999 	struct bpf_insn *insn = env->prog->insnsi;
2000 	int i, ret, insn_cnt = env->prog->len;
2001 
2002 	/* Add entry function. */
2003 	ret = add_subprog(env, 0);
2004 	if (ret)
2005 		return ret;
2006 
2007 	for (i = 0; i < insn_cnt; i++, insn++) {
2008 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2009 		    !bpf_pseudo_kfunc_call(insn))
2010 			continue;
2011 
2012 		if (!env->bpf_capable) {
2013 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2014 			return -EPERM;
2015 		}
2016 
2017 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2018 			ret = add_subprog(env, i + insn->imm + 1);
2019 		else
2020 			ret = add_kfunc_call(env, insn->imm, insn->off);
2021 
2022 		if (ret < 0)
2023 			return ret;
2024 	}
2025 
2026 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2027 	 * logic. 'subprog_cnt' should not be increased.
2028 	 */
2029 	subprog[env->subprog_cnt].start = insn_cnt;
2030 
2031 	if (env->log.level & BPF_LOG_LEVEL2)
2032 		for (i = 0; i < env->subprog_cnt; i++)
2033 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2034 
2035 	return 0;
2036 }
2037 
2038 static int check_subprogs(struct bpf_verifier_env *env)
2039 {
2040 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2041 	struct bpf_subprog_info *subprog = env->subprog_info;
2042 	struct bpf_insn *insn = env->prog->insnsi;
2043 	int insn_cnt = env->prog->len;
2044 
2045 	/* now check that all jumps are within the same subprog */
2046 	subprog_start = subprog[cur_subprog].start;
2047 	subprog_end = subprog[cur_subprog + 1].start;
2048 	for (i = 0; i < insn_cnt; i++) {
2049 		u8 code = insn[i].code;
2050 
2051 		if (code == (BPF_JMP | BPF_CALL) &&
2052 		    insn[i].imm == BPF_FUNC_tail_call &&
2053 		    insn[i].src_reg != BPF_PSEUDO_CALL)
2054 			subprog[cur_subprog].has_tail_call = true;
2055 		if (BPF_CLASS(code) == BPF_LD &&
2056 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2057 			subprog[cur_subprog].has_ld_abs = true;
2058 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2059 			goto next;
2060 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2061 			goto next;
2062 		off = i + insn[i].off + 1;
2063 		if (off < subprog_start || off >= subprog_end) {
2064 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2065 			return -EINVAL;
2066 		}
2067 next:
2068 		if (i == subprog_end - 1) {
2069 			/* to avoid fall-through from one subprog into another
2070 			 * the last insn of the subprog should be either exit
2071 			 * or unconditional jump back
2072 			 */
2073 			if (code != (BPF_JMP | BPF_EXIT) &&
2074 			    code != (BPF_JMP | BPF_JA)) {
2075 				verbose(env, "last insn is not an exit or jmp\n");
2076 				return -EINVAL;
2077 			}
2078 			subprog_start = subprog_end;
2079 			cur_subprog++;
2080 			if (cur_subprog < env->subprog_cnt)
2081 				subprog_end = subprog[cur_subprog + 1].start;
2082 		}
2083 	}
2084 	return 0;
2085 }
2086 
2087 /* Parentage chain of this register (or stack slot) should take care of all
2088  * issues like callee-saved registers, stack slot allocation time, etc.
2089  */
2090 static int mark_reg_read(struct bpf_verifier_env *env,
2091 			 const struct bpf_reg_state *state,
2092 			 struct bpf_reg_state *parent, u8 flag)
2093 {
2094 	bool writes = parent == state->parent; /* Observe write marks */
2095 	int cnt = 0;
2096 
2097 	while (parent) {
2098 		/* if read wasn't screened by an earlier write ... */
2099 		if (writes && state->live & REG_LIVE_WRITTEN)
2100 			break;
2101 		if (parent->live & REG_LIVE_DONE) {
2102 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2103 				reg_type_str(env, parent->type),
2104 				parent->var_off.value, parent->off);
2105 			return -EFAULT;
2106 		}
2107 		/* The first condition is more likely to be true than the
2108 		 * second, checked it first.
2109 		 */
2110 		if ((parent->live & REG_LIVE_READ) == flag ||
2111 		    parent->live & REG_LIVE_READ64)
2112 			/* The parentage chain never changes and
2113 			 * this parent was already marked as LIVE_READ.
2114 			 * There is no need to keep walking the chain again and
2115 			 * keep re-marking all parents as LIVE_READ.
2116 			 * This case happens when the same register is read
2117 			 * multiple times without writes into it in-between.
2118 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2119 			 * then no need to set the weak REG_LIVE_READ32.
2120 			 */
2121 			break;
2122 		/* ... then we depend on parent's value */
2123 		parent->live |= flag;
2124 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2125 		if (flag == REG_LIVE_READ64)
2126 			parent->live &= ~REG_LIVE_READ32;
2127 		state = parent;
2128 		parent = state->parent;
2129 		writes = true;
2130 		cnt++;
2131 	}
2132 
2133 	if (env->longest_mark_read_walk < cnt)
2134 		env->longest_mark_read_walk = cnt;
2135 	return 0;
2136 }
2137 
2138 /* This function is supposed to be used by the following 32-bit optimization
2139  * code only. It returns TRUE if the source or destination register operates
2140  * on 64-bit, otherwise return FALSE.
2141  */
2142 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2143 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2144 {
2145 	u8 code, class, op;
2146 
2147 	code = insn->code;
2148 	class = BPF_CLASS(code);
2149 	op = BPF_OP(code);
2150 	if (class == BPF_JMP) {
2151 		/* BPF_EXIT for "main" will reach here. Return TRUE
2152 		 * conservatively.
2153 		 */
2154 		if (op == BPF_EXIT)
2155 			return true;
2156 		if (op == BPF_CALL) {
2157 			/* BPF to BPF call will reach here because of marking
2158 			 * caller saved clobber with DST_OP_NO_MARK for which we
2159 			 * don't care the register def because they are anyway
2160 			 * marked as NOT_INIT already.
2161 			 */
2162 			if (insn->src_reg == BPF_PSEUDO_CALL)
2163 				return false;
2164 			/* Helper call will reach here because of arg type
2165 			 * check, conservatively return TRUE.
2166 			 */
2167 			if (t == SRC_OP)
2168 				return true;
2169 
2170 			return false;
2171 		}
2172 	}
2173 
2174 	if (class == BPF_ALU64 || class == BPF_JMP ||
2175 	    /* BPF_END always use BPF_ALU class. */
2176 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2177 		return true;
2178 
2179 	if (class == BPF_ALU || class == BPF_JMP32)
2180 		return false;
2181 
2182 	if (class == BPF_LDX) {
2183 		if (t != SRC_OP)
2184 			return BPF_SIZE(code) == BPF_DW;
2185 		/* LDX source must be ptr. */
2186 		return true;
2187 	}
2188 
2189 	if (class == BPF_STX) {
2190 		/* BPF_STX (including atomic variants) has multiple source
2191 		 * operands, one of which is a ptr. Check whether the caller is
2192 		 * asking about it.
2193 		 */
2194 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2195 			return true;
2196 		return BPF_SIZE(code) == BPF_DW;
2197 	}
2198 
2199 	if (class == BPF_LD) {
2200 		u8 mode = BPF_MODE(code);
2201 
2202 		/* LD_IMM64 */
2203 		if (mode == BPF_IMM)
2204 			return true;
2205 
2206 		/* Both LD_IND and LD_ABS return 32-bit data. */
2207 		if (t != SRC_OP)
2208 			return  false;
2209 
2210 		/* Implicit ctx ptr. */
2211 		if (regno == BPF_REG_6)
2212 			return true;
2213 
2214 		/* Explicit source could be any width. */
2215 		return true;
2216 	}
2217 
2218 	if (class == BPF_ST)
2219 		/* The only source register for BPF_ST is a ptr. */
2220 		return true;
2221 
2222 	/* Conservatively return true at default. */
2223 	return true;
2224 }
2225 
2226 /* Return the regno defined by the insn, or -1. */
2227 static int insn_def_regno(const struct bpf_insn *insn)
2228 {
2229 	switch (BPF_CLASS(insn->code)) {
2230 	case BPF_JMP:
2231 	case BPF_JMP32:
2232 	case BPF_ST:
2233 		return -1;
2234 	case BPF_STX:
2235 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2236 		    (insn->imm & BPF_FETCH)) {
2237 			if (insn->imm == BPF_CMPXCHG)
2238 				return BPF_REG_0;
2239 			else
2240 				return insn->src_reg;
2241 		} else {
2242 			return -1;
2243 		}
2244 	default:
2245 		return insn->dst_reg;
2246 	}
2247 }
2248 
2249 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2250 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2251 {
2252 	int dst_reg = insn_def_regno(insn);
2253 
2254 	if (dst_reg == -1)
2255 		return false;
2256 
2257 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2258 }
2259 
2260 static void mark_insn_zext(struct bpf_verifier_env *env,
2261 			   struct bpf_reg_state *reg)
2262 {
2263 	s32 def_idx = reg->subreg_def;
2264 
2265 	if (def_idx == DEF_NOT_SUBREG)
2266 		return;
2267 
2268 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2269 	/* The dst will be zero extended, so won't be sub-register anymore. */
2270 	reg->subreg_def = DEF_NOT_SUBREG;
2271 }
2272 
2273 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2274 			 enum reg_arg_type t)
2275 {
2276 	struct bpf_verifier_state *vstate = env->cur_state;
2277 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2278 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2279 	struct bpf_reg_state *reg, *regs = state->regs;
2280 	bool rw64;
2281 
2282 	if (regno >= MAX_BPF_REG) {
2283 		verbose(env, "R%d is invalid\n", regno);
2284 		return -EINVAL;
2285 	}
2286 
2287 	mark_reg_scratched(env, regno);
2288 
2289 	reg = &regs[regno];
2290 	rw64 = is_reg64(env, insn, regno, reg, t);
2291 	if (t == SRC_OP) {
2292 		/* check whether register used as source operand can be read */
2293 		if (reg->type == NOT_INIT) {
2294 			verbose(env, "R%d !read_ok\n", regno);
2295 			return -EACCES;
2296 		}
2297 		/* We don't need to worry about FP liveness because it's read-only */
2298 		if (regno == BPF_REG_FP)
2299 			return 0;
2300 
2301 		if (rw64)
2302 			mark_insn_zext(env, reg);
2303 
2304 		return mark_reg_read(env, reg, reg->parent,
2305 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2306 	} else {
2307 		/* check whether register used as dest operand can be written to */
2308 		if (regno == BPF_REG_FP) {
2309 			verbose(env, "frame pointer is read only\n");
2310 			return -EACCES;
2311 		}
2312 		reg->live |= REG_LIVE_WRITTEN;
2313 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2314 		if (t == DST_OP)
2315 			mark_reg_unknown(env, regs, regno);
2316 	}
2317 	return 0;
2318 }
2319 
2320 /* for any branch, call, exit record the history of jmps in the given state */
2321 static int push_jmp_history(struct bpf_verifier_env *env,
2322 			    struct bpf_verifier_state *cur)
2323 {
2324 	u32 cnt = cur->jmp_history_cnt;
2325 	struct bpf_idx_pair *p;
2326 
2327 	cnt++;
2328 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2329 	if (!p)
2330 		return -ENOMEM;
2331 	p[cnt - 1].idx = env->insn_idx;
2332 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2333 	cur->jmp_history = p;
2334 	cur->jmp_history_cnt = cnt;
2335 	return 0;
2336 }
2337 
2338 /* Backtrack one insn at a time. If idx is not at the top of recorded
2339  * history then previous instruction came from straight line execution.
2340  */
2341 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2342 			     u32 *history)
2343 {
2344 	u32 cnt = *history;
2345 
2346 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2347 		i = st->jmp_history[cnt - 1].prev_idx;
2348 		(*history)--;
2349 	} else {
2350 		i--;
2351 	}
2352 	return i;
2353 }
2354 
2355 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2356 {
2357 	const struct btf_type *func;
2358 	struct btf *desc_btf;
2359 
2360 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2361 		return NULL;
2362 
2363 	desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off);
2364 	if (IS_ERR(desc_btf))
2365 		return "<error>";
2366 
2367 	func = btf_type_by_id(desc_btf, insn->imm);
2368 	return btf_name_by_offset(desc_btf, func->name_off);
2369 }
2370 
2371 /* For given verifier state backtrack_insn() is called from the last insn to
2372  * the first insn. Its purpose is to compute a bitmask of registers and
2373  * stack slots that needs precision in the parent verifier state.
2374  */
2375 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2376 			  u32 *reg_mask, u64 *stack_mask)
2377 {
2378 	const struct bpf_insn_cbs cbs = {
2379 		.cb_call	= disasm_kfunc_name,
2380 		.cb_print	= verbose,
2381 		.private_data	= env,
2382 	};
2383 	struct bpf_insn *insn = env->prog->insnsi + idx;
2384 	u8 class = BPF_CLASS(insn->code);
2385 	u8 opcode = BPF_OP(insn->code);
2386 	u8 mode = BPF_MODE(insn->code);
2387 	u32 dreg = 1u << insn->dst_reg;
2388 	u32 sreg = 1u << insn->src_reg;
2389 	u32 spi;
2390 
2391 	if (insn->code == 0)
2392 		return 0;
2393 	if (env->log.level & BPF_LOG_LEVEL2) {
2394 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2395 		verbose(env, "%d: ", idx);
2396 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2397 	}
2398 
2399 	if (class == BPF_ALU || class == BPF_ALU64) {
2400 		if (!(*reg_mask & dreg))
2401 			return 0;
2402 		if (opcode == BPF_MOV) {
2403 			if (BPF_SRC(insn->code) == BPF_X) {
2404 				/* dreg = sreg
2405 				 * dreg needs precision after this insn
2406 				 * sreg needs precision before this insn
2407 				 */
2408 				*reg_mask &= ~dreg;
2409 				*reg_mask |= sreg;
2410 			} else {
2411 				/* dreg = K
2412 				 * dreg needs precision after this insn.
2413 				 * Corresponding register is already marked
2414 				 * as precise=true in this verifier state.
2415 				 * No further markings in parent are necessary
2416 				 */
2417 				*reg_mask &= ~dreg;
2418 			}
2419 		} else {
2420 			if (BPF_SRC(insn->code) == BPF_X) {
2421 				/* dreg += sreg
2422 				 * both dreg and sreg need precision
2423 				 * before this insn
2424 				 */
2425 				*reg_mask |= sreg;
2426 			} /* else dreg += K
2427 			   * dreg still needs precision before this insn
2428 			   */
2429 		}
2430 	} else if (class == BPF_LDX) {
2431 		if (!(*reg_mask & dreg))
2432 			return 0;
2433 		*reg_mask &= ~dreg;
2434 
2435 		/* scalars can only be spilled into stack w/o losing precision.
2436 		 * Load from any other memory can be zero extended.
2437 		 * The desire to keep that precision is already indicated
2438 		 * by 'precise' mark in corresponding register of this state.
2439 		 * No further tracking necessary.
2440 		 */
2441 		if (insn->src_reg != BPF_REG_FP)
2442 			return 0;
2443 
2444 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2445 		 * that [fp - off] slot contains scalar that needs to be
2446 		 * tracked with precision
2447 		 */
2448 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2449 		if (spi >= 64) {
2450 			verbose(env, "BUG spi %d\n", spi);
2451 			WARN_ONCE(1, "verifier backtracking bug");
2452 			return -EFAULT;
2453 		}
2454 		*stack_mask |= 1ull << spi;
2455 	} else if (class == BPF_STX || class == BPF_ST) {
2456 		if (*reg_mask & dreg)
2457 			/* stx & st shouldn't be using _scalar_ dst_reg
2458 			 * to access memory. It means backtracking
2459 			 * encountered a case of pointer subtraction.
2460 			 */
2461 			return -ENOTSUPP;
2462 		/* scalars can only be spilled into stack */
2463 		if (insn->dst_reg != BPF_REG_FP)
2464 			return 0;
2465 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2466 		if (spi >= 64) {
2467 			verbose(env, "BUG spi %d\n", spi);
2468 			WARN_ONCE(1, "verifier backtracking bug");
2469 			return -EFAULT;
2470 		}
2471 		if (!(*stack_mask & (1ull << spi)))
2472 			return 0;
2473 		*stack_mask &= ~(1ull << spi);
2474 		if (class == BPF_STX)
2475 			*reg_mask |= sreg;
2476 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2477 		if (opcode == BPF_CALL) {
2478 			if (insn->src_reg == BPF_PSEUDO_CALL)
2479 				return -ENOTSUPP;
2480 			/* regular helper call sets R0 */
2481 			*reg_mask &= ~1;
2482 			if (*reg_mask & 0x3f) {
2483 				/* if backtracing was looking for registers R1-R5
2484 				 * they should have been found already.
2485 				 */
2486 				verbose(env, "BUG regs %x\n", *reg_mask);
2487 				WARN_ONCE(1, "verifier backtracking bug");
2488 				return -EFAULT;
2489 			}
2490 		} else if (opcode == BPF_EXIT) {
2491 			return -ENOTSUPP;
2492 		}
2493 	} else if (class == BPF_LD) {
2494 		if (!(*reg_mask & dreg))
2495 			return 0;
2496 		*reg_mask &= ~dreg;
2497 		/* It's ld_imm64 or ld_abs or ld_ind.
2498 		 * For ld_imm64 no further tracking of precision
2499 		 * into parent is necessary
2500 		 */
2501 		if (mode == BPF_IND || mode == BPF_ABS)
2502 			/* to be analyzed */
2503 			return -ENOTSUPP;
2504 	}
2505 	return 0;
2506 }
2507 
2508 /* the scalar precision tracking algorithm:
2509  * . at the start all registers have precise=false.
2510  * . scalar ranges are tracked as normal through alu and jmp insns.
2511  * . once precise value of the scalar register is used in:
2512  *   .  ptr + scalar alu
2513  *   . if (scalar cond K|scalar)
2514  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2515  *   backtrack through the verifier states and mark all registers and
2516  *   stack slots with spilled constants that these scalar regisers
2517  *   should be precise.
2518  * . during state pruning two registers (or spilled stack slots)
2519  *   are equivalent if both are not precise.
2520  *
2521  * Note the verifier cannot simply walk register parentage chain,
2522  * since many different registers and stack slots could have been
2523  * used to compute single precise scalar.
2524  *
2525  * The approach of starting with precise=true for all registers and then
2526  * backtrack to mark a register as not precise when the verifier detects
2527  * that program doesn't care about specific value (e.g., when helper
2528  * takes register as ARG_ANYTHING parameter) is not safe.
2529  *
2530  * It's ok to walk single parentage chain of the verifier states.
2531  * It's possible that this backtracking will go all the way till 1st insn.
2532  * All other branches will be explored for needing precision later.
2533  *
2534  * The backtracking needs to deal with cases like:
2535  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2536  * r9 -= r8
2537  * r5 = r9
2538  * if r5 > 0x79f goto pc+7
2539  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2540  * r5 += 1
2541  * ...
2542  * call bpf_perf_event_output#25
2543  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2544  *
2545  * and this case:
2546  * r6 = 1
2547  * call foo // uses callee's r6 inside to compute r0
2548  * r0 += r6
2549  * if r0 == 0 goto
2550  *
2551  * to track above reg_mask/stack_mask needs to be independent for each frame.
2552  *
2553  * Also if parent's curframe > frame where backtracking started,
2554  * the verifier need to mark registers in both frames, otherwise callees
2555  * may incorrectly prune callers. This is similar to
2556  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2557  *
2558  * For now backtracking falls back into conservative marking.
2559  */
2560 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2561 				     struct bpf_verifier_state *st)
2562 {
2563 	struct bpf_func_state *func;
2564 	struct bpf_reg_state *reg;
2565 	int i, j;
2566 
2567 	/* big hammer: mark all scalars precise in this path.
2568 	 * pop_stack may still get !precise scalars.
2569 	 */
2570 	for (; st; st = st->parent)
2571 		for (i = 0; i <= st->curframe; i++) {
2572 			func = st->frame[i];
2573 			for (j = 0; j < BPF_REG_FP; j++) {
2574 				reg = &func->regs[j];
2575 				if (reg->type != SCALAR_VALUE)
2576 					continue;
2577 				reg->precise = true;
2578 			}
2579 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2580 				if (!is_spilled_reg(&func->stack[j]))
2581 					continue;
2582 				reg = &func->stack[j].spilled_ptr;
2583 				if (reg->type != SCALAR_VALUE)
2584 					continue;
2585 				reg->precise = true;
2586 			}
2587 		}
2588 }
2589 
2590 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2591 				  int spi)
2592 {
2593 	struct bpf_verifier_state *st = env->cur_state;
2594 	int first_idx = st->first_insn_idx;
2595 	int last_idx = env->insn_idx;
2596 	struct bpf_func_state *func;
2597 	struct bpf_reg_state *reg;
2598 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2599 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2600 	bool skip_first = true;
2601 	bool new_marks = false;
2602 	int i, err;
2603 
2604 	if (!env->bpf_capable)
2605 		return 0;
2606 
2607 	func = st->frame[st->curframe];
2608 	if (regno >= 0) {
2609 		reg = &func->regs[regno];
2610 		if (reg->type != SCALAR_VALUE) {
2611 			WARN_ONCE(1, "backtracing misuse");
2612 			return -EFAULT;
2613 		}
2614 		if (!reg->precise)
2615 			new_marks = true;
2616 		else
2617 			reg_mask = 0;
2618 		reg->precise = true;
2619 	}
2620 
2621 	while (spi >= 0) {
2622 		if (!is_spilled_reg(&func->stack[spi])) {
2623 			stack_mask = 0;
2624 			break;
2625 		}
2626 		reg = &func->stack[spi].spilled_ptr;
2627 		if (reg->type != SCALAR_VALUE) {
2628 			stack_mask = 0;
2629 			break;
2630 		}
2631 		if (!reg->precise)
2632 			new_marks = true;
2633 		else
2634 			stack_mask = 0;
2635 		reg->precise = true;
2636 		break;
2637 	}
2638 
2639 	if (!new_marks)
2640 		return 0;
2641 	if (!reg_mask && !stack_mask)
2642 		return 0;
2643 	for (;;) {
2644 		DECLARE_BITMAP(mask, 64);
2645 		u32 history = st->jmp_history_cnt;
2646 
2647 		if (env->log.level & BPF_LOG_LEVEL2)
2648 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2649 		for (i = last_idx;;) {
2650 			if (skip_first) {
2651 				err = 0;
2652 				skip_first = false;
2653 			} else {
2654 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2655 			}
2656 			if (err == -ENOTSUPP) {
2657 				mark_all_scalars_precise(env, st);
2658 				return 0;
2659 			} else if (err) {
2660 				return err;
2661 			}
2662 			if (!reg_mask && !stack_mask)
2663 				/* Found assignment(s) into tracked register in this state.
2664 				 * Since this state is already marked, just return.
2665 				 * Nothing to be tracked further in the parent state.
2666 				 */
2667 				return 0;
2668 			if (i == first_idx)
2669 				break;
2670 			i = get_prev_insn_idx(st, i, &history);
2671 			if (i >= env->prog->len) {
2672 				/* This can happen if backtracking reached insn 0
2673 				 * and there are still reg_mask or stack_mask
2674 				 * to backtrack.
2675 				 * It means the backtracking missed the spot where
2676 				 * particular register was initialized with a constant.
2677 				 */
2678 				verbose(env, "BUG backtracking idx %d\n", i);
2679 				WARN_ONCE(1, "verifier backtracking bug");
2680 				return -EFAULT;
2681 			}
2682 		}
2683 		st = st->parent;
2684 		if (!st)
2685 			break;
2686 
2687 		new_marks = false;
2688 		func = st->frame[st->curframe];
2689 		bitmap_from_u64(mask, reg_mask);
2690 		for_each_set_bit(i, mask, 32) {
2691 			reg = &func->regs[i];
2692 			if (reg->type != SCALAR_VALUE) {
2693 				reg_mask &= ~(1u << i);
2694 				continue;
2695 			}
2696 			if (!reg->precise)
2697 				new_marks = true;
2698 			reg->precise = true;
2699 		}
2700 
2701 		bitmap_from_u64(mask, stack_mask);
2702 		for_each_set_bit(i, mask, 64) {
2703 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2704 				/* the sequence of instructions:
2705 				 * 2: (bf) r3 = r10
2706 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2707 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2708 				 * doesn't contain jmps. It's backtracked
2709 				 * as a single block.
2710 				 * During backtracking insn 3 is not recognized as
2711 				 * stack access, so at the end of backtracking
2712 				 * stack slot fp-8 is still marked in stack_mask.
2713 				 * However the parent state may not have accessed
2714 				 * fp-8 and it's "unallocated" stack space.
2715 				 * In such case fallback to conservative.
2716 				 */
2717 				mark_all_scalars_precise(env, st);
2718 				return 0;
2719 			}
2720 
2721 			if (!is_spilled_reg(&func->stack[i])) {
2722 				stack_mask &= ~(1ull << i);
2723 				continue;
2724 			}
2725 			reg = &func->stack[i].spilled_ptr;
2726 			if (reg->type != SCALAR_VALUE) {
2727 				stack_mask &= ~(1ull << i);
2728 				continue;
2729 			}
2730 			if (!reg->precise)
2731 				new_marks = true;
2732 			reg->precise = true;
2733 		}
2734 		if (env->log.level & BPF_LOG_LEVEL2) {
2735 			verbose(env, "parent %s regs=%x stack=%llx marks:",
2736 				new_marks ? "didn't have" : "already had",
2737 				reg_mask, stack_mask);
2738 			print_verifier_state(env, func, true);
2739 		}
2740 
2741 		if (!reg_mask && !stack_mask)
2742 			break;
2743 		if (!new_marks)
2744 			break;
2745 
2746 		last_idx = st->last_insn_idx;
2747 		first_idx = st->first_insn_idx;
2748 	}
2749 	return 0;
2750 }
2751 
2752 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2753 {
2754 	return __mark_chain_precision(env, regno, -1);
2755 }
2756 
2757 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2758 {
2759 	return __mark_chain_precision(env, -1, spi);
2760 }
2761 
2762 static bool is_spillable_regtype(enum bpf_reg_type type)
2763 {
2764 	switch (base_type(type)) {
2765 	case PTR_TO_MAP_VALUE:
2766 	case PTR_TO_STACK:
2767 	case PTR_TO_CTX:
2768 	case PTR_TO_PACKET:
2769 	case PTR_TO_PACKET_META:
2770 	case PTR_TO_PACKET_END:
2771 	case PTR_TO_FLOW_KEYS:
2772 	case CONST_PTR_TO_MAP:
2773 	case PTR_TO_SOCKET:
2774 	case PTR_TO_SOCK_COMMON:
2775 	case PTR_TO_TCP_SOCK:
2776 	case PTR_TO_XDP_SOCK:
2777 	case PTR_TO_BTF_ID:
2778 	case PTR_TO_BUF:
2779 	case PTR_TO_MEM:
2780 	case PTR_TO_FUNC:
2781 	case PTR_TO_MAP_KEY:
2782 		return true;
2783 	default:
2784 		return false;
2785 	}
2786 }
2787 
2788 /* Does this register contain a constant zero? */
2789 static bool register_is_null(struct bpf_reg_state *reg)
2790 {
2791 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2792 }
2793 
2794 static bool register_is_const(struct bpf_reg_state *reg)
2795 {
2796 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2797 }
2798 
2799 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2800 {
2801 	return tnum_is_unknown(reg->var_off) &&
2802 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2803 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2804 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2805 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2806 }
2807 
2808 static bool register_is_bounded(struct bpf_reg_state *reg)
2809 {
2810 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2811 }
2812 
2813 static bool __is_pointer_value(bool allow_ptr_leaks,
2814 			       const struct bpf_reg_state *reg)
2815 {
2816 	if (allow_ptr_leaks)
2817 		return false;
2818 
2819 	return reg->type != SCALAR_VALUE;
2820 }
2821 
2822 static void save_register_state(struct bpf_func_state *state,
2823 				int spi, struct bpf_reg_state *reg,
2824 				int size)
2825 {
2826 	int i;
2827 
2828 	state->stack[spi].spilled_ptr = *reg;
2829 	if (size == BPF_REG_SIZE)
2830 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2831 
2832 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2833 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2834 
2835 	/* size < 8 bytes spill */
2836 	for (; i; i--)
2837 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2838 }
2839 
2840 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2841  * stack boundary and alignment are checked in check_mem_access()
2842  */
2843 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2844 				       /* stack frame we're writing to */
2845 				       struct bpf_func_state *state,
2846 				       int off, int size, int value_regno,
2847 				       int insn_idx)
2848 {
2849 	struct bpf_func_state *cur; /* state of the current function */
2850 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2851 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2852 	struct bpf_reg_state *reg = NULL;
2853 
2854 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2855 	if (err)
2856 		return err;
2857 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2858 	 * so it's aligned access and [off, off + size) are within stack limits
2859 	 */
2860 	if (!env->allow_ptr_leaks &&
2861 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2862 	    size != BPF_REG_SIZE) {
2863 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2864 		return -EACCES;
2865 	}
2866 
2867 	cur = env->cur_state->frame[env->cur_state->curframe];
2868 	if (value_regno >= 0)
2869 		reg = &cur->regs[value_regno];
2870 	if (!env->bypass_spec_v4) {
2871 		bool sanitize = reg && is_spillable_regtype(reg->type);
2872 
2873 		for (i = 0; i < size; i++) {
2874 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2875 				sanitize = true;
2876 				break;
2877 			}
2878 		}
2879 
2880 		if (sanitize)
2881 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2882 	}
2883 
2884 	mark_stack_slot_scratched(env, spi);
2885 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2886 	    !register_is_null(reg) && env->bpf_capable) {
2887 		if (dst_reg != BPF_REG_FP) {
2888 			/* The backtracking logic can only recognize explicit
2889 			 * stack slot address like [fp - 8]. Other spill of
2890 			 * scalar via different register has to be conservative.
2891 			 * Backtrack from here and mark all registers as precise
2892 			 * that contributed into 'reg' being a constant.
2893 			 */
2894 			err = mark_chain_precision(env, value_regno);
2895 			if (err)
2896 				return err;
2897 		}
2898 		save_register_state(state, spi, reg, size);
2899 	} else if (reg && is_spillable_regtype(reg->type)) {
2900 		/* register containing pointer is being spilled into stack */
2901 		if (size != BPF_REG_SIZE) {
2902 			verbose_linfo(env, insn_idx, "; ");
2903 			verbose(env, "invalid size of register spill\n");
2904 			return -EACCES;
2905 		}
2906 		if (state != cur && reg->type == PTR_TO_STACK) {
2907 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2908 			return -EINVAL;
2909 		}
2910 		save_register_state(state, spi, reg, size);
2911 	} else {
2912 		u8 type = STACK_MISC;
2913 
2914 		/* regular write of data into stack destroys any spilled ptr */
2915 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2916 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2917 		if (is_spilled_reg(&state->stack[spi]))
2918 			for (i = 0; i < BPF_REG_SIZE; i++)
2919 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
2920 
2921 		/* only mark the slot as written if all 8 bytes were written
2922 		 * otherwise read propagation may incorrectly stop too soon
2923 		 * when stack slots are partially written.
2924 		 * This heuristic means that read propagation will be
2925 		 * conservative, since it will add reg_live_read marks
2926 		 * to stack slots all the way to first state when programs
2927 		 * writes+reads less than 8 bytes
2928 		 */
2929 		if (size == BPF_REG_SIZE)
2930 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2931 
2932 		/* when we zero initialize stack slots mark them as such */
2933 		if (reg && register_is_null(reg)) {
2934 			/* backtracking doesn't work for STACK_ZERO yet. */
2935 			err = mark_chain_precision(env, value_regno);
2936 			if (err)
2937 				return err;
2938 			type = STACK_ZERO;
2939 		}
2940 
2941 		/* Mark slots affected by this stack write. */
2942 		for (i = 0; i < size; i++)
2943 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2944 				type;
2945 	}
2946 	return 0;
2947 }
2948 
2949 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2950  * known to contain a variable offset.
2951  * This function checks whether the write is permitted and conservatively
2952  * tracks the effects of the write, considering that each stack slot in the
2953  * dynamic range is potentially written to.
2954  *
2955  * 'off' includes 'regno->off'.
2956  * 'value_regno' can be -1, meaning that an unknown value is being written to
2957  * the stack.
2958  *
2959  * Spilled pointers in range are not marked as written because we don't know
2960  * what's going to be actually written. This means that read propagation for
2961  * future reads cannot be terminated by this write.
2962  *
2963  * For privileged programs, uninitialized stack slots are considered
2964  * initialized by this write (even though we don't know exactly what offsets
2965  * are going to be written to). The idea is that we don't want the verifier to
2966  * reject future reads that access slots written to through variable offsets.
2967  */
2968 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2969 				     /* func where register points to */
2970 				     struct bpf_func_state *state,
2971 				     int ptr_regno, int off, int size,
2972 				     int value_regno, int insn_idx)
2973 {
2974 	struct bpf_func_state *cur; /* state of the current function */
2975 	int min_off, max_off;
2976 	int i, err;
2977 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2978 	bool writing_zero = false;
2979 	/* set if the fact that we're writing a zero is used to let any
2980 	 * stack slots remain STACK_ZERO
2981 	 */
2982 	bool zero_used = false;
2983 
2984 	cur = env->cur_state->frame[env->cur_state->curframe];
2985 	ptr_reg = &cur->regs[ptr_regno];
2986 	min_off = ptr_reg->smin_value + off;
2987 	max_off = ptr_reg->smax_value + off + size;
2988 	if (value_regno >= 0)
2989 		value_reg = &cur->regs[value_regno];
2990 	if (value_reg && register_is_null(value_reg))
2991 		writing_zero = true;
2992 
2993 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2994 	if (err)
2995 		return err;
2996 
2997 
2998 	/* Variable offset writes destroy any spilled pointers in range. */
2999 	for (i = min_off; i < max_off; i++) {
3000 		u8 new_type, *stype;
3001 		int slot, spi;
3002 
3003 		slot = -i - 1;
3004 		spi = slot / BPF_REG_SIZE;
3005 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3006 		mark_stack_slot_scratched(env, spi);
3007 
3008 		if (!env->allow_ptr_leaks
3009 				&& *stype != NOT_INIT
3010 				&& *stype != SCALAR_VALUE) {
3011 			/* Reject the write if there's are spilled pointers in
3012 			 * range. If we didn't reject here, the ptr status
3013 			 * would be erased below (even though not all slots are
3014 			 * actually overwritten), possibly opening the door to
3015 			 * leaks.
3016 			 */
3017 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
3018 				insn_idx, i);
3019 			return -EINVAL;
3020 		}
3021 
3022 		/* Erase all spilled pointers. */
3023 		state->stack[spi].spilled_ptr.type = NOT_INIT;
3024 
3025 		/* Update the slot type. */
3026 		new_type = STACK_MISC;
3027 		if (writing_zero && *stype == STACK_ZERO) {
3028 			new_type = STACK_ZERO;
3029 			zero_used = true;
3030 		}
3031 		/* If the slot is STACK_INVALID, we check whether it's OK to
3032 		 * pretend that it will be initialized by this write. The slot
3033 		 * might not actually be written to, and so if we mark it as
3034 		 * initialized future reads might leak uninitialized memory.
3035 		 * For privileged programs, we will accept such reads to slots
3036 		 * that may or may not be written because, if we're reject
3037 		 * them, the error would be too confusing.
3038 		 */
3039 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
3040 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
3041 					insn_idx, i);
3042 			return -EINVAL;
3043 		}
3044 		*stype = new_type;
3045 	}
3046 	if (zero_used) {
3047 		/* backtracking doesn't work for STACK_ZERO yet. */
3048 		err = mark_chain_precision(env, value_regno);
3049 		if (err)
3050 			return err;
3051 	}
3052 	return 0;
3053 }
3054 
3055 /* When register 'dst_regno' is assigned some values from stack[min_off,
3056  * max_off), we set the register's type according to the types of the
3057  * respective stack slots. If all the stack values are known to be zeros, then
3058  * so is the destination reg. Otherwise, the register is considered to be
3059  * SCALAR. This function does not deal with register filling; the caller must
3060  * ensure that all spilled registers in the stack range have been marked as
3061  * read.
3062  */
3063 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3064 				/* func where src register points to */
3065 				struct bpf_func_state *ptr_state,
3066 				int min_off, int max_off, int dst_regno)
3067 {
3068 	struct bpf_verifier_state *vstate = env->cur_state;
3069 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3070 	int i, slot, spi;
3071 	u8 *stype;
3072 	int zeros = 0;
3073 
3074 	for (i = min_off; i < max_off; i++) {
3075 		slot = -i - 1;
3076 		spi = slot / BPF_REG_SIZE;
3077 		stype = ptr_state->stack[spi].slot_type;
3078 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3079 			break;
3080 		zeros++;
3081 	}
3082 	if (zeros == max_off - min_off) {
3083 		/* any access_size read into register is zero extended,
3084 		 * so the whole register == const_zero
3085 		 */
3086 		__mark_reg_const_zero(&state->regs[dst_regno]);
3087 		/* backtracking doesn't support STACK_ZERO yet,
3088 		 * so mark it precise here, so that later
3089 		 * backtracking can stop here.
3090 		 * Backtracking may not need this if this register
3091 		 * doesn't participate in pointer adjustment.
3092 		 * Forward propagation of precise flag is not
3093 		 * necessary either. This mark is only to stop
3094 		 * backtracking. Any register that contributed
3095 		 * to const 0 was marked precise before spill.
3096 		 */
3097 		state->regs[dst_regno].precise = true;
3098 	} else {
3099 		/* have read misc data from the stack */
3100 		mark_reg_unknown(env, state->regs, dst_regno);
3101 	}
3102 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3103 }
3104 
3105 /* Read the stack at 'off' and put the results into the register indicated by
3106  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3107  * spilled reg.
3108  *
3109  * 'dst_regno' can be -1, meaning that the read value is not going to a
3110  * register.
3111  *
3112  * The access is assumed to be within the current stack bounds.
3113  */
3114 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3115 				      /* func where src register points to */
3116 				      struct bpf_func_state *reg_state,
3117 				      int off, int size, int dst_regno)
3118 {
3119 	struct bpf_verifier_state *vstate = env->cur_state;
3120 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3121 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3122 	struct bpf_reg_state *reg;
3123 	u8 *stype, type;
3124 
3125 	stype = reg_state->stack[spi].slot_type;
3126 	reg = &reg_state->stack[spi].spilled_ptr;
3127 
3128 	if (is_spilled_reg(&reg_state->stack[spi])) {
3129 		u8 spill_size = 1;
3130 
3131 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3132 			spill_size++;
3133 
3134 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3135 			if (reg->type != SCALAR_VALUE) {
3136 				verbose_linfo(env, env->insn_idx, "; ");
3137 				verbose(env, "invalid size of register fill\n");
3138 				return -EACCES;
3139 			}
3140 
3141 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3142 			if (dst_regno < 0)
3143 				return 0;
3144 
3145 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3146 				/* The earlier check_reg_arg() has decided the
3147 				 * subreg_def for this insn.  Save it first.
3148 				 */
3149 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3150 
3151 				state->regs[dst_regno] = *reg;
3152 				state->regs[dst_regno].subreg_def = subreg_def;
3153 			} else {
3154 				for (i = 0; i < size; i++) {
3155 					type = stype[(slot - i) % BPF_REG_SIZE];
3156 					if (type == STACK_SPILL)
3157 						continue;
3158 					if (type == STACK_MISC)
3159 						continue;
3160 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3161 						off, i, size);
3162 					return -EACCES;
3163 				}
3164 				mark_reg_unknown(env, state->regs, dst_regno);
3165 			}
3166 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3167 			return 0;
3168 		}
3169 
3170 		if (dst_regno >= 0) {
3171 			/* restore register state from stack */
3172 			state->regs[dst_regno] = *reg;
3173 			/* mark reg as written since spilled pointer state likely
3174 			 * has its liveness marks cleared by is_state_visited()
3175 			 * which resets stack/reg liveness for state transitions
3176 			 */
3177 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3178 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3179 			/* If dst_regno==-1, the caller is asking us whether
3180 			 * it is acceptable to use this value as a SCALAR_VALUE
3181 			 * (e.g. for XADD).
3182 			 * We must not allow unprivileged callers to do that
3183 			 * with spilled pointers.
3184 			 */
3185 			verbose(env, "leaking pointer from stack off %d\n",
3186 				off);
3187 			return -EACCES;
3188 		}
3189 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3190 	} else {
3191 		for (i = 0; i < size; i++) {
3192 			type = stype[(slot - i) % BPF_REG_SIZE];
3193 			if (type == STACK_MISC)
3194 				continue;
3195 			if (type == STACK_ZERO)
3196 				continue;
3197 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3198 				off, i, size);
3199 			return -EACCES;
3200 		}
3201 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3202 		if (dst_regno >= 0)
3203 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3204 	}
3205 	return 0;
3206 }
3207 
3208 enum bpf_access_src {
3209 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3210 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3211 };
3212 
3213 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3214 					 int regno, int off, int access_size,
3215 					 bool zero_size_allowed,
3216 					 enum bpf_access_src type,
3217 					 struct bpf_call_arg_meta *meta);
3218 
3219 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3220 {
3221 	return cur_regs(env) + regno;
3222 }
3223 
3224 /* Read the stack at 'ptr_regno + off' and put the result into the register
3225  * 'dst_regno'.
3226  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3227  * but not its variable offset.
3228  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3229  *
3230  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3231  * filling registers (i.e. reads of spilled register cannot be detected when
3232  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3233  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3234  * offset; for a fixed offset check_stack_read_fixed_off should be used
3235  * instead.
3236  */
3237 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3238 				    int ptr_regno, int off, int size, int dst_regno)
3239 {
3240 	/* The state of the source register. */
3241 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3242 	struct bpf_func_state *ptr_state = func(env, reg);
3243 	int err;
3244 	int min_off, max_off;
3245 
3246 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3247 	 */
3248 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3249 					    false, ACCESS_DIRECT, NULL);
3250 	if (err)
3251 		return err;
3252 
3253 	min_off = reg->smin_value + off;
3254 	max_off = reg->smax_value + off;
3255 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3256 	return 0;
3257 }
3258 
3259 /* check_stack_read dispatches to check_stack_read_fixed_off or
3260  * check_stack_read_var_off.
3261  *
3262  * The caller must ensure that the offset falls within the allocated stack
3263  * bounds.
3264  *
3265  * 'dst_regno' is a register which will receive the value from the stack. It
3266  * can be -1, meaning that the read value is not going to a register.
3267  */
3268 static int check_stack_read(struct bpf_verifier_env *env,
3269 			    int ptr_regno, int off, int size,
3270 			    int dst_regno)
3271 {
3272 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3273 	struct bpf_func_state *state = func(env, reg);
3274 	int err;
3275 	/* Some accesses are only permitted with a static offset. */
3276 	bool var_off = !tnum_is_const(reg->var_off);
3277 
3278 	/* The offset is required to be static when reads don't go to a
3279 	 * register, in order to not leak pointers (see
3280 	 * check_stack_read_fixed_off).
3281 	 */
3282 	if (dst_regno < 0 && var_off) {
3283 		char tn_buf[48];
3284 
3285 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3286 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3287 			tn_buf, off, size);
3288 		return -EACCES;
3289 	}
3290 	/* Variable offset is prohibited for unprivileged mode for simplicity
3291 	 * since it requires corresponding support in Spectre masking for stack
3292 	 * ALU. See also retrieve_ptr_limit().
3293 	 */
3294 	if (!env->bypass_spec_v1 && var_off) {
3295 		char tn_buf[48];
3296 
3297 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3298 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3299 				ptr_regno, tn_buf);
3300 		return -EACCES;
3301 	}
3302 
3303 	if (!var_off) {
3304 		off += reg->var_off.value;
3305 		err = check_stack_read_fixed_off(env, state, off, size,
3306 						 dst_regno);
3307 	} else {
3308 		/* Variable offset stack reads need more conservative handling
3309 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3310 		 * branch.
3311 		 */
3312 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3313 					       dst_regno);
3314 	}
3315 	return err;
3316 }
3317 
3318 
3319 /* check_stack_write dispatches to check_stack_write_fixed_off or
3320  * check_stack_write_var_off.
3321  *
3322  * 'ptr_regno' is the register used as a pointer into the stack.
3323  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3324  * 'value_regno' is the register whose value we're writing to the stack. It can
3325  * be -1, meaning that we're not writing from a register.
3326  *
3327  * The caller must ensure that the offset falls within the maximum stack size.
3328  */
3329 static int check_stack_write(struct bpf_verifier_env *env,
3330 			     int ptr_regno, int off, int size,
3331 			     int value_regno, int insn_idx)
3332 {
3333 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3334 	struct bpf_func_state *state = func(env, reg);
3335 	int err;
3336 
3337 	if (tnum_is_const(reg->var_off)) {
3338 		off += reg->var_off.value;
3339 		err = check_stack_write_fixed_off(env, state, off, size,
3340 						  value_regno, insn_idx);
3341 	} else {
3342 		/* Variable offset stack reads need more conservative handling
3343 		 * than fixed offset ones.
3344 		 */
3345 		err = check_stack_write_var_off(env, state,
3346 						ptr_regno, off, size,
3347 						value_regno, insn_idx);
3348 	}
3349 	return err;
3350 }
3351 
3352 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3353 				 int off, int size, enum bpf_access_type type)
3354 {
3355 	struct bpf_reg_state *regs = cur_regs(env);
3356 	struct bpf_map *map = regs[regno].map_ptr;
3357 	u32 cap = bpf_map_flags_to_cap(map);
3358 
3359 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3360 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3361 			map->value_size, off, size);
3362 		return -EACCES;
3363 	}
3364 
3365 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3366 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3367 			map->value_size, off, size);
3368 		return -EACCES;
3369 	}
3370 
3371 	return 0;
3372 }
3373 
3374 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3375 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3376 			      int off, int size, u32 mem_size,
3377 			      bool zero_size_allowed)
3378 {
3379 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3380 	struct bpf_reg_state *reg;
3381 
3382 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3383 		return 0;
3384 
3385 	reg = &cur_regs(env)[regno];
3386 	switch (reg->type) {
3387 	case PTR_TO_MAP_KEY:
3388 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3389 			mem_size, off, size);
3390 		break;
3391 	case PTR_TO_MAP_VALUE:
3392 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3393 			mem_size, off, size);
3394 		break;
3395 	case PTR_TO_PACKET:
3396 	case PTR_TO_PACKET_META:
3397 	case PTR_TO_PACKET_END:
3398 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3399 			off, size, regno, reg->id, off, mem_size);
3400 		break;
3401 	case PTR_TO_MEM:
3402 	default:
3403 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3404 			mem_size, off, size);
3405 	}
3406 
3407 	return -EACCES;
3408 }
3409 
3410 /* check read/write into a memory region with possible variable offset */
3411 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3412 				   int off, int size, u32 mem_size,
3413 				   bool zero_size_allowed)
3414 {
3415 	struct bpf_verifier_state *vstate = env->cur_state;
3416 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3417 	struct bpf_reg_state *reg = &state->regs[regno];
3418 	int err;
3419 
3420 	/* We may have adjusted the register pointing to memory region, so we
3421 	 * need to try adding each of min_value and max_value to off
3422 	 * to make sure our theoretical access will be safe.
3423 	 *
3424 	 * The minimum value is only important with signed
3425 	 * comparisons where we can't assume the floor of a
3426 	 * value is 0.  If we are using signed variables for our
3427 	 * index'es we need to make sure that whatever we use
3428 	 * will have a set floor within our range.
3429 	 */
3430 	if (reg->smin_value < 0 &&
3431 	    (reg->smin_value == S64_MIN ||
3432 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3433 	      reg->smin_value + off < 0)) {
3434 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3435 			regno);
3436 		return -EACCES;
3437 	}
3438 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3439 				 mem_size, zero_size_allowed);
3440 	if (err) {
3441 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3442 			regno);
3443 		return err;
3444 	}
3445 
3446 	/* If we haven't set a max value then we need to bail since we can't be
3447 	 * sure we won't do bad things.
3448 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3449 	 */
3450 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3451 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3452 			regno);
3453 		return -EACCES;
3454 	}
3455 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3456 				 mem_size, zero_size_allowed);
3457 	if (err) {
3458 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3459 			regno);
3460 		return err;
3461 	}
3462 
3463 	return 0;
3464 }
3465 
3466 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
3467 			       const struct bpf_reg_state *reg, int regno,
3468 			       bool fixed_off_ok)
3469 {
3470 	/* Access to this pointer-typed register or passing it to a helper
3471 	 * is only allowed in its original, unmodified form.
3472 	 */
3473 
3474 	if (reg->off < 0) {
3475 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
3476 			reg_type_str(env, reg->type), regno, reg->off);
3477 		return -EACCES;
3478 	}
3479 
3480 	if (!fixed_off_ok && reg->off) {
3481 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
3482 			reg_type_str(env, reg->type), regno, reg->off);
3483 		return -EACCES;
3484 	}
3485 
3486 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3487 		char tn_buf[48];
3488 
3489 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3490 		verbose(env, "variable %s access var_off=%s disallowed\n",
3491 			reg_type_str(env, reg->type), tn_buf);
3492 		return -EACCES;
3493 	}
3494 
3495 	return 0;
3496 }
3497 
3498 int check_ptr_off_reg(struct bpf_verifier_env *env,
3499 		      const struct bpf_reg_state *reg, int regno)
3500 {
3501 	return __check_ptr_off_reg(env, reg, regno, false);
3502 }
3503 
3504 static int map_kptr_match_type(struct bpf_verifier_env *env,
3505 			       struct bpf_map_value_off_desc *off_desc,
3506 			       struct bpf_reg_state *reg, u32 regno)
3507 {
3508 	const char *targ_name = kernel_type_name(off_desc->kptr.btf, off_desc->kptr.btf_id);
3509 	int perm_flags = PTR_MAYBE_NULL;
3510 	const char *reg_name = "";
3511 
3512 	/* Only unreferenced case accepts untrusted pointers */
3513 	if (off_desc->type == BPF_KPTR_UNREF)
3514 		perm_flags |= PTR_UNTRUSTED;
3515 
3516 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
3517 		goto bad_type;
3518 
3519 	if (!btf_is_kernel(reg->btf)) {
3520 		verbose(env, "R%d must point to kernel BTF\n", regno);
3521 		return -EINVAL;
3522 	}
3523 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
3524 	reg_name = kernel_type_name(reg->btf, reg->btf_id);
3525 
3526 	/* For ref_ptr case, release function check should ensure we get one
3527 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
3528 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
3529 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
3530 	 * reg->off and reg->ref_obj_id are not needed here.
3531 	 */
3532 	if (__check_ptr_off_reg(env, reg, regno, true))
3533 		return -EACCES;
3534 
3535 	/* A full type match is needed, as BTF can be vmlinux or module BTF, and
3536 	 * we also need to take into account the reg->off.
3537 	 *
3538 	 * We want to support cases like:
3539 	 *
3540 	 * struct foo {
3541 	 *         struct bar br;
3542 	 *         struct baz bz;
3543 	 * };
3544 	 *
3545 	 * struct foo *v;
3546 	 * v = func();	      // PTR_TO_BTF_ID
3547 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
3548 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
3549 	 *                    // first member type of struct after comparison fails
3550 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
3551 	 *                    // to match type
3552 	 *
3553 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
3554 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
3555 	 * the struct to match type against first member of struct, i.e. reject
3556 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
3557 	 * strict mode to true for type match.
3558 	 */
3559 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
3560 				  off_desc->kptr.btf, off_desc->kptr.btf_id,
3561 				  off_desc->type == BPF_KPTR_REF))
3562 		goto bad_type;
3563 	return 0;
3564 bad_type:
3565 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
3566 		reg_type_str(env, reg->type), reg_name);
3567 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
3568 	if (off_desc->type == BPF_KPTR_UNREF)
3569 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
3570 			targ_name);
3571 	else
3572 		verbose(env, "\n");
3573 	return -EINVAL;
3574 }
3575 
3576 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
3577 				 int value_regno, int insn_idx,
3578 				 struct bpf_map_value_off_desc *off_desc)
3579 {
3580 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
3581 	int class = BPF_CLASS(insn->code);
3582 	struct bpf_reg_state *val_reg;
3583 
3584 	/* Things we already checked for in check_map_access and caller:
3585 	 *  - Reject cases where variable offset may touch kptr
3586 	 *  - size of access (must be BPF_DW)
3587 	 *  - tnum_is_const(reg->var_off)
3588 	 *  - off_desc->offset == off + reg->var_off.value
3589 	 */
3590 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
3591 	if (BPF_MODE(insn->code) != BPF_MEM) {
3592 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
3593 		return -EACCES;
3594 	}
3595 
3596 	/* We only allow loading referenced kptr, since it will be marked as
3597 	 * untrusted, similar to unreferenced kptr.
3598 	 */
3599 	if (class != BPF_LDX && off_desc->type == BPF_KPTR_REF) {
3600 		verbose(env, "store to referenced kptr disallowed\n");
3601 		return -EACCES;
3602 	}
3603 
3604 	if (class == BPF_LDX) {
3605 		val_reg = reg_state(env, value_regno);
3606 		/* We can simply mark the value_regno receiving the pointer
3607 		 * value from map as PTR_TO_BTF_ID, with the correct type.
