xref: /openbmc/linux/kernel/bpf/verifier.c (revision c169daf3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43 
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168 
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 	/* verifer state is 'st'
172 	 * before processing instruction 'insn_idx'
173 	 * and after processing instruction 'prev_insn_idx'
174 	 */
175 	struct bpf_verifier_state st;
176 	int insn_idx;
177 	int prev_insn_idx;
178 	struct bpf_verifier_stack_elem *next;
179 	/* length of verifier log at the time this state was pushed on stack */
180 	u32 log_pos;
181 };
182 
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
184 #define BPF_COMPLEXITY_LIMIT_STATES	64
185 
186 #define BPF_MAP_KEY_POISON	(1ULL << 63)
187 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
188 
189 #define BPF_MAP_PTR_UNPRIV	1UL
190 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
191 					  POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193 
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 			      struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 			     u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203 
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208 
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213 
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 			      const struct bpf_map *map, bool unpriv)
216 {
217 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 	unpriv |= bpf_map_ptr_unpriv(aux);
219 	aux->map_ptr_state = (unsigned long)map |
220 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222 
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227 
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232 
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237 
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 	bool poisoned = bpf_map_key_poisoned(aux);
241 
242 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245 
246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == 0;
250 }
251 
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == BPF_PSEUDO_CALL;
256 }
257 
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263 
264 struct bpf_call_arg_meta {
265 	struct bpf_map *map_ptr;
266 	bool raw_mode;
267 	bool pkt_access;
268 	u8 release_regno;
269 	int regno;
270 	int access_size;
271 	int mem_size;
272 	u64 msize_max_value;
273 	int ref_obj_id;
274 	int dynptr_id;
275 	int map_uid;
276 	int func_id;
277 	struct btf *btf;
278 	u32 btf_id;
279 	struct btf *ret_btf;
280 	u32 ret_btf_id;
281 	u32 subprogno;
282 	struct btf_field *kptr_field;
283 };
284 
285 struct bpf_kfunc_call_arg_meta {
286 	/* In parameters */
287 	struct btf *btf;
288 	u32 func_id;
289 	u32 kfunc_flags;
290 	const struct btf_type *func_proto;
291 	const char *func_name;
292 	/* Out parameters */
293 	u32 ref_obj_id;
294 	u8 release_regno;
295 	bool r0_rdonly;
296 	u32 ret_btf_id;
297 	u64 r0_size;
298 	u32 subprogno;
299 	struct {
300 		u64 value;
301 		bool found;
302 	} arg_constant;
303 
304 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 	 * generally to pass info about user-defined local kptr types to later
306 	 * verification logic
307 	 *   bpf_obj_drop
308 	 *     Record the local kptr type to be drop'd
309 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 	 *     Record the local kptr type to be refcount_incr'd and use
311 	 *     arg_owning_ref to determine whether refcount_acquire should be
312 	 *     fallible
313 	 */
314 	struct btf *arg_btf;
315 	u32 arg_btf_id;
316 	bool arg_owning_ref;
317 
318 	struct {
319 		struct btf_field *field;
320 	} arg_list_head;
321 	struct {
322 		struct btf_field *field;
323 	} arg_rbtree_root;
324 	struct {
325 		enum bpf_dynptr_type type;
326 		u32 id;
327 		u32 ref_obj_id;
328 	} initialized_dynptr;
329 	struct {
330 		u8 spi;
331 		u8 frameno;
332 	} iter;
333 	u64 mem_size;
334 };
335 
336 struct btf *btf_vmlinux;
337 
338 static DEFINE_MUTEX(bpf_verifier_lock);
339 
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 	const struct bpf_line_info *linfo;
344 	const struct bpf_prog *prog;
345 	u32 i, nr_linfo;
346 
347 	prog = env->prog;
348 	nr_linfo = prog->aux->nr_linfo;
349 
350 	if (!nr_linfo || insn_off >= prog->len)
351 		return NULL;
352 
353 	linfo = prog->aux->linfo;
354 	for (i = 1; i < nr_linfo; i++)
355 		if (insn_off < linfo[i].insn_off)
356 			break;
357 
358 	return &linfo[i - 1];
359 }
360 
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 	struct bpf_verifier_env *env = private_data;
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(&env->log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(&env->log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	type = base_type(type);
431 	return type == PTR_TO_PACKET ||
432 	       type == PTR_TO_PACKET_META;
433 }
434 
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_SOCK_COMMON ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_XDP_SOCK;
441 }
442 
443 static bool type_may_be_null(u32 type)
444 {
445 	return type & PTR_MAYBE_NULL;
446 }
447 
448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 	enum bpf_reg_type type;
451 
452 	type = reg->type;
453 	if (type_may_be_null(type))
454 		return false;
455 
456 	type = base_type(type);
457 	return type == PTR_TO_SOCKET ||
458 		type == PTR_TO_TCP_SOCK ||
459 		type == PTR_TO_MAP_VALUE ||
460 		type == PTR_TO_MAP_KEY ||
461 		type == PTR_TO_SOCK_COMMON ||
462 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 		type == PTR_TO_MEM;
464 }
465 
466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470 
471 static bool type_is_non_owning_ref(u32 type)
472 {
473 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475 
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 	struct btf_record *rec = NULL;
479 	struct btf_struct_meta *meta;
480 
481 	if (reg->type == PTR_TO_MAP_VALUE) {
482 		rec = reg->map_ptr->record;
483 	} else if (type_is_ptr_alloc_obj(reg->type)) {
484 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 		if (meta)
486 			rec = meta->record;
487 	}
488 	return rec;
489 }
490 
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494 
495 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497 
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502 
503 static bool type_is_rdonly_mem(u32 type)
504 {
505 	return type & MEM_RDONLY;
506 }
507 
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 				const struct bpf_map *map)
510 {
511 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512 
513 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 	    func_id == BPF_FUNC_sk_lookup_udp ||
515 	    func_id == BPF_FUNC_skc_lookup_tcp ||
516 	    func_id == BPF_FUNC_ringbuf_reserve ||
517 	    func_id == BPF_FUNC_kptr_xchg)
518 		return true;
519 
520 	if (func_id == BPF_FUNC_map_lookup_elem &&
521 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 	     map_type == BPF_MAP_TYPE_SOCKHASH))
523 		return true;
524 
525 	return false;
526 }
527 
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_tcp_sock ||
531 		func_id == BPF_FUNC_sk_fullsock ||
532 		func_id == BPF_FUNC_skc_to_tcp_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 		func_id == BPF_FUNC_skc_to_udp6_sock ||
535 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 	return func_id == BPF_FUNC_dynptr_data;
543 }
544 
545 static bool is_sync_callback_calling_kfunc(u32 btf_id);
546 
547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id)
548 {
549 	return func_id == BPF_FUNC_for_each_map_elem ||
550 	       func_id == BPF_FUNC_find_vma ||
551 	       func_id == BPF_FUNC_loop ||
552 	       func_id == BPF_FUNC_user_ringbuf_drain;
553 }
554 
555 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
556 {
557 	return func_id == BPF_FUNC_timer_set_callback;
558 }
559 
560 static bool is_callback_calling_function(enum bpf_func_id func_id)
561 {
562 	return is_sync_callback_calling_function(func_id) ||
563 	       is_async_callback_calling_function(func_id);
564 }
565 
566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn)
567 {
568 	return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) ||
569 	       (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm));
570 }
571 
572 static bool is_storage_get_function(enum bpf_func_id func_id)
573 {
574 	return func_id == BPF_FUNC_sk_storage_get ||
575 	       func_id == BPF_FUNC_inode_storage_get ||
576 	       func_id == BPF_FUNC_task_storage_get ||
577 	       func_id == BPF_FUNC_cgrp_storage_get;
578 }
579 
580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
581 					const struct bpf_map *map)
582 {
583 	int ref_obj_uses = 0;
584 
585 	if (is_ptr_cast_function(func_id))
586 		ref_obj_uses++;
587 	if (is_acquire_function(func_id, map))
588 		ref_obj_uses++;
589 	if (is_dynptr_ref_function(func_id))
590 		ref_obj_uses++;
591 
592 	return ref_obj_uses > 1;
593 }
594 
595 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
596 {
597 	return BPF_CLASS(insn->code) == BPF_STX &&
598 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
599 	       insn->imm == BPF_CMPXCHG;
600 }
601 
602 /* string representation of 'enum bpf_reg_type'
603  *
604  * Note that reg_type_str() can not appear more than once in a single verbose()
605  * statement.
606  */
607 static const char *reg_type_str(struct bpf_verifier_env *env,
608 				enum bpf_reg_type type)
609 {
610 	char postfix[16] = {0}, prefix[64] = {0};
611 	static const char * const str[] = {
612 		[NOT_INIT]		= "?",
613 		[SCALAR_VALUE]		= "scalar",
614 		[PTR_TO_CTX]		= "ctx",
615 		[CONST_PTR_TO_MAP]	= "map_ptr",
616 		[PTR_TO_MAP_VALUE]	= "map_value",
617 		[PTR_TO_STACK]		= "fp",
618 		[PTR_TO_PACKET]		= "pkt",
619 		[PTR_TO_PACKET_META]	= "pkt_meta",
620 		[PTR_TO_PACKET_END]	= "pkt_end",
621 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
622 		[PTR_TO_SOCKET]		= "sock",
623 		[PTR_TO_SOCK_COMMON]	= "sock_common",
624 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
625 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
626 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
627 		[PTR_TO_BTF_ID]		= "ptr_",
628 		[PTR_TO_MEM]		= "mem",
629 		[PTR_TO_BUF]		= "buf",
630 		[PTR_TO_FUNC]		= "func",
631 		[PTR_TO_MAP_KEY]	= "map_key",
632 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
633 	};
634 
635 	if (type & PTR_MAYBE_NULL) {
636 		if (base_type(type) == PTR_TO_BTF_ID)
637 			strncpy(postfix, "or_null_", 16);
638 		else
639 			strncpy(postfix, "_or_null", 16);
640 	}
641 
642 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
643 		 type & MEM_RDONLY ? "rdonly_" : "",
644 		 type & MEM_RINGBUF ? "ringbuf_" : "",
645 		 type & MEM_USER ? "user_" : "",
646 		 type & MEM_PERCPU ? "percpu_" : "",
647 		 type & MEM_RCU ? "rcu_" : "",
648 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
649 		 type & PTR_TRUSTED ? "trusted_" : ""
650 	);
651 
652 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
653 		 prefix, str[base_type(type)], postfix);
654 	return env->tmp_str_buf;
655 }
656 
657 static char slot_type_char[] = {
658 	[STACK_INVALID]	= '?',
659 	[STACK_SPILL]	= 'r',
660 	[STACK_MISC]	= 'm',
661 	[STACK_ZERO]	= '0',
662 	[STACK_DYNPTR]	= 'd',
663 	[STACK_ITER]	= 'i',
664 };
665 
666 static void print_liveness(struct bpf_verifier_env *env,
667 			   enum bpf_reg_liveness live)
668 {
669 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
670 	    verbose(env, "_");
671 	if (live & REG_LIVE_READ)
672 		verbose(env, "r");
673 	if (live & REG_LIVE_WRITTEN)
674 		verbose(env, "w");
675 	if (live & REG_LIVE_DONE)
676 		verbose(env, "D");
677 }
678 
679 static int __get_spi(s32 off)
680 {
681 	return (-off - 1) / BPF_REG_SIZE;
682 }
683 
684 static struct bpf_func_state *func(struct bpf_verifier_env *env,
685 				   const struct bpf_reg_state *reg)
686 {
687 	struct bpf_verifier_state *cur = env->cur_state;
688 
689 	return cur->frame[reg->frameno];
690 }
691 
692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
693 {
694        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
695 
696        /* We need to check that slots between [spi - nr_slots + 1, spi] are
697 	* within [0, allocated_stack).
698 	*
699 	* Please note that the spi grows downwards. For example, a dynptr
700 	* takes the size of two stack slots; the first slot will be at
701 	* spi and the second slot will be at spi - 1.
702 	*/
703        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
704 }
705 
706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
707 			          const char *obj_kind, int nr_slots)
708 {
709 	int off, spi;
710 
711 	if (!tnum_is_const(reg->var_off)) {
712 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
713 		return -EINVAL;
714 	}
715 
716 	off = reg->off + reg->var_off.value;
717 	if (off % BPF_REG_SIZE) {
718 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
719 		return -EINVAL;
720 	}
721 
722 	spi = __get_spi(off);
723 	if (spi + 1 < nr_slots) {
724 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
725 		return -EINVAL;
726 	}
727 
728 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
729 		return -ERANGE;
730 	return spi;
731 }
732 
733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
734 {
735 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
736 }
737 
738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
739 {
740 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
741 }
742 
743 static const char *btf_type_name(const struct btf *btf, u32 id)
744 {
745 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
746 }
747 
748 static const char *dynptr_type_str(enum bpf_dynptr_type type)
749 {
750 	switch (type) {
751 	case BPF_DYNPTR_TYPE_LOCAL:
752 		return "local";
753 	case BPF_DYNPTR_TYPE_RINGBUF:
754 		return "ringbuf";
755 	case BPF_DYNPTR_TYPE_SKB:
756 		return "skb";
757 	case BPF_DYNPTR_TYPE_XDP:
758 		return "xdp";
759 	case BPF_DYNPTR_TYPE_INVALID:
760 		return "<invalid>";
761 	default:
762 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
763 		return "<unknown>";
764 	}
765 }
766 
767 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
768 {
769 	if (!btf || btf_id == 0)
770 		return "<invalid>";
771 
772 	/* we already validated that type is valid and has conforming name */
773 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
774 }
775 
776 static const char *iter_state_str(enum bpf_iter_state state)
777 {
778 	switch (state) {
779 	case BPF_ITER_STATE_ACTIVE:
780 		return "active";
781 	case BPF_ITER_STATE_DRAINED:
782 		return "drained";
783 	case BPF_ITER_STATE_INVALID:
784 		return "<invalid>";
785 	default:
786 		WARN_ONCE(1, "unknown iter state %d\n", state);
787 		return "<unknown>";
788 	}
789 }
790 
791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
792 {
793 	env->scratched_regs |= 1U << regno;
794 }
795 
796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
797 {
798 	env->scratched_stack_slots |= 1ULL << spi;
799 }
800 
801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
802 {
803 	return (env->scratched_regs >> regno) & 1;
804 }
805 
806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
807 {
808 	return (env->scratched_stack_slots >> regno) & 1;
809 }
810 
811 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
812 {
813 	return env->scratched_regs || env->scratched_stack_slots;
814 }
815 
816 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
817 {
818 	env->scratched_regs = 0U;
819 	env->scratched_stack_slots = 0ULL;
820 }
821 
822 /* Used for printing the entire verifier state. */
823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
824 {
825 	env->scratched_regs = ~0U;
826 	env->scratched_stack_slots = ~0ULL;
827 }
828 
829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
830 {
831 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
832 	case DYNPTR_TYPE_LOCAL:
833 		return BPF_DYNPTR_TYPE_LOCAL;
834 	case DYNPTR_TYPE_RINGBUF:
835 		return BPF_DYNPTR_TYPE_RINGBUF;
836 	case DYNPTR_TYPE_SKB:
837 		return BPF_DYNPTR_TYPE_SKB;
838 	case DYNPTR_TYPE_XDP:
839 		return BPF_DYNPTR_TYPE_XDP;
840 	default:
841 		return BPF_DYNPTR_TYPE_INVALID;
842 	}
843 }
844 
845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
846 {
847 	switch (type) {
848 	case BPF_DYNPTR_TYPE_LOCAL:
849 		return DYNPTR_TYPE_LOCAL;
850 	case BPF_DYNPTR_TYPE_RINGBUF:
851 		return DYNPTR_TYPE_RINGBUF;
852 	case BPF_DYNPTR_TYPE_SKB:
853 		return DYNPTR_TYPE_SKB;
854 	case BPF_DYNPTR_TYPE_XDP:
855 		return DYNPTR_TYPE_XDP;
856 	default:
857 		return 0;
858 	}
859 }
860 
861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
862 {
863 	return type == BPF_DYNPTR_TYPE_RINGBUF;
864 }
865 
866 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
867 			      enum bpf_dynptr_type type,
868 			      bool first_slot, int dynptr_id);
869 
870 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
871 				struct bpf_reg_state *reg);
872 
873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
874 				   struct bpf_reg_state *sreg1,
875 				   struct bpf_reg_state *sreg2,
876 				   enum bpf_dynptr_type type)
877 {
878 	int id = ++env->id_gen;
879 
880 	__mark_dynptr_reg(sreg1, type, true, id);
881 	__mark_dynptr_reg(sreg2, type, false, id);
882 }
883 
884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
885 			       struct bpf_reg_state *reg,
886 			       enum bpf_dynptr_type type)
887 {
888 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
889 }
890 
891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
892 				        struct bpf_func_state *state, int spi);
893 
894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
895 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
896 {
897 	struct bpf_func_state *state = func(env, reg);
898 	enum bpf_dynptr_type type;
899 	int spi, i, err;
900 
901 	spi = dynptr_get_spi(env, reg);
902 	if (spi < 0)
903 		return spi;
904 
905 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
906 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
907 	 * to ensure that for the following example:
908 	 *	[d1][d1][d2][d2]
909 	 * spi    3   2   1   0
910 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
911 	 * case they do belong to same dynptr, second call won't see slot_type
912 	 * as STACK_DYNPTR and will simply skip destruction.
913 	 */
914 	err = destroy_if_dynptr_stack_slot(env, state, spi);
915 	if (err)
916 		return err;
917 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
918 	if (err)
919 		return err;
920 
921 	for (i = 0; i < BPF_REG_SIZE; i++) {
922 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
923 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
924 	}
925 
926 	type = arg_to_dynptr_type(arg_type);
927 	if (type == BPF_DYNPTR_TYPE_INVALID)
928 		return -EINVAL;
929 
930 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
931 			       &state->stack[spi - 1].spilled_ptr, type);
932 
933 	if (dynptr_type_refcounted(type)) {
934 		/* The id is used to track proper releasing */
935 		int id;
936 
937 		if (clone_ref_obj_id)
938 			id = clone_ref_obj_id;
939 		else
940 			id = acquire_reference_state(env, insn_idx);
941 
942 		if (id < 0)
943 			return id;
944 
945 		state->stack[spi].spilled_ptr.ref_obj_id = id;
946 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
947 	}
948 
949 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
950 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
951 
952 	return 0;
953 }
954 
955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
956 {
957 	int i;
958 
959 	for (i = 0; i < BPF_REG_SIZE; i++) {
960 		state->stack[spi].slot_type[i] = STACK_INVALID;
961 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
962 	}
963 
964 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
965 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
966 
967 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
968 	 *
969 	 * While we don't allow reading STACK_INVALID, it is still possible to
970 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
971 	 * helpers or insns can do partial read of that part without failing,
972 	 * but check_stack_range_initialized, check_stack_read_var_off, and
973 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
974 	 * the slot conservatively. Hence we need to prevent those liveness
975 	 * marking walks.
976 	 *
977 	 * This was not a problem before because STACK_INVALID is only set by
978 	 * default (where the default reg state has its reg->parent as NULL), or
979 	 * in clean_live_states after REG_LIVE_DONE (at which point
980 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
981 	 * verifier state exploration (like we did above). Hence, for our case
982 	 * parentage chain will still be live (i.e. reg->parent may be
983 	 * non-NULL), while earlier reg->parent was NULL, so we need
984 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
985 	 * done later on reads or by mark_dynptr_read as well to unnecessary
986 	 * mark registers in verifier state.
987 	 */
988 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
989 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
990 }
991 
992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
993 {
994 	struct bpf_func_state *state = func(env, reg);
995 	int spi, ref_obj_id, i;
996 
997 	spi = dynptr_get_spi(env, reg);
998 	if (spi < 0)
999 		return spi;
1000 
1001 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1002 		invalidate_dynptr(env, state, spi);
1003 		return 0;
1004 	}
1005 
1006 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
1007 
1008 	/* If the dynptr has a ref_obj_id, then we need to invalidate
1009 	 * two things:
1010 	 *
1011 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1012 	 * 2) Any slices derived from this dynptr.
1013 	 */
1014 
1015 	/* Invalidate any slices associated with this dynptr */
1016 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1017 
1018 	/* Invalidate any dynptr clones */
1019 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1020 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1021 			continue;
1022 
1023 		/* it should always be the case that if the ref obj id
1024 		 * matches then the stack slot also belongs to a
1025 		 * dynptr
1026 		 */
1027 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1028 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1029 			return -EFAULT;
1030 		}
1031 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1032 			invalidate_dynptr(env, state, i);
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1039 			       struct bpf_reg_state *reg);
1040 
1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1042 {
1043 	if (!env->allow_ptr_leaks)
1044 		__mark_reg_not_init(env, reg);
1045 	else
1046 		__mark_reg_unknown(env, reg);
1047 }
1048 
1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1050 				        struct bpf_func_state *state, int spi)
1051 {
1052 	struct bpf_func_state *fstate;
1053 	struct bpf_reg_state *dreg;
1054 	int i, dynptr_id;
1055 
1056 	/* We always ensure that STACK_DYNPTR is never set partially,
1057 	 * hence just checking for slot_type[0] is enough. This is
1058 	 * different for STACK_SPILL, where it may be only set for
1059 	 * 1 byte, so code has to use is_spilled_reg.
1060 	 */
1061 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1062 		return 0;
1063 
1064 	/* Reposition spi to first slot */
1065 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1066 		spi = spi + 1;
1067 
1068 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1069 		verbose(env, "cannot overwrite referenced dynptr\n");
1070 		return -EINVAL;
1071 	}
1072 
1073 	mark_stack_slot_scratched(env, spi);
1074 	mark_stack_slot_scratched(env, spi - 1);
1075 
1076 	/* Writing partially to one dynptr stack slot destroys both. */
1077 	for (i = 0; i < BPF_REG_SIZE; i++) {
1078 		state->stack[spi].slot_type[i] = STACK_INVALID;
1079 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1080 	}
1081 
1082 	dynptr_id = state->stack[spi].spilled_ptr.id;
1083 	/* Invalidate any slices associated with this dynptr */
1084 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1085 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1086 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1087 			continue;
1088 		if (dreg->dynptr_id == dynptr_id)
1089 			mark_reg_invalid(env, dreg);
1090 	}));
1091 
1092 	/* Do not release reference state, we are destroying dynptr on stack,
1093 	 * not using some helper to release it. Just reset register.
1094 	 */
1095 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1096 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1097 
1098 	/* Same reason as unmark_stack_slots_dynptr above */
1099 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1100 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1101 
1102 	return 0;
1103 }
1104 
1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1106 {
1107 	int spi;
1108 
1109 	if (reg->type == CONST_PTR_TO_DYNPTR)
1110 		return false;
1111 
1112 	spi = dynptr_get_spi(env, reg);
1113 
1114 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1115 	 * error because this just means the stack state hasn't been updated yet.
1116 	 * We will do check_mem_access to check and update stack bounds later.
1117 	 */
1118 	if (spi < 0 && spi != -ERANGE)
1119 		return false;
1120 
1121 	/* We don't need to check if the stack slots are marked by previous
1122 	 * dynptr initializations because we allow overwriting existing unreferenced
1123 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1124 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1125 	 * touching are completely destructed before we reinitialize them for a new
1126 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1127 	 * instead of delaying it until the end where the user will get "Unreleased
1128 	 * reference" error.
1129 	 */
1130 	return true;
1131 }
1132 
1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1134 {
1135 	struct bpf_func_state *state = func(env, reg);
1136 	int i, spi;
1137 
1138 	/* This already represents first slot of initialized bpf_dynptr.
1139 	 *
1140 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1141 	 * check_func_arg_reg_off's logic, so we don't need to check its
1142 	 * offset and alignment.
1143 	 */
1144 	if (reg->type == CONST_PTR_TO_DYNPTR)
1145 		return true;
1146 
1147 	spi = dynptr_get_spi(env, reg);
1148 	if (spi < 0)
1149 		return false;
1150 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1151 		return false;
1152 
1153 	for (i = 0; i < BPF_REG_SIZE; i++) {
1154 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1155 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1156 			return false;
1157 	}
1158 
1159 	return true;
1160 }
1161 
1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1163 				    enum bpf_arg_type arg_type)
1164 {
1165 	struct bpf_func_state *state = func(env, reg);
1166 	enum bpf_dynptr_type dynptr_type;
1167 	int spi;
1168 
1169 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1170 	if (arg_type == ARG_PTR_TO_DYNPTR)
1171 		return true;
1172 
1173 	dynptr_type = arg_to_dynptr_type(arg_type);
1174 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1175 		return reg->dynptr.type == dynptr_type;
1176 	} else {
1177 		spi = dynptr_get_spi(env, reg);
1178 		if (spi < 0)
1179 			return false;
1180 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1181 	}
1182 }
1183 
1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1185 
1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1187 				 struct bpf_reg_state *reg, int insn_idx,
1188 				 struct btf *btf, u32 btf_id, int nr_slots)
1189 {
1190 	struct bpf_func_state *state = func(env, reg);
1191 	int spi, i, j, id;
1192 
1193 	spi = iter_get_spi(env, reg, nr_slots);
1194 	if (spi < 0)
1195 		return spi;
1196 
1197 	id = acquire_reference_state(env, insn_idx);
1198 	if (id < 0)
1199 		return id;
1200 
1201 	for (i = 0; i < nr_slots; i++) {
1202 		struct bpf_stack_state *slot = &state->stack[spi - i];
1203 		struct bpf_reg_state *st = &slot->spilled_ptr;
1204 
1205 		__mark_reg_known_zero(st);
1206 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1207 		st->live |= REG_LIVE_WRITTEN;
1208 		st->ref_obj_id = i == 0 ? id : 0;
1209 		st->iter.btf = btf;
1210 		st->iter.btf_id = btf_id;
1211 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1212 		st->iter.depth = 0;
1213 
1214 		for (j = 0; j < BPF_REG_SIZE; j++)
1215 			slot->slot_type[j] = STACK_ITER;
1216 
1217 		mark_stack_slot_scratched(env, spi - i);
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1224 				   struct bpf_reg_state *reg, int nr_slots)
1225 {
1226 	struct bpf_func_state *state = func(env, reg);
1227 	int spi, i, j;
1228 
1229 	spi = iter_get_spi(env, reg, nr_slots);
1230 	if (spi < 0)
1231 		return spi;
1232 
1233 	for (i = 0; i < nr_slots; i++) {
1234 		struct bpf_stack_state *slot = &state->stack[spi - i];
1235 		struct bpf_reg_state *st = &slot->spilled_ptr;
1236 
1237 		if (i == 0)
1238 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1239 
1240 		__mark_reg_not_init(env, st);
1241 
1242 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1243 		st->live |= REG_LIVE_WRITTEN;
1244 
1245 		for (j = 0; j < BPF_REG_SIZE; j++)
1246 			slot->slot_type[j] = STACK_INVALID;
1247 
1248 		mark_stack_slot_scratched(env, spi - i);
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1255 				     struct bpf_reg_state *reg, int nr_slots)
1256 {
1257 	struct bpf_func_state *state = func(env, reg);
1258 	int spi, i, j;
1259 
1260 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1261 	 * will do check_mem_access to check and update stack bounds later, so
1262 	 * return true for that case.
1263 	 */
1264 	spi = iter_get_spi(env, reg, nr_slots);
1265 	if (spi == -ERANGE)
1266 		return true;
1267 	if (spi < 0)
1268 		return false;
1269 
1270 	for (i = 0; i < nr_slots; i++) {
1271 		struct bpf_stack_state *slot = &state->stack[spi - i];
1272 
1273 		for (j = 0; j < BPF_REG_SIZE; j++)
1274 			if (slot->slot_type[j] == STACK_ITER)
1275 				return false;
1276 	}
1277 
1278 	return true;
1279 }
1280 
1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1282 				   struct btf *btf, u32 btf_id, int nr_slots)
1283 {
1284 	struct bpf_func_state *state = func(env, reg);
1285 	int spi, i, j;
1286 
1287 	spi = iter_get_spi(env, reg, nr_slots);
1288 	if (spi < 0)
1289 		return false;
1290 
1291 	for (i = 0; i < nr_slots; i++) {
1292 		struct bpf_stack_state *slot = &state->stack[spi - i];
1293 		struct bpf_reg_state *st = &slot->spilled_ptr;
1294 
1295 		/* only main (first) slot has ref_obj_id set */
1296 		if (i == 0 && !st->ref_obj_id)
1297 			return false;
1298 		if (i != 0 && st->ref_obj_id)
1299 			return false;
1300 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1301 			return false;
1302 
1303 		for (j = 0; j < BPF_REG_SIZE; j++)
1304 			if (slot->slot_type[j] != STACK_ITER)
1305 				return false;
1306 	}
1307 
1308 	return true;
1309 }
1310 
1311 /* Check if given stack slot is "special":
1312  *   - spilled register state (STACK_SPILL);
1313  *   - dynptr state (STACK_DYNPTR);
1314  *   - iter state (STACK_ITER).
1315  */
1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1317 {
1318 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1319 
1320 	switch (type) {
1321 	case STACK_SPILL:
1322 	case STACK_DYNPTR:
1323 	case STACK_ITER:
1324 		return true;
1325 	case STACK_INVALID:
1326 	case STACK_MISC:
1327 	case STACK_ZERO:
1328 		return false;
1329 	default:
1330 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1331 		return true;
1332 	}
1333 }
1334 
1335 /* The reg state of a pointer or a bounded scalar was saved when
1336  * it was spilled to the stack.
1337  */
1338 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1339 {
1340 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1341 }
1342 
1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1344 {
1345 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1346 	       stack->spilled_ptr.type == SCALAR_VALUE;
1347 }
1348 
1349 static void scrub_spilled_slot(u8 *stype)
1350 {
1351 	if (*stype != STACK_INVALID)
1352 		*stype = STACK_MISC;
1353 }
1354 
1355 static void print_verifier_state(struct bpf_verifier_env *env,
1356 				 const struct bpf_func_state *state,
1357 				 bool print_all)
1358 {
1359 	const struct bpf_reg_state *reg;
1360 	enum bpf_reg_type t;
1361 	int i;
1362 
1363 	if (state->frameno)
1364 		verbose(env, " frame%d:", state->frameno);
1365 	for (i = 0; i < MAX_BPF_REG; i++) {
1366 		reg = &state->regs[i];
1367 		t = reg->type;
1368 		if (t == NOT_INIT)
1369 			continue;
1370 		if (!print_all && !reg_scratched(env, i))
1371 			continue;
1372 		verbose(env, " R%d", i);
1373 		print_liveness(env, reg->live);
1374 		verbose(env, "=");
1375 		if (t == SCALAR_VALUE && reg->precise)
1376 			verbose(env, "P");
1377 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1378 		    tnum_is_const(reg->var_off)) {
1379 			/* reg->off should be 0 for SCALAR_VALUE */
1380 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1381 			verbose(env, "%lld", reg->var_off.value + reg->off);
1382 		} else {
1383 			const char *sep = "";
1384 
1385 			verbose(env, "%s", reg_type_str(env, t));
1386 			if (base_type(t) == PTR_TO_BTF_ID)
1387 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1388 			verbose(env, "(");
1389 /*
1390  * _a stands for append, was shortened to avoid multiline statements below.
1391  * This macro is used to output a comma separated list of attributes.
1392  */
1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1394 
1395 			if (reg->id)
1396 				verbose_a("id=%d", reg->id);
1397 			if (reg->ref_obj_id)
1398 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1399 			if (type_is_non_owning_ref(reg->type))
1400 				verbose_a("%s", "non_own_ref");
1401 			if (t != SCALAR_VALUE)
1402 				verbose_a("off=%d", reg->off);
1403 			if (type_is_pkt_pointer(t))
1404 				verbose_a("r=%d", reg->range);
1405 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1406 				 base_type(t) == PTR_TO_MAP_KEY ||
1407 				 base_type(t) == PTR_TO_MAP_VALUE)
1408 				verbose_a("ks=%d,vs=%d",
1409 					  reg->map_ptr->key_size,
1410 					  reg->map_ptr->value_size);
1411 			if (tnum_is_const(reg->var_off)) {
1412 				/* Typically an immediate SCALAR_VALUE, but
1413 				 * could be a pointer whose offset is too big
1414 				 * for reg->off
1415 				 */
1416 				verbose_a("imm=%llx", reg->var_off.value);
1417 			} else {
1418 				if (reg->smin_value != reg->umin_value &&
1419 				    reg->smin_value != S64_MIN)
1420 					verbose_a("smin=%lld", (long long)reg->smin_value);
1421 				if (reg->smax_value != reg->umax_value &&
1422 				    reg->smax_value != S64_MAX)
1423 					verbose_a("smax=%lld", (long long)reg->smax_value);
1424 				if (reg->umin_value != 0)
1425 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1426 				if (reg->umax_value != U64_MAX)
1427 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1428 				if (!tnum_is_unknown(reg->var_off)) {
1429 					char tn_buf[48];
1430 
1431 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1432 					verbose_a("var_off=%s", tn_buf);
1433 				}
1434 				if (reg->s32_min_value != reg->smin_value &&
1435 				    reg->s32_min_value != S32_MIN)
1436 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1437 				if (reg->s32_max_value != reg->smax_value &&
1438 				    reg->s32_max_value != S32_MAX)
1439 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1440 				if (reg->u32_min_value != reg->umin_value &&
1441 				    reg->u32_min_value != U32_MIN)
1442 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1443 				if (reg->u32_max_value != reg->umax_value &&
1444 				    reg->u32_max_value != U32_MAX)
1445 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1446 			}
1447 #undef verbose_a
1448 
1449 			verbose(env, ")");
1450 		}
1451 	}
1452 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1453 		char types_buf[BPF_REG_SIZE + 1];
1454 		bool valid = false;
1455 		int j;
1456 
1457 		for (j = 0; j < BPF_REG_SIZE; j++) {
1458 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1459 				valid = true;
1460 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1461 		}
1462 		types_buf[BPF_REG_SIZE] = 0;
1463 		if (!valid)
1464 			continue;
1465 		if (!print_all && !stack_slot_scratched(env, i))
1466 			continue;
1467 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1468 		case STACK_SPILL:
1469 			reg = &state->stack[i].spilled_ptr;
1470 			t = reg->type;
1471 
1472 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1473 			print_liveness(env, reg->live);
1474 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1475 			if (t == SCALAR_VALUE && reg->precise)
1476 				verbose(env, "P");
1477 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1478 				verbose(env, "%lld", reg->var_off.value + reg->off);
1479 			break;
1480 		case STACK_DYNPTR:
1481 			i += BPF_DYNPTR_NR_SLOTS - 1;
1482 			reg = &state->stack[i].spilled_ptr;
1483 
1484 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1485 			print_liveness(env, reg->live);
1486 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1487 			if (reg->ref_obj_id)
1488 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1489 			break;
1490 		case STACK_ITER:
1491 			/* only main slot has ref_obj_id set; skip others */
1492 			reg = &state->stack[i].spilled_ptr;
1493 			if (!reg->ref_obj_id)
1494 				continue;
1495 
1496 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1497 			print_liveness(env, reg->live);
1498 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1499 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1500 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1501 				reg->iter.depth);
1502 			break;
1503 		case STACK_MISC:
1504 		case STACK_ZERO:
1505 		default:
1506 			reg = &state->stack[i].spilled_ptr;
1507 
1508 			for (j = 0; j < BPF_REG_SIZE; j++)
1509 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1510 			types_buf[BPF_REG_SIZE] = 0;
1511 
1512 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1513 			print_liveness(env, reg->live);
1514 			verbose(env, "=%s", types_buf);
1515 			break;
1516 		}
1517 	}
1518 	if (state->acquired_refs && state->refs[0].id) {
1519 		verbose(env, " refs=%d", state->refs[0].id);
1520 		for (i = 1; i < state->acquired_refs; i++)
1521 			if (state->refs[i].id)
1522 				verbose(env, ",%d", state->refs[i].id);
1523 	}
1524 	if (state->in_callback_fn)
1525 		verbose(env, " cb");
1526 	if (state->in_async_callback_fn)
1527 		verbose(env, " async_cb");
1528 	verbose(env, "\n");
1529 	if (!print_all)
1530 		mark_verifier_state_clean(env);
1531 }
1532 
1533 static inline u32 vlog_alignment(u32 pos)
1534 {
1535 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1536 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1537 }
1538 
1539 static void print_insn_state(struct bpf_verifier_env *env,
1540 			     const struct bpf_func_state *state)
1541 {
1542 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1543 		/* remove new line character */
1544 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1545 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1546 	} else {
1547 		verbose(env, "%d:", env->insn_idx);
1548 	}
1549 	print_verifier_state(env, state, false);
1550 }
1551 
1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1553  * small to hold src. This is different from krealloc since we don't want to preserve
1554  * the contents of dst.
1555  *
1556  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1557  * not be allocated.
1558  */
1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1560 {
1561 	size_t alloc_bytes;
1562 	void *orig = dst;
1563 	size_t bytes;
1564 
1565 	if (ZERO_OR_NULL_PTR(src))
1566 		goto out;
1567 
1568 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1569 		return NULL;
1570 
1571 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1572 	dst = krealloc(orig, alloc_bytes, flags);
1573 	if (!dst) {
1574 		kfree(orig);
1575 		return NULL;
1576 	}
1577 
1578 	memcpy(dst, src, bytes);
1579 out:
1580 	return dst ? dst : ZERO_SIZE_PTR;
1581 }
1582 
1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1584  * small to hold new_n items. new items are zeroed out if the array grows.
1585  *
1586  * Contrary to krealloc_array, does not free arr if new_n is zero.
1587  */
1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1589 {
1590 	size_t alloc_size;
1591 	void *new_arr;
1592 
1593 	if (!new_n || old_n == new_n)
1594 		goto out;
1595 
1596 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1597 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1598 	if (!new_arr) {
1599 		kfree(arr);
1600 		return NULL;
1601 	}
1602 	arr = new_arr;
1603 
1604 	if (new_n > old_n)
1605 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1606 
1607 out:
1608 	return arr ? arr : ZERO_SIZE_PTR;
1609 }
1610 
1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1612 {
1613 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1614 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1615 	if (!dst->refs)
1616 		return -ENOMEM;
1617 
1618 	dst->acquired_refs = src->acquired_refs;
1619 	return 0;
1620 }
1621 
1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1623 {
1624 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1625 
1626 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1627 				GFP_KERNEL);
1628 	if (!dst->stack)
1629 		return -ENOMEM;
1630 
1631 	dst->allocated_stack = src->allocated_stack;
1632 	return 0;
1633 }
1634 
1635 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1636 {
1637 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1638 				    sizeof(struct bpf_reference_state));
1639 	if (!state->refs)
1640 		return -ENOMEM;
1641 
1642 	state->acquired_refs = n;
1643 	return 0;
1644 }
1645 
1646 /* Possibly update state->allocated_stack to be at least size bytes. Also
1647  * possibly update the function's high-water mark in its bpf_subprog_info.
1648  */
1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1650 {
1651 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1652 
1653 	if (old_n >= n)
1654 		return 0;
1655 
1656 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1657 	if (!state->stack)
1658 		return -ENOMEM;
1659 
1660 	state->allocated_stack = size;
1661 
1662 	/* update known max for given subprogram */
1663 	if (env->subprog_info[state->subprogno].stack_depth < size)
1664 		env->subprog_info[state->subprogno].stack_depth = size;
1665 
1666 	return 0;
1667 }
1668 
1669 /* Acquire a pointer id from the env and update the state->refs to include
1670  * this new pointer reference.
1671  * On success, returns a valid pointer id to associate with the register
1672  * On failure, returns a negative errno.
1673  */
1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1675 {
1676 	struct bpf_func_state *state = cur_func(env);
1677 	int new_ofs = state->acquired_refs;
1678 	int id, err;
1679 
1680 	err = resize_reference_state(state, state->acquired_refs + 1);
1681 	if (err)
1682 		return err;
1683 	id = ++env->id_gen;
1684 	state->refs[new_ofs].id = id;
1685 	state->refs[new_ofs].insn_idx = insn_idx;
1686 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1687 
1688 	return id;
1689 }
1690 
1691 /* release function corresponding to acquire_reference_state(). Idempotent. */
1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1693 {
1694 	int i, last_idx;
1695 
1696 	last_idx = state->acquired_refs - 1;
1697 	for (i = 0; i < state->acquired_refs; i++) {
1698 		if (state->refs[i].id == ptr_id) {
1699 			/* Cannot release caller references in callbacks */
1700 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1701 				return -EINVAL;
1702 			if (last_idx && i != last_idx)
1703 				memcpy(&state->refs[i], &state->refs[last_idx],
1704 				       sizeof(*state->refs));
1705 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1706 			state->acquired_refs--;
1707 			return 0;
1708 		}
1709 	}
1710 	return -EINVAL;
1711 }
1712 
1713 static void free_func_state(struct bpf_func_state *state)
1714 {
1715 	if (!state)
1716 		return;
1717 	kfree(state->refs);
1718 	kfree(state->stack);
1719 	kfree(state);
1720 }
1721 
1722 static void clear_jmp_history(struct bpf_verifier_state *state)
1723 {
1724 	kfree(state->jmp_history);
1725 	state->jmp_history = NULL;
1726 	state->jmp_history_cnt = 0;
1727 }
1728 
1729 static void free_verifier_state(struct bpf_verifier_state *state,
1730 				bool free_self)
1731 {
1732 	int i;
1733 
1734 	for (i = 0; i <= state->curframe; i++) {
1735 		free_func_state(state->frame[i]);
1736 		state->frame[i] = NULL;
1737 	}
1738 	clear_jmp_history(state);
1739 	if (free_self)
1740 		kfree(state);
1741 }
1742 
1743 /* copy verifier state from src to dst growing dst stack space
1744  * when necessary to accommodate larger src stack
1745  */
1746 static int copy_func_state(struct bpf_func_state *dst,
1747 			   const struct bpf_func_state *src)
1748 {
1749 	int err;
1750 
1751 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1752 	err = copy_reference_state(dst, src);
1753 	if (err)
1754 		return err;
1755 	return copy_stack_state(dst, src);
1756 }
1757 
1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1759 			       const struct bpf_verifier_state *src)
1760 {
1761 	struct bpf_func_state *dst;
1762 	int i, err;
1763 
1764 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1765 					  src->jmp_history_cnt, sizeof(*dst_state->jmp_history),
1766 					  GFP_USER);
1767 	if (!dst_state->jmp_history)
1768 		return -ENOMEM;
1769 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1770 
1771 	/* if dst has more stack frames then src frame, free them */
1772 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1773 		free_func_state(dst_state->frame[i]);
1774 		dst_state->frame[i] = NULL;
1775 	}
1776 	dst_state->speculative = src->speculative;
1777 	dst_state->active_rcu_lock = src->active_rcu_lock;
1778 	dst_state->curframe = src->curframe;
1779 	dst_state->active_lock.ptr = src->active_lock.ptr;
1780 	dst_state->active_lock.id = src->active_lock.id;
1781 	dst_state->branches = src->branches;
1782 	dst_state->parent = src->parent;
1783 	dst_state->first_insn_idx = src->first_insn_idx;
1784 	dst_state->last_insn_idx = src->last_insn_idx;
1785 	dst_state->dfs_depth = src->dfs_depth;
1786 	dst_state->callback_unroll_depth = src->callback_unroll_depth;
1787 	dst_state->used_as_loop_entry = src->used_as_loop_entry;
1788 	for (i = 0; i <= src->curframe; i++) {
1789 		dst = dst_state->frame[i];
1790 		if (!dst) {
1791 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1792 			if (!dst)
1793 				return -ENOMEM;
1794 			dst_state->frame[i] = dst;
1795 		}
1796 		err = copy_func_state(dst, src->frame[i]);
1797 		if (err)
1798 			return err;
1799 	}
1800 	return 0;
1801 }
1802 
1803 static u32 state_htab_size(struct bpf_verifier_env *env)
1804 {
1805 	return env->prog->len;
1806 }
1807 
1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx)
1809 {
1810 	struct bpf_verifier_state *cur = env->cur_state;
1811 	struct bpf_func_state *state = cur->frame[cur->curframe];
1812 
1813 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
1814 }
1815 
1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b)
1817 {
1818 	int fr;
1819 
1820 	if (a->curframe != b->curframe)
1821 		return false;
1822 
1823 	for (fr = a->curframe; fr >= 0; fr--)
1824 		if (a->frame[fr]->callsite != b->frame[fr]->callsite)
1825 			return false;
1826 
1827 	return true;
1828 }
1829 
1830 /* Open coded iterators allow back-edges in the state graph in order to
1831  * check unbounded loops that iterators.
1832  *
1833  * In is_state_visited() it is necessary to know if explored states are
1834  * part of some loops in order to decide whether non-exact states
1835  * comparison could be used:
1836  * - non-exact states comparison establishes sub-state relation and uses
1837  *   read and precision marks to do so, these marks are propagated from
1838  *   children states and thus are not guaranteed to be final in a loop;
1839  * - exact states comparison just checks if current and explored states
1840  *   are identical (and thus form a back-edge).
1841  *
1842  * Paper "A New Algorithm for Identifying Loops in Decompilation"
1843  * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient
1844  * algorithm for loop structure detection and gives an overview of
1845  * relevant terminology. It also has helpful illustrations.
1846  *
1847  * [1] https://api.semanticscholar.org/CorpusID:15784067
1848  *
1849  * We use a similar algorithm but because loop nested structure is
1850  * irrelevant for verifier ours is significantly simpler and resembles
1851  * strongly connected components algorithm from Sedgewick's textbook.
1852  *
1853  * Define topmost loop entry as a first node of the loop traversed in a
1854  * depth first search starting from initial state. The goal of the loop
1855  * tracking algorithm is to associate topmost loop entries with states
1856  * derived from these entries.
1857  *
1858  * For each step in the DFS states traversal algorithm needs to identify
1859  * the following situations:
1860  *
1861  *          initial                     initial                   initial
1862  *            |                           |                         |
1863  *            V                           V                         V
1864  *           ...                         ...           .---------> hdr
1865  *            |                           |            |            |
1866  *            V                           V            |            V
1867  *           cur                     .-> succ          |    .------...
1868  *            |                      |    |            |    |       |
1869  *            V                      |    V            |    V       V
1870  *           succ                    '-- cur           |   ...     ...
1871  *                                                     |    |       |
1872  *                                                     |    V       V
1873  *                                                     |   succ <- cur
1874  *                                                     |    |
1875  *                                                     |    V
1876  *                                                     |   ...
1877  *                                                     |    |
1878  *                                                     '----'
1879  *
1880  *  (A) successor state of cur   (B) successor state of cur or it's entry
1881  *      not yet traversed            are in current DFS path, thus cur and succ
1882  *                                   are members of the same outermost loop
1883  *
1884  *                      initial                  initial
1885  *                        |                        |
1886  *                        V                        V
1887  *                       ...                      ...
1888  *                        |                        |
1889  *                        V                        V
1890  *                .------...               .------...
1891  *                |       |                |       |
1892  *                V       V                V       V
1893  *           .-> hdr     ...              ...     ...
1894  *           |    |       |                |       |
1895  *           |    V       V                V       V
1896  *           |   succ <- cur              succ <- cur
1897  *           |    |                        |
1898  *           |    V                        V
1899  *           |   ...                      ...
1900  *           |    |                        |
1901  *           '----'                       exit
1902  *
1903  * (C) successor state of cur is a part of some loop but this loop
1904  *     does not include cur or successor state is not in a loop at all.
1905  *
1906  * Algorithm could be described as the following python code:
1907  *
1908  *     traversed = set()   # Set of traversed nodes
1909  *     entries = {}        # Mapping from node to loop entry
1910  *     depths = {}         # Depth level assigned to graph node
1911  *     path = set()        # Current DFS path
1912  *
1913  *     # Find outermost loop entry known for n
1914  *     def get_loop_entry(n):
1915  *         h = entries.get(n, None)
1916  *         while h in entries and entries[h] != h:
1917  *             h = entries[h]
1918  *         return h
1919  *
1920  *     # Update n's loop entry if h's outermost entry comes
1921  *     # before n's outermost entry in current DFS path.
1922  *     def update_loop_entry(n, h):
1923  *         n1 = get_loop_entry(n) or n
1924  *         h1 = get_loop_entry(h) or h
1925  *         if h1 in path and depths[h1] <= depths[n1]:
1926  *             entries[n] = h1
1927  *
1928  *     def dfs(n, depth):
1929  *         traversed.add(n)
1930  *         path.add(n)
1931  *         depths[n] = depth
1932  *         for succ in G.successors(n):
1933  *             if succ not in traversed:
1934  *                 # Case A: explore succ and update cur's loop entry
1935  *                 #         only if succ's entry is in current DFS path.
1936  *                 dfs(succ, depth + 1)
1937  *                 h = get_loop_entry(succ)
1938  *                 update_loop_entry(n, h)
1939  *             else:
1940  *                 # Case B or C depending on `h1 in path` check in update_loop_entry().
1941  *                 update_loop_entry(n, succ)
1942  *         path.remove(n)
1943  *
1944  * To adapt this algorithm for use with verifier:
1945  * - use st->branch == 0 as a signal that DFS of succ had been finished
1946  *   and cur's loop entry has to be updated (case A), handle this in
1947  *   update_branch_counts();
1948  * - use st->branch > 0 as a signal that st is in the current DFS path;
1949  * - handle cases B and C in is_state_visited();
1950  * - update topmost loop entry for intermediate states in get_loop_entry().
1951  */
1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st)
1953 {
1954 	struct bpf_verifier_state *topmost = st->loop_entry, *old;
1955 
1956 	while (topmost && topmost->loop_entry && topmost != topmost->loop_entry)
1957 		topmost = topmost->loop_entry;
1958 	/* Update loop entries for intermediate states to avoid this
1959 	 * traversal in future get_loop_entry() calls.
1960 	 */
1961 	while (st && st->loop_entry != topmost) {
1962 		old = st->loop_entry;
1963 		st->loop_entry = topmost;
1964 		st = old;
1965 	}
1966 	return topmost;
1967 }
1968 
1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr)
1970 {
1971 	struct bpf_verifier_state *cur1, *hdr1;
1972 
1973 	cur1 = get_loop_entry(cur) ?: cur;
1974 	hdr1 = get_loop_entry(hdr) ?: hdr;
1975 	/* The head1->branches check decides between cases B and C in
1976 	 * comment for get_loop_entry(). If hdr1->branches == 0 then
1977 	 * head's topmost loop entry is not in current DFS path,
1978 	 * hence 'cur' and 'hdr' are not in the same loop and there is
1979 	 * no need to update cur->loop_entry.
1980 	 */
1981 	if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) {
1982 		cur->loop_entry = hdr;
1983 		hdr->used_as_loop_entry = true;
1984 	}
1985 }
1986 
1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1988 {
1989 	while (st) {
1990 		u32 br = --st->branches;
1991 
1992 		/* br == 0 signals that DFS exploration for 'st' is finished,
1993 		 * thus it is necessary to update parent's loop entry if it
1994 		 * turned out that st is a part of some loop.
1995 		 * This is a part of 'case A' in get_loop_entry() comment.
1996 		 */
1997 		if (br == 0 && st->parent && st->loop_entry)
1998 			update_loop_entry(st->parent, st->loop_entry);
1999 
2000 		/* WARN_ON(br > 1) technically makes sense here,
2001 		 * but see comment in push_stack(), hence:
2002 		 */
2003 		WARN_ONCE((int)br < 0,
2004 			  "BUG update_branch_counts:branches_to_explore=%d\n",
2005 			  br);
2006 		if (br)
2007 			break;
2008 		st = st->parent;
2009 	}
2010 }
2011 
2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
2013 		     int *insn_idx, bool pop_log)
2014 {
2015 	struct bpf_verifier_state *cur = env->cur_state;
2016 	struct bpf_verifier_stack_elem *elem, *head = env->head;
2017 	int err;
2018 
2019 	if (env->head == NULL)
2020 		return -ENOENT;
2021 
2022 	if (cur) {
2023 		err = copy_verifier_state(cur, &head->st);
2024 		if (err)
2025 			return err;
2026 	}
2027 	if (pop_log)
2028 		bpf_vlog_reset(&env->log, head->log_pos);
2029 	if (insn_idx)
2030 		*insn_idx = head->insn_idx;
2031 	if (prev_insn_idx)
2032 		*prev_insn_idx = head->prev_insn_idx;
2033 	elem = head->next;
2034 	free_verifier_state(&head->st, false);
2035 	kfree(head);
2036 	env->head = elem;
2037 	env->stack_size--;
2038 	return 0;
2039 }
2040 
2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
2042 					     int insn_idx, int prev_insn_idx,
2043 					     bool speculative)
2044 {
2045 	struct bpf_verifier_state *cur = env->cur_state;
2046 	struct bpf_verifier_stack_elem *elem;
2047 	int err;
2048 
2049 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2050 	if (!elem)
2051 		goto err;
2052 
2053 	elem->insn_idx = insn_idx;
2054 	elem->prev_insn_idx = prev_insn_idx;
2055 	elem->next = env->head;
2056 	elem->log_pos = env->log.end_pos;
2057 	env->head = elem;
2058 	env->stack_size++;
2059 	err = copy_verifier_state(&elem->st, cur);
2060 	if (err)
2061 		goto err;
2062 	elem->st.speculative |= speculative;
2063 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2064 		verbose(env, "The sequence of %d jumps is too complex.\n",
2065 			env->stack_size);
2066 		goto err;
2067 	}
2068 	if (elem->st.parent) {
2069 		++elem->st.parent->branches;
2070 		/* WARN_ON(branches > 2) technically makes sense here,
2071 		 * but
2072 		 * 1. speculative states will bump 'branches' for non-branch
2073 		 * instructions
2074 		 * 2. is_state_visited() heuristics may decide not to create
2075 		 * a new state for a sequence of branches and all such current
2076 		 * and cloned states will be pointing to a single parent state
2077 		 * which might have large 'branches' count.
2078 		 */
2079 	}
2080 	return &elem->st;
2081 err:
2082 	free_verifier_state(env->cur_state, true);
2083 	env->cur_state = NULL;
2084 	/* pop all elements and return */
2085 	while (!pop_stack(env, NULL, NULL, false));
2086 	return NULL;
2087 }
2088 
2089 #define CALLER_SAVED_REGS 6
2090 static const int caller_saved[CALLER_SAVED_REGS] = {
2091 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
2092 };
2093 
2094 /* This helper doesn't clear reg->id */
2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2096 {
2097 	reg->var_off = tnum_const(imm);
2098 	reg->smin_value = (s64)imm;
2099 	reg->smax_value = (s64)imm;
2100 	reg->umin_value = imm;
2101 	reg->umax_value = imm;
2102 
2103 	reg->s32_min_value = (s32)imm;
2104 	reg->s32_max_value = (s32)imm;
2105 	reg->u32_min_value = (u32)imm;
2106 	reg->u32_max_value = (u32)imm;
2107 }
2108 
2109 /* Mark the unknown part of a register (variable offset or scalar value) as
2110  * known to have the value @imm.
2111  */
2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
2113 {
2114 	/* Clear off and union(map_ptr, range) */
2115 	memset(((u8 *)reg) + sizeof(reg->type), 0,
2116 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
2117 	reg->id = 0;
2118 	reg->ref_obj_id = 0;
2119 	___mark_reg_known(reg, imm);
2120 }
2121 
2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
2123 {
2124 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
2125 	reg->s32_min_value = (s32)imm;
2126 	reg->s32_max_value = (s32)imm;
2127 	reg->u32_min_value = (u32)imm;
2128 	reg->u32_max_value = (u32)imm;
2129 }
2130 
2131 /* Mark the 'variable offset' part of a register as zero.  This should be
2132  * used only on registers holding a pointer type.
2133  */
2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
2135 {
2136 	__mark_reg_known(reg, 0);
2137 }
2138 
2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
2140 {
2141 	__mark_reg_known(reg, 0);
2142 	reg->type = SCALAR_VALUE;
2143 }
2144 
2145 static void mark_reg_known_zero(struct bpf_verifier_env *env,
2146 				struct bpf_reg_state *regs, u32 regno)
2147 {
2148 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2149 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
2150 		/* Something bad happened, let's kill all regs */
2151 		for (regno = 0; regno < MAX_BPF_REG; regno++)
2152 			__mark_reg_not_init(env, regs + regno);
2153 		return;
2154 	}
2155 	__mark_reg_known_zero(regs + regno);
2156 }
2157 
2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
2159 			      bool first_slot, int dynptr_id)
2160 {
2161 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
2162 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
2163 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
2164 	 */
2165 	__mark_reg_known_zero(reg);
2166 	reg->type = CONST_PTR_TO_DYNPTR;
2167 	/* Give each dynptr a unique id to uniquely associate slices to it. */
2168 	reg->id = dynptr_id;
2169 	reg->dynptr.type = type;
2170 	reg->dynptr.first_slot = first_slot;
2171 }
2172 
2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
2174 {
2175 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
2176 		const struct bpf_map *map = reg->map_ptr;
2177 
2178 		if (map->inner_map_meta) {
2179 			reg->type = CONST_PTR_TO_MAP;
2180 			reg->map_ptr = map->inner_map_meta;
2181 			/* transfer reg's id which is unique for every map_lookup_elem
2182 			 * as UID of the inner map.
2183 			 */
2184 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
2185 				reg->map_uid = reg->id;
2186 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
2187 			reg->type = PTR_TO_XDP_SOCK;
2188 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
2189 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
2190 			reg->type = PTR_TO_SOCKET;
2191 		} else {
2192 			reg->type = PTR_TO_MAP_VALUE;
2193 		}
2194 		return;
2195 	}
2196 
2197 	reg->type &= ~PTR_MAYBE_NULL;
2198 }
2199 
2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
2201 				struct btf_field_graph_root *ds_head)
2202 {
2203 	__mark_reg_known_zero(&regs[regno]);
2204 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
2205 	regs[regno].btf = ds_head->btf;
2206 	regs[regno].btf_id = ds_head->value_btf_id;
2207 	regs[regno].off = ds_head->node_offset;
2208 }
2209 
2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2211 {
2212 	return type_is_pkt_pointer(reg->type);
2213 }
2214 
2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2216 {
2217 	return reg_is_pkt_pointer(reg) ||
2218 	       reg->type == PTR_TO_PACKET_END;
2219 }
2220 
2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2222 {
2223 	return base_type(reg->type) == PTR_TO_MEM &&
2224 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2225 }
2226 
2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2229 				    enum bpf_reg_type which)
2230 {
2231 	/* The register can already have a range from prior markings.
2232 	 * This is fine as long as it hasn't been advanced from its
2233 	 * origin.
2234 	 */
2235 	return reg->type == which &&
2236 	       reg->id == 0 &&
2237 	       reg->off == 0 &&
2238 	       tnum_equals_const(reg->var_off, 0);
2239 }
2240 
2241 /* Reset the min/max bounds of a register */
2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2243 {
2244 	reg->smin_value = S64_MIN;
2245 	reg->smax_value = S64_MAX;
2246 	reg->umin_value = 0;
2247 	reg->umax_value = U64_MAX;
2248 
2249 	reg->s32_min_value = S32_MIN;
2250 	reg->s32_max_value = S32_MAX;
2251 	reg->u32_min_value = 0;
2252 	reg->u32_max_value = U32_MAX;
2253 }
2254 
2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2256 {
2257 	reg->smin_value = S64_MIN;
2258 	reg->smax_value = S64_MAX;
2259 	reg->umin_value = 0;
2260 	reg->umax_value = U64_MAX;
2261 }
2262 
2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2264 {
2265 	reg->s32_min_value = S32_MIN;
2266 	reg->s32_max_value = S32_MAX;
2267 	reg->u32_min_value = 0;
2268 	reg->u32_max_value = U32_MAX;
2269 }
2270 
2271 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2272 {
2273 	struct tnum var32_off = tnum_subreg(reg->var_off);
2274 
2275 	/* min signed is max(sign bit) | min(other bits) */
2276 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2277 			var32_off.value | (var32_off.mask & S32_MIN));
2278 	/* max signed is min(sign bit) | max(other bits) */
2279 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2280 			var32_off.value | (var32_off.mask & S32_MAX));
2281 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2282 	reg->u32_max_value = min(reg->u32_max_value,
2283 				 (u32)(var32_off.value | var32_off.mask));
2284 }
2285 
2286 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2287 {
2288 	/* min signed is max(sign bit) | min(other bits) */
2289 	reg->smin_value = max_t(s64, reg->smin_value,
2290 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2291 	/* max signed is min(sign bit) | max(other bits) */
2292 	reg->smax_value = min_t(s64, reg->smax_value,
2293 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2294 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2295 	reg->umax_value = min(reg->umax_value,
2296 			      reg->var_off.value | reg->var_off.mask);
2297 }
2298 
2299 static void __update_reg_bounds(struct bpf_reg_state *reg)
2300 {
2301 	__update_reg32_bounds(reg);
2302 	__update_reg64_bounds(reg);
2303 }
2304 
2305 /* Uses signed min/max values to inform unsigned, and vice-versa */
2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2307 {
2308 	/* Learn sign from signed bounds.
2309 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2310 	 * are the same, so combine.  This works even in the negative case, e.g.
2311 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2312 	 */
2313 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2314 		reg->s32_min_value = reg->u32_min_value =
2315 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2316 		reg->s32_max_value = reg->u32_max_value =
2317 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2318 		return;
2319 	}
2320 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2321 	 * boundary, so we must be careful.
2322 	 */
2323 	if ((s32)reg->u32_max_value >= 0) {
2324 		/* Positive.  We can't learn anything from the smin, but smax
2325 		 * is positive, hence safe.
2326 		 */
2327 		reg->s32_min_value = reg->u32_min_value;
2328 		reg->s32_max_value = reg->u32_max_value =
2329 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2330 	} else if ((s32)reg->u32_min_value < 0) {
2331 		/* Negative.  We can't learn anything from the smax, but smin
2332 		 * is negative, hence safe.
2333 		 */
2334 		reg->s32_min_value = reg->u32_min_value =
2335 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2336 		reg->s32_max_value = reg->u32_max_value;
2337 	}
2338 }
2339 
2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2341 {
2342 	/* Learn sign from signed bounds.
2343 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2344 	 * are the same, so combine.  This works even in the negative case, e.g.
2345 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2346 	 */
2347 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2348 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2349 							  reg->umin_value);
2350 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2351 							  reg->umax_value);
2352 		return;
2353 	}
2354 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2355 	 * boundary, so we must be careful.
2356 	 */
2357 	if ((s64)reg->umax_value >= 0) {
2358 		/* Positive.  We can't learn anything from the smin, but smax
2359 		 * is positive, hence safe.
2360 		 */
2361 		reg->smin_value = reg->umin_value;
2362 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2363 							  reg->umax_value);
2364 	} else if ((s64)reg->umin_value < 0) {
2365 		/* Negative.  We can't learn anything from the smax, but smin
2366 		 * is negative, hence safe.
