1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <uapi/linux/btf.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/bpf.h> 19 #include <linux/btf.h> 20 #include <linux/bpf_verifier.h> 21 #include <linux/filter.h> 22 #include <net/netlink.h> 23 #include <linux/file.h> 24 #include <linux/vmalloc.h> 25 #include <linux/stringify.h> 26 #include <linux/bsearch.h> 27 #include <linux/sort.h> 28 #include <linux/perf_event.h> 29 30 #include "disasm.h" 31 32 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 33 #define BPF_PROG_TYPE(_id, _name) \ 34 [_id] = & _name ## _verifier_ops, 35 #define BPF_MAP_TYPE(_id, _ops) 36 #include <linux/bpf_types.h> 37 #undef BPF_PROG_TYPE 38 #undef BPF_MAP_TYPE 39 }; 40 41 /* bpf_check() is a static code analyzer that walks eBPF program 42 * instruction by instruction and updates register/stack state. 43 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 44 * 45 * The first pass is depth-first-search to check that the program is a DAG. 46 * It rejects the following programs: 47 * - larger than BPF_MAXINSNS insns 48 * - if loop is present (detected via back-edge) 49 * - unreachable insns exist (shouldn't be a forest. program = one function) 50 * - out of bounds or malformed jumps 51 * The second pass is all possible path descent from the 1st insn. 52 * Since it's analyzing all pathes through the program, the length of the 53 * analysis is limited to 64k insn, which may be hit even if total number of 54 * insn is less then 4K, but there are too many branches that change stack/regs. 55 * Number of 'branches to be analyzed' is limited to 1k 56 * 57 * On entry to each instruction, each register has a type, and the instruction 58 * changes the types of the registers depending on instruction semantics. 59 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 60 * copied to R1. 61 * 62 * All registers are 64-bit. 63 * R0 - return register 64 * R1-R5 argument passing registers 65 * R6-R9 callee saved registers 66 * R10 - frame pointer read-only 67 * 68 * At the start of BPF program the register R1 contains a pointer to bpf_context 69 * and has type PTR_TO_CTX. 70 * 71 * Verifier tracks arithmetic operations on pointers in case: 72 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 73 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 74 * 1st insn copies R10 (which has FRAME_PTR) type into R1 75 * and 2nd arithmetic instruction is pattern matched to recognize 76 * that it wants to construct a pointer to some element within stack. 77 * So after 2nd insn, the register R1 has type PTR_TO_STACK 78 * (and -20 constant is saved for further stack bounds checking). 79 * Meaning that this reg is a pointer to stack plus known immediate constant. 80 * 81 * Most of the time the registers have SCALAR_VALUE type, which 82 * means the register has some value, but it's not a valid pointer. 83 * (like pointer plus pointer becomes SCALAR_VALUE type) 84 * 85 * When verifier sees load or store instructions the type of base register 86 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 87 * four pointer types recognized by check_mem_access() function. 88 * 89 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 90 * and the range of [ptr, ptr + map's value_size) is accessible. 91 * 92 * registers used to pass values to function calls are checked against 93 * function argument constraints. 94 * 95 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 96 * It means that the register type passed to this function must be 97 * PTR_TO_STACK and it will be used inside the function as 98 * 'pointer to map element key' 99 * 100 * For example the argument constraints for bpf_map_lookup_elem(): 101 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 102 * .arg1_type = ARG_CONST_MAP_PTR, 103 * .arg2_type = ARG_PTR_TO_MAP_KEY, 104 * 105 * ret_type says that this function returns 'pointer to map elem value or null' 106 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 107 * 2nd argument should be a pointer to stack, which will be used inside 108 * the helper function as a pointer to map element key. 109 * 110 * On the kernel side the helper function looks like: 111 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 112 * { 113 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 114 * void *key = (void *) (unsigned long) r2; 115 * void *value; 116 * 117 * here kernel can access 'key' and 'map' pointers safely, knowing that 118 * [key, key + map->key_size) bytes are valid and were initialized on 119 * the stack of eBPF program. 120 * } 121 * 122 * Corresponding eBPF program may look like: 123 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 124 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 125 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 126 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 127 * here verifier looks at prototype of map_lookup_elem() and sees: 128 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 129 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 130 * 131 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 132 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 133 * and were initialized prior to this call. 134 * If it's ok, then verifier allows this BPF_CALL insn and looks at 135 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 136 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 137 * returns ether pointer to map value or NULL. 138 * 139 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 140 * insn, the register holding that pointer in the true branch changes state to 141 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 142 * branch. See check_cond_jmp_op(). 143 * 144 * After the call R0 is set to return type of the function and registers R1-R5 145 * are set to NOT_INIT to indicate that they are no longer readable. 146 * 147 * The following reference types represent a potential reference to a kernel 148 * resource which, after first being allocated, must be checked and freed by 149 * the BPF program: 150 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 151 * 152 * When the verifier sees a helper call return a reference type, it allocates a 153 * pointer id for the reference and stores it in the current function state. 154 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 155 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 156 * passes through a NULL-check conditional. For the branch wherein the state is 157 * changed to CONST_IMM, the verifier releases the reference. 158 * 159 * For each helper function that allocates a reference, such as 160 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 161 * bpf_sk_release(). When a reference type passes into the release function, 162 * the verifier also releases the reference. If any unchecked or unreleased 163 * reference remains at the end of the program, the verifier rejects it. 164 */ 165 166 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 167 struct bpf_verifier_stack_elem { 168 /* verifer state is 'st' 169 * before processing instruction 'insn_idx' 170 * and after processing instruction 'prev_insn_idx' 171 */ 172 struct bpf_verifier_state st; 173 int insn_idx; 174 int prev_insn_idx; 175 struct bpf_verifier_stack_elem *next; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 179 #define BPF_COMPLEXITY_LIMIT_STACK 1024 180 #define BPF_COMPLEXITY_LIMIT_STATES 64 181 182 #define BPF_MAP_PTR_UNPRIV 1UL 183 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 184 POISON_POINTER_DELTA)) 185 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 186 187 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 188 { 189 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 190 } 191 192 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 193 { 194 return aux->map_state & BPF_MAP_PTR_UNPRIV; 195 } 196 197 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 198 const struct bpf_map *map, bool unpriv) 199 { 200 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 201 unpriv |= bpf_map_ptr_unpriv(aux); 202 aux->map_state = (unsigned long)map | 203 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 204 } 205 206 struct bpf_call_arg_meta { 207 struct bpf_map *map_ptr; 208 bool raw_mode; 209 bool pkt_access; 210 int regno; 211 int access_size; 212 s64 msize_smax_value; 213 u64 msize_umax_value; 214 int ptr_id; 215 }; 216 217 static DEFINE_MUTEX(bpf_verifier_lock); 218 219 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 220 va_list args) 221 { 222 unsigned int n; 223 224 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 225 226 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 227 "verifier log line truncated - local buffer too short\n"); 228 229 n = min(log->len_total - log->len_used - 1, n); 230 log->kbuf[n] = '\0'; 231 232 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 233 log->len_used += n; 234 else 235 log->ubuf = NULL; 236 } 237 238 /* log_level controls verbosity level of eBPF verifier. 239 * bpf_verifier_log_write() is used to dump the verification trace to the log, 240 * so the user can figure out what's wrong with the program 241 */ 242 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 243 const char *fmt, ...) 244 { 245 va_list args; 246 247 if (!bpf_verifier_log_needed(&env->log)) 248 return; 249 250 va_start(args, fmt); 251 bpf_verifier_vlog(&env->log, fmt, args); 252 va_end(args); 253 } 254 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 255 256 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 257 { 258 struct bpf_verifier_env *env = private_data; 259 va_list args; 260 261 if (!bpf_verifier_log_needed(&env->log)) 262 return; 263 264 va_start(args, fmt); 265 bpf_verifier_vlog(&env->log, fmt, args); 266 va_end(args); 267 } 268 269 static bool type_is_pkt_pointer(enum bpf_reg_type type) 270 { 271 return type == PTR_TO_PACKET || 272 type == PTR_TO_PACKET_META; 273 } 274 275 static bool reg_type_may_be_null(enum bpf_reg_type type) 276 { 277 return type == PTR_TO_MAP_VALUE_OR_NULL || 278 type == PTR_TO_SOCKET_OR_NULL; 279 } 280 281 static bool type_is_refcounted(enum bpf_reg_type type) 282 { 283 return type == PTR_TO_SOCKET; 284 } 285 286 static bool type_is_refcounted_or_null(enum bpf_reg_type type) 287 { 288 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL; 289 } 290 291 static bool reg_is_refcounted(const struct bpf_reg_state *reg) 292 { 293 return type_is_refcounted(reg->type); 294 } 295 296 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg) 297 { 298 return type_is_refcounted_or_null(reg->type); 299 } 300 301 static bool arg_type_is_refcounted(enum bpf_arg_type type) 302 { 303 return type == ARG_PTR_TO_SOCKET; 304 } 305 306 /* Determine whether the function releases some resources allocated by another 307 * function call. The first reference type argument will be assumed to be 308 * released by release_reference(). 309 */ 310 static bool is_release_function(enum bpf_func_id func_id) 311 { 312 return func_id == BPF_FUNC_sk_release; 313 } 314 315 /* string representation of 'enum bpf_reg_type' */ 316 static const char * const reg_type_str[] = { 317 [NOT_INIT] = "?", 318 [SCALAR_VALUE] = "inv", 319 [PTR_TO_CTX] = "ctx", 320 [CONST_PTR_TO_MAP] = "map_ptr", 321 [PTR_TO_MAP_VALUE] = "map_value", 322 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 323 [PTR_TO_STACK] = "fp", 324 [PTR_TO_PACKET] = "pkt", 325 [PTR_TO_PACKET_META] = "pkt_meta", 326 [PTR_TO_PACKET_END] = "pkt_end", 327 [PTR_TO_FLOW_KEYS] = "flow_keys", 328 [PTR_TO_SOCKET] = "sock", 329 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 330 }; 331 332 static char slot_type_char[] = { 333 [STACK_INVALID] = '?', 334 [STACK_SPILL] = 'r', 335 [STACK_MISC] = 'm', 336 [STACK_ZERO] = '0', 337 }; 338 339 static void print_liveness(struct bpf_verifier_env *env, 340 enum bpf_reg_liveness live) 341 { 342 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN)) 343 verbose(env, "_"); 344 if (live & REG_LIVE_READ) 345 verbose(env, "r"); 346 if (live & REG_LIVE_WRITTEN) 347 verbose(env, "w"); 348 } 349 350 static struct bpf_func_state *func(struct bpf_verifier_env *env, 351 const struct bpf_reg_state *reg) 352 { 353 struct bpf_verifier_state *cur = env->cur_state; 354 355 return cur->frame[reg->frameno]; 356 } 357 358 static void print_verifier_state(struct bpf_verifier_env *env, 359 const struct bpf_func_state *state) 360 { 361 const struct bpf_reg_state *reg; 362 enum bpf_reg_type t; 363 int i; 364 365 if (state->frameno) 366 verbose(env, " frame%d:", state->frameno); 367 for (i = 0; i < MAX_BPF_REG; i++) { 368 reg = &state->regs[i]; 369 t = reg->type; 370 if (t == NOT_INIT) 371 continue; 372 verbose(env, " R%d", i); 373 print_liveness(env, reg->live); 374 verbose(env, "=%s", reg_type_str[t]); 375 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 376 tnum_is_const(reg->var_off)) { 377 /* reg->off should be 0 for SCALAR_VALUE */ 378 verbose(env, "%lld", reg->var_off.value + reg->off); 379 if (t == PTR_TO_STACK) 380 verbose(env, ",call_%d", func(env, reg)->callsite); 381 } else { 382 verbose(env, "(id=%d", reg->id); 383 if (t != SCALAR_VALUE) 384 verbose(env, ",off=%d", reg->off); 385 if (type_is_pkt_pointer(t)) 386 verbose(env, ",r=%d", reg->range); 387 else if (t == CONST_PTR_TO_MAP || 388 t == PTR_TO_MAP_VALUE || 389 t == PTR_TO_MAP_VALUE_OR_NULL) 390 verbose(env, ",ks=%d,vs=%d", 391 reg->map_ptr->key_size, 392 reg->map_ptr->value_size); 393 if (tnum_is_const(reg->var_off)) { 394 /* Typically an immediate SCALAR_VALUE, but 395 * could be a pointer whose offset is too big 396 * for reg->off 397 */ 398 verbose(env, ",imm=%llx", reg->var_off.value); 399 } else { 400 if (reg->smin_value != reg->umin_value && 401 reg->smin_value != S64_MIN) 402 verbose(env, ",smin_value=%lld", 403 (long long)reg->smin_value); 404 if (reg->smax_value != reg->umax_value && 405 reg->smax_value != S64_MAX) 406 verbose(env, ",smax_value=%lld", 407 (long long)reg->smax_value); 408 if (reg->umin_value != 0) 409 verbose(env, ",umin_value=%llu", 410 (unsigned long long)reg->umin_value); 411 if (reg->umax_value != U64_MAX) 412 verbose(env, ",umax_value=%llu", 413 (unsigned long long)reg->umax_value); 414 if (!tnum_is_unknown(reg->var_off)) { 415 char tn_buf[48]; 416 417 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 418 verbose(env, ",var_off=%s", tn_buf); 419 } 420 } 421 verbose(env, ")"); 422 } 423 } 424 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 425 char types_buf[BPF_REG_SIZE + 1]; 426 bool valid = false; 427 int j; 428 429 for (j = 0; j < BPF_REG_SIZE; j++) { 430 if (state->stack[i].slot_type[j] != STACK_INVALID) 431 valid = true; 432 types_buf[j] = slot_type_char[ 433 state->stack[i].slot_type[j]]; 434 } 435 types_buf[BPF_REG_SIZE] = 0; 436 if (!valid) 437 continue; 438 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 439 print_liveness(env, state->stack[i].spilled_ptr.live); 440 if (state->stack[i].slot_type[0] == STACK_SPILL) 441 verbose(env, "=%s", 442 reg_type_str[state->stack[i].spilled_ptr.type]); 443 else 444 verbose(env, "=%s", types_buf); 445 } 446 if (state->acquired_refs && state->refs[0].id) { 447 verbose(env, " refs=%d", state->refs[0].id); 448 for (i = 1; i < state->acquired_refs; i++) 449 if (state->refs[i].id) 450 verbose(env, ",%d", state->refs[i].id); 451 } 452 verbose(env, "\n"); 453 } 454 455 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 456 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 457 const struct bpf_func_state *src) \ 458 { \ 459 if (!src->FIELD) \ 460 return 0; \ 461 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 462 /* internal bug, make state invalid to reject the program */ \ 463 memset(dst, 0, sizeof(*dst)); \ 464 return -EFAULT; \ 465 } \ 466 memcpy(dst->FIELD, src->FIELD, \ 467 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 468 return 0; \ 469 } 470 /* copy_reference_state() */ 471 COPY_STATE_FN(reference, acquired_refs, refs, 1) 472 /* copy_stack_state() */ 473 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 474 #undef COPY_STATE_FN 475 476 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 477 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 478 bool copy_old) \ 479 { \ 480 u32 old_size = state->COUNT; \ 481 struct bpf_##NAME##_state *new_##FIELD; \ 482 int slot = size / SIZE; \ 483 \ 484 if (size <= old_size || !size) { \ 485 if (copy_old) \ 486 return 0; \ 487 state->COUNT = slot * SIZE; \ 488 if (!size && old_size) { \ 489 kfree(state->FIELD); \ 490 state->FIELD = NULL; \ 491 } \ 492 return 0; \ 493 } \ 494 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 495 GFP_KERNEL); \ 496 if (!new_##FIELD) \ 497 return -ENOMEM; \ 498 if (copy_old) { \ 499 if (state->FIELD) \ 500 memcpy(new_##FIELD, state->FIELD, \ 501 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 502 memset(new_##FIELD + old_size / SIZE, 0, \ 503 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 504 } \ 505 state->COUNT = slot * SIZE; \ 506 kfree(state->FIELD); \ 507 state->FIELD = new_##FIELD; \ 508 return 0; \ 509 } 510 /* realloc_reference_state() */ 511 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 512 /* realloc_stack_state() */ 513 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 514 #undef REALLOC_STATE_FN 515 516 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 517 * make it consume minimal amount of memory. check_stack_write() access from 518 * the program calls into realloc_func_state() to grow the stack size. 519 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 520 * which realloc_stack_state() copies over. It points to previous 521 * bpf_verifier_state which is never reallocated. 522 */ 523 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 524 int refs_size, bool copy_old) 525 { 526 int err = realloc_reference_state(state, refs_size, copy_old); 527 if (err) 528 return err; 529 return realloc_stack_state(state, stack_size, copy_old); 530 } 531 532 /* Acquire a pointer id from the env and update the state->refs to include 533 * this new pointer reference. 534 * On success, returns a valid pointer id to associate with the register 535 * On failure, returns a negative errno. 536 */ 537 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 538 { 539 struct bpf_func_state *state = cur_func(env); 540 int new_ofs = state->acquired_refs; 541 int id, err; 542 543 err = realloc_reference_state(state, state->acquired_refs + 1, true); 544 if (err) 545 return err; 546 id = ++env->id_gen; 547 state->refs[new_ofs].id = id; 548 state->refs[new_ofs].insn_idx = insn_idx; 549 550 return id; 551 } 552 553 /* release function corresponding to acquire_reference_state(). Idempotent. */ 554 static int __release_reference_state(struct bpf_func_state *state, int ptr_id) 555 { 556 int i, last_idx; 557 558 if (!ptr_id) 559 return -EFAULT; 560 561 last_idx = state->acquired_refs - 1; 562 for (i = 0; i < state->acquired_refs; i++) { 563 if (state->refs[i].id == ptr_id) { 564 if (last_idx && i != last_idx) 565 memcpy(&state->refs[i], &state->refs[last_idx], 566 sizeof(*state->refs)); 567 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 568 state->acquired_refs--; 569 return 0; 570 } 571 } 572 return -EFAULT; 573 } 574 575 /* variation on the above for cases where we expect that there must be an 576 * outstanding reference for the specified ptr_id. 577 */ 578 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id) 579 { 580 struct bpf_func_state *state = cur_func(env); 581 int err; 582 583 err = __release_reference_state(state, ptr_id); 584 if (WARN_ON_ONCE(err != 0)) 585 verbose(env, "verifier internal error: can't release reference\n"); 586 return err; 587 } 588 589 static int transfer_reference_state(struct bpf_func_state *dst, 590 struct bpf_func_state *src) 591 { 592 int err = realloc_reference_state(dst, src->acquired_refs, false); 593 if (err) 594 return err; 595 err = copy_reference_state(dst, src); 596 if (err) 597 return err; 598 return 0; 599 } 600 601 static void free_func_state(struct bpf_func_state *state) 602 { 603 if (!state) 604 return; 605 kfree(state->refs); 606 kfree(state->stack); 607 kfree(state); 608 } 609 610 static void free_verifier_state(struct bpf_verifier_state *state, 611 bool free_self) 612 { 613 int i; 614 615 for (i = 0; i <= state->curframe; i++) { 616 free_func_state(state->frame[i]); 617 state->frame[i] = NULL; 618 } 619 if (free_self) 620 kfree(state); 621 } 622 623 /* copy verifier state from src to dst growing dst stack space 624 * when necessary to accommodate larger src stack 625 */ 626 static int copy_func_state(struct bpf_func_state *dst, 627 const struct bpf_func_state *src) 628 { 629 int err; 630 631 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 632 false); 633 if (err) 634 return err; 635 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 636 err = copy_reference_state(dst, src); 637 if (err) 638 return err; 639 return copy_stack_state(dst, src); 640 } 641 642 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 643 const struct bpf_verifier_state *src) 644 { 645 struct bpf_func_state *dst; 646 int i, err; 647 648 /* if dst has more stack frames then src frame, free them */ 649 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 650 free_func_state(dst_state->frame[i]); 651 dst_state->frame[i] = NULL; 652 } 653 dst_state->curframe = src->curframe; 654 for (i = 0; i <= src->curframe; i++) { 655 dst = dst_state->frame[i]; 656 if (!dst) { 657 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 658 if (!dst) 659 return -ENOMEM; 660 dst_state->frame[i] = dst; 661 } 662 err = copy_func_state(dst, src->frame[i]); 663 if (err) 664 return err; 665 } 666 return 0; 667 } 668 669 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 670 int *insn_idx) 671 { 672 struct bpf_verifier_state *cur = env->cur_state; 673 struct bpf_verifier_stack_elem *elem, *head = env->head; 674 int err; 675 676 if (env->head == NULL) 677 return -ENOENT; 678 679 if (cur) { 680 err = copy_verifier_state(cur, &head->st); 681 if (err) 682 return err; 683 } 684 if (insn_idx) 685 *insn_idx = head->insn_idx; 686 if (prev_insn_idx) 687 *prev_insn_idx = head->prev_insn_idx; 688 elem = head->next; 689 free_verifier_state(&head->st, false); 690 kfree(head); 691 env->head = elem; 692 env->stack_size--; 693 return 0; 694 } 695 696 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 697 int insn_idx, int prev_insn_idx) 698 { 699 struct bpf_verifier_state *cur = env->cur_state; 700 struct bpf_verifier_stack_elem *elem; 701 int err; 702 703 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 704 if (!elem) 705 goto err; 706 707 elem->insn_idx = insn_idx; 708 elem->prev_insn_idx = prev_insn_idx; 709 elem->next = env->head; 710 env->head = elem; 711 env->stack_size++; 712 err = copy_verifier_state(&elem->st, cur); 713 if (err) 714 goto err; 715 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 716 verbose(env, "BPF program is too complex\n"); 717 goto err; 718 } 719 return &elem->st; 720 err: 721 free_verifier_state(env->cur_state, true); 722 env->cur_state = NULL; 723 /* pop all elements and return */ 724 while (!pop_stack(env, NULL, NULL)); 725 return NULL; 726 } 727 728 #define CALLER_SAVED_REGS 6 729 static const int caller_saved[CALLER_SAVED_REGS] = { 730 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 731 }; 732 733 static void __mark_reg_not_init(struct bpf_reg_state *reg); 734 735 /* Mark the unknown part of a register (variable offset or scalar value) as 736 * known to have the value @imm. 737 */ 738 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 739 { 740 /* Clear id, off, and union(map_ptr, range) */ 741 memset(((u8 *)reg) + sizeof(reg->type), 0, 742 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 743 reg->var_off = tnum_const(imm); 744 reg->smin_value = (s64)imm; 745 reg->smax_value = (s64)imm; 746 reg->umin_value = imm; 747 reg->umax_value = imm; 748 } 749 750 /* Mark the 'variable offset' part of a register as zero. This should be 751 * used only on registers holding a pointer type. 752 */ 753 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 754 { 755 __mark_reg_known(reg, 0); 756 } 757 758 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 759 { 760 __mark_reg_known(reg, 0); 761 reg->type = SCALAR_VALUE; 762 } 763 764 static void mark_reg_known_zero(struct bpf_verifier_env *env, 765 struct bpf_reg_state *regs, u32 regno) 766 { 767 if (WARN_ON(regno >= MAX_BPF_REG)) { 768 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 769 /* Something bad happened, let's kill all regs */ 770 for (regno = 0; regno < MAX_BPF_REG; regno++) 771 __mark_reg_not_init(regs + regno); 772 return; 773 } 774 __mark_reg_known_zero(regs + regno); 775 } 776 777 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 778 { 779 return type_is_pkt_pointer(reg->type); 780 } 781 782 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 783 { 784 return reg_is_pkt_pointer(reg) || 785 reg->type == PTR_TO_PACKET_END; 786 } 787 788 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 789 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 790 enum bpf_reg_type which) 791 { 792 /* The register can already have a range from prior markings. 793 * This is fine as long as it hasn't been advanced from its 794 * origin. 795 */ 796 return reg->type == which && 797 reg->id == 0 && 798 reg->off == 0 && 799 tnum_equals_const(reg->var_off, 0); 800 } 801 802 /* Attempts to improve min/max values based on var_off information */ 803 static void __update_reg_bounds(struct bpf_reg_state *reg) 804 { 805 /* min signed is max(sign bit) | min(other bits) */ 806 reg->smin_value = max_t(s64, reg->smin_value, 807 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 808 /* max signed is min(sign bit) | max(other bits) */ 809 reg->smax_value = min_t(s64, reg->smax_value, 810 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 811 reg->umin_value = max(reg->umin_value, reg->var_off.value); 812 reg->umax_value = min(reg->umax_value, 813 reg->var_off.value | reg->var_off.mask); 814 } 815 816 /* Uses signed min/max values to inform unsigned, and vice-versa */ 817 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 818 { 819 /* Learn sign from signed bounds. 820 * If we cannot cross the sign boundary, then signed and unsigned bounds 821 * are the same, so combine. This works even in the negative case, e.g. 822 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 823 */ 824 if (reg->smin_value >= 0 || reg->smax_value < 0) { 825 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 826 reg->umin_value); 827 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 828 reg->umax_value); 829 return; 830 } 831 /* Learn sign from unsigned bounds. Signed bounds cross the sign 832 * boundary, so we must be careful. 