3608 		 */
3609 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, off_desc->kptr.btf,
3610 				off_desc->kptr.btf_id, PTR_MAYBE_NULL | PTR_UNTRUSTED);
3611 		/* For mark_ptr_or_null_reg */
3612 		val_reg->id = ++env->id_gen;
3613 	} else if (class == BPF_STX) {
3614 		val_reg = reg_state(env, value_regno);
3615 		if (!register_is_null(val_reg) &&
3616 		    map_kptr_match_type(env, off_desc, val_reg, value_regno))
3617 			return -EACCES;
3618 	} else if (class == BPF_ST) {
3619 		if (insn->imm) {
3620 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
3621 				off_desc->offset);
3622 			return -EACCES;
3623 		}
3624 	} else {
3625 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
3626 		return -EACCES;
3627 	}
3628 	return 0;
3629 }
3630 
3631 /* check read/write into a map element with possible variable offset */
3632 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3633 			    int off, int size, bool zero_size_allowed,
3634 			    enum bpf_access_src src)
3635 {
3636 	struct bpf_verifier_state *vstate = env->cur_state;
3637 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3638 	struct bpf_reg_state *reg = &state->regs[regno];
3639 	struct bpf_map *map = reg->map_ptr;
3640 	int err;
3641 
3642 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3643 				      zero_size_allowed);
3644 	if (err)
3645 		return err;
3646 
3647 	if (map_value_has_spin_lock(map)) {
3648 		u32 lock = map->spin_lock_off;
3649 
3650 		/* if any part of struct bpf_spin_lock can be touched by
3651 		 * load/store reject this program.
3652 		 * To check that [x1, x2) overlaps with [y1, y2)
3653 		 * it is sufficient to check x1 < y2 && y1 < x2.
3654 		 */
3655 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3656 		     lock < reg->umax_value + off + size) {
3657 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3658 			return -EACCES;
3659 		}
3660 	}
3661 	if (map_value_has_timer(map)) {
3662 		u32 t = map->timer_off;
3663 
3664 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3665 		     t < reg->umax_value + off + size) {
3666 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3667 			return -EACCES;
3668 		}
3669 	}
3670 	if (map_value_has_kptrs(map)) {
3671 		struct bpf_map_value_off *tab = map->kptr_off_tab;
3672 		int i;
3673 
3674 		for (i = 0; i < tab->nr_off; i++) {
3675 			u32 p = tab->off[i].offset;
3676 
3677 			if (reg->smin_value + off < p + sizeof(u64) &&
3678 			    p < reg->umax_value + off + size) {
3679 				if (src != ACCESS_DIRECT) {
3680 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
3681 					return -EACCES;
3682 				}
3683 				if (!tnum_is_const(reg->var_off)) {
3684 					verbose(env, "kptr access cannot have variable offset\n");
3685 					return -EACCES;
3686 				}
3687 				if (p != off + reg->var_off.value) {
3688 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
3689 						p, off + reg->var_off.value);
3690 					return -EACCES;
3691 				}
3692 				if (size != bpf_size_to_bytes(BPF_DW)) {
3693 					verbose(env, "kptr access size must be BPF_DW\n");
3694 					return -EACCES;
3695 				}
3696 				break;
3697 			}
3698 		}
3699 	}
3700 	return err;
3701 }
3702 
3703 #define MAX_PACKET_OFF 0xffff
3704 
3705 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3706 				       const struct bpf_call_arg_meta *meta,
3707 				       enum bpf_access_type t)
3708 {
3709 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3710 
3711 	switch (prog_type) {
3712 	/* Program types only with direct read access go here! */
3713 	case BPF_PROG_TYPE_LWT_IN:
3714 	case BPF_PROG_TYPE_LWT_OUT:
3715 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3716 	case BPF_PROG_TYPE_SK_REUSEPORT:
3717 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3718 	case BPF_PROG_TYPE_CGROUP_SKB:
3719 		if (t == BPF_WRITE)
3720 			return false;
3721 		fallthrough;
3722 
3723 	/* Program types with direct read + write access go here! */
3724 	case BPF_PROG_TYPE_SCHED_CLS:
3725 	case BPF_PROG_TYPE_SCHED_ACT:
3726 	case BPF_PROG_TYPE_XDP:
3727 	case BPF_PROG_TYPE_LWT_XMIT:
3728 	case BPF_PROG_TYPE_SK_SKB:
3729 	case BPF_PROG_TYPE_SK_MSG:
3730 		if (meta)
3731 			return meta->pkt_access;
3732 
3733 		env->seen_direct_write = true;
3734 		return true;
3735 
3736 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3737 		if (t == BPF_WRITE)
3738 			env->seen_direct_write = true;
3739 
3740 		return true;
3741 
3742 	default:
3743 		return false;
3744 	}
3745 }
3746 
3747 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3748 			       int size, bool zero_size_allowed)
3749 {
3750 	struct bpf_reg_state *regs = cur_regs(env);
3751 	struct bpf_reg_state *reg = &regs[regno];
3752 	int err;
3753 
3754 	/* We may have added a variable offset to the packet pointer; but any
3755 	 * reg->range we have comes after that.  We are only checking the fixed
3756 	 * offset.
3757 	 */
3758 
3759 	/* We don't allow negative numbers, because we aren't tracking enough
3760 	 * detail to prove they're safe.
3761 	 */
3762 	if (reg->smin_value < 0) {
3763 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3764 			regno);
3765 		return -EACCES;
3766 	}
3767 
3768 	err = reg->range < 0 ? -EINVAL :
3769 	      __check_mem_access(env, regno, off, size, reg->range,
3770 				 zero_size_allowed);
3771 	if (err) {
3772 		verbose(env, "R%d offset is outside of the packet\n", regno);
3773 		return err;
3774 	}
3775 
3776 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3777 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3778 	 * otherwise find_good_pkt_pointers would have refused to set range info
3779 	 * that __check_mem_access would have rejected this pkt access.
3780 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3781 	 */
3782 	env->prog->aux->max_pkt_offset =
3783 		max_t(u32, env->prog->aux->max_pkt_offset,
3784 		      off + reg->umax_value + size - 1);
3785 
3786 	return err;
3787 }
3788 
3789 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3790 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3791 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3792 			    struct btf **btf, u32 *btf_id)
3793 {
3794 	struct bpf_insn_access_aux info = {
3795 		.reg_type = *reg_type,
3796 		.log = &env->log,
3797 	};
3798 
3799 	if (env->ops->is_valid_access &&
3800 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3801 		/* A non zero info.ctx_field_size indicates that this field is a
3802 		 * candidate for later verifier transformation to load the whole
3803 		 * field and then apply a mask when accessed with a narrower
3804 		 * access than actual ctx access size. A zero info.ctx_field_size
3805 		 * will only allow for whole field access and rejects any other
3806 		 * type of narrower access.
3807 		 */
3808 		*reg_type = info.reg_type;
3809 
3810 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
3811 			*btf = info.btf;
3812 			*btf_id = info.btf_id;
3813 		} else {
3814 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3815 		}
3816 		/* remember the offset of last byte accessed in ctx */
3817 		if (env->prog->aux->max_ctx_offset < off + size)
3818 			env->prog->aux->max_ctx_offset = off + size;
3819 		return 0;
3820 	}
3821 
3822 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3823 	return -EACCES;
3824 }
3825 
3826 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3827 				  int size)
3828 {
3829 	if (size < 0 || off < 0 ||
3830 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3831 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3832 			off, size);
3833 		return -EACCES;
3834 	}
3835 	return 0;
3836 }
3837 
3838 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3839 			     u32 regno, int off, int size,
3840 			     enum bpf_access_type t)
3841 {
3842 	struct bpf_reg_state *regs = cur_regs(env);
3843 	struct bpf_reg_state *reg = &regs[regno];
3844 	struct bpf_insn_access_aux info = {};
3845 	bool valid;
3846 
3847 	if (reg->smin_value < 0) {
3848 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3849 			regno);
3850 		return -EACCES;
3851 	}
3852 
3853 	switch (reg->type) {
3854 	case PTR_TO_SOCK_COMMON:
3855 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3856 		break;
3857 	case PTR_TO_SOCKET:
3858 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3859 		break;
3860 	case PTR_TO_TCP_SOCK:
3861 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3862 		break;
3863 	case PTR_TO_XDP_SOCK:
3864 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3865 		break;
3866 	default:
3867 		valid = false;
3868 	}
3869 
3870 
3871 	if (valid) {
3872 		env->insn_aux_data[insn_idx].ctx_field_size =
3873 			info.ctx_field_size;
3874 		return 0;
3875 	}
3876 
3877 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3878 		regno, reg_type_str(env, reg->type), off, size);
3879 
3880 	return -EACCES;
3881 }
3882 
3883 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3884 {
3885 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3886 }
3887 
3888 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3889 {
3890 	const struct bpf_reg_state *reg = reg_state(env, regno);
3891 
3892 	return reg->type == PTR_TO_CTX;
3893 }
3894 
3895 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3896 {
3897 	const struct bpf_reg_state *reg = reg_state(env, regno);
3898 
3899 	return type_is_sk_pointer(reg->type);
3900 }
3901 
3902 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3903 {
3904 	const struct bpf_reg_state *reg = reg_state(env, regno);
3905 
3906 	return type_is_pkt_pointer(reg->type);
3907 }
3908 
3909 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3910 {
3911 	const struct bpf_reg_state *reg = reg_state(env, regno);
3912 
3913 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3914 	return reg->type == PTR_TO_FLOW_KEYS;
3915 }
3916 
3917 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3918 				   const struct bpf_reg_state *reg,
3919 				   int off, int size, bool strict)
3920 {
3921 	struct tnum reg_off;
3922 	int ip_align;
3923 
3924 	/* Byte size accesses are always allowed. */
3925 	if (!strict || size == 1)
3926 		return 0;
3927 
3928 	/* For platforms that do not have a Kconfig enabling
3929 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3930 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3931 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3932 	 * to this code only in strict mode where we want to emulate
3933 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3934 	 * unconditional IP align value of '2'.
3935 	 */
3936 	ip_align = 2;
3937 
3938 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3939 	if (!tnum_is_aligned(reg_off, size)) {
3940 		char tn_buf[48];
3941 
3942 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3943 		verbose(env,
3944 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3945 			ip_align, tn_buf, reg->off, off, size);
3946 		return -EACCES;
3947 	}
3948 
3949 	return 0;
3950 }
3951 
3952 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3953 				       const struct bpf_reg_state *reg,
3954 				       const char *pointer_desc,
3955 				       int off, int size, bool strict)
3956 {
3957 	struct tnum reg_off;
3958 
3959 	/* Byte size accesses are always allowed. */
3960 	if (!strict || size == 1)
3961 		return 0;
3962 
3963 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3964 	if (!tnum_is_aligned(reg_off, size)) {
3965 		char tn_buf[48];
3966 
3967 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3968 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3969 			pointer_desc, tn_buf, reg->off, off, size);
3970 		return -EACCES;
3971 	}
3972 
3973 	return 0;
3974 }
3975 
3976 static int check_ptr_alignment(struct bpf_verifier_env *env,
3977 			       const struct bpf_reg_state *reg, int off,
3978 			       int size, bool strict_alignment_once)
3979 {
3980 	bool strict = env->strict_alignment || strict_alignment_once;
3981 	const char *pointer_desc = "";
3982 
3983 	switch (reg->type) {
3984 	case PTR_TO_PACKET:
3985 	case PTR_TO_PACKET_META:
3986 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3987 		 * right in front, treat it the very same way.
3988 		 */
3989 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3990 	case PTR_TO_FLOW_KEYS:
3991 		pointer_desc = "flow keys ";
3992 		break;
3993 	case PTR_TO_MAP_KEY:
3994 		pointer_desc = "key ";
3995 		break;
3996 	case PTR_TO_MAP_VALUE:
3997 		pointer_desc = "value ";
3998 		break;
3999 	case PTR_TO_CTX:
4000 		pointer_desc = "context ";
4001 		break;
4002 	case PTR_TO_STACK:
4003 		pointer_desc = "stack ";
4004 		/* The stack spill tracking logic in check_stack_write_fixed_off()
4005 		 * and check_stack_read_fixed_off() relies on stack accesses being
4006 		 * aligned.
4007 		 */
4008 		strict = true;
4009 		break;
4010 	case PTR_TO_SOCKET:
4011 		pointer_desc = "sock ";
4012 		break;
4013 	case PTR_TO_SOCK_COMMON:
4014 		pointer_desc = "sock_common ";
4015 		break;
4016 	case PTR_TO_TCP_SOCK:
4017 		pointer_desc = "tcp_sock ";
4018 		break;
4019 	case PTR_TO_XDP_SOCK:
4020 		pointer_desc = "xdp_sock ";
4021 		break;
4022 	default:
4023 		break;
4024 	}
4025 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
4026 					   strict);
4027 }
4028 
4029 static int update_stack_depth(struct bpf_verifier_env *env,
4030 			      const struct bpf_func_state *func,
4031 			      int off)
4032 {
4033 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
4034 
4035 	if (stack >= -off)
4036 		return 0;
4037 
4038 	/* update known max for given subprogram */
4039 	env->subprog_info[func->subprogno].stack_depth = -off;
4040 	return 0;
4041 }
4042 
4043 /* starting from main bpf function walk all instructions of the function
4044  * and recursively walk all callees that given function can call.
4045  * Ignore jump and exit insns.
4046  * Since recursion is prevented by check_cfg() this algorithm
4047  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
4048  */
4049 static int check_max_stack_depth(struct bpf_verifier_env *env)
4050 {
4051 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
4052 	struct bpf_subprog_info *subprog = env->subprog_info;
4053 	struct bpf_insn *insn = env->prog->insnsi;
4054 	bool tail_call_reachable = false;
4055 	int ret_insn[MAX_CALL_FRAMES];
4056 	int ret_prog[MAX_CALL_FRAMES];
4057 	int j;
4058 
4059 process_func:
4060 	/* protect against potential stack overflow that might happen when
4061 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
4062 	 * depth for such case down to 256 so that the worst case scenario
4063 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
4064 	 * 8k).
4065 	 *
4066 	 * To get the idea what might happen, see an example:
4067 	 * func1 -> sub rsp, 128
4068 	 *  subfunc1 -> sub rsp, 256
4069 	 *  tailcall1 -> add rsp, 256
4070 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
4071 	 *   subfunc2 -> sub rsp, 64
4072 	 *   subfunc22 -> sub rsp, 128
4073 	 *   tailcall2 -> add rsp, 128
4074 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
4075 	 *
4076 	 * tailcall will unwind the current stack frame but it will not get rid
4077 	 * of caller's stack as shown on the example above.
4078 	 */
4079 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
4080 		verbose(env,
4081 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
4082 			depth);
4083 		return -EACCES;
4084 	}
4085 	/* round up to 32-bytes, since this is granularity
4086 	 * of interpreter stack size
4087 	 */
4088 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4089 	if (depth > MAX_BPF_STACK) {
4090 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
4091 			frame + 1, depth);
4092 		return -EACCES;
4093 	}
4094 continue_func:
4095 	subprog_end = subprog[idx + 1].start;
4096 	for (; i < subprog_end; i++) {
4097 		int next_insn;
4098 
4099 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
4100 			continue;
4101 		/* remember insn and function to return to */
4102 		ret_insn[frame] = i + 1;
4103 		ret_prog[frame] = idx;
4104 
4105 		/* find the callee */
4106 		next_insn = i + insn[i].imm + 1;
4107 		idx = find_subprog(env, next_insn);
4108 		if (idx < 0) {
4109 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4110 				  next_insn);
4111 			return -EFAULT;
4112 		}
4113 		if (subprog[idx].is_async_cb) {
4114 			if (subprog[idx].has_tail_call) {
4115 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
4116 				return -EFAULT;
4117 			}
4118 			 /* async callbacks don't increase bpf prog stack size */
4119 			continue;
4120 		}
4121 		i = next_insn;
4122 
4123 		if (subprog[idx].has_tail_call)
4124 			tail_call_reachable = true;
4125 
4126 		frame++;
4127 		if (frame >= MAX_CALL_FRAMES) {
4128 			verbose(env, "the call stack of %d frames is too deep !\n",
4129 				frame);
4130 			return -E2BIG;
4131 		}
4132 		goto process_func;
4133 	}
4134 	/* if tail call got detected across bpf2bpf calls then mark each of the
4135 	 * currently present subprog frames as tail call reachable subprogs;
4136 	 * this info will be utilized by JIT so that we will be preserving the
4137 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
4138 	 */
4139 	if (tail_call_reachable)
4140 		for (j = 0; j < frame; j++)
4141 			subprog[ret_prog[j]].tail_call_reachable = true;
4142 	if (subprog[0].tail_call_reachable)
4143 		env->prog->aux->tail_call_reachable = true;
4144 
4145 	/* end of for() loop means the last insn of the 'subprog'
4146 	 * was reached. Doesn't matter whether it was JA or EXIT
4147 	 */
4148 	if (frame == 0)
4149 		return 0;
4150 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
4151 	frame--;
4152 	i = ret_insn[frame];
4153 	idx = ret_prog[frame];
4154 	goto continue_func;
4155 }
4156 
4157 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
4158 static int get_callee_stack_depth(struct bpf_verifier_env *env,
4159 				  const struct bpf_insn *insn, int idx)
4160 {
4161 	int start = idx + insn->imm + 1, subprog;
4162 
4163 	subprog = find_subprog(env, start);
4164 	if (subprog < 0) {
4165 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
4166 			  start);
4167 		return -EFAULT;
4168 	}
4169 	return env->subprog_info[subprog].stack_depth;
4170 }
4171 #endif
4172 
4173 static int __check_buffer_access(struct bpf_verifier_env *env,
4174 				 const char *buf_info,
4175 				 const struct bpf_reg_state *reg,
4176 				 int regno, int off, int size)
4177 {
4178 	if (off < 0) {
4179 		verbose(env,
4180 			"R%d invalid %s buffer access: off=%d, size=%d\n",
4181 			regno, buf_info, off, size);
4182 		return -EACCES;
4183 	}
4184 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4185 		char tn_buf[48];
4186 
4187 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4188 		verbose(env,
4189 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
4190 			regno, off, tn_buf);
4191 		return -EACCES;
4192 	}
4193 
4194 	return 0;
4195 }
4196 
4197 static int check_tp_buffer_access(struct bpf_verifier_env *env,
4198 				  const struct bpf_reg_state *reg,
4199 				  int regno, int off, int size)
4200 {
4201 	int err;
4202 
4203 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
4204 	if (err)
4205 		return err;
4206 
4207 	if (off + size > env->prog->aux->max_tp_access)
4208 		env->prog->aux->max_tp_access = off + size;
4209 
4210 	return 0;
4211 }
4212 
4213 static int check_buffer_access(struct bpf_verifier_env *env,
4214 			       const struct bpf_reg_state *reg,
4215 			       int regno, int off, int size,
4216 			       bool zero_size_allowed,
4217 			       u32 *max_access)
4218 {
4219 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
4220 	int err;
4221 
4222 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4223 	if (err)
4224 		return err;
4225 
4226 	if (off + size > *max_access)
4227 		*max_access = off + size;
4228 
4229 	return 0;
4230 }
4231 
4232 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4233 static void zext_32_to_64(struct bpf_reg_state *reg)
4234 {
4235 	reg->var_off = tnum_subreg(reg->var_off);
4236 	__reg_assign_32_into_64(reg);
4237 }
4238 
4239 /* truncate register to smaller size (in bytes)
4240  * must be called with size < BPF_REG_SIZE
4241  */
4242 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4243 {
4244 	u64 mask;
4245 
4246 	/* clear high bits in bit representation */
4247 	reg->var_off = tnum_cast(reg->var_off, size);
4248 
4249 	/* fix arithmetic bounds */
4250 	mask = ((u64)1 << (size * 8)) - 1;
4251 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4252 		reg->umin_value &= mask;
4253 		reg->umax_value &= mask;
4254 	} else {
4255 		reg->umin_value = 0;
4256 		reg->umax_value = mask;
4257 	}
4258 	reg->smin_value = reg->umin_value;
4259 	reg->smax_value = reg->umax_value;
4260 
4261 	/* If size is smaller than 32bit register the 32bit register
4262 	 * values are also truncated so we push 64-bit bounds into
4263 	 * 32-bit bounds. Above were truncated < 32-bits already.
4264 	 */
4265 	if (size >= 4)
4266 		return;
4267 	__reg_combine_64_into_32(reg);
4268 }
4269 
4270 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4271 {
4272 	/* A map is considered read-only if the following condition are true:
4273 	 *
4274 	 * 1) BPF program side cannot change any of the map content. The
4275 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4276 	 *    and was set at map creation time.
4277 	 * 2) The map value(s) have been initialized from user space by a
4278 	 *    loader and then "frozen", such that no new map update/delete
4279 	 *    operations from syscall side are possible for the rest of
4280 	 *    the map's lifetime from that point onwards.
4281 	 * 3) Any parallel/pending map update/delete operations from syscall
4282 	 *    side have been completed. Only after that point, it's safe to
4283 	 *    assume that map value(s) are immutable.
4284 	 */
4285 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4286 	       READ_ONCE(map->frozen) &&
4287 	       !bpf_map_write_active(map);
4288 }
4289 
4290 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4291 {
4292 	void *ptr;
4293 	u64 addr;
4294 	int err;
4295 
4296 	err = map->ops->map_direct_value_addr(map, &addr, off);
4297 	if (err)
4298 		return err;
4299 	ptr = (void *)(long)addr + off;
4300 
4301 	switch (size) {
4302 	case sizeof(u8):
4303 		*val = (u64)*(u8 *)ptr;
4304 		break;
4305 	case sizeof(u16):
4306 		*val = (u64)*(u16 *)ptr;
4307 		break;
4308 	case sizeof(u32):
4309 		*val = (u64)*(u32 *)ptr;
4310 		break;
4311 	case sizeof(u64):
4312 		*val = *(u64 *)ptr;
4313 		break;
4314 	default:
4315 		return -EINVAL;
4316 	}
4317 	return 0;
4318 }
4319 
4320 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4321 				   struct bpf_reg_state *regs,
4322 				   int regno, int off, int size,
4323 				   enum bpf_access_type atype,
4324 				   int value_regno)
4325 {
4326 	struct bpf_reg_state *reg = regs + regno;
4327 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4328 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4329 	enum bpf_type_flag flag = 0;
4330 	u32 btf_id;
4331 	int ret;
4332 
4333 	if (off < 0) {
4334 		verbose(env,
4335 			"R%d is ptr_%s invalid negative access: off=%d\n",
4336 			regno, tname, off);
4337 		return -EACCES;
4338 	}
4339 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4340 		char tn_buf[48];
4341 
4342 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4343 		verbose(env,
4344 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4345 			regno, tname, off, tn_buf);
4346 		return -EACCES;
4347 	}
4348 
4349 	if (reg->type & MEM_USER) {
4350 		verbose(env,
4351 			"R%d is ptr_%s access user memory: off=%d\n",
4352 			regno, tname, off);
4353 		return -EACCES;
4354 	}
4355 
4356 	if (reg->type & MEM_PERCPU) {
4357 		verbose(env,
4358 			"R%d is ptr_%s access percpu memory: off=%d\n",
4359 			regno, tname, off);
4360 		return -EACCES;
4361 	}
4362 
4363 	if (env->ops->btf_struct_access) {
4364 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4365 						  off, size, atype, &btf_id, &flag);
4366 	} else {
4367 		if (atype != BPF_READ) {
4368 			verbose(env, "only read is supported\n");
4369 			return -EACCES;
4370 		}
4371 
4372 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4373 					atype, &btf_id, &flag);
4374 	}
4375 
4376 	if (ret < 0)
4377 		return ret;
4378 
4379 	/* If this is an untrusted pointer, all pointers formed by walking it
4380 	 * also inherit the untrusted flag.
4381 	 */
4382 	if (type_flag(reg->type) & PTR_UNTRUSTED)
4383 		flag |= PTR_UNTRUSTED;
4384 
4385 	if (atype == BPF_READ && value_regno >= 0)
4386 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
4387 
4388 	return 0;
4389 }
4390 
4391 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4392 				   struct bpf_reg_state *regs,
4393 				   int regno, int off, int size,
4394 				   enum bpf_access_type atype,
4395 				   int value_regno)
4396 {
4397 	struct bpf_reg_state *reg = regs + regno;
4398 	struct bpf_map *map = reg->map_ptr;
4399 	enum bpf_type_flag flag = 0;
4400 	const struct btf_type *t;
4401 	const char *tname;
4402 	u32 btf_id;
4403 	int ret;
4404 
4405 	if (!btf_vmlinux) {
4406 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4407 		return -ENOTSUPP;
4408 	}
4409 
4410 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4411 		verbose(env, "map_ptr access not supported for map type %d\n",
4412 			map->map_type);
4413 		return -ENOTSUPP;
4414 	}
4415 
4416 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4417 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4418 
4419 	if (!env->allow_ptr_to_map_access) {
4420 		verbose(env,
4421 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4422 			tname);
4423 		return -EPERM;
4424 	}
4425 
4426 	if (off < 0) {
4427 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4428 			regno, tname, off);
4429 		return -EACCES;
4430 	}
4431 
4432 	if (atype != BPF_READ) {
4433 		verbose(env, "only read from %s is supported\n", tname);
4434 		return -EACCES;
4435 	}
4436 
4437 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id, &flag);
4438 	if (ret < 0)
4439 		return ret;
4440 
4441 	if (value_regno >= 0)
4442 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
4443 
4444 	return 0;
4445 }
4446 
4447 /* Check that the stack access at the given offset is within bounds. The
4448  * maximum valid offset is -1.
4449  *
4450  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4451  * -state->allocated_stack for reads.
4452  */
4453 static int check_stack_slot_within_bounds(int off,
4454 					  struct bpf_func_state *state,
4455 					  enum bpf_access_type t)
4456 {
4457 	int min_valid_off;
4458 
4459 	if (t == BPF_WRITE)
4460 		min_valid_off = -MAX_BPF_STACK;
4461 	else
4462 		min_valid_off = -state->allocated_stack;
4463 
4464 	if (off < min_valid_off || off > -1)
4465 		return -EACCES;
4466 	return 0;
4467 }
4468 
4469 /* Check that the stack access at 'regno + off' falls within the maximum stack
4470  * bounds.
4471  *
4472  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4473  */
4474 static int check_stack_access_within_bounds(
4475 		struct bpf_verifier_env *env,
4476 		int regno, int off, int access_size,
4477 		enum bpf_access_src src, enum bpf_access_type type)
4478 {
4479 	struct bpf_reg_state *regs = cur_regs(env);
4480 	struct bpf_reg_state *reg = regs + regno;
4481 	struct bpf_func_state *state = func(env, reg);
4482 	int min_off, max_off;
4483 	int err;
4484 	char *err_extra;
4485 
4486 	if (src == ACCESS_HELPER)
4487 		/* We don't know if helpers are reading or writing (or both). */
4488 		err_extra = " indirect access to";
4489 	else if (type == BPF_READ)
4490 		err_extra = " read from";
4491 	else
4492 		err_extra = " write to";
4493 
4494 	if (tnum_is_const(reg->var_off)) {
4495 		min_off = reg->var_off.value + off;
4496 		if (access_size > 0)
4497 			max_off = min_off + access_size - 1;
4498 		else
4499 			max_off = min_off;
4500 	} else {
4501 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4502 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4503 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4504 				err_extra, regno);
4505 			return -EACCES;
4506 		}
4507 		min_off = reg->smin_value + off;
4508 		if (access_size > 0)
4509 			max_off = reg->smax_value + off + access_size - 1;
4510 		else
4511 			max_off = min_off;
4512 	}
4513 
4514 	err = check_stack_slot_within_bounds(min_off, state, type);
4515 	if (!err)
4516 		err = check_stack_slot_within_bounds(max_off, state, type);
4517 
4518 	if (err) {
4519 		if (tnum_is_const(reg->var_off)) {
4520 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4521 				err_extra, regno, off, access_size);
4522 		} else {
4523 			char tn_buf[48];
4524 
4525 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4526 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4527 				err_extra, regno, tn_buf, access_size);
4528 		}
4529 	}
4530 	return err;
4531 }
4532 
4533 /* check whether memory at (regno + off) is accessible for t = (read | write)
4534  * if t==write, value_regno is a register which value is stored into memory
4535  * if t==read, value_regno is a register which will receive the value from memory
4536  * if t==write && value_regno==-1, some unknown value is stored into memory
4537  * if t==read && value_regno==-1, don't care what we read from memory
4538  */
4539 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4540 			    int off, int bpf_size, enum bpf_access_type t,
4541 			    int value_regno, bool strict_alignment_once)
4542 {
4543 	struct bpf_reg_state *regs = cur_regs(env);
4544 	struct bpf_reg_state *reg = regs + regno;
4545 	struct bpf_func_state *state;
4546 	int size, err = 0;
4547 
4548 	size = bpf_size_to_bytes(bpf_size);
4549 	if (size < 0)
4550 		return size;
4551 
4552 	/* alignment checks will add in reg->off themselves */
4553 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4554 	if (err)
4555 		return err;
4556 
4557 	/* for access checks, reg->off is just part of off */
4558 	off += reg->off;
4559 
4560 	if (reg->type == PTR_TO_MAP_KEY) {
4561 		if (t == BPF_WRITE) {
4562 			verbose(env, "write to change key R%d not allowed\n", regno);
4563 			return -EACCES;
4564 		}
4565 
4566 		err = check_mem_region_access(env, regno, off, size,
4567 					      reg->map_ptr->key_size, false);
4568 		if (err)
4569 			return err;
4570 		if (value_regno >= 0)
4571 			mark_reg_unknown(env, regs, value_regno);
4572 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4573 		struct bpf_map_value_off_desc *kptr_off_desc = NULL;
4574 
4575 		if (t == BPF_WRITE && value_regno >= 0 &&
4576 		    is_pointer_value(env, value_regno)) {
4577 			verbose(env, "R%d leaks addr into map\n", value_regno);
4578 			return -EACCES;
4579 		}
4580 		err = check_map_access_type(env, regno, off, size, t);
4581 		if (err)
4582 			return err;
4583 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
4584 		if (err)
4585 			return err;
4586 		if (tnum_is_const(reg->var_off))
4587 			kptr_off_desc = bpf_map_kptr_off_contains(reg->map_ptr,
4588 								  off + reg->var_off.value);
4589 		if (kptr_off_desc) {
4590 			err = check_map_kptr_access(env, regno, value_regno, insn_idx,
4591 						    kptr_off_desc);
4592 		} else if (t == BPF_READ && value_regno >= 0) {
4593 			struct bpf_map *map = reg->map_ptr;
4594 
4595 			/* if map is read-only, track its contents as scalars */
4596 			if (tnum_is_const(reg->var_off) &&
4597 			    bpf_map_is_rdonly(map) &&
4598 			    map->ops->map_direct_value_addr) {
4599 				int map_off = off + reg->var_off.value;
4600 				u64 val = 0;
4601 
4602 				err = bpf_map_direct_read(map, map_off, size,
4603 							  &val);
4604 				if (err)
4605 					return err;
4606 
4607 				regs[value_regno].type = SCALAR_VALUE;
4608 				__mark_reg_known(&regs[value_regno], val);
4609 			} else {
4610 				mark_reg_unknown(env, regs, value_regno);
4611 			}
4612 		}
4613 	} else if (base_type(reg->type) == PTR_TO_MEM) {
4614 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4615 
4616 		if (type_may_be_null(reg->type)) {
4617 			verbose(env, "R%d invalid mem access '%s'\n", regno,
4618 				reg_type_str(env, reg->type));
4619 			return -EACCES;
4620 		}
4621 
4622 		if (t == BPF_WRITE && rdonly_mem) {
4623 			verbose(env, "R%d cannot write into %s\n",
4624 				regno, reg_type_str(env, reg->type));
4625 			return -EACCES;
4626 		}
4627 
4628 		if (t == BPF_WRITE && value_regno >= 0 &&
4629 		    is_pointer_value(env, value_regno)) {
4630 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4631 			return -EACCES;
4632 		}
4633 
4634 		err = check_mem_region_access(env, regno, off, size,
4635 					      reg->mem_size, false);
4636 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
4637 			mark_reg_unknown(env, regs, value_regno);
4638 	} else if (reg->type == PTR_TO_CTX) {
4639 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4640 		struct btf *btf = NULL;
4641 		u32 btf_id = 0;
4642 
4643 		if (t == BPF_WRITE && value_regno >= 0 &&
4644 		    is_pointer_value(env, value_regno)) {
4645 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4646 			return -EACCES;
4647 		}
4648 
4649 		err = check_ptr_off_reg(env, reg, regno);
4650 		if (err < 0)
4651 			return err;
4652 
4653 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
4654 				       &btf_id);
4655 		if (err)
4656 			verbose_linfo(env, insn_idx, "; ");
4657 		if (!err && t == BPF_READ && value_regno >= 0) {
4658 			/* ctx access returns either a scalar, or a
4659 			 * PTR_TO_PACKET[_META,_END]. In the latter
4660 			 * case, we know the offset is zero.
4661 			 */
4662 			if (reg_type == SCALAR_VALUE) {
4663 				mark_reg_unknown(env, regs, value_regno);
4664 			} else {
4665 				mark_reg_known_zero(env, regs,
4666 						    value_regno);
4667 				if (type_may_be_null(reg_type))
4668 					regs[value_regno].id = ++env->id_gen;
4669 				/* A load of ctx field could have different
4670 				 * actual load size with the one encoded in the
4671 				 * insn. When the dst is PTR, it is for sure not
4672 				 * a sub-register.
4673 				 */
4674 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4675 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
4676 					regs[value_regno].btf = btf;
4677 					regs[value_regno].btf_id = btf_id;
4678 				}
4679 			}
4680 			regs[value_regno].type = reg_type;
4681 		}
4682 
4683 	} else if (reg->type == PTR_TO_STACK) {
4684 		/* Basic bounds checks. */
4685 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4686 		if (err)
4687 			return err;
4688 
4689 		state = func(env, reg);
4690 		err = update_stack_depth(env, state, off);
4691 		if (err)
4692 			return err;
4693 
4694 		if (t == BPF_READ)
4695 			err = check_stack_read(env, regno, off, size,
4696 					       value_regno);
4697 		else
4698 			err = check_stack_write(env, regno, off, size,
4699 						value_regno, insn_idx);
4700 	} else if (reg_is_pkt_pointer(reg)) {
4701 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4702 			verbose(env, "cannot write into packet\n");
4703 			return -EACCES;
4704 		}
4705 		if (t == BPF_WRITE && value_regno >= 0 &&
4706 		    is_pointer_value(env, value_regno)) {
4707 			verbose(env, "R%d leaks addr into packet\n",
4708 				value_regno);
4709 			return -EACCES;
4710 		}
4711 		err = check_packet_access(env, regno, off, size, false);
4712 		if (!err && t == BPF_READ && value_regno >= 0)
4713 			mark_reg_unknown(env, regs, value_regno);
4714 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4715 		if (t == BPF_WRITE && value_regno >= 0 &&
4716 		    is_pointer_value(env, value_regno)) {
4717 			verbose(env, "R%d leaks addr into flow keys\n",
4718 				value_regno);
4719 			return -EACCES;
4720 		}
4721 
4722 		err = check_flow_keys_access(env, off, size);
4723 		if (!err && t == BPF_READ && value_regno >= 0)
4724 			mark_reg_unknown(env, regs, value_regno);
4725 	} else if (type_is_sk_pointer(reg->type)) {
4726 		if (t == BPF_WRITE) {
4727 			verbose(env, "R%d cannot write into %s\n",
4728 				regno, reg_type_str(env, reg->type));
4729 			return -EACCES;
4730 		}
4731 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4732 		if (!err && value_regno >= 0)
4733 			mark_reg_unknown(env, regs, value_regno);
4734 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4735 		err = check_tp_buffer_access(env, reg, regno, off, size);
4736 		if (!err && t == BPF_READ && value_regno >= 0)
4737 			mark_reg_unknown(env, regs, value_regno);
4738 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
4739 		   !type_may_be_null(reg->type)) {
4740 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4741 					      value_regno);
4742 	} else if (reg->type == CONST_PTR_TO_MAP) {
4743 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4744 					      value_regno);
4745 	} else if (base_type(reg->type) == PTR_TO_BUF) {
4746 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
4747 		u32 *max_access;
4748 
4749 		if (rdonly_mem) {
4750 			if (t == BPF_WRITE) {
4751 				verbose(env, "R%d cannot write into %s\n",
4752 					regno, reg_type_str(env, reg->type));
4753 				return -EACCES;
4754 			}
4755 			max_access = &env->prog->aux->max_rdonly_access;
4756 		} else {
4757 			max_access = &env->prog->aux->max_rdwr_access;
4758 		}
4759 
4760 		err = check_buffer_access(env, reg, regno, off, size, false,
4761 					  max_access);
4762 
4763 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
4764 			mark_reg_unknown(env, regs, value_regno);
4765 	} else {
4766 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4767 			reg_type_str(env, reg->type));
4768 		return -EACCES;
4769 	}
4770 
4771 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4772 	    regs[value_regno].type == SCALAR_VALUE) {
4773 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4774 		coerce_reg_to_size(&regs[value_regno], size);
4775 	}
4776 	return err;
4777 }
4778 
4779 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4780 {
4781 	int load_reg;
4782 	int err;
4783 
4784 	switch (insn->imm) {
4785 	case BPF_ADD:
4786 	case BPF_ADD | BPF_FETCH:
4787 	case BPF_AND:
4788 	case BPF_AND | BPF_FETCH:
4789 	case BPF_OR:
4790 	case BPF_OR | BPF_FETCH:
4791 	case BPF_XOR:
4792 	case BPF_XOR | BPF_FETCH:
4793 	case BPF_XCHG:
4794 	case BPF_CMPXCHG:
4795 		break;
4796 	default:
4797 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4798 		return -EINVAL;
4799 	}
4800 
4801 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4802 		verbose(env, "invalid atomic operand size\n");
4803 		return -EINVAL;
4804 	}
4805 
4806 	/* check src1 operand */
4807 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4808 	if (err)
4809 		return err;
4810 
4811 	/* check src2 operand */
4812 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4813 	if (err)
4814 		return err;
4815 
4816 	if (insn->imm == BPF_CMPXCHG) {
4817 		/* Check comparison of R0 with memory location */
4818 		const u32 aux_reg = BPF_REG_0;
4819 
4820 		err = check_reg_arg(env, aux_reg, SRC_OP);
4821 		if (err)
4822 			return err;
4823 
4824 		if (is_pointer_value(env, aux_reg)) {
4825 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
4826 			return -EACCES;
4827 		}
4828 	}
4829 
4830 	if (is_pointer_value(env, insn->src_reg)) {
4831 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4832 		return -EACCES;
4833 	}
4834 
4835 	if (is_ctx_reg(env, insn->dst_reg) ||
4836 	    is_pkt_reg(env, insn->dst_reg) ||
4837 	    is_flow_key_reg(env, insn->dst_reg) ||
4838 	    is_sk_reg(env, insn->dst_reg)) {
4839 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4840 			insn->dst_reg,
4841 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
4842 		return -EACCES;
4843 	}
4844 
4845 	if (insn->imm & BPF_FETCH) {
4846 		if (insn->imm == BPF_CMPXCHG)
4847 			load_reg = BPF_REG_0;
4848 		else
4849 			load_reg = insn->src_reg;
4850 
4851 		/* check and record load of old value */
4852 		err = check_reg_arg(env, load_reg, DST_OP);
4853 		if (err)
4854 			return err;
4855 	} else {
4856 		/* This instruction accesses a memory location but doesn't
4857 		 * actually load it into a register.
4858 		 */
4859 		load_reg = -1;
4860 	}
4861 
4862 	/* Check whether we can read the memory, with second call for fetch
4863 	 * case to simulate the register fill.
4864 	 */
4865 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4866 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
4867 	if (!err && load_reg >= 0)
4868 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4869 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
4870 				       true);
4871 	if (err)
4872 		return err;
4873 
4874 	/* Check whether we can write into the same memory. */
4875 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4876 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4877 	if (err)
4878 		return err;
4879 
4880 	return 0;
4881 }
4882 
4883 /* When register 'regno' is used to read the stack (either directly or through
4884  * a helper function) make sure that it's within stack boundary and, depending
4885  * on the access type, that all elements of the stack are initialized.
4886  *
4887  * 'off' includes 'regno->off', but not its dynamic part (if any).
4888  *
4889  * All registers that have been spilled on the stack in the slots within the
4890  * read offsets are marked as read.
4891  */
4892 static int check_stack_range_initialized(
4893 		struct bpf_verifier_env *env, int regno, int off,
4894 		int access_size, bool zero_size_allowed,
4895 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
4896 {
4897 	struct bpf_reg_state *reg = reg_state(env, regno);
4898 	struct bpf_func_state *state = func(env, reg);
4899 	int err, min_off, max_off, i, j, slot, spi;
4900 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4901 	enum bpf_access_type bounds_check_type;
4902 	/* Some accesses can write anything into the stack, others are
4903 	 * read-only.
4904 	 */
4905 	bool clobber = false;
4906 
4907 	if (access_size == 0 && !zero_size_allowed) {
4908 		verbose(env, "invalid zero-sized read\n");
4909 		return -EACCES;
4910 	}
4911 
4912 	if (type == ACCESS_HELPER) {
4913 		/* The bounds checks for writes are more permissive than for
4914 		 * reads. However, if raw_mode is not set, we'll do extra
4915 		 * checks below.
4916 		 */
4917 		bounds_check_type = BPF_WRITE;
4918 		clobber = true;
4919 	} else {
4920 		bounds_check_type = BPF_READ;
4921 	}
4922 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4923 					       type, bounds_check_type);
4924 	if (err)
4925 		return err;
4926 
4927 
4928 	if (tnum_is_const(reg->var_off)) {
4929 		min_off = max_off = reg->var_off.value + off;
4930 	} else {
4931 		/* Variable offset is prohibited for unprivileged mode for
4932 		 * simplicity since it requires corresponding support in
4933 		 * Spectre masking for stack ALU.
4934 		 * See also retrieve_ptr_limit().
4935 		 */
4936 		if (!env->bypass_spec_v1) {
4937 			char tn_buf[48];
4938 
4939 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4940 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4941 				regno, err_extra, tn_buf);
4942 			return -EACCES;
4943 		}
4944 		/* Only initialized buffer on stack is allowed to be accessed
4945 		 * with variable offset. With uninitialized buffer it's hard to
4946 		 * guarantee that whole memory is marked as initialized on
4947 		 * helper return since specific bounds are unknown what may
4948 		 * cause uninitialized stack leaking.
4949 		 */
4950 		if (meta && meta->raw_mode)
4951 			meta = NULL;
4952 
4953 		min_off = reg->smin_value + off;
4954 		max_off = reg->smax_value + off;
4955 	}
4956 
4957 	if (meta && meta->raw_mode) {
4958 		meta->access_size = access_size;
4959 		meta->regno = regno;
4960 		return 0;
4961 	}
4962 
4963 	for (i = min_off; i < max_off + access_size; i++) {
4964 		u8 *stype;
4965 
4966 		slot = -i - 1;
4967 		spi = slot / BPF_REG_SIZE;
4968 		if (state->allocated_stack <= slot)
4969 			goto err;
4970 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4971 		if (*stype == STACK_MISC)
4972 			goto mark;
4973 		if (*stype == STACK_ZERO) {
4974 			if (clobber) {
4975 				/* helper can write anything into the stack */
4976 				*stype = STACK_MISC;
4977 			}
4978 			goto mark;
4979 		}
4980 
4981 		if (is_spilled_reg(&state->stack[spi]) &&
4982 		    base_type(state->stack[spi].spilled_ptr.type) == PTR_TO_BTF_ID)
4983 			goto mark;
4984 
4985 		if (is_spilled_reg(&state->stack[spi]) &&
4986 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4987 		     env->allow_ptr_leaks)) {
4988 			if (clobber) {
4989 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4990 				for (j = 0; j < BPF_REG_SIZE; j++)
4991 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
4992 			}
4993 			goto mark;
4994 		}
4995 
4996 err:
4997 		if (tnum_is_const(reg->var_off)) {
4998 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4999 				err_extra, regno, min_off, i - min_off, access_size);
5000 		} else {
5001 			char tn_buf[48];
5002 
5003 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5004 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
5005 				err_extra, regno, tn_buf, i - min_off, access_size);
5006 		}
5007 		return -EACCES;
5008 mark:
5009 		/* reading any byte out of 8-byte 'spill_slot' will cause
5010 		 * the whole slot to be marked as 'read'
5011 		 */
5012 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
5013 			      state->stack[spi].spilled_ptr.parent,
5014 			      REG_LIVE_READ64);
5015 	}
5016 	return update_stack_depth(env, state, min_off);
5017 }
5018 
5019 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
5020 				   int access_size, bool zero_size_allowed,
5021 				   struct bpf_call_arg_meta *meta)
5022 {
5023 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5024 	u32 *max_access;
5025 
5026 	switch (base_type(reg->type)) {
5027 	case PTR_TO_PACKET:
5028 	case PTR_TO_PACKET_META:
5029 		return check_packet_access(env, regno, reg->off, access_size,
5030 					   zero_size_allowed);
5031 	case PTR_TO_MAP_KEY:
5032 		if (meta && meta->raw_mode) {
5033 			verbose(env, "R%d cannot write into %s\n", regno,
5034 				reg_type_str(env, reg->type));
5035 			return -EACCES;
5036 		}
5037 		return check_mem_region_access(env, regno, reg->off, access_size,
5038 					       reg->map_ptr->key_size, false);
5039 	case PTR_TO_MAP_VALUE:
5040 		if (check_map_access_type(env, regno, reg->off, access_size,
5041 					  meta && meta->raw_mode ? BPF_WRITE :
5042 					  BPF_READ))
5043 			return -EACCES;
5044 		return check_map_access(env, regno, reg->off, access_size,
5045 					zero_size_allowed, ACCESS_HELPER);
5046 	case PTR_TO_MEM:
5047 		if (type_is_rdonly_mem(reg->type)) {
5048 			if (meta && meta->raw_mode) {
5049 				verbose(env, "R%d cannot write into %s\n", regno,
5050 					reg_type_str(env, reg->type));
5051 				return -EACCES;
5052 			}
5053 		}
5054 		return check_mem_region_access(env, regno, reg->off,
5055 					       access_size, reg->mem_size,
5056 					       zero_size_allowed);
5057 	case PTR_TO_BUF:
5058 		if (type_is_rdonly_mem(reg->type)) {
5059 			if (meta && meta->raw_mode) {
5060 				verbose(env, "R%d cannot write into %s\n", regno,
5061 					reg_type_str(env, reg->type));
5062 				return -EACCES;
5063 			}
5064 
5065 			max_access = &env->prog->aux->max_rdonly_access;
5066 		} else {
5067 			max_access = &env->prog->aux->max_rdwr_access;
5068 		}
5069 		return check_buffer_access(env, reg, regno, reg->off,
5070 					   access_size, zero_size_allowed,
5071 					   max_access);
5072 	case PTR_TO_STACK:
5073 		return check_stack_range_initialized(
5074 				env,
5075 				regno, reg->off, access_size,
5076 				zero_size_allowed, ACCESS_HELPER, meta);
5077 	default: /* scalar_value or invalid ptr */
5078 		/* Allow zero-byte read from NULL, regardless of pointer type */
5079 		if (zero_size_allowed && access_size == 0 &&
5080 		    register_is_null(reg))
5081 			return 0;
5082 
5083 		verbose(env, "R%d type=%s ", regno,
5084 			reg_type_str(env, reg->type));
5085 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
5086 		return -EACCES;
5087 	}
5088 }
5089 
5090 static int check_mem_size_reg(struct bpf_verifier_env *env,
5091 			      struct bpf_reg_state *reg, u32 regno,
5092 			      bool zero_size_allowed,
5093 			      struct bpf_call_arg_meta *meta)
5094 {
5095 	int err;
5096 
5097 	/* This is used to refine r0 return value bounds for helpers
5098 	 * that enforce this value as an upper bound on return values.
5099 	 * See do_refine_retval_range() for helpers that can refine
5100 	 * the return value. C type of helper is u32 so we pull register
5101 	 * bound from umax_value however, if negative verifier errors
5102 	 * out. Only upper bounds can be learned because retval is an
5103 	 * int type and negative retvals are allowed.
5104 	 */
5105 	meta->msize_max_value = reg->umax_value;
5106 
5107 	/* The register is SCALAR_VALUE; the access check
5108 	 * happens using its boundaries.
5109 	 */
5110 	if (!tnum_is_const(reg->var_off))
5111 		/* For unprivileged variable accesses, disable raw
5112 		 * mode so that the program is required to
5113 		 * initialize all the memory that the helper could
5114 		 * just partially fill up.
5115 		 */
5116 		meta = NULL;
5117 
5118 	if (reg->smin_value < 0) {
5119 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5120 			regno);
5121 		return -EACCES;
5122 	}
5123 
5124 	if (reg->umin_value == 0) {
5125 		err = check_helper_mem_access(env, regno - 1, 0,
5126 					      zero_size_allowed,
5127 					      meta);
5128 		if (err)
5129 			return err;
5130 	}
5131 
5132 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5133 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5134 			regno);
5135 		return -EACCES;
5136 	}
5137 	err = check_helper_mem_access(env, regno - 1,
5138 				      reg->umax_value,
5139 				      zero_size_allowed, meta);
5140 	if (!err)
5141 		err = mark_chain_precision(env, regno);
5142 	return err;
5143 }
5144 
5145 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5146 		   u32 regno, u32 mem_size)
5147 {
5148 	bool may_be_null = type_may_be_null(reg->type);
5149 	struct bpf_reg_state saved_reg;
5150 	struct bpf_call_arg_meta meta;
5151 	int err;
5152 
5153 	if (register_is_null(reg))
5154 		return 0;
5155 
5156 	memset(&meta, 0, sizeof(meta));
5157 	/* Assuming that the register contains a value check if the memory
5158 	 * access is safe. Temporarily save and restore the register's state as
5159 	 * the conversion shouldn't be visible to a caller.
5160 	 */
5161 	if (may_be_null) {
5162 		saved_reg = *reg;
5163 		mark_ptr_not_null_reg(reg);
5164 	}
5165 
5166 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
5167 	/* Check access for BPF_WRITE */
5168 	meta.raw_mode = true;
5169 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
5170 
5171 	if (may_be_null)
5172 		*reg = saved_reg;
5173 
5174 	return err;
5175 }
5176 
5177 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
5178 			     u32 regno)
5179 {
5180 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
5181 	bool may_be_null = type_may_be_null(mem_reg->type);
5182 	struct bpf_reg_state saved_reg;
5183 	struct bpf_call_arg_meta meta;
5184 	int err;
5185 
5186 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
5187 
5188 	memset(&meta, 0, sizeof(meta));
5189 
5190 	if (may_be_null) {
5191 		saved_reg = *mem_reg;
5192 		mark_ptr_not_null_reg(mem_reg);
5193 	}
5194 
5195 	err = check_mem_size_reg(env, reg, regno, true, &meta);
5196 	/* Check access for BPF_WRITE */
5197 	meta.raw_mode = true;
5198 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
5199 
5200 	if (may_be_null)
5201 		*mem_reg = saved_reg;
5202 	return err;
5203 }
5204 
5205 /* Implementation details:
5206  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
5207  * Two bpf_map_lookups (even with the same key) will have different reg->id.
5208  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
5209  * value_or_null->value transition, since the verifier only cares about
5210  * the range of access to valid map value pointer and doesn't care about actual
5211  * address of the map element.
5212  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
5213  * reg->id > 0 after value_or_null->value transition. By doing so
5214  * two bpf_map_lookups will be considered two different pointers that
5215  * point to different bpf_spin_locks.
5216  * The verifier allows taking only one bpf_spin_lock at a time to avoid
5217  * dead-locks.
5218  * Since only one bpf_spin_lock is allowed the checks are simpler than
5219  * reg_is_refcounted() logic. The verifier needs to remember only
5220  * one spin_lock instead of array of acquired_refs.
5221  * cur_state->active_spin_lock remembers which map value element got locked
5222  * and clears it after bpf_spin_unlock.