2367 		 */
2368 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2369 							  reg->umin_value);
2370 		reg->smax_value = reg->umax_value;
2371 	}
2372 }
2373 
2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2375 {
2376 	__reg32_deduce_bounds(reg);
2377 	__reg64_deduce_bounds(reg);
2378 }
2379 
2380 /* Attempts to improve var_off based on unsigned min/max information */
2381 static void __reg_bound_offset(struct bpf_reg_state *reg)
2382 {
2383 	struct tnum var64_off = tnum_intersect(reg->var_off,
2384 					       tnum_range(reg->umin_value,
2385 							  reg->umax_value));
2386 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2387 					       tnum_range(reg->u32_min_value,
2388 							  reg->u32_max_value));
2389 
2390 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2391 }
2392 
2393 static void reg_bounds_sync(struct bpf_reg_state *reg)
2394 {
2395 	/* We might have learned new bounds from the var_off. */
2396 	__update_reg_bounds(reg);
2397 	/* We might have learned something about the sign bit. */
2398 	__reg_deduce_bounds(reg);
2399 	/* We might have learned some bits from the bounds. */
2400 	__reg_bound_offset(reg);
2401 	/* Intersecting with the old var_off might have improved our bounds
2402 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2403 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2404 	 */
2405 	__update_reg_bounds(reg);
2406 }
2407 
2408 static bool __reg32_bound_s64(s32 a)
2409 {
2410 	return a >= 0 && a <= S32_MAX;
2411 }
2412 
2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2414 {
2415 	reg->umin_value = reg->u32_min_value;
2416 	reg->umax_value = reg->u32_max_value;
2417 
2418 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2419 	 * be positive otherwise set to worse case bounds and refine later
2420 	 * from tnum.
2421 	 */
2422 	if (__reg32_bound_s64(reg->s32_min_value) &&
2423 	    __reg32_bound_s64(reg->s32_max_value)) {
2424 		reg->smin_value = reg->s32_min_value;
2425 		reg->smax_value = reg->s32_max_value;
2426 	} else {
2427 		reg->smin_value = 0;
2428 		reg->smax_value = U32_MAX;
2429 	}
2430 }
2431 
2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2433 {
2434 	/* special case when 64-bit register has upper 32-bit register
2435 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2436 	 * allowing us to use 32-bit bounds directly,
2437 	 */
2438 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2439 		__reg_assign_32_into_64(reg);
2440 	} else {
2441 		/* Otherwise the best we can do is push lower 32bit known and
2442 		 * unknown bits into register (var_off set from jmp logic)
2443 		 * then learn as much as possible from the 64-bit tnum
2444 		 * known and unknown bits. The previous smin/smax bounds are
2445 		 * invalid here because of jmp32 compare so mark them unknown
2446 		 * so they do not impact tnum bounds calculation.
2447 		 */
2448 		__mark_reg64_unbounded(reg);
2449 	}
2450 	reg_bounds_sync(reg);
2451 }
2452 
2453 static bool __reg64_bound_s32(s64 a)
2454 {
2455 	return a >= S32_MIN && a <= S32_MAX;
2456 }
2457 
2458 static bool __reg64_bound_u32(u64 a)
2459 {
2460 	return a >= U32_MIN && a <= U32_MAX;
2461 }
2462 
2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2464 {
2465 	__mark_reg32_unbounded(reg);
2466 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2467 		reg->s32_min_value = (s32)reg->smin_value;
2468 		reg->s32_max_value = (s32)reg->smax_value;
2469 	}
2470 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2471 		reg->u32_min_value = (u32)reg->umin_value;
2472 		reg->u32_max_value = (u32)reg->umax_value;
2473 	}
2474 	reg_bounds_sync(reg);
2475 }
2476 
2477 /* Mark a register as having a completely unknown (scalar) value. */
2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2479 			       struct bpf_reg_state *reg)
2480 {
2481 	/*
2482 	 * Clear type, off, and union(map_ptr, range) and
2483 	 * padding between 'type' and union
2484 	 */
2485 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2486 	reg->type = SCALAR_VALUE;
2487 	reg->id = 0;
2488 	reg->ref_obj_id = 0;
2489 	reg->var_off = tnum_unknown;
2490 	reg->frameno = 0;
2491 	reg->precise = !env->bpf_capable;
2492 	__mark_reg_unbounded(reg);
2493 }
2494 
2495 static void mark_reg_unknown(struct bpf_verifier_env *env,
2496 			     struct bpf_reg_state *regs, u32 regno)
2497 {
2498 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2499 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2500 		/* Something bad happened, let's kill all regs except FP */
2501 		for (regno = 0; regno < BPF_REG_FP; regno++)
2502 			__mark_reg_not_init(env, regs + regno);
2503 		return;
2504 	}
2505 	__mark_reg_unknown(env, regs + regno);
2506 }
2507 
2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2509 				struct bpf_reg_state *reg)
2510 {
2511 	__mark_reg_unknown(env, reg);
2512 	reg->type = NOT_INIT;
2513 }
2514 
2515 static void mark_reg_not_init(struct bpf_verifier_env *env,
2516 			      struct bpf_reg_state *regs, u32 regno)
2517 {
2518 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2519 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2520 		/* Something bad happened, let's kill all regs except FP */
2521 		for (regno = 0; regno < BPF_REG_FP; regno++)
2522 			__mark_reg_not_init(env, regs + regno);
2523 		return;
2524 	}
2525 	__mark_reg_not_init(env, regs + regno);
2526 }
2527 
2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2529 			    struct bpf_reg_state *regs, u32 regno,
2530 			    enum bpf_reg_type reg_type,
2531 			    struct btf *btf, u32 btf_id,
2532 			    enum bpf_type_flag flag)
2533 {
2534 	if (reg_type == SCALAR_VALUE) {
2535 		mark_reg_unknown(env, regs, regno);
2536 		return;
2537 	}
2538 	mark_reg_known_zero(env, regs, regno);
2539 	regs[regno].type = PTR_TO_BTF_ID | flag;
2540 	regs[regno].btf = btf;
2541 	regs[regno].btf_id = btf_id;
2542 	if (type_may_be_null(flag))
2543 		regs[regno].id = ++env->id_gen;
2544 }
2545 
2546 #define DEF_NOT_SUBREG	(0)
2547 static void init_reg_state(struct bpf_verifier_env *env,
2548 			   struct bpf_func_state *state)
2549 {
2550 	struct bpf_reg_state *regs = state->regs;
2551 	int i;
2552 
2553 	for (i = 0; i < MAX_BPF_REG; i++) {
2554 		mark_reg_not_init(env, regs, i);
2555 		regs[i].live = REG_LIVE_NONE;
2556 		regs[i].parent = NULL;
2557 		regs[i].subreg_def = DEF_NOT_SUBREG;
2558 	}
2559 
2560 	/* frame pointer */
2561 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2562 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2563 	regs[BPF_REG_FP].frameno = state->frameno;
2564 }
2565 
2566 #define BPF_MAIN_FUNC (-1)
2567 static void init_func_state(struct bpf_verifier_env *env,
2568 			    struct bpf_func_state *state,
2569 			    int callsite, int frameno, int subprogno)
2570 {
2571 	state->callsite = callsite;
2572 	state->frameno = frameno;
2573 	state->subprogno = subprogno;
2574 	state->callback_ret_range = tnum_range(0, 0);
2575 	init_reg_state(env, state);
2576 	mark_verifier_state_scratched(env);
2577 }
2578 
2579 /* Similar to push_stack(), but for async callbacks */
2580 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2581 						int insn_idx, int prev_insn_idx,
2582 						int subprog)
2583 {
2584 	struct bpf_verifier_stack_elem *elem;
2585 	struct bpf_func_state *frame;
2586 
2587 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2588 	if (!elem)
2589 		goto err;
2590 
2591 	elem->insn_idx = insn_idx;
2592 	elem->prev_insn_idx = prev_insn_idx;
2593 	elem->next = env->head;
2594 	elem->log_pos = env->log.end_pos;
2595 	env->head = elem;
2596 	env->stack_size++;
2597 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2598 		verbose(env,
2599 			"The sequence of %d jumps is too complex for async cb.\n",
2600 			env->stack_size);
2601 		goto err;
2602 	}
2603 	/* Unlike push_stack() do not copy_verifier_state().
2604 	 * The caller state doesn't matter.
2605 	 * This is async callback. It starts in a fresh stack.
2606 	 * Initialize it similar to do_check_common().
2607 	 */
2608 	elem->st.branches = 1;
2609 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2610 	if (!frame)
2611 		goto err;
2612 	init_func_state(env, frame,
2613 			BPF_MAIN_FUNC /* callsite */,
2614 			0 /* frameno within this callchain */,
2615 			subprog /* subprog number within this prog */);
2616 	elem->st.frame[0] = frame;
2617 	return &elem->st;
2618 err:
2619 	free_verifier_state(env->cur_state, true);
2620 	env->cur_state = NULL;
2621 	/* pop all elements and return */
2622 	while (!pop_stack(env, NULL, NULL, false));
2623 	return NULL;
2624 }
2625 
2626 
2627 enum reg_arg_type {
2628 	SRC_OP,		/* register is used as source operand */
2629 	DST_OP,		/* register is used as destination operand */
2630 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2631 };
2632 
2633 static int cmp_subprogs(const void *a, const void *b)
2634 {
2635 	return ((struct bpf_subprog_info *)a)->start -
2636 	       ((struct bpf_subprog_info *)b)->start;
2637 }
2638 
2639 static int find_subprog(struct bpf_verifier_env *env, int off)
2640 {
2641 	struct bpf_subprog_info *p;
2642 
2643 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2644 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2645 	if (!p)
2646 		return -ENOENT;
2647 	return p - env->subprog_info;
2648 
2649 }
2650 
2651 static int add_subprog(struct bpf_verifier_env *env, int off)
2652 {
2653 	int insn_cnt = env->prog->len;
2654 	int ret;
2655 
2656 	if (off >= insn_cnt || off < 0) {
2657 		verbose(env, "call to invalid destination\n");
2658 		return -EINVAL;
2659 	}
2660 	ret = find_subprog(env, off);
2661 	if (ret >= 0)
2662 		return ret;
2663 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2664 		verbose(env, "too many subprograms\n");
2665 		return -E2BIG;
2666 	}
2667 	/* determine subprog starts. The end is one before the next starts */
2668 	env->subprog_info[env->subprog_cnt++].start = off;
2669 	sort(env->subprog_info, env->subprog_cnt,
2670 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2671 	return env->subprog_cnt - 1;
2672 }
2673 
2674 #define MAX_KFUNC_DESCS 256
2675 #define MAX_KFUNC_BTFS	256
2676 
2677 struct bpf_kfunc_desc {
2678 	struct btf_func_model func_model;
2679 	u32 func_id;
2680 	s32 imm;
2681 	u16 offset;
2682 	unsigned long addr;
2683 };
2684 
2685 struct bpf_kfunc_btf {
2686 	struct btf *btf;
2687 	struct module *module;
2688 	u16 offset;
2689 };
2690 
2691 struct bpf_kfunc_desc_tab {
2692 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2693 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2694 	 * available, therefore at the end of verification do_misc_fixups()
2695 	 * sorts this by imm and offset.
2696 	 */
2697 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2698 	u32 nr_descs;
2699 };
2700 
2701 struct bpf_kfunc_btf_tab {
2702 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2703 	u32 nr_descs;
2704 };
2705 
2706 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2707 {
2708 	const struct bpf_kfunc_desc *d0 = a;
2709 	const struct bpf_kfunc_desc *d1 = b;
2710 
2711 	/* func_id is not greater than BTF_MAX_TYPE */
2712 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2713 }
2714 
2715 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2716 {
2717 	const struct bpf_kfunc_btf *d0 = a;
2718 	const struct bpf_kfunc_btf *d1 = b;
2719 
2720 	return d0->offset - d1->offset;
2721 }
2722 
2723 static const struct bpf_kfunc_desc *
2724 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2725 {
2726 	struct bpf_kfunc_desc desc = {
2727 		.func_id = func_id,
2728 		.offset = offset,
2729 	};
2730 	struct bpf_kfunc_desc_tab *tab;
2731 
2732 	tab = prog->aux->kfunc_tab;
2733 	return bsearch(&desc, tab->descs, tab->nr_descs,
2734 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2735 }
2736 
2737 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2738 		       u16 btf_fd_idx, u8 **func_addr)
2739 {
2740 	const struct bpf_kfunc_desc *desc;
2741 
2742 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2743 	if (!desc)
2744 		return -EFAULT;
2745 
2746 	*func_addr = (u8 *)desc->addr;
2747 	return 0;
2748 }
2749 
2750 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2751 					 s16 offset)
2752 {
2753 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2754 	struct bpf_kfunc_btf_tab *tab;
2755 	struct bpf_kfunc_btf *b;
2756 	struct module *mod;
2757 	struct btf *btf;
2758 	int btf_fd;
2759 
2760 	tab = env->prog->aux->kfunc_btf_tab;
2761 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2762 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2763 	if (!b) {
2764 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2765 			verbose(env, "too many different module BTFs\n");
2766 			return ERR_PTR(-E2BIG);
2767 		}
2768 
2769 		if (bpfptr_is_null(env->fd_array)) {
2770 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2771 			return ERR_PTR(-EPROTO);
2772 		}
2773 
2774 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2775 					    offset * sizeof(btf_fd),
2776 					    sizeof(btf_fd)))
2777 			return ERR_PTR(-EFAULT);
2778 
2779 		btf = btf_get_by_fd(btf_fd);
2780 		if (IS_ERR(btf)) {
2781 			verbose(env, "invalid module BTF fd specified\n");
2782 			return btf;
2783 		}
2784 
2785 		if (!btf_is_module(btf)) {
2786 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2787 			btf_put(btf);
2788 			return ERR_PTR(-EINVAL);
2789 		}
2790 
2791 		mod = btf_try_get_module(btf);
2792 		if (!mod) {
2793 			btf_put(btf);
2794 			return ERR_PTR(-ENXIO);
2795 		}
2796 
2797 		b = &tab->descs[tab->nr_descs++];
2798 		b->btf = btf;
2799 		b->module = mod;
2800 		b->offset = offset;
2801 
2802 		/* sort() reorders entries by value, so b may no longer point
2803 		 * to the right entry after this
2804 		 */
2805 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2806 		     kfunc_btf_cmp_by_off, NULL);
2807 	} else {
2808 		btf = b->btf;
2809 	}
2810 
2811 	return btf;
2812 }
2813 
2814 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2815 {
2816 	if (!tab)
2817 		return;
2818 
2819 	while (tab->nr_descs--) {
2820 		module_put(tab->descs[tab->nr_descs].module);
2821 		btf_put(tab->descs[tab->nr_descs].btf);
2822 	}
2823 	kfree(tab);
2824 }
2825 
2826 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2827 {
2828 	if (offset) {
2829 		if (offset < 0) {
2830 			/* In the future, this can be allowed to increase limit
2831 			 * of fd index into fd_array, interpreted as u16.
2832 			 */
2833 			verbose(env, "negative offset disallowed for kernel module function call\n");
2834 			return ERR_PTR(-EINVAL);
2835 		}
2836 
2837 		return __find_kfunc_desc_btf(env, offset);
2838 	}
2839 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2840 }
2841 
2842 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2843 {
2844 	const struct btf_type *func, *func_proto;
2845 	struct bpf_kfunc_btf_tab *btf_tab;
2846 	struct bpf_kfunc_desc_tab *tab;
2847 	struct bpf_prog_aux *prog_aux;
2848 	struct bpf_kfunc_desc *desc;
2849 	const char *func_name;
2850 	struct btf *desc_btf;
2851 	unsigned long call_imm;
2852 	unsigned long addr;
2853 	int err;
2854 
2855 	prog_aux = env->prog->aux;
2856 	tab = prog_aux->kfunc_tab;
2857 	btf_tab = prog_aux->kfunc_btf_tab;
2858 	if (!tab) {
2859 		if (!btf_vmlinux) {
2860 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2861 			return -ENOTSUPP;
2862 		}
2863 
2864 		if (!env->prog->jit_requested) {
2865 			verbose(env, "JIT is required for calling kernel function\n");
2866 			return -ENOTSUPP;
2867 		}
2868 
2869 		if (!bpf_jit_supports_kfunc_call()) {
2870 			verbose(env, "JIT does not support calling kernel function\n");
2871 			return -ENOTSUPP;
2872 		}
2873 
2874 		if (!env->prog->gpl_compatible) {
2875 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2876 			return -EINVAL;
2877 		}
2878 
2879 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2880 		if (!tab)
2881 			return -ENOMEM;
2882 		prog_aux->kfunc_tab = tab;
2883 	}
2884 
2885 	/* func_id == 0 is always invalid, but instead of returning an error, be
2886 	 * conservative and wait until the code elimination pass before returning
2887 	 * error, so that invalid calls that get pruned out can be in BPF programs
2888 	 * loaded from userspace.  It is also required that offset be untouched
2889 	 * for such calls.
2890 	 */
2891 	if (!func_id && !offset)
2892 		return 0;
2893 
2894 	if (!btf_tab && offset) {
2895 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2896 		if (!btf_tab)
2897 			return -ENOMEM;
2898 		prog_aux->kfunc_btf_tab = btf_tab;
2899 	}
2900 
2901 	desc_btf = find_kfunc_desc_btf(env, offset);
2902 	if (IS_ERR(desc_btf)) {
2903 		verbose(env, "failed to find BTF for kernel function\n");
2904 		return PTR_ERR(desc_btf);
2905 	}
2906 
2907 	if (find_kfunc_desc(env->prog, func_id, offset))
2908 		return 0;
2909 
2910 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2911 		verbose(env, "too many different kernel function calls\n");
2912 		return -E2BIG;
2913 	}
2914 
2915 	func = btf_type_by_id(desc_btf, func_id);
2916 	if (!func || !btf_type_is_func(func)) {
2917 		verbose(env, "kernel btf_id %u is not a function\n",
2918 			func_id);
2919 		return -EINVAL;
2920 	}
2921 	func_proto = btf_type_by_id(desc_btf, func->type);
2922 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2923 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2924 			func_id);
2925 		return -EINVAL;
2926 	}
2927 
2928 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2929 	addr = kallsyms_lookup_name(func_name);
2930 	if (!addr) {
2931 		verbose(env, "cannot find address for kernel function %s\n",
2932 			func_name);
2933 		return -EINVAL;
2934 	}
2935 	specialize_kfunc(env, func_id, offset, &addr);
2936 
2937 	if (bpf_jit_supports_far_kfunc_call()) {
2938 		call_imm = func_id;
2939 	} else {
2940 		call_imm = BPF_CALL_IMM(addr);
2941 		/* Check whether the relative offset overflows desc->imm */
2942 		if ((unsigned long)(s32)call_imm != call_imm) {
2943 			verbose(env, "address of kernel function %s is out of range\n",
2944 				func_name);
2945 			return -EINVAL;
2946 		}
2947 	}
2948 
2949 	if (bpf_dev_bound_kfunc_id(func_id)) {
2950 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2951 		if (err)
2952 			return err;
2953 	}
2954 
2955 	desc = &tab->descs[tab->nr_descs++];
2956 	desc->func_id = func_id;
2957 	desc->imm = call_imm;
2958 	desc->offset = offset;
2959 	desc->addr = addr;
2960 	err = btf_distill_func_proto(&env->log, desc_btf,
2961 				     func_proto, func_name,
2962 				     &desc->func_model);
2963 	if (!err)
2964 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2965 		     kfunc_desc_cmp_by_id_off, NULL);
2966 	return err;
2967 }
2968 
2969 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2970 {
2971 	const struct bpf_kfunc_desc *d0 = a;
2972 	const struct bpf_kfunc_desc *d1 = b;
2973 
2974 	if (d0->imm != d1->imm)
2975 		return d0->imm < d1->imm ? -1 : 1;
2976 	if (d0->offset != d1->offset)
2977 		return d0->offset < d1->offset ? -1 : 1;
2978 	return 0;
2979 }
2980 
2981 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2982 {
2983 	struct bpf_kfunc_desc_tab *tab;
2984 
2985 	tab = prog->aux->kfunc_tab;
2986 	if (!tab)
2987 		return;
2988 
2989 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2990 	     kfunc_desc_cmp_by_imm_off, NULL);
2991 }
2992 
2993 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2994 {
2995 	return !!prog->aux->kfunc_tab;
2996 }
2997 
2998 const struct btf_func_model *
2999 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3000 			 const struct bpf_insn *insn)
3001 {
3002 	const struct bpf_kfunc_desc desc = {
3003 		.imm = insn->imm,
3004 		.offset = insn->off,
3005 	};
3006 	const struct bpf_kfunc_desc *res;
3007 	struct bpf_kfunc_desc_tab *tab;
3008 
3009 	tab = prog->aux->kfunc_tab;
3010 	res = bsearch(&desc, tab->descs, tab->nr_descs,
3011 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
3012 
3013 	return res ? &res->func_model : NULL;
3014 }
3015 
3016 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
3017 {
3018 	struct bpf_subprog_info *subprog = env->subprog_info;
3019 	struct bpf_insn *insn = env->prog->insnsi;
3020 	int i, ret, insn_cnt = env->prog->len;
3021 
3022 	/* Add entry function. */
3023 	ret = add_subprog(env, 0);
3024 	if (ret)
3025 		return ret;
3026 
3027 	for (i = 0; i < insn_cnt; i++, insn++) {
3028 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
3029 		    !bpf_pseudo_kfunc_call(insn))
3030 			continue;
3031 
3032 		if (!env->bpf_capable) {
3033 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
3034 			return -EPERM;
3035 		}
3036 
3037 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
3038 			ret = add_subprog(env, i + insn->imm + 1);
3039 		else
3040 			ret = add_kfunc_call(env, insn->imm, insn->off);
3041 
3042 		if (ret < 0)
3043 			return ret;
3044 	}
3045 
3046 	/* Add a fake 'exit' subprog which could simplify subprog iteration
3047 	 * logic. 'subprog_cnt' should not be increased.
3048 	 */
3049 	subprog[env->subprog_cnt].start = insn_cnt;
3050 
3051 	if (env->log.level & BPF_LOG_LEVEL2)
3052 		for (i = 0; i < env->subprog_cnt; i++)
3053 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
3054 
3055 	return 0;
3056 }
3057 
3058 static int check_subprogs(struct bpf_verifier_env *env)
3059 {
3060 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
3061 	struct bpf_subprog_info *subprog = env->subprog_info;
3062 	struct bpf_insn *insn = env->prog->insnsi;
3063 	int insn_cnt = env->prog->len;
3064 
3065 	/* now check that all jumps are within the same subprog */
3066 	subprog_start = subprog[cur_subprog].start;
3067 	subprog_end = subprog[cur_subprog + 1].start;
3068 	for (i = 0; i < insn_cnt; i++) {
3069 		u8 code = insn[i].code;
3070 
3071 		if (code == (BPF_JMP | BPF_CALL) &&
3072 		    insn[i].src_reg == 0 &&
3073 		    insn[i].imm == BPF_FUNC_tail_call) {
3074 			subprog[cur_subprog].has_tail_call = true;
3075 			subprog[cur_subprog].tail_call_reachable = true;
3076 		}
3077 		if (BPF_CLASS(code) == BPF_LD &&
3078 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
3079 			subprog[cur_subprog].has_ld_abs = true;
3080 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
3081 			goto next;
3082 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
3083 			goto next;
3084 		if (code == (BPF_JMP32 | BPF_JA))
3085 			off = i + insn[i].imm + 1;
3086 		else
3087 			off = i + insn[i].off + 1;
3088 		if (off < subprog_start || off >= subprog_end) {
3089 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
3090 			return -EINVAL;
3091 		}
3092 next:
3093 		if (i == subprog_end - 1) {
3094 			/* to avoid fall-through from one subprog into another
3095 			 * the last insn of the subprog should be either exit
3096 			 * or unconditional jump back
3097 			 */
3098 			if (code != (BPF_JMP | BPF_EXIT) &&
3099 			    code != (BPF_JMP32 | BPF_JA) &&
3100 			    code != (BPF_JMP | BPF_JA)) {
3101 				verbose(env, "last insn is not an exit or jmp\n");
3102 				return -EINVAL;
3103 			}
3104 			subprog_start = subprog_end;
3105 			cur_subprog++;
3106 			if (cur_subprog < env->subprog_cnt)
3107 				subprog_end = subprog[cur_subprog + 1].start;
3108 		}
3109 	}
3110 	return 0;
3111 }
3112 
3113 /* Parentage chain of this register (or stack slot) should take care of all
3114  * issues like callee-saved registers, stack slot allocation time, etc.
3115  */
3116 static int mark_reg_read(struct bpf_verifier_env *env,
3117 			 const struct bpf_reg_state *state,
3118 			 struct bpf_reg_state *parent, u8 flag)
3119 {
3120 	bool writes = parent == state->parent; /* Observe write marks */
3121 	int cnt = 0;
3122 
3123 	while (parent) {
3124 		/* if read wasn't screened by an earlier write ... */
3125 		if (writes && state->live & REG_LIVE_WRITTEN)
3126 			break;
3127 		if (parent->live & REG_LIVE_DONE) {
3128 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
3129 				reg_type_str(env, parent->type),
3130 				parent->var_off.value, parent->off);
3131 			return -EFAULT;
3132 		}
3133 		/* The first condition is more likely to be true than the
3134 		 * second, checked it first.
3135 		 */
3136 		if ((parent->live & REG_LIVE_READ) == flag ||
3137 		    parent->live & REG_LIVE_READ64)
3138 			/* The parentage chain never changes and
3139 			 * this parent was already marked as LIVE_READ.
3140 			 * There is no need to keep walking the chain again and
3141 			 * keep re-marking all parents as LIVE_READ.
3142 			 * This case happens when the same register is read
3143 			 * multiple times without writes into it in-between.
3144 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
3145 			 * then no need to set the weak REG_LIVE_READ32.
3146 			 */
3147 			break;
3148 		/* ... then we depend on parent's value */
3149 		parent->live |= flag;
3150 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
3151 		if (flag == REG_LIVE_READ64)
3152 			parent->live &= ~REG_LIVE_READ32;
3153 		state = parent;
3154 		parent = state->parent;
3155 		writes = true;
3156 		cnt++;
3157 	}
3158 
3159 	if (env->longest_mark_read_walk < cnt)
3160 		env->longest_mark_read_walk = cnt;
3161 	return 0;
3162 }
3163 
3164 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
3165 {
3166 	struct bpf_func_state *state = func(env, reg);
3167 	int spi, ret;
3168 
3169 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
3170 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
3171 	 * check_kfunc_call.
3172 	 */
3173 	if (reg->type == CONST_PTR_TO_DYNPTR)
3174 		return 0;
3175 	spi = dynptr_get_spi(env, reg);
3176 	if (spi < 0)
3177 		return spi;
3178 	/* Caller ensures dynptr is valid and initialized, which means spi is in
3179 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
3180 	 * read.
3181 	 */
3182 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
3183 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
3184 	if (ret)
3185 		return ret;
3186 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
3187 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
3188 }
3189 
3190 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
3191 			  int spi, int nr_slots)
3192 {
3193 	struct bpf_func_state *state = func(env, reg);
3194 	int err, i;
3195 
3196 	for (i = 0; i < nr_slots; i++) {
3197 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
3198 
3199 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
3200 		if (err)
3201 			return err;
3202 
3203 		mark_stack_slot_scratched(env, spi - i);
3204 	}
3205 
3206 	return 0;
3207 }
3208 
3209 /* This function is supposed to be used by the following 32-bit optimization
3210  * code only. It returns TRUE if the source or destination register operates
3211  * on 64-bit, otherwise return FALSE.
3212  */
3213 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
3214 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
3215 {
3216 	u8 code, class, op;
3217 
3218 	code = insn->code;
3219 	class = BPF_CLASS(code);
3220 	op = BPF_OP(code);
3221 	if (class == BPF_JMP) {
3222 		/* BPF_EXIT for "main" will reach here. Return TRUE
3223 		 * conservatively.
3224 		 */
3225 		if (op == BPF_EXIT)
3226 			return true;
3227 		if (op == BPF_CALL) {
3228 			/* BPF to BPF call will reach here because of marking
3229 			 * caller saved clobber with DST_OP_NO_MARK for which we
3230 			 * don't care the register def because they are anyway
3231 			 * marked as NOT_INIT already.
3232 			 */
3233 			if (insn->src_reg == BPF_PSEUDO_CALL)
3234 				return false;
3235 			/* Helper call will reach here because of arg type
3236 			 * check, conservatively return TRUE.
3237 			 */
3238 			if (t == SRC_OP)
3239 				return true;
3240 
3241 			return false;
3242 		}
3243 	}
3244 
3245 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3246 		return false;
3247 
3248 	if (class == BPF_ALU64 || class == BPF_JMP ||
3249 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3250 		return true;
3251 
3252 	if (class == BPF_ALU || class == BPF_JMP32)
3253 		return false;
3254 
3255 	if (class == BPF_LDX) {
3256 		if (t != SRC_OP)
3257 			return BPF_SIZE(code) == BPF_DW;
3258 		/* LDX source must be ptr. */
3259 		return true;
3260 	}
3261 
3262 	if (class == BPF_STX) {
3263 		/* BPF_STX (including atomic variants) has multiple source
3264 		 * operands, one of which is a ptr. Check whether the caller is
3265 		 * asking about it.
3266 		 */
3267 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3268 			return true;
3269 		return BPF_SIZE(code) == BPF_DW;
3270 	}
3271 
3272 	if (class == BPF_LD) {
3273 		u8 mode = BPF_MODE(code);
3274 
3275 		/* LD_IMM64 */
3276 		if (mode == BPF_IMM)
3277 			return true;
3278 
3279 		/* Both LD_IND and LD_ABS return 32-bit data. */
3280 		if (t != SRC_OP)
3281 			return  false;
3282 
3283 		/* Implicit ctx ptr. */
3284 		if (regno == BPF_REG_6)
3285 			return true;
3286 
3287 		/* Explicit source could be any width. */
3288 		return true;
3289 	}
3290 
3291 	if (class == BPF_ST)
3292 		/* The only source register for BPF_ST is a ptr. */
3293 		return true;
3294 
3295 	/* Conservatively return true at default. */
3296 	return true;
3297 }
3298 
3299 /* Return the regno defined by the insn, or -1. */
3300 static int insn_def_regno(const struct bpf_insn *insn)
3301 {
3302 	switch (BPF_CLASS(insn->code)) {
3303 	case BPF_JMP:
3304 	case BPF_JMP32:
3305 	case BPF_ST:
3306 		return -1;
3307 	case BPF_STX:
3308 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3309 		    (insn->imm & BPF_FETCH)) {
3310 			if (insn->imm == BPF_CMPXCHG)
3311 				return BPF_REG_0;
3312 			else
3313 				return insn->src_reg;
3314 		} else {
3315 			return -1;
3316 		}
3317 	default:
3318 		return insn->dst_reg;
3319 	}
3320 }
3321 
3322 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3323 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3324 {
3325 	int dst_reg = insn_def_regno(insn);
3326 
3327 	if (dst_reg == -1)
3328 		return false;
3329 
3330 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3331 }
3332 
3333 static void mark_insn_zext(struct bpf_verifier_env *env,
3334 			   struct bpf_reg_state *reg)
3335 {
3336 	s32 def_idx = reg->subreg_def;
3337 
3338 	if (def_idx == DEF_NOT_SUBREG)
3339 		return;
3340 
3341 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3342 	/* The dst will be zero extended, so won't be sub-register anymore. */
3343 	reg->subreg_def = DEF_NOT_SUBREG;
3344 }
3345 
3346 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno,
3347 			   enum reg_arg_type t)
3348 {
3349 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3350 	struct bpf_reg_state *reg;
3351 	bool rw64;
3352 
3353 	if (regno >= MAX_BPF_REG) {
3354 		verbose(env, "R%d is invalid\n", regno);
3355 		return -EINVAL;
3356 	}
3357 
3358 	mark_reg_scratched(env, regno);
3359 
3360 	reg = &regs[regno];
3361 	rw64 = is_reg64(env, insn, regno, reg, t);
3362 	if (t == SRC_OP) {
3363 		/* check whether register used as source operand can be read */
3364 		if (reg->type == NOT_INIT) {
3365 			verbose(env, "R%d !read_ok\n", regno);
3366 			return -EACCES;
3367 		}
3368 		/* We don't need to worry about FP liveness because it's read-only */
3369 		if (regno == BPF_REG_FP)
3370 			return 0;
3371 
3372 		if (rw64)
3373 			mark_insn_zext(env, reg);
3374 
3375 		return mark_reg_read(env, reg, reg->parent,
3376 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3377 	} else {
3378 		/* check whether register used as dest operand can be written to */
3379 		if (regno == BPF_REG_FP) {
3380 			verbose(env, "frame pointer is read only\n");
3381 			return -EACCES;
3382 		}
3383 		reg->live |= REG_LIVE_WRITTEN;
3384 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3385 		if (t == DST_OP)
3386 			mark_reg_unknown(env, regs, regno);
3387 	}
3388 	return 0;
3389 }
3390 
3391 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3392 			 enum reg_arg_type t)
3393 {
3394 	struct bpf_verifier_state *vstate = env->cur_state;
3395 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3396 
3397 	return __check_reg_arg(env, state->regs, regno, t);
3398 }
3399 
3400 static int insn_stack_access_flags(int frameno, int spi)
3401 {
3402 	return INSN_F_STACK_ACCESS | (spi << INSN_F_SPI_SHIFT) | frameno;
3403 }
3404 
3405 static int insn_stack_access_spi(int insn_flags)
3406 {
3407 	return (insn_flags >> INSN_F_SPI_SHIFT) & INSN_F_SPI_MASK;
3408 }
3409 
3410 static int insn_stack_access_frameno(int insn_flags)
3411 {
3412 	return insn_flags & INSN_F_FRAMENO_MASK;
3413 }
3414 
3415 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3416 {
3417 	env->insn_aux_data[idx].jmp_point = true;
3418 }
3419 
3420 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3421 {
3422 	return env->insn_aux_data[insn_idx].jmp_point;
3423 }
3424 
3425 /* for any branch, call, exit record the history of jmps in the given state */
3426 static int push_jmp_history(struct bpf_verifier_env *env, struct bpf_verifier_state *cur,
3427 			    int insn_flags)
3428 {
3429 	u32 cnt = cur->jmp_history_cnt;
3430 	struct bpf_jmp_history_entry *p;
3431 	size_t alloc_size;
3432 
3433 	/* combine instruction flags if we already recorded this instruction */
3434 	if (env->cur_hist_ent) {
3435 		/* atomic instructions push insn_flags twice, for READ and
3436 		 * WRITE sides, but they should agree on stack slot
3437 		 */
3438 		WARN_ONCE((env->cur_hist_ent->flags & insn_flags) &&
3439 			  (env->cur_hist_ent->flags & insn_flags) != insn_flags,
3440 			  "verifier insn history bug: insn_idx %d cur flags %x new flags %x\n",
3441 			  env->insn_idx, env->cur_hist_ent->flags, insn_flags);
3442 		env->cur_hist_ent->flags |= insn_flags;
3443 		return 0;
3444 	}
3445 
3446 	cnt++;
3447 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3448 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3449 	if (!p)
3450 		return -ENOMEM;
3451 	cur->jmp_history = p;
3452 
3453 	p = &cur->jmp_history[cnt - 1];
3454 	p->idx = env->insn_idx;
3455 	p->prev_idx = env->prev_insn_idx;
3456 	p->flags = insn_flags;
3457 	cur->jmp_history_cnt = cnt;
3458 	env->cur_hist_ent = p;
3459 
3460 	return 0;
3461 }
3462 
3463 static struct bpf_jmp_history_entry *get_jmp_hist_entry(struct bpf_verifier_state *st,
3464 						        u32 hist_end, int insn_idx)
3465 {
3466 	if (hist_end > 0 && st->jmp_history[hist_end - 1].idx == insn_idx)
3467 		return &st->jmp_history[hist_end - 1];
3468 	return NULL;
3469 }
3470 
3471 /* Backtrack one insn at a time. If idx is not at the top of recorded
3472  * history then previous instruction came from straight line execution.
3473  * Return -ENOENT if we exhausted all instructions within given state.
3474  *
3475  * It's legal to have a bit of a looping with the same starting and ending
3476  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3477  * instruction index is the same as state's first_idx doesn't mean we are
3478  * done. If there is still some jump history left, we should keep going. We
3479  * need to take into account that we might have a jump history between given
3480  * state's parent and itself, due to checkpointing. In this case, we'll have
3481  * history entry recording a jump from last instruction of parent state and
3482  * first instruction of given state.
3483  */
3484 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3485 			     u32 *history)
3486 {
3487 	u32 cnt = *history;
3488 
3489 	if (i == st->first_insn_idx) {
3490 		if (cnt == 0)
3491 			return -ENOENT;
3492 		if (cnt == 1 && st->jmp_history[0].idx == i)
3493 			return -ENOENT;
3494 	}
3495 
3496 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3497 		i = st->jmp_history[cnt - 1].prev_idx;
3498 		(*history)--;
3499 	} else {
3500 		i--;
3501 	}
3502 	return i;
3503 }
3504 
3505 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3506 {
3507 	const struct btf_type *func;
3508 	struct btf *desc_btf;
3509 
3510 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3511 		return NULL;
3512 
3513 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3514 	if (IS_ERR(desc_btf))
3515 		return "<error>";
3516 
3517 	func = btf_type_by_id(desc_btf, insn->imm);
3518 	return btf_name_by_offset(desc_btf, func->name_off);
3519 }
3520 
3521 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3522 {
3523 	bt->frame = frame;
3524 }
3525 
3526 static inline void bt_reset(struct backtrack_state *bt)
3527 {
3528 	struct bpf_verifier_env *env = bt->env;
3529 
3530 	memset(bt, 0, sizeof(*bt));
3531 	bt->env = env;
3532 }
3533 
3534 static inline u32 bt_empty(struct backtrack_state *bt)
3535 {
3536 	u64 mask = 0;
3537 	int i;
3538 
3539 	for (i = 0; i <= bt->frame; i++)
3540 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3541 
3542 	return mask == 0;
3543 }
3544 
3545 static inline int bt_subprog_enter(struct backtrack_state *bt)
3546 {
3547 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3548 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3549 		WARN_ONCE(1, "verifier backtracking bug");
3550 		return -EFAULT;
3551 	}
3552 	bt->frame++;
3553 	return 0;
3554 }
3555 
3556 static inline int bt_subprog_exit(struct backtrack_state *bt)
3557 {
3558 	if (bt->frame == 0) {
3559 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3560 		WARN_ONCE(1, "verifier backtracking bug");
3561 		return -EFAULT;
3562 	}
3563 	bt->frame--;
3564 	return 0;
3565 }
3566 
3567 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3568 {
3569 	bt->reg_masks[frame] |= 1 << reg;
3570 }
3571 
3572 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3573 {
3574 	bt->reg_masks[frame] &= ~(1 << reg);
3575 }
3576 
3577 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3578 {
3579 	bt_set_frame_reg(bt, bt->frame, reg);
3580 }
3581 
3582 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3583 {
3584 	bt_clear_frame_reg(bt, bt->frame, reg);
3585 }
3586 
3587 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3588 {
3589 	bt->stack_masks[frame] |= 1ull << slot;
3590 }
3591 
3592 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3593 {
3594 	bt->stack_masks[frame] &= ~(1ull << slot);
3595 }
3596 
3597 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3598 {
3599 	bt_set_frame_slot(bt, bt->frame, slot);
3600 }
3601 
3602 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3603 {
3604 	bt_clear_frame_slot(bt, bt->frame, slot);
3605 }
3606 
3607 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3608 {
3609 	return bt->reg_masks[frame];
3610 }
3611 
3612 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3613 {
3614 	return bt->reg_masks[bt->frame];
3615 }
3616 
3617 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3618 {
3619 	return bt->stack_masks[frame];
3620 }
3621 
3622 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3623 {
3624 	return bt->stack_masks[bt->frame];
3625 }
3626 
3627 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3628 {
3629 	return bt->reg_masks[bt->frame] & (1 << reg);
3630 }
3631 
3632 static inline bool bt_is_frame_slot_set(struct backtrack_state *bt, u32 frame, u32 slot)
3633 {
3634 	return bt->stack_masks[frame] & (1ull << slot);
3635 }
3636 
3637 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3638 {
3639 	return bt_is_frame_slot_set(bt, bt->frame, slot);
3640 }
3641 
3642 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3643 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3644 {
3645 	DECLARE_BITMAP(mask, 64);
3646 	bool first = true;
3647 	int i, n;
3648 
3649 	buf[0] = '\0';
3650 
3651 	bitmap_from_u64(mask, reg_mask);
3652 	for_each_set_bit(i, mask, 32) {
3653 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3654 		first = false;
3655 		buf += n;
3656 		buf_sz -= n;
3657 		if (buf_sz < 0)
3658 			break;
3659 	}
3660 }
3661 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3662 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3663 {
3664 	DECLARE_BITMAP(mask, 64);
3665 	bool first = true;
3666 	int i, n;
3667 
3668 	buf[0] = '\0';
3669 
3670 	bitmap_from_u64(mask, stack_mask);
3671 	for_each_set_bit(i, mask, 64) {
3672 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3673 		first = false;
3674 		buf += n;
3675 		buf_sz -= n;
3676 		if (buf_sz < 0)
3677 			break;
3678 	}
3679 }
3680 
3681 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx);
3682 
3683 /* For given verifier state backtrack_insn() is called from the last insn to
3684  * the first insn. Its purpose is to compute a bitmask of registers and
3685  * stack slots that needs precision in the parent verifier state.
3686  *
3687  * @idx is an index of the instruction we are currently processing;
3688  * @subseq_idx is an index of the subsequent instruction that:
3689  *   - *would be* executed next, if jump history is viewed in forward order;
3690  *   - *was* processed previously during backtracking.
3691  */
3692 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3693 			  struct bpf_jmp_history_entry *hist, struct backtrack_state *bt)
3694 {
3695 	const struct bpf_insn_cbs cbs = {
3696 		.cb_call	= disasm_kfunc_name,
3697 		.cb_print	= verbose,
3698 		.private_data	= env,
3699 	};
3700 	struct bpf_insn *insn = env->prog->insnsi + idx;
3701 	u8 class = BPF_CLASS(insn->code);
3702 	u8 opcode = BPF_OP(insn->code);
3703 	u8 mode = BPF_MODE(insn->code);
3704 	u32 dreg = insn->dst_reg;
3705 	u32 sreg = insn->src_reg;
3706 	u32 spi, i, fr;
3707 
3708 	if (insn->code == 0)
3709 		return 0;
3710 	if (env->log.level & BPF_LOG_LEVEL2) {
3711 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3712 		verbose(env, "mark_precise: frame%d: regs=%s ",
3713 			bt->frame, env->tmp_str_buf);
3714 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3715 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3716 		verbose(env, "%d: ", idx);
3717 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3718 	}
3719 
3720 	if (class == BPF_ALU || class == BPF_ALU64) {
3721 		if (!bt_is_reg_set(bt, dreg))
3722 			return 0;
3723 		if (opcode == BPF_END || opcode == BPF_NEG) {
3724 			/* sreg is reserved and unused
3725 			 * dreg still need precision before this insn
3726 			 */
3727 			return 0;
3728 		} else if (opcode == BPF_MOV) {
3729 			if (BPF_SRC(insn->code) == BPF_X) {
3730 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3731 				 * dreg needs precision after this insn
3732 				 * sreg needs precision before this insn
3733 				 */
3734 				bt_clear_reg(bt, dreg);
3735 				if (sreg != BPF_REG_FP)
3736 					bt_set_reg(bt, sreg);
3737 			} else {
3738 				/* dreg = K
3739 				 * dreg needs precision after this insn.
3740 				 * Corresponding register is already marked
3741 				 * as precise=true in this verifier state.
3742 				 * No further markings in parent are necessary
3743 				 */
3744 				bt_clear_reg(bt, dreg);
3745 			}
3746 		} else {
3747 			if (BPF_SRC(insn->code) == BPF_X) {
3748 				/* dreg += sreg
3749 				 * both dreg and sreg need precision
3750 				 * before this insn
3751 				 */
3752 				if (sreg != BPF_REG_FP)
3753 					bt_set_reg(bt, sreg);
3754 			} /* else dreg += K
3755 			   * dreg still needs precision before this insn
3756 			   */
3757 		}
3758 	} else if (class == BPF_LDX) {
3759 		if (!bt_is_reg_set(bt, dreg))
3760 			return 0;
3761 		bt_clear_reg(bt, dreg);
3762 
3763 		/* scalars can only be spilled into stack w/o losing precision.
3764 		 * Load from any other memory can be zero extended.
3765 		 * The desire to keep that precision is already indicated
3766 		 * by 'precise' mark in corresponding register of this state.
3767 		 * No further tracking necessary.
3768 		 */
3769 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3770 			return 0;
3771 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3772 		 * that [fp - off] slot contains scalar that needs to be
3773 		 * tracked with precision
3774 		 */
3775 		spi = insn_stack_access_spi(hist->flags);
3776 		fr = insn_stack_access_frameno(hist->flags);
3777 		bt_set_frame_slot(bt, fr, spi);
3778 	} else if (class == BPF_STX || class == BPF_ST) {
3779 		if (bt_is_reg_set(bt, dreg))
3780 			/* stx & st shouldn't be using _scalar_ dst_reg
3781 			 * to access memory. It means backtracking
3782 			 * encountered a case of pointer subtraction.
3783 			 */
3784 			return -ENOTSUPP;
3785 		/* scalars can only be spilled into stack */
3786 		if (!hist || !(hist->flags & INSN_F_STACK_ACCESS))
3787 			return 0;
3788 		spi = insn_stack_access_spi(hist->flags);
3789 		fr = insn_stack_access_frameno(hist->flags);
3790 		if (!bt_is_frame_slot_set(bt, fr, spi))
3791 			return 0;
3792 		bt_clear_frame_slot(bt, fr, spi);
3793 		if (class == BPF_STX)
3794 			bt_set_reg(bt, sreg);
3795 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3796 		if (bpf_pseudo_call(insn)) {
3797 			int subprog_insn_idx, subprog;
3798 
3799 			subprog_insn_idx = idx + insn->imm + 1;
3800 			subprog = find_subprog(env, subprog_insn_idx);
3801 			if (subprog < 0)
3802 				return -EFAULT;
3803 
3804 			if (subprog_is_global(env, subprog)) {
3805 				/* check that jump history doesn't have any
3806 				 * extra instructions from subprog; the next
3807 				 * instruction after call to global subprog
3808 				 * should be literally next instruction in
3809 				 * caller program
3810 				 */
3811 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3812 				/* r1-r5 are invalidated after subprog call,
3813 				 * so for global func call it shouldn't be set
3814 				 * anymore
3815 				 */
3816 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3817 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3818 					WARN_ONCE(1, "verifier backtracking bug");
3819 					return -EFAULT;
3820 				}
3821 				/* global subprog always sets R0 */
3822 				bt_clear_reg(bt, BPF_REG_0);
3823 				return 0;
3824 			} else {
3825 				/* static subprog call instruction, which
3826 				 * means that we are exiting current subprog,
3827 				 * so only r1-r5 could be still requested as
3828 				 * precise, r0 and r6-r10 or any stack slot in
3829 				 * the current frame should be zero by now
3830 				 */
3831 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3832 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3833 					WARN_ONCE(1, "verifier backtracking bug");
3834 					return -EFAULT;
3835 				}
3836 				/* we are now tracking register spills correctly,
3837 				 * so any instance of leftover slots is a bug
3838 				 */
3839 				if (bt_stack_mask(bt) != 0) {
3840 					verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3841 					WARN_ONCE(1, "verifier backtracking bug (subprog leftover stack slots)");
3842 					return -EFAULT;
3843 				}
3844 				/* propagate r1-r5 to the caller */
3845 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3846 					if (bt_is_reg_set(bt, i)) {
3847 						bt_clear_reg(bt, i);
3848 						bt_set_frame_reg(bt, bt->frame - 1, i);
3849 					}
3850 				}
3851 				if (bt_subprog_exit(bt))
3852 					return -EFAULT;
3853 				return 0;
3854 			}
3855 		} else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) {
3856 			/* exit from callback subprog to callback-calling helper or
3857 			 * kfunc call. Use idx/subseq_idx check to discern it from
3858 			 * straight line code backtracking.
3859 			 * Unlike the subprog call handling above, we shouldn't
3860 			 * propagate precision of r1-r5 (if any requested), as they are
3861 			 * not actually arguments passed directly to callback subprogs
3862 			 */
3863 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3864 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3865 				WARN_ONCE(1, "verifier backtracking bug");
3866 				return -EFAULT;
3867 			}
3868 			if (bt_stack_mask(bt) != 0) {
3869 				verbose(env, "BUG stack slots %llx\n", bt_stack_mask(bt));
3870 				WARN_ONCE(1, "verifier backtracking bug (callback leftover stack slots)");
3871 				return -EFAULT;
3872 			}
3873 			/* clear r1-r5 in callback subprog's mask */
3874 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3875 				bt_clear_reg(bt, i);
3876 			if (bt_subprog_exit(bt))
3877 				return -EFAULT;
3878 			return 0;
3879 		} else if (opcode == BPF_CALL) {
3880 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3881 			 * catch this error later. Make backtracking conservative
3882 			 * with ENOTSUPP.
3883 			 */
3884 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3885 				return -ENOTSUPP;
3886 			/* regular helper call sets R0 */
3887 			bt_clear_reg(bt, BPF_REG_0);
3888 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3889 				/* if backtracing was looking for registers R1-R5
3890 				 * they should have been found already.
3891 				 */
3892 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3893 				WARN_ONCE(1, "verifier backtracking bug");
3894 				return -EFAULT;
3895 			}
3896 		} else if (opcode == BPF_EXIT) {
3897 			bool r0_precise;
3898 
3899 			/* Backtracking to a nested function call, 'idx' is a part of
3900 			 * the inner frame 'subseq_idx' is a part of the outer frame.
3901 			 * In case of a regular function call, instructions giving
3902 			 * precision to registers R1-R5 should have been found already.
3903 			 * In case of a callback, it is ok to have R1-R5 marked for
3904 			 * backtracking, as these registers are set by the function
3905 			 * invoking callback.
3906 			 */
3907 			if (subseq_idx >= 0 && calls_callback(env, subseq_idx))
3908 				for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3909 					bt_clear_reg(bt, i);
3910 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3911 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3912 				WARN_ONCE(1, "verifier backtracking bug");
3913 				return -EFAULT;
3914 			}
3915 
3916 			/* BPF_EXIT in subprog or callback always returns
3917 			 * right after the call instruction, so by checking
3918 			 * whether the instruction at subseq_idx-1 is subprog
3919 			 * call or not we can distinguish actual exit from
3920 			 * *subprog* from exit from *callback*. In the former
3921 			 * case, we need to propagate r0 precision, if
3922 			 * necessary. In the former we never do that.
3923 			 */
3924 			r0_precise = subseq_idx - 1 >= 0 &&
3925 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3926 				     bt_is_reg_set(bt, BPF_REG_0);
3927 
3928 			bt_clear_reg(bt, BPF_REG_0);
3929 			if (bt_subprog_enter(bt))
3930 				return -EFAULT;
3931 
3932 			if (r0_precise)
3933 				bt_set_reg(bt, BPF_REG_0);
3934 			/* r6-r9 and stack slots will stay set in caller frame
3935 			 * bitmasks until we return back from callee(s)
3936 			 */
3937 			return 0;
3938 		} else if (BPF_SRC(insn->code) == BPF_X) {
3939 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3940 				return 0;
3941 			/* dreg <cond> sreg
3942 			 * Both dreg and sreg need precision before
3943 			 * this insn. If only sreg was marked precise
3944 			 * before it would be equally necessary to
3945 			 * propagate it to dreg.
3946 			 */
3947 			bt_set_reg(bt, dreg);
3948 			bt_set_reg(bt, sreg);
3949 			 /* else dreg <cond> K
3950 			  * Only dreg still needs precision before
3951 			  * this insn, so for the K-based conditional
3952 			  * there is nothing new to be marked.
3953 			  */
3954 		}
3955 	} else if (class == BPF_LD) {
3956 		if (!bt_is_reg_set(bt, dreg))
3957 			return 0;
3958 		bt_clear_reg(bt, dreg);
3959 		/* It's ld_imm64 or ld_abs or ld_ind.
3960 		 * For ld_imm64 no further tracking of precision
3961 		 * into parent is necessary
3962 		 */
3963 		if (mode == BPF_IND || mode == BPF_ABS)
3964 			/* to be analyzed */
3965 			return -ENOTSUPP;
3966 	}
3967 	return 0;
3968 }
3969 
3970 /* the scalar precision tracking algorithm:
3971  * . at the start all registers have precise=false.
3972  * . scalar ranges are tracked as normal through alu and jmp insns.
3973  * . once precise value of the scalar register is used in:
3974  *   .  ptr + scalar alu
3975  *   . if (scalar cond K|scalar)
3976  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3977  *   backtrack through the verifier states and mark all registers and
3978  *   stack slots with spilled constants that these scalar regisers
3979  *   should be precise.
3980  * . during state pruning two registers (or spilled stack slots)
3981  *   are equivalent if both are not precise.
3982  *
3983  * Note the verifier cannot simply walk register parentage chain,
3984  * since many different registers and stack slots could have been
3985  * used to compute single precise scalar.
3986  *
3987  * The approach of starting with precise=true for all registers and then
3988  * backtrack to mark a register as not precise when the verifier detects
3989  * that program doesn't care about specific value (e.g., when helper
3990  * takes register as ARG_ANYTHING parameter) is not safe.
3991  *
3992  * It's ok to walk single parentage chain of the verifier states.
3993  * It's possible that this backtracking will go all the way till 1st insn.
3994  * All other branches will be explored for needing precision later.
3995  *
3996  * The backtracking needs to deal with cases like:
3997  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3998  * r9 -= r8
3999  * r5 = r9
4000  * if r5 > 0x79f goto pc+7
4001  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
4002  * r5 += 1
4003  * ...
4004  * call bpf_perf_event_output#25
4005  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
4006  *
4007  * and this case:
4008  * r6 = 1
4009  * call foo // uses callee's r6 inside to compute r0
4010  * r0 += r6
4011  * if r0 == 0 goto
4012  *
4013  * to track above reg_mask/stack_mask needs to be independent for each frame.
4014  *
4015  * Also if parent's curframe > frame where backtracking started,
4016  * the verifier need to mark registers in both frames, otherwise callees
4017  * may incorrectly prune callers. This is similar to
4018  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
4019  *
4020  * For now backtracking falls back into conservative marking.
4021  */
4022 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
4023 				     struct bpf_verifier_state *st)
4024 {
4025 	struct bpf_func_state *func;
4026 	struct bpf_reg_state *reg;
4027 	int i, j;
4028 
4029 	if (env->log.level & BPF_LOG_LEVEL2) {
4030 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
4031 			st->curframe);
4032 	}
4033 
4034 	/* big hammer: mark all scalars precise in this path.
4035 	 * pop_stack may still get !precise scalars.
4036 	 * We also skip current state and go straight to first parent state,
4037 	 * because precision markings in current non-checkpointed state are
4038 	 * not needed. See why in the comment in __mark_chain_precision below.
4039 	 */
4040 	for (st = st->parent; st; st = st->parent) {
4041 		for (i = 0; i <= st->curframe; i++) {
4042 			func = st->frame[i];
4043 			for (j = 0; j < BPF_REG_FP; j++) {
4044 				reg = &func->regs[j];
4045 				if (reg->type != SCALAR_VALUE || reg->precise)
4046 					continue;
4047 				reg->precise = true;
4048 				if (env->log.level & BPF_LOG_LEVEL2) {
4049 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
4050 						i, j);
4051 				}
4052 			}
4053 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4054 				if (!is_spilled_reg(&func->stack[j]))
4055 					continue;
4056 				reg = &func->stack[j].spilled_ptr;
4057 				if (reg->type != SCALAR_VALUE || reg->precise)
4058 					continue;
4059 				reg->precise = true;
4060 				if (env->log.level & BPF_LOG_LEVEL2) {
4061 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
4062 						i, -(j + 1) * 8);
4063 				}
4064 			}
4065 		}
4066 	}
4067 }
4068 
4069 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4070 {
4071 	struct bpf_func_state *func;
4072 	struct bpf_reg_state *reg;
4073 	int i, j;
4074 
4075 	for (i = 0; i <= st->curframe; i++) {
4076 		func = st->frame[i];
4077 		for (j = 0; j < BPF_REG_FP; j++) {
4078 			reg = &func->regs[j];
4079 			if (reg->type != SCALAR_VALUE)
4080 				continue;
4081 			reg->precise = false;
4082 		}
4083 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
4084 			if (!is_spilled_reg(&func->stack[j]))
4085 				continue;
4086 			reg = &func->stack[j].spilled_ptr;
4087 			if (reg->type != SCALAR_VALUE)
4088 				continue;
4089 			reg->precise = false;
4090 		}
4091 	}
4092 }
4093 
4094 static bool idset_contains(struct bpf_idset *s, u32 id)
4095 {
4096 	u32 i;
4097 
4098 	for (i = 0; i < s->count; ++i)
4099 		if (s->ids[i] == id)
4100 			return true;
4101 
4102 	return false;
4103 }
4104 
4105 static int idset_push(struct bpf_idset *s, u32 id)
4106 {
4107 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
4108 		return -EFAULT;
4109 	s->ids[s->count++] = id;
4110 	return 0;
4111 }
4112 
4113 static void idset_reset(struct bpf_idset *s)
4114 {
4115 	s->count = 0;
4116 }
4117 
4118 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
4119  * Mark all registers with these IDs as precise.
4120  */
4121 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
4122 {
4123 	struct bpf_idset *precise_ids = &env->idset_scratch;
4124 	struct backtrack_state *bt = &env->bt;
4125 	struct bpf_func_state *func;
4126 	struct bpf_reg_state *reg;
4127 	DECLARE_BITMAP(mask, 64);
4128 	int i, fr;
4129 
4130 	idset_reset(precise_ids);
4131 
4132 	for (fr = bt->frame; fr >= 0; fr--) {
4133 		func = st->frame[fr];
4134 
4135 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4136 		for_each_set_bit(i, mask, 32) {
4137 			reg = &func->regs[i];
4138 			if (!reg->id || reg->type != SCALAR_VALUE)
4139 				continue;
4140 			if (idset_push(precise_ids, reg->id))
4141 				return -EFAULT;
4142 		}
4143 
4144 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4145 		for_each_set_bit(i, mask, 64) {
4146 			if (i >= func->allocated_stack / BPF_REG_SIZE)
4147 				break;
4148 			if (!is_spilled_scalar_reg(&func->stack[i]))
4149 				continue;
4150 			reg = &func->stack[i].spilled_ptr;
4151 			if (!reg->id)
4152 				continue;
4153 			if (idset_push(precise_ids, reg->id))
4154 				return -EFAULT;
4155 		}
4156 	}
4157 
4158 	for (fr = 0; fr <= st->curframe; ++fr) {
4159 		func = st->frame[fr];
4160 
4161 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
4162 			reg = &func->regs[i];
4163 			if (!reg->id)
4164 				continue;
4165 			if (!idset_contains(precise_ids, reg->id))
4166 				continue;
4167 			bt_set_frame_reg(bt, fr, i);
4168 		}
4169 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
4170 			if (!is_spilled_scalar_reg(&func->stack[i]))
4171 				continue;
4172 			reg = &func->stack[i].spilled_ptr;
4173 			if (!reg->id)
4174 				continue;
4175 			if (!idset_contains(precise_ids, reg->id))
4176 				continue;
4177 			bt_set_frame_slot(bt, fr, i);
4178 		}
4179 	}
4180 
4181 	return 0;
4182 }
4183 
4184 /*
4185  * __mark_chain_precision() backtracks BPF program instruction sequence and
4186  * chain of verifier states making sure that register *regno* (if regno >= 0)
4187  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
4188  * SCALARS, as well as any other registers and slots that contribute to
4189  * a tracked state of given registers/stack slots, depending on specific BPF
4190  * assembly instructions (see backtrack_insns() for exact instruction handling
4191  * logic). This backtracking relies on recorded jmp_history and is able to
4192  * traverse entire chain of parent states. This process ends only when all the
4193  * necessary registers/slots and their transitive dependencies are marked as
4194  * precise.
4195  *
4196  * One important and subtle aspect is that precise marks *do not matter* in
4197  * the currently verified state (current state). It is important to understand
4198  * why this is the case.
4199  *
4200  * First, note that current state is the state that is not yet "checkpointed",
4201  * i.e., it is not yet put into env->explored_states, and it has no children
4202  * states as well. It's ephemeral, and can end up either a) being discarded if
4203  * compatible explored state is found at some point or BPF_EXIT instruction is
4204  * reached or b) checkpointed and put into env->explored_states, branching out
4205  * into one or more children states.
4206  *
4207  * In the former case, precise markings in current state are completely
4208  * ignored by state comparison code (see regsafe() for details). Only
4209  * checkpointed ("old") state precise markings are important, and if old
4210  * state's register/slot is precise, regsafe() assumes current state's
4211  * register/slot as precise and checks value ranges exactly and precisely. If
4212  * states turn out to be compatible, current state's necessary precise
4213  * markings and any required parent states' precise markings are enforced
4214  * after the fact with propagate_precision() logic, after the fact. But it's
4215  * important to realize that in this case, even after marking current state
4216  * registers/slots as precise, we immediately discard current state. So what
4217  * actually matters is any of the precise markings propagated into current
4218  * state's parent states, which are always checkpointed (due to b) case above).
4219  * As such, for scenario a) it doesn't matter if current state has precise
4220  * markings set or not.
4221  *
4222  * Now, for the scenario b), checkpointing and forking into child(ren)
4223  * state(s). Note that before current state gets to checkpointing step, any
4224  * processed instruction always assumes precise SCALAR register/slot
4225  * knowledge: if precise value or range is useful to prune jump branch, BPF
4226  * verifier takes this opportunity enthusiastically. Similarly, when
4227  * register's value is used to calculate offset or memory address, exact
4228  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
4229  * what we mentioned above about state comparison ignoring precise markings
4230  * during state comparison, BPF verifier ignores and also assumes precise
4231  * markings *at will* during instruction verification process. But as verifier
4232  * assumes precision, it also propagates any precision dependencies across
4233  * parent states, which are not yet finalized, so can be further restricted
4234  * based on new knowledge gained from restrictions enforced by their children
4235  * states. This is so that once those parent states are finalized, i.e., when
4236  * they have no more active children state, state comparison logic in
4237  * is_state_visited() would enforce strict and precise SCALAR ranges, if
4238  * required for correctness.
4239  *
4240  * To build a bit more intuition, note also that once a state is checkpointed,
4241  * the path we took to get to that state is not important. This is crucial
4242  * property for state pruning. When state is checkpointed and finalized at
4243  * some instruction index, it can be correctly and safely used to "short
4244  * circuit" any *compatible* state that reaches exactly the same instruction
4245  * index. I.e., if we jumped to that instruction from a completely different
4246  * code path than original finalized state was derived from, it doesn't
4247  * matter, current state can be discarded because from that instruction
4248  * forward having a compatible state will ensure we will safely reach the
4249  * exit. States describe preconditions for further exploration, but completely
4250  * forget the history of how we got here.
