xref: /openbmc/linux/kernel/bpf/verifier.c (revision 020c5260)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 
24 /* bpf_check() is a static code analyzer that walks eBPF program
25  * instruction by instruction and updates register/stack state.
26  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27  *
28  * The first pass is depth-first-search to check that the program is a DAG.
29  * It rejects the following programs:
30  * - larger than BPF_MAXINSNS insns
31  * - if loop is present (detected via back-edge)
32  * - unreachable insns exist (shouldn't be a forest. program = one function)
33  * - out of bounds or malformed jumps
34  * The second pass is all possible path descent from the 1st insn.
35  * Since it's analyzing all pathes through the program, the length of the
36  * analysis is limited to 64k insn, which may be hit even if total number of
37  * insn is less then 4K, but there are too many branches that change stack/regs.
38  * Number of 'branches to be analyzed' is limited to 1k
39  *
40  * On entry to each instruction, each register has a type, and the instruction
41  * changes the types of the registers depending on instruction semantics.
42  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43  * copied to R1.
44  *
45  * All registers are 64-bit.
46  * R0 - return register
47  * R1-R5 argument passing registers
48  * R6-R9 callee saved registers
49  * R10 - frame pointer read-only
50  *
51  * At the start of BPF program the register R1 contains a pointer to bpf_context
52  * and has type PTR_TO_CTX.
53  *
54  * Verifier tracks arithmetic operations on pointers in case:
55  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57  * 1st insn copies R10 (which has FRAME_PTR) type into R1
58  * and 2nd arithmetic instruction is pattern matched to recognize
59  * that it wants to construct a pointer to some element within stack.
60  * So after 2nd insn, the register R1 has type PTR_TO_STACK
61  * (and -20 constant is saved for further stack bounds checking).
62  * Meaning that this reg is a pointer to stack plus known immediate constant.
63  *
64  * Most of the time the registers have UNKNOWN_VALUE type, which
65  * means the register has some value, but it's not a valid pointer.
66  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67  *
68  * When verifier sees load or store instructions the type of base register
69  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70  * types recognized by check_mem_access() function.
71  *
72  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73  * and the range of [ptr, ptr + map's value_size) is accessible.
74  *
75  * registers used to pass values to function calls are checked against
76  * function argument constraints.
77  *
78  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79  * It means that the register type passed to this function must be
80  * PTR_TO_STACK and it will be used inside the function as
81  * 'pointer to map element key'
82  *
83  * For example the argument constraints for bpf_map_lookup_elem():
84  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85  *   .arg1_type = ARG_CONST_MAP_PTR,
86  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
87  *
88  * ret_type says that this function returns 'pointer to map elem value or null'
89  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90  * 2nd argument should be a pointer to stack, which will be used inside
91  * the helper function as a pointer to map element key.
92  *
93  * On the kernel side the helper function looks like:
94  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95  * {
96  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97  *    void *key = (void *) (unsigned long) r2;
98  *    void *value;
99  *
100  *    here kernel can access 'key' and 'map' pointers safely, knowing that
101  *    [key, key + map->key_size) bytes are valid and were initialized on
102  *    the stack of eBPF program.
103  * }
104  *
105  * Corresponding eBPF program may look like:
106  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
107  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
109  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110  * here verifier looks at prototype of map_lookup_elem() and sees:
111  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113  *
114  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116  * and were initialized prior to this call.
117  * If it's ok, then verifier allows this BPF_CALL insn and looks at
118  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120  * returns ether pointer to map value or NULL.
121  *
122  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123  * insn, the register holding that pointer in the true branch changes state to
124  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125  * branch. See check_cond_jmp_op().
126  *
127  * After the call R0 is set to return type of the function and registers R1-R5
128  * are set to NOT_INIT to indicate that they are no longer readable.
129  */
130 
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 	/* verifer state is 'st'
134 	 * before processing instruction 'insn_idx'
135 	 * and after processing instruction 'prev_insn_idx'
136 	 */
137 	struct bpf_verifier_state st;
138 	int insn_idx;
139 	int prev_insn_idx;
140 	struct bpf_verifier_stack_elem *next;
141 };
142 
143 #define BPF_COMPLEXITY_LIMIT_INSNS	65536
144 #define BPF_COMPLEXITY_LIMIT_STACK	1024
145 
146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147 
148 struct bpf_call_arg_meta {
149 	struct bpf_map *map_ptr;
150 	bool raw_mode;
151 	bool pkt_access;
152 	int regno;
153 	int access_size;
154 };
155 
156 /* verbose verifier prints what it's seeing
157  * bpf_check() is called under lock, so no race to access these global vars
158  */
159 static u32 log_level, log_size, log_len;
160 static char *log_buf;
161 
162 static DEFINE_MUTEX(bpf_verifier_lock);
163 
164 /* log_level controls verbosity level of eBPF verifier.
165  * verbose() is used to dump the verification trace to the log, so the user
166  * can figure out what's wrong with the program
167  */
168 static __printf(1, 2) void verbose(const char *fmt, ...)
169 {
170 	va_list args;
171 
172 	if (log_level == 0 || log_len >= log_size - 1)
173 		return;
174 
175 	va_start(args, fmt);
176 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 	va_end(args);
178 }
179 
180 /* string representation of 'enum bpf_reg_type' */
181 static const char * const reg_type_str[] = {
182 	[NOT_INIT]		= "?",
183 	[UNKNOWN_VALUE]		= "inv",
184 	[PTR_TO_CTX]		= "ctx",
185 	[CONST_PTR_TO_MAP]	= "map_ptr",
186 	[PTR_TO_MAP_VALUE]	= "map_value",
187 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
188 	[PTR_TO_MAP_VALUE_ADJ]	= "map_value_adj",
189 	[FRAME_PTR]		= "fp",
190 	[PTR_TO_STACK]		= "fp",
191 	[CONST_IMM]		= "imm",
192 	[PTR_TO_PACKET]		= "pkt",
193 	[PTR_TO_PACKET_END]	= "pkt_end",
194 };
195 
196 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197 static const char * const func_id_str[] = {
198 	__BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199 };
200 #undef __BPF_FUNC_STR_FN
201 
202 static const char *func_id_name(int id)
203 {
204 	BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205 
206 	if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 		return func_id_str[id];
208 	else
209 		return "unknown";
210 }
211 
212 static void print_verifier_state(struct bpf_verifier_state *state)
213 {
214 	struct bpf_reg_state *reg;
215 	enum bpf_reg_type t;
216 	int i;
217 
218 	for (i = 0; i < MAX_BPF_REG; i++) {
219 		reg = &state->regs[i];
220 		t = reg->type;
221 		if (t == NOT_INIT)
222 			continue;
223 		verbose(" R%d=%s", i, reg_type_str[t]);
224 		if (t == CONST_IMM || t == PTR_TO_STACK)
225 			verbose("%lld", reg->imm);
226 		else if (t == PTR_TO_PACKET)
227 			verbose("(id=%d,off=%d,r=%d)",
228 				reg->id, reg->off, reg->range);
229 		else if (t == UNKNOWN_VALUE && reg->imm)
230 			verbose("%lld", reg->imm);
231 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
232 			 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 			 t == PTR_TO_MAP_VALUE_ADJ)
234 			verbose("(ks=%d,vs=%d,id=%u)",
235 				reg->map_ptr->key_size,
236 				reg->map_ptr->value_size,
237 				reg->id);
238 		if (reg->min_value != BPF_REGISTER_MIN_RANGE)
239 			verbose(",min_value=%lld",
240 				(long long)reg->min_value);
241 		if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 			verbose(",max_value=%llu",
243 				(unsigned long long)reg->max_value);
244 	}
245 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
246 		if (state->stack_slot_type[i] == STACK_SPILL)
247 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
248 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
249 	}
250 	verbose("\n");
251 }
252 
253 static const char *const bpf_class_string[] = {
254 	[BPF_LD]    = "ld",
255 	[BPF_LDX]   = "ldx",
256 	[BPF_ST]    = "st",
257 	[BPF_STX]   = "stx",
258 	[BPF_ALU]   = "alu",
259 	[BPF_JMP]   = "jmp",
260 	[BPF_RET]   = "BUG",
261 	[BPF_ALU64] = "alu64",
262 };
263 
264 static const char *const bpf_alu_string[16] = {
265 	[BPF_ADD >> 4]  = "+=",
266 	[BPF_SUB >> 4]  = "-=",
267 	[BPF_MUL >> 4]  = "*=",
268 	[BPF_DIV >> 4]  = "/=",
269 	[BPF_OR  >> 4]  = "|=",
270 	[BPF_AND >> 4]  = "&=",
271 	[BPF_LSH >> 4]  = "<<=",
272 	[BPF_RSH >> 4]  = ">>=",
273 	[BPF_NEG >> 4]  = "neg",
274 	[BPF_MOD >> 4]  = "%=",
275 	[BPF_XOR >> 4]  = "^=",
276 	[BPF_MOV >> 4]  = "=",
277 	[BPF_ARSH >> 4] = "s>>=",
278 	[BPF_END >> 4]  = "endian",
279 };
280 
281 static const char *const bpf_ldst_string[] = {
282 	[BPF_W >> 3]  = "u32",
283 	[BPF_H >> 3]  = "u16",
284 	[BPF_B >> 3]  = "u8",
285 	[BPF_DW >> 3] = "u64",
286 };
287 
288 static const char *const bpf_jmp_string[16] = {
289 	[BPF_JA >> 4]   = "jmp",
290 	[BPF_JEQ >> 4]  = "==",
291 	[BPF_JGT >> 4]  = ">",
292 	[BPF_JGE >> 4]  = ">=",
293 	[BPF_JSET >> 4] = "&",
294 	[BPF_JNE >> 4]  = "!=",
295 	[BPF_JSGT >> 4] = "s>",
296 	[BPF_JSGE >> 4] = "s>=",
297 	[BPF_CALL >> 4] = "call",
298 	[BPF_EXIT >> 4] = "exit",
299 };
300 
301 static void print_bpf_insn(const struct bpf_verifier_env *env,
302 			   const struct bpf_insn *insn)
303 {
304 	u8 class = BPF_CLASS(insn->code);
305 
306 	if (class == BPF_ALU || class == BPF_ALU64) {
307 		if (BPF_SRC(insn->code) == BPF_X)
308 			verbose("(%02x) %sr%d %s %sr%d\n",
309 				insn->code, class == BPF_ALU ? "(u32) " : "",
310 				insn->dst_reg,
311 				bpf_alu_string[BPF_OP(insn->code) >> 4],
312 				class == BPF_ALU ? "(u32) " : "",
313 				insn->src_reg);
314 		else
315 			verbose("(%02x) %sr%d %s %s%d\n",
316 				insn->code, class == BPF_ALU ? "(u32) " : "",
317 				insn->dst_reg,
318 				bpf_alu_string[BPF_OP(insn->code) >> 4],
319 				class == BPF_ALU ? "(u32) " : "",
320 				insn->imm);
321 	} else if (class == BPF_STX) {
322 		if (BPF_MODE(insn->code) == BPF_MEM)
323 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
324 				insn->code,
325 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
326 				insn->dst_reg,
327 				insn->off, insn->src_reg);
328 		else if (BPF_MODE(insn->code) == BPF_XADD)
329 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
330 				insn->code,
331 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
332 				insn->dst_reg, insn->off,
333 				insn->src_reg);
334 		else
335 			verbose("BUG_%02x\n", insn->code);
336 	} else if (class == BPF_ST) {
337 		if (BPF_MODE(insn->code) != BPF_MEM) {
338 			verbose("BUG_st_%02x\n", insn->code);
339 			return;
340 		}
341 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
342 			insn->code,
343 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
344 			insn->dst_reg,
345 			insn->off, insn->imm);
346 	} else if (class == BPF_LDX) {
347 		if (BPF_MODE(insn->code) != BPF_MEM) {
348 			verbose("BUG_ldx_%02x\n", insn->code);
349 			return;
350 		}
351 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
352 			insn->code, insn->dst_reg,
353 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
354 			insn->src_reg, insn->off);
355 	} else if (class == BPF_LD) {
356 		if (BPF_MODE(insn->code) == BPF_ABS) {
357 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
358 				insn->code,
359 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 				insn->imm);
361 		} else if (BPF_MODE(insn->code) == BPF_IND) {
362 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
363 				insn->code,
364 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
365 				insn->src_reg, insn->imm);
366 		} else if (BPF_MODE(insn->code) == BPF_IMM &&
367 			   BPF_SIZE(insn->code) == BPF_DW) {
368 			/* At this point, we already made sure that the second
369 			 * part of the ldimm64 insn is accessible.