5223  */
5224 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
5225 			     bool is_lock)
5226 {
5227 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5228 	struct bpf_verifier_state *cur = env->cur_state;
5229 	bool is_const = tnum_is_const(reg->var_off);
5230 	struct bpf_map *map = reg->map_ptr;
5231 	u64 val = reg->var_off.value;
5232 
5233 	if (!is_const) {
5234 		verbose(env,
5235 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
5236 			regno);
5237 		return -EINVAL;
5238 	}
5239 	if (!map->btf) {
5240 		verbose(env,
5241 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
5242 			map->name);
5243 		return -EINVAL;
5244 	}
5245 	if (!map_value_has_spin_lock(map)) {
5246 		if (map->spin_lock_off == -E2BIG)
5247 			verbose(env,
5248 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
5249 				map->name);
5250 		else if (map->spin_lock_off == -ENOENT)
5251 			verbose(env,
5252 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
5253 				map->name);
5254 		else
5255 			verbose(env,
5256 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
5257 				map->name);
5258 		return -EINVAL;
5259 	}
5260 	if (map->spin_lock_off != val + reg->off) {
5261 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
5262 			val + reg->off);
5263 		return -EINVAL;
5264 	}
5265 	if (is_lock) {
5266 		if (cur->active_spin_lock) {
5267 			verbose(env,
5268 				"Locking two bpf_spin_locks are not allowed\n");
5269 			return -EINVAL;
5270 		}
5271 		cur->active_spin_lock = reg->id;
5272 	} else {
5273 		if (!cur->active_spin_lock) {
5274 			verbose(env, "bpf_spin_unlock without taking a lock\n");
5275 			return -EINVAL;
5276 		}
5277 		if (cur->active_spin_lock != reg->id) {
5278 			verbose(env, "bpf_spin_unlock of different lock\n");
5279 			return -EINVAL;
5280 		}
5281 		cur->active_spin_lock = 0;
5282 	}
5283 	return 0;
5284 }
5285 
5286 static int process_timer_func(struct bpf_verifier_env *env, int regno,
5287 			      struct bpf_call_arg_meta *meta)
5288 {
5289 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5290 	bool is_const = tnum_is_const(reg->var_off);
5291 	struct bpf_map *map = reg->map_ptr;
5292 	u64 val = reg->var_off.value;
5293 
5294 	if (!is_const) {
5295 		verbose(env,
5296 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
5297 			regno);
5298 		return -EINVAL;
5299 	}
5300 	if (!map->btf) {
5301 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
5302 			map->name);
5303 		return -EINVAL;
5304 	}
5305 	if (!map_value_has_timer(map)) {
5306 		if (map->timer_off == -E2BIG)
5307 			verbose(env,
5308 				"map '%s' has more than one 'struct bpf_timer'\n",
5309 				map->name);
5310 		else if (map->timer_off == -ENOENT)
5311 			verbose(env,
5312 				"map '%s' doesn't have 'struct bpf_timer'\n",
5313 				map->name);
5314 		else
5315 			verbose(env,
5316 				"map '%s' is not a struct type or bpf_timer is mangled\n",
5317 				map->name);
5318 		return -EINVAL;
5319 	}
5320 	if (map->timer_off != val + reg->off) {
5321 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
5322 			val + reg->off, map->timer_off);
5323 		return -EINVAL;
5324 	}
5325 	if (meta->map_ptr) {
5326 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
5327 		return -EFAULT;
5328 	}
5329 	meta->map_uid = reg->map_uid;
5330 	meta->map_ptr = map;
5331 	return 0;
5332 }
5333 
5334 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
5335 			     struct bpf_call_arg_meta *meta)
5336 {
5337 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5338 	struct bpf_map_value_off_desc *off_desc;
5339 	struct bpf_map *map_ptr = reg->map_ptr;
5340 	u32 kptr_off;
5341 	int ret;
5342 
5343 	if (!tnum_is_const(reg->var_off)) {
5344 		verbose(env,
5345 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
5346 			regno);
5347 		return -EINVAL;
5348 	}
5349 	if (!map_ptr->btf) {
5350 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
5351 			map_ptr->name);
5352 		return -EINVAL;
5353 	}
5354 	if (!map_value_has_kptrs(map_ptr)) {
5355 		ret = PTR_ERR(map_ptr->kptr_off_tab);
5356 		if (ret == -E2BIG)
5357 			verbose(env, "map '%s' has more than %d kptr\n", map_ptr->name,
5358 				BPF_MAP_VALUE_OFF_MAX);
5359 		else if (ret == -EEXIST)
5360 			verbose(env, "map '%s' has repeating kptr BTF tags\n", map_ptr->name);
5361 		else
5362 			verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
5363 		return -EINVAL;
5364 	}
5365 
5366 	meta->map_ptr = map_ptr;
5367 	kptr_off = reg->off + reg->var_off.value;
5368 	off_desc = bpf_map_kptr_off_contains(map_ptr, kptr_off);
5369 	if (!off_desc) {
5370 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
5371 		return -EACCES;
5372 	}
5373 	if (off_desc->type != BPF_KPTR_REF) {
5374 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
5375 		return -EACCES;
5376 	}
5377 	meta->kptr_off_desc = off_desc;
5378 	return 0;
5379 }
5380 
5381 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
5382 {
5383 	return base_type(type) == ARG_PTR_TO_MEM ||
5384 	       base_type(type) == ARG_PTR_TO_UNINIT_MEM;
5385 }
5386 
5387 static bool arg_type_is_mem_size(enum bpf_arg_type type)
5388 {
5389 	return type == ARG_CONST_SIZE ||
5390 	       type == ARG_CONST_SIZE_OR_ZERO;
5391 }
5392 
5393 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
5394 {
5395 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
5396 }
5397 
5398 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
5399 {
5400 	return type == ARG_PTR_TO_INT ||
5401 	       type == ARG_PTR_TO_LONG;
5402 }
5403 
5404 static bool arg_type_is_release(enum bpf_arg_type type)
5405 {
5406 	return type & OBJ_RELEASE;
5407 }
5408 
5409 static int int_ptr_type_to_size(enum bpf_arg_type type)
5410 {
5411 	if (type == ARG_PTR_TO_INT)
5412 		return sizeof(u32);
5413 	else if (type == ARG_PTR_TO_LONG)
5414 		return sizeof(u64);
5415 
5416 	return -EINVAL;
5417 }
5418 
5419 static int resolve_map_arg_type(struct bpf_verifier_env *env,
5420 				 const struct bpf_call_arg_meta *meta,
5421 				 enum bpf_arg_type *arg_type)
5422 {
5423 	if (!meta->map_ptr) {
5424 		/* kernel subsystem misconfigured verifier */
5425 		verbose(env, "invalid map_ptr to access map->type\n");
5426 		return -EACCES;
5427 	}
5428 
5429 	switch (meta->map_ptr->map_type) {
5430 	case BPF_MAP_TYPE_SOCKMAP:
5431 	case BPF_MAP_TYPE_SOCKHASH:
5432 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
5433 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
5434 		} else {
5435 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5436 			return -EINVAL;
5437 		}
5438 		break;
5439 	case BPF_MAP_TYPE_BLOOM_FILTER:
5440 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5441 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5442 		break;
5443 	default:
5444 		break;
5445 	}
5446 	return 0;
5447 }
5448 
5449 struct bpf_reg_types {
5450 	const enum bpf_reg_type types[10];
5451 	u32 *btf_id;
5452 };
5453 
5454 static const struct bpf_reg_types map_key_value_types = {
5455 	.types = {
5456 		PTR_TO_STACK,
5457 		PTR_TO_PACKET,
5458 		PTR_TO_PACKET_META,
5459 		PTR_TO_MAP_KEY,
5460 		PTR_TO_MAP_VALUE,
5461 	},
5462 };
5463 
5464 static const struct bpf_reg_types sock_types = {
5465 	.types = {
5466 		PTR_TO_SOCK_COMMON,
5467 		PTR_TO_SOCKET,
5468 		PTR_TO_TCP_SOCK,
5469 		PTR_TO_XDP_SOCK,
5470 	},
5471 };
5472 
5473 #ifdef CONFIG_NET
5474 static const struct bpf_reg_types btf_id_sock_common_types = {
5475 	.types = {
5476 		PTR_TO_SOCK_COMMON,
5477 		PTR_TO_SOCKET,
5478 		PTR_TO_TCP_SOCK,
5479 		PTR_TO_XDP_SOCK,
5480 		PTR_TO_BTF_ID,
5481 	},
5482 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5483 };
5484 #endif
5485 
5486 static const struct bpf_reg_types mem_types = {
5487 	.types = {
5488 		PTR_TO_STACK,
5489 		PTR_TO_PACKET,
5490 		PTR_TO_PACKET_META,
5491 		PTR_TO_MAP_KEY,
5492 		PTR_TO_MAP_VALUE,
5493 		PTR_TO_MEM,
5494 		PTR_TO_MEM | MEM_ALLOC,
5495 		PTR_TO_BUF,
5496 	},
5497 };
5498 
5499 static const struct bpf_reg_types int_ptr_types = {
5500 	.types = {
5501 		PTR_TO_STACK,
5502 		PTR_TO_PACKET,
5503 		PTR_TO_PACKET_META,
5504 		PTR_TO_MAP_KEY,
5505 		PTR_TO_MAP_VALUE,
5506 	},
5507 };
5508 
5509 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5510 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5511 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5512 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM | MEM_ALLOC } };
5513 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5514 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5515 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5516 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_BTF_ID | MEM_PERCPU } };
5517 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5518 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5519 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5520 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5521 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
5522 
5523 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5524 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
5525 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
5526 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
5527 	[ARG_CONST_SIZE]		= &scalar_types,
5528 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5529 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5530 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
5531 	[ARG_PTR_TO_CTX]		= &context_types,
5532 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
5533 #ifdef CONFIG_NET
5534 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
5535 #endif
5536 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
5537 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
5538 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
5539 	[ARG_PTR_TO_MEM]		= &mem_types,
5540 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
5541 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
5542 	[ARG_PTR_TO_INT]		= &int_ptr_types,
5543 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
5544 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
5545 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
5546 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
5547 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
5548 	[ARG_PTR_TO_TIMER]		= &timer_types,
5549 	[ARG_PTR_TO_KPTR]		= &kptr_types,
5550 };
5551 
5552 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5553 			  enum bpf_arg_type arg_type,
5554 			  const u32 *arg_btf_id,
5555 			  struct bpf_call_arg_meta *meta)
5556 {
5557 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5558 	enum bpf_reg_type expected, type = reg->type;
5559 	const struct bpf_reg_types *compatible;
5560 	int i, j;
5561 
5562 	compatible = compatible_reg_types[base_type(arg_type)];
5563 	if (!compatible) {
5564 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5565 		return -EFAULT;
5566 	}
5567 
5568 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
5569 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
5570 	 *
5571 	 * Same for MAYBE_NULL:
5572 	 *
5573 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
5574 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
5575 	 *
5576 	 * Therefore we fold these flags depending on the arg_type before comparison.
5577 	 */
5578 	if (arg_type & MEM_RDONLY)
5579 		type &= ~MEM_RDONLY;
5580 	if (arg_type & PTR_MAYBE_NULL)
5581 		type &= ~PTR_MAYBE_NULL;
5582 
5583 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5584 		expected = compatible->types[i];
5585 		if (expected == NOT_INIT)
5586 			break;
5587 
5588 		if (type == expected)
5589 			goto found;
5590 	}
5591 
5592 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
5593 	for (j = 0; j + 1 < i; j++)
5594 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
5595 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
5596 	return -EACCES;
5597 
5598 found:
5599 	if (reg->type == PTR_TO_BTF_ID) {
5600 		/* For bpf_sk_release, it needs to match against first member
5601 		 * 'struct sock_common', hence make an exception for it. This
5602 		 * allows bpf_sk_release to work for multiple socket types.
5603 		 */
5604 		bool strict_type_match = arg_type_is_release(arg_type) &&
5605 					 meta->func_id != BPF_FUNC_sk_release;
5606 
5607 		if (!arg_btf_id) {
5608 			if (!compatible->btf_id) {
5609 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5610 				return -EFAULT;
5611 			}
5612 			arg_btf_id = compatible->btf_id;
5613 		}
5614 
5615 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
5616 			if (map_kptr_match_type(env, meta->kptr_off_desc, reg, regno))
5617 				return -EACCES;
5618 		} else if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5619 						 btf_vmlinux, *arg_btf_id,
5620 						 strict_type_match)) {
5621 			verbose(env, "R%d is of type %s but %s is expected\n",
5622 				regno, kernel_type_name(reg->btf, reg->btf_id),
5623 				kernel_type_name(btf_vmlinux, *arg_btf_id));
5624 			return -EACCES;
5625 		}
5626 	}
5627 
5628 	return 0;
5629 }
5630 
5631 int check_func_arg_reg_off(struct bpf_verifier_env *env,
5632 			   const struct bpf_reg_state *reg, int regno,
5633 			   enum bpf_arg_type arg_type)
5634 {
5635 	enum bpf_reg_type type = reg->type;
5636 	bool fixed_off_ok = false;
5637 
5638 	switch ((u32)type) {
5639 	case SCALAR_VALUE:
5640 	/* Pointer types where reg offset is explicitly allowed: */
5641 	case PTR_TO_PACKET:
5642 	case PTR_TO_PACKET_META:
5643 	case PTR_TO_MAP_KEY:
5644 	case PTR_TO_MAP_VALUE:
5645 	case PTR_TO_MEM:
5646 	case PTR_TO_MEM | MEM_RDONLY:
5647 	case PTR_TO_MEM | MEM_ALLOC:
5648 	case PTR_TO_BUF:
5649 	case PTR_TO_BUF | MEM_RDONLY:
5650 	case PTR_TO_STACK:
5651 		/* Some of the argument types nevertheless require a
5652 		 * zero register offset.
5653 		 */
5654 		if (base_type(arg_type) != ARG_PTR_TO_ALLOC_MEM)
5655 			return 0;
5656 		break;
5657 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
5658 	 * fixed offset.
5659 	 */
5660 	case PTR_TO_BTF_ID:
5661 		/* When referenced PTR_TO_BTF_ID is passed to release function,
5662 		 * it's fixed offset must be 0.	In the other cases, fixed offset
5663 		 * can be non-zero.
5664 		 */
5665 		if (arg_type_is_release(arg_type) && reg->off) {
5666 			verbose(env, "R%d must have zero offset when passed to release func\n",
5667 				regno);
5668 			return -EINVAL;
5669 		}
5670 		/* For arg is release pointer, fixed_off_ok must be false, but
5671 		 * we already checked and rejected reg->off != 0 above, so set
5672 		 * to true to allow fixed offset for all other cases.
5673 		 */
5674 		fixed_off_ok = true;
5675 		break;
5676 	default:
5677 		break;
5678 	}
5679 	return __check_ptr_off_reg(env, reg, regno, fixed_off_ok);
5680 }
5681 
5682 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5683 			  struct bpf_call_arg_meta *meta,
5684 			  const struct bpf_func_proto *fn)
5685 {
5686 	u32 regno = BPF_REG_1 + arg;
5687 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5688 	enum bpf_arg_type arg_type = fn->arg_type[arg];
5689 	enum bpf_reg_type type = reg->type;
5690 	int err = 0;
5691 
5692 	if (arg_type == ARG_DONTCARE)
5693 		return 0;
5694 
5695 	err = check_reg_arg(env, regno, SRC_OP);
5696 	if (err)
5697 		return err;
5698 
5699 	if (arg_type == ARG_ANYTHING) {
5700 		if (is_pointer_value(env, regno)) {
5701 			verbose(env, "R%d leaks addr into helper function\n",
5702 				regno);
5703 			return -EACCES;
5704 		}
5705 		return 0;
5706 	}
5707 
5708 	if (type_is_pkt_pointer(type) &&
5709 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5710 		verbose(env, "helper access to the packet is not allowed\n");
5711 		return -EACCES;
5712 	}
5713 
5714 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5715 	    base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5716 		err = resolve_map_arg_type(env, meta, &arg_type);
5717 		if (err)
5718 			return err;
5719 	}
5720 
5721 	if (register_is_null(reg) && type_may_be_null(arg_type))
5722 		/* A NULL register has a SCALAR_VALUE type, so skip
5723 		 * type checking.
5724 		 */
5725 		goto skip_type_check;
5726 
5727 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg], meta);
5728 	if (err)
5729 		return err;
5730 
5731 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
5732 	if (err)
5733 		return err;
5734 
5735 skip_type_check:
5736 	if (arg_type_is_release(arg_type)) {
5737 		if (!reg->ref_obj_id && !register_is_null(reg)) {
5738 			verbose(env, "R%d must be referenced when passed to release function\n",
5739 				regno);
5740 			return -EINVAL;
5741 		}
5742 		if (meta->release_regno) {
5743 			verbose(env, "verifier internal error: more than one release argument\n");
5744 			return -EFAULT;
5745 		}
5746 		meta->release_regno = regno;
5747 	}
5748 
5749 	if (reg->ref_obj_id) {
5750 		if (meta->ref_obj_id) {
5751 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5752 				regno, reg->ref_obj_id,
5753 				meta->ref_obj_id);
5754 			return -EFAULT;
5755 		}
5756 		meta->ref_obj_id = reg->ref_obj_id;
5757 	}
5758 
5759 	if (arg_type == ARG_CONST_MAP_PTR) {
5760 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5761 		if (meta->map_ptr) {
5762 			/* Use map_uid (which is unique id of inner map) to reject:
5763 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5764 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5765 			 * if (inner_map1 && inner_map2) {
5766 			 *     timer = bpf_map_lookup_elem(inner_map1);
5767 			 *     if (timer)
5768 			 *         // mismatch would have been allowed
5769 			 *         bpf_timer_init(timer, inner_map2);
5770 			 * }
5771 			 *
5772 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
5773 			 */
5774 			if (meta->map_ptr != reg->map_ptr ||
5775 			    meta->map_uid != reg->map_uid) {
5776 				verbose(env,
5777 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5778 					meta->map_uid, reg->map_uid);
5779 				return -EINVAL;
5780 			}
5781 		}
5782 		meta->map_ptr = reg->map_ptr;
5783 		meta->map_uid = reg->map_uid;
5784 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5785 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
5786 		 * check that [key, key + map->key_size) are within
5787 		 * stack limits and initialized
5788 		 */
5789 		if (!meta->map_ptr) {
5790 			/* in function declaration map_ptr must come before
5791 			 * map_key, so that it's verified and known before
5792 			 * we have to check map_key here. Otherwise it means
5793 			 * that kernel subsystem misconfigured verifier
5794 			 */
5795 			verbose(env, "invalid map_ptr to access map->key\n");
5796 			return -EACCES;
5797 		}
5798 		err = check_helper_mem_access(env, regno,
5799 					      meta->map_ptr->key_size, false,
5800 					      NULL);
5801 	} else if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE ||
5802 		   base_type(arg_type) == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5803 		if (type_may_be_null(arg_type) && register_is_null(reg))
5804 			return 0;
5805 
5806 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
5807 		 * check [value, value + map->value_size) validity
5808 		 */
5809 		if (!meta->map_ptr) {
5810 			/* kernel subsystem misconfigured verifier */
5811 			verbose(env, "invalid map_ptr to access map->value\n");
5812 			return -EACCES;
5813 		}
5814 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
5815 		err = check_helper_mem_access(env, regno,
5816 					      meta->map_ptr->value_size, false,
5817 					      meta);
5818 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5819 		if (!reg->btf_id) {
5820 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5821 			return -EACCES;
5822 		}
5823 		meta->ret_btf = reg->btf;
5824 		meta->ret_btf_id = reg->btf_id;
5825 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5826 		if (meta->func_id == BPF_FUNC_spin_lock) {
5827 			if (process_spin_lock(env, regno, true))
5828 				return -EACCES;
5829 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
5830 			if (process_spin_lock(env, regno, false))
5831 				return -EACCES;
5832 		} else {
5833 			verbose(env, "verifier internal error\n");
5834 			return -EFAULT;
5835 		}
5836 	} else if (arg_type == ARG_PTR_TO_TIMER) {
5837 		if (process_timer_func(env, regno, meta))
5838 			return -EACCES;
5839 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5840 		meta->subprogno = reg->subprogno;
5841 	} else if (arg_type_is_mem_ptr(arg_type)) {
5842 		/* The access to this pointer is only checked when we hit the
5843 		 * next is_mem_size argument below.
5844 		 */
5845 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5846 	} else if (arg_type_is_mem_size(arg_type)) {
5847 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5848 
5849 		err = check_mem_size_reg(env, reg, regno, zero_size_allowed, meta);
5850 	} else if (arg_type_is_alloc_size(arg_type)) {
5851 		if (!tnum_is_const(reg->var_off)) {
5852 			verbose(env, "R%d is not a known constant'\n",
5853 				regno);
5854 			return -EACCES;
5855 		}
5856 		meta->mem_size = reg->var_off.value;
5857 	} else if (arg_type_is_int_ptr(arg_type)) {
5858 		int size = int_ptr_type_to_size(arg_type);
5859 
5860 		err = check_helper_mem_access(env, regno, size, false, meta);
5861 		if (err)
5862 			return err;
5863 		err = check_ptr_alignment(env, reg, 0, size, true);
5864 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5865 		struct bpf_map *map = reg->map_ptr;
5866 		int map_off;
5867 		u64 map_addr;
5868 		char *str_ptr;
5869 
5870 		if (!bpf_map_is_rdonly(map)) {
5871 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5872 			return -EACCES;
5873 		}
5874 
5875 		if (!tnum_is_const(reg->var_off)) {
5876 			verbose(env, "R%d is not a constant address'\n", regno);
5877 			return -EACCES;
5878 		}
5879 
5880 		if (!map->ops->map_direct_value_addr) {
5881 			verbose(env, "no direct value access support for this map type\n");
5882 			return -EACCES;
5883 		}
5884 
5885 		err = check_map_access(env, regno, reg->off,
5886 				       map->value_size - reg->off, false,
5887 				       ACCESS_HELPER);
5888 		if (err)
5889 			return err;
5890 
5891 		map_off = reg->off + reg->var_off.value;
5892 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5893 		if (err) {
5894 			verbose(env, "direct value access on string failed\n");
5895 			return err;
5896 		}
5897 
5898 		str_ptr = (char *)(long)(map_addr);
5899 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5900 			verbose(env, "string is not zero-terminated\n");
5901 			return -EINVAL;
5902 		}
5903 	} else if (arg_type == ARG_PTR_TO_KPTR) {
5904 		if (process_kptr_func(env, regno, meta))
5905 			return -EACCES;
5906 	}
5907 
5908 	return err;
5909 }
5910 
5911 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5912 {
5913 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5914 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5915 
5916 	if (func_id != BPF_FUNC_map_update_elem)
5917 		return false;
5918 
5919 	/* It's not possible to get access to a locked struct sock in these
5920 	 * contexts, so updating is safe.
5921 	 */
5922 	switch (type) {
5923 	case BPF_PROG_TYPE_TRACING:
5924 		if (eatype == BPF_TRACE_ITER)
5925 			return true;
5926 		break;
5927 	case BPF_PROG_TYPE_SOCKET_FILTER:
5928 	case BPF_PROG_TYPE_SCHED_CLS:
5929 	case BPF_PROG_TYPE_SCHED_ACT:
5930 	case BPF_PROG_TYPE_XDP:
5931 	case BPF_PROG_TYPE_SK_REUSEPORT:
5932 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5933 	case BPF_PROG_TYPE_SK_LOOKUP:
5934 		return true;
5935 	default:
5936 		break;
5937 	}
5938 
5939 	verbose(env, "cannot update sockmap in this context\n");
5940 	return false;
5941 }
5942 
5943 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5944 {
5945 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5946 }
5947 
5948 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5949 					struct bpf_map *map, int func_id)
5950 {
5951 	if (!map)
5952 		return 0;
5953 
5954 	/* We need a two way check, first is from map perspective ... */
5955 	switch (map->map_type) {
5956 	case BPF_MAP_TYPE_PROG_ARRAY:
5957 		if (func_id != BPF_FUNC_tail_call)
5958 			goto error;
5959 		break;
5960 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5961 		if (func_id != BPF_FUNC_perf_event_read &&
5962 		    func_id != BPF_FUNC_perf_event_output &&
5963 		    func_id != BPF_FUNC_skb_output &&
5964 		    func_id != BPF_FUNC_perf_event_read_value &&
5965 		    func_id != BPF_FUNC_xdp_output)
5966 			goto error;
5967 		break;
5968 	case BPF_MAP_TYPE_RINGBUF:
5969 		if (func_id != BPF_FUNC_ringbuf_output &&
5970 		    func_id != BPF_FUNC_ringbuf_reserve &&
5971 		    func_id != BPF_FUNC_ringbuf_query)
5972 			goto error;
5973 		break;
5974 	case BPF_MAP_TYPE_STACK_TRACE:
5975 		if (func_id != BPF_FUNC_get_stackid)
5976 			goto error;
5977 		break;
5978 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5979 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5980 		    func_id != BPF_FUNC_current_task_under_cgroup)
5981 			goto error;
5982 		break;
5983 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5984 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5985 		if (func_id != BPF_FUNC_get_local_storage)
5986 			goto error;
5987 		break;
5988 	case BPF_MAP_TYPE_DEVMAP:
5989 	case BPF_MAP_TYPE_DEVMAP_HASH:
5990 		if (func_id != BPF_FUNC_redirect_map &&
5991 		    func_id != BPF_FUNC_map_lookup_elem)
5992 			goto error;
5993 		break;
5994 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5995 	 * appear.
5996 	 */
5997 	case BPF_MAP_TYPE_CPUMAP:
5998 		if (func_id != BPF_FUNC_redirect_map)
5999 			goto error;
6000 		break;
6001 	case BPF_MAP_TYPE_XSKMAP:
6002 		if (func_id != BPF_FUNC_redirect_map &&
6003 		    func_id != BPF_FUNC_map_lookup_elem)
6004 			goto error;
6005 		break;
6006 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
6007 	case BPF_MAP_TYPE_HASH_OF_MAPS:
6008 		if (func_id != BPF_FUNC_map_lookup_elem)
6009 			goto error;
6010 		break;
6011 	case BPF_MAP_TYPE_SOCKMAP:
6012 		if (func_id != BPF_FUNC_sk_redirect_map &&
6013 		    func_id != BPF_FUNC_sock_map_update &&
6014 		    func_id != BPF_FUNC_map_delete_elem &&
6015 		    func_id != BPF_FUNC_msg_redirect_map &&
6016 		    func_id != BPF_FUNC_sk_select_reuseport &&
6017 		    func_id != BPF_FUNC_map_lookup_elem &&
6018 		    !may_update_sockmap(env, func_id))
6019 			goto error;
6020 		break;
6021 	case BPF_MAP_TYPE_SOCKHASH:
6022 		if (func_id != BPF_FUNC_sk_redirect_hash &&
6023 		    func_id != BPF_FUNC_sock_hash_update &&
6024 		    func_id != BPF_FUNC_map_delete_elem &&
6025 		    func_id != BPF_FUNC_msg_redirect_hash &&
6026 		    func_id != BPF_FUNC_sk_select_reuseport &&
6027 		    func_id != BPF_FUNC_map_lookup_elem &&
6028 		    !may_update_sockmap(env, func_id))
6029 			goto error;
6030 		break;
6031 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
6032 		if (func_id != BPF_FUNC_sk_select_reuseport)
6033 			goto error;
6034 		break;
6035 	case BPF_MAP_TYPE_QUEUE:
6036 	case BPF_MAP_TYPE_STACK:
6037 		if (func_id != BPF_FUNC_map_peek_elem &&
6038 		    func_id != BPF_FUNC_map_pop_elem &&
6039 		    func_id != BPF_FUNC_map_push_elem)
6040 			goto error;
6041 		break;
6042 	case BPF_MAP_TYPE_SK_STORAGE:
6043 		if (func_id != BPF_FUNC_sk_storage_get &&
6044 		    func_id != BPF_FUNC_sk_storage_delete)
6045 			goto error;
6046 		break;
6047 	case BPF_MAP_TYPE_INODE_STORAGE:
6048 		if (func_id != BPF_FUNC_inode_storage_get &&
6049 		    func_id != BPF_FUNC_inode_storage_delete)
6050 			goto error;
6051 		break;
6052 	case BPF_MAP_TYPE_TASK_STORAGE:
6053 		if (func_id != BPF_FUNC_task_storage_get &&
6054 		    func_id != BPF_FUNC_task_storage_delete)
6055 			goto error;
6056 		break;
6057 	case BPF_MAP_TYPE_BLOOM_FILTER:
6058 		if (func_id != BPF_FUNC_map_peek_elem &&
6059 		    func_id != BPF_FUNC_map_push_elem)
6060 			goto error;
6061 		break;
6062 	default:
6063 		break;
6064 	}
6065 
6066 	/* ... and second from the function itself. */
6067 	switch (func_id) {
6068 	case BPF_FUNC_tail_call:
6069 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
6070 			goto error;
6071 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
6072 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
6073 			return -EINVAL;
6074 		}
6075 		break;
6076 	case BPF_FUNC_perf_event_read:
6077 	case BPF_FUNC_perf_event_output:
6078 	case BPF_FUNC_perf_event_read_value:
6079 	case BPF_FUNC_skb_output:
6080 	case BPF_FUNC_xdp_output:
6081 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
6082 			goto error;
6083 		break;
6084 	case BPF_FUNC_ringbuf_output:
6085 	case BPF_FUNC_ringbuf_reserve:
6086 	case BPF_FUNC_ringbuf_query:
6087 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
6088 			goto error;
6089 		break;
6090 	case BPF_FUNC_get_stackid:
6091 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
6092 			goto error;
6093 		break;
6094 	case BPF_FUNC_current_task_under_cgroup:
6095 	case BPF_FUNC_skb_under_cgroup:
6096 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
6097 			goto error;
6098 		break;
6099 	case BPF_FUNC_redirect_map:
6100 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
6101 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
6102 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
6103 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
6104 			goto error;
6105 		break;
6106 	case BPF_FUNC_sk_redirect_map:
6107 	case BPF_FUNC_msg_redirect_map:
6108 	case BPF_FUNC_sock_map_update:
6109 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
6110 			goto error;
6111 		break;
6112 	case BPF_FUNC_sk_redirect_hash:
6113 	case BPF_FUNC_msg_redirect_hash:
6114 	case BPF_FUNC_sock_hash_update:
6115 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
6116 			goto error;
6117 		break;
6118 	case BPF_FUNC_get_local_storage:
6119 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
6120 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
6121 			goto error;
6122 		break;
6123 	case BPF_FUNC_sk_select_reuseport:
6124 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
6125 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
6126 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
6127 			goto error;
6128 		break;
6129 	case BPF_FUNC_map_pop_elem:
6130 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6131 		    map->map_type != BPF_MAP_TYPE_STACK)
6132 			goto error;
6133 		break;
6134 	case BPF_FUNC_map_peek_elem:
6135 	case BPF_FUNC_map_push_elem:
6136 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
6137 		    map->map_type != BPF_MAP_TYPE_STACK &&
6138 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
6139 			goto error;
6140 		break;
6141 	case BPF_FUNC_sk_storage_get:
6142 	case BPF_FUNC_sk_storage_delete:
6143 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
6144 			goto error;
6145 		break;
6146 	case BPF_FUNC_inode_storage_get:
6147 	case BPF_FUNC_inode_storage_delete:
6148 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
6149 			goto error;
6150 		break;
6151 	case BPF_FUNC_task_storage_get:
6152 	case BPF_FUNC_task_storage_delete:
6153 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
6154 			goto error;
6155 		break;
6156 	default:
6157 		break;
6158 	}
6159 
6160 	return 0;
6161 error:
6162 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
6163 		map->map_type, func_id_name(func_id), func_id);
6164 	return -EINVAL;
6165 }
6166 
6167 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
6168 {
6169 	int count = 0;
6170 
6171 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
6172 		count++;
6173 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
6174 		count++;
6175 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
6176 		count++;
6177 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
6178 		count++;
6179 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
6180 		count++;
6181 
6182 	/* We only support one arg being in raw mode at the moment,
6183 	 * which is sufficient for the helper functions we have
6184 	 * right now.
6185 	 */
6186 	return count <= 1;
6187 }
6188 
6189 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
6190 				    enum bpf_arg_type arg_next)
6191 {
6192 	return (arg_type_is_mem_ptr(arg_curr) &&
6193 	        !arg_type_is_mem_size(arg_next)) ||
6194 	       (!arg_type_is_mem_ptr(arg_curr) &&
6195 		arg_type_is_mem_size(arg_next));
6196 }
6197 
6198 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
6199 {
6200 	/* bpf_xxx(..., buf, len) call will access 'len'
6201 	 * bytes from memory 'buf'. Both arg types need
6202 	 * to be paired, so make sure there's no buggy
6203 	 * helper function specification.
6204 	 */
6205 	if (arg_type_is_mem_size(fn->arg1_type) ||
6206 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
6207 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
6208 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
6209 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
6210 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
6211 		return false;
6212 
6213 	return true;
6214 }
6215 
6216 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
6217 {
6218 	int count = 0;
6219 
6220 	if (arg_type_may_be_refcounted(fn->arg1_type))
6221 		count++;
6222 	if (arg_type_may_be_refcounted(fn->arg2_type))
6223 		count++;
6224 	if (arg_type_may_be_refcounted(fn->arg3_type))
6225 		count++;
6226 	if (arg_type_may_be_refcounted(fn->arg4_type))
6227 		count++;
6228 	if (arg_type_may_be_refcounted(fn->arg5_type))
6229 		count++;
6230 
6231 	/* A reference acquiring function cannot acquire
6232 	 * another refcounted ptr.
6233 	 */
6234 	if (may_be_acquire_function(func_id) && count)
6235 		return false;
6236 
6237 	/* We only support one arg being unreferenced at the moment,
6238 	 * which is sufficient for the helper functions we have right now.
6239 	 */
6240 	return count <= 1;
6241 }
6242 
6243 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
6244 {
6245 	int i;
6246 
6247 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
6248 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
6249 			return false;
6250 
6251 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
6252 			return false;
6253 	}
6254 
6255 	return true;
6256 }
6257 
6258 static int check_func_proto(const struct bpf_func_proto *fn, int func_id,
6259 			    struct bpf_call_arg_meta *meta)
6260 {
6261 	return check_raw_mode_ok(fn) &&
6262 	       check_arg_pair_ok(fn) &&
6263 	       check_btf_id_ok(fn) &&
6264 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
6265 }
6266 
6267 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
6268  * are now invalid, so turn them into unknown SCALAR_VALUE.
6269  */
6270 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
6271 				     struct bpf_func_state *state)
6272 {
6273 	struct bpf_reg_state *regs = state->regs, *reg;
6274 	int i;
6275 
6276 	for (i = 0; i < MAX_BPF_REG; i++)
6277 		if (reg_is_pkt_pointer_any(&regs[i]))
6278 			mark_reg_unknown(env, regs, i);
6279 
6280 	bpf_for_each_spilled_reg(i, state, reg) {
6281 		if (!reg)
6282 			continue;
6283 		if (reg_is_pkt_pointer_any(reg))
6284 			__mark_reg_unknown(env, reg);
6285 	}
6286 }
6287 
6288 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
6289 {
6290 	struct bpf_verifier_state *vstate = env->cur_state;
6291 	int i;
6292 
6293 	for (i = 0; i <= vstate->curframe; i++)
6294 		__clear_all_pkt_pointers(env, vstate->frame[i]);
6295 }
6296 
6297 enum {
6298 	AT_PKT_END = -1,
6299 	BEYOND_PKT_END = -2,
6300 };
6301 
6302 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
6303 {
6304 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6305 	struct bpf_reg_state *reg = &state->regs[regn];
6306 
6307 	if (reg->type != PTR_TO_PACKET)
6308 		/* PTR_TO_PACKET_META is not supported yet */
6309 		return;
6310 
6311 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
6312 	 * How far beyond pkt_end it goes is unknown.
6313 	 * if (!range_open) it's the case of pkt >= pkt_end
6314 	 * if (range_open) it's the case of pkt > pkt_end
6315 	 * hence this pointer is at least 1 byte bigger than pkt_end
6316 	 */
6317 	if (range_open)
6318 		reg->range = BEYOND_PKT_END;
6319 	else
6320 		reg->range = AT_PKT_END;
6321 }
6322 
6323 static void release_reg_references(struct bpf_verifier_env *env,
6324 				   struct bpf_func_state *state,
6325 				   int ref_obj_id)
6326 {
6327 	struct bpf_reg_state *regs = state->regs, *reg;
6328 	int i;
6329 
6330 	for (i = 0; i < MAX_BPF_REG; i++)
6331 		if (regs[i].ref_obj_id == ref_obj_id)
6332 			mark_reg_unknown(env, regs, i);
6333 
6334 	bpf_for_each_spilled_reg(i, state, reg) {
6335 		if (!reg)
6336 			continue;
6337 		if (reg->ref_obj_id == ref_obj_id)
6338 			__mark_reg_unknown(env, reg);
6339 	}
6340 }
6341 
6342 /* The pointer with the specified id has released its reference to kernel
6343  * resources. Identify all copies of the same pointer and clear the reference.
6344  */
6345 static int release_reference(struct bpf_verifier_env *env,
6346 			     int ref_obj_id)
6347 {
6348 	struct bpf_verifier_state *vstate = env->cur_state;
6349 	int err;
6350 	int i;
6351 
6352 	err = release_reference_state(cur_func(env), ref_obj_id);
6353 	if (err)
6354 		return err;
6355 
6356 	for (i = 0; i <= vstate->curframe; i++)
6357 		release_reg_references(env, vstate->frame[i], ref_obj_id);
6358 
6359 	return 0;
6360 }
6361 
6362 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
6363 				    struct bpf_reg_state *regs)
6364 {
6365 	int i;
6366 
6367 	/* after the call registers r0 - r5 were scratched */
6368 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6369 		mark_reg_not_init(env, regs, caller_saved[i]);
6370 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6371 	}
6372 }
6373 
6374 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
6375 				   struct bpf_func_state *caller,
6376 				   struct bpf_func_state *callee,
6377 				   int insn_idx);
6378 
6379 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6380 			     int *insn_idx, int subprog,
6381 			     set_callee_state_fn set_callee_state_cb)
6382 {
6383 	struct bpf_verifier_state *state = env->cur_state;
6384 	struct bpf_func_info_aux *func_info_aux;
6385 	struct bpf_func_state *caller, *callee;
6386 	int err;
6387 	bool is_global = false;
6388 
6389 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
6390 		verbose(env, "the call stack of %d frames is too deep\n",
6391 			state->curframe + 2);
6392 		return -E2BIG;
6393 	}
6394 
6395 	caller = state->frame[state->curframe];
6396 	if (state->frame[state->curframe + 1]) {
6397 		verbose(env, "verifier bug. Frame %d already allocated\n",
6398 			state->curframe + 1);
6399 		return -EFAULT;
6400 	}
6401 
6402 	func_info_aux = env->prog->aux->func_info_aux;
6403 	if (func_info_aux)
6404 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6405 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
6406 	if (err == -EFAULT)
6407 		return err;
6408 	if (is_global) {
6409 		if (err) {
6410 			verbose(env, "Caller passes invalid args into func#%d\n",
6411 				subprog);
6412 			return err;
6413 		} else {
6414 			if (env->log.level & BPF_LOG_LEVEL)
6415 				verbose(env,
6416 					"Func#%d is global and valid. Skipping.\n",
6417 					subprog);
6418 			clear_caller_saved_regs(env, caller->regs);
6419 
6420 			/* All global functions return a 64-bit SCALAR_VALUE */
6421 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
6422 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6423 
6424 			/* continue with next insn after call */
6425 			return 0;
6426 		}
6427 	}
6428 
6429 	if (insn->code == (BPF_JMP | BPF_CALL) &&
6430 	    insn->src_reg == 0 &&
6431 	    insn->imm == BPF_FUNC_timer_set_callback) {
6432 		struct bpf_verifier_state *async_cb;
6433 
6434 		/* there is no real recursion here. timer callbacks are async */
6435 		env->subprog_info[subprog].is_async_cb = true;
6436 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
6437 					 *insn_idx, subprog);
6438 		if (!async_cb)
6439 			return -EFAULT;
6440 		callee = async_cb->frame[0];
6441 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
6442 
6443 		/* Convert bpf_timer_set_callback() args into timer callback args */
6444 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
6445 		if (err)
6446 			return err;
6447 
6448 		clear_caller_saved_regs(env, caller->regs);
6449 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
6450 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6451 		/* continue with next insn after call */
6452 		return 0;
6453 	}
6454 
6455 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
6456 	if (!callee)
6457 		return -ENOMEM;
6458 	state->frame[state->curframe + 1] = callee;
6459 
6460 	/* callee cannot access r0, r6 - r9 for reading and has to write
6461 	 * into its own stack before reading from it.
6462 	 * callee can read/write into caller's stack
6463 	 */
6464 	init_func_state(env, callee,
6465 			/* remember the callsite, it will be used by bpf_exit */
6466 			*insn_idx /* callsite */,
6467 			state->curframe + 1 /* frameno within this callchain */,
6468 			subprog /* subprog number within this prog */);
6469 
6470 	/* Transfer references to the callee */
6471 	err = copy_reference_state(callee, caller);
6472 	if (err)
6473 		return err;
6474 
6475 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
6476 	if (err)
6477 		return err;
6478 
6479 	clear_caller_saved_regs(env, caller->regs);
6480 
6481 	/* only increment it after check_reg_arg() finished */
6482 	state->curframe++;
6483 
6484 	/* and go analyze first insn of the callee */
6485 	*insn_idx = env->subprog_info[subprog].start - 1;
6486 
6487 	if (env->log.level & BPF_LOG_LEVEL) {
6488 		verbose(env, "caller:\n");
6489 		print_verifier_state(env, caller, true);
6490 		verbose(env, "callee:\n");
6491 		print_verifier_state(env, callee, true);
6492 	}
6493 	return 0;
6494 }
6495 
6496 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6497 				   struct bpf_func_state *caller,
6498 				   struct bpf_func_state *callee)
6499 {
6500 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6501 	 *      void *callback_ctx, u64 flags);
6502 	 * callback_fn(struct bpf_map *map, void *key, void *value,
6503 	 *      void *callback_ctx);
6504 	 */
6505 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6506 
6507 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6508 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6509 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6510 
6511 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6512 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6513 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6514 
6515 	/* pointer to stack or null */
6516 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6517 
6518 	/* unused */
6519 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6520 	return 0;
6521 }
6522 
6523 static int set_callee_state(struct bpf_verifier_env *env,
6524 			    struct bpf_func_state *caller,
6525 			    struct bpf_func_state *callee, int insn_idx)
6526 {
6527 	int i;
6528 
6529 	/* copy r1 - r5 args that callee can access.  The copy includes parent
6530 	 * pointers, which connects us up to the liveness chain
6531 	 */
6532 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6533 		callee->regs[i] = caller->regs[i];
6534 	return 0;
6535 }
6536 
6537 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6538 			   int *insn_idx)
6539 {
6540 	int subprog, target_insn;
6541 
6542 	target_insn = *insn_idx + insn->imm + 1;
6543 	subprog = find_subprog(env, target_insn);
6544 	if (subprog < 0) {
6545 		verbose(env, "verifier bug. No program starts at insn %d\n",
6546 			target_insn);
6547 		return -EFAULT;
6548 	}
6549 
6550 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6551 }
6552 
6553 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6554 				       struct bpf_func_state *caller,
6555 				       struct bpf_func_state *callee,
6556 				       int insn_idx)
6557 {
6558 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6559 	struct bpf_map *map;
6560 	int err;
6561 
6562 	if (bpf_map_ptr_poisoned(insn_aux)) {
6563 		verbose(env, "tail_call abusing map_ptr\n");
6564 		return -EINVAL;
6565 	}
6566 
6567 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6568 	if (!map->ops->map_set_for_each_callback_args ||
6569 	    !map->ops->map_for_each_callback) {
6570 		verbose(env, "callback function not allowed for map\n");
6571 		return -ENOTSUPP;
6572 	}
6573 
6574 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6575 	if (err)
6576 		return err;
6577 
6578 	callee->in_callback_fn = true;
6579 	return 0;
6580 }
6581 
6582 static int set_loop_callback_state(struct bpf_verifier_env *env,
6583 				   struct bpf_func_state *caller,
6584 				   struct bpf_func_state *callee,
6585 				   int insn_idx)
6586 {
6587 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
6588 	 *	    u64 flags);
6589 	 * callback_fn(u32 index, void *callback_ctx);
6590 	 */
6591 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
6592 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
6593 
6594 	/* unused */
6595 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
6596 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6597 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6598 
6599 	callee->in_callback_fn = true;
6600 	return 0;
6601 }
6602 
6603 static int set_timer_callback_state(struct bpf_verifier_env *env,
6604 				    struct bpf_func_state *caller,
6605 				    struct bpf_func_state *callee,
6606 				    int insn_idx)
6607 {
6608 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6609 
6610 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6611 	 * callback_fn(struct bpf_map *map, void *key, void *value);
6612 	 */
6613 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6614 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6615 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
6616 
6617 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6618 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6619 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
6620 
6621 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6622 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6623 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
6624 
6625 	/* unused */
6626 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6627 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6628 	callee->in_async_callback_fn = true;
6629 	return 0;
6630 }
6631 
6632 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
6633 				       struct bpf_func_state *caller,
6634 				       struct bpf_func_state *callee,
6635 				       int insn_idx)
6636 {
6637 	/* bpf_find_vma(struct task_struct *task, u64 addr,
6638 	 *               void *callback_fn, void *callback_ctx, u64 flags)
6639 	 * (callback_fn)(struct task_struct *task,
6640 	 *               struct vm_area_struct *vma, void *callback_ctx);
6641 	 */
6642 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6643 
6644 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
6645 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6646 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
6647 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
6648 
6649 	/* pointer to stack or null */
6650 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
6651 
6652 	/* unused */
6653 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6654 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6655 	callee->in_callback_fn = true;
6656 	return 0;
6657 }
6658 
6659 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6660 {
6661 	struct bpf_verifier_state *state = env->cur_state;
6662 	struct bpf_func_state *caller, *callee;
6663 	struct bpf_reg_state *r0;
6664 	int err;
6665 
6666 	callee = state->frame[state->curframe];
6667 	r0 = &callee->regs[BPF_REG_0];
6668 	if (r0->type == PTR_TO_STACK) {
6669 		/* technically it's ok to return caller's stack pointer
6670 		 * (or caller's caller's pointer) back to the caller,
6671 		 * since these pointers are valid. Only current stack
6672 		 * pointer will be invalid as soon as function exits,
6673 		 * but let's be conservative
6674 		 */
6675 		verbose(env, "cannot return stack pointer to the caller\n");
6676 		return -EINVAL;
6677 	}
6678 
6679 	state->curframe--;
6680 	caller = state->frame[state->curframe];
6681 	if (callee->in_callback_fn) {
6682 		/* enforce R0 return value range [0, 1]. */
6683 		struct tnum range = tnum_range(0, 1);
6684 
6685 		if (r0->type != SCALAR_VALUE) {
6686 			verbose(env, "R0 not a scalar value\n");
6687 			return -EACCES;
6688 		}
6689 		if (!tnum_in(range, r0->var_off)) {
6690 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6691 			return -EINVAL;
6692 		}
6693 	} else {
6694 		/* return to the caller whatever r0 had in the callee */
6695 		caller->regs[BPF_REG_0] = *r0;
6696 	}
6697 
6698 	/* Transfer references to the caller */
6699 	err = copy_reference_state(caller, callee);
6700 	if (err)
6701 		return err;
6702 
6703 	*insn_idx = callee->callsite + 1;
6704 	if (env->log.level & BPF_LOG_LEVEL) {
6705 		verbose(env, "returning from callee:\n");
6706 		print_verifier_state(env, callee, true);
6707 		verbose(env, "to caller at %d:\n", *insn_idx);
6708 		print_verifier_state(env, caller, true);
6709 	}
6710 	/* clear everything in the callee */
6711 	free_func_state(callee);
6712 	state->frame[state->curframe + 1] = NULL;
6713 	return 0;
6714 }
6715 
6716 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6717 				   int func_id,
6718 				   struct bpf_call_arg_meta *meta)
6719 {
6720 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6721 
6722 	if (ret_type != RET_INTEGER ||
6723 	    (func_id != BPF_FUNC_get_stack &&
6724 	     func_id != BPF_FUNC_get_task_stack &&
6725 	     func_id != BPF_FUNC_probe_read_str &&
6726 	     func_id != BPF_FUNC_probe_read_kernel_str &&
6727 	     func_id != BPF_FUNC_probe_read_user_str))
6728 		return;
6729 
6730 	ret_reg->smax_value = meta->msize_max_value;
6731 	ret_reg->s32_max_value = meta->msize_max_value;
6732 	ret_reg->smin_value = -MAX_ERRNO;
6733 	ret_reg->s32_min_value = -MAX_ERRNO;
6734 	__reg_deduce_bounds(ret_reg);
6735 	__reg_bound_offset(ret_reg);
6736 	__update_reg_bounds(ret_reg);
6737 }
6738 
6739 static int
6740 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6741 		int func_id, int insn_idx)
6742 {
6743 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6744 	struct bpf_map *map = meta->map_ptr;
6745 
6746 	if (func_id != BPF_FUNC_tail_call &&
6747 	    func_id != BPF_FUNC_map_lookup_elem &&
6748 	    func_id != BPF_FUNC_map_update_elem &&
6749 	    func_id != BPF_FUNC_map_delete_elem &&
6750 	    func_id != BPF_FUNC_map_push_elem &&
6751 	    func_id != BPF_FUNC_map_pop_elem &&
6752 	    func_id != BPF_FUNC_map_peek_elem &&
6753 	    func_id != BPF_FUNC_for_each_map_elem &&
6754 	    func_id != BPF_FUNC_redirect_map)
6755 		return 0;
6756 
6757 	if (map == NULL) {
6758 		verbose(env, "kernel subsystem misconfigured verifier\n");
6759 		return -EINVAL;
6760 	}
6761 
6762 	/* In case of read-only, some additional restrictions
6763 	 * need to be applied in order to prevent altering the
6764 	 * state of the map from program side.
6765 	 */
6766 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6767 	    (func_id == BPF_FUNC_map_delete_elem ||
6768 	     func_id == BPF_FUNC_map_update_elem ||
6769 	     func_id == BPF_FUNC_map_push_elem ||
6770 	     func_id == BPF_FUNC_map_pop_elem)) {
6771 		verbose(env, "write into map forbidden\n");
6772 		return -EACCES;
6773 	}
6774 
6775 	if (!BPF_MAP_PTR(aux->map_ptr_state))
6776 		bpf_map_ptr_store(aux, meta->map_ptr,
6777 				  !meta->map_ptr->bypass_spec_v1);
6778 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
6779 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
6780 				  !meta->map_ptr->bypass_spec_v1);
6781 	return 0;
6782 }
6783 
6784 static int
6785 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6786 		int func_id, int insn_idx)
6787 {
6788 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6789 	struct bpf_reg_state *regs = cur_regs(env), *reg;
6790 	struct bpf_map *map = meta->map_ptr;
6791 	struct tnum range;
6792 	u64 val;
6793 	int err;
6794 
6795 	if (func_id != BPF_FUNC_tail_call)
6796 		return 0;
6797 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6798 		verbose(env, "kernel subsystem misconfigured verifier\n");
6799 		return -EINVAL;
6800 	}
6801 
6802 	range = tnum_range(0, map->max_entries - 1);
6803 	reg = &regs[BPF_REG_3];
6804 
6805 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6806 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6807 		return 0;
6808 	}
6809 
6810 	err = mark_chain_precision(env, BPF_REG_3);
6811 	if (err)
6812 		return err;
6813 
6814 	val = reg->var_off.value;
6815 	if (bpf_map_key_unseen(aux))
6816 		bpf_map_key_store(aux, val);
6817 	else if (!bpf_map_key_poisoned(aux) &&
6818 		  bpf_map_key_immediate(aux) != val)
6819 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6820 	return 0;
6821 }
6822 
6823 static int check_reference_leak(struct bpf_verifier_env *env)
6824 {
6825 	struct bpf_func_state *state = cur_func(env);
6826 	int i;
6827 
6828 	for (i = 0; i < state->acquired_refs; i++) {
6829 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6830 			state->refs[i].id, state->refs[i].insn_idx);
6831 	}
6832 	return state->acquired_refs ? -EINVAL : 0;
6833 }
6834 
6835 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6836 				   struct bpf_reg_state *regs)
6837 {
6838 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6839 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6840 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
6841 	int err, fmt_map_off, num_args;
6842 	u64 fmt_addr;
6843 	char *fmt;
6844 
6845 	/* data must be an array of u64 */
6846 	if (data_len_reg->var_off.value % 8)
6847 		return -EINVAL;
6848 	num_args = data_len_reg->var_off.value / 8;
6849 
6850 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6851 	 * and map_direct_value_addr is set.
6852 	 */
6853 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6854 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6855 						  fmt_map_off);
6856 	if (err) {
6857 		verbose(env, "verifier bug\n");
6858 		return -EFAULT;
6859 	}
6860 	fmt = (char *)(long)fmt_addr + fmt_map_off;
6861 
6862 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6863 	 * can focus on validating the format specifiers.
6864 	 */
6865 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
6866 	if (err < 0)
6867 		verbose(env, "Invalid format string\n");
6868 
6869 	return err;
6870 }
6871 
6872 static int check_get_func_ip(struct bpf_verifier_env *env)
6873 {
6874 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6875 	int func_id = BPF_FUNC_get_func_ip;
6876 
6877 	if (type == BPF_PROG_TYPE_TRACING) {
6878 		if (!bpf_prog_has_trampoline(env->prog)) {
6879 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6880 				func_id_name(func_id), func_id);
6881 			return -ENOTSUPP;
6882 		}
6883 		return 0;
6884 	} else if (type == BPF_PROG_TYPE_KPROBE) {
6885 		return 0;
6886 	}
6887 
6888 	verbose(env, "func %s#%d not supported for program type %d\n",
6889 		func_id_name(func_id), func_id, type);
6890 	return -ENOTSUPP;
6891 }
6892 
6893 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6894 			     int *insn_idx_p)
6895 {
6896 	const struct bpf_func_proto *fn = NULL;
6897 	enum bpf_return_type ret_type;
6898 	enum bpf_type_flag ret_flag;
6899 	struct bpf_reg_state *regs;
6900 	struct bpf_call_arg_meta meta;
6901 	int insn_idx = *insn_idx_p;
6902 	bool changes_data;
6903 	int i, err, func_id;
6904 
6905 	/* find function prototype */
6906 	func_id = insn->imm;
6907 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
6908 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6909 			func_id);
6910 		return -EINVAL;
6911 	}
6912 
6913 	if (env->ops->get_func_proto)
6914 		fn = env->ops->get_func_proto(func_id, env->prog);
6915 	if (!fn) {
6916 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6917 			func_id);
6918 		return -EINVAL;
6919 	}
6920 
6921 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
6922 	if (!env->prog->gpl_compatible && fn->gpl_only) {
6923 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
6924 		return -EINVAL;
6925 	}
6926 
6927 	if (fn->allowed && !fn->allowed(env->prog)) {
6928 		verbose(env, "helper call is not allowed in probe\n");
6929 		return -EINVAL;
6930 	}
6931 
6932 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
6933 	changes_data = bpf_helper_changes_pkt_data(fn->func);
6934 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6935 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6936 			func_id_name(func_id), func_id);
6937 		return -EINVAL;
6938 	}
6939 
6940 	memset(&meta, 0, sizeof(meta));
6941 	meta.pkt_access = fn->pkt_access;
6942 
6943 	err = check_func_proto(fn, func_id, &meta);
6944 	if (err) {
6945 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6946 			func_id_name(func_id), func_id);
6947 		return err;
6948 	}
6949 
6950 	meta.func_id = func_id;
6951 	/* check args */
6952 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6953 		err = check_func_arg(env, i, &meta, fn);
6954 		if (err)
6955 			return err;
6956 	}
6957 
6958 	err = record_func_map(env, &meta, func_id, insn_idx);
6959 	if (err)
6960 		return err;
6961 
6962 	err = record_func_key(env, &meta, func_id, insn_idx);
6963 	if (err)
6964 		return err;
6965 
6966 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6967 	 * is inferred from register state.