4251  *
4252  * This also means that even if we needed precise SCALAR range to get to
4253  * finalized state, but from that point forward *that same* SCALAR register is
4254  * never used in a precise context (i.e., it's precise value is not needed for
4255  * correctness), it's correct and safe to mark such register as "imprecise"
4256  * (i.e., precise marking set to false). This is what we rely on when we do
4257  * not set precise marking in current state. If no child state requires
4258  * precision for any given SCALAR register, it's safe to dictate that it can
4259  * be imprecise. If any child state does require this register to be precise,
4260  * we'll mark it precise later retroactively during precise markings
4261  * propagation from child state to parent states.
4262  *
4263  * Skipping precise marking setting in current state is a mild version of
4264  * relying on the above observation. But we can utilize this property even
4265  * more aggressively by proactively forgetting any precise marking in the
4266  * current state (which we inherited from the parent state), right before we
4267  * checkpoint it and branch off into new child state. This is done by
4268  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
4269  * finalized states which help in short circuiting more future states.
4270  */
4271 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
4272 {
4273 	struct backtrack_state *bt = &env->bt;
4274 	struct bpf_verifier_state *st = env->cur_state;
4275 	int first_idx = st->first_insn_idx;
4276 	int last_idx = env->insn_idx;
4277 	int subseq_idx = -1;
4278 	struct bpf_func_state *func;
4279 	struct bpf_reg_state *reg;
4280 	bool skip_first = true;
4281 	int i, fr, err;
4282 
4283 	if (!env->bpf_capable)
4284 		return 0;
4285 
4286 	/* set frame number from which we are starting to backtrack */
4287 	bt_init(bt, env->cur_state->curframe);
4288 
4289 	/* Do sanity checks against current state of register and/or stack
4290 	 * slot, but don't set precise flag in current state, as precision
4291 	 * tracking in the current state is unnecessary.
4292 	 */
4293 	func = st->frame[bt->frame];
4294 	if (regno >= 0) {
4295 		reg = &func->regs[regno];
4296 		if (reg->type != SCALAR_VALUE) {
4297 			WARN_ONCE(1, "backtracing misuse");
4298 			return -EFAULT;
4299 		}
4300 		bt_set_reg(bt, regno);
4301 	}
4302 
4303 	if (bt_empty(bt))
4304 		return 0;
4305 
4306 	for (;;) {
4307 		DECLARE_BITMAP(mask, 64);
4308 		u32 history = st->jmp_history_cnt;
4309 		struct bpf_jmp_history_entry *hist;
4310 
4311 		if (env->log.level & BPF_LOG_LEVEL2) {
4312 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4313 				bt->frame, last_idx, first_idx, subseq_idx);
4314 		}
4315 
4316 		/* If some register with scalar ID is marked as precise,
4317 		 * make sure that all registers sharing this ID are also precise.
4318 		 * This is needed to estimate effect of find_equal_scalars().
4319 		 * Do this at the last instruction of each state,
4320 		 * bpf_reg_state::id fields are valid for these instructions.
4321 		 *
4322 		 * Allows to track precision in situation like below:
4323 		 *
4324 		 *     r2 = unknown value
4325 		 *     ...
4326 		 *   --- state #0 ---
4327 		 *     ...
4328 		 *     r1 = r2                 // r1 and r2 now share the same ID
4329 		 *     ...
4330 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4331 		 *     ...
4332 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4333 		 *     ...
4334 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4335 		 *     r3 = r10
4336 		 *     r3 += r1                // need to mark both r1 and r2
4337 		 */
4338 		if (mark_precise_scalar_ids(env, st))
4339 			return -EFAULT;
4340 
4341 		if (last_idx < 0) {
4342 			/* we are at the entry into subprog, which
4343 			 * is expected for global funcs, but only if
4344 			 * requested precise registers are R1-R5
4345 			 * (which are global func's input arguments)
4346 			 */
4347 			if (st->curframe == 0 &&
4348 			    st->frame[0]->subprogno > 0 &&
4349 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4350 			    bt_stack_mask(bt) == 0 &&
4351 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4352 				bitmap_from_u64(mask, bt_reg_mask(bt));
4353 				for_each_set_bit(i, mask, 32) {
4354 					reg = &st->frame[0]->regs[i];
4355 					bt_clear_reg(bt, i);
4356 					if (reg->type == SCALAR_VALUE)
4357 						reg->precise = true;
4358 				}
4359 				return 0;
4360 			}
4361 
4362 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4363 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4364 			WARN_ONCE(1, "verifier backtracking bug");
4365 			return -EFAULT;
4366 		}
4367 
4368 		for (i = last_idx;;) {
4369 			if (skip_first) {
4370 				err = 0;
4371 				skip_first = false;
4372 			} else {
4373 				hist = get_jmp_hist_entry(st, history, i);
4374 				err = backtrack_insn(env, i, subseq_idx, hist, bt);
4375 			}
4376 			if (err == -ENOTSUPP) {
4377 				mark_all_scalars_precise(env, env->cur_state);
4378 				bt_reset(bt);
4379 				return 0;
4380 			} else if (err) {
4381 				return err;
4382 			}
4383 			if (bt_empty(bt))
4384 				/* Found assignment(s) into tracked register in this state.
4385 				 * Since this state is already marked, just return.
4386 				 * Nothing to be tracked further in the parent state.
4387 				 */
4388 				return 0;
4389 			subseq_idx = i;
4390 			i = get_prev_insn_idx(st, i, &history);
4391 			if (i == -ENOENT)
4392 				break;
4393 			if (i >= env->prog->len) {
4394 				/* This can happen if backtracking reached insn 0
4395 				 * and there are still reg_mask or stack_mask
4396 				 * to backtrack.
4397 				 * It means the backtracking missed the spot where
4398 				 * particular register was initialized with a constant.
4399 				 */
4400 				verbose(env, "BUG backtracking idx %d\n", i);
4401 				WARN_ONCE(1, "verifier backtracking bug");
4402 				return -EFAULT;
4403 			}
4404 		}
4405 		st = st->parent;
4406 		if (!st)
4407 			break;
4408 
4409 		for (fr = bt->frame; fr >= 0; fr--) {
4410 			func = st->frame[fr];
4411 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4412 			for_each_set_bit(i, mask, 32) {
4413 				reg = &func->regs[i];
4414 				if (reg->type != SCALAR_VALUE) {
4415 					bt_clear_frame_reg(bt, fr, i);
4416 					continue;
4417 				}
4418 				if (reg->precise)
4419 					bt_clear_frame_reg(bt, fr, i);
4420 				else
4421 					reg->precise = true;
4422 			}
4423 
4424 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4425 			for_each_set_bit(i, mask, 64) {
4426 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4427 					verbose(env, "BUG backtracking (stack slot %d, total slots %d)\n",
4428 						i, func->allocated_stack / BPF_REG_SIZE);
4429 					WARN_ONCE(1, "verifier backtracking bug (stack slot out of bounds)");
4430 					return -EFAULT;
4431 				}
4432 
4433 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4434 					bt_clear_frame_slot(bt, fr, i);
4435 					continue;
4436 				}
4437 				reg = &func->stack[i].spilled_ptr;
4438 				if (reg->precise)
4439 					bt_clear_frame_slot(bt, fr, i);
4440 				else
4441 					reg->precise = true;
4442 			}
4443 			if (env->log.level & BPF_LOG_LEVEL2) {
4444 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4445 					     bt_frame_reg_mask(bt, fr));
4446 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4447 					fr, env->tmp_str_buf);
4448 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4449 					       bt_frame_stack_mask(bt, fr));
4450 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4451 				print_verifier_state(env, func, true);
4452 			}
4453 		}
4454 
4455 		if (bt_empty(bt))
4456 			return 0;
4457 
4458 		subseq_idx = first_idx;
4459 		last_idx = st->last_insn_idx;
4460 		first_idx = st->first_insn_idx;
4461 	}
4462 
4463 	/* if we still have requested precise regs or slots, we missed
4464 	 * something (e.g., stack access through non-r10 register), so
4465 	 * fallback to marking all precise
4466 	 */
4467 	if (!bt_empty(bt)) {
4468 		mark_all_scalars_precise(env, env->cur_state);
4469 		bt_reset(bt);
4470 	}
4471 
4472 	return 0;
4473 }
4474 
4475 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4476 {
4477 	return __mark_chain_precision(env, regno);
4478 }
4479 
4480 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4481  * desired reg and stack masks across all relevant frames
4482  */
4483 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4484 {
4485 	return __mark_chain_precision(env, -1);
4486 }
4487 
4488 static bool is_spillable_regtype(enum bpf_reg_type type)
4489 {
4490 	switch (base_type(type)) {
4491 	case PTR_TO_MAP_VALUE:
4492 	case PTR_TO_STACK:
4493 	case PTR_TO_CTX:
4494 	case PTR_TO_PACKET:
4495 	case PTR_TO_PACKET_META:
4496 	case PTR_TO_PACKET_END:
4497 	case PTR_TO_FLOW_KEYS:
4498 	case CONST_PTR_TO_MAP:
4499 	case PTR_TO_SOCKET:
4500 	case PTR_TO_SOCK_COMMON:
4501 	case PTR_TO_TCP_SOCK:
4502 	case PTR_TO_XDP_SOCK:
4503 	case PTR_TO_BTF_ID:
4504 	case PTR_TO_BUF:
4505 	case PTR_TO_MEM:
4506 	case PTR_TO_FUNC:
4507 	case PTR_TO_MAP_KEY:
4508 		return true;
4509 	default:
4510 		return false;
4511 	}
4512 }
4513 
4514 /* Does this register contain a constant zero? */
4515 static bool register_is_null(struct bpf_reg_state *reg)
4516 {
4517 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4518 }
4519 
4520 static bool register_is_const(struct bpf_reg_state *reg)
4521 {
4522 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4523 }
4524 
4525 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4526 {
4527 	return tnum_is_unknown(reg->var_off) &&
4528 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4529 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4530 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4531 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4532 }
4533 
4534 static bool register_is_bounded(struct bpf_reg_state *reg)
4535 {
4536 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4537 }
4538 
4539 static bool __is_pointer_value(bool allow_ptr_leaks,
4540 			       const struct bpf_reg_state *reg)
4541 {
4542 	if (allow_ptr_leaks)
4543 		return false;
4544 
4545 	return reg->type != SCALAR_VALUE;
4546 }
4547 
4548 /* Copy src state preserving dst->parent and dst->live fields */
4549 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4550 {
4551 	struct bpf_reg_state *parent = dst->parent;
4552 	enum bpf_reg_liveness live = dst->live;
4553 
4554 	*dst = *src;
4555 	dst->parent = parent;
4556 	dst->live = live;
4557 }
4558 
4559 static void save_register_state(struct bpf_func_state *state,
4560 				int spi, struct bpf_reg_state *reg,
4561 				int size)
4562 {
4563 	int i;
4564 
4565 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4566 	if (size == BPF_REG_SIZE)
4567 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4568 
4569 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4570 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4571 
4572 	/* size < 8 bytes spill */
4573 	for (; i; i--)
4574 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4575 }
4576 
4577 static bool is_bpf_st_mem(struct bpf_insn *insn)
4578 {
4579 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4580 }
4581 
4582 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4583  * stack boundary and alignment are checked in check_mem_access()
4584  */
4585 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4586 				       /* stack frame we're writing to */
4587 				       struct bpf_func_state *state,
4588 				       int off, int size, int value_regno,
4589 				       int insn_idx)
4590 {
4591 	struct bpf_func_state *cur; /* state of the current function */
4592 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4593 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4594 	struct bpf_reg_state *reg = NULL;
4595 	int insn_flags = insn_stack_access_flags(state->frameno, spi);
4596 
4597 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4598 	 * so it's aligned access and [off, off + size) are within stack limits
4599 	 */
4600 	if (!env->allow_ptr_leaks &&
4601 	    is_spilled_reg(&state->stack[spi]) &&
4602 	    !is_spilled_scalar_reg(&state->stack[spi]) &&
4603 	    size != BPF_REG_SIZE) {
4604 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4605 		return -EACCES;
4606 	}
4607 
4608 	cur = env->cur_state->frame[env->cur_state->curframe];
4609 	if (value_regno >= 0)
4610 		reg = &cur->regs[value_regno];
4611 	if (!env->bypass_spec_v4) {
4612 		bool sanitize = reg && is_spillable_regtype(reg->type);
4613 
4614 		for (i = 0; i < size; i++) {
4615 			u8 type = state->stack[spi].slot_type[i];
4616 
4617 			if (type != STACK_MISC && type != STACK_ZERO) {
4618 				sanitize = true;
4619 				break;
4620 			}
4621 		}
4622 
4623 		if (sanitize)
4624 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4625 	}
4626 
4627 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4628 	if (err)
4629 		return err;
4630 
4631 	mark_stack_slot_scratched(env, spi);
4632 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4633 	    !register_is_null(reg) && env->bpf_capable) {
4634 		save_register_state(state, spi, reg, size);
4635 		/* Break the relation on a narrowing spill. */
4636 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4637 			state->stack[spi].spilled_ptr.id = 0;
4638 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4639 		   insn->imm != 0 && env->bpf_capable) {
4640 		struct bpf_reg_state fake_reg = {};
4641 
4642 		__mark_reg_known(&fake_reg, insn->imm);
4643 		fake_reg.type = SCALAR_VALUE;
4644 		save_register_state(state, spi, &fake_reg, size);
4645 		insn_flags = 0; /* not a register spill */
4646 	} else if (reg && is_spillable_regtype(reg->type)) {
4647 		/* register containing pointer is being spilled into stack */
4648 		if (size != BPF_REG_SIZE) {
4649 			verbose_linfo(env, insn_idx, "; ");
4650 			verbose(env, "invalid size of register spill\n");
4651 			return -EACCES;
4652 		}
4653 		if (state != cur && reg->type == PTR_TO_STACK) {
4654 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4655 			return -EINVAL;
4656 		}
4657 		save_register_state(state, spi, reg, size);
4658 	} else {
4659 		u8 type = STACK_MISC;
4660 
4661 		/* regular write of data into stack destroys any spilled ptr */
4662 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4663 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4664 		if (is_stack_slot_special(&state->stack[spi]))
4665 			for (i = 0; i < BPF_REG_SIZE; i++)
4666 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4667 
4668 		/* only mark the slot as written if all 8 bytes were written
4669 		 * otherwise read propagation may incorrectly stop too soon
4670 		 * when stack slots are partially written.
4671 		 * This heuristic means that read propagation will be
4672 		 * conservative, since it will add reg_live_read marks
4673 		 * to stack slots all the way to first state when programs
4674 		 * writes+reads less than 8 bytes
4675 		 */
4676 		if (size == BPF_REG_SIZE)
4677 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4678 
4679 		/* when we zero initialize stack slots mark them as such */
4680 		if ((reg && register_is_null(reg)) ||
4681 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4682 			/* backtracking doesn't work for STACK_ZERO yet. */
4683 			err = mark_chain_precision(env, value_regno);
4684 			if (err)
4685 				return err;
4686 			type = STACK_ZERO;
4687 		}
4688 
4689 		/* Mark slots affected by this stack write. */
4690 		for (i = 0; i < size; i++)
4691 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = type;
4692 		insn_flags = 0; /* not a register spill */
4693 	}
4694 
4695 	if (insn_flags)
4696 		return push_jmp_history(env, env->cur_state, insn_flags);
4697 	return 0;
4698 }
4699 
4700 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4701  * known to contain a variable offset.
4702  * This function checks whether the write is permitted and conservatively
4703  * tracks the effects of the write, considering that each stack slot in the
4704  * dynamic range is potentially written to.
4705  *
4706  * 'off' includes 'regno->off'.
4707  * 'value_regno' can be -1, meaning that an unknown value is being written to
4708  * the stack.
4709  *
4710  * Spilled pointers in range are not marked as written because we don't know
4711  * what's going to be actually written. This means that read propagation for
4712  * future reads cannot be terminated by this write.
4713  *
4714  * For privileged programs, uninitialized stack slots are considered
4715  * initialized by this write (even though we don't know exactly what offsets
4716  * are going to be written to). The idea is that we don't want the verifier to
4717  * reject future reads that access slots written to through variable offsets.
4718  */
4719 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4720 				     /* func where register points to */
4721 				     struct bpf_func_state *state,
4722 				     int ptr_regno, int off, int size,
4723 				     int value_regno, int insn_idx)
4724 {
4725 	struct bpf_func_state *cur; /* state of the current function */
4726 	int min_off, max_off;
4727 	int i, err;
4728 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4729 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4730 	bool writing_zero = false;
4731 	/* set if the fact that we're writing a zero is used to let any
4732 	 * stack slots remain STACK_ZERO
4733 	 */
4734 	bool zero_used = false;
4735 
4736 	cur = env->cur_state->frame[env->cur_state->curframe];
4737 	ptr_reg = &cur->regs[ptr_regno];
4738 	min_off = ptr_reg->smin_value + off;
4739 	max_off = ptr_reg->smax_value + off + size;
4740 	if (value_regno >= 0)
4741 		value_reg = &cur->regs[value_regno];
4742 	if ((value_reg && register_is_null(value_reg)) ||
4743 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4744 		writing_zero = true;
4745 
4746 	for (i = min_off; i < max_off; i++) {
4747 		int spi;
4748 
4749 		spi = __get_spi(i);
4750 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4751 		if (err)
4752 			return err;
4753 	}
4754 
4755 	/* Variable offset writes destroy any spilled pointers in range. */
4756 	for (i = min_off; i < max_off; i++) {
4757 		u8 new_type, *stype;
4758 		int slot, spi;
4759 
4760 		slot = -i - 1;
4761 		spi = slot / BPF_REG_SIZE;
4762 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4763 		mark_stack_slot_scratched(env, spi);
4764 
4765 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4766 			/* Reject the write if range we may write to has not
4767 			 * been initialized beforehand. If we didn't reject
4768 			 * here, the ptr status would be erased below (even
4769 			 * though not all slots are actually overwritten),
4770 			 * possibly opening the door to leaks.
4771 			 *
4772 			 * We do however catch STACK_INVALID case below, and
4773 			 * only allow reading possibly uninitialized memory
4774 			 * later for CAP_PERFMON, as the write may not happen to
4775 			 * that slot.
4776 			 */
4777 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4778 				insn_idx, i);
4779 			return -EINVAL;
4780 		}
4781 
4782 		/* Erase all spilled pointers. */
4783 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4784 
4785 		/* Update the slot type. */
4786 		new_type = STACK_MISC;
4787 		if (writing_zero && *stype == STACK_ZERO) {
4788 			new_type = STACK_ZERO;
4789 			zero_used = true;
4790 		}
4791 		/* If the slot is STACK_INVALID, we check whether it's OK to
4792 		 * pretend that it will be initialized by this write. The slot
4793 		 * might not actually be written to, and so if we mark it as
4794 		 * initialized future reads might leak uninitialized memory.
4795 		 * For privileged programs, we will accept such reads to slots
4796 		 * that may or may not be written because, if we're reject
4797 		 * them, the error would be too confusing.
4798 		 */
4799 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4800 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4801 					insn_idx, i);
4802 			return -EINVAL;
4803 		}
4804 		*stype = new_type;
4805 	}
4806 	if (zero_used) {
4807 		/* backtracking doesn't work for STACK_ZERO yet. */
4808 		err = mark_chain_precision(env, value_regno);
4809 		if (err)
4810 			return err;
4811 	}
4812 	return 0;
4813 }
4814 
4815 /* When register 'dst_regno' is assigned some values from stack[min_off,
4816  * max_off), we set the register's type according to the types of the
4817  * respective stack slots. If all the stack values are known to be zeros, then
4818  * so is the destination reg. Otherwise, the register is considered to be
4819  * SCALAR. This function does not deal with register filling; the caller must
4820  * ensure that all spilled registers in the stack range have been marked as
4821  * read.
4822  */
4823 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4824 				/* func where src register points to */
4825 				struct bpf_func_state *ptr_state,
4826 				int min_off, int max_off, int dst_regno)
4827 {
4828 	struct bpf_verifier_state *vstate = env->cur_state;
4829 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4830 	int i, slot, spi;
4831 	u8 *stype;
4832 	int zeros = 0;
4833 
4834 	for (i = min_off; i < max_off; i++) {
4835 		slot = -i - 1;
4836 		spi = slot / BPF_REG_SIZE;
4837 		mark_stack_slot_scratched(env, spi);
4838 		stype = ptr_state->stack[spi].slot_type;
4839 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4840 			break;
4841 		zeros++;
4842 	}
4843 	if (zeros == max_off - min_off) {
4844 		/* any access_size read into register is zero extended,
4845 		 * so the whole register == const_zero
4846 		 */
4847 		__mark_reg_const_zero(&state->regs[dst_regno]);
4848 		/* backtracking doesn't support STACK_ZERO yet,
4849 		 * so mark it precise here, so that later
4850 		 * backtracking can stop here.
4851 		 * Backtracking may not need this if this register
4852 		 * doesn't participate in pointer adjustment.
4853 		 * Forward propagation of precise flag is not
4854 		 * necessary either. This mark is only to stop
4855 		 * backtracking. Any register that contributed
4856 		 * to const 0 was marked precise before spill.
4857 		 */
4858 		state->regs[dst_regno].precise = true;
4859 	} else {
4860 		/* have read misc data from the stack */
4861 		mark_reg_unknown(env, state->regs, dst_regno);
4862 	}
4863 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4864 }
4865 
4866 /* Read the stack at 'off' and put the results into the register indicated by
4867  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4868  * spilled reg.
4869  *
4870  * 'dst_regno' can be -1, meaning that the read value is not going to a
4871  * register.
4872  *
4873  * The access is assumed to be within the current stack bounds.
4874  */
4875 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4876 				      /* func where src register points to */
4877 				      struct bpf_func_state *reg_state,
4878 				      int off, int size, int dst_regno)
4879 {
4880 	struct bpf_verifier_state *vstate = env->cur_state;
4881 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4882 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4883 	struct bpf_reg_state *reg;
4884 	u8 *stype, type;
4885 	int insn_flags = insn_stack_access_flags(reg_state->frameno, spi);
4886 
4887 	stype = reg_state->stack[spi].slot_type;
4888 	reg = &reg_state->stack[spi].spilled_ptr;
4889 
4890 	mark_stack_slot_scratched(env, spi);
4891 
4892 	if (is_spilled_reg(&reg_state->stack[spi])) {
4893 		u8 spill_size = 1;
4894 
4895 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4896 			spill_size++;
4897 
4898 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4899 			if (reg->type != SCALAR_VALUE) {
4900 				verbose_linfo(env, env->insn_idx, "; ");
4901 				verbose(env, "invalid size of register fill\n");
4902 				return -EACCES;
4903 			}
4904 
4905 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4906 			if (dst_regno < 0)
4907 				return 0;
4908 
4909 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4910 				/* The earlier check_reg_arg() has decided the
4911 				 * subreg_def for this insn.  Save it first.
4912 				 */
4913 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4914 
4915 				copy_register_state(&state->regs[dst_regno], reg);
4916 				state->regs[dst_regno].subreg_def = subreg_def;
4917 			} else {
4918 				for (i = 0; i < size; i++) {
4919 					type = stype[(slot - i) % BPF_REG_SIZE];
4920 					if (type == STACK_SPILL)
4921 						continue;
4922 					if (type == STACK_MISC)
4923 						continue;
4924 					if (type == STACK_INVALID && env->allow_uninit_stack)
4925 						continue;
4926 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4927 						off, i, size);
4928 					return -EACCES;
4929 				}
4930 				mark_reg_unknown(env, state->regs, dst_regno);
4931 				insn_flags = 0; /* not restoring original register state */
4932 			}
4933 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4934 		} else if (dst_regno >= 0) {
4935 			/* restore register state from stack */
4936 			copy_register_state(&state->regs[dst_regno], reg);
4937 			/* mark reg as written since spilled pointer state likely
4938 			 * has its liveness marks cleared by is_state_visited()
4939 			 * which resets stack/reg liveness for state transitions
4940 			 */
4941 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4942 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4943 			/* If dst_regno==-1, the caller is asking us whether
4944 			 * it is acceptable to use this value as a SCALAR_VALUE
4945 			 * (e.g. for XADD).
4946 			 * We must not allow unprivileged callers to do that
4947 			 * with spilled pointers.
4948 			 */
4949 			verbose(env, "leaking pointer from stack off %d\n",
4950 				off);
4951 			return -EACCES;
4952 		}
4953 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4954 	} else {
4955 		for (i = 0; i < size; i++) {
4956 			type = stype[(slot - i) % BPF_REG_SIZE];
4957 			if (type == STACK_MISC)
4958 				continue;
4959 			if (type == STACK_ZERO)
4960 				continue;
4961 			if (type == STACK_INVALID && env->allow_uninit_stack)
4962 				continue;
4963 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4964 				off, i, size);
4965 			return -EACCES;
4966 		}
4967 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4968 		if (dst_regno >= 0)
4969 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4970 		insn_flags = 0; /* we are not restoring spilled register */
4971 	}
4972 	if (insn_flags)
4973 		return push_jmp_history(env, env->cur_state, insn_flags);
4974 	return 0;
4975 }
4976 
4977 enum bpf_access_src {
4978 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4979 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4980 };
4981 
4982 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4983 					 int regno, int off, int access_size,
4984 					 bool zero_size_allowed,
4985 					 enum bpf_access_src type,
4986 					 struct bpf_call_arg_meta *meta);
4987 
4988 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4989 {
4990 	return cur_regs(env) + regno;
4991 }
4992 
4993 /* Read the stack at 'ptr_regno + off' and put the result into the register
4994  * 'dst_regno'.
4995  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4996  * but not its variable offset.
4997  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4998  *
4999  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
5000  * filling registers (i.e. reads of spilled register cannot be detected when
5001  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
5002  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
5003  * offset; for a fixed offset check_stack_read_fixed_off should be used
5004  * instead.
5005  */
5006 static int check_stack_read_var_off(struct bpf_verifier_env *env,
5007 				    int ptr_regno, int off, int size, int dst_regno)
5008 {
5009 	/* The state of the source register. */
5010 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5011 	struct bpf_func_state *ptr_state = func(env, reg);
5012 	int err;
5013 	int min_off, max_off;
5014 
5015 	/* Note that we pass a NULL meta, so raw access will not be permitted.
5016 	 */
5017 	err = check_stack_range_initialized(env, ptr_regno, off, size,
5018 					    false, ACCESS_DIRECT, NULL);
5019 	if (err)
5020 		return err;
5021 
5022 	min_off = reg->smin_value + off;
5023 	max_off = reg->smax_value + off;
5024 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
5025 	return 0;
5026 }
5027 
5028 /* check_stack_read dispatches to check_stack_read_fixed_off or
5029  * check_stack_read_var_off.
5030  *
5031  * The caller must ensure that the offset falls within the allocated stack
5032  * bounds.
5033  *
5034  * 'dst_regno' is a register which will receive the value from the stack. It
5035  * can be -1, meaning that the read value is not going to a register.
5036  */
5037 static int check_stack_read(struct bpf_verifier_env *env,
5038 			    int ptr_regno, int off, int size,
5039 			    int dst_regno)
5040 {
5041 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5042 	struct bpf_func_state *state = func(env, reg);
5043 	int err;
5044 	/* Some accesses are only permitted with a static offset. */
5045 	bool var_off = !tnum_is_const(reg->var_off);
5046 
5047 	/* The offset is required to be static when reads don't go to a
5048 	 * register, in order to not leak pointers (see
5049 	 * check_stack_read_fixed_off).
5050 	 */
5051 	if (dst_regno < 0 && var_off) {
5052 		char tn_buf[48];
5053 
5054 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5055 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
5056 			tn_buf, off, size);
5057 		return -EACCES;
5058 	}
5059 	/* Variable offset is prohibited for unprivileged mode for simplicity
5060 	 * since it requires corresponding support in Spectre masking for stack
5061 	 * ALU. See also retrieve_ptr_limit(). The check in
5062 	 * check_stack_access_for_ptr_arithmetic() called by
5063 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
5064 	 * with variable offsets, therefore no check is required here. Further,
5065 	 * just checking it here would be insufficient as speculative stack
5066 	 * writes could still lead to unsafe speculative behaviour.
5067 	 */
5068 	if (!var_off) {
5069 		off += reg->var_off.value;
5070 		err = check_stack_read_fixed_off(env, state, off, size,
5071 						 dst_regno);
5072 	} else {
5073 		/* Variable offset stack reads need more conservative handling
5074 		 * than fixed offset ones. Note that dst_regno >= 0 on this
5075 		 * branch.
5076 		 */
5077 		err = check_stack_read_var_off(env, ptr_regno, off, size,
5078 					       dst_regno);
5079 	}
5080 	return err;
5081 }
5082 
5083 
5084 /* check_stack_write dispatches to check_stack_write_fixed_off or
5085  * check_stack_write_var_off.
5086  *
5087  * 'ptr_regno' is the register used as a pointer into the stack.
5088  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
5089  * 'value_regno' is the register whose value we're writing to the stack. It can
5090  * be -1, meaning that we're not writing from a register.
5091  *
5092  * The caller must ensure that the offset falls within the maximum stack size.
5093  */
5094 static int check_stack_write(struct bpf_verifier_env *env,
5095 			     int ptr_regno, int off, int size,
5096 			     int value_regno, int insn_idx)
5097 {
5098 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
5099 	struct bpf_func_state *state = func(env, reg);
5100 	int err;
5101 
5102 	if (tnum_is_const(reg->var_off)) {
5103 		off += reg->var_off.value;
5104 		err = check_stack_write_fixed_off(env, state, off, size,
5105 						  value_regno, insn_idx);
5106 	} else {
5107 		/* Variable offset stack reads need more conservative handling
5108 		 * than fixed offset ones.
5109 		 */
5110 		err = check_stack_write_var_off(env, state,
5111 						ptr_regno, off, size,
5112 						value_regno, insn_idx);
5113 	}
5114 	return err;
5115 }
5116 
5117 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
5118 				 int off, int size, enum bpf_access_type type)
5119 {
5120 	struct bpf_reg_state *regs = cur_regs(env);
5121 	struct bpf_map *map = regs[regno].map_ptr;
5122 	u32 cap = bpf_map_flags_to_cap(map);
5123 
5124 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
5125 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
5126 			map->value_size, off, size);
5127 		return -EACCES;
5128 	}
5129 
5130 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
5131 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
5132 			map->value_size, off, size);
5133 		return -EACCES;
5134 	}
5135 
5136 	return 0;
5137 }
5138 
5139 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
5140 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
5141 			      int off, int size, u32 mem_size,
5142 			      bool zero_size_allowed)
5143 {
5144 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
5145 	struct bpf_reg_state *reg;
5146 
5147 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
5148 		return 0;
5149 
5150 	reg = &cur_regs(env)[regno];
5151 	switch (reg->type) {
5152 	case PTR_TO_MAP_KEY:
5153 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
5154 			mem_size, off, size);
5155 		break;
5156 	case PTR_TO_MAP_VALUE:
5157 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
5158 			mem_size, off, size);
5159 		break;
5160 	case PTR_TO_PACKET:
5161 	case PTR_TO_PACKET_META:
5162 	case PTR_TO_PACKET_END:
5163 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
5164 			off, size, regno, reg->id, off, mem_size);
5165 		break;
5166 	case PTR_TO_MEM:
5167 	default:
5168 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
5169 			mem_size, off, size);
5170 	}
5171 
5172 	return -EACCES;
5173 }
5174 
5175 /* check read/write into a memory region with possible variable offset */
5176 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
5177 				   int off, int size, u32 mem_size,
5178 				   bool zero_size_allowed)
5179 {
5180 	struct bpf_verifier_state *vstate = env->cur_state;
5181 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5182 	struct bpf_reg_state *reg = &state->regs[regno];
5183 	int err;
5184 
5185 	/* We may have adjusted the register pointing to memory region, so we
5186 	 * need to try adding each of min_value and max_value to off
5187 	 * to make sure our theoretical access will be safe.
5188 	 *
5189 	 * The minimum value is only important with signed
5190 	 * comparisons where we can't assume the floor of a
5191 	 * value is 0.  If we are using signed variables for our
5192 	 * index'es we need to make sure that whatever we use
5193 	 * will have a set floor within our range.
5194 	 */
5195 	if (reg->smin_value < 0 &&
5196 	    (reg->smin_value == S64_MIN ||
5197 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
5198 	      reg->smin_value + off < 0)) {
5199 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5200 			regno);
5201 		return -EACCES;
5202 	}
5203 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
5204 				 mem_size, zero_size_allowed);
5205 	if (err) {
5206 		verbose(env, "R%d min value is outside of the allowed memory range\n",
5207 			regno);
5208 		return err;
5209 	}
5210 
5211 	/* If we haven't set a max value then we need to bail since we can't be
5212 	 * sure we won't do bad things.
5213 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
5214 	 */
5215 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
5216 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
5217 			regno);
5218 		return -EACCES;
5219 	}
5220 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
5221 				 mem_size, zero_size_allowed);
5222 	if (err) {
5223 		verbose(env, "R%d max value is outside of the allowed memory range\n",
5224 			regno);
5225 		return err;
5226 	}
5227 
5228 	return 0;
5229 }
5230 
5231 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
5232 			       const struct bpf_reg_state *reg, int regno,
5233 			       bool fixed_off_ok)
5234 {
5235 	/* Access to this pointer-typed register or passing it to a helper
5236 	 * is only allowed in its original, unmodified form.
5237 	 */
5238 
5239 	if (reg->off < 0) {
5240 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
5241 			reg_type_str(env, reg->type), regno, reg->off);
5242 		return -EACCES;
5243 	}
5244 
5245 	if (!fixed_off_ok && reg->off) {
5246 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
5247 			reg_type_str(env, reg->type), regno, reg->off);
5248 		return -EACCES;
5249 	}
5250 
5251 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5252 		char tn_buf[48];
5253 
5254 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5255 		verbose(env, "variable %s access var_off=%s disallowed\n",
5256 			reg_type_str(env, reg->type), tn_buf);
5257 		return -EACCES;
5258 	}
5259 
5260 	return 0;
5261 }
5262 
5263 int check_ptr_off_reg(struct bpf_verifier_env *env,
5264 		      const struct bpf_reg_state *reg, int regno)
5265 {
5266 	return __check_ptr_off_reg(env, reg, regno, false);
5267 }
5268 
5269 static int map_kptr_match_type(struct bpf_verifier_env *env,
5270 			       struct btf_field *kptr_field,
5271 			       struct bpf_reg_state *reg, u32 regno)
5272 {
5273 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5274 	int perm_flags;
5275 	const char *reg_name = "";
5276 
5277 	if (btf_is_kernel(reg->btf)) {
5278 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5279 
5280 		/* Only unreferenced case accepts untrusted pointers */
5281 		if (kptr_field->type == BPF_KPTR_UNREF)
5282 			perm_flags |= PTR_UNTRUSTED;
5283 	} else {
5284 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5285 	}
5286 
5287 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5288 		goto bad_type;
5289 
5290 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5291 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5292 
5293 	/* For ref_ptr case, release function check should ensure we get one
5294 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5295 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5296 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5297 	 * reg->off and reg->ref_obj_id are not needed here.
5298 	 */
5299 	if (__check_ptr_off_reg(env, reg, regno, true))
5300 		return -EACCES;
5301 
5302 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5303 	 * we also need to take into account the reg->off.
5304 	 *
5305 	 * We want to support cases like:
5306 	 *
5307 	 * struct foo {
5308 	 *         struct bar br;
5309 	 *         struct baz bz;
5310 	 * };
5311 	 *
5312 	 * struct foo *v;
5313 	 * v = func();	      // PTR_TO_BTF_ID
5314 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5315 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5316 	 *                    // first member type of struct after comparison fails
5317 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5318 	 *                    // to match type
5319 	 *
5320 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5321 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5322 	 * the struct to match type against first member of struct, i.e. reject
5323 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5324 	 * strict mode to true for type match.
5325 	 */
5326 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5327 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5328 				  kptr_field->type == BPF_KPTR_REF))
5329 		goto bad_type;
5330 	return 0;
5331 bad_type:
5332 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5333 		reg_type_str(env, reg->type), reg_name);
5334 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5335 	if (kptr_field->type == BPF_KPTR_UNREF)
5336 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5337 			targ_name);
5338 	else
5339 		verbose(env, "\n");
5340 	return -EINVAL;
5341 }
5342 
5343 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5344  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5345  */
5346 static bool in_rcu_cs(struct bpf_verifier_env *env)
5347 {
5348 	return env->cur_state->active_rcu_lock ||
5349 	       env->cur_state->active_lock.ptr ||
5350 	       !env->prog->aux->sleepable;
5351 }
5352 
5353 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5354 BTF_SET_START(rcu_protected_types)
5355 BTF_ID(struct, prog_test_ref_kfunc)
5356 BTF_ID(struct, cgroup)
5357 BTF_ID(struct, bpf_cpumask)
5358 BTF_ID(struct, task_struct)
5359 BTF_SET_END(rcu_protected_types)
5360 
5361 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5362 {
5363 	if (!btf_is_kernel(btf))
5364 		return false;
5365 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5366 }
5367 
5368 static bool rcu_safe_kptr(const struct btf_field *field)
5369 {
5370 	const struct btf_field_kptr *kptr = &field->kptr;
5371 
5372 	return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5373 }
5374 
5375 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5376 				 int value_regno, int insn_idx,
5377 				 struct btf_field *kptr_field)
5378 {
5379 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5380 	int class = BPF_CLASS(insn->code);
5381 	struct bpf_reg_state *val_reg;
5382 
5383 	/* Things we already checked for in check_map_access and caller:
5384 	 *  - Reject cases where variable offset may touch kptr
5385 	 *  - size of access (must be BPF_DW)
5386 	 *  - tnum_is_const(reg->var_off)
5387 	 *  - kptr_field->offset == off + reg->var_off.value
5388 	 */
5389 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5390 	if (BPF_MODE(insn->code) != BPF_MEM) {
5391 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5392 		return -EACCES;
5393 	}
5394 
5395 	/* We only allow loading referenced kptr, since it will be marked as
5396 	 * untrusted, similar to unreferenced kptr.
5397 	 */
5398 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5399 		verbose(env, "store to referenced kptr disallowed\n");
5400 		return -EACCES;
5401 	}
5402 
5403 	if (class == BPF_LDX) {
5404 		val_reg = reg_state(env, value_regno);
5405 		/* We can simply mark the value_regno receiving the pointer
5406 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5407 		 */
5408 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5409 				kptr_field->kptr.btf_id,
5410 				rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5411 				PTR_MAYBE_NULL | MEM_RCU :
5412 				PTR_MAYBE_NULL | PTR_UNTRUSTED);
5413 	} else if (class == BPF_STX) {
5414 		val_reg = reg_state(env, value_regno);
5415 		if (!register_is_null(val_reg) &&
5416 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5417 			return -EACCES;
5418 	} else if (class == BPF_ST) {
5419 		if (insn->imm) {
5420 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5421 				kptr_field->offset);
5422 			return -EACCES;
5423 		}
5424 	} else {
5425 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5426 		return -EACCES;
5427 	}
5428 	return 0;
5429 }
5430 
5431 /* check read/write into a map element with possible variable offset */
5432 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5433 			    int off, int size, bool zero_size_allowed,
5434 			    enum bpf_access_src src)
5435 {
5436 	struct bpf_verifier_state *vstate = env->cur_state;
5437 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5438 	struct bpf_reg_state *reg = &state->regs[regno];
5439 	struct bpf_map *map = reg->map_ptr;
5440 	struct btf_record *rec;
5441 	int err, i;
5442 
5443 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5444 				      zero_size_allowed);
5445 	if (err)
5446 		return err;
5447 
5448 	if (IS_ERR_OR_NULL(map->record))
5449 		return 0;
5450 	rec = map->record;
5451 	for (i = 0; i < rec->cnt; i++) {
5452 		struct btf_field *field = &rec->fields[i];
5453 		u32 p = field->offset;
5454 
5455 		/* If any part of a field  can be touched by load/store, reject
5456 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5457 		 * it is sufficient to check x1 < y2 && y1 < x2.
5458 		 */
5459 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5460 		    p < reg->umax_value + off + size) {
5461 			switch (field->type) {
5462 			case BPF_KPTR_UNREF:
5463 			case BPF_KPTR_REF:
5464 				if (src != ACCESS_DIRECT) {
5465 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5466 					return -EACCES;
5467 				}
5468 				if (!tnum_is_const(reg->var_off)) {
5469 					verbose(env, "kptr access cannot have variable offset\n");
5470 					return -EACCES;
5471 				}
5472 				if (p != off + reg->var_off.value) {
5473 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5474 						p, off + reg->var_off.value);
5475 					return -EACCES;
5476 				}
5477 				if (size != bpf_size_to_bytes(BPF_DW)) {
5478 					verbose(env, "kptr access size must be BPF_DW\n");
5479 					return -EACCES;
5480 				}
5481 				break;
5482 			default:
5483 				verbose(env, "%s cannot be accessed directly by load/store\n",
5484 					btf_field_type_name(field->type));
5485 				return -EACCES;
5486 			}
5487 		}
5488 	}
5489 	return 0;
5490 }
5491 
5492 #define MAX_PACKET_OFF 0xffff
5493 
5494 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5495 				       const struct bpf_call_arg_meta *meta,
5496 				       enum bpf_access_type t)
5497 {
5498 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5499 
5500 	switch (prog_type) {
5501 	/* Program types only with direct read access go here! */
5502 	case BPF_PROG_TYPE_LWT_IN:
5503 	case BPF_PROG_TYPE_LWT_OUT:
5504 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5505 	case BPF_PROG_TYPE_SK_REUSEPORT:
5506 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5507 	case BPF_PROG_TYPE_CGROUP_SKB:
5508 		if (t == BPF_WRITE)
5509 			return false;
5510 		fallthrough;
5511 
5512 	/* Program types with direct read + write access go here! */
5513 	case BPF_PROG_TYPE_SCHED_CLS:
5514 	case BPF_PROG_TYPE_SCHED_ACT:
5515 	case BPF_PROG_TYPE_XDP:
5516 	case BPF_PROG_TYPE_LWT_XMIT:
5517 	case BPF_PROG_TYPE_SK_SKB:
5518 	case BPF_PROG_TYPE_SK_MSG:
5519 		if (meta)
5520 			return meta->pkt_access;
5521 
5522 		env->seen_direct_write = true;
5523 		return true;
5524 
5525 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5526 		if (t == BPF_WRITE)
5527 			env->seen_direct_write = true;
5528 
5529 		return true;
5530 
5531 	default:
5532 		return false;
5533 	}
5534 }
5535 
5536 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5537 			       int size, bool zero_size_allowed)
5538 {
5539 	struct bpf_reg_state *regs = cur_regs(env);
5540 	struct bpf_reg_state *reg = &regs[regno];
5541 	int err;
5542 
5543 	/* We may have added a variable offset to the packet pointer; but any
5544 	 * reg->range we have comes after that.  We are only checking the fixed
5545 	 * offset.
5546 	 */
5547 
5548 	/* We don't allow negative numbers, because we aren't tracking enough
5549 	 * detail to prove they're safe.
5550 	 */
5551 	if (reg->smin_value < 0) {
5552 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5553 			regno);
5554 		return -EACCES;
5555 	}
5556 
5557 	err = reg->range < 0 ? -EINVAL :
5558 	      __check_mem_access(env, regno, off, size, reg->range,
5559 				 zero_size_allowed);
5560 	if (err) {
5561 		verbose(env, "R%d offset is outside of the packet\n", regno);
5562 		return err;
5563 	}
5564 
5565 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5566 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5567 	 * otherwise find_good_pkt_pointers would have refused to set range info
5568 	 * that __check_mem_access would have rejected this pkt access.
5569 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5570 	 */
5571 	env->prog->aux->max_pkt_offset =
5572 		max_t(u32, env->prog->aux->max_pkt_offset,
5573 		      off + reg->umax_value + size - 1);
5574 
5575 	return err;
5576 }
5577 
5578 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5579 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5580 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5581 			    struct btf **btf, u32 *btf_id)
5582 {
5583 	struct bpf_insn_access_aux info = {
5584 		.reg_type = *reg_type,
5585 		.log = &env->log,
5586 	};
5587 
5588 	if (env->ops->is_valid_access &&
5589 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5590 		/* A non zero info.ctx_field_size indicates that this field is a
5591 		 * candidate for later verifier transformation to load the whole
5592 		 * field and then apply a mask when accessed with a narrower
5593 		 * access than actual ctx access size. A zero info.ctx_field_size
5594 		 * will only allow for whole field access and rejects any other
5595 		 * type of narrower access.
5596 		 */
5597 		*reg_type = info.reg_type;
5598 
5599 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5600 			*btf = info.btf;
5601 			*btf_id = info.btf_id;
5602 		} else {
5603 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5604 		}
5605 		/* remember the offset of last byte accessed in ctx */
5606 		if (env->prog->aux->max_ctx_offset < off + size)
5607 			env->prog->aux->max_ctx_offset = off + size;
5608 		return 0;
5609 	}
5610 
5611 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5612 	return -EACCES;
5613 }
5614 
5615 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5616 				  int size)
5617 {
5618 	if (size < 0 || off < 0 ||
5619 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5620 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5621 			off, size);
5622 		return -EACCES;
5623 	}
5624 	return 0;
5625 }
5626 
5627 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5628 			     u32 regno, int off, int size,
5629 			     enum bpf_access_type t)
5630 {
5631 	struct bpf_reg_state *regs = cur_regs(env);
5632 	struct bpf_reg_state *reg = &regs[regno];
5633 	struct bpf_insn_access_aux info = {};
5634 	bool valid;
5635 
5636 	if (reg->smin_value < 0) {
5637 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5638 			regno);
5639 		return -EACCES;
5640 	}
5641 
5642 	switch (reg->type) {
5643 	case PTR_TO_SOCK_COMMON:
5644 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5645 		break;
5646 	case PTR_TO_SOCKET:
5647 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5648 		break;
5649 	case PTR_TO_TCP_SOCK:
5650 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5651 		break;
5652 	case PTR_TO_XDP_SOCK:
5653 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5654 		break;
5655 	default:
5656 		valid = false;
5657 	}
5658 
5659 
5660 	if (valid) {
5661 		env->insn_aux_data[insn_idx].ctx_field_size =
5662 			info.ctx_field_size;
5663 		return 0;
5664 	}
5665 
5666 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5667 		regno, reg_type_str(env, reg->type), off, size);
5668 
5669 	return -EACCES;
5670 }
5671 
5672 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5673 {
5674 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5675 }
5676 
5677 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5678 {
5679 	const struct bpf_reg_state *reg = reg_state(env, regno);
5680 
5681 	return reg->type == PTR_TO_CTX;
5682 }
5683 
5684 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5685 {
5686 	const struct bpf_reg_state *reg = reg_state(env, regno);
5687 
5688 	return type_is_sk_pointer(reg->type);
5689 }
5690 
5691 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5692 {
5693 	const struct bpf_reg_state *reg = reg_state(env, regno);
5694 
5695 	return type_is_pkt_pointer(reg->type);
5696 }
5697 
5698 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5699 {
5700 	const struct bpf_reg_state *reg = reg_state(env, regno);
5701 
5702 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5703 	return reg->type == PTR_TO_FLOW_KEYS;
5704 }
5705 
5706 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5707 #ifdef CONFIG_NET
5708 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5709 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5710 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5711 #endif
5712 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5713 };
5714 
5715 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5716 {
5717 	/* A referenced register is always trusted. */
5718 	if (reg->ref_obj_id)
5719 		return true;
5720 
5721 	/* Types listed in the reg2btf_ids are always trusted */
5722 	if (reg2btf_ids[base_type(reg->type)] &&
5723 	    !bpf_type_has_unsafe_modifiers(reg->type))
5724 		return true;
5725 
5726 	/* If a register is not referenced, it is trusted if it has the
5727 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5728 	 * other type modifiers may be safe, but we elect to take an opt-in
5729 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5730 	 * not.
5731 	 *
5732 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5733 	 * for whether a register is trusted.
5734 	 */
5735 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5736 	       !bpf_type_has_unsafe_modifiers(reg->type);
5737 }
5738 
5739 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5740 {
5741 	return reg->type & MEM_RCU;
5742 }
5743 
5744 static void clear_trusted_flags(enum bpf_type_flag *flag)
5745 {
5746 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5747 }
5748 
5749 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5750 				   const struct bpf_reg_state *reg,
5751 				   int off, int size, bool strict)
5752 {
5753 	struct tnum reg_off;
5754 	int ip_align;
5755 
5756 	/* Byte size accesses are always allowed. */
5757 	if (!strict || size == 1)
5758 		return 0;
5759 
5760 	/* For platforms that do not have a Kconfig enabling
5761 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5762 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5763 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5764 	 * to this code only in strict mode where we want to emulate
5765 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5766 	 * unconditional IP align value of '2'.
5767 	 */
5768 	ip_align = 2;
5769 
5770 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5771 	if (!tnum_is_aligned(reg_off, size)) {
5772 		char tn_buf[48];
5773 
5774 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5775 		verbose(env,
5776 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5777 			ip_align, tn_buf, reg->off, off, size);
5778 		return -EACCES;
5779 	}
5780 
5781 	return 0;
5782 }
5783 
5784 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5785 				       const struct bpf_reg_state *reg,
5786 				       const char *pointer_desc,
5787 				       int off, int size, bool strict)
5788 {
5789 	struct tnum reg_off;
5790 
5791 	/* Byte size accesses are always allowed. */
5792 	if (!strict || size == 1)
5793 		return 0;
5794 
5795 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5796 	if (!tnum_is_aligned(reg_off, size)) {
5797 		char tn_buf[48];
5798 
5799 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5800 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5801 			pointer_desc, tn_buf, reg->off, off, size);
5802 		return -EACCES;
5803 	}
5804 
5805 	return 0;
5806 }
5807 
5808 static int check_ptr_alignment(struct bpf_verifier_env *env,
5809 			       const struct bpf_reg_state *reg, int off,
5810 			       int size, bool strict_alignment_once)
5811 {
5812 	bool strict = env->strict_alignment || strict_alignment_once;
5813 	const char *pointer_desc = "";
5814 
5815 	switch (reg->type) {
5816 	case PTR_TO_PACKET:
5817 	case PTR_TO_PACKET_META:
5818 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5819 		 * right in front, treat it the very same way.
5820 		 */
5821 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5822 	case PTR_TO_FLOW_KEYS:
5823 		pointer_desc = "flow keys ";
5824 		break;
5825 	case PTR_TO_MAP_KEY:
5826 		pointer_desc = "key ";
5827 		break;
5828 	case PTR_TO_MAP_VALUE:
5829 		pointer_desc = "value ";
5830 		break;
5831 	case PTR_TO_CTX:
5832 		pointer_desc = "context ";
5833 		break;
5834 	case PTR_TO_STACK:
5835 		pointer_desc = "stack ";
5836 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5837 		 * and check_stack_read_fixed_off() relies on stack accesses being
5838 		 * aligned.
5839 		 */
5840 		strict = true;
5841 		break;
5842 	case PTR_TO_SOCKET:
5843 		pointer_desc = "sock ";
5844 		break;
5845 	case PTR_TO_SOCK_COMMON:
5846 		pointer_desc = "sock_common ";
5847 		break;
5848 	case PTR_TO_TCP_SOCK:
5849 		pointer_desc = "tcp_sock ";
5850 		break;
5851 	case PTR_TO_XDP_SOCK:
5852 		pointer_desc = "xdp_sock ";
5853 		break;
5854 	default:
5855 		break;
5856 	}
5857 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5858 					   strict);
5859 }
5860 
5861 /* starting from main bpf function walk all instructions of the function
5862  * and recursively walk all callees that given function can call.
5863  * Ignore jump and exit insns.
5864  * Since recursion is prevented by check_cfg() this algorithm
5865  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5866  */
5867 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5868 {
5869 	struct bpf_subprog_info *subprog = env->subprog_info;
5870 	struct bpf_insn *insn = env->prog->insnsi;
5871 	int depth = 0, frame = 0, i, subprog_end;
5872 	bool tail_call_reachable = false;
5873 	int ret_insn[MAX_CALL_FRAMES];
5874 	int ret_prog[MAX_CALL_FRAMES];
5875 	int j;
5876 
5877 	i = subprog[idx].start;
5878 process_func:
5879 	/* protect against potential stack overflow that might happen when
5880 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5881 	 * depth for such case down to 256 so that the worst case scenario
5882 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5883 	 * 8k).
5884 	 *
5885 	 * To get the idea what might happen, see an example:
5886 	 * func1 -> sub rsp, 128
5887 	 *  subfunc1 -> sub rsp, 256
5888 	 *  tailcall1 -> add rsp, 256
5889 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5890 	 *   subfunc2 -> sub rsp, 64
5891 	 *   subfunc22 -> sub rsp, 128
5892 	 *   tailcall2 -> add rsp, 128
5893 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5894 	 *
5895 	 * tailcall will unwind the current stack frame but it will not get rid
5896 	 * of caller's stack as shown on the example above.
5897 	 */
5898 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5899 		verbose(env,
5900 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5901 			depth);
5902 		return -EACCES;
5903 	}
5904 	/* round up to 32-bytes, since this is granularity
5905 	 * of interpreter stack size
5906 	 */
5907 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5908 	if (depth > MAX_BPF_STACK) {
5909 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5910 			frame + 1, depth);
5911 		return -EACCES;
5912 	}
5913 continue_func:
5914 	subprog_end = subprog[idx + 1].start;
5915 	for (; i < subprog_end; i++) {
5916 		int next_insn, sidx;
5917 
5918 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5919 			continue;
5920 		/* remember insn and function to return to */
5921 		ret_insn[frame] = i + 1;
5922 		ret_prog[frame] = idx;
5923 
5924 		/* find the callee */
5925 		next_insn = i + insn[i].imm + 1;
5926 		sidx = find_subprog(env, next_insn);
5927 		if (sidx < 0) {
5928 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5929 				  next_insn);
5930 			return -EFAULT;
5931 		}
5932 		if (subprog[sidx].is_async_cb) {
5933 			if (subprog[sidx].has_tail_call) {
5934 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5935 				return -EFAULT;
5936 			}
5937 			/* async callbacks don't increase bpf prog stack size unless called directly */
5938 			if (!bpf_pseudo_call(insn + i))
5939 				continue;
5940 		}
5941 		i = next_insn;
5942 		idx = sidx;
5943 
5944 		if (subprog[idx].has_tail_call)
5945 			tail_call_reachable = true;
5946 
5947 		frame++;
5948 		if (frame >= MAX_CALL_FRAMES) {
5949 			verbose(env, "the call stack of %d frames is too deep !\n",
5950 				frame);
5951 			return -E2BIG;
5952 		}
5953 		goto process_func;
5954 	}
5955 	/* if tail call got detected across bpf2bpf calls then mark each of the
5956 	 * currently present subprog frames as tail call reachable subprogs;
5957 	 * this info will be utilized by JIT so that we will be preserving the
5958 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5959 	 */
5960 	if (tail_call_reachable)
5961 		for (j = 0; j < frame; j++)
5962 			subprog[ret_prog[j]].tail_call_reachable = true;
5963 	if (subprog[0].tail_call_reachable)
5964 		env->prog->aux->tail_call_reachable = true;
5965 
5966 	/* end of for() loop means the last insn of the 'subprog'
5967 	 * was reached. Doesn't matter whether it was JA or EXIT
5968 	 */
5969 	if (frame == 0)
5970 		return 0;
5971 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5972 	frame--;
5973 	i = ret_insn[frame];
5974 	idx = ret_prog[frame];
5975 	goto continue_func;
5976 }
5977 
5978 static int check_max_stack_depth(struct bpf_verifier_env *env)
5979 {
5980 	struct bpf_subprog_info *si = env->subprog_info;
5981 	int ret;
5982 
5983 	for (int i = 0; i < env->subprog_cnt; i++) {
5984 		if (!i || si[i].is_async_cb) {
5985 			ret = check_max_stack_depth_subprog(env, i);
5986 			if (ret < 0)
5987 				return ret;
5988 		}
5989 		continue;
5990 	}
5991 	return 0;
5992 }
5993 
5994 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5995 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5996 				  const struct bpf_insn *insn, int idx)
5997 {
5998 	int start = idx + insn->imm + 1, subprog;
5999 
6000 	subprog = find_subprog(env, start);
6001 	if (subprog < 0) {
6002 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
6003 			  start);
6004 		return -EFAULT;
6005 	}
6006 	return env->subprog_info[subprog].stack_depth;
6007 }
6008 #endif
6009 
6010 static int __check_buffer_access(struct bpf_verifier_env *env,
6011 				 const char *buf_info,
6012 				 const struct bpf_reg_state *reg,
6013 				 int regno, int off, int size)
6014 {
6015 	if (off < 0) {
6016 		verbose(env,
6017 			"R%d invalid %s buffer access: off=%d, size=%d\n",
6018 			regno, buf_info, off, size);
6019 		return -EACCES;
6020 	}
6021 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6022 		char tn_buf[48];
6023 
6024 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6025 		verbose(env,
6026 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
6027 			regno, off, tn_buf);
6028 		return -EACCES;
6029 	}
6030 
6031 	return 0;
6032 }
6033 
6034 static int check_tp_buffer_access(struct bpf_verifier_env *env,
6035 				  const struct bpf_reg_state *reg,
6036 				  int regno, int off, int size)
6037 {
6038 	int err;
6039 
6040 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
6041 	if (err)
6042 		return err;
6043 
6044 	if (off + size > env->prog->aux->max_tp_access)
6045 		env->prog->aux->max_tp_access = off + size;
6046 
6047 	return 0;
6048 }
6049 
6050 static int check_buffer_access(struct bpf_verifier_env *env,
6051 			       const struct bpf_reg_state *reg,
6052 			       int regno, int off, int size,
6053 			       bool zero_size_allowed,
6054 			       u32 *max_access)
6055 {
6056 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
6057 	int err;
6058 
6059 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
6060 	if (err)
6061 		return err;
6062 
6063 	if (off + size > *max_access)
6064 		*max_access = off + size;
6065 
6066 	return 0;
6067 }
6068 
6069 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
6070 static void zext_32_to_64(struct bpf_reg_state *reg)
6071 {
6072 	reg->var_off = tnum_subreg(reg->var_off);
6073 	__reg_assign_32_into_64(reg);
6074 }
6075 
6076 /* truncate register to smaller size (in bytes)
6077  * must be called with size < BPF_REG_SIZE
6078  */
6079 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
6080 {
6081 	u64 mask;
6082 
6083 	/* clear high bits in bit representation */
6084 	reg->var_off = tnum_cast(reg->var_off, size);
6085 
6086 	/* fix arithmetic bounds */
6087 	mask = ((u64)1 << (size * 8)) - 1;
6088 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
6089 		reg->umin_value &= mask;
6090 		reg->umax_value &= mask;
6091 	} else {
6092 		reg->umin_value = 0;
6093 		reg->umax_value = mask;
6094 	}
6095 	reg->smin_value = reg->umin_value;
6096 	reg->smax_value = reg->umax_value;
6097 
6098 	/* If size is smaller than 32bit register the 32bit register
6099 	 * values are also truncated so we push 64-bit bounds into
6100 	 * 32-bit bounds. Above were truncated < 32-bits already.
6101 	 */
6102 	if (size >= 4)
6103 		return;
6104 	__reg_combine_64_into_32(reg);
6105 }
6106 
6107 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
6108 {
6109 	if (size == 1) {
6110 		reg->smin_value = reg->s32_min_value = S8_MIN;
6111 		reg->smax_value = reg->s32_max_value = S8_MAX;
6112 	} else if (size == 2) {
6113 		reg->smin_value = reg->s32_min_value = S16_MIN;
6114 		reg->smax_value = reg->s32_max_value = S16_MAX;
6115 	} else {
6116 		/* size == 4 */
6117 		reg->smin_value = reg->s32_min_value = S32_MIN;
6118 		reg->smax_value = reg->s32_max_value = S32_MAX;
6119 	}
6120 	reg->umin_value = reg->u32_min_value = 0;
6121 	reg->umax_value = U64_MAX;
6122 	reg->u32_max_value = U32_MAX;
6123 	reg->var_off = tnum_unknown;
6124 }
6125 
6126 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
6127 {
6128 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
6129 	u64 top_smax_value, top_smin_value;
6130 	u64 num_bits = size * 8;
6131 
6132 	if (tnum_is_const(reg->var_off)) {
6133 		u64_cval = reg->var_off.value;
6134 		if (size == 1)
6135 			reg->var_off = tnum_const((s8)u64_cval);
6136 		else if (size == 2)
6137 			reg->var_off = tnum_const((s16)u64_cval);
6138 		else
6139 			/* size == 4 */
6140 			reg->var_off = tnum_const((s32)u64_cval);
6141 
6142 		u64_cval = reg->var_off.value;
6143 		reg->smax_value = reg->smin_value = u64_cval;
6144 		reg->umax_value = reg->umin_value = u64_cval;
6145 		reg->s32_max_value = reg->s32_min_value = u64_cval;
6146 		reg->u32_max_value = reg->u32_min_value = u64_cval;
6147 		return;
6148 	}
6149 
6150 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
6151 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
6152 
6153 	if (top_smax_value != top_smin_value)
6154 		goto out;
6155 
6156 	/* find the s64_min and s64_min after sign extension */
6157 	if (size == 1) {
6158 		init_s64_max = (s8)reg->smax_value;
6159 		init_s64_min = (s8)reg->smin_value;
6160 	} else if (size == 2) {
6161 		init_s64_max = (s16)reg->smax_value;
6162 		init_s64_min = (s16)reg->smin_value;
6163 	} else {
6164 		init_s64_max = (s32)reg->smax_value;
6165 		init_s64_min = (s32)reg->smin_value;
6166 	}
6167 
6168 	s64_max = max(init_s64_max, init_s64_min);
6169 	s64_min = min(init_s64_max, init_s64_min);
6170 
6171 	/* both of s64_max/s64_min positive or negative */
6172 	if ((s64_max >= 0) == (s64_min >= 0)) {
6173 		reg->s32_min_value = reg->smin_value = s64_min;
6174 		reg->s32_max_value = reg->smax_value = s64_max;
6175 		reg->u32_min_value = reg->umin_value = s64_min;
6176 		reg->u32_max_value = reg->umax_value = s64_max;
6177 		reg->var_off = tnum_range(s64_min, s64_max);
6178 		return;
6179 	}
6180 
6181 out:
6182 	set_sext64_default_val(reg, size);
6183 }
6184 
6185 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
6186 {
6187 	if (size == 1) {
6188 		reg->s32_min_value = S8_MIN;
6189 		reg->s32_max_value = S8_MAX;
6190 	} else {
6191 		/* size == 2 */
6192 		reg->s32_min_value = S16_MIN;
6193 		reg->s32_max_value = S16_MAX;
6194 	}
6195 	reg->u32_min_value = 0;
6196 	reg->u32_max_value = U32_MAX;
6197 	reg->var_off = tnum_subreg(tnum_unknown);
6198 }
6199 
6200 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
6201 {
6202 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
6203 	u32 top_smax_value, top_smin_value;
6204 	u32 num_bits = size * 8;
6205 
6206 	if (tnum_is_const(reg->var_off)) {
6207 		u32_val = reg->var_off.value;
6208 		if (size == 1)
6209 			reg->var_off = tnum_const((s8)u32_val);
6210 		else
6211 			reg->var_off = tnum_const((s16)u32_val);
6212 
6213 		u32_val = reg->var_off.value;
6214 		reg->s32_min_value = reg->s32_max_value = u32_val;
6215 		reg->u32_min_value = reg->u32_max_value = u32_val;
6216 		return;
6217 	}
6218 
6219 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
6220 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
6221 
6222 	if (top_smax_value != top_smin_value)
6223 		goto out;
6224 
6225 	/* find the s32_min and s32_min after sign extension */
6226 	if (size == 1) {
6227 		init_s32_max = (s8)reg->s32_max_value;
6228 		init_s32_min = (s8)reg->s32_min_value;
6229 	} else {
6230 		/* size == 2 */
6231 		init_s32_max = (s16)reg->s32_max_value;
6232 		init_s32_min = (s16)reg->s32_min_value;
6233 	}
6234 	s32_max = max(init_s32_max, init_s32_min);
6235 	s32_min = min(init_s32_max, init_s32_min);
6236 
6237 	if ((s32_min >= 0) == (s32_max >= 0)) {
6238 		reg->s32_min_value = s32_min;
6239 		reg->s32_max_value = s32_max;
6240 		reg->u32_min_value = (u32)s32_min;
6241 		reg->u32_max_value = (u32)s32_max;
6242 		reg->var_off = tnum_subreg(tnum_range(s32_min, s32_max));
6243 		return;
6244 	}
6245 
6246 out:
6247 	set_sext32_default_val(reg, size);
6248 }
6249 
6250 static bool bpf_map_is_rdonly(const struct bpf_map *map)
6251 {
6252 	/* A map is considered read-only if the following condition are true:
6253 	 *
6254 	 * 1) BPF program side cannot change any of the map content. The
6255 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
6256 	 *    and was set at map creation time.