833 */ 834 if ((s64)reg->umax_value >= 0) { 835 /* Positive. We can't learn anything from the smin, but smax 836 * is positive, hence safe. 837 */ 838 reg->smin_value = reg->umin_value; 839 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 840 reg->umax_value); 841 } else if ((s64)reg->umin_value < 0) { 842 /* Negative. We can't learn anything from the smax, but smin 843 * is negative, hence safe. 844 */ 845 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 846 reg->umin_value); 847 reg->smax_value = reg->umax_value; 848 } 849 } 850 851 /* Attempts to improve var_off based on unsigned min/max information */ 852 static void __reg_bound_offset(struct bpf_reg_state *reg) 853 { 854 reg->var_off = tnum_intersect(reg->var_off, 855 tnum_range(reg->umin_value, 856 reg->umax_value)); 857 } 858 859 /* Reset the min/max bounds of a register */ 860 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 861 { 862 reg->smin_value = S64_MIN; 863 reg->smax_value = S64_MAX; 864 reg->umin_value = 0; 865 reg->umax_value = U64_MAX; 866 } 867 868 /* Mark a register as having a completely unknown (scalar) value. */ 869 static void __mark_reg_unknown(struct bpf_reg_state *reg) 870 { 871 /* 872 * Clear type, id, off, and union(map_ptr, range) and 873 * padding between 'type' and union 874 */ 875 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 876 reg->type = SCALAR_VALUE; 877 reg->var_off = tnum_unknown; 878 reg->frameno = 0; 879 __mark_reg_unbounded(reg); 880 } 881 882 static void mark_reg_unknown(struct bpf_verifier_env *env, 883 struct bpf_reg_state *regs, u32 regno) 884 { 885 if (WARN_ON(regno >= MAX_BPF_REG)) { 886 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 887 /* Something bad happened, let's kill all regs except FP */ 888 for (regno = 0; regno < BPF_REG_FP; regno++) 889 __mark_reg_not_init(regs + regno); 890 return; 891 } 892 __mark_reg_unknown(regs + regno); 893 } 894 895 static void __mark_reg_not_init(struct bpf_reg_state *reg) 896 { 897 __mark_reg_unknown(reg); 898 reg->type = NOT_INIT; 899 } 900 901 static void mark_reg_not_init(struct bpf_verifier_env *env, 902 struct bpf_reg_state *regs, u32 regno) 903 { 904 if (WARN_ON(regno >= MAX_BPF_REG)) { 905 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 906 /* Something bad happened, let's kill all regs except FP */ 907 for (regno = 0; regno < BPF_REG_FP; regno++) 908 __mark_reg_not_init(regs + regno); 909 return; 910 } 911 __mark_reg_not_init(regs + regno); 912 } 913 914 static void init_reg_state(struct bpf_verifier_env *env, 915 struct bpf_func_state *state) 916 { 917 struct bpf_reg_state *regs = state->regs; 918 int i; 919 920 for (i = 0; i < MAX_BPF_REG; i++) { 921 mark_reg_not_init(env, regs, i); 922 regs[i].live = REG_LIVE_NONE; 923 regs[i].parent = NULL; 924 } 925 926 /* frame pointer */ 927 regs[BPF_REG_FP].type = PTR_TO_STACK; 928 mark_reg_known_zero(env, regs, BPF_REG_FP); 929 regs[BPF_REG_FP].frameno = state->frameno; 930 931 /* 1st arg to a function */ 932 regs[BPF_REG_1].type = PTR_TO_CTX; 933 mark_reg_known_zero(env, regs, BPF_REG_1); 934 } 935 936 #define BPF_MAIN_FUNC (-1) 937 static void init_func_state(struct bpf_verifier_env *env, 938 struct bpf_func_state *state, 939 int callsite, int frameno, int subprogno) 940 { 941 state->callsite = callsite; 942 state->frameno = frameno; 943 state->subprogno = subprogno; 944 init_reg_state(env, state); 945 } 946 947 enum reg_arg_type { 948 SRC_OP, /* register is used as source operand */ 949 DST_OP, /* register is used as destination operand */ 950 DST_OP_NO_MARK /* same as above, check only, don't mark */ 951 }; 952 953 static int cmp_subprogs(const void *a, const void *b) 954 { 955 return ((struct bpf_subprog_info *)a)->start - 956 ((struct bpf_subprog_info *)b)->start; 957 } 958 959 static int find_subprog(struct bpf_verifier_env *env, int off) 960 { 961 struct bpf_subprog_info *p; 962 963 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 964 sizeof(env->subprog_info[0]), cmp_subprogs); 965 if (!p) 966 return -ENOENT; 967 return p - env->subprog_info; 968 969 } 970 971 static int add_subprog(struct bpf_verifier_env *env, int off) 972 { 973 int insn_cnt = env->prog->len; 974 int ret; 975 976 if (off >= insn_cnt || off < 0) { 977 verbose(env, "call to invalid destination\n"); 978 return -EINVAL; 979 } 980 ret = find_subprog(env, off); 981 if (ret >= 0) 982 return 0; 983 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 984 verbose(env, "too many subprograms\n"); 985 return -E2BIG; 986 } 987 env->subprog_info[env->subprog_cnt++].start = off; 988 sort(env->subprog_info, env->subprog_cnt, 989 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 990 return 0; 991 } 992 993 static int check_subprogs(struct bpf_verifier_env *env) 994 { 995 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 996 struct bpf_subprog_info *subprog = env->subprog_info; 997 struct bpf_insn *insn = env->prog->insnsi; 998 int insn_cnt = env->prog->len; 999 1000 /* Add entry function. */ 1001 ret = add_subprog(env, 0); 1002 if (ret < 0) 1003 return ret; 1004 1005 /* determine subprog starts. The end is one before the next starts */ 1006 for (i = 0; i < insn_cnt; i++) { 1007 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1008 continue; 1009 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1010 continue; 1011 if (!env->allow_ptr_leaks) { 1012 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1013 return -EPERM; 1014 } 1015 ret = add_subprog(env, i + insn[i].imm + 1); 1016 if (ret < 0) 1017 return ret; 1018 } 1019 1020 /* Add a fake 'exit' subprog which could simplify subprog iteration 1021 * logic. 'subprog_cnt' should not be increased. 1022 */ 1023 subprog[env->subprog_cnt].start = insn_cnt; 1024 1025 if (env->log.level > 1) 1026 for (i = 0; i < env->subprog_cnt; i++) 1027 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1028 1029 /* now check that all jumps are within the same subprog */ 1030 subprog_start = subprog[cur_subprog].start; 1031 subprog_end = subprog[cur_subprog + 1].start; 1032 for (i = 0; i < insn_cnt; i++) { 1033 u8 code = insn[i].code; 1034 1035 if (BPF_CLASS(code) != BPF_JMP) 1036 goto next; 1037 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1038 goto next; 1039 off = i + insn[i].off + 1; 1040 if (off < subprog_start || off >= subprog_end) { 1041 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1042 return -EINVAL; 1043 } 1044 next: 1045 if (i == subprog_end - 1) { 1046 /* to avoid fall-through from one subprog into another 1047 * the last insn of the subprog should be either exit 1048 * or unconditional jump back 1049 */ 1050 if (code != (BPF_JMP | BPF_EXIT) && 1051 code != (BPF_JMP | BPF_JA)) { 1052 verbose(env, "last insn is not an exit or jmp\n"); 1053 return -EINVAL; 1054 } 1055 subprog_start = subprog_end; 1056 cur_subprog++; 1057 if (cur_subprog < env->subprog_cnt) 1058 subprog_end = subprog[cur_subprog + 1].start; 1059 } 1060 } 1061 return 0; 1062 } 1063 1064 /* Parentage chain of this register (or stack slot) should take care of all 1065 * issues like callee-saved registers, stack slot allocation time, etc. 1066 */ 1067 static int mark_reg_read(struct bpf_verifier_env *env, 1068 const struct bpf_reg_state *state, 1069 struct bpf_reg_state *parent) 1070 { 1071 bool writes = parent == state->parent; /* Observe write marks */ 1072 1073 while (parent) { 1074 /* if read wasn't screened by an earlier write ... */ 1075 if (writes && state->live & REG_LIVE_WRITTEN) 1076 break; 1077 /* ... then we depend on parent's value */ 1078 parent->live |= REG_LIVE_READ; 1079 state = parent; 1080 parent = state->parent; 1081 writes = true; 1082 } 1083 return 0; 1084 } 1085 1086 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1087 enum reg_arg_type t) 1088 { 1089 struct bpf_verifier_state *vstate = env->cur_state; 1090 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1091 struct bpf_reg_state *regs = state->regs; 1092 1093 if (regno >= MAX_BPF_REG) { 1094 verbose(env, "R%d is invalid\n", regno); 1095 return -EINVAL; 1096 } 1097 1098 if (t == SRC_OP) { 1099 /* check whether register used as source operand can be read */ 1100 if (regs[regno].type == NOT_INIT) { 1101 verbose(env, "R%d !read_ok\n", regno); 1102 return -EACCES; 1103 } 1104 /* We don't need to worry about FP liveness because it's read-only */ 1105 if (regno != BPF_REG_FP) 1106 return mark_reg_read(env, ®s[regno], 1107 regs[regno].parent); 1108 } else { 1109 /* check whether register used as dest operand can be written to */ 1110 if (regno == BPF_REG_FP) { 1111 verbose(env, "frame pointer is read only\n"); 1112 return -EACCES; 1113 } 1114 regs[regno].live |= REG_LIVE_WRITTEN; 1115 if (t == DST_OP) 1116 mark_reg_unknown(env, regs, regno); 1117 } 1118 return 0; 1119 } 1120 1121 static bool is_spillable_regtype(enum bpf_reg_type type) 1122 { 1123 switch (type) { 1124 case PTR_TO_MAP_VALUE: 1125 case PTR_TO_MAP_VALUE_OR_NULL: 1126 case PTR_TO_STACK: 1127 case PTR_TO_CTX: 1128 case PTR_TO_PACKET: 1129 case PTR_TO_PACKET_META: 1130 case PTR_TO_PACKET_END: 1131 case PTR_TO_FLOW_KEYS: 1132 case CONST_PTR_TO_MAP: 1133 case PTR_TO_SOCKET: 1134 case PTR_TO_SOCKET_OR_NULL: 1135 return true; 1136 default: 1137 return false; 1138 } 1139 } 1140 1141 /* Does this register contain a constant zero? */ 1142 static bool register_is_null(struct bpf_reg_state *reg) 1143 { 1144 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1145 } 1146 1147 /* check_stack_read/write functions track spill/fill of registers, 1148 * stack boundary and alignment are checked in check_mem_access() 1149 */ 1150 static int check_stack_write(struct bpf_verifier_env *env, 1151 struct bpf_func_state *state, /* func where register points to */ 1152 int off, int size, int value_regno, int insn_idx) 1153 { 1154 struct bpf_func_state *cur; /* state of the current function */ 1155 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1156 enum bpf_reg_type type; 1157 1158 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1159 state->acquired_refs, true); 1160 if (err) 1161 return err; 1162 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1163 * so it's aligned access and [off, off + size) are within stack limits 1164 */ 1165 if (!env->allow_ptr_leaks && 1166 state->stack[spi].slot_type[0] == STACK_SPILL && 1167 size != BPF_REG_SIZE) { 1168 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1169 return -EACCES; 1170 } 1171 1172 cur = env->cur_state->frame[env->cur_state->curframe]; 1173 if (value_regno >= 0 && 1174 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1175 1176 /* register containing pointer is being spilled into stack */ 1177 if (size != BPF_REG_SIZE) { 1178 verbose(env, "invalid size of register spill\n"); 1179 return -EACCES; 1180 } 1181 1182 if (state != cur && type == PTR_TO_STACK) { 1183 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1184 return -EINVAL; 1185 } 1186 1187 /* save register state */ 1188 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1189 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1190 1191 for (i = 0; i < BPF_REG_SIZE; i++) { 1192 if (state->stack[spi].slot_type[i] == STACK_MISC && 1193 !env->allow_ptr_leaks) { 1194 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1195 int soff = (-spi - 1) * BPF_REG_SIZE; 1196 1197 /* detected reuse of integer stack slot with a pointer 1198 * which means either llvm is reusing stack slot or 1199 * an attacker is trying to exploit CVE-2018-3639 1200 * (speculative store bypass) 1201 * Have to sanitize that slot with preemptive 1202 * store of zero. 1203 */ 1204 if (*poff && *poff != soff) { 1205 /* disallow programs where single insn stores 1206 * into two different stack slots, since verifier 1207 * cannot sanitize them 1208 */ 1209 verbose(env, 1210 "insn %d cannot access two stack slots fp%d and fp%d", 1211 insn_idx, *poff, soff); 1212 return -EINVAL; 1213 } 1214 *poff = soff; 1215 } 1216 state->stack[spi].slot_type[i] = STACK_SPILL; 1217 } 1218 } else { 1219 u8 type = STACK_MISC; 1220 1221 /* regular write of data into stack destroys any spilled ptr */ 1222 state->stack[spi].spilled_ptr.type = NOT_INIT; 1223 1224 /* only mark the slot as written if all 8 bytes were written 1225 * otherwise read propagation may incorrectly stop too soon 1226 * when stack slots are partially written. 1227 * This heuristic means that read propagation will be 1228 * conservative, since it will add reg_live_read marks 1229 * to stack slots all the way to first state when programs 1230 * writes+reads less than 8 bytes 1231 */ 1232 if (size == BPF_REG_SIZE) 1233 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1234 1235 /* when we zero initialize stack slots mark them as such */ 1236 if (value_regno >= 0 && 1237 register_is_null(&cur->regs[value_regno])) 1238 type = STACK_ZERO; 1239 1240 for (i = 0; i < size; i++) 1241 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1242 type; 1243 } 1244 return 0; 1245 } 1246 1247 static int check_stack_read(struct bpf_verifier_env *env, 1248 struct bpf_func_state *reg_state /* func where register points to */, 1249 int off, int size, int value_regno) 1250 { 1251 struct bpf_verifier_state *vstate = env->cur_state; 1252 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1253 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1254 u8 *stype; 1255 1256 if (reg_state->allocated_stack <= slot) { 1257 verbose(env, "invalid read from stack off %d+0 size %d\n", 1258 off, size); 1259 return -EACCES; 1260 } 1261 stype = reg_state->stack[spi].slot_type; 1262 1263 if (stype[0] == STACK_SPILL) { 1264 if (size != BPF_REG_SIZE) { 1265 verbose(env, "invalid size of register spill\n"); 1266 return -EACCES; 1267 } 1268 for (i = 1; i < BPF_REG_SIZE; i++) { 1269 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1270 verbose(env, "corrupted spill memory\n"); 1271 return -EACCES; 1272 } 1273 } 1274 1275 if (value_regno >= 0) { 1276 /* restore register state from stack */ 1277 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1278 /* mark reg as written since spilled pointer state likely 1279 * has its liveness marks cleared by is_state_visited() 1280 * which resets stack/reg liveness for state transitions 1281 */ 1282 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1283 } 1284 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1285 reg_state->stack[spi].spilled_ptr.parent); 1286 return 0; 1287 } else { 1288 int zeros = 0; 1289 1290 for (i = 0; i < size; i++) { 1291 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1292 continue; 1293 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1294 zeros++; 1295 continue; 1296 } 1297 verbose(env, "invalid read from stack off %d+%d size %d\n", 1298 off, i, size); 1299 return -EACCES; 1300 } 1301 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1302 reg_state->stack[spi].spilled_ptr.parent); 1303 if (value_regno >= 0) { 1304 if (zeros == size) { 1305 /* any size read into register is zero extended, 1306 * so the whole register == const_zero 1307 */ 1308 __mark_reg_const_zero(&state->regs[value_regno]); 1309 } else { 1310 /* have read misc data from the stack */ 1311 mark_reg_unknown(env, state->regs, value_regno); 1312 } 1313 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1314 } 1315 return 0; 1316 } 1317 } 1318 1319 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1320 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1321 int size, bool zero_size_allowed) 1322 { 1323 struct bpf_reg_state *regs = cur_regs(env); 1324 struct bpf_map *map = regs[regno].map_ptr; 1325 1326 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1327 off + size > map->value_size) { 1328 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1329 map->value_size, off, size); 1330 return -EACCES; 1331 } 1332 return 0; 1333 } 1334 1335 /* check read/write into a map element with possible variable offset */ 1336 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1337 int off, int size, bool zero_size_allowed) 1338 { 1339 struct bpf_verifier_state *vstate = env->cur_state; 1340 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1341 struct bpf_reg_state *reg = &state->regs[regno]; 1342 int err; 1343 1344 /* We may have adjusted the register to this map value, so we 1345 * need to try adding each of min_value and max_value to off 1346 * to make sure our theoretical access will be safe. 1347 */ 1348 if (env->log.level) 1349 print_verifier_state(env, state); 1350 /* The minimum value is only important with signed 1351 * comparisons where we can't assume the floor of a 1352 * value is 0. If we are using signed variables for our 1353 * index'es we need to make sure that whatever we use 1354 * will have a set floor within our range. 1355 */ 1356 if (reg->smin_value < 0) { 1357 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1358 regno); 1359 return -EACCES; 1360 } 1361 err = __check_map_access(env, regno, reg->smin_value + off, size, 1362 zero_size_allowed); 1363 if (err) { 1364 verbose(env, "R%d min value is outside of the array range\n", 1365 regno); 1366 return err; 1367 } 1368 1369 /* If we haven't set a max value then we need to bail since we can't be 1370 * sure we won't do bad things. 1371 * If reg->umax_value + off could overflow, treat that as unbounded too. 1372 */ 1373 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1374 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1375 regno); 1376 return -EACCES; 1377 } 1378 err = __check_map_access(env, regno, reg->umax_value + off, size, 1379 zero_size_allowed); 1380 if (err) 1381 verbose(env, "R%d max value is outside of the array range\n", 1382 regno); 1383 return err; 1384 } 1385 1386 #define MAX_PACKET_OFF 0xffff 1387 1388 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1389 const struct bpf_call_arg_meta *meta, 1390 enum bpf_access_type t) 1391 { 1392 switch (env->prog->type) { 1393 /* Program types only with direct read access go here! */ 1394 case BPF_PROG_TYPE_LWT_IN: 1395 case BPF_PROG_TYPE_LWT_OUT: 1396 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1397 case BPF_PROG_TYPE_SK_REUSEPORT: 1398 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1399 case BPF_PROG_TYPE_CGROUP_SKB: 1400 if (t == BPF_WRITE) 1401 return false; 1402 /* fallthrough */ 1403 1404 /* Program types with direct read + write access go here! */ 1405 case BPF_PROG_TYPE_SCHED_CLS: 1406 case BPF_PROG_TYPE_SCHED_ACT: 1407 case BPF_PROG_TYPE_XDP: 1408 case BPF_PROG_TYPE_LWT_XMIT: 1409 case BPF_PROG_TYPE_SK_SKB: 1410 case BPF_PROG_TYPE_SK_MSG: 1411 if (meta) 1412 return meta->pkt_access; 1413 1414 env->seen_direct_write = true; 1415 return true; 1416 default: 1417 return false; 1418 } 1419 } 1420 1421 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1422 int off, int size, bool zero_size_allowed) 1423 { 1424 struct bpf_reg_state *regs = cur_regs(env); 1425 struct bpf_reg_state *reg = ®s[regno]; 1426 1427 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1428 (u64)off + size > reg->range) { 1429 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1430 off, size, regno, reg->id, reg->off, reg->range); 1431 return -EACCES; 1432 } 1433 return 0; 1434 } 1435 1436 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1437 int size, bool zero_size_allowed) 1438 { 1439 struct bpf_reg_state *regs = cur_regs(env); 1440 struct bpf_reg_state *reg = ®s[regno]; 1441 int err; 1442 1443 /* We may have added a variable offset to the packet pointer; but any 1444 * reg->range we have comes after that. We are only checking the fixed 1445 * offset. 1446 */ 1447 1448 /* We don't allow negative numbers, because we aren't tracking enough 1449 * detail to prove they're safe. 1450 */ 1451 if (reg->smin_value < 0) { 1452 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1453 regno); 1454 return -EACCES; 1455 } 1456 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1457 if (err) { 1458 verbose(env, "R%d offset is outside of the packet\n", regno); 1459 return err; 1460 } 1461 1462 /* __check_packet_access has made sure "off + size - 1" is within u16. 1463 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1464 * otherwise find_good_pkt_pointers would have refused to set range info 1465 * that __check_packet_access would have rejected this pkt access. 1466 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1467 */ 1468 env->prog->aux->max_pkt_offset = 1469 max_t(u32, env->prog->aux->max_pkt_offset, 1470 off + reg->umax_value + size - 1); 1471 1472 return err; 1473 } 1474 1475 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1476 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1477 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1478 { 1479 struct bpf_insn_access_aux info = { 1480 .reg_type = *reg_type, 1481 }; 1482 1483 if (env->ops->is_valid_access && 1484 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1485 /* A non zero info.ctx_field_size indicates that this field is a 1486 * candidate for later verifier transformation to load the whole 1487 * field and then apply a mask when accessed with a narrower 1488 * access than actual ctx access size. A zero info.ctx_field_size 1489 * will only allow for whole field access and rejects any other 1490 * type of narrower access. 1491 */ 1492 *reg_type = info.reg_type; 1493 1494 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1495 /* remember the offset of last byte accessed in ctx */ 1496 if (env->prog->aux->max_ctx_offset < off + size) 1497 env->prog->aux->max_ctx_offset = off + size; 1498 return 0; 1499 } 1500 1501 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1502 return -EACCES; 1503 } 1504 1505 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1506 int size) 1507 { 1508 if (size < 0 || off < 0 || 1509 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1510 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1511 off, size); 1512 return -EACCES; 1513 } 1514 return 0; 1515 } 1516 1517 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off, 1518 int size, enum bpf_access_type t) 1519 { 1520 struct bpf_reg_state *regs = cur_regs(env); 1521 struct bpf_reg_state *reg = ®s[regno]; 1522 struct bpf_insn_access_aux info; 1523 1524 if (reg->smin_value < 0) { 1525 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1526 regno); 1527 return -EACCES; 1528 } 1529 1530 if (!bpf_sock_is_valid_access(off, size, t, &info)) { 1531 verbose(env, "invalid bpf_sock access off=%d size=%d\n", 1532 off, size); 1533 return -EACCES; 1534 } 1535 1536 return 0; 1537 } 1538 1539 static bool __is_pointer_value(bool allow_ptr_leaks, 1540 const struct bpf_reg_state *reg) 1541 { 1542 if (allow_ptr_leaks) 1543 return false; 1544 1545 return reg->type != SCALAR_VALUE; 1546 } 1547 1548 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1549 { 1550 return cur_regs(env) + regno; 1551 } 1552 1553 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1554 { 1555 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1556 } 1557 1558 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1559 { 1560 const struct bpf_reg_state *reg = reg_state(env, regno); 1561 1562 return reg->type == PTR_TO_CTX || 1563 reg->type == PTR_TO_SOCKET; 1564 } 1565 1566 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1567 { 1568 const struct bpf_reg_state *reg = reg_state(env, regno); 1569 1570 return type_is_pkt_pointer(reg->type); 1571 } 1572 1573 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1574 { 1575 const struct bpf_reg_state *reg = reg_state(env, regno); 1576 1577 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1578 return reg->type == PTR_TO_FLOW_KEYS; 1579 } 1580 1581 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1582 const struct bpf_reg_state *reg, 1583 int off, int size, bool strict) 1584 { 1585 struct tnum reg_off; 1586 int ip_align; 1587 1588 /* Byte size accesses are always allowed. */ 1589 if (!strict || size == 1) 1590 return 0; 1591 1592 /* For platforms that do not have a Kconfig enabling 1593 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1594 * NET_IP_ALIGN is universally set to '2'. And on platforms 1595 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1596 * to this code only in strict mode where we want to emulate 1597 * the NET_IP_ALIGN==2 checking. Therefore use an 1598 * unconditional IP align value of '2'. 1599 */ 1600 ip_align = 2; 1601 1602 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1603 if (!tnum_is_aligned(reg_off, size)) { 1604 char tn_buf[48]; 1605 1606 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1607 verbose(env, 1608 "misaligned packet access off %d+%s+%d+%d size %d\n", 1609 ip_align, tn_buf, reg->off, off, size); 1610 return -EACCES; 1611 } 1612 1613 return 0; 1614 } 1615 1616 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1617 const struct bpf_reg_state *reg, 1618 const char *pointer_desc, 1619 int off, int size, bool strict) 1620 { 1621 struct tnum reg_off; 1622 1623 /* Byte size accesses are always allowed. */ 1624 if (!strict || size == 1) 1625 return 0; 1626 1627 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1628 if (!tnum_is_aligned(reg_off, size)) { 1629 char tn_buf[48]; 1630 1631 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1632 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1633 pointer_desc, tn_buf, reg->off, off, size); 1634 return -EACCES; 1635 } 1636 1637 return 0; 1638 } 1639 1640 static int check_ptr_alignment(struct bpf_verifier_env *env, 1641 const struct bpf_reg_state *reg, int off, 1642 int size, bool strict_alignment_once) 1643 { 1644 bool strict = env->strict_alignment || strict_alignment_once; 1645 const char *pointer_desc = ""; 1646 1647 switch (reg->type) { 1648 case PTR_TO_PACKET: 1649 case PTR_TO_PACKET_META: 1650 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1651 * right in front, treat it the very same way. 1652 */ 1653 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1654 case PTR_TO_FLOW_KEYS: 1655 pointer_desc = "flow keys "; 1656 break; 1657 case PTR_TO_MAP_VALUE: 1658 pointer_desc = "value "; 1659 break; 1660 case PTR_TO_CTX: 1661 pointer_desc = "context "; 1662 break; 1663 case PTR_TO_STACK: 1664 pointer_desc = "stack "; 1665 /* The stack spill tracking logic in check_stack_write() 1666 * and check_stack_read() relies on stack accesses being 1667 * aligned. 1668 */ 1669 strict = true; 1670 break; 1671 case PTR_TO_SOCKET: 1672 pointer_desc = "sock "; 1673 break; 1674 default: 1675 break; 1676 } 1677 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1678 strict); 1679 } 1680 1681 static int update_stack_depth(struct bpf_verifier_env *env, 1682 const struct bpf_func_state *func, 1683 int off) 1684 { 1685 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1686 1687 if (stack >= -off) 1688 return 0; 1689 1690 /* update known max for given subprogram */ 1691 env->subprog_info[func->subprogno].stack_depth = -off; 1692 return 0; 1693 } 1694 1695 /* starting from main bpf function walk all instructions of the function 1696 * and recursively walk all callees that given function can call. 1697 * Ignore jump and exit insns. 