370 			 */
371 			u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
372 			bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
373 
374 			if (map_ptr && !env->allow_ptr_leaks)
375 				imm = 0;
376 
377 			verbose("(%02x) r%d = 0x%llx\n", insn->code,
378 				insn->dst_reg, (unsigned long long)imm);
379 		} else {
380 			verbose("BUG_ld_%02x\n", insn->code);
381 			return;
382 		}
383 	} else if (class == BPF_JMP) {
384 		u8 opcode = BPF_OP(insn->code);
385 
386 		if (opcode == BPF_CALL) {
387 			verbose("(%02x) call %s#%d\n", insn->code,
388 				func_id_name(insn->imm), insn->imm);
389 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
390 			verbose("(%02x) goto pc%+d\n",
391 				insn->code, insn->off);
392 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
393 			verbose("(%02x) exit\n", insn->code);
394 		} else if (BPF_SRC(insn->code) == BPF_X) {
395 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
396 				insn->code, insn->dst_reg,
397 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
398 				insn->src_reg, insn->off);
399 		} else {
400 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
401 				insn->code, insn->dst_reg,
402 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
403 				insn->imm, insn->off);
404 		}
405 	} else {
406 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
407 	}
408 }
409 
410 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
411 {
412 	struct bpf_verifier_stack_elem *elem;
413 	int insn_idx;
414 
415 	if (env->head == NULL)
416 		return -1;
417 
418 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
419 	insn_idx = env->head->insn_idx;
420 	if (prev_insn_idx)
421 		*prev_insn_idx = env->head->prev_insn_idx;
422 	elem = env->head->next;
423 	kfree(env->head);
424 	env->head = elem;
425 	env->stack_size--;
426 	return insn_idx;
427 }
428 
429 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
430 					     int insn_idx, int prev_insn_idx)
431 {
432 	struct bpf_verifier_stack_elem *elem;
433 
434 	elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
435 	if (!elem)
436 		goto err;
437 
438 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
439 	elem->insn_idx = insn_idx;
440 	elem->prev_insn_idx = prev_insn_idx;
441 	elem->next = env->head;
442 	env->head = elem;
443 	env->stack_size++;
444 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
445 		verbose("BPF program is too complex\n");
446 		goto err;
447 	}
448 	return &elem->st;
449 err:
450 	/* pop all elements and return */
451 	while (pop_stack(env, NULL) >= 0);
452 	return NULL;
453 }
454 
455 #define CALLER_SAVED_REGS 6
456 static const int caller_saved[CALLER_SAVED_REGS] = {
457 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
458 };
459 
460 static void init_reg_state(struct bpf_reg_state *regs)
461 {
462 	int i;
463 
464 	for (i = 0; i < MAX_BPF_REG; i++) {
465 		regs[i].type = NOT_INIT;
466 		regs[i].imm = 0;
467 		regs[i].min_value = BPF_REGISTER_MIN_RANGE;
468 		regs[i].max_value = BPF_REGISTER_MAX_RANGE;
469 	}
470 
471 	/* frame pointer */
472 	regs[BPF_REG_FP].type = FRAME_PTR;
473 
474 	/* 1st arg to a function */
475 	regs[BPF_REG_1].type = PTR_TO_CTX;
476 }
477 
478 static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
479 {
480 	regs[regno].type = UNKNOWN_VALUE;
481 	regs[regno].id = 0;
482 	regs[regno].imm = 0;
483 }
484 
485 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
486 {
487 	BUG_ON(regno >= MAX_BPF_REG);
488 	__mark_reg_unknown_value(regs, regno);
489 }
490 
491 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
492 {
493 	regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
494 	regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
495 }
496 
497 static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
498 					     u32 regno)
499 {
500 	mark_reg_unknown_value(regs, regno);
501 	reset_reg_range_values(regs, regno);
502 }
503 
504 enum reg_arg_type {
505 	SRC_OP,		/* register is used as source operand */
506 	DST_OP,		/* register is used as destination operand */
507 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
508 };
509 
510 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
511 			 enum reg_arg_type t)
512 {
513 	if (regno >= MAX_BPF_REG) {
514 		verbose("R%d is invalid\n", regno);
515 		return -EINVAL;
516 	}
517 
518 	if (t == SRC_OP) {
519 		/* check whether register used as source operand can be read */
520 		if (regs[regno].type == NOT_INIT) {
521 			verbose("R%d !read_ok\n", regno);
522 			return -EACCES;
523 		}
524 	} else {
525 		/* check whether register used as dest operand can be written to */
526 		if (regno == BPF_REG_FP) {
527 			verbose("frame pointer is read only\n");
528 			return -EACCES;
529 		}
530 		if (t == DST_OP)
531 			mark_reg_unknown_value(regs, regno);
532 	}
533 	return 0;
534 }
535 
536 static int bpf_size_to_bytes(int bpf_size)
537 {
538 	if (bpf_size == BPF_W)
539 		return 4;
540 	else if (bpf_size == BPF_H)
541 		return 2;
542 	else if (bpf_size == BPF_B)
543 		return 1;
544 	else if (bpf_size == BPF_DW)
545 		return 8;
546 	else
547 		return -EINVAL;
548 }
549 
550 static bool is_spillable_regtype(enum bpf_reg_type type)
551 {
552 	switch (type) {
553 	case PTR_TO_MAP_VALUE:
554 	case PTR_TO_MAP_VALUE_OR_NULL:
555 	case PTR_TO_MAP_VALUE_ADJ:
556 	case PTR_TO_STACK:
557 	case PTR_TO_CTX:
558 	case PTR_TO_PACKET:
559 	case PTR_TO_PACKET_END:
560 	case FRAME_PTR:
561 	case CONST_PTR_TO_MAP:
562 		return true;
563 	default:
564 		return false;
565 	}
566 }
567 
568 /* check_stack_read/write functions track spill/fill of registers,
569  * stack boundary and alignment are checked in check_mem_access()
570  */
571 static int check_stack_write(struct bpf_verifier_state *state, int off,
572 			     int size, int value_regno)
573 {
574 	int i;
575 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
576 	 * so it's aligned access and [off, off + size) are within stack limits
577 	 */
578 
579 	if (value_regno >= 0 &&
580 	    is_spillable_regtype(state->regs[value_regno].type)) {
581 
582 		/* register containing pointer is being spilled into stack */
583 		if (size != BPF_REG_SIZE) {
584 			verbose("invalid size of register spill\n");
585 			return -EACCES;
586 		}
587 
588 		/* save register state */
589 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
590 			state->regs[value_regno];
591 
592 		for (i = 0; i < BPF_REG_SIZE; i++)
593 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
594 	} else {
595 		/* regular write of data into stack */
596 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
597 			(struct bpf_reg_state) {};
598 
599 		for (i = 0; i < size; i++)
600 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
601 	}
602 	return 0;
603 }
604 
605 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
606 			    int value_regno)
607 {
608 	u8 *slot_type;
609 	int i;
610 
611 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
612 
613 	if (slot_type[0] == STACK_SPILL) {
614 		if (size != BPF_REG_SIZE) {
615 			verbose("invalid size of register spill\n");
616 			return -EACCES;
617 		}
618 		for (i = 1; i < BPF_REG_SIZE; i++) {
619 			if (slot_type[i] != STACK_SPILL) {
620 				verbose("corrupted spill memory\n");
621 				return -EACCES;
622 			}
623 		}
624 
625 		if (value_regno >= 0)
626 			/* restore register state from stack */
627 			state->regs[value_regno] =
628 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
629 		return 0;
630 	} else {
631 		for (i = 0; i < size; i++) {
632 			if (slot_type[i] != STACK_MISC) {
633 				verbose("invalid read from stack off %d+%d size %d\n",
634 					off, i, size);
635 				return -EACCES;
636 			}
637 		}
638 		if (value_regno >= 0)
639 			/* have read misc data from the stack */
640 			mark_reg_unknown_value_and_range(state->regs,
641 							 value_regno);
642 		return 0;
643 	}
644 }
645 
646 /* check read/write into map element returned by bpf_map_lookup_elem() */
647 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
648 			    int size)
649 {
650 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
651 
652 	if (off < 0 || size <= 0 || off + size > map->value_size) {
653 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
654 			map->value_size, off, size);
655 		return -EACCES;
656 	}
657 	return 0;
658 }
659 
660 /* check read/write into an adjusted map element */
661 static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
662 				int off, int size)
663 {
664 	struct bpf_verifier_state *state = &env->cur_state;
665 	struct bpf_reg_state *reg = &state->regs[regno];
666 	int err;
667 
668 	/* We adjusted the register to this map value, so we
669 	 * need to change off and size to min_value and max_value
670 	 * respectively to make sure our theoretical access will be
671 	 * safe.
672 	 */
673 	if (log_level)
674 		print_verifier_state(state);
675 	env->varlen_map_value_access = true;
676 	/* The minimum value is only important with signed
677 	 * comparisons where we can't assume the floor of a
678 	 * value is 0.  If we are using signed variables for our
679 	 * index'es we need to make sure that whatever we use
680 	 * will have a set floor within our range.
681 	 */
682 	if (reg->min_value < 0) {
683 		verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
684 			regno);
685 		return -EACCES;
686 	}
687 	err = check_map_access(env, regno, reg->min_value + off, size);
688 	if (err) {
689 		verbose("R%d min value is outside of the array range\n",
690 			regno);
691 		return err;
692 	}
693 
694 	/* If we haven't set a max value then we need to bail
695 	 * since we can't be sure we won't do bad things.
696 	 */
697 	if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
698 		verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
699 			regno);
700 		return -EACCES;
701 	}
702 	return check_map_access(env, regno, reg->max_value + off, size);
703 }
704 
705 #define MAX_PACKET_OFF 0xffff
706 
707 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
708 				       const struct bpf_call_arg_meta *meta,
709 				       enum bpf_access_type t)
710 {
711 	switch (env->prog->type) {
712 	case BPF_PROG_TYPE_LWT_IN:
713 	case BPF_PROG_TYPE_LWT_OUT:
714 		/* dst_input() and dst_output() can't write for now */
715 		if (t == BPF_WRITE)
716 			return false;
717 		/* fallthrough */
718 	case BPF_PROG_TYPE_SCHED_CLS:
719 	case BPF_PROG_TYPE_SCHED_ACT:
720 	case BPF_PROG_TYPE_XDP:
721 	case BPF_PROG_TYPE_LWT_XMIT:
722 		if (meta)
723 			return meta->pkt_access;
724 
725 		env->seen_direct_write = true;
726 		return true;
727 	default:
728 		return false;
729 	}
730 }
731 
732 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
733 			       int size)
734 {
735 	struct bpf_reg_state *regs = env->cur_state.regs;
736 	struct bpf_reg_state *reg = &regs[regno];
737 
738 	off += reg->off;
739 	if (off < 0 || size <= 0 || off + size > reg->range) {
740 		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
741 			off, size, regno, reg->id, reg->off, reg->range);
742 		return -EACCES;
743 	}
744 	return 0;
745 }
746 
747 /* check access to 'struct bpf_context' fields */
748 static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
749 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
750 {
751 	/* for analyzer ctx accesses are already validated and converted */
752 	if (env->analyzer_ops)
753 		return 0;
754 
755 	if (env->prog->aux->ops->is_valid_access &&
756 	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
757 		/* remember the offset of last byte accessed in ctx */
758 		if (env->prog->aux->max_ctx_offset < off + size)
759 			env->prog->aux->max_ctx_offset = off + size;
760 		return 0;
761 	}
762 
763 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
764 	return -EACCES;
765 }
766 
767 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
768 {
769 	if (env->allow_ptr_leaks)
770 		return false;
771 
772 	switch (env->cur_state.regs[regno].type) {
773 	case UNKNOWN_VALUE:
774 	case CONST_IMM:
775 		return false;
776 	default:
777 		return true;
778 	}
779 }
780 
781 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
782 				   int off, int size)
783 {
784 	if (reg->id && size != 1) {
785 		verbose("Unknown alignment. Only byte-sized access allowed in packet access.\n");
786 		return -EACCES;
787 	}
788 
789 	/* skb->data is NET_IP_ALIGN-ed */
790 	if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
791 		verbose("misaligned packet access off %d+%d+%d size %d\n",
792 			NET_IP_ALIGN, reg->off, off, size);
793 		return -EACCES;
794 	}
795 
796 	return 0;
797 }
798 
799 static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
800 				   int size)
801 {
802 	if (size != 1) {
803 		verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
804 		return -EACCES;
805 	}
806 
807 	return 0;
808 }
809 
810 static int check_ptr_alignment(const struct bpf_reg_state *reg,
811 			       int off, int size)
812 {
813 	switch (reg->type) {
814 	case PTR_TO_PACKET:
815 		return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ? 0 :
816 		       check_pkt_ptr_alignment(reg, off, size);
817 	case PTR_TO_MAP_VALUE_ADJ:
818 		return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ? 0 :
819 		       check_val_ptr_alignment(reg, size);
820 	default:
821 		if (off % size != 0) {
822 			verbose("misaligned access off %d size %d\n",
823 				off, size);
824 			return -EACCES;
825 		}
826 
827 		return 0;
828 	}
829 }
830 
831 /* check whether memory at (regno + off) is accessible for t = (read | write)
832  * if t==write, value_regno is a register which value is stored into memory
833  * if t==read, value_regno is a register which will receive the value from memory
834  * if t==write && value_regno==-1, some unknown value is stored into memory
835  * if t==read && value_regno==-1, don't care what we read from memory
836  */
837 static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
838 			    int bpf_size, enum bpf_access_type t,
839 			    int value_regno)
840 {
841 	struct bpf_verifier_state *state = &env->cur_state;
842 	struct bpf_reg_state *reg = &state->regs[regno];
843 	int size, err = 0;
844 
845 	if (reg->type == PTR_TO_STACK)
846 		off += reg->imm;
847 
848 	size = bpf_size_to_bytes(bpf_size);
849 	if (size < 0)
850 		return size;
851 
852 	err = check_ptr_alignment(reg, off, size);
853 	if (err)
854 		return err;
855 
856 	if (reg->type == PTR_TO_MAP_VALUE ||
857 	    reg->type == PTR_TO_MAP_VALUE_ADJ) {
858 		if (t == BPF_WRITE && value_regno >= 0 &&
859 		    is_pointer_value(env, value_regno)) {
860 			verbose("R%d leaks addr into map\n", value_regno);
861 			return -EACCES;
862 		}
863 
864 		if (reg->type == PTR_TO_MAP_VALUE_ADJ)
865 			err = check_map_access_adj(env, regno, off, size);
866 		else
867 			err = check_map_access(env, regno, off, size);
868 		if (!err && t == BPF_READ && value_regno >= 0)
869 			mark_reg_unknown_value_and_range(state->regs,
870 							 value_regno);
871 
872 	} else if (reg->type == PTR_TO_CTX) {
873 		enum bpf_reg_type reg_type = UNKNOWN_VALUE;
874 
875 		if (t == BPF_WRITE && value_regno >= 0 &&
876 		    is_pointer_value(env, value_regno)) {
877 			verbose("R%d leaks addr into ctx\n", value_regno);
878 			return -EACCES;
879 		}
880 		err = check_ctx_access(env, off, size, t, &reg_type);
881 		if (!err && t == BPF_READ && value_regno >= 0) {
882 			mark_reg_unknown_value_and_range(state->regs,
883 							 value_regno);
884 			/* note that reg.[id|off|range] == 0 */
885 			state->regs[value_regno].type = reg_type;
886 		}
887 
888 	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
889 		if (off >= 0 || off < -MAX_BPF_STACK) {
890 			verbose("invalid stack off=%d size=%d\n", off, size);
891 			return -EACCES;
892 		}
893 		if (t == BPF_WRITE) {
894 			if (!env->allow_ptr_leaks &&
895 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
896 			    size != BPF_REG_SIZE) {
897 				verbose("attempt to corrupt spilled pointer on stack\n");
898 				return -EACCES;
899 			}
900 			err = check_stack_write(state, off, size, value_regno);
901 		} else {
902 			err = check_stack_read(state, off, size, value_regno);
903 		}
904 	} else if (state->regs[regno].type == PTR_TO_PACKET) {
905 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
906 			verbose("cannot write into packet\n");
907 			return -EACCES;
908 		}
909 		if (t == BPF_WRITE && value_regno >= 0 &&
910 		    is_pointer_value(env, value_regno)) {
911 			verbose("R%d leaks addr into packet\n", value_regno);
912 			return -EACCES;
913 		}
914 		err = check_packet_access(env, regno, off, size);
915 		if (!err && t == BPF_READ && value_regno >= 0)
916 			mark_reg_unknown_value_and_range(state->regs,
917 							 value_regno);
918 	} else {
919 		verbose("R%d invalid mem access '%s'\n",
920 			regno, reg_type_str[reg->type]);
921 		return -EACCES;
922 	}
923 
924 	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
925 	    state->regs[value_regno].type == UNKNOWN_VALUE) {
926 		/* 1 or 2 byte load zero-extends, determine the number of
927 		 * zero upper bits. Not doing it fo 4 byte load, since
928 		 * such values cannot be added to ptr_to_packet anyway.