6257 	 * 2) The map value(s) have been initialized from user space by a
6258 	 *    loader and then "frozen", such that no new map update/delete
6259 	 *    operations from syscall side are possible for the rest of
6260 	 *    the map's lifetime from that point onwards.
6261 	 * 3) Any parallel/pending map update/delete operations from syscall
6262 	 *    side have been completed. Only after that point, it's safe to
6263 	 *    assume that map value(s) are immutable.
6264 	 */
6265 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6266 	       READ_ONCE(map->frozen) &&
6267 	       !bpf_map_write_active(map);
6268 }
6269 
6270 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6271 			       bool is_ldsx)
6272 {
6273 	void *ptr;
6274 	u64 addr;
6275 	int err;
6276 
6277 	err = map->ops->map_direct_value_addr(map, &addr, off);
6278 	if (err)
6279 		return err;
6280 	ptr = (void *)(long)addr + off;
6281 
6282 	switch (size) {
6283 	case sizeof(u8):
6284 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6285 		break;
6286 	case sizeof(u16):
6287 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6288 		break;
6289 	case sizeof(u32):
6290 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6291 		break;
6292 	case sizeof(u64):
6293 		*val = *(u64 *)ptr;
6294 		break;
6295 	default:
6296 		return -EINVAL;
6297 	}
6298 	return 0;
6299 }
6300 
6301 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6302 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6303 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6304 #define BTF_TYPE_SAFE_TRUSTED_OR_NULL(__type)  __PASTE(__type, __safe_trusted_or_null)
6305 
6306 /*
6307  * Allow list few fields as RCU trusted or full trusted.
6308  * This logic doesn't allow mix tagging and will be removed once GCC supports
6309  * btf_type_tag.
6310  */
6311 
6312 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6313 BTF_TYPE_SAFE_RCU(struct task_struct) {
6314 	const cpumask_t *cpus_ptr;
6315 	struct css_set __rcu *cgroups;
6316 	struct task_struct __rcu *real_parent;
6317 	struct task_struct *group_leader;
6318 };
6319 
6320 BTF_TYPE_SAFE_RCU(struct cgroup) {
6321 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6322 	struct kernfs_node *kn;
6323 };
6324 
6325 BTF_TYPE_SAFE_RCU(struct css_set) {
6326 	struct cgroup *dfl_cgrp;
6327 };
6328 
6329 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6330 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6331 	struct file __rcu *exe_file;
6332 };
6333 
6334 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6335  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6336  */
6337 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6338 	struct sock *sk;
6339 };
6340 
6341 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6342 	struct sock *sk;
6343 };
6344 
6345 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6346 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6347 	struct seq_file *seq;
6348 };
6349 
6350 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6351 	struct bpf_iter_meta *meta;
6352 	struct task_struct *task;
6353 };
6354 
6355 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6356 	struct file *file;
6357 };
6358 
6359 BTF_TYPE_SAFE_TRUSTED(struct file) {
6360 	struct inode *f_inode;
6361 };
6362 
6363 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6364 	/* no negative dentry-s in places where bpf can see it */
6365 	struct inode *d_inode;
6366 };
6367 
6368 BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket) {
6369 	struct sock *sk;
6370 };
6371 
6372 static bool type_is_rcu(struct bpf_verifier_env *env,
6373 			struct bpf_reg_state *reg,
6374 			const char *field_name, u32 btf_id)
6375 {
6376 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6377 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6378 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6379 
6380 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6381 }
6382 
6383 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6384 				struct bpf_reg_state *reg,
6385 				const char *field_name, u32 btf_id)
6386 {
6387 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6388 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6389 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6390 
6391 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6392 }
6393 
6394 static bool type_is_trusted(struct bpf_verifier_env *env,
6395 			    struct bpf_reg_state *reg,
6396 			    const char *field_name, u32 btf_id)
6397 {
6398 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6399 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6400 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6401 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6402 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6403 
6404 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6405 }
6406 
6407 static bool type_is_trusted_or_null(struct bpf_verifier_env *env,
6408 				    struct bpf_reg_state *reg,
6409 				    const char *field_name, u32 btf_id)
6410 {
6411 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED_OR_NULL(struct socket));
6412 
6413 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id,
6414 					  "__safe_trusted_or_null");
6415 }
6416 
6417 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6418 				   struct bpf_reg_state *regs,
6419 				   int regno, int off, int size,
6420 				   enum bpf_access_type atype,
6421 				   int value_regno)
6422 {
6423 	struct bpf_reg_state *reg = regs + regno;
6424 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6425 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6426 	const char *field_name = NULL;
6427 	enum bpf_type_flag flag = 0;
6428 	u32 btf_id = 0;
6429 	int ret;
6430 
6431 	if (!env->allow_ptr_leaks) {
6432 		verbose(env,
6433 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6434 			tname);
6435 		return -EPERM;
6436 	}
6437 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6438 		verbose(env,
6439 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6440 			tname);
6441 		return -EINVAL;
6442 	}
6443 	if (off < 0) {
6444 		verbose(env,
6445 			"R%d is ptr_%s invalid negative access: off=%d\n",
6446 			regno, tname, off);
6447 		return -EACCES;
6448 	}
6449 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6450 		char tn_buf[48];
6451 
6452 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6453 		verbose(env,
6454 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6455 			regno, tname, off, tn_buf);
6456 		return -EACCES;
6457 	}
6458 
6459 	if (reg->type & MEM_USER) {
6460 		verbose(env,
6461 			"R%d is ptr_%s access user memory: off=%d\n",
6462 			regno, tname, off);
6463 		return -EACCES;
6464 	}
6465 
6466 	if (reg->type & MEM_PERCPU) {
6467 		verbose(env,
6468 			"R%d is ptr_%s access percpu memory: off=%d\n",
6469 			regno, tname, off);
6470 		return -EACCES;
6471 	}
6472 
6473 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6474 		if (!btf_is_kernel(reg->btf)) {
6475 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6476 			return -EFAULT;
6477 		}
6478 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6479 	} else {
6480 		/* Writes are permitted with default btf_struct_access for
6481 		 * program allocated objects (which always have ref_obj_id > 0),
6482 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6483 		 */
6484 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6485 			verbose(env, "only read is supported\n");
6486 			return -EACCES;
6487 		}
6488 
6489 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6490 		    !reg->ref_obj_id) {
6491 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6492 			return -EFAULT;
6493 		}
6494 
6495 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6496 	}
6497 
6498 	if (ret < 0)
6499 		return ret;
6500 
6501 	if (ret != PTR_TO_BTF_ID) {
6502 		/* just mark; */
6503 
6504 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6505 		/* If this is an untrusted pointer, all pointers formed by walking it
6506 		 * also inherit the untrusted flag.
6507 		 */
6508 		flag = PTR_UNTRUSTED;
6509 
6510 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6511 		/* By default any pointer obtained from walking a trusted pointer is no
6512 		 * longer trusted, unless the field being accessed has explicitly been
6513 		 * marked as inheriting its parent's state of trust (either full or RCU).
6514 		 * For example:
6515 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6516 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6517 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6518 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6519 		 *
6520 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6521 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6522 		 */
6523 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6524 			flag |= PTR_TRUSTED;
6525 		} else if (type_is_trusted_or_null(env, reg, field_name, btf_id)) {
6526 			flag |= PTR_TRUSTED | PTR_MAYBE_NULL;
6527 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6528 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6529 				/* ignore __rcu tag and mark it MEM_RCU */
6530 				flag |= MEM_RCU;
6531 			} else if (flag & MEM_RCU ||
6532 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6533 				/* __rcu tagged pointers can be NULL */
6534 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6535 
6536 				/* We always trust them */
6537 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6538 				    flag & PTR_UNTRUSTED)
6539 					flag &= ~PTR_UNTRUSTED;
6540 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6541 				/* keep as-is */
6542 			} else {
6543 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6544 				clear_trusted_flags(&flag);
6545 			}
6546 		} else {
6547 			/*
6548 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6549 			 * aggressively mark as untrusted otherwise such
6550 			 * pointers will be plain PTR_TO_BTF_ID without flags
6551 			 * and will be allowed to be passed into helpers for
6552 			 * compat reasons.
6553 			 */
6554 			flag = PTR_UNTRUSTED;
6555 		}
6556 	} else {
6557 		/* Old compat. Deprecated */
6558 		clear_trusted_flags(&flag);
6559 	}
6560 
6561 	if (atype == BPF_READ && value_regno >= 0)
6562 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6563 
6564 	return 0;
6565 }
6566 
6567 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6568 				   struct bpf_reg_state *regs,
6569 				   int regno, int off, int size,
6570 				   enum bpf_access_type atype,
6571 				   int value_regno)
6572 {
6573 	struct bpf_reg_state *reg = regs + regno;
6574 	struct bpf_map *map = reg->map_ptr;
6575 	struct bpf_reg_state map_reg;
6576 	enum bpf_type_flag flag = 0;
6577 	const struct btf_type *t;
6578 	const char *tname;
6579 	u32 btf_id;
6580 	int ret;
6581 
6582 	if (!btf_vmlinux) {
6583 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6584 		return -ENOTSUPP;
6585 	}
6586 
6587 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6588 		verbose(env, "map_ptr access not supported for map type %d\n",
6589 			map->map_type);
6590 		return -ENOTSUPP;
6591 	}
6592 
6593 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6594 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6595 
6596 	if (!env->allow_ptr_leaks) {
6597 		verbose(env,
6598 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6599 			tname);
6600 		return -EPERM;
6601 	}
6602 
6603 	if (off < 0) {
6604 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6605 			regno, tname, off);
6606 		return -EACCES;
6607 	}
6608 
6609 	if (atype != BPF_READ) {
6610 		verbose(env, "only read from %s is supported\n", tname);
6611 		return -EACCES;
6612 	}
6613 
6614 	/* Simulate access to a PTR_TO_BTF_ID */
6615 	memset(&map_reg, 0, sizeof(map_reg));
6616 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6617 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6618 	if (ret < 0)
6619 		return ret;
6620 
6621 	if (value_regno >= 0)
6622 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6623 
6624 	return 0;
6625 }
6626 
6627 /* Check that the stack access at the given offset is within bounds. The
6628  * maximum valid offset is -1.
6629  *
6630  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6631  * -state->allocated_stack for reads.
6632  */
6633 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6634                                           s64 off,
6635                                           struct bpf_func_state *state,
6636                                           enum bpf_access_type t)
6637 {
6638 	int min_valid_off;
6639 
6640 	if (t == BPF_WRITE || env->allow_uninit_stack)
6641 		min_valid_off = -MAX_BPF_STACK;
6642 	else
6643 		min_valid_off = -state->allocated_stack;
6644 
6645 	if (off < min_valid_off || off > -1)
6646 		return -EACCES;
6647 	return 0;
6648 }
6649 
6650 /* Check that the stack access at 'regno + off' falls within the maximum stack
6651  * bounds.
6652  *
6653  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6654  */
6655 static int check_stack_access_within_bounds(
6656 		struct bpf_verifier_env *env,
6657 		int regno, int off, int access_size,
6658 		enum bpf_access_src src, enum bpf_access_type type)
6659 {
6660 	struct bpf_reg_state *regs = cur_regs(env);
6661 	struct bpf_reg_state *reg = regs + regno;
6662 	struct bpf_func_state *state = func(env, reg);
6663 	s64 min_off, max_off;
6664 	int err;
6665 	char *err_extra;
6666 
6667 	if (src == ACCESS_HELPER)
6668 		/* We don't know if helpers are reading or writing (or both). */
6669 		err_extra = " indirect access to";
6670 	else if (type == BPF_READ)
6671 		err_extra = " read from";
6672 	else
6673 		err_extra = " write to";
6674 
6675 	if (tnum_is_const(reg->var_off)) {
6676 		min_off = (s64)reg->var_off.value + off;
6677 		max_off = min_off + access_size;
6678 	} else {
6679 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6680 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6681 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6682 				err_extra, regno);
6683 			return -EACCES;
6684 		}
6685 		min_off = reg->smin_value + off;
6686 		max_off = reg->smax_value + off + access_size;
6687 	}
6688 
6689 	err = check_stack_slot_within_bounds(env, min_off, state, type);
6690 	if (!err && max_off > 0)
6691 		err = -EINVAL; /* out of stack access into non-negative offsets */
6692 	if (!err && access_size < 0)
6693 		/* access_size should not be negative (or overflow an int); others checks
6694 		 * along the way should have prevented such an access.
6695 		 */
6696 		err = -EFAULT; /* invalid negative access size; integer overflow? */
6697 
6698 	if (err) {
6699 		if (tnum_is_const(reg->var_off)) {
6700 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6701 				err_extra, regno, off, access_size);
6702 		} else {
6703 			char tn_buf[48];
6704 
6705 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6706 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6707 				err_extra, regno, tn_buf, access_size);
6708 		}
6709 		return err;
6710 	}
6711 
6712 	return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE));
6713 }
6714 
6715 /* check whether memory at (regno + off) is accessible for t = (read | write)
6716  * if t==write, value_regno is a register which value is stored into memory
6717  * if t==read, value_regno is a register which will receive the value from memory
6718  * if t==write && value_regno==-1, some unknown value is stored into memory
6719  * if t==read && value_regno==-1, don't care what we read from memory
6720  */
6721 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6722 			    int off, int bpf_size, enum bpf_access_type t,
6723 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6724 {
6725 	struct bpf_reg_state *regs = cur_regs(env);
6726 	struct bpf_reg_state *reg = regs + regno;
6727 	int size, err = 0;
6728 
6729 	size = bpf_size_to_bytes(bpf_size);
6730 	if (size < 0)
6731 		return size;
6732 
6733 	/* alignment checks will add in reg->off themselves */
6734 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6735 	if (err)
6736 		return err;
6737 
6738 	/* for access checks, reg->off is just part of off */
6739 	off += reg->off;
6740 
6741 	if (reg->type == PTR_TO_MAP_KEY) {
6742 		if (t == BPF_WRITE) {
6743 			verbose(env, "write to change key R%d not allowed\n", regno);
6744 			return -EACCES;
6745 		}
6746 
6747 		err = check_mem_region_access(env, regno, off, size,
6748 					      reg->map_ptr->key_size, false);
6749 		if (err)
6750 			return err;
6751 		if (value_regno >= 0)
6752 			mark_reg_unknown(env, regs, value_regno);
6753 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6754 		struct btf_field *kptr_field = NULL;
6755 
6756 		if (t == BPF_WRITE && value_regno >= 0 &&
6757 		    is_pointer_value(env, value_regno)) {
6758 			verbose(env, "R%d leaks addr into map\n", value_regno);
6759 			return -EACCES;
6760 		}
6761 		err = check_map_access_type(env, regno, off, size, t);
6762 		if (err)
6763 			return err;
6764 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6765 		if (err)
6766 			return err;
6767 		if (tnum_is_const(reg->var_off))
6768 			kptr_field = btf_record_find(reg->map_ptr->record,
6769 						     off + reg->var_off.value, BPF_KPTR);
6770 		if (kptr_field) {
6771 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6772 		} else if (t == BPF_READ && value_regno >= 0) {
6773 			struct bpf_map *map = reg->map_ptr;
6774 
6775 			/* if map is read-only, track its contents as scalars */
6776 			if (tnum_is_const(reg->var_off) &&
6777 			    bpf_map_is_rdonly(map) &&
6778 			    map->ops->map_direct_value_addr) {
6779 				int map_off = off + reg->var_off.value;
6780 				u64 val = 0;
6781 
6782 				err = bpf_map_direct_read(map, map_off, size,
6783 							  &val, is_ldsx);
6784 				if (err)
6785 					return err;
6786 
6787 				regs[value_regno].type = SCALAR_VALUE;
6788 				__mark_reg_known(&regs[value_regno], val);
6789 			} else {
6790 				mark_reg_unknown(env, regs, value_regno);
6791 			}
6792 		}
6793 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6794 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6795 
6796 		if (type_may_be_null(reg->type)) {
6797 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6798 				reg_type_str(env, reg->type));
6799 			return -EACCES;
6800 		}
6801 
6802 		if (t == BPF_WRITE && rdonly_mem) {
6803 			verbose(env, "R%d cannot write into %s\n",
6804 				regno, reg_type_str(env, reg->type));
6805 			return -EACCES;
6806 		}
6807 
6808 		if (t == BPF_WRITE && value_regno >= 0 &&
6809 		    is_pointer_value(env, value_regno)) {
6810 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6811 			return -EACCES;
6812 		}
6813 
6814 		err = check_mem_region_access(env, regno, off, size,
6815 					      reg->mem_size, false);
6816 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6817 			mark_reg_unknown(env, regs, value_regno);
6818 	} else if (reg->type == PTR_TO_CTX) {
6819 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6820 		struct btf *btf = NULL;
6821 		u32 btf_id = 0;
6822 
6823 		if (t == BPF_WRITE && value_regno >= 0 &&
6824 		    is_pointer_value(env, value_regno)) {
6825 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6826 			return -EACCES;
6827 		}
6828 
6829 		err = check_ptr_off_reg(env, reg, regno);
6830 		if (err < 0)
6831 			return err;
6832 
6833 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6834 				       &btf_id);
6835 		if (err)
6836 			verbose_linfo(env, insn_idx, "; ");
6837 		if (!err && t == BPF_READ && value_regno >= 0) {
6838 			/* ctx access returns either a scalar, or a
6839 			 * PTR_TO_PACKET[_META,_END]. In the latter
6840 			 * case, we know the offset is zero.
6841 			 */
6842 			if (reg_type == SCALAR_VALUE) {
6843 				mark_reg_unknown(env, regs, value_regno);
6844 			} else {
6845 				mark_reg_known_zero(env, regs,
6846 						    value_regno);
6847 				if (type_may_be_null(reg_type))
6848 					regs[value_regno].id = ++env->id_gen;
6849 				/* A load of ctx field could have different
6850 				 * actual load size with the one encoded in the
6851 				 * insn. When the dst is PTR, it is for sure not
6852 				 * a sub-register.
6853 				 */
6854 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6855 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6856 					regs[value_regno].btf = btf;
6857 					regs[value_regno].btf_id = btf_id;
6858 				}
6859 			}
6860 			regs[value_regno].type = reg_type;
6861 		}
6862 
6863 	} else if (reg->type == PTR_TO_STACK) {
6864 		/* Basic bounds checks. */
6865 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6866 		if (err)
6867 			return err;
6868 
6869 		if (t == BPF_READ)
6870 			err = check_stack_read(env, regno, off, size,
6871 					       value_regno);
6872 		else
6873 			err = check_stack_write(env, regno, off, size,
6874 						value_regno, insn_idx);
6875 	} else if (reg_is_pkt_pointer(reg)) {
6876 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6877 			verbose(env, "cannot write into packet\n");
6878 			return -EACCES;
6879 		}
6880 		if (t == BPF_WRITE && value_regno >= 0 &&
6881 		    is_pointer_value(env, value_regno)) {
6882 			verbose(env, "R%d leaks addr into packet\n",
6883 				value_regno);
6884 			return -EACCES;
6885 		}
6886 		err = check_packet_access(env, regno, off, size, false);
6887 		if (!err && t == BPF_READ && value_regno >= 0)
6888 			mark_reg_unknown(env, regs, value_regno);
6889 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6890 		if (t == BPF_WRITE && value_regno >= 0 &&
6891 		    is_pointer_value(env, value_regno)) {
6892 			verbose(env, "R%d leaks addr into flow keys\n",
6893 				value_regno);
6894 			return -EACCES;
6895 		}
6896 
6897 		err = check_flow_keys_access(env, off, size);
6898 		if (!err && t == BPF_READ && value_regno >= 0)
6899 			mark_reg_unknown(env, regs, value_regno);
6900 	} else if (type_is_sk_pointer(reg->type)) {
6901 		if (t == BPF_WRITE) {
6902 			verbose(env, "R%d cannot write into %s\n",
6903 				regno, reg_type_str(env, reg->type));
6904 			return -EACCES;
6905 		}
6906 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6907 		if (!err && value_regno >= 0)
6908 			mark_reg_unknown(env, regs, value_regno);
6909 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6910 		err = check_tp_buffer_access(env, reg, regno, off, size);
6911 		if (!err && t == BPF_READ && value_regno >= 0)
6912 			mark_reg_unknown(env, regs, value_regno);
6913 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6914 		   !type_may_be_null(reg->type)) {
6915 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6916 					      value_regno);
6917 	} else if (reg->type == CONST_PTR_TO_MAP) {
6918 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6919 					      value_regno);
6920 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6921 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6922 		u32 *max_access;
6923 
6924 		if (rdonly_mem) {
6925 			if (t == BPF_WRITE) {
6926 				verbose(env, "R%d cannot write into %s\n",
6927 					regno, reg_type_str(env, reg->type));
6928 				return -EACCES;
6929 			}
6930 			max_access = &env->prog->aux->max_rdonly_access;
6931 		} else {
6932 			max_access = &env->prog->aux->max_rdwr_access;
6933 		}
6934 
6935 		err = check_buffer_access(env, reg, regno, off, size, false,
6936 					  max_access);
6937 
6938 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6939 			mark_reg_unknown(env, regs, value_regno);
6940 	} else {
6941 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6942 			reg_type_str(env, reg->type));
6943 		return -EACCES;
6944 	}
6945 
6946 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6947 	    regs[value_regno].type == SCALAR_VALUE) {
6948 		if (!is_ldsx)
6949 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6950 			coerce_reg_to_size(&regs[value_regno], size);
6951 		else
6952 			coerce_reg_to_size_sx(&regs[value_regno], size);
6953 	}
6954 	return err;
6955 }
6956 
6957 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6958 {
6959 	int load_reg;
6960 	int err;
6961 
6962 	switch (insn->imm) {
6963 	case BPF_ADD:
6964 	case BPF_ADD | BPF_FETCH:
6965 	case BPF_AND:
6966 	case BPF_AND | BPF_FETCH:
6967 	case BPF_OR:
6968 	case BPF_OR | BPF_FETCH:
6969 	case BPF_XOR:
6970 	case BPF_XOR | BPF_FETCH:
6971 	case BPF_XCHG:
6972 	case BPF_CMPXCHG:
6973 		break;
6974 	default:
6975 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6976 		return -EINVAL;
6977 	}
6978 
6979 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6980 		verbose(env, "invalid atomic operand size\n");
6981 		return -EINVAL;
6982 	}
6983 
6984 	/* check src1 operand */
6985 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6986 	if (err)
6987 		return err;
6988 
6989 	/* check src2 operand */
6990 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6991 	if (err)
6992 		return err;
6993 
6994 	if (insn->imm == BPF_CMPXCHG) {
6995 		/* Check comparison of R0 with memory location */
6996 		const u32 aux_reg = BPF_REG_0;
6997 
6998 		err = check_reg_arg(env, aux_reg, SRC_OP);
6999 		if (err)
7000 			return err;
7001 
7002 		if (is_pointer_value(env, aux_reg)) {
7003 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
7004 			return -EACCES;
7005 		}
7006 	}
7007 
7008 	if (is_pointer_value(env, insn->src_reg)) {
7009 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
7010 		return -EACCES;
7011 	}
7012 
7013 	if (is_ctx_reg(env, insn->dst_reg) ||
7014 	    is_pkt_reg(env, insn->dst_reg) ||
7015 	    is_flow_key_reg(env, insn->dst_reg) ||
7016 	    is_sk_reg(env, insn->dst_reg)) {
7017 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
7018 			insn->dst_reg,
7019 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
7020 		return -EACCES;
7021 	}
7022 
7023 	if (insn->imm & BPF_FETCH) {
7024 		if (insn->imm == BPF_CMPXCHG)
7025 			load_reg = BPF_REG_0;
7026 		else
7027 			load_reg = insn->src_reg;
7028 
7029 		/* check and record load of old value */
7030 		err = check_reg_arg(env, load_reg, DST_OP);
7031 		if (err)
7032 			return err;
7033 	} else {
7034 		/* This instruction accesses a memory location but doesn't
7035 		 * actually load it into a register.
7036 		 */
7037 		load_reg = -1;
7038 	}
7039 
7040 	/* Check whether we can read the memory, with second call for fetch
7041 	 * case to simulate the register fill.
7042 	 */
7043 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7044 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
7045 	if (!err && load_reg >= 0)
7046 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7047 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
7048 				       true, false);
7049 	if (err)
7050 		return err;
7051 
7052 	/* Check whether we can write into the same memory. */
7053 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
7054 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
7055 	if (err)
7056 		return err;
7057 	return 0;
7058 }
7059 
7060 /* When register 'regno' is used to read the stack (either directly or through
7061  * a helper function) make sure that it's within stack boundary and, depending
7062  * on the access type and privileges, that all elements of the stack are
7063  * initialized.
7064  *
7065  * 'off' includes 'regno->off', but not its dynamic part (if any).
7066  *
7067  * All registers that have been spilled on the stack in the slots within the
7068  * read offsets are marked as read.
7069  */
7070 static int check_stack_range_initialized(
7071 		struct bpf_verifier_env *env, int regno, int off,
7072 		int access_size, bool zero_size_allowed,
7073 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
7074 {
7075 	struct bpf_reg_state *reg = reg_state(env, regno);
7076 	struct bpf_func_state *state = func(env, reg);
7077 	int err, min_off, max_off, i, j, slot, spi;
7078 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
7079 	enum bpf_access_type bounds_check_type;
7080 	/* Some accesses can write anything into the stack, others are
7081 	 * read-only.
7082 	 */
7083 	bool clobber = false;
7084 
7085 	if (access_size == 0 && !zero_size_allowed) {
7086 		verbose(env, "invalid zero-sized read\n");
7087 		return -EACCES;
7088 	}
7089 
7090 	if (type == ACCESS_HELPER) {
7091 		/* The bounds checks for writes are more permissive than for
7092 		 * reads. However, if raw_mode is not set, we'll do extra
7093 		 * checks below.
7094 		 */
7095 		bounds_check_type = BPF_WRITE;
7096 		clobber = true;
7097 	} else {
7098 		bounds_check_type = BPF_READ;
7099 	}
7100 	err = check_stack_access_within_bounds(env, regno, off, access_size,
7101 					       type, bounds_check_type);
7102 	if (err)
7103 		return err;
7104 
7105 
7106 	if (tnum_is_const(reg->var_off)) {
7107 		min_off = max_off = reg->var_off.value + off;
7108 	} else {
7109 		/* Variable offset is prohibited for unprivileged mode for
7110 		 * simplicity since it requires corresponding support in
7111 		 * Spectre masking for stack ALU.
7112 		 * See also retrieve_ptr_limit().
7113 		 */
7114 		if (!env->bypass_spec_v1) {
7115 			char tn_buf[48];
7116 
7117 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7118 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
7119 				regno, err_extra, tn_buf);
7120 			return -EACCES;
7121 		}
7122 		/* Only initialized buffer on stack is allowed to be accessed
7123 		 * with variable offset. With uninitialized buffer it's hard to
7124 		 * guarantee that whole memory is marked as initialized on
7125 		 * helper return since specific bounds are unknown what may
7126 		 * cause uninitialized stack leaking.
7127 		 */
7128 		if (meta && meta->raw_mode)
7129 			meta = NULL;
7130 
7131 		min_off = reg->smin_value + off;
7132 		max_off = reg->smax_value + off;
7133 	}
7134 
7135 	if (meta && meta->raw_mode) {
7136 		/* Ensure we won't be overwriting dynptrs when simulating byte
7137 		 * by byte access in check_helper_call using meta.access_size.
7138 		 * This would be a problem if we have a helper in the future
7139 		 * which takes:
7140 		 *
7141 		 *	helper(uninit_mem, len, dynptr)
7142 		 *
7143 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
7144 		 * may end up writing to dynptr itself when touching memory from
7145 		 * arg 1. This can be relaxed on a case by case basis for known
7146 		 * safe cases, but reject due to the possibilitiy of aliasing by
7147 		 * default.
7148 		 */
7149 		for (i = min_off; i < max_off + access_size; i++) {
7150 			int stack_off = -i - 1;
7151 
7152 			spi = __get_spi(i);
7153 			/* raw_mode may write past allocated_stack */
7154 			if (state->allocated_stack <= stack_off)
7155 				continue;
7156 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
7157 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
7158 				return -EACCES;
7159 			}
7160 		}
7161 		meta->access_size = access_size;
7162 		meta->regno = regno;
7163 		return 0;
7164 	}
7165 
7166 	for (i = min_off; i < max_off + access_size; i++) {
7167 		u8 *stype;
7168 
7169 		slot = -i - 1;
7170 		spi = slot / BPF_REG_SIZE;
7171 		if (state->allocated_stack <= slot) {
7172 			verbose(env, "verifier bug: allocated_stack too small");
7173 			return -EFAULT;
7174 		}
7175 
7176 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
7177 		if (*stype == STACK_MISC)
7178 			goto mark;
7179 		if ((*stype == STACK_ZERO) ||
7180 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
7181 			if (clobber) {
7182 				/* helper can write anything into the stack */
7183 				*stype = STACK_MISC;
7184 			}
7185 			goto mark;
7186 		}
7187 
7188 		if (is_spilled_reg(&state->stack[spi]) &&
7189 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
7190 		     env->allow_ptr_leaks)) {
7191 			if (clobber) {
7192 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
7193 				for (j = 0; j < BPF_REG_SIZE; j++)
7194 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
7195 			}
7196 			goto mark;
7197 		}
7198 
7199 		if (tnum_is_const(reg->var_off)) {
7200 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
7201 				err_extra, regno, min_off, i - min_off, access_size);
7202 		} else {
7203 			char tn_buf[48];
7204 
7205 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7206 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
7207 				err_extra, regno, tn_buf, i - min_off, access_size);
7208 		}
7209 		return -EACCES;
7210 mark:
7211 		/* reading any byte out of 8-byte 'spill_slot' will cause
7212 		 * the whole slot to be marked as 'read'
7213 		 */
7214 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
7215 			      state->stack[spi].spilled_ptr.parent,
7216 			      REG_LIVE_READ64);
7217 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
7218 		 * be sure that whether stack slot is written to or not. Hence,
7219 		 * we must still conservatively propagate reads upwards even if
7220 		 * helper may write to the entire memory range.
7221 		 */
7222 	}
7223 	return 0;
7224 }
7225 
7226 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
7227 				   int access_size, enum bpf_access_type access_type,
7228 				   bool zero_size_allowed,
7229 				   struct bpf_call_arg_meta *meta)
7230 {
7231 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7232 	u32 *max_access;
7233 
7234 	switch (base_type(reg->type)) {
7235 	case PTR_TO_PACKET:
7236 	case PTR_TO_PACKET_META:
7237 		return check_packet_access(env, regno, reg->off, access_size,
7238 					   zero_size_allowed);
7239 	case PTR_TO_MAP_KEY:
7240 		if (access_type == BPF_WRITE) {
7241 			verbose(env, "R%d cannot write into %s\n", regno,
7242 				reg_type_str(env, reg->type));
7243 			return -EACCES;
7244 		}
7245 		return check_mem_region_access(env, regno, reg->off, access_size,
7246 					       reg->map_ptr->key_size, false);
7247 	case PTR_TO_MAP_VALUE:
7248 		if (check_map_access_type(env, regno, reg->off, access_size, access_type))
7249 			return -EACCES;
7250 		return check_map_access(env, regno, reg->off, access_size,
7251 					zero_size_allowed, ACCESS_HELPER);
7252 	case PTR_TO_MEM:
7253 		if (type_is_rdonly_mem(reg->type)) {
7254 			if (access_type == BPF_WRITE) {
7255 				verbose(env, "R%d cannot write into %s\n", regno,
7256 					reg_type_str(env, reg->type));
7257 				return -EACCES;
7258 			}
7259 		}
7260 		return check_mem_region_access(env, regno, reg->off,
7261 					       access_size, reg->mem_size,
7262 					       zero_size_allowed);
7263 	case PTR_TO_BUF:
7264 		if (type_is_rdonly_mem(reg->type)) {
7265 			if (access_type == BPF_WRITE) {
7266 				verbose(env, "R%d cannot write into %s\n", regno,
7267 					reg_type_str(env, reg->type));
7268 				return -EACCES;
7269 			}
7270 
7271 			max_access = &env->prog->aux->max_rdonly_access;
7272 		} else {
7273 			max_access = &env->prog->aux->max_rdwr_access;
7274 		}
7275 		return check_buffer_access(env, reg, regno, reg->off,
7276 					   access_size, zero_size_allowed,
7277 					   max_access);
7278 	case PTR_TO_STACK:
7279 		return check_stack_range_initialized(
7280 				env,
7281 				regno, reg->off, access_size,
7282 				zero_size_allowed, ACCESS_HELPER, meta);
7283 	case PTR_TO_BTF_ID:
7284 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7285 					       access_size, BPF_READ, -1);
7286 	case PTR_TO_CTX:
7287 		/* in case the function doesn't know how to access the context,
7288 		 * (because we are in a program of type SYSCALL for example), we
7289 		 * can not statically check its size.
7290 		 * Dynamically check it now.
7291 		 */
7292 		if (!env->ops->convert_ctx_access) {
7293 			int offset = access_size - 1;
7294 
7295 			/* Allow zero-byte read from PTR_TO_CTX */
7296 			if (access_size == 0)
7297 				return zero_size_allowed ? 0 : -EACCES;
7298 
7299 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7300 						access_type, -1, false, false);
7301 		}
7302 
7303 		fallthrough;
7304 	default: /* scalar_value or invalid ptr */
7305 		/* Allow zero-byte read from NULL, regardless of pointer type */
7306 		if (zero_size_allowed && access_size == 0 &&
7307 		    register_is_null(reg))
7308 			return 0;
7309 
7310 		verbose(env, "R%d type=%s ", regno,
7311 			reg_type_str(env, reg->type));
7312 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7313 		return -EACCES;
7314 	}
7315 }
7316 
7317 static int check_mem_size_reg(struct bpf_verifier_env *env,
7318 			      struct bpf_reg_state *reg, u32 regno,
7319 			      enum bpf_access_type access_type,
7320 			      bool zero_size_allowed,
7321 			      struct bpf_call_arg_meta *meta)
7322 {
7323 	int err;
7324 
7325 	/* This is used to refine r0 return value bounds for helpers
7326 	 * that enforce this value as an upper bound on return values.
7327 	 * See do_refine_retval_range() for helpers that can refine
7328 	 * the return value. C type of helper is u32 so we pull register
7329 	 * bound from umax_value however, if negative verifier errors
7330 	 * out. Only upper bounds can be learned because retval is an
7331 	 * int type and negative retvals are allowed.
7332 	 */
7333 	meta->msize_max_value = reg->umax_value;
7334 
7335 	/* The register is SCALAR_VALUE; the access check happens using
7336 	 * its boundaries. For unprivileged variable accesses, disable
7337 	 * raw mode so that the program is required to initialize all
7338 	 * the memory that the helper could just partially fill up.
7339 	 */
7340 	if (!tnum_is_const(reg->var_off))
7341 		meta = NULL;
7342 
7343 	if (reg->smin_value < 0) {
7344 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7345 			regno);
7346 		return -EACCES;
7347 	}
7348 
7349 	if (reg->umin_value == 0 && !zero_size_allowed) {
7350 		verbose(env, "R%d invalid zero-sized read: u64=[%lld,%lld]\n",
7351 			regno, reg->umin_value, reg->umax_value);
7352 		return -EACCES;
7353 	}
7354 
7355 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7356 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7357 			regno);
7358 		return -EACCES;
7359 	}
7360 	err = check_helper_mem_access(env, regno - 1, reg->umax_value,
7361 				      access_type, zero_size_allowed, meta);
7362 	if (!err)
7363 		err = mark_chain_precision(env, regno);
7364 	return err;
7365 }
7366 
7367 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7368 		   u32 regno, u32 mem_size)
7369 {
7370 	bool may_be_null = type_may_be_null(reg->type);
7371 	struct bpf_reg_state saved_reg;
7372 	int err;
7373 
7374 	if (register_is_null(reg))
7375 		return 0;
7376 
7377 	/* Assuming that the register contains a value check if the memory
7378 	 * access is safe. Temporarily save and restore the register's state as
7379 	 * the conversion shouldn't be visible to a caller.
7380 	 */
7381 	if (may_be_null) {
7382 		saved_reg = *reg;
7383 		mark_ptr_not_null_reg(reg);
7384 	}
7385 
7386 	err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
7387 	err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
7388 
7389 	if (may_be_null)
7390 		*reg = saved_reg;
7391 
7392 	return err;
7393 }
7394 
7395 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7396 				    u32 regno)
7397 {
7398 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7399 	bool may_be_null = type_may_be_null(mem_reg->type);
7400 	struct bpf_reg_state saved_reg;
7401 	struct bpf_call_arg_meta meta;
7402 	int err;
7403 
7404 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7405 
7406 	memset(&meta, 0, sizeof(meta));
7407 
7408 	if (may_be_null) {
7409 		saved_reg = *mem_reg;
7410 		mark_ptr_not_null_reg(mem_reg);
7411 	}
7412 
7413 	err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
7414 	err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
7415 
7416 	if (may_be_null)
7417 		*mem_reg = saved_reg;
7418 
7419 	return err;
7420 }
7421 
7422 /* Implementation details:
7423  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7424  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7425  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7426  * Two separate bpf_obj_new will also have different reg->id.
7427  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7428  * clears reg->id after value_or_null->value transition, since the verifier only
7429  * cares about the range of access to valid map value pointer and doesn't care
7430  * about actual address of the map element.
7431  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7432  * reg->id > 0 after value_or_null->value transition. By doing so
7433  * two bpf_map_lookups will be considered two different pointers that
7434  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7435  * returned from bpf_obj_new.
7436  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7437  * dead-locks.
7438  * Since only one bpf_spin_lock is allowed the checks are simpler than
7439  * reg_is_refcounted() logic. The verifier needs to remember only
7440  * one spin_lock instead of array of acquired_refs.
7441  * cur_state->active_lock remembers which map value element or allocated
7442  * object got locked and clears it after bpf_spin_unlock.
7443  */
7444 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7445 			     bool is_lock)
7446 {
7447 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7448 	struct bpf_verifier_state *cur = env->cur_state;
7449 	bool is_const = tnum_is_const(reg->var_off);
7450 	u64 val = reg->var_off.value;
7451 	struct bpf_map *map = NULL;
7452 	struct btf *btf = NULL;
7453 	struct btf_record *rec;
7454 
7455 	if (!is_const) {
7456 		verbose(env,
7457 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7458 			regno);
7459 		return -EINVAL;
7460 	}
7461 	if (reg->type == PTR_TO_MAP_VALUE) {
7462 		map = reg->map_ptr;
7463 		if (!map->btf) {
7464 			verbose(env,
7465 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7466 				map->name);
7467 			return -EINVAL;
7468 		}
7469 	} else {
7470 		btf = reg->btf;
7471 	}
7472 
7473 	rec = reg_btf_record(reg);
7474 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7475 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7476 			map ? map->name : "kptr");
7477 		return -EINVAL;
7478 	}
7479 	if (rec->spin_lock_off != val + reg->off) {
7480 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7481 			val + reg->off, rec->spin_lock_off);
7482 		return -EINVAL;
7483 	}
7484 	if (is_lock) {
7485 		if (cur->active_lock.ptr) {
7486 			verbose(env,
7487 				"Locking two bpf_spin_locks are not allowed\n");
7488 			return -EINVAL;
7489 		}
7490 		if (map)
7491 			cur->active_lock.ptr = map;
7492 		else
7493 			cur->active_lock.ptr = btf;
7494 		cur->active_lock.id = reg->id;
7495 	} else {
7496 		void *ptr;
7497 
7498 		if (map)
7499 			ptr = map;
7500 		else
7501 			ptr = btf;
7502 
7503 		if (!cur->active_lock.ptr) {
7504 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7505 			return -EINVAL;
7506 		}
7507 		if (cur->active_lock.ptr != ptr ||
7508 		    cur->active_lock.id != reg->id) {
7509 			verbose(env, "bpf_spin_unlock of different lock\n");
7510 			return -EINVAL;
7511 		}
7512 
7513 		invalidate_non_owning_refs(env);
7514 
7515 		cur->active_lock.ptr = NULL;
7516 		cur->active_lock.id = 0;
7517 	}
7518 	return 0;
7519 }
7520 
7521 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7522 			      struct bpf_call_arg_meta *meta)
7523 {
7524 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7525 	bool is_const = tnum_is_const(reg->var_off);
7526 	struct bpf_map *map = reg->map_ptr;
7527 	u64 val = reg->var_off.value;
7528 
7529 	if (!is_const) {
7530 		verbose(env,
7531 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7532 			regno);
7533 		return -EINVAL;
7534 	}
7535 	if (!map->btf) {
7536 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7537 			map->name);
7538 		return -EINVAL;
7539 	}
7540 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7541 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7542 		return -EINVAL;
7543 	}
7544 	if (map->record->timer_off != val + reg->off) {
7545 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7546 			val + reg->off, map->record->timer_off);
7547 		return -EINVAL;
7548 	}
7549 	if (meta->map_ptr) {
7550 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7551 		return -EFAULT;
7552 	}
7553 	meta->map_uid = reg->map_uid;
7554 	meta->map_ptr = map;
7555 	return 0;
7556 }
7557 
7558 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7559 			     struct bpf_call_arg_meta *meta)
7560 {
7561 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7562 	struct bpf_map *map_ptr = reg->map_ptr;
7563 	struct btf_field *kptr_field;
7564 	u32 kptr_off;
7565 
7566 	if (!tnum_is_const(reg->var_off)) {
7567 		verbose(env,
7568 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7569 			regno);
7570 		return -EINVAL;
7571 	}
7572 	if (!map_ptr->btf) {
7573 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7574 			map_ptr->name);
7575 		return -EINVAL;
7576 	}
7577 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7578 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7579 		return -EINVAL;
7580 	}
7581 
7582 	meta->map_ptr = map_ptr;
7583 	kptr_off = reg->off + reg->var_off.value;
7584 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7585 	if (!kptr_field) {
7586 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7587 		return -EACCES;
7588 	}
7589 	if (kptr_field->type != BPF_KPTR_REF) {
7590 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7591 		return -EACCES;
7592 	}
7593 	meta->kptr_field = kptr_field;
7594 	return 0;
7595 }
7596 
7597 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7598  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7599  *
7600  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7601  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7602  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7603  *
7604  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7605  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7606  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7607  * mutate the view of the dynptr and also possibly destroy it. In the latter
7608  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7609  * memory that dynptr points to.
7610  *
7611  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7612  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7613  * readonly dynptr view yet, hence only the first case is tracked and checked.
7614  *
7615  * This is consistent with how C applies the const modifier to a struct object,
7616  * where the pointer itself inside bpf_dynptr becomes const but not what it
7617  * points to.
7618  *
7619  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7620  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7621  */
7622 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7623 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7624 {
7625 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7626 	int err;
7627 
7628 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7629 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7630 	 */
7631 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7632 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7633 		return -EFAULT;
7634 	}
7635 
7636 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7637 	 *		 constructing a mutable bpf_dynptr object.
7638 	 *
7639 	 *		 Currently, this is only possible with PTR_TO_STACK
7640 	 *		 pointing to a region of at least 16 bytes which doesn't
7641 	 *		 contain an existing bpf_dynptr.
7642 	 *
7643 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7644 	 *		 mutated or destroyed. However, the memory it points to
7645 	 *		 may be mutated.
7646 	 *
7647 	 *  None       - Points to a initialized dynptr that can be mutated and
7648 	 *		 destroyed, including mutation of the memory it points
7649 	 *		 to.
7650 	 */
7651 	if (arg_type & MEM_UNINIT) {
7652 		int i;
7653 
7654 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7655 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7656 			return -EINVAL;
7657 		}
7658 
7659 		/* we write BPF_DW bits (8 bytes) at a time */
7660 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7661 			err = check_mem_access(env, insn_idx, regno,
7662 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7663 			if (err)
7664 				return err;
7665 		}
7666 
7667 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7668 	} else /* MEM_RDONLY and None case from above */ {
7669 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7670 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7671 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7672 			return -EINVAL;
7673 		}
7674 
7675 		if (!is_dynptr_reg_valid_init(env, reg)) {
7676 			verbose(env,
7677 				"Expected an initialized dynptr as arg #%d\n",
7678 				regno);
7679 			return -EINVAL;
7680 		}
7681 
7682 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7683 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7684 			verbose(env,
7685 				"Expected a dynptr of type %s as arg #%d\n",
7686 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7687 			return -EINVAL;
7688 		}
7689 
7690 		err = mark_dynptr_read(env, reg);
7691 	}
7692 	return err;
7693 }
7694 
7695 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7696 {
7697 	struct bpf_func_state *state = func(env, reg);
7698 
7699 	return state->stack[spi].spilled_ptr.ref_obj_id;
7700 }
7701 
7702 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7703 {
7704 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7705 }
7706 
7707 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7708 {
7709 	return meta->kfunc_flags & KF_ITER_NEW;
7710 }
7711 
7712 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7713 {
7714 	return meta->kfunc_flags & KF_ITER_NEXT;
7715 }
7716 
7717 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7718 {
7719 	return meta->kfunc_flags & KF_ITER_DESTROY;
7720 }
7721 
7722 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7723 {
7724 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7725 	 * kfunc is iter state pointer
7726 	 */
7727 	return arg == 0 && is_iter_kfunc(meta);
7728 }
7729 
7730 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7731 			    struct bpf_kfunc_call_arg_meta *meta)
7732 {
7733 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7734 	const struct btf_type *t;
7735 	const struct btf_param *arg;
7736 	int spi, err, i, nr_slots;
7737 	u32 btf_id;
7738 
7739 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7740 	arg = &btf_params(meta->func_proto)[0];
7741 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7742 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7743 	nr_slots = t->size / BPF_REG_SIZE;
7744 
7745 	if (is_iter_new_kfunc(meta)) {
7746 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7747 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7748 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7749 				iter_type_str(meta->btf, btf_id), regno);
7750 			return -EINVAL;
7751 		}
7752 
7753 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7754 			err = check_mem_access(env, insn_idx, regno,
7755 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7756 			if (err)
7757 				return err;
7758 		}
7759 
7760 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7761 		if (err)
7762 			return err;
7763 	} else {
7764 		/* iter_next() or iter_destroy() expect initialized iter state*/
7765 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7766 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7767 				iter_type_str(meta->btf, btf_id), regno);
7768 			return -EINVAL;
7769 		}
7770 
7771 		spi = iter_get_spi(env, reg, nr_slots);
7772 		if (spi < 0)
7773 			return spi;
7774 
7775 		err = mark_iter_read(env, reg, spi, nr_slots);
7776 		if (err)
7777 			return err;
7778 
7779 		/* remember meta->iter info for process_iter_next_call() */
7780 		meta->iter.spi = spi;
7781 		meta->iter.frameno = reg->frameno;
7782 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7783 
7784 		if (is_iter_destroy_kfunc(meta)) {
7785 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7786 			if (err)
7787 				return err;
7788 		}
7789 	}
7790 
7791 	return 0;
7792 }
7793 
7794 /* Look for a previous loop entry at insn_idx: nearest parent state
7795  * stopped at insn_idx with callsites matching those in cur->frame.
7796  */
7797 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env,
7798 						  struct bpf_verifier_state *cur,
7799 						  int insn_idx)
7800 {
7801 	struct bpf_verifier_state_list *sl;
7802 	struct bpf_verifier_state *st;
7803 
7804 	/* Explored states are pushed in stack order, most recent states come first */
7805 	sl = *explored_state(env, insn_idx);
7806 	for (; sl; sl = sl->next) {
7807 		/* If st->branches != 0 state is a part of current DFS verification path,
7808 		 * hence cur & st for a loop.
7809 		 */
7810 		st = &sl->state;
7811 		if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) &&
7812 		    st->dfs_depth < cur->dfs_depth)
7813 			return st;
7814 	}
7815 
7816 	return NULL;
7817 }
7818 
7819 static void reset_idmap_scratch(struct bpf_verifier_env *env);
7820 static bool regs_exact(const struct bpf_reg_state *rold,
7821 		       const struct bpf_reg_state *rcur,
7822 		       struct bpf_idmap *idmap);
7823 
7824 static void maybe_widen_reg(struct bpf_verifier_env *env,
7825 			    struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7826 			    struct bpf_idmap *idmap)
7827 {
7828 	if (rold->type != SCALAR_VALUE)
7829 		return;
7830 	if (rold->type != rcur->type)
7831 		return;
7832 	if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap))
7833 		return;
7834 	__mark_reg_unknown(env, rcur);
7835 }
7836 
7837 static int widen_imprecise_scalars(struct bpf_verifier_env *env,
7838 				   struct bpf_verifier_state *old,
7839 				   struct bpf_verifier_state *cur)
7840 {
7841 	struct bpf_func_state *fold, *fcur;
7842 	int i, fr;
7843 
7844 	reset_idmap_scratch(env);
7845 	for (fr = old->curframe; fr >= 0; fr--) {
7846 		fold = old->frame[fr];
7847 		fcur = cur->frame[fr];
7848 
7849 		for (i = 0; i < MAX_BPF_REG; i++)
7850 			maybe_widen_reg(env,
7851 					&fold->regs[i],
7852 					&fcur->regs[i],
7853 					&env->idmap_scratch);
7854 
7855 		for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) {
7856 			if (!is_spilled_reg(&fold->stack[i]) ||
7857 			    !is_spilled_reg(&fcur->stack[i]))
7858 				continue;
7859 
7860 			maybe_widen_reg(env,
7861 					&fold->stack[i].spilled_ptr,
7862 					&fcur->stack[i].spilled_ptr,
7863 					&env->idmap_scratch);
7864 		}
7865 	}
7866 	return 0;
7867 }
7868 
7869 static struct bpf_reg_state *get_iter_from_state(struct bpf_verifier_state *cur_st,
7870 						 struct bpf_kfunc_call_arg_meta *meta)
7871 {
7872 	int iter_frameno = meta->iter.frameno;
7873 	int iter_spi = meta->iter.spi;
7874 
7875 	return &cur_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7876 }
7877 
7878 /* process_iter_next_call() is called when verifier gets to iterator's next
7879  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7880  * to it as just "iter_next()" in comments below.
7881  *
7882  * BPF verifier relies on a crucial contract for any iter_next()
7883  * implementation: it should *eventually* return NULL, and once that happens
7884  * it should keep returning NULL. That is, once iterator exhausts elements to
7885  * iterate, it should never reset or spuriously return new elements.
7886  *
7887  * With the assumption of such contract, process_iter_next_call() simulates
7888  * a fork in the verifier state to validate loop logic correctness and safety
7889  * without having to simulate infinite amount of iterations.
7890  *
7891  * In current state, we first assume that iter_next() returned NULL and
7892  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7893  * conditions we should not form an infinite loop and should eventually reach
7894  * exit.
7895  *
7896  * Besides that, we also fork current state and enqueue it for later
7897  * verification. In a forked state we keep iterator state as ACTIVE
7898  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7899  * also bump iteration depth to prevent erroneous infinite loop detection
7900  * later on (see iter_active_depths_differ() comment for details). In this
7901  * state we assume that we'll eventually loop back to another iter_next()
7902  * calls (it could be in exactly same location or in some other instruction,
7903  * it doesn't matter, we don't make any unnecessary assumptions about this,
7904  * everything revolves around iterator state in a stack slot, not which
7905  * instruction is calling iter_next()). When that happens, we either will come
7906  * to iter_next() with equivalent state and can conclude that next iteration
7907  * will proceed in exactly the same way as we just verified, so it's safe to
7908  * assume that loop converges. If not, we'll go on another iteration
7909  * simulation with a different input state, until all possible starting states
7910  * are validated or we reach maximum number of instructions limit.
7911  *
7912  * This way, we will either exhaustively discover all possible input states
7913  * that iterator loop can start with and eventually will converge, or we'll
7914  * effectively regress into bounded loop simulation logic and either reach
7915  * maximum number of instructions if loop is not provably convergent, or there
7916  * is some statically known limit on number of iterations (e.g., if there is
7917  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7918  *
7919  * Iteration convergence logic in is_state_visited() relies on exact
7920  * states comparison, which ignores read and precision marks.
7921  * This is necessary because read and precision marks are not finalized
7922  * while in the loop. Exact comparison might preclude convergence for
7923  * simple programs like below:
7924  *
7925  *     i = 0;
7926  *     while(iter_next(&it))
7927  *       i++;
7928  *
7929  * At each iteration step i++ would produce a new distinct state and
7930  * eventually instruction processing limit would be reached.
7931  *
7932  * To avoid such behavior speculatively forget (widen) range for
7933  * imprecise scalar registers, if those registers were not precise at the
7934  * end of the previous iteration and do not match exactly.
7935  *
7936  * This is a conservative heuristic that allows to verify wide range of programs,
7937  * however it precludes verification of programs that conjure an
7938  * imprecise value on the first loop iteration and use it as precise on a second.
7939  * For example, the following safe program would fail to verify:
7940  *
7941  *     struct bpf_num_iter it;
7942  *     int arr[10];
7943  *     int i = 0, a = 0;
7944  *     bpf_iter_num_new(&it, 0, 10);
7945  *     while (bpf_iter_num_next(&it)) {
7946  *       if (a == 0) {
7947  *         a = 1;
7948  *         i = 7; // Because i changed verifier would forget
7949  *                // it's range on second loop entry.
7950  *       } else {
7951  *         arr[i] = 42; // This would fail to verify.
7952  *       }
7953  *     }
7954  *     bpf_iter_num_destroy(&it);
7955  */
7956 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7957 				  struct bpf_kfunc_call_arg_meta *meta)
7958 {
7959 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st;
7960 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7961 	struct bpf_reg_state *cur_iter, *queued_iter;
7962 
7963 	BTF_TYPE_EMIT(struct bpf_iter);
7964 
7965 	cur_iter = get_iter_from_state(cur_st, meta);
7966 
7967 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7968 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7969 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7970 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7971 		return -EFAULT;
7972 	}
7973 
7974 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7975 		/* Because iter_next() call is a checkpoint is_state_visitied()
7976 		 * should guarantee parent state with same call sites and insn_idx.
7977 		 */
7978 		if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx ||
7979 		    !same_callsites(cur_st->parent, cur_st)) {
7980 			verbose(env, "bug: bad parent state for iter next call");
7981 			return -EFAULT;
7982 		}
7983 		/* Note cur_st->parent in the call below, it is necessary to skip
7984 		 * checkpoint created for cur_st by is_state_visited()
7985 		 * right at this instruction.
7986 		 */
7987 		prev_st = find_prev_entry(env, cur_st->parent, insn_idx);
7988 		/* branch out active iter state */
7989 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7990 		if (!queued_st)
7991 			return -ENOMEM;
7992 
7993 		queued_iter = get_iter_from_state(queued_st, meta);
7994 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7995 		queued_iter->iter.depth++;
7996 		if (prev_st)
7997 			widen_imprecise_scalars(env, prev_st, queued_st);
7998 
7999 		queued_fr = queued_st->frame[queued_st->curframe];
8000 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
8001 	}
8002 
8003 	/* switch to DRAINED state, but keep the depth unchanged */
8004 	/* mark current iter state as drained and assume returned NULL */
8005 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
8006 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
8007 
8008 	return 0;
8009 }
8010 
8011 static bool arg_type_is_mem_size(enum bpf_arg_type type)
8012 {
8013 	return type == ARG_CONST_SIZE ||
8014 	       type == ARG_CONST_SIZE_OR_ZERO;
8015 }
8016 
8017 static bool arg_type_is_raw_mem(enum bpf_arg_type type)
8018 {
8019 	return base_type(type) == ARG_PTR_TO_MEM &&
8020 	       type & MEM_UNINIT;
8021 }
8022 
8023 static bool arg_type_is_release(enum bpf_arg_type type)
8024 {
8025 	return type & OBJ_RELEASE;
8026 }
8027 
8028 static bool arg_type_is_dynptr(enum bpf_arg_type type)
8029 {
8030 	return base_type(type) == ARG_PTR_TO_DYNPTR;
8031 }
8032 
8033 static int resolve_map_arg_type(struct bpf_verifier_env *env,
8034 				 const struct bpf_call_arg_meta *meta,
8035 				 enum bpf_arg_type *arg_type)
8036 {
8037 	if (!meta->map_ptr) {
8038 		/* kernel subsystem misconfigured verifier */
8039 		verbose(env, "invalid map_ptr to access map->type\n");
8040 		return -EACCES;
8041 	}
8042 
8043 	switch (meta->map_ptr->map_type) {
8044 	case BPF_MAP_TYPE_SOCKMAP:
8045 	case BPF_MAP_TYPE_SOCKHASH:
8046 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
8047 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
8048 		} else {
8049 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
8050 			return -EINVAL;
8051 		}
8052 		break;
8053 	case BPF_MAP_TYPE_BLOOM_FILTER:
8054 		if (meta->func_id == BPF_FUNC_map_peek_elem)
8055 			*arg_type = ARG_PTR_TO_MAP_VALUE;
8056 		break;
8057 	default:
8058 		break;
8059 	}
8060 	return 0;
8061 }
8062 
8063 struct bpf_reg_types {
8064 	const enum bpf_reg_type types[10];
8065 	u32 *btf_id;
8066 };
8067 
8068 static const struct bpf_reg_types sock_types = {
8069 	.types = {
8070 		PTR_TO_SOCK_COMMON,
8071 		PTR_TO_SOCKET,
8072 		PTR_TO_TCP_SOCK,
8073 		PTR_TO_XDP_SOCK,
8074 	},
8075 };
8076 
8077 #ifdef CONFIG_NET
8078 static const struct bpf_reg_types btf_id_sock_common_types = {
8079 	.types = {
8080 		PTR_TO_SOCK_COMMON,
8081 		PTR_TO_SOCKET,
8082 		PTR_TO_TCP_SOCK,
8083 		PTR_TO_XDP_SOCK,
8084 		PTR_TO_BTF_ID,
8085 		PTR_TO_BTF_ID | PTR_TRUSTED,
8086 	},
8087 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
8088 };
8089 #endif
8090 
8091 static const struct bpf_reg_types mem_types = {
8092 	.types = {
8093 		PTR_TO_STACK,
8094 		PTR_TO_PACKET,
8095 		PTR_TO_PACKET_META,
8096 		PTR_TO_MAP_KEY,
8097 		PTR_TO_MAP_VALUE,
8098 		PTR_TO_MEM,
8099 		PTR_TO_MEM | MEM_RINGBUF,
8100 		PTR_TO_BUF,
8101 		PTR_TO_BTF_ID | PTR_TRUSTED,
8102 	},
8103 };
8104 
8105 static const struct bpf_reg_types spin_lock_types = {
8106 	.types = {
8107 		PTR_TO_MAP_VALUE,
8108 		PTR_TO_BTF_ID | MEM_ALLOC,
8109 	}
8110 };
8111 
8112 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
8113 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
8114 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
8115 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
8116 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
8117 static const struct bpf_reg_types btf_ptr_types = {
8118 	.types = {
8119 		PTR_TO_BTF_ID,
8120 		PTR_TO_BTF_ID | PTR_TRUSTED,
8121 		PTR_TO_BTF_ID | MEM_RCU,
8122 	},
8123 };
8124 static const struct bpf_reg_types percpu_btf_ptr_types = {
8125 	.types = {
8126 		PTR_TO_BTF_ID | MEM_PERCPU,
8127 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
8128 	}
8129 };
8130 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
8131 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
8132 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
8133 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
8134 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
8135 static const struct bpf_reg_types dynptr_types = {
8136 	.types = {
8137 		PTR_TO_STACK,
8138 		CONST_PTR_TO_DYNPTR,
8139 	}
8140 };
8141 
8142 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
8143 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
8144 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
8145 	[ARG_CONST_SIZE]		= &scalar_types,
8146 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
8147 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
8148 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
8149 	[ARG_PTR_TO_CTX]		= &context_types,
8150 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
8151 #ifdef CONFIG_NET
8152 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
8153 #endif
8154 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
8155 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
8156 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
8157 	[ARG_PTR_TO_MEM]		= &mem_types,
8158 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
8159 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
8160 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
8161 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
8162 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
8163 	[ARG_PTR_TO_TIMER]		= &timer_types,
8164 	[ARG_PTR_TO_KPTR]		= &kptr_types,
8165 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
8166 };
8167 
8168 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
8169 			  enum bpf_arg_type arg_type,
8170 			  const u32 *arg_btf_id,
8171 			  struct bpf_call_arg_meta *meta)
8172 {
8173 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8174 	enum bpf_reg_type expected, type = reg->type;
8175 	const struct bpf_reg_types *compatible;
8176 	int i, j;
8177 
8178 	compatible = compatible_reg_types[base_type(arg_type)];
8179 	if (!compatible) {
8180 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
8181 		return -EFAULT;
8182 	}
8183 
8184 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
8185 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
8186 	 *
8187 	 * Same for MAYBE_NULL:
8188 	 *
8189 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
8190 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
8191 	 *
8192 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
8193 	 *
8194 	 * Therefore we fold these flags depending on the arg_type before comparison.