1698 * Since recursion is prevented by check_cfg() this algorithm 1699 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1700 */ 1701 static int check_max_stack_depth(struct bpf_verifier_env *env) 1702 { 1703 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1704 struct bpf_subprog_info *subprog = env->subprog_info; 1705 struct bpf_insn *insn = env->prog->insnsi; 1706 int ret_insn[MAX_CALL_FRAMES]; 1707 int ret_prog[MAX_CALL_FRAMES]; 1708 1709 process_func: 1710 /* round up to 32-bytes, since this is granularity 1711 * of interpreter stack size 1712 */ 1713 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1714 if (depth > MAX_BPF_STACK) { 1715 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1716 frame + 1, depth); 1717 return -EACCES; 1718 } 1719 continue_func: 1720 subprog_end = subprog[idx + 1].start; 1721 for (; i < subprog_end; i++) { 1722 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1723 continue; 1724 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1725 continue; 1726 /* remember insn and function to return to */ 1727 ret_insn[frame] = i + 1; 1728 ret_prog[frame] = idx; 1729 1730 /* find the callee */ 1731 i = i + insn[i].imm + 1; 1732 idx = find_subprog(env, i); 1733 if (idx < 0) { 1734 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1735 i); 1736 return -EFAULT; 1737 } 1738 frame++; 1739 if (frame >= MAX_CALL_FRAMES) { 1740 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1741 return -EFAULT; 1742 } 1743 goto process_func; 1744 } 1745 /* end of for() loop means the last insn of the 'subprog' 1746 * was reached. Doesn't matter whether it was JA or EXIT 1747 */ 1748 if (frame == 0) 1749 return 0; 1750 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1751 frame--; 1752 i = ret_insn[frame]; 1753 idx = ret_prog[frame]; 1754 goto continue_func; 1755 } 1756 1757 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1758 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1759 const struct bpf_insn *insn, int idx) 1760 { 1761 int start = idx + insn->imm + 1, subprog; 1762 1763 subprog = find_subprog(env, start); 1764 if (subprog < 0) { 1765 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1766 start); 1767 return -EFAULT; 1768 } 1769 return env->subprog_info[subprog].stack_depth; 1770 } 1771 #endif 1772 1773 static int check_ctx_reg(struct bpf_verifier_env *env, 1774 const struct bpf_reg_state *reg, int regno) 1775 { 1776 /* Access to ctx or passing it to a helper is only allowed in 1777 * its original, unmodified form. 1778 */ 1779 1780 if (reg->off) { 1781 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1782 regno, reg->off); 1783 return -EACCES; 1784 } 1785 1786 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1787 char tn_buf[48]; 1788 1789 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1790 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1791 return -EACCES; 1792 } 1793 1794 return 0; 1795 } 1796 1797 /* truncate register to smaller size (in bytes) 1798 * must be called with size < BPF_REG_SIZE 1799 */ 1800 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1801 { 1802 u64 mask; 1803 1804 /* clear high bits in bit representation */ 1805 reg->var_off = tnum_cast(reg->var_off, size); 1806 1807 /* fix arithmetic bounds */ 1808 mask = ((u64)1 << (size * 8)) - 1; 1809 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1810 reg->umin_value &= mask; 1811 reg->umax_value &= mask; 1812 } else { 1813 reg->umin_value = 0; 1814 reg->umax_value = mask; 1815 } 1816 reg->smin_value = reg->umin_value; 1817 reg->smax_value = reg->umax_value; 1818 } 1819 1820 /* check whether memory at (regno + off) is accessible for t = (read | write) 1821 * if t==write, value_regno is a register which value is stored into memory 1822 * if t==read, value_regno is a register which will receive the value from memory 1823 * if t==write && value_regno==-1, some unknown value is stored into memory 1824 * if t==read && value_regno==-1, don't care what we read from memory 1825 */ 1826 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1827 int off, int bpf_size, enum bpf_access_type t, 1828 int value_regno, bool strict_alignment_once) 1829 { 1830 struct bpf_reg_state *regs = cur_regs(env); 1831 struct bpf_reg_state *reg = regs + regno; 1832 struct bpf_func_state *state; 1833 int size, err = 0; 1834 1835 size = bpf_size_to_bytes(bpf_size); 1836 if (size < 0) 1837 return size; 1838 1839 /* alignment checks will add in reg->off themselves */ 1840 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1841 if (err) 1842 return err; 1843 1844 /* for access checks, reg->off is just part of off */ 1845 off += reg->off; 1846 1847 if (reg->type == PTR_TO_MAP_VALUE) { 1848 if (t == BPF_WRITE && value_regno >= 0 && 1849 is_pointer_value(env, value_regno)) { 1850 verbose(env, "R%d leaks addr into map\n", value_regno); 1851 return -EACCES; 1852 } 1853 1854 err = check_map_access(env, regno, off, size, false); 1855 if (!err && t == BPF_READ && value_regno >= 0) 1856 mark_reg_unknown(env, regs, value_regno); 1857 1858 } else if (reg->type == PTR_TO_CTX) { 1859 enum bpf_reg_type reg_type = SCALAR_VALUE; 1860 1861 if (t == BPF_WRITE && value_regno >= 0 && 1862 is_pointer_value(env, value_regno)) { 1863 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1864 return -EACCES; 1865 } 1866 1867 err = check_ctx_reg(env, reg, regno); 1868 if (err < 0) 1869 return err; 1870 1871 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1872 if (!err && t == BPF_READ && value_regno >= 0) { 1873 /* ctx access returns either a scalar, or a 1874 * PTR_TO_PACKET[_META,_END]. In the latter 1875 * case, we know the offset is zero. 1876 */ 1877 if (reg_type == SCALAR_VALUE) 1878 mark_reg_unknown(env, regs, value_regno); 1879 else 1880 mark_reg_known_zero(env, regs, 1881 value_regno); 1882 regs[value_regno].type = reg_type; 1883 } 1884 1885 } else if (reg->type == PTR_TO_STACK) { 1886 /* stack accesses must be at a fixed offset, so that we can 1887 * determine what type of data were returned. 1888 * See check_stack_read(). 1889 */ 1890 if (!tnum_is_const(reg->var_off)) { 1891 char tn_buf[48]; 1892 1893 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1894 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1895 tn_buf, off, size); 1896 return -EACCES; 1897 } 1898 off += reg->var_off.value; 1899 if (off >= 0 || off < -MAX_BPF_STACK) { 1900 verbose(env, "invalid stack off=%d size=%d\n", off, 1901 size); 1902 return -EACCES; 1903 } 1904 1905 state = func(env, reg); 1906 err = update_stack_depth(env, state, off); 1907 if (err) 1908 return err; 1909 1910 if (t == BPF_WRITE) 1911 err = check_stack_write(env, state, off, size, 1912 value_regno, insn_idx); 1913 else 1914 err = check_stack_read(env, state, off, size, 1915 value_regno); 1916 } else if (reg_is_pkt_pointer(reg)) { 1917 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 1918 verbose(env, "cannot write into packet\n"); 1919 return -EACCES; 1920 } 1921 if (t == BPF_WRITE && value_regno >= 0 && 1922 is_pointer_value(env, value_regno)) { 1923 verbose(env, "R%d leaks addr into packet\n", 1924 value_regno); 1925 return -EACCES; 1926 } 1927 err = check_packet_access(env, regno, off, size, false); 1928 if (!err && t == BPF_READ && value_regno >= 0) 1929 mark_reg_unknown(env, regs, value_regno); 1930 } else if (reg->type == PTR_TO_FLOW_KEYS) { 1931 if (t == BPF_WRITE && value_regno >= 0 && 1932 is_pointer_value(env, value_regno)) { 1933 verbose(env, "R%d leaks addr into flow keys\n", 1934 value_regno); 1935 return -EACCES; 1936 } 1937 1938 err = check_flow_keys_access(env, off, size); 1939 if (!err && t == BPF_READ && value_regno >= 0) 1940 mark_reg_unknown(env, regs, value_regno); 1941 } else if (reg->type == PTR_TO_SOCKET) { 1942 if (t == BPF_WRITE) { 1943 verbose(env, "cannot write into socket\n"); 1944 return -EACCES; 1945 } 1946 err = check_sock_access(env, regno, off, size, t); 1947 if (!err && value_regno >= 0) 1948 mark_reg_unknown(env, regs, value_regno); 1949 } else { 1950 verbose(env, "R%d invalid mem access '%s'\n", regno, 1951 reg_type_str[reg->type]); 1952 return -EACCES; 1953 } 1954 1955 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 1956 regs[value_regno].type == SCALAR_VALUE) { 1957 /* b/h/w load zero-extends, mark upper bits as known 0 */ 1958 coerce_reg_to_size(®s[value_regno], size); 1959 } 1960 return err; 1961 } 1962 1963 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 1964 { 1965 int err; 1966 1967 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 1968 insn->imm != 0) { 1969 verbose(env, "BPF_XADD uses reserved fields\n"); 1970 return -EINVAL; 1971 } 1972 1973 /* check src1 operand */ 1974 err = check_reg_arg(env, insn->src_reg, SRC_OP); 1975 if (err) 1976 return err; 1977 1978 /* check src2 operand */ 1979 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 1980 if (err) 1981 return err; 1982 1983 if (is_pointer_value(env, insn->src_reg)) { 1984 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 1985 return -EACCES; 1986 } 1987 1988 if (is_ctx_reg(env, insn->dst_reg) || 1989 is_pkt_reg(env, insn->dst_reg) || 1990 is_flow_key_reg(env, insn->dst_reg)) { 1991 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 1992 insn->dst_reg, 1993 reg_type_str[reg_state(env, insn->dst_reg)->type]); 1994 return -EACCES; 1995 } 1996 1997 /* check whether atomic_add can read the memory */ 1998 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 1999 BPF_SIZE(insn->code), BPF_READ, -1, true); 2000 if (err) 2001 return err; 2002 2003 /* check whether atomic_add can write into the same memory */ 2004 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2005 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2006 } 2007 2008 /* when register 'regno' is passed into function that will read 'access_size' 2009 * bytes from that pointer, make sure that it's within stack boundary 2010 * and all elements of stack are initialized. 2011 * Unlike most pointer bounds-checking functions, this one doesn't take an 2012 * 'off' argument, so it has to add in reg->off itself. 2013 */ 2014 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2015 int access_size, bool zero_size_allowed, 2016 struct bpf_call_arg_meta *meta) 2017 { 2018 struct bpf_reg_state *reg = reg_state(env, regno); 2019 struct bpf_func_state *state = func(env, reg); 2020 int off, i, slot, spi; 2021 2022 if (reg->type != PTR_TO_STACK) { 2023 /* Allow zero-byte read from NULL, regardless of pointer type */ 2024 if (zero_size_allowed && access_size == 0 && 2025 register_is_null(reg)) 2026 return 0; 2027 2028 verbose(env, "R%d type=%s expected=%s\n", regno, 2029 reg_type_str[reg->type], 2030 reg_type_str[PTR_TO_STACK]); 2031 return -EACCES; 2032 } 2033 2034 /* Only allow fixed-offset stack reads */ 2035 if (!tnum_is_const(reg->var_off)) { 2036 char tn_buf[48]; 2037 2038 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2039 verbose(env, "invalid variable stack read R%d var_off=%s\n", 2040 regno, tn_buf); 2041 return -EACCES; 2042 } 2043 off = reg->off + reg->var_off.value; 2044 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2045 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2046 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2047 regno, off, access_size); 2048 return -EACCES; 2049 } 2050 2051 if (meta && meta->raw_mode) { 2052 meta->access_size = access_size; 2053 meta->regno = regno; 2054 return 0; 2055 } 2056 2057 for (i = 0; i < access_size; i++) { 2058 u8 *stype; 2059 2060 slot = -(off + i) - 1; 2061 spi = slot / BPF_REG_SIZE; 2062 if (state->allocated_stack <= slot) 2063 goto err; 2064 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2065 if (*stype == STACK_MISC) 2066 goto mark; 2067 if (*stype == STACK_ZERO) { 2068 /* helper can write anything into the stack */ 2069 *stype = STACK_MISC; 2070 goto mark; 2071 } 2072 err: 2073 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2074 off, i, access_size); 2075 return -EACCES; 2076 mark: 2077 /* reading any byte out of 8-byte 'spill_slot' will cause 2078 * the whole slot to be marked as 'read' 2079 */ 2080 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2081 state->stack[spi].spilled_ptr.parent); 2082 } 2083 return update_stack_depth(env, state, off); 2084 } 2085 2086 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2087 int access_size, bool zero_size_allowed, 2088 struct bpf_call_arg_meta *meta) 2089 { 2090 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2091 2092 switch (reg->type) { 2093 case PTR_TO_PACKET: 2094 case PTR_TO_PACKET_META: 2095 return check_packet_access(env, regno, reg->off, access_size, 2096 zero_size_allowed); 2097 case PTR_TO_MAP_VALUE: 2098 return check_map_access(env, regno, reg->off, access_size, 2099 zero_size_allowed); 2100 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2101 return check_stack_boundary(env, regno, access_size, 2102 zero_size_allowed, meta); 2103 } 2104 } 2105 2106 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2107 { 2108 return type == ARG_PTR_TO_MEM || 2109 type == ARG_PTR_TO_MEM_OR_NULL || 2110 type == ARG_PTR_TO_UNINIT_MEM; 2111 } 2112 2113 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2114 { 2115 return type == ARG_CONST_SIZE || 2116 type == ARG_CONST_SIZE_OR_ZERO; 2117 } 2118 2119 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2120 enum bpf_arg_type arg_type, 2121 struct bpf_call_arg_meta *meta) 2122 { 2123 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2124 enum bpf_reg_type expected_type, type = reg->type; 2125 int err = 0; 2126 2127 if (arg_type == ARG_DONTCARE) 2128 return 0; 2129 2130 err = check_reg_arg(env, regno, SRC_OP); 2131 if (err) 2132 return err; 2133 2134 if (arg_type == ARG_ANYTHING) { 2135 if (is_pointer_value(env, regno)) { 2136 verbose(env, "R%d leaks addr into helper function\n", 2137 regno); 2138 return -EACCES; 2139 } 2140 return 0; 2141 } 2142 2143 if (type_is_pkt_pointer(type) && 2144 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2145 verbose(env, "helper access to the packet is not allowed\n"); 2146 return -EACCES; 2147 } 2148 2149 if (arg_type == ARG_PTR_TO_MAP_KEY || 2150 arg_type == ARG_PTR_TO_MAP_VALUE || 2151 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2152 expected_type = PTR_TO_STACK; 2153 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 2154 type != expected_type) 2155 goto err_type; 2156 } else if (arg_type == ARG_CONST_SIZE || 2157 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2158 expected_type = SCALAR_VALUE; 2159 if (type != expected_type) 2160 goto err_type; 2161 } else if (arg_type == ARG_CONST_MAP_PTR) { 2162 expected_type = CONST_PTR_TO_MAP; 2163 if (type != expected_type) 2164 goto err_type; 2165 } else if (arg_type == ARG_PTR_TO_CTX) { 2166 expected_type = PTR_TO_CTX; 2167 if (type != expected_type) 2168 goto err_type; 2169 err = check_ctx_reg(env, reg, regno); 2170 if (err < 0) 2171 return err; 2172 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2173 expected_type = PTR_TO_SOCKET; 2174 if (type != expected_type) 2175 goto err_type; 2176 if (meta->ptr_id || !reg->id) { 2177 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n", 2178 meta->ptr_id, reg->id); 2179 return -EFAULT; 2180 } 2181 meta->ptr_id = reg->id; 2182 } else if (arg_type_is_mem_ptr(arg_type)) { 2183 expected_type = PTR_TO_STACK; 2184 /* One exception here. In case function allows for NULL to be 2185 * passed in as argument, it's a SCALAR_VALUE type. Final test 2186 * happens during stack boundary checking. 2187 */ 2188 if (register_is_null(reg) && 2189 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2190 /* final test in check_stack_boundary() */; 2191 else if (!type_is_pkt_pointer(type) && 2192 type != PTR_TO_MAP_VALUE && 2193 type != expected_type) 2194 goto err_type; 2195 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2196 } else { 2197 verbose(env, "unsupported arg_type %d\n", arg_type); 2198 return -EFAULT; 2199 } 2200 2201 if (arg_type == ARG_CONST_MAP_PTR) { 2202 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2203 meta->map_ptr = reg->map_ptr; 2204 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2205 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2206 * check that [key, key + map->key_size) are within 2207 * stack limits and initialized 2208 */ 2209 if (!meta->map_ptr) { 2210 /* in function declaration map_ptr must come before 2211 * map_key, so that it's verified and known before 2212 * we have to check map_key here. Otherwise it means 2213 * that kernel subsystem misconfigured verifier 2214 */ 2215 verbose(env, "invalid map_ptr to access map->key\n"); 2216 return -EACCES; 2217 } 2218 err = check_helper_mem_access(env, regno, 2219 meta->map_ptr->key_size, false, 2220 NULL); 2221 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2222 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2223 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2224 * check [value, value + map->value_size) validity 2225 */ 2226 if (!meta->map_ptr) { 2227 /* kernel subsystem misconfigured verifier */ 2228 verbose(env, "invalid map_ptr to access map->value\n"); 2229 return -EACCES; 2230 } 2231 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2232 err = check_helper_mem_access(env, regno, 2233 meta->map_ptr->value_size, false, 2234 meta); 2235 } else if (arg_type_is_mem_size(arg_type)) { 2236 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2237 2238 /* remember the mem_size which may be used later 2239 * to refine return values. 2240 */ 2241 meta->msize_smax_value = reg->smax_value; 2242 meta->msize_umax_value = reg->umax_value; 2243 2244 /* The register is SCALAR_VALUE; the access check 2245 * happens using its boundaries. 2246 */ 2247 if (!tnum_is_const(reg->var_off)) 2248 /* For unprivileged variable accesses, disable raw 2249 * mode so that the program is required to 2250 * initialize all the memory that the helper could 2251 * just partially fill up. 2252 */ 2253 meta = NULL; 2254 2255 if (reg->smin_value < 0) { 2256 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2257 regno); 2258 return -EACCES; 2259 } 2260 2261 if (reg->umin_value == 0) { 2262 err = check_helper_mem_access(env, regno - 1, 0, 2263 zero_size_allowed, 2264 meta); 2265 if (err) 2266 return err; 2267 } 2268 2269 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2270 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2271 regno); 2272 return -EACCES; 2273 } 2274 err = check_helper_mem_access(env, regno - 1, 2275 reg->umax_value, 2276 zero_size_allowed, meta); 2277 } 2278 2279 return err; 2280 err_type: 2281 verbose(env, "R%d type=%s expected=%s\n", regno, 2282 reg_type_str[type], reg_type_str[expected_type]); 2283 return -EACCES; 2284 } 2285 2286 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2287 struct bpf_map *map, int func_id) 2288 { 2289 if (!map) 2290 return 0; 2291 2292 /* We need a two way check, first is from map perspective ... */ 2293 switch (map->map_type) { 2294 case BPF_MAP_TYPE_PROG_ARRAY: 2295 if (func_id != BPF_FUNC_tail_call) 2296 goto error; 2297 break; 2298 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2299 if (func_id != BPF_FUNC_perf_event_read && 2300 func_id != BPF_FUNC_perf_event_output && 2301 func_id != BPF_FUNC_perf_event_read_value) 2302 goto error; 2303 break; 2304 case BPF_MAP_TYPE_STACK_TRACE: 2305 if (func_id != BPF_FUNC_get_stackid) 2306 goto error; 2307 break; 2308 case BPF_MAP_TYPE_CGROUP_ARRAY: 2309 if (func_id != BPF_FUNC_skb_under_cgroup && 2310 func_id != BPF_FUNC_current_task_under_cgroup) 2311 goto error; 2312 break; 2313 case BPF_MAP_TYPE_CGROUP_STORAGE: 2314 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2315 if (func_id != BPF_FUNC_get_local_storage) 2316 goto error; 2317 break; 2318 /* devmap returns a pointer to a live net_device ifindex that we cannot 2319 * allow to be modified from bpf side. So do not allow lookup elements 2320 * for now. 2321 */ 2322 case BPF_MAP_TYPE_DEVMAP: 2323 if (func_id != BPF_FUNC_redirect_map) 2324 goto error; 2325 break; 2326 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2327 * appear. 2328 */ 2329 case BPF_MAP_TYPE_CPUMAP: 2330 case BPF_MAP_TYPE_XSKMAP: 2331 if (func_id != BPF_FUNC_redirect_map) 2332 goto error; 2333 break; 2334 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2335 case BPF_MAP_TYPE_HASH_OF_MAPS: 2336 if (func_id != BPF_FUNC_map_lookup_elem) 2337 goto error; 2338 break; 2339 case BPF_MAP_TYPE_SOCKMAP: 2340 if (func_id != BPF_FUNC_sk_redirect_map && 2341 func_id != BPF_FUNC_sock_map_update && 2342 func_id != BPF_FUNC_map_delete_elem && 2343 func_id != BPF_FUNC_msg_redirect_map) 2344 goto error; 2345 break; 2346 case BPF_MAP_TYPE_SOCKHASH: 2347 if (func_id != BPF_FUNC_sk_redirect_hash && 2348 func_id != BPF_FUNC_sock_hash_update && 2349 func_id != BPF_FUNC_map_delete_elem && 2350 func_id != BPF_FUNC_msg_redirect_hash) 2351 goto error; 2352 break; 2353 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2354 if (func_id != BPF_FUNC_sk_select_reuseport) 2355 goto error; 2356 break; 2357 case BPF_MAP_TYPE_QUEUE: 2358 case BPF_MAP_TYPE_STACK: 2359 if (func_id != BPF_FUNC_map_peek_elem && 2360 func_id != BPF_FUNC_map_pop_elem && 2361 func_id != BPF_FUNC_map_push_elem) 2362 goto error; 2363 break; 2364 default: 2365 break; 2366 } 2367 2368 /* ... and second from the function itself. */ 2369 switch (func_id) { 2370 case BPF_FUNC_tail_call: 2371 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2372 goto error; 2373 if (env->subprog_cnt > 1) { 2374 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2375 return -EINVAL; 2376 } 2377 break; 2378 case BPF_FUNC_perf_event_read: 2379 case BPF_FUNC_perf_event_output: 2380 case BPF_FUNC_perf_event_read_value: 2381 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2382 goto error; 2383 break; 2384 case BPF_FUNC_get_stackid: 2385 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2386 goto error; 2387 break; 2388 case BPF_FUNC_current_task_under_cgroup: 2389 case BPF_FUNC_skb_under_cgroup: 2390 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2391 goto error; 2392 break; 2393 case BPF_FUNC_redirect_map: 2394 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2395 map->map_type != BPF_MAP_TYPE_CPUMAP && 2396 map->map_type != BPF_MAP_TYPE_XSKMAP) 2397 goto error; 2398 break; 2399 case BPF_FUNC_sk_redirect_map: 2400 case BPF_FUNC_msg_redirect_map: 2401 case BPF_FUNC_sock_map_update: 2402 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2403 goto error; 2404 break; 2405 case BPF_FUNC_sk_redirect_hash: 2406 case BPF_FUNC_msg_redirect_hash: 2407 case BPF_FUNC_sock_hash_update: 2408 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2409 goto error; 2410 break; 2411 case BPF_FUNC_get_local_storage: 2412 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2413 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2414 goto error; 2415 break; 2416 case BPF_FUNC_sk_select_reuseport: 2417 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2418 goto error; 2419 break; 2420 case BPF_FUNC_map_peek_elem: 2421 case BPF_FUNC_map_pop_elem: 2422 case BPF_FUNC_map_push_elem: 2423 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2424 map->map_type != BPF_MAP_TYPE_STACK) 2425 goto error; 2426 break; 2427 default: 2428 break; 2429 } 2430 2431 return 0; 2432 error: 2433 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2434 map->map_type, func_id_name(func_id), func_id); 2435 return -EINVAL; 2436 } 2437 2438 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2439 { 2440 int count = 0; 2441 2442 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2443 count++; 2444 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2445 count++; 2446 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2447 count++; 2448 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2449 count++; 2450 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2451 count++; 2452 2453 /* We only support one arg being in raw mode at the moment, 2454 * which is sufficient for the helper functions we have 2455 * right now. 2456 */ 2457 return count <= 1; 2458 } 2459 2460 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2461 enum bpf_arg_type arg_next) 2462 { 2463 return (arg_type_is_mem_ptr(arg_curr) && 2464 !arg_type_is_mem_size(arg_next)) || 2465 (!arg_type_is_mem_ptr(arg_curr) && 2466 arg_type_is_mem_size(arg_next)); 2467 } 2468 2469 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2470 { 2471 /* bpf_xxx(..., buf, len) call will access 'len' 2472 * bytes from memory 'buf'. Both arg types need 2473 * to be paired, so make sure there's no buggy 2474 * helper function specification. 2475 */ 2476 if (arg_type_is_mem_size(fn->arg1_type) || 2477 arg_type_is_mem_ptr(fn->arg5_type) || 2478 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2479 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2480 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2481 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2482 return false; 2483 2484 return true; 2485 } 2486 2487 static bool check_refcount_ok(const struct bpf_func_proto *fn) 2488 { 2489 int count = 0; 2490 2491 if (arg_type_is_refcounted(fn->arg1_type)) 2492 count++; 2493 if (arg_type_is_refcounted(fn->arg2_type)) 2494 count++; 2495 if (arg_type_is_refcounted(fn->arg3_type)) 2496 count++; 2497 if (arg_type_is_refcounted(fn->arg4_type)) 2498 count++; 2499 if (arg_type_is_refcounted(fn->arg5_type)) 2500 count++; 2501 2502 /* We only support one arg being unreferenced at the moment, 2503 * which is sufficient for the helper functions we have right now. 2504 */ 2505 return count <= 1; 2506 } 2507 2508 static int check_func_proto(const struct bpf_func_proto *fn) 2509 { 2510 return check_raw_mode_ok(fn) && 2511 check_arg_pair_ok(fn) && 2512 check_refcount_ok(fn) ? 0 : -EINVAL; 2513 } 2514 2515 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2516 * are now invalid, so turn them into unknown SCALAR_VALUE. 2517 */ 2518 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2519 struct bpf_func_state *state) 2520 { 2521 struct bpf_reg_state *regs = state->regs, *reg; 2522 int i; 2523 2524 for (i = 0; i < MAX_BPF_REG; i++) 2525 if (reg_is_pkt_pointer_any(®s[i])) 2526 mark_reg_unknown(env, regs, i); 2527 2528 bpf_for_each_spilled_reg(i, state, reg) { 2529 if (!reg) 2530 continue; 2531 if (reg_is_pkt_pointer_any(reg)) 2532 __mark_reg_unknown(reg); 2533 } 2534 } 2535 2536 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2537 { 2538 struct bpf_verifier_state *vstate = env->cur_state; 2539 int i; 2540 2541 for (i = 0; i <= vstate->curframe; i++) 2542 __clear_all_pkt_pointers(env, vstate->frame[i]); 2543 } 2544 2545 static void release_reg_references(struct bpf_verifier_env *env, 2546 struct bpf_func_state *state, int id) 2547 { 2548 struct bpf_reg_state *regs = state->regs, *reg; 2549 int i; 2550 2551 for (i = 0; i < MAX_BPF_REG; i++) 2552 if (regs[i].id == id) 2553 mark_reg_unknown(env, regs, i); 2554 2555 bpf_for_each_spilled_reg(i, state, reg) { 2556 if (!reg) 2557 continue; 2558 if (reg_is_refcounted(reg) && reg->id == id) 2559 __mark_reg_unknown(reg); 2560 } 2561 } 2562 2563 /* The pointer with the specified id has released its reference to kernel 2564 * resources. Identify all copies of the same pointer and clear the reference. 