6968 	 */
6969 	for (i = 0; i < meta.access_size; i++) {
6970 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6971 				       BPF_WRITE, -1, false);
6972 		if (err)
6973 			return err;
6974 	}
6975 
6976 	regs = cur_regs(env);
6977 
6978 	if (meta.release_regno) {
6979 		err = -EINVAL;
6980 		if (meta.ref_obj_id)
6981 			err = release_reference(env, meta.ref_obj_id);
6982 		/* meta.ref_obj_id can only be 0 if register that is meant to be
6983 		 * released is NULL, which must be > R0.
6984 		 */
6985 		else if (register_is_null(&regs[meta.release_regno]))
6986 			err = 0;
6987 		if (err) {
6988 			verbose(env, "func %s#%d reference has not been acquired before\n",
6989 				func_id_name(func_id), func_id);
6990 			return err;
6991 		}
6992 	}
6993 
6994 	switch (func_id) {
6995 	case BPF_FUNC_tail_call:
6996 		err = check_reference_leak(env);
6997 		if (err) {
6998 			verbose(env, "tail_call would lead to reference leak\n");
6999 			return err;
7000 		}
7001 		break;
7002 	case BPF_FUNC_get_local_storage:
7003 		/* check that flags argument in get_local_storage(map, flags) is 0,
7004 		 * this is required because get_local_storage() can't return an error.
7005 		 */
7006 		if (!register_is_null(&regs[BPF_REG_2])) {
7007 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
7008 			return -EINVAL;
7009 		}
7010 		break;
7011 	case BPF_FUNC_for_each_map_elem:
7012 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7013 					set_map_elem_callback_state);
7014 		break;
7015 	case BPF_FUNC_timer_set_callback:
7016 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7017 					set_timer_callback_state);
7018 		break;
7019 	case BPF_FUNC_find_vma:
7020 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7021 					set_find_vma_callback_state);
7022 		break;
7023 	case BPF_FUNC_snprintf:
7024 		err = check_bpf_snprintf_call(env, regs);
7025 		break;
7026 	case BPF_FUNC_loop:
7027 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
7028 					set_loop_callback_state);
7029 		break;
7030 	}
7031 
7032 	if (err)
7033 		return err;
7034 
7035 	/* reset caller saved regs */
7036 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7037 		mark_reg_not_init(env, regs, caller_saved[i]);
7038 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7039 	}
7040 
7041 	/* helper call returns 64-bit value. */
7042 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
7043 
7044 	/* update return register (already marked as written above) */
7045 	ret_type = fn->ret_type;
7046 	ret_flag = type_flag(fn->ret_type);
7047 	if (ret_type == RET_INTEGER) {
7048 		/* sets type to SCALAR_VALUE */
7049 		mark_reg_unknown(env, regs, BPF_REG_0);
7050 	} else if (ret_type == RET_VOID) {
7051 		regs[BPF_REG_0].type = NOT_INIT;
7052 	} else if (base_type(ret_type) == RET_PTR_TO_MAP_VALUE) {
7053 		/* There is no offset yet applied, variable or fixed */
7054 		mark_reg_known_zero(env, regs, BPF_REG_0);
7055 		/* remember map_ptr, so that check_map_access()
7056 		 * can check 'value_size' boundary of memory access
7057 		 * to map element returned from bpf_map_lookup_elem()
7058 		 */
7059 		if (meta.map_ptr == NULL) {
7060 			verbose(env,
7061 				"kernel subsystem misconfigured verifier\n");
7062 			return -EINVAL;
7063 		}
7064 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
7065 		regs[BPF_REG_0].map_uid = meta.map_uid;
7066 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
7067 		if (!type_may_be_null(ret_type) &&
7068 		    map_value_has_spin_lock(meta.map_ptr)) {
7069 			regs[BPF_REG_0].id = ++env->id_gen;
7070 		}
7071 	} else if (base_type(ret_type) == RET_PTR_TO_SOCKET) {
7072 		mark_reg_known_zero(env, regs, BPF_REG_0);
7073 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
7074 	} else if (base_type(ret_type) == RET_PTR_TO_SOCK_COMMON) {
7075 		mark_reg_known_zero(env, regs, BPF_REG_0);
7076 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
7077 	} else if (base_type(ret_type) == RET_PTR_TO_TCP_SOCK) {
7078 		mark_reg_known_zero(env, regs, BPF_REG_0);
7079 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
7080 	} else if (base_type(ret_type) == RET_PTR_TO_ALLOC_MEM) {
7081 		mark_reg_known_zero(env, regs, BPF_REG_0);
7082 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7083 		regs[BPF_REG_0].mem_size = meta.mem_size;
7084 	} else if (base_type(ret_type) == RET_PTR_TO_MEM_OR_BTF_ID) {
7085 		const struct btf_type *t;
7086 
7087 		mark_reg_known_zero(env, regs, BPF_REG_0);
7088 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
7089 		if (!btf_type_is_struct(t)) {
7090 			u32 tsize;
7091 			const struct btf_type *ret;
7092 			const char *tname;
7093 
7094 			/* resolve the type size of ksym. */
7095 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
7096 			if (IS_ERR(ret)) {
7097 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
7098 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
7099 					tname, PTR_ERR(ret));
7100 				return -EINVAL;
7101 			}
7102 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
7103 			regs[BPF_REG_0].mem_size = tsize;
7104 		} else {
7105 			/* MEM_RDONLY may be carried from ret_flag, but it
7106 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
7107 			 * it will confuse the check of PTR_TO_BTF_ID in
7108 			 * check_mem_access().
7109 			 */
7110 			ret_flag &= ~MEM_RDONLY;
7111 
7112 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7113 			regs[BPF_REG_0].btf = meta.ret_btf;
7114 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
7115 		}
7116 	} else if (base_type(ret_type) == RET_PTR_TO_BTF_ID) {
7117 		struct btf *ret_btf;
7118 		int ret_btf_id;
7119 
7120 		mark_reg_known_zero(env, regs, BPF_REG_0);
7121 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
7122 		if (func_id == BPF_FUNC_kptr_xchg) {
7123 			ret_btf = meta.kptr_off_desc->kptr.btf;
7124 			ret_btf_id = meta.kptr_off_desc->kptr.btf_id;
7125 		} else {
7126 			ret_btf = btf_vmlinux;
7127 			ret_btf_id = *fn->ret_btf_id;
7128 		}
7129 		if (ret_btf_id == 0) {
7130 			verbose(env, "invalid return type %u of func %s#%d\n",
7131 				base_type(ret_type), func_id_name(func_id),
7132 				func_id);
7133 			return -EINVAL;
7134 		}
7135 		regs[BPF_REG_0].btf = ret_btf;
7136 		regs[BPF_REG_0].btf_id = ret_btf_id;
7137 	} else {
7138 		verbose(env, "unknown return type %u of func %s#%d\n",
7139 			base_type(ret_type), func_id_name(func_id), func_id);
7140 		return -EINVAL;
7141 	}
7142 
7143 	if (type_may_be_null(regs[BPF_REG_0].type))
7144 		regs[BPF_REG_0].id = ++env->id_gen;
7145 
7146 	if (is_ptr_cast_function(func_id)) {
7147 		/* For release_reference() */
7148 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
7149 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
7150 		int id = acquire_reference_state(env, insn_idx);
7151 
7152 		if (id < 0)
7153 			return id;
7154 		/* For mark_ptr_or_null_reg() */
7155 		regs[BPF_REG_0].id = id;
7156 		/* For release_reference() */
7157 		regs[BPF_REG_0].ref_obj_id = id;
7158 	}
7159 
7160 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
7161 
7162 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
7163 	if (err)
7164 		return err;
7165 
7166 	if ((func_id == BPF_FUNC_get_stack ||
7167 	     func_id == BPF_FUNC_get_task_stack) &&
7168 	    !env->prog->has_callchain_buf) {
7169 		const char *err_str;
7170 
7171 #ifdef CONFIG_PERF_EVENTS
7172 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
7173 		err_str = "cannot get callchain buffer for func %s#%d\n";
7174 #else
7175 		err = -ENOTSUPP;
7176 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
7177 #endif
7178 		if (err) {
7179 			verbose(env, err_str, func_id_name(func_id), func_id);
7180 			return err;
7181 		}
7182 
7183 		env->prog->has_callchain_buf = true;
7184 	}
7185 
7186 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
7187 		env->prog->call_get_stack = true;
7188 
7189 	if (func_id == BPF_FUNC_get_func_ip) {
7190 		if (check_get_func_ip(env))
7191 			return -ENOTSUPP;
7192 		env->prog->call_get_func_ip = true;
7193 	}
7194 
7195 	if (changes_data)
7196 		clear_all_pkt_pointers(env);
7197 	return 0;
7198 }
7199 
7200 /* mark_btf_func_reg_size() is used when the reg size is determined by
7201  * the BTF func_proto's return value size and argument.
7202  */
7203 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
7204 				   size_t reg_size)
7205 {
7206 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
7207 
7208 	if (regno == BPF_REG_0) {
7209 		/* Function return value */
7210 		reg->live |= REG_LIVE_WRITTEN;
7211 		reg->subreg_def = reg_size == sizeof(u64) ?
7212 			DEF_NOT_SUBREG : env->insn_idx + 1;
7213 	} else {
7214 		/* Function argument */
7215 		if (reg_size == sizeof(u64)) {
7216 			mark_insn_zext(env, reg);
7217 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
7218 		} else {
7219 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
7220 		}
7221 	}
7222 }
7223 
7224 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
7225 			    int *insn_idx_p)
7226 {
7227 	const struct btf_type *t, *func, *func_proto, *ptr_type;
7228 	struct bpf_reg_state *regs = cur_regs(env);
7229 	const char *func_name, *ptr_type_name;
7230 	u32 i, nargs, func_id, ptr_type_id;
7231 	int err, insn_idx = *insn_idx_p;
7232 	const struct btf_param *args;
7233 	struct btf *desc_btf;
7234 	bool acq;
7235 
7236 	/* skip for now, but return error when we find this in fixup_kfunc_call */
7237 	if (!insn->imm)
7238 		return 0;
7239 
7240 	desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off);
7241 	if (IS_ERR(desc_btf))
7242 		return PTR_ERR(desc_btf);
7243 
7244 	func_id = insn->imm;
7245 	func = btf_type_by_id(desc_btf, func_id);
7246 	func_name = btf_name_by_offset(desc_btf, func->name_off);
7247 	func_proto = btf_type_by_id(desc_btf, func->type);
7248 
7249 	if (!btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog),
7250 				      BTF_KFUNC_TYPE_CHECK, func_id)) {
7251 		verbose(env, "calling kernel function %s is not allowed\n",
7252 			func_name);
7253 		return -EACCES;
7254 	}
7255 
7256 	acq = btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog),
7257 					BTF_KFUNC_TYPE_ACQUIRE, func_id);
7258 
7259 	/* Check the arguments */
7260 	err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
7261 	if (err < 0)
7262 		return err;
7263 	/* In case of release function, we get register number of refcounted
7264 	 * PTR_TO_BTF_ID back from btf_check_kfunc_arg_match, do the release now
7265 	 */
7266 	if (err) {
7267 		err = release_reference(env, regs[err].ref_obj_id);
7268 		if (err) {
7269 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
7270 				func_name, func_id);
7271 			return err;
7272 		}
7273 	}
7274 
7275 	for (i = 0; i < CALLER_SAVED_REGS; i++)
7276 		mark_reg_not_init(env, regs, caller_saved[i]);
7277 
7278 	/* Check return type */
7279 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
7280 
7281 	if (acq && !btf_type_is_ptr(t)) {
7282 		verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
7283 		return -EINVAL;
7284 	}
7285 
7286 	if (btf_type_is_scalar(t)) {
7287 		mark_reg_unknown(env, regs, BPF_REG_0);
7288 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
7289 	} else if (btf_type_is_ptr(t)) {
7290 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
7291 						   &ptr_type_id);
7292 		if (!btf_type_is_struct(ptr_type)) {
7293 			ptr_type_name = btf_name_by_offset(desc_btf,
7294 							   ptr_type->name_off);
7295 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
7296 				func_name, btf_type_str(ptr_type),
7297 				ptr_type_name);
7298 			return -EINVAL;
7299 		}
7300 		mark_reg_known_zero(env, regs, BPF_REG_0);
7301 		regs[BPF_REG_0].btf = desc_btf;
7302 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
7303 		regs[BPF_REG_0].btf_id = ptr_type_id;
7304 		if (btf_kfunc_id_set_contains(desc_btf, resolve_prog_type(env->prog),
7305 					      BTF_KFUNC_TYPE_RET_NULL, func_id)) {
7306 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
7307 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
7308 			regs[BPF_REG_0].id = ++env->id_gen;
7309 		}
7310 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
7311 		if (acq) {
7312 			int id = acquire_reference_state(env, insn_idx);
7313 
7314 			if (id < 0)
7315 				return id;
7316 			regs[BPF_REG_0].id = id;
7317 			regs[BPF_REG_0].ref_obj_id = id;
7318 		}
7319 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
7320 
7321 	nargs = btf_type_vlen(func_proto);
7322 	args = (const struct btf_param *)(func_proto + 1);
7323 	for (i = 0; i < nargs; i++) {
7324 		u32 regno = i + 1;
7325 
7326 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
7327 		if (btf_type_is_ptr(t))
7328 			mark_btf_func_reg_size(env, regno, sizeof(void *));
7329 		else
7330 			/* scalar. ensured by btf_check_kfunc_arg_match() */
7331 			mark_btf_func_reg_size(env, regno, t->size);
7332 	}
7333 
7334 	return 0;
7335 }
7336 
7337 static bool signed_add_overflows(s64 a, s64 b)
7338 {
7339 	/* Do the add in u64, where overflow is well-defined */
7340 	s64 res = (s64)((u64)a + (u64)b);
7341 
7342 	if (b < 0)
7343 		return res > a;
7344 	return res < a;
7345 }
7346 
7347 static bool signed_add32_overflows(s32 a, s32 b)
7348 {
7349 	/* Do the add in u32, where overflow is well-defined */
7350 	s32 res = (s32)((u32)a + (u32)b);
7351 
7352 	if (b < 0)
7353 		return res > a;
7354 	return res < a;
7355 }
7356 
7357 static bool signed_sub_overflows(s64 a, s64 b)
7358 {
7359 	/* Do the sub in u64, where overflow is well-defined */
7360 	s64 res = (s64)((u64)a - (u64)b);
7361 
7362 	if (b < 0)
7363 		return res < a;
7364 	return res > a;
7365 }
7366 
7367 static bool signed_sub32_overflows(s32 a, s32 b)
7368 {
7369 	/* Do the sub in u32, where overflow is well-defined */
7370 	s32 res = (s32)((u32)a - (u32)b);
7371 
7372 	if (b < 0)
7373 		return res < a;
7374 	return res > a;
7375 }
7376 
7377 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
7378 				  const struct bpf_reg_state *reg,
7379 				  enum bpf_reg_type type)
7380 {
7381 	bool known = tnum_is_const(reg->var_off);
7382 	s64 val = reg->var_off.value;
7383 	s64 smin = reg->smin_value;
7384 
7385 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
7386 		verbose(env, "math between %s pointer and %lld is not allowed\n",
7387 			reg_type_str(env, type), val);
7388 		return false;
7389 	}
7390 
7391 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
7392 		verbose(env, "%s pointer offset %d is not allowed\n",
7393 			reg_type_str(env, type), reg->off);
7394 		return false;
7395 	}
7396 
7397 	if (smin == S64_MIN) {
7398 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
7399 			reg_type_str(env, type));
7400 		return false;
7401 	}
7402 
7403 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
7404 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
7405 			smin, reg_type_str(env, type));
7406 		return false;
7407 	}
7408 
7409 	return true;
7410 }
7411 
7412 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
7413 {
7414 	return &env->insn_aux_data[env->insn_idx];
7415 }
7416 
7417 enum {
7418 	REASON_BOUNDS	= -1,
7419 	REASON_TYPE	= -2,
7420 	REASON_PATHS	= -3,
7421 	REASON_LIMIT	= -4,
7422 	REASON_STACK	= -5,
7423 };
7424 
7425 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
7426 			      u32 *alu_limit, bool mask_to_left)
7427 {
7428 	u32 max = 0, ptr_limit = 0;
7429 
7430 	switch (ptr_reg->type) {
7431 	case PTR_TO_STACK:
7432 		/* Offset 0 is out-of-bounds, but acceptable start for the
7433 		 * left direction, see BPF_REG_FP. Also, unknown scalar
7434 		 * offset where we would need to deal with min/max bounds is
7435 		 * currently prohibited for unprivileged.
7436 		 */
7437 		max = MAX_BPF_STACK + mask_to_left;
7438 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
7439 		break;
7440 	case PTR_TO_MAP_VALUE:
7441 		max = ptr_reg->map_ptr->value_size;
7442 		ptr_limit = (mask_to_left ?
7443 			     ptr_reg->smin_value :
7444 			     ptr_reg->umax_value) + ptr_reg->off;
7445 		break;
7446 	default:
7447 		return REASON_TYPE;
7448 	}
7449 
7450 	if (ptr_limit >= max)
7451 		return REASON_LIMIT;
7452 	*alu_limit = ptr_limit;
7453 	return 0;
7454 }
7455 
7456 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
7457 				    const struct bpf_insn *insn)
7458 {
7459 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
7460 }
7461 
7462 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
7463 				       u32 alu_state, u32 alu_limit)
7464 {
7465 	/* If we arrived here from different branches with different
7466 	 * state or limits to sanitize, then this won't work.
7467 	 */
7468 	if (aux->alu_state &&
7469 	    (aux->alu_state != alu_state ||
7470 	     aux->alu_limit != alu_limit))
7471 		return REASON_PATHS;
7472 
7473 	/* Corresponding fixup done in do_misc_fixups(). */
7474 	aux->alu_state = alu_state;
7475 	aux->alu_limit = alu_limit;
7476 	return 0;
7477 }
7478 
7479 static int sanitize_val_alu(struct bpf_verifier_env *env,
7480 			    struct bpf_insn *insn)
7481 {
7482 	struct bpf_insn_aux_data *aux = cur_aux(env);
7483 
7484 	if (can_skip_alu_sanitation(env, insn))
7485 		return 0;
7486 
7487 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
7488 }
7489 
7490 static bool sanitize_needed(u8 opcode)
7491 {
7492 	return opcode == BPF_ADD || opcode == BPF_SUB;
7493 }
7494 
7495 struct bpf_sanitize_info {
7496 	struct bpf_insn_aux_data aux;
7497 	bool mask_to_left;
7498 };
7499 
7500 static struct bpf_verifier_state *
7501 sanitize_speculative_path(struct bpf_verifier_env *env,
7502 			  const struct bpf_insn *insn,
7503 			  u32 next_idx, u32 curr_idx)
7504 {
7505 	struct bpf_verifier_state *branch;
7506 	struct bpf_reg_state *regs;
7507 
7508 	branch = push_stack(env, next_idx, curr_idx, true);
7509 	if (branch && insn) {
7510 		regs = branch->frame[branch->curframe]->regs;
7511 		if (BPF_SRC(insn->code) == BPF_K) {
7512 			mark_reg_unknown(env, regs, insn->dst_reg);
7513 		} else if (BPF_SRC(insn->code) == BPF_X) {
7514 			mark_reg_unknown(env, regs, insn->dst_reg);
7515 			mark_reg_unknown(env, regs, insn->src_reg);
7516 		}
7517 	}
7518 	return branch;
7519 }
7520 
7521 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
7522 			    struct bpf_insn *insn,
7523 			    const struct bpf_reg_state *ptr_reg,
7524 			    const struct bpf_reg_state *off_reg,
7525 			    struct bpf_reg_state *dst_reg,
7526 			    struct bpf_sanitize_info *info,
7527 			    const bool commit_window)
7528 {
7529 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
7530 	struct bpf_verifier_state *vstate = env->cur_state;
7531 	bool off_is_imm = tnum_is_const(off_reg->var_off);
7532 	bool off_is_neg = off_reg->smin_value < 0;
7533 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
7534 	u8 opcode = BPF_OP(insn->code);
7535 	u32 alu_state, alu_limit;
7536 	struct bpf_reg_state tmp;
7537 	bool ret;
7538 	int err;
7539 
7540 	if (can_skip_alu_sanitation(env, insn))
7541 		return 0;
7542 
7543 	/* We already marked aux for masking from non-speculative
7544 	 * paths, thus we got here in the first place. We only care
7545 	 * to explore bad access from here.
7546 	 */
7547 	if (vstate->speculative)
7548 		goto do_sim;
7549 
7550 	if (!commit_window) {
7551 		if (!tnum_is_const(off_reg->var_off) &&
7552 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
7553 			return REASON_BOUNDS;
7554 
7555 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
7556 				     (opcode == BPF_SUB && !off_is_neg);
7557 	}
7558 
7559 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
7560 	if (err < 0)
7561 		return err;
7562 
7563 	if (commit_window) {
7564 		/* In commit phase we narrow the masking window based on
7565 		 * the observed pointer move after the simulated operation.
7566 		 */
7567 		alu_state = info->aux.alu_state;
7568 		alu_limit = abs(info->aux.alu_limit - alu_limit);
7569 	} else {
7570 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
7571 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
7572 		alu_state |= ptr_is_dst_reg ?
7573 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
7574 
7575 		/* Limit pruning on unknown scalars to enable deep search for
7576 		 * potential masking differences from other program paths.
7577 		 */
7578 		if (!off_is_imm)
7579 			env->explore_alu_limits = true;
7580 	}
7581 
7582 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7583 	if (err < 0)
7584 		return err;
7585 do_sim:
7586 	/* If we're in commit phase, we're done here given we already
7587 	 * pushed the truncated dst_reg into the speculative verification
7588 	 * stack.
7589 	 *
7590 	 * Also, when register is a known constant, we rewrite register-based
7591 	 * operation to immediate-based, and thus do not need masking (and as
7592 	 * a consequence, do not need to simulate the zero-truncation either).
7593 	 */
7594 	if (commit_window || off_is_imm)
7595 		return 0;
7596 
7597 	/* Simulate and find potential out-of-bounds access under
7598 	 * speculative execution from truncation as a result of
7599 	 * masking when off was not within expected range. If off
7600 	 * sits in dst, then we temporarily need to move ptr there
7601 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7602 	 * for cases where we use K-based arithmetic in one direction
7603 	 * and truncated reg-based in the other in order to explore
7604 	 * bad access.
7605 	 */
7606 	if (!ptr_is_dst_reg) {
7607 		tmp = *dst_reg;
7608 		*dst_reg = *ptr_reg;
7609 	}
7610 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7611 					env->insn_idx);
7612 	if (!ptr_is_dst_reg && ret)
7613 		*dst_reg = tmp;
7614 	return !ret ? REASON_STACK : 0;
7615 }
7616 
7617 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7618 {
7619 	struct bpf_verifier_state *vstate = env->cur_state;
7620 
7621 	/* If we simulate paths under speculation, we don't update the
7622 	 * insn as 'seen' such that when we verify unreachable paths in
7623 	 * the non-speculative domain, sanitize_dead_code() can still
7624 	 * rewrite/sanitize them.
7625 	 */
7626 	if (!vstate->speculative)
7627 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7628 }
7629 
7630 static int sanitize_err(struct bpf_verifier_env *env,
7631 			const struct bpf_insn *insn, int reason,
7632 			const struct bpf_reg_state *off_reg,
7633 			const struct bpf_reg_state *dst_reg)
7634 {
7635 	static const char *err = "pointer arithmetic with it prohibited for !root";
7636 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7637 	u32 dst = insn->dst_reg, src = insn->src_reg;
7638 
7639 	switch (reason) {
7640 	case REASON_BOUNDS:
7641 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7642 			off_reg == dst_reg ? dst : src, err);
7643 		break;
7644 	case REASON_TYPE:
7645 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7646 			off_reg == dst_reg ? src : dst, err);
7647 		break;
7648 	case REASON_PATHS:
7649 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7650 			dst, op, err);
7651 		break;
7652 	case REASON_LIMIT:
7653 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7654 			dst, op, err);
7655 		break;
7656 	case REASON_STACK:
7657 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7658 			dst, err);
7659 		break;
7660 	default:
7661 		verbose(env, "verifier internal error: unknown reason (%d)\n",
7662 			reason);
7663 		break;
7664 	}
7665 
7666 	return -EACCES;
7667 }
7668 
7669 /* check that stack access falls within stack limits and that 'reg' doesn't
7670  * have a variable offset.
7671  *
7672  * Variable offset is prohibited for unprivileged mode for simplicity since it
7673  * requires corresponding support in Spectre masking for stack ALU.  See also
7674  * retrieve_ptr_limit().
7675  *
7676  *
7677  * 'off' includes 'reg->off'.
7678  */
7679 static int check_stack_access_for_ptr_arithmetic(
7680 				struct bpf_verifier_env *env,
7681 				int regno,
7682 				const struct bpf_reg_state *reg,
7683 				int off)
7684 {
7685 	if (!tnum_is_const(reg->var_off)) {
7686 		char tn_buf[48];
7687 
7688 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7689 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7690 			regno, tn_buf, off);
7691 		return -EACCES;
7692 	}
7693 
7694 	if (off >= 0 || off < -MAX_BPF_STACK) {
7695 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
7696 			"prohibited for !root; off=%d\n", regno, off);
7697 		return -EACCES;
7698 	}
7699 
7700 	return 0;
7701 }
7702 
7703 static int sanitize_check_bounds(struct bpf_verifier_env *env,
7704 				 const struct bpf_insn *insn,
7705 				 const struct bpf_reg_state *dst_reg)
7706 {
7707 	u32 dst = insn->dst_reg;
7708 
7709 	/* For unprivileged we require that resulting offset must be in bounds
7710 	 * in order to be able to sanitize access later on.
7711 	 */
7712 	if (env->bypass_spec_v1)
7713 		return 0;
7714 
7715 	switch (dst_reg->type) {
7716 	case PTR_TO_STACK:
7717 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7718 					dst_reg->off + dst_reg->var_off.value))
7719 			return -EACCES;
7720 		break;
7721 	case PTR_TO_MAP_VALUE:
7722 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
7723 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7724 				"prohibited for !root\n", dst);
7725 			return -EACCES;
7726 		}
7727 		break;
7728 	default:
7729 		break;
7730 	}
7731 
7732 	return 0;
7733 }
7734 
7735 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
7736  * Caller should also handle BPF_MOV case separately.
7737  * If we return -EACCES, caller may want to try again treating pointer as a
7738  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
7739  */
7740 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7741 				   struct bpf_insn *insn,
7742 				   const struct bpf_reg_state *ptr_reg,
7743 				   const struct bpf_reg_state *off_reg)
7744 {
7745 	struct bpf_verifier_state *vstate = env->cur_state;
7746 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7747 	struct bpf_reg_state *regs = state->regs, *dst_reg;
7748 	bool known = tnum_is_const(off_reg->var_off);
7749 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7750 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7751 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7752 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
7753 	struct bpf_sanitize_info info = {};
7754 	u8 opcode = BPF_OP(insn->code);
7755 	u32 dst = insn->dst_reg;
7756 	int ret;
7757 
7758 	dst_reg = &regs[dst];
7759 
7760 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7761 	    smin_val > smax_val || umin_val > umax_val) {
7762 		/* Taint dst register if offset had invalid bounds derived from
7763 		 * e.g. dead branches.
7764 		 */
7765 		__mark_reg_unknown(env, dst_reg);
7766 		return 0;
7767 	}
7768 
7769 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
7770 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
7771 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7772 			__mark_reg_unknown(env, dst_reg);
7773 			return 0;
7774 		}
7775 
7776 		verbose(env,
7777 			"R%d 32-bit pointer arithmetic prohibited\n",
7778 			dst);
7779 		return -EACCES;
7780 	}
7781 
7782 	if (ptr_reg->type & PTR_MAYBE_NULL) {
7783 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7784 			dst, reg_type_str(env, ptr_reg->type));
7785 		return -EACCES;
7786 	}
7787 
7788 	switch (base_type(ptr_reg->type)) {
7789 	case CONST_PTR_TO_MAP:
7790 		/* smin_val represents the known value */
7791 		if (known && smin_val == 0 && opcode == BPF_ADD)
7792 			break;
7793 		fallthrough;
7794 	case PTR_TO_PACKET_END:
7795 	case PTR_TO_SOCKET:
7796 	case PTR_TO_SOCK_COMMON:
7797 	case PTR_TO_TCP_SOCK:
7798 	case PTR_TO_XDP_SOCK:
7799 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7800 			dst, reg_type_str(env, ptr_reg->type));
7801 		return -EACCES;
7802 	default:
7803 		break;
7804 	}
7805 
7806 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7807 	 * The id may be overwritten later if we create a new variable offset.
7808 	 */
7809 	dst_reg->type = ptr_reg->type;
7810 	dst_reg->id = ptr_reg->id;
7811 
7812 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7813 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7814 		return -EINVAL;
7815 
7816 	/* pointer types do not carry 32-bit bounds at the moment. */
7817 	__mark_reg32_unbounded(dst_reg);
7818 
7819 	if (sanitize_needed(opcode)) {
7820 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
7821 				       &info, false);
7822 		if (ret < 0)
7823 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7824 	}
7825 
7826 	switch (opcode) {
7827 	case BPF_ADD:
7828 		/* We can take a fixed offset as long as it doesn't overflow
7829 		 * the s32 'off' field
7830 		 */
7831 		if (known && (ptr_reg->off + smin_val ==
7832 			      (s64)(s32)(ptr_reg->off + smin_val))) {
7833 			/* pointer += K.  Accumulate it into fixed offset */
7834 			dst_reg->smin_value = smin_ptr;
7835 			dst_reg->smax_value = smax_ptr;
7836 			dst_reg->umin_value = umin_ptr;
7837 			dst_reg->umax_value = umax_ptr;
7838 			dst_reg->var_off = ptr_reg->var_off;
7839 			dst_reg->off = ptr_reg->off + smin_val;
7840 			dst_reg->raw = ptr_reg->raw;
7841 			break;
7842 		}
7843 		/* A new variable offset is created.  Note that off_reg->off
7844 		 * == 0, since it's a scalar.
7845 		 * dst_reg gets the pointer type and since some positive
7846 		 * integer value was added to the pointer, give it a new 'id'
7847 		 * if it's a PTR_TO_PACKET.
7848 		 * this creates a new 'base' pointer, off_reg (variable) gets
7849 		 * added into the variable offset, and we copy the fixed offset
7850 		 * from ptr_reg.
7851 		 */
7852 		if (signed_add_overflows(smin_ptr, smin_val) ||
7853 		    signed_add_overflows(smax_ptr, smax_val)) {
7854 			dst_reg->smin_value = S64_MIN;
7855 			dst_reg->smax_value = S64_MAX;
7856 		} else {
7857 			dst_reg->smin_value = smin_ptr + smin_val;
7858 			dst_reg->smax_value = smax_ptr + smax_val;
7859 		}
7860 		if (umin_ptr + umin_val < umin_ptr ||
7861 		    umax_ptr + umax_val < umax_ptr) {
7862 			dst_reg->umin_value = 0;
7863 			dst_reg->umax_value = U64_MAX;
7864 		} else {
7865 			dst_reg->umin_value = umin_ptr + umin_val;
7866 			dst_reg->umax_value = umax_ptr + umax_val;
7867 		}
7868 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7869 		dst_reg->off = ptr_reg->off;
7870 		dst_reg->raw = ptr_reg->raw;
7871 		if (reg_is_pkt_pointer(ptr_reg)) {
7872 			dst_reg->id = ++env->id_gen;
7873 			/* something was added to pkt_ptr, set range to zero */
7874 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7875 		}
7876 		break;
7877 	case BPF_SUB:
7878 		if (dst_reg == off_reg) {
7879 			/* scalar -= pointer.  Creates an unknown scalar */
7880 			verbose(env, "R%d tried to subtract pointer from scalar\n",
7881 				dst);
7882 			return -EACCES;
7883 		}
7884 		/* We don't allow subtraction from FP, because (according to
7885 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
7886 		 * be able to deal with it.
7887 		 */
7888 		if (ptr_reg->type == PTR_TO_STACK) {
7889 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
7890 				dst);
7891 			return -EACCES;
7892 		}
7893 		if (known && (ptr_reg->off - smin_val ==
7894 			      (s64)(s32)(ptr_reg->off - smin_val))) {
7895 			/* pointer -= K.  Subtract it from fixed offset */
7896 			dst_reg->smin_value = smin_ptr;
7897 			dst_reg->smax_value = smax_ptr;
7898 			dst_reg->umin_value = umin_ptr;
7899 			dst_reg->umax_value = umax_ptr;
7900 			dst_reg->var_off = ptr_reg->var_off;
7901 			dst_reg->id = ptr_reg->id;
7902 			dst_reg->off = ptr_reg->off - smin_val;
7903 			dst_reg->raw = ptr_reg->raw;
7904 			break;
7905 		}
7906 		/* A new variable offset is created.  If the subtrahend is known
7907 		 * nonnegative, then any reg->range we had before is still good.
7908 		 */
7909 		if (signed_sub_overflows(smin_ptr, smax_val) ||
7910 		    signed_sub_overflows(smax_ptr, smin_val)) {
7911 			/* Overflow possible, we know nothing */
7912 			dst_reg->smin_value = S64_MIN;
7913 			dst_reg->smax_value = S64_MAX;
7914 		} else {
7915 			dst_reg->smin_value = smin_ptr - smax_val;
7916 			dst_reg->smax_value = smax_ptr - smin_val;
7917 		}
7918 		if (umin_ptr < umax_val) {
7919 			/* Overflow possible, we know nothing */
7920 			dst_reg->umin_value = 0;
7921 			dst_reg->umax_value = U64_MAX;
7922 		} else {
7923 			/* Cannot overflow (as long as bounds are consistent) */
7924 			dst_reg->umin_value = umin_ptr - umax_val;
7925 			dst_reg->umax_value = umax_ptr - umin_val;
7926 		}
7927 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7928 		dst_reg->off = ptr_reg->off;
7929 		dst_reg->raw = ptr_reg->raw;
7930 		if (reg_is_pkt_pointer(ptr_reg)) {
7931 			dst_reg->id = ++env->id_gen;
7932 			/* something was added to pkt_ptr, set range to zero */
7933 			if (smin_val < 0)
7934 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7935 		}
7936 		break;
7937 	case BPF_AND:
7938 	case BPF_OR:
7939 	case BPF_XOR:
7940 		/* bitwise ops on pointers are troublesome, prohibit. */
7941 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7942 			dst, bpf_alu_string[opcode >> 4]);
7943 		return -EACCES;
7944 	default:
7945 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
7946 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7947 			dst, bpf_alu_string[opcode >> 4]);
7948 		return -EACCES;
7949 	}
7950 
7951 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7952 		return -EINVAL;
7953 
7954 	__update_reg_bounds(dst_reg);
7955 	__reg_deduce_bounds(dst_reg);
7956 	__reg_bound_offset(dst_reg);
7957 
7958 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7959 		return -EACCES;
7960 	if (sanitize_needed(opcode)) {
7961 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
7962 				       &info, true);
7963 		if (ret < 0)
7964 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7965 	}
7966 
7967 	return 0;
7968 }
7969 
7970 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7971 				 struct bpf_reg_state *src_reg)
7972 {
7973 	s32 smin_val = src_reg->s32_min_value;
7974 	s32 smax_val = src_reg->s32_max_value;
7975 	u32 umin_val = src_reg->u32_min_value;
7976 	u32 umax_val = src_reg->u32_max_value;
7977 
7978 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7979 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7980 		dst_reg->s32_min_value = S32_MIN;
7981 		dst_reg->s32_max_value = S32_MAX;
7982 	} else {
7983 		dst_reg->s32_min_value += smin_val;
7984 		dst_reg->s32_max_value += smax_val;
7985 	}
7986 	if (dst_reg->u32_min_value + umin_val < umin_val ||
7987 	    dst_reg->u32_max_value + umax_val < umax_val) {
7988 		dst_reg->u32_min_value = 0;
7989 		dst_reg->u32_max_value = U32_MAX;
7990 	} else {
7991 		dst_reg->u32_min_value += umin_val;
7992 		dst_reg->u32_max_value += umax_val;
7993 	}
7994 }
7995 
7996 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7997 			       struct bpf_reg_state *src_reg)
7998 {
7999 	s64 smin_val = src_reg->smin_value;
8000 	s64 smax_val = src_reg->smax_value;
8001 	u64 umin_val = src_reg->umin_value;
8002 	u64 umax_val = src_reg->umax_value;
8003 
8004 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
8005 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
8006 		dst_reg->smin_value = S64_MIN;
8007 		dst_reg->smax_value = S64_MAX;
8008 	} else {
8009 		dst_reg->smin_value += smin_val;
8010 		dst_reg->smax_value += smax_val;
8011 	}
8012 	if (dst_reg->umin_value + umin_val < umin_val ||
8013 	    dst_reg->umax_value + umax_val < umax_val) {
8014 		dst_reg->umin_value = 0;
8015 		dst_reg->umax_value = U64_MAX;
8016 	} else {
8017 		dst_reg->umin_value += umin_val;
8018 		dst_reg->umax_value += umax_val;
8019 	}
8020 }
8021 
8022 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
8023 				 struct bpf_reg_state *src_reg)
8024 {
8025 	s32 smin_val = src_reg->s32_min_value;
8026 	s32 smax_val = src_reg->s32_max_value;
8027 	u32 umin_val = src_reg->u32_min_value;
8028 	u32 umax_val = src_reg->u32_max_value;
8029 
8030 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
8031 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
8032 		/* Overflow possible, we know nothing */
8033 		dst_reg->s32_min_value = S32_MIN;
8034 		dst_reg->s32_max_value = S32_MAX;
8035 	} else {
8036 		dst_reg->s32_min_value -= smax_val;
8037 		dst_reg->s32_max_value -= smin_val;
8038 	}
8039 	if (dst_reg->u32_min_value < umax_val) {
8040 		/* Overflow possible, we know nothing */
8041 		dst_reg->u32_min_value = 0;
8042 		dst_reg->u32_max_value = U32_MAX;
8043 	} else {
8044 		/* Cannot overflow (as long as bounds are consistent) */
8045 		dst_reg->u32_min_value -= umax_val;
8046 		dst_reg->u32_max_value -= umin_val;
8047 	}
8048 }
8049 
8050 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
8051 			       struct bpf_reg_state *src_reg)
8052 {
8053 	s64 smin_val = src_reg->smin_value;
8054 	s64 smax_val = src_reg->smax_value;
8055 	u64 umin_val = src_reg->umin_value;
8056 	u64 umax_val = src_reg->umax_value;
8057 
8058 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
8059 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
8060 		/* Overflow possible, we know nothing */
8061 		dst_reg->smin_value = S64_MIN;
8062 		dst_reg->smax_value = S64_MAX;
8063 	} else {
8064 		dst_reg->smin_value -= smax_val;
8065 		dst_reg->smax_value -= smin_val;
8066 	}
8067 	if (dst_reg->umin_value < umax_val) {
8068 		/* Overflow possible, we know nothing */
8069 		dst_reg->umin_value = 0;
8070 		dst_reg->umax_value = U64_MAX;
8071 	} else {
8072 		/* Cannot overflow (as long as bounds are consistent) */
8073 		dst_reg->umin_value -= umax_val;
8074 		dst_reg->umax_value -= umin_val;
8075 	}
8076 }
8077 
8078 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
8079 				 struct bpf_reg_state *src_reg)
8080 {
8081 	s32 smin_val = src_reg->s32_min_value;
8082 	u32 umin_val = src_reg->u32_min_value;
8083 	u32 umax_val = src_reg->u32_max_value;
8084 
8085 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
8086 		/* Ain't nobody got time to multiply that sign */
8087 		__mark_reg32_unbounded(dst_reg);
8088 		return;
8089 	}
8090 	/* Both values are positive, so we can work with unsigned and
8091 	 * copy the result to signed (unless it exceeds S32_MAX).
8092 	 */
8093 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
8094 		/* Potential overflow, we know nothing */
8095 		__mark_reg32_unbounded(dst_reg);
8096 		return;
8097 	}
8098 	dst_reg->u32_min_value *= umin_val;
8099 	dst_reg->u32_max_value *= umax_val;
8100 	if (dst_reg->u32_max_value > S32_MAX) {
8101 		/* Overflow possible, we know nothing */
8102 		dst_reg->s32_min_value = S32_MIN;
8103 		dst_reg->s32_max_value = S32_MAX;
8104 	} else {
8105 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8106 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8107 	}
8108 }
8109 
8110 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
8111 			       struct bpf_reg_state *src_reg)
8112 {
8113 	s64 smin_val = src_reg->smin_value;
8114 	u64 umin_val = src_reg->umin_value;
8115 	u64 umax_val = src_reg->umax_value;
8116 
8117 	if (smin_val < 0 || dst_reg->smin_value < 0) {
8118 		/* Ain't nobody got time to multiply that sign */
8119 		__mark_reg64_unbounded(dst_reg);
8120 		return;
8121 	}
8122 	/* Both values are positive, so we can work with unsigned and
8123 	 * copy the result to signed (unless it exceeds S64_MAX).
8124 	 */
8125 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
8126 		/* Potential overflow, we know nothing */
8127 		__mark_reg64_unbounded(dst_reg);
8128 		return;
8129 	}
8130 	dst_reg->umin_value *= umin_val;
8131 	dst_reg->umax_value *= umax_val;
8132 	if (dst_reg->umax_value > S64_MAX) {
8133 		/* Overflow possible, we know nothing */
8134 		dst_reg->smin_value = S64_MIN;
8135 		dst_reg->smax_value = S64_MAX;
8136 	} else {
8137 		dst_reg->smin_value = dst_reg->umin_value;
8138 		dst_reg->smax_value = dst_reg->umax_value;
8139 	}
8140 }
8141 
8142 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
8143 				 struct bpf_reg_state *src_reg)
8144 {
8145 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8146 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8147 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8148 	s32 smin_val = src_reg->s32_min_value;
8149 	u32 umax_val = src_reg->u32_max_value;
8150 
8151 	if (src_known && dst_known) {
8152 		__mark_reg32_known(dst_reg, var32_off.value);
8153 		return;
8154 	}
8155 
8156 	/* We get our minimum from the var_off, since that's inherently
8157 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
8158 	 */
8159 	dst_reg->u32_min_value = var32_off.value;
8160 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
8161 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8162 		/* Lose signed bounds when ANDing negative numbers,
8163 		 * ain't nobody got time for that.
8164 		 */
8165 		dst_reg->s32_min_value = S32_MIN;
8166 		dst_reg->s32_max_value = S32_MAX;
8167 	} else {
8168 		/* ANDing two positives gives a positive, so safe to
8169 		 * cast result into s64.
8170 		 */
8171 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8172 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8173 	}
8174 }
8175 
8176 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
8177 			       struct bpf_reg_state *src_reg)
8178 {
8179 	bool src_known = tnum_is_const(src_reg->var_off);
8180 	bool dst_known = tnum_is_const(dst_reg->var_off);
8181 	s64 smin_val = src_reg->smin_value;
8182 	u64 umax_val = src_reg->umax_value;
8183 
8184 	if (src_known && dst_known) {
8185 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8186 		return;
8187 	}
8188 
8189 	/* We get our minimum from the var_off, since that's inherently
8190 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
8191 	 */
8192 	dst_reg->umin_value = dst_reg->var_off.value;
8193 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
8194 	if (dst_reg->smin_value < 0 || smin_val < 0) {
8195 		/* Lose signed bounds when ANDing negative numbers,
8196 		 * ain't nobody got time for that.
8197 		 */
8198 		dst_reg->smin_value = S64_MIN;
8199 		dst_reg->smax_value = S64_MAX;
8200 	} else {
8201 		/* ANDing two positives gives a positive, so safe to
8202 		 * cast result into s64.
8203 		 */
8204 		dst_reg->smin_value = dst_reg->umin_value;
8205 		dst_reg->smax_value = dst_reg->umax_value;
8206 	}
8207 	/* We may learn something more from the var_off */
8208 	__update_reg_bounds(dst_reg);
8209 }
8210 
8211 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
8212 				struct bpf_reg_state *src_reg)
8213 {
8214 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8215 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8216 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8217 	s32 smin_val = src_reg->s32_min_value;
8218 	u32 umin_val = src_reg->u32_min_value;
8219 
8220 	if (src_known && dst_known) {
8221 		__mark_reg32_known(dst_reg, var32_off.value);
8222 		return;
8223 	}
8224 
8225 	/* We get our maximum from the var_off, and our minimum is the
8226 	 * maximum of the operands' minima
8227 	 */
8228 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
8229 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8230 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
8231 		/* Lose signed bounds when ORing negative numbers,
8232 		 * ain't nobody got time for that.
8233 		 */
8234 		dst_reg->s32_min_value = S32_MIN;
8235 		dst_reg->s32_max_value = S32_MAX;
8236 	} else {
8237 		/* ORing two positives gives a positive, so safe to
8238 		 * cast result into s64.
8239 		 */
8240 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8241 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8242 	}
8243 }
8244 
8245 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
8246 			      struct bpf_reg_state *src_reg)
8247 {
8248 	bool src_known = tnum_is_const(src_reg->var_off);
8249 	bool dst_known = tnum_is_const(dst_reg->var_off);
8250 	s64 smin_val = src_reg->smin_value;
8251 	u64 umin_val = src_reg->umin_value;
8252 
8253 	if (src_known && dst_known) {
8254 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8255 		return;
8256 	}
8257 
8258 	/* We get our maximum from the var_off, and our minimum is the
8259 	 * maximum of the operands' minima
8260 	 */
8261 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
8262 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8263 	if (dst_reg->smin_value < 0 || smin_val < 0) {
8264 		/* Lose signed bounds when ORing negative numbers,
8265 		 * ain't nobody got time for that.
8266 		 */
8267 		dst_reg->smin_value = S64_MIN;
8268 		dst_reg->smax_value = S64_MAX;
8269 	} else {
8270 		/* ORing two positives gives a positive, so safe to
8271 		 * cast result into s64.
8272 		 */
8273 		dst_reg->smin_value = dst_reg->umin_value;
8274 		dst_reg->smax_value = dst_reg->umax_value;
8275 	}
8276 	/* We may learn something more from the var_off */
8277 	__update_reg_bounds(dst_reg);
8278 }
8279 
8280 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
8281 				 struct bpf_reg_state *src_reg)
8282 {
8283 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
8284 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
8285 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
8286 	s32 smin_val = src_reg->s32_min_value;
8287 
8288 	if (src_known && dst_known) {
8289 		__mark_reg32_known(dst_reg, var32_off.value);
8290 		return;
8291 	}
8292 
8293 	/* We get both minimum and maximum from the var32_off. */
8294 	dst_reg->u32_min_value = var32_off.value;
8295 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
8296 
8297 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
8298 		/* XORing two positive sign numbers gives a positive,
8299 		 * so safe to cast u32 result into s32.
8300 		 */
8301 		dst_reg->s32_min_value = dst_reg->u32_min_value;
8302 		dst_reg->s32_max_value = dst_reg->u32_max_value;
8303 	} else {
8304 		dst_reg->s32_min_value = S32_MIN;
8305 		dst_reg->s32_max_value = S32_MAX;
8306 	}
8307 }
8308 
8309 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
8310 			       struct bpf_reg_state *src_reg)
8311 {
8312 	bool src_known = tnum_is_const(src_reg->var_off);
8313 	bool dst_known = tnum_is_const(dst_reg->var_off);
8314 	s64 smin_val = src_reg->smin_value;
8315 
8316 	if (src_known && dst_known) {
8317 		/* dst_reg->var_off.value has been updated earlier */
8318 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
8319 		return;
8320 	}
8321 
8322 	/* We get both minimum and maximum from the var_off. */
8323 	dst_reg->umin_value = dst_reg->var_off.value;
8324 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
8325 
8326 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
8327 		/* XORing two positive sign numbers gives a positive,
8328 		 * so safe to cast u64 result into s64.
8329 		 */
8330 		dst_reg->smin_value = dst_reg->umin_value;
8331 		dst_reg->smax_value = dst_reg->umax_value;
8332 	} else {
8333 		dst_reg->smin_value = S64_MIN;
8334 		dst_reg->smax_value = S64_MAX;
8335 	}
8336 
8337 	__update_reg_bounds(dst_reg);
8338 }
8339 
8340 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8341 				   u64 umin_val, u64 umax_val)
8342 {
8343 	/* We lose all sign bit information (except what we can pick
8344 	 * up from var_off)
8345 	 */
8346 	dst_reg->s32_min_value = S32_MIN;
8347 	dst_reg->s32_max_value = S32_MAX;
8348 	/* If we might shift our top bit out, then we know nothing */
8349 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
8350 		dst_reg->u32_min_value = 0;
8351 		dst_reg->u32_max_value = U32_MAX;
8352 	} else {
8353 		dst_reg->u32_min_value <<= umin_val;
8354 		dst_reg->u32_max_value <<= umax_val;
8355 	}
8356 }
8357 
8358 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
8359 				 struct bpf_reg_state *src_reg)
8360 {
8361 	u32 umax_val = src_reg->u32_max_value;
8362 	u32 umin_val = src_reg->u32_min_value;
8363 	/* u32 alu operation will zext upper bits */
8364 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
8365 
8366 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8367 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
8368 	/* Not required but being careful mark reg64 bounds as unknown so
8369 	 * that we are forced to pick them up from tnum and zext later and
8370 	 * if some path skips this step we are still safe.
8371 	 */
8372 	__mark_reg64_unbounded(dst_reg);
8373 	__update_reg32_bounds(dst_reg);
8374 }
8375 
8376 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
8377 				   u64 umin_val, u64 umax_val)
8378 {
8379 	/* Special case <<32 because it is a common compiler pattern to sign
8380 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
8381 	 * positive we know this shift will also be positive so we can track
8382 	 * bounds correctly. Otherwise we lose all sign bit information except
8383 	 * what we can pick up from var_off. Perhaps we can generalize this
8384 	 * later to shifts of any length.
8385 	 */
8386 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
8387 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
8388 	else
8389 		dst_reg->smax_value = S64_MAX;
8390 
8391 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
8392 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
8393 	else
8394 		dst_reg->smin_value = S64_MIN;
8395 
8396 	/* If we might shift our top bit out, then we know nothing */
8397 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
8398 		dst_reg->umin_value = 0;
8399 		dst_reg->umax_value = U64_MAX;
8400 	} else {
8401 		dst_reg->umin_value <<= umin_val;
8402 		dst_reg->umax_value <<= umax_val;
8403 	}
8404 }
8405 
8406 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
8407 			       struct bpf_reg_state *src_reg)
8408 {
8409 	u64 umax_val = src_reg->umax_value;
8410 	u64 umin_val = src_reg->umin_value;
8411 
8412 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
8413 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
8414 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
8415 
8416 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
8417 	/* We may learn something more from the var_off */
8418 	__update_reg_bounds(dst_reg);
8419 }
8420 
8421 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
8422 				 struct bpf_reg_state *src_reg)
8423 {
8424 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
8425 	u32 umax_val = src_reg->u32_max_value;
8426 	u32 umin_val = src_reg->u32_min_value;
8427 
8428 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
8429 	 * be negative, then either:
8430 	 * 1) src_reg might be zero, so the sign bit of the result is
8431 	 *    unknown, so we lose our signed bounds
8432 	 * 2) it's known negative, thus the unsigned bounds capture the
8433 	 *    signed bounds
8434 	 * 3) the signed bounds cross zero, so they tell us nothing
8435 	 *    about the result
8436 	 * If the value in dst_reg is known nonnegative, then again the
8437 	 * unsigned bounds capture the signed bounds.
8438 	 * Thus, in all cases it suffices to blow away our signed bounds
8439 	 * and rely on inferring new ones from the unsigned bounds and
8440 	 * var_off of the result.