929 		 */
930 		state->regs[value_regno].imm = 64 - size * 8;
931 	}
932 	return err;
933 }
934 
935 static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
936 {
937 	struct bpf_reg_state *regs = env->cur_state.regs;
938 	int err;
939 
940 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
941 	    insn->imm != 0) {
942 		verbose("BPF_XADD uses reserved fields\n");
943 		return -EINVAL;
944 	}
945 
946 	/* check src1 operand */
947 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
948 	if (err)
949 		return err;
950 
951 	/* check src2 operand */
952 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
953 	if (err)
954 		return err;
955 
956 	/* check whether atomic_add can read the memory */
957 	err = check_mem_access(env, insn->dst_reg, insn->off,
958 			       BPF_SIZE(insn->code), BPF_READ, -1);
959 	if (err)
960 		return err;
961 
962 	/* check whether atomic_add can write into the same memory */
963 	return check_mem_access(env, insn->dst_reg, insn->off,
964 				BPF_SIZE(insn->code), BPF_WRITE, -1);
965 }
966 
967 /* when register 'regno' is passed into function that will read 'access_size'
968  * bytes from that pointer, make sure that it's within stack boundary
969  * and all elements of stack are initialized
970  */
971 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
972 				int access_size, bool zero_size_allowed,
973 				struct bpf_call_arg_meta *meta)
974 {
975 	struct bpf_verifier_state *state = &env->cur_state;
976 	struct bpf_reg_state *regs = state->regs;
977 	int off, i;
978 
979 	if (regs[regno].type != PTR_TO_STACK) {
980 		if (zero_size_allowed && access_size == 0 &&
981 		    regs[regno].type == CONST_IMM &&
982 		    regs[regno].imm  == 0)
983 			return 0;
984 
985 		verbose("R%d type=%s expected=%s\n", regno,
986 			reg_type_str[regs[regno].type],
987 			reg_type_str[PTR_TO_STACK]);
988 		return -EACCES;
989 	}
990 
991 	off = regs[regno].imm;
992 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
993 	    access_size <= 0) {
994 		verbose("invalid stack type R%d off=%d access_size=%d\n",
995 			regno, off, access_size);
996 		return -EACCES;
997 	}
998 
999 	if (meta && meta->raw_mode) {
1000 		meta->access_size = access_size;
1001 		meta->regno = regno;
1002 		return 0;
1003 	}
1004 
1005 	for (i = 0; i < access_size; i++) {
1006 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1007 			verbose("invalid indirect read from stack off %d+%d size %d\n",
1008 				off, i, access_size);
1009 			return -EACCES;
1010 		}
1011 	}
1012 	return 0;
1013 }
1014 
1015 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1016 				   int access_size, bool zero_size_allowed,
1017 				   struct bpf_call_arg_meta *meta)
1018 {
1019 	struct bpf_reg_state *regs = env->cur_state.regs;
1020 
1021 	switch (regs[regno].type) {
1022 	case PTR_TO_PACKET:
1023 		return check_packet_access(env, regno, 0, access_size);
1024 	case PTR_TO_MAP_VALUE:
1025 		return check_map_access(env, regno, 0, access_size);
1026 	case PTR_TO_MAP_VALUE_ADJ:
1027 		return check_map_access_adj(env, regno, 0, access_size);
1028 	default: /* const_imm|ptr_to_stack or invalid ptr */
1029 		return check_stack_boundary(env, regno, access_size,
1030 					    zero_size_allowed, meta);
1031 	}
1032 }
1033 
1034 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1035 			  enum bpf_arg_type arg_type,
1036 			  struct bpf_call_arg_meta *meta)
1037 {
1038 	struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1039 	enum bpf_reg_type expected_type, type = reg->type;
1040 	int err = 0;
1041 
1042 	if (arg_type == ARG_DONTCARE)
1043 		return 0;
1044 
1045 	if (type == NOT_INIT) {
1046 		verbose("R%d !read_ok\n", regno);
1047 		return -EACCES;
1048 	}
1049 
1050 	if (arg_type == ARG_ANYTHING) {
1051 		if (is_pointer_value(env, regno)) {
1052 			verbose("R%d leaks addr into helper function\n", regno);
1053 			return -EACCES;
1054 		}
1055 		return 0;
1056 	}
1057 
1058 	if (type == PTR_TO_PACKET &&
1059 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1060 		verbose("helper access to the packet is not allowed\n");
1061 		return -EACCES;
1062 	}
1063 
1064 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1065 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1066 		expected_type = PTR_TO_STACK;
1067 		if (type != PTR_TO_PACKET && type != expected_type)
1068 			goto err_type;
1069 	} else if (arg_type == ARG_CONST_SIZE ||
1070 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1071 		expected_type = CONST_IMM;
1072 		/* One exception. Allow UNKNOWN_VALUE registers when the
1073 		 * boundaries are known and don't cause unsafe memory accesses
1074 		 */
1075 		if (type != UNKNOWN_VALUE && type != expected_type)
1076 			goto err_type;
1077 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1078 		expected_type = CONST_PTR_TO_MAP;
1079 		if (type != expected_type)
1080 			goto err_type;
1081 	} else if (arg_type == ARG_PTR_TO_CTX) {
1082 		expected_type = PTR_TO_CTX;
1083 		if (type != expected_type)
1084 			goto err_type;
1085 	} else if (arg_type == ARG_PTR_TO_MEM ||
1086 		   arg_type == ARG_PTR_TO_UNINIT_MEM) {
1087 		expected_type = PTR_TO_STACK;
1088 		/* One exception here. In case function allows for NULL to be
1089 		 * passed in as argument, it's a CONST_IMM type. Final test
1090 		 * happens during stack boundary checking.
1091 		 */
1092 		if (type == CONST_IMM && reg->imm == 0)
1093 			/* final test in check_stack_boundary() */;
1094 		else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1095 			 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
1096 			goto err_type;
1097 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1098 	} else {
1099 		verbose("unsupported arg_type %d\n", arg_type);
1100 		return -EFAULT;
1101 	}
1102 
1103 	if (arg_type == ARG_CONST_MAP_PTR) {
1104 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1105 		meta->map_ptr = reg->map_ptr;
1106 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1107 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
1108 		 * check that [key, key + map->key_size) are within
1109 		 * stack limits and initialized
1110 		 */
1111 		if (!meta->map_ptr) {
1112 			/* in function declaration map_ptr must come before
1113 			 * map_key, so that it's verified and known before
1114 			 * we have to check map_key here. Otherwise it means
1115 			 * that kernel subsystem misconfigured verifier
1116 			 */
1117 			verbose("invalid map_ptr to access map->key\n");
1118 			return -EACCES;
1119 		}
1120 		if (type == PTR_TO_PACKET)
1121 			err = check_packet_access(env, regno, 0,
1122 						  meta->map_ptr->key_size);
1123 		else
1124 			err = check_stack_boundary(env, regno,
1125 						   meta->map_ptr->key_size,
1126 						   false, NULL);
1127 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1128 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1129 		 * check [value, value + map->value_size) validity
1130 		 */
1131 		if (!meta->map_ptr) {
1132 			/* kernel subsystem misconfigured verifier */
1133 			verbose("invalid map_ptr to access map->value\n");
1134 			return -EACCES;
1135 		}
1136 		if (type == PTR_TO_PACKET)
1137 			err = check_packet_access(env, regno, 0,
1138 						  meta->map_ptr->value_size);
1139 		else
1140 			err = check_stack_boundary(env, regno,
1141 						   meta->map_ptr->value_size,
1142 						   false, NULL);
1143 	} else if (arg_type == ARG_CONST_SIZE ||
1144 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1145 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1146 
1147 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1148 		 * from stack pointer 'buf'. Check it
1149 		 * note: regno == len, regno - 1 == buf
1150 		 */
1151 		if (regno == 0) {
1152 			/* kernel subsystem misconfigured verifier */
1153 			verbose("ARG_CONST_SIZE cannot be first argument\n");
1154 			return -EACCES;
1155 		}
1156 
1157 		/* If the register is UNKNOWN_VALUE, the access check happens
1158 		 * using its boundaries. Otherwise, just use its imm
1159 		 */
1160 		if (type == UNKNOWN_VALUE) {
1161 			/* For unprivileged variable accesses, disable raw
1162 			 * mode so that the program is required to
1163 			 * initialize all the memory that the helper could
1164 			 * just partially fill up.
1165 			 */
1166 			meta = NULL;
1167 
1168 			if (reg->min_value < 0) {
1169 				verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1170 					regno);
1171 				return -EACCES;
1172 			}
1173 
1174 			if (reg->min_value == 0) {
1175 				err = check_helper_mem_access(env, regno - 1, 0,
1176 							      zero_size_allowed,
1177 							      meta);
1178 				if (err)
1179 					return err;
1180 			}
1181 
1182 			if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1183 				verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1184 					regno);
1185 				return -EACCES;
1186 			}
1187 			err = check_helper_mem_access(env, regno - 1,
1188 						      reg->max_value,
1189 						      zero_size_allowed, meta);
1190 			if (err)
1191 				return err;
1192 		} else {
1193 			/* register is CONST_IMM */
1194 			err = check_helper_mem_access(env, regno - 1, reg->imm,
1195 						      zero_size_allowed, meta);
1196 		}
1197 	}
1198 
1199 	return err;
1200 err_type:
1201 	verbose("R%d type=%s expected=%s\n", regno,
1202 		reg_type_str[type], reg_type_str[expected_type]);
1203 	return -EACCES;
1204 }
1205 
1206 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1207 {
1208 	if (!map)
1209 		return 0;
1210 
1211 	/* We need a two way check, first is from map perspective ... */
1212 	switch (map->map_type) {
1213 	case BPF_MAP_TYPE_PROG_ARRAY:
1214 		if (func_id != BPF_FUNC_tail_call)
1215 			goto error;
1216 		break;
1217 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1218 		if (func_id != BPF_FUNC_perf_event_read &&
1219 		    func_id != BPF_FUNC_perf_event_output)
1220 			goto error;
1221 		break;
1222 	case BPF_MAP_TYPE_STACK_TRACE:
1223 		if (func_id != BPF_FUNC_get_stackid)
1224 			goto error;
1225 		break;
1226 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1227 		if (func_id != BPF_FUNC_skb_under_cgroup &&
1228 		    func_id != BPF_FUNC_current_task_under_cgroup)
1229 			goto error;
1230 		break;
1231 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1232 	case BPF_MAP_TYPE_HASH_OF_MAPS:
1233 		if (func_id != BPF_FUNC_map_lookup_elem)
1234 			goto error;
1235 	default:
1236 		break;
1237 	}
1238 
1239 	/* ... and second from the function itself. */
1240 	switch (func_id) {
1241 	case BPF_FUNC_tail_call:
1242 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1243 			goto error;
1244 		break;
1245 	case BPF_FUNC_perf_event_read:
1246 	case BPF_FUNC_perf_event_output:
1247 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1248 			goto error;
1249 		break;
1250 	case BPF_FUNC_get_stackid:
1251 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1252 			goto error;
1253 		break;
1254 	case BPF_FUNC_current_task_under_cgroup:
1255 	case BPF_FUNC_skb_under_cgroup:
1256 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1257 			goto error;
1258 		break;
1259 	default:
1260 		break;
1261 	}
1262 
1263 	return 0;
1264 error:
1265 	verbose("cannot pass map_type %d into func %s#%d\n",
1266 		map->map_type, func_id_name(func_id), func_id);
1267 	return -EINVAL;
1268 }
1269 
1270 static int check_raw_mode(const struct bpf_func_proto *fn)
1271 {
1272 	int count = 0;
1273 
1274 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1275 		count++;
1276 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1277 		count++;
1278 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1279 		count++;
1280 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1281 		count++;
1282 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1283 		count++;
1284 
1285 	return count > 1 ? -EINVAL : 0;
1286 }
1287 
1288 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1289 {
1290 	struct bpf_verifier_state *state = &env->cur_state;
1291 	struct bpf_reg_state *regs = state->regs, *reg;
1292 	int i;
1293 
1294 	for (i = 0; i < MAX_BPF_REG; i++)
1295 		if (regs[i].type == PTR_TO_PACKET ||
1296 		    regs[i].type == PTR_TO_PACKET_END)
1297 			mark_reg_unknown_value(regs, i);
1298 
1299 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1300 		if (state->stack_slot_type[i] != STACK_SPILL)
1301 			continue;
1302 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1303 		if (reg->type != PTR_TO_PACKET &&
1304 		    reg->type != PTR_TO_PACKET_END)
1305 			continue;
1306 		reg->type = UNKNOWN_VALUE;
1307 		reg->imm = 0;
1308 	}
1309 }
1310 
1311 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1312 {
1313 	struct bpf_verifier_state *state = &env->cur_state;
1314 	const struct bpf_func_proto *fn = NULL;
1315 	struct bpf_reg_state *regs = state->regs;
1316 	struct bpf_reg_state *reg;
1317 	struct bpf_call_arg_meta meta;
1318 	bool changes_data;
1319 	int i, err;
1320 
1321 	/* find function prototype */
1322 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1323 		verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1324 		return -EINVAL;
1325 	}
1326 
1327 	if (env->prog->aux->ops->get_func_proto)
1328 		fn = env->prog->aux->ops->get_func_proto(func_id);
1329 
1330 	if (!fn) {
1331 		verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1332 		return -EINVAL;
1333 	}
1334 
1335 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1336 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1337 		verbose("cannot call GPL only function from proprietary program\n");
1338 		return -EINVAL;
1339 	}
1340 
1341 	changes_data = bpf_helper_changes_pkt_data(fn->func);
1342 
1343 	memset(&meta, 0, sizeof(meta));
1344 	meta.pkt_access = fn->pkt_access;
1345 
1346 	/* We only support one arg being in raw mode at the moment, which
1347 	 * is sufficient for the helper functions we have right now.
1348 	 */
1349 	err = check_raw_mode(fn);
1350 	if (err) {
1351 		verbose("kernel subsystem misconfigured func %s#%d\n",
1352 			func_id_name(func_id), func_id);
1353 		return err;
1354 	}
1355 
1356 	/* check args */
1357 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1358 	if (err)
1359 		return err;
1360 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1361 	if (err)
1362 		return err;
1363 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1364 	if (err)
1365 		return err;
1366 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1367 	if (err)
1368 		return err;
1369 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1370 	if (err)
1371 		return err;
1372 
1373 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1374 	 * is inferred from register state.