2565 */ 2566 static int release_reference(struct bpf_verifier_env *env, 2567 struct bpf_call_arg_meta *meta) 2568 { 2569 struct bpf_verifier_state *vstate = env->cur_state; 2570 int i; 2571 2572 for (i = 0; i <= vstate->curframe; i++) 2573 release_reg_references(env, vstate->frame[i], meta->ptr_id); 2574 2575 return release_reference_state(env, meta->ptr_id); 2576 } 2577 2578 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2579 int *insn_idx) 2580 { 2581 struct bpf_verifier_state *state = env->cur_state; 2582 struct bpf_func_state *caller, *callee; 2583 int i, err, subprog, target_insn; 2584 2585 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2586 verbose(env, "the call stack of %d frames is too deep\n", 2587 state->curframe + 2); 2588 return -E2BIG; 2589 } 2590 2591 target_insn = *insn_idx + insn->imm; 2592 subprog = find_subprog(env, target_insn + 1); 2593 if (subprog < 0) { 2594 verbose(env, "verifier bug. No program starts at insn %d\n", 2595 target_insn + 1); 2596 return -EFAULT; 2597 } 2598 2599 caller = state->frame[state->curframe]; 2600 if (state->frame[state->curframe + 1]) { 2601 verbose(env, "verifier bug. Frame %d already allocated\n", 2602 state->curframe + 1); 2603 return -EFAULT; 2604 } 2605 2606 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2607 if (!callee) 2608 return -ENOMEM; 2609 state->frame[state->curframe + 1] = callee; 2610 2611 /* callee cannot access r0, r6 - r9 for reading and has to write 2612 * into its own stack before reading from it. 2613 * callee can read/write into caller's stack 2614 */ 2615 init_func_state(env, callee, 2616 /* remember the callsite, it will be used by bpf_exit */ 2617 *insn_idx /* callsite */, 2618 state->curframe + 1 /* frameno within this callchain */, 2619 subprog /* subprog number within this prog */); 2620 2621 /* Transfer references to the callee */ 2622 err = transfer_reference_state(callee, caller); 2623 if (err) 2624 return err; 2625 2626 /* copy r1 - r5 args that callee can access. The copy includes parent 2627 * pointers, which connects us up to the liveness chain 2628 */ 2629 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2630 callee->regs[i] = caller->regs[i]; 2631 2632 /* after the call registers r0 - r5 were scratched */ 2633 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2634 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2635 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2636 } 2637 2638 /* only increment it after check_reg_arg() finished */ 2639 state->curframe++; 2640 2641 /* and go analyze first insn of the callee */ 2642 *insn_idx = target_insn; 2643 2644 if (env->log.level) { 2645 verbose(env, "caller:\n"); 2646 print_verifier_state(env, caller); 2647 verbose(env, "callee:\n"); 2648 print_verifier_state(env, callee); 2649 } 2650 return 0; 2651 } 2652 2653 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2654 { 2655 struct bpf_verifier_state *state = env->cur_state; 2656 struct bpf_func_state *caller, *callee; 2657 struct bpf_reg_state *r0; 2658 int err; 2659 2660 callee = state->frame[state->curframe]; 2661 r0 = &callee->regs[BPF_REG_0]; 2662 if (r0->type == PTR_TO_STACK) { 2663 /* technically it's ok to return caller's stack pointer 2664 * (or caller's caller's pointer) back to the caller, 2665 * since these pointers are valid. Only current stack 2666 * pointer will be invalid as soon as function exits, 2667 * but let's be conservative 2668 */ 2669 verbose(env, "cannot return stack pointer to the caller\n"); 2670 return -EINVAL; 2671 } 2672 2673 state->curframe--; 2674 caller = state->frame[state->curframe]; 2675 /* return to the caller whatever r0 had in the callee */ 2676 caller->regs[BPF_REG_0] = *r0; 2677 2678 /* Transfer references to the caller */ 2679 err = transfer_reference_state(caller, callee); 2680 if (err) 2681 return err; 2682 2683 *insn_idx = callee->callsite + 1; 2684 if (env->log.level) { 2685 verbose(env, "returning from callee:\n"); 2686 print_verifier_state(env, callee); 2687 verbose(env, "to caller at %d:\n", *insn_idx); 2688 print_verifier_state(env, caller); 2689 } 2690 /* clear everything in the callee */ 2691 free_func_state(callee); 2692 state->frame[state->curframe + 1] = NULL; 2693 return 0; 2694 } 2695 2696 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2697 int func_id, 2698 struct bpf_call_arg_meta *meta) 2699 { 2700 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2701 2702 if (ret_type != RET_INTEGER || 2703 (func_id != BPF_FUNC_get_stack && 2704 func_id != BPF_FUNC_probe_read_str)) 2705 return; 2706 2707 ret_reg->smax_value = meta->msize_smax_value; 2708 ret_reg->umax_value = meta->msize_umax_value; 2709 __reg_deduce_bounds(ret_reg); 2710 __reg_bound_offset(ret_reg); 2711 } 2712 2713 static int 2714 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2715 int func_id, int insn_idx) 2716 { 2717 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2718 2719 if (func_id != BPF_FUNC_tail_call && 2720 func_id != BPF_FUNC_map_lookup_elem && 2721 func_id != BPF_FUNC_map_update_elem && 2722 func_id != BPF_FUNC_map_delete_elem && 2723 func_id != BPF_FUNC_map_push_elem && 2724 func_id != BPF_FUNC_map_pop_elem && 2725 func_id != BPF_FUNC_map_peek_elem) 2726 return 0; 2727 2728 if (meta->map_ptr == NULL) { 2729 verbose(env, "kernel subsystem misconfigured verifier\n"); 2730 return -EINVAL; 2731 } 2732 2733 if (!BPF_MAP_PTR(aux->map_state)) 2734 bpf_map_ptr_store(aux, meta->map_ptr, 2735 meta->map_ptr->unpriv_array); 2736 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2737 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2738 meta->map_ptr->unpriv_array); 2739 return 0; 2740 } 2741 2742 static int check_reference_leak(struct bpf_verifier_env *env) 2743 { 2744 struct bpf_func_state *state = cur_func(env); 2745 int i; 2746 2747 for (i = 0; i < state->acquired_refs; i++) { 2748 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 2749 state->refs[i].id, state->refs[i].insn_idx); 2750 } 2751 return state->acquired_refs ? -EINVAL : 0; 2752 } 2753 2754 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2755 { 2756 const struct bpf_func_proto *fn = NULL; 2757 struct bpf_reg_state *regs; 2758 struct bpf_call_arg_meta meta; 2759 bool changes_data; 2760 int i, err; 2761 2762 /* find function prototype */ 2763 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2764 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2765 func_id); 2766 return -EINVAL; 2767 } 2768 2769 if (env->ops->get_func_proto) 2770 fn = env->ops->get_func_proto(func_id, env->prog); 2771 if (!fn) { 2772 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2773 func_id); 2774 return -EINVAL; 2775 } 2776 2777 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2778 if (!env->prog->gpl_compatible && fn->gpl_only) { 2779 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2780 return -EINVAL; 2781 } 2782 2783 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2784 changes_data = bpf_helper_changes_pkt_data(fn->func); 2785 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2786 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2787 func_id_name(func_id), func_id); 2788 return -EINVAL; 2789 } 2790 2791 memset(&meta, 0, sizeof(meta)); 2792 meta.pkt_access = fn->pkt_access; 2793 2794 err = check_func_proto(fn); 2795 if (err) { 2796 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2797 func_id_name(func_id), func_id); 2798 return err; 2799 } 2800 2801 /* check args */ 2802 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2803 if (err) 2804 return err; 2805 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2806 if (err) 2807 return err; 2808 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2809 if (err) 2810 return err; 2811 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2812 if (err) 2813 return err; 2814 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2815 if (err) 2816 return err; 2817 2818 err = record_func_map(env, &meta, func_id, insn_idx); 2819 if (err) 2820 return err; 2821 2822 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2823 * is inferred from register state. 2824 */ 2825 for (i = 0; i < meta.access_size; i++) { 2826 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2827 BPF_WRITE, -1, false); 2828 if (err) 2829 return err; 2830 } 2831 2832 if (func_id == BPF_FUNC_tail_call) { 2833 err = check_reference_leak(env); 2834 if (err) { 2835 verbose(env, "tail_call would lead to reference leak\n"); 2836 return err; 2837 } 2838 } else if (is_release_function(func_id)) { 2839 err = release_reference(env, &meta); 2840 if (err) 2841 return err; 2842 } 2843 2844 regs = cur_regs(env); 2845 2846 /* check that flags argument in get_local_storage(map, flags) is 0, 2847 * this is required because get_local_storage() can't return an error. 2848 */ 2849 if (func_id == BPF_FUNC_get_local_storage && 2850 !register_is_null(®s[BPF_REG_2])) { 2851 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2852 return -EINVAL; 2853 } 2854 2855 /* reset caller saved regs */ 2856 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2857 mark_reg_not_init(env, regs, caller_saved[i]); 2858 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2859 } 2860 2861 /* update return register (already marked as written above) */ 2862 if (fn->ret_type == RET_INTEGER) { 2863 /* sets type to SCALAR_VALUE */ 2864 mark_reg_unknown(env, regs, BPF_REG_0); 2865 } else if (fn->ret_type == RET_VOID) { 2866 regs[BPF_REG_0].type = NOT_INIT; 2867 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2868 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2869 /* There is no offset yet applied, variable or fixed */ 2870 mark_reg_known_zero(env, regs, BPF_REG_0); 2871 /* remember map_ptr, so that check_map_access() 2872 * can check 'value_size' boundary of memory access 2873 * to map element returned from bpf_map_lookup_elem() 2874 */ 2875 if (meta.map_ptr == NULL) { 2876 verbose(env, 2877 "kernel subsystem misconfigured verifier\n"); 2878 return -EINVAL; 2879 } 2880 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2881 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2882 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2883 } else { 2884 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2885 regs[BPF_REG_0].id = ++env->id_gen; 2886 } 2887 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 2888 int id = acquire_reference_state(env, insn_idx); 2889 if (id < 0) 2890 return id; 2891 mark_reg_known_zero(env, regs, BPF_REG_0); 2892 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 2893 regs[BPF_REG_0].id = id; 2894 } else { 2895 verbose(env, "unknown return type %d of func %s#%d\n", 2896 fn->ret_type, func_id_name(func_id), func_id); 2897 return -EINVAL; 2898 } 2899 2900 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2901 2902 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2903 if (err) 2904 return err; 2905 2906 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2907 const char *err_str; 2908 2909 #ifdef CONFIG_PERF_EVENTS 2910 err = get_callchain_buffers(sysctl_perf_event_max_stack); 2911 err_str = "cannot get callchain buffer for func %s#%d\n"; 2912 #else 2913 err = -ENOTSUPP; 2914 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 2915 #endif 2916 if (err) { 2917 verbose(env, err_str, func_id_name(func_id), func_id); 2918 return err; 2919 } 2920 2921 env->prog->has_callchain_buf = true; 2922 } 2923 2924 if (changes_data) 2925 clear_all_pkt_pointers(env); 2926 return 0; 2927 } 2928 2929 static bool signed_add_overflows(s64 a, s64 b) 2930 { 2931 /* Do the add in u64, where overflow is well-defined */ 2932 s64 res = (s64)((u64)a + (u64)b); 2933 2934 if (b < 0) 2935 return res > a; 2936 return res < a; 2937 } 2938 2939 static bool signed_sub_overflows(s64 a, s64 b) 2940 { 2941 /* Do the sub in u64, where overflow is well-defined */ 2942 s64 res = (s64)((u64)a - (u64)b); 2943 2944 if (b < 0) 2945 return res < a; 2946 return res > a; 2947 } 2948 2949 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 2950 const struct bpf_reg_state *reg, 2951 enum bpf_reg_type type) 2952 { 2953 bool known = tnum_is_const(reg->var_off); 2954 s64 val = reg->var_off.value; 2955 s64 smin = reg->smin_value; 2956 2957 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 2958 verbose(env, "math between %s pointer and %lld is not allowed\n", 2959 reg_type_str[type], val); 2960 return false; 2961 } 2962 2963 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 2964 verbose(env, "%s pointer offset %d is not allowed\n", 2965 reg_type_str[type], reg->off); 2966 return false; 2967 } 2968 2969 if (smin == S64_MIN) { 2970 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 2971 reg_type_str[type]); 2972 return false; 2973 } 2974 2975 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 2976 verbose(env, "value %lld makes %s pointer be out of bounds\n", 2977 smin, reg_type_str[type]); 2978 return false; 2979 } 2980 2981 return true; 2982 } 2983 2984 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 2985 * Caller should also handle BPF_MOV case separately. 2986 * If we return -EACCES, caller may want to try again treating pointer as a 2987 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 2988 */ 2989 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 2990 struct bpf_insn *insn, 2991 const struct bpf_reg_state *ptr_reg, 2992 const struct bpf_reg_state *off_reg) 2993 { 2994 struct bpf_verifier_state *vstate = env->cur_state; 2995 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2996 struct bpf_reg_state *regs = state->regs, *dst_reg; 2997 bool known = tnum_is_const(off_reg->var_off); 2998 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 2999 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 3000 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 3001 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 3002 u8 opcode = BPF_OP(insn->code); 3003 u32 dst = insn->dst_reg; 3004 3005 dst_reg = ®s[dst]; 3006 3007 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3008 smin_val > smax_val || umin_val > umax_val) { 3009 /* Taint dst register if offset had invalid bounds derived from 3010 * e.g. dead branches. 3011 */ 3012 __mark_reg_unknown(dst_reg); 3013 return 0; 3014 } 3015 3016 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3017 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3018 verbose(env, 3019 "R%d 32-bit pointer arithmetic prohibited\n", 3020 dst); 3021 return -EACCES; 3022 } 3023 3024 switch (ptr_reg->type) { 3025 case PTR_TO_MAP_VALUE_OR_NULL: 3026 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3027 dst, reg_type_str[ptr_reg->type]); 3028 return -EACCES; 3029 case CONST_PTR_TO_MAP: 3030 case PTR_TO_PACKET_END: 3031 case PTR_TO_SOCKET: 3032 case PTR_TO_SOCKET_OR_NULL: 3033 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3034 dst, reg_type_str[ptr_reg->type]); 3035 return -EACCES; 3036 default: 3037 break; 3038 } 3039 3040 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3041 * The id may be overwritten later if we create a new variable offset. 3042 */ 3043 dst_reg->type = ptr_reg->type; 3044 dst_reg->id = ptr_reg->id; 3045 3046 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3047 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3048 return -EINVAL; 3049 3050 switch (opcode) { 3051 case BPF_ADD: 3052 /* We can take a fixed offset as long as it doesn't overflow 3053 * the s32 'off' field 3054 */ 3055 if (known && (ptr_reg->off + smin_val == 3056 (s64)(s32)(ptr_reg->off + smin_val))) { 3057 /* pointer += K. Accumulate it into fixed offset */ 3058 dst_reg->smin_value = smin_ptr; 3059 dst_reg->smax_value = smax_ptr; 3060 dst_reg->umin_value = umin_ptr; 3061 dst_reg->umax_value = umax_ptr; 3062 dst_reg->var_off = ptr_reg->var_off; 3063 dst_reg->off = ptr_reg->off + smin_val; 3064 dst_reg->raw = ptr_reg->raw; 3065 break; 3066 } 3067 /* A new variable offset is created. Note that off_reg->off 3068 * == 0, since it's a scalar. 3069 * dst_reg gets the pointer type and since some positive 3070 * integer value was added to the pointer, give it a new 'id' 3071 * if it's a PTR_TO_PACKET. 3072 * this creates a new 'base' pointer, off_reg (variable) gets 3073 * added into the variable offset, and we copy the fixed offset 3074 * from ptr_reg. 3075 */ 3076 if (signed_add_overflows(smin_ptr, smin_val) || 3077 signed_add_overflows(smax_ptr, smax_val)) { 3078 dst_reg->smin_value = S64_MIN; 3079 dst_reg->smax_value = S64_MAX; 3080 } else { 3081 dst_reg->smin_value = smin_ptr + smin_val; 3082 dst_reg->smax_value = smax_ptr + smax_val; 3083 } 3084 if (umin_ptr + umin_val < umin_ptr || 3085 umax_ptr + umax_val < umax_ptr) { 3086 dst_reg->umin_value = 0; 3087 dst_reg->umax_value = U64_MAX; 3088 } else { 3089 dst_reg->umin_value = umin_ptr + umin_val; 3090 dst_reg->umax_value = umax_ptr + umax_val; 3091 } 3092 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3093 dst_reg->off = ptr_reg->off; 3094 dst_reg->raw = ptr_reg->raw; 3095 if (reg_is_pkt_pointer(ptr_reg)) { 3096 dst_reg->id = ++env->id_gen; 3097 /* something was added to pkt_ptr, set range to zero */ 3098 dst_reg->raw = 0; 3099 } 3100 break; 3101 case BPF_SUB: 3102 if (dst_reg == off_reg) { 3103 /* scalar -= pointer. Creates an unknown scalar */ 3104 verbose(env, "R%d tried to subtract pointer from scalar\n", 3105 dst); 3106 return -EACCES; 3107 } 3108 /* We don't allow subtraction from FP, because (according to 3109 * test_verifier.c test "invalid fp arithmetic", JITs might not 3110 * be able to deal with it. 3111 */ 3112 if (ptr_reg->type == PTR_TO_STACK) { 3113 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3114 dst); 3115 return -EACCES; 3116 } 3117 if (known && (ptr_reg->off - smin_val == 3118 (s64)(s32)(ptr_reg->off - smin_val))) { 3119 /* pointer -= K. Subtract it from fixed offset */ 3120 dst_reg->smin_value = smin_ptr; 3121 dst_reg->smax_value = smax_ptr; 3122 dst_reg->umin_value = umin_ptr; 3123 dst_reg->umax_value = umax_ptr; 3124 dst_reg->var_off = ptr_reg->var_off; 3125 dst_reg->id = ptr_reg->id; 3126 dst_reg->off = ptr_reg->off - smin_val; 3127 dst_reg->raw = ptr_reg->raw; 3128 break; 3129 } 3130 /* A new variable offset is created. If the subtrahend is known 3131 * nonnegative, then any reg->range we had before is still good. 3132 */ 3133 if (signed_sub_overflows(smin_ptr, smax_val) || 3134 signed_sub_overflows(smax_ptr, smin_val)) { 3135 /* Overflow possible, we know nothing */ 3136 dst_reg->smin_value = S64_MIN; 3137 dst_reg->smax_value = S64_MAX; 3138 } else { 3139 dst_reg->smin_value = smin_ptr - smax_val; 3140 dst_reg->smax_value = smax_ptr - smin_val; 3141 } 3142 if (umin_ptr < umax_val) { 3143 /* Overflow possible, we know nothing */ 3144 dst_reg->umin_value = 0; 3145 dst_reg->umax_value = U64_MAX; 3146 } else { 3147 /* Cannot overflow (as long as bounds are consistent) */ 3148 dst_reg->umin_value = umin_ptr - umax_val; 3149 dst_reg->umax_value = umax_ptr - umin_val; 3150 } 3151 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3152 dst_reg->off = ptr_reg->off; 3153 dst_reg->raw = ptr_reg->raw; 3154 if (reg_is_pkt_pointer(ptr_reg)) { 3155 dst_reg->id = ++env->id_gen; 3156 /* something was added to pkt_ptr, set range to zero */ 3157 if (smin_val < 0) 3158 dst_reg->raw = 0; 3159 } 3160 break; 3161 case BPF_AND: 3162 case BPF_OR: 3163 case BPF_XOR: 3164 /* bitwise ops on pointers are troublesome, prohibit. */ 3165 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3166 dst, bpf_alu_string[opcode >> 4]); 3167 return -EACCES; 3168 default: 3169 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3170 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3171 dst, bpf_alu_string[opcode >> 4]); 3172 return -EACCES; 3173 } 3174 3175 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3176 return -EINVAL; 3177 3178 __update_reg_bounds(dst_reg); 3179 __reg_deduce_bounds(dst_reg); 3180 __reg_bound_offset(dst_reg); 3181 return 0; 3182 } 3183 3184 /* WARNING: This function does calculations on 64-bit values, but the actual 3185 * execution may occur on 32-bit values. Therefore, things like bitshifts 3186 * need extra checks in the 32-bit case. 3187 */ 3188 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3189 struct bpf_insn *insn, 3190 struct bpf_reg_state *dst_reg, 3191 struct bpf_reg_state src_reg) 3192 { 3193 struct bpf_reg_state *regs = cur_regs(env); 3194 u8 opcode = BPF_OP(insn->code); 3195 bool src_known, dst_known; 3196 s64 smin_val, smax_val; 3197 u64 umin_val, umax_val; 3198 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3199 3200 if (insn_bitness == 32) { 3201 /* Relevant for 32-bit RSH: Information can propagate towards 3202 * LSB, so it isn't sufficient to only truncate the output to 3203 * 32 bits. 3204 */ 3205 coerce_reg_to_size(dst_reg, 4); 3206 coerce_reg_to_size(&src_reg, 4); 3207 } 3208 3209 smin_val = src_reg.smin_value; 3210 smax_val = src_reg.smax_value; 3211 umin_val = src_reg.umin_value; 3212 umax_val = src_reg.umax_value; 3213 src_known = tnum_is_const(src_reg.var_off); 3214 dst_known = tnum_is_const(dst_reg->var_off); 3215 3216 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3217 smin_val > smax_val || umin_val > umax_val) { 3218 /* Taint dst register if offset had invalid bounds derived from 3219 * e.g. dead branches. 3220 */ 3221 __mark_reg_unknown(dst_reg); 3222 return 0; 3223 } 3224 3225 if (!src_known && 3226 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3227 __mark_reg_unknown(dst_reg); 3228 return 0; 3229 } 3230 3231 switch (opcode) { 3232 case BPF_ADD: 3233 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3234 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3235 dst_reg->smin_value = S64_MIN; 3236 dst_reg->smax_value = S64_MAX; 3237 } else { 3238 dst_reg->smin_value += smin_val; 3239 dst_reg->smax_value += smax_val; 3240 } 3241 if (dst_reg->umin_value + umin_val < umin_val || 3242 dst_reg->umax_value + umax_val < umax_val) { 3243 dst_reg->umin_value = 0; 3244 dst_reg->umax_value = U64_MAX; 3245 } else { 3246 dst_reg->umin_value += umin_val; 3247 dst_reg->umax_value += umax_val; 3248 } 3249 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3250 break; 3251 case BPF_SUB: 3252 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3253 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3254 /* Overflow possible, we know nothing */ 3255 dst_reg->smin_value = S64_MIN; 3256 dst_reg->smax_value = S64_MAX; 3257 } else { 3258 dst_reg->smin_value -= smax_val; 3259 dst_reg->smax_value -= smin_val; 3260 } 3261 if (dst_reg->umin_value < umax_val) { 3262 /* Overflow possible, we know nothing */ 3263 dst_reg->umin_value = 0; 3264 dst_reg->umax_value = U64_MAX; 3265 } else { 3266 /* Cannot overflow (as long as bounds are consistent) */ 3267 dst_reg->umin_value -= umax_val; 3268 dst_reg->umax_value -= umin_val; 3269 } 3270 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3271 break; 3272 case BPF_MUL: 3273 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3274 if (smin_val < 0 || dst_reg->smin_value < 0) { 3275 /* Ain't nobody got time to multiply that sign */ 3276 __mark_reg_unbounded(dst_reg); 3277 __update_reg_bounds(dst_reg); 3278 break; 3279 } 3280 /* Both values are positive, so we can work with unsigned and 3281 * copy the result to signed (unless it exceeds S64_MAX). 3282 */ 3283 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3284 /* Potential overflow, we know nothing */ 3285 __mark_reg_unbounded(dst_reg); 3286 /* (except what we can learn from the var_off) */ 3287 __update_reg_bounds(dst_reg); 3288 break; 3289 } 3290 dst_reg->umin_value *= umin_val; 3291 dst_reg->umax_value *= umax_val; 3292 if (dst_reg->umax_value > S64_MAX) { 3293 /* Overflow possible, we know nothing */ 3294 dst_reg->smin_value = S64_MIN; 3295 dst_reg->smax_value = S64_MAX; 3296 } else { 3297 dst_reg->smin_value = dst_reg->umin_value; 3298 dst_reg->smax_value = dst_reg->umax_value; 3299 } 3300 break; 3301 case BPF_AND: 3302 if (src_known && dst_known) { 3303 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3304 src_reg.var_off.value); 3305 break; 3306 } 3307 /* We get our minimum from the var_off, since that's inherently 3308 * bitwise. Our maximum is the minimum of the operands' maxima. 3309 */ 3310 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3311 dst_reg->umin_value = dst_reg->var_off.value; 3312 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3313 if (dst_reg->smin_value < 0 || smin_val < 0) { 3314 /* Lose signed bounds when ANDing negative numbers, 3315 * ain't nobody got time for that. 3316 */ 3317 dst_reg->smin_value = S64_MIN; 3318 dst_reg->smax_value = S64_MAX; 3319 } else { 3320 /* ANDing two positives gives a positive, so safe to 3321 * cast result into s64. 3322 */ 3323 dst_reg->smin_value = dst_reg->umin_value; 3324 dst_reg->smax_value = dst_reg->umax_value; 3325 } 3326 /* We may learn something more from the var_off */ 3327 __update_reg_bounds(dst_reg); 3328 break; 3329 case BPF_OR: 3330 if (src_known && dst_known) { 3331 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3332 src_reg.var_off.value); 3333 break; 3334 } 3335 /* We get our maximum from the var_off, and our minimum is the 3336 * maximum of the operands' minima 3337 */ 3338 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3339 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3340 dst_reg->umax_value = dst_reg->var_off.value | 3341 dst_reg->var_off.mask; 3342 if (dst_reg->smin_value < 0 || smin_val < 0) { 3343 /* Lose signed bounds when ORing negative numbers, 3344 * ain't nobody got time for that. 3345 */ 3346 dst_reg->smin_value = S64_MIN; 3347 dst_reg->smax_value = S64_MAX; 3348 } else { 3349 /* ORing two positives gives a positive, so safe to 3350 * cast result into s64. 3351 */ 3352 dst_reg->smin_value = dst_reg->umin_value; 3353 dst_reg->smax_value = dst_reg->umax_value; 3354 } 3355 /* We may learn something more from the var_off */ 3356 __update_reg_bounds(dst_reg); 3357 break; 3358 case BPF_LSH: 3359 if (umax_val >= insn_bitness) { 3360 /* Shifts greater than 31 or 63 are undefined. 3361 * This includes shifts by a negative number. 