8441 	 */
8442 	dst_reg->s32_min_value = S32_MIN;
8443 	dst_reg->s32_max_value = S32_MAX;
8444 
8445 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
8446 	dst_reg->u32_min_value >>= umax_val;
8447 	dst_reg->u32_max_value >>= umin_val;
8448 
8449 	__mark_reg64_unbounded(dst_reg);
8450 	__update_reg32_bounds(dst_reg);
8451 }
8452 
8453 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
8454 			       struct bpf_reg_state *src_reg)
8455 {
8456 	u64 umax_val = src_reg->umax_value;
8457 	u64 umin_val = src_reg->umin_value;
8458 
8459 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
8460 	 * be negative, then either:
8461 	 * 1) src_reg might be zero, so the sign bit of the result is
8462 	 *    unknown, so we lose our signed bounds
8463 	 * 2) it's known negative, thus the unsigned bounds capture the
8464 	 *    signed bounds
8465 	 * 3) the signed bounds cross zero, so they tell us nothing
8466 	 *    about the result
8467 	 * If the value in dst_reg is known nonnegative, then again the
8468 	 * unsigned bounds capture the signed bounds.
8469 	 * Thus, in all cases it suffices to blow away our signed bounds
8470 	 * and rely on inferring new ones from the unsigned bounds and
8471 	 * var_off of the result.
8472 	 */
8473 	dst_reg->smin_value = S64_MIN;
8474 	dst_reg->smax_value = S64_MAX;
8475 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
8476 	dst_reg->umin_value >>= umax_val;
8477 	dst_reg->umax_value >>= umin_val;
8478 
8479 	/* Its not easy to operate on alu32 bounds here because it depends
8480 	 * on bits being shifted in. Take easy way out and mark unbounded
8481 	 * so we can recalculate later from tnum.
8482 	 */
8483 	__mark_reg32_unbounded(dst_reg);
8484 	__update_reg_bounds(dst_reg);
8485 }
8486 
8487 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
8488 				  struct bpf_reg_state *src_reg)
8489 {
8490 	u64 umin_val = src_reg->u32_min_value;
8491 
8492 	/* Upon reaching here, src_known is true and
8493 	 * umax_val is equal to umin_val.
8494 	 */
8495 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
8496 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
8497 
8498 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
8499 
8500 	/* blow away the dst_reg umin_value/umax_value and rely on
8501 	 * dst_reg var_off to refine the result.
8502 	 */
8503 	dst_reg->u32_min_value = 0;
8504 	dst_reg->u32_max_value = U32_MAX;
8505 
8506 	__mark_reg64_unbounded(dst_reg);
8507 	__update_reg32_bounds(dst_reg);
8508 }
8509 
8510 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
8511 				struct bpf_reg_state *src_reg)
8512 {
8513 	u64 umin_val = src_reg->umin_value;
8514 
8515 	/* Upon reaching here, src_known is true and umax_val is equal
8516 	 * to umin_val.
8517 	 */
8518 	dst_reg->smin_value >>= umin_val;
8519 	dst_reg->smax_value >>= umin_val;
8520 
8521 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
8522 
8523 	/* blow away the dst_reg umin_value/umax_value and rely on
8524 	 * dst_reg var_off to refine the result.
8525 	 */
8526 	dst_reg->umin_value = 0;
8527 	dst_reg->umax_value = U64_MAX;
8528 
8529 	/* Its not easy to operate on alu32 bounds here because it depends
8530 	 * on bits being shifted in from upper 32-bits. Take easy way out
8531 	 * and mark unbounded so we can recalculate later from tnum.
8532 	 */
8533 	__mark_reg32_unbounded(dst_reg);
8534 	__update_reg_bounds(dst_reg);
8535 }
8536 
8537 /* WARNING: This function does calculations on 64-bit values, but the actual
8538  * execution may occur on 32-bit values. Therefore, things like bitshifts
8539  * need extra checks in the 32-bit case.
8540  */
8541 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
8542 				      struct bpf_insn *insn,
8543 				      struct bpf_reg_state *dst_reg,
8544 				      struct bpf_reg_state src_reg)
8545 {
8546 	struct bpf_reg_state *regs = cur_regs(env);
8547 	u8 opcode = BPF_OP(insn->code);
8548 	bool src_known;
8549 	s64 smin_val, smax_val;
8550 	u64 umin_val, umax_val;
8551 	s32 s32_min_val, s32_max_val;
8552 	u32 u32_min_val, u32_max_val;
8553 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
8554 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
8555 	int ret;
8556 
8557 	smin_val = src_reg.smin_value;
8558 	smax_val = src_reg.smax_value;
8559 	umin_val = src_reg.umin_value;
8560 	umax_val = src_reg.umax_value;
8561 
8562 	s32_min_val = src_reg.s32_min_value;
8563 	s32_max_val = src_reg.s32_max_value;
8564 	u32_min_val = src_reg.u32_min_value;
8565 	u32_max_val = src_reg.u32_max_value;
8566 
8567 	if (alu32) {
8568 		src_known = tnum_subreg_is_const(src_reg.var_off);
8569 		if ((src_known &&
8570 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
8571 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
8572 			/* Taint dst register if offset had invalid bounds
8573 			 * derived from e.g. dead branches.
8574 			 */
8575 			__mark_reg_unknown(env, dst_reg);
8576 			return 0;
8577 		}
8578 	} else {
8579 		src_known = tnum_is_const(src_reg.var_off);
8580 		if ((src_known &&
8581 		     (smin_val != smax_val || umin_val != umax_val)) ||
8582 		    smin_val > smax_val || umin_val > umax_val) {
8583 			/* Taint dst register if offset had invalid bounds
8584 			 * derived from e.g. dead branches.
8585 			 */
8586 			__mark_reg_unknown(env, dst_reg);
8587 			return 0;
8588 		}
8589 	}
8590 
8591 	if (!src_known &&
8592 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
8593 		__mark_reg_unknown(env, dst_reg);
8594 		return 0;
8595 	}
8596 
8597 	if (sanitize_needed(opcode)) {
8598 		ret = sanitize_val_alu(env, insn);
8599 		if (ret < 0)
8600 			return sanitize_err(env, insn, ret, NULL, NULL);
8601 	}
8602 
8603 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8604 	 * There are two classes of instructions: The first class we track both
8605 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
8606 	 * greatest amount of precision when alu operations are mixed with jmp32
8607 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8608 	 * and BPF_OR. This is possible because these ops have fairly easy to
8609 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8610 	 * See alu32 verifier tests for examples. The second class of
8611 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8612 	 * with regards to tracking sign/unsigned bounds because the bits may
8613 	 * cross subreg boundaries in the alu64 case. When this happens we mark
8614 	 * the reg unbounded in the subreg bound space and use the resulting
8615 	 * tnum to calculate an approximation of the sign/unsigned bounds.
8616 	 */
8617 	switch (opcode) {
8618 	case BPF_ADD:
8619 		scalar32_min_max_add(dst_reg, &src_reg);
8620 		scalar_min_max_add(dst_reg, &src_reg);
8621 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
8622 		break;
8623 	case BPF_SUB:
8624 		scalar32_min_max_sub(dst_reg, &src_reg);
8625 		scalar_min_max_sub(dst_reg, &src_reg);
8626 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
8627 		break;
8628 	case BPF_MUL:
8629 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8630 		scalar32_min_max_mul(dst_reg, &src_reg);
8631 		scalar_min_max_mul(dst_reg, &src_reg);
8632 		break;
8633 	case BPF_AND:
8634 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8635 		scalar32_min_max_and(dst_reg, &src_reg);
8636 		scalar_min_max_and(dst_reg, &src_reg);
8637 		break;
8638 	case BPF_OR:
8639 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8640 		scalar32_min_max_or(dst_reg, &src_reg);
8641 		scalar_min_max_or(dst_reg, &src_reg);
8642 		break;
8643 	case BPF_XOR:
8644 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8645 		scalar32_min_max_xor(dst_reg, &src_reg);
8646 		scalar_min_max_xor(dst_reg, &src_reg);
8647 		break;
8648 	case BPF_LSH:
8649 		if (umax_val >= insn_bitness) {
8650 			/* Shifts greater than 31 or 63 are undefined.
8651 			 * This includes shifts by a negative number.
8652 			 */
8653 			mark_reg_unknown(env, regs, insn->dst_reg);
8654 			break;
8655 		}
8656 		if (alu32)
8657 			scalar32_min_max_lsh(dst_reg, &src_reg);
8658 		else
8659 			scalar_min_max_lsh(dst_reg, &src_reg);
8660 		break;
8661 	case BPF_RSH:
8662 		if (umax_val >= insn_bitness) {
8663 			/* Shifts greater than 31 or 63 are undefined.
8664 			 * This includes shifts by a negative number.
8665 			 */
8666 			mark_reg_unknown(env, regs, insn->dst_reg);
8667 			break;
8668 		}
8669 		if (alu32)
8670 			scalar32_min_max_rsh(dst_reg, &src_reg);
8671 		else
8672 			scalar_min_max_rsh(dst_reg, &src_reg);
8673 		break;
8674 	case BPF_ARSH:
8675 		if (umax_val >= insn_bitness) {
8676 			/* Shifts greater than 31 or 63 are undefined.
8677 			 * This includes shifts by a negative number.
8678 			 */
8679 			mark_reg_unknown(env, regs, insn->dst_reg);
8680 			break;
8681 		}
8682 		if (alu32)
8683 			scalar32_min_max_arsh(dst_reg, &src_reg);
8684 		else
8685 			scalar_min_max_arsh(dst_reg, &src_reg);
8686 		break;
8687 	default:
8688 		mark_reg_unknown(env, regs, insn->dst_reg);
8689 		break;
8690 	}
8691 
8692 	/* ALU32 ops are zero extended into 64bit register */
8693 	if (alu32)
8694 		zext_32_to_64(dst_reg);
8695 
8696 	__update_reg_bounds(dst_reg);
8697 	__reg_deduce_bounds(dst_reg);
8698 	__reg_bound_offset(dst_reg);
8699 	return 0;
8700 }
8701 
8702 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8703  * and var_off.
8704  */
8705 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8706 				   struct bpf_insn *insn)
8707 {
8708 	struct bpf_verifier_state *vstate = env->cur_state;
8709 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8710 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
8711 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8712 	u8 opcode = BPF_OP(insn->code);
8713 	int err;
8714 
8715 	dst_reg = &regs[insn->dst_reg];
8716 	src_reg = NULL;
8717 	if (dst_reg->type != SCALAR_VALUE)
8718 		ptr_reg = dst_reg;
8719 	else
8720 		/* Make sure ID is cleared otherwise dst_reg min/max could be
8721 		 * incorrectly propagated into other registers by find_equal_scalars()
8722 		 */
8723 		dst_reg->id = 0;
8724 	if (BPF_SRC(insn->code) == BPF_X) {
8725 		src_reg = &regs[insn->src_reg];
8726 		if (src_reg->type != SCALAR_VALUE) {
8727 			if (dst_reg->type != SCALAR_VALUE) {
8728 				/* Combining two pointers by any ALU op yields
8729 				 * an arbitrary scalar. Disallow all math except
8730 				 * pointer subtraction
8731 				 */
8732 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8733 					mark_reg_unknown(env, regs, insn->dst_reg);
8734 					return 0;
8735 				}
8736 				verbose(env, "R%d pointer %s pointer prohibited\n",
8737 					insn->dst_reg,
8738 					bpf_alu_string[opcode >> 4]);
8739 				return -EACCES;
8740 			} else {
8741 				/* scalar += pointer
8742 				 * This is legal, but we have to reverse our
8743 				 * src/dest handling in computing the range
8744 				 */
8745 				err = mark_chain_precision(env, insn->dst_reg);
8746 				if (err)
8747 					return err;
8748 				return adjust_ptr_min_max_vals(env, insn,
8749 							       src_reg, dst_reg);
8750 			}
8751 		} else if (ptr_reg) {
8752 			/* pointer += scalar */
8753 			err = mark_chain_precision(env, insn->src_reg);
8754 			if (err)
8755 				return err;
8756 			return adjust_ptr_min_max_vals(env, insn,
8757 						       dst_reg, src_reg);
8758 		}
8759 	} else {
8760 		/* Pretend the src is a reg with a known value, since we only
8761 		 * need to be able to read from this state.
8762 		 */
8763 		off_reg.type = SCALAR_VALUE;
8764 		__mark_reg_known(&off_reg, insn->imm);
8765 		src_reg = &off_reg;
8766 		if (ptr_reg) /* pointer += K */
8767 			return adjust_ptr_min_max_vals(env, insn,
8768 						       ptr_reg, src_reg);
8769 	}
8770 
8771 	/* Got here implies adding two SCALAR_VALUEs */
8772 	if (WARN_ON_ONCE(ptr_reg)) {
8773 		print_verifier_state(env, state, true);
8774 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
8775 		return -EINVAL;
8776 	}
8777 	if (WARN_ON(!src_reg)) {
8778 		print_verifier_state(env, state, true);
8779 		verbose(env, "verifier internal error: no src_reg\n");
8780 		return -EINVAL;
8781 	}
8782 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
8783 }
8784 
8785 /* check validity of 32-bit and 64-bit arithmetic operations */
8786 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
8787 {
8788 	struct bpf_reg_state *regs = cur_regs(env);
8789 	u8 opcode = BPF_OP(insn->code);
8790 	int err;
8791 
8792 	if (opcode == BPF_END || opcode == BPF_NEG) {
8793 		if (opcode == BPF_NEG) {
8794 			if (BPF_SRC(insn->code) != 0 ||
8795 			    insn->src_reg != BPF_REG_0 ||
8796 			    insn->off != 0 || insn->imm != 0) {
8797 				verbose(env, "BPF_NEG uses reserved fields\n");
8798 				return -EINVAL;
8799 			}
8800 		} else {
8801 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
8802 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8803 			    BPF_CLASS(insn->code) == BPF_ALU64) {
8804 				verbose(env, "BPF_END uses reserved fields\n");
8805 				return -EINVAL;
8806 			}
8807 		}
8808 
8809 		/* check src operand */
8810 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8811 		if (err)
8812 			return err;
8813 
8814 		if (is_pointer_value(env, insn->dst_reg)) {
8815 			verbose(env, "R%d pointer arithmetic prohibited\n",
8816 				insn->dst_reg);
8817 			return -EACCES;
8818 		}
8819 
8820 		/* check dest operand */
8821 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
8822 		if (err)
8823 			return err;
8824 
8825 	} else if (opcode == BPF_MOV) {
8826 
8827 		if (BPF_SRC(insn->code) == BPF_X) {
8828 			if (insn->imm != 0 || insn->off != 0) {
8829 				verbose(env, "BPF_MOV uses reserved fields\n");
8830 				return -EINVAL;
8831 			}
8832 
8833 			/* check src operand */
8834 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8835 			if (err)
8836 				return err;
8837 		} else {
8838 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8839 				verbose(env, "BPF_MOV uses reserved fields\n");
8840 				return -EINVAL;
8841 			}
8842 		}
8843 
8844 		/* check dest operand, mark as required later */
8845 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8846 		if (err)
8847 			return err;
8848 
8849 		if (BPF_SRC(insn->code) == BPF_X) {
8850 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
8851 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8852 
8853 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8854 				/* case: R1 = R2
8855 				 * copy register state to dest reg
8856 				 */
8857 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8858 					/* Assign src and dst registers the same ID
8859 					 * that will be used by find_equal_scalars()
8860 					 * to propagate min/max range.
8861 					 */
8862 					src_reg->id = ++env->id_gen;
8863 				*dst_reg = *src_reg;
8864 				dst_reg->live |= REG_LIVE_WRITTEN;
8865 				dst_reg->subreg_def = DEF_NOT_SUBREG;
8866 			} else {
8867 				/* R1 = (u32) R2 */
8868 				if (is_pointer_value(env, insn->src_reg)) {
8869 					verbose(env,
8870 						"R%d partial copy of pointer\n",
8871 						insn->src_reg);
8872 					return -EACCES;
8873 				} else if (src_reg->type == SCALAR_VALUE) {
8874 					*dst_reg = *src_reg;
8875 					/* Make sure ID is cleared otherwise
8876 					 * dst_reg min/max could be incorrectly
8877 					 * propagated into src_reg by find_equal_scalars()
8878 					 */
8879 					dst_reg->id = 0;
8880 					dst_reg->live |= REG_LIVE_WRITTEN;
8881 					dst_reg->subreg_def = env->insn_idx + 1;
8882 				} else {
8883 					mark_reg_unknown(env, regs,
8884 							 insn->dst_reg);
8885 				}
8886 				zext_32_to_64(dst_reg);
8887 
8888 				__update_reg_bounds(dst_reg);
8889 				__reg_deduce_bounds(dst_reg);
8890 				__reg_bound_offset(dst_reg);
8891 			}
8892 		} else {
8893 			/* case: R = imm
8894 			 * remember the value we stored into this reg
8895 			 */
8896 			/* clear any state __mark_reg_known doesn't set */
8897 			mark_reg_unknown(env, regs, insn->dst_reg);
8898 			regs[insn->dst_reg].type = SCALAR_VALUE;
8899 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8900 				__mark_reg_known(regs + insn->dst_reg,
8901 						 insn->imm);
8902 			} else {
8903 				__mark_reg_known(regs + insn->dst_reg,
8904 						 (u32)insn->imm);
8905 			}
8906 		}
8907 
8908 	} else if (opcode > BPF_END) {
8909 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
8910 		return -EINVAL;
8911 
8912 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
8913 
8914 		if (BPF_SRC(insn->code) == BPF_X) {
8915 			if (insn->imm != 0 || insn->off != 0) {
8916 				verbose(env, "BPF_ALU uses reserved fields\n");
8917 				return -EINVAL;
8918 			}
8919 			/* check src1 operand */
8920 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8921 			if (err)
8922 				return err;
8923 		} else {
8924 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8925 				verbose(env, "BPF_ALU uses reserved fields\n");
8926 				return -EINVAL;
8927 			}
8928 		}
8929 
8930 		/* check src2 operand */
8931 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8932 		if (err)
8933 			return err;
8934 
8935 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8936 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
8937 			verbose(env, "div by zero\n");
8938 			return -EINVAL;
8939 		}
8940 
8941 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8942 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8943 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8944 
8945 			if (insn->imm < 0 || insn->imm >= size) {
8946 				verbose(env, "invalid shift %d\n", insn->imm);
8947 				return -EINVAL;
8948 			}
8949 		}
8950 
8951 		/* check dest operand */
8952 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8953 		if (err)
8954 			return err;
8955 
8956 		return adjust_reg_min_max_vals(env, insn);
8957 	}
8958 
8959 	return 0;
8960 }
8961 
8962 static void __find_good_pkt_pointers(struct bpf_func_state *state,
8963 				     struct bpf_reg_state *dst_reg,
8964 				     enum bpf_reg_type type, int new_range)
8965 {
8966 	struct bpf_reg_state *reg;
8967 	int i;
8968 
8969 	for (i = 0; i < MAX_BPF_REG; i++) {
8970 		reg = &state->regs[i];
8971 		if (reg->type == type && reg->id == dst_reg->id)
8972 			/* keep the maximum range already checked */
8973 			reg->range = max(reg->range, new_range);
8974 	}
8975 
8976 	bpf_for_each_spilled_reg(i, state, reg) {
8977 		if (!reg)
8978 			continue;
8979 		if (reg->type == type && reg->id == dst_reg->id)
8980 			reg->range = max(reg->range, new_range);
8981 	}
8982 }
8983 
8984 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
8985 				   struct bpf_reg_state *dst_reg,
8986 				   enum bpf_reg_type type,
8987 				   bool range_right_open)
8988 {
8989 	int new_range, i;
8990 
8991 	if (dst_reg->off < 0 ||
8992 	    (dst_reg->off == 0 && range_right_open))
8993 		/* This doesn't give us any range */
8994 		return;
8995 
8996 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
8997 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
8998 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
8999 		 * than pkt_end, but that's because it's also less than pkt.
9000 		 */
9001 		return;
9002 
9003 	new_range = dst_reg->off;
9004 	if (range_right_open)
9005 		new_range++;
9006 
9007 	/* Examples for register markings:
9008 	 *
9009 	 * pkt_data in dst register:
9010 	 *
9011 	 *   r2 = r3;
9012 	 *   r2 += 8;
9013 	 *   if (r2 > pkt_end) goto <handle exception>
9014 	 *   <access okay>
9015 	 *
9016 	 *   r2 = r3;
9017 	 *   r2 += 8;
9018 	 *   if (r2 < pkt_end) goto <access okay>
9019 	 *   <handle exception>
9020 	 *
9021 	 *   Where:
9022 	 *     r2 == dst_reg, pkt_end == src_reg
9023 	 *     r2=pkt(id=n,off=8,r=0)
9024 	 *     r3=pkt(id=n,off=0,r=0)
9025 	 *
9026 	 * pkt_data in src register:
9027 	 *
9028 	 *   r2 = r3;
9029 	 *   r2 += 8;
9030 	 *   if (pkt_end >= r2) goto <access okay>
9031 	 *   <handle exception>
9032 	 *
9033 	 *   r2 = r3;
9034 	 *   r2 += 8;
9035 	 *   if (pkt_end <= r2) goto <handle exception>
9036 	 *   <access okay>
9037 	 *
9038 	 *   Where:
9039 	 *     pkt_end == dst_reg, r2 == src_reg
9040 	 *     r2=pkt(id=n,off=8,r=0)
9041 	 *     r3=pkt(id=n,off=0,r=0)
9042 	 *
9043 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
9044 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
9045 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
9046 	 * the check.
9047 	 */
9048 
9049 	/* If our ids match, then we must have the same max_value.  And we
9050 	 * don't care about the other reg's fixed offset, since if it's too big
9051 	 * the range won't allow anything.
9052 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
9053 	 */
9054 	for (i = 0; i <= vstate->curframe; i++)
9055 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
9056 					 new_range);
9057 }
9058 
9059 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
9060 {
9061 	struct tnum subreg = tnum_subreg(reg->var_off);
9062 	s32 sval = (s32)val;
9063 
9064 	switch (opcode) {
9065 	case BPF_JEQ:
9066 		if (tnum_is_const(subreg))
9067 			return !!tnum_equals_const(subreg, val);
9068 		break;
9069 	case BPF_JNE:
9070 		if (tnum_is_const(subreg))
9071 			return !tnum_equals_const(subreg, val);
9072 		break;
9073 	case BPF_JSET:
9074 		if ((~subreg.mask & subreg.value) & val)
9075 			return 1;
9076 		if (!((subreg.mask | subreg.value) & val))
9077 			return 0;
9078 		break;
9079 	case BPF_JGT:
9080 		if (reg->u32_min_value > val)
9081 			return 1;
9082 		else if (reg->u32_max_value <= val)
9083 			return 0;
9084 		break;
9085 	case BPF_JSGT:
9086 		if (reg->s32_min_value > sval)
9087 			return 1;
9088 		else if (reg->s32_max_value <= sval)
9089 			return 0;
9090 		break;
9091 	case BPF_JLT:
9092 		if (reg->u32_max_value < val)
9093 			return 1;
9094 		else if (reg->u32_min_value >= val)
9095 			return 0;
9096 		break;
9097 	case BPF_JSLT:
9098 		if (reg->s32_max_value < sval)
9099 			return 1;
9100 		else if (reg->s32_min_value >= sval)
9101 			return 0;
9102 		break;
9103 	case BPF_JGE:
9104 		if (reg->u32_min_value >= val)
9105 			return 1;
9106 		else if (reg->u32_max_value < val)
9107 			return 0;
9108 		break;
9109 	case BPF_JSGE:
9110 		if (reg->s32_min_value >= sval)
9111 			return 1;
9112 		else if (reg->s32_max_value < sval)
9113 			return 0;
9114 		break;
9115 	case BPF_JLE:
9116 		if (reg->u32_max_value <= val)
9117 			return 1;
9118 		else if (reg->u32_min_value > val)
9119 			return 0;
9120 		break;
9121 	case BPF_JSLE:
9122 		if (reg->s32_max_value <= sval)
9123 			return 1;
9124 		else if (reg->s32_min_value > sval)
9125 			return 0;
9126 		break;
9127 	}
9128 
9129 	return -1;
9130 }
9131 
9132 
9133 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
9134 {
9135 	s64 sval = (s64)val;
9136 
9137 	switch (opcode) {
9138 	case BPF_JEQ:
9139 		if (tnum_is_const(reg->var_off))
9140 			return !!tnum_equals_const(reg->var_off, val);
9141 		break;
9142 	case BPF_JNE:
9143 		if (tnum_is_const(reg->var_off))
9144 			return !tnum_equals_const(reg->var_off, val);
9145 		break;
9146 	case BPF_JSET:
9147 		if ((~reg->var_off.mask & reg->var_off.value) & val)
9148 			return 1;
9149 		if (!((reg->var_off.mask | reg->var_off.value) & val))
9150 			return 0;
9151 		break;
9152 	case BPF_JGT:
9153 		if (reg->umin_value > val)
9154 			return 1;
9155 		else if (reg->umax_value <= val)
9156 			return 0;
9157 		break;
9158 	case BPF_JSGT:
9159 		if (reg->smin_value > sval)
9160 			return 1;
9161 		else if (reg->smax_value <= sval)
9162 			return 0;
9163 		break;
9164 	case BPF_JLT:
9165 		if (reg->umax_value < val)
9166 			return 1;
9167 		else if (reg->umin_value >= val)
9168 			return 0;
9169 		break;
9170 	case BPF_JSLT:
9171 		if (reg->smax_value < sval)
9172 			return 1;
9173 		else if (reg->smin_value >= sval)
9174 			return 0;
9175 		break;
9176 	case BPF_JGE:
9177 		if (reg->umin_value >= val)
9178 			return 1;
9179 		else if (reg->umax_value < val)
9180 			return 0;
9181 		break;
9182 	case BPF_JSGE:
9183 		if (reg->smin_value >= sval)
9184 			return 1;
9185 		else if (reg->smax_value < sval)
9186 			return 0;
9187 		break;
9188 	case BPF_JLE:
9189 		if (reg->umax_value <= val)
9190 			return 1;
9191 		else if (reg->umin_value > val)
9192 			return 0;
9193 		break;
9194 	case BPF_JSLE:
9195 		if (reg->smax_value <= sval)
9196 			return 1;
9197 		else if (reg->smin_value > sval)
9198 			return 0;
9199 		break;
9200 	}
9201 
9202 	return -1;
9203 }
9204 
9205 /* compute branch direction of the expression "if (reg opcode val) goto target;"
9206  * and return:
9207  *  1 - branch will be taken and "goto target" will be executed
9208  *  0 - branch will not be taken and fall-through to next insn
9209  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
9210  *      range [0,10]
9211  */
9212 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
9213 			   bool is_jmp32)
9214 {
9215 	if (__is_pointer_value(false, reg)) {
9216 		if (!reg_type_not_null(reg->type))
9217 			return -1;
9218 
9219 		/* If pointer is valid tests against zero will fail so we can
9220 		 * use this to direct branch taken.
9221 		 */
9222 		if (val != 0)
9223 			return -1;
9224 
9225 		switch (opcode) {
9226 		case BPF_JEQ:
9227 			return 0;
9228 		case BPF_JNE:
9229 			return 1;
9230 		default:
9231 			return -1;
9232 		}
9233 	}
9234 
9235 	if (is_jmp32)
9236 		return is_branch32_taken(reg, val, opcode);
9237 	return is_branch64_taken(reg, val, opcode);
9238 }
9239 
9240 static int flip_opcode(u32 opcode)
9241 {
9242 	/* How can we transform "a <op> b" into "b <op> a"? */
9243 	static const u8 opcode_flip[16] = {
9244 		/* these stay the same */
9245 		[BPF_JEQ  >> 4] = BPF_JEQ,
9246 		[BPF_JNE  >> 4] = BPF_JNE,
9247 		[BPF_JSET >> 4] = BPF_JSET,
9248 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
9249 		[BPF_JGE  >> 4] = BPF_JLE,
9250 		[BPF_JGT  >> 4] = BPF_JLT,
9251 		[BPF_JLE  >> 4] = BPF_JGE,
9252 		[BPF_JLT  >> 4] = BPF_JGT,
9253 		[BPF_JSGE >> 4] = BPF_JSLE,
9254 		[BPF_JSGT >> 4] = BPF_JSLT,
9255 		[BPF_JSLE >> 4] = BPF_JSGE,
9256 		[BPF_JSLT >> 4] = BPF_JSGT
9257 	};
9258 	return opcode_flip[opcode >> 4];
9259 }
9260 
9261 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
9262 				   struct bpf_reg_state *src_reg,
9263 				   u8 opcode)
9264 {
9265 	struct bpf_reg_state *pkt;
9266 
9267 	if (src_reg->type == PTR_TO_PACKET_END) {
9268 		pkt = dst_reg;
9269 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
9270 		pkt = src_reg;
9271 		opcode = flip_opcode(opcode);
9272 	} else {
9273 		return -1;
9274 	}
9275 
9276 	if (pkt->range >= 0)
9277 		return -1;
9278 
9279 	switch (opcode) {
9280 	case BPF_JLE:
9281 		/* pkt <= pkt_end */
9282 		fallthrough;
9283 	case BPF_JGT:
9284 		/* pkt > pkt_end */
9285 		if (pkt->range == BEYOND_PKT_END)
9286 			/* pkt has at last one extra byte beyond pkt_end */
9287 			return opcode == BPF_JGT;
9288 		break;
9289 	case BPF_JLT:
9290 		/* pkt < pkt_end */
9291 		fallthrough;
9292 	case BPF_JGE:
9293 		/* pkt >= pkt_end */
9294 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
9295 			return opcode == BPF_JGE;
9296 		break;
9297 	}
9298 	return -1;
9299 }
9300 
9301 /* Adjusts the register min/max values in the case that the dst_reg is the
9302  * variable register that we are working on, and src_reg is a constant or we're
9303  * simply doing a BPF_K check.
9304  * In JEQ/JNE cases we also adjust the var_off values.
9305  */
9306 static void reg_set_min_max(struct bpf_reg_state *true_reg,
9307 			    struct bpf_reg_state *false_reg,
9308 			    u64 val, u32 val32,
9309 			    u8 opcode, bool is_jmp32)
9310 {
9311 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
9312 	struct tnum false_64off = false_reg->var_off;
9313 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
9314 	struct tnum true_64off = true_reg->var_off;
9315 	s64 sval = (s64)val;
9316 	s32 sval32 = (s32)val32;
9317 
9318 	/* If the dst_reg is a pointer, we can't learn anything about its
9319 	 * variable offset from the compare (unless src_reg were a pointer into
9320 	 * the same object, but we don't bother with that.
9321 	 * Since false_reg and true_reg have the same type by construction, we
9322 	 * only need to check one of them for pointerness.
9323 	 */
9324 	if (__is_pointer_value(false, false_reg))
9325 		return;
9326 
9327 	switch (opcode) {
9328 	case BPF_JEQ:
9329 	case BPF_JNE:
9330 	{
9331 		struct bpf_reg_state *reg =
9332 			opcode == BPF_JEQ ? true_reg : false_reg;
9333 
9334 		/* JEQ/JNE comparison doesn't change the register equivalence.
9335 		 * r1 = r2;
9336 		 * if (r1 == 42) goto label;
9337 		 * ...
9338 		 * label: // here both r1 and r2 are known to be 42.
9339 		 *
9340 		 * Hence when marking register as known preserve it's ID.
9341 		 */
9342 		if (is_jmp32)
9343 			__mark_reg32_known(reg, val32);
9344 		else
9345 			___mark_reg_known(reg, val);
9346 		break;
9347 	}
9348 	case BPF_JSET:
9349 		if (is_jmp32) {
9350 			false_32off = tnum_and(false_32off, tnum_const(~val32));
9351 			if (is_power_of_2(val32))
9352 				true_32off = tnum_or(true_32off,
9353 						     tnum_const(val32));
9354 		} else {
9355 			false_64off = tnum_and(false_64off, tnum_const(~val));
9356 			if (is_power_of_2(val))
9357 				true_64off = tnum_or(true_64off,
9358 						     tnum_const(val));
9359 		}
9360 		break;
9361 	case BPF_JGE:
9362 	case BPF_JGT:
9363 	{
9364 		if (is_jmp32) {
9365 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
9366 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
9367 
9368 			false_reg->u32_max_value = min(false_reg->u32_max_value,
9369 						       false_umax);
9370 			true_reg->u32_min_value = max(true_reg->u32_min_value,
9371 						      true_umin);
9372 		} else {
9373 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
9374 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
9375 
9376 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
9377 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
9378 		}
9379 		break;
9380 	}
9381 	case BPF_JSGE:
9382 	case BPF_JSGT:
9383 	{
9384 		if (is_jmp32) {
9385 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
9386 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
9387 
9388 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
9389 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
9390 		} else {
9391 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
9392 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
9393 
9394 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
9395 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
9396 		}
9397 		break;
9398 	}
9399 	case BPF_JLE:
9400 	case BPF_JLT:
9401 	{
9402 		if (is_jmp32) {
9403 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
9404 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
9405 
9406 			false_reg->u32_min_value = max(false_reg->u32_min_value,
9407 						       false_umin);
9408 			true_reg->u32_max_value = min(true_reg->u32_max_value,
9409 						      true_umax);
9410 		} else {
9411 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
9412 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
9413 
9414 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
9415 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
9416 		}
9417 		break;
9418 	}
9419 	case BPF_JSLE:
9420 	case BPF_JSLT:
9421 	{
9422 		if (is_jmp32) {
9423 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
9424 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
9425 
9426 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
9427 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
9428 		} else {
9429 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
9430 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
9431 
9432 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
9433 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
9434 		}
9435 		break;
9436 	}
9437 	default:
9438 		return;
9439 	}
9440 
9441 	if (is_jmp32) {
9442 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
9443 					     tnum_subreg(false_32off));
9444 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
9445 					    tnum_subreg(true_32off));
9446 		__reg_combine_32_into_64(false_reg);
9447 		__reg_combine_32_into_64(true_reg);
9448 	} else {
9449 		false_reg->var_off = false_64off;
9450 		true_reg->var_off = true_64off;
9451 		__reg_combine_64_into_32(false_reg);
9452 		__reg_combine_64_into_32(true_reg);
9453 	}
9454 }
9455 
9456 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
9457  * the variable reg.
9458  */
9459 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
9460 				struct bpf_reg_state *false_reg,
9461 				u64 val, u32 val32,
9462 				u8 opcode, bool is_jmp32)
9463 {
9464 	opcode = flip_opcode(opcode);
9465 	/* This uses zero as "not present in table"; luckily the zero opcode,
9466 	 * BPF_JA, can't get here.
9467 	 */
9468 	if (opcode)
9469 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
9470 }
9471 
9472 /* Regs are known to be equal, so intersect their min/max/var_off */
9473 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
9474 				  struct bpf_reg_state *dst_reg)
9475 {
9476 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
9477 							dst_reg->umin_value);
9478 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
9479 							dst_reg->umax_value);
9480 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
9481 							dst_reg->smin_value);
9482 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
9483 							dst_reg->smax_value);
9484 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
9485 							     dst_reg->var_off);
9486 	/* We might have learned new bounds from the var_off. */
9487 	__update_reg_bounds(src_reg);
9488 	__update_reg_bounds(dst_reg);
9489 	/* We might have learned something about the sign bit. */
9490 	__reg_deduce_bounds(src_reg);
9491 	__reg_deduce_bounds(dst_reg);
9492 	/* We might have learned some bits from the bounds. */
9493 	__reg_bound_offset(src_reg);
9494 	__reg_bound_offset(dst_reg);
9495 	/* Intersecting with the old var_off might have improved our bounds
9496 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
9497 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
9498 	 */
9499 	__update_reg_bounds(src_reg);
9500 	__update_reg_bounds(dst_reg);
9501 }
9502 
9503 static void reg_combine_min_max(struct bpf_reg_state *true_src,
9504 				struct bpf_reg_state *true_dst,
9505 				struct bpf_reg_state *false_src,
9506 				struct bpf_reg_state *false_dst,
9507 				u8 opcode)
9508 {
9509 	switch (opcode) {
9510 	case BPF_JEQ:
9511 		__reg_combine_min_max(true_src, true_dst);
9512 		break;
9513 	case BPF_JNE:
9514 		__reg_combine_min_max(false_src, false_dst);
9515 		break;
9516 	}
9517 }
9518 
9519 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
9520 				 struct bpf_reg_state *reg, u32 id,
9521 				 bool is_null)
9522 {
9523 	if (type_may_be_null(reg->type) && reg->id == id &&
9524 	    !WARN_ON_ONCE(!reg->id)) {
9525 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
9526 				 !tnum_equals_const(reg->var_off, 0) ||
9527 				 reg->off)) {
9528 			/* Old offset (both fixed and variable parts) should
9529 			 * have been known-zero, because we don't allow pointer
9530 			 * arithmetic on pointers that might be NULL. If we
9531 			 * see this happening, don't convert the register.
9532 			 */
9533 			return;
9534 		}
9535 		if (is_null) {
9536 			reg->type = SCALAR_VALUE;
9537 			/* We don't need id and ref_obj_id from this point
9538 			 * onwards anymore, thus we should better reset it,
9539 			 * so that state pruning has chances to take effect.
9540 			 */
9541 			reg->id = 0;
9542 			reg->ref_obj_id = 0;
9543 
9544 			return;
9545 		}
9546 
9547 		mark_ptr_not_null_reg(reg);
9548 
9549 		if (!reg_may_point_to_spin_lock(reg)) {
9550 			/* For not-NULL ptr, reg->ref_obj_id will be reset
9551 			 * in release_reg_references().
9552 			 *
9553 			 * reg->id is still used by spin_lock ptr. Other
9554 			 * than spin_lock ptr type, reg->id can be reset.
9555 			 */
9556 			reg->id = 0;
9557 		}
9558 	}
9559 }
9560 
9561 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
9562 				    bool is_null)
9563 {
9564 	struct bpf_reg_state *reg;
9565 	int i;
9566 
9567 	for (i = 0; i < MAX_BPF_REG; i++)
9568 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
9569 
9570 	bpf_for_each_spilled_reg(i, state, reg) {
9571 		if (!reg)
9572 			continue;
9573 		mark_ptr_or_null_reg(state, reg, id, is_null);
9574 	}
9575 }
9576 
9577 /* The logic is similar to find_good_pkt_pointers(), both could eventually
9578  * be folded together at some point.
9579  */
9580 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9581 				  bool is_null)
9582 {
9583 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9584 	struct bpf_reg_state *regs = state->regs;
9585 	u32 ref_obj_id = regs[regno].ref_obj_id;
9586 	u32 id = regs[regno].id;
9587 	int i;
9588 
9589 	if (ref_obj_id && ref_obj_id == id && is_null)
9590 		/* regs[regno] is in the " == NULL" branch.
9591 		 * No one could have freed the reference state before
9592 		 * doing the NULL check.
9593 		 */
9594 		WARN_ON_ONCE(release_reference_state(state, id));
9595 
9596 	for (i = 0; i <= vstate->curframe; i++)
9597 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
9598 }
9599 
9600 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9601 				   struct bpf_reg_state *dst_reg,
9602 				   struct bpf_reg_state *src_reg,
9603 				   struct bpf_verifier_state *this_branch,
9604 				   struct bpf_verifier_state *other_branch)
9605 {
9606 	if (BPF_SRC(insn->code) != BPF_X)
9607 		return false;
9608 
9609 	/* Pointers are always 64-bit. */
9610 	if (BPF_CLASS(insn->code) == BPF_JMP32)
9611 		return false;
9612 
9613 	switch (BPF_OP(insn->code)) {
9614 	case BPF_JGT:
9615 		if ((dst_reg->type == PTR_TO_PACKET &&
9616 		     src_reg->type == PTR_TO_PACKET_END) ||
9617 		    (dst_reg->type == PTR_TO_PACKET_META &&
9618 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9619 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9620 			find_good_pkt_pointers(this_branch, dst_reg,
9621 					       dst_reg->type, false);
9622 			mark_pkt_end(other_branch, insn->dst_reg, true);
9623 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9624 			    src_reg->type == PTR_TO_PACKET) ||
9625 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9626 			    src_reg->type == PTR_TO_PACKET_META)) {
9627 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
9628 			find_good_pkt_pointers(other_branch, src_reg,
9629 					       src_reg->type, true);
9630 			mark_pkt_end(this_branch, insn->src_reg, false);
9631 		} else {
9632 			return false;
9633 		}
9634 		break;
9635 	case BPF_JLT:
9636 		if ((dst_reg->type == PTR_TO_PACKET &&
9637 		     src_reg->type == PTR_TO_PACKET_END) ||
9638 		    (dst_reg->type == PTR_TO_PACKET_META &&
9639 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9640 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9641 			find_good_pkt_pointers(other_branch, dst_reg,
9642 					       dst_reg->type, true);
9643 			mark_pkt_end(this_branch, insn->dst_reg, false);
9644 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9645 			    src_reg->type == PTR_TO_PACKET) ||
9646 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9647 			    src_reg->type == PTR_TO_PACKET_META)) {
9648 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
9649 			find_good_pkt_pointers(this_branch, src_reg,
9650 					       src_reg->type, false);
9651 			mark_pkt_end(other_branch, insn->src_reg, true);
9652 		} else {
9653 			return false;
9654 		}
9655 		break;
9656 	case BPF_JGE:
9657 		if ((dst_reg->type == PTR_TO_PACKET &&
9658 		     src_reg->type == PTR_TO_PACKET_END) ||
9659 		    (dst_reg->type == PTR_TO_PACKET_META &&
9660 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9661 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9662 			find_good_pkt_pointers(this_branch, dst_reg,
9663 					       dst_reg->type, true);
9664 			mark_pkt_end(other_branch, insn->dst_reg, false);
9665 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9666 			    src_reg->type == PTR_TO_PACKET) ||
9667 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9668 			    src_reg->type == PTR_TO_PACKET_META)) {
9669 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9670 			find_good_pkt_pointers(other_branch, src_reg,
9671 					       src_reg->type, false);
9672 			mark_pkt_end(this_branch, insn->src_reg, true);
9673 		} else {
9674 			return false;
9675 		}
9676 		break;
9677 	case BPF_JLE:
9678 		if ((dst_reg->type == PTR_TO_PACKET &&
9679 		     src_reg->type == PTR_TO_PACKET_END) ||
9680 		    (dst_reg->type == PTR_TO_PACKET_META &&
9681 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9682 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9683 			find_good_pkt_pointers(other_branch, dst_reg,
9684 					       dst_reg->type, false);
9685 			mark_pkt_end(this_branch, insn->dst_reg, true);
9686 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9687 			    src_reg->type == PTR_TO_PACKET) ||
9688 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9689 			    src_reg->type == PTR_TO_PACKET_META)) {
9690 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9691 			find_good_pkt_pointers(this_branch, src_reg,
9692 					       src_reg->type, true);
9693 			mark_pkt_end(other_branch, insn->src_reg, false);
9694 		} else {
9695 			return false;
9696 		}
9697 		break;
9698 	default:
9699 		return false;
9700 	}
9701 
9702 	return true;
9703 }
9704 
9705 static void find_equal_scalars(struct bpf_verifier_state *vstate,
9706 			       struct bpf_reg_state *known_reg)
9707 {
9708 	struct bpf_func_state *state;
9709 	struct bpf_reg_state *reg;
9710 	int i, j;
9711 
9712 	for (i = 0; i <= vstate->curframe; i++) {
9713 		state = vstate->frame[i];
9714 		for (j = 0; j < MAX_BPF_REG; j++) {
9715 			reg = &state->regs[j];
9716 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9717 				*reg = *known_reg;
9718 		}
9719 
9720 		bpf_for_each_spilled_reg(j, state, reg) {
9721 			if (!reg)
9722 				continue;
9723 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9724 				*reg = *known_reg;
9725 		}
9726 	}
9727 }
9728 
9729 static int check_cond_jmp_op(struct bpf_verifier_env *env,
9730 			     struct bpf_insn *insn, int *insn_idx)
9731 {
9732 	struct bpf_verifier_state *this_branch = env->cur_state;
9733 	struct bpf_verifier_state *other_branch;
9734 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
9735 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
9736 	u8 opcode = BPF_OP(insn->code);
9737 	bool is_jmp32;
9738 	int pred = -1;
9739 	int err;
9740 
9741 	/* Only conditional jumps are expected to reach here. */
9742 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
9743 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
9744 		return -EINVAL;
9745 	}
9746 
9747 	if (BPF_SRC(insn->code) == BPF_X) {
9748 		if (insn->imm != 0) {
9749 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9750 			return -EINVAL;
9751 		}
9752 
9753 		/* check src1 operand */
9754 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9755 		if (err)
9756 			return err;
9757 
9758 		if (is_pointer_value(env, insn->src_reg)) {
9759 			verbose(env, "R%d pointer comparison prohibited\n",
9760 				insn->src_reg);
9761 			return -EACCES;
9762 		}
9763 		src_reg = &regs[insn->src_reg];
9764 	} else {
9765 		if (insn->src_reg != BPF_REG_0) {
9766 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9767 			return -EINVAL;
9768 		}
9769 	}
9770 
9771 	/* check src2 operand */
9772 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9773 	if (err)
9774 		return err;
9775 
9776 	dst_reg = &regs[insn->dst_reg];
9777 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
9778 
9779 	if (BPF_SRC(insn->code) == BPF_K) {
9780 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9781 	} else if (src_reg->type == SCALAR_VALUE &&
9782 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9783 		pred = is_branch_taken(dst_reg,
9784 				       tnum_subreg(src_reg->var_off).value,
9785 				       opcode,
9786 				       is_jmp32);
9787 	} else if (src_reg->type == SCALAR_VALUE &&
9788 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9789 		pred = is_branch_taken(dst_reg,
9790 				       src_reg->var_off.value,
9791 				       opcode,
9792 				       is_jmp32);
9793 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
9794 		   reg_is_pkt_pointer_any(src_reg) &&
9795 		   !is_jmp32) {
9796 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
9797 	}
9798 
9799 	if (pred >= 0) {
9800 		/* If we get here with a dst_reg pointer type it is because
9801 		 * above is_branch_taken() special cased the 0 comparison.
9802 		 */
9803 		if (!__is_pointer_value(false, dst_reg))
9804 			err = mark_chain_precision(env, insn->dst_reg);
9805 		if (BPF_SRC(insn->code) == BPF_X && !err &&
9806 		    !__is_pointer_value(false, src_reg))
9807 			err = mark_chain_precision(env, insn->src_reg);
9808 		if (err)
9809 			return err;
9810 	}
9811 
9812 	if (pred == 1) {
9813 		/* Only follow the goto, ignore fall-through. If needed, push
9814 		 * the fall-through branch for simulation under speculative
9815 		 * execution.
9816 		 */
9817 		if (!env->bypass_spec_v1 &&
9818 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
9819 					       *insn_idx))
9820 			return -EFAULT;
9821 		*insn_idx += insn->off;
9822 		return 0;
9823 	} else if (pred == 0) {
9824 		/* Only follow the fall-through branch, since that's where the
9825 		 * program will go. If needed, push the goto branch for
9826 		 * simulation under speculative execution.
9827 		 */
9828 		if (!env->bypass_spec_v1 &&
9829 		    !sanitize_speculative_path(env, insn,
9830 					       *insn_idx + insn->off + 1,
9831 					       *insn_idx))
9832 			return -EFAULT;
9833 		return 0;
9834 	}
9835 
9836 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9837 				  false);
9838 	if (!other_branch)
9839 		return -EFAULT;
9840 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
9841 
9842 	/* detect if we are comparing against a constant value so we can adjust
9843 	 * our min/max values for our dst register.
9844 	 * this is only legit if both are scalars (or pointers to the same
9845 	 * object, I suppose, but we don't support that right now), because
9846 	 * otherwise the different base pointers mean the offsets aren't
9847 	 * comparable.
9848 	 */
9849 	if (BPF_SRC(insn->code) == BPF_X) {
9850 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
9851 
9852 		if (dst_reg->type == SCALAR_VALUE &&
9853 		    src_reg->type == SCALAR_VALUE) {
9854 			if (tnum_is_const(src_reg->var_off) ||
9855 			    (is_jmp32 &&
9856 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
9857 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
9858 						dst_reg,
9859 						src_reg->var_off.value,
9860 						tnum_subreg(src_reg->var_off).value,
9861 						opcode, is_jmp32);
9862 			else if (tnum_is_const(dst_reg->var_off) ||
9863 				 (is_jmp32 &&
9864 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
9865 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
9866 						    src_reg,
9867 						    dst_reg->var_off.value,
9868 						    tnum_subreg(dst_reg->var_off).value,
9869 						    opcode, is_jmp32);
9870 			else if (!is_jmp32 &&
9871 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
9872 				/* Comparing for equality, we can combine knowledge */
9873 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
9874 						    &other_branch_regs[insn->dst_reg],
9875 						    src_reg, dst_reg, opcode);
9876 			if (src_reg->id &&
9877 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
9878 				find_equal_scalars(this_branch, src_reg);
9879 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9880 			}
9881 
9882 		}
9883 	} else if (dst_reg->type == SCALAR_VALUE) {
9884 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
9885 					dst_reg, insn->imm, (u32)insn->imm,
9886 					opcode, is_jmp32);
9887 	}
9888 
9889 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9890 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
9891 		find_equal_scalars(this_branch, dst_reg);
9892 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9893 	}
9894 
9895 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9896 	 * NOTE: these optimizations below are related with pointer comparison
9897 	 *       which will never be JMP32.
9898 	 */
9899 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
9900 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
9901 	    type_may_be_null(dst_reg->type)) {
9902 		/* Mark all identical registers in each branch as either
9903 		 * safe or unknown depending R == 0 or R != 0 conditional.
9904 		 */
9905 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9906 				      opcode == BPF_JNE);
9907 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9908 				      opcode == BPF_JEQ);
9909 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9910 					   this_branch, other_branch) &&
9911 		   is_pointer_value(env, insn->dst_reg)) {
9912 		verbose(env, "R%d pointer comparison prohibited\n",
9913 			insn->dst_reg);
9914 		return -EACCES;
9915 	}
9916 	if (env->log.level & BPF_LOG_LEVEL)
9917 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
9918 	return 0;
9919 }
9920 
9921 /* verify BPF_LD_IMM64 instruction */
9922 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
9923 {
9924 	struct bpf_insn_aux_data *aux = cur_aux(env);
9925 	struct bpf_reg_state *regs = cur_regs(env);
9926 	struct bpf_reg_state *dst_reg;
9927 	struct bpf_map *map;
9928 	int err;
9929 
9930 	if (BPF_SIZE(insn->code) != BPF_DW) {
9931 		verbose(env, "invalid BPF_LD_IMM insn\n");
9932 		return -EINVAL;
9933 	}
9934 	if (insn->off != 0) {
9935 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
9936 		return -EINVAL;
9937 	}
9938 
9939 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
9940 	if (err)
9941 		return err;
9942 
9943 	dst_reg = &regs[insn->dst_reg];
9944 	if (insn->src_reg == 0) {
9945 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9946 
9947 		dst_reg->type = SCALAR_VALUE;
9948 		__mark_reg_known(&regs[insn->dst_reg], imm);
9949 		return 0;
9950 	}
9951 
9952 	/* All special src_reg cases are listed below. From this point onwards
9953 	 * we either succeed and assign a corresponding dst_reg->type after
9954 	 * zeroing the offset, or fail and reject the program.
9955 	 */
9956 	mark_reg_known_zero(env, regs, insn->dst_reg);
9957 
9958 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9959 		dst_reg->type = aux->btf_var.reg_type;
9960 		switch (base_type(dst_reg->type)) {
9961 		case PTR_TO_MEM:
9962 			dst_reg->mem_size = aux->btf_var.mem_size;
9963 			break;
9964 		case PTR_TO_BTF_ID:
9965 			dst_reg->btf = aux->btf_var.btf;
9966 			dst_reg->btf_id = aux->btf_var.btf_id;
9967 			break;
9968 		default:
9969 			verbose(env, "bpf verifier is misconfigured\n");
9970 			return -EFAULT;
9971 		}
9972 		return 0;
9973 	}
9974 
9975 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
9976 		struct bpf_prog_aux *aux = env->prog->aux;
9977 		u32 subprogno = find_subprog(env,
9978 					     env->insn_idx + insn->imm + 1);
9979 
9980 		if (!aux->func_info) {
9981 			verbose(env, "missing btf func_info\n");
9982 			return -EINVAL;
9983 		}
9984 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9985 			verbose(env, "callback function not static\n");
9986 			return -EINVAL;
9987 		}
9988 
9989 		dst_reg->type = PTR_TO_FUNC;
9990 		dst_reg->subprogno = subprogno;
9991 		return 0;
9992 	}
9993 
9994 	map = env->used_maps[aux->map_index];
9995 	dst_reg->map_ptr = map;
9996 
9997 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9998 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
9999 		dst_reg->type = PTR_TO_MAP_VALUE;
10000 		dst_reg->off = aux->map_off;
10001 		if (map_value_has_spin_lock(map))
10002 			dst_reg->id = ++env->id_gen;
10003 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
10004 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
10005 		dst_reg->type = CONST_PTR_TO_MAP;
10006 	} else {
10007 		verbose(env, "bpf verifier is misconfigured\n");
10008 		return -EINVAL;
10009 	}
10010 
10011 	return 0;
10012 }
10013 
10014 static bool may_access_skb(enum bpf_prog_type type)
10015 {
10016 	switch (type) {
10017 	case BPF_PROG_TYPE_SOCKET_FILTER:
10018 	case BPF_PROG_TYPE_SCHED_CLS:
10019 	case BPF_PROG_TYPE_SCHED_ACT:
10020 		return true;
10021 	default:
10022 		return false;
10023 	}
10024 }
10025 
10026 /* verify safety of LD_ABS|LD_IND instructions:
10027  * - they can only appear in the programs where ctx == skb
10028  * - since they are wrappers of function calls, they scratch R1-R5 registers,
10029  *   preserve R6-R9, and store return value into R0
10030  *
10031  * Implicit input:
10032  *   ctx == skb == R6 == CTX
10033  *
10034  * Explicit input:
10035  *   SRC == any register
10036  *   IMM == 32-bit immediate
10037  *
10038  * Output:
10039  *   R0 - 8/16/32-bit skb data converted to cpu endianness
10040  */
10041 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
10042 {
10043 	struct bpf_reg_state *regs = cur_regs(env);
10044 	static const int ctx_reg = BPF_REG_6;
10045 	u8 mode = BPF_MODE(insn->code);
10046 	int i, err;
10047 
10048 	if (!may_access_skb(resolve_prog_type(env->prog))) {
10049 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
10050 		return -EINVAL;
10051 	}
10052 
10053 	if (!env->ops->gen_ld_abs) {
10054 		verbose(env, "bpf verifier is misconfigured\n");
10055 		return -EINVAL;
10056 	}
10057 
10058 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
10059 	    BPF_SIZE(insn->code) == BPF_DW ||
10060 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
10061 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
10062 		return -EINVAL;
10063 	}
10064 
10065 	/* check whether implicit source operand (register R6) is readable */
10066 	err = check_reg_arg(env, ctx_reg, SRC_OP);
10067 	if (err)
10068 		return err;
10069 
10070 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
10071 	 * gen_ld_abs() may terminate the program at runtime, leading to
10072 	 * reference leak.