1375 	 */
1376 	for (i = 0; i < meta.access_size; i++) {
1377 		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1378 		if (err)
1379 			return err;
1380 	}
1381 
1382 	/* reset caller saved regs */
1383 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1384 		reg = regs + caller_saved[i];
1385 		reg->type = NOT_INIT;
1386 		reg->imm = 0;
1387 	}
1388 
1389 	/* update return register */
1390 	if (fn->ret_type == RET_INTEGER) {
1391 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
1392 	} else if (fn->ret_type == RET_VOID) {
1393 		regs[BPF_REG_0].type = NOT_INIT;
1394 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1395 		struct bpf_insn_aux_data *insn_aux;
1396 
1397 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1398 		regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1399 		/* remember map_ptr, so that check_map_access()
1400 		 * can check 'value_size' boundary of memory access
1401 		 * to map element returned from bpf_map_lookup_elem()
1402 		 */
1403 		if (meta.map_ptr == NULL) {
1404 			verbose("kernel subsystem misconfigured verifier\n");
1405 			return -EINVAL;
1406 		}
1407 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1408 		regs[BPF_REG_0].id = ++env->id_gen;
1409 		insn_aux = &env->insn_aux_data[insn_idx];
1410 		if (!insn_aux->map_ptr)
1411 			insn_aux->map_ptr = meta.map_ptr;
1412 		else if (insn_aux->map_ptr != meta.map_ptr)
1413 			insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1414 	} else {
1415 		verbose("unknown return type %d of func %s#%d\n",
1416 			fn->ret_type, func_id_name(func_id), func_id);
1417 		return -EINVAL;
1418 	}
1419 
1420 	err = check_map_func_compatibility(meta.map_ptr, func_id);
1421 	if (err)
1422 		return err;
1423 
1424 	if (changes_data)
1425 		clear_all_pkt_pointers(env);
1426 	return 0;
1427 }
1428 
1429 static int check_packet_ptr_add(struct bpf_verifier_env *env,
1430 				struct bpf_insn *insn)
1431 {
1432 	struct bpf_reg_state *regs = env->cur_state.regs;
1433 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1434 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1435 	struct bpf_reg_state tmp_reg;
1436 	s32 imm;
1437 
1438 	if (BPF_SRC(insn->code) == BPF_K) {
1439 		/* pkt_ptr += imm */
1440 		imm = insn->imm;
1441 
1442 add_imm:
1443 		if (imm < 0) {
1444 			verbose("addition of negative constant to packet pointer is not allowed\n");
1445 			return -EACCES;
1446 		}
1447 		if (imm >= MAX_PACKET_OFF ||
1448 		    imm + dst_reg->off >= MAX_PACKET_OFF) {
1449 			verbose("constant %d is too large to add to packet pointer\n",
1450 				imm);
1451 			return -EACCES;
1452 		}
1453 		/* a constant was added to pkt_ptr.
1454 		 * Remember it while keeping the same 'id'
1455 		 */
1456 		dst_reg->off += imm;
1457 	} else {
1458 		if (src_reg->type == PTR_TO_PACKET) {
1459 			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1460 			tmp_reg = *dst_reg;  /* save r7 state */
1461 			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1462 			src_reg = &tmp_reg;  /* pretend it's src_reg state */
1463 			/* if the checks below reject it, the copy won't matter,
1464 			 * since we're rejecting the whole program. If all ok,
1465 			 * then imm22 state will be added to r7
1466 			 * and r7 will be pkt(id=0,off=22,r=62) while
1467 			 * r6 will stay as pkt(id=0,off=0,r=62)
1468 			 */
1469 		}
1470 
1471 		if (src_reg->type == CONST_IMM) {
1472 			/* pkt_ptr += reg where reg is known constant */
1473 			imm = src_reg->imm;
1474 			goto add_imm;
1475 		}
1476 		/* disallow pkt_ptr += reg
1477 		 * if reg is not uknown_value with guaranteed zero upper bits
1478 		 * otherwise pkt_ptr may overflow and addition will become
1479 		 * subtraction which is not allowed
1480 		 */
1481 		if (src_reg->type != UNKNOWN_VALUE) {
1482 			verbose("cannot add '%s' to ptr_to_packet\n",
1483 				reg_type_str[src_reg->type]);
1484 			return -EACCES;
1485 		}
1486 		if (src_reg->imm < 48) {
1487 			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1488 				src_reg->imm);
1489 			return -EACCES;
1490 		}
1491 		/* dst_reg stays as pkt_ptr type and since some positive
1492 		 * integer value was added to the pointer, increment its 'id'
1493 		 */
1494 		dst_reg->id = ++env->id_gen;
1495 
1496 		/* something was added to pkt_ptr, set range and off to zero */
1497 		dst_reg->off = 0;
1498 		dst_reg->range = 0;
1499 	}
1500 	return 0;
1501 }
1502 
1503 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
1504 {
1505 	struct bpf_reg_state *regs = env->cur_state.regs;
1506 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1507 	u8 opcode = BPF_OP(insn->code);
1508 	s64 imm_log2;
1509 
1510 	/* for type == UNKNOWN_VALUE:
1511 	 * imm > 0 -> number of zero upper bits
1512 	 * imm == 0 -> don't track which is the same as all bits can be non-zero
1513 	 */
1514 
1515 	if (BPF_SRC(insn->code) == BPF_X) {
1516 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1517 
1518 		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1519 		    dst_reg->imm && opcode == BPF_ADD) {
1520 			/* dreg += sreg
1521 			 * where both have zero upper bits. Adding them
1522 			 * can only result making one more bit non-zero
1523 			 * in the larger value.
1524 			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1525 			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1526 			 */
1527 			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1528 			dst_reg->imm--;
1529 			return 0;
1530 		}
1531 		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1532 		    dst_reg->imm && opcode == BPF_ADD) {
1533 			/* dreg += sreg
1534 			 * where dreg has zero upper bits and sreg is const.
1535 			 * Adding them can only result making one more bit
1536 			 * non-zero in the larger value.
1537 			 */
1538 			imm_log2 = __ilog2_u64((long long)src_reg->imm);
1539 			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1540 			dst_reg->imm--;
1541 			return 0;
1542 		}
1543 		/* all other cases non supported yet, just mark dst_reg */
1544 		dst_reg->imm = 0;
1545 		return 0;
1546 	}
1547 
1548 	/* sign extend 32-bit imm into 64-bit to make sure that
1549 	 * negative values occupy bit 63. Note ilog2() would have
1550 	 * been incorrect, since sizeof(insn->imm) == 4
1551 	 */
1552 	imm_log2 = __ilog2_u64((long long)insn->imm);
1553 
1554 	if (dst_reg->imm && opcode == BPF_LSH) {
1555 		/* reg <<= imm
1556 		 * if reg was a result of 2 byte load, then its imm == 48
1557 		 * which means that upper 48 bits are zero and shifting this reg
1558 		 * left by 4 would mean that upper 44 bits are still zero
1559 		 */
1560 		dst_reg->imm -= insn->imm;
1561 	} else if (dst_reg->imm && opcode == BPF_MUL) {
1562 		/* reg *= imm
1563 		 * if multiplying by 14 subtract 4
1564 		 * This is conservative calculation of upper zero bits.
1565 		 * It's not trying to special case insn->imm == 1 or 0 cases
1566 		 */
1567 		dst_reg->imm -= imm_log2 + 1;
1568 	} else if (opcode == BPF_AND) {
1569 		/* reg &= imm */
1570 		dst_reg->imm = 63 - imm_log2;
1571 	} else if (dst_reg->imm && opcode == BPF_ADD) {
1572 		/* reg += imm */
1573 		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1574 		dst_reg->imm--;
1575 	} else if (opcode == BPF_RSH) {
1576 		/* reg >>= imm
1577 		 * which means that after right shift, upper bits will be zero
1578 		 * note that verifier already checked that
1579 		 * 0 <= imm < 64 for shift insn
1580 		 */
1581 		dst_reg->imm += insn->imm;
1582 		if (unlikely(dst_reg->imm > 64))
1583 			/* some dumb code did:
1584 			 * r2 = *(u32 *)mem;
1585 			 * r2 >>= 32;
1586 			 * and all bits are zero now */
1587 			dst_reg->imm = 64;
1588 	} else {
1589 		/* all other alu ops, means that we don't know what will
1590 		 * happen to the value, mark it with unknown number of zero bits
1591 		 */
1592 		dst_reg->imm = 0;
1593 	}
1594 
1595 	if (dst_reg->imm < 0) {
1596 		/* all 64 bits of the register can contain non-zero bits
1597 		 * and such value cannot be added to ptr_to_packet, since it
1598 		 * may overflow, mark it as unknown to avoid further eval
1599 		 */
1600 		dst_reg->imm = 0;
1601 	}
1602 	return 0;
1603 }
1604 
1605 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1606 				struct bpf_insn *insn)
1607 {
1608 	struct bpf_reg_state *regs = env->cur_state.regs;
1609 	struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1610 	struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1611 	u8 opcode = BPF_OP(insn->code);
1612 	u64 dst_imm = dst_reg->imm;
1613 
1614 	/* dst_reg->type == CONST_IMM here. Simulate execution of insns
1615 	 * containing ALU ops. Don't care about overflow or negative
1616 	 * values, just add/sub/... them; registers are in u64.
1617 	 */
1618 	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1619 		dst_imm += insn->imm;
1620 	} else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1621 		   src_reg->type == CONST_IMM) {
1622 		dst_imm += src_reg->imm;
1623 	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1624 		dst_imm -= insn->imm;
1625 	} else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1626 		   src_reg->type == CONST_IMM) {
1627 		dst_imm -= src_reg->imm;
1628 	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1629 		dst_imm *= insn->imm;
1630 	} else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1631 		   src_reg->type == CONST_IMM) {
1632 		dst_imm *= src_reg->imm;
1633 	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1634 		dst_imm |= insn->imm;
1635 	} else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1636 		   src_reg->type == CONST_IMM) {
1637 		dst_imm |= src_reg->imm;
1638 	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1639 		dst_imm &= insn->imm;
1640 	} else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1641 		   src_reg->type == CONST_IMM) {
1642 		dst_imm &= src_reg->imm;
1643 	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1644 		dst_imm >>= insn->imm;
1645 	} else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1646 		   src_reg->type == CONST_IMM) {
1647 		dst_imm >>= src_reg->imm;
1648 	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1649 		dst_imm <<= insn->imm;
1650 	} else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1651 		   src_reg->type == CONST_IMM) {
1652 		dst_imm <<= src_reg->imm;
1653 	} else {
1654 		mark_reg_unknown_value(regs, insn->dst_reg);
1655 		goto out;
1656 	}
1657 
1658 	dst_reg->imm = dst_imm;
1659 out:
1660 	return 0;
1661 }
1662 
1663 static void check_reg_overflow(struct bpf_reg_state *reg)
1664 {
1665 	if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1666 		reg->max_value = BPF_REGISTER_MAX_RANGE;
1667 	if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1668 	    reg->min_value > BPF_REGISTER_MAX_RANGE)
1669 		reg->min_value = BPF_REGISTER_MIN_RANGE;
1670 }
1671 
1672 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1673 				    struct bpf_insn *insn)
1674 {
1675 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1676 	s64 min_val = BPF_REGISTER_MIN_RANGE;
1677 	u64 max_val = BPF_REGISTER_MAX_RANGE;
1678 	u8 opcode = BPF_OP(insn->code);
1679 
1680 	dst_reg = &regs[insn->dst_reg];
1681 	if (BPF_SRC(insn->code) == BPF_X) {
1682 		check_reg_overflow(&regs[insn->src_reg]);
1683 		min_val = regs[insn->src_reg].min_value;
1684 		max_val = regs[insn->src_reg].max_value;
1685 
1686 		/* If the source register is a random pointer then the
1687 		 * min_value/max_value values represent the range of the known
1688 		 * accesses into that value, not the actual min/max value of the
1689 		 * register itself.  In this case we have to reset the reg range
1690 		 * values so we know it is not safe to look at.
1691 		 */
1692 		if (regs[insn->src_reg].type != CONST_IMM &&
1693 		    regs[insn->src_reg].type != UNKNOWN_VALUE) {
1694 			min_val = BPF_REGISTER_MIN_RANGE;
1695 			max_val = BPF_REGISTER_MAX_RANGE;
1696 		}
1697 	} else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1698 		   (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1699 		min_val = max_val = insn->imm;
1700 	}
1701 
1702 	/* We don't know anything about what was done to this register, mark it
1703 	 * as unknown.
1704 	 */
1705 	if (min_val == BPF_REGISTER_MIN_RANGE &&
1706 	    max_val == BPF_REGISTER_MAX_RANGE) {
1707 		reset_reg_range_values(regs, insn->dst_reg);
1708 		return;
1709 	}
1710 
1711 	/* If one of our values was at the end of our ranges then we can't just
1712 	 * do our normal operations to the register, we need to set the values
1713 	 * to the min/max since they are undefined.
1714 	 */
1715 	if (min_val == BPF_REGISTER_MIN_RANGE)
1716 		dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1717 	if (max_val == BPF_REGISTER_MAX_RANGE)
1718 		dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1719 
1720 	switch (opcode) {
1721 	case BPF_ADD:
1722 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1723 			dst_reg->min_value += min_val;
1724 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1725 			dst_reg->max_value += max_val;
1726 		break;
1727 	case BPF_SUB:
1728 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1729 			dst_reg->min_value -= min_val;
1730 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1731 			dst_reg->max_value -= max_val;
1732 		break;
1733 	case BPF_MUL:
1734 		if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1735 			dst_reg->min_value *= min_val;
1736 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1737 			dst_reg->max_value *= max_val;
1738 		break;
1739 	case BPF_AND:
1740 		/* Disallow AND'ing of negative numbers, ain't nobody got time
1741 		 * for that.  Otherwise the minimum is 0 and the max is the max
1742 		 * value we could AND against.
1743 		 */
1744 		if (min_val < 0)
1745 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1746 		else
1747 			dst_reg->min_value = 0;
1748 		dst_reg->max_value = max_val;
1749 		break;
1750 	case BPF_LSH:
1751 		/* Gotta have special overflow logic here, if we're shifting
1752 		 * more than MAX_RANGE then just assume we have an invalid
1753 		 * range.
1754 		 */
1755 		if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1756 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1757 		else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1758 			dst_reg->min_value <<= min_val;
1759 
1760 		if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1761 			dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1762 		else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1763 			dst_reg->max_value <<= max_val;
1764 		break;
1765 	case BPF_RSH:
1766 		/* RSH by a negative number is undefined, and the BPF_RSH is an
1767 		 * unsigned shift, so make the appropriate casts.