8195 	 */
8196 	if (arg_type & MEM_RDONLY)
8197 		type &= ~MEM_RDONLY;
8198 	if (arg_type & PTR_MAYBE_NULL)
8199 		type &= ~PTR_MAYBE_NULL;
8200 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
8201 		type &= ~DYNPTR_TYPE_FLAG_MASK;
8202 
8203 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
8204 		type &= ~MEM_ALLOC;
8205 
8206 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
8207 		expected = compatible->types[i];
8208 		if (expected == NOT_INIT)
8209 			break;
8210 
8211 		if (type == expected)
8212 			goto found;
8213 	}
8214 
8215 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
8216 	for (j = 0; j + 1 < i; j++)
8217 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
8218 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
8219 	return -EACCES;
8220 
8221 found:
8222 	if (base_type(reg->type) != PTR_TO_BTF_ID)
8223 		return 0;
8224 
8225 	if (compatible == &mem_types) {
8226 		if (!(arg_type & MEM_RDONLY)) {
8227 			verbose(env,
8228 				"%s() may write into memory pointed by R%d type=%s\n",
8229 				func_id_name(meta->func_id),
8230 				regno, reg_type_str(env, reg->type));
8231 			return -EACCES;
8232 		}
8233 		return 0;
8234 	}
8235 
8236 	switch ((int)reg->type) {
8237 	case PTR_TO_BTF_ID:
8238 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8239 	case PTR_TO_BTF_ID | MEM_RCU:
8240 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
8241 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
8242 	{
8243 		/* For bpf_sk_release, it needs to match against first member
8244 		 * 'struct sock_common', hence make an exception for it. This
8245 		 * allows bpf_sk_release to work for multiple socket types.
8246 		 */
8247 		bool strict_type_match = arg_type_is_release(arg_type) &&
8248 					 meta->func_id != BPF_FUNC_sk_release;
8249 
8250 		if (type_may_be_null(reg->type) &&
8251 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
8252 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
8253 			return -EACCES;
8254 		}
8255 
8256 		if (!arg_btf_id) {
8257 			if (!compatible->btf_id) {
8258 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
8259 				return -EFAULT;
8260 			}
8261 			arg_btf_id = compatible->btf_id;
8262 		}
8263 
8264 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8265 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8266 				return -EACCES;
8267 		} else {
8268 			if (arg_btf_id == BPF_PTR_POISON) {
8269 				verbose(env, "verifier internal error:");
8270 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
8271 					regno);
8272 				return -EACCES;
8273 			}
8274 
8275 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
8276 						  btf_vmlinux, *arg_btf_id,
8277 						  strict_type_match)) {
8278 				verbose(env, "R%d is of type %s but %s is expected\n",
8279 					regno, btf_type_name(reg->btf, reg->btf_id),
8280 					btf_type_name(btf_vmlinux, *arg_btf_id));
8281 				return -EACCES;
8282 			}
8283 		}
8284 		break;
8285 	}
8286 	case PTR_TO_BTF_ID | MEM_ALLOC:
8287 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
8288 		    meta->func_id != BPF_FUNC_kptr_xchg) {
8289 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
8290 			return -EFAULT;
8291 		}
8292 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
8293 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
8294 				return -EACCES;
8295 		}
8296 		break;
8297 	case PTR_TO_BTF_ID | MEM_PERCPU:
8298 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
8299 		/* Handled by helper specific checks */
8300 		break;
8301 	default:
8302 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
8303 		return -EFAULT;
8304 	}
8305 	return 0;
8306 }
8307 
8308 static struct btf_field *
8309 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
8310 {
8311 	struct btf_field *field;
8312 	struct btf_record *rec;
8313 
8314 	rec = reg_btf_record(reg);
8315 	if (!rec)
8316 		return NULL;
8317 
8318 	field = btf_record_find(rec, off, fields);
8319 	if (!field)
8320 		return NULL;
8321 
8322 	return field;
8323 }
8324 
8325 int check_func_arg_reg_off(struct bpf_verifier_env *env,
8326 			   const struct bpf_reg_state *reg, int regno,
8327 			   enum bpf_arg_type arg_type)
8328 {
8329 	u32 type = reg->type;
8330 
8331 	/* When referenced register is passed to release function, its fixed
8332 	 * offset must be 0.
8333 	 *
8334 	 * We will check arg_type_is_release reg has ref_obj_id when storing
8335 	 * meta->release_regno.
8336 	 */
8337 	if (arg_type_is_release(arg_type)) {
8338 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
8339 		 * may not directly point to the object being released, but to
8340 		 * dynptr pointing to such object, which might be at some offset
8341 		 * on the stack. In that case, we simply to fallback to the
8342 		 * default handling.
8343 		 */
8344 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
8345 			return 0;
8346 
8347 		/* Doing check_ptr_off_reg check for the offset will catch this
8348 		 * because fixed_off_ok is false, but checking here allows us
8349 		 * to give the user a better error message.
8350 		 */
8351 		if (reg->off) {
8352 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
8353 				regno);
8354 			return -EINVAL;
8355 		}
8356 		return __check_ptr_off_reg(env, reg, regno, false);
8357 	}
8358 
8359 	switch (type) {
8360 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
8361 	case PTR_TO_STACK:
8362 	case PTR_TO_PACKET:
8363 	case PTR_TO_PACKET_META:
8364 	case PTR_TO_MAP_KEY:
8365 	case PTR_TO_MAP_VALUE:
8366 	case PTR_TO_MEM:
8367 	case PTR_TO_MEM | MEM_RDONLY:
8368 	case PTR_TO_MEM | MEM_RINGBUF:
8369 	case PTR_TO_BUF:
8370 	case PTR_TO_BUF | MEM_RDONLY:
8371 	case SCALAR_VALUE:
8372 		return 0;
8373 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8374 	 * fixed offset.
8375 	 */
8376 	case PTR_TO_BTF_ID:
8377 	case PTR_TO_BTF_ID | MEM_ALLOC:
8378 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8379 	case PTR_TO_BTF_ID | MEM_RCU:
8380 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8381 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8382 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8383 		 * its fixed offset must be 0. In the other cases, fixed offset
8384 		 * can be non-zero. This was already checked above. So pass
8385 		 * fixed_off_ok as true to allow fixed offset for all other
8386 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8387 		 * still need to do checks instead of returning.
8388 		 */
8389 		return __check_ptr_off_reg(env, reg, regno, true);
8390 	default:
8391 		return __check_ptr_off_reg(env, reg, regno, false);
8392 	}
8393 }
8394 
8395 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8396 						const struct bpf_func_proto *fn,
8397 						struct bpf_reg_state *regs)
8398 {
8399 	struct bpf_reg_state *state = NULL;
8400 	int i;
8401 
8402 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8403 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8404 			if (state) {
8405 				verbose(env, "verifier internal error: multiple dynptr args\n");
8406 				return NULL;
8407 			}
8408 			state = &regs[BPF_REG_1 + i];
8409 		}
8410 
8411 	if (!state)
8412 		verbose(env, "verifier internal error: no dynptr arg found\n");
8413 
8414 	return state;
8415 }
8416 
8417 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8418 {
8419 	struct bpf_func_state *state = func(env, reg);
8420 	int spi;
8421 
8422 	if (reg->type == CONST_PTR_TO_DYNPTR)
8423 		return reg->id;
8424 	spi = dynptr_get_spi(env, reg);
8425 	if (spi < 0)
8426 		return spi;
8427 	return state->stack[spi].spilled_ptr.id;
8428 }
8429 
8430 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8431 {
8432 	struct bpf_func_state *state = func(env, reg);
8433 	int spi;
8434 
8435 	if (reg->type == CONST_PTR_TO_DYNPTR)
8436 		return reg->ref_obj_id;
8437 	spi = dynptr_get_spi(env, reg);
8438 	if (spi < 0)
8439 		return spi;
8440 	return state->stack[spi].spilled_ptr.ref_obj_id;
8441 }
8442 
8443 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8444 					    struct bpf_reg_state *reg)
8445 {
8446 	struct bpf_func_state *state = func(env, reg);
8447 	int spi;
8448 
8449 	if (reg->type == CONST_PTR_TO_DYNPTR)
8450 		return reg->dynptr.type;
8451 
8452 	spi = __get_spi(reg->off);
8453 	if (spi < 0) {
8454 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8455 		return BPF_DYNPTR_TYPE_INVALID;
8456 	}
8457 
8458 	return state->stack[spi].spilled_ptr.dynptr.type;
8459 }
8460 
8461 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8462 			  struct bpf_call_arg_meta *meta,
8463 			  const struct bpf_func_proto *fn,
8464 			  int insn_idx)
8465 {
8466 	u32 regno = BPF_REG_1 + arg;
8467 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8468 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8469 	enum bpf_reg_type type = reg->type;
8470 	u32 *arg_btf_id = NULL;
8471 	int err = 0;
8472 
8473 	if (arg_type == ARG_DONTCARE)
8474 		return 0;
8475 
8476 	err = check_reg_arg(env, regno, SRC_OP);
8477 	if (err)
8478 		return err;
8479 
8480 	if (arg_type == ARG_ANYTHING) {
8481 		if (is_pointer_value(env, regno)) {
8482 			verbose(env, "R%d leaks addr into helper function\n",
8483 				regno);
8484 			return -EACCES;
8485 		}
8486 		return 0;
8487 	}
8488 
8489 	if (type_is_pkt_pointer(type) &&
8490 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8491 		verbose(env, "helper access to the packet is not allowed\n");
8492 		return -EACCES;
8493 	}
8494 
8495 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8496 		err = resolve_map_arg_type(env, meta, &arg_type);
8497 		if (err)
8498 			return err;
8499 	}
8500 
8501 	if (register_is_null(reg) && type_may_be_null(arg_type))
8502 		/* A NULL register has a SCALAR_VALUE type, so skip
8503 		 * type checking.
8504 		 */
8505 		goto skip_type_check;
8506 
8507 	/* arg_btf_id and arg_size are in a union. */
8508 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8509 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8510 		arg_btf_id = fn->arg_btf_id[arg];
8511 
8512 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8513 	if (err)
8514 		return err;
8515 
8516 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8517 	if (err)
8518 		return err;
8519 
8520 skip_type_check:
8521 	if (arg_type_is_release(arg_type)) {
8522 		if (arg_type_is_dynptr(arg_type)) {
8523 			struct bpf_func_state *state = func(env, reg);
8524 			int spi;
8525 
8526 			/* Only dynptr created on stack can be released, thus
8527 			 * the get_spi and stack state checks for spilled_ptr
8528 			 * should only be done before process_dynptr_func for
8529 			 * PTR_TO_STACK.
8530 			 */
8531 			if (reg->type == PTR_TO_STACK) {
8532 				spi = dynptr_get_spi(env, reg);
8533 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8534 					verbose(env, "arg %d is an unacquired reference\n", regno);
8535 					return -EINVAL;
8536 				}
8537 			} else {
8538 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8539 				return -EINVAL;
8540 			}
8541 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8542 			verbose(env, "R%d must be referenced when passed to release function\n",
8543 				regno);
8544 			return -EINVAL;
8545 		}
8546 		if (meta->release_regno) {
8547 			verbose(env, "verifier internal error: more than one release argument\n");
8548 			return -EFAULT;
8549 		}
8550 		meta->release_regno = regno;
8551 	}
8552 
8553 	if (reg->ref_obj_id) {
8554 		if (meta->ref_obj_id) {
8555 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8556 				regno, reg->ref_obj_id,
8557 				meta->ref_obj_id);
8558 			return -EFAULT;
8559 		}
8560 		meta->ref_obj_id = reg->ref_obj_id;
8561 	}
8562 
8563 	switch (base_type(arg_type)) {
8564 	case ARG_CONST_MAP_PTR:
8565 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8566 		if (meta->map_ptr) {
8567 			/* Use map_uid (which is unique id of inner map) to reject:
8568 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8569 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8570 			 * if (inner_map1 && inner_map2) {
8571 			 *     timer = bpf_map_lookup_elem(inner_map1);
8572 			 *     if (timer)
8573 			 *         // mismatch would have been allowed
8574 			 *         bpf_timer_init(timer, inner_map2);
8575 			 * }
8576 			 *
8577 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8578 			 */
8579 			if (meta->map_ptr != reg->map_ptr ||
8580 			    meta->map_uid != reg->map_uid) {
8581 				verbose(env,
8582 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8583 					meta->map_uid, reg->map_uid);
8584 				return -EINVAL;
8585 			}
8586 		}
8587 		meta->map_ptr = reg->map_ptr;
8588 		meta->map_uid = reg->map_uid;
8589 		break;
8590 	case ARG_PTR_TO_MAP_KEY:
8591 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8592 		 * check that [key, key + map->key_size) are within
8593 		 * stack limits and initialized
8594 		 */
8595 		if (!meta->map_ptr) {
8596 			/* in function declaration map_ptr must come before
8597 			 * map_key, so that it's verified and known before
8598 			 * we have to check map_key here. Otherwise it means
8599 			 * that kernel subsystem misconfigured verifier
8600 			 */
8601 			verbose(env, "invalid map_ptr to access map->key\n");
8602 			return -EACCES;
8603 		}
8604 		err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
8605 					      BPF_READ, false, NULL);
8606 		break;
8607 	case ARG_PTR_TO_MAP_VALUE:
8608 		if (type_may_be_null(arg_type) && register_is_null(reg))
8609 			return 0;
8610 
8611 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8612 		 * check [value, value + map->value_size) validity
8613 		 */
8614 		if (!meta->map_ptr) {
8615 			/* kernel subsystem misconfigured verifier */
8616 			verbose(env, "invalid map_ptr to access map->value\n");
8617 			return -EACCES;
8618 		}
8619 		meta->raw_mode = arg_type & MEM_UNINIT;
8620 		err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
8621 					      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8622 					      false, meta);
8623 		break;
8624 	case ARG_PTR_TO_PERCPU_BTF_ID:
8625 		if (!reg->btf_id) {
8626 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8627 			return -EACCES;
8628 		}
8629 		meta->ret_btf = reg->btf;
8630 		meta->ret_btf_id = reg->btf_id;
8631 		break;
8632 	case ARG_PTR_TO_SPIN_LOCK:
8633 		if (in_rbtree_lock_required_cb(env)) {
8634 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8635 			return -EACCES;
8636 		}
8637 		if (meta->func_id == BPF_FUNC_spin_lock) {
8638 			err = process_spin_lock(env, regno, true);
8639 			if (err)
8640 				return err;
8641 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8642 			err = process_spin_lock(env, regno, false);
8643 			if (err)
8644 				return err;
8645 		} else {
8646 			verbose(env, "verifier internal error\n");
8647 			return -EFAULT;
8648 		}
8649 		break;
8650 	case ARG_PTR_TO_TIMER:
8651 		err = process_timer_func(env, regno, meta);
8652 		if (err)
8653 			return err;
8654 		break;
8655 	case ARG_PTR_TO_FUNC:
8656 		meta->subprogno = reg->subprogno;
8657 		break;
8658 	case ARG_PTR_TO_MEM:
8659 		/* The access to this pointer is only checked when we hit the
8660 		 * next is_mem_size argument below.
8661 		 */
8662 		meta->raw_mode = arg_type & MEM_UNINIT;
8663 		if (arg_type & MEM_FIXED_SIZE) {
8664 			err = check_helper_mem_access(env, regno, fn->arg_size[arg],
8665 						      arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
8666 						      false, meta);
8667 			if (err)
8668 				return err;
8669 			if (arg_type & MEM_ALIGNED)
8670 				err = check_ptr_alignment(env, reg, 0, fn->arg_size[arg], true);
8671 		}
8672 		break;
8673 	case ARG_CONST_SIZE:
8674 		err = check_mem_size_reg(env, reg, regno,
8675 					 fn->arg_type[arg - 1] & MEM_WRITE ?
8676 					 BPF_WRITE : BPF_READ,
8677 					 false, meta);
8678 		break;
8679 	case ARG_CONST_SIZE_OR_ZERO:
8680 		err = check_mem_size_reg(env, reg, regno,
8681 					 fn->arg_type[arg - 1] & MEM_WRITE ?
8682 					 BPF_WRITE : BPF_READ,
8683 					 true, meta);
8684 		break;
8685 	case ARG_PTR_TO_DYNPTR:
8686 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8687 		if (err)
8688 			return err;
8689 		break;
8690 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8691 		if (!tnum_is_const(reg->var_off)) {
8692 			verbose(env, "R%d is not a known constant'\n",
8693 				regno);
8694 			return -EACCES;
8695 		}
8696 		meta->mem_size = reg->var_off.value;
8697 		err = mark_chain_precision(env, regno);
8698 		if (err)
8699 			return err;
8700 		break;
8701 	case ARG_PTR_TO_CONST_STR:
8702 	{
8703 		struct bpf_map *map = reg->map_ptr;
8704 		int map_off;
8705 		u64 map_addr;
8706 		char *str_ptr;
8707 
8708 		if (!bpf_map_is_rdonly(map)) {
8709 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8710 			return -EACCES;
8711 		}
8712 
8713 		if (!tnum_is_const(reg->var_off)) {
8714 			verbose(env, "R%d is not a constant address'\n", regno);
8715 			return -EACCES;
8716 		}
8717 
8718 		if (!map->ops->map_direct_value_addr) {
8719 			verbose(env, "no direct value access support for this map type\n");
8720 			return -EACCES;
8721 		}
8722 
8723 		err = check_map_access(env, regno, reg->off,
8724 				       map->value_size - reg->off, false,
8725 				       ACCESS_HELPER);
8726 		if (err)
8727 			return err;
8728 
8729 		map_off = reg->off + reg->var_off.value;
8730 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8731 		if (err) {
8732 			verbose(env, "direct value access on string failed\n");
8733 			return err;
8734 		}
8735 
8736 		str_ptr = (char *)(long)(map_addr);
8737 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8738 			verbose(env, "string is not zero-terminated\n");
8739 			return -EINVAL;
8740 		}
8741 		break;
8742 	}
8743 	case ARG_PTR_TO_KPTR:
8744 		err = process_kptr_func(env, regno, meta);
8745 		if (err)
8746 			return err;
8747 		break;
8748 	}
8749 
8750 	return err;
8751 }
8752 
8753 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8754 {
8755 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8756 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8757 
8758 	if (func_id != BPF_FUNC_map_update_elem &&
8759 	    func_id != BPF_FUNC_map_delete_elem)
8760 		return false;
8761 
8762 	/* It's not possible to get access to a locked struct sock in these
8763 	 * contexts, so updating is safe.
8764 	 */
8765 	switch (type) {
8766 	case BPF_PROG_TYPE_TRACING:
8767 		if (eatype == BPF_TRACE_ITER)
8768 			return true;
8769 		break;
8770 	case BPF_PROG_TYPE_SOCK_OPS:
8771 		/* map_update allowed only via dedicated helpers with event type checks */
8772 		if (func_id == BPF_FUNC_map_delete_elem)
8773 			return true;
8774 		break;
8775 	case BPF_PROG_TYPE_SOCKET_FILTER:
8776 	case BPF_PROG_TYPE_SCHED_CLS:
8777 	case BPF_PROG_TYPE_SCHED_ACT:
8778 	case BPF_PROG_TYPE_XDP:
8779 	case BPF_PROG_TYPE_SK_REUSEPORT:
8780 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8781 	case BPF_PROG_TYPE_SK_LOOKUP:
8782 		return true;
8783 	default:
8784 		break;
8785 	}
8786 
8787 	verbose(env, "cannot update sockmap in this context\n");
8788 	return false;
8789 }
8790 
8791 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8792 {
8793 	return env->prog->jit_requested &&
8794 	       bpf_jit_supports_subprog_tailcalls();
8795 }
8796 
8797 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8798 					struct bpf_map *map, int func_id)
8799 {
8800 	if (!map)
8801 		return 0;
8802 
8803 	/* We need a two way check, first is from map perspective ... */
8804 	switch (map->map_type) {
8805 	case BPF_MAP_TYPE_PROG_ARRAY:
8806 		if (func_id != BPF_FUNC_tail_call)
8807 			goto error;
8808 		break;
8809 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8810 		if (func_id != BPF_FUNC_perf_event_read &&
8811 		    func_id != BPF_FUNC_perf_event_output &&
8812 		    func_id != BPF_FUNC_skb_output &&
8813 		    func_id != BPF_FUNC_perf_event_read_value &&
8814 		    func_id != BPF_FUNC_xdp_output)
8815 			goto error;
8816 		break;
8817 	case BPF_MAP_TYPE_RINGBUF:
8818 		if (func_id != BPF_FUNC_ringbuf_output &&
8819 		    func_id != BPF_FUNC_ringbuf_reserve &&
8820 		    func_id != BPF_FUNC_ringbuf_query &&
8821 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8822 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8823 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8824 			goto error;
8825 		break;
8826 	case BPF_MAP_TYPE_USER_RINGBUF:
8827 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8828 			goto error;
8829 		break;
8830 	case BPF_MAP_TYPE_STACK_TRACE:
8831 		if (func_id != BPF_FUNC_get_stackid)
8832 			goto error;
8833 		break;
8834 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8835 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8836 		    func_id != BPF_FUNC_current_task_under_cgroup)
8837 			goto error;
8838 		break;
8839 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8840 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8841 		if (func_id != BPF_FUNC_get_local_storage)
8842 			goto error;
8843 		break;
8844 	case BPF_MAP_TYPE_DEVMAP:
8845 	case BPF_MAP_TYPE_DEVMAP_HASH:
8846 		if (func_id != BPF_FUNC_redirect_map &&
8847 		    func_id != BPF_FUNC_map_lookup_elem)
8848 			goto error;
8849 		break;
8850 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8851 	 * appear.
8852 	 */
8853 	case BPF_MAP_TYPE_CPUMAP:
8854 		if (func_id != BPF_FUNC_redirect_map)
8855 			goto error;
8856 		break;
8857 	case BPF_MAP_TYPE_XSKMAP:
8858 		if (func_id != BPF_FUNC_redirect_map &&
8859 		    func_id != BPF_FUNC_map_lookup_elem)
8860 			goto error;
8861 		break;
8862 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8863 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8864 		if (func_id != BPF_FUNC_map_lookup_elem)
8865 			goto error;
8866 		break;
8867 	case BPF_MAP_TYPE_SOCKMAP:
8868 		if (func_id != BPF_FUNC_sk_redirect_map &&
8869 		    func_id != BPF_FUNC_sock_map_update &&
8870 		    func_id != BPF_FUNC_msg_redirect_map &&
8871 		    func_id != BPF_FUNC_sk_select_reuseport &&
8872 		    func_id != BPF_FUNC_map_lookup_elem &&
8873 		    !may_update_sockmap(env, func_id))
8874 			goto error;
8875 		break;
8876 	case BPF_MAP_TYPE_SOCKHASH:
8877 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8878 		    func_id != BPF_FUNC_sock_hash_update &&
8879 		    func_id != BPF_FUNC_msg_redirect_hash &&
8880 		    func_id != BPF_FUNC_sk_select_reuseport &&
8881 		    func_id != BPF_FUNC_map_lookup_elem &&
8882 		    !may_update_sockmap(env, func_id))
8883 			goto error;
8884 		break;
8885 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8886 		if (func_id != BPF_FUNC_sk_select_reuseport)
8887 			goto error;
8888 		break;
8889 	case BPF_MAP_TYPE_QUEUE:
8890 	case BPF_MAP_TYPE_STACK:
8891 		if (func_id != BPF_FUNC_map_peek_elem &&
8892 		    func_id != BPF_FUNC_map_pop_elem &&
8893 		    func_id != BPF_FUNC_map_push_elem)
8894 			goto error;
8895 		break;
8896 	case BPF_MAP_TYPE_SK_STORAGE:
8897 		if (func_id != BPF_FUNC_sk_storage_get &&
8898 		    func_id != BPF_FUNC_sk_storage_delete &&
8899 		    func_id != BPF_FUNC_kptr_xchg)
8900 			goto error;
8901 		break;
8902 	case BPF_MAP_TYPE_INODE_STORAGE:
8903 		if (func_id != BPF_FUNC_inode_storage_get &&
8904 		    func_id != BPF_FUNC_inode_storage_delete &&
8905 		    func_id != BPF_FUNC_kptr_xchg)
8906 			goto error;
8907 		break;
8908 	case BPF_MAP_TYPE_TASK_STORAGE:
8909 		if (func_id != BPF_FUNC_task_storage_get &&
8910 		    func_id != BPF_FUNC_task_storage_delete &&
8911 		    func_id != BPF_FUNC_kptr_xchg)
8912 			goto error;
8913 		break;
8914 	case BPF_MAP_TYPE_CGRP_STORAGE:
8915 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8916 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8917 		    func_id != BPF_FUNC_kptr_xchg)
8918 			goto error;
8919 		break;
8920 	case BPF_MAP_TYPE_BLOOM_FILTER:
8921 		if (func_id != BPF_FUNC_map_peek_elem &&
8922 		    func_id != BPF_FUNC_map_push_elem)
8923 			goto error;
8924 		break;
8925 	default:
8926 		break;
8927 	}
8928 
8929 	/* ... and second from the function itself. */
8930 	switch (func_id) {
8931 	case BPF_FUNC_tail_call:
8932 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8933 			goto error;
8934 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8935 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8936 			return -EINVAL;
8937 		}
8938 		break;
8939 	case BPF_FUNC_perf_event_read:
8940 	case BPF_FUNC_perf_event_output:
8941 	case BPF_FUNC_perf_event_read_value:
8942 	case BPF_FUNC_skb_output:
8943 	case BPF_FUNC_xdp_output:
8944 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8945 			goto error;
8946 		break;
8947 	case BPF_FUNC_ringbuf_output:
8948 	case BPF_FUNC_ringbuf_reserve:
8949 	case BPF_FUNC_ringbuf_query:
8950 	case BPF_FUNC_ringbuf_reserve_dynptr:
8951 	case BPF_FUNC_ringbuf_submit_dynptr:
8952 	case BPF_FUNC_ringbuf_discard_dynptr:
8953 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8954 			goto error;
8955 		break;
8956 	case BPF_FUNC_user_ringbuf_drain:
8957 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8958 			goto error;
8959 		break;
8960 	case BPF_FUNC_get_stackid:
8961 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8962 			goto error;
8963 		break;
8964 	case BPF_FUNC_current_task_under_cgroup:
8965 	case BPF_FUNC_skb_under_cgroup:
8966 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8967 			goto error;
8968 		break;
8969 	case BPF_FUNC_redirect_map:
8970 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8971 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8972 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8973 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8974 			goto error;
8975 		break;
8976 	case BPF_FUNC_sk_redirect_map:
8977 	case BPF_FUNC_msg_redirect_map:
8978 	case BPF_FUNC_sock_map_update:
8979 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8980 			goto error;
8981 		break;
8982 	case BPF_FUNC_sk_redirect_hash:
8983 	case BPF_FUNC_msg_redirect_hash:
8984 	case BPF_FUNC_sock_hash_update:
8985 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8986 			goto error;
8987 		break;
8988 	case BPF_FUNC_get_local_storage:
8989 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8990 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8991 			goto error;
8992 		break;
8993 	case BPF_FUNC_sk_select_reuseport:
8994 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8995 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8996 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8997 			goto error;
8998 		break;
8999 	case BPF_FUNC_map_pop_elem:
9000 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9001 		    map->map_type != BPF_MAP_TYPE_STACK)
9002 			goto error;
9003 		break;
9004 	case BPF_FUNC_map_peek_elem:
9005 	case BPF_FUNC_map_push_elem:
9006 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
9007 		    map->map_type != BPF_MAP_TYPE_STACK &&
9008 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
9009 			goto error;
9010 		break;
9011 	case BPF_FUNC_map_lookup_percpu_elem:
9012 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
9013 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9014 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
9015 			goto error;
9016 		break;
9017 	case BPF_FUNC_sk_storage_get:
9018 	case BPF_FUNC_sk_storage_delete:
9019 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
9020 			goto error;
9021 		break;
9022 	case BPF_FUNC_inode_storage_get:
9023 	case BPF_FUNC_inode_storage_delete:
9024 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
9025 			goto error;
9026 		break;
9027 	case BPF_FUNC_task_storage_get:
9028 	case BPF_FUNC_task_storage_delete:
9029 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
9030 			goto error;
9031 		break;
9032 	case BPF_FUNC_cgrp_storage_get:
9033 	case BPF_FUNC_cgrp_storage_delete:
9034 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
9035 			goto error;
9036 		break;
9037 	default:
9038 		break;
9039 	}
9040 
9041 	return 0;
9042 error:
9043 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
9044 		map->map_type, func_id_name(func_id), func_id);
9045 	return -EINVAL;
9046 }
9047 
9048 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
9049 {
9050 	int count = 0;
9051 
9052 	if (arg_type_is_raw_mem(fn->arg1_type))
9053 		count++;
9054 	if (arg_type_is_raw_mem(fn->arg2_type))
9055 		count++;
9056 	if (arg_type_is_raw_mem(fn->arg3_type))
9057 		count++;
9058 	if (arg_type_is_raw_mem(fn->arg4_type))
9059 		count++;
9060 	if (arg_type_is_raw_mem(fn->arg5_type))
9061 		count++;
9062 
9063 	/* We only support one arg being in raw mode at the moment,
9064 	 * which is sufficient for the helper functions we have
9065 	 * right now.
9066 	 */
9067 	return count <= 1;
9068 }
9069 
9070 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
9071 {
9072 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
9073 	bool has_size = fn->arg_size[arg] != 0;
9074 	bool is_next_size = false;
9075 
9076 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
9077 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
9078 
9079 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
9080 		return is_next_size;
9081 
9082 	return has_size == is_next_size || is_next_size == is_fixed;
9083 }
9084 
9085 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
9086 {
9087 	/* bpf_xxx(..., buf, len) call will access 'len'
9088 	 * bytes from memory 'buf'. Both arg types need
9089 	 * to be paired, so make sure there's no buggy
9090 	 * helper function specification.
9091 	 */
9092 	if (arg_type_is_mem_size(fn->arg1_type) ||
9093 	    check_args_pair_invalid(fn, 0) ||
9094 	    check_args_pair_invalid(fn, 1) ||
9095 	    check_args_pair_invalid(fn, 2) ||
9096 	    check_args_pair_invalid(fn, 3) ||
9097 	    check_args_pair_invalid(fn, 4))
9098 		return false;
9099 
9100 	return true;
9101 }
9102 
9103 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
9104 {
9105 	int i;
9106 
9107 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
9108 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
9109 			return !!fn->arg_btf_id[i];
9110 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
9111 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
9112 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
9113 		    /* arg_btf_id and arg_size are in a union. */
9114 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
9115 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
9116 			return false;
9117 	}
9118 
9119 	return true;
9120 }
9121 
9122 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
9123 {
9124 	return check_raw_mode_ok(fn) &&
9125 	       check_arg_pair_ok(fn) &&
9126 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
9127 }
9128 
9129 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
9130  * are now invalid, so turn them into unknown SCALAR_VALUE.
9131  *
9132  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
9133  * since these slices point to packet data.
9134  */
9135 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
9136 {
9137 	struct bpf_func_state *state;
9138 	struct bpf_reg_state *reg;
9139 
9140 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9141 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
9142 			mark_reg_invalid(env, reg);
9143 	}));
9144 }
9145 
9146 enum {
9147 	AT_PKT_END = -1,
9148 	BEYOND_PKT_END = -2,
9149 };
9150 
9151 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
9152 {
9153 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9154 	struct bpf_reg_state *reg = &state->regs[regn];
9155 
9156 	if (reg->type != PTR_TO_PACKET)
9157 		/* PTR_TO_PACKET_META is not supported yet */
9158 		return;
9159 
9160 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
9161 	 * How far beyond pkt_end it goes is unknown.
9162 	 * if (!range_open) it's the case of pkt >= pkt_end
9163 	 * if (range_open) it's the case of pkt > pkt_end
9164 	 * hence this pointer is at least 1 byte bigger than pkt_end
9165 	 */
9166 	if (range_open)
9167 		reg->range = BEYOND_PKT_END;
9168 	else
9169 		reg->range = AT_PKT_END;
9170 }
9171 
9172 /* The pointer with the specified id has released its reference to kernel
9173  * resources. Identify all copies of the same pointer and clear the reference.
9174  */
9175 static int release_reference(struct bpf_verifier_env *env,
9176 			     int ref_obj_id)
9177 {
9178 	struct bpf_func_state *state;
9179 	struct bpf_reg_state *reg;
9180 	int err;
9181 
9182 	err = release_reference_state(cur_func(env), ref_obj_id);
9183 	if (err)
9184 		return err;
9185 
9186 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
9187 		if (reg->ref_obj_id == ref_obj_id)
9188 			mark_reg_invalid(env, reg);
9189 	}));
9190 
9191 	return 0;
9192 }
9193 
9194 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
9195 {
9196 	struct bpf_func_state *unused;
9197 	struct bpf_reg_state *reg;
9198 
9199 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
9200 		if (type_is_non_owning_ref(reg->type))
9201 			mark_reg_invalid(env, reg);
9202 	}));
9203 }
9204 
9205 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
9206 				    struct bpf_reg_state *regs)
9207 {
9208 	int i;
9209 
9210 	/* after the call registers r0 - r5 were scratched */
9211 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9212 		mark_reg_not_init(env, regs, caller_saved[i]);
9213 		__check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK);
9214 	}
9215 }
9216 
9217 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
9218 				   struct bpf_func_state *caller,
9219 				   struct bpf_func_state *callee,
9220 				   int insn_idx);
9221 
9222 static int set_callee_state(struct bpf_verifier_env *env,
9223 			    struct bpf_func_state *caller,
9224 			    struct bpf_func_state *callee, int insn_idx);
9225 
9226 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite,
9227 			    set_callee_state_fn set_callee_state_cb,
9228 			    struct bpf_verifier_state *state)
9229 {
9230 	struct bpf_func_state *caller, *callee;
9231 	int err;
9232 
9233 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
9234 		verbose(env, "the call stack of %d frames is too deep\n",
9235 			state->curframe + 2);
9236 		return -E2BIG;
9237 	}
9238 
9239 	if (state->frame[state->curframe + 1]) {
9240 		verbose(env, "verifier bug. Frame %d already allocated\n",
9241 			state->curframe + 1);
9242 		return -EFAULT;
9243 	}
9244 
9245 	caller = state->frame[state->curframe];
9246 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
9247 	if (!callee)
9248 		return -ENOMEM;
9249 	state->frame[state->curframe + 1] = callee;
9250 
9251 	/* callee cannot access r0, r6 - r9 for reading and has to write
9252 	 * into its own stack before reading from it.
9253 	 * callee can read/write into caller's stack
9254 	 */
9255 	init_func_state(env, callee,
9256 			/* remember the callsite, it will be used by bpf_exit */
9257 			callsite,
9258 			state->curframe + 1 /* frameno within this callchain */,
9259 			subprog /* subprog number within this prog */);
9260 	/* Transfer references to the callee */
9261 	err = copy_reference_state(callee, caller);
9262 	err = err ?: set_callee_state_cb(env, caller, callee, callsite);
9263 	if (err)
9264 		goto err_out;
9265 
9266 	/* only increment it after check_reg_arg() finished */
9267 	state->curframe++;
9268 
9269 	return 0;
9270 
9271 err_out:
9272 	free_func_state(callee);
9273 	state->frame[state->curframe + 1] = NULL;
9274 	return err;
9275 }
9276 
9277 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9278 			      int insn_idx, int subprog,
9279 			      set_callee_state_fn set_callee_state_cb)
9280 {
9281 	struct bpf_verifier_state *state = env->cur_state, *callback_state;
9282 	struct bpf_func_state *caller, *callee;
9283 	int err;
9284 
9285 	caller = state->frame[state->curframe];
9286 	err = btf_check_subprog_call(env, subprog, caller->regs);
9287 	if (err == -EFAULT)
9288 		return err;
9289 
9290 	/* set_callee_state is used for direct subprog calls, but we are
9291 	 * interested in validating only BPF helpers that can call subprogs as
9292 	 * callbacks
9293 	 */
9294 	if (bpf_pseudo_kfunc_call(insn) &&
9295 	    !is_sync_callback_calling_kfunc(insn->imm)) {
9296 		verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
9297 			func_id_name(insn->imm), insn->imm);
9298 		return -EFAULT;
9299 	} else if (!bpf_pseudo_kfunc_call(insn) &&
9300 		   !is_callback_calling_function(insn->imm)) { /* helper */
9301 		verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
9302 			func_id_name(insn->imm), insn->imm);
9303 		return -EFAULT;
9304 	}
9305 
9306 	if (insn->code == (BPF_JMP | BPF_CALL) &&
9307 	    insn->src_reg == 0 &&
9308 	    insn->imm == BPF_FUNC_timer_set_callback) {
9309 		struct bpf_verifier_state *async_cb;
9310 
9311 		/* there is no real recursion here. timer callbacks are async */
9312 		env->subprog_info[subprog].is_async_cb = true;
9313 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
9314 					 insn_idx, subprog);
9315 		if (!async_cb)
9316 			return -EFAULT;
9317 		callee = async_cb->frame[0];
9318 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
9319 
9320 		/* Convert bpf_timer_set_callback() args into timer callback args */
9321 		err = set_callee_state_cb(env, caller, callee, insn_idx);
9322 		if (err)
9323 			return err;
9324 
9325 		return 0;
9326 	}
9327 
9328 	/* for callback functions enqueue entry to callback and
9329 	 * proceed with next instruction within current frame.
9330 	 */
9331 	callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false);
9332 	if (!callback_state)
9333 		return -ENOMEM;
9334 
9335 	err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb,
9336 			       callback_state);
9337 	if (err)
9338 		return err;
9339 
9340 	callback_state->callback_unroll_depth++;
9341 	callback_state->frame[callback_state->curframe - 1]->callback_depth++;
9342 	caller->callback_depth = 0;
9343 	return 0;
9344 }
9345 
9346 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9347 			   int *insn_idx)
9348 {
9349 	struct bpf_verifier_state *state = env->cur_state;
9350 	struct bpf_func_state *caller;
9351 	int err, subprog, target_insn;
9352 
9353 	target_insn = *insn_idx + insn->imm + 1;
9354 	subprog = find_subprog(env, target_insn);
9355 	if (subprog < 0) {
9356 		verbose(env, "verifier bug. No program starts at insn %d\n", target_insn);
9357 		return -EFAULT;
9358 	}
9359 
9360 	caller = state->frame[state->curframe];
9361 	err = btf_check_subprog_call(env, subprog, caller->regs);
9362 	if (err == -EFAULT)
9363 		return err;
9364 	if (subprog_is_global(env, subprog)) {
9365 		if (err) {
9366 			verbose(env, "Caller passes invalid args into func#%d\n", subprog);
9367 			return err;
9368 		}
9369 
9370 		if (env->log.level & BPF_LOG_LEVEL)
9371 			verbose(env, "Func#%d is global and valid. Skipping.\n", subprog);
9372 		clear_caller_saved_regs(env, caller->regs);
9373 
9374 		/* All global functions return a 64-bit SCALAR_VALUE */
9375 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
9376 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9377 
9378 		/* continue with next insn after call */
9379 		return 0;
9380 	}
9381 
9382 	/* for regular function entry setup new frame and continue
9383 	 * from that frame.
9384 	 */
9385 	err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state);
9386 	if (err)
9387 		return err;
9388 
9389 	clear_caller_saved_regs(env, caller->regs);
9390 
9391 	/* and go analyze first insn of the callee */
9392 	*insn_idx = env->subprog_info[subprog].start - 1;
9393 
9394 	if (env->log.level & BPF_LOG_LEVEL) {
9395 		verbose(env, "caller:\n");
9396 		print_verifier_state(env, caller, true);
9397 		verbose(env, "callee:\n");
9398 		print_verifier_state(env, state->frame[state->curframe], true);
9399 	}
9400 
9401 	return 0;
9402 }
9403 
9404 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
9405 				   struct bpf_func_state *caller,
9406 				   struct bpf_func_state *callee)
9407 {
9408 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
9409 	 *      void *callback_ctx, u64 flags);
9410 	 * callback_fn(struct bpf_map *map, void *key, void *value,
9411 	 *      void *callback_ctx);
9412 	 */
9413 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9414 
9415 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9416 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9417 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9418 
9419 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9420 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9421 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9422 
9423 	/* pointer to stack or null */
9424 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9425 
9426 	/* unused */
9427 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9428 	return 0;
9429 }
9430 
9431 static int set_callee_state(struct bpf_verifier_env *env,
9432 			    struct bpf_func_state *caller,
9433 			    struct bpf_func_state *callee, int insn_idx)
9434 {
9435 	int i;
9436 
9437 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9438 	 * pointers, which connects us up to the liveness chain
9439 	 */
9440 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9441 		callee->regs[i] = caller->regs[i];
9442 	return 0;
9443 }
9444 
9445 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9446 				       struct bpf_func_state *caller,
9447 				       struct bpf_func_state *callee,
9448 				       int insn_idx)
9449 {
9450 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9451 	struct bpf_map *map;
9452 	int err;
9453 
9454 	if (bpf_map_ptr_poisoned(insn_aux)) {
9455 		verbose(env, "tail_call abusing map_ptr\n");
9456 		return -EINVAL;
9457 	}
9458 
9459 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9460 	if (!map->ops->map_set_for_each_callback_args ||
9461 	    !map->ops->map_for_each_callback) {
9462 		verbose(env, "callback function not allowed for map\n");
9463 		return -ENOTSUPP;
9464 	}
9465 
9466 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9467 	if (err)
9468 		return err;
9469 
9470 	callee->in_callback_fn = true;
9471 	callee->callback_ret_range = tnum_range(0, 1);
9472 	return 0;
9473 }
9474 
9475 static int set_loop_callback_state(struct bpf_verifier_env *env,
9476 				   struct bpf_func_state *caller,
9477 				   struct bpf_func_state *callee,
9478 				   int insn_idx)
9479 {
9480 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9481 	 *	    u64 flags);
9482 	 * callback_fn(u32 index, void *callback_ctx);
9483 	 */
9484 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9485 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9486 
9487 	/* unused */
9488 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9489 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9490 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9491 
9492 	callee->in_callback_fn = true;
9493 	callee->callback_ret_range = tnum_range(0, 1);
9494 	return 0;
9495 }
9496 
9497 static int set_timer_callback_state(struct bpf_verifier_env *env,
9498 				    struct bpf_func_state *caller,
9499 				    struct bpf_func_state *callee,
9500 				    int insn_idx)
9501 {
9502 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9503 
9504 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9505 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9506 	 */
9507 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9508 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9509 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9510 
9511 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9512 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9513 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9514 
9515 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9516 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9517 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9518 
9519 	/* unused */
9520 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9521 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9522 	callee->in_async_callback_fn = true;
9523 	callee->callback_ret_range = tnum_range(0, 1);
9524 	return 0;
9525 }
9526 
9527 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9528 				       struct bpf_func_state *caller,
9529 				       struct bpf_func_state *callee,
9530 				       int insn_idx)
9531 {
9532 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9533 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9534 	 * (callback_fn)(struct task_struct *task,
9535 	 *               struct vm_area_struct *vma, void *callback_ctx);
9536 	 */
9537 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9538 
9539 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9540 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9541 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9542 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9543 
9544 	/* pointer to stack or null */
9545 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9546 
9547 	/* unused */
9548 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9549 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9550 	callee->in_callback_fn = true;
9551 	callee->callback_ret_range = tnum_range(0, 1);
9552 	return 0;
9553 }
9554 
9555 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9556 					   struct bpf_func_state *caller,
9557 					   struct bpf_func_state *callee,
9558 					   int insn_idx)
9559 {
9560 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9561 	 *			  callback_ctx, u64 flags);
9562 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9563 	 */
9564 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9565 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9566 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9567 
9568 	/* unused */
9569 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9570 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9571 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9572 
9573 	callee->in_callback_fn = true;
9574 	callee->callback_ret_range = tnum_range(0, 1);
9575 	return 0;
9576 }
9577 
9578 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9579 					 struct bpf_func_state *caller,
9580 					 struct bpf_func_state *callee,
9581 					 int insn_idx)
9582 {
9583 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9584 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9585 	 *
9586 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9587 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9588 	 * by this point, so look at 'root'
9589 	 */
9590 	struct btf_field *field;
9591 
9592 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9593 				      BPF_RB_ROOT);
9594 	if (!field || !field->graph_root.value_btf_id)
9595 		return -EFAULT;
9596 
9597 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9598 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9599 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9600 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9601 
9602 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9603 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9604 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9605 	callee->in_callback_fn = true;
9606 	callee->callback_ret_range = tnum_range(0, 1);
9607 	return 0;
9608 }
9609 
9610 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9611 
9612 /* Are we currently verifying the callback for a rbtree helper that must
9613  * be called with lock held? If so, no need to complain about unreleased
9614  * lock
9615  */
9616 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9617 {
9618 	struct bpf_verifier_state *state = env->cur_state;
9619 	struct bpf_insn *insn = env->prog->insnsi;
9620 	struct bpf_func_state *callee;
9621 	int kfunc_btf_id;
9622 
9623 	if (!state->curframe)
9624 		return false;
9625 
9626 	callee = state->frame[state->curframe];
9627 
9628 	if (!callee->in_callback_fn)
9629 		return false;
9630 
9631 	kfunc_btf_id = insn[callee->callsite].imm;
9632 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9633 }
9634 
9635 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9636 {
9637 	struct bpf_verifier_state *state = env->cur_state, *prev_st;
9638 	struct bpf_func_state *caller, *callee;
9639 	struct bpf_reg_state *r0;
9640 	bool in_callback_fn;
9641 	int err;
9642 
9643 	callee = state->frame[state->curframe];
9644 	r0 = &callee->regs[BPF_REG_0];
9645 	if (r0->type == PTR_TO_STACK) {
9646 		/* technically it's ok to return caller's stack pointer
9647 		 * (or caller's caller's pointer) back to the caller,
9648 		 * since these pointers are valid. Only current stack
9649 		 * pointer will be invalid as soon as function exits,
9650 		 * but let's be conservative
9651 		 */
9652 		verbose(env, "cannot return stack pointer to the caller\n");
9653 		return -EINVAL;
9654 	}
9655 
9656 	caller = state->frame[state->curframe - 1];
9657 	if (callee->in_callback_fn) {
9658 		/* enforce R0 return value range [0, 1]. */
9659 		struct tnum range = callee->callback_ret_range;
9660 
9661 		if (r0->type != SCALAR_VALUE) {
9662 			verbose(env, "R0 not a scalar value\n");
9663 			return -EACCES;
9664 		}
9665 
9666 		/* we are going to rely on register's precise value */
9667 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9668 		err = err ?: mark_chain_precision(env, BPF_REG_0);
9669 		if (err)
9670 			return err;
9671 
9672 		if (!tnum_in(range, r0->var_off)) {
9673 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9674 			return -EINVAL;
9675 		}
9676 		if (!calls_callback(env, callee->callsite)) {
9677 			verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n",
9678 				*insn_idx, callee->callsite);
9679 			return -EFAULT;
9680 		}
9681 	} else {
9682 		/* return to the caller whatever r0 had in the callee */
9683 		caller->regs[BPF_REG_0] = *r0;
9684 	}
9685 
9686 	/* callback_fn frame should have released its own additions to parent's
9687 	 * reference state at this point, or check_reference_leak would
9688 	 * complain, hence it must be the same as the caller. There is no need
9689 	 * to copy it back.
9690 	 */
9691 	if (!callee->in_callback_fn) {
9692 		/* Transfer references to the caller */
9693 		err = copy_reference_state(caller, callee);
9694 		if (err)
9695 			return err;
9696 	}
9697 
9698 	/* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite,
9699 	 * there function call logic would reschedule callback visit. If iteration
9700 	 * converges is_state_visited() would prune that visit eventually.
9701 	 */
9702 	in_callback_fn = callee->in_callback_fn;
9703 	if (in_callback_fn)
9704 		*insn_idx = callee->callsite;
9705 	else
9706 		*insn_idx = callee->callsite + 1;
9707 
9708 	if (env->log.level & BPF_LOG_LEVEL) {
9709 		verbose(env, "returning from callee:\n");
9710 		print_verifier_state(env, callee, true);
9711 		verbose(env, "to caller at %d:\n", *insn_idx);
9712 		print_verifier_state(env, caller, true);
9713 	}
9714 	/* clear everything in the callee */
9715 	free_func_state(callee);
9716 	state->frame[state->curframe--] = NULL;
9717 
9718 	/* for callbacks widen imprecise scalars to make programs like below verify:
9719 	 *
9720 	 *   struct ctx { int i; }
9721 	 *   void cb(int idx, struct ctx *ctx) { ctx->i++; ... }
9722 	 *   ...
9723 	 *   struct ctx = { .i = 0; }
9724 	 *   bpf_loop(100, cb, &ctx, 0);
9725 	 *
9726 	 * This is similar to what is done in process_iter_next_call() for open
9727 	 * coded iterators.
9728 	 */
9729 	prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL;
9730 	if (prev_st) {
9731 		err = widen_imprecise_scalars(env, prev_st, state);
9732 		if (err)
9733 			return err;
9734 	}
9735 	return 0;
9736 }
9737 
9738 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9739 				   int func_id,
9740 				   struct bpf_call_arg_meta *meta)
9741 {
9742 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9743 
9744 	if (ret_type != RET_INTEGER)
9745 		return;
9746 
9747 	switch (func_id) {
9748 	case BPF_FUNC_get_stack:
9749 	case BPF_FUNC_get_task_stack:
9750 	case BPF_FUNC_probe_read_str:
9751 	case BPF_FUNC_probe_read_kernel_str:
9752 	case BPF_FUNC_probe_read_user_str:
9753 		ret_reg->smax_value = meta->msize_max_value;
9754 		ret_reg->s32_max_value = meta->msize_max_value;
9755 		ret_reg->smin_value = -MAX_ERRNO;
9756 		ret_reg->s32_min_value = -MAX_ERRNO;
9757 		reg_bounds_sync(ret_reg);
9758 		break;
9759 	case BPF_FUNC_get_smp_processor_id:
9760 		ret_reg->umax_value = nr_cpu_ids - 1;
9761 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9762 		ret_reg->smax_value = nr_cpu_ids - 1;
9763 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9764 		ret_reg->umin_value = 0;
9765 		ret_reg->u32_min_value = 0;
9766 		ret_reg->smin_value = 0;
9767 		ret_reg->s32_min_value = 0;
9768 		reg_bounds_sync(ret_reg);
9769 		break;
9770 	}
9771 }
9772 
9773 static int
9774 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9775 		int func_id, int insn_idx)
9776 {
9777 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9778 	struct bpf_map *map = meta->map_ptr;
9779 
9780 	if (func_id != BPF_FUNC_tail_call &&
9781 	    func_id != BPF_FUNC_map_lookup_elem &&
9782 	    func_id != BPF_FUNC_map_update_elem &&
9783 	    func_id != BPF_FUNC_map_delete_elem &&
9784 	    func_id != BPF_FUNC_map_push_elem &&
9785 	    func_id != BPF_FUNC_map_pop_elem &&
9786 	    func_id != BPF_FUNC_map_peek_elem &&
9787 	    func_id != BPF_FUNC_for_each_map_elem &&
9788 	    func_id != BPF_FUNC_redirect_map &&
9789 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9790 		return 0;
9791 
9792 	if (map == NULL) {
9793 		verbose(env, "kernel subsystem misconfigured verifier\n");
9794 		return -EINVAL;
9795 	}
9796 
9797 	/* In case of read-only, some additional restrictions
9798 	 * need to be applied in order to prevent altering the
9799 	 * state of the map from program side.
9800 	 */
9801 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9802 	    (func_id == BPF_FUNC_map_delete_elem ||
9803 	     func_id == BPF_FUNC_map_update_elem ||
9804 	     func_id == BPF_FUNC_map_push_elem ||
9805 	     func_id == BPF_FUNC_map_pop_elem)) {
9806 		verbose(env, "write into map forbidden\n");
9807 		return -EACCES;
9808 	}
9809 
9810 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9811 		bpf_map_ptr_store(aux, meta->map_ptr,
9812 				  !meta->map_ptr->bypass_spec_v1);
9813 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9814 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9815 				  !meta->map_ptr->bypass_spec_v1);
9816 	return 0;
9817 }
9818 
9819 static int
9820 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9821 		int func_id, int insn_idx)
9822 {
9823 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9824 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9825 	struct bpf_map *map = meta->map_ptr;
9826 	u64 val, max;
9827 	int err;
9828 
9829 	if (func_id != BPF_FUNC_tail_call)
9830 		return 0;
9831 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9832 		verbose(env, "kernel subsystem misconfigured verifier\n");
9833 		return -EINVAL;
9834 	}
9835 
9836 	reg = &regs[BPF_REG_3];
9837 	val = reg->var_off.value;
9838 	max = map->max_entries;
9839 
9840 	if (!(register_is_const(reg) && val < max)) {
9841 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9842 		return 0;
9843 	}
9844 
9845 	err = mark_chain_precision(env, BPF_REG_3);
9846 	if (err)
9847 		return err;
9848 	if (bpf_map_key_unseen(aux))
9849 		bpf_map_key_store(aux, val);
9850 	else if (!bpf_map_key_poisoned(aux) &&
9851 		  bpf_map_key_immediate(aux) != val)
9852 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9853 	return 0;
9854 }
9855 
9856 static int check_reference_leak(struct bpf_verifier_env *env)
9857 {
9858 	struct bpf_func_state *state = cur_func(env);
9859 	bool refs_lingering = false;
9860 	int i;
9861 
9862 	if (state->frameno && !state->in_callback_fn)
9863 		return 0;
9864 
9865 	for (i = 0; i < state->acquired_refs; i++) {
9866 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9867 			continue;
9868 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9869 			state->refs[i].id, state->refs[i].insn_idx);
9870 		refs_lingering = true;
9871 	}
9872 	return refs_lingering ? -EINVAL : 0;
9873 }
9874 
9875 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9876 				   struct bpf_reg_state *regs)
9877 {
9878 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9879 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9880 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9881 	struct bpf_bprintf_data data = {};
9882 	int err, fmt_map_off, num_args;
9883 	u64 fmt_addr;
9884 	char *fmt;
9885 
9886 	/* data must be an array of u64 */
9887 	if (data_len_reg->var_off.value % 8)
9888 		return -EINVAL;
9889 	num_args = data_len_reg->var_off.value / 8;
9890 
9891 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9892 	 * and map_direct_value_addr is set.
9893 	 */
9894 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9895 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9896 						  fmt_map_off);
9897 	if (err) {
9898 		verbose(env, "verifier bug\n");
9899 		return -EFAULT;
9900 	}
9901 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9902 
9903 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9904 	 * can focus on validating the format specifiers.
9905 	 */
9906 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9907 	if (err < 0)
9908 		verbose(env, "Invalid format string\n");
9909 
9910 	return err;
9911 }
9912 
9913 static int check_get_func_ip(struct bpf_verifier_env *env)
9914 {
9915 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9916 	int func_id = BPF_FUNC_get_func_ip;
9917 
9918 	if (type == BPF_PROG_TYPE_TRACING) {
9919 		if (!bpf_prog_has_trampoline(env->prog)) {
9920 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9921 				func_id_name(func_id), func_id);
9922 			return -ENOTSUPP;
9923 		}
9924 		return 0;
9925 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9926 		return 0;
9927 	}
9928 
9929 	verbose(env, "func %s#%d not supported for program type %d\n",
9930 		func_id_name(func_id), func_id, type);
9931 	return -ENOTSUPP;
9932 }
9933 
9934 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9935 {
9936 	return &env->insn_aux_data[env->insn_idx];
9937 }
9938 
9939 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9940 {
9941 	struct bpf_reg_state *regs = cur_regs(env);
9942 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9943 	bool reg_is_null = register_is_null(reg);
9944 
9945 	if (reg_is_null)
9946 		mark_chain_precision(env, BPF_REG_4);
9947 
9948 	return reg_is_null;
9949 }
9950 
9951 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9952 {
9953 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9954 
9955 	if (!state->initialized) {
9956 		state->initialized = 1;
9957 		state->fit_for_inline = loop_flag_is_zero(env);
9958 		state->callback_subprogno = subprogno;
9959 		return;
9960 	}
9961 
9962 	if (!state->fit_for_inline)
9963 		return;
9964 
9965 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9966 				 state->callback_subprogno == subprogno);
9967 }
9968 
9969 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9970 			     int *insn_idx_p)
9971 {
9972 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9973 	const struct bpf_func_proto *fn = NULL;
9974 	enum bpf_return_type ret_type;
9975 	enum bpf_type_flag ret_flag;
9976 	struct bpf_reg_state *regs;
9977 	struct bpf_call_arg_meta meta;
9978 	int insn_idx = *insn_idx_p;
9979 	bool changes_data;
9980 	int i, err, func_id;
9981 
9982 	/* find function prototype */
9983 	func_id = insn->imm;
9984 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9985 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9986 			func_id);
9987 		return -EINVAL;
9988 	}
9989 
9990 	if (env->ops->get_func_proto)
9991 		fn = env->ops->get_func_proto(func_id, env->prog);
9992 	if (!fn) {
9993 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9994 			func_id);
9995 		return -EINVAL;
9996 	}
9997 
9998 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9999 	if (!env->prog->gpl_compatible && fn->gpl_only) {
10000 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
10001 		return -EINVAL;
10002 	}
10003 
10004 	if (fn->allowed && !fn->allowed(env->prog)) {
10005 		verbose(env, "helper call is not allowed in probe\n");
10006 		return -EINVAL;
10007 	}
10008 
10009 	if (!env->prog->aux->sleepable && fn->might_sleep) {
10010 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
10011 		return -EINVAL;
10012 	}
10013 
10014 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
10015 	changes_data = bpf_helper_changes_pkt_data(fn->func);
10016 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
10017 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
10018 			func_id_name(func_id), func_id);
10019 		return -EINVAL;
10020 	}
10021 
10022 	memset(&meta, 0, sizeof(meta));
10023 	meta.pkt_access = fn->pkt_access;
10024 
10025 	err = check_func_proto(fn, func_id);
10026 	if (err) {
10027 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
10028 			func_id_name(func_id), func_id);
10029 		return err;
10030 	}
10031 
10032 	if (env->cur_state->active_rcu_lock) {
10033 		if (fn->might_sleep) {
10034 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
10035 				func_id_name(func_id), func_id);
10036 			return -EINVAL;
10037 		}
10038 
10039 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
10040 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
10041 	}
10042 
10043 	meta.func_id = func_id;
10044 	/* check args */
10045 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
10046 		err = check_func_arg(env, i, &meta, fn, insn_idx);
10047 		if (err)
10048 			return err;
10049 	}
10050 
10051 	err = record_func_map(env, &meta, func_id, insn_idx);
10052 	if (err)
10053 		return err;
10054 
10055 	err = record_func_key(env, &meta, func_id, insn_idx);
10056 	if (err)
10057 		return err;
10058 
10059 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
10060 	 * is inferred from register state.
10061 	 */
10062 	for (i = 0; i < meta.access_size; i++) {
10063 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
10064 				       BPF_WRITE, -1, false, false);
10065 		if (err)
10066 			return err;
10067 	}
10068 
10069 	regs = cur_regs(env);
10070 
10071 	if (meta.release_regno) {
10072 		err = -EINVAL;
10073 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
10074 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
10075 		 * is safe to do directly.
10076 		 */
10077 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
10078 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
10079 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
10080 				return -EFAULT;
10081 			}
10082 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
10083 		} else if (meta.ref_obj_id) {
10084 			err = release_reference(env, meta.ref_obj_id);
10085 		} else if (register_is_null(&regs[meta.release_regno])) {
10086 			/* meta.ref_obj_id can only be 0 if register that is meant to be
10087 			 * released is NULL, which must be > R0.
10088 			 */
10089 			err = 0;
10090 		}
10091 		if (err) {
10092 			verbose(env, "func %s#%d reference has not been acquired before\n",
10093 				func_id_name(func_id), func_id);
10094 			return err;
10095 		}
10096 	}
10097 
10098 	switch (func_id) {
10099 	case BPF_FUNC_tail_call:
10100 		err = check_reference_leak(env);
10101 		if (err) {
10102 			verbose(env, "tail_call would lead to reference leak\n");
10103 			return err;
10104 		}
10105 		break;
10106 	case BPF_FUNC_get_local_storage:
10107 		/* check that flags argument in get_local_storage(map, flags) is 0,
10108 		 * this is required because get_local_storage() can't return an error.
10109 		 */
10110 		if (!register_is_null(&regs[BPF_REG_2])) {
10111 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
10112 			return -EINVAL;
10113 		}
10114 		break;
10115 	case BPF_FUNC_for_each_map_elem:
10116 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10117 					 set_map_elem_callback_state);
10118 		break;
10119 	case BPF_FUNC_timer_set_callback:
10120 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10121 					 set_timer_callback_state);
10122 		break;
10123 	case BPF_FUNC_find_vma:
10124 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10125 					 set_find_vma_callback_state);
10126 		break;
10127 	case BPF_FUNC_snprintf:
10128 		err = check_bpf_snprintf_call(env, regs);
10129 		break;
10130 	case BPF_FUNC_loop:
10131 		update_loop_inline_state(env, meta.subprogno);
10132 		/* Verifier relies on R1 value to determine if bpf_loop() iteration
10133 		 * is finished, thus mark it precise.
10134 		 */
10135 		err = mark_chain_precision(env, BPF_REG_1);
10136 		if (err)
10137 			return err;
10138 		if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) {
10139 			err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10140 						 set_loop_callback_state);
10141 		} else {
10142 			cur_func(env)->callback_depth = 0;
10143 			if (env->log.level & BPF_LOG_LEVEL2)
10144 				verbose(env, "frame%d bpf_loop iteration limit reached\n",
10145 					env->cur_state->curframe);
10146 		}
10147 		break;
10148 	case BPF_FUNC_dynptr_from_mem:
10149 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
10150 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
10151 				reg_type_str(env, regs[BPF_REG_1].type));
10152 			return -EACCES;
10153 		}
10154 		break;
10155 	case BPF_FUNC_set_retval:
10156 		if (prog_type == BPF_PROG_TYPE_LSM &&
10157 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
10158 			if (!env->prog->aux->attach_func_proto->type) {
10159 				/* Make sure programs that attach to void
10160 				 * hooks don't try to modify return value.