10073 	 */
10074 	err = check_reference_leak(env);
10075 	if (err) {
10076 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
10077 		return err;
10078 	}
10079 
10080 	if (env->cur_state->active_spin_lock) {
10081 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
10082 		return -EINVAL;
10083 	}
10084 
10085 	if (regs[ctx_reg].type != PTR_TO_CTX) {
10086 		verbose(env,
10087 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
10088 		return -EINVAL;
10089 	}
10090 
10091 	if (mode == BPF_IND) {
10092 		/* check explicit source operand */
10093 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
10094 		if (err)
10095 			return err;
10096 	}
10097 
10098 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
10099 	if (err < 0)
10100 		return err;
10101 
10102 	/* reset caller saved regs to unreadable */
10103 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10104 		mark_reg_not_init(env, regs, caller_saved[i]);
10105 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10106 	}
10107 
10108 	/* mark destination R0 register as readable, since it contains
10109 	 * the value fetched from the packet.
10110 	 * Already marked as written above.
10111 	 */
10112 	mark_reg_unknown(env, regs, BPF_REG_0);
10113 	/* ld_abs load up to 32-bit skb data. */
10114 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
10115 	return 0;
10116 }
10117 
10118 static int check_return_code(struct bpf_verifier_env *env)
10119 {
10120 	struct tnum enforce_attach_type_range = tnum_unknown;
10121 	const struct bpf_prog *prog = env->prog;
10122 	struct bpf_reg_state *reg;
10123 	struct tnum range = tnum_range(0, 1);
10124 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
10125 	int err;
10126 	struct bpf_func_state *frame = env->cur_state->frame[0];
10127 	const bool is_subprog = frame->subprogno;
10128 
10129 	/* LSM and struct_ops func-ptr's return type could be "void" */
10130 	if (!is_subprog &&
10131 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
10132 	     prog_type == BPF_PROG_TYPE_LSM) &&
10133 	    !prog->aux->attach_func_proto->type)
10134 		return 0;
10135 
10136 	/* eBPF calling convention is such that R0 is used
10137 	 * to return the value from eBPF program.
10138 	 * Make sure that it's readable at this time
10139 	 * of bpf_exit, which means that program wrote
10140 	 * something into it earlier
10141 	 */
10142 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
10143 	if (err)
10144 		return err;
10145 
10146 	if (is_pointer_value(env, BPF_REG_0)) {
10147 		verbose(env, "R0 leaks addr as return value\n");
10148 		return -EACCES;
10149 	}
10150 
10151 	reg = cur_regs(env) + BPF_REG_0;
10152 
10153 	if (frame->in_async_callback_fn) {
10154 		/* enforce return zero from async callbacks like timer */
10155 		if (reg->type != SCALAR_VALUE) {
10156 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
10157 				reg_type_str(env, reg->type));
10158 			return -EINVAL;
10159 		}
10160 
10161 		if (!tnum_in(tnum_const(0), reg->var_off)) {
10162 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
10163 			return -EINVAL;
10164 		}
10165 		return 0;
10166 	}
10167 
10168 	if (is_subprog) {
10169 		if (reg->type != SCALAR_VALUE) {
10170 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
10171 				reg_type_str(env, reg->type));
10172 			return -EINVAL;
10173 		}
10174 		return 0;
10175 	}
10176 
10177 	switch (prog_type) {
10178 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
10179 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
10180 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
10181 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
10182 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
10183 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
10184 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
10185 			range = tnum_range(1, 1);
10186 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
10187 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
10188 			range = tnum_range(0, 3);
10189 		break;
10190 	case BPF_PROG_TYPE_CGROUP_SKB:
10191 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
10192 			range = tnum_range(0, 3);
10193 			enforce_attach_type_range = tnum_range(2, 3);
10194 		}
10195 		break;
10196 	case BPF_PROG_TYPE_CGROUP_SOCK:
10197 	case BPF_PROG_TYPE_SOCK_OPS:
10198 	case BPF_PROG_TYPE_CGROUP_DEVICE:
10199 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
10200 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
10201 		break;
10202 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10203 		if (!env->prog->aux->attach_btf_id)
10204 			return 0;
10205 		range = tnum_const(0);
10206 		break;
10207 	case BPF_PROG_TYPE_TRACING:
10208 		switch (env->prog->expected_attach_type) {
10209 		case BPF_TRACE_FENTRY:
10210 		case BPF_TRACE_FEXIT:
10211 			range = tnum_const(0);
10212 			break;
10213 		case BPF_TRACE_RAW_TP:
10214 		case BPF_MODIFY_RETURN:
10215 			return 0;
10216 		case BPF_TRACE_ITER:
10217 			break;
10218 		default:
10219 			return -ENOTSUPP;
10220 		}
10221 		break;
10222 	case BPF_PROG_TYPE_SK_LOOKUP:
10223 		range = tnum_range(SK_DROP, SK_PASS);
10224 		break;
10225 	case BPF_PROG_TYPE_EXT:
10226 		/* freplace program can return anything as its return value
10227 		 * depends on the to-be-replaced kernel func or bpf program.
10228 		 */
10229 	default:
10230 		return 0;
10231 	}
10232 
10233 	if (reg->type != SCALAR_VALUE) {
10234 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
10235 			reg_type_str(env, reg->type));
10236 		return -EINVAL;
10237 	}
10238 
10239 	if (!tnum_in(range, reg->var_off)) {
10240 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
10241 		return -EINVAL;
10242 	}
10243 
10244 	if (!tnum_is_unknown(enforce_attach_type_range) &&
10245 	    tnum_in(enforce_attach_type_range, reg->var_off))
10246 		env->prog->enforce_expected_attach_type = 1;
10247 	return 0;
10248 }
10249 
10250 /* non-recursive DFS pseudo code
10251  * 1  procedure DFS-iterative(G,v):
10252  * 2      label v as discovered
10253  * 3      let S be a stack
10254  * 4      S.push(v)
10255  * 5      while S is not empty
10256  * 6            t <- S.pop()
10257  * 7            if t is what we're looking for:
10258  * 8                return t
10259  * 9            for all edges e in G.adjacentEdges(t) do
10260  * 10               if edge e is already labelled
10261  * 11                   continue with the next edge
10262  * 12               w <- G.adjacentVertex(t,e)
10263  * 13               if vertex w is not discovered and not explored
10264  * 14                   label e as tree-edge
10265  * 15                   label w as discovered
10266  * 16                   S.push(w)
10267  * 17                   continue at 5
10268  * 18               else if vertex w is discovered
10269  * 19                   label e as back-edge
10270  * 20               else
10271  * 21                   // vertex w is explored
10272  * 22                   label e as forward- or cross-edge
10273  * 23           label t as explored
10274  * 24           S.pop()
10275  *
10276  * convention:
10277  * 0x10 - discovered
10278  * 0x11 - discovered and fall-through edge labelled
10279  * 0x12 - discovered and fall-through and branch edges labelled
10280  * 0x20 - explored
10281  */
10282 
10283 enum {
10284 	DISCOVERED = 0x10,
10285 	EXPLORED = 0x20,
10286 	FALLTHROUGH = 1,
10287 	BRANCH = 2,
10288 };
10289 
10290 static u32 state_htab_size(struct bpf_verifier_env *env)
10291 {
10292 	return env->prog->len;
10293 }
10294 
10295 static struct bpf_verifier_state_list **explored_state(
10296 					struct bpf_verifier_env *env,
10297 					int idx)
10298 {
10299 	struct bpf_verifier_state *cur = env->cur_state;
10300 	struct bpf_func_state *state = cur->frame[cur->curframe];
10301 
10302 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
10303 }
10304 
10305 static void init_explored_state(struct bpf_verifier_env *env, int idx)
10306 {
10307 	env->insn_aux_data[idx].prune_point = true;
10308 }
10309 
10310 enum {
10311 	DONE_EXPLORING = 0,
10312 	KEEP_EXPLORING = 1,
10313 };
10314 
10315 /* t, w, e - match pseudo-code above:
10316  * t - index of current instruction
10317  * w - next instruction
10318  * e - edge
10319  */
10320 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
10321 		     bool loop_ok)
10322 {
10323 	int *insn_stack = env->cfg.insn_stack;
10324 	int *insn_state = env->cfg.insn_state;
10325 
10326 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
10327 		return DONE_EXPLORING;
10328 
10329 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
10330 		return DONE_EXPLORING;
10331 
10332 	if (w < 0 || w >= env->prog->len) {
10333 		verbose_linfo(env, t, "%d: ", t);
10334 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
10335 		return -EINVAL;
10336 	}
10337 
10338 	if (e == BRANCH)
10339 		/* mark branch target for state pruning */
10340 		init_explored_state(env, w);
10341 
10342 	if (insn_state[w] == 0) {
10343 		/* tree-edge */
10344 		insn_state[t] = DISCOVERED | e;
10345 		insn_state[w] = DISCOVERED;
10346 		if (env->cfg.cur_stack >= env->prog->len)
10347 			return -E2BIG;
10348 		insn_stack[env->cfg.cur_stack++] = w;
10349 		return KEEP_EXPLORING;
10350 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
10351 		if (loop_ok && env->bpf_capable)
10352 			return DONE_EXPLORING;
10353 		verbose_linfo(env, t, "%d: ", t);
10354 		verbose_linfo(env, w, "%d: ", w);
10355 		verbose(env, "back-edge from insn %d to %d\n", t, w);
10356 		return -EINVAL;
10357 	} else if (insn_state[w] == EXPLORED) {
10358 		/* forward- or cross-edge */
10359 		insn_state[t] = DISCOVERED | e;
10360 	} else {
10361 		verbose(env, "insn state internal bug\n");
10362 		return -EFAULT;
10363 	}
10364 	return DONE_EXPLORING;
10365 }
10366 
10367 static int visit_func_call_insn(int t, int insn_cnt,
10368 				struct bpf_insn *insns,
10369 				struct bpf_verifier_env *env,
10370 				bool visit_callee)
10371 {
10372 	int ret;
10373 
10374 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
10375 	if (ret)
10376 		return ret;
10377 
10378 	if (t + 1 < insn_cnt)
10379 		init_explored_state(env, t + 1);
10380 	if (visit_callee) {
10381 		init_explored_state(env, t);
10382 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
10383 				/* It's ok to allow recursion from CFG point of
10384 				 * view. __check_func_call() will do the actual
10385 				 * check.
10386 				 */
10387 				bpf_pseudo_func(insns + t));
10388 	}
10389 	return ret;
10390 }
10391 
10392 /* Visits the instruction at index t and returns one of the following:
10393  *  < 0 - an error occurred
10394  *  DONE_EXPLORING - the instruction was fully explored
10395  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
10396  */
10397 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
10398 {
10399 	struct bpf_insn *insns = env->prog->insnsi;
10400 	int ret;
10401 
10402 	if (bpf_pseudo_func(insns + t))
10403 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
10404 
10405 	/* All non-branch instructions have a single fall-through edge. */
10406 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
10407 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
10408 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
10409 
10410 	switch (BPF_OP(insns[t].code)) {
10411 	case BPF_EXIT:
10412 		return DONE_EXPLORING;
10413 
10414 	case BPF_CALL:
10415 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
10416 			/* Mark this call insn to trigger is_state_visited() check
10417 			 * before call itself is processed by __check_func_call().
10418 			 * Otherwise new async state will be pushed for further
10419 			 * exploration.
10420 			 */
10421 			init_explored_state(env, t);
10422 		return visit_func_call_insn(t, insn_cnt, insns, env,
10423 					    insns[t].src_reg == BPF_PSEUDO_CALL);
10424 
10425 	case BPF_JA:
10426 		if (BPF_SRC(insns[t].code) != BPF_K)
10427 			return -EINVAL;
10428 
10429 		/* unconditional jump with single edge */
10430 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
10431 				true);
10432 		if (ret)
10433 			return ret;
10434 
10435 		/* unconditional jmp is not a good pruning point,
10436 		 * but it's marked, since backtracking needs
10437 		 * to record jmp history in is_state_visited().
10438 		 */
10439 		init_explored_state(env, t + insns[t].off + 1);
10440 		/* tell verifier to check for equivalent states
10441 		 * after every call and jump
10442 		 */
10443 		if (t + 1 < insn_cnt)
10444 			init_explored_state(env, t + 1);
10445 
10446 		return ret;
10447 
10448 	default:
10449 		/* conditional jump with two edges */
10450 		init_explored_state(env, t);
10451 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
10452 		if (ret)
10453 			return ret;
10454 
10455 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
10456 	}
10457 }
10458 
10459 /* non-recursive depth-first-search to detect loops in BPF program
10460  * loop == back-edge in directed graph
10461  */
10462 static int check_cfg(struct bpf_verifier_env *env)
10463 {
10464 	int insn_cnt = env->prog->len;
10465 	int *insn_stack, *insn_state;
10466 	int ret = 0;
10467 	int i;
10468 
10469 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10470 	if (!insn_state)
10471 		return -ENOMEM;
10472 
10473 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
10474 	if (!insn_stack) {
10475 		kvfree(insn_state);
10476 		return -ENOMEM;
10477 	}
10478 
10479 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
10480 	insn_stack[0] = 0; /* 0 is the first instruction */
10481 	env->cfg.cur_stack = 1;
10482 
10483 	while (env->cfg.cur_stack > 0) {
10484 		int t = insn_stack[env->cfg.cur_stack - 1];
10485 
10486 		ret = visit_insn(t, insn_cnt, env);
10487 		switch (ret) {
10488 		case DONE_EXPLORING:
10489 			insn_state[t] = EXPLORED;
10490 			env->cfg.cur_stack--;
10491 			break;
10492 		case KEEP_EXPLORING:
10493 			break;
10494 		default:
10495 			if (ret > 0) {
10496 				verbose(env, "visit_insn internal bug\n");
10497 				ret = -EFAULT;
10498 			}
10499 			goto err_free;
10500 		}
10501 	}
10502 
10503 	if (env->cfg.cur_stack < 0) {
10504 		verbose(env, "pop stack internal bug\n");
10505 		ret = -EFAULT;
10506 		goto err_free;
10507 	}
10508 
10509 	for (i = 0; i < insn_cnt; i++) {
10510 		if (insn_state[i] != EXPLORED) {
10511 			verbose(env, "unreachable insn %d\n", i);
10512 			ret = -EINVAL;
10513 			goto err_free;
10514 		}
10515 	}
10516 	ret = 0; /* cfg looks good */
10517 
10518 err_free:
10519 	kvfree(insn_state);
10520 	kvfree(insn_stack);
10521 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
10522 	return ret;
10523 }
10524 
10525 static int check_abnormal_return(struct bpf_verifier_env *env)
10526 {
10527 	int i;
10528 
10529 	for (i = 1; i < env->subprog_cnt; i++) {
10530 		if (env->subprog_info[i].has_ld_abs) {
10531 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
10532 			return -EINVAL;
10533 		}
10534 		if (env->subprog_info[i].has_tail_call) {
10535 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
10536 			return -EINVAL;
10537 		}
10538 	}
10539 	return 0;
10540 }
10541 
10542 /* The minimum supported BTF func info size */
10543 #define MIN_BPF_FUNCINFO_SIZE	8
10544 #define MAX_FUNCINFO_REC_SIZE	252
10545 
10546 static int check_btf_func(struct bpf_verifier_env *env,
10547 			  const union bpf_attr *attr,
10548 			  bpfptr_t uattr)
10549 {
10550 	const struct btf_type *type, *func_proto, *ret_type;
10551 	u32 i, nfuncs, urec_size, min_size;
10552 	u32 krec_size = sizeof(struct bpf_func_info);
10553 	struct bpf_func_info *krecord;
10554 	struct bpf_func_info_aux *info_aux = NULL;
10555 	struct bpf_prog *prog;
10556 	const struct btf *btf;
10557 	bpfptr_t urecord;
10558 	u32 prev_offset = 0;
10559 	bool scalar_return;
10560 	int ret = -ENOMEM;
10561 
10562 	nfuncs = attr->func_info_cnt;
10563 	if (!nfuncs) {
10564 		if (check_abnormal_return(env))
10565 			return -EINVAL;
10566 		return 0;
10567 	}
10568 
10569 	if (nfuncs != env->subprog_cnt) {
10570 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
10571 		return -EINVAL;
10572 	}
10573 
10574 	urec_size = attr->func_info_rec_size;
10575 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
10576 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
10577 	    urec_size % sizeof(u32)) {
10578 		verbose(env, "invalid func info rec size %u\n", urec_size);
10579 		return -EINVAL;
10580 	}
10581 
10582 	prog = env->prog;
10583 	btf = prog->aux->btf;
10584 
10585 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
10586 	min_size = min_t(u32, krec_size, urec_size);
10587 
10588 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
10589 	if (!krecord)
10590 		return -ENOMEM;
10591 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10592 	if (!info_aux)
10593 		goto err_free;
10594 
10595 	for (i = 0; i < nfuncs; i++) {
10596 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10597 		if (ret) {
10598 			if (ret == -E2BIG) {
10599 				verbose(env, "nonzero tailing record in func info");
10600 				/* set the size kernel expects so loader can zero
10601 				 * out the rest of the record.
10602 				 */
10603 				if (copy_to_bpfptr_offset(uattr,
10604 							  offsetof(union bpf_attr, func_info_rec_size),
10605 							  &min_size, sizeof(min_size)))
10606 					ret = -EFAULT;
10607 			}
10608 			goto err_free;
10609 		}
10610 
10611 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
10612 			ret = -EFAULT;
10613 			goto err_free;
10614 		}
10615 
10616 		/* check insn_off */
10617 		ret = -EINVAL;
10618 		if (i == 0) {
10619 			if (krecord[i].insn_off) {
10620 				verbose(env,
10621 					"nonzero insn_off %u for the first func info record",
10622 					krecord[i].insn_off);
10623 				goto err_free;
10624 			}
10625 		} else if (krecord[i].insn_off <= prev_offset) {
10626 			verbose(env,
10627 				"same or smaller insn offset (%u) than previous func info record (%u)",
10628 				krecord[i].insn_off, prev_offset);
10629 			goto err_free;
10630 		}
10631 
10632 		if (env->subprog_info[i].start != krecord[i].insn_off) {
10633 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
10634 			goto err_free;
10635 		}
10636 
10637 		/* check type_id */
10638 		type = btf_type_by_id(btf, krecord[i].type_id);
10639 		if (!type || !btf_type_is_func(type)) {
10640 			verbose(env, "invalid type id %d in func info",
10641 				krecord[i].type_id);
10642 			goto err_free;
10643 		}
10644 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
10645 
10646 		func_proto = btf_type_by_id(btf, type->type);
10647 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10648 			/* btf_func_check() already verified it during BTF load */
10649 			goto err_free;
10650 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10651 		scalar_return =
10652 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10653 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10654 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10655 			goto err_free;
10656 		}
10657 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10658 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10659 			goto err_free;
10660 		}
10661 
10662 		prev_offset = krecord[i].insn_off;
10663 		bpfptr_add(&urecord, urec_size);
10664 	}
10665 
10666 	prog->aux->func_info = krecord;
10667 	prog->aux->func_info_cnt = nfuncs;
10668 	prog->aux->func_info_aux = info_aux;
10669 	return 0;
10670 
10671 err_free:
10672 	kvfree(krecord);
10673 	kfree(info_aux);
10674 	return ret;
10675 }
10676 
10677 static void adjust_btf_func(struct bpf_verifier_env *env)
10678 {
10679 	struct bpf_prog_aux *aux = env->prog->aux;
10680 	int i;
10681 
10682 	if (!aux->func_info)
10683 		return;
10684 
10685 	for (i = 0; i < env->subprog_cnt; i++)
10686 		aux->func_info[i].insn_off = env->subprog_info[i].start;
10687 }
10688 
10689 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
10690 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
10691 
10692 static int check_btf_line(struct bpf_verifier_env *env,
10693 			  const union bpf_attr *attr,
10694 			  bpfptr_t uattr)
10695 {
10696 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10697 	struct bpf_subprog_info *sub;
10698 	struct bpf_line_info *linfo;
10699 	struct bpf_prog *prog;
10700 	const struct btf *btf;
10701 	bpfptr_t ulinfo;
10702 	int err;
10703 
10704 	nr_linfo = attr->line_info_cnt;
10705 	if (!nr_linfo)
10706 		return 0;
10707 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10708 		return -EINVAL;
10709 
10710 	rec_size = attr->line_info_rec_size;
10711 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10712 	    rec_size > MAX_LINEINFO_REC_SIZE ||
10713 	    rec_size & (sizeof(u32) - 1))
10714 		return -EINVAL;
10715 
10716 	/* Need to zero it in case the userspace may
10717 	 * pass in a smaller bpf_line_info object.
10718 	 */
10719 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10720 			 GFP_KERNEL | __GFP_NOWARN);
10721 	if (!linfo)
10722 		return -ENOMEM;
10723 
10724 	prog = env->prog;
10725 	btf = prog->aux->btf;
10726 
10727 	s = 0;
10728 	sub = env->subprog_info;
10729 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
10730 	expected_size = sizeof(struct bpf_line_info);
10731 	ncopy = min_t(u32, expected_size, rec_size);
10732 	for (i = 0; i < nr_linfo; i++) {
10733 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10734 		if (err) {
10735 			if (err == -E2BIG) {
10736 				verbose(env, "nonzero tailing record in line_info");
10737 				if (copy_to_bpfptr_offset(uattr,
10738 							  offsetof(union bpf_attr, line_info_rec_size),
10739 							  &expected_size, sizeof(expected_size)))
10740 					err = -EFAULT;
10741 			}
10742 			goto err_free;
10743 		}
10744 
10745 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
10746 			err = -EFAULT;
10747 			goto err_free;
10748 		}
10749 
10750 		/*
10751 		 * Check insn_off to ensure
10752 		 * 1) strictly increasing AND
10753 		 * 2) bounded by prog->len
10754 		 *
10755 		 * The linfo[0].insn_off == 0 check logically falls into
10756 		 * the later "missing bpf_line_info for func..." case
10757 		 * because the first linfo[0].insn_off must be the
10758 		 * first sub also and the first sub must have
10759 		 * subprog_info[0].start == 0.
10760 		 */
10761 		if ((i && linfo[i].insn_off <= prev_offset) ||
10762 		    linfo[i].insn_off >= prog->len) {
10763 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10764 				i, linfo[i].insn_off, prev_offset,
10765 				prog->len);
10766 			err = -EINVAL;
10767 			goto err_free;
10768 		}
10769 
10770 		if (!prog->insnsi[linfo[i].insn_off].code) {
10771 			verbose(env,
10772 				"Invalid insn code at line_info[%u].insn_off\n",
10773 				i);
10774 			err = -EINVAL;
10775 			goto err_free;
10776 		}
10777 
10778 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10779 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
10780 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10781 			err = -EINVAL;
10782 			goto err_free;
10783 		}
10784 
10785 		if (s != env->subprog_cnt) {
10786 			if (linfo[i].insn_off == sub[s].start) {
10787 				sub[s].linfo_idx = i;
10788 				s++;
10789 			} else if (sub[s].start < linfo[i].insn_off) {
10790 				verbose(env, "missing bpf_line_info for func#%u\n", s);
10791 				err = -EINVAL;
10792 				goto err_free;
10793 			}
10794 		}
10795 
10796 		prev_offset = linfo[i].insn_off;
10797 		bpfptr_add(&ulinfo, rec_size);
10798 	}
10799 
10800 	if (s != env->subprog_cnt) {
10801 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10802 			env->subprog_cnt - s, s);
10803 		err = -EINVAL;
10804 		goto err_free;
10805 	}
10806 
10807 	prog->aux->linfo = linfo;
10808 	prog->aux->nr_linfo = nr_linfo;
10809 
10810 	return 0;
10811 
10812 err_free:
10813 	kvfree(linfo);
10814 	return err;
10815 }
10816 
10817 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
10818 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
10819 
10820 static int check_core_relo(struct bpf_verifier_env *env,
10821 			   const union bpf_attr *attr,
10822 			   bpfptr_t uattr)
10823 {
10824 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
10825 	struct bpf_core_relo core_relo = {};
10826 	struct bpf_prog *prog = env->prog;
10827 	const struct btf *btf = prog->aux->btf;
10828 	struct bpf_core_ctx ctx = {
10829 		.log = &env->log,
10830 		.btf = btf,
10831 	};
10832 	bpfptr_t u_core_relo;
10833 	int err;
10834 
10835 	nr_core_relo = attr->core_relo_cnt;
10836 	if (!nr_core_relo)
10837 		return 0;
10838 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
10839 		return -EINVAL;
10840 
10841 	rec_size = attr->core_relo_rec_size;
10842 	if (rec_size < MIN_CORE_RELO_SIZE ||
10843 	    rec_size > MAX_CORE_RELO_SIZE ||
10844 	    rec_size % sizeof(u32))
10845 		return -EINVAL;
10846 
10847 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
10848 	expected_size = sizeof(struct bpf_core_relo);
10849 	ncopy = min_t(u32, expected_size, rec_size);
10850 
10851 	/* Unlike func_info and line_info, copy and apply each CO-RE
10852 	 * relocation record one at a time.
10853 	 */
10854 	for (i = 0; i < nr_core_relo; i++) {
10855 		/* future proofing when sizeof(bpf_core_relo) changes */
10856 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
10857 		if (err) {
10858 			if (err == -E2BIG) {
10859 				verbose(env, "nonzero tailing record in core_relo");
10860 				if (copy_to_bpfptr_offset(uattr,
10861 							  offsetof(union bpf_attr, core_relo_rec_size),
10862 							  &expected_size, sizeof(expected_size)))
10863 					err = -EFAULT;
10864 			}
10865 			break;
10866 		}
10867 
10868 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
10869 			err = -EFAULT;
10870 			break;
10871 		}
10872 
10873 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
10874 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
10875 				i, core_relo.insn_off, prog->len);
10876 			err = -EINVAL;
10877 			break;
10878 		}
10879 
10880 		err = bpf_core_apply(&ctx, &core_relo, i,
10881 				     &prog->insnsi[core_relo.insn_off / 8]);
10882 		if (err)
10883 			break;
10884 		bpfptr_add(&u_core_relo, rec_size);
10885 	}
10886 	return err;
10887 }
10888 
10889 static int check_btf_info(struct bpf_verifier_env *env,
10890 			  const union bpf_attr *attr,
10891 			  bpfptr_t uattr)
10892 {
10893 	struct btf *btf;
10894 	int err;
10895 
10896 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
10897 		if (check_abnormal_return(env))
10898 			return -EINVAL;
10899 		return 0;
10900 	}
10901 
10902 	btf = btf_get_by_fd(attr->prog_btf_fd);
10903 	if (IS_ERR(btf))
10904 		return PTR_ERR(btf);
10905 	if (btf_is_kernel(btf)) {
10906 		btf_put(btf);
10907 		return -EACCES;
10908 	}
10909 	env->prog->aux->btf = btf;
10910 
10911 	err = check_btf_func(env, attr, uattr);
10912 	if (err)
10913 		return err;
10914 
10915 	err = check_btf_line(env, attr, uattr);
10916 	if (err)
10917 		return err;
10918 
10919 	err = check_core_relo(env, attr, uattr);
10920 	if (err)
10921 		return err;
10922 
10923 	return 0;
10924 }
10925 
10926 /* check %cur's range satisfies %old's */
10927 static bool range_within(struct bpf_reg_state *old,
10928 			 struct bpf_reg_state *cur)
10929 {
10930 	return old->umin_value <= cur->umin_value &&
10931 	       old->umax_value >= cur->umax_value &&
10932 	       old->smin_value <= cur->smin_value &&
10933 	       old->smax_value >= cur->smax_value &&
10934 	       old->u32_min_value <= cur->u32_min_value &&
10935 	       old->u32_max_value >= cur->u32_max_value &&
10936 	       old->s32_min_value <= cur->s32_min_value &&
10937 	       old->s32_max_value >= cur->s32_max_value;
10938 }
10939 
10940 /* If in the old state two registers had the same id, then they need to have
10941  * the same id in the new state as well.  But that id could be different from
10942  * the old state, so we need to track the mapping from old to new ids.
10943  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10944  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
10945  * regs with a different old id could still have new id 9, we don't care about
10946  * that.
10947  * So we look through our idmap to see if this old id has been seen before.  If
10948  * so, we require the new id to match; otherwise, we add the id pair to the map.
10949  */
10950 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
10951 {
10952 	unsigned int i;
10953 
10954 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
10955 		if (!idmap[i].old) {
10956 			/* Reached an empty slot; haven't seen this id before */
10957 			idmap[i].old = old_id;
10958 			idmap[i].cur = cur_id;
10959 			return true;
10960 		}
10961 		if (idmap[i].old == old_id)
10962 			return idmap[i].cur == cur_id;
10963 	}
10964 	/* We ran out of idmap slots, which should be impossible */
10965 	WARN_ON_ONCE(1);
10966 	return false;
10967 }
10968 
10969 static void clean_func_state(struct bpf_verifier_env *env,
10970 			     struct bpf_func_state *st)
10971 {
10972 	enum bpf_reg_liveness live;
10973 	int i, j;
10974 
10975 	for (i = 0; i < BPF_REG_FP; i++) {
10976 		live = st->regs[i].live;
10977 		/* liveness must not touch this register anymore */
10978 		st->regs[i].live |= REG_LIVE_DONE;
10979 		if (!(live & REG_LIVE_READ))
10980 			/* since the register is unused, clear its state
10981 			 * to make further comparison simpler
10982 			 */
10983 			__mark_reg_not_init(env, &st->regs[i]);
10984 	}
10985 
10986 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10987 		live = st->stack[i].spilled_ptr.live;
10988 		/* liveness must not touch this stack slot anymore */
10989 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10990 		if (!(live & REG_LIVE_READ)) {
10991 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
10992 			for (j = 0; j < BPF_REG_SIZE; j++)
10993 				st->stack[i].slot_type[j] = STACK_INVALID;
10994 		}
10995 	}
10996 }
10997 
10998 static void clean_verifier_state(struct bpf_verifier_env *env,
10999 				 struct bpf_verifier_state *st)
11000 {
11001 	int i;
11002 
11003 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
11004 		/* all regs in this state in all frames were already marked */
11005 		return;
11006 
11007 	for (i = 0; i <= st->curframe; i++)
11008 		clean_func_state(env, st->frame[i]);
11009 }
11010 
11011 /* the parentage chains form a tree.
11012  * the verifier states are added to state lists at given insn and
11013  * pushed into state stack for future exploration.
11014  * when the verifier reaches bpf_exit insn some of the verifer states
11015  * stored in the state lists have their final liveness state already,
11016  * but a lot of states will get revised from liveness point of view when
11017  * the verifier explores other branches.
11018  * Example:
11019  * 1: r0 = 1
11020  * 2: if r1 == 100 goto pc+1
11021  * 3: r0 = 2
11022  * 4: exit
11023  * when the verifier reaches exit insn the register r0 in the state list of
11024  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
11025  * of insn 2 and goes exploring further. At the insn 4 it will walk the
11026  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
11027  *
11028  * Since the verifier pushes the branch states as it sees them while exploring
11029  * the program the condition of walking the branch instruction for the second
11030  * time means that all states below this branch were already explored and
11031  * their final liveness marks are already propagated.
11032  * Hence when the verifier completes the search of state list in is_state_visited()
11033  * we can call this clean_live_states() function to mark all liveness states
11034  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
11035  * will not be used.
11036  * This function also clears the registers and stack for states that !READ
11037  * to simplify state merging.
11038  *
11039  * Important note here that walking the same branch instruction in the callee
11040  * doesn't meant that the states are DONE. The verifier has to compare
11041  * the callsites
11042  */
11043 static void clean_live_states(struct bpf_verifier_env *env, int insn,
11044 			      struct bpf_verifier_state *cur)
11045 {
11046 	struct bpf_verifier_state_list *sl;
11047 	int i;
11048 
11049 	sl = *explored_state(env, insn);
11050 	while (sl) {
11051 		if (sl->state.branches)
11052 			goto next;
11053 		if (sl->state.insn_idx != insn ||
11054 		    sl->state.curframe != cur->curframe)
11055 			goto next;
11056 		for (i = 0; i <= cur->curframe; i++)
11057 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
11058 				goto next;
11059 		clean_verifier_state(env, &sl->state);
11060 next:
11061 		sl = sl->next;
11062 	}
11063 }
11064 
11065 /* Returns true if (rold safe implies rcur safe) */
11066 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
11067 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
11068 {
11069 	bool equal;
11070 
11071 	if (!(rold->live & REG_LIVE_READ))
11072 		/* explored state didn't use this */
11073 		return true;
11074 
11075 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
11076 
11077 	if (rold->type == PTR_TO_STACK)
11078 		/* two stack pointers are equal only if they're pointing to
11079 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
11080 		 */
11081 		return equal && rold->frameno == rcur->frameno;
11082 
11083 	if (equal)
11084 		return true;
11085 
11086 	if (rold->type == NOT_INIT)
11087 		/* explored state can't have used this */
11088 		return true;
11089 	if (rcur->type == NOT_INIT)
11090 		return false;
11091 	switch (base_type(rold->type)) {
11092 	case SCALAR_VALUE:
11093 		if (env->explore_alu_limits)
11094 			return false;
11095 		if (rcur->type == SCALAR_VALUE) {
11096 			if (!rold->precise && !rcur->precise)
11097 				return true;
11098 			/* new val must satisfy old val knowledge */
11099 			return range_within(rold, rcur) &&
11100 			       tnum_in(rold->var_off, rcur->var_off);
11101 		} else {
11102 			/* We're trying to use a pointer in place of a scalar.
11103 			 * Even if the scalar was unbounded, this could lead to
11104 			 * pointer leaks because scalars are allowed to leak
11105 			 * while pointers are not. We could make this safe in
11106 			 * special cases if root is calling us, but it's
11107 			 * probably not worth the hassle.
11108 			 */
11109 			return false;
11110 		}
11111 	case PTR_TO_MAP_KEY:
11112 	case PTR_TO_MAP_VALUE:
11113 		/* a PTR_TO_MAP_VALUE could be safe to use as a
11114 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
11115 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
11116 		 * checked, doing so could have affected others with the same
11117 		 * id, and we can't check for that because we lost the id when
11118 		 * we converted to a PTR_TO_MAP_VALUE.
11119 		 */
11120 		if (type_may_be_null(rold->type)) {
11121 			if (!type_may_be_null(rcur->type))
11122 				return false;
11123 			if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
11124 				return false;
11125 			/* Check our ids match any regs they're supposed to */
11126 			return check_ids(rold->id, rcur->id, idmap);
11127 		}
11128 
11129 		/* If the new min/max/var_off satisfy the old ones and
11130 		 * everything else matches, we are OK.
11131 		 * 'id' is not compared, since it's only used for maps with
11132 		 * bpf_spin_lock inside map element and in such cases if
11133 		 * the rest of the prog is valid for one map element then
11134 		 * it's valid for all map elements regardless of the key
11135 		 * used in bpf_map_lookup()
11136 		 */
11137 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
11138 		       range_within(rold, rcur) &&
11139 		       tnum_in(rold->var_off, rcur->var_off);
11140 	case PTR_TO_PACKET_META:
11141 	case PTR_TO_PACKET:
11142 		if (rcur->type != rold->type)
11143 			return false;
11144 		/* We must have at least as much range as the old ptr
11145 		 * did, so that any accesses which were safe before are
11146 		 * still safe.  This is true even if old range < old off,
11147 		 * since someone could have accessed through (ptr - k), or
11148 		 * even done ptr -= k in a register, to get a safe access.
11149 		 */
11150 		if (rold->range > rcur->range)
11151 			return false;
11152 		/* If the offsets don't match, we can't trust our alignment;
11153 		 * nor can we be sure that we won't fall out of range.
11154 		 */
11155 		if (rold->off != rcur->off)
11156 			return false;
11157 		/* id relations must be preserved */
11158 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
11159 			return false;
11160 		/* new val must satisfy old val knowledge */
11161 		return range_within(rold, rcur) &&
11162 		       tnum_in(rold->var_off, rcur->var_off);
11163 	case PTR_TO_CTX:
11164 	case CONST_PTR_TO_MAP:
11165 	case PTR_TO_PACKET_END:
11166 	case PTR_TO_FLOW_KEYS:
11167 	case PTR_TO_SOCKET:
11168 	case PTR_TO_SOCK_COMMON:
11169 	case PTR_TO_TCP_SOCK:
11170 	case PTR_TO_XDP_SOCK:
11171 		/* Only valid matches are exact, which memcmp() above
11172 		 * would have accepted
11173 		 */
11174 	default:
11175 		/* Don't know what's going on, just say it's not safe */
11176 		return false;
11177 	}
11178 
11179 	/* Shouldn't get here; if we do, say it's not safe */
11180 	WARN_ON_ONCE(1);
11181 	return false;
11182 }
11183 
11184 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
11185 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
11186 {
11187 	int i, spi;
11188 
11189 	/* walk slots of the explored stack and ignore any additional
11190 	 * slots in the current stack, since explored(safe) state
11191 	 * didn't use them
11192 	 */
11193 	for (i = 0; i < old->allocated_stack; i++) {
11194 		spi = i / BPF_REG_SIZE;
11195 
11196 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
11197 			i += BPF_REG_SIZE - 1;
11198 			/* explored state didn't use this */
11199 			continue;
11200 		}
11201 
11202 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
11203 			continue;
11204 
11205 		/* explored stack has more populated slots than current stack
11206 		 * and these slots were used
11207 		 */
11208 		if (i >= cur->allocated_stack)
11209 			return false;
11210 
11211 		/* if old state was safe with misc data in the stack
11212 		 * it will be safe with zero-initialized stack.
11213 		 * The opposite is not true
11214 		 */
11215 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
11216 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
11217 			continue;
11218 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
11219 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
11220 			/* Ex: old explored (safe) state has STACK_SPILL in
11221 			 * this stack slot, but current has STACK_MISC ->
11222 			 * this verifier states are not equivalent,
11223 			 * return false to continue verification of this path
11224 			 */
11225 			return false;
11226 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
11227 			continue;
11228 		if (!is_spilled_reg(&old->stack[spi]))
11229 			continue;
11230 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
11231 			     &cur->stack[spi].spilled_ptr, idmap))
11232 			/* when explored and current stack slot are both storing
11233 			 * spilled registers, check that stored pointers types
11234 			 * are the same as well.
11235 			 * Ex: explored safe path could have stored
11236 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
11237 			 * but current path has stored:
11238 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
11239 			 * such verifier states are not equivalent.
11240 			 * return false to continue verification of this path
11241 			 */
11242 			return false;
11243 	}
11244 	return true;
11245 }
11246 
11247 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
11248 {
11249 	if (old->acquired_refs != cur->acquired_refs)
11250 		return false;
11251 	return !memcmp(old->refs, cur->refs,
11252 		       sizeof(*old->refs) * old->acquired_refs);
11253 }
11254 
11255 /* compare two verifier states
11256  *
11257  * all states stored in state_list are known to be valid, since
11258  * verifier reached 'bpf_exit' instruction through them
11259  *
11260  * this function is called when verifier exploring different branches of
11261  * execution popped from the state stack. If it sees an old state that has
11262  * more strict register state and more strict stack state then this execution
11263  * branch doesn't need to be explored further, since verifier already
11264  * concluded that more strict state leads to valid finish.
11265  *
11266  * Therefore two states are equivalent if register state is more conservative
11267  * and explored stack state is more conservative than the current one.
11268  * Example:
11269  *       explored                   current
11270  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
11271  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
11272  *
11273  * In other words if current stack state (one being explored) has more
11274  * valid slots than old one that already passed validation, it means
11275  * the verifier can stop exploring and conclude that current state is valid too
11276  *
11277  * Similarly with registers. If explored state has register type as invalid
11278  * whereas register type in current state is meaningful, it means that
11279  * the current state will reach 'bpf_exit' instruction safely
11280  */
11281 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
11282 			      struct bpf_func_state *cur)
11283 {
11284 	int i;
11285 
11286 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
11287 	for (i = 0; i < MAX_BPF_REG; i++)
11288 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
11289 			     env->idmap_scratch))
11290 			return false;
11291 
11292 	if (!stacksafe(env, old, cur, env->idmap_scratch))
11293 		return false;
11294 
11295 	if (!refsafe(old, cur))
11296 		return false;
11297 
11298 	return true;
11299 }
11300 
11301 static bool states_equal(struct bpf_verifier_env *env,
11302 			 struct bpf_verifier_state *old,
11303 			 struct bpf_verifier_state *cur)
11304 {
11305 	int i;
11306 
11307 	if (old->curframe != cur->curframe)
11308 		return false;
11309 
11310 	/* Verification state from speculative execution simulation
11311 	 * must never prune a non-speculative execution one.
11312 	 */
11313 	if (old->speculative && !cur->speculative)
11314 		return false;
11315 
11316 	if (old->active_spin_lock != cur->active_spin_lock)
11317 		return false;
11318 
11319 	/* for states to be equal callsites have to be the same
11320 	 * and all frame states need to be equivalent
11321 	 */
11322 	for (i = 0; i <= old->curframe; i++) {
11323 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
11324 			return false;
11325 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
11326 			return false;
11327 	}
11328 	return true;
11329 }
11330 
11331 /* Return 0 if no propagation happened. Return negative error code if error
11332  * happened. Otherwise, return the propagated bit.
11333  */
11334 static int propagate_liveness_reg(struct bpf_verifier_env *env,
11335 				  struct bpf_reg_state *reg,
11336 				  struct bpf_reg_state *parent_reg)
11337 {
11338 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
11339 	u8 flag = reg->live & REG_LIVE_READ;
11340 	int err;
11341 
11342 	/* When comes here, read flags of PARENT_REG or REG could be any of
11343 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
11344 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
11345 	 */
11346 	if (parent_flag == REG_LIVE_READ64 ||
11347 	    /* Or if there is no read flag from REG. */
11348 	    !flag ||
11349 	    /* Or if the read flag from REG is the same as PARENT_REG. */
11350 	    parent_flag == flag)
11351 		return 0;
11352 
11353 	err = mark_reg_read(env, reg, parent_reg, flag);
11354 	if (err)
11355 		return err;
11356 
11357 	return flag;
11358 }
11359 
11360 /* A write screens off any subsequent reads; but write marks come from the
11361  * straight-line code between a state and its parent.  When we arrive at an
11362  * equivalent state (jump target or such) we didn't arrive by the straight-line
11363  * code, so read marks in the state must propagate to the parent regardless
11364  * of the state's write marks. That's what 'parent == state->parent' comparison
11365  * in mark_reg_read() is for.
11366  */
11367 static int propagate_liveness(struct bpf_verifier_env *env,
11368 			      const struct bpf_verifier_state *vstate,
11369 			      struct bpf_verifier_state *vparent)
11370 {
11371 	struct bpf_reg_state *state_reg, *parent_reg;
11372 	struct bpf_func_state *state, *parent;
11373 	int i, frame, err = 0;
11374 
11375 	if (vparent->curframe != vstate->curframe) {
11376 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
11377 		     vparent->curframe, vstate->curframe);
11378 		return -EFAULT;
11379 	}
11380 	/* Propagate read liveness of registers... */
11381 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
11382 	for (frame = 0; frame <= vstate->curframe; frame++) {
11383 		parent = vparent->frame[frame];
11384 		state = vstate->frame[frame];
11385 		parent_reg = parent->regs;
11386 		state_reg = state->regs;
11387 		/* We don't need to worry about FP liveness, it's read-only */
11388 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
11389 			err = propagate_liveness_reg(env, &state_reg[i],
11390 						     &parent_reg[i]);
11391 			if (err < 0)
11392 				return err;
11393 			if (err == REG_LIVE_READ64)
11394 				mark_insn_zext(env, &parent_reg[i]);
11395 		}
11396 
11397 		/* Propagate stack slots. */
11398 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
11399 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
11400 			parent_reg = &parent->stack[i].spilled_ptr;
11401 			state_reg = &state->stack[i].spilled_ptr;
11402 			err = propagate_liveness_reg(env, state_reg,
11403 						     parent_reg);
11404 			if (err < 0)
11405 				return err;
11406 		}
11407 	}
11408 	return 0;
11409 }
11410 
11411 /* find precise scalars in the previous equivalent state and
11412  * propagate them into the current state
11413  */
11414 static int propagate_precision(struct bpf_verifier_env *env,
11415 			       const struct bpf_verifier_state *old)
11416 {
11417 	struct bpf_reg_state *state_reg;
11418 	struct bpf_func_state *state;
11419 	int i, err = 0;
11420 
11421 	state = old->frame[old->curframe];
11422 	state_reg = state->regs;
11423 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
11424 		if (state_reg->type != SCALAR_VALUE ||
11425 		    !state_reg->precise)
11426 			continue;
11427 		if (env->log.level & BPF_LOG_LEVEL2)
11428 			verbose(env, "propagating r%d\n", i);
11429 		err = mark_chain_precision(env, i);
11430 		if (err < 0)
11431 			return err;
11432 	}
11433 
11434 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
11435 		if (!is_spilled_reg(&state->stack[i]))
11436 			continue;
11437 		state_reg = &state->stack[i].spilled_ptr;
11438 		if (state_reg->type != SCALAR_VALUE ||
11439 		    !state_reg->precise)
11440 			continue;
11441 		if (env->log.level & BPF_LOG_LEVEL2)
11442 			verbose(env, "propagating fp%d\n",
11443 				(-i - 1) * BPF_REG_SIZE);
11444 		err = mark_chain_precision_stack(env, i);
11445 		if (err < 0)
11446 			return err;
11447 	}
11448 	return 0;
11449 }
11450 
11451 static bool states_maybe_looping(struct bpf_verifier_state *old,
11452 				 struct bpf_verifier_state *cur)
11453 {
11454 	struct bpf_func_state *fold, *fcur;
11455 	int i, fr = cur->curframe;
11456 
11457 	if (old->curframe != fr)
11458 		return false;
11459 
11460 	fold = old->frame[fr];
11461 	fcur = cur->frame[fr];
11462 	for (i = 0; i < MAX_BPF_REG; i++)
11463 		if (memcmp(&fold->regs[i], &fcur->regs[i],
11464 			   offsetof(struct bpf_reg_state, parent)))
11465 			return false;
11466 	return true;
11467 }
11468 
11469 
11470 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
11471 {
11472 	struct bpf_verifier_state_list *new_sl;
11473 	struct bpf_verifier_state_list *sl, **pprev;
11474 	struct bpf_verifier_state *cur = env->cur_state, *new;
11475 	int i, j, err, states_cnt = 0;
11476 	bool add_new_state = env->test_state_freq ? true : false;
11477 
11478 	cur->last_insn_idx = env->prev_insn_idx;
11479 	if (!env->insn_aux_data[insn_idx].prune_point)
11480 		/* this 'insn_idx' instruction wasn't marked, so we will not
11481 		 * be doing state search here
11482 		 */
11483 		return 0;
11484 
11485 	/* bpf progs typically have pruning point every 4 instructions
11486 	 * http://vger.kernel.org/bpfconf2019.html#session-1
11487 	 * Do not add new state for future pruning if the verifier hasn't seen
11488 	 * at least 2 jumps and at least 8 instructions.
11489 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
11490 	 * In tests that amounts to up to 50% reduction into total verifier
11491 	 * memory consumption and 20% verifier time speedup.
11492 	 */
11493 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
11494 	    env->insn_processed - env->prev_insn_processed >= 8)
11495 		add_new_state = true;
11496 
11497 	pprev = explored_state(env, insn_idx);
11498 	sl = *pprev;
11499 
11500 	clean_live_states(env, insn_idx, cur);
11501 
11502 	while (sl) {
11503 		states_cnt++;
11504 		if (sl->state.insn_idx != insn_idx)
11505 			goto next;
11506 
11507 		if (sl->state.branches) {
11508 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
11509 
11510 			if (frame->in_async_callback_fn &&
11511 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
11512 				/* Different async_entry_cnt means that the verifier is
11513 				 * processing another entry into async callback.
11514 				 * Seeing the same state is not an indication of infinite
11515 				 * loop or infinite recursion.
11516 				 * But finding the same state doesn't mean that it's safe
11517 				 * to stop processing the current state. The previous state
11518 				 * hasn't yet reached bpf_exit, since state.branches > 0.
11519 				 * Checking in_async_callback_fn alone is not enough either.
11520 				 * Since the verifier still needs to catch infinite loops
11521 				 * inside async callbacks.
11522 				 */
11523 			} else if (states_maybe_looping(&sl->state, cur) &&
11524 				   states_equal(env, &sl->state, cur)) {
11525 				verbose_linfo(env, insn_idx, "; ");
11526 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
11527 				return -EINVAL;
11528 			}
11529 			/* if the verifier is processing a loop, avoid adding new state
11530 			 * too often, since different loop iterations have distinct
11531 			 * states and may not help future pruning.
11532 			 * This threshold shouldn't be too low to make sure that
11533 			 * a loop with large bound will be rejected quickly.
11534 			 * The most abusive loop will be:
11535 			 * r1 += 1
11536 			 * if r1 < 1000000 goto pc-2
11537 			 * 1M insn_procssed limit / 100 == 10k peak states.
11538 			 * This threshold shouldn't be too high either, since states
11539 			 * at the end of the loop are likely to be useful in pruning.
11540 			 */
11541 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
11542 			    env->insn_processed - env->prev_insn_processed < 100)
11543 				add_new_state = false;
11544 			goto miss;
11545 		}
11546 		if (states_equal(env, &sl->state, cur)) {
11547 			sl->hit_cnt++;
11548 			/* reached equivalent register/stack state,
11549 			 * prune the search.
11550 			 * Registers read by the continuation are read by us.
11551 			 * If we have any write marks in env->cur_state, they
11552 			 * will prevent corresponding reads in the continuation
11553 			 * from reaching our parent (an explored_state).  Our
11554 			 * own state will get the read marks recorded, but
11555 			 * they'll be immediately forgotten as we're pruning
11556 			 * this state and will pop a new one.
11557 			 */
11558 			err = propagate_liveness(env, &sl->state, cur);
11559 
11560 			/* if previous state reached the exit with precision and
11561 			 * current state is equivalent to it (except precsion marks)
11562 			 * the precision needs to be propagated back in
11563 			 * the current state.
11564 			 */
11565 			err = err ? : push_jmp_history(env, cur);
11566 			err = err ? : propagate_precision(env, &sl->state);
11567 			if (err)
11568 				return err;
11569 			return 1;
11570 		}
11571 miss:
11572 		/* when new state is not going to be added do not increase miss count.
11573 		 * Otherwise several loop iterations will remove the state
11574 		 * recorded earlier. The goal of these heuristics is to have
11575 		 * states from some iterations of the loop (some in the beginning
11576 		 * and some at the end) to help pruning.
11577 		 */
11578 		if (add_new_state)
11579 			sl->miss_cnt++;
11580 		/* heuristic to determine whether this state is beneficial
11581 		 * to keep checking from state equivalence point of view.
11582 		 * Higher numbers increase max_states_per_insn and verification time,
11583 		 * but do not meaningfully decrease insn_processed.
11584 		 */
11585 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
11586 			/* the state is unlikely to be useful. Remove it to
11587 			 * speed up verification
11588 			 */
11589 			*pprev = sl->next;
11590 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
11591 				u32 br = sl->state.branches;
11592 
11593 				WARN_ONCE(br,
11594 					  "BUG live_done but branches_to_explore %d\n",
11595 					  br);
11596 				free_verifier_state(&sl->state, false);
11597 				kfree(sl);
11598 				env->peak_states--;
11599 			} else {
11600 				/* cannot free this state, since parentage chain may
11601 				 * walk it later. Add it for free_list instead to
11602 				 * be freed at the end of verification
11603 				 */
11604 				sl->next = env->free_list;
11605 				env->free_list = sl;
11606 			}
11607 			sl = *pprev;
11608 			continue;
11609 		}
11610 next:
11611 		pprev = &sl->next;
11612 		sl = *pprev;
11613 	}
11614 
11615 	if (env->max_states_per_insn < states_cnt)
11616 		env->max_states_per_insn = states_cnt;
11617 
11618 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
11619 		return push_jmp_history(env, cur);
11620 
11621 	if (!add_new_state)
11622 		return push_jmp_history(env, cur);
11623 
11624 	/* There were no equivalent states, remember the current one.