1768 		 */
1769 		if (min_val < 0 || dst_reg->min_value < 0)
1770 			dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1771 		else
1772 			dst_reg->min_value =
1773 				(u64)(dst_reg->min_value) >> min_val;
1774 		if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1775 			dst_reg->max_value >>= max_val;
1776 		break;
1777 	default:
1778 		reset_reg_range_values(regs, insn->dst_reg);
1779 		break;
1780 	}
1781 
1782 	check_reg_overflow(dst_reg);
1783 }
1784 
1785 /* check validity of 32-bit and 64-bit arithmetic operations */
1786 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1787 {
1788 	struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1789 	u8 opcode = BPF_OP(insn->code);
1790 	int err;
1791 
1792 	if (opcode == BPF_END || opcode == BPF_NEG) {
1793 		if (opcode == BPF_NEG) {
1794 			if (BPF_SRC(insn->code) != 0 ||
1795 			    insn->src_reg != BPF_REG_0 ||
1796 			    insn->off != 0 || insn->imm != 0) {
1797 				verbose("BPF_NEG uses reserved fields\n");
1798 				return -EINVAL;
1799 			}
1800 		} else {
1801 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1802 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1803 				verbose("BPF_END uses reserved fields\n");
1804 				return -EINVAL;
1805 			}
1806 		}
1807 
1808 		/* check src operand */
1809 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1810 		if (err)
1811 			return err;
1812 
1813 		if (is_pointer_value(env, insn->dst_reg)) {
1814 			verbose("R%d pointer arithmetic prohibited\n",
1815 				insn->dst_reg);
1816 			return -EACCES;
1817 		}
1818 
1819 		/* check dest operand */
1820 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1821 		if (err)
1822 			return err;
1823 
1824 	} else if (opcode == BPF_MOV) {
1825 
1826 		if (BPF_SRC(insn->code) == BPF_X) {
1827 			if (insn->imm != 0 || insn->off != 0) {
1828 				verbose("BPF_MOV uses reserved fields\n");
1829 				return -EINVAL;
1830 			}
1831 
1832 			/* check src operand */
1833 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1834 			if (err)
1835 				return err;
1836 		} else {
1837 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1838 				verbose("BPF_MOV uses reserved fields\n");
1839 				return -EINVAL;
1840 			}
1841 		}
1842 
1843 		/* check dest operand */
1844 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1845 		if (err)
1846 			return err;
1847 
1848 		/* we are setting our register to something new, we need to
1849 		 * reset its range values.
1850 		 */
1851 		reset_reg_range_values(regs, insn->dst_reg);
1852 
1853 		if (BPF_SRC(insn->code) == BPF_X) {
1854 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1855 				/* case: R1 = R2
1856 				 * copy register state to dest reg
1857 				 */
1858 				regs[insn->dst_reg] = regs[insn->src_reg];
1859 			} else {
1860 				if (is_pointer_value(env, insn->src_reg)) {
1861 					verbose("R%d partial copy of pointer\n",
1862 						insn->src_reg);
1863 					return -EACCES;
1864 				}
1865 				mark_reg_unknown_value(regs, insn->dst_reg);
1866 			}
1867 		} else {
1868 			/* case: R = imm
1869 			 * remember the value we stored into this reg
1870 			 */
1871 			regs[insn->dst_reg].type = CONST_IMM;
1872 			regs[insn->dst_reg].imm = insn->imm;
1873 			regs[insn->dst_reg].max_value = insn->imm;
1874 			regs[insn->dst_reg].min_value = insn->imm;
1875 		}
1876 
1877 	} else if (opcode > BPF_END) {
1878 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1879 		return -EINVAL;
1880 
1881 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1882 
1883 		if (BPF_SRC(insn->code) == BPF_X) {
1884 			if (insn->imm != 0 || insn->off != 0) {
1885 				verbose("BPF_ALU uses reserved fields\n");
1886 				return -EINVAL;
1887 			}
1888 			/* check src1 operand */
1889 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1890 			if (err)
1891 				return err;
1892 		} else {
1893 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1894 				verbose("BPF_ALU uses reserved fields\n");
1895 				return -EINVAL;
1896 			}
1897 		}
1898 
1899 		/* check src2 operand */
1900 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1901 		if (err)
1902 			return err;
1903 
1904 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1905 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1906 			verbose("div by zero\n");
1907 			return -EINVAL;
1908 		}
1909 
1910 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1911 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1912 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1913 
1914 			if (insn->imm < 0 || insn->imm >= size) {
1915 				verbose("invalid shift %d\n", insn->imm);
1916 				return -EINVAL;
1917 			}
1918 		}
1919 
1920 		/* check dest operand */
1921 		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1922 		if (err)
1923 			return err;
1924 
1925 		dst_reg = &regs[insn->dst_reg];
1926 
1927 		/* first we want to adjust our ranges. */
1928 		adjust_reg_min_max_vals(env, insn);
1929 
1930 		/* pattern match 'bpf_add Rx, imm' instruction */
1931 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1932 		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1933 			dst_reg->type = PTR_TO_STACK;
1934 			dst_reg->imm = insn->imm;
1935 			return 0;
1936 		} else if (opcode == BPF_ADD &&
1937 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
1938 			   dst_reg->type == PTR_TO_STACK &&
1939 			   ((BPF_SRC(insn->code) == BPF_X &&
1940 			     regs[insn->src_reg].type == CONST_IMM) ||
1941 			    BPF_SRC(insn->code) == BPF_K)) {
1942 			if (BPF_SRC(insn->code) == BPF_X)
1943 				dst_reg->imm += regs[insn->src_reg].imm;
1944 			else
1945 				dst_reg->imm += insn->imm;
1946 			return 0;
1947 		} else if (opcode == BPF_ADD &&
1948 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
1949 			   (dst_reg->type == PTR_TO_PACKET ||
1950 			    (BPF_SRC(insn->code) == BPF_X &&
1951 			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
1952 			/* ptr_to_packet += K|X */
1953 			return check_packet_ptr_add(env, insn);
1954 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1955 			   dst_reg->type == UNKNOWN_VALUE &&
1956 			   env->allow_ptr_leaks) {
1957 			/* unknown += K|X */
1958 			return evaluate_reg_alu(env, insn);
1959 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1960 			   dst_reg->type == CONST_IMM &&
1961 			   env->allow_ptr_leaks) {
1962 			/* reg_imm += K|X */
1963 			return evaluate_reg_imm_alu(env, insn);
1964 		} else if (is_pointer_value(env, insn->dst_reg)) {
1965 			verbose("R%d pointer arithmetic prohibited\n",
1966 				insn->dst_reg);
1967 			return -EACCES;
1968 		} else if (BPF_SRC(insn->code) == BPF_X &&
1969 			   is_pointer_value(env, insn->src_reg)) {
1970 			verbose("R%d pointer arithmetic prohibited\n",
1971 				insn->src_reg);
1972 			return -EACCES;
1973 		}
1974 
1975 		/* If we did pointer math on a map value then just set it to our
1976 		 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1977 		 * loads to this register appropriately, otherwise just mark the
1978 		 * register as unknown.
1979 		 */
1980 		if (env->allow_ptr_leaks &&
1981 		    BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
1982 		    (dst_reg->type == PTR_TO_MAP_VALUE ||
1983 		     dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1984 			dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1985 		else
1986 			mark_reg_unknown_value(regs, insn->dst_reg);
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1993 				   struct bpf_reg_state *dst_reg)
1994 {
1995 	struct bpf_reg_state *regs = state->regs, *reg;
1996 	int i;
1997 
1998 	/* LLVM can generate two kind of checks:
1999 	 *
2000 	 * Type 1:
2001 	 *
2002 	 *   r2 = r3;
2003 	 *   r2 += 8;
2004 	 *   if (r2 > pkt_end) goto <handle exception>
2005 	 *   <access okay>
2006 	 *
2007 	 *   Where:
2008 	 *     r2 == dst_reg, pkt_end == src_reg
2009 	 *     r2=pkt(id=n,off=8,r=0)
2010 	 *     r3=pkt(id=n,off=0,r=0)
2011 	 *
2012 	 * Type 2:
2013 	 *
2014 	 *   r2 = r3;
2015 	 *   r2 += 8;
2016 	 *   if (pkt_end >= r2) goto <access okay>
2017 	 *   <handle exception>
2018 	 *
2019 	 *   Where:
2020 	 *     pkt_end == dst_reg, r2 == src_reg
2021 	 *     r2=pkt(id=n,off=8,r=0)
2022 	 *     r3=pkt(id=n,off=0,r=0)
2023 	 *
2024 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2025 	 * so that range of bytes [r3, r3 + 8) is safe to access.
2026 	 */
2027 
2028 	for (i = 0; i < MAX_BPF_REG; i++)
2029 		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2030 			/* keep the maximum range already checked */
2031 			regs[i].range = max(regs[i].range, dst_reg->off);
2032 
2033 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2034 		if (state->stack_slot_type[i] != STACK_SPILL)
2035 			continue;
2036 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
2037 		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2038 			reg->range = max(reg->range, dst_reg->off);
2039 	}
2040 }
2041 
2042 /* Adjusts the register min/max values in the case that the dst_reg is the
2043  * variable register that we are working on, and src_reg is a constant or we're
2044  * simply doing a BPF_K check.
2045  */
2046 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2047 			    struct bpf_reg_state *false_reg, u64 val,
2048 			    u8 opcode)
2049 {
2050 	switch (opcode) {
2051 	case BPF_JEQ:
2052 		/* If this is false then we know nothing Jon Snow, but if it is
2053 		 * true then we know for sure.
2054 		 */
2055 		true_reg->max_value = true_reg->min_value = val;
2056 		break;
2057 	case BPF_JNE:
2058 		/* If this is true we know nothing Jon Snow, but if it is false
2059 		 * we know the value for sure;
2060 		 */
2061 		false_reg->max_value = false_reg->min_value = val;
2062 		break;
2063 	case BPF_JGT:
2064 		/* Unsigned comparison, the minimum value is 0. */
2065 		false_reg->min_value = 0;
2066 		/* fallthrough */
2067 	case BPF_JSGT:
2068 		/* If this is false then we know the maximum val is val,
2069 		 * otherwise we know the min val is val+1.
2070 		 */
2071 		false_reg->max_value = val;
2072 		true_reg->min_value = val + 1;
2073 		break;
2074 	case BPF_JGE:
2075 		/* Unsigned comparison, the minimum value is 0. */
2076 		false_reg->min_value = 0;
2077 		/* fallthrough */
2078 	case BPF_JSGE:
2079 		/* If this is false then we know the maximum value is val - 1,
2080 		 * otherwise we know the mimimum value is val.
2081 		 */
2082 		false_reg->max_value = val - 1;
2083 		true_reg->min_value = val;
2084 		break;
2085 	default:
2086 		break;
2087 	}
2088 
2089 	check_reg_overflow(false_reg);
2090 	check_reg_overflow(true_reg);
2091 }
2092 
2093 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2094  * is the variable reg.
2095  */
2096 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2097 				struct bpf_reg_state *false_reg, u64 val,
2098 				u8 opcode)
2099 {
2100 	switch (opcode) {
2101 	case BPF_JEQ:
2102 		/* If this is false then we know nothing Jon Snow, but if it is
2103 		 * true then we know for sure.
2104 		 */
2105 		true_reg->max_value = true_reg->min_value = val;
2106 		break;
2107 	case BPF_JNE:
2108 		/* If this is true we know nothing Jon Snow, but if it is false
2109 		 * we know the value for sure;
2110 		 */
2111 		false_reg->max_value = false_reg->min_value = val;
2112 		break;
2113 	case BPF_JGT:
2114 		/* Unsigned comparison, the minimum value is 0. */
2115 		true_reg->min_value = 0;
2116 		/* fallthrough */
2117 	case BPF_JSGT:
2118 		/*
2119 		 * If this is false, then the val is <= the register, if it is
2120 		 * true the register <= to the val.
2121 		 */
2122 		false_reg->min_value = val;
2123 		true_reg->max_value = val - 1;
2124 		break;
2125 	case BPF_JGE:
2126 		/* Unsigned comparison, the minimum value is 0. */
2127 		true_reg->min_value = 0;
2128 		/* fallthrough */
2129 	case BPF_JSGE:
2130 		/* If this is false then constant < register, if it is true then
2131 		 * the register < constant.
2132 		 */
2133 		false_reg->min_value = val + 1;
2134 		true_reg->max_value = val;
2135 		break;
2136 	default:
2137 		break;
2138 	}
2139 
2140 	check_reg_overflow(false_reg);
2141 	check_reg_overflow(true_reg);
2142 }
2143 
2144 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2145 			 enum bpf_reg_type type)
2146 {
2147 	struct bpf_reg_state *reg = &regs[regno];
2148 
2149 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2150 		if (type == UNKNOWN_VALUE) {
2151 			__mark_reg_unknown_value(regs, regno);
2152 		} else if (reg->map_ptr->inner_map_meta) {
2153 			reg->type = CONST_PTR_TO_MAP;
2154 			reg->map_ptr = reg->map_ptr->inner_map_meta;
2155 		} else {
2156 			reg->type = type;
2157 		}
2158 		/* We don't need id from this point onwards anymore, thus we
2159 		 * should better reset it, so that state pruning has chances
2160 		 * to take effect.
2161 		 */
2162 		reg->id = 0;
2163 	}
2164 }
2165 
2166 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2167  * be folded together at some point.
2168  */
2169 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2170 			  enum bpf_reg_type type)
2171 {
2172 	struct bpf_reg_state *regs = state->regs;
2173 	u32 id = regs[regno].id;
2174 	int i;
2175 
2176 	for (i = 0; i < MAX_BPF_REG; i++)
2177 		mark_map_reg(regs, i, id, type);
2178 
2179 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2180 		if (state->stack_slot_type[i] != STACK_SPILL)
2181 			continue;
2182 		mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2183 	}
2184 }
2185 
2186 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2187 			     struct bpf_insn *insn, int *insn_idx)
2188 {
2189 	struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2190 	struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2191 	u8 opcode = BPF_OP(insn->code);
2192 	int err;
2193 
2194 	if (opcode > BPF_EXIT) {
2195 		verbose("invalid BPF_JMP opcode %x\n", opcode);
2196 		return -EINVAL;
2197 	}
2198 
2199 	if (BPF_SRC(insn->code) == BPF_X) {
2200 		if (insn->imm != 0) {
2201 			verbose("BPF_JMP uses reserved fields\n");
2202 			return -EINVAL;
2203 		}
2204 
2205 		/* check src1 operand */
2206 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2207 		if (err)
2208 			return err;
2209 
2210 		if (is_pointer_value(env, insn->src_reg)) {
2211 			verbose("R%d pointer comparison prohibited\n",
2212 				insn->src_reg);
2213 			return -EACCES;
2214 		}
2215 	} else {
2216 		if (insn->src_reg != BPF_REG_0) {
2217 			verbose("BPF_JMP uses reserved fields\n");
2218 			return -EINVAL;
2219 		}
2220 	}
2221 
2222 	/* check src2 operand */
2223 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2224 	if (err)
2225 		return err;
2226 
2227 	dst_reg = &regs[insn->dst_reg];
2228 
2229 	/* detect if R == 0 where R was initialized to zero earlier */
2230 	if (BPF_SRC(insn->code) == BPF_K &&
2231 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2232 	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2233 		if (opcode == BPF_JEQ) {
2234 			/* if (imm == imm) goto pc+off;
2235 			 * only follow the goto, ignore fall-through
2236 			 */
2237 			*insn_idx += insn->off;
2238 			return 0;
2239 		} else {
2240 			/* if (imm != imm) goto pc+off;
2241 			 * only follow fall-through branch, since
2242 			 * that's where the program will go
2243 			 */
2244 			return 0;
2245 		}
2246 	}
2247 
2248 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2249 	if (!other_branch)
2250 		return -EFAULT;
2251 
2252 	/* detect if we are comparing against a constant value so we can adjust
2253 	 * our min/max values for our dst register.