3362 */ 3363 mark_reg_unknown(env, regs, insn->dst_reg); 3364 break; 3365 } 3366 /* We lose all sign bit information (except what we can pick 3367 * up from var_off) 3368 */ 3369 dst_reg->smin_value = S64_MIN; 3370 dst_reg->smax_value = S64_MAX; 3371 /* If we might shift our top bit out, then we know nothing */ 3372 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3373 dst_reg->umin_value = 0; 3374 dst_reg->umax_value = U64_MAX; 3375 } else { 3376 dst_reg->umin_value <<= umin_val; 3377 dst_reg->umax_value <<= umax_val; 3378 } 3379 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3380 /* We may learn something more from the var_off */ 3381 __update_reg_bounds(dst_reg); 3382 break; 3383 case BPF_RSH: 3384 if (umax_val >= insn_bitness) { 3385 /* Shifts greater than 31 or 63 are undefined. 3386 * This includes shifts by a negative number. 3387 */ 3388 mark_reg_unknown(env, regs, insn->dst_reg); 3389 break; 3390 } 3391 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3392 * be negative, then either: 3393 * 1) src_reg might be zero, so the sign bit of the result is 3394 * unknown, so we lose our signed bounds 3395 * 2) it's known negative, thus the unsigned bounds capture the 3396 * signed bounds 3397 * 3) the signed bounds cross zero, so they tell us nothing 3398 * about the result 3399 * If the value in dst_reg is known nonnegative, then again the 3400 * unsigned bounts capture the signed bounds. 3401 * Thus, in all cases it suffices to blow away our signed bounds 3402 * and rely on inferring new ones from the unsigned bounds and 3403 * var_off of the result. 3404 */ 3405 dst_reg->smin_value = S64_MIN; 3406 dst_reg->smax_value = S64_MAX; 3407 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3408 dst_reg->umin_value >>= umax_val; 3409 dst_reg->umax_value >>= umin_val; 3410 /* We may learn something more from the var_off */ 3411 __update_reg_bounds(dst_reg); 3412 break; 3413 case BPF_ARSH: 3414 if (umax_val >= insn_bitness) { 3415 /* Shifts greater than 31 or 63 are undefined. 3416 * This includes shifts by a negative number. 3417 */ 3418 mark_reg_unknown(env, regs, insn->dst_reg); 3419 break; 3420 } 3421 3422 /* Upon reaching here, src_known is true and 3423 * umax_val is equal to umin_val. 3424 */ 3425 dst_reg->smin_value >>= umin_val; 3426 dst_reg->smax_value >>= umin_val; 3427 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3428 3429 /* blow away the dst_reg umin_value/umax_value and rely on 3430 * dst_reg var_off to refine the result. 3431 */ 3432 dst_reg->umin_value = 0; 3433 dst_reg->umax_value = U64_MAX; 3434 __update_reg_bounds(dst_reg); 3435 break; 3436 default: 3437 mark_reg_unknown(env, regs, insn->dst_reg); 3438 break; 3439 } 3440 3441 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3442 /* 32-bit ALU ops are (32,32)->32 */ 3443 coerce_reg_to_size(dst_reg, 4); 3444 } 3445 3446 __reg_deduce_bounds(dst_reg); 3447 __reg_bound_offset(dst_reg); 3448 return 0; 3449 } 3450 3451 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3452 * and var_off. 3453 */ 3454 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3455 struct bpf_insn *insn) 3456 { 3457 struct bpf_verifier_state *vstate = env->cur_state; 3458 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3459 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3460 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3461 u8 opcode = BPF_OP(insn->code); 3462 3463 dst_reg = ®s[insn->dst_reg]; 3464 src_reg = NULL; 3465 if (dst_reg->type != SCALAR_VALUE) 3466 ptr_reg = dst_reg; 3467 if (BPF_SRC(insn->code) == BPF_X) { 3468 src_reg = ®s[insn->src_reg]; 3469 if (src_reg->type != SCALAR_VALUE) { 3470 if (dst_reg->type != SCALAR_VALUE) { 3471 /* Combining two pointers by any ALU op yields 3472 * an arbitrary scalar. Disallow all math except 3473 * pointer subtraction 3474 */ 3475 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3476 mark_reg_unknown(env, regs, insn->dst_reg); 3477 return 0; 3478 } 3479 verbose(env, "R%d pointer %s pointer prohibited\n", 3480 insn->dst_reg, 3481 bpf_alu_string[opcode >> 4]); 3482 return -EACCES; 3483 } else { 3484 /* scalar += pointer 3485 * This is legal, but we have to reverse our 3486 * src/dest handling in computing the range 3487 */ 3488 return adjust_ptr_min_max_vals(env, insn, 3489 src_reg, dst_reg); 3490 } 3491 } else if (ptr_reg) { 3492 /* pointer += scalar */ 3493 return adjust_ptr_min_max_vals(env, insn, 3494 dst_reg, src_reg); 3495 } 3496 } else { 3497 /* Pretend the src is a reg with a known value, since we only 3498 * need to be able to read from this state. 3499 */ 3500 off_reg.type = SCALAR_VALUE; 3501 __mark_reg_known(&off_reg, insn->imm); 3502 src_reg = &off_reg; 3503 if (ptr_reg) /* pointer += K */ 3504 return adjust_ptr_min_max_vals(env, insn, 3505 ptr_reg, src_reg); 3506 } 3507 3508 /* Got here implies adding two SCALAR_VALUEs */ 3509 if (WARN_ON_ONCE(ptr_reg)) { 3510 print_verifier_state(env, state); 3511 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3512 return -EINVAL; 3513 } 3514 if (WARN_ON(!src_reg)) { 3515 print_verifier_state(env, state); 3516 verbose(env, "verifier internal error: no src_reg\n"); 3517 return -EINVAL; 3518 } 3519 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3520 } 3521 3522 /* check validity of 32-bit and 64-bit arithmetic operations */ 3523 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3524 { 3525 struct bpf_reg_state *regs = cur_regs(env); 3526 u8 opcode = BPF_OP(insn->code); 3527 int err; 3528 3529 if (opcode == BPF_END || opcode == BPF_NEG) { 3530 if (opcode == BPF_NEG) { 3531 if (BPF_SRC(insn->code) != 0 || 3532 insn->src_reg != BPF_REG_0 || 3533 insn->off != 0 || insn->imm != 0) { 3534 verbose(env, "BPF_NEG uses reserved fields\n"); 3535 return -EINVAL; 3536 } 3537 } else { 3538 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3539 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3540 BPF_CLASS(insn->code) == BPF_ALU64) { 3541 verbose(env, "BPF_END uses reserved fields\n"); 3542 return -EINVAL; 3543 } 3544 } 3545 3546 /* check src operand */ 3547 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3548 if (err) 3549 return err; 3550 3551 if (is_pointer_value(env, insn->dst_reg)) { 3552 verbose(env, "R%d pointer arithmetic prohibited\n", 3553 insn->dst_reg); 3554 return -EACCES; 3555 } 3556 3557 /* check dest operand */ 3558 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3559 if (err) 3560 return err; 3561 3562 } else if (opcode == BPF_MOV) { 3563 3564 if (BPF_SRC(insn->code) == BPF_X) { 3565 if (insn->imm != 0 || insn->off != 0) { 3566 verbose(env, "BPF_MOV uses reserved fields\n"); 3567 return -EINVAL; 3568 } 3569 3570 /* check src operand */ 3571 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3572 if (err) 3573 return err; 3574 } else { 3575 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3576 verbose(env, "BPF_MOV uses reserved fields\n"); 3577 return -EINVAL; 3578 } 3579 } 3580 3581 /* check dest operand, mark as required later */ 3582 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3583 if (err) 3584 return err; 3585 3586 if (BPF_SRC(insn->code) == BPF_X) { 3587 struct bpf_reg_state *src_reg = regs + insn->src_reg; 3588 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 3589 3590 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3591 /* case: R1 = R2 3592 * copy register state to dest reg 3593 */ 3594 *dst_reg = *src_reg; 3595 dst_reg->live |= REG_LIVE_WRITTEN; 3596 } else { 3597 /* R1 = (u32) R2 */ 3598 if (is_pointer_value(env, insn->src_reg)) { 3599 verbose(env, 3600 "R%d partial copy of pointer\n", 3601 insn->src_reg); 3602 return -EACCES; 3603 } else if (src_reg->type == SCALAR_VALUE) { 3604 *dst_reg = *src_reg; 3605 dst_reg->live |= REG_LIVE_WRITTEN; 3606 } else { 3607 mark_reg_unknown(env, regs, 3608 insn->dst_reg); 3609 } 3610 coerce_reg_to_size(dst_reg, 4); 3611 } 3612 } else { 3613 /* case: R = imm 3614 * remember the value we stored into this reg 3615 */ 3616 /* clear any state __mark_reg_known doesn't set */ 3617 mark_reg_unknown(env, regs, insn->dst_reg); 3618 regs[insn->dst_reg].type = SCALAR_VALUE; 3619 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3620 __mark_reg_known(regs + insn->dst_reg, 3621 insn->imm); 3622 } else { 3623 __mark_reg_known(regs + insn->dst_reg, 3624 (u32)insn->imm); 3625 } 3626 } 3627 3628 } else if (opcode > BPF_END) { 3629 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3630 return -EINVAL; 3631 3632 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3633 3634 if (BPF_SRC(insn->code) == BPF_X) { 3635 if (insn->imm != 0 || insn->off != 0) { 3636 verbose(env, "BPF_ALU uses reserved fields\n"); 3637 return -EINVAL; 3638 } 3639 /* check src1 operand */ 3640 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3641 if (err) 3642 return err; 3643 } else { 3644 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3645 verbose(env, "BPF_ALU uses reserved fields\n"); 3646 return -EINVAL; 3647 } 3648 } 3649 3650 /* check src2 operand */ 3651 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3652 if (err) 3653 return err; 3654 3655 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3656 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3657 verbose(env, "div by zero\n"); 3658 return -EINVAL; 3659 } 3660 3661 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3662 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3663 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3664 3665 if (insn->imm < 0 || insn->imm >= size) { 3666 verbose(env, "invalid shift %d\n", insn->imm); 3667 return -EINVAL; 3668 } 3669 } 3670 3671 /* check dest operand */ 3672 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3673 if (err) 3674 return err; 3675 3676 return adjust_reg_min_max_vals(env, insn); 3677 } 3678 3679 return 0; 3680 } 3681 3682 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3683 struct bpf_reg_state *dst_reg, 3684 enum bpf_reg_type type, 3685 bool range_right_open) 3686 { 3687 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3688 struct bpf_reg_state *regs = state->regs, *reg; 3689 u16 new_range; 3690 int i, j; 3691 3692 if (dst_reg->off < 0 || 3693 (dst_reg->off == 0 && range_right_open)) 3694 /* This doesn't give us any range */ 3695 return; 3696 3697 if (dst_reg->umax_value > MAX_PACKET_OFF || 3698 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3699 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3700 * than pkt_end, but that's because it's also less than pkt. 3701 */ 3702 return; 3703 3704 new_range = dst_reg->off; 3705 if (range_right_open) 3706 new_range--; 3707 3708 /* Examples for register markings: 3709 * 3710 * pkt_data in dst register: 3711 * 3712 * r2 = r3; 3713 * r2 += 8; 3714 * if (r2 > pkt_end) goto <handle exception> 3715 * <access okay> 3716 * 3717 * r2 = r3; 3718 * r2 += 8; 3719 * if (r2 < pkt_end) goto <access okay> 3720 * <handle exception> 3721 * 3722 * Where: 3723 * r2 == dst_reg, pkt_end == src_reg 3724 * r2=pkt(id=n,off=8,r=0) 3725 * r3=pkt(id=n,off=0,r=0) 3726 * 3727 * pkt_data in src register: 3728 * 3729 * r2 = r3; 3730 * r2 += 8; 3731 * if (pkt_end >= r2) goto <access okay> 3732 * <handle exception> 3733 * 3734 * r2 = r3; 3735 * r2 += 8; 3736 * if (pkt_end <= r2) goto <handle exception> 3737 * <access okay> 3738 * 3739 * Where: 3740 * pkt_end == dst_reg, r2 == src_reg 3741 * r2=pkt(id=n,off=8,r=0) 3742 * r3=pkt(id=n,off=0,r=0) 3743 * 3744 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 3745 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 3746 * and [r3, r3 + 8-1) respectively is safe to access depending on 3747 * the check. 3748 */ 3749 3750 /* If our ids match, then we must have the same max_value. And we 3751 * don't care about the other reg's fixed offset, since if it's too big 3752 * the range won't allow anything. 3753 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 3754 */ 3755 for (i = 0; i < MAX_BPF_REG; i++) 3756 if (regs[i].type == type && regs[i].id == dst_reg->id) 3757 /* keep the maximum range already checked */ 3758 regs[i].range = max(regs[i].range, new_range); 3759 3760 for (j = 0; j <= vstate->curframe; j++) { 3761 state = vstate->frame[j]; 3762 bpf_for_each_spilled_reg(i, state, reg) { 3763 if (!reg) 3764 continue; 3765 if (reg->type == type && reg->id == dst_reg->id) 3766 reg->range = max(reg->range, new_range); 3767 } 3768 } 3769 } 3770 3771 /* compute branch direction of the expression "if (reg opcode val) goto target;" 3772 * and return: 3773 * 1 - branch will be taken and "goto target" will be executed 3774 * 0 - branch will not be taken and fall-through to next insn 3775 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 3776 */ 3777 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 3778 { 3779 if (__is_pointer_value(false, reg)) 3780 return -1; 3781 3782 switch (opcode) { 3783 case BPF_JEQ: 3784 if (tnum_is_const(reg->var_off)) 3785 return !!tnum_equals_const(reg->var_off, val); 3786 break; 3787 case BPF_JNE: 3788 if (tnum_is_const(reg->var_off)) 3789 return !tnum_equals_const(reg->var_off, val); 3790 break; 3791 case BPF_JGT: 3792 if (reg->umin_value > val) 3793 return 1; 3794 else if (reg->umax_value <= val) 3795 return 0; 3796 break; 3797 case BPF_JSGT: 3798 if (reg->smin_value > (s64)val) 3799 return 1; 3800 else if (reg->smax_value < (s64)val) 3801 return 0; 3802 break; 3803 case BPF_JLT: 3804 if (reg->umax_value < val) 3805 return 1; 3806 else if (reg->umin_value >= val) 3807 return 0; 3808 break; 3809 case BPF_JSLT: 3810 if (reg->smax_value < (s64)val) 3811 return 1; 3812 else if (reg->smin_value >= (s64)val) 3813 return 0; 3814 break; 3815 case BPF_JGE: 3816 if (reg->umin_value >= val) 3817 return 1; 3818 else if (reg->umax_value < val) 3819 return 0; 3820 break; 3821 case BPF_JSGE: 3822 if (reg->smin_value >= (s64)val) 3823 return 1; 3824 else if (reg->smax_value < (s64)val) 3825 return 0; 3826 break; 3827 case BPF_JLE: 3828 if (reg->umax_value <= val) 3829 return 1; 3830 else if (reg->umin_value > val) 3831 return 0; 3832 break; 3833 case BPF_JSLE: 3834 if (reg->smax_value <= (s64)val) 3835 return 1; 3836 else if (reg->smin_value > (s64)val) 3837 return 0; 3838 break; 3839 } 3840 3841 return -1; 3842 } 3843 3844 /* Adjusts the register min/max values in the case that the dst_reg is the 3845 * variable register that we are working on, and src_reg is a constant or we're 3846 * simply doing a BPF_K check. 3847 * In JEQ/JNE cases we also adjust the var_off values. 3848 */ 3849 static void reg_set_min_max(struct bpf_reg_state *true_reg, 3850 struct bpf_reg_state *false_reg, u64 val, 3851 u8 opcode) 3852 { 3853 /* If the dst_reg is a pointer, we can't learn anything about its 3854 * variable offset from the compare (unless src_reg were a pointer into 3855 * the same object, but we don't bother with that. 3856 * Since false_reg and true_reg have the same type by construction, we 3857 * only need to check one of them for pointerness. 3858 */ 3859 if (__is_pointer_value(false, false_reg)) 3860 return; 3861 3862 switch (opcode) { 3863 case BPF_JEQ: 3864 /* If this is false then we know nothing Jon Snow, but if it is 3865 * true then we know for sure. 3866 */ 3867 __mark_reg_known(true_reg, val); 3868 break; 3869 case BPF_JNE: 3870 /* If this is true we know nothing Jon Snow, but if it is false 3871 * we know the value for sure; 3872 */ 3873 __mark_reg_known(false_reg, val); 3874 break; 3875 case BPF_JGT: 3876 false_reg->umax_value = min(false_reg->umax_value, val); 3877 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3878 break; 3879 case BPF_JSGT: 3880 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3881 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3882 break; 3883 case BPF_JLT: 3884 false_reg->umin_value = max(false_reg->umin_value, val); 3885 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3886 break; 3887 case BPF_JSLT: 3888 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3889 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3890 break; 3891 case BPF_JGE: 3892 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3893 true_reg->umin_value = max(true_reg->umin_value, val); 3894 break; 3895 case BPF_JSGE: 3896 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3897 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3898 break; 3899 case BPF_JLE: 3900 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3901 true_reg->umax_value = min(true_reg->umax_value, val); 3902 break; 3903 case BPF_JSLE: 3904 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3905 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3906 break; 3907 default: 3908 break; 3909 } 3910 3911 __reg_deduce_bounds(false_reg); 3912 __reg_deduce_bounds(true_reg); 3913 /* We might have learned some bits from the bounds. */ 3914 __reg_bound_offset(false_reg); 3915 __reg_bound_offset(true_reg); 3916 /* Intersecting with the old var_off might have improved our bounds 3917 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3918 * then new var_off is (0; 0x7f...fc) which improves our umax. 3919 */ 3920 __update_reg_bounds(false_reg); 3921 __update_reg_bounds(true_reg); 3922 } 3923 3924 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 3925 * the variable reg. 3926 */ 3927 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 3928 struct bpf_reg_state *false_reg, u64 val, 3929 u8 opcode) 3930 { 3931 if (__is_pointer_value(false, false_reg)) 3932 return; 3933 3934 switch (opcode) { 3935 case BPF_JEQ: 3936 /* If this is false then we know nothing Jon Snow, but if it is 3937 * true then we know for sure. 3938 */ 3939 __mark_reg_known(true_reg, val); 3940 break; 3941 case BPF_JNE: 3942 /* If this is true we know nothing Jon Snow, but if it is false 3943 * we know the value for sure; 3944 */ 3945 __mark_reg_known(false_reg, val); 3946 break; 3947 case BPF_JGT: 3948 true_reg->umax_value = min(true_reg->umax_value, val - 1); 3949 false_reg->umin_value = max(false_reg->umin_value, val); 3950 break; 3951 case BPF_JSGT: 3952 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 3953 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 3954 break; 3955 case BPF_JLT: 3956 true_reg->umin_value = max(true_reg->umin_value, val + 1); 3957 false_reg->umax_value = min(false_reg->umax_value, val); 3958 break; 3959 case BPF_JSLT: 3960 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 3961 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 3962 break; 3963 case BPF_JGE: 3964 true_reg->umax_value = min(true_reg->umax_value, val); 3965 false_reg->umin_value = max(false_reg->umin_value, val + 1); 3966 break; 3967 case BPF_JSGE: 3968 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 3969 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 3970 break; 3971 case BPF_JLE: 3972 true_reg->umin_value = max(true_reg->umin_value, val); 3973 false_reg->umax_value = min(false_reg->umax_value, val - 1); 3974 break; 3975 case BPF_JSLE: 3976 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 3977 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 3978 break; 3979 default: 3980 break; 3981 } 3982 3983 __reg_deduce_bounds(false_reg); 3984 __reg_deduce_bounds(true_reg); 3985 /* We might have learned some bits from the bounds. */ 3986 __reg_bound_offset(false_reg); 3987 __reg_bound_offset(true_reg); 3988 /* Intersecting with the old var_off might have improved our bounds 3989 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 3990 * then new var_off is (0; 0x7f...fc) which improves our umax. 3991 */ 3992 __update_reg_bounds(false_reg); 3993 __update_reg_bounds(true_reg); 3994 } 3995 3996 /* Regs are known to be equal, so intersect their min/max/var_off */ 3997 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 3998 struct bpf_reg_state *dst_reg) 3999 { 4000 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 4001 dst_reg->umin_value); 4002 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 4003 dst_reg->umax_value); 4004 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 4005 dst_reg->smin_value); 4006 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 4007 dst_reg->smax_value); 4008 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 4009 dst_reg->var_off); 4010 /* We might have learned new bounds from the var_off. */ 4011 __update_reg_bounds(src_reg); 4012 __update_reg_bounds(dst_reg); 4013 /* We might have learned something about the sign bit. */ 4014 __reg_deduce_bounds(src_reg); 4015 __reg_deduce_bounds(dst_reg); 4016 /* We might have learned some bits from the bounds. */ 4017 __reg_bound_offset(src_reg); 4018 __reg_bound_offset(dst_reg); 4019 /* Intersecting with the old var_off might have improved our bounds 4020 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4021 * then new var_off is (0; 0x7f...fc) which improves our umax. 4022 */ 4023 __update_reg_bounds(src_reg); 4024 __update_reg_bounds(dst_reg); 4025 } 4026 4027 static void reg_combine_min_max(struct bpf_reg_state *true_src, 4028 struct bpf_reg_state *true_dst, 4029 struct bpf_reg_state *false_src, 4030 struct bpf_reg_state *false_dst, 4031 u8 opcode) 4032 { 4033 switch (opcode) { 4034 case BPF_JEQ: 4035 __reg_combine_min_max(true_src, true_dst); 4036 break; 4037 case BPF_JNE: 4038 __reg_combine_min_max(false_src, false_dst); 4039 break; 4040 } 4041 } 4042 4043 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 4044 struct bpf_reg_state *reg, u32 id, 4045 bool is_null) 4046 { 4047 if (reg_type_may_be_null(reg->type) && reg->id == id) { 4048 /* Old offset (both fixed and variable parts) should 4049 * have been known-zero, because we don't allow pointer 4050 * arithmetic on pointers that might be NULL. 4051 */ 4052 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 4053 !tnum_equals_const(reg->var_off, 0) || 4054 reg->off)) { 4055 __mark_reg_known_zero(reg); 4056 reg->off = 0; 4057 } 4058 if (is_null) { 4059 reg->type = SCALAR_VALUE; 4060 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 4061 if (reg->map_ptr->inner_map_meta) { 4062 reg->type = CONST_PTR_TO_MAP; 4063 reg->map_ptr = reg->map_ptr->inner_map_meta; 4064 } else { 4065 reg->type = PTR_TO_MAP_VALUE; 4066 } 4067 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 4068 reg->type = PTR_TO_SOCKET; 4069 } 4070 if (is_null || !reg_is_refcounted(reg)) { 4071 /* We don't need id from this point onwards anymore, 4072 * thus we should better reset it, so that state 4073 * pruning has chances to take effect. 4074 */ 4075 reg->id = 0; 4076 } 4077 } 4078 } 4079 4080 /* The logic is similar to find_good_pkt_pointers(), both could eventually 4081 * be folded together at some point. 4082 */ 4083 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 4084 bool is_null) 4085 { 4086 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4087 struct bpf_reg_state *reg, *regs = state->regs; 4088 u32 id = regs[regno].id; 4089 int i, j; 4090 4091 if (reg_is_refcounted_or_null(®s[regno]) && is_null) 4092 __release_reference_state(state, id); 4093 4094 for (i = 0; i < MAX_BPF_REG; i++) 4095 mark_ptr_or_null_reg(state, ®s[i], id, is_null); 4096 4097 for (j = 0; j <= vstate->curframe; j++) { 4098 state = vstate->frame[j]; 4099 bpf_for_each_spilled_reg(i, state, reg) { 4100 if (!reg) 4101 continue; 4102 mark_ptr_or_null_reg(state, reg, id, is_null); 4103 } 4104 } 4105 } 4106 4107 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4108 struct bpf_reg_state *dst_reg, 4109 struct bpf_reg_state *src_reg, 4110 struct bpf_verifier_state *this_branch, 4111 struct bpf_verifier_state *other_branch) 4112 { 4113 if (BPF_SRC(insn->code) != BPF_X) 4114 return false; 4115 4116 switch (BPF_OP(insn->code)) { 4117 case BPF_JGT: 4118 if ((dst_reg->type == PTR_TO_PACKET && 4119 src_reg->type == PTR_TO_PACKET_END) || 4120 (dst_reg->type == PTR_TO_PACKET_META && 4121 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4122 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4123 find_good_pkt_pointers(this_branch, dst_reg, 4124 dst_reg->type, false); 4125 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4126 src_reg->type == PTR_TO_PACKET) || 4127 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4128 src_reg->type == PTR_TO_PACKET_META)) { 4129 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4130 find_good_pkt_pointers(other_branch, src_reg, 4131 src_reg->type, true); 4132 } else { 4133 return false; 4134 } 4135 break; 4136 case BPF_JLT: 4137 if ((dst_reg->type == PTR_TO_PACKET && 4138 src_reg->type == PTR_TO_PACKET_END) || 4139 (dst_reg->type == PTR_TO_PACKET_META && 4140 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4141 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4142 find_good_pkt_pointers(other_branch, dst_reg, 4143 dst_reg->type, true); 4144 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4145 src_reg->type == PTR_TO_PACKET) || 4146 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4147 src_reg->type == PTR_TO_PACKET_META)) { 4148 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4149 find_good_pkt_pointers(this_branch, src_reg, 4150 src_reg->type, false); 4151 } else { 4152 return false; 4153 } 4154 break; 4155 case BPF_JGE: 4156 if ((dst_reg->type == PTR_TO_PACKET && 4157 src_reg->type == PTR_TO_PACKET_END) || 4158 (dst_reg->type == PTR_TO_PACKET_META && 4159 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4160 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 4161 find_good_pkt_pointers(this_branch, dst_reg, 4162 dst_reg->type, true); 4163 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4164 src_reg->type == PTR_TO_PACKET) || 4165 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4166 src_reg->type == PTR_TO_PACKET_META)) { 4167 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 4168 find_good_pkt_pointers(other_branch, src_reg, 4169 src_reg->type, false); 4170 } else { 4171 return false; 4172 } 4173 break; 4174 case BPF_JLE: 4175 if ((dst_reg->type == PTR_TO_PACKET && 4176 src_reg->type == PTR_TO_PACKET_END) || 4177 (dst_reg->type == PTR_TO_PACKET_META && 4178 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4179 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 4180 find_good_pkt_pointers(other_branch, dst_reg, 4181 dst_reg->type, false); 4182 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4183 src_reg->type == PTR_TO_PACKET) || 4184 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4185 src_reg->type == PTR_TO_PACKET_META)) { 4186 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 4187 find_good_pkt_pointers(this_branch, src_reg, 4188 src_reg->type, true); 4189 } else { 4190 return false; 4191 } 4192 break; 4193 default: 4194 return false; 4195 } 4196 4197 return true; 4198 } 4199 4200 static int check_cond_jmp_op(struct bpf_verifier_env *env, 4201 struct bpf_insn *insn, int *insn_idx) 4202 { 4203 struct bpf_verifier_state *this_branch = env->cur_state; 4204 struct bpf_verifier_state *other_branch; 4205 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 4206 struct bpf_reg_state *dst_reg, *other_branch_regs; 4207 u8 opcode = BPF_OP(insn->code); 4208 int err; 4209 4210 if (opcode > BPF_JSLE) { 4211 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 4212 return -EINVAL; 4213 } 4214 4215 if (BPF_SRC(insn->code) == BPF_X) { 4216 if (insn->imm != 0) { 4217 verbose(env, "BPF_JMP uses reserved fields\n"); 4218 return -EINVAL; 4219 } 4220 4221 /* check src1 operand */ 4222 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4223 if (err) 4224 return err; 4225 4226 if (is_pointer_value(env, insn->src_reg)) { 4227 verbose(env, "R%d pointer comparison prohibited\n", 4228 insn->src_reg); 4229 return -EACCES; 4230 } 4231 } else { 4232 if (insn->src_reg != BPF_REG_0) { 4233 verbose(env, "BPF_JMP uses reserved fields\n"); 4234 return -EINVAL; 4235 } 4236 } 4237 4238 /* check src2 operand */ 4239 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4240 if (err) 4241 return err; 4242 4243 dst_reg = ®s[insn->dst_reg]; 4244 4245 if (BPF_SRC(insn->code) == BPF_K) { 4246 int pred = is_branch_taken(dst_reg, insn->imm, opcode); 4247 4248 if (pred == 1) { 4249 /* only follow the goto, ignore fall-through */ 4250 *insn_idx += insn->off; 4251 return 0; 4252 } else if (pred == 0) { 4253 /* only follow fall-through branch, since 4254 * that's where the program will go 4255 */ 4256 return 0; 4257 } 4258 } 4259 4260 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); 4261 if (!other_branch) 4262 return -EFAULT; 4263 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 4264 4265 /* detect if we are comparing against a constant value so we can adjust 4266 * our min/max values for our dst register. 