11625 	 * Technically the current state is not proven to be safe yet,
11626 	 * but it will either reach outer most bpf_exit (which means it's safe)
11627 	 * or it will be rejected. When there are no loops the verifier won't be
11628 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
11629 	 * again on the way to bpf_exit.
11630 	 * When looping the sl->state.branches will be > 0 and this state
11631 	 * will not be considered for equivalence until branches == 0.
11632 	 */
11633 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
11634 	if (!new_sl)
11635 		return -ENOMEM;
11636 	env->total_states++;
11637 	env->peak_states++;
11638 	env->prev_jmps_processed = env->jmps_processed;
11639 	env->prev_insn_processed = env->insn_processed;
11640 
11641 	/* add new state to the head of linked list */
11642 	new = &new_sl->state;
11643 	err = copy_verifier_state(new, cur);
11644 	if (err) {
11645 		free_verifier_state(new, false);
11646 		kfree(new_sl);
11647 		return err;
11648 	}
11649 	new->insn_idx = insn_idx;
11650 	WARN_ONCE(new->branches != 1,
11651 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
11652 
11653 	cur->parent = new;
11654 	cur->first_insn_idx = insn_idx;
11655 	clear_jmp_history(cur);
11656 	new_sl->next = *explored_state(env, insn_idx);
11657 	*explored_state(env, insn_idx) = new_sl;
11658 	/* connect new state to parentage chain. Current frame needs all
11659 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
11660 	 * to the stack implicitly by JITs) so in callers' frames connect just
11661 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11662 	 * the state of the call instruction (with WRITTEN set), and r0 comes
11663 	 * from callee with its full parentage chain, anyway.
11664 	 */
11665 	/* clear write marks in current state: the writes we did are not writes
11666 	 * our child did, so they don't screen off its reads from us.
11667 	 * (There are no read marks in current state, because reads always mark
11668 	 * their parent and current state never has children yet.  Only
11669 	 * explored_states can get read marks.)
11670 	 */
11671 	for (j = 0; j <= cur->curframe; j++) {
11672 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11673 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11674 		for (i = 0; i < BPF_REG_FP; i++)
11675 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11676 	}
11677 
11678 	/* all stack frames are accessible from callee, clear them all */
11679 	for (j = 0; j <= cur->curframe; j++) {
11680 		struct bpf_func_state *frame = cur->frame[j];
11681 		struct bpf_func_state *newframe = new->frame[j];
11682 
11683 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
11684 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
11685 			frame->stack[i].spilled_ptr.parent =
11686 						&newframe->stack[i].spilled_ptr;
11687 		}
11688 	}
11689 	return 0;
11690 }
11691 
11692 /* Return true if it's OK to have the same insn return a different type. */
11693 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11694 {
11695 	switch (base_type(type)) {
11696 	case PTR_TO_CTX:
11697 	case PTR_TO_SOCKET:
11698 	case PTR_TO_SOCK_COMMON:
11699 	case PTR_TO_TCP_SOCK:
11700 	case PTR_TO_XDP_SOCK:
11701 	case PTR_TO_BTF_ID:
11702 		return false;
11703 	default:
11704 		return true;
11705 	}
11706 }
11707 
11708 /* If an instruction was previously used with particular pointer types, then we
11709  * need to be careful to avoid cases such as the below, where it may be ok
11710  * for one branch accessing the pointer, but not ok for the other branch:
11711  *
11712  * R1 = sock_ptr
11713  * goto X;
11714  * ...
11715  * R1 = some_other_valid_ptr;
11716  * goto X;
11717  * ...
11718  * R2 = *(u32 *)(R1 + 0);
11719  */
11720 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11721 {
11722 	return src != prev && (!reg_type_mismatch_ok(src) ||
11723 			       !reg_type_mismatch_ok(prev));
11724 }
11725 
11726 static int do_check(struct bpf_verifier_env *env)
11727 {
11728 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11729 	struct bpf_verifier_state *state = env->cur_state;
11730 	struct bpf_insn *insns = env->prog->insnsi;
11731 	struct bpf_reg_state *regs;
11732 	int insn_cnt = env->prog->len;
11733 	bool do_print_state = false;
11734 	int prev_insn_idx = -1;
11735 
11736 	for (;;) {
11737 		struct bpf_insn *insn;
11738 		u8 class;
11739 		int err;
11740 
11741 		env->prev_insn_idx = prev_insn_idx;
11742 		if (env->insn_idx >= insn_cnt) {
11743 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
11744 				env->insn_idx, insn_cnt);
11745 			return -EFAULT;
11746 		}
11747 
11748 		insn = &insns[env->insn_idx];
11749 		class = BPF_CLASS(insn->code);
11750 
11751 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
11752 			verbose(env,
11753 				"BPF program is too large. Processed %d insn\n",
11754 				env->insn_processed);
11755 			return -E2BIG;
11756 		}
11757 
11758 		err = is_state_visited(env, env->insn_idx);
11759 		if (err < 0)
11760 			return err;
11761 		if (err == 1) {
11762 			/* found equivalent state, can prune the search */
11763 			if (env->log.level & BPF_LOG_LEVEL) {
11764 				if (do_print_state)
11765 					verbose(env, "\nfrom %d to %d%s: safe\n",
11766 						env->prev_insn_idx, env->insn_idx,
11767 						env->cur_state->speculative ?
11768 						" (speculative execution)" : "");
11769 				else
11770 					verbose(env, "%d: safe\n", env->insn_idx);
11771 			}
11772 			goto process_bpf_exit;
11773 		}
11774 
11775 		if (signal_pending(current))
11776 			return -EAGAIN;
11777 
11778 		if (need_resched())
11779 			cond_resched();
11780 
11781 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
11782 			verbose(env, "\nfrom %d to %d%s:",
11783 				env->prev_insn_idx, env->insn_idx,
11784 				env->cur_state->speculative ?
11785 				" (speculative execution)" : "");
11786 			print_verifier_state(env, state->frame[state->curframe], true);
11787 			do_print_state = false;
11788 		}
11789 
11790 		if (env->log.level & BPF_LOG_LEVEL) {
11791 			const struct bpf_insn_cbs cbs = {
11792 				.cb_call	= disasm_kfunc_name,
11793 				.cb_print	= verbose,
11794 				.private_data	= env,
11795 			};
11796 
11797 			if (verifier_state_scratched(env))
11798 				print_insn_state(env, state->frame[state->curframe]);
11799 
11800 			verbose_linfo(env, env->insn_idx, "; ");
11801 			env->prev_log_len = env->log.len_used;
11802 			verbose(env, "%d: ", env->insn_idx);
11803 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
11804 			env->prev_insn_print_len = env->log.len_used - env->prev_log_len;
11805 			env->prev_log_len = env->log.len_used;
11806 		}
11807 
11808 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
11809 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11810 							   env->prev_insn_idx);
11811 			if (err)
11812 				return err;
11813 		}
11814 
11815 		regs = cur_regs(env);
11816 		sanitize_mark_insn_seen(env);
11817 		prev_insn_idx = env->insn_idx;
11818 
11819 		if (class == BPF_ALU || class == BPF_ALU64) {
11820 			err = check_alu_op(env, insn);
11821 			if (err)
11822 				return err;
11823 
11824 		} else if (class == BPF_LDX) {
11825 			enum bpf_reg_type *prev_src_type, src_reg_type;
11826 
11827 			/* check for reserved fields is already done */
11828 
11829 			/* check src operand */
11830 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11831 			if (err)
11832 				return err;
11833 
11834 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11835 			if (err)
11836 				return err;
11837 
11838 			src_reg_type = regs[insn->src_reg].type;
11839 
11840 			/* check that memory (src_reg + off) is readable,
11841 			 * the state of dst_reg will be updated by this func
11842 			 */
11843 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
11844 					       insn->off, BPF_SIZE(insn->code),
11845 					       BPF_READ, insn->dst_reg, false);
11846 			if (err)
11847 				return err;
11848 
11849 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11850 
11851 			if (*prev_src_type == NOT_INIT) {
11852 				/* saw a valid insn
11853 				 * dst_reg = *(u32 *)(src_reg + off)
11854 				 * save type to validate intersecting paths
11855 				 */
11856 				*prev_src_type = src_reg_type;
11857 
11858 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
11859 				/* ABuser program is trying to use the same insn
11860 				 * dst_reg = *(u32*) (src_reg + off)
11861 				 * with different pointer types:
11862 				 * src_reg == ctx in one branch and
11863 				 * src_reg == stack|map in some other branch.
11864 				 * Reject it.
11865 				 */
11866 				verbose(env, "same insn cannot be used with different pointers\n");
11867 				return -EINVAL;
11868 			}
11869 
11870 		} else if (class == BPF_STX) {
11871 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
11872 
11873 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11874 				err = check_atomic(env, env->insn_idx, insn);
11875 				if (err)
11876 					return err;
11877 				env->insn_idx++;
11878 				continue;
11879 			}
11880 
11881 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11882 				verbose(env, "BPF_STX uses reserved fields\n");
11883 				return -EINVAL;
11884 			}
11885 
11886 			/* check src1 operand */
11887 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11888 			if (err)
11889 				return err;
11890 			/* check src2 operand */
11891 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11892 			if (err)
11893 				return err;
11894 
11895 			dst_reg_type = regs[insn->dst_reg].type;
11896 
11897 			/* check that memory (dst_reg + off) is writeable */
11898 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11899 					       insn->off, BPF_SIZE(insn->code),
11900 					       BPF_WRITE, insn->src_reg, false);
11901 			if (err)
11902 				return err;
11903 
11904 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11905 
11906 			if (*prev_dst_type == NOT_INIT) {
11907 				*prev_dst_type = dst_reg_type;
11908 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
11909 				verbose(env, "same insn cannot be used with different pointers\n");
11910 				return -EINVAL;
11911 			}
11912 
11913 		} else if (class == BPF_ST) {
11914 			if (BPF_MODE(insn->code) != BPF_MEM ||
11915 			    insn->src_reg != BPF_REG_0) {
11916 				verbose(env, "BPF_ST uses reserved fields\n");
11917 				return -EINVAL;
11918 			}
11919 			/* check src operand */
11920 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11921 			if (err)
11922 				return err;
11923 
11924 			if (is_ctx_reg(env, insn->dst_reg)) {
11925 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
11926 					insn->dst_reg,
11927 					reg_type_str(env, reg_state(env, insn->dst_reg)->type));
11928 				return -EACCES;
11929 			}
11930 
11931 			/* check that memory (dst_reg + off) is writeable */
11932 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11933 					       insn->off, BPF_SIZE(insn->code),
11934 					       BPF_WRITE, -1, false);
11935 			if (err)
11936 				return err;
11937 
11938 		} else if (class == BPF_JMP || class == BPF_JMP32) {
11939 			u8 opcode = BPF_OP(insn->code);
11940 
11941 			env->jmps_processed++;
11942 			if (opcode == BPF_CALL) {
11943 				if (BPF_SRC(insn->code) != BPF_K ||
11944 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11945 				     && insn->off != 0) ||
11946 				    (insn->src_reg != BPF_REG_0 &&
11947 				     insn->src_reg != BPF_PSEUDO_CALL &&
11948 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
11949 				    insn->dst_reg != BPF_REG_0 ||
11950 				    class == BPF_JMP32) {
11951 					verbose(env, "BPF_CALL uses reserved fields\n");
11952 					return -EINVAL;
11953 				}
11954 
11955 				if (env->cur_state->active_spin_lock &&
11956 				    (insn->src_reg == BPF_PSEUDO_CALL ||
11957 				     insn->imm != BPF_FUNC_spin_unlock)) {
11958 					verbose(env, "function calls are not allowed while holding a lock\n");
11959 					return -EINVAL;
11960 				}
11961 				if (insn->src_reg == BPF_PSEUDO_CALL)
11962 					err = check_func_call(env, insn, &env->insn_idx);
11963 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11964 					err = check_kfunc_call(env, insn, &env->insn_idx);
11965 				else
11966 					err = check_helper_call(env, insn, &env->insn_idx);
11967 				if (err)
11968 					return err;
11969 			} else if (opcode == BPF_JA) {
11970 				if (BPF_SRC(insn->code) != BPF_K ||
11971 				    insn->imm != 0 ||
11972 				    insn->src_reg != BPF_REG_0 ||
11973 				    insn->dst_reg != BPF_REG_0 ||
11974 				    class == BPF_JMP32) {
11975 					verbose(env, "BPF_JA uses reserved fields\n");
11976 					return -EINVAL;
11977 				}
11978 
11979 				env->insn_idx += insn->off + 1;
11980 				continue;
11981 
11982 			} else if (opcode == BPF_EXIT) {
11983 				if (BPF_SRC(insn->code) != BPF_K ||
11984 				    insn->imm != 0 ||
11985 				    insn->src_reg != BPF_REG_0 ||
11986 				    insn->dst_reg != BPF_REG_0 ||
11987 				    class == BPF_JMP32) {
11988 					verbose(env, "BPF_EXIT uses reserved fields\n");
11989 					return -EINVAL;
11990 				}
11991 
11992 				if (env->cur_state->active_spin_lock) {
11993 					verbose(env, "bpf_spin_unlock is missing\n");
11994 					return -EINVAL;
11995 				}
11996 
11997 				if (state->curframe) {
11998 					/* exit from nested function */
11999 					err = prepare_func_exit(env, &env->insn_idx);
12000 					if (err)
12001 						return err;
12002 					do_print_state = true;
12003 					continue;
12004 				}
12005 
12006 				err = check_reference_leak(env);
12007 				if (err)
12008 					return err;
12009 
12010 				err = check_return_code(env);
12011 				if (err)
12012 					return err;
12013 process_bpf_exit:
12014 				mark_verifier_state_scratched(env);
12015 				update_branch_counts(env, env->cur_state);
12016 				err = pop_stack(env, &prev_insn_idx,
12017 						&env->insn_idx, pop_log);
12018 				if (err < 0) {
12019 					if (err != -ENOENT)
12020 						return err;
12021 					break;
12022 				} else {
12023 					do_print_state = true;
12024 					continue;
12025 				}
12026 			} else {
12027 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
12028 				if (err)
12029 					return err;
12030 			}
12031 		} else if (class == BPF_LD) {
12032 			u8 mode = BPF_MODE(insn->code);
12033 
12034 			if (mode == BPF_ABS || mode == BPF_IND) {
12035 				err = check_ld_abs(env, insn);
12036 				if (err)
12037 					return err;
12038 
12039 			} else if (mode == BPF_IMM) {
12040 				err = check_ld_imm(env, insn);
12041 				if (err)
12042 					return err;
12043 
12044 				env->insn_idx++;
12045 				sanitize_mark_insn_seen(env);
12046 			} else {
12047 				verbose(env, "invalid BPF_LD mode\n");
12048 				return -EINVAL;
12049 			}
12050 		} else {
12051 			verbose(env, "unknown insn class %d\n", class);
12052 			return -EINVAL;
12053 		}
12054 
12055 		env->insn_idx++;
12056 	}
12057 
12058 	return 0;
12059 }
12060 
12061 static int find_btf_percpu_datasec(struct btf *btf)
12062 {
12063 	const struct btf_type *t;
12064 	const char *tname;
12065 	int i, n;
12066 
12067 	/*
12068 	 * Both vmlinux and module each have their own ".data..percpu"
12069 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
12070 	 * types to look at only module's own BTF types.
12071 	 */
12072 	n = btf_nr_types(btf);
12073 	if (btf_is_module(btf))
12074 		i = btf_nr_types(btf_vmlinux);
12075 	else
12076 		i = 1;
12077 
12078 	for(; i < n; i++) {
12079 		t = btf_type_by_id(btf, i);
12080 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
12081 			continue;
12082 
12083 		tname = btf_name_by_offset(btf, t->name_off);
12084 		if (!strcmp(tname, ".data..percpu"))
12085 			return i;
12086 	}
12087 
12088 	return -ENOENT;
12089 }
12090 
12091 /* replace pseudo btf_id with kernel symbol address */
12092 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
12093 			       struct bpf_insn *insn,
12094 			       struct bpf_insn_aux_data *aux)
12095 {
12096 	const struct btf_var_secinfo *vsi;
12097 	const struct btf_type *datasec;
12098 	struct btf_mod_pair *btf_mod;
12099 	const struct btf_type *t;
12100 	const char *sym_name;
12101 	bool percpu = false;
12102 	u32 type, id = insn->imm;
12103 	struct btf *btf;
12104 	s32 datasec_id;
12105 	u64 addr;
12106 	int i, btf_fd, err;
12107 
12108 	btf_fd = insn[1].imm;
12109 	if (btf_fd) {
12110 		btf = btf_get_by_fd(btf_fd);
12111 		if (IS_ERR(btf)) {
12112 			verbose(env, "invalid module BTF object FD specified.\n");
12113 			return -EINVAL;
12114 		}
12115 	} else {
12116 		if (!btf_vmlinux) {
12117 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
12118 			return -EINVAL;
12119 		}
12120 		btf = btf_vmlinux;
12121 		btf_get(btf);
12122 	}
12123 
12124 	t = btf_type_by_id(btf, id);
12125 	if (!t) {
12126 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
12127 		err = -ENOENT;
12128 		goto err_put;
12129 	}
12130 
12131 	if (!btf_type_is_var(t)) {
12132 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
12133 		err = -EINVAL;
12134 		goto err_put;
12135 	}
12136 
12137 	sym_name = btf_name_by_offset(btf, t->name_off);
12138 	addr = kallsyms_lookup_name(sym_name);
12139 	if (!addr) {
12140 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
12141 			sym_name);
12142 		err = -ENOENT;
12143 		goto err_put;
12144 	}
12145 
12146 	datasec_id = find_btf_percpu_datasec(btf);
12147 	if (datasec_id > 0) {
12148 		datasec = btf_type_by_id(btf, datasec_id);
12149 		for_each_vsi(i, datasec, vsi) {
12150 			if (vsi->type == id) {
12151 				percpu = true;
12152 				break;
12153 			}
12154 		}
12155 	}
12156 
12157 	insn[0].imm = (u32)addr;
12158 	insn[1].imm = addr >> 32;
12159 
12160 	type = t->type;
12161 	t = btf_type_skip_modifiers(btf, type, NULL);
12162 	if (percpu) {
12163 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
12164 		aux->btf_var.btf = btf;
12165 		aux->btf_var.btf_id = type;
12166 	} else if (!btf_type_is_struct(t)) {
12167 		const struct btf_type *ret;
12168 		const char *tname;
12169 		u32 tsize;
12170 
12171 		/* resolve the type size of ksym. */
12172 		ret = btf_resolve_size(btf, t, &tsize);
12173 		if (IS_ERR(ret)) {
12174 			tname = btf_name_by_offset(btf, t->name_off);
12175 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
12176 				tname, PTR_ERR(ret));
12177 			err = -EINVAL;
12178 			goto err_put;
12179 		}
12180 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
12181 		aux->btf_var.mem_size = tsize;
12182 	} else {
12183 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
12184 		aux->btf_var.btf = btf;
12185 		aux->btf_var.btf_id = type;
12186 	}
12187 
12188 	/* check whether we recorded this BTF (and maybe module) already */
12189 	for (i = 0; i < env->used_btf_cnt; i++) {
12190 		if (env->used_btfs[i].btf == btf) {
12191 			btf_put(btf);
12192 			return 0;
12193 		}
12194 	}
12195 
12196 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
12197 		err = -E2BIG;
12198 		goto err_put;
12199 	}
12200 
12201 	btf_mod = &env->used_btfs[env->used_btf_cnt];
12202 	btf_mod->btf = btf;
12203 	btf_mod->module = NULL;
12204 
12205 	/* if we reference variables from kernel module, bump its refcount */
12206 	if (btf_is_module(btf)) {
12207 		btf_mod->module = btf_try_get_module(btf);
12208 		if (!btf_mod->module) {
12209 			err = -ENXIO;
12210 			goto err_put;
12211 		}
12212 	}
12213 
12214 	env->used_btf_cnt++;
12215 
12216 	return 0;
12217 err_put:
12218 	btf_put(btf);
12219 	return err;
12220 }
12221 
12222 static int check_map_prealloc(struct bpf_map *map)
12223 {
12224 	return (map->map_type != BPF_MAP_TYPE_HASH &&
12225 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
12226 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
12227 		!(map->map_flags & BPF_F_NO_PREALLOC);
12228 }
12229 
12230 static bool is_tracing_prog_type(enum bpf_prog_type type)
12231 {
12232 	switch (type) {
12233 	case BPF_PROG_TYPE_KPROBE:
12234 	case BPF_PROG_TYPE_TRACEPOINT:
12235 	case BPF_PROG_TYPE_PERF_EVENT:
12236 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
12237 		return true;
12238 	default:
12239 		return false;
12240 	}
12241 }
12242 
12243 static bool is_preallocated_map(struct bpf_map *map)
12244 {
12245 	if (!check_map_prealloc(map))
12246 		return false;
12247 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
12248 		return false;
12249 	return true;
12250 }
12251 
12252 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
12253 					struct bpf_map *map,
12254 					struct bpf_prog *prog)
12255 
12256 {
12257 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
12258 	/*
12259 	 * Validate that trace type programs use preallocated hash maps.
12260 	 *
12261 	 * For programs attached to PERF events this is mandatory as the
12262 	 * perf NMI can hit any arbitrary code sequence.
12263 	 *
12264 	 * All other trace types using preallocated hash maps are unsafe as
12265 	 * well because tracepoint or kprobes can be inside locked regions
12266 	 * of the memory allocator or at a place where a recursion into the
12267 	 * memory allocator would see inconsistent state.
12268 	 *
12269 	 * On RT enabled kernels run-time allocation of all trace type
12270 	 * programs is strictly prohibited due to lock type constraints. On
12271 	 * !RT kernels it is allowed for backwards compatibility reasons for
12272 	 * now, but warnings are emitted so developers are made aware of
12273 	 * the unsafety and can fix their programs before this is enforced.
12274 	 */
12275 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
12276 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
12277 			verbose(env, "perf_event programs can only use preallocated hash map\n");
12278 			return -EINVAL;
12279 		}
12280 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
12281 			verbose(env, "trace type programs can only use preallocated hash map\n");
12282 			return -EINVAL;
12283 		}
12284 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
12285 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
12286 	}
12287 
12288 	if (map_value_has_spin_lock(map)) {
12289 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
12290 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
12291 			return -EINVAL;
12292 		}
12293 
12294 		if (is_tracing_prog_type(prog_type)) {
12295 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
12296 			return -EINVAL;
12297 		}
12298 
12299 		if (prog->aux->sleepable) {
12300 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
12301 			return -EINVAL;
12302 		}
12303 	}
12304 
12305 	if (map_value_has_timer(map)) {
12306 		if (is_tracing_prog_type(prog_type)) {
12307 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
12308 			return -EINVAL;
12309 		}
12310 	}
12311 
12312 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
12313 	    !bpf_offload_prog_map_match(prog, map)) {
12314 		verbose(env, "offload device mismatch between prog and map\n");
12315 		return -EINVAL;
12316 	}
12317 
12318 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
12319 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
12320 		return -EINVAL;
12321 	}
12322 
12323 	if (prog->aux->sleepable)
12324 		switch (map->map_type) {
12325 		case BPF_MAP_TYPE_HASH:
12326 		case BPF_MAP_TYPE_LRU_HASH:
12327 		case BPF_MAP_TYPE_ARRAY:
12328 		case BPF_MAP_TYPE_PERCPU_HASH:
12329 		case BPF_MAP_TYPE_PERCPU_ARRAY:
12330 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
12331 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
12332 		case BPF_MAP_TYPE_HASH_OF_MAPS:
12333 			if (!is_preallocated_map(map)) {
12334 				verbose(env,
12335 					"Sleepable programs can only use preallocated maps\n");
12336 				return -EINVAL;
12337 			}
12338 			break;
12339 		case BPF_MAP_TYPE_RINGBUF:
12340 		case BPF_MAP_TYPE_INODE_STORAGE:
12341 		case BPF_MAP_TYPE_SK_STORAGE:
12342 		case BPF_MAP_TYPE_TASK_STORAGE:
12343 			break;
12344 		default:
12345 			verbose(env,
12346 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
12347 			return -EINVAL;
12348 		}
12349 
12350 	return 0;
12351 }
12352 
12353 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
12354 {
12355 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
12356 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
12357 }
12358 
12359 /* find and rewrite pseudo imm in ld_imm64 instructions:
12360  *
12361  * 1. if it accesses map FD, replace it with actual map pointer.
12362  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
12363  *
12364  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
12365  */
12366 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
12367 {
12368 	struct bpf_insn *insn = env->prog->insnsi;
12369 	int insn_cnt = env->prog->len;
12370 	int i, j, err;
12371 
12372 	err = bpf_prog_calc_tag(env->prog);
12373 	if (err)
12374 		return err;
12375 
12376 	for (i = 0; i < insn_cnt; i++, insn++) {
12377 		if (BPF_CLASS(insn->code) == BPF_LDX &&
12378 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
12379 			verbose(env, "BPF_LDX uses reserved fields\n");
12380 			return -EINVAL;
12381 		}
12382 
12383 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
12384 			struct bpf_insn_aux_data *aux;
12385 			struct bpf_map *map;
12386 			struct fd f;
12387 			u64 addr;
12388 			u32 fd;
12389 
12390 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
12391 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
12392 			    insn[1].off != 0) {
12393 				verbose(env, "invalid bpf_ld_imm64 insn\n");
12394 				return -EINVAL;
12395 			}
12396 
12397 			if (insn[0].src_reg == 0)
12398 				/* valid generic load 64-bit imm */
12399 				goto next_insn;
12400 
12401 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
12402 				aux = &env->insn_aux_data[i];
12403 				err = check_pseudo_btf_id(env, insn, aux);
12404 				if (err)
12405 					return err;
12406 				goto next_insn;
12407 			}
12408 
12409 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
12410 				aux = &env->insn_aux_data[i];
12411 				aux->ptr_type = PTR_TO_FUNC;
12412 				goto next_insn;
12413 			}
12414 
12415 			/* In final convert_pseudo_ld_imm64() step, this is
12416 			 * converted into regular 64-bit imm load insn.
12417 			 */
12418 			switch (insn[0].src_reg) {
12419 			case BPF_PSEUDO_MAP_VALUE:
12420 			case BPF_PSEUDO_MAP_IDX_VALUE:
12421 				break;
12422 			case BPF_PSEUDO_MAP_FD:
12423 			case BPF_PSEUDO_MAP_IDX:
12424 				if (insn[1].imm == 0)
12425 					break;
12426 				fallthrough;
12427 			default:
12428 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
12429 				return -EINVAL;
12430 			}
12431 
12432 			switch (insn[0].src_reg) {
12433 			case BPF_PSEUDO_MAP_IDX_VALUE:
12434 			case BPF_PSEUDO_MAP_IDX:
12435 				if (bpfptr_is_null(env->fd_array)) {
12436 					verbose(env, "fd_idx without fd_array is invalid\n");
12437 					return -EPROTO;
12438 				}
12439 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
12440 							    insn[0].imm * sizeof(fd),
12441 							    sizeof(fd)))
12442 					return -EFAULT;
12443 				break;
12444 			default:
12445 				fd = insn[0].imm;
12446 				break;
12447 			}
12448 
12449 			f = fdget(fd);
12450 			map = __bpf_map_get(f);
12451 			if (IS_ERR(map)) {
12452 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
12453 					insn[0].imm);
12454 				return PTR_ERR(map);
12455 			}
12456 
12457 			err = check_map_prog_compatibility(env, map, env->prog);
12458 			if (err) {
12459 				fdput(f);
12460 				return err;
12461 			}
12462 
12463 			aux = &env->insn_aux_data[i];
12464 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
12465 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
12466 				addr = (unsigned long)map;
12467 			} else {
12468 				u32 off = insn[1].imm;
12469 
12470 				if (off >= BPF_MAX_VAR_OFF) {
12471 					verbose(env, "direct value offset of %u is not allowed\n", off);
12472 					fdput(f);
12473 					return -EINVAL;
12474 				}
12475 
12476 				if (!map->ops->map_direct_value_addr) {
12477 					verbose(env, "no direct value access support for this map type\n");
12478 					fdput(f);
12479 					return -EINVAL;
12480 				}
12481 
12482 				err = map->ops->map_direct_value_addr(map, &addr, off);
12483 				if (err) {
12484 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
12485 						map->value_size, off);
12486 					fdput(f);
12487 					return err;
12488 				}
12489 
12490 				aux->map_off = off;
12491 				addr += off;
12492 			}
12493 
12494 			insn[0].imm = (u32)addr;
12495 			insn[1].imm = addr >> 32;
12496 
12497 			/* check whether we recorded this map already */
12498 			for (j = 0; j < env->used_map_cnt; j++) {
12499 				if (env->used_maps[j] == map) {
12500 					aux->map_index = j;
12501 					fdput(f);
12502 					goto next_insn;
12503 				}
12504 			}
12505 
12506 			if (env->used_map_cnt >= MAX_USED_MAPS) {
12507 				fdput(f);
12508 				return -E2BIG;
12509 			}
12510 
12511 			/* hold the map. If the program is rejected by verifier,
12512 			 * the map will be released by release_maps() or it
12513 			 * will be used by the valid program until it's unloaded
12514 			 * and all maps are released in free_used_maps()
12515 			 */
12516 			bpf_map_inc(map);
12517 
12518 			aux->map_index = env->used_map_cnt;
12519 			env->used_maps[env->used_map_cnt++] = map;
12520 
12521 			if (bpf_map_is_cgroup_storage(map) &&
12522 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
12523 				verbose(env, "only one cgroup storage of each type is allowed\n");
12524 				fdput(f);
12525 				return -EBUSY;
12526 			}
12527 
12528 			fdput(f);
12529 next_insn:
12530 			insn++;
12531 			i++;
12532 			continue;
12533 		}
12534 
12535 		/* Basic sanity check before we invest more work here. */
12536 		if (!bpf_opcode_in_insntable(insn->code)) {
12537 			verbose(env, "unknown opcode %02x\n", insn->code);
12538 			return -EINVAL;
12539 		}
12540 	}
12541 
12542 	/* now all pseudo BPF_LD_IMM64 instructions load valid
12543 	 * 'struct bpf_map *' into a register instead of user map_fd.
12544 	 * These pointers will be used later by verifier to validate map access.
12545 	 */
12546 	return 0;
12547 }
12548 
12549 /* drop refcnt of maps used by the rejected program */
12550 static void release_maps(struct bpf_verifier_env *env)
12551 {
12552 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
12553 			     env->used_map_cnt);
12554 }
12555 
12556 /* drop refcnt of maps used by the rejected program */
12557 static void release_btfs(struct bpf_verifier_env *env)
12558 {
12559 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
12560 			     env->used_btf_cnt);
12561 }
12562 
12563 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
12564 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
12565 {
12566 	struct bpf_insn *insn = env->prog->insnsi;
12567 	int insn_cnt = env->prog->len;
12568 	int i;
12569 
12570 	for (i = 0; i < insn_cnt; i++, insn++) {
12571 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
12572 			continue;
12573 		if (insn->src_reg == BPF_PSEUDO_FUNC)
12574 			continue;
12575 		insn->src_reg = 0;
12576 	}
12577 }
12578 
12579 /* single env->prog->insni[off] instruction was replaced with the range
12580  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
12581  * [0, off) and [off, end) to new locations, so the patched range stays zero
12582  */
12583 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
12584 				 struct bpf_insn_aux_data *new_data,
12585 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
12586 {
12587 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
12588 	struct bpf_insn *insn = new_prog->insnsi;
12589 	u32 old_seen = old_data[off].seen;
12590 	u32 prog_len;
12591 	int i;
12592 
12593 	/* aux info at OFF always needs adjustment, no matter fast path
12594 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
12595 	 * original insn at old prog.
12596 	 */
12597 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
12598 
12599 	if (cnt == 1)
12600 		return;
12601 	prog_len = new_prog->len;
12602 
12603 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
12604 	memcpy(new_data + off + cnt - 1, old_data + off,
12605 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
12606 	for (i = off; i < off + cnt - 1; i++) {
12607 		/* Expand insni[off]'s seen count to the patched range. */
12608 		new_data[i].seen = old_seen;
12609 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
12610 	}
12611 	env->insn_aux_data = new_data;
12612 	vfree(old_data);
12613 }
12614 
12615 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
12616 {
12617 	int i;
12618 
12619 	if (len == 1)
12620 		return;
12621 	/* NOTE: fake 'exit' subprog should be updated as well. */
12622 	for (i = 0; i <= env->subprog_cnt; i++) {
12623 		if (env->subprog_info[i].start <= off)
12624 			continue;
12625 		env->subprog_info[i].start += len - 1;
12626 	}
12627 }
12628 
12629 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
12630 {
12631 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
12632 	int i, sz = prog->aux->size_poke_tab;
12633 	struct bpf_jit_poke_descriptor *desc;
12634 
12635 	for (i = 0; i < sz; i++) {
12636 		desc = &tab[i];
12637 		if (desc->insn_idx <= off)
12638 			continue;
12639 		desc->insn_idx += len - 1;
12640 	}
12641 }
12642 
12643 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
12644 					    const struct bpf_insn *patch, u32 len)
12645 {
12646 	struct bpf_prog *new_prog;
12647 	struct bpf_insn_aux_data *new_data = NULL;
12648 
12649 	if (len > 1) {
12650 		new_data = vzalloc(array_size(env->prog->len + len - 1,
12651 					      sizeof(struct bpf_insn_aux_data)));
12652 		if (!new_data)
12653 			return NULL;
12654 	}
12655 
12656 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
12657 	if (IS_ERR(new_prog)) {
12658 		if (PTR_ERR(new_prog) == -ERANGE)
12659 			verbose(env,
12660 				"insn %d cannot be patched due to 16-bit range\n",
12661 				env->insn_aux_data[off].orig_idx);
12662 		vfree(new_data);
12663 		return NULL;
12664 	}
12665 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
12666 	adjust_subprog_starts(env, off, len);
12667 	adjust_poke_descs(new_prog, off, len);
12668 	return new_prog;
12669 }
12670 
12671 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12672 					      u32 off, u32 cnt)
12673 {
12674 	int i, j;
12675 
12676 	/* find first prog starting at or after off (first to remove) */
12677 	for (i = 0; i < env->subprog_cnt; i++)
12678 		if (env->subprog_info[i].start >= off)
12679 			break;
12680 	/* find first prog starting at or after off + cnt (first to stay) */
12681 	for (j = i; j < env->subprog_cnt; j++)
12682 		if (env->subprog_info[j].start >= off + cnt)
12683 			break;
12684 	/* if j doesn't start exactly at off + cnt, we are just removing
12685 	 * the front of previous prog
12686 	 */
12687 	if (env->subprog_info[j].start != off + cnt)
12688 		j--;
12689 
12690 	if (j > i) {
12691 		struct bpf_prog_aux *aux = env->prog->aux;
12692 		int move;
12693 
12694 		/* move fake 'exit' subprog as well */
12695 		move = env->subprog_cnt + 1 - j;
12696 
12697 		memmove(env->subprog_info + i,
12698 			env->subprog_info + j,
12699 			sizeof(*env->subprog_info) * move);
12700 		env->subprog_cnt -= j - i;
12701 
12702 		/* remove func_info */
12703 		if (aux->func_info) {
12704 			move = aux->func_info_cnt - j;
12705 
12706 			memmove(aux->func_info + i,
12707 				aux->func_info + j,
12708 				sizeof(*aux->func_info) * move);
12709 			aux->func_info_cnt -= j - i;
12710 			/* func_info->insn_off is set after all code rewrites,
12711 			 * in adjust_btf_func() - no need to adjust
12712 			 */
12713 		}
12714 	} else {
12715 		/* convert i from "first prog to remove" to "first to adjust" */
12716 		if (env->subprog_info[i].start == off)
12717 			i++;
12718 	}
12719 
12720 	/* update fake 'exit' subprog as well */
12721 	for (; i <= env->subprog_cnt; i++)
12722 		env->subprog_info[i].start -= cnt;
12723 
12724 	return 0;
12725 }
12726 
12727 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12728 				      u32 cnt)
12729 {
12730 	struct bpf_prog *prog = env->prog;
12731 	u32 i, l_off, l_cnt, nr_linfo;
12732 	struct bpf_line_info *linfo;
12733 
12734 	nr_linfo = prog->aux->nr_linfo;
12735 	if (!nr_linfo)
12736 		return 0;
12737 
12738 	linfo = prog->aux->linfo;
12739 
12740 	/* find first line info to remove, count lines to be removed */
12741 	for (i = 0; i < nr_linfo; i++)
12742 		if (linfo[i].insn_off >= off)
12743 			break;
12744 
12745 	l_off = i;
12746 	l_cnt = 0;
12747 	for (; i < nr_linfo; i++)
12748 		if (linfo[i].insn_off < off + cnt)
12749 			l_cnt++;
12750 		else
12751 			break;
12752 
12753 	/* First live insn doesn't match first live linfo, it needs to "inherit"
12754 	 * last removed linfo.  prog is already modified, so prog->len == off
12755 	 * means no live instructions after (tail of the program was removed).
12756 	 */
12757 	if (prog->len != off && l_cnt &&
12758 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12759 		l_cnt--;
12760 		linfo[--i].insn_off = off + cnt;
12761 	}
12762 
12763 	/* remove the line info which refer to the removed instructions */
12764 	if (l_cnt) {
12765 		memmove(linfo + l_off, linfo + i,
12766 			sizeof(*linfo) * (nr_linfo - i));
12767 
12768 		prog->aux->nr_linfo -= l_cnt;
12769 		nr_linfo = prog->aux->nr_linfo;
12770 	}
12771 
12772 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
12773 	for (i = l_off; i < nr_linfo; i++)
12774 		linfo[i].insn_off -= cnt;
12775 
12776 	/* fix up all subprogs (incl. 'exit') which start >= off */
12777 	for (i = 0; i <= env->subprog_cnt; i++)
12778 		if (env->subprog_info[i].linfo_idx > l_off) {
12779 			/* program may have started in the removed region but
12780 			 * may not be fully removed
12781 			 */
12782 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12783 				env->subprog_info[i].linfo_idx -= l_cnt;
12784 			else
12785 				env->subprog_info[i].linfo_idx = l_off;
12786 		}
12787 
12788 	return 0;
12789 }
12790 
12791 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12792 {
12793 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12794 	unsigned int orig_prog_len = env->prog->len;
12795 	int err;
12796 
12797 	if (bpf_prog_is_dev_bound(env->prog->aux))
12798 		bpf_prog_offload_remove_insns(env, off, cnt);
12799 
12800 	err = bpf_remove_insns(env->prog, off, cnt);
12801 	if (err)
12802 		return err;
12803 
12804 	err = adjust_subprog_starts_after_remove(env, off, cnt);
12805 	if (err)
12806 		return err;
12807 
12808 	err = bpf_adj_linfo_after_remove(env, off, cnt);
12809 	if (err)
12810 		return err;
12811 
12812 	memmove(aux_data + off,	aux_data + off + cnt,
12813 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
12814 
12815 	return 0;
12816 }
12817 
12818 /* The verifier does more data flow analysis than llvm and will not
12819  * explore branches that are dead at run time. Malicious programs can
12820  * have dead code too. Therefore replace all dead at-run-time code
12821  * with 'ja -1'.
12822  *
12823  * Just nops are not optimal, e.g. if they would sit at the end of the
12824  * program and through another bug we would manage to jump there, then
12825  * we'd execute beyond program memory otherwise. Returning exception
12826  * code also wouldn't work since we can have subprogs where the dead
12827  * code could be located.
12828  */
12829 static void sanitize_dead_code(struct bpf_verifier_env *env)
12830 {
12831 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12832 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
12833 	struct bpf_insn *insn = env->prog->insnsi;
12834 	const int insn_cnt = env->prog->len;
12835 	int i;
12836 
12837 	for (i = 0; i < insn_cnt; i++) {
12838 		if (aux_data[i].seen)
12839 			continue;
12840 		memcpy(insn + i, &trap, sizeof(trap));
12841 		aux_data[i].zext_dst = false;
12842 	}
12843 }
12844 
12845 static bool insn_is_cond_jump(u8 code)
12846 {
12847 	u8 op;
12848 
12849 	if (BPF_CLASS(code) == BPF_JMP32)
12850 		return true;
12851 
12852 	if (BPF_CLASS(code) != BPF_JMP)
12853 		return false;
12854 
12855 	op = BPF_OP(code);
12856 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12857 }
12858 
12859 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12860 {
12861 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12862 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12863 	struct bpf_insn *insn = env->prog->insnsi;
12864 	const int insn_cnt = env->prog->len;
12865 	int i;
12866 
12867 	for (i = 0; i < insn_cnt; i++, insn++) {
12868 		if (!insn_is_cond_jump(insn->code))
12869 			continue;
12870 
12871 		if (!aux_data[i + 1].seen)
12872 			ja.off = insn->off;
12873 		else if (!aux_data[i + 1 + insn->off].seen)
12874 			ja.off = 0;
12875 		else
12876 			continue;
12877 
12878 		if (bpf_prog_is_dev_bound(env->prog->aux))
12879 			bpf_prog_offload_replace_insn(env, i, &ja);
12880 
12881 		memcpy(insn, &ja, sizeof(ja));
12882 	}
12883 }
12884 
12885 static int opt_remove_dead_code(struct bpf_verifier_env *env)
12886 {
12887 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12888 	int insn_cnt = env->prog->len;
12889 	int i, err;
12890 
12891 	for (i = 0; i < insn_cnt; i++) {
12892 		int j;
12893 
12894 		j = 0;
12895 		while (i + j < insn_cnt && !aux_data[i + j].seen)
12896 			j++;
12897 		if (!j)
12898 			continue;
12899 
12900 		err = verifier_remove_insns(env, i, j);
12901 		if (err)
12902 			return err;
12903 		insn_cnt = env->prog->len;
12904 	}
12905 
12906 	return 0;
12907 }
12908 
12909 static int opt_remove_nops(struct bpf_verifier_env *env)
12910 {
12911 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12912 	struct bpf_insn *insn = env->prog->insnsi;
12913 	int insn_cnt = env->prog->len;
12914 	int i, err;
12915 
12916 	for (i = 0; i < insn_cnt; i++) {
12917 		if (memcmp(&insn[i], &ja, sizeof(ja)))
12918 			continue;
12919 
12920 		err = verifier_remove_insns(env, i, 1);
12921 		if (err)
12922 			return err;
12923 		insn_cnt--;
12924 		i--;
12925 	}
12926 
12927 	return 0;
12928 }
12929 
12930 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12931 					 const union bpf_attr *attr)
12932 {
12933 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
12934 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
12935 	int i, patch_len, delta = 0, len = env->prog->len;
12936 	struct bpf_insn *insns = env->prog->insnsi;
12937 	struct bpf_prog *new_prog;
12938 	bool rnd_hi32;
12939 
12940 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
12941 	zext_patch[1] = BPF_ZEXT_REG(0);
12942 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12943 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12944 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
12945 	for (i = 0; i < len; i++) {
12946 		int adj_idx = i + delta;
12947 		struct bpf_insn insn;
12948 		int load_reg;
12949 
12950 		insn = insns[adj_idx];
12951 		load_reg = insn_def_regno(&insn);
12952 		if (!aux[adj_idx].zext_dst) {
12953 			u8 code, class;
12954 			u32 imm_rnd;
12955 
12956 			if (!rnd_hi32)
12957 				continue;
12958 
12959 			code = insn.code;
12960 			class = BPF_CLASS(code);
12961 			if (load_reg == -1)
12962 				continue;
12963 
12964 			/* NOTE: arg "reg" (the fourth one) is only used for
12965 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
12966 			 *       here.
12967 			 */
12968 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
12969 				if (class == BPF_LD &&
12970 				    BPF_MODE(code) == BPF_IMM)
12971 					i++;
12972 				continue;
12973 			}
12974 
12975 			/* ctx load could be transformed into wider load. */
12976 			if (class == BPF_LDX &&
12977 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
12978 				continue;
12979 
12980 			imm_rnd = get_random_int();
12981 			rnd_hi32_patch[0] = insn;
12982 			rnd_hi32_patch[1].imm = imm_rnd;
12983 			rnd_hi32_patch[3].dst_reg = load_reg;
12984 			patch = rnd_hi32_patch;
12985 			patch_len = 4;
12986 			goto apply_patch_buffer;
12987 		}
12988 
12989 		/* Add in an zero-extend instruction if a) the JIT has requested
12990 		 * it or b) it's a CMPXCHG.
12991 		 *
12992 		 * The latter is because: BPF_CMPXCHG always loads a value into
12993 		 * R0, therefore always zero-extends. However some archs'
12994 		 * equivalent instruction only does this load when the
12995 		 * comparison is successful. This detail of CMPXCHG is
12996 		 * orthogonal to the general zero-extension behaviour of the
12997 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
12998 		 */
12999 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
13000 			continue;
13001 
13002 		if (WARN_ON(load_reg == -1)) {
13003 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
13004 			return -EFAULT;
13005 		}
13006 
13007 		zext_patch[0] = insn;
13008 		zext_patch[1].dst_reg = load_reg;
13009 		zext_patch[1].src_reg = load_reg;
13010 		patch = zext_patch;
13011 		patch_len = 2;
13012 apply_patch_buffer:
13013 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
13014 		if (!new_prog)
13015 			return -ENOMEM;
13016 		env->prog = new_prog;
13017 		insns = new_prog->insnsi;
13018 		aux = env->insn_aux_data;
13019 		delta += patch_len - 1;
13020 	}
13021 
13022 	return 0;
13023 }
13024 
13025 /* convert load instructions that access fields of a context type into a
13026  * sequence of instructions that access fields of the underlying structure:
13027  *     struct __sk_buff    -> struct sk_buff
13028  *     struct bpf_sock_ops -> struct sock
13029  */
13030 static int convert_ctx_accesses(struct bpf_verifier_env *env)
13031 {
13032 	const struct bpf_verifier_ops *ops = env->ops;
13033 	int i, cnt, size, ctx_field_size, delta = 0;
13034 	const int insn_cnt = env->prog->len;
13035 	struct bpf_insn insn_buf[16], *insn;
13036 	u32 target_size, size_default, off;
13037 	struct bpf_prog *new_prog;
13038 	enum bpf_access_type type;
13039 	bool is_narrower_load;
13040 
13041 	if (ops->gen_prologue || env->seen_direct_write) {
13042 		if (!ops->gen_prologue) {
13043 			verbose(env, "bpf verifier is misconfigured\n");
13044 			return -EINVAL;
13045 		}
13046 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
13047 					env->prog);
13048 		if (cnt >= ARRAY_SIZE(insn_buf)) {
13049 			verbose(env, "bpf verifier is misconfigured\n");
13050 			return -EINVAL;
13051 		} else if (cnt) {
13052 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
13053 			if (!new_prog)
13054 				return -ENOMEM;
13055 
13056 			env->prog = new_prog;
13057 			delta += cnt - 1;
13058 		}
13059 	}
13060 
13061 	if (bpf_prog_is_dev_bound(env->prog->aux))
13062 		return 0;
13063 
13064 	insn = env->prog->insnsi + delta;
13065 
13066 	for (i = 0; i < insn_cnt; i++, insn++) {
13067 		bpf_convert_ctx_access_t convert_ctx_access;
13068 		bool ctx_access;
13069 
13070 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
13071 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
13072 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
13073 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
13074 			type = BPF_READ;
13075 			ctx_access = true;
13076 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
13077 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
13078 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
13079 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
13080 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
13081 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
13082 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
13083 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
13084 			type = BPF_WRITE;
13085 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
13086 		} else {
13087 			continue;
13088 		}
13089 
13090 		if (type == BPF_WRITE &&
13091 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
13092 			struct bpf_insn patch[] = {
13093 				*insn,
13094 				BPF_ST_NOSPEC(),
13095 			};
13096 
13097 			cnt = ARRAY_SIZE(patch);
13098 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
13099 			if (!new_prog)
13100 				return -ENOMEM;
13101 
13102 			delta    += cnt - 1;
13103 			env->prog = new_prog;
13104 			insn      = new_prog->insnsi + i + delta;
13105 			continue;
13106 		}
13107 
13108 		if (!ctx_access)
13109 			continue;
13110 
13111 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
13112 		case PTR_TO_CTX:
13113 			if (!ops->convert_ctx_access)
13114 				continue;
13115 			convert_ctx_access = ops->convert_ctx_access;
13116 			break;
13117 		case PTR_TO_SOCKET:
13118 		case PTR_TO_SOCK_COMMON:
13119 			convert_ctx_access = bpf_sock_convert_ctx_access;
13120 			break;
13121 		case PTR_TO_TCP_SOCK:
13122 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
13123 			break;
13124 		case PTR_TO_XDP_SOCK:
13125 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
13126 			break;
13127 		case PTR_TO_BTF_ID:
13128 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
13129 			if (type == BPF_READ) {
13130 				insn->code = BPF_LDX | BPF_PROBE_MEM |
13131 					BPF_SIZE((insn)->code);
13132 				env->prog->aux->num_exentries++;
13133 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
13134 				verbose(env, "Writes through BTF pointers are not allowed\n");
13135 				return -EINVAL;
13136 			}
13137 			continue;
13138 		default:
13139 			continue;
13140 		}
13141 
13142 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
13143 		size = BPF_LDST_BYTES(insn);
13144 
13145 		/* If the read access is a narrower load of the field,
13146 		 * convert to a 4/8-byte load, to minimum program type specific
13147 		 * convert_ctx_access changes. If conversion is successful,
13148 		 * we will apply proper mask to the result.
13149 		 */
13150 		is_narrower_load = size < ctx_field_size;
13151 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
13152 		off = insn->off;
13153 		if (is_narrower_load) {
13154 			u8 size_code;
13155 
13156 			if (type == BPF_WRITE) {
13157 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
13158 				return -EINVAL;
13159 			}
13160 
13161 			size_code = BPF_H;
13162 			if (ctx_field_size == 4)
13163 				size_code = BPF_W;
13164 			else if (ctx_field_size == 8)
13165 				size_code = BPF_DW;
13166 
13167 			insn->off = off & ~(size_default - 1);
13168 			insn->code = BPF_LDX | BPF_MEM | size_code;
13169 		}
13170 
13171 		target_size = 0;
13172 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
13173 					 &target_size);
13174 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
13175 		    (ctx_field_size && !target_size)) {
13176 			verbose(env, "bpf verifier is misconfigured\n");
13177 			return -EINVAL;
13178 		}
13179 
13180 		if (is_narrower_load && size < target_size) {
13181 			u8 shift = bpf_ctx_narrow_access_offset(
13182 				off, size, size_default) * 8;
13183 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
13184 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
13185 				return -EINVAL;
13186 			}
13187 			if (ctx_field_size <= 4) {
13188 				if (shift)
13189 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
13190 									insn->dst_reg,
13191 									shift);
13192 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
13193 								(1 << size * 8) - 1);
13194 			} else {
13195 				if (shift)
13196 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
13197 									insn->dst_reg,
13198 									shift);
13199 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
13200 								(1ULL << size * 8) - 1);
13201 			}
13202 		}
13203 
13204 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13205 		if (!new_prog)
13206 			return -ENOMEM;
13207 
13208 		delta += cnt - 1;
13209 
13210 		/* keep walking new program and skip insns we just inserted */
13211 		env->prog = new_prog;
13212 		insn      = new_prog->insnsi + i + delta;
13213 	}
13214 
13215 	return 0;
13216 }
13217 
13218 static int jit_subprogs(struct bpf_verifier_env *env)
13219 {
13220 	struct bpf_prog *prog = env->prog, **func, *tmp;
13221 	int i, j, subprog_start, subprog_end = 0, len, subprog;
13222 	struct bpf_map *map_ptr;
13223 	struct bpf_insn *insn;
13224 	void *old_bpf_func;
13225 	int err, num_exentries;
13226 
13227 	if (env->subprog_cnt <= 1)
13228 		return 0;
13229 
13230 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13231 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
13232 			continue;
13233 
13234 		/* Upon error here we cannot fall back to interpreter but
13235 		 * need a hard reject of the program. Thus -EFAULT is
13236 		 * propagated in any case.
13237 		 */
13238 		subprog = find_subprog(env, i + insn->imm + 1);
13239 		if (subprog < 0) {
13240 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
13241 				  i + insn->imm + 1);
13242 			return -EFAULT;
13243 		}
13244 		/* temporarily remember subprog id inside insn instead of
13245 		 * aux_data, since next loop will split up all insns into funcs
13246 		 */
13247 		insn->off = subprog;
13248 		/* remember original imm in case JIT fails and fallback
13249 		 * to interpreter will be needed
13250 		 */
13251 		env->insn_aux_data[i].call_imm = insn->imm;
13252 		/* point imm to __bpf_call_base+1 from JITs point of view */
13253 		insn->imm = 1;
13254 		if (bpf_pseudo_func(insn))
13255 			/* jit (e.g. x86_64) may emit fewer instructions
13256 			 * if it learns a u32 imm is the same as a u64 imm.
13257 			 * Force a non zero here.