2254 	 */
2255 	if (BPF_SRC(insn->code) == BPF_X) {
2256 		if (regs[insn->src_reg].type == CONST_IMM)
2257 			reg_set_min_max(&other_branch->regs[insn->dst_reg],
2258 					dst_reg, regs[insn->src_reg].imm,
2259 					opcode);
2260 		else if (dst_reg->type == CONST_IMM)
2261 			reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2262 					    &regs[insn->src_reg], dst_reg->imm,
2263 					    opcode);
2264 	} else {
2265 		reg_set_min_max(&other_branch->regs[insn->dst_reg],
2266 					dst_reg, insn->imm, opcode);
2267 	}
2268 
2269 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2270 	if (BPF_SRC(insn->code) == BPF_K &&
2271 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2272 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2273 		/* Mark all identical map registers in each branch as either
2274 		 * safe or unknown depending R == 0 or R != 0 conditional.
2275 		 */
2276 		mark_map_regs(this_branch, insn->dst_reg,
2277 			      opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2278 		mark_map_regs(other_branch, insn->dst_reg,
2279 			      opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
2280 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2281 		   dst_reg->type == PTR_TO_PACKET &&
2282 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2283 		find_good_pkt_pointers(this_branch, dst_reg);
2284 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2285 		   dst_reg->type == PTR_TO_PACKET_END &&
2286 		   regs[insn->src_reg].type == PTR_TO_PACKET) {
2287 		find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2288 	} else if (is_pointer_value(env, insn->dst_reg)) {
2289 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2290 		return -EACCES;
2291 	}
2292 	if (log_level)
2293 		print_verifier_state(this_branch);
2294 	return 0;
2295 }
2296 
2297 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2298 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2299 {
2300 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2301 
2302 	return (struct bpf_map *) (unsigned long) imm64;
2303 }
2304 
2305 /* verify BPF_LD_IMM64 instruction */
2306 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2307 {
2308 	struct bpf_reg_state *regs = env->cur_state.regs;
2309 	int err;
2310 
2311 	if (BPF_SIZE(insn->code) != BPF_DW) {
2312 		verbose("invalid BPF_LD_IMM insn\n");
2313 		return -EINVAL;
2314 	}
2315 	if (insn->off != 0) {
2316 		verbose("BPF_LD_IMM64 uses reserved fields\n");
2317 		return -EINVAL;
2318 	}
2319 
2320 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2321 	if (err)
2322 		return err;
2323 
2324 	if (insn->src_reg == 0) {
2325 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2326 
2327 		regs[insn->dst_reg].type = CONST_IMM;
2328 		regs[insn->dst_reg].imm = imm;
2329 		return 0;
2330 	}
2331 
2332 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2333 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2334 
2335 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2336 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2337 	return 0;
2338 }
2339 
2340 static bool may_access_skb(enum bpf_prog_type type)
2341 {
2342 	switch (type) {
2343 	case BPF_PROG_TYPE_SOCKET_FILTER:
2344 	case BPF_PROG_TYPE_SCHED_CLS:
2345 	case BPF_PROG_TYPE_SCHED_ACT:
2346 		return true;
2347 	default:
2348 		return false;
2349 	}
2350 }
2351 
2352 /* verify safety of LD_ABS|LD_IND instructions:
2353  * - they can only appear in the programs where ctx == skb
2354  * - since they are wrappers of function calls, they scratch R1-R5 registers,
2355  *   preserve R6-R9, and store return value into R0
2356  *
2357  * Implicit input:
2358  *   ctx == skb == R6 == CTX
2359  *
2360  * Explicit input:
2361  *   SRC == any register
2362  *   IMM == 32-bit immediate
2363  *
2364  * Output:
2365  *   R0 - 8/16/32-bit skb data converted to cpu endianness
2366  */
2367 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2368 {
2369 	struct bpf_reg_state *regs = env->cur_state.regs;
2370 	u8 mode = BPF_MODE(insn->code);
2371 	struct bpf_reg_state *reg;
2372 	int i, err;
2373 
2374 	if (!may_access_skb(env->prog->type)) {
2375 		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2376 		return -EINVAL;
2377 	}
2378 
2379 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2380 	    BPF_SIZE(insn->code) == BPF_DW ||
2381 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2382 		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2383 		return -EINVAL;
2384 	}
2385 
2386 	/* check whether implicit source operand (register R6) is readable */
2387 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2388 	if (err)
2389 		return err;
2390 
2391 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2392 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2393 		return -EINVAL;
2394 	}
2395 
2396 	if (mode == BPF_IND) {
2397 		/* check explicit source operand */
2398 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2399 		if (err)
2400 			return err;
2401 	}
2402 
2403 	/* reset caller saved regs to unreadable */
2404 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2405 		reg = regs + caller_saved[i];
2406 		reg->type = NOT_INIT;
2407 		reg->imm = 0;
2408 	}
2409 
2410 	/* mark destination R0 register as readable, since it contains
2411 	 * the value fetched from the packet
2412 	 */
2413 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
2414 	return 0;
2415 }
2416 
2417 /* non-recursive DFS pseudo code
2418  * 1  procedure DFS-iterative(G,v):
2419  * 2      label v as discovered
2420  * 3      let S be a stack
2421  * 4      S.push(v)
2422  * 5      while S is not empty
2423  * 6            t <- S.pop()
2424  * 7            if t is what we're looking for:
2425  * 8                return t
2426  * 9            for all edges e in G.adjacentEdges(t) do
2427  * 10               if edge e is already labelled
2428  * 11                   continue with the next edge
2429  * 12               w <- G.adjacentVertex(t,e)
2430  * 13               if vertex w is not discovered and not explored
2431  * 14                   label e as tree-edge
2432  * 15                   label w as discovered
2433  * 16                   S.push(w)
2434  * 17                   continue at 5
2435  * 18               else if vertex w is discovered
2436  * 19                   label e as back-edge
2437  * 20               else
2438  * 21                   // vertex w is explored
2439  * 22                   label e as forward- or cross-edge
2440  * 23           label t as explored
2441  * 24           S.pop()
2442  *
2443  * convention:
2444  * 0x10 - discovered
2445  * 0x11 - discovered and fall-through edge labelled
2446  * 0x12 - discovered and fall-through and branch edges labelled
2447  * 0x20 - explored
2448  */
2449 
2450 enum {
2451 	DISCOVERED = 0x10,
2452 	EXPLORED = 0x20,
2453 	FALLTHROUGH = 1,
2454 	BRANCH = 2,
2455 };
2456 
2457 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2458 
2459 static int *insn_stack;	/* stack of insns to process */
2460 static int cur_stack;	/* current stack index */
2461 static int *insn_state;
2462 
2463 /* t, w, e - match pseudo-code above:
2464  * t - index of current instruction
2465  * w - next instruction
2466  * e - edge
2467  */
2468 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2469 {
2470 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2471 		return 0;
2472 
2473 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2474 		return 0;
2475 
2476 	if (w < 0 || w >= env->prog->len) {
2477 		verbose("jump out of range from insn %d to %d\n", t, w);
2478 		return -EINVAL;
2479 	}
2480 
2481 	if (e == BRANCH)
2482 		/* mark branch target for state pruning */
2483 		env->explored_states[w] = STATE_LIST_MARK;
2484 
2485 	if (insn_state[w] == 0) {
2486 		/* tree-edge */
2487 		insn_state[t] = DISCOVERED | e;
2488 		insn_state[w] = DISCOVERED;
2489 		if (cur_stack >= env->prog->len)
2490 			return -E2BIG;
2491 		insn_stack[cur_stack++] = w;
2492 		return 1;
2493 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2494 		verbose("back-edge from insn %d to %d\n", t, w);
2495 		return -EINVAL;
2496 	} else if (insn_state[w] == EXPLORED) {
2497 		/* forward- or cross-edge */
2498 		insn_state[t] = DISCOVERED | e;
2499 	} else {
2500 		verbose("insn state internal bug\n");
2501 		return -EFAULT;
2502 	}
2503 	return 0;
2504 }
2505 
2506 /* non-recursive depth-first-search to detect loops in BPF program
2507  * loop == back-edge in directed graph
2508  */
2509 static int check_cfg(struct bpf_verifier_env *env)
2510 {
2511 	struct bpf_insn *insns = env->prog->insnsi;
2512 	int insn_cnt = env->prog->len;
2513 	int ret = 0;
2514 	int i, t;
2515 
2516 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2517 	if (!insn_state)
2518 		return -ENOMEM;
2519 
2520 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2521 	if (!insn_stack) {
2522 		kfree(insn_state);
2523 		return -ENOMEM;
2524 	}
2525 
2526 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2527 	insn_stack[0] = 0; /* 0 is the first instruction */
2528 	cur_stack = 1;
2529 
2530 peek_stack:
2531 	if (cur_stack == 0)
2532 		goto check_state;
2533 	t = insn_stack[cur_stack - 1];
2534 
2535 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2536 		u8 opcode = BPF_OP(insns[t].code);
2537 
2538 		if (opcode == BPF_EXIT) {
2539 			goto mark_explored;
2540 		} else if (opcode == BPF_CALL) {
2541 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2542 			if (ret == 1)
2543 				goto peek_stack;
2544 			else if (ret < 0)
2545 				goto err_free;
2546 			if (t + 1 < insn_cnt)
2547 				env->explored_states[t + 1] = STATE_LIST_MARK;
2548 		} else if (opcode == BPF_JA) {
2549 			if (BPF_SRC(insns[t].code) != BPF_K) {
2550 				ret = -EINVAL;
2551 				goto err_free;
2552 			}
2553 			/* unconditional jump with single edge */
2554 			ret = push_insn(t, t + insns[t].off + 1,
2555 					FALLTHROUGH, env);
2556 			if (ret == 1)
2557 				goto peek_stack;
2558 			else if (ret < 0)
2559 				goto err_free;
2560 			/* tell verifier to check for equivalent states
2561 			 * after every call and jump
2562 			 */
2563 			if (t + 1 < insn_cnt)
2564 				env->explored_states[t + 1] = STATE_LIST_MARK;
2565 		} else {
2566 			/* conditional jump with two edges */
2567 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2568 			if (ret == 1)
2569 				goto peek_stack;
2570 			else if (ret < 0)
2571 				goto err_free;
2572 
2573 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2574 			if (ret == 1)
2575 				goto peek_stack;
2576 			else if (ret < 0)
2577 				goto err_free;
2578 		}
2579 	} else {
2580 		/* all other non-branch instructions with single
2581 		 * fall-through edge
2582 		 */
2583 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
2584 		if (ret == 1)
2585 			goto peek_stack;
2586 		else if (ret < 0)
2587 			goto err_free;
2588 	}
2589 
2590 mark_explored:
2591 	insn_state[t] = EXPLORED;
2592 	if (cur_stack-- <= 0) {
2593 		verbose("pop stack internal bug\n");
2594 		ret = -EFAULT;
2595 		goto err_free;
2596 	}
2597 	goto peek_stack;
2598 
2599 check_state:
2600 	for (i = 0; i < insn_cnt; i++) {
2601 		if (insn_state[i] != EXPLORED) {
2602 			verbose("unreachable insn %d\n", i);
2603 			ret = -EINVAL;
2604 			goto err_free;
2605 		}
2606 	}
2607 	ret = 0; /* cfg looks good */
2608 
2609 err_free:
2610 	kfree(insn_state);
2611 	kfree(insn_stack);
2612 	return ret;
2613 }
2614 
2615 /* the following conditions reduce the number of explored insns
2616  * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2617  */
2618 static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2619 				   struct bpf_reg_state *cur)
2620 {
2621 	if (old->id != cur->id)
2622 		return false;
2623 
2624 	/* old ptr_to_packet is more conservative, since it allows smaller
2625 	 * range. Ex:
2626 	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2627 	 * old(off=0,r=10) means that with range=10 the verifier proceeded
2628 	 * further and found no issues with the program. Now we're in the same
2629 	 * spot with cur(off=0,r=20), so we're safe too, since anything further
2630 	 * will only be looking at most 10 bytes after this pointer.
2631 	 */
2632 	if (old->off == cur->off && old->range < cur->range)
2633 		return true;
2634 
2635 	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2636 	 * since both cannot be used for packet access and safe(old)
2637 	 * pointer has smaller off that could be used for further
2638 	 * 'if (ptr > data_end)' check
2639 	 * Ex:
2640 	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2641 	 * that we cannot access the packet.
2642 	 * The safe range is:
2643 	 * [ptr, ptr + range - off)
2644 	 * so whenever off >=range, it means no safe bytes from this pointer.
2645 	 * When comparing old->off <= cur->off, it means that older code
2646 	 * went with smaller offset and that offset was later
2647 	 * used to figure out the safe range after 'if (ptr > data_end)' check
2648 	 * Say, 'old' state was explored like:
2649 	 * ... R3(off=0, r=0)
2650 	 * R4 = R3 + 20
2651 	 * ... now R4(off=20,r=0)  <-- here
2652 	 * if (R4 > data_end)
2653 	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2654 	 * ... the code further went all the way to bpf_exit.
2655 	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2656 	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2657 	 * goes further, such cur_R4 will give larger safe packet range after
2658 	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2659 	 * so they will be good with r=30 and we can prune the search.
2660 	 */
2661 	if (old->off <= cur->off &&
2662 	    old->off >= old->range && cur->off >= cur->range)
2663 		return true;
2664 
2665 	return false;
2666 }
2667 
2668 /* compare two verifier states
2669  *
2670  * all states stored in state_list are known to be valid, since
2671  * verifier reached 'bpf_exit' instruction through them
2672  *
2673  * this function is called when verifier exploring different branches of
2674  * execution popped from the state stack. If it sees an old state that has
2675  * more strict register state and more strict stack state then this execution
2676  * branch doesn't need to be explored further, since verifier already
2677  * concluded that more strict state leads to valid finish.
2678  *
2679  * Therefore two states are equivalent if register state is more conservative
2680  * and explored stack state is more conservative than the current one.
2681  * Example:
2682  *       explored                   current
2683  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2684  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2685  *
2686  * In other words if current stack state (one being explored) has more
2687  * valid slots than old one that already passed validation, it means
2688  * the verifier can stop exploring and conclude that current state is valid too
2689  *
2690  * Similarly with registers. If explored state has register type as invalid
2691  * whereas register type in current state is meaningful, it means that
2692  * the current state will reach 'bpf_exit' instruction safely
2693  */
2694 static bool states_equal(struct bpf_verifier_env *env,
2695 			 struct bpf_verifier_state *old,
2696 			 struct bpf_verifier_state *cur)
2697 {
2698 	bool varlen_map_access = env->varlen_map_value_access;
2699 	struct bpf_reg_state *rold, *rcur;
2700 	int i;
2701 
2702 	for (i = 0; i < MAX_BPF_REG; i++) {
2703 		rold = &old->regs[i];
2704 		rcur = &cur->regs[i];
2705 
2706 		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2707 			continue;
2708 
2709 		/* If the ranges were not the same, but everything else was and
2710 		 * we didn't do a variable access into a map then we are a-ok.