10161 				 */
10162 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
10163 				return -EINVAL;
10164 			}
10165 		}
10166 		break;
10167 	case BPF_FUNC_dynptr_data:
10168 	{
10169 		struct bpf_reg_state *reg;
10170 		int id, ref_obj_id;
10171 
10172 		reg = get_dynptr_arg_reg(env, fn, regs);
10173 		if (!reg)
10174 			return -EFAULT;
10175 
10176 
10177 		if (meta.dynptr_id) {
10178 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
10179 			return -EFAULT;
10180 		}
10181 		if (meta.ref_obj_id) {
10182 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
10183 			return -EFAULT;
10184 		}
10185 
10186 		id = dynptr_id(env, reg);
10187 		if (id < 0) {
10188 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
10189 			return id;
10190 		}
10191 
10192 		ref_obj_id = dynptr_ref_obj_id(env, reg);
10193 		if (ref_obj_id < 0) {
10194 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
10195 			return ref_obj_id;
10196 		}
10197 
10198 		meta.dynptr_id = id;
10199 		meta.ref_obj_id = ref_obj_id;
10200 
10201 		break;
10202 	}
10203 	case BPF_FUNC_dynptr_write:
10204 	{
10205 		enum bpf_dynptr_type dynptr_type;
10206 		struct bpf_reg_state *reg;
10207 
10208 		reg = get_dynptr_arg_reg(env, fn, regs);
10209 		if (!reg)
10210 			return -EFAULT;
10211 
10212 		dynptr_type = dynptr_get_type(env, reg);
10213 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
10214 			return -EFAULT;
10215 
10216 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
10217 			/* this will trigger clear_all_pkt_pointers(), which will
10218 			 * invalidate all dynptr slices associated with the skb
10219 			 */
10220 			changes_data = true;
10221 
10222 		break;
10223 	}
10224 	case BPF_FUNC_user_ringbuf_drain:
10225 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
10226 					 set_user_ringbuf_callback_state);
10227 		break;
10228 	}
10229 
10230 	if (err)
10231 		return err;
10232 
10233 	/* reset caller saved regs */
10234 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
10235 		mark_reg_not_init(env, regs, caller_saved[i]);
10236 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
10237 	}
10238 
10239 	/* helper call returns 64-bit value. */
10240 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
10241 
10242 	/* update return register (already marked as written above) */
10243 	ret_type = fn->ret_type;
10244 	ret_flag = type_flag(ret_type);
10245 
10246 	switch (base_type(ret_type)) {
10247 	case RET_INTEGER:
10248 		/* sets type to SCALAR_VALUE */
10249 		mark_reg_unknown(env, regs, BPF_REG_0);
10250 		break;
10251 	case RET_VOID:
10252 		regs[BPF_REG_0].type = NOT_INIT;
10253 		break;
10254 	case RET_PTR_TO_MAP_VALUE:
10255 		/* There is no offset yet applied, variable or fixed */
10256 		mark_reg_known_zero(env, regs, BPF_REG_0);
10257 		/* remember map_ptr, so that check_map_access()
10258 		 * can check 'value_size' boundary of memory access
10259 		 * to map element returned from bpf_map_lookup_elem()
10260 		 */
10261 		if (meta.map_ptr == NULL) {
10262 			verbose(env,
10263 				"kernel subsystem misconfigured verifier\n");
10264 			return -EINVAL;
10265 		}
10266 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
10267 		regs[BPF_REG_0].map_uid = meta.map_uid;
10268 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
10269 		if (!type_may_be_null(ret_type) &&
10270 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
10271 			regs[BPF_REG_0].id = ++env->id_gen;
10272 		}
10273 		break;
10274 	case RET_PTR_TO_SOCKET:
10275 		mark_reg_known_zero(env, regs, BPF_REG_0);
10276 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
10277 		break;
10278 	case RET_PTR_TO_SOCK_COMMON:
10279 		mark_reg_known_zero(env, regs, BPF_REG_0);
10280 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
10281 		break;
10282 	case RET_PTR_TO_TCP_SOCK:
10283 		mark_reg_known_zero(env, regs, BPF_REG_0);
10284 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
10285 		break;
10286 	case RET_PTR_TO_MEM:
10287 		mark_reg_known_zero(env, regs, BPF_REG_0);
10288 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10289 		regs[BPF_REG_0].mem_size = meta.mem_size;
10290 		break;
10291 	case RET_PTR_TO_MEM_OR_BTF_ID:
10292 	{
10293 		const struct btf_type *t;
10294 
10295 		mark_reg_known_zero(env, regs, BPF_REG_0);
10296 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
10297 		if (!btf_type_is_struct(t)) {
10298 			u32 tsize;
10299 			const struct btf_type *ret;
10300 			const char *tname;
10301 
10302 			/* resolve the type size of ksym. */
10303 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
10304 			if (IS_ERR(ret)) {
10305 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
10306 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
10307 					tname, PTR_ERR(ret));
10308 				return -EINVAL;
10309 			}
10310 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
10311 			regs[BPF_REG_0].mem_size = tsize;
10312 		} else {
10313 			/* MEM_RDONLY may be carried from ret_flag, but it
10314 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
10315 			 * it will confuse the check of PTR_TO_BTF_ID in
10316 			 * check_mem_access().
10317 			 */
10318 			ret_flag &= ~MEM_RDONLY;
10319 
10320 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10321 			regs[BPF_REG_0].btf = meta.ret_btf;
10322 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
10323 		}
10324 		break;
10325 	}
10326 	case RET_PTR_TO_BTF_ID:
10327 	{
10328 		struct btf *ret_btf;
10329 		int ret_btf_id;
10330 
10331 		mark_reg_known_zero(env, regs, BPF_REG_0);
10332 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
10333 		if (func_id == BPF_FUNC_kptr_xchg) {
10334 			ret_btf = meta.kptr_field->kptr.btf;
10335 			ret_btf_id = meta.kptr_field->kptr.btf_id;
10336 			if (!btf_is_kernel(ret_btf))
10337 				regs[BPF_REG_0].type |= MEM_ALLOC;
10338 		} else {
10339 			if (fn->ret_btf_id == BPF_PTR_POISON) {
10340 				verbose(env, "verifier internal error:");
10341 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
10342 					func_id_name(func_id));
10343 				return -EINVAL;
10344 			}
10345 			ret_btf = btf_vmlinux;
10346 			ret_btf_id = *fn->ret_btf_id;
10347 		}
10348 		if (ret_btf_id == 0) {
10349 			verbose(env, "invalid return type %u of func %s#%d\n",
10350 				base_type(ret_type), func_id_name(func_id),
10351 				func_id);
10352 			return -EINVAL;
10353 		}
10354 		regs[BPF_REG_0].btf = ret_btf;
10355 		regs[BPF_REG_0].btf_id = ret_btf_id;
10356 		break;
10357 	}
10358 	default:
10359 		verbose(env, "unknown return type %u of func %s#%d\n",
10360 			base_type(ret_type), func_id_name(func_id), func_id);
10361 		return -EINVAL;
10362 	}
10363 
10364 	if (type_may_be_null(regs[BPF_REG_0].type))
10365 		regs[BPF_REG_0].id = ++env->id_gen;
10366 
10367 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
10368 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
10369 			func_id_name(func_id), func_id);
10370 		return -EFAULT;
10371 	}
10372 
10373 	if (is_dynptr_ref_function(func_id))
10374 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
10375 
10376 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
10377 		/* For release_reference() */
10378 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
10379 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
10380 		int id = acquire_reference_state(env, insn_idx);
10381 
10382 		if (id < 0)
10383 			return id;
10384 		/* For mark_ptr_or_null_reg() */
10385 		regs[BPF_REG_0].id = id;
10386 		/* For release_reference() */
10387 		regs[BPF_REG_0].ref_obj_id = id;
10388 	}
10389 
10390 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
10391 
10392 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
10393 	if (err)
10394 		return err;
10395 
10396 	if ((func_id == BPF_FUNC_get_stack ||
10397 	     func_id == BPF_FUNC_get_task_stack) &&
10398 	    !env->prog->has_callchain_buf) {
10399 		const char *err_str;
10400 
10401 #ifdef CONFIG_PERF_EVENTS
10402 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
10403 		err_str = "cannot get callchain buffer for func %s#%d\n";
10404 #else
10405 		err = -ENOTSUPP;
10406 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
10407 #endif
10408 		if (err) {
10409 			verbose(env, err_str, func_id_name(func_id), func_id);
10410 			return err;
10411 		}
10412 
10413 		env->prog->has_callchain_buf = true;
10414 	}
10415 
10416 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
10417 		env->prog->call_get_stack = true;
10418 
10419 	if (func_id == BPF_FUNC_get_func_ip) {
10420 		if (check_get_func_ip(env))
10421 			return -ENOTSUPP;
10422 		env->prog->call_get_func_ip = true;
10423 	}
10424 
10425 	if (changes_data)
10426 		clear_all_pkt_pointers(env);
10427 	return 0;
10428 }
10429 
10430 /* mark_btf_func_reg_size() is used when the reg size is determined by
10431  * the BTF func_proto's return value size and argument.
10432  */
10433 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
10434 				   size_t reg_size)
10435 {
10436 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
10437 
10438 	if (regno == BPF_REG_0) {
10439 		/* Function return value */
10440 		reg->live |= REG_LIVE_WRITTEN;
10441 		reg->subreg_def = reg_size == sizeof(u64) ?
10442 			DEF_NOT_SUBREG : env->insn_idx + 1;
10443 	} else {
10444 		/* Function argument */
10445 		if (reg_size == sizeof(u64)) {
10446 			mark_insn_zext(env, reg);
10447 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10448 		} else {
10449 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10450 		}
10451 	}
10452 }
10453 
10454 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10455 {
10456 	return meta->kfunc_flags & KF_ACQUIRE;
10457 }
10458 
10459 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10460 {
10461 	return meta->kfunc_flags & KF_RELEASE;
10462 }
10463 
10464 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10465 {
10466 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10467 }
10468 
10469 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10470 {
10471 	return meta->kfunc_flags & KF_SLEEPABLE;
10472 }
10473 
10474 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10475 {
10476 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10477 }
10478 
10479 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10480 {
10481 	return meta->kfunc_flags & KF_RCU;
10482 }
10483 
10484 static bool __kfunc_param_match_suffix(const struct btf *btf,
10485 				       const struct btf_param *arg,
10486 				       const char *suffix)
10487 {
10488 	int suffix_len = strlen(suffix), len;
10489 	const char *param_name;
10490 
10491 	/* In the future, this can be ported to use BTF tagging */
10492 	param_name = btf_name_by_offset(btf, arg->name_off);
10493 	if (str_is_empty(param_name))
10494 		return false;
10495 	len = strlen(param_name);
10496 	if (len < suffix_len)
10497 		return false;
10498 	param_name += len - suffix_len;
10499 	return !strncmp(param_name, suffix, suffix_len);
10500 }
10501 
10502 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10503 				  const struct btf_param *arg,
10504 				  const struct bpf_reg_state *reg)
10505 {
10506 	const struct btf_type *t;
10507 
10508 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10509 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10510 		return false;
10511 
10512 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10513 }
10514 
10515 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10516 					const struct btf_param *arg,
10517 					const struct bpf_reg_state *reg)
10518 {
10519 	const struct btf_type *t;
10520 
10521 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10522 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10523 		return false;
10524 
10525 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10526 }
10527 
10528 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10529 {
10530 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10531 }
10532 
10533 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10534 {
10535 	return __kfunc_param_match_suffix(btf, arg, "__k");
10536 }
10537 
10538 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10539 {
10540 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10541 }
10542 
10543 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10544 {
10545 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10546 }
10547 
10548 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10549 {
10550 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10551 }
10552 
10553 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10554 {
10555 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10556 }
10557 
10558 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10559 					  const struct btf_param *arg,
10560 					  const char *name)
10561 {
10562 	int len, target_len = strlen(name);
10563 	const char *param_name;
10564 
10565 	param_name = btf_name_by_offset(btf, arg->name_off);
10566 	if (str_is_empty(param_name))
10567 		return false;
10568 	len = strlen(param_name);
10569 	if (len != target_len)
10570 		return false;
10571 	if (strcmp(param_name, name))
10572 		return false;
10573 
10574 	return true;
10575 }
10576 
10577 enum {
10578 	KF_ARG_DYNPTR_ID,
10579 	KF_ARG_LIST_HEAD_ID,
10580 	KF_ARG_LIST_NODE_ID,
10581 	KF_ARG_RB_ROOT_ID,
10582 	KF_ARG_RB_NODE_ID,
10583 };
10584 
10585 BTF_ID_LIST(kf_arg_btf_ids)
10586 BTF_ID(struct, bpf_dynptr_kern)
10587 BTF_ID(struct, bpf_list_head)
10588 BTF_ID(struct, bpf_list_node)
10589 BTF_ID(struct, bpf_rb_root)
10590 BTF_ID(struct, bpf_rb_node)
10591 
10592 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10593 				    const struct btf_param *arg, int type)
10594 {
10595 	const struct btf_type *t;
10596 	u32 res_id;
10597 
10598 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10599 	if (!t)
10600 		return false;
10601 	if (!btf_type_is_ptr(t))
10602 		return false;
10603 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10604 	if (!t)
10605 		return false;
10606 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10607 }
10608 
10609 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10610 {
10611 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10612 }
10613 
10614 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10615 {
10616 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10617 }
10618 
10619 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10620 {
10621 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10622 }
10623 
10624 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10625 {
10626 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10627 }
10628 
10629 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10630 {
10631 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10632 }
10633 
10634 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10635 				  const struct btf_param *arg)
10636 {
10637 	const struct btf_type *t;
10638 
10639 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10640 	if (!t)
10641 		return false;
10642 
10643 	return true;
10644 }
10645 
10646 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10647 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10648 					const struct btf *btf,
10649 					const struct btf_type *t, int rec)
10650 {
10651 	const struct btf_type *member_type;
10652 	const struct btf_member *member;
10653 	u32 i;
10654 
10655 	if (!btf_type_is_struct(t))
10656 		return false;
10657 
10658 	for_each_member(i, t, member) {
10659 		const struct btf_array *array;
10660 
10661 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10662 		if (btf_type_is_struct(member_type)) {
10663 			if (rec >= 3) {
10664 				verbose(env, "max struct nesting depth exceeded\n");
10665 				return false;
10666 			}
10667 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10668 				return false;
10669 			continue;
10670 		}
10671 		if (btf_type_is_array(member_type)) {
10672 			array = btf_array(member_type);
10673 			if (!array->nelems)
10674 				return false;
10675 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10676 			if (!btf_type_is_scalar(member_type))
10677 				return false;
10678 			continue;
10679 		}
10680 		if (!btf_type_is_scalar(member_type))
10681 			return false;
10682 	}
10683 	return true;
10684 }
10685 
10686 enum kfunc_ptr_arg_type {
10687 	KF_ARG_PTR_TO_CTX,
10688 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10689 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10690 	KF_ARG_PTR_TO_DYNPTR,
10691 	KF_ARG_PTR_TO_ITER,
10692 	KF_ARG_PTR_TO_LIST_HEAD,
10693 	KF_ARG_PTR_TO_LIST_NODE,
10694 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10695 	KF_ARG_PTR_TO_MEM,
10696 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10697 	KF_ARG_PTR_TO_CALLBACK,
10698 	KF_ARG_PTR_TO_RB_ROOT,
10699 	KF_ARG_PTR_TO_RB_NODE,
10700 };
10701 
10702 enum special_kfunc_type {
10703 	KF_bpf_obj_new_impl,
10704 	KF_bpf_obj_drop_impl,
10705 	KF_bpf_refcount_acquire_impl,
10706 	KF_bpf_list_push_front_impl,
10707 	KF_bpf_list_push_back_impl,
10708 	KF_bpf_list_pop_front,
10709 	KF_bpf_list_pop_back,
10710 	KF_bpf_cast_to_kern_ctx,
10711 	KF_bpf_rdonly_cast,
10712 	KF_bpf_rcu_read_lock,
10713 	KF_bpf_rcu_read_unlock,
10714 	KF_bpf_rbtree_remove,
10715 	KF_bpf_rbtree_add_impl,
10716 	KF_bpf_rbtree_first,
10717 	KF_bpf_dynptr_from_skb,
10718 	KF_bpf_dynptr_from_xdp,
10719 	KF_bpf_dynptr_slice,
10720 	KF_bpf_dynptr_slice_rdwr,
10721 	KF_bpf_dynptr_clone,
10722 };
10723 
10724 BTF_SET_START(special_kfunc_set)
10725 BTF_ID(func, bpf_obj_new_impl)
10726 BTF_ID(func, bpf_obj_drop_impl)
10727 BTF_ID(func, bpf_refcount_acquire_impl)
10728 BTF_ID(func, bpf_list_push_front_impl)
10729 BTF_ID(func, bpf_list_push_back_impl)
10730 BTF_ID(func, bpf_list_pop_front)
10731 BTF_ID(func, bpf_list_pop_back)
10732 BTF_ID(func, bpf_cast_to_kern_ctx)
10733 BTF_ID(func, bpf_rdonly_cast)
10734 BTF_ID(func, bpf_rbtree_remove)
10735 BTF_ID(func, bpf_rbtree_add_impl)
10736 BTF_ID(func, bpf_rbtree_first)
10737 BTF_ID(func, bpf_dynptr_from_skb)
10738 BTF_ID(func, bpf_dynptr_from_xdp)
10739 BTF_ID(func, bpf_dynptr_slice)
10740 BTF_ID(func, bpf_dynptr_slice_rdwr)
10741 BTF_ID(func, bpf_dynptr_clone)
10742 BTF_SET_END(special_kfunc_set)
10743 
10744 BTF_ID_LIST(special_kfunc_list)
10745 BTF_ID(func, bpf_obj_new_impl)
10746 BTF_ID(func, bpf_obj_drop_impl)
10747 BTF_ID(func, bpf_refcount_acquire_impl)
10748 BTF_ID(func, bpf_list_push_front_impl)
10749 BTF_ID(func, bpf_list_push_back_impl)
10750 BTF_ID(func, bpf_list_pop_front)
10751 BTF_ID(func, bpf_list_pop_back)
10752 BTF_ID(func, bpf_cast_to_kern_ctx)
10753 BTF_ID(func, bpf_rdonly_cast)
10754 BTF_ID(func, bpf_rcu_read_lock)
10755 BTF_ID(func, bpf_rcu_read_unlock)
10756 BTF_ID(func, bpf_rbtree_remove)
10757 BTF_ID(func, bpf_rbtree_add_impl)
10758 BTF_ID(func, bpf_rbtree_first)
10759 BTF_ID(func, bpf_dynptr_from_skb)
10760 BTF_ID(func, bpf_dynptr_from_xdp)
10761 BTF_ID(func, bpf_dynptr_slice)
10762 BTF_ID(func, bpf_dynptr_slice_rdwr)
10763 BTF_ID(func, bpf_dynptr_clone)
10764 
10765 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10766 {
10767 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10768 	    meta->arg_owning_ref) {
10769 		return false;
10770 	}
10771 
10772 	return meta->kfunc_flags & KF_RET_NULL;
10773 }
10774 
10775 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10776 {
10777 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10778 }
10779 
10780 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10781 {
10782 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10783 }
10784 
10785 static enum kfunc_ptr_arg_type
10786 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10787 		       struct bpf_kfunc_call_arg_meta *meta,
10788 		       const struct btf_type *t, const struct btf_type *ref_t,
10789 		       const char *ref_tname, const struct btf_param *args,
10790 		       int argno, int nargs)
10791 {
10792 	u32 regno = argno + 1;
10793 	struct bpf_reg_state *regs = cur_regs(env);
10794 	struct bpf_reg_state *reg = &regs[regno];
10795 	bool arg_mem_size = false;
10796 
10797 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10798 		return KF_ARG_PTR_TO_CTX;
10799 
10800 	/* In this function, we verify the kfunc's BTF as per the argument type,
10801 	 * leaving the rest of the verification with respect to the register
10802 	 * type to our caller. When a set of conditions hold in the BTF type of
10803 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10804 	 */
10805 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10806 		return KF_ARG_PTR_TO_CTX;
10807 
10808 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10809 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10810 
10811 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10812 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10813 
10814 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10815 		return KF_ARG_PTR_TO_DYNPTR;
10816 
10817 	if (is_kfunc_arg_iter(meta, argno))
10818 		return KF_ARG_PTR_TO_ITER;
10819 
10820 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10821 		return KF_ARG_PTR_TO_LIST_HEAD;
10822 
10823 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10824 		return KF_ARG_PTR_TO_LIST_NODE;
10825 
10826 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10827 		return KF_ARG_PTR_TO_RB_ROOT;
10828 
10829 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10830 		return KF_ARG_PTR_TO_RB_NODE;
10831 
10832 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10833 		if (!btf_type_is_struct(ref_t)) {
10834 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10835 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10836 			return -EINVAL;
10837 		}
10838 		return KF_ARG_PTR_TO_BTF_ID;
10839 	}
10840 
10841 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10842 		return KF_ARG_PTR_TO_CALLBACK;
10843 
10844 
10845 	if (argno + 1 < nargs &&
10846 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10847 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10848 		arg_mem_size = true;
10849 
10850 	/* This is the catch all argument type of register types supported by
10851 	 * check_helper_mem_access. However, we only allow when argument type is
10852 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10853 	 * arg_mem_size is true, the pointer can be void *.
10854 	 */
10855 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10856 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10857 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10858 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10859 		return -EINVAL;
10860 	}
10861 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10862 }
10863 
10864 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10865 					struct bpf_reg_state *reg,
10866 					const struct btf_type *ref_t,
10867 					const char *ref_tname, u32 ref_id,
10868 					struct bpf_kfunc_call_arg_meta *meta,
10869 					int argno)
10870 {
10871 	const struct btf_type *reg_ref_t;
10872 	bool strict_type_match = false;
10873 	const struct btf *reg_btf;
10874 	const char *reg_ref_tname;
10875 	u32 reg_ref_id;
10876 
10877 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10878 		reg_btf = reg->btf;
10879 		reg_ref_id = reg->btf_id;
10880 	} else {
10881 		reg_btf = btf_vmlinux;
10882 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10883 	}
10884 
10885 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10886 	 * or releasing a reference, or are no-cast aliases. We do _not_
10887 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10888 	 * as we want to enable BPF programs to pass types that are bitwise
10889 	 * equivalent without forcing them to explicitly cast with something
10890 	 * like bpf_cast_to_kern_ctx().
10891 	 *
10892 	 * For example, say we had a type like the following:
10893 	 *
10894 	 * struct bpf_cpumask {
10895 	 *	cpumask_t cpumask;
10896 	 *	refcount_t usage;
10897 	 * };
10898 	 *
10899 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10900 	 * to a struct cpumask, so it would be safe to pass a struct
10901 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10902 	 *
10903 	 * The philosophy here is similar to how we allow scalars of different
10904 	 * types to be passed to kfuncs as long as the size is the same. The
10905 	 * only difference here is that we're simply allowing
10906 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10907 	 * resolve types.
10908 	 */
10909 	if (is_kfunc_acquire(meta) ||
10910 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10911 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10912 		strict_type_match = true;
10913 
10914 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10915 
10916 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10917 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10918 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10919 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10920 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10921 			btf_type_str(reg_ref_t), reg_ref_tname);
10922 		return -EINVAL;
10923 	}
10924 	return 0;
10925 }
10926 
10927 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10928 {
10929 	struct bpf_verifier_state *state = env->cur_state;
10930 	struct btf_record *rec = reg_btf_record(reg);
10931 
10932 	if (!state->active_lock.ptr) {
10933 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10934 		return -EFAULT;
10935 	}
10936 
10937 	if (type_flag(reg->type) & NON_OWN_REF) {
10938 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10939 		return -EFAULT;
10940 	}
10941 
10942 	reg->type |= NON_OWN_REF;
10943 	if (rec->refcount_off >= 0)
10944 		reg->type |= MEM_RCU;
10945 
10946 	return 0;
10947 }
10948 
10949 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10950 {
10951 	struct bpf_func_state *state, *unused;
10952 	struct bpf_reg_state *reg;
10953 	int i;
10954 
10955 	state = cur_func(env);
10956 
10957 	if (!ref_obj_id) {
10958 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10959 			     "owning -> non-owning conversion\n");
10960 		return -EFAULT;
10961 	}
10962 
10963 	for (i = 0; i < state->acquired_refs; i++) {
10964 		if (state->refs[i].id != ref_obj_id)
10965 			continue;
10966 
10967 		/* Clear ref_obj_id here so release_reference doesn't clobber
10968 		 * the whole reg
10969 		 */
10970 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10971 			if (reg->ref_obj_id == ref_obj_id) {
10972 				reg->ref_obj_id = 0;
10973 				ref_set_non_owning(env, reg);
10974 			}
10975 		}));
10976 		return 0;
10977 	}
10978 
10979 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10980 	return -EFAULT;
10981 }
10982 
10983 /* Implementation details:
10984  *
10985  * Each register points to some region of memory, which we define as an
10986  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10987  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10988  * allocation. The lock and the data it protects are colocated in the same
10989  * memory region.
10990  *
10991  * Hence, everytime a register holds a pointer value pointing to such
10992  * allocation, the verifier preserves a unique reg->id for it.
10993  *
10994  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10995  * bpf_spin_lock is called.
10996  *
10997  * To enable this, lock state in the verifier captures two values:
10998  *	active_lock.ptr = Register's type specific pointer
10999  *	active_lock.id  = A unique ID for each register pointer value
11000  *
11001  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
11002  * supported register types.
11003  *
11004  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
11005  * allocated objects is the reg->btf pointer.
11006  *
11007  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
11008  * can establish the provenance of the map value statically for each distinct
11009  * lookup into such maps. They always contain a single map value hence unique
11010  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
11011  *
11012  * So, in case of global variables, they use array maps with max_entries = 1,
11013  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
11014  * into the same map value as max_entries is 1, as described above).
11015  *
11016  * In case of inner map lookups, the inner map pointer has same map_ptr as the
11017  * outer map pointer (in verifier context), but each lookup into an inner map
11018  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
11019  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
11020  * will get different reg->id assigned to each lookup, hence different
11021  * active_lock.id.
11022  *
11023  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
11024  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
11025  * returned from bpf_obj_new. Each allocation receives a new reg->id.
11026  */
11027 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
11028 {
11029 	void *ptr;
11030 	u32 id;
11031 
11032 	switch ((int)reg->type) {
11033 	case PTR_TO_MAP_VALUE:
11034 		ptr = reg->map_ptr;
11035 		break;
11036 	case PTR_TO_BTF_ID | MEM_ALLOC:
11037 		ptr = reg->btf;
11038 		break;
11039 	default:
11040 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
11041 		return -EFAULT;
11042 	}
11043 	id = reg->id;
11044 
11045 	if (!env->cur_state->active_lock.ptr)
11046 		return -EINVAL;
11047 	if (env->cur_state->active_lock.ptr != ptr ||
11048 	    env->cur_state->active_lock.id != id) {
11049 		verbose(env, "held lock and object are not in the same allocation\n");
11050 		return -EINVAL;
11051 	}
11052 	return 0;
11053 }
11054 
11055 static bool is_bpf_list_api_kfunc(u32 btf_id)
11056 {
11057 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11058 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11059 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11060 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
11061 }
11062 
11063 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
11064 {
11065 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
11066 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11067 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
11068 }
11069 
11070 static bool is_bpf_graph_api_kfunc(u32 btf_id)
11071 {
11072 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
11073 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
11074 }
11075 
11076 static bool is_sync_callback_calling_kfunc(u32 btf_id)
11077 {
11078 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
11079 }
11080 
11081 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
11082 {
11083 	return is_bpf_rbtree_api_kfunc(btf_id);
11084 }
11085 
11086 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
11087 					  enum btf_field_type head_field_type,
11088 					  u32 kfunc_btf_id)
11089 {
11090 	bool ret;
11091 
11092 	switch (head_field_type) {
11093 	case BPF_LIST_HEAD:
11094 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
11095 		break;
11096 	case BPF_RB_ROOT:
11097 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
11098 		break;
11099 	default:
11100 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
11101 			btf_field_type_name(head_field_type));
11102 		return false;
11103 	}
11104 
11105 	if (!ret)
11106 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
11107 			btf_field_type_name(head_field_type));
11108 	return ret;
11109 }
11110 
11111 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
11112 					  enum btf_field_type node_field_type,
11113 					  u32 kfunc_btf_id)
11114 {
11115 	bool ret;
11116 
11117 	switch (node_field_type) {
11118 	case BPF_LIST_NODE:
11119 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11120 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
11121 		break;
11122 	case BPF_RB_NODE:
11123 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11124 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
11125 		break;
11126 	default:
11127 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
11128 			btf_field_type_name(node_field_type));
11129 		return false;
11130 	}
11131 
11132 	if (!ret)
11133 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
11134 			btf_field_type_name(node_field_type));
11135 	return ret;
11136 }
11137 
11138 static int
11139 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
11140 				   struct bpf_reg_state *reg, u32 regno,
11141 				   struct bpf_kfunc_call_arg_meta *meta,
11142 				   enum btf_field_type head_field_type,
11143 				   struct btf_field **head_field)
11144 {
11145 	const char *head_type_name;
11146 	struct btf_field *field;
11147 	struct btf_record *rec;
11148 	u32 head_off;
11149 
11150 	if (meta->btf != btf_vmlinux) {
11151 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11152 		return -EFAULT;
11153 	}
11154 
11155 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
11156 		return -EFAULT;
11157 
11158 	head_type_name = btf_field_type_name(head_field_type);
11159 	if (!tnum_is_const(reg->var_off)) {
11160 		verbose(env,
11161 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11162 			regno, head_type_name);
11163 		return -EINVAL;
11164 	}
11165 
11166 	rec = reg_btf_record(reg);
11167 	head_off = reg->off + reg->var_off.value;
11168 	field = btf_record_find(rec, head_off, head_field_type);
11169 	if (!field) {
11170 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
11171 		return -EINVAL;
11172 	}
11173 
11174 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
11175 	if (check_reg_allocation_locked(env, reg)) {
11176 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
11177 			rec->spin_lock_off, head_type_name);
11178 		return -EINVAL;
11179 	}
11180 
11181 	if (*head_field) {
11182 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
11183 		return -EFAULT;
11184 	}
11185 	*head_field = field;
11186 	return 0;
11187 }
11188 
11189 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
11190 					   struct bpf_reg_state *reg, u32 regno,
11191 					   struct bpf_kfunc_call_arg_meta *meta)
11192 {
11193 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
11194 							  &meta->arg_list_head.field);
11195 }
11196 
11197 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
11198 					     struct bpf_reg_state *reg, u32 regno,
11199 					     struct bpf_kfunc_call_arg_meta *meta)
11200 {
11201 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
11202 							  &meta->arg_rbtree_root.field);
11203 }
11204 
11205 static int
11206 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
11207 				   struct bpf_reg_state *reg, u32 regno,
11208 				   struct bpf_kfunc_call_arg_meta *meta,
11209 				   enum btf_field_type head_field_type,
11210 				   enum btf_field_type node_field_type,
11211 				   struct btf_field **node_field)
11212 {
11213 	const char *node_type_name;
11214 	const struct btf_type *et, *t;
11215 	struct btf_field *field;
11216 	u32 node_off;
11217 
11218 	if (meta->btf != btf_vmlinux) {
11219 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
11220 		return -EFAULT;
11221 	}
11222 
11223 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
11224 		return -EFAULT;
11225 
11226 	node_type_name = btf_field_type_name(node_field_type);
11227 	if (!tnum_is_const(reg->var_off)) {
11228 		verbose(env,
11229 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
11230 			regno, node_type_name);
11231 		return -EINVAL;
11232 	}
11233 
11234 	node_off = reg->off + reg->var_off.value;
11235 	field = reg_find_field_offset(reg, node_off, node_field_type);
11236 	if (!field || field->offset != node_off) {
11237 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
11238 		return -EINVAL;
11239 	}
11240 
11241 	field = *node_field;
11242 
11243 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
11244 	t = btf_type_by_id(reg->btf, reg->btf_id);
11245 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
11246 				  field->graph_root.value_btf_id, true)) {
11247 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
11248 			"in struct %s, but arg is at offset=%d in struct %s\n",
11249 			btf_field_type_name(head_field_type),
11250 			btf_field_type_name(node_field_type),
11251 			field->graph_root.node_offset,
11252 			btf_name_by_offset(field->graph_root.btf, et->name_off),
11253 			node_off, btf_name_by_offset(reg->btf, t->name_off));
11254 		return -EINVAL;
11255 	}
11256 	meta->arg_btf = reg->btf;
11257 	meta->arg_btf_id = reg->btf_id;
11258 
11259 	if (node_off != field->graph_root.node_offset) {
11260 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
11261 			node_off, btf_field_type_name(node_field_type),
11262 			field->graph_root.node_offset,
11263 			btf_name_by_offset(field->graph_root.btf, et->name_off));
11264 		return -EINVAL;
11265 	}
11266 
11267 	return 0;
11268 }
11269 
11270 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
11271 					   struct bpf_reg_state *reg, u32 regno,
11272 					   struct bpf_kfunc_call_arg_meta *meta)
11273 {
11274 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11275 						  BPF_LIST_HEAD, BPF_LIST_NODE,
11276 						  &meta->arg_list_head.field);
11277 }
11278 
11279 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
11280 					     struct bpf_reg_state *reg, u32 regno,
11281 					     struct bpf_kfunc_call_arg_meta *meta)
11282 {
11283 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
11284 						  BPF_RB_ROOT, BPF_RB_NODE,
11285 						  &meta->arg_rbtree_root.field);
11286 }
11287 
11288 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
11289 			    int insn_idx)
11290 {
11291 	const char *func_name = meta->func_name, *ref_tname;
11292 	const struct btf *btf = meta->btf;
11293 	const struct btf_param *args;
11294 	struct btf_record *rec;
11295 	u32 i, nargs;
11296 	int ret;
11297 
11298 	args = (const struct btf_param *)(meta->func_proto + 1);
11299 	nargs = btf_type_vlen(meta->func_proto);
11300 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
11301 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
11302 			MAX_BPF_FUNC_REG_ARGS);
11303 		return -EINVAL;
11304 	}
11305 
11306 	/* Check that BTF function arguments match actual types that the
11307 	 * verifier sees.
11308 	 */
11309 	for (i = 0; i < nargs; i++) {
11310 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
11311 		const struct btf_type *t, *ref_t, *resolve_ret;
11312 		enum bpf_arg_type arg_type = ARG_DONTCARE;
11313 		u32 regno = i + 1, ref_id, type_size;
11314 		bool is_ret_buf_sz = false;
11315 		int kf_arg_type;
11316 
11317 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
11318 
11319 		if (is_kfunc_arg_ignore(btf, &args[i]))
11320 			continue;
11321 
11322 		if (btf_type_is_scalar(t)) {
11323 			if (reg->type != SCALAR_VALUE) {
11324 				verbose(env, "R%d is not a scalar\n", regno);
11325 				return -EINVAL;
11326 			}
11327 
11328 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
11329 				if (meta->arg_constant.found) {
11330 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11331 					return -EFAULT;
11332 				}
11333 				if (!tnum_is_const(reg->var_off)) {
11334 					verbose(env, "R%d must be a known constant\n", regno);
11335 					return -EINVAL;
11336 				}
11337 				ret = mark_chain_precision(env, regno);
11338 				if (ret < 0)
11339 					return ret;
11340 				meta->arg_constant.found = true;
11341 				meta->arg_constant.value = reg->var_off.value;
11342 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
11343 				meta->r0_rdonly = true;
11344 				is_ret_buf_sz = true;
11345 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
11346 				is_ret_buf_sz = true;
11347 			}
11348 
11349 			if (is_ret_buf_sz) {
11350 				if (meta->r0_size) {
11351 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
11352 					return -EINVAL;
11353 				}
11354 
11355 				if (!tnum_is_const(reg->var_off)) {
11356 					verbose(env, "R%d is not a const\n", regno);
11357 					return -EINVAL;
11358 				}
11359 
11360 				meta->r0_size = reg->var_off.value;
11361 				ret = mark_chain_precision(env, regno);
11362 				if (ret)
11363 					return ret;
11364 			}
11365 			continue;
11366 		}
11367 
11368 		if (!btf_type_is_ptr(t)) {
11369 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
11370 			return -EINVAL;
11371 		}
11372 
11373 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
11374 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
11375 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
11376 			return -EACCES;
11377 		}
11378 
11379 		if (reg->ref_obj_id) {
11380 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
11381 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
11382 					regno, reg->ref_obj_id,
11383 					meta->ref_obj_id);
11384 				return -EFAULT;
11385 			}
11386 			meta->ref_obj_id = reg->ref_obj_id;
11387 			if (is_kfunc_release(meta))
11388 				meta->release_regno = regno;
11389 		}
11390 
11391 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
11392 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
11393 
11394 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
11395 		if (kf_arg_type < 0)
11396 			return kf_arg_type;
11397 
11398 		switch (kf_arg_type) {
11399 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11400 		case KF_ARG_PTR_TO_BTF_ID:
11401 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
11402 				break;
11403 
11404 			if (!is_trusted_reg(reg)) {
11405 				if (!is_kfunc_rcu(meta)) {
11406 					verbose(env, "R%d must be referenced or trusted\n", regno);
11407 					return -EINVAL;
11408 				}
11409 				if (!is_rcu_reg(reg)) {
11410 					verbose(env, "R%d must be a rcu pointer\n", regno);
11411 					return -EINVAL;
11412 				}
11413 			}
11414 
11415 			fallthrough;
11416 		case KF_ARG_PTR_TO_CTX:
11417 			/* Trusted arguments have the same offset checks as release arguments */
11418 			arg_type |= OBJ_RELEASE;
11419 			break;
11420 		case KF_ARG_PTR_TO_DYNPTR:
11421 		case KF_ARG_PTR_TO_ITER:
11422 		case KF_ARG_PTR_TO_LIST_HEAD:
11423 		case KF_ARG_PTR_TO_LIST_NODE:
11424 		case KF_ARG_PTR_TO_RB_ROOT:
11425 		case KF_ARG_PTR_TO_RB_NODE:
11426 		case KF_ARG_PTR_TO_MEM:
11427 		case KF_ARG_PTR_TO_MEM_SIZE:
11428 		case KF_ARG_PTR_TO_CALLBACK:
11429 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11430 			/* Trusted by default */
11431 			break;
11432 		default:
11433 			WARN_ON_ONCE(1);
11434 			return -EFAULT;
11435 		}
11436 
11437 		if (is_kfunc_release(meta) && reg->ref_obj_id)
11438 			arg_type |= OBJ_RELEASE;
11439 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
11440 		if (ret < 0)
11441 			return ret;
11442 
11443 		switch (kf_arg_type) {
11444 		case KF_ARG_PTR_TO_CTX:
11445 			if (reg->type != PTR_TO_CTX) {
11446 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11447 				return -EINVAL;
11448 			}
11449 
11450 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11451 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11452 				if (ret < 0)
11453 					return -EINVAL;
11454 				meta->ret_btf_id  = ret;
11455 			}
11456 			break;
11457 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11458 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11459 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11460 				return -EINVAL;
11461 			}
11462 			if (!reg->ref_obj_id) {
11463 				verbose(env, "allocated object must be referenced\n");
11464 				return -EINVAL;
11465 			}
11466 			if (meta->btf == btf_vmlinux &&
11467 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11468 				meta->arg_btf = reg->btf;
11469 				meta->arg_btf_id = reg->btf_id;
11470 			}
11471 			break;
11472 		case KF_ARG_PTR_TO_DYNPTR:
11473 		{
11474 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11475 			int clone_ref_obj_id = 0;
11476 
11477 			if (reg->type != PTR_TO_STACK &&
11478 			    reg->type != CONST_PTR_TO_DYNPTR) {
11479 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11480 				return -EINVAL;
11481 			}
11482 
11483 			if (reg->type == CONST_PTR_TO_DYNPTR)
11484 				dynptr_arg_type |= MEM_RDONLY;
11485 
11486 			if (is_kfunc_arg_uninit(btf, &args[i]))
11487 				dynptr_arg_type |= MEM_UNINIT;
11488 
11489 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11490 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11491 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11492 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11493 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11494 				   (dynptr_arg_type & MEM_UNINIT)) {
11495 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11496 
11497 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11498 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11499 					return -EFAULT;
11500 				}
11501 
11502 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11503 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11504 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11505 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11506 					return -EFAULT;
11507 				}
11508 			}
11509 
11510 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11511 			if (ret < 0)
11512 				return ret;
11513 
11514 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11515 				int id = dynptr_id(env, reg);
11516 
11517 				if (id < 0) {
11518 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11519 					return id;
11520 				}
11521 				meta->initialized_dynptr.id = id;
11522 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11523 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11524 			}
11525 
11526 			break;
11527 		}
11528 		case KF_ARG_PTR_TO_ITER:
11529 			ret = process_iter_arg(env, regno, insn_idx, meta);
11530 			if (ret < 0)
11531 				return ret;
11532 			break;
11533 		case KF_ARG_PTR_TO_LIST_HEAD:
11534 			if (reg->type != PTR_TO_MAP_VALUE &&
11535 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11536 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11537 				return -EINVAL;
11538 			}
11539 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11540 				verbose(env, "allocated object must be referenced\n");
11541 				return -EINVAL;
11542 			}
11543 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11544 			if (ret < 0)
11545 				return ret;
11546 			break;
11547 		case KF_ARG_PTR_TO_RB_ROOT:
11548 			if (reg->type != PTR_TO_MAP_VALUE &&
11549 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11550 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11551 				return -EINVAL;
11552 			}
11553 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11554 				verbose(env, "allocated object must be referenced\n");
11555 				return -EINVAL;
11556 			}
11557 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11558 			if (ret < 0)
11559 				return ret;
11560 			break;
11561 		case KF_ARG_PTR_TO_LIST_NODE:
11562 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11563 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11564 				return -EINVAL;
11565 			}
11566 			if (!reg->ref_obj_id) {
11567 				verbose(env, "allocated object must be referenced\n");
11568 				return -EINVAL;
11569 			}
11570 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11571 			if (ret < 0)
11572 				return ret;
11573 			break;
11574 		case KF_ARG_PTR_TO_RB_NODE:
11575 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11576 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11577 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11578 					return -EINVAL;
11579 				}
11580 				if (in_rbtree_lock_required_cb(env)) {
11581 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11582 					return -EINVAL;
11583 				}
11584 			} else {
11585 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11586 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11587 					return -EINVAL;
11588 				}
11589 				if (!reg->ref_obj_id) {
11590 					verbose(env, "allocated object must be referenced\n");
11591 					return -EINVAL;
11592 				}
11593 			}
11594 
11595 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11596 			if (ret < 0)
11597 				return ret;
11598 			break;
11599 		case KF_ARG_PTR_TO_BTF_ID:
11600 			/* Only base_type is checked, further checks are done here */
11601 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11602 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11603 			    !reg2btf_ids[base_type(reg->type)]) {
11604 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11605 				verbose(env, "expected %s or socket\n",
11606 					reg_type_str(env, base_type(reg->type) |
11607 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11608 				return -EINVAL;
11609 			}
11610 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11611 			if (ret < 0)
11612 				return ret;
11613 			break;
11614 		case KF_ARG_PTR_TO_MEM:
11615 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11616 			if (IS_ERR(resolve_ret)) {
11617 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11618 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11619 				return -EINVAL;
11620 			}
11621 			ret = check_mem_reg(env, reg, regno, type_size);
11622 			if (ret < 0)
11623 				return ret;
11624 			break;
11625 		case KF_ARG_PTR_TO_MEM_SIZE:
11626 		{
11627 			struct bpf_reg_state *buff_reg = &regs[regno];
11628 			const struct btf_param *buff_arg = &args[i];
11629 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11630 			const struct btf_param *size_arg = &args[i + 1];
11631 
11632 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11633 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11634 				if (ret < 0) {
11635 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11636 					return ret;
11637 				}
11638 			}
11639 
11640 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11641 				if (meta->arg_constant.found) {
11642 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11643 					return -EFAULT;
11644 				}
11645 				if (!tnum_is_const(size_reg->var_off)) {
11646 					verbose(env, "R%d must be a known constant\n", regno + 1);
11647 					return -EINVAL;
11648 				}
11649 				meta->arg_constant.found = true;
11650 				meta->arg_constant.value = size_reg->var_off.value;
11651 			}
11652 
11653 			/* Skip next '__sz' or '__szk' argument */
11654 			i++;
11655 			break;
11656 		}
11657 		case KF_ARG_PTR_TO_CALLBACK:
11658 			if (reg->type != PTR_TO_FUNC) {
11659 				verbose(env, "arg%d expected pointer to func\n", i);
11660 				return -EINVAL;
11661 			}
11662 			meta->subprogno = reg->subprogno;
11663 			break;
11664 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11665 			if (!type_is_ptr_alloc_obj(reg->type)) {
11666 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11667 				return -EINVAL;
11668 			}
11669 			if (!type_is_non_owning_ref(reg->type))
11670 				meta->arg_owning_ref = true;
11671 
11672 			rec = reg_btf_record(reg);
11673 			if (!rec) {
11674 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11675 				return -EFAULT;
11676 			}
11677 
11678 			if (rec->refcount_off < 0) {
11679 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11680 				return -EINVAL;
11681 			}
11682 
11683 			meta->arg_btf = reg->btf;
11684 			meta->arg_btf_id = reg->btf_id;
11685 			break;
11686 		}
11687 	}
11688 
11689 	if (is_kfunc_release(meta) && !meta->release_regno) {
11690 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11691 			func_name);
11692 		return -EINVAL;
11693 	}
11694 
11695 	return 0;
11696 }
11697 
11698 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11699 			    struct bpf_insn *insn,
11700 			    struct bpf_kfunc_call_arg_meta *meta,
11701 			    const char **kfunc_name)
11702 {
11703 	const struct btf_type *func, *func_proto;
11704 	u32 func_id, *kfunc_flags;
11705 	const char *func_name;
11706 	struct btf *desc_btf;
11707 
11708 	if (kfunc_name)
11709 		*kfunc_name = NULL;
11710 
11711 	if (!insn->imm)
11712 		return -EINVAL;
11713 
11714 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11715 	if (IS_ERR(desc_btf))
11716 		return PTR_ERR(desc_btf);
11717 
11718 	func_id = insn->imm;
11719 	func = btf_type_by_id(desc_btf, func_id);
11720 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11721 	if (kfunc_name)
11722 		*kfunc_name = func_name;
11723 	func_proto = btf_type_by_id(desc_btf, func->type);
11724 
11725 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11726 	if (!kfunc_flags) {
11727 		return -EACCES;
11728 	}
11729 
11730 	memset(meta, 0, sizeof(*meta));
11731 	meta->btf = desc_btf;
11732 	meta->func_id = func_id;
11733 	meta->kfunc_flags = *kfunc_flags;
11734 	meta->func_proto = func_proto;
11735 	meta->func_name = func_name;
11736 
11737 	return 0;
11738 }
11739 
11740 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11741 			    int *insn_idx_p)
11742 {
11743 	const struct btf_type *t, *ptr_type;
11744 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11745 	struct bpf_reg_state *regs = cur_regs(env);
11746 	const char *func_name, *ptr_type_name;
11747 	bool sleepable, rcu_lock, rcu_unlock;
11748 	struct bpf_kfunc_call_arg_meta meta;
11749 	struct bpf_insn_aux_data *insn_aux;
11750 	int err, insn_idx = *insn_idx_p;
11751 	const struct btf_param *args;
11752 	const struct btf_type *ret_t;
11753 	struct btf *desc_btf;
11754 
11755 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11756 	if (!insn->imm)
11757 		return 0;
11758 
11759 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11760 	if (err == -EACCES && func_name)
11761 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11762 	if (err)
11763 		return err;
11764 	desc_btf = meta.btf;
11765 	insn_aux = &env->insn_aux_data[insn_idx];
11766 
11767 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11768 
11769 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11770 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11771 		return -EACCES;
11772 	}
11773 
11774 	sleepable = is_kfunc_sleepable(&meta);
11775 	if (sleepable && !env->prog->aux->sleepable) {
11776 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11777 		return -EACCES;
11778 	}
11779 
11780 	/* Check the arguments */
11781 	err = check_kfunc_args(env, &meta, insn_idx);
11782 	if (err < 0)
11783 		return err;
11784 
11785 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11786 		err = push_callback_call(env, insn, insn_idx, meta.subprogno,
11787 					 set_rbtree_add_callback_state);
11788 		if (err) {
11789 			verbose(env, "kfunc %s#%d failed callback verification\n",
11790 				func_name, meta.func_id);
11791 			return err;
11792 		}
11793 	}
11794 
11795 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11796 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11797 
11798 	if (env->cur_state->active_rcu_lock) {
11799 		struct bpf_func_state *state;
11800 		struct bpf_reg_state *reg;
11801 
11802 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11803 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11804 			return -EACCES;
11805 		}
11806 
11807 		if (rcu_lock) {
11808 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11809 			return -EINVAL;
11810 		} else if (rcu_unlock) {
11811 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11812 				if (reg->type & MEM_RCU) {
11813 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11814 					reg->type |= PTR_UNTRUSTED;
11815 				}
11816 			}));
11817 			env->cur_state->active_rcu_lock = false;
11818 		} else if (sleepable) {
11819 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11820 			return -EACCES;
11821 		}
11822 	} else if (rcu_lock) {
11823 		env->cur_state->active_rcu_lock = true;
11824 	} else if (rcu_unlock) {
11825 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11826 		return -EINVAL;
11827 	}
11828 
11829 	/* In case of release function, we get register number of refcounted
11830 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11831 	 */
11832 	if (meta.release_regno) {
11833 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11834 		if (err) {
11835 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11836 				func_name, meta.func_id);
11837 			return err;
11838 		}
11839 	}
11840 
11841 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11842 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11843 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11844 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11845 		insn_aux->insert_off = regs[BPF_REG_2].off;
11846 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11847 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11848 		if (err) {
11849 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11850 				func_name, meta.func_id);
11851 			return err;
11852 		}
11853 
11854 		err = release_reference(env, release_ref_obj_id);
11855 		if (err) {
11856 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11857 				func_name, meta.func_id);
11858 			return err;
11859 		}
11860 	}
11861 
11862 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11863 		mark_reg_not_init(env, regs, caller_saved[i]);
11864 
11865 	/* Check return type */
11866 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11867 
11868 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11869 		/* Only exception is bpf_obj_new_impl */
11870 		if (meta.btf != btf_vmlinux ||
11871 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11872 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11873 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11874 			return -EINVAL;
11875 		}
11876 	}
11877 
11878 	if (btf_type_is_scalar(t)) {
11879 		mark_reg_unknown(env, regs, BPF_REG_0);
11880 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11881 	} else if (btf_type_is_ptr(t)) {
11882 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11883 
11884 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11885 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11886 				struct btf *ret_btf;
11887 				u32 ret_btf_id;
11888 
11889 				if (unlikely(!bpf_global_ma_set))
11890 					return -ENOMEM;
11891 
11892 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11893 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11894 					return -EINVAL;
11895 				}
11896 
11897 				ret_btf = env->prog->aux->btf;
11898 				ret_btf_id = meta.arg_constant.value;
11899 
11900 				/* This may be NULL due to user not supplying a BTF */
11901 				if (!ret_btf) {
11902 					verbose(env, "bpf_obj_new requires prog BTF\n");
11903 					return -EINVAL;
11904 				}
11905 
11906 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11907 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11908 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11909 					return -EINVAL;
11910 				}
11911 
11912 				mark_reg_known_zero(env, regs, BPF_REG_0);
11913 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11914 				regs[BPF_REG_0].btf = ret_btf;
11915 				regs[BPF_REG_0].btf_id = ret_btf_id;
11916 
11917 				insn_aux->obj_new_size = ret_t->size;
11918 				insn_aux->kptr_struct_meta =
11919 					btf_find_struct_meta(ret_btf, ret_btf_id);
11920 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11921 				mark_reg_known_zero(env, regs, BPF_REG_0);
11922 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11923 				regs[BPF_REG_0].btf = meta.arg_btf;
11924 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11925 
11926 				insn_aux->kptr_struct_meta =
11927 					btf_find_struct_meta(meta.arg_btf,
11928 							     meta.arg_btf_id);
11929 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11930 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11931 				struct btf_field *field = meta.arg_list_head.field;
11932 
11933 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11934 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11935 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11936 				struct btf_field *field = meta.arg_rbtree_root.field;
11937 
11938 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11939 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11940 				mark_reg_known_zero(env, regs, BPF_REG_0);
11941 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11942 				regs[BPF_REG_0].btf = desc_btf;
11943 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11944 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11945 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11946 				if (!ret_t || !btf_type_is_struct(ret_t)) {
11947 					verbose(env,
11948 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11949 					return -EINVAL;
11950 				}
11951 
11952 				mark_reg_known_zero(env, regs, BPF_REG_0);
11953 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11954 				regs[BPF_REG_0].btf = desc_btf;
11955 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11956 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11957 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11958 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11959 
11960 				mark_reg_known_zero(env, regs, BPF_REG_0);
11961 
11962 				if (!meta.arg_constant.found) {
11963 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11964 					return -EFAULT;
11965 				}
11966 
11967 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11968 
11969 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11970 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11971 
11972 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11973 					regs[BPF_REG_0].type |= MEM_RDONLY;
11974 				} else {
11975 					/* this will set env->seen_direct_write to true */
11976 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11977 						verbose(env, "the prog does not allow writes to packet data\n");
11978 						return -EINVAL;
11979 					}
11980 				}
11981 
11982 				if (!meta.initialized_dynptr.id) {
11983 					verbose(env, "verifier internal error: no dynptr id\n");
11984 					return -EFAULT;
11985 				}
11986 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11987 
11988 				/* we don't need to set BPF_REG_0's ref obj id
11989 				 * because packet slices are not refcounted (see
11990 				 * dynptr_type_refcounted)
11991 				 */
11992 			} else {
11993 				verbose(env, "kernel function %s unhandled dynamic return type\n",
11994 					meta.func_name);
11995 				return -EFAULT;
11996 			}
11997 		} else if (!__btf_type_is_struct(ptr_type)) {
11998 			if (!meta.r0_size) {
11999 				__u32 sz;
12000 
12001 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
12002 					meta.r0_size = sz;
12003 					meta.r0_rdonly = true;
12004 				}
12005 			}
12006 			if (!meta.r0_size) {
12007 				ptr_type_name = btf_name_by_offset(desc_btf,
12008 								   ptr_type->name_off);
12009 				verbose(env,
12010 					"kernel function %s returns pointer type %s %s is not supported\n",
12011 					func_name,
12012 					btf_type_str(ptr_type),
12013 					ptr_type_name);
12014 				return -EINVAL;
12015 			}
12016 
12017 			mark_reg_known_zero(env, regs, BPF_REG_0);
12018 			regs[BPF_REG_0].type = PTR_TO_MEM;
12019 			regs[BPF_REG_0].mem_size = meta.r0_size;
12020 
12021 			if (meta.r0_rdonly)
12022 				regs[BPF_REG_0].type |= MEM_RDONLY;
12023 
12024 			/* Ensures we don't access the memory after a release_reference() */
12025 			if (meta.ref_obj_id)
12026 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
12027 		} else {
12028 			mark_reg_known_zero(env, regs, BPF_REG_0);
12029 			regs[BPF_REG_0].btf = desc_btf;
12030 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
12031 			regs[BPF_REG_0].btf_id = ptr_type_id;
12032 
12033 			if (is_iter_next_kfunc(&meta)) {
12034 				struct bpf_reg_state *cur_iter;
12035 
12036 				cur_iter = get_iter_from_state(env->cur_state, &meta);
12037 
12038 				if (cur_iter->type & MEM_RCU) /* KF_RCU_PROTECTED */
12039 					regs[BPF_REG_0].type |= MEM_RCU;
12040 				else
12041 					regs[BPF_REG_0].type |= PTR_TRUSTED;
12042 			}
12043 		}
12044 
12045 		if (is_kfunc_ret_null(&meta)) {
12046 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
12047 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
12048 			regs[BPF_REG_0].id = ++env->id_gen;
12049 		}
12050 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
12051 		if (is_kfunc_acquire(&meta)) {
12052 			int id = acquire_reference_state(env, insn_idx);
12053 
12054 			if (id < 0)
12055 				return id;
12056 			if (is_kfunc_ret_null(&meta))
12057 				regs[BPF_REG_0].id = id;
12058 			regs[BPF_REG_0].ref_obj_id = id;
12059 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
12060 			ref_set_non_owning(env, &regs[BPF_REG_0]);
12061 		}
12062 
12063 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
12064 			regs[BPF_REG_0].id = ++env->id_gen;
12065 	} else if (btf_type_is_void(t)) {
12066 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
12067 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
12068 				insn_aux->kptr_struct_meta =
12069 					btf_find_struct_meta(meta.arg_btf,
12070 							     meta.arg_btf_id);
12071 			}
12072 		}
12073 	}
12074 
12075 	nargs = btf_type_vlen(meta.func_proto);
12076 	args = (const struct btf_param *)(meta.func_proto + 1);
12077 	for (i = 0; i < nargs; i++) {
12078 		u32 regno = i + 1;
12079 
12080 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
12081 		if (btf_type_is_ptr(t))
12082 			mark_btf_func_reg_size(env, regno, sizeof(void *));
12083 		else
12084 			/* scalar. ensured by btf_check_kfunc_arg_match() */
12085 			mark_btf_func_reg_size(env, regno, t->size);
12086 	}
12087 
12088 	if (is_iter_next_kfunc(&meta)) {
12089 		err = process_iter_next_call(env, insn_idx, &meta);
12090 		if (err)
12091 			return err;
12092 	}
12093 
12094 	return 0;
12095 }
12096 
12097 static bool signed_add_overflows(s64 a, s64 b)
12098 {
12099 	/* Do the add in u64, where overflow is well-defined */
12100 	s64 res = (s64)((u64)a + (u64)b);
12101 
12102 	if (b < 0)
12103 		return res > a;
12104 	return res < a;
12105 }
12106 
12107 static bool signed_add32_overflows(s32 a, s32 b)
12108 {
12109 	/* Do the add in u32, where overflow is well-defined */
12110 	s32 res = (s32)((u32)a + (u32)b);
12111 
12112 	if (b < 0)
12113 		return res > a;
12114 	return res < a;
12115 }
12116 
12117 static bool signed_sub_overflows(s64 a, s64 b)
12118 {
12119 	/* Do the sub in u64, where overflow is well-defined */
12120 	s64 res = (s64)((u64)a - (u64)b);
12121 
12122 	if (b < 0)
12123 		return res < a;
12124 	return res > a;
12125 }
12126 
12127 static bool signed_sub32_overflows(s32 a, s32 b)
12128 {
12129 	/* Do the sub in u32, where overflow is well-defined */
12130 	s32 res = (s32)((u32)a - (u32)b);
12131 
12132 	if (b < 0)
12133 		return res < a;
12134 	return res > a;
12135 }
12136 
12137 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
12138 				  const struct bpf_reg_state *reg,
12139 				  enum bpf_reg_type type)
12140 {
12141 	bool known = tnum_is_const(reg->var_off);
12142 	s64 val = reg->var_off.value;
12143 	s64 smin = reg->smin_value;
12144 
12145 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
12146 		verbose(env, "math between %s pointer and %lld is not allowed\n",
12147 			reg_type_str(env, type), val);
12148 		return false;
12149 	}
12150 
12151 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
12152 		verbose(env, "%s pointer offset %d is not allowed\n",
12153 			reg_type_str(env, type), reg->off);
12154 		return false;
12155 	}
12156 
12157 	if (smin == S64_MIN) {
12158 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
12159 			reg_type_str(env, type));
12160 		return false;
12161 	}
12162 
12163 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
12164 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
12165 			smin, reg_type_str(env, type));
12166 		return false;
12167 	}
12168 
12169 	return true;
12170 }
12171 
12172 enum {
12173 	REASON_BOUNDS	= -1,
12174 	REASON_TYPE	= -2,
12175 	REASON_PATHS	= -3,
12176 	REASON_LIMIT	= -4,
12177 	REASON_STACK	= -5,
12178 };
12179 
12180 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
12181 			      u32 *alu_limit, bool mask_to_left)
12182 {
12183 	u32 max = 0, ptr_limit = 0;
12184 
12185 	switch (ptr_reg->type) {
12186 	case PTR_TO_STACK:
12187 		/* Offset 0 is out-of-bounds, but acceptable start for the
12188 		 * left direction, see BPF_REG_FP. Also, unknown scalar
12189 		 * offset where we would need to deal with min/max bounds is
12190 		 * currently prohibited for unprivileged.
12191 		 */
12192 		max = MAX_BPF_STACK + mask_to_left;
12193 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
12194 		break;
12195 	case PTR_TO_MAP_VALUE:
12196 		max = ptr_reg->map_ptr->value_size;
12197 		ptr_limit = (mask_to_left ?
12198 			     ptr_reg->smin_value :
12199 			     ptr_reg->umax_value) + ptr_reg->off;
12200 		break;
12201 	default:
12202 		return REASON_TYPE;
12203 	}
12204 
12205 	if (ptr_limit >= max)
12206 		return REASON_LIMIT;
12207 	*alu_limit = ptr_limit;
12208 	return 0;
12209 }
12210 
12211 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
12212 				    const struct bpf_insn *insn)
12213 {
12214 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
12215 }
12216 
12217 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
12218 				       u32 alu_state, u32 alu_limit)
12219 {
12220 	/* If we arrived here from different branches with different
12221 	 * state or limits to sanitize, then this won't work.
12222 	 */
12223 	if (aux->alu_state &&
12224 	    (aux->alu_state != alu_state ||
12225 	     aux->alu_limit != alu_limit))
12226 		return REASON_PATHS;
12227 
12228 	/* Corresponding fixup done in do_misc_fixups(). */
12229 	aux->alu_state = alu_state;
12230 	aux->alu_limit = alu_limit;
12231 	return 0;
12232 }
12233 
12234 static int sanitize_val_alu(struct bpf_verifier_env *env,
12235 			    struct bpf_insn *insn)
12236 {
12237 	struct bpf_insn_aux_data *aux = cur_aux(env);
12238 
12239 	if (can_skip_alu_sanitation(env, insn))
12240 		return 0;
12241 
12242 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
12243 }
12244 
12245 static bool sanitize_needed(u8 opcode)
12246 {
12247 	return opcode == BPF_ADD || opcode == BPF_SUB;
12248 }
12249 
12250 struct bpf_sanitize_info {
12251 	struct bpf_insn_aux_data aux;
12252 	bool mask_to_left;
12253 };
12254 
12255 static struct bpf_verifier_state *
12256 sanitize_speculative_path(struct bpf_verifier_env *env,
12257 			  const struct bpf_insn *insn,
12258 			  u32 next_idx, u32 curr_idx)
12259 {
12260 	struct bpf_verifier_state *branch;
12261 	struct bpf_reg_state *regs;
12262 
12263 	branch = push_stack(env, next_idx, curr_idx, true);
12264 	if (branch && insn) {
12265 		regs = branch->frame[branch->curframe]->regs;
12266 		if (BPF_SRC(insn->code) == BPF_K) {
12267 			mark_reg_unknown(env, regs, insn->dst_reg);
12268 		} else if (BPF_SRC(insn->code) == BPF_X) {
12269 			mark_reg_unknown(env, regs, insn->dst_reg);
12270 			mark_reg_unknown(env, regs, insn->src_reg);
12271 		}
12272 	}
12273 	return branch;
12274 }
12275 
12276 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
12277 			    struct bpf_insn *insn,
12278 			    const struct bpf_reg_state *ptr_reg,
12279 			    const struct bpf_reg_state *off_reg,
12280 			    struct bpf_reg_state *dst_reg,
12281 			    struct bpf_sanitize_info *info,
12282 			    const bool commit_window)
12283 {
12284 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
12285 	struct bpf_verifier_state *vstate = env->cur_state;
12286 	bool off_is_imm = tnum_is_const(off_reg->var_off);
12287 	bool off_is_neg = off_reg->smin_value < 0;
12288 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
12289 	u8 opcode = BPF_OP(insn->code);
12290 	u32 alu_state, alu_limit;
12291 	struct bpf_reg_state tmp;
12292 	bool ret;
12293 	int err;
12294 
12295 	if (can_skip_alu_sanitation(env, insn))
12296 		return 0;
12297 
12298 	/* We already marked aux for masking from non-speculative
12299 	 * paths, thus we got here in the first place. We only care
12300 	 * to explore bad access from here.