13258 			 */
13259 			insn[1].imm = 1;
13260 	}
13261 
13262 	err = bpf_prog_alloc_jited_linfo(prog);
13263 	if (err)
13264 		goto out_undo_insn;
13265 
13266 	err = -ENOMEM;
13267 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
13268 	if (!func)
13269 		goto out_undo_insn;
13270 
13271 	for (i = 0; i < env->subprog_cnt; i++) {
13272 		subprog_start = subprog_end;
13273 		subprog_end = env->subprog_info[i + 1].start;
13274 
13275 		len = subprog_end - subprog_start;
13276 		/* bpf_prog_run() doesn't call subprogs directly,
13277 		 * hence main prog stats include the runtime of subprogs.
13278 		 * subprogs don't have IDs and not reachable via prog_get_next_id
13279 		 * func[i]->stats will never be accessed and stays NULL
13280 		 */
13281 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
13282 		if (!func[i])
13283 			goto out_free;
13284 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
13285 		       len * sizeof(struct bpf_insn));
13286 		func[i]->type = prog->type;
13287 		func[i]->len = len;
13288 		if (bpf_prog_calc_tag(func[i]))
13289 			goto out_free;
13290 		func[i]->is_func = 1;
13291 		func[i]->aux->func_idx = i;
13292 		/* Below members will be freed only at prog->aux */
13293 		func[i]->aux->btf = prog->aux->btf;
13294 		func[i]->aux->func_info = prog->aux->func_info;
13295 		func[i]->aux->poke_tab = prog->aux->poke_tab;
13296 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
13297 
13298 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
13299 			struct bpf_jit_poke_descriptor *poke;
13300 
13301 			poke = &prog->aux->poke_tab[j];
13302 			if (poke->insn_idx < subprog_end &&
13303 			    poke->insn_idx >= subprog_start)
13304 				poke->aux = func[i]->aux;
13305 		}
13306 
13307 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
13308 		 * Long term would need debug info to populate names
13309 		 */
13310 		func[i]->aux->name[0] = 'F';
13311 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
13312 		func[i]->jit_requested = 1;
13313 		func[i]->blinding_requested = prog->blinding_requested;
13314 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
13315 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
13316 		func[i]->aux->linfo = prog->aux->linfo;
13317 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
13318 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
13319 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
13320 		num_exentries = 0;
13321 		insn = func[i]->insnsi;
13322 		for (j = 0; j < func[i]->len; j++, insn++) {
13323 			if (BPF_CLASS(insn->code) == BPF_LDX &&
13324 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
13325 				num_exentries++;
13326 		}
13327 		func[i]->aux->num_exentries = num_exentries;
13328 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
13329 		func[i] = bpf_int_jit_compile(func[i]);
13330 		if (!func[i]->jited) {
13331 			err = -ENOTSUPP;
13332 			goto out_free;
13333 		}
13334 		cond_resched();
13335 	}
13336 
13337 	/* at this point all bpf functions were successfully JITed
13338 	 * now populate all bpf_calls with correct addresses and
13339 	 * run last pass of JIT
13340 	 */
13341 	for (i = 0; i < env->subprog_cnt; i++) {
13342 		insn = func[i]->insnsi;
13343 		for (j = 0; j < func[i]->len; j++, insn++) {
13344 			if (bpf_pseudo_func(insn)) {
13345 				subprog = insn->off;
13346 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
13347 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
13348 				continue;
13349 			}
13350 			if (!bpf_pseudo_call(insn))
13351 				continue;
13352 			subprog = insn->off;
13353 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
13354 		}
13355 
13356 		/* we use the aux data to keep a list of the start addresses
13357 		 * of the JITed images for each function in the program
13358 		 *
13359 		 * for some architectures, such as powerpc64, the imm field
13360 		 * might not be large enough to hold the offset of the start
13361 		 * address of the callee's JITed image from __bpf_call_base
13362 		 *
13363 		 * in such cases, we can lookup the start address of a callee
13364 		 * by using its subprog id, available from the off field of
13365 		 * the call instruction, as an index for this list
13366 		 */
13367 		func[i]->aux->func = func;
13368 		func[i]->aux->func_cnt = env->subprog_cnt;
13369 	}
13370 	for (i = 0; i < env->subprog_cnt; i++) {
13371 		old_bpf_func = func[i]->bpf_func;
13372 		tmp = bpf_int_jit_compile(func[i]);
13373 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
13374 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
13375 			err = -ENOTSUPP;
13376 			goto out_free;
13377 		}
13378 		cond_resched();
13379 	}
13380 
13381 	/* finally lock prog and jit images for all functions and
13382 	 * populate kallsysm
13383 	 */
13384 	for (i = 0; i < env->subprog_cnt; i++) {
13385 		bpf_prog_lock_ro(func[i]);
13386 		bpf_prog_kallsyms_add(func[i]);
13387 	}
13388 
13389 	/* Last step: make now unused interpreter insns from main
13390 	 * prog consistent for later dump requests, so they can
13391 	 * later look the same as if they were interpreted only.
13392 	 */
13393 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13394 		if (bpf_pseudo_func(insn)) {
13395 			insn[0].imm = env->insn_aux_data[i].call_imm;
13396 			insn[1].imm = insn->off;
13397 			insn->off = 0;
13398 			continue;
13399 		}
13400 		if (!bpf_pseudo_call(insn))
13401 			continue;
13402 		insn->off = env->insn_aux_data[i].call_imm;
13403 		subprog = find_subprog(env, i + insn->off + 1);
13404 		insn->imm = subprog;
13405 	}
13406 
13407 	prog->jited = 1;
13408 	prog->bpf_func = func[0]->bpf_func;
13409 	prog->jited_len = func[0]->jited_len;
13410 	prog->aux->func = func;
13411 	prog->aux->func_cnt = env->subprog_cnt;
13412 	bpf_prog_jit_attempt_done(prog);
13413 	return 0;
13414 out_free:
13415 	/* We failed JIT'ing, so at this point we need to unregister poke
13416 	 * descriptors from subprogs, so that kernel is not attempting to
13417 	 * patch it anymore as we're freeing the subprog JIT memory.
13418 	 */
13419 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13420 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13421 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
13422 	}
13423 	/* At this point we're guaranteed that poke descriptors are not
13424 	 * live anymore. We can just unlink its descriptor table as it's
13425 	 * released with the main prog.
13426 	 */
13427 	for (i = 0; i < env->subprog_cnt; i++) {
13428 		if (!func[i])
13429 			continue;
13430 		func[i]->aux->poke_tab = NULL;
13431 		bpf_jit_free(func[i]);
13432 	}
13433 	kfree(func);
13434 out_undo_insn:
13435 	/* cleanup main prog to be interpreted */
13436 	prog->jit_requested = 0;
13437 	prog->blinding_requested = 0;
13438 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
13439 		if (!bpf_pseudo_call(insn))
13440 			continue;
13441 		insn->off = 0;
13442 		insn->imm = env->insn_aux_data[i].call_imm;
13443 	}
13444 	bpf_prog_jit_attempt_done(prog);
13445 	return err;
13446 }
13447 
13448 static int fixup_call_args(struct bpf_verifier_env *env)
13449 {
13450 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13451 	struct bpf_prog *prog = env->prog;
13452 	struct bpf_insn *insn = prog->insnsi;
13453 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
13454 	int i, depth;
13455 #endif
13456 	int err = 0;
13457 
13458 	if (env->prog->jit_requested &&
13459 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
13460 		err = jit_subprogs(env);
13461 		if (err == 0)
13462 			return 0;
13463 		if (err == -EFAULT)
13464 			return err;
13465 	}
13466 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
13467 	if (has_kfunc_call) {
13468 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
13469 		return -EINVAL;
13470 	}
13471 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
13472 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
13473 		 * have to be rejected, since interpreter doesn't support them yet.
13474 		 */
13475 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
13476 		return -EINVAL;
13477 	}
13478 	for (i = 0; i < prog->len; i++, insn++) {
13479 		if (bpf_pseudo_func(insn)) {
13480 			/* When JIT fails the progs with callback calls
13481 			 * have to be rejected, since interpreter doesn't support them yet.
13482 			 */
13483 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
13484 			return -EINVAL;
13485 		}
13486 
13487 		if (!bpf_pseudo_call(insn))
13488 			continue;
13489 		depth = get_callee_stack_depth(env, insn, i);
13490 		if (depth < 0)
13491 			return depth;
13492 		bpf_patch_call_args(insn, depth);
13493 	}
13494 	err = 0;
13495 #endif
13496 	return err;
13497 }
13498 
13499 static int fixup_kfunc_call(struct bpf_verifier_env *env,
13500 			    struct bpf_insn *insn)
13501 {
13502 	const struct bpf_kfunc_desc *desc;
13503 
13504 	if (!insn->imm) {
13505 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
13506 		return -EINVAL;
13507 	}
13508 
13509 	/* insn->imm has the btf func_id. Replace it with
13510 	 * an address (relative to __bpf_base_call).
13511 	 */
13512 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
13513 	if (!desc) {
13514 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
13515 			insn->imm);
13516 		return -EFAULT;
13517 	}
13518 
13519 	insn->imm = desc->imm;
13520 
13521 	return 0;
13522 }
13523 
13524 /* Do various post-verification rewrites in a single program pass.
13525  * These rewrites simplify JIT and interpreter implementations.
13526  */
13527 static int do_misc_fixups(struct bpf_verifier_env *env)
13528 {
13529 	struct bpf_prog *prog = env->prog;
13530 	enum bpf_attach_type eatype = prog->expected_attach_type;
13531 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
13532 	struct bpf_insn *insn = prog->insnsi;
13533 	const struct bpf_func_proto *fn;
13534 	const int insn_cnt = prog->len;
13535 	const struct bpf_map_ops *ops;
13536 	struct bpf_insn_aux_data *aux;
13537 	struct bpf_insn insn_buf[16];
13538 	struct bpf_prog *new_prog;
13539 	struct bpf_map *map_ptr;
13540 	int i, ret, cnt, delta = 0;
13541 
13542 	for (i = 0; i < insn_cnt; i++, insn++) {
13543 		/* Make divide-by-zero exceptions impossible. */
13544 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
13545 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
13546 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
13547 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
13548 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
13549 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
13550 			struct bpf_insn *patchlet;
13551 			struct bpf_insn chk_and_div[] = {
13552 				/* [R,W]x div 0 -> 0 */
13553 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13554 					     BPF_JNE | BPF_K, insn->src_reg,
13555 					     0, 2, 0),
13556 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
13557 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13558 				*insn,
13559 			};
13560 			struct bpf_insn chk_and_mod[] = {
13561 				/* [R,W]x mod 0 -> [R,W]x */
13562 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
13563 					     BPF_JEQ | BPF_K, insn->src_reg,
13564 					     0, 1 + (is64 ? 0 : 1), 0),
13565 				*insn,
13566 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
13567 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
13568 			};
13569 
13570 			patchlet = isdiv ? chk_and_div : chk_and_mod;
13571 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
13572 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
13573 
13574 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
13575 			if (!new_prog)
13576 				return -ENOMEM;
13577 
13578 			delta    += cnt - 1;
13579 			env->prog = prog = new_prog;
13580 			insn      = new_prog->insnsi + i + delta;
13581 			continue;
13582 		}
13583 
13584 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
13585 		if (BPF_CLASS(insn->code) == BPF_LD &&
13586 		    (BPF_MODE(insn->code) == BPF_ABS ||
13587 		     BPF_MODE(insn->code) == BPF_IND)) {
13588 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
13589 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13590 				verbose(env, "bpf verifier is misconfigured\n");
13591 				return -EINVAL;
13592 			}
13593 
13594 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13595 			if (!new_prog)
13596 				return -ENOMEM;
13597 
13598 			delta    += cnt - 1;
13599 			env->prog = prog = new_prog;
13600 			insn      = new_prog->insnsi + i + delta;
13601 			continue;
13602 		}
13603 
13604 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
13605 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
13606 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
13607 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
13608 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
13609 			struct bpf_insn *patch = &insn_buf[0];
13610 			bool issrc, isneg, isimm;
13611 			u32 off_reg;
13612 
13613 			aux = &env->insn_aux_data[i + delta];
13614 			if (!aux->alu_state ||
13615 			    aux->alu_state == BPF_ALU_NON_POINTER)
13616 				continue;
13617 
13618 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
13619 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
13620 				BPF_ALU_SANITIZE_SRC;
13621 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
13622 
13623 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
13624 			if (isimm) {
13625 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13626 			} else {
13627 				if (isneg)
13628 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13629 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
13630 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
13631 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
13632 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
13633 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
13634 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
13635 			}
13636 			if (!issrc)
13637 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
13638 			insn->src_reg = BPF_REG_AX;
13639 			if (isneg)
13640 				insn->code = insn->code == code_add ?
13641 					     code_sub : code_add;
13642 			*patch++ = *insn;
13643 			if (issrc && isneg && !isimm)
13644 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
13645 			cnt = patch - insn_buf;
13646 
13647 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13648 			if (!new_prog)
13649 				return -ENOMEM;
13650 
13651 			delta    += cnt - 1;
13652 			env->prog = prog = new_prog;
13653 			insn      = new_prog->insnsi + i + delta;
13654 			continue;
13655 		}
13656 
13657 		if (insn->code != (BPF_JMP | BPF_CALL))
13658 			continue;
13659 		if (insn->src_reg == BPF_PSEUDO_CALL)
13660 			continue;
13661 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13662 			ret = fixup_kfunc_call(env, insn);
13663 			if (ret)
13664 				return ret;
13665 			continue;
13666 		}
13667 
13668 		if (insn->imm == BPF_FUNC_get_route_realm)
13669 			prog->dst_needed = 1;
13670 		if (insn->imm == BPF_FUNC_get_prandom_u32)
13671 			bpf_user_rnd_init_once();
13672 		if (insn->imm == BPF_FUNC_override_return)
13673 			prog->kprobe_override = 1;
13674 		if (insn->imm == BPF_FUNC_tail_call) {
13675 			/* If we tail call into other programs, we
13676 			 * cannot make any assumptions since they can
13677 			 * be replaced dynamically during runtime in
13678 			 * the program array.
13679 			 */
13680 			prog->cb_access = 1;
13681 			if (!allow_tail_call_in_subprogs(env))
13682 				prog->aux->stack_depth = MAX_BPF_STACK;
13683 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
13684 
13685 			/* mark bpf_tail_call as different opcode to avoid
13686 			 * conditional branch in the interpreter for every normal
13687 			 * call and to prevent accidental JITing by JIT compiler
13688 			 * that doesn't support bpf_tail_call yet
13689 			 */
13690 			insn->imm = 0;
13691 			insn->code = BPF_JMP | BPF_TAIL_CALL;
13692 
13693 			aux = &env->insn_aux_data[i + delta];
13694 			if (env->bpf_capable && !prog->blinding_requested &&
13695 			    prog->jit_requested &&
13696 			    !bpf_map_key_poisoned(aux) &&
13697 			    !bpf_map_ptr_poisoned(aux) &&
13698 			    !bpf_map_ptr_unpriv(aux)) {
13699 				struct bpf_jit_poke_descriptor desc = {
13700 					.reason = BPF_POKE_REASON_TAIL_CALL,
13701 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13702 					.tail_call.key = bpf_map_key_immediate(aux),
13703 					.insn_idx = i + delta,
13704 				};
13705 
13706 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
13707 				if (ret < 0) {
13708 					verbose(env, "adding tail call poke descriptor failed\n");
13709 					return ret;
13710 				}
13711 
13712 				insn->imm = ret + 1;
13713 				continue;
13714 			}
13715 
13716 			if (!bpf_map_ptr_unpriv(aux))
13717 				continue;
13718 
13719 			/* instead of changing every JIT dealing with tail_call
13720 			 * emit two extra insns:
13721 			 * if (index >= max_entries) goto out;
13722 			 * index &= array->index_mask;
13723 			 * to avoid out-of-bounds cpu speculation
13724 			 */
13725 			if (bpf_map_ptr_poisoned(aux)) {
13726 				verbose(env, "tail_call abusing map_ptr\n");
13727 				return -EINVAL;
13728 			}
13729 
13730 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13731 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13732 						  map_ptr->max_entries, 2);
13733 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13734 						    container_of(map_ptr,
13735 								 struct bpf_array,
13736 								 map)->index_mask);
13737 			insn_buf[2] = *insn;
13738 			cnt = 3;
13739 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13740 			if (!new_prog)
13741 				return -ENOMEM;
13742 
13743 			delta    += cnt - 1;
13744 			env->prog = prog = new_prog;
13745 			insn      = new_prog->insnsi + i + delta;
13746 			continue;
13747 		}
13748 
13749 		if (insn->imm == BPF_FUNC_timer_set_callback) {
13750 			/* The verifier will process callback_fn as many times as necessary
13751 			 * with different maps and the register states prepared by
13752 			 * set_timer_callback_state will be accurate.
13753 			 *
13754 			 * The following use case is valid:
13755 			 *   map1 is shared by prog1, prog2, prog3.
13756 			 *   prog1 calls bpf_timer_init for some map1 elements
13757 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
13758 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
13759 			 *   prog3 calls bpf_timer_start for some map1 elements.
13760 			 *     Those that were not both bpf_timer_init-ed and
13761 			 *     bpf_timer_set_callback-ed will return -EINVAL.
13762 			 */
13763 			struct bpf_insn ld_addrs[2] = {
13764 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13765 			};
13766 
13767 			insn_buf[0] = ld_addrs[0];
13768 			insn_buf[1] = ld_addrs[1];
13769 			insn_buf[2] = *insn;
13770 			cnt = 3;
13771 
13772 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13773 			if (!new_prog)
13774 				return -ENOMEM;
13775 
13776 			delta    += cnt - 1;
13777 			env->prog = prog = new_prog;
13778 			insn      = new_prog->insnsi + i + delta;
13779 			goto patch_call_imm;
13780 		}
13781 
13782 		if (insn->imm == BPF_FUNC_task_storage_get ||
13783 		    insn->imm == BPF_FUNC_sk_storage_get ||
13784 		    insn->imm == BPF_FUNC_inode_storage_get) {
13785 			if (env->prog->aux->sleepable)
13786 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
13787 			else
13788 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
13789 			insn_buf[1] = *insn;
13790 			cnt = 2;
13791 
13792 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13793 			if (!new_prog)
13794 				return -ENOMEM;
13795 
13796 			delta += cnt - 1;
13797 			env->prog = prog = new_prog;
13798 			insn = new_prog->insnsi + i + delta;
13799 			goto patch_call_imm;
13800 		}
13801 
13802 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
13803 		 * and other inlining handlers are currently limited to 64 bit
13804 		 * only.
13805 		 */
13806 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13807 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
13808 		     insn->imm == BPF_FUNC_map_update_elem ||
13809 		     insn->imm == BPF_FUNC_map_delete_elem ||
13810 		     insn->imm == BPF_FUNC_map_push_elem   ||
13811 		     insn->imm == BPF_FUNC_map_pop_elem    ||
13812 		     insn->imm == BPF_FUNC_map_peek_elem   ||
13813 		     insn->imm == BPF_FUNC_redirect_map    ||
13814 		     insn->imm == BPF_FUNC_for_each_map_elem)) {
13815 			aux = &env->insn_aux_data[i + delta];
13816 			if (bpf_map_ptr_poisoned(aux))
13817 				goto patch_call_imm;
13818 
13819 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13820 			ops = map_ptr->ops;
13821 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
13822 			    ops->map_gen_lookup) {
13823 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
13824 				if (cnt == -EOPNOTSUPP)
13825 					goto patch_map_ops_generic;
13826 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13827 					verbose(env, "bpf verifier is misconfigured\n");
13828 					return -EINVAL;
13829 				}
13830 
13831 				new_prog = bpf_patch_insn_data(env, i + delta,
13832 							       insn_buf, cnt);
13833 				if (!new_prog)
13834 					return -ENOMEM;
13835 
13836 				delta    += cnt - 1;
13837 				env->prog = prog = new_prog;
13838 				insn      = new_prog->insnsi + i + delta;
13839 				continue;
13840 			}
13841 
13842 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13843 				     (void *(*)(struct bpf_map *map, void *key))NULL));
13844 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13845 				     (int (*)(struct bpf_map *map, void *key))NULL));
13846 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13847 				     (int (*)(struct bpf_map *map, void *key, void *value,
13848 					      u64 flags))NULL));
13849 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13850 				     (int (*)(struct bpf_map *map, void *value,
13851 					      u64 flags))NULL));
13852 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13853 				     (int (*)(struct bpf_map *map, void *value))NULL));
13854 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13855 				     (int (*)(struct bpf_map *map, void *value))NULL));
13856 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
13857 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
13858 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
13859 				     (int (*)(struct bpf_map *map,
13860 					      bpf_callback_t callback_fn,
13861 					      void *callback_ctx,
13862 					      u64 flags))NULL));
13863 
13864 patch_map_ops_generic:
13865 			switch (insn->imm) {
13866 			case BPF_FUNC_map_lookup_elem:
13867 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
13868 				continue;
13869 			case BPF_FUNC_map_update_elem:
13870 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
13871 				continue;
13872 			case BPF_FUNC_map_delete_elem:
13873 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
13874 				continue;
13875 			case BPF_FUNC_map_push_elem:
13876 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
13877 				continue;
13878 			case BPF_FUNC_map_pop_elem:
13879 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
13880 				continue;
13881 			case BPF_FUNC_map_peek_elem:
13882 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
13883 				continue;
13884 			case BPF_FUNC_redirect_map:
13885 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
13886 				continue;
13887 			case BPF_FUNC_for_each_map_elem:
13888 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
13889 				continue;
13890 			}
13891 
13892 			goto patch_call_imm;
13893 		}
13894 
13895 		/* Implement bpf_jiffies64 inline. */
13896 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13897 		    insn->imm == BPF_FUNC_jiffies64) {
13898 			struct bpf_insn ld_jiffies_addr[2] = {
13899 				BPF_LD_IMM64(BPF_REG_0,
13900 					     (unsigned long)&jiffies),
13901 			};
13902 
13903 			insn_buf[0] = ld_jiffies_addr[0];
13904 			insn_buf[1] = ld_jiffies_addr[1];
13905 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13906 						  BPF_REG_0, 0);
13907 			cnt = 3;
13908 
13909 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13910 						       cnt);
13911 			if (!new_prog)
13912 				return -ENOMEM;
13913 
13914 			delta    += cnt - 1;
13915 			env->prog = prog = new_prog;
13916 			insn      = new_prog->insnsi + i + delta;
13917 			continue;
13918 		}
13919 
13920 		/* Implement bpf_get_func_arg inline. */
13921 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13922 		    insn->imm == BPF_FUNC_get_func_arg) {
13923 			/* Load nr_args from ctx - 8 */
13924 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13925 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
13926 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
13927 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
13928 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
13929 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
13930 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
13931 			insn_buf[7] = BPF_JMP_A(1);
13932 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
13933 			cnt = 9;
13934 
13935 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13936 			if (!new_prog)
13937 				return -ENOMEM;
13938 
13939 			delta    += cnt - 1;
13940 			env->prog = prog = new_prog;
13941 			insn      = new_prog->insnsi + i + delta;
13942 			continue;
13943 		}
13944 
13945 		/* Implement bpf_get_func_ret inline. */
13946 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13947 		    insn->imm == BPF_FUNC_get_func_ret) {
13948 			if (eatype == BPF_TRACE_FEXIT ||
13949 			    eatype == BPF_MODIFY_RETURN) {
13950 				/* Load nr_args from ctx - 8 */
13951 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13952 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
13953 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
13954 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
13955 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
13956 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
13957 				cnt = 6;
13958 			} else {
13959 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
13960 				cnt = 1;
13961 			}
13962 
13963 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13964 			if (!new_prog)
13965 				return -ENOMEM;
13966 
13967 			delta    += cnt - 1;
13968 			env->prog = prog = new_prog;
13969 			insn      = new_prog->insnsi + i + delta;
13970 			continue;
13971 		}
13972 
13973 		/* Implement get_func_arg_cnt inline. */
13974 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13975 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
13976 			/* Load nr_args from ctx - 8 */
13977 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13978 
13979 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13980 			if (!new_prog)
13981 				return -ENOMEM;
13982 
13983 			env->prog = prog = new_prog;
13984 			insn      = new_prog->insnsi + i + delta;
13985 			continue;
13986 		}
13987 
13988 		/* Implement bpf_get_func_ip inline. */
13989 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13990 		    insn->imm == BPF_FUNC_get_func_ip) {
13991 			/* Load IP address from ctx - 16 */
13992 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
13993 
13994 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13995 			if (!new_prog)
13996 				return -ENOMEM;
13997 
13998 			env->prog = prog = new_prog;
13999 			insn      = new_prog->insnsi + i + delta;
14000 			continue;
14001 		}
14002 
14003 patch_call_imm:
14004 		fn = env->ops->get_func_proto(insn->imm, env->prog);
14005 		/* all functions that have prototype and verifier allowed
14006 		 * programs to call them, must be real in-kernel functions
14007 		 */
14008 		if (!fn->func) {
14009 			verbose(env,
14010 				"kernel subsystem misconfigured func %s#%d\n",
14011 				func_id_name(insn->imm), insn->imm);
14012 			return -EFAULT;
14013 		}
14014 		insn->imm = fn->func - __bpf_call_base;
14015 	}
14016 
14017 	/* Since poke tab is now finalized, publish aux to tracker. */
14018 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
14019 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
14020 		if (!map_ptr->ops->map_poke_track ||
14021 		    !map_ptr->ops->map_poke_untrack ||
14022 		    !map_ptr->ops->map_poke_run) {
14023 			verbose(env, "bpf verifier is misconfigured\n");
14024 			return -EINVAL;
14025 		}
14026 
14027 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
14028 		if (ret < 0) {
14029 			verbose(env, "tracking tail call prog failed\n");
14030 			return ret;
14031 		}
14032 	}
14033 
14034 	sort_kfunc_descs_by_imm(env->prog);
14035 
14036 	return 0;
14037 }
14038 
14039 static void free_states(struct bpf_verifier_env *env)
14040 {
14041 	struct bpf_verifier_state_list *sl, *sln;
14042 	int i;
14043 
14044 	sl = env->free_list;
14045 	while (sl) {
14046 		sln = sl->next;
14047 		free_verifier_state(&sl->state, false);
14048 		kfree(sl);
14049 		sl = sln;
14050 	}
14051 	env->free_list = NULL;
14052 
14053 	if (!env->explored_states)
14054 		return;
14055 
14056 	for (i = 0; i < state_htab_size(env); i++) {
14057 		sl = env->explored_states[i];
14058 
14059 		while (sl) {
14060 			sln = sl->next;
14061 			free_verifier_state(&sl->state, false);
14062 			kfree(sl);
14063 			sl = sln;
14064 		}
14065 		env->explored_states[i] = NULL;
14066 	}
14067 }
14068 
14069 static int do_check_common(struct bpf_verifier_env *env, int subprog)
14070 {
14071 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
14072 	struct bpf_verifier_state *state;
14073 	struct bpf_reg_state *regs;
14074 	int ret, i;
14075 
14076 	env->prev_linfo = NULL;
14077 	env->pass_cnt++;
14078 
14079 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
14080 	if (!state)
14081 		return -ENOMEM;
14082 	state->curframe = 0;
14083 	state->speculative = false;
14084 	state->branches = 1;
14085 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
14086 	if (!state->frame[0]) {
14087 		kfree(state);
14088 		return -ENOMEM;
14089 	}
14090 	env->cur_state = state;
14091 	init_func_state(env, state->frame[0],
14092 			BPF_MAIN_FUNC /* callsite */,
14093 			0 /* frameno */,
14094 			subprog);
14095 
14096 	regs = state->frame[state->curframe]->regs;
14097 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
14098 		ret = btf_prepare_func_args(env, subprog, regs);
14099 		if (ret)
14100 			goto out;
14101 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
14102 			if (regs[i].type == PTR_TO_CTX)
14103 				mark_reg_known_zero(env, regs, i);
14104 			else if (regs[i].type == SCALAR_VALUE)
14105 				mark_reg_unknown(env, regs, i);
14106 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
14107 				const u32 mem_size = regs[i].mem_size;
14108 
14109 				mark_reg_known_zero(env, regs, i);
14110 				regs[i].mem_size = mem_size;
14111 				regs[i].id = ++env->id_gen;
14112 			}
14113 		}
14114 	} else {
14115 		/* 1st arg to a function */
14116 		regs[BPF_REG_1].type = PTR_TO_CTX;
14117 		mark_reg_known_zero(env, regs, BPF_REG_1);
14118 		ret = btf_check_subprog_arg_match(env, subprog, regs);
14119 		if (ret == -EFAULT)
14120 			/* unlikely verifier bug. abort.
14121 			 * ret == 0 and ret < 0 are sadly acceptable for
14122 			 * main() function due to backward compatibility.
14123 			 * Like socket filter program may be written as:
14124 			 * int bpf_prog(struct pt_regs *ctx)
14125 			 * and never dereference that ctx in the program.
14126 			 * 'struct pt_regs' is a type mismatch for socket
14127 			 * filter that should be using 'struct __sk_buff'.
14128 			 */
14129 			goto out;
14130 	}
14131 
14132 	ret = do_check(env);
14133 out:
14134 	/* check for NULL is necessary, since cur_state can be freed inside
14135 	 * do_check() under memory pressure.
14136 	 */
14137 	if (env->cur_state) {
14138 		free_verifier_state(env->cur_state, true);
14139 		env->cur_state = NULL;
14140 	}
14141 	while (!pop_stack(env, NULL, NULL, false));
14142 	if (!ret && pop_log)
14143 		bpf_vlog_reset(&env->log, 0);
14144 	free_states(env);
14145 	return ret;
14146 }
14147 
14148 /* Verify all global functions in a BPF program one by one based on their BTF.
14149  * All global functions must pass verification. Otherwise the whole program is rejected.
14150  * Consider:
14151  * int bar(int);
14152  * int foo(int f)
14153  * {
14154  *    return bar(f);
14155  * }
14156  * int bar(int b)
14157  * {
14158  *    ...
14159  * }
14160  * foo() will be verified first for R1=any_scalar_value. During verification it
14161  * will be assumed that bar() already verified successfully and call to bar()
14162  * from foo() will be checked for type match only. Later bar() will be verified
14163  * independently to check that it's safe for R1=any_scalar_value.
14164  */
14165 static int do_check_subprogs(struct bpf_verifier_env *env)
14166 {
14167 	struct bpf_prog_aux *aux = env->prog->aux;
14168 	int i, ret;
14169 
14170 	if (!aux->func_info)
14171 		return 0;
14172 
14173 	for (i = 1; i < env->subprog_cnt; i++) {
14174 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
14175 			continue;
14176 		env->insn_idx = env->subprog_info[i].start;
14177 		WARN_ON_ONCE(env->insn_idx == 0);
14178 		ret = do_check_common(env, i);
14179 		if (ret) {
14180 			return ret;
14181 		} else if (env->log.level & BPF_LOG_LEVEL) {
14182 			verbose(env,
14183 				"Func#%d is safe for any args that match its prototype\n",
14184 				i);
14185 		}
14186 	}
14187 	return 0;
14188 }
14189 
14190 static int do_check_main(struct bpf_verifier_env *env)
14191 {
14192 	int ret;
14193 
14194 	env->insn_idx = 0;
14195 	ret = do_check_common(env, 0);
14196 	if (!ret)
14197 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
14198 	return ret;
14199 }
14200 
14201 
14202 static void print_verification_stats(struct bpf_verifier_env *env)
14203 {
14204 	int i;
14205 
14206 	if (env->log.level & BPF_LOG_STATS) {
14207 		verbose(env, "verification time %lld usec\n",
14208 			div_u64(env->verification_time, 1000));
14209 		verbose(env, "stack depth ");
14210 		for (i = 0; i < env->subprog_cnt; i++) {
14211 			u32 depth = env->subprog_info[i].stack_depth;
14212 
14213 			verbose(env, "%d", depth);
14214 			if (i + 1 < env->subprog_cnt)
14215 				verbose(env, "+");
14216 		}
14217 		verbose(env, "\n");
14218 	}
14219 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
14220 		"total_states %d peak_states %d mark_read %d\n",
14221 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
14222 		env->max_states_per_insn, env->total_states,
14223 		env->peak_states, env->longest_mark_read_walk);
14224 }
14225 
14226 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
14227 {
14228 	const struct btf_type *t, *func_proto;
14229 	const struct bpf_struct_ops *st_ops;
14230 	const struct btf_member *member;
14231 	struct bpf_prog *prog = env->prog;
14232 	u32 btf_id, member_idx;
14233 	const char *mname;
14234 
14235 	if (!prog->gpl_compatible) {
14236 		verbose(env, "struct ops programs must have a GPL compatible license\n");
14237 		return -EINVAL;
14238 	}
14239 
14240 	btf_id = prog->aux->attach_btf_id;
14241 	st_ops = bpf_struct_ops_find(btf_id);
14242 	if (!st_ops) {
14243 		verbose(env, "attach_btf_id %u is not a supported struct\n",
14244 			btf_id);
14245 		return -ENOTSUPP;
14246 	}
14247 
14248 	t = st_ops->type;
14249 	member_idx = prog->expected_attach_type;
14250 	if (member_idx >= btf_type_vlen(t)) {
14251 		verbose(env, "attach to invalid member idx %u of struct %s\n",
14252 			member_idx, st_ops->name);
14253 		return -EINVAL;
14254 	}
14255 
14256 	member = &btf_type_member(t)[member_idx];
14257 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
14258 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
14259 					       NULL);
14260 	if (!func_proto) {
14261 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
14262 			mname, member_idx, st_ops->name);
14263 		return -EINVAL;
14264 	}
14265 
14266 	if (st_ops->check_member) {
14267 		int err = st_ops->check_member(t, member);
14268 
14269 		if (err) {
14270 			verbose(env, "attach to unsupported member %s of struct %s\n",
14271 				mname, st_ops->name);
14272 			return err;
14273 		}
14274 	}
14275 
14276 	prog->aux->attach_func_proto = func_proto;
14277 	prog->aux->attach_func_name = mname;
14278 	env->ops = st_ops->verifier_ops;
14279 
14280 	return 0;
14281 }
14282 #define SECURITY_PREFIX "security_"
14283 
14284 static int check_attach_modify_return(unsigned long addr, const char *func_name)
14285 {
14286 	if (within_error_injection_list(addr) ||
14287 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
14288 		return 0;
14289 
14290 	return -EINVAL;
14291 }
14292 
14293 /* list of non-sleepable functions that are otherwise on
14294  * ALLOW_ERROR_INJECTION list
14295  */
14296 BTF_SET_START(btf_non_sleepable_error_inject)
14297 /* Three functions below can be called from sleepable and non-sleepable context.
14298  * Assume non-sleepable from bpf safety point of view.
14299  */
14300 BTF_ID(func, __filemap_add_folio)
14301 BTF_ID(func, should_fail_alloc_page)
14302 BTF_ID(func, should_failslab)
14303 BTF_SET_END(btf_non_sleepable_error_inject)
14304 
14305 static int check_non_sleepable_error_inject(u32 btf_id)
14306 {
14307 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
14308 }
14309 
14310 int bpf_check_attach_target(struct bpf_verifier_log *log,
14311 			    const struct bpf_prog *prog,
14312 			    const struct bpf_prog *tgt_prog,
14313 			    u32 btf_id,
14314 			    struct bpf_attach_target_info *tgt_info)
14315 {
14316 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
14317 	const char prefix[] = "btf_trace_";
14318 	int ret = 0, subprog = -1, i;
14319 	const struct btf_type *t;
14320 	bool conservative = true;
14321 	const char *tname;
14322 	struct btf *btf;
14323 	long addr = 0;
14324 
14325 	if (!btf_id) {
14326 		bpf_log(log, "Tracing programs must provide btf_id\n");
14327 		return -EINVAL;
14328 	}
14329 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
14330 	if (!btf) {
14331 		bpf_log(log,
14332 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
14333 		return -EINVAL;
14334 	}
14335 	t = btf_type_by_id(btf, btf_id);
14336 	if (!t) {
14337 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
14338 		return -EINVAL;
14339 	}
14340 	tname = btf_name_by_offset(btf, t->name_off);
14341 	if (!tname) {
14342 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
14343 		return -EINVAL;
14344 	}
14345 	if (tgt_prog) {
14346 		struct bpf_prog_aux *aux = tgt_prog->aux;
14347 
14348 		for (i = 0; i < aux->func_info_cnt; i++)
14349 			if (aux->func_info[i].type_id == btf_id) {
14350 				subprog = i;
14351 				break;
14352 			}
14353 		if (subprog == -1) {
14354 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
14355 			return -EINVAL;
14356 		}
14357 		conservative = aux->func_info_aux[subprog].unreliable;
14358 		if (prog_extension) {
14359 			if (conservative) {
14360 				bpf_log(log,
14361 					"Cannot replace static functions\n");
14362 				return -EINVAL;
14363 			}
14364 			if (!prog->jit_requested) {
14365 				bpf_log(log,
14366 					"Extension programs should be JITed\n");
14367 				return -EINVAL;
14368 			}
14369 		}
14370 		if (!tgt_prog->jited) {
14371 			bpf_log(log, "Can attach to only JITed progs\n");
14372 			return -EINVAL;
14373 		}
14374 		if (tgt_prog->type == prog->type) {
14375 			/* Cannot fentry/fexit another fentry/fexit program.
14376 			 * Cannot attach program extension to another extension.
14377 			 * It's ok to attach fentry/fexit to extension program.
14378 			 */
14379 			bpf_log(log, "Cannot recursively attach\n");
14380 			return -EINVAL;
14381 		}
14382 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
14383 		    prog_extension &&
14384 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
14385 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
14386 			/* Program extensions can extend all program types
14387 			 * except fentry/fexit. The reason is the following.
14388 			 * The fentry/fexit programs are used for performance
14389 			 * analysis, stats and can be attached to any program
14390 			 * type except themselves. When extension program is
14391 			 * replacing XDP function it is necessary to allow
14392 			 * performance analysis of all functions. Both original
14393 			 * XDP program and its program extension. Hence
14394 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
14395 			 * allowed. If extending of fentry/fexit was allowed it
14396 			 * would be possible to create long call chain
14397 			 * fentry->extension->fentry->extension beyond
14398 			 * reasonable stack size. Hence extending fentry is not
14399 			 * allowed.
14400 			 */
14401 			bpf_log(log, "Cannot extend fentry/fexit\n");
14402 			return -EINVAL;
14403 		}
14404 	} else {
14405 		if (prog_extension) {
14406 			bpf_log(log, "Cannot replace kernel functions\n");
14407 			return -EINVAL;
14408 		}
14409 	}
14410 
14411 	switch (prog->expected_attach_type) {
14412 	case BPF_TRACE_RAW_TP:
14413 		if (tgt_prog) {
14414 			bpf_log(log,
14415 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
14416 			return -EINVAL;
14417 		}
14418 		if (!btf_type_is_typedef(t)) {
14419 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
14420 				btf_id);
14421 			return -EINVAL;
14422 		}
14423 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
14424 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
14425 				btf_id, tname);
14426 			return -EINVAL;
14427 		}
14428 		tname += sizeof(prefix) - 1;
14429 		t = btf_type_by_id(btf, t->type);
14430 		if (!btf_type_is_ptr(t))
14431 			/* should never happen in valid vmlinux build */
14432 			return -EINVAL;
14433 		t = btf_type_by_id(btf, t->type);
14434 		if (!btf_type_is_func_proto(t))
14435 			/* should never happen in valid vmlinux build */
14436 			return -EINVAL;
14437 
14438 		break;
14439 	case BPF_TRACE_ITER:
14440 		if (!btf_type_is_func(t)) {
14441 			bpf_log(log, "attach_btf_id %u is not a function\n",
14442 				btf_id);
14443 			return -EINVAL;
14444 		}
14445 		t = btf_type_by_id(btf, t->type);
14446 		if (!btf_type_is_func_proto(t))
14447 			return -EINVAL;
14448 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14449 		if (ret)
14450 			return ret;
14451 		break;
14452 	default:
14453 		if (!prog_extension)
14454 			return -EINVAL;
14455 		fallthrough;
14456 	case BPF_MODIFY_RETURN:
14457 	case BPF_LSM_MAC:
14458 	case BPF_TRACE_FENTRY:
14459 	case BPF_TRACE_FEXIT:
14460 		if (!btf_type_is_func(t)) {
14461 			bpf_log(log, "attach_btf_id %u is not a function\n",
14462 				btf_id);
14463 			return -EINVAL;
14464 		}
14465 		if (prog_extension &&
14466 		    btf_check_type_match(log, prog, btf, t))
14467 			return -EINVAL;
14468 		t = btf_type_by_id(btf, t->type);
14469 		if (!btf_type_is_func_proto(t))
14470 			return -EINVAL;
14471 
14472 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
14473 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
14474 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
14475 			return -EINVAL;
14476 
14477 		if (tgt_prog && conservative)
14478 			t = NULL;
14479 
14480 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
14481 		if (ret < 0)
14482 			return ret;
14483 
14484 		if (tgt_prog) {
14485 			if (subprog == 0)
14486 				addr = (long) tgt_prog->bpf_func;
14487 			else
14488 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
14489 		} else {
14490 			addr = kallsyms_lookup_name(tname);
14491 			if (!addr) {
14492 				bpf_log(log,
14493 					"The address of function %s cannot be found\n",
14494 					tname);
14495 				return -ENOENT;
14496 			}
14497 		}
14498 
14499 		if (prog->aux->sleepable) {
14500 			ret = -EINVAL;
14501 			switch (prog->type) {
14502 			case BPF_PROG_TYPE_TRACING:
14503 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
14504 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
14505 				 */
14506 				if (!check_non_sleepable_error_inject(btf_id) &&
14507 				    within_error_injection_list(addr))
14508 					ret = 0;
14509 				break;
14510 			case BPF_PROG_TYPE_LSM:
14511 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
14512 				 * Only some of them are sleepable.
14513 				 */
14514 				if (bpf_lsm_is_sleepable_hook(btf_id))
14515 					ret = 0;
14516 				break;
14517 			default:
14518 				break;
14519 			}
14520 			if (ret) {
14521 				bpf_log(log, "%s is not sleepable\n", tname);
14522 				return ret;
14523 			}
14524 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
14525 			if (tgt_prog) {
14526 				bpf_log(log, "can't modify return codes of BPF programs\n");
14527 				return -EINVAL;
14528 			}
14529 			ret = check_attach_modify_return(addr, tname);
14530 			if (ret) {
14531 				bpf_log(log, "%s() is not modifiable\n", tname);
14532 				return ret;
14533 			}
14534 		}
14535 
14536 		break;
14537 	}
14538 	tgt_info->tgt_addr = addr;
14539 	tgt_info->tgt_name = tname;
14540 	tgt_info->tgt_type = t;
14541 	return 0;
14542 }
14543 
14544 BTF_SET_START(btf_id_deny)
14545 BTF_ID_UNUSED
14546 #ifdef CONFIG_SMP
14547 BTF_ID(func, migrate_disable)
14548 BTF_ID(func, migrate_enable)
14549 #endif
14550 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
14551 BTF_ID(func, rcu_read_unlock_strict)
14552 #endif
14553 BTF_SET_END(btf_id_deny)
14554 
14555 static int check_attach_btf_id(struct bpf_verifier_env *env)
14556 {
14557 	struct bpf_prog *prog = env->prog;
14558 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
14559 	struct bpf_attach_target_info tgt_info = {};
14560 	u32 btf_id = prog->aux->attach_btf_id;
14561 	struct bpf_trampoline *tr;
14562 	int ret;
14563 	u64 key;
14564 
14565 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
14566 		if (prog->aux->sleepable)
14567 			/* attach_btf_id checked to be zero already */
14568 			return 0;
14569 		verbose(env, "Syscall programs can only be sleepable\n");
14570 		return -EINVAL;
14571 	}
14572 
14573 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
14574 	    prog->type != BPF_PROG_TYPE_LSM) {
14575 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
14576 		return -EINVAL;
14577 	}
14578 
14579 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
14580 		return check_struct_ops_btf_id(env);
14581 
14582 	if (prog->type != BPF_PROG_TYPE_TRACING &&
14583 	    prog->type != BPF_PROG_TYPE_LSM &&
14584 	    prog->type != BPF_PROG_TYPE_EXT)
14585 		return 0;
14586 
14587 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
14588 	if (ret)
14589 		return ret;
14590 
14591 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
14592 		/* to make freplace equivalent to their targets, they need to
14593 		 * inherit env->ops and expected_attach_type for the rest of the
14594 		 * verification
14595 		 */
14596 		env->ops = bpf_verifier_ops[tgt_prog->type];
14597 		prog->expected_attach_type = tgt_prog->expected_attach_type;
14598 	}
14599 
14600 	/* store info about the attachment target that will be used later */
14601 	prog->aux->attach_func_proto = tgt_info.tgt_type;
14602 	prog->aux->attach_func_name = tgt_info.tgt_name;
14603 
14604 	if (tgt_prog) {
14605 		prog->aux->saved_dst_prog_type = tgt_prog->type;
14606 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
14607 	}
14608 
14609 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
14610 		prog->aux->attach_btf_trace = true;
14611 		return 0;
14612 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
14613 		if (!bpf_iter_prog_supported(prog))
14614 			return -EINVAL;
14615 		return 0;
14616 	}
14617 
14618 	if (prog->type == BPF_PROG_TYPE_LSM) {
14619 		ret = bpf_lsm_verify_prog(&env->log, prog);
14620 		if (ret < 0)
14621 			return ret;
14622 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
14623 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
14624 		return -EINVAL;
14625 	}
14626 
14627 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
14628 	tr = bpf_trampoline_get(key, &tgt_info);
14629 	if (!tr)
14630 		return -ENOMEM;
14631 
14632 	prog->aux->dst_trampoline = tr;
14633 	return 0;
14634 }
14635 
14636 struct btf *bpf_get_btf_vmlinux(void)
14637 {
14638 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
14639 		mutex_lock(&bpf_verifier_lock);
14640 		if (!btf_vmlinux)
14641 			btf_vmlinux = btf_parse_vmlinux();
14642 		mutex_unlock(&bpf_verifier_lock);
14643 	}
14644 	return btf_vmlinux;
14645 }
14646 
14647 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
14648 {
14649 	u64 start_time = ktime_get_ns();
14650 	struct bpf_verifier_env *env;
14651 	struct bpf_verifier_log *log;
14652 	int i, len, ret = -EINVAL;
14653 	bool is_priv;
14654 
14655 	/* no program is valid */
14656 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
14657 		return -EINVAL;
14658 
14659 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
14660 	 * allocate/free it every time bpf_check() is called
14661 	 */
14662 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
14663 	if (!env)
14664 		return -ENOMEM;
14665 	log = &env->log;
14666 
14667 	len = (*prog)->len;
14668 	env->insn_aux_data =
14669 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
14670 	ret = -ENOMEM;
14671 	if (!env->insn_aux_data)
14672 		goto err_free_env;
14673 	for (i = 0; i < len; i++)
14674 		env->insn_aux_data[i].orig_idx = i;
14675 	env->prog = *prog;
14676 	env->ops = bpf_verifier_ops[env->prog->type];
14677 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
14678 	is_priv = bpf_capable();
14679 
14680 	bpf_get_btf_vmlinux();
14681 
14682 	/* grab the mutex to protect few globals used by verifier */
14683 	if (!is_priv)
14684 		mutex_lock(&bpf_verifier_lock);
14685 
14686 	if (attr->log_level || attr->log_buf || attr->log_size) {
14687 		/* user requested verbose verifier output
14688 		 * and supplied buffer to store the verification trace
14689 		 */
14690 		log->level = attr->log_level;
14691 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
14692 		log->len_total = attr->log_size;
14693 
14694 		/* log attributes have to be sane */
14695 		if (!bpf_verifier_log_attr_valid(log)) {
14696 			ret = -EINVAL;
14697 			goto err_unlock;
14698 		}
14699 	}
14700 
14701 	mark_verifier_state_clean(env);
14702 
14703 	if (IS_ERR(btf_vmlinux)) {
14704 		/* Either gcc or pahole or kernel are broken. */
14705 		verbose(env, "in-kernel BTF is malformed\n");
14706 		ret = PTR_ERR(btf_vmlinux);
14707 		goto skip_full_check;
14708 	}
14709 
14710 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
14711 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
14712 		env->strict_alignment = true;
14713 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
14714 		env->strict_alignment = false;
14715 
14716 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
14717 	env->allow_uninit_stack = bpf_allow_uninit_stack();
14718 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
14719 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
14720 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
14721 	env->bpf_capable = bpf_capable();
14722 
14723 	if (is_priv)
14724 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
14725 
14726 	env->explored_states = kvcalloc(state_htab_size(env),
14727 				       sizeof(struct bpf_verifier_state_list *),
14728 				       GFP_USER);
14729 	ret = -ENOMEM;
14730 	if (!env->explored_states)
14731 		goto skip_full_check;
14732 
14733 	ret = add_subprog_and_kfunc(env);
14734 	if (ret < 0)
14735 		goto skip_full_check;
14736 
14737 	ret = check_subprogs(env);
14738 	if (ret < 0)
14739 		goto skip_full_check;
14740 
14741 	ret = check_btf_info(env, attr, uattr);
14742 	if (ret < 0)
14743 		goto skip_full_check;
14744 
14745 	ret = check_attach_btf_id(env);
14746 	if (ret)
14747 		goto skip_full_check;
14748 
14749 	ret = resolve_pseudo_ldimm64(env);
14750 	if (ret < 0)
14751 		goto skip_full_check;
14752 
14753 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
14754 		ret = bpf_prog_offload_verifier_prep(env->prog);
14755 		if (ret)
14756 			goto skip_full_check;
14757 	}
14758 
14759 	ret = check_cfg(env);
14760 	if (ret < 0)
14761 		goto skip_full_check;
14762 
14763 	ret = do_check_subprogs(env);
14764 	ret = ret ?: do_check_main(env);
14765 
14766 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14767 		ret = bpf_prog_offload_finalize(env);
14768 
14769 skip_full_check:
14770 	kvfree(env->explored_states);
14771 
14772 	if (ret == 0)
14773 		ret = check_max_stack_depth(env);
14774 
14775 	/* instruction rewrites happen after this point */
14776 	if (is_priv) {
14777 		if (ret == 0)
14778 			opt_hard_wire_dead_code_branches(env);
14779 		if (ret == 0)
14780 			ret = opt_remove_dead_code(env);
14781 		if (ret == 0)
14782 			ret = opt_remove_nops(env);
14783 	} else {
14784 		if (ret == 0)
14785 			sanitize_dead_code(env);
14786 	}
14787 
14788 	if (ret == 0)
14789 		/* program is valid, convert *(u32*)(ctx + off) accesses */
14790 		ret = convert_ctx_accesses(env);
14791 
14792 	if (ret == 0)
14793 		ret = do_misc_fixups(env);
14794 
14795 	/* do 32-bit optimization after insn patching has done so those patched
14796 	 * insns could be handled correctly.
14797 	 */
14798 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14799 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14800 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14801 								     : false;
14802 	}
14803 
14804 	if (ret == 0)
14805 		ret = fixup_call_args(env);
14806 
14807 	env->verification_time = ktime_get_ns() - start_time;
14808 	print_verification_stats(env);
14809 	env->prog->aux->verified_insns = env->insn_processed;
14810 
14811 	if (log->level && bpf_verifier_log_full(log))
14812 		ret = -ENOSPC;
14813 	if (log->level && !log->ubuf) {
14814 		ret = -EFAULT;
14815 		goto err_release_maps;
14816 	}
14817 
14818 	if (ret)
14819 		goto err_release_maps;
14820 
14821 	if (env->used_map_cnt) {
14822 		/* if program passed verifier, update used_maps in bpf_prog_info */
14823 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14824 							  sizeof(env->used_maps[0]),
14825 							  GFP_KERNEL);
14826 
14827 		if (!env->prog->aux->used_maps) {
14828 			ret = -ENOMEM;
14829 			goto err_release_maps;
14830 		}
14831 
14832 		memcpy(env->prog->aux->used_maps, env->used_maps,
14833 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
14834 		env->prog->aux->used_map_cnt = env->used_map_cnt;
14835 	}
14836 	if (env->used_btf_cnt) {
14837 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
14838 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14839 							  sizeof(env->used_btfs[0]),
14840 							  GFP_KERNEL);
14841 		if (!env->prog->aux->used_btfs) {
14842 			ret = -ENOMEM;
14843 			goto err_release_maps;
14844 		}
14845 
14846 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
14847 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14848 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14849 	}
14850 	if (env->used_map_cnt || env->used_btf_cnt) {
14851 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
14852 		 * bpf_ld_imm64 instructions
14853 		 */
14854 		convert_pseudo_ld_imm64(env);
14855 	}
14856 
14857 	adjust_btf_func(env);
14858 
14859 err_release_maps:
14860 	if (!env->prog->aux->used_maps)
14861 		/* if we didn't copy map pointers into bpf_prog_info, release
14862 		 * them now. Otherwise free_used_maps() will release them.
14863 		 */
14864 		release_maps(env);
14865 	if (!env->prog->aux->used_btfs)
14866 		release_btfs(env);
14867 
14868 	/* extension progs temporarily inherit the attach_type of their targets
14869 	   for verification purposes, so set it back to zero before returning
14870 	 */
14871 	if (env->prog->type == BPF_PROG_TYPE_EXT)
14872 		env->prog->expected_attach_type = 0;
14873 
14874 	*prog = env->prog;
14875 err_unlock:
14876 	if (!is_priv)
14877 		mutex_unlock(&bpf_verifier_lock);
14878 	vfree(env->insn_aux_data);
14879 err_free_env:
14880 	kfree(env);
14881 	return ret;
14882 }
14883