2711 		 */
2712 		if (!varlen_map_access &&
2713 		    memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2714 			continue;
2715 
2716 		/* If we didn't map access then again we don't care about the
2717 		 * mismatched range values and it's ok if our old type was
2718 		 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2719 		 */
2720 		if (rold->type == NOT_INIT ||
2721 		    (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2722 		     rcur->type != NOT_INIT))
2723 			continue;
2724 
2725 		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2726 		    compare_ptrs_to_packet(rold, rcur))
2727 			continue;
2728 
2729 		return false;
2730 	}
2731 
2732 	for (i = 0; i < MAX_BPF_STACK; i++) {
2733 		if (old->stack_slot_type[i] == STACK_INVALID)
2734 			continue;
2735 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2736 			/* Ex: old explored (safe) state has STACK_SPILL in
2737 			 * this stack slot, but current has has STACK_MISC ->
2738 			 * this verifier states are not equivalent,
2739 			 * return false to continue verification of this path
2740 			 */
2741 			return false;
2742 		if (i % BPF_REG_SIZE)
2743 			continue;
2744 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2745 			   &cur->spilled_regs[i / BPF_REG_SIZE],
2746 			   sizeof(old->spilled_regs[0])))
2747 			/* when explored and current stack slot types are
2748 			 * the same, check that stored pointers types
2749 			 * are the same as well.
2750 			 * Ex: explored safe path could have stored
2751 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2752 			 * but current path has stored:
2753 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2754 			 * such verifier states are not equivalent.
2755 			 * return false to continue verification of this path
2756 			 */
2757 			return false;
2758 		else
2759 			continue;
2760 	}
2761 	return true;
2762 }
2763 
2764 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2765 {
2766 	struct bpf_verifier_state_list *new_sl;
2767 	struct bpf_verifier_state_list *sl;
2768 
2769 	sl = env->explored_states[insn_idx];
2770 	if (!sl)
2771 		/* this 'insn_idx' instruction wasn't marked, so we will not
2772 		 * be doing state search here
2773 		 */
2774 		return 0;
2775 
2776 	while (sl != STATE_LIST_MARK) {
2777 		if (states_equal(env, &sl->state, &env->cur_state))
2778 			/* reached equivalent register/stack state,
2779 			 * prune the search
2780 			 */
2781 			return 1;
2782 		sl = sl->next;
2783 	}
2784 
2785 	/* there were no equivalent states, remember current one.
2786 	 * technically the current state is not proven to be safe yet,
2787 	 * but it will either reach bpf_exit (which means it's safe) or
2788 	 * it will be rejected. Since there are no loops, we won't be
2789 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2790 	 */
2791 	new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2792 	if (!new_sl)
2793 		return -ENOMEM;
2794 
2795 	/* add new state to the head of linked list */
2796 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2797 	new_sl->next = env->explored_states[insn_idx];
2798 	env->explored_states[insn_idx] = new_sl;
2799 	return 0;
2800 }
2801 
2802 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2803 				  int insn_idx, int prev_insn_idx)
2804 {
2805 	if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2806 		return 0;
2807 
2808 	return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2809 }
2810 
2811 static int do_check(struct bpf_verifier_env *env)
2812 {
2813 	struct bpf_verifier_state *state = &env->cur_state;
2814 	struct bpf_insn *insns = env->prog->insnsi;
2815 	struct bpf_reg_state *regs = state->regs;
2816 	int insn_cnt = env->prog->len;
2817 	int insn_idx, prev_insn_idx = 0;
2818 	int insn_processed = 0;
2819 	bool do_print_state = false;
2820 
2821 	init_reg_state(regs);
2822 	insn_idx = 0;
2823 	env->varlen_map_value_access = false;
2824 	for (;;) {
2825 		struct bpf_insn *insn;
2826 		u8 class;
2827 		int err;
2828 
2829 		if (insn_idx >= insn_cnt) {
2830 			verbose("invalid insn idx %d insn_cnt %d\n",
2831 				insn_idx, insn_cnt);
2832 			return -EFAULT;
2833 		}
2834 
2835 		insn = &insns[insn_idx];
2836 		class = BPF_CLASS(insn->code);
2837 
2838 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2839 			verbose("BPF program is too large. Processed %d insn\n",
2840 				insn_processed);
2841 			return -E2BIG;
2842 		}
2843 
2844 		err = is_state_visited(env, insn_idx);
2845 		if (err < 0)
2846 			return err;
2847 		if (err == 1) {
2848 			/* found equivalent state, can prune the search */
2849 			if (log_level) {
2850 				if (do_print_state)
2851 					verbose("\nfrom %d to %d: safe\n",
2852 						prev_insn_idx, insn_idx);
2853 				else
2854 					verbose("%d: safe\n", insn_idx);
2855 			}
2856 			goto process_bpf_exit;
2857 		}
2858 
2859 		if (log_level && do_print_state) {
2860 			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
2861 			print_verifier_state(&env->cur_state);
2862 			do_print_state = false;
2863 		}
2864 
2865 		if (log_level) {
2866 			verbose("%d: ", insn_idx);
2867 			print_bpf_insn(env, insn);
2868 		}
2869 
2870 		err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2871 		if (err)
2872 			return err;
2873 
2874 		if (class == BPF_ALU || class == BPF_ALU64) {
2875 			err = check_alu_op(env, insn);
2876 			if (err)
2877 				return err;
2878 
2879 		} else if (class == BPF_LDX) {
2880 			enum bpf_reg_type *prev_src_type, src_reg_type;
2881 
2882 			/* check for reserved fields is already done */
2883 
2884 			/* check src operand */
2885 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2886 			if (err)
2887 				return err;
2888 
2889 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2890 			if (err)
2891 				return err;
2892 
2893 			src_reg_type = regs[insn->src_reg].type;
2894 
2895 			/* check that memory (src_reg + off) is readable,
2896 			 * the state of dst_reg will be updated by this func
2897 			 */
2898 			err = check_mem_access(env, insn->src_reg, insn->off,
2899 					       BPF_SIZE(insn->code), BPF_READ,
2900 					       insn->dst_reg);
2901 			if (err)
2902 				return err;
2903 
2904 			if (BPF_SIZE(insn->code) != BPF_W &&
2905 			    BPF_SIZE(insn->code) != BPF_DW) {
2906 				insn_idx++;
2907 				continue;
2908 			}
2909 
2910 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2911 
2912 			if (*prev_src_type == NOT_INIT) {
2913 				/* saw a valid insn
2914 				 * dst_reg = *(u32 *)(src_reg + off)
2915 				 * save type to validate intersecting paths
2916 				 */
2917 				*prev_src_type = src_reg_type;
2918 
2919 			} else if (src_reg_type != *prev_src_type &&
2920 				   (src_reg_type == PTR_TO_CTX ||
2921 				    *prev_src_type == PTR_TO_CTX)) {
2922 				/* ABuser program is trying to use the same insn
2923 				 * dst_reg = *(u32*) (src_reg + off)
2924 				 * with different pointer types:
2925 				 * src_reg == ctx in one branch and
2926 				 * src_reg == stack|map in some other branch.
2927 				 * Reject it.
2928 				 */
2929 				verbose("same insn cannot be used with different pointers\n");
2930 				return -EINVAL;
2931 			}
2932 
2933 		} else if (class == BPF_STX) {
2934 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
2935 
2936 			if (BPF_MODE(insn->code) == BPF_XADD) {
2937 				err = check_xadd(env, insn);
2938 				if (err)
2939 					return err;
2940 				insn_idx++;
2941 				continue;
2942 			}
2943 
2944 			/* check src1 operand */
2945 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2946 			if (err)
2947 				return err;
2948 			/* check src2 operand */
2949 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2950 			if (err)
2951 				return err;
2952 
2953 			dst_reg_type = regs[insn->dst_reg].type;
2954 
2955 			/* check that memory (dst_reg + off) is writeable */
2956 			err = check_mem_access(env, insn->dst_reg, insn->off,
2957 					       BPF_SIZE(insn->code), BPF_WRITE,
2958 					       insn->src_reg);
2959 			if (err)
2960 				return err;
2961 
2962 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2963 
2964 			if (*prev_dst_type == NOT_INIT) {
2965 				*prev_dst_type = dst_reg_type;
2966 			} else if (dst_reg_type != *prev_dst_type &&
2967 				   (dst_reg_type == PTR_TO_CTX ||
2968 				    *prev_dst_type == PTR_TO_CTX)) {
2969 				verbose("same insn cannot be used with different pointers\n");
2970 				return -EINVAL;
2971 			}
2972 
2973 		} else if (class == BPF_ST) {
2974 			if (BPF_MODE(insn->code) != BPF_MEM ||
2975 			    insn->src_reg != BPF_REG_0) {
2976 				verbose("BPF_ST uses reserved fields\n");
2977 				return -EINVAL;
2978 			}
2979 			/* check src operand */
2980 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2981 			if (err)
2982 				return err;
2983 
2984 			/* check that memory (dst_reg + off) is writeable */
2985 			err = check_mem_access(env, insn->dst_reg, insn->off,
2986 					       BPF_SIZE(insn->code), BPF_WRITE,
2987 					       -1);
2988 			if (err)
2989 				return err;
2990 
2991 		} else if (class == BPF_JMP) {
2992 			u8 opcode = BPF_OP(insn->code);
2993 
2994 			if (opcode == BPF_CALL) {
2995 				if (BPF_SRC(insn->code) != BPF_K ||
2996 				    insn->off != 0 ||
2997 				    insn->src_reg != BPF_REG_0 ||
2998 				    insn->dst_reg != BPF_REG_0) {
2999 					verbose("BPF_CALL uses reserved fields\n");
3000 					return -EINVAL;
3001 				}
3002 
3003 				err = check_call(env, insn->imm, insn_idx);
3004 				if (err)
3005 					return err;
3006 
3007 			} else if (opcode == BPF_JA) {
3008 				if (BPF_SRC(insn->code) != BPF_K ||
3009 				    insn->imm != 0 ||
3010 				    insn->src_reg != BPF_REG_0 ||
3011 				    insn->dst_reg != BPF_REG_0) {
3012 					verbose("BPF_JA uses reserved fields\n");
3013 					return -EINVAL;
3014 				}
3015 
3016 				insn_idx += insn->off + 1;
3017 				continue;
3018 
3019 			} else if (opcode == BPF_EXIT) {
3020 				if (BPF_SRC(insn->code) != BPF_K ||
3021 				    insn->imm != 0 ||
3022 				    insn->src_reg != BPF_REG_0 ||
3023 				    insn->dst_reg != BPF_REG_0) {
3024 					verbose("BPF_EXIT uses reserved fields\n");
3025 					return -EINVAL;
3026 				}
3027 
3028 				/* eBPF calling convetion is such that R0 is used
3029 				 * to return the value from eBPF program.
3030 				 * Make sure that it's readable at this time
3031 				 * of bpf_exit, which means that program wrote
3032 				 * something into it earlier
3033 				 */
3034 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3035 				if (err)
3036 					return err;
3037 
3038 				if (is_pointer_value(env, BPF_REG_0)) {
3039 					verbose("R0 leaks addr as return value\n");
3040 					return -EACCES;
3041 				}
3042 
3043 process_bpf_exit:
3044 				insn_idx = pop_stack(env, &prev_insn_idx);
3045 				if (insn_idx < 0) {
3046 					break;
3047 				} else {
3048 					do_print_state = true;
3049 					continue;
3050 				}
3051 			} else {
3052 				err = check_cond_jmp_op(env, insn, &insn_idx);
3053 				if (err)
3054 					return err;
3055 			}
3056 		} else if (class == BPF_LD) {
3057 			u8 mode = BPF_MODE(insn->code);
3058 
3059 			if (mode == BPF_ABS || mode == BPF_IND) {
3060 				err = check_ld_abs(env, insn);
3061 				if (err)
3062 					return err;
3063 
3064 			} else if (mode == BPF_IMM) {
3065 				err = check_ld_imm(env, insn);
3066 				if (err)
3067 					return err;
3068 
3069 				insn_idx++;
3070 			} else {
3071 				verbose("invalid BPF_LD mode\n");
3072 				return -EINVAL;
3073 			}
3074 			reset_reg_range_values(regs, insn->dst_reg);
3075 		} else {
3076 			verbose("unknown insn class %d\n", class);
3077 			return -EINVAL;
3078 		}
3079 
3080 		insn_idx++;
3081 	}
3082 
3083 	verbose("processed %d insns\n", insn_processed);
3084 	return 0;
3085 }
3086 
3087 static int check_map_prealloc(struct bpf_map *map)
3088 {
3089 	return (map->map_type != BPF_MAP_TYPE_HASH &&
3090 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3091 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3092 		!(map->map_flags & BPF_F_NO_PREALLOC);
3093 }
3094 
3095 static int check_map_prog_compatibility(struct bpf_map *map,
3096 					struct bpf_prog *prog)
3097 
3098 {
3099 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3100 	 * preallocated hash maps, since doing memory allocation
3101 	 * in overflow_handler can crash depending on where nmi got
3102 	 * triggered.