4267 * this is only legit if both are scalars (or pointers to the same 4268 * object, I suppose, but we don't support that right now), because 4269 * otherwise the different base pointers mean the offsets aren't 4270 * comparable. 4271 */ 4272 if (BPF_SRC(insn->code) == BPF_X) { 4273 if (dst_reg->type == SCALAR_VALUE && 4274 regs[insn->src_reg].type == SCALAR_VALUE) { 4275 if (tnum_is_const(regs[insn->src_reg].var_off)) 4276 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4277 dst_reg, regs[insn->src_reg].var_off.value, 4278 opcode); 4279 else if (tnum_is_const(dst_reg->var_off)) 4280 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 4281 ®s[insn->src_reg], 4282 dst_reg->var_off.value, opcode); 4283 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 4284 /* Comparing for equality, we can combine knowledge */ 4285 reg_combine_min_max(&other_branch_regs[insn->src_reg], 4286 &other_branch_regs[insn->dst_reg], 4287 ®s[insn->src_reg], 4288 ®s[insn->dst_reg], opcode); 4289 } 4290 } else if (dst_reg->type == SCALAR_VALUE) { 4291 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4292 dst_reg, insn->imm, opcode); 4293 } 4294 4295 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 4296 if (BPF_SRC(insn->code) == BPF_K && 4297 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 4298 reg_type_may_be_null(dst_reg->type)) { 4299 /* Mark all identical registers in each branch as either 4300 * safe or unknown depending R == 0 or R != 0 conditional. 4301 */ 4302 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 4303 opcode == BPF_JNE); 4304 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 4305 opcode == BPF_JEQ); 4306 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 4307 this_branch, other_branch) && 4308 is_pointer_value(env, insn->dst_reg)) { 4309 verbose(env, "R%d pointer comparison prohibited\n", 4310 insn->dst_reg); 4311 return -EACCES; 4312 } 4313 if (env->log.level) 4314 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 4315 return 0; 4316 } 4317 4318 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 4319 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 4320 { 4321 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 4322 4323 return (struct bpf_map *) (unsigned long) imm64; 4324 } 4325 4326 /* verify BPF_LD_IMM64 instruction */ 4327 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 4328 { 4329 struct bpf_reg_state *regs = cur_regs(env); 4330 int err; 4331 4332 if (BPF_SIZE(insn->code) != BPF_DW) { 4333 verbose(env, "invalid BPF_LD_IMM insn\n"); 4334 return -EINVAL; 4335 } 4336 if (insn->off != 0) { 4337 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 4338 return -EINVAL; 4339 } 4340 4341 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4342 if (err) 4343 return err; 4344 4345 if (insn->src_reg == 0) { 4346 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 4347 4348 regs[insn->dst_reg].type = SCALAR_VALUE; 4349 __mark_reg_known(®s[insn->dst_reg], imm); 4350 return 0; 4351 } 4352 4353 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 4354 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 4355 4356 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 4357 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 4358 return 0; 4359 } 4360 4361 static bool may_access_skb(enum bpf_prog_type type) 4362 { 4363 switch (type) { 4364 case BPF_PROG_TYPE_SOCKET_FILTER: 4365 case BPF_PROG_TYPE_SCHED_CLS: 4366 case BPF_PROG_TYPE_SCHED_ACT: 4367 return true; 4368 default: 4369 return false; 4370 } 4371 } 4372 4373 /* verify safety of LD_ABS|LD_IND instructions: 4374 * - they can only appear in the programs where ctx == skb 4375 * - since they are wrappers of function calls, they scratch R1-R5 registers, 4376 * preserve R6-R9, and store return value into R0 4377 * 4378 * Implicit input: 4379 * ctx == skb == R6 == CTX 4380 * 4381 * Explicit input: 4382 * SRC == any register 4383 * IMM == 32-bit immediate 4384 * 4385 * Output: 4386 * R0 - 8/16/32-bit skb data converted to cpu endianness 4387 */ 4388 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 4389 { 4390 struct bpf_reg_state *regs = cur_regs(env); 4391 u8 mode = BPF_MODE(insn->code); 4392 int i, err; 4393 4394 if (!may_access_skb(env->prog->type)) { 4395 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 4396 return -EINVAL; 4397 } 4398 4399 if (!env->ops->gen_ld_abs) { 4400 verbose(env, "bpf verifier is misconfigured\n"); 4401 return -EINVAL; 4402 } 4403 4404 if (env->subprog_cnt > 1) { 4405 /* when program has LD_ABS insn JITs and interpreter assume 4406 * that r1 == ctx == skb which is not the case for callees 4407 * that can have arbitrary arguments. It's problematic 4408 * for main prog as well since JITs would need to analyze 4409 * all functions in order to make proper register save/restore 4410 * decisions in the main prog. Hence disallow LD_ABS with calls 4411 */ 4412 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 4413 return -EINVAL; 4414 } 4415 4416 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 4417 BPF_SIZE(insn->code) == BPF_DW || 4418 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 4419 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 4420 return -EINVAL; 4421 } 4422 4423 /* check whether implicit source operand (register R6) is readable */ 4424 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 4425 if (err) 4426 return err; 4427 4428 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 4429 * gen_ld_abs() may terminate the program at runtime, leading to 4430 * reference leak. 4431 */ 4432 err = check_reference_leak(env); 4433 if (err) { 4434 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 4435 return err; 4436 } 4437 4438 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 4439 verbose(env, 4440 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 4441 return -EINVAL; 4442 } 4443 4444 if (mode == BPF_IND) { 4445 /* check explicit source operand */ 4446 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4447 if (err) 4448 return err; 4449 } 4450 4451 /* reset caller saved regs to unreadable */ 4452 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4453 mark_reg_not_init(env, regs, caller_saved[i]); 4454 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4455 } 4456 4457 /* mark destination R0 register as readable, since it contains 4458 * the value fetched from the packet. 4459 * Already marked as written above. 4460 */ 4461 mark_reg_unknown(env, regs, BPF_REG_0); 4462 return 0; 4463 } 4464 4465 static int check_return_code(struct bpf_verifier_env *env) 4466 { 4467 struct bpf_reg_state *reg; 4468 struct tnum range = tnum_range(0, 1); 4469 4470 switch (env->prog->type) { 4471 case BPF_PROG_TYPE_CGROUP_SKB: 4472 case BPF_PROG_TYPE_CGROUP_SOCK: 4473 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4474 case BPF_PROG_TYPE_SOCK_OPS: 4475 case BPF_PROG_TYPE_CGROUP_DEVICE: 4476 break; 4477 default: 4478 return 0; 4479 } 4480 4481 reg = cur_regs(env) + BPF_REG_0; 4482 if (reg->type != SCALAR_VALUE) { 4483 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4484 reg_type_str[reg->type]); 4485 return -EINVAL; 4486 } 4487 4488 if (!tnum_in(range, reg->var_off)) { 4489 verbose(env, "At program exit the register R0 "); 4490 if (!tnum_is_unknown(reg->var_off)) { 4491 char tn_buf[48]; 4492 4493 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4494 verbose(env, "has value %s", tn_buf); 4495 } else { 4496 verbose(env, "has unknown scalar value"); 4497 } 4498 verbose(env, " should have been 0 or 1\n"); 4499 return -EINVAL; 4500 } 4501 return 0; 4502 } 4503 4504 /* non-recursive DFS pseudo code 4505 * 1 procedure DFS-iterative(G,v): 4506 * 2 label v as discovered 4507 * 3 let S be a stack 4508 * 4 S.push(v) 4509 * 5 while S is not empty 4510 * 6 t <- S.pop() 4511 * 7 if t is what we're looking for: 4512 * 8 return t 4513 * 9 for all edges e in G.adjacentEdges(t) do 4514 * 10 if edge e is already labelled 4515 * 11 continue with the next edge 4516 * 12 w <- G.adjacentVertex(t,e) 4517 * 13 if vertex w is not discovered and not explored 4518 * 14 label e as tree-edge 4519 * 15 label w as discovered 4520 * 16 S.push(w) 4521 * 17 continue at 5 4522 * 18 else if vertex w is discovered 4523 * 19 label e as back-edge 4524 * 20 else 4525 * 21 // vertex w is explored 4526 * 22 label e as forward- or cross-edge 4527 * 23 label t as explored 4528 * 24 S.pop() 4529 * 4530 * convention: 4531 * 0x10 - discovered 4532 * 0x11 - discovered and fall-through edge labelled 4533 * 0x12 - discovered and fall-through and branch edges labelled 4534 * 0x20 - explored 4535 */ 4536 4537 enum { 4538 DISCOVERED = 0x10, 4539 EXPLORED = 0x20, 4540 FALLTHROUGH = 1, 4541 BRANCH = 2, 4542 }; 4543 4544 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4545 4546 static int *insn_stack; /* stack of insns to process */ 4547 static int cur_stack; /* current stack index */ 4548 static int *insn_state; 4549 4550 /* t, w, e - match pseudo-code above: 4551 * t - index of current instruction 4552 * w - next instruction 4553 * e - edge 4554 */ 4555 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4556 { 4557 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4558 return 0; 4559 4560 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4561 return 0; 4562 4563 if (w < 0 || w >= env->prog->len) { 4564 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4565 return -EINVAL; 4566 } 4567 4568 if (e == BRANCH) 4569 /* mark branch target for state pruning */ 4570 env->explored_states[w] = STATE_LIST_MARK; 4571 4572 if (insn_state[w] == 0) { 4573 /* tree-edge */ 4574 insn_state[t] = DISCOVERED | e; 4575 insn_state[w] = DISCOVERED; 4576 if (cur_stack >= env->prog->len) 4577 return -E2BIG; 4578 insn_stack[cur_stack++] = w; 4579 return 1; 4580 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4581 verbose(env, "back-edge from insn %d to %d\n", t, w); 4582 return -EINVAL; 4583 } else if (insn_state[w] == EXPLORED) { 4584 /* forward- or cross-edge */ 4585 insn_state[t] = DISCOVERED | e; 4586 } else { 4587 verbose(env, "insn state internal bug\n"); 4588 return -EFAULT; 4589 } 4590 return 0; 4591 } 4592 4593 /* non-recursive depth-first-search to detect loops in BPF program 4594 * loop == back-edge in directed graph 4595 */ 4596 static int check_cfg(struct bpf_verifier_env *env) 4597 { 4598 struct bpf_insn *insns = env->prog->insnsi; 4599 int insn_cnt = env->prog->len; 4600 int ret = 0; 4601 int i, t; 4602 4603 ret = check_subprogs(env); 4604 if (ret < 0) 4605 return ret; 4606 4607 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4608 if (!insn_state) 4609 return -ENOMEM; 4610 4611 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4612 if (!insn_stack) { 4613 kfree(insn_state); 4614 return -ENOMEM; 4615 } 4616 4617 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4618 insn_stack[0] = 0; /* 0 is the first instruction */ 4619 cur_stack = 1; 4620 4621 peek_stack: 4622 if (cur_stack == 0) 4623 goto check_state; 4624 t = insn_stack[cur_stack - 1]; 4625 4626 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4627 u8 opcode = BPF_OP(insns[t].code); 4628 4629 if (opcode == BPF_EXIT) { 4630 goto mark_explored; 4631 } else if (opcode == BPF_CALL) { 4632 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4633 if (ret == 1) 4634 goto peek_stack; 4635 else if (ret < 0) 4636 goto err_free; 4637 if (t + 1 < insn_cnt) 4638 env->explored_states[t + 1] = STATE_LIST_MARK; 4639 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4640 env->explored_states[t] = STATE_LIST_MARK; 4641 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4642 if (ret == 1) 4643 goto peek_stack; 4644 else if (ret < 0) 4645 goto err_free; 4646 } 4647 } else if (opcode == BPF_JA) { 4648 if (BPF_SRC(insns[t].code) != BPF_K) { 4649 ret = -EINVAL; 4650 goto err_free; 4651 } 4652 /* unconditional jump with single edge */ 4653 ret = push_insn(t, t + insns[t].off + 1, 4654 FALLTHROUGH, env); 4655 if (ret == 1) 4656 goto peek_stack; 4657 else if (ret < 0) 4658 goto err_free; 4659 /* tell verifier to check for equivalent states 4660 * after every call and jump 4661 */ 4662 if (t + 1 < insn_cnt) 4663 env->explored_states[t + 1] = STATE_LIST_MARK; 4664 } else { 4665 /* conditional jump with two edges */ 4666 env->explored_states[t] = STATE_LIST_MARK; 4667 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4668 if (ret == 1) 4669 goto peek_stack; 4670 else if (ret < 0) 4671 goto err_free; 4672 4673 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4674 if (ret == 1) 4675 goto peek_stack; 4676 else if (ret < 0) 4677 goto err_free; 4678 } 4679 } else { 4680 /* all other non-branch instructions with single 4681 * fall-through edge 4682 */ 4683 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4684 if (ret == 1) 4685 goto peek_stack; 4686 else if (ret < 0) 4687 goto err_free; 4688 } 4689 4690 mark_explored: 4691 insn_state[t] = EXPLORED; 4692 if (cur_stack-- <= 0) { 4693 verbose(env, "pop stack internal bug\n"); 4694 ret = -EFAULT; 4695 goto err_free; 4696 } 4697 goto peek_stack; 4698 4699 check_state: 4700 for (i = 0; i < insn_cnt; i++) { 4701 if (insn_state[i] != EXPLORED) { 4702 verbose(env, "unreachable insn %d\n", i); 4703 ret = -EINVAL; 4704 goto err_free; 4705 } 4706 } 4707 ret = 0; /* cfg looks good */ 4708 4709 err_free: 4710 kfree(insn_state); 4711 kfree(insn_stack); 4712 return ret; 4713 } 4714 4715 /* The minimum supported BTF func info size */ 4716 #define MIN_BPF_FUNCINFO_SIZE 8 4717 #define MAX_FUNCINFO_REC_SIZE 252 4718 4719 static int check_btf_func(struct bpf_verifier_env *env, 4720 const union bpf_attr *attr, 4721 union bpf_attr __user *uattr) 4722 { 4723 u32 i, nfuncs, urec_size, min_size, prev_offset; 4724 u32 krec_size = sizeof(struct bpf_func_info); 4725 struct bpf_func_info *krecord; 4726 const struct btf_type *type; 4727 struct bpf_prog *prog; 4728 const struct btf *btf; 4729 void __user *urecord; 4730 int ret = 0; 4731 4732 nfuncs = attr->func_info_cnt; 4733 if (!nfuncs) 4734 return 0; 4735 4736 if (nfuncs != env->subprog_cnt) { 4737 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 4738 return -EINVAL; 4739 } 4740 4741 urec_size = attr->func_info_rec_size; 4742 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 4743 urec_size > MAX_FUNCINFO_REC_SIZE || 4744 urec_size % sizeof(u32)) { 4745 verbose(env, "invalid func info rec size %u\n", urec_size); 4746 return -EINVAL; 4747 } 4748 4749 prog = env->prog; 4750 btf = prog->aux->btf; 4751 4752 urecord = u64_to_user_ptr(attr->func_info); 4753 min_size = min_t(u32, krec_size, urec_size); 4754 4755 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 4756 if (!krecord) 4757 return -ENOMEM; 4758 4759 for (i = 0; i < nfuncs; i++) { 4760 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 4761 if (ret) { 4762 if (ret == -E2BIG) { 4763 verbose(env, "nonzero tailing record in func info"); 4764 /* set the size kernel expects so loader can zero 4765 * out the rest of the record. 4766 */ 4767 if (put_user(min_size, &uattr->func_info_rec_size)) 4768 ret = -EFAULT; 4769 } 4770 goto err_free; 4771 } 4772 4773 if (copy_from_user(&krecord[i], urecord, min_size)) { 4774 ret = -EFAULT; 4775 goto err_free; 4776 } 4777 4778 /* check insn_off */ 4779 if (i == 0) { 4780 if (krecord[i].insn_off) { 4781 verbose(env, 4782 "nonzero insn_off %u for the first func info record", 4783 krecord[i].insn_off); 4784 ret = -EINVAL; 4785 goto err_free; 4786 } 4787 } else if (krecord[i].insn_off <= prev_offset) { 4788 verbose(env, 4789 "same or smaller insn offset (%u) than previous func info record (%u)", 4790 krecord[i].insn_off, prev_offset); 4791 ret = -EINVAL; 4792 goto err_free; 4793 } 4794 4795 if (env->subprog_info[i].start != krecord[i].insn_off) { 4796 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 4797 ret = -EINVAL; 4798 goto err_free; 4799 } 4800 4801 /* check type_id */ 4802 type = btf_type_by_id(btf, krecord[i].type_id); 4803 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 4804 verbose(env, "invalid type id %d in func info", 4805 krecord[i].type_id); 4806 ret = -EINVAL; 4807 goto err_free; 4808 } 4809 4810 prev_offset = krecord[i].insn_off; 4811 urecord += urec_size; 4812 } 4813 4814 prog->aux->func_info = krecord; 4815 prog->aux->func_info_cnt = nfuncs; 4816 return 0; 4817 4818 err_free: 4819 kvfree(krecord); 4820 return ret; 4821 } 4822 4823 static void adjust_btf_func(struct bpf_verifier_env *env) 4824 { 4825 int i; 4826 4827 if (!env->prog->aux->func_info) 4828 return; 4829 4830 for (i = 0; i < env->subprog_cnt; i++) 4831 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 4832 } 4833 4834 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 4835 sizeof(((struct bpf_line_info *)(0))->line_col)) 4836 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 4837 4838 static int check_btf_line(struct bpf_verifier_env *env, 4839 const union bpf_attr *attr, 4840 union bpf_attr __user *uattr) 4841 { 4842 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 4843 struct bpf_subprog_info *sub; 4844 struct bpf_line_info *linfo; 4845 struct bpf_prog *prog; 4846 const struct btf *btf; 4847 void __user *ulinfo; 4848 int err; 4849 4850 nr_linfo = attr->line_info_cnt; 4851 if (!nr_linfo) 4852 return 0; 4853 4854 rec_size = attr->line_info_rec_size; 4855 if (rec_size < MIN_BPF_LINEINFO_SIZE || 4856 rec_size > MAX_LINEINFO_REC_SIZE || 4857 rec_size & (sizeof(u32) - 1)) 4858 return -EINVAL; 4859 4860 /* Need to zero it in case the userspace may 4861 * pass in a smaller bpf_line_info object. 4862 */ 4863 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 4864 GFP_KERNEL | __GFP_NOWARN); 4865 if (!linfo) 4866 return -ENOMEM; 4867 4868 prog = env->prog; 4869 btf = prog->aux->btf; 4870 4871 s = 0; 4872 sub = env->subprog_info; 4873 ulinfo = u64_to_user_ptr(attr->line_info); 4874 expected_size = sizeof(struct bpf_line_info); 4875 ncopy = min_t(u32, expected_size, rec_size); 4876 for (i = 0; i < nr_linfo; i++) { 4877 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 4878 if (err) { 4879 if (err == -E2BIG) { 4880 verbose(env, "nonzero tailing record in line_info"); 4881 if (put_user(expected_size, 4882 &uattr->line_info_rec_size)) 4883 err = -EFAULT; 4884 } 4885 goto err_free; 4886 } 4887 4888 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 4889 err = -EFAULT; 4890 goto err_free; 4891 } 4892 4893 /* 4894 * Check insn_off to ensure 4895 * 1) strictly increasing AND 4896 * 2) bounded by prog->len 4897 * 4898 * The linfo[0].insn_off == 0 check logically falls into 4899 * the later "missing bpf_line_info for func..." case 4900 * because the first linfo[0].insn_off must be the 4901 * first sub also and the first sub must have 4902 * subprog_info[0].start == 0. 4903 */ 4904 if ((i && linfo[i].insn_off <= prev_offset) || 4905 linfo[i].insn_off >= prog->len) { 4906 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 4907 i, linfo[i].insn_off, prev_offset, 4908 prog->len); 4909 err = -EINVAL; 4910 goto err_free; 4911 } 4912 4913 if (!btf_name_offset_valid(btf, linfo[i].line_off) || 4914 !btf_name_offset_valid(btf, linfo[i].file_name_off)) { 4915 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 4916 err = -EINVAL; 4917 goto err_free; 4918 } 4919 4920 if (s != env->subprog_cnt) { 4921 if (linfo[i].insn_off == sub[s].start) { 4922 sub[s].linfo_idx = i; 4923 s++; 4924 } else if (sub[s].start < linfo[i].insn_off) { 4925 verbose(env, "missing bpf_line_info for func#%u\n", s); 4926 err = -EINVAL; 4927 goto err_free; 4928 } 4929 } 4930 4931 prev_offset = linfo[i].insn_off; 4932 ulinfo += rec_size; 4933 } 4934 4935 if (s != env->subprog_cnt) { 4936 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 4937 env->subprog_cnt - s, s); 4938 err = -EINVAL; 4939 goto err_free; 4940 } 4941 4942 prog->aux->linfo = linfo; 4943 prog->aux->nr_linfo = nr_linfo; 4944 4945 return 0; 4946 4947 err_free: 4948 kvfree(linfo); 4949 return err; 4950 } 4951 4952 static int check_btf_info(struct bpf_verifier_env *env, 4953 const union bpf_attr *attr, 4954 union bpf_attr __user *uattr) 4955 { 4956 struct btf *btf; 4957 int err; 4958 4959 if (!attr->func_info_cnt && !attr->line_info_cnt) 4960 return 0; 4961 4962 btf = btf_get_by_fd(attr->prog_btf_fd); 4963 if (IS_ERR(btf)) 4964 return PTR_ERR(btf); 4965 env->prog->aux->btf = btf; 4966 4967 err = check_btf_func(env, attr, uattr); 4968 if (err) 4969 return err; 4970 4971 err = check_btf_line(env, attr, uattr); 4972 if (err) 4973 return err; 4974 4975 return 0; 4976 } 4977 4978 /* check %cur's range satisfies %old's */ 4979 static bool range_within(struct bpf_reg_state *old, 4980 struct bpf_reg_state *cur) 4981 { 4982 return old->umin_value <= cur->umin_value && 4983 old->umax_value >= cur->umax_value && 4984 old->smin_value <= cur->smin_value && 4985 old->smax_value >= cur->smax_value; 4986 } 4987 4988 /* Maximum number of register states that can exist at once */ 4989 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 4990 struct idpair { 4991 u32 old; 4992 u32 cur; 4993 }; 4994 4995 /* If in the old state two registers had the same id, then they need to have 4996 * the same id in the new state as well. But that id could be different from 4997 * the old state, so we need to track the mapping from old to new ids. 4998 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 4999 * regs with old id 5 must also have new id 9 for the new state to be safe. But 5000 * regs with a different old id could still have new id 9, we don't care about 5001 * that. 5002 * So we look through our idmap to see if this old id has been seen before. If 5003 * so, we require the new id to match; otherwise, we add the id pair to the map. 5004 */ 5005 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 5006 { 5007 unsigned int i; 5008 5009 for (i = 0; i < ID_MAP_SIZE; i++) { 5010 if (!idmap[i].old) { 5011 /* Reached an empty slot; haven't seen this id before */ 5012 idmap[i].old = old_id; 5013 idmap[i].cur = cur_id; 5014 return true; 5015 } 5016 if (idmap[i].old == old_id) 5017 return idmap[i].cur == cur_id; 5018 } 5019 /* We ran out of idmap slots, which should be impossible */ 5020 WARN_ON_ONCE(1); 5021 return false; 5022 } 5023 5024 /* Returns true if (rold safe implies rcur safe) */ 5025 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 5026 struct idpair *idmap) 5027 { 5028 bool equal; 5029 5030 if (!(rold->live & REG_LIVE_READ)) 5031 /* explored state didn't use this */ 5032 return true; 5033 5034 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 5035 5036 if (rold->type == PTR_TO_STACK) 5037 /* two stack pointers are equal only if they're pointing to 5038 * the same stack frame, since fp-8 in foo != fp-8 in bar 5039 */ 5040 return equal && rold->frameno == rcur->frameno; 5041 5042 if (equal) 5043 return true; 5044 5045 if (rold->type == NOT_INIT) 5046 /* explored state can't have used this */ 5047 return true; 5048 if (rcur->type == NOT_INIT) 5049 return false; 5050 switch (rold->type) { 5051 case SCALAR_VALUE: 5052 if (rcur->type == SCALAR_VALUE) { 5053 /* new val must satisfy old val knowledge */ 5054 return range_within(rold, rcur) && 5055 tnum_in(rold->var_off, rcur->var_off); 5056 } else { 5057 /* We're trying to use a pointer in place of a scalar. 5058 * Even if the scalar was unbounded, this could lead to 5059 * pointer leaks because scalars are allowed to leak 5060 * while pointers are not. We could make this safe in 5061 * special cases if root is calling us, but it's 5062 * probably not worth the hassle. 5063 */ 5064 return false; 5065 } 5066 case PTR_TO_MAP_VALUE: 5067 /* If the new min/max/var_off satisfy the old ones and 5068 * everything else matches, we are OK. 5069 * We don't care about the 'id' value, because nothing 5070 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 5071 */ 5072 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 5073 range_within(rold, rcur) && 5074 tnum_in(rold->var_off, rcur->var_off); 5075 case PTR_TO_MAP_VALUE_OR_NULL: 5076 /* a PTR_TO_MAP_VALUE could be safe to use as a 5077 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 5078 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 5079 * checked, doing so could have affected others with the same 5080 * id, and we can't check for that because we lost the id when 5081 * we converted to a PTR_TO_MAP_VALUE. 5082 */ 5083 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 5084 return false; 5085 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 5086 return false; 5087 /* Check our ids match any regs they're supposed to */ 5088 return check_ids(rold->id, rcur->id, idmap); 5089 case PTR_TO_PACKET_META: 5090 case PTR_TO_PACKET: 5091 if (rcur->type != rold->type) 5092 return false; 5093 /* We must have at least as much range as the old ptr 5094 * did, so that any accesses which were safe before are 5095 * still safe. This is true even if old range < old off, 5096 * since someone could have accessed through (ptr - k), or 5097 * even done ptr -= k in a register, to get a safe access. 5098 */ 5099 if (rold->range > rcur->range) 5100 return false; 5101 /* If the offsets don't match, we can't trust our alignment; 5102 * nor can we be sure that we won't fall out of range. 