12301 	 */
12302 	if (vstate->speculative)
12303 		goto do_sim;
12304 
12305 	if (!commit_window) {
12306 		if (!tnum_is_const(off_reg->var_off) &&
12307 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
12308 			return REASON_BOUNDS;
12309 
12310 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
12311 				     (opcode == BPF_SUB && !off_is_neg);
12312 	}
12313 
12314 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
12315 	if (err < 0)
12316 		return err;
12317 
12318 	if (commit_window) {
12319 		/* In commit phase we narrow the masking window based on
12320 		 * the observed pointer move after the simulated operation.
12321 		 */
12322 		alu_state = info->aux.alu_state;
12323 		alu_limit = abs(info->aux.alu_limit - alu_limit);
12324 	} else {
12325 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
12326 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
12327 		alu_state |= ptr_is_dst_reg ?
12328 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
12329 
12330 		/* Limit pruning on unknown scalars to enable deep search for
12331 		 * potential masking differences from other program paths.
12332 		 */
12333 		if (!off_is_imm)
12334 			env->explore_alu_limits = true;
12335 	}
12336 
12337 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
12338 	if (err < 0)
12339 		return err;
12340 do_sim:
12341 	/* If we're in commit phase, we're done here given we already
12342 	 * pushed the truncated dst_reg into the speculative verification
12343 	 * stack.
12344 	 *
12345 	 * Also, when register is a known constant, we rewrite register-based
12346 	 * operation to immediate-based, and thus do not need masking (and as
12347 	 * a consequence, do not need to simulate the zero-truncation either).
12348 	 */
12349 	if (commit_window || off_is_imm)
12350 		return 0;
12351 
12352 	/* Simulate and find potential out-of-bounds access under
12353 	 * speculative execution from truncation as a result of
12354 	 * masking when off was not within expected range. If off
12355 	 * sits in dst, then we temporarily need to move ptr there
12356 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
12357 	 * for cases where we use K-based arithmetic in one direction
12358 	 * and truncated reg-based in the other in order to explore
12359 	 * bad access.
12360 	 */
12361 	if (!ptr_is_dst_reg) {
12362 		tmp = *dst_reg;
12363 		copy_register_state(dst_reg, ptr_reg);
12364 	}
12365 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
12366 					env->insn_idx);
12367 	if (!ptr_is_dst_reg && ret)
12368 		*dst_reg = tmp;
12369 	return !ret ? REASON_STACK : 0;
12370 }
12371 
12372 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
12373 {
12374 	struct bpf_verifier_state *vstate = env->cur_state;
12375 
12376 	/* If we simulate paths under speculation, we don't update the
12377 	 * insn as 'seen' such that when we verify unreachable paths in
12378 	 * the non-speculative domain, sanitize_dead_code() can still
12379 	 * rewrite/sanitize them.
12380 	 */
12381 	if (!vstate->speculative)
12382 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
12383 }
12384 
12385 static int sanitize_err(struct bpf_verifier_env *env,
12386 			const struct bpf_insn *insn, int reason,
12387 			const struct bpf_reg_state *off_reg,
12388 			const struct bpf_reg_state *dst_reg)
12389 {
12390 	static const char *err = "pointer arithmetic with it prohibited for !root";
12391 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
12392 	u32 dst = insn->dst_reg, src = insn->src_reg;
12393 
12394 	switch (reason) {
12395 	case REASON_BOUNDS:
12396 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
12397 			off_reg == dst_reg ? dst : src, err);
12398 		break;
12399 	case REASON_TYPE:
12400 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
12401 			off_reg == dst_reg ? src : dst, err);
12402 		break;
12403 	case REASON_PATHS:
12404 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
12405 			dst, op, err);
12406 		break;
12407 	case REASON_LIMIT:
12408 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
12409 			dst, op, err);
12410 		break;
12411 	case REASON_STACK:
12412 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
12413 			dst, err);
12414 		break;
12415 	default:
12416 		verbose(env, "verifier internal error: unknown reason (%d)\n",
12417 			reason);
12418 		break;
12419 	}
12420 
12421 	return -EACCES;
12422 }
12423 
12424 /* check that stack access falls within stack limits and that 'reg' doesn't
12425  * have a variable offset.
12426  *
12427  * Variable offset is prohibited for unprivileged mode for simplicity since it
12428  * requires corresponding support in Spectre masking for stack ALU.  See also
12429  * retrieve_ptr_limit().
12430  *
12431  *
12432  * 'off' includes 'reg->off'.
12433  */
12434 static int check_stack_access_for_ptr_arithmetic(
12435 				struct bpf_verifier_env *env,
12436 				int regno,
12437 				const struct bpf_reg_state *reg,
12438 				int off)
12439 {
12440 	if (!tnum_is_const(reg->var_off)) {
12441 		char tn_buf[48];
12442 
12443 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
12444 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
12445 			regno, tn_buf, off);
12446 		return -EACCES;
12447 	}
12448 
12449 	if (off >= 0 || off < -MAX_BPF_STACK) {
12450 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
12451 			"prohibited for !root; off=%d\n", regno, off);
12452 		return -EACCES;
12453 	}
12454 
12455 	return 0;
12456 }
12457 
12458 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12459 				 const struct bpf_insn *insn,
12460 				 const struct bpf_reg_state *dst_reg)
12461 {
12462 	u32 dst = insn->dst_reg;
12463 
12464 	/* For unprivileged we require that resulting offset must be in bounds
12465 	 * in order to be able to sanitize access later on.
12466 	 */
12467 	if (env->bypass_spec_v1)
12468 		return 0;
12469 
12470 	switch (dst_reg->type) {
12471 	case PTR_TO_STACK:
12472 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12473 					dst_reg->off + dst_reg->var_off.value))
12474 			return -EACCES;
12475 		break;
12476 	case PTR_TO_MAP_VALUE:
12477 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12478 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12479 				"prohibited for !root\n", dst);
12480 			return -EACCES;
12481 		}
12482 		break;
12483 	default:
12484 		break;
12485 	}
12486 
12487 	return 0;
12488 }
12489 
12490 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12491  * Caller should also handle BPF_MOV case separately.
12492  * If we return -EACCES, caller may want to try again treating pointer as a
12493  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12494  */
12495 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12496 				   struct bpf_insn *insn,
12497 				   const struct bpf_reg_state *ptr_reg,
12498 				   const struct bpf_reg_state *off_reg)
12499 {
12500 	struct bpf_verifier_state *vstate = env->cur_state;
12501 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12502 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12503 	bool known = tnum_is_const(off_reg->var_off);
12504 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12505 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12506 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12507 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12508 	struct bpf_sanitize_info info = {};
12509 	u8 opcode = BPF_OP(insn->code);
12510 	u32 dst = insn->dst_reg;
12511 	int ret;
12512 
12513 	dst_reg = &regs[dst];
12514 
12515 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12516 	    smin_val > smax_val || umin_val > umax_val) {
12517 		/* Taint dst register if offset had invalid bounds derived from
12518 		 * e.g. dead branches.
12519 		 */
12520 		__mark_reg_unknown(env, dst_reg);
12521 		return 0;
12522 	}
12523 
12524 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12525 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12526 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12527 			__mark_reg_unknown(env, dst_reg);
12528 			return 0;
12529 		}
12530 
12531 		verbose(env,
12532 			"R%d 32-bit pointer arithmetic prohibited\n",
12533 			dst);
12534 		return -EACCES;
12535 	}
12536 
12537 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12538 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12539 			dst, reg_type_str(env, ptr_reg->type));
12540 		return -EACCES;
12541 	}
12542 
12543 	switch (base_type(ptr_reg->type)) {
12544 	case PTR_TO_FLOW_KEYS:
12545 		if (known)
12546 			break;
12547 		fallthrough;
12548 	case CONST_PTR_TO_MAP:
12549 		/* smin_val represents the known value */
12550 		if (known && smin_val == 0 && opcode == BPF_ADD)
12551 			break;
12552 		fallthrough;
12553 	case PTR_TO_PACKET_END:
12554 	case PTR_TO_SOCKET:
12555 	case PTR_TO_SOCK_COMMON:
12556 	case PTR_TO_TCP_SOCK:
12557 	case PTR_TO_XDP_SOCK:
12558 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12559 			dst, reg_type_str(env, ptr_reg->type));
12560 		return -EACCES;
12561 	default:
12562 		break;
12563 	}
12564 
12565 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12566 	 * The id may be overwritten later if we create a new variable offset.
12567 	 */
12568 	dst_reg->type = ptr_reg->type;
12569 	dst_reg->id = ptr_reg->id;
12570 
12571 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12572 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12573 		return -EINVAL;
12574 
12575 	/* pointer types do not carry 32-bit bounds at the moment. */
12576 	__mark_reg32_unbounded(dst_reg);
12577 
12578 	if (sanitize_needed(opcode)) {
12579 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12580 				       &info, false);
12581 		if (ret < 0)
12582 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12583 	}
12584 
12585 	switch (opcode) {
12586 	case BPF_ADD:
12587 		/* We can take a fixed offset as long as it doesn't overflow
12588 		 * the s32 'off' field
12589 		 */
12590 		if (known && (ptr_reg->off + smin_val ==
12591 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12592 			/* pointer += K.  Accumulate it into fixed offset */
12593 			dst_reg->smin_value = smin_ptr;
12594 			dst_reg->smax_value = smax_ptr;
12595 			dst_reg->umin_value = umin_ptr;
12596 			dst_reg->umax_value = umax_ptr;
12597 			dst_reg->var_off = ptr_reg->var_off;
12598 			dst_reg->off = ptr_reg->off + smin_val;
12599 			dst_reg->raw = ptr_reg->raw;
12600 			break;
12601 		}
12602 		/* A new variable offset is created.  Note that off_reg->off
12603 		 * == 0, since it's a scalar.
12604 		 * dst_reg gets the pointer type and since some positive
12605 		 * integer value was added to the pointer, give it a new 'id'
12606 		 * if it's a PTR_TO_PACKET.
12607 		 * this creates a new 'base' pointer, off_reg (variable) gets
12608 		 * added into the variable offset, and we copy the fixed offset
12609 		 * from ptr_reg.
12610 		 */
12611 		if (signed_add_overflows(smin_ptr, smin_val) ||
12612 		    signed_add_overflows(smax_ptr, smax_val)) {
12613 			dst_reg->smin_value = S64_MIN;
12614 			dst_reg->smax_value = S64_MAX;
12615 		} else {
12616 			dst_reg->smin_value = smin_ptr + smin_val;
12617 			dst_reg->smax_value = smax_ptr + smax_val;
12618 		}
12619 		if (umin_ptr + umin_val < umin_ptr ||
12620 		    umax_ptr + umax_val < umax_ptr) {
12621 			dst_reg->umin_value = 0;
12622 			dst_reg->umax_value = U64_MAX;
12623 		} else {
12624 			dst_reg->umin_value = umin_ptr + umin_val;
12625 			dst_reg->umax_value = umax_ptr + umax_val;
12626 		}
12627 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12628 		dst_reg->off = ptr_reg->off;
12629 		dst_reg->raw = ptr_reg->raw;
12630 		if (reg_is_pkt_pointer(ptr_reg)) {
12631 			dst_reg->id = ++env->id_gen;
12632 			/* something was added to pkt_ptr, set range to zero */
12633 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12634 		}
12635 		break;
12636 	case BPF_SUB:
12637 		if (dst_reg == off_reg) {
12638 			/* scalar -= pointer.  Creates an unknown scalar */
12639 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12640 				dst);
12641 			return -EACCES;
12642 		}
12643 		/* We don't allow subtraction from FP, because (according to
12644 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12645 		 * be able to deal with it.
12646 		 */
12647 		if (ptr_reg->type == PTR_TO_STACK) {
12648 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12649 				dst);
12650 			return -EACCES;
12651 		}
12652 		if (known && (ptr_reg->off - smin_val ==
12653 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12654 			/* pointer -= K.  Subtract it from fixed offset */
12655 			dst_reg->smin_value = smin_ptr;
12656 			dst_reg->smax_value = smax_ptr;
12657 			dst_reg->umin_value = umin_ptr;
12658 			dst_reg->umax_value = umax_ptr;
12659 			dst_reg->var_off = ptr_reg->var_off;
12660 			dst_reg->id = ptr_reg->id;
12661 			dst_reg->off = ptr_reg->off - smin_val;
12662 			dst_reg->raw = ptr_reg->raw;
12663 			break;
12664 		}
12665 		/* A new variable offset is created.  If the subtrahend is known
12666 		 * nonnegative, then any reg->range we had before is still good.
12667 		 */
12668 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12669 		    signed_sub_overflows(smax_ptr, smin_val)) {
12670 			/* Overflow possible, we know nothing */
12671 			dst_reg->smin_value = S64_MIN;
12672 			dst_reg->smax_value = S64_MAX;
12673 		} else {
12674 			dst_reg->smin_value = smin_ptr - smax_val;
12675 			dst_reg->smax_value = smax_ptr - smin_val;
12676 		}
12677 		if (umin_ptr < umax_val) {
12678 			/* Overflow possible, we know nothing */
12679 			dst_reg->umin_value = 0;
12680 			dst_reg->umax_value = U64_MAX;
12681 		} else {
12682 			/* Cannot overflow (as long as bounds are consistent) */
12683 			dst_reg->umin_value = umin_ptr - umax_val;
12684 			dst_reg->umax_value = umax_ptr - umin_val;
12685 		}
12686 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12687 		dst_reg->off = ptr_reg->off;
12688 		dst_reg->raw = ptr_reg->raw;
12689 		if (reg_is_pkt_pointer(ptr_reg)) {
12690 			dst_reg->id = ++env->id_gen;
12691 			/* something was added to pkt_ptr, set range to zero */
12692 			if (smin_val < 0)
12693 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12694 		}
12695 		break;
12696 	case BPF_AND:
12697 	case BPF_OR:
12698 	case BPF_XOR:
12699 		/* bitwise ops on pointers are troublesome, prohibit. */
12700 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12701 			dst, bpf_alu_string[opcode >> 4]);
12702 		return -EACCES;
12703 	default:
12704 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12705 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12706 			dst, bpf_alu_string[opcode >> 4]);
12707 		return -EACCES;
12708 	}
12709 
12710 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12711 		return -EINVAL;
12712 	reg_bounds_sync(dst_reg);
12713 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12714 		return -EACCES;
12715 	if (sanitize_needed(opcode)) {
12716 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12717 				       &info, true);
12718 		if (ret < 0)
12719 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12720 	}
12721 
12722 	return 0;
12723 }
12724 
12725 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12726 				 struct bpf_reg_state *src_reg)
12727 {
12728 	s32 smin_val = src_reg->s32_min_value;
12729 	s32 smax_val = src_reg->s32_max_value;
12730 	u32 umin_val = src_reg->u32_min_value;
12731 	u32 umax_val = src_reg->u32_max_value;
12732 
12733 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12734 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12735 		dst_reg->s32_min_value = S32_MIN;
12736 		dst_reg->s32_max_value = S32_MAX;
12737 	} else {
12738 		dst_reg->s32_min_value += smin_val;
12739 		dst_reg->s32_max_value += smax_val;
12740 	}
12741 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12742 	    dst_reg->u32_max_value + umax_val < umax_val) {
12743 		dst_reg->u32_min_value = 0;
12744 		dst_reg->u32_max_value = U32_MAX;
12745 	} else {
12746 		dst_reg->u32_min_value += umin_val;
12747 		dst_reg->u32_max_value += umax_val;
12748 	}
12749 }
12750 
12751 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12752 			       struct bpf_reg_state *src_reg)
12753 {
12754 	s64 smin_val = src_reg->smin_value;
12755 	s64 smax_val = src_reg->smax_value;
12756 	u64 umin_val = src_reg->umin_value;
12757 	u64 umax_val = src_reg->umax_value;
12758 
12759 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12760 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12761 		dst_reg->smin_value = S64_MIN;
12762 		dst_reg->smax_value = S64_MAX;
12763 	} else {
12764 		dst_reg->smin_value += smin_val;
12765 		dst_reg->smax_value += smax_val;
12766 	}
12767 	if (dst_reg->umin_value + umin_val < umin_val ||
12768 	    dst_reg->umax_value + umax_val < umax_val) {
12769 		dst_reg->umin_value = 0;
12770 		dst_reg->umax_value = U64_MAX;
12771 	} else {
12772 		dst_reg->umin_value += umin_val;
12773 		dst_reg->umax_value += umax_val;
12774 	}
12775 }
12776 
12777 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12778 				 struct bpf_reg_state *src_reg)
12779 {
12780 	s32 smin_val = src_reg->s32_min_value;
12781 	s32 smax_val = src_reg->s32_max_value;
12782 	u32 umin_val = src_reg->u32_min_value;
12783 	u32 umax_val = src_reg->u32_max_value;
12784 
12785 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12786 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12787 		/* Overflow possible, we know nothing */
12788 		dst_reg->s32_min_value = S32_MIN;
12789 		dst_reg->s32_max_value = S32_MAX;
12790 	} else {
12791 		dst_reg->s32_min_value -= smax_val;
12792 		dst_reg->s32_max_value -= smin_val;
12793 	}
12794 	if (dst_reg->u32_min_value < umax_val) {
12795 		/* Overflow possible, we know nothing */
12796 		dst_reg->u32_min_value = 0;
12797 		dst_reg->u32_max_value = U32_MAX;
12798 	} else {
12799 		/* Cannot overflow (as long as bounds are consistent) */
12800 		dst_reg->u32_min_value -= umax_val;
12801 		dst_reg->u32_max_value -= umin_val;
12802 	}
12803 }
12804 
12805 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12806 			       struct bpf_reg_state *src_reg)
12807 {
12808 	s64 smin_val = src_reg->smin_value;
12809 	s64 smax_val = src_reg->smax_value;
12810 	u64 umin_val = src_reg->umin_value;
12811 	u64 umax_val = src_reg->umax_value;
12812 
12813 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12814 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12815 		/* Overflow possible, we know nothing */
12816 		dst_reg->smin_value = S64_MIN;
12817 		dst_reg->smax_value = S64_MAX;
12818 	} else {
12819 		dst_reg->smin_value -= smax_val;
12820 		dst_reg->smax_value -= smin_val;
12821 	}
12822 	if (dst_reg->umin_value < umax_val) {
12823 		/* Overflow possible, we know nothing */
12824 		dst_reg->umin_value = 0;
12825 		dst_reg->umax_value = U64_MAX;
12826 	} else {
12827 		/* Cannot overflow (as long as bounds are consistent) */
12828 		dst_reg->umin_value -= umax_val;
12829 		dst_reg->umax_value -= umin_val;
12830 	}
12831 }
12832 
12833 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12834 				 struct bpf_reg_state *src_reg)
12835 {
12836 	s32 smin_val = src_reg->s32_min_value;
12837 	u32 umin_val = src_reg->u32_min_value;
12838 	u32 umax_val = src_reg->u32_max_value;
12839 
12840 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12841 		/* Ain't nobody got time to multiply that sign */
12842 		__mark_reg32_unbounded(dst_reg);
12843 		return;
12844 	}
12845 	/* Both values are positive, so we can work with unsigned and
12846 	 * copy the result to signed (unless it exceeds S32_MAX).
12847 	 */
12848 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12849 		/* Potential overflow, we know nothing */
12850 		__mark_reg32_unbounded(dst_reg);
12851 		return;
12852 	}
12853 	dst_reg->u32_min_value *= umin_val;
12854 	dst_reg->u32_max_value *= umax_val;
12855 	if (dst_reg->u32_max_value > S32_MAX) {
12856 		/* Overflow possible, we know nothing */
12857 		dst_reg->s32_min_value = S32_MIN;
12858 		dst_reg->s32_max_value = S32_MAX;
12859 	} else {
12860 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12861 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12862 	}
12863 }
12864 
12865 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12866 			       struct bpf_reg_state *src_reg)
12867 {
12868 	s64 smin_val = src_reg->smin_value;
12869 	u64 umin_val = src_reg->umin_value;
12870 	u64 umax_val = src_reg->umax_value;
12871 
12872 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12873 		/* Ain't nobody got time to multiply that sign */
12874 		__mark_reg64_unbounded(dst_reg);
12875 		return;
12876 	}
12877 	/* Both values are positive, so we can work with unsigned and
12878 	 * copy the result to signed (unless it exceeds S64_MAX).
12879 	 */
12880 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12881 		/* Potential overflow, we know nothing */
12882 		__mark_reg64_unbounded(dst_reg);
12883 		return;
12884 	}
12885 	dst_reg->umin_value *= umin_val;
12886 	dst_reg->umax_value *= umax_val;
12887 	if (dst_reg->umax_value > S64_MAX) {
12888 		/* Overflow possible, we know nothing */
12889 		dst_reg->smin_value = S64_MIN;
12890 		dst_reg->smax_value = S64_MAX;
12891 	} else {
12892 		dst_reg->smin_value = dst_reg->umin_value;
12893 		dst_reg->smax_value = dst_reg->umax_value;
12894 	}
12895 }
12896 
12897 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12898 				 struct bpf_reg_state *src_reg)
12899 {
12900 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12901 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12902 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12903 	s32 smin_val = src_reg->s32_min_value;
12904 	u32 umax_val = src_reg->u32_max_value;
12905 
12906 	if (src_known && dst_known) {
12907 		__mark_reg32_known(dst_reg, var32_off.value);
12908 		return;
12909 	}
12910 
12911 	/* We get our minimum from the var_off, since that's inherently
12912 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12913 	 */
12914 	dst_reg->u32_min_value = var32_off.value;
12915 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12916 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12917 		/* Lose signed bounds when ANDing negative numbers,
12918 		 * ain't nobody got time for that.
12919 		 */
12920 		dst_reg->s32_min_value = S32_MIN;
12921 		dst_reg->s32_max_value = S32_MAX;
12922 	} else {
12923 		/* ANDing two positives gives a positive, so safe to
12924 		 * cast result into s64.
12925 		 */
12926 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12927 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12928 	}
12929 }
12930 
12931 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12932 			       struct bpf_reg_state *src_reg)
12933 {
12934 	bool src_known = tnum_is_const(src_reg->var_off);
12935 	bool dst_known = tnum_is_const(dst_reg->var_off);
12936 	s64 smin_val = src_reg->smin_value;
12937 	u64 umax_val = src_reg->umax_value;
12938 
12939 	if (src_known && dst_known) {
12940 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12941 		return;
12942 	}
12943 
12944 	/* We get our minimum from the var_off, since that's inherently
12945 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12946 	 */
12947 	dst_reg->umin_value = dst_reg->var_off.value;
12948 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12949 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12950 		/* Lose signed bounds when ANDing negative numbers,
12951 		 * ain't nobody got time for that.
12952 		 */
12953 		dst_reg->smin_value = S64_MIN;
12954 		dst_reg->smax_value = S64_MAX;
12955 	} else {
12956 		/* ANDing two positives gives a positive, so safe to
12957 		 * cast result into s64.
12958 		 */
12959 		dst_reg->smin_value = dst_reg->umin_value;
12960 		dst_reg->smax_value = dst_reg->umax_value;
12961 	}
12962 	/* We may learn something more from the var_off */
12963 	__update_reg_bounds(dst_reg);
12964 }
12965 
12966 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12967 				struct bpf_reg_state *src_reg)
12968 {
12969 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12970 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12971 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12972 	s32 smin_val = src_reg->s32_min_value;
12973 	u32 umin_val = src_reg->u32_min_value;
12974 
12975 	if (src_known && dst_known) {
12976 		__mark_reg32_known(dst_reg, var32_off.value);
12977 		return;
12978 	}
12979 
12980 	/* We get our maximum from the var_off, and our minimum is the
12981 	 * maximum of the operands' minima
12982 	 */
12983 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12984 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12985 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12986 		/* Lose signed bounds when ORing negative numbers,
12987 		 * ain't nobody got time for that.
12988 		 */
12989 		dst_reg->s32_min_value = S32_MIN;
12990 		dst_reg->s32_max_value = S32_MAX;
12991 	} else {
12992 		/* ORing two positives gives a positive, so safe to
12993 		 * cast result into s64.
12994 		 */
12995 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12996 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12997 	}
12998 }
12999 
13000 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
13001 			      struct bpf_reg_state *src_reg)
13002 {
13003 	bool src_known = tnum_is_const(src_reg->var_off);
13004 	bool dst_known = tnum_is_const(dst_reg->var_off);
13005 	s64 smin_val = src_reg->smin_value;
13006 	u64 umin_val = src_reg->umin_value;
13007 
13008 	if (src_known && dst_known) {
13009 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13010 		return;
13011 	}
13012 
13013 	/* We get our maximum from the var_off, and our minimum is the
13014 	 * maximum of the operands' minima
13015 	 */
13016 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
13017 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13018 	if (dst_reg->smin_value < 0 || smin_val < 0) {
13019 		/* Lose signed bounds when ORing negative numbers,
13020 		 * ain't nobody got time for that.
13021 		 */
13022 		dst_reg->smin_value = S64_MIN;
13023 		dst_reg->smax_value = S64_MAX;
13024 	} else {
13025 		/* ORing two positives gives a positive, so safe to
13026 		 * cast result into s64.
13027 		 */
13028 		dst_reg->smin_value = dst_reg->umin_value;
13029 		dst_reg->smax_value = dst_reg->umax_value;
13030 	}
13031 	/* We may learn something more from the var_off */
13032 	__update_reg_bounds(dst_reg);
13033 }
13034 
13035 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
13036 				 struct bpf_reg_state *src_reg)
13037 {
13038 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
13039 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
13040 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
13041 	s32 smin_val = src_reg->s32_min_value;
13042 
13043 	if (src_known && dst_known) {
13044 		__mark_reg32_known(dst_reg, var32_off.value);
13045 		return;
13046 	}
13047 
13048 	/* We get both minimum and maximum from the var32_off. */
13049 	dst_reg->u32_min_value = var32_off.value;
13050 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
13051 
13052 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
13053 		/* XORing two positive sign numbers gives a positive,
13054 		 * so safe to cast u32 result into s32.
13055 		 */
13056 		dst_reg->s32_min_value = dst_reg->u32_min_value;
13057 		dst_reg->s32_max_value = dst_reg->u32_max_value;
13058 	} else {
13059 		dst_reg->s32_min_value = S32_MIN;
13060 		dst_reg->s32_max_value = S32_MAX;
13061 	}
13062 }
13063 
13064 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
13065 			       struct bpf_reg_state *src_reg)
13066 {
13067 	bool src_known = tnum_is_const(src_reg->var_off);
13068 	bool dst_known = tnum_is_const(dst_reg->var_off);
13069 	s64 smin_val = src_reg->smin_value;
13070 
13071 	if (src_known && dst_known) {
13072 		/* dst_reg->var_off.value has been updated earlier */
13073 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
13074 		return;
13075 	}
13076 
13077 	/* We get both minimum and maximum from the var_off. */
13078 	dst_reg->umin_value = dst_reg->var_off.value;
13079 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
13080 
13081 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
13082 		/* XORing two positive sign numbers gives a positive,
13083 		 * so safe to cast u64 result into s64.
13084 		 */
13085 		dst_reg->smin_value = dst_reg->umin_value;
13086 		dst_reg->smax_value = dst_reg->umax_value;
13087 	} else {
13088 		dst_reg->smin_value = S64_MIN;
13089 		dst_reg->smax_value = S64_MAX;
13090 	}
13091 
13092 	__update_reg_bounds(dst_reg);
13093 }
13094 
13095 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13096 				   u64 umin_val, u64 umax_val)
13097 {
13098 	/* We lose all sign bit information (except what we can pick
13099 	 * up from var_off)
13100 	 */
13101 	dst_reg->s32_min_value = S32_MIN;
13102 	dst_reg->s32_max_value = S32_MAX;
13103 	/* If we might shift our top bit out, then we know nothing */
13104 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
13105 		dst_reg->u32_min_value = 0;
13106 		dst_reg->u32_max_value = U32_MAX;
13107 	} else {
13108 		dst_reg->u32_min_value <<= umin_val;
13109 		dst_reg->u32_max_value <<= umax_val;
13110 	}
13111 }
13112 
13113 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
13114 				 struct bpf_reg_state *src_reg)
13115 {
13116 	u32 umax_val = src_reg->u32_max_value;
13117 	u32 umin_val = src_reg->u32_min_value;
13118 	/* u32 alu operation will zext upper bits */
13119 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13120 
13121 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13122 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
13123 	/* Not required but being careful mark reg64 bounds as unknown so
13124 	 * that we are forced to pick them up from tnum and zext later and
13125 	 * if some path skips this step we are still safe.
13126 	 */
13127 	__mark_reg64_unbounded(dst_reg);
13128 	__update_reg32_bounds(dst_reg);
13129 }
13130 
13131 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
13132 				   u64 umin_val, u64 umax_val)
13133 {
13134 	/* Special case <<32 because it is a common compiler pattern to sign
13135 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
13136 	 * positive we know this shift will also be positive so we can track
13137 	 * bounds correctly. Otherwise we lose all sign bit information except
13138 	 * what we can pick up from var_off. Perhaps we can generalize this
13139 	 * later to shifts of any length.
13140 	 */
13141 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
13142 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
13143 	else
13144 		dst_reg->smax_value = S64_MAX;
13145 
13146 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
13147 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
13148 	else
13149 		dst_reg->smin_value = S64_MIN;
13150 
13151 	/* If we might shift our top bit out, then we know nothing */
13152 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
13153 		dst_reg->umin_value = 0;
13154 		dst_reg->umax_value = U64_MAX;
13155 	} else {
13156 		dst_reg->umin_value <<= umin_val;
13157 		dst_reg->umax_value <<= umax_val;
13158 	}
13159 }
13160 
13161 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
13162 			       struct bpf_reg_state *src_reg)
13163 {
13164 	u64 umax_val = src_reg->umax_value;
13165 	u64 umin_val = src_reg->umin_value;
13166 
13167 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
13168 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
13169 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
13170 
13171 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
13172 	/* We may learn something more from the var_off */
13173 	__update_reg_bounds(dst_reg);
13174 }
13175 
13176 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
13177 				 struct bpf_reg_state *src_reg)
13178 {
13179 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
13180 	u32 umax_val = src_reg->u32_max_value;
13181 	u32 umin_val = src_reg->u32_min_value;
13182 
13183 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13184 	 * be negative, then either:
13185 	 * 1) src_reg might be zero, so the sign bit of the result is
13186 	 *    unknown, so we lose our signed bounds
13187 	 * 2) it's known negative, thus the unsigned bounds capture the
13188 	 *    signed bounds
13189 	 * 3) the signed bounds cross zero, so they tell us nothing
13190 	 *    about the result
13191 	 * If the value in dst_reg is known nonnegative, then again the
13192 	 * unsigned bounds capture the signed bounds.
13193 	 * Thus, in all cases it suffices to blow away our signed bounds
13194 	 * and rely on inferring new ones from the unsigned bounds and
13195 	 * var_off of the result.
13196 	 */
13197 	dst_reg->s32_min_value = S32_MIN;
13198 	dst_reg->s32_max_value = S32_MAX;
13199 
13200 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
13201 	dst_reg->u32_min_value >>= umax_val;
13202 	dst_reg->u32_max_value >>= umin_val;
13203 
13204 	__mark_reg64_unbounded(dst_reg);
13205 	__update_reg32_bounds(dst_reg);
13206 }
13207 
13208 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
13209 			       struct bpf_reg_state *src_reg)
13210 {
13211 	u64 umax_val = src_reg->umax_value;
13212 	u64 umin_val = src_reg->umin_value;
13213 
13214 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
13215 	 * be negative, then either:
13216 	 * 1) src_reg might be zero, so the sign bit of the result is
13217 	 *    unknown, so we lose our signed bounds
13218 	 * 2) it's known negative, thus the unsigned bounds capture the
13219 	 *    signed bounds
13220 	 * 3) the signed bounds cross zero, so they tell us nothing
13221 	 *    about the result
13222 	 * If the value in dst_reg is known nonnegative, then again the
13223 	 * unsigned bounds capture the signed bounds.
13224 	 * Thus, in all cases it suffices to blow away our signed bounds
13225 	 * and rely on inferring new ones from the unsigned bounds and
13226 	 * var_off of the result.
13227 	 */
13228 	dst_reg->smin_value = S64_MIN;
13229 	dst_reg->smax_value = S64_MAX;
13230 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
13231 	dst_reg->umin_value >>= umax_val;
13232 	dst_reg->umax_value >>= umin_val;
13233 
13234 	/* Its not easy to operate on alu32 bounds here because it depends
13235 	 * on bits being shifted in. Take easy way out and mark unbounded
13236 	 * so we can recalculate later from tnum.
13237 	 */
13238 	__mark_reg32_unbounded(dst_reg);
13239 	__update_reg_bounds(dst_reg);
13240 }
13241 
13242 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
13243 				  struct bpf_reg_state *src_reg)
13244 {
13245 	u64 umin_val = src_reg->u32_min_value;
13246 
13247 	/* Upon reaching here, src_known is true and
13248 	 * umax_val is equal to umin_val.
13249 	 */
13250 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
13251 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
13252 
13253 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
13254 
13255 	/* blow away the dst_reg umin_value/umax_value and rely on
13256 	 * dst_reg var_off to refine the result.
13257 	 */
13258 	dst_reg->u32_min_value = 0;
13259 	dst_reg->u32_max_value = U32_MAX;
13260 
13261 	__mark_reg64_unbounded(dst_reg);
13262 	__update_reg32_bounds(dst_reg);
13263 }
13264 
13265 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
13266 				struct bpf_reg_state *src_reg)
13267 {
13268 	u64 umin_val = src_reg->umin_value;
13269 
13270 	/* Upon reaching here, src_known is true and umax_val is equal
13271 	 * to umin_val.
13272 	 */
13273 	dst_reg->smin_value >>= umin_val;
13274 	dst_reg->smax_value >>= umin_val;
13275 
13276 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
13277 
13278 	/* blow away the dst_reg umin_value/umax_value and rely on
13279 	 * dst_reg var_off to refine the result.
13280 	 */
13281 	dst_reg->umin_value = 0;
13282 	dst_reg->umax_value = U64_MAX;
13283 
13284 	/* Its not easy to operate on alu32 bounds here because it depends
13285 	 * on bits being shifted in from upper 32-bits. Take easy way out
13286 	 * and mark unbounded so we can recalculate later from tnum.
13287 	 */
13288 	__mark_reg32_unbounded(dst_reg);
13289 	__update_reg_bounds(dst_reg);
13290 }
13291 
13292 /* WARNING: This function does calculations on 64-bit values, but the actual
13293  * execution may occur on 32-bit values. Therefore, things like bitshifts
13294  * need extra checks in the 32-bit case.
13295  */
13296 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
13297 				      struct bpf_insn *insn,
13298 				      struct bpf_reg_state *dst_reg,
13299 				      struct bpf_reg_state src_reg)
13300 {
13301 	struct bpf_reg_state *regs = cur_regs(env);
13302 	u8 opcode = BPF_OP(insn->code);
13303 	bool src_known;
13304 	s64 smin_val, smax_val;
13305 	u64 umin_val, umax_val;
13306 	s32 s32_min_val, s32_max_val;
13307 	u32 u32_min_val, u32_max_val;
13308 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
13309 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
13310 	int ret;
13311 
13312 	smin_val = src_reg.smin_value;
13313 	smax_val = src_reg.smax_value;
13314 	umin_val = src_reg.umin_value;
13315 	umax_val = src_reg.umax_value;
13316 
13317 	s32_min_val = src_reg.s32_min_value;
13318 	s32_max_val = src_reg.s32_max_value;
13319 	u32_min_val = src_reg.u32_min_value;
13320 	u32_max_val = src_reg.u32_max_value;
13321 
13322 	if (alu32) {
13323 		src_known = tnum_subreg_is_const(src_reg.var_off);
13324 		if ((src_known &&
13325 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
13326 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
13327 			/* Taint dst register if offset had invalid bounds
13328 			 * derived from e.g. dead branches.
13329 			 */
13330 			__mark_reg_unknown(env, dst_reg);
13331 			return 0;
13332 		}
13333 	} else {
13334 		src_known = tnum_is_const(src_reg.var_off);
13335 		if ((src_known &&
13336 		     (smin_val != smax_val || umin_val != umax_val)) ||
13337 		    smin_val > smax_val || umin_val > umax_val) {
13338 			/* Taint dst register if offset had invalid bounds
13339 			 * derived from e.g. dead branches.
13340 			 */
13341 			__mark_reg_unknown(env, dst_reg);
13342 			return 0;
13343 		}
13344 	}
13345 
13346 	if (!src_known &&
13347 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
13348 		__mark_reg_unknown(env, dst_reg);
13349 		return 0;
13350 	}
13351 
13352 	if (sanitize_needed(opcode)) {
13353 		ret = sanitize_val_alu(env, insn);
13354 		if (ret < 0)
13355 			return sanitize_err(env, insn, ret, NULL, NULL);
13356 	}
13357 
13358 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
13359 	 * There are two classes of instructions: The first class we track both
13360 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
13361 	 * greatest amount of precision when alu operations are mixed with jmp32
13362 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
13363 	 * and BPF_OR. This is possible because these ops have fairly easy to
13364 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
13365 	 * See alu32 verifier tests for examples. The second class of
13366 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
13367 	 * with regards to tracking sign/unsigned bounds because the bits may
13368 	 * cross subreg boundaries in the alu64 case. When this happens we mark
13369 	 * the reg unbounded in the subreg bound space and use the resulting
13370 	 * tnum to calculate an approximation of the sign/unsigned bounds.
13371 	 */
13372 	switch (opcode) {
13373 	case BPF_ADD:
13374 		scalar32_min_max_add(dst_reg, &src_reg);
13375 		scalar_min_max_add(dst_reg, &src_reg);
13376 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
13377 		break;
13378 	case BPF_SUB:
13379 		scalar32_min_max_sub(dst_reg, &src_reg);
13380 		scalar_min_max_sub(dst_reg, &src_reg);
13381 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
13382 		break;
13383 	case BPF_MUL:
13384 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
13385 		scalar32_min_max_mul(dst_reg, &src_reg);
13386 		scalar_min_max_mul(dst_reg, &src_reg);
13387 		break;
13388 	case BPF_AND:
13389 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
13390 		scalar32_min_max_and(dst_reg, &src_reg);
13391 		scalar_min_max_and(dst_reg, &src_reg);
13392 		break;
13393 	case BPF_OR:
13394 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
13395 		scalar32_min_max_or(dst_reg, &src_reg);
13396 		scalar_min_max_or(dst_reg, &src_reg);
13397 		break;
13398 	case BPF_XOR:
13399 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
13400 		scalar32_min_max_xor(dst_reg, &src_reg);
13401 		scalar_min_max_xor(dst_reg, &src_reg);
13402 		break;
13403 	case BPF_LSH:
13404 		if (umax_val >= insn_bitness) {
13405 			/* Shifts greater than 31 or 63 are undefined.
13406 			 * This includes shifts by a negative number.
13407 			 */
13408 			mark_reg_unknown(env, regs, insn->dst_reg);
13409 			break;
13410 		}
13411 		if (alu32)
13412 			scalar32_min_max_lsh(dst_reg, &src_reg);
13413 		else
13414 			scalar_min_max_lsh(dst_reg, &src_reg);
13415 		break;
13416 	case BPF_RSH:
13417 		if (umax_val >= insn_bitness) {
13418 			/* Shifts greater than 31 or 63 are undefined.
13419 			 * This includes shifts by a negative number.
13420 			 */
13421 			mark_reg_unknown(env, regs, insn->dst_reg);
13422 			break;
13423 		}
13424 		if (alu32)
13425 			scalar32_min_max_rsh(dst_reg, &src_reg);
13426 		else
13427 			scalar_min_max_rsh(dst_reg, &src_reg);
13428 		break;
13429 	case BPF_ARSH:
13430 		if (umax_val >= insn_bitness) {
13431 			/* Shifts greater than 31 or 63 are undefined.
13432 			 * This includes shifts by a negative number.
13433 			 */
13434 			mark_reg_unknown(env, regs, insn->dst_reg);
13435 			break;
13436 		}
13437 		if (alu32)
13438 			scalar32_min_max_arsh(dst_reg, &src_reg);
13439 		else
13440 			scalar_min_max_arsh(dst_reg, &src_reg);
13441 		break;
13442 	default:
13443 		mark_reg_unknown(env, regs, insn->dst_reg);
13444 		break;
13445 	}
13446 
13447 	/* ALU32 ops are zero extended into 64bit register */
13448 	if (alu32)
13449 		zext_32_to_64(dst_reg);
13450 	reg_bounds_sync(dst_reg);
13451 	return 0;
13452 }
13453 
13454 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13455  * and var_off.
13456  */
13457 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13458 				   struct bpf_insn *insn)
13459 {
13460 	struct bpf_verifier_state *vstate = env->cur_state;
13461 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13462 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13463 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13464 	u8 opcode = BPF_OP(insn->code);
13465 	int err;
13466 
13467 	dst_reg = &regs[insn->dst_reg];
13468 	src_reg = NULL;
13469 	if (dst_reg->type != SCALAR_VALUE)
13470 		ptr_reg = dst_reg;
13471 	else
13472 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13473 		 * incorrectly propagated into other registers by find_equal_scalars()
13474 		 */
13475 		dst_reg->id = 0;
13476 	if (BPF_SRC(insn->code) == BPF_X) {
13477 		src_reg = &regs[insn->src_reg];
13478 		if (src_reg->type != SCALAR_VALUE) {
13479 			if (dst_reg->type != SCALAR_VALUE) {
13480 				/* Combining two pointers by any ALU op yields
13481 				 * an arbitrary scalar. Disallow all math except
13482 				 * pointer subtraction
13483 				 */
13484 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13485 					mark_reg_unknown(env, regs, insn->dst_reg);
13486 					return 0;
13487 				}
13488 				verbose(env, "R%d pointer %s pointer prohibited\n",
13489 					insn->dst_reg,
13490 					bpf_alu_string[opcode >> 4]);
13491 				return -EACCES;
13492 			} else {
13493 				/* scalar += pointer
13494 				 * This is legal, but we have to reverse our
13495 				 * src/dest handling in computing the range
13496 				 */
13497 				err = mark_chain_precision(env, insn->dst_reg);
13498 				if (err)
13499 					return err;
13500 				return adjust_ptr_min_max_vals(env, insn,
13501 							       src_reg, dst_reg);
13502 			}
13503 		} else if (ptr_reg) {
13504 			/* pointer += scalar */
13505 			err = mark_chain_precision(env, insn->src_reg);
13506 			if (err)
13507 				return err;
13508 			return adjust_ptr_min_max_vals(env, insn,
13509 						       dst_reg, src_reg);
13510 		} else if (dst_reg->precise) {
13511 			/* if dst_reg is precise, src_reg should be precise as well */
13512 			err = mark_chain_precision(env, insn->src_reg);
13513 			if (err)
13514 				return err;
13515 		}
13516 	} else {
13517 		/* Pretend the src is a reg with a known value, since we only
13518 		 * need to be able to read from this state.
13519 		 */
13520 		off_reg.type = SCALAR_VALUE;
13521 		__mark_reg_known(&off_reg, insn->imm);
13522 		src_reg = &off_reg;
13523 		if (ptr_reg) /* pointer += K */
13524 			return adjust_ptr_min_max_vals(env, insn,
13525 						       ptr_reg, src_reg);
13526 	}
13527 
13528 	/* Got here implies adding two SCALAR_VALUEs */
13529 	if (WARN_ON_ONCE(ptr_reg)) {
13530 		print_verifier_state(env, state, true);
13531 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13532 		return -EINVAL;
13533 	}
13534 	if (WARN_ON(!src_reg)) {
13535 		print_verifier_state(env, state, true);
13536 		verbose(env, "verifier internal error: no src_reg\n");
13537 		return -EINVAL;
13538 	}
13539 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13540 }
13541 
13542 /* check validity of 32-bit and 64-bit arithmetic operations */
13543 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13544 {
13545 	struct bpf_reg_state *regs = cur_regs(env);
13546 	u8 opcode = BPF_OP(insn->code);
13547 	int err;
13548 
13549 	if (opcode == BPF_END || opcode == BPF_NEG) {
13550 		if (opcode == BPF_NEG) {
13551 			if (BPF_SRC(insn->code) != BPF_K ||
13552 			    insn->src_reg != BPF_REG_0 ||
13553 			    insn->off != 0 || insn->imm != 0) {
13554 				verbose(env, "BPF_NEG uses reserved fields\n");
13555 				return -EINVAL;
13556 			}
13557 		} else {
13558 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13559 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13560 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13561 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13562 				verbose(env, "BPF_END uses reserved fields\n");
13563 				return -EINVAL;
13564 			}
13565 		}
13566 
13567 		/* check src operand */
13568 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13569 		if (err)
13570 			return err;
13571 
13572 		if (is_pointer_value(env, insn->dst_reg)) {
13573 			verbose(env, "R%d pointer arithmetic prohibited\n",
13574 				insn->dst_reg);
13575 			return -EACCES;
13576 		}
13577 
13578 		/* check dest operand */
13579 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13580 		if (err)
13581 			return err;
13582 
13583 	} else if (opcode == BPF_MOV) {
13584 
13585 		if (BPF_SRC(insn->code) == BPF_X) {
13586 			if (insn->imm != 0) {
13587 				verbose(env, "BPF_MOV uses reserved fields\n");
13588 				return -EINVAL;
13589 			}
13590 
13591 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13592 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13593 					verbose(env, "BPF_MOV uses reserved fields\n");
13594 					return -EINVAL;
13595 				}
13596 			} else {
13597 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13598 				    insn->off != 32) {
13599 					verbose(env, "BPF_MOV uses reserved fields\n");
13600 					return -EINVAL;
13601 				}
13602 			}
13603 
13604 			/* check src operand */
13605 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13606 			if (err)
13607 				return err;
13608 		} else {
13609 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13610 				verbose(env, "BPF_MOV uses reserved fields\n");
13611 				return -EINVAL;
13612 			}
13613 		}
13614 
13615 		/* check dest operand, mark as required later */
13616 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13617 		if (err)
13618 			return err;
13619 
13620 		if (BPF_SRC(insn->code) == BPF_X) {
13621 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13622 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13623 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13624 				       !tnum_is_const(src_reg->var_off);
13625 
13626 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13627 				if (insn->off == 0) {
13628 					/* case: R1 = R2
13629 					 * copy register state to dest reg
13630 					 */
13631 					if (need_id)
13632 						/* Assign src and dst registers the same ID
13633 						 * that will be used by find_equal_scalars()
13634 						 * to propagate min/max range.
13635 						 */
13636 						src_reg->id = ++env->id_gen;
13637 					copy_register_state(dst_reg, src_reg);
13638 					dst_reg->live |= REG_LIVE_WRITTEN;
13639 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13640 				} else {
13641 					/* case: R1 = (s8, s16 s32)R2 */
13642 					if (is_pointer_value(env, insn->src_reg)) {
13643 						verbose(env,
13644 							"R%d sign-extension part of pointer\n",
13645 							insn->src_reg);
13646 						return -EACCES;
13647 					} else if (src_reg->type == SCALAR_VALUE) {
13648 						bool no_sext;
13649 
13650 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13651 						if (no_sext && need_id)
13652 							src_reg->id = ++env->id_gen;
13653 						copy_register_state(dst_reg, src_reg);
13654 						if (!no_sext)
13655 							dst_reg->id = 0;
13656 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13657 						dst_reg->live |= REG_LIVE_WRITTEN;
13658 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13659 					} else {
13660 						mark_reg_unknown(env, regs, insn->dst_reg);
13661 					}
13662 				}
13663 			} else {
13664 				/* R1 = (u32) R2 */
13665 				if (is_pointer_value(env, insn->src_reg)) {
13666 					verbose(env,
13667 						"R%d partial copy of pointer\n",
13668 						insn->src_reg);
13669 					return -EACCES;
13670 				} else if (src_reg->type == SCALAR_VALUE) {
13671 					if (insn->off == 0) {
13672 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13673 
13674 						if (is_src_reg_u32 && need_id)
13675 							src_reg->id = ++env->id_gen;
13676 						copy_register_state(dst_reg, src_reg);
13677 						/* Make sure ID is cleared if src_reg is not in u32
13678 						 * range otherwise dst_reg min/max could be incorrectly
13679 						 * propagated into src_reg by find_equal_scalars()
13680 						 */
13681 						if (!is_src_reg_u32)
13682 							dst_reg->id = 0;
13683 						dst_reg->live |= REG_LIVE_WRITTEN;
13684 						dst_reg->subreg_def = env->insn_idx + 1;
13685 					} else {
13686 						/* case: W1 = (s8, s16)W2 */
13687 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13688 
13689 						if (no_sext && need_id)
13690 							src_reg->id = ++env->id_gen;
13691 						copy_register_state(dst_reg, src_reg);
13692 						if (!no_sext)
13693 							dst_reg->id = 0;
13694 						dst_reg->live |= REG_LIVE_WRITTEN;
13695 						dst_reg->subreg_def = env->insn_idx + 1;
13696 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13697 					}
13698 				} else {
13699 					mark_reg_unknown(env, regs,
13700 							 insn->dst_reg);
13701 				}
13702 				zext_32_to_64(dst_reg);
13703 				reg_bounds_sync(dst_reg);
13704 			}
13705 		} else {
13706 			/* case: R = imm
13707 			 * remember the value we stored into this reg
13708 			 */
13709 			/* clear any state __mark_reg_known doesn't set */
13710 			mark_reg_unknown(env, regs, insn->dst_reg);
13711 			regs[insn->dst_reg].type = SCALAR_VALUE;
13712 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13713 				__mark_reg_known(regs + insn->dst_reg,
13714 						 insn->imm);
13715 			} else {
13716 				__mark_reg_known(regs + insn->dst_reg,
13717 						 (u32)insn->imm);
13718 			}
13719 		}
13720 
13721 	} else if (opcode > BPF_END) {
13722 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13723 		return -EINVAL;
13724 
13725 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13726 
13727 		if (BPF_SRC(insn->code) == BPF_X) {
13728 			if (insn->imm != 0 || insn->off > 1 ||
13729 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13730 				verbose(env, "BPF_ALU uses reserved fields\n");
13731 				return -EINVAL;
13732 			}
13733 			/* check src1 operand */
13734 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13735 			if (err)
13736 				return err;
13737 		} else {
13738 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13739 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13740 				verbose(env, "BPF_ALU uses reserved fields\n");
13741 				return -EINVAL;
13742 			}
13743 		}
13744 
13745 		/* check src2 operand */
13746 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13747 		if (err)
13748 			return err;
13749 
13750 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13751 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13752 			verbose(env, "div by zero\n");
13753 			return -EINVAL;
13754 		}
13755 
13756 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13757 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13758 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13759 
13760 			if (insn->imm < 0 || insn->imm >= size) {
13761 				verbose(env, "invalid shift %d\n", insn->imm);
13762 				return -EINVAL;
13763 			}
13764 		}
13765 
13766 		/* check dest operand */
13767 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13768 		if (err)
13769 			return err;
13770 
13771 		return adjust_reg_min_max_vals(env, insn);
13772 	}
13773 
13774 	return 0;
13775 }
13776 
13777 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13778 				   struct bpf_reg_state *dst_reg,
13779 				   enum bpf_reg_type type,
13780 				   bool range_right_open)
13781 {
13782 	struct bpf_func_state *state;
13783 	struct bpf_reg_state *reg;
13784 	int new_range;
13785 
13786 	if (dst_reg->off < 0 ||
13787 	    (dst_reg->off == 0 && range_right_open))
13788 		/* This doesn't give us any range */
13789 		return;
13790 
13791 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13792 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13793 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13794 		 * than pkt_end, but that's because it's also less than pkt.
13795 		 */
13796 		return;
13797 
13798 	new_range = dst_reg->off;
13799 	if (range_right_open)
13800 		new_range++;
13801 
13802 	/* Examples for register markings:
13803 	 *
13804 	 * pkt_data in dst register:
13805 	 *
13806 	 *   r2 = r3;
13807 	 *   r2 += 8;
13808 	 *   if (r2 > pkt_end) goto <handle exception>
13809 	 *   <access okay>
13810 	 *
13811 	 *   r2 = r3;
13812 	 *   r2 += 8;
13813 	 *   if (r2 < pkt_end) goto <access okay>
13814 	 *   <handle exception>
13815 	 *
13816 	 *   Where:
13817 	 *     r2 == dst_reg, pkt_end == src_reg
13818 	 *     r2=pkt(id=n,off=8,r=0)
13819 	 *     r3=pkt(id=n,off=0,r=0)
13820 	 *
13821 	 * pkt_data in src register:
13822 	 *
13823 	 *   r2 = r3;
13824 	 *   r2 += 8;
13825 	 *   if (pkt_end >= r2) goto <access okay>
13826 	 *   <handle exception>
13827 	 *
13828 	 *   r2 = r3;
13829 	 *   r2 += 8;
13830 	 *   if (pkt_end <= r2) goto <handle exception>
13831 	 *   <access okay>
13832 	 *
13833 	 *   Where:
13834 	 *     pkt_end == dst_reg, r2 == src_reg
13835 	 *     r2=pkt(id=n,off=8,r=0)
13836 	 *     r3=pkt(id=n,off=0,r=0)
13837 	 *
13838 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13839 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13840 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
13841 	 * the check.
13842 	 */
13843 
13844 	/* If our ids match, then we must have the same max_value.  And we
13845 	 * don't care about the other reg's fixed offset, since if it's too big
13846 	 * the range won't allow anything.
13847 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13848 	 */
13849 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13850 		if (reg->type == type && reg->id == dst_reg->id)
13851 			/* keep the maximum range already checked */
13852 			reg->range = max(reg->range, new_range);
13853 	}));
13854 }
13855 
13856 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13857 {
13858 	struct tnum subreg = tnum_subreg(reg->var_off);
13859 	s32 sval = (s32)val;
13860 
13861 	switch (opcode) {
13862 	case BPF_JEQ:
13863 		if (tnum_is_const(subreg))
13864 			return !!tnum_equals_const(subreg, val);
13865 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13866 			return 0;
13867 		break;
13868 	case BPF_JNE:
13869 		if (tnum_is_const(subreg))
13870 			return !tnum_equals_const(subreg, val);
13871 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13872 			return 1;
13873 		break;
13874 	case BPF_JSET:
13875 		if ((~subreg.mask & subreg.value) & val)
13876 			return 1;
13877 		if (!((subreg.mask | subreg.value) & val))
13878 			return 0;
13879 		break;
13880 	case BPF_JGT:
13881 		if (reg->u32_min_value > val)
13882 			return 1;
13883 		else if (reg->u32_max_value <= val)
13884 			return 0;
13885 		break;
13886 	case BPF_JSGT:
13887 		if (reg->s32_min_value > sval)
13888 			return 1;
13889 		else if (reg->s32_max_value <= sval)
13890 			return 0;
13891 		break;
13892 	case BPF_JLT:
13893 		if (reg->u32_max_value < val)
13894 			return 1;
13895 		else if (reg->u32_min_value >= val)
13896 			return 0;
13897 		break;
13898 	case BPF_JSLT:
13899 		if (reg->s32_max_value < sval)
13900 			return 1;
13901 		else if (reg->s32_min_value >= sval)
13902 			return 0;
13903 		break;
13904 	case BPF_JGE:
13905 		if (reg->u32_min_value >= val)
13906 			return 1;
13907 		else if (reg->u32_max_value < val)
13908 			return 0;
13909 		break;
13910 	case BPF_JSGE:
13911 		if (reg->s32_min_value >= sval)
13912 			return 1;
13913 		else if (reg->s32_max_value < sval)
13914 			return 0;
13915 		break;
13916 	case BPF_JLE:
13917 		if (reg->u32_max_value <= val)
13918 			return 1;
13919 		else if (reg->u32_min_value > val)
13920 			return 0;
13921 		break;
13922 	case BPF_JSLE:
13923 		if (reg->s32_max_value <= sval)
13924 			return 1;
13925 		else if (reg->s32_min_value > sval)
13926 			return 0;
13927 		break;
13928 	}
13929 
13930 	return -1;
13931 }
13932 
13933 
13934 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13935 {
13936 	s64 sval = (s64)val;
13937 
13938 	switch (opcode) {
13939 	case BPF_JEQ:
13940 		if (tnum_is_const(reg->var_off))
13941 			return !!tnum_equals_const(reg->var_off, val);
13942 		else if (val < reg->umin_value || val > reg->umax_value)
13943 			return 0;
13944 		break;
13945 	case BPF_JNE:
13946 		if (tnum_is_const(reg->var_off))
13947 			return !tnum_equals_const(reg->var_off, val);
13948 		else if (val < reg->umin_value || val > reg->umax_value)
13949 			return 1;
13950 		break;
13951 	case BPF_JSET:
13952 		if ((~reg->var_off.mask & reg->var_off.value) & val)
13953 			return 1;
13954 		if (!((reg->var_off.mask | reg->var_off.value) & val))
13955 			return 0;
13956 		break;
13957 	case BPF_JGT:
13958 		if (reg->umin_value > val)
13959 			return 1;
13960 		else if (reg->umax_value <= val)
13961 			return 0;
13962 		break;
13963 	case BPF_JSGT:
13964 		if (reg->smin_value > sval)
13965 			return 1;
13966 		else if (reg->smax_value <= sval)
13967 			return 0;
13968 		break;
13969 	case BPF_JLT:
13970 		if (reg->umax_value < val)
13971 			return 1;
13972 		else if (reg->umin_value >= val)
13973 			return 0;
13974 		break;
13975 	case BPF_JSLT:
13976 		if (reg->smax_value < sval)
13977 			return 1;
13978 		else if (reg->smin_value >= sval)
13979 			return 0;
13980 		break;
13981 	case BPF_JGE:
13982 		if (reg->umin_value >= val)
13983 			return 1;
13984 		else if (reg->umax_value < val)
13985 			return 0;
13986 		break;
13987 	case BPF_JSGE:
13988 		if (reg->smin_value >= sval)
13989 			return 1;
13990 		else if (reg->smax_value < sval)
13991 			return 0;
13992 		break;
13993 	case BPF_JLE:
13994 		if (reg->umax_value <= val)
13995 			return 1;
13996 		else if (reg->umin_value > val)
13997 			return 0;
13998 		break;
13999 	case BPF_JSLE:
14000 		if (reg->smax_value <= sval)
14001 			return 1;
14002 		else if (reg->smin_value > sval)
14003 			return 0;
14004 		break;
14005 	}
14006 
14007 	return -1;
14008 }
14009 
14010 /* compute branch direction of the expression "if (reg opcode val) goto target;"
14011  * and return:
14012  *  1 - branch will be taken and "goto target" will be executed
14013  *  0 - branch will not be taken and fall-through to next insn
14014  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
14015  *      range [0,10]
14016  */
14017 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
14018 			   bool is_jmp32)
14019 {
14020 	if (__is_pointer_value(false, reg)) {
14021 		if (!reg_not_null(reg))
14022 			return -1;
14023 
14024 		/* If pointer is valid tests against zero will fail so we can
14025 		 * use this to direct branch taken.
14026 		 */
14027 		if (val != 0)
14028 			return -1;
14029 
14030 		switch (opcode) {
14031 		case BPF_JEQ:
14032 			return 0;
14033 		case BPF_JNE:
14034 			return 1;
14035 		default:
14036 			return -1;
14037 		}
14038 	}
14039 
14040 	if (is_jmp32)
14041 		return is_branch32_taken(reg, val, opcode);
14042 	return is_branch64_taken(reg, val, opcode);
14043 }
14044 
14045 static int flip_opcode(u32 opcode)
14046 {
14047 	/* How can we transform "a <op> b" into "b <op> a"? */
14048 	static const u8 opcode_flip[16] = {
14049 		/* these stay the same */
14050 		[BPF_JEQ  >> 4] = BPF_JEQ,
14051 		[BPF_JNE  >> 4] = BPF_JNE,
14052 		[BPF_JSET >> 4] = BPF_JSET,
14053 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
14054 		[BPF_JGE  >> 4] = BPF_JLE,
14055 		[BPF_JGT  >> 4] = BPF_JLT,
14056 		[BPF_JLE  >> 4] = BPF_JGE,
14057 		[BPF_JLT  >> 4] = BPF_JGT,
14058 		[BPF_JSGE >> 4] = BPF_JSLE,
14059 		[BPF_JSGT >> 4] = BPF_JSLT,
14060 		[BPF_JSLE >> 4] = BPF_JSGE,
14061 		[BPF_JSLT >> 4] = BPF_JSGT
14062 	};
14063 	return opcode_flip[opcode >> 4];
14064 }
14065 
14066 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
14067 				   struct bpf_reg_state *src_reg,
14068 				   u8 opcode)
14069 {
14070 	struct bpf_reg_state *pkt;
14071 
14072 	if (src_reg->type == PTR_TO_PACKET_END) {
14073 		pkt = dst_reg;
14074 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
14075 		pkt = src_reg;
14076 		opcode = flip_opcode(opcode);
14077 	} else {
14078 		return -1;
14079 	}
14080 
14081 	if (pkt->range >= 0)
14082 		return -1;
14083 
14084 	switch (opcode) {
14085 	case BPF_JLE:
14086 		/* pkt <= pkt_end */
14087 		fallthrough;
14088 	case BPF_JGT:
14089 		/* pkt > pkt_end */
14090 		if (pkt->range == BEYOND_PKT_END)
14091 			/* pkt has at last one extra byte beyond pkt_end */
14092 			return opcode == BPF_JGT;
14093 		break;
14094 	case BPF_JLT:
14095 		/* pkt < pkt_end */
14096 		fallthrough;
14097 	case BPF_JGE:
14098 		/* pkt >= pkt_end */
14099 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
14100 			return opcode == BPF_JGE;
14101 		break;
14102 	}
14103 	return -1;
14104 }
14105 
14106 /* Adjusts the register min/max values in the case that the dst_reg is the
14107  * variable register that we are working on, and src_reg is a constant or we're
14108  * simply doing a BPF_K check.
14109  * In JEQ/JNE cases we also adjust the var_off values.