3103 	 */
3104 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3105 		if (!check_map_prealloc(map)) {
3106 			verbose("perf_event programs can only use preallocated hash map\n");
3107 			return -EINVAL;
3108 		}
3109 		if (map->inner_map_meta &&
3110 		    !check_map_prealloc(map->inner_map_meta)) {
3111 			verbose("perf_event programs can only use preallocated inner hash map\n");
3112 			return -EINVAL;
3113 		}
3114 	}
3115 	return 0;
3116 }
3117 
3118 /* look for pseudo eBPF instructions that access map FDs and
3119  * replace them with actual map pointers
3120  */
3121 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3122 {
3123 	struct bpf_insn *insn = env->prog->insnsi;
3124 	int insn_cnt = env->prog->len;
3125 	int i, j, err;
3126 
3127 	err = bpf_prog_calc_tag(env->prog);
3128 	if (err)
3129 		return err;
3130 
3131 	for (i = 0; i < insn_cnt; i++, insn++) {
3132 		if (BPF_CLASS(insn->code) == BPF_LDX &&
3133 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3134 			verbose("BPF_LDX uses reserved fields\n");
3135 			return -EINVAL;
3136 		}
3137 
3138 		if (BPF_CLASS(insn->code) == BPF_STX &&
3139 		    ((BPF_MODE(insn->code) != BPF_MEM &&
3140 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3141 			verbose("BPF_STX uses reserved fields\n");
3142 			return -EINVAL;
3143 		}
3144 
3145 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3146 			struct bpf_map *map;
3147 			struct fd f;
3148 
3149 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
3150 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3151 			    insn[1].off != 0) {
3152 				verbose("invalid bpf_ld_imm64 insn\n");
3153 				return -EINVAL;
3154 			}
3155 
3156 			if (insn->src_reg == 0)
3157 				/* valid generic load 64-bit imm */
3158 				goto next_insn;
3159 
3160 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3161 				verbose("unrecognized bpf_ld_imm64 insn\n");
3162 				return -EINVAL;
3163 			}
3164 
3165 			f = fdget(insn->imm);
3166 			map = __bpf_map_get(f);
3167 			if (IS_ERR(map)) {
3168 				verbose("fd %d is not pointing to valid bpf_map\n",
3169 					insn->imm);
3170 				return PTR_ERR(map);
3171 			}
3172 
3173 			err = check_map_prog_compatibility(map, env->prog);
3174 			if (err) {
3175 				fdput(f);
3176 				return err;
3177 			}
3178 
3179 			/* store map pointer inside BPF_LD_IMM64 instruction */
3180 			insn[0].imm = (u32) (unsigned long) map;
3181 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
3182 
3183 			/* check whether we recorded this map already */
3184 			for (j = 0; j < env->used_map_cnt; j++)
3185 				if (env->used_maps[j] == map) {
3186 					fdput(f);
3187 					goto next_insn;
3188 				}
3189 
3190 			if (env->used_map_cnt >= MAX_USED_MAPS) {
3191 				fdput(f);
3192 				return -E2BIG;
3193 			}
3194 
3195 			/* hold the map. If the program is rejected by verifier,
3196 			 * the map will be released by release_maps() or it
3197 			 * will be used by the valid program until it's unloaded
3198 			 * and all maps are released in free_bpf_prog_info()
3199 			 */
3200 			map = bpf_map_inc(map, false);
3201 			if (IS_ERR(map)) {
3202 				fdput(f);
3203 				return PTR_ERR(map);
3204 			}
3205 			env->used_maps[env->used_map_cnt++] = map;
3206 
3207 			fdput(f);
3208 next_insn:
3209 			insn++;
3210 			i++;
3211 		}
3212 	}
3213 
3214 	/* now all pseudo BPF_LD_IMM64 instructions load valid
3215 	 * 'struct bpf_map *' into a register instead of user map_fd.
3216 	 * These pointers will be used later by verifier to validate map access.
3217 	 */
3218 	return 0;
3219 }
3220 
3221 /* drop refcnt of maps used by the rejected program */
3222 static void release_maps(struct bpf_verifier_env *env)
3223 {
3224 	int i;
3225 
3226 	for (i = 0; i < env->used_map_cnt; i++)
3227 		bpf_map_put(env->used_maps[i]);
3228 }
3229 
3230 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3231 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3232 {
3233 	struct bpf_insn *insn = env->prog->insnsi;
3234 	int insn_cnt = env->prog->len;
3235 	int i;
3236 
3237 	for (i = 0; i < insn_cnt; i++, insn++)
3238 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3239 			insn->src_reg = 0;
3240 }
3241 
3242 /* single env->prog->insni[off] instruction was replaced with the range
3243  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
3244  * [0, off) and [off, end) to new locations, so the patched range stays zero
3245  */
3246 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3247 				u32 off, u32 cnt)
3248 {
3249 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3250 
3251 	if (cnt == 1)
3252 		return 0;
3253 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3254 	if (!new_data)
3255 		return -ENOMEM;
3256 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3257 	memcpy(new_data + off + cnt - 1, old_data + off,
3258 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3259 	env->insn_aux_data = new_data;
3260 	vfree(old_data);
3261 	return 0;
3262 }
3263 
3264 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3265 					    const struct bpf_insn *patch, u32 len)
3266 {
3267 	struct bpf_prog *new_prog;
3268 
3269 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3270 	if (!new_prog)
3271 		return NULL;
3272 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
3273 		return NULL;
3274 	return new_prog;
3275 }
3276 
3277 /* convert load instructions that access fields of 'struct __sk_buff'
3278  * into sequence of instructions that access fields of 'struct sk_buff'
3279  */
3280 static int convert_ctx_accesses(struct bpf_verifier_env *env)
3281 {
3282 	const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3283 	const int insn_cnt = env->prog->len;
3284 	struct bpf_insn insn_buf[16], *insn;
3285 	struct bpf_prog *new_prog;
3286 	enum bpf_access_type type;
3287 	int i, cnt, delta = 0;
3288 
3289 	if (ops->gen_prologue) {
3290 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3291 					env->prog);
3292 		if (cnt >= ARRAY_SIZE(insn_buf)) {
3293 			verbose("bpf verifier is misconfigured\n");
3294 			return -EINVAL;
3295 		} else if (cnt) {
3296 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
3297 			if (!new_prog)
3298 				return -ENOMEM;
3299 
3300 			env->prog = new_prog;
3301 			delta += cnt - 1;
3302 		}
3303 	}
3304 
3305 	if (!ops->convert_ctx_access)
3306 		return 0;
3307 
3308 	insn = env->prog->insnsi + delta;
3309 
3310 	for (i = 0; i < insn_cnt; i++, insn++) {
3311 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3312 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3313 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3314 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3315 			type = BPF_READ;
3316 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3317 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3318 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3319 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3320 			type = BPF_WRITE;
3321 		else
3322 			continue;
3323 
3324 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
3325 			continue;
3326 
3327 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
3328 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3329 			verbose("bpf verifier is misconfigured\n");
3330 			return -EINVAL;
3331 		}
3332 
3333 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
3334 		if (!new_prog)
3335 			return -ENOMEM;
3336 
3337 		delta += cnt - 1;
3338 
3339 		/* keep walking new program and skip insns we just inserted */
3340 		env->prog = new_prog;
3341 		insn      = new_prog->insnsi + i + delta;
3342 	}
3343 
3344 	return 0;
3345 }
3346 
3347 /* fixup insn->imm field of bpf_call instructions
3348  * and inline eligible helpers as explicit sequence of BPF instructions
3349  *
3350  * this function is called after eBPF program passed verification
3351  */
3352 static int fixup_bpf_calls(struct bpf_verifier_env *env)
3353 {
3354 	struct bpf_prog *prog = env->prog;
3355 	struct bpf_insn *insn = prog->insnsi;
3356 	const struct bpf_func_proto *fn;
3357 	const int insn_cnt = prog->len;
3358 	struct bpf_insn insn_buf[16];
3359 	struct bpf_prog *new_prog;
3360 	struct bpf_map *map_ptr;
3361 	int i, cnt, delta = 0;
3362 
3363 	for (i = 0; i < insn_cnt; i++, insn++) {
3364 		if (insn->code != (BPF_JMP | BPF_CALL))
3365 			continue;
3366 
3367 		if (insn->imm == BPF_FUNC_get_route_realm)
3368 			prog->dst_needed = 1;
3369 		if (insn->imm == BPF_FUNC_get_prandom_u32)
3370 			bpf_user_rnd_init_once();
3371 		if (insn->imm == BPF_FUNC_tail_call) {
3372 			/* If we tail call into other programs, we
3373 			 * cannot make any assumptions since they can
3374 			 * be replaced dynamically during runtime in
3375 			 * the program array.
3376 			 */
3377 			prog->cb_access = 1;
3378 
3379 			/* mark bpf_tail_call as different opcode to avoid
3380 			 * conditional branch in the interpeter for every normal
3381 			 * call and to prevent accidental JITing by JIT compiler
3382 			 * that doesn't support bpf_tail_call yet
3383 			 */
3384 			insn->imm = 0;
3385 			insn->code |= BPF_X;
3386 			continue;
3387 		}
3388 
3389 		if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3390 			map_ptr = env->insn_aux_data[i + delta].map_ptr;
3391 			if (map_ptr == BPF_MAP_PTR_POISON ||
3392 			    !map_ptr->ops->map_gen_lookup)
3393 				goto patch_call_imm;
3394 
3395 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3396 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3397 				verbose("bpf verifier is misconfigured\n");
3398 				return -EINVAL;
3399 			}
3400 
3401 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3402 						       cnt);
3403 			if (!new_prog)
3404 				return -ENOMEM;
3405 
3406 			delta += cnt - 1;
3407 
3408 			/* keep walking new program and skip insns we just inserted */
3409 			env->prog = prog = new_prog;
3410 			insn      = new_prog->insnsi + i + delta;
3411 			continue;
3412 		}
3413 
3414 patch_call_imm:
3415 		fn = prog->aux->ops->get_func_proto(insn->imm);
3416 		/* all functions that have prototype and verifier allowed
3417 		 * programs to call them, must be real in-kernel functions
3418 		 */
3419 		if (!fn->func) {
3420 			verbose("kernel subsystem misconfigured func %s#%d\n",
3421 				func_id_name(insn->imm), insn->imm);
3422 			return -EFAULT;
3423 		}
3424 		insn->imm = fn->func - __bpf_call_base;
3425 	}
3426 
3427 	return 0;
3428 }
3429 
3430 static void free_states(struct bpf_verifier_env *env)
3431 {
3432 	struct bpf_verifier_state_list *sl, *sln;
3433 	int i;
3434 
3435 	if (!env->explored_states)
3436 		return;
3437 
3438 	for (i = 0; i < env->prog->len; i++) {
3439 		sl = env->explored_states[i];
3440 
3441 		if (sl)
3442 			while (sl != STATE_LIST_MARK) {
3443 				sln = sl->next;
3444 				kfree(sl);
3445 				sl = sln;
3446 			}
3447 	}
3448 
3449 	kfree(env->explored_states);
3450 }
3451 
3452 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
3453 {
3454 	char __user *log_ubuf = NULL;
3455 	struct bpf_verifier_env *env;
3456 	int ret = -EINVAL;
3457 
3458 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
3459 	 * allocate/free it every time bpf_check() is called
3460 	 */
3461 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3462 	if (!env)
3463 		return -ENOMEM;
3464 
3465 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3466 				     (*prog)->len);
3467 	ret = -ENOMEM;
3468 	if (!env->insn_aux_data)
3469 		goto err_free_env;
3470 	env->prog = *prog;
3471 
3472 	/* grab the mutex to protect few globals used by verifier */
3473 	mutex_lock(&bpf_verifier_lock);
3474 
3475 	if (attr->log_level || attr->log_buf || attr->log_size) {
3476 		/* user requested verbose verifier output
3477 		 * and supplied buffer to store the verification trace
3478 		 */
3479 		log_level = attr->log_level;
3480 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3481 		log_size = attr->log_size;
3482 		log_len = 0;
3483 
3484 		ret = -EINVAL;
3485 		/* log_* values have to be sane */
3486 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3487 		    log_level == 0 || log_ubuf == NULL)
3488 			goto err_unlock;
3489 
3490 		ret = -ENOMEM;
3491 		log_buf = vmalloc(log_size);
3492 		if (!log_buf)
3493 			goto err_unlock;
3494 	} else {
3495 		log_level = 0;
3496 	}
3497 
3498 	ret = replace_map_fd_with_map_ptr(env);
3499 	if (ret < 0)
3500 		goto skip_full_check;
3501 
3502 	env->explored_states = kcalloc(env->prog->len,
3503 				       sizeof(struct bpf_verifier_state_list *),
3504 				       GFP_USER);
3505 	ret = -ENOMEM;
3506 	if (!env->explored_states)
3507 		goto skip_full_check;
3508 
3509 	ret = check_cfg(env);
3510 	if (ret < 0)
3511 		goto skip_full_check;
3512 
3513 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3514 
3515 	ret = do_check(env);
3516 
3517 skip_full_check:
3518 	while (pop_stack(env, NULL) >= 0);
3519 	free_states(env);
3520 
3521 	if (ret == 0)
3522 		/* program is valid, convert *(u32*)(ctx + off) accesses */
3523 		ret = convert_ctx_accesses(env);
3524 
3525 	if (ret == 0)
3526 		ret = fixup_bpf_calls(env);
3527 
3528 	if (log_level && log_len >= log_size - 1) {
3529 		BUG_ON(log_len >= log_size);
3530 		/* verifier log exceeded user supplied buffer */
3531 		ret = -ENOSPC;
3532 		/* fall through to return what was recorded */
3533 	}
3534 
3535 	/* copy verifier log back to user space including trailing zero */
3536 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3537 		ret = -EFAULT;
3538 		goto free_log_buf;
3539 	}
3540 
3541 	if (ret == 0 && env->used_map_cnt) {
3542 		/* if program passed verifier, update used_maps in bpf_prog_info */
3543 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3544 							  sizeof(env->used_maps[0]),
3545 							  GFP_KERNEL);
3546 
3547 		if (!env->prog->aux->used_maps) {
3548 			ret = -ENOMEM;
3549 			goto free_log_buf;
3550 		}
3551 
3552 		memcpy(env->prog->aux->used_maps, env->used_maps,
3553 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
3554 		env->prog->aux->used_map_cnt = env->used_map_cnt;
3555 
3556 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
3557 		 * bpf_ld_imm64 instructions
3558 		 */
3559 		convert_pseudo_ld_imm64(env);
3560 	}
3561 
3562 free_log_buf:
3563 	if (log_level)
3564 		vfree(log_buf);
3565 	if (!env->prog->aux->used_maps)
3566 		/* if we didn't copy map pointers into bpf_prog_info, release
3567 		 * them now. Otherwise free_bpf_prog_info() will release them.
3568 		 */
3569 		release_maps(env);
3570 	*prog = env->prog;
3571 err_unlock:
3572 	mutex_unlock(&bpf_verifier_lock);
3573 	vfree(env->insn_aux_data);
3574 err_free_env:
3575 	kfree(env);
3576 	return ret;
3577 }
3578 
3579 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3580 		 void *priv)
3581 {
3582 	struct bpf_verifier_env *env;
3583 	int ret;
3584 
3585 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3586 	if (!env)
3587 		return -ENOMEM;
3588 
3589 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3590 				     prog->len);
3591 	ret = -ENOMEM;
3592 	if (!env->insn_aux_data)
3593 		goto err_free_env;
3594 	env->prog = prog;
3595 	env->analyzer_ops = ops;
3596 	env->analyzer_priv = priv;
3597 
3598 	/* grab the mutex to protect few globals used by verifier */
3599 	mutex_lock(&bpf_verifier_lock);
3600 
3601 	log_level = 0;
3602 
3603 	env->explored_states = kcalloc(env->prog->len,
3604 				       sizeof(struct bpf_verifier_state_list *),
3605 				       GFP_KERNEL);
3606 	ret = -ENOMEM;
3607 	if (!env->explored_states)
3608 		goto skip_full_check;
3609 
3610 	ret = check_cfg(env);
3611 	if (ret < 0)
3612 		goto skip_full_check;
3613 
3614 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3615 
3616 	ret = do_check(env);
3617 
3618 skip_full_check:
3619 	while (pop_stack(env, NULL) >= 0);
3620 	free_states(env);
3621 
3622 	mutex_unlock(&bpf_verifier_lock);
3623 	vfree(env->insn_aux_data);
3624 err_free_env:
3625 	kfree(env);
3626 	return ret;
3627 }
3628 EXPORT_SYMBOL_GPL(bpf_analyzer);
3629