5103 */ 5104 if (rold->off != rcur->off) 5105 return false; 5106 /* id relations must be preserved */ 5107 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 5108 return false; 5109 /* new val must satisfy old val knowledge */ 5110 return range_within(rold, rcur) && 5111 tnum_in(rold->var_off, rcur->var_off); 5112 case PTR_TO_CTX: 5113 case CONST_PTR_TO_MAP: 5114 case PTR_TO_PACKET_END: 5115 case PTR_TO_FLOW_KEYS: 5116 case PTR_TO_SOCKET: 5117 case PTR_TO_SOCKET_OR_NULL: 5118 /* Only valid matches are exact, which memcmp() above 5119 * would have accepted 5120 */ 5121 default: 5122 /* Don't know what's going on, just say it's not safe */ 5123 return false; 5124 } 5125 5126 /* Shouldn't get here; if we do, say it's not safe */ 5127 WARN_ON_ONCE(1); 5128 return false; 5129 } 5130 5131 static bool stacksafe(struct bpf_func_state *old, 5132 struct bpf_func_state *cur, 5133 struct idpair *idmap) 5134 { 5135 int i, spi; 5136 5137 /* if explored stack has more populated slots than current stack 5138 * such stacks are not equivalent 5139 */ 5140 if (old->allocated_stack > cur->allocated_stack) 5141 return false; 5142 5143 /* walk slots of the explored stack and ignore any additional 5144 * slots in the current stack, since explored(safe) state 5145 * didn't use them 5146 */ 5147 for (i = 0; i < old->allocated_stack; i++) { 5148 spi = i / BPF_REG_SIZE; 5149 5150 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) 5151 /* explored state didn't use this */ 5152 continue; 5153 5154 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 5155 continue; 5156 /* if old state was safe with misc data in the stack 5157 * it will be safe with zero-initialized stack. 5158 * The opposite is not true 5159 */ 5160 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 5161 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 5162 continue; 5163 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 5164 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 5165 /* Ex: old explored (safe) state has STACK_SPILL in 5166 * this stack slot, but current has has STACK_MISC -> 5167 * this verifier states are not equivalent, 5168 * return false to continue verification of this path 5169 */ 5170 return false; 5171 if (i % BPF_REG_SIZE) 5172 continue; 5173 if (old->stack[spi].slot_type[0] != STACK_SPILL) 5174 continue; 5175 if (!regsafe(&old->stack[spi].spilled_ptr, 5176 &cur->stack[spi].spilled_ptr, 5177 idmap)) 5178 /* when explored and current stack slot are both storing 5179 * spilled registers, check that stored pointers types 5180 * are the same as well. 5181 * Ex: explored safe path could have stored 5182 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 5183 * but current path has stored: 5184 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 5185 * such verifier states are not equivalent. 5186 * return false to continue verification of this path 5187 */ 5188 return false; 5189 } 5190 return true; 5191 } 5192 5193 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 5194 { 5195 if (old->acquired_refs != cur->acquired_refs) 5196 return false; 5197 return !memcmp(old->refs, cur->refs, 5198 sizeof(*old->refs) * old->acquired_refs); 5199 } 5200 5201 /* compare two verifier states 5202 * 5203 * all states stored in state_list are known to be valid, since 5204 * verifier reached 'bpf_exit' instruction through them 5205 * 5206 * this function is called when verifier exploring different branches of 5207 * execution popped from the state stack. If it sees an old state that has 5208 * more strict register state and more strict stack state then this execution 5209 * branch doesn't need to be explored further, since verifier already 5210 * concluded that more strict state leads to valid finish. 5211 * 5212 * Therefore two states are equivalent if register state is more conservative 5213 * and explored stack state is more conservative than the current one. 5214 * Example: 5215 * explored current 5216 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 5217 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 5218 * 5219 * In other words if current stack state (one being explored) has more 5220 * valid slots than old one that already passed validation, it means 5221 * the verifier can stop exploring and conclude that current state is valid too 5222 * 5223 * Similarly with registers. If explored state has register type as invalid 5224 * whereas register type in current state is meaningful, it means that 5225 * the current state will reach 'bpf_exit' instruction safely 5226 */ 5227 static bool func_states_equal(struct bpf_func_state *old, 5228 struct bpf_func_state *cur) 5229 { 5230 struct idpair *idmap; 5231 bool ret = false; 5232 int i; 5233 5234 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 5235 /* If we failed to allocate the idmap, just say it's not safe */ 5236 if (!idmap) 5237 return false; 5238 5239 for (i = 0; i < MAX_BPF_REG; i++) { 5240 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 5241 goto out_free; 5242 } 5243 5244 if (!stacksafe(old, cur, idmap)) 5245 goto out_free; 5246 5247 if (!refsafe(old, cur)) 5248 goto out_free; 5249 ret = true; 5250 out_free: 5251 kfree(idmap); 5252 return ret; 5253 } 5254 5255 static bool states_equal(struct bpf_verifier_env *env, 5256 struct bpf_verifier_state *old, 5257 struct bpf_verifier_state *cur) 5258 { 5259 int i; 5260 5261 if (old->curframe != cur->curframe) 5262 return false; 5263 5264 /* for states to be equal callsites have to be the same 5265 * and all frame states need to be equivalent 5266 */ 5267 for (i = 0; i <= old->curframe; i++) { 5268 if (old->frame[i]->callsite != cur->frame[i]->callsite) 5269 return false; 5270 if (!func_states_equal(old->frame[i], cur->frame[i])) 5271 return false; 5272 } 5273 return true; 5274 } 5275 5276 /* A write screens off any subsequent reads; but write marks come from the 5277 * straight-line code between a state and its parent. When we arrive at an 5278 * equivalent state (jump target or such) we didn't arrive by the straight-line 5279 * code, so read marks in the state must propagate to the parent regardless 5280 * of the state's write marks. That's what 'parent == state->parent' comparison 5281 * in mark_reg_read() is for. 5282 */ 5283 static int propagate_liveness(struct bpf_verifier_env *env, 5284 const struct bpf_verifier_state *vstate, 5285 struct bpf_verifier_state *vparent) 5286 { 5287 int i, frame, err = 0; 5288 struct bpf_func_state *state, *parent; 5289 5290 if (vparent->curframe != vstate->curframe) { 5291 WARN(1, "propagate_live: parent frame %d current frame %d\n", 5292 vparent->curframe, vstate->curframe); 5293 return -EFAULT; 5294 } 5295 /* Propagate read liveness of registers... */ 5296 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 5297 /* We don't need to worry about FP liveness because it's read-only */ 5298 for (i = 0; i < BPF_REG_FP; i++) { 5299 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 5300 continue; 5301 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 5302 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], 5303 &vparent->frame[vstate->curframe]->regs[i]); 5304 if (err) 5305 return err; 5306 } 5307 } 5308 5309 /* ... and stack slots */ 5310 for (frame = 0; frame <= vstate->curframe; frame++) { 5311 state = vstate->frame[frame]; 5312 parent = vparent->frame[frame]; 5313 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 5314 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 5315 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 5316 continue; 5317 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 5318 mark_reg_read(env, &state->stack[i].spilled_ptr, 5319 &parent->stack[i].spilled_ptr); 5320 } 5321 } 5322 return err; 5323 } 5324 5325 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 5326 { 5327 struct bpf_verifier_state_list *new_sl; 5328 struct bpf_verifier_state_list *sl; 5329 struct bpf_verifier_state *cur = env->cur_state, *new; 5330 int i, j, err, states_cnt = 0; 5331 5332 sl = env->explored_states[insn_idx]; 5333 if (!sl) 5334 /* this 'insn_idx' instruction wasn't marked, so we will not 5335 * be doing state search here 5336 */ 5337 return 0; 5338 5339 while (sl != STATE_LIST_MARK) { 5340 if (states_equal(env, &sl->state, cur)) { 5341 /* reached equivalent register/stack state, 5342 * prune the search. 5343 * Registers read by the continuation are read by us. 5344 * If we have any write marks in env->cur_state, they 5345 * will prevent corresponding reads in the continuation 5346 * from reaching our parent (an explored_state). Our 5347 * own state will get the read marks recorded, but 5348 * they'll be immediately forgotten as we're pruning 5349 * this state and will pop a new one. 5350 */ 5351 err = propagate_liveness(env, &sl->state, cur); 5352 if (err) 5353 return err; 5354 return 1; 5355 } 5356 sl = sl->next; 5357 states_cnt++; 5358 } 5359 5360 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 5361 return 0; 5362 5363 /* there were no equivalent states, remember current one. 5364 * technically the current state is not proven to be safe yet, 5365 * but it will either reach outer most bpf_exit (which means it's safe) 5366 * or it will be rejected. Since there are no loops, we won't be 5367 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 5368 * again on the way to bpf_exit 5369 */ 5370 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 5371 if (!new_sl) 5372 return -ENOMEM; 5373 5374 /* add new state to the head of linked list */ 5375 new = &new_sl->state; 5376 err = copy_verifier_state(new, cur); 5377 if (err) { 5378 free_verifier_state(new, false); 5379 kfree(new_sl); 5380 return err; 5381 } 5382 new_sl->next = env->explored_states[insn_idx]; 5383 env->explored_states[insn_idx] = new_sl; 5384 /* connect new state to parentage chain */ 5385 for (i = 0; i < BPF_REG_FP; i++) 5386 cur_regs(env)[i].parent = &new->frame[new->curframe]->regs[i]; 5387 /* clear write marks in current state: the writes we did are not writes 5388 * our child did, so they don't screen off its reads from us. 5389 * (There are no read marks in current state, because reads always mark 5390 * their parent and current state never has children yet. Only 5391 * explored_states can get read marks.) 5392 */ 5393 for (i = 0; i < BPF_REG_FP; i++) 5394 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 5395 5396 /* all stack frames are accessible from callee, clear them all */ 5397 for (j = 0; j <= cur->curframe; j++) { 5398 struct bpf_func_state *frame = cur->frame[j]; 5399 struct bpf_func_state *newframe = new->frame[j]; 5400 5401 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 5402 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 5403 frame->stack[i].spilled_ptr.parent = 5404 &newframe->stack[i].spilled_ptr; 5405 } 5406 } 5407 return 0; 5408 } 5409 5410 /* Return true if it's OK to have the same insn return a different type. */ 5411 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 5412 { 5413 switch (type) { 5414 case PTR_TO_CTX: 5415 case PTR_TO_SOCKET: 5416 case PTR_TO_SOCKET_OR_NULL: 5417 return false; 5418 default: 5419 return true; 5420 } 5421 } 5422 5423 /* If an instruction was previously used with particular pointer types, then we 5424 * need to be careful to avoid cases such as the below, where it may be ok 5425 * for one branch accessing the pointer, but not ok for the other branch: 5426 * 5427 * R1 = sock_ptr 5428 * goto X; 5429 * ... 5430 * R1 = some_other_valid_ptr; 5431 * goto X; 5432 * ... 5433 * R2 = *(u32 *)(R1 + 0); 5434 */ 5435 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 5436 { 5437 return src != prev && (!reg_type_mismatch_ok(src) || 5438 !reg_type_mismatch_ok(prev)); 5439 } 5440 5441 static int do_check(struct bpf_verifier_env *env) 5442 { 5443 struct bpf_verifier_state *state; 5444 struct bpf_insn *insns = env->prog->insnsi; 5445 struct bpf_reg_state *regs; 5446 int insn_cnt = env->prog->len, i; 5447 int insn_idx, prev_insn_idx = 0; 5448 int insn_processed = 0; 5449 bool do_print_state = false; 5450 5451 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 5452 if (!state) 5453 return -ENOMEM; 5454 state->curframe = 0; 5455 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 5456 if (!state->frame[0]) { 5457 kfree(state); 5458 return -ENOMEM; 5459 } 5460 env->cur_state = state; 5461 init_func_state(env, state->frame[0], 5462 BPF_MAIN_FUNC /* callsite */, 5463 0 /* frameno */, 5464 0 /* subprogno, zero == main subprog */); 5465 insn_idx = 0; 5466 for (;;) { 5467 struct bpf_insn *insn; 5468 u8 class; 5469 int err; 5470 5471 if (insn_idx >= insn_cnt) { 5472 verbose(env, "invalid insn idx %d insn_cnt %d\n", 5473 insn_idx, insn_cnt); 5474 return -EFAULT; 5475 } 5476 5477 insn = &insns[insn_idx]; 5478 class = BPF_CLASS(insn->code); 5479 5480 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 5481 verbose(env, 5482 "BPF program is too large. Processed %d insn\n", 5483 insn_processed); 5484 return -E2BIG; 5485 } 5486 5487 err = is_state_visited(env, insn_idx); 5488 if (err < 0) 5489 return err; 5490 if (err == 1) { 5491 /* found equivalent state, can prune the search */ 5492 if (env->log.level) { 5493 if (do_print_state) 5494 verbose(env, "\nfrom %d to %d: safe\n", 5495 prev_insn_idx, insn_idx); 5496 else 5497 verbose(env, "%d: safe\n", insn_idx); 5498 } 5499 goto process_bpf_exit; 5500 } 5501 5502 if (signal_pending(current)) 5503 return -EAGAIN; 5504 5505 if (need_resched()) 5506 cond_resched(); 5507 5508 if (env->log.level > 1 || (env->log.level && do_print_state)) { 5509 if (env->log.level > 1) 5510 verbose(env, "%d:", insn_idx); 5511 else 5512 verbose(env, "\nfrom %d to %d:", 5513 prev_insn_idx, insn_idx); 5514 print_verifier_state(env, state->frame[state->curframe]); 5515 do_print_state = false; 5516 } 5517 5518 if (env->log.level) { 5519 const struct bpf_insn_cbs cbs = { 5520 .cb_print = verbose, 5521 .private_data = env, 5522 }; 5523 5524 verbose(env, "%d: ", insn_idx); 5525 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 5526 } 5527 5528 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5529 err = bpf_prog_offload_verify_insn(env, insn_idx, 5530 prev_insn_idx); 5531 if (err) 5532 return err; 5533 } 5534 5535 regs = cur_regs(env); 5536 env->insn_aux_data[insn_idx].seen = true; 5537 5538 if (class == BPF_ALU || class == BPF_ALU64) { 5539 err = check_alu_op(env, insn); 5540 if (err) 5541 return err; 5542 5543 } else if (class == BPF_LDX) { 5544 enum bpf_reg_type *prev_src_type, src_reg_type; 5545 5546 /* check for reserved fields is already done */ 5547 5548 /* check src operand */ 5549 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5550 if (err) 5551 return err; 5552 5553 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5554 if (err) 5555 return err; 5556 5557 src_reg_type = regs[insn->src_reg].type; 5558 5559 /* check that memory (src_reg + off) is readable, 5560 * the state of dst_reg will be updated by this func 5561 */ 5562 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off, 5563 BPF_SIZE(insn->code), BPF_READ, 5564 insn->dst_reg, false); 5565 if (err) 5566 return err; 5567 5568 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type; 5569 5570 if (*prev_src_type == NOT_INIT) { 5571 /* saw a valid insn 5572 * dst_reg = *(u32 *)(src_reg + off) 5573 * save type to validate intersecting paths 5574 */ 5575 *prev_src_type = src_reg_type; 5576 5577 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 5578 /* ABuser program is trying to use the same insn 5579 * dst_reg = *(u32*) (src_reg + off) 5580 * with different pointer types: 5581 * src_reg == ctx in one branch and 5582 * src_reg == stack|map in some other branch. 5583 * Reject it. 5584 */ 5585 verbose(env, "same insn cannot be used with different pointers\n"); 5586 return -EINVAL; 5587 } 5588 5589 } else if (class == BPF_STX) { 5590 enum bpf_reg_type *prev_dst_type, dst_reg_type; 5591 5592 if (BPF_MODE(insn->code) == BPF_XADD) { 5593 err = check_xadd(env, insn_idx, insn); 5594 if (err) 5595 return err; 5596 insn_idx++; 5597 continue; 5598 } 5599 5600 /* check src1 operand */ 5601 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5602 if (err) 5603 return err; 5604 /* check src2 operand */ 5605 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5606 if (err) 5607 return err; 5608 5609 dst_reg_type = regs[insn->dst_reg].type; 5610 5611 /* check that memory (dst_reg + off) is writeable */ 5612 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5613 BPF_SIZE(insn->code), BPF_WRITE, 5614 insn->src_reg, false); 5615 if (err) 5616 return err; 5617 5618 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type; 5619 5620 if (*prev_dst_type == NOT_INIT) { 5621 *prev_dst_type = dst_reg_type; 5622 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 5623 verbose(env, "same insn cannot be used with different pointers\n"); 5624 return -EINVAL; 5625 } 5626 5627 } else if (class == BPF_ST) { 5628 if (BPF_MODE(insn->code) != BPF_MEM || 5629 insn->src_reg != BPF_REG_0) { 5630 verbose(env, "BPF_ST uses reserved fields\n"); 5631 return -EINVAL; 5632 } 5633 /* check src operand */ 5634 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5635 if (err) 5636 return err; 5637 5638 if (is_ctx_reg(env, insn->dst_reg)) { 5639 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 5640 insn->dst_reg, 5641 reg_type_str[reg_state(env, insn->dst_reg)->type]); 5642 return -EACCES; 5643 } 5644 5645 /* check that memory (dst_reg + off) is writeable */ 5646 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 5647 BPF_SIZE(insn->code), BPF_WRITE, 5648 -1, false); 5649 if (err) 5650 return err; 5651 5652 } else if (class == BPF_JMP) { 5653 u8 opcode = BPF_OP(insn->code); 5654 5655 if (opcode == BPF_CALL) { 5656 if (BPF_SRC(insn->code) != BPF_K || 5657 insn->off != 0 || 5658 (insn->src_reg != BPF_REG_0 && 5659 insn->src_reg != BPF_PSEUDO_CALL) || 5660 insn->dst_reg != BPF_REG_0) { 5661 verbose(env, "BPF_CALL uses reserved fields\n"); 5662 return -EINVAL; 5663 } 5664 5665 if (insn->src_reg == BPF_PSEUDO_CALL) 5666 err = check_func_call(env, insn, &insn_idx); 5667 else 5668 err = check_helper_call(env, insn->imm, insn_idx); 5669 if (err) 5670 return err; 5671 5672 } else if (opcode == BPF_JA) { 5673 if (BPF_SRC(insn->code) != BPF_K || 5674 insn->imm != 0 || 5675 insn->src_reg != BPF_REG_0 || 5676 insn->dst_reg != BPF_REG_0) { 5677 verbose(env, "BPF_JA uses reserved fields\n"); 5678 return -EINVAL; 5679 } 5680 5681 insn_idx += insn->off + 1; 5682 continue; 5683 5684 } else if (opcode == BPF_EXIT) { 5685 if (BPF_SRC(insn->code) != BPF_K || 5686 insn->imm != 0 || 5687 insn->src_reg != BPF_REG_0 || 5688 insn->dst_reg != BPF_REG_0) { 5689 verbose(env, "BPF_EXIT uses reserved fields\n"); 5690 return -EINVAL; 5691 } 5692 5693 if (state->curframe) { 5694 /* exit from nested function */ 5695 prev_insn_idx = insn_idx; 5696 err = prepare_func_exit(env, &insn_idx); 5697 if (err) 5698 return err; 5699 do_print_state = true; 5700 continue; 5701 } 5702 5703 err = check_reference_leak(env); 5704 if (err) 5705 return err; 5706 5707 /* eBPF calling convetion is such that R0 is used 5708 * to return the value from eBPF program. 5709 * Make sure that it's readable at this time 5710 * of bpf_exit, which means that program wrote 5711 * something into it earlier 5712 */ 5713 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 5714 if (err) 5715 return err; 5716 5717 if (is_pointer_value(env, BPF_REG_0)) { 5718 verbose(env, "R0 leaks addr as return value\n"); 5719 return -EACCES; 5720 } 5721 5722 err = check_return_code(env); 5723 if (err) 5724 return err; 5725 process_bpf_exit: 5726 err = pop_stack(env, &prev_insn_idx, &insn_idx); 5727 if (err < 0) { 5728 if (err != -ENOENT) 5729 return err; 5730 break; 5731 } else { 5732 do_print_state = true; 5733 continue; 5734 } 5735 } else { 5736 err = check_cond_jmp_op(env, insn, &insn_idx); 5737 if (err) 5738 return err; 5739 } 5740 } else if (class == BPF_LD) { 5741 u8 mode = BPF_MODE(insn->code); 5742 5743 if (mode == BPF_ABS || mode == BPF_IND) { 5744 err = check_ld_abs(env, insn); 5745 if (err) 5746 return err; 5747 5748 } else if (mode == BPF_IMM) { 5749 err = check_ld_imm(env, insn); 5750 if (err) 5751 return err; 5752 5753 insn_idx++; 5754 env->insn_aux_data[insn_idx].seen = true; 5755 } else { 5756 verbose(env, "invalid BPF_LD mode\n"); 5757 return -EINVAL; 5758 } 5759 } else { 5760 verbose(env, "unknown insn class %d\n", class); 5761 return -EINVAL; 5762 } 5763 5764 insn_idx++; 5765 } 5766 5767 verbose(env, "processed %d insns (limit %d), stack depth ", 5768 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 5769 for (i = 0; i < env->subprog_cnt; i++) { 5770 u32 depth = env->subprog_info[i].stack_depth; 5771 5772 verbose(env, "%d", depth); 5773 if (i + 1 < env->subprog_cnt) 5774 verbose(env, "+"); 5775 } 5776 verbose(env, "\n"); 5777 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 5778 return 0; 5779 } 5780 5781 static int check_map_prealloc(struct bpf_map *map) 5782 { 5783 return (map->map_type != BPF_MAP_TYPE_HASH && 5784 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 5785 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 5786 !(map->map_flags & BPF_F_NO_PREALLOC); 5787 } 5788 5789 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 5790 struct bpf_map *map, 5791 struct bpf_prog *prog) 5792 5793 { 5794 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 5795 * preallocated hash maps, since doing memory allocation 5796 * in overflow_handler can crash depending on where nmi got 5797 * triggered. 5798 */ 5799 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 5800 if (!check_map_prealloc(map)) { 5801 verbose(env, "perf_event programs can only use preallocated hash map\n"); 5802 return -EINVAL; 5803 } 5804 if (map->inner_map_meta && 5805 !check_map_prealloc(map->inner_map_meta)) { 5806 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 5807 return -EINVAL; 5808 } 5809 } 5810 5811 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 5812 !bpf_offload_prog_map_match(prog, map)) { 5813 verbose(env, "offload device mismatch between prog and map\n"); 5814 return -EINVAL; 5815 } 5816 5817 return 0; 5818 } 5819 5820 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 5821 { 5822 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 5823 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 5824 } 5825 5826 /* look for pseudo eBPF instructions that access map FDs and 5827 * replace them with actual map pointers 5828 */ 5829 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 5830 { 5831 struct bpf_insn *insn = env->prog->insnsi; 5832 int insn_cnt = env->prog->len; 5833 int i, j, err; 5834 5835 err = bpf_prog_calc_tag(env->prog); 5836 if (err) 5837 return err; 5838 5839 for (i = 0; i < insn_cnt; i++, insn++) { 5840 if (BPF_CLASS(insn->code) == BPF_LDX && 5841 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 5842 verbose(env, "BPF_LDX uses reserved fields\n"); 5843 return -EINVAL; 5844 } 5845 5846 if (BPF_CLASS(insn->code) == BPF_STX && 5847 ((BPF_MODE(insn->code) != BPF_MEM && 5848 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 5849 verbose(env, "BPF_STX uses reserved fields\n"); 5850 return -EINVAL; 5851 } 5852 5853 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 5854 struct bpf_map *map; 5855 struct fd f; 5856 5857 if (i == insn_cnt - 1 || insn[1].code != 0 || 5858 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 5859 insn[1].off != 0) { 5860 verbose(env, "invalid bpf_ld_imm64 insn\n"); 5861 return -EINVAL; 5862 } 5863 5864 if (insn->src_reg == 0) 5865 /* valid generic load 64-bit imm */ 5866 goto next_insn; 5867 5868 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 5869 verbose(env, 5870 "unrecognized bpf_ld_imm64 insn\n"); 5871 return -EINVAL; 5872 } 5873 5874 f = fdget(insn->imm); 5875 map = __bpf_map_get(f); 5876 if (IS_ERR(map)) { 5877 verbose(env, "fd %d is not pointing to valid bpf_map\n", 5878 insn->imm); 5879 return PTR_ERR(map); 5880 } 5881 5882 err = check_map_prog_compatibility(env, map, env->prog); 5883 if (err) { 5884 fdput(f); 5885 return err; 5886 } 5887 5888 /* store map pointer inside BPF_LD_IMM64 instruction */ 5889 insn[0].imm = (u32) (unsigned long) map; 5890 insn[1].imm = ((u64) (unsigned long) map) >> 32; 5891 5892 /* check whether we recorded this map already */ 5893 for (j = 0; j < env->used_map_cnt; j++) 5894 if (env->used_maps[j] == map) { 5895 fdput(f); 5896 goto next_insn; 5897 } 5898 5899 if (env->used_map_cnt >= MAX_USED_MAPS) { 5900 fdput(f); 5901 return -E2BIG; 5902 } 5903 5904 /* hold the map. If the program is rejected by verifier, 5905 * the map will be released by release_maps() or it 5906 * will be used by the valid program until it's unloaded 5907 * and all maps are released in free_used_maps() 5908 */ 5909 map = bpf_map_inc(map, false); 5910 if (IS_ERR(map)) { 5911 fdput(f); 5912 return PTR_ERR(map); 5913 } 5914 env->used_maps[env->used_map_cnt++] = map; 5915 5916 if (bpf_map_is_cgroup_storage(map) && 5917 bpf_cgroup_storage_assign(env->prog, map)) { 5918 verbose(env, "only one cgroup storage of each type is allowed\n"); 5919 fdput(f); 5920 return -EBUSY; 5921 } 5922 5923 fdput(f); 5924 next_insn: 5925 insn++; 5926 i++; 5927 continue; 5928 } 5929 5930 /* Basic sanity check before we invest more work here. */ 5931 if (!bpf_opcode_in_insntable(insn->code)) { 5932 verbose(env, "unknown opcode %02x\n", insn->code); 5933 return -EINVAL; 5934 } 5935 } 5936 5937 /* now all pseudo BPF_LD_IMM64 instructions load valid 5938 * 'struct bpf_map *' into a register instead of user map_fd. 5939 * These pointers will be used later by verifier to validate map access. 5940 */ 5941 return 0; 5942 } 5943 5944 /* drop refcnt of maps used by the rejected program */ 5945 static void release_maps(struct bpf_verifier_env *env) 5946 { 5947 enum bpf_cgroup_storage_type stype; 5948 int i; 5949 5950 for_each_cgroup_storage_type(stype) { 5951 if (!env->prog->aux->cgroup_storage[stype]) 5952 continue; 5953 bpf_cgroup_storage_release(env->prog, 5954 env->prog->aux->cgroup_storage[stype]); 5955 } 5956 5957 for (i = 0; i < env->used_map_cnt; i++) 5958 bpf_map_put(env->used_maps[i]); 5959 } 5960 5961 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 5962 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 5963 { 5964 struct bpf_insn *insn = env->prog->insnsi; 5965 int insn_cnt = env->prog->len; 5966 int i; 5967 5968 for (i = 0; i < insn_cnt; i++, insn++) 5969 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 5970 insn->src_reg = 0; 5971 } 5972 5973 /* single env->prog->insni[off] instruction was replaced with the range 5974 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 5975 * [0, off) and [off, end) to new locations, so the patched range stays zero 5976 */ 5977 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 5978 u32 off, u32 cnt) 5979 { 5980 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 5981 int i; 5982 5983 if (cnt == 1) 5984 return 0; 5985 new_data = vzalloc(array_size(prog_len, 5986 sizeof(struct bpf_insn_aux_data))); 5987 if (!new_data) 5988 return -ENOMEM; 5989 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 5990 memcpy(new_data + off + cnt - 1, old_data + off, 5991 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 5992 for (i = off; i < off + cnt - 1; i++) 5993 new_data[i].seen = true; 5994 env->insn_aux_data = new_data; 5995 vfree(old_data); 5996 return 0; 5997 } 5998 5999 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 6000 { 6001 int i; 6002 6003 if (len == 1) 6004 return; 6005 /* NOTE: fake 'exit' subprog should be updated as well. */ 6006 for (i = 0; i <= env->subprog_cnt; i++) { 6007 if (env->subprog_info[i].start <= off) 6008 continue; 6009 env->subprog_info[i].start += len - 1; 6010 } 6011 } 6012 6013 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 6014 const struct bpf_insn *patch, u32 len) 6015 { 6016 struct bpf_prog *new_prog; 6017 6018 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 6019 if (!new_prog) 6020 return NULL; 6021 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 6022 return NULL; 6023 adjust_subprog_starts(env, off, len); 6024 return new_prog; 6025 } 6026 6027 /* The verifier does more data flow analysis than llvm and will not 6028 * explore branches that are dead at run time. Malicious programs can 6029 * have dead code too. Therefore replace all dead at-run-time code 6030 * with 'ja -1'. 6031 * 6032 * Just nops are not optimal, e.g. if they would sit at the end of the 6033 * program and through another bug we would manage to jump there, then 6034 * we'd execute beyond program memory otherwise. Returning exception 6035 * code also wouldn't work since we can have subprogs where the dead 6036 * code could be located. 6037 */ 6038 static void sanitize_dead_code(struct bpf_verifier_env *env) 6039 { 6040 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 6041 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 6042 struct bpf_insn *insn = env->prog->insnsi; 6043 const int insn_cnt = env->prog->len; 6044 int i; 6045 6046 for (i = 0; i < insn_cnt; i++) { 6047 if (aux_data[i].seen) 6048 continue; 6049 memcpy(insn + i, &trap, sizeof(trap)); 6050 } 6051 } 6052 6053 /* convert load instructions that access fields of a context type into a 6054 * sequence of instructions that access fields of the underlying structure: 6055 * struct __sk_buff -> struct sk_buff 6056 * struct bpf_sock_ops -> struct sock 6057 */ 6058 static int convert_ctx_accesses(struct bpf_verifier_env *env) 6059 { 6060 const struct bpf_verifier_ops *ops = env->ops; 6061 int i, cnt, size, ctx_field_size, delta = 0; 6062 const int insn_cnt = env->prog->len; 6063 struct bpf_insn insn_buf[16], *insn; 6064 u32 target_size, size_default, off; 6065 struct bpf_prog *new_prog; 6066 enum bpf_access_type type; 6067 bool is_narrower_load; 6068 6069 if (ops->gen_prologue || env->seen_direct_write) { 6070 if (!ops->gen_prologue) { 6071 verbose(env, "bpf verifier is misconfigured\n"); 6072 return -EINVAL; 6073 } 6074 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 6075 env->prog); 6076 if (cnt >= ARRAY_SIZE(insn_buf)) { 6077 verbose(env, "bpf verifier is misconfigured\n"); 6078 return -EINVAL; 6079 } else if (cnt) { 6080 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 6081 if (!new_prog) 6082 return -ENOMEM; 6083 6084 env->prog = new_prog; 6085 delta += cnt - 1; 6086 } 6087 } 6088 6089 if (bpf_prog_is_dev_bound(env->prog->aux)) 6090 return 0; 6091 6092 insn = env->prog->insnsi + delta; 6093 6094 for (i = 0; i < insn_cnt; i++, insn++) { 6095 bpf_convert_ctx_access_t convert_ctx_access; 6096 6097 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 6098 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 6099 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 6100 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 6101 type = BPF_READ; 6102 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 6103 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 6104 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 6105 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 6106 type = BPF_WRITE; 6107 else 6108 continue; 6109 6110 if (type == BPF_WRITE && 6111 env->insn_aux_data[i + delta].sanitize_stack_off) { 6112 struct bpf_insn patch[] = { 6113 /* Sanitize suspicious stack slot with zero. 6114 * There are no memory dependencies for this store, 6115 * since it's only using frame pointer and immediate 6116 * constant of zero 6117 */ 6118 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 6119 env->insn_aux_data[i + delta].sanitize_stack_off, 6120 0), 6121 /* the original STX instruction will immediately 6122 * overwrite the same stack slot with appropriate value 6123 */ 6124 *insn, 6125 }; 6126 6127 cnt = ARRAY_SIZE(patch); 6128 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 6129 if (!new_prog) 6130 return -ENOMEM; 6131 6132 delta += cnt - 1; 6133 env->prog = new_prog; 6134 insn = new_prog->insnsi + i + delta; 6135 continue; 6136 } 6137 6138 switch (env->insn_aux_data[i + delta].ptr_type) { 6139 case PTR_TO_CTX: 6140 if (!ops->convert_ctx_access) 6141 continue; 6142 convert_ctx_access = ops->convert_ctx_access; 6143 break; 6144 case PTR_TO_SOCKET: 6145 convert_ctx_access = bpf_sock_convert_ctx_access; 6146 break; 6147 default: 6148 continue; 6149 } 6150 6151 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 6152 size = BPF_LDST_BYTES(insn); 6153 6154 /* If the read access is a narrower load of the field, 6155 * convert to a 4/8-byte load, to minimum program type specific 6156 * convert_ctx_access changes. If conversion is successful, 6157 * we will apply proper mask to the result. 6158 */ 6159 is_narrower_load = size < ctx_field_size; 6160 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 6161 off = insn->off; 6162 if (is_narrower_load) { 6163 u8 size_code; 6164 6165 if (type == BPF_WRITE) { 6166 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 6167 return -EINVAL; 6168 } 6169 6170 size_code = BPF_H; 6171 if (ctx_field_size == 4) 6172 size_code = BPF_W; 6173 else if (ctx_field_size == 8) 6174 size_code = BPF_DW; 6175 6176 insn->off = off & ~(size_default - 1); 6177 insn->code = BPF_LDX | BPF_MEM | size_code; 6178 } 6179 6180 target_size = 0; 6181 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 6182 &target_size); 6183 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 6184 (ctx_field_size && !target_size)) { 6185 verbose(env, "bpf verifier is misconfigured\n"); 6186 return -EINVAL; 6187 } 6188 6189 if (is_narrower_load && size < target_size) { 6190 u8 shift = (off & (size_default - 1)) * 8; 6191 6192 if (ctx_field_size <= 4) { 6193 if (shift) 6194 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 6195 insn->dst_reg, 6196 shift); 6197 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 6198 (1 << size * 8) - 1); 6199 } else { 6200 if (shift) 6201 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 6202 insn->dst_reg, 6203 shift); 6204 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 6205 (1 << size * 8) - 1); 6206 } 6207 } 6208 6209 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6210 if (!new_prog) 6211 return -ENOMEM; 6212 6213 delta += cnt - 1; 6214 6215 /* keep walking new program and skip insns we just inserted */ 6216 env->prog = new_prog; 6217 insn = new_prog->insnsi + i + delta; 6218 } 6219 6220 return 0; 6221 } 6222 6223 static int jit_subprogs(struct bpf_verifier_env *env) 6224 { 6225 struct bpf_prog *prog = env->prog, **func, *tmp; 6226 int i, j, subprog_start, subprog_end = 0, len, subprog; 6227 struct bpf_insn *insn; 6228 void *old_bpf_func; 6229 int err; 6230 6231 if (env->subprog_cnt <= 1) 6232 return 0; 6233 6234 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6235 if (insn->code != (BPF_JMP | BPF_CALL) || 6236 insn->src_reg != BPF_PSEUDO_CALL) 6237 continue; 6238 /* Upon error here we cannot fall back to interpreter but 6239 * need a hard reject of the program. Thus -EFAULT is 6240 * propagated in any case. 6241 */ 6242 subprog = find_subprog(env, i + insn->imm + 1); 6243 if (subprog < 0) { 6244 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6245 i + insn->imm + 1); 6246 return -EFAULT; 6247 } 6248 /* temporarily remember subprog id inside insn instead of 6249 * aux_data, since next loop will split up all insns into funcs 6250 */ 6251 insn->off = subprog; 6252 /* remember original imm in case JIT fails and fallback 6253 * to interpreter will be needed 6254 */ 6255 env->insn_aux_data[i].call_imm = insn->imm; 6256 /* point imm to __bpf_call_base+1 from JITs point of view */ 6257 insn->imm = 1; 6258 } 6259 6260 err = bpf_prog_alloc_jited_linfo(prog); 6261 if (err) 6262 goto out_undo_insn; 6263 6264 err = -ENOMEM; 6265 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 6266 if (!func) 6267 goto out_undo_insn; 6268 6269 for (i = 0; i < env->subprog_cnt; i++) { 6270 subprog_start = subprog_end; 6271 subprog_end = env->subprog_info[i + 1].start; 6272 6273 len = subprog_end - subprog_start; 6274 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 6275 if (!func[i]) 6276 goto out_free; 6277 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 6278 len * sizeof(struct bpf_insn)); 6279 func[i]->type = prog->type; 6280 func[i]->len = len; 6281 if (bpf_prog_calc_tag(func[i])) 6282 goto out_free; 6283 func[i]->is_func = 1; 6284 func[i]->aux->func_idx = i; 6285 /* the btf and func_info will be freed only at prog->aux */ 6286 func[i]->aux->btf = prog->aux->btf; 6287 func[i]->aux->func_info = prog->aux->func_info; 6288 6289 /* Use bpf_prog_F_tag to indicate functions in stack traces. 6290 * Long term would need debug info to populate names 6291 */ 6292 func[i]->aux->name[0] = 'F'; 6293 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 6294 func[i]->jit_requested = 1; 6295 func[i]->aux->linfo = prog->aux->linfo; 6296 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 6297 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 6298 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 6299 func[i] = bpf_int_jit_compile(func[i]); 6300 if (!func[i]->jited) { 6301 err = -ENOTSUPP; 6302 goto out_free; 6303 } 6304 cond_resched(); 6305 } 6306 /* at this point all bpf functions were successfully JITed 6307 * now populate all bpf_calls with correct addresses and 6308 * run last pass of JIT 6309 */ 6310 for (i = 0; i < env->subprog_cnt; i++) { 6311 insn = func[i]->insnsi; 6312 for (j = 0; j < func[i]->len; j++, insn++) { 6313 if (insn->code != (BPF_JMP | BPF_CALL) || 6314 insn->src_reg != BPF_PSEUDO_CALL) 6315 continue; 6316 subprog = insn->off; 6317 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 6318 func[subprog]->bpf_func - 6319 __bpf_call_base; 6320 } 6321 6322 /* we use the aux data to keep a list of the start addresses 6323 * of the JITed images for each function in the program 6324 * 6325 * for some architectures, such as powerpc64, the imm field 6326 * might not be large enough to hold the offset of the start 6327 * address of the callee's JITed image from __bpf_call_base 6328 * 6329 * in such cases, we can lookup the start address of a callee 6330 * by using its subprog id, available from the off field of 6331 * the call instruction, as an index for this list 6332 */ 6333 func[i]->aux->func = func; 6334 func[i]->aux->func_cnt = env->subprog_cnt; 6335 } 6336 for (i = 0; i < env->subprog_cnt; i++) { 6337 old_bpf_func = func[i]->bpf_func; 6338 tmp = bpf_int_jit_compile(func[i]); 6339 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 6340 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 6341 err = -ENOTSUPP; 6342 goto out_free; 6343 } 6344 cond_resched(); 6345 } 6346 6347 /* finally lock prog and jit images for all functions and 6348 * populate kallsysm 6349 */ 6350 for (i = 0; i < env->subprog_cnt; i++) { 6351 bpf_prog_lock_ro(func[i]); 6352 bpf_prog_kallsyms_add(func[i]); 6353 } 6354 6355 /* Last step: make now unused interpreter insns from main 6356 * prog consistent for later dump requests, so they can 6357 * later look the same as if they were interpreted only. 6358 */ 6359 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6360 if (insn->code != (BPF_JMP | BPF_CALL) || 6361 insn->src_reg != BPF_PSEUDO_CALL) 6362 continue; 6363 insn->off = env->insn_aux_data[i].call_imm; 6364 subprog = find_subprog(env, i + insn->off + 1); 6365 insn->imm = subprog; 6366 } 6367 6368 prog->jited = 1; 6369 prog->bpf_func = func[0]->bpf_func; 6370 prog->aux->func = func; 6371 prog->aux->func_cnt = env->subprog_cnt; 6372 bpf_prog_free_unused_jited_linfo(prog); 6373 return 0; 6374 out_free: 6375 for (i = 0; i < env->subprog_cnt; i++) 6376 if (func[i]) 6377 bpf_jit_free(func[i]); 6378 kfree(func); 6379 out_undo_insn: 6380 /* cleanup main prog to be interpreted */ 6381 prog->jit_requested = 0; 6382 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6383 if (insn->code != (BPF_JMP | BPF_CALL) || 6384 insn->src_reg != BPF_PSEUDO_CALL) 6385 continue; 6386 insn->off = 0; 6387 insn->imm = env->insn_aux_data[i].call_imm; 6388 } 6389 bpf_prog_free_jited_linfo(prog); 6390 return err; 6391 } 6392 6393 static int fixup_call_args(struct bpf_verifier_env *env) 6394 { 6395 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6396 struct bpf_prog *prog = env->prog; 6397 struct bpf_insn *insn = prog->insnsi; 6398 int i, depth; 6399 #endif 6400 int err = 0; 6401 6402 if (env->prog->jit_requested && 6403 !bpf_prog_is_dev_bound(env->prog->aux)) { 6404 err = jit_subprogs(env); 6405 if (err == 0) 6406 return 0; 6407 if (err == -EFAULT) 6408 return err; 6409 } 6410 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6411 for (i = 0; i < prog->len; i++, insn++) { 6412 if (insn->code != (BPF_JMP | BPF_CALL) || 6413 insn->src_reg != BPF_PSEUDO_CALL) 6414 continue; 6415 depth = get_callee_stack_depth(env, insn, i); 6416 if (depth < 0) 6417 return depth; 6418 bpf_patch_call_args(insn, depth); 6419 } 6420 err = 0; 6421 #endif 6422 return err; 6423 } 6424 6425 /* fixup insn->imm field of bpf_call instructions 6426 * and inline eligible helpers as explicit sequence of BPF instructions 6427 * 6428 * this function is called after eBPF program passed verification 6429 */ 6430 static int fixup_bpf_calls(struct bpf_verifier_env *env) 6431 { 6432 struct bpf_prog *prog = env->prog; 6433 struct bpf_insn *insn = prog->insnsi; 6434 const struct bpf_func_proto *fn; 6435 const int insn_cnt = prog->len; 6436 const struct bpf_map_ops *ops; 6437 struct bpf_insn_aux_data *aux; 6438 struct bpf_insn insn_buf[16]; 6439 struct bpf_prog *new_prog; 6440 struct bpf_map *map_ptr; 6441 int i, cnt, delta = 0; 6442 6443 for (i = 0; i < insn_cnt; i++, insn++) { 6444 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 6445 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6446 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 6447 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6448 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 6449 struct bpf_insn mask_and_div[] = { 6450 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6451 /* Rx div 0 -> 0 */ 6452 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 6453 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 6454 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 6455 *insn, 6456 }; 6457 struct bpf_insn mask_and_mod[] = { 6458 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6459 /* Rx mod 0 -> Rx */ 6460 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 6461 *insn, 6462 }; 6463 struct bpf_insn *patchlet; 6464 6465 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6466 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6467 patchlet = mask_and_div + (is64 ? 1 : 0); 6468 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 6469 } else { 6470 patchlet = mask_and_mod + (is64 ? 1 : 0); 6471 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 6472 } 6473 6474 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 6475 if (!new_prog) 6476 return -ENOMEM; 6477 6478 delta += cnt - 1; 6479 env->prog = prog = new_prog; 6480 insn = new_prog->insnsi + i + delta; 6481 continue; 6482 } 6483 6484 if (BPF_CLASS(insn->code) == BPF_LD && 6485 (BPF_MODE(insn->code) == BPF_ABS || 6486 BPF_MODE(insn->code) == BPF_IND)) { 6487 cnt = env->ops->gen_ld_abs(insn, insn_buf); 6488 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6489 verbose(env, "bpf verifier is misconfigured\n"); 6490 return -EINVAL; 6491 } 6492 6493 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6494 if (!new_prog) 6495 return -ENOMEM; 6496 6497 delta += cnt - 1; 6498 env->prog = prog = new_prog; 6499 insn = new_prog->insnsi + i + delta; 6500 continue; 6501 } 6502 6503 if (insn->code != (BPF_JMP | BPF_CALL)) 6504 continue; 6505 if (insn->src_reg == BPF_PSEUDO_CALL) 6506 continue; 6507 6508 if (insn->imm == BPF_FUNC_get_route_realm) 6509 prog->dst_needed = 1; 6510 if (insn->imm == BPF_FUNC_get_prandom_u32) 6511 bpf_user_rnd_init_once(); 6512 if (insn->imm == BPF_FUNC_override_return) 6513 prog->kprobe_override = 1; 6514 if (insn->imm == BPF_FUNC_tail_call) { 6515 /* If we tail call into other programs, we 6516 * cannot make any assumptions since they can 6517 * be replaced dynamically during runtime in 6518 * the program array. 6519 */ 6520 prog->cb_access = 1; 6521 env->prog->aux->stack_depth = MAX_BPF_STACK; 6522 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 6523 6524 /* mark bpf_tail_call as different opcode to avoid 6525 * conditional branch in the interpeter for every normal 6526 * call and to prevent accidental JITing by JIT compiler 6527 * that doesn't support bpf_tail_call yet 6528 */ 6529 insn->imm = 0; 6530 insn->code = BPF_JMP | BPF_TAIL_CALL; 6531 6532 aux = &env->insn_aux_data[i + delta]; 6533 if (!bpf_map_ptr_unpriv(aux)) 6534 continue; 6535 6536 /* instead of changing every JIT dealing with tail_call 6537 * emit two extra insns: 6538 * if (index >= max_entries) goto out; 6539 * index &= array->index_mask; 6540 * to avoid out-of-bounds cpu speculation 6541 */ 6542 if (bpf_map_ptr_poisoned(aux)) { 6543 verbose(env, "tail_call abusing map_ptr\n"); 6544 return -EINVAL; 6545 } 6546 6547 map_ptr = BPF_MAP_PTR(aux->map_state); 6548 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 6549 map_ptr->max_entries, 2); 6550 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 6551 container_of(map_ptr, 6552 struct bpf_array, 6553 map)->index_mask); 6554 insn_buf[2] = *insn; 6555 cnt = 3; 6556 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6557 if (!new_prog) 6558 return -ENOMEM; 6559 6560 delta += cnt - 1; 6561 env->prog = prog = new_prog; 6562 insn = new_prog->insnsi + i + delta; 6563 continue; 6564 } 6565 6566 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 6567 * and other inlining handlers are currently limited to 64 bit 6568 * only. 6569 */ 6570 if (prog->jit_requested && BITS_PER_LONG == 64 && 6571 (insn->imm == BPF_FUNC_map_lookup_elem || 6572 insn->imm == BPF_FUNC_map_update_elem || 6573 insn->imm == BPF_FUNC_map_delete_elem || 6574 insn->imm == BPF_FUNC_map_push_elem || 6575 insn->imm == BPF_FUNC_map_pop_elem || 6576 insn->imm == BPF_FUNC_map_peek_elem)) { 6577 aux = &env->insn_aux_data[i + delta]; 6578 if (bpf_map_ptr_poisoned(aux)) 6579 goto patch_call_imm; 6580 6581 map_ptr = BPF_MAP_PTR(aux->map_state); 6582 ops = map_ptr->ops; 6583 if (insn->imm == BPF_FUNC_map_lookup_elem && 6584 ops->map_gen_lookup) { 6585 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 6586 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6587 verbose(env, "bpf verifier is misconfigured\n"); 6588 return -EINVAL; 6589 } 6590 6591 new_prog = bpf_patch_insn_data(env, i + delta, 6592 insn_buf, cnt); 6593 if (!new_prog) 6594 return -ENOMEM; 6595 6596 delta += cnt - 1; 6597 env->prog = prog = new_prog; 6598 insn = new_prog->insnsi + i + delta; 6599 continue; 6600 } 6601 6602 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 6603 (void *(*)(struct bpf_map *map, void *key))NULL)); 6604 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 6605 (int (*)(struct bpf_map *map, void *key))NULL)); 6606 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 6607 (int (*)(struct bpf_map *map, void *key, void *value, 6608 u64 flags))NULL)); 6609 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 6610 (int (*)(struct bpf_map *map, void *value, 6611 u64 flags))NULL)); 6612 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 6613 (int (*)(struct bpf_map *map, void *value))NULL)); 6614 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 6615 (int (*)(struct bpf_map *map, void *value))NULL)); 6616 6617 switch (insn->imm) { 6618 case BPF_FUNC_map_lookup_elem: 6619 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 6620 __bpf_call_base; 6621 continue; 6622 case BPF_FUNC_map_update_elem: 6623 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 6624 __bpf_call_base; 6625 continue; 6626 case BPF_FUNC_map_delete_elem: 6627 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 6628 __bpf_call_base; 6629 continue; 6630 case BPF_FUNC_map_push_elem: 6631 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 6632 __bpf_call_base; 6633 continue; 6634 case BPF_FUNC_map_pop_elem: 6635 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 6636 __bpf_call_base; 6637 continue; 6638 case BPF_FUNC_map_peek_elem: 6639 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 6640 __bpf_call_base; 6641 continue; 6642 } 6643 6644 goto patch_call_imm; 6645 } 6646 6647 patch_call_imm: 6648 fn = env->ops->get_func_proto(insn->imm, env->prog); 6649 /* all functions that have prototype and verifier allowed 6650 * programs to call them, must be real in-kernel functions 6651 */ 6652 if (!fn->func) { 6653 verbose(env, 6654 "kernel subsystem misconfigured func %s#%d\n", 6655 func_id_name(insn->imm), insn->imm); 6656 return -EFAULT; 6657 } 6658 insn->imm = fn->func - __bpf_call_base; 6659 } 6660 6661 return 0; 6662 } 6663 6664 static void free_states(struct bpf_verifier_env *env) 6665 { 6666 struct bpf_verifier_state_list *sl, *sln; 6667 int i; 6668 6669 if (!env->explored_states) 6670 return; 6671 6672 for (i = 0; i < env->prog->len; i++) { 6673 sl = env->explored_states[i]; 6674 6675 if (sl) 6676 while (sl != STATE_LIST_MARK) { 6677 sln = sl->next; 6678 free_verifier_state(&sl->state, false); 6679 kfree(sl); 6680 sl = sln; 6681 } 6682 } 6683 6684 kfree(env->explored_states); 6685 } 6686 6687 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 6688 union bpf_attr __user *uattr) 6689 { 6690 struct bpf_verifier_env *env; 6691 struct bpf_verifier_log *log; 6692 int ret = -EINVAL; 6693 6694 /* no program is valid */ 6695 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 6696 return -EINVAL; 6697 6698 /* 'struct bpf_verifier_env' can be global, but since it's not small, 6699 * allocate/free it every time bpf_check() is called 6700 */ 6701 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 6702 if (!env) 6703 return -ENOMEM; 6704 log = &env->log; 6705 6706 env->insn_aux_data = 6707 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 6708 (*prog)->len)); 6709 ret = -ENOMEM; 6710 if (!env->insn_aux_data) 6711 goto err_free_env; 6712 env->prog = *prog; 6713 env->ops = bpf_verifier_ops[env->prog->type]; 6714 6715 /* grab the mutex to protect few globals used by verifier */ 6716 mutex_lock(&bpf_verifier_lock); 6717 6718 if (attr->log_level || attr->log_buf || attr->log_size) { 6719 /* user requested verbose verifier output 6720 * and supplied buffer to store the verification trace 6721 */ 6722 log->level = attr->log_level; 6723 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 6724 log->len_total = attr->log_size; 6725 6726 ret = -EINVAL; 6727 /* log attributes have to be sane */ 6728 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 6729 !log->level || !log->ubuf) 6730 goto err_unlock; 6731 } 6732 6733 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 6734 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 6735 env->strict_alignment = true; 6736 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 6737 env->strict_alignment = false; 6738 6739 ret = replace_map_fd_with_map_ptr(env); 6740 if (ret < 0) 6741 goto skip_full_check; 6742 6743 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6744 ret = bpf_prog_offload_verifier_prep(env->prog); 6745 if (ret) 6746 goto skip_full_check; 6747 } 6748 6749 env->explored_states = kcalloc(env->prog->len, 6750 sizeof(struct bpf_verifier_state_list *), 6751 GFP_USER); 6752 ret = -ENOMEM; 6753 if (!env->explored_states) 6754 goto skip_full_check; 6755 6756 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 6757 6758 ret = check_cfg(env); 6759 if (ret < 0) 6760 goto skip_full_check; 6761 6762 ret = check_btf_info(env, attr, uattr); 6763 if (ret < 0) 6764 goto skip_full_check; 6765 6766 ret = do_check(env); 6767 if (env->cur_state) { 6768 free_verifier_state(env->cur_state, true); 6769 env->cur_state = NULL; 6770 } 6771 6772 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 6773 ret = bpf_prog_offload_finalize(env); 6774 6775 skip_full_check: 6776 while (!pop_stack(env, NULL, NULL)); 6777 free_states(env); 6778 6779 if (ret == 0) 6780 sanitize_dead_code(env); 6781 6782 if (ret == 0) 6783 ret = check_max_stack_depth(env); 6784 6785 if (ret == 0) 6786 /* program is valid, convert *(u32*)(ctx + off) accesses */ 6787 ret = convert_ctx_accesses(env); 6788 6789 if (ret == 0) 6790 ret = fixup_bpf_calls(env); 6791 6792 if (ret == 0) 6793 ret = fixup_call_args(env); 6794 6795 if (log->level && bpf_verifier_log_full(log)) 6796 ret = -ENOSPC; 6797 if (log->level && !log->ubuf) { 6798 ret = -EFAULT; 6799 goto err_release_maps; 6800 } 6801 6802 if (ret == 0 && env->used_map_cnt) { 6803 /* if program passed verifier, update used_maps in bpf_prog_info */ 6804 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 6805 sizeof(env->used_maps[0]), 6806 GFP_KERNEL); 6807 6808 if (!env->prog->aux->used_maps) { 6809 ret = -ENOMEM; 6810 goto err_release_maps; 6811 } 6812 6813 memcpy(env->prog->aux->used_maps, env->used_maps, 6814 sizeof(env->used_maps[0]) * env->used_map_cnt); 6815 env->prog->aux->used_map_cnt = env->used_map_cnt; 6816 6817 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 6818 * bpf_ld_imm64 instructions 6819 */ 6820 convert_pseudo_ld_imm64(env); 6821 } 6822 6823 if (ret == 0) 6824 adjust_btf_func(env); 6825 6826 err_release_maps: 6827 if (!env->prog->aux->used_maps) 6828 /* if we didn't copy map pointers into bpf_prog_info, release 6829 * them now. Otherwise free_used_maps() will release them. 6830 */ 6831 release_maps(env); 6832 *prog = env->prog; 6833 err_unlock: 6834 mutex_unlock(&bpf_verifier_lock); 6835 vfree(env->insn_aux_data); 6836 err_free_env: 6837 kfree(env); 6838 return ret; 6839 } 6840