14110  */
14111 static void reg_set_min_max(struct bpf_reg_state *true_reg,
14112 			    struct bpf_reg_state *false_reg,
14113 			    u64 val, u32 val32,
14114 			    u8 opcode, bool is_jmp32)
14115 {
14116 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
14117 	struct tnum false_64off = false_reg->var_off;
14118 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
14119 	struct tnum true_64off = true_reg->var_off;
14120 	s64 sval = (s64)val;
14121 	s32 sval32 = (s32)val32;
14122 
14123 	/* If the dst_reg is a pointer, we can't learn anything about its
14124 	 * variable offset from the compare (unless src_reg were a pointer into
14125 	 * the same object, but we don't bother with that.
14126 	 * Since false_reg and true_reg have the same type by construction, we
14127 	 * only need to check one of them for pointerness.
14128 	 */
14129 	if (__is_pointer_value(false, false_reg))
14130 		return;
14131 
14132 	switch (opcode) {
14133 	/* JEQ/JNE comparison doesn't change the register equivalence.
14134 	 *
14135 	 * r1 = r2;
14136 	 * if (r1 == 42) goto label;
14137 	 * ...
14138 	 * label: // here both r1 and r2 are known to be 42.
14139 	 *
14140 	 * Hence when marking register as known preserve it's ID.
14141 	 */
14142 	case BPF_JEQ:
14143 		if (is_jmp32) {
14144 			__mark_reg32_known(true_reg, val32);
14145 			true_32off = tnum_subreg(true_reg->var_off);
14146 		} else {
14147 			___mark_reg_known(true_reg, val);
14148 			true_64off = true_reg->var_off;
14149 		}
14150 		break;
14151 	case BPF_JNE:
14152 		if (is_jmp32) {
14153 			__mark_reg32_known(false_reg, val32);
14154 			false_32off = tnum_subreg(false_reg->var_off);
14155 		} else {
14156 			___mark_reg_known(false_reg, val);
14157 			false_64off = false_reg->var_off;
14158 		}
14159 		break;
14160 	case BPF_JSET:
14161 		if (is_jmp32) {
14162 			false_32off = tnum_and(false_32off, tnum_const(~val32));
14163 			if (is_power_of_2(val32))
14164 				true_32off = tnum_or(true_32off,
14165 						     tnum_const(val32));
14166 		} else {
14167 			false_64off = tnum_and(false_64off, tnum_const(~val));
14168 			if (is_power_of_2(val))
14169 				true_64off = tnum_or(true_64off,
14170 						     tnum_const(val));
14171 		}
14172 		break;
14173 	case BPF_JGE:
14174 	case BPF_JGT:
14175 	{
14176 		if (is_jmp32) {
14177 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
14178 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
14179 
14180 			false_reg->u32_max_value = min(false_reg->u32_max_value,
14181 						       false_umax);
14182 			true_reg->u32_min_value = max(true_reg->u32_min_value,
14183 						      true_umin);
14184 		} else {
14185 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
14186 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
14187 
14188 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
14189 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
14190 		}
14191 		break;
14192 	}
14193 	case BPF_JSGE:
14194 	case BPF_JSGT:
14195 	{
14196 		if (is_jmp32) {
14197 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
14198 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
14199 
14200 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
14201 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
14202 		} else {
14203 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
14204 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
14205 
14206 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
14207 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
14208 		}
14209 		break;
14210 	}
14211 	case BPF_JLE:
14212 	case BPF_JLT:
14213 	{
14214 		if (is_jmp32) {
14215 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
14216 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
14217 
14218 			false_reg->u32_min_value = max(false_reg->u32_min_value,
14219 						       false_umin);
14220 			true_reg->u32_max_value = min(true_reg->u32_max_value,
14221 						      true_umax);
14222 		} else {
14223 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
14224 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
14225 
14226 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
14227 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
14228 		}
14229 		break;
14230 	}
14231 	case BPF_JSLE:
14232 	case BPF_JSLT:
14233 	{
14234 		if (is_jmp32) {
14235 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
14236 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
14237 
14238 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
14239 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
14240 		} else {
14241 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
14242 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
14243 
14244 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
14245 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
14246 		}
14247 		break;
14248 	}
14249 	default:
14250 		return;
14251 	}
14252 
14253 	if (is_jmp32) {
14254 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
14255 					     tnum_subreg(false_32off));
14256 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
14257 					    tnum_subreg(true_32off));
14258 		__reg_combine_32_into_64(false_reg);
14259 		__reg_combine_32_into_64(true_reg);
14260 	} else {
14261 		false_reg->var_off = false_64off;
14262 		true_reg->var_off = true_64off;
14263 		__reg_combine_64_into_32(false_reg);
14264 		__reg_combine_64_into_32(true_reg);
14265 	}
14266 }
14267 
14268 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
14269  * the variable reg.
14270  */
14271 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
14272 				struct bpf_reg_state *false_reg,
14273 				u64 val, u32 val32,
14274 				u8 opcode, bool is_jmp32)
14275 {
14276 	opcode = flip_opcode(opcode);
14277 	/* This uses zero as "not present in table"; luckily the zero opcode,
14278 	 * BPF_JA, can't get here.
14279 	 */
14280 	if (opcode)
14281 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
14282 }
14283 
14284 /* Regs are known to be equal, so intersect their min/max/var_off */
14285 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
14286 				  struct bpf_reg_state *dst_reg)
14287 {
14288 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
14289 							dst_reg->umin_value);
14290 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
14291 							dst_reg->umax_value);
14292 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
14293 							dst_reg->smin_value);
14294 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
14295 							dst_reg->smax_value);
14296 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
14297 							     dst_reg->var_off);
14298 	reg_bounds_sync(src_reg);
14299 	reg_bounds_sync(dst_reg);
14300 }
14301 
14302 static void reg_combine_min_max(struct bpf_reg_state *true_src,
14303 				struct bpf_reg_state *true_dst,
14304 				struct bpf_reg_state *false_src,
14305 				struct bpf_reg_state *false_dst,
14306 				u8 opcode)
14307 {
14308 	switch (opcode) {
14309 	case BPF_JEQ:
14310 		__reg_combine_min_max(true_src, true_dst);
14311 		break;
14312 	case BPF_JNE:
14313 		__reg_combine_min_max(false_src, false_dst);
14314 		break;
14315 	}
14316 }
14317 
14318 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
14319 				 struct bpf_reg_state *reg, u32 id,
14320 				 bool is_null)
14321 {
14322 	if (type_may_be_null(reg->type) && reg->id == id &&
14323 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
14324 		/* Old offset (both fixed and variable parts) should have been
14325 		 * known-zero, because we don't allow pointer arithmetic on
14326 		 * pointers that might be NULL. If we see this happening, don't
14327 		 * convert the register.
14328 		 *
14329 		 * But in some cases, some helpers that return local kptrs
14330 		 * advance offset for the returned pointer. In those cases, it
14331 		 * is fine to expect to see reg->off.
14332 		 */
14333 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
14334 			return;
14335 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
14336 		    WARN_ON_ONCE(reg->off))
14337 			return;
14338 
14339 		if (is_null) {
14340 			reg->type = SCALAR_VALUE;
14341 			/* We don't need id and ref_obj_id from this point
14342 			 * onwards anymore, thus we should better reset it,
14343 			 * so that state pruning has chances to take effect.
14344 			 */
14345 			reg->id = 0;
14346 			reg->ref_obj_id = 0;
14347 
14348 			return;
14349 		}
14350 
14351 		mark_ptr_not_null_reg(reg);
14352 
14353 		if (!reg_may_point_to_spin_lock(reg)) {
14354 			/* For not-NULL ptr, reg->ref_obj_id will be reset
14355 			 * in release_reference().
14356 			 *
14357 			 * reg->id is still used by spin_lock ptr. Other
14358 			 * than spin_lock ptr type, reg->id can be reset.
14359 			 */
14360 			reg->id = 0;
14361 		}
14362 	}
14363 }
14364 
14365 /* The logic is similar to find_good_pkt_pointers(), both could eventually
14366  * be folded together at some point.
14367  */
14368 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
14369 				  bool is_null)
14370 {
14371 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
14372 	struct bpf_reg_state *regs = state->regs, *reg;
14373 	u32 ref_obj_id = regs[regno].ref_obj_id;
14374 	u32 id = regs[regno].id;
14375 
14376 	if (ref_obj_id && ref_obj_id == id && is_null)
14377 		/* regs[regno] is in the " == NULL" branch.
14378 		 * No one could have freed the reference state before
14379 		 * doing the NULL check.
14380 		 */
14381 		WARN_ON_ONCE(release_reference_state(state, id));
14382 
14383 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14384 		mark_ptr_or_null_reg(state, reg, id, is_null);
14385 	}));
14386 }
14387 
14388 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
14389 				   struct bpf_reg_state *dst_reg,
14390 				   struct bpf_reg_state *src_reg,
14391 				   struct bpf_verifier_state *this_branch,
14392 				   struct bpf_verifier_state *other_branch)
14393 {
14394 	if (BPF_SRC(insn->code) != BPF_X)
14395 		return false;
14396 
14397 	/* Pointers are always 64-bit. */
14398 	if (BPF_CLASS(insn->code) == BPF_JMP32)
14399 		return false;
14400 
14401 	switch (BPF_OP(insn->code)) {
14402 	case BPF_JGT:
14403 		if ((dst_reg->type == PTR_TO_PACKET &&
14404 		     src_reg->type == PTR_TO_PACKET_END) ||
14405 		    (dst_reg->type == PTR_TO_PACKET_META &&
14406 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14407 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
14408 			find_good_pkt_pointers(this_branch, dst_reg,
14409 					       dst_reg->type, false);
14410 			mark_pkt_end(other_branch, insn->dst_reg, true);
14411 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14412 			    src_reg->type == PTR_TO_PACKET) ||
14413 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14414 			    src_reg->type == PTR_TO_PACKET_META)) {
14415 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
14416 			find_good_pkt_pointers(other_branch, src_reg,
14417 					       src_reg->type, true);
14418 			mark_pkt_end(this_branch, insn->src_reg, false);
14419 		} else {
14420 			return false;
14421 		}
14422 		break;
14423 	case BPF_JLT:
14424 		if ((dst_reg->type == PTR_TO_PACKET &&
14425 		     src_reg->type == PTR_TO_PACKET_END) ||
14426 		    (dst_reg->type == PTR_TO_PACKET_META &&
14427 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14428 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
14429 			find_good_pkt_pointers(other_branch, dst_reg,
14430 					       dst_reg->type, true);
14431 			mark_pkt_end(this_branch, insn->dst_reg, false);
14432 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14433 			    src_reg->type == PTR_TO_PACKET) ||
14434 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14435 			    src_reg->type == PTR_TO_PACKET_META)) {
14436 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
14437 			find_good_pkt_pointers(this_branch, src_reg,
14438 					       src_reg->type, false);
14439 			mark_pkt_end(other_branch, insn->src_reg, true);
14440 		} else {
14441 			return false;
14442 		}
14443 		break;
14444 	case BPF_JGE:
14445 		if ((dst_reg->type == PTR_TO_PACKET &&
14446 		     src_reg->type == PTR_TO_PACKET_END) ||
14447 		    (dst_reg->type == PTR_TO_PACKET_META &&
14448 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14449 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
14450 			find_good_pkt_pointers(this_branch, dst_reg,
14451 					       dst_reg->type, true);
14452 			mark_pkt_end(other_branch, insn->dst_reg, false);
14453 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14454 			    src_reg->type == PTR_TO_PACKET) ||
14455 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14456 			    src_reg->type == PTR_TO_PACKET_META)) {
14457 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14458 			find_good_pkt_pointers(other_branch, src_reg,
14459 					       src_reg->type, false);
14460 			mark_pkt_end(this_branch, insn->src_reg, true);
14461 		} else {
14462 			return false;
14463 		}
14464 		break;
14465 	case BPF_JLE:
14466 		if ((dst_reg->type == PTR_TO_PACKET &&
14467 		     src_reg->type == PTR_TO_PACKET_END) ||
14468 		    (dst_reg->type == PTR_TO_PACKET_META &&
14469 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14470 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14471 			find_good_pkt_pointers(other_branch, dst_reg,
14472 					       dst_reg->type, false);
14473 			mark_pkt_end(this_branch, insn->dst_reg, true);
14474 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14475 			    src_reg->type == PTR_TO_PACKET) ||
14476 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14477 			    src_reg->type == PTR_TO_PACKET_META)) {
14478 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14479 			find_good_pkt_pointers(this_branch, src_reg,
14480 					       src_reg->type, true);
14481 			mark_pkt_end(other_branch, insn->src_reg, false);
14482 		} else {
14483 			return false;
14484 		}
14485 		break;
14486 	default:
14487 		return false;
14488 	}
14489 
14490 	return true;
14491 }
14492 
14493 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14494 			       struct bpf_reg_state *known_reg)
14495 {
14496 	struct bpf_func_state *state;
14497 	struct bpf_reg_state *reg;
14498 
14499 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14500 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14501 			copy_register_state(reg, known_reg);
14502 	}));
14503 }
14504 
14505 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14506 			     struct bpf_insn *insn, int *insn_idx)
14507 {
14508 	struct bpf_verifier_state *this_branch = env->cur_state;
14509 	struct bpf_verifier_state *other_branch;
14510 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14511 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14512 	struct bpf_reg_state *eq_branch_regs;
14513 	u8 opcode = BPF_OP(insn->code);
14514 	bool is_jmp32;
14515 	int pred = -1;
14516 	int err;
14517 
14518 	/* Only conditional jumps are expected to reach here. */
14519 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14520 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14521 		return -EINVAL;
14522 	}
14523 
14524 	/* check src2 operand */
14525 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14526 	if (err)
14527 		return err;
14528 
14529 	dst_reg = &regs[insn->dst_reg];
14530 	if (BPF_SRC(insn->code) == BPF_X) {
14531 		if (insn->imm != 0) {
14532 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14533 			return -EINVAL;
14534 		}
14535 
14536 		/* check src1 operand */
14537 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14538 		if (err)
14539 			return err;
14540 
14541 		src_reg = &regs[insn->src_reg];
14542 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14543 		    is_pointer_value(env, insn->src_reg)) {
14544 			verbose(env, "R%d pointer comparison prohibited\n",
14545 				insn->src_reg);
14546 			return -EACCES;
14547 		}
14548 	} else {
14549 		if (insn->src_reg != BPF_REG_0) {
14550 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14551 			return -EINVAL;
14552 		}
14553 	}
14554 
14555 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14556 
14557 	if (BPF_SRC(insn->code) == BPF_K) {
14558 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14559 	} else if (src_reg->type == SCALAR_VALUE &&
14560 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14561 		pred = is_branch_taken(dst_reg,
14562 				       tnum_subreg(src_reg->var_off).value,
14563 				       opcode,
14564 				       is_jmp32);
14565 	} else if (src_reg->type == SCALAR_VALUE &&
14566 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14567 		pred = is_branch_taken(dst_reg,
14568 				       src_reg->var_off.value,
14569 				       opcode,
14570 				       is_jmp32);
14571 	} else if (dst_reg->type == SCALAR_VALUE &&
14572 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14573 		pred = is_branch_taken(src_reg,
14574 				       tnum_subreg(dst_reg->var_off).value,
14575 				       flip_opcode(opcode),
14576 				       is_jmp32);
14577 	} else if (dst_reg->type == SCALAR_VALUE &&
14578 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14579 		pred = is_branch_taken(src_reg,
14580 				       dst_reg->var_off.value,
14581 				       flip_opcode(opcode),
14582 				       is_jmp32);
14583 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14584 		   reg_is_pkt_pointer_any(src_reg) &&
14585 		   !is_jmp32) {
14586 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14587 	}
14588 
14589 	if (pred >= 0) {
14590 		/* If we get here with a dst_reg pointer type it is because
14591 		 * above is_branch_taken() special cased the 0 comparison.
14592 		 */
14593 		if (!__is_pointer_value(false, dst_reg))
14594 			err = mark_chain_precision(env, insn->dst_reg);
14595 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14596 		    !__is_pointer_value(false, src_reg))
14597 			err = mark_chain_precision(env, insn->src_reg);
14598 		if (err)
14599 			return err;
14600 	}
14601 
14602 	if (pred == 1) {
14603 		/* Only follow the goto, ignore fall-through. If needed, push
14604 		 * the fall-through branch for simulation under speculative
14605 		 * execution.
14606 		 */
14607 		if (!env->bypass_spec_v1 &&
14608 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14609 					       *insn_idx))
14610 			return -EFAULT;
14611 		if (env->log.level & BPF_LOG_LEVEL)
14612 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14613 		*insn_idx += insn->off;
14614 		return 0;
14615 	} else if (pred == 0) {
14616 		/* Only follow the fall-through branch, since that's where the
14617 		 * program will go. If needed, push the goto branch for
14618 		 * simulation under speculative execution.
14619 		 */
14620 		if (!env->bypass_spec_v1 &&
14621 		    !sanitize_speculative_path(env, insn,
14622 					       *insn_idx + insn->off + 1,
14623 					       *insn_idx))
14624 			return -EFAULT;
14625 		if (env->log.level & BPF_LOG_LEVEL)
14626 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14627 		return 0;
14628 	}
14629 
14630 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14631 				  false);
14632 	if (!other_branch)
14633 		return -EFAULT;
14634 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14635 
14636 	/* detect if we are comparing against a constant value so we can adjust
14637 	 * our min/max values for our dst register.
14638 	 * this is only legit if both are scalars (or pointers to the same
14639 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14640 	 * because otherwise the different base pointers mean the offsets aren't
14641 	 * comparable.
14642 	 */
14643 	if (BPF_SRC(insn->code) == BPF_X) {
14644 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14645 
14646 		if (dst_reg->type == SCALAR_VALUE &&
14647 		    src_reg->type == SCALAR_VALUE) {
14648 			if (tnum_is_const(src_reg->var_off) ||
14649 			    (is_jmp32 &&
14650 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14651 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14652 						dst_reg,
14653 						src_reg->var_off.value,
14654 						tnum_subreg(src_reg->var_off).value,
14655 						opcode, is_jmp32);
14656 			else if (tnum_is_const(dst_reg->var_off) ||
14657 				 (is_jmp32 &&
14658 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14659 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14660 						    src_reg,
14661 						    dst_reg->var_off.value,
14662 						    tnum_subreg(dst_reg->var_off).value,
14663 						    opcode, is_jmp32);
14664 			else if (!is_jmp32 &&
14665 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14666 				/* Comparing for equality, we can combine knowledge */
14667 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14668 						    &other_branch_regs[insn->dst_reg],
14669 						    src_reg, dst_reg, opcode);
14670 			if (src_reg->id &&
14671 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14672 				find_equal_scalars(this_branch, src_reg);
14673 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14674 			}
14675 
14676 		}
14677 	} else if (dst_reg->type == SCALAR_VALUE) {
14678 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14679 					dst_reg, insn->imm, (u32)insn->imm,
14680 					opcode, is_jmp32);
14681 	}
14682 
14683 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14684 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14685 		find_equal_scalars(this_branch, dst_reg);
14686 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14687 	}
14688 
14689 	/* if one pointer register is compared to another pointer
14690 	 * register check if PTR_MAYBE_NULL could be lifted.
14691 	 * E.g. register A - maybe null
14692 	 *      register B - not null
14693 	 * for JNE A, B, ... - A is not null in the false branch;
14694 	 * for JEQ A, B, ... - A is not null in the true branch.
14695 	 *
14696 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14697 	 * not need to be null checked by the BPF program, i.e.,
14698 	 * could be null even without PTR_MAYBE_NULL marking, so
14699 	 * only propagate nullness when neither reg is that type.
14700 	 */
14701 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14702 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14703 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14704 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14705 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14706 		eq_branch_regs = NULL;
14707 		switch (opcode) {
14708 		case BPF_JEQ:
14709 			eq_branch_regs = other_branch_regs;
14710 			break;
14711 		case BPF_JNE:
14712 			eq_branch_regs = regs;
14713 			break;
14714 		default:
14715 			/* do nothing */
14716 			break;
14717 		}
14718 		if (eq_branch_regs) {
14719 			if (type_may_be_null(src_reg->type))
14720 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14721 			else
14722 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14723 		}
14724 	}
14725 
14726 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14727 	 * NOTE: these optimizations below are related with pointer comparison
14728 	 *       which will never be JMP32.
14729 	 */
14730 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14731 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14732 	    type_may_be_null(dst_reg->type)) {
14733 		/* Mark all identical registers in each branch as either
14734 		 * safe or unknown depending R == 0 or R != 0 conditional.
14735 		 */
14736 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14737 				      opcode == BPF_JNE);
14738 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14739 				      opcode == BPF_JEQ);
14740 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14741 					   this_branch, other_branch) &&
14742 		   is_pointer_value(env, insn->dst_reg)) {
14743 		verbose(env, "R%d pointer comparison prohibited\n",
14744 			insn->dst_reg);
14745 		return -EACCES;
14746 	}
14747 	if (env->log.level & BPF_LOG_LEVEL)
14748 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14749 	return 0;
14750 }
14751 
14752 /* verify BPF_LD_IMM64 instruction */
14753 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14754 {
14755 	struct bpf_insn_aux_data *aux = cur_aux(env);
14756 	struct bpf_reg_state *regs = cur_regs(env);
14757 	struct bpf_reg_state *dst_reg;
14758 	struct bpf_map *map;
14759 	int err;
14760 
14761 	if (BPF_SIZE(insn->code) != BPF_DW) {
14762 		verbose(env, "invalid BPF_LD_IMM insn\n");
14763 		return -EINVAL;
14764 	}
14765 	if (insn->off != 0) {
14766 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14767 		return -EINVAL;
14768 	}
14769 
14770 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14771 	if (err)
14772 		return err;
14773 
14774 	dst_reg = &regs[insn->dst_reg];
14775 	if (insn->src_reg == 0) {
14776 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14777 
14778 		dst_reg->type = SCALAR_VALUE;
14779 		__mark_reg_known(&regs[insn->dst_reg], imm);
14780 		return 0;
14781 	}
14782 
14783 	/* All special src_reg cases are listed below. From this point onwards
14784 	 * we either succeed and assign a corresponding dst_reg->type after
14785 	 * zeroing the offset, or fail and reject the program.
14786 	 */
14787 	mark_reg_known_zero(env, regs, insn->dst_reg);
14788 
14789 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14790 		dst_reg->type = aux->btf_var.reg_type;
14791 		switch (base_type(dst_reg->type)) {
14792 		case PTR_TO_MEM:
14793 			dst_reg->mem_size = aux->btf_var.mem_size;
14794 			break;
14795 		case PTR_TO_BTF_ID:
14796 			dst_reg->btf = aux->btf_var.btf;
14797 			dst_reg->btf_id = aux->btf_var.btf_id;
14798 			break;
14799 		default:
14800 			verbose(env, "bpf verifier is misconfigured\n");
14801 			return -EFAULT;
14802 		}
14803 		return 0;
14804 	}
14805 
14806 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14807 		struct bpf_prog_aux *aux = env->prog->aux;
14808 		u32 subprogno = find_subprog(env,
14809 					     env->insn_idx + insn->imm + 1);
14810 
14811 		if (!aux->func_info) {
14812 			verbose(env, "missing btf func_info\n");
14813 			return -EINVAL;
14814 		}
14815 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14816 			verbose(env, "callback function not static\n");
14817 			return -EINVAL;
14818 		}
14819 
14820 		dst_reg->type = PTR_TO_FUNC;
14821 		dst_reg->subprogno = subprogno;
14822 		return 0;
14823 	}
14824 
14825 	map = env->used_maps[aux->map_index];
14826 	dst_reg->map_ptr = map;
14827 
14828 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14829 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14830 		dst_reg->type = PTR_TO_MAP_VALUE;
14831 		dst_reg->off = aux->map_off;
14832 		WARN_ON_ONCE(map->max_entries != 1);
14833 		/* We want reg->id to be same (0) as map_value is not distinct */
14834 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14835 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14836 		dst_reg->type = CONST_PTR_TO_MAP;
14837 	} else {
14838 		verbose(env, "bpf verifier is misconfigured\n");
14839 		return -EINVAL;
14840 	}
14841 
14842 	return 0;
14843 }
14844 
14845 static bool may_access_skb(enum bpf_prog_type type)
14846 {
14847 	switch (type) {
14848 	case BPF_PROG_TYPE_SOCKET_FILTER:
14849 	case BPF_PROG_TYPE_SCHED_CLS:
14850 	case BPF_PROG_TYPE_SCHED_ACT:
14851 		return true;
14852 	default:
14853 		return false;
14854 	}
14855 }
14856 
14857 /* verify safety of LD_ABS|LD_IND instructions:
14858  * - they can only appear in the programs where ctx == skb
14859  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14860  *   preserve R6-R9, and store return value into R0
14861  *
14862  * Implicit input:
14863  *   ctx == skb == R6 == CTX
14864  *
14865  * Explicit input:
14866  *   SRC == any register
14867  *   IMM == 32-bit immediate
14868  *
14869  * Output:
14870  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14871  */
14872 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14873 {
14874 	struct bpf_reg_state *regs = cur_regs(env);
14875 	static const int ctx_reg = BPF_REG_6;
14876 	u8 mode = BPF_MODE(insn->code);
14877 	int i, err;
14878 
14879 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14880 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14881 		return -EINVAL;
14882 	}
14883 
14884 	if (!env->ops->gen_ld_abs) {
14885 		verbose(env, "bpf verifier is misconfigured\n");
14886 		return -EINVAL;
14887 	}
14888 
14889 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14890 	    BPF_SIZE(insn->code) == BPF_DW ||
14891 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14892 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14893 		return -EINVAL;
14894 	}
14895 
14896 	/* check whether implicit source operand (register R6) is readable */
14897 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14898 	if (err)
14899 		return err;
14900 
14901 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14902 	 * gen_ld_abs() may terminate the program at runtime, leading to
14903 	 * reference leak.
14904 	 */
14905 	err = check_reference_leak(env);
14906 	if (err) {
14907 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14908 		return err;
14909 	}
14910 
14911 	if (env->cur_state->active_lock.ptr) {
14912 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14913 		return -EINVAL;
14914 	}
14915 
14916 	if (env->cur_state->active_rcu_lock) {
14917 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14918 		return -EINVAL;
14919 	}
14920 
14921 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14922 		verbose(env,
14923 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14924 		return -EINVAL;
14925 	}
14926 
14927 	if (mode == BPF_IND) {
14928 		/* check explicit source operand */
14929 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14930 		if (err)
14931 			return err;
14932 	}
14933 
14934 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14935 	if (err < 0)
14936 		return err;
14937 
14938 	/* reset caller saved regs to unreadable */
14939 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14940 		mark_reg_not_init(env, regs, caller_saved[i]);
14941 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14942 	}
14943 
14944 	/* mark destination R0 register as readable, since it contains
14945 	 * the value fetched from the packet.
14946 	 * Already marked as written above.
14947 	 */
14948 	mark_reg_unknown(env, regs, BPF_REG_0);
14949 	/* ld_abs load up to 32-bit skb data. */
14950 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14951 	return 0;
14952 }
14953 
14954 static int check_return_code(struct bpf_verifier_env *env)
14955 {
14956 	struct tnum enforce_attach_type_range = tnum_unknown;
14957 	const struct bpf_prog *prog = env->prog;
14958 	struct bpf_reg_state *reg;
14959 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14960 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14961 	int err;
14962 	struct bpf_func_state *frame = env->cur_state->frame[0];
14963 	const bool is_subprog = frame->subprogno;
14964 
14965 	/* LSM and struct_ops func-ptr's return type could be "void" */
14966 	if (!is_subprog) {
14967 		switch (prog_type) {
14968 		case BPF_PROG_TYPE_LSM:
14969 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14970 				/* See below, can be 0 or 0-1 depending on hook. */
14971 				break;
14972 			fallthrough;
14973 		case BPF_PROG_TYPE_STRUCT_OPS:
14974 			if (!prog->aux->attach_func_proto->type)
14975 				return 0;
14976 			break;
14977 		default:
14978 			break;
14979 		}
14980 	}
14981 
14982 	/* eBPF calling convention is such that R0 is used
14983 	 * to return the value from eBPF program.
14984 	 * Make sure that it's readable at this time
14985 	 * of bpf_exit, which means that program wrote
14986 	 * something into it earlier
14987 	 */
14988 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14989 	if (err)
14990 		return err;
14991 
14992 	if (is_pointer_value(env, BPF_REG_0)) {
14993 		verbose(env, "R0 leaks addr as return value\n");
14994 		return -EACCES;
14995 	}
14996 
14997 	reg = cur_regs(env) + BPF_REG_0;
14998 
14999 	if (frame->in_async_callback_fn) {
15000 		/* enforce return zero from async callbacks like timer */
15001 		if (reg->type != SCALAR_VALUE) {
15002 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
15003 				reg_type_str(env, reg->type));
15004 			return -EINVAL;
15005 		}
15006 
15007 		if (!tnum_in(const_0, reg->var_off)) {
15008 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
15009 			return -EINVAL;
15010 		}
15011 		return 0;
15012 	}
15013 
15014 	if (is_subprog) {
15015 		if (reg->type != SCALAR_VALUE) {
15016 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
15017 				reg_type_str(env, reg->type));
15018 			return -EINVAL;
15019 		}
15020 		return 0;
15021 	}
15022 
15023 	switch (prog_type) {
15024 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
15025 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
15026 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
15027 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
15028 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
15029 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
15030 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
15031 			range = tnum_range(1, 1);
15032 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
15033 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
15034 			range = tnum_range(0, 3);
15035 		break;
15036 	case BPF_PROG_TYPE_CGROUP_SKB:
15037 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
15038 			range = tnum_range(0, 3);
15039 			enforce_attach_type_range = tnum_range(2, 3);
15040 		}
15041 		break;
15042 	case BPF_PROG_TYPE_CGROUP_SOCK:
15043 	case BPF_PROG_TYPE_SOCK_OPS:
15044 	case BPF_PROG_TYPE_CGROUP_DEVICE:
15045 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
15046 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
15047 		break;
15048 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
15049 		if (!env->prog->aux->attach_btf_id)
15050 			return 0;
15051 		range = tnum_const(0);
15052 		break;
15053 	case BPF_PROG_TYPE_TRACING:
15054 		switch (env->prog->expected_attach_type) {
15055 		case BPF_TRACE_FENTRY:
15056 		case BPF_TRACE_FEXIT:
15057 			range = tnum_const(0);
15058 			break;
15059 		case BPF_TRACE_RAW_TP:
15060 		case BPF_MODIFY_RETURN:
15061 			return 0;
15062 		case BPF_TRACE_ITER:
15063 			break;
15064 		default:
15065 			return -ENOTSUPP;
15066 		}
15067 		break;
15068 	case BPF_PROG_TYPE_SK_LOOKUP:
15069 		range = tnum_range(SK_DROP, SK_PASS);
15070 		break;
15071 
15072 	case BPF_PROG_TYPE_LSM:
15073 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
15074 			/* Regular BPF_PROG_TYPE_LSM programs can return
15075 			 * any value.
15076 			 */
15077 			return 0;
15078 		}
15079 		if (!env->prog->aux->attach_func_proto->type) {
15080 			/* Make sure programs that attach to void
15081 			 * hooks don't try to modify return value.
15082 			 */
15083 			range = tnum_range(1, 1);
15084 		}
15085 		break;
15086 
15087 	case BPF_PROG_TYPE_NETFILTER:
15088 		range = tnum_range(NF_DROP, NF_ACCEPT);
15089 		break;
15090 	case BPF_PROG_TYPE_EXT:
15091 		/* freplace program can return anything as its return value
15092 		 * depends on the to-be-replaced kernel func or bpf program.
15093 		 */
15094 	default:
15095 		return 0;
15096 	}
15097 
15098 	if (reg->type != SCALAR_VALUE) {
15099 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
15100 			reg_type_str(env, reg->type));
15101 		return -EINVAL;
15102 	}
15103 
15104 	if (!tnum_in(range, reg->var_off)) {
15105 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
15106 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
15107 		    prog_type == BPF_PROG_TYPE_LSM &&
15108 		    !prog->aux->attach_func_proto->type)
15109 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
15110 		return -EINVAL;
15111 	}
15112 
15113 	if (!tnum_is_unknown(enforce_attach_type_range) &&
15114 	    tnum_in(enforce_attach_type_range, reg->var_off))
15115 		env->prog->enforce_expected_attach_type = 1;
15116 	return 0;
15117 }
15118 
15119 /* non-recursive DFS pseudo code
15120  * 1  procedure DFS-iterative(G,v):
15121  * 2      label v as discovered
15122  * 3      let S be a stack
15123  * 4      S.push(v)
15124  * 5      while S is not empty
15125  * 6            t <- S.peek()
15126  * 7            if t is what we're looking for:
15127  * 8                return t
15128  * 9            for all edges e in G.adjacentEdges(t) do
15129  * 10               if edge e is already labelled
15130  * 11                   continue with the next edge
15131  * 12               w <- G.adjacentVertex(t,e)
15132  * 13               if vertex w is not discovered and not explored
15133  * 14                   label e as tree-edge
15134  * 15                   label w as discovered
15135  * 16                   S.push(w)
15136  * 17                   continue at 5
15137  * 18               else if vertex w is discovered
15138  * 19                   label e as back-edge
15139  * 20               else
15140  * 21                   // vertex w is explored
15141  * 22                   label e as forward- or cross-edge
15142  * 23           label t as explored
15143  * 24           S.pop()
15144  *
15145  * convention:
15146  * 0x10 - discovered
15147  * 0x11 - discovered and fall-through edge labelled
15148  * 0x12 - discovered and fall-through and branch edges labelled
15149  * 0x20 - explored
15150  */
15151 
15152 enum {
15153 	DISCOVERED = 0x10,
15154 	EXPLORED = 0x20,
15155 	FALLTHROUGH = 1,
15156 	BRANCH = 2,
15157 };
15158 
15159 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
15160 {
15161 	env->insn_aux_data[idx].prune_point = true;
15162 }
15163 
15164 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
15165 {
15166 	return env->insn_aux_data[insn_idx].prune_point;
15167 }
15168 
15169 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
15170 {
15171 	env->insn_aux_data[idx].force_checkpoint = true;
15172 }
15173 
15174 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
15175 {
15176 	return env->insn_aux_data[insn_idx].force_checkpoint;
15177 }
15178 
15179 static void mark_calls_callback(struct bpf_verifier_env *env, int idx)
15180 {
15181 	env->insn_aux_data[idx].calls_callback = true;
15182 }
15183 
15184 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx)
15185 {
15186 	return env->insn_aux_data[insn_idx].calls_callback;
15187 }
15188 
15189 enum {
15190 	DONE_EXPLORING = 0,
15191 	KEEP_EXPLORING = 1,
15192 };
15193 
15194 /* t, w, e - match pseudo-code above:
15195  * t - index of current instruction
15196  * w - next instruction
15197  * e - edge
15198  */
15199 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
15200 {
15201 	int *insn_stack = env->cfg.insn_stack;
15202 	int *insn_state = env->cfg.insn_state;
15203 
15204 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
15205 		return DONE_EXPLORING;
15206 
15207 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
15208 		return DONE_EXPLORING;
15209 
15210 	if (w < 0 || w >= env->prog->len) {
15211 		verbose_linfo(env, t, "%d: ", t);
15212 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
15213 		return -EINVAL;
15214 	}
15215 
15216 	if (e == BRANCH) {
15217 		/* mark branch target for state pruning */
15218 		mark_prune_point(env, w);
15219 		mark_jmp_point(env, w);
15220 	}
15221 
15222 	if (insn_state[w] == 0) {
15223 		/* tree-edge */
15224 		insn_state[t] = DISCOVERED | e;
15225 		insn_state[w] = DISCOVERED;
15226 		if (env->cfg.cur_stack >= env->prog->len)
15227 			return -E2BIG;
15228 		insn_stack[env->cfg.cur_stack++] = w;
15229 		return KEEP_EXPLORING;
15230 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
15231 		if (env->bpf_capable)
15232 			return DONE_EXPLORING;
15233 		verbose_linfo(env, t, "%d: ", t);
15234 		verbose_linfo(env, w, "%d: ", w);
15235 		verbose(env, "back-edge from insn %d to %d\n", t, w);
15236 		return -EINVAL;
15237 	} else if (insn_state[w] == EXPLORED) {
15238 		/* forward- or cross-edge */
15239 		insn_state[t] = DISCOVERED | e;
15240 	} else {
15241 		verbose(env, "insn state internal bug\n");
15242 		return -EFAULT;
15243 	}
15244 	return DONE_EXPLORING;
15245 }
15246 
15247 static int visit_func_call_insn(int t, struct bpf_insn *insns,
15248 				struct bpf_verifier_env *env,
15249 				bool visit_callee)
15250 {
15251 	int ret, insn_sz;
15252 
15253 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
15254 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
15255 	if (ret)
15256 		return ret;
15257 
15258 	mark_prune_point(env, t + insn_sz);
15259 	/* when we exit from subprog, we need to record non-linear history */
15260 	mark_jmp_point(env, t + insn_sz);
15261 
15262 	if (visit_callee) {
15263 		mark_prune_point(env, t);
15264 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
15265 	}
15266 	return ret;
15267 }
15268 
15269 /* Visits the instruction at index t and returns one of the following:
15270  *  < 0 - an error occurred
15271  *  DONE_EXPLORING - the instruction was fully explored
15272  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
15273  */
15274 static int visit_insn(int t, struct bpf_verifier_env *env)
15275 {
15276 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
15277 	int ret, off, insn_sz;
15278 
15279 	if (bpf_pseudo_func(insn))
15280 		return visit_func_call_insn(t, insns, env, true);
15281 
15282 	/* All non-branch instructions have a single fall-through edge. */
15283 	if (BPF_CLASS(insn->code) != BPF_JMP &&
15284 	    BPF_CLASS(insn->code) != BPF_JMP32) {
15285 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
15286 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
15287 	}
15288 
15289 	switch (BPF_OP(insn->code)) {
15290 	case BPF_EXIT:
15291 		return DONE_EXPLORING;
15292 
15293 	case BPF_CALL:
15294 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
15295 			/* Mark this call insn as a prune point to trigger
15296 			 * is_state_visited() check before call itself is
15297 			 * processed by __check_func_call(). Otherwise new
15298 			 * async state will be pushed for further exploration.
15299 			 */
15300 			mark_prune_point(env, t);
15301 		/* For functions that invoke callbacks it is not known how many times
15302 		 * callback would be called. Verifier models callback calling functions
15303 		 * by repeatedly visiting callback bodies and returning to origin call
15304 		 * instruction.
15305 		 * In order to stop such iteration verifier needs to identify when a
15306 		 * state identical some state from a previous iteration is reached.
15307 		 * Check below forces creation of checkpoint before callback calling
15308 		 * instruction to allow search for such identical states.
15309 		 */
15310 		if (is_sync_callback_calling_insn(insn)) {
15311 			mark_calls_callback(env, t);
15312 			mark_force_checkpoint(env, t);
15313 			mark_prune_point(env, t);
15314 			mark_jmp_point(env, t);
15315 		}
15316 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
15317 			struct bpf_kfunc_call_arg_meta meta;
15318 
15319 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
15320 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
15321 				mark_prune_point(env, t);
15322 				/* Checking and saving state checkpoints at iter_next() call
15323 				 * is crucial for fast convergence of open-coded iterator loop
15324 				 * logic, so we need to force it. If we don't do that,
15325 				 * is_state_visited() might skip saving a checkpoint, causing
15326 				 * unnecessarily long sequence of not checkpointed
15327 				 * instructions and jumps, leading to exhaustion of jump
15328 				 * history buffer, and potentially other undesired outcomes.
15329 				 * It is expected that with correct open-coded iterators
15330 				 * convergence will happen quickly, so we don't run a risk of
15331 				 * exhausting memory.
15332 				 */
15333 				mark_force_checkpoint(env, t);
15334 			}
15335 		}
15336 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
15337 
15338 	case BPF_JA:
15339 		if (BPF_SRC(insn->code) != BPF_K)
15340 			return -EINVAL;
15341 
15342 		if (BPF_CLASS(insn->code) == BPF_JMP)
15343 			off = insn->off;
15344 		else
15345 			off = insn->imm;
15346 
15347 		/* unconditional jump with single edge */
15348 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
15349 		if (ret)
15350 			return ret;
15351 
15352 		mark_prune_point(env, t + off + 1);
15353 		mark_jmp_point(env, t + off + 1);
15354 
15355 		return ret;
15356 
15357 	default:
15358 		/* conditional jump with two edges */
15359 		mark_prune_point(env, t);
15360 
15361 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
15362 		if (ret)
15363 			return ret;
15364 
15365 		return push_insn(t, t + insn->off + 1, BRANCH, env);
15366 	}
15367 }
15368 
15369 /* non-recursive depth-first-search to detect loops in BPF program
15370  * loop == back-edge in directed graph
15371  */
15372 static int check_cfg(struct bpf_verifier_env *env)
15373 {
15374 	int insn_cnt = env->prog->len;
15375 	int *insn_stack, *insn_state;
15376 	int ret = 0;
15377 	int i;
15378 
15379 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15380 	if (!insn_state)
15381 		return -ENOMEM;
15382 
15383 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
15384 	if (!insn_stack) {
15385 		kvfree(insn_state);
15386 		return -ENOMEM;
15387 	}
15388 
15389 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
15390 	insn_stack[0] = 0; /* 0 is the first instruction */
15391 	env->cfg.cur_stack = 1;
15392 
15393 	while (env->cfg.cur_stack > 0) {
15394 		int t = insn_stack[env->cfg.cur_stack - 1];
15395 
15396 		ret = visit_insn(t, env);
15397 		switch (ret) {
15398 		case DONE_EXPLORING:
15399 			insn_state[t] = EXPLORED;
15400 			env->cfg.cur_stack--;
15401 			break;
15402 		case KEEP_EXPLORING:
15403 			break;
15404 		default:
15405 			if (ret > 0) {
15406 				verbose(env, "visit_insn internal bug\n");
15407 				ret = -EFAULT;
15408 			}
15409 			goto err_free;
15410 		}
15411 	}
15412 
15413 	if (env->cfg.cur_stack < 0) {
15414 		verbose(env, "pop stack internal bug\n");
15415 		ret = -EFAULT;
15416 		goto err_free;
15417 	}
15418 
15419 	for (i = 0; i < insn_cnt; i++) {
15420 		struct bpf_insn *insn = &env->prog->insnsi[i];
15421 
15422 		if (insn_state[i] != EXPLORED) {
15423 			verbose(env, "unreachable insn %d\n", i);
15424 			ret = -EINVAL;
15425 			goto err_free;
15426 		}
15427 		if (bpf_is_ldimm64(insn)) {
15428 			if (insn_state[i + 1] != 0) {
15429 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
15430 				ret = -EINVAL;
15431 				goto err_free;
15432 			}
15433 			i++; /* skip second half of ldimm64 */
15434 		}
15435 	}
15436 	ret = 0; /* cfg looks good */
15437 
15438 err_free:
15439 	kvfree(insn_state);
15440 	kvfree(insn_stack);
15441 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
15442 	return ret;
15443 }
15444 
15445 static int check_abnormal_return(struct bpf_verifier_env *env)
15446 {
15447 	int i;
15448 
15449 	for (i = 1; i < env->subprog_cnt; i++) {
15450 		if (env->subprog_info[i].has_ld_abs) {
15451 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
15452 			return -EINVAL;
15453 		}
15454 		if (env->subprog_info[i].has_tail_call) {
15455 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
15456 			return -EINVAL;
15457 		}
15458 	}
15459 	return 0;
15460 }
15461 
15462 /* The minimum supported BTF func info size */
15463 #define MIN_BPF_FUNCINFO_SIZE	8
15464 #define MAX_FUNCINFO_REC_SIZE	252
15465 
15466 static int check_btf_func(struct bpf_verifier_env *env,
15467 			  const union bpf_attr *attr,
15468 			  bpfptr_t uattr)
15469 {
15470 	const struct btf_type *type, *func_proto, *ret_type;
15471 	u32 i, nfuncs, urec_size, min_size;
15472 	u32 krec_size = sizeof(struct bpf_func_info);
15473 	struct bpf_func_info *krecord;
15474 	struct bpf_func_info_aux *info_aux = NULL;
15475 	struct bpf_prog *prog;
15476 	const struct btf *btf;
15477 	bpfptr_t urecord;
15478 	u32 prev_offset = 0;
15479 	bool scalar_return;
15480 	int ret = -ENOMEM;
15481 
15482 	nfuncs = attr->func_info_cnt;
15483 	if (!nfuncs) {
15484 		if (check_abnormal_return(env))
15485 			return -EINVAL;
15486 		return 0;
15487 	}
15488 
15489 	if (nfuncs != env->subprog_cnt) {
15490 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15491 		return -EINVAL;
15492 	}
15493 
15494 	urec_size = attr->func_info_rec_size;
15495 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15496 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15497 	    urec_size % sizeof(u32)) {
15498 		verbose(env, "invalid func info rec size %u\n", urec_size);
15499 		return -EINVAL;
15500 	}
15501 
15502 	prog = env->prog;
15503 	btf = prog->aux->btf;
15504 
15505 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15506 	min_size = min_t(u32, krec_size, urec_size);
15507 
15508 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15509 	if (!krecord)
15510 		return -ENOMEM;
15511 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15512 	if (!info_aux)
15513 		goto err_free;
15514 
15515 	for (i = 0; i < nfuncs; i++) {
15516 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15517 		if (ret) {
15518 			if (ret == -E2BIG) {
15519 				verbose(env, "nonzero tailing record in func info");
15520 				/* set the size kernel expects so loader can zero
15521 				 * out the rest of the record.
15522 				 */
15523 				if (copy_to_bpfptr_offset(uattr,
15524 							  offsetof(union bpf_attr, func_info_rec_size),
15525 							  &min_size, sizeof(min_size)))
15526 					ret = -EFAULT;
15527 			}
15528 			goto err_free;
15529 		}
15530 
15531 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15532 			ret = -EFAULT;
15533 			goto err_free;
15534 		}
15535 
15536 		/* check insn_off */
15537 		ret = -EINVAL;
15538 		if (i == 0) {
15539 			if (krecord[i].insn_off) {
15540 				verbose(env,
15541 					"nonzero insn_off %u for the first func info record",
15542 					krecord[i].insn_off);
15543 				goto err_free;
15544 			}
15545 		} else if (krecord[i].insn_off <= prev_offset) {
15546 			verbose(env,
15547 				"same or smaller insn offset (%u) than previous func info record (%u)",
15548 				krecord[i].insn_off, prev_offset);
15549 			goto err_free;
15550 		}
15551 
15552 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15553 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15554 			goto err_free;
15555 		}
15556 
15557 		/* check type_id */
15558 		type = btf_type_by_id(btf, krecord[i].type_id);
15559 		if (!type || !btf_type_is_func(type)) {
15560 			verbose(env, "invalid type id %d in func info",
15561 				krecord[i].type_id);
15562 			goto err_free;
15563 		}
15564 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15565 
15566 		func_proto = btf_type_by_id(btf, type->type);
15567 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15568 			/* btf_func_check() already verified it during BTF load */
15569 			goto err_free;
15570 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15571 		scalar_return =
15572 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15573 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15574 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15575 			goto err_free;
15576 		}
15577 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15578 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15579 			goto err_free;
15580 		}
15581 
15582 		prev_offset = krecord[i].insn_off;
15583 		bpfptr_add(&urecord, urec_size);
15584 	}
15585 
15586 	prog->aux->func_info = krecord;
15587 	prog->aux->func_info_cnt = nfuncs;
15588 	prog->aux->func_info_aux = info_aux;
15589 	return 0;
15590 
15591 err_free:
15592 	kvfree(krecord);
15593 	kfree(info_aux);
15594 	return ret;
15595 }
15596 
15597 static void adjust_btf_func(struct bpf_verifier_env *env)
15598 {
15599 	struct bpf_prog_aux *aux = env->prog->aux;
15600 	int i;
15601 
15602 	if (!aux->func_info)
15603 		return;
15604 
15605 	for (i = 0; i < env->subprog_cnt; i++)
15606 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15607 }
15608 
15609 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15610 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15611 
15612 static int check_btf_line(struct bpf_verifier_env *env,
15613 			  const union bpf_attr *attr,
15614 			  bpfptr_t uattr)
15615 {
15616 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15617 	struct bpf_subprog_info *sub;
15618 	struct bpf_line_info *linfo;
15619 	struct bpf_prog *prog;
15620 	const struct btf *btf;
15621 	bpfptr_t ulinfo;
15622 	int err;
15623 
15624 	nr_linfo = attr->line_info_cnt;
15625 	if (!nr_linfo)
15626 		return 0;
15627 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15628 		return -EINVAL;
15629 
15630 	rec_size = attr->line_info_rec_size;
15631 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15632 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15633 	    rec_size & (sizeof(u32) - 1))
15634 		return -EINVAL;
15635 
15636 	/* Need to zero it in case the userspace may
15637 	 * pass in a smaller bpf_line_info object.
15638 	 */
15639 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15640 			 GFP_KERNEL | __GFP_NOWARN);
15641 	if (!linfo)
15642 		return -ENOMEM;
15643 
15644 	prog = env->prog;
15645 	btf = prog->aux->btf;
15646 
15647 	s = 0;
15648 	sub = env->subprog_info;
15649 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15650 	expected_size = sizeof(struct bpf_line_info);
15651 	ncopy = min_t(u32, expected_size, rec_size);
15652 	for (i = 0; i < nr_linfo; i++) {
15653 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15654 		if (err) {
15655 			if (err == -E2BIG) {
15656 				verbose(env, "nonzero tailing record in line_info");
15657 				if (copy_to_bpfptr_offset(uattr,
15658 							  offsetof(union bpf_attr, line_info_rec_size),
15659 							  &expected_size, sizeof(expected_size)))
15660 					err = -EFAULT;
15661 			}
15662 			goto err_free;
15663 		}
15664 
15665 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15666 			err = -EFAULT;
15667 			goto err_free;
15668 		}
15669 
15670 		/*
15671 		 * Check insn_off to ensure
15672 		 * 1) strictly increasing AND
15673 		 * 2) bounded by prog->len
15674 		 *
15675 		 * The linfo[0].insn_off == 0 check logically falls into
15676 		 * the later "missing bpf_line_info for func..." case
15677 		 * because the first linfo[0].insn_off must be the
15678 		 * first sub also and the first sub must have
15679 		 * subprog_info[0].start == 0.
15680 		 */
15681 		if ((i && linfo[i].insn_off <= prev_offset) ||
15682 		    linfo[i].insn_off >= prog->len) {
15683 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15684 				i, linfo[i].insn_off, prev_offset,
15685 				prog->len);
15686 			err = -EINVAL;
15687 			goto err_free;
15688 		}
15689 
15690 		if (!prog->insnsi[linfo[i].insn_off].code) {
15691 			verbose(env,
15692 				"Invalid insn code at line_info[%u].insn_off\n",
15693 				i);
15694 			err = -EINVAL;
15695 			goto err_free;
15696 		}
15697 
15698 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15699 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15700 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15701 			err = -EINVAL;
15702 			goto err_free;
15703 		}
15704 
15705 		if (s != env->subprog_cnt) {
15706 			if (linfo[i].insn_off == sub[s].start) {
15707 				sub[s].linfo_idx = i;
15708 				s++;
15709 			} else if (sub[s].start < linfo[i].insn_off) {
15710 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15711 				err = -EINVAL;
15712 				goto err_free;
15713 			}
15714 		}
15715 
15716 		prev_offset = linfo[i].insn_off;
15717 		bpfptr_add(&ulinfo, rec_size);
15718 	}
15719 
15720 	if (s != env->subprog_cnt) {
15721 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15722 			env->subprog_cnt - s, s);
15723 		err = -EINVAL;
15724 		goto err_free;
15725 	}
15726 
15727 	prog->aux->linfo = linfo;
15728 	prog->aux->nr_linfo = nr_linfo;
15729 
15730 	return 0;
15731 
15732 err_free:
15733 	kvfree(linfo);
15734 	return err;
15735 }
15736 
15737 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15738 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15739 
15740 static int check_core_relo(struct bpf_verifier_env *env,
15741 			   const union bpf_attr *attr,
15742 			   bpfptr_t uattr)
15743 {
15744 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15745 	struct bpf_core_relo core_relo = {};
15746 	struct bpf_prog *prog = env->prog;
15747 	const struct btf *btf = prog->aux->btf;
15748 	struct bpf_core_ctx ctx = {
15749 		.log = &env->log,
15750 		.btf = btf,
15751 	};
15752 	bpfptr_t u_core_relo;
15753 	int err;
15754 
15755 	nr_core_relo = attr->core_relo_cnt;
15756 	if (!nr_core_relo)
15757 		return 0;
15758 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15759 		return -EINVAL;
15760 
15761 	rec_size = attr->core_relo_rec_size;
15762 	if (rec_size < MIN_CORE_RELO_SIZE ||
15763 	    rec_size > MAX_CORE_RELO_SIZE ||
15764 	    rec_size % sizeof(u32))
15765 		return -EINVAL;
15766 
15767 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15768 	expected_size = sizeof(struct bpf_core_relo);
15769 	ncopy = min_t(u32, expected_size, rec_size);
15770 
15771 	/* Unlike func_info and line_info, copy and apply each CO-RE
15772 	 * relocation record one at a time.
15773 	 */
15774 	for (i = 0; i < nr_core_relo; i++) {
15775 		/* future proofing when sizeof(bpf_core_relo) changes */
15776 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15777 		if (err) {
15778 			if (err == -E2BIG) {
15779 				verbose(env, "nonzero tailing record in core_relo");
15780 				if (copy_to_bpfptr_offset(uattr,
15781 							  offsetof(union bpf_attr, core_relo_rec_size),
15782 							  &expected_size, sizeof(expected_size)))
15783 					err = -EFAULT;
15784 			}
15785 			break;
15786 		}
15787 
15788 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15789 			err = -EFAULT;
15790 			break;
15791 		}
15792 
15793 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15794 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15795 				i, core_relo.insn_off, prog->len);
15796 			err = -EINVAL;
15797 			break;
15798 		}
15799 
15800 		err = bpf_core_apply(&ctx, &core_relo, i,
15801 				     &prog->insnsi[core_relo.insn_off / 8]);
15802 		if (err)
15803 			break;
15804 		bpfptr_add(&u_core_relo, rec_size);
15805 	}
15806 	return err;
15807 }
15808 
15809 static int check_btf_info(struct bpf_verifier_env *env,
15810 			  const union bpf_attr *attr,
15811 			  bpfptr_t uattr)
15812 {
15813 	struct btf *btf;
15814 	int err;
15815 
15816 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15817 		if (check_abnormal_return(env))
15818 			return -EINVAL;
15819 		return 0;
15820 	}
15821 
15822 	btf = btf_get_by_fd(attr->prog_btf_fd);
15823 	if (IS_ERR(btf))
15824 		return PTR_ERR(btf);
15825 	if (btf_is_kernel(btf)) {
15826 		btf_put(btf);
15827 		return -EACCES;
15828 	}
15829 	env->prog->aux->btf = btf;
15830 
15831 	err = check_btf_func(env, attr, uattr);
15832 	if (err)
15833 		return err;
15834 
15835 	err = check_btf_line(env, attr, uattr);
15836 	if (err)
15837 		return err;
15838 
15839 	err = check_core_relo(env, attr, uattr);
15840 	if (err)
15841 		return err;
15842 
15843 	return 0;
15844 }
15845 
15846 /* check %cur's range satisfies %old's */
15847 static bool range_within(struct bpf_reg_state *old,
15848 			 struct bpf_reg_state *cur)
15849 {
15850 	return old->umin_value <= cur->umin_value &&
15851 	       old->umax_value >= cur->umax_value &&
15852 	       old->smin_value <= cur->smin_value &&
15853 	       old->smax_value >= cur->smax_value &&
15854 	       old->u32_min_value <= cur->u32_min_value &&
15855 	       old->u32_max_value >= cur->u32_max_value &&
15856 	       old->s32_min_value <= cur->s32_min_value &&
15857 	       old->s32_max_value >= cur->s32_max_value;
15858 }
15859 
15860 /* If in the old state two registers had the same id, then they need to have
15861  * the same id in the new state as well.  But that id could be different from
15862  * the old state, so we need to track the mapping from old to new ids.
15863  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15864  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
15865  * regs with a different old id could still have new id 9, we don't care about
15866  * that.
15867  * So we look through our idmap to see if this old id has been seen before.  If
15868  * so, we require the new id to match; otherwise, we add the id pair to the map.
15869  */
15870 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15871 {
15872 	struct bpf_id_pair *map = idmap->map;
15873 	unsigned int i;
15874 
15875 	/* either both IDs should be set or both should be zero */
15876 	if (!!old_id != !!cur_id)
15877 		return false;
15878 
15879 	if (old_id == 0) /* cur_id == 0 as well */
15880 		return true;
15881 
15882 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15883 		if (!map[i].old) {
15884 			/* Reached an empty slot; haven't seen this id before */
15885 			map[i].old = old_id;
15886 			map[i].cur = cur_id;
15887 			return true;
15888 		}
15889 		if (map[i].old == old_id)
15890 			return map[i].cur == cur_id;
15891 		if (map[i].cur == cur_id)
15892 			return false;
15893 	}
15894 	/* We ran out of idmap slots, which should be impossible */
15895 	WARN_ON_ONCE(1);
15896 	return false;
15897 }
15898 
15899 /* Similar to check_ids(), but allocate a unique temporary ID
15900  * for 'old_id' or 'cur_id' of zero.
15901  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15902  */
15903 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15904 {
15905 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15906 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15907 
15908 	return check_ids(old_id, cur_id, idmap);
15909 }
15910 
15911 static void clean_func_state(struct bpf_verifier_env *env,
15912 			     struct bpf_func_state *st)
15913 {
15914 	enum bpf_reg_liveness live;
15915 	int i, j;
15916 
15917 	for (i = 0; i < BPF_REG_FP; i++) {
15918 		live = st->regs[i].live;
15919 		/* liveness must not touch this register anymore */
15920 		st->regs[i].live |= REG_LIVE_DONE;
15921 		if (!(live & REG_LIVE_READ))
15922 			/* since the register is unused, clear its state
15923 			 * to make further comparison simpler
15924 			 */
15925 			__mark_reg_not_init(env, &st->regs[i]);
15926 	}
15927 
15928 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15929 		live = st->stack[i].spilled_ptr.live;
15930 		/* liveness must not touch this stack slot anymore */
15931 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15932 		if (!(live & REG_LIVE_READ)) {
15933 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15934 			for (j = 0; j < BPF_REG_SIZE; j++)
15935 				st->stack[i].slot_type[j] = STACK_INVALID;
15936 		}
15937 	}
15938 }
15939 
15940 static void clean_verifier_state(struct bpf_verifier_env *env,
15941 				 struct bpf_verifier_state *st)
15942 {
15943 	int i;
15944 
15945 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15946 		/* all regs in this state in all frames were already marked */
15947 		return;
15948 
15949 	for (i = 0; i <= st->curframe; i++)
15950 		clean_func_state(env, st->frame[i]);
15951 }
15952 
15953 /* the parentage chains form a tree.
15954  * the verifier states are added to state lists at given insn and
15955  * pushed into state stack for future exploration.
15956  * when the verifier reaches bpf_exit insn some of the verifer states
15957  * stored in the state lists have their final liveness state already,
15958  * but a lot of states will get revised from liveness point of view when
15959  * the verifier explores other branches.
15960  * Example:
15961  * 1: r0 = 1
15962  * 2: if r1 == 100 goto pc+1
15963  * 3: r0 = 2
15964  * 4: exit
15965  * when the verifier reaches exit insn the register r0 in the state list of
15966  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15967  * of insn 2 and goes exploring further. At the insn 4 it will walk the
15968  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15969  *
15970  * Since the verifier pushes the branch states as it sees them while exploring
15971  * the program the condition of walking the branch instruction for the second
15972  * time means that all states below this branch were already explored and
15973  * their final liveness marks are already propagated.
15974  * Hence when the verifier completes the search of state list in is_state_visited()
15975  * we can call this clean_live_states() function to mark all liveness states
15976  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15977  * will not be used.
15978  * This function also clears the registers and stack for states that !READ
15979  * to simplify state merging.
15980  *
15981  * Important note here that walking the same branch instruction in the callee
15982  * doesn't meant that the states are DONE. The verifier has to compare
15983  * the callsites
15984  */
15985 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15986 			      struct bpf_verifier_state *cur)
15987 {
15988 	struct bpf_verifier_state_list *sl;
15989 
15990 	sl = *explored_state(env, insn);
15991 	while (sl) {
15992 		if (sl->state.branches)
15993 			goto next;
15994 		if (sl->state.insn_idx != insn ||
15995 		    !same_callsites(&sl->state, cur))
15996 			goto next;
15997 		clean_verifier_state(env, &sl->state);
15998 next:
15999 		sl = sl->next;
16000 	}
16001 }
16002 
16003 static bool regs_exact(const struct bpf_reg_state *rold,
16004 		       const struct bpf_reg_state *rcur,
16005 		       struct bpf_idmap *idmap)
16006 {
16007 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16008 	       check_ids(rold->id, rcur->id, idmap) &&
16009 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16010 }
16011 
16012 /* Returns true if (rold safe implies rcur safe) */
16013 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
16014 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact)
16015 {
16016 	if (exact)
16017 		return regs_exact(rold, rcur, idmap);
16018 
16019 	if (!(rold->live & REG_LIVE_READ))
16020 		/* explored state didn't use this */
16021 		return true;
16022 	if (rold->type == NOT_INIT)
16023 		/* explored state can't have used this */
16024 		return true;
16025 	if (rcur->type == NOT_INIT)
16026 		return false;
16027 
16028 	/* Enforce that register types have to match exactly, including their
16029 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
16030 	 * rule.
16031 	 *
16032 	 * One can make a point that using a pointer register as unbounded
16033 	 * SCALAR would be technically acceptable, but this could lead to
16034 	 * pointer leaks because scalars are allowed to leak while pointers
16035 	 * are not. We could make this safe in special cases if root is
16036 	 * calling us, but it's probably not worth the hassle.
16037 	 *
16038 	 * Also, register types that are *not* MAYBE_NULL could technically be
16039 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
16040 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
16041 	 * to the same map).
16042 	 * However, if the old MAYBE_NULL register then got NULL checked,
16043 	 * doing so could have affected others with the same id, and we can't
16044 	 * check for that because we lost the id when we converted to
16045 	 * a non-MAYBE_NULL variant.
16046 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
16047 	 * non-MAYBE_NULL registers as well.
16048 	 */
16049 	if (rold->type != rcur->type)
16050 		return false;
16051 
16052 	switch (base_type(rold->type)) {
16053 	case SCALAR_VALUE:
16054 		if (env->explore_alu_limits) {
16055 			/* explore_alu_limits disables tnum_in() and range_within()
16056 			 * logic and requires everything to be strict
16057 			 */
16058 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
16059 			       check_scalar_ids(rold->id, rcur->id, idmap);
16060 		}
16061 		if (!rold->precise)
16062 			return true;
16063 		/* Why check_ids() for scalar registers?
16064 		 *
16065 		 * Consider the following BPF code:
16066 		 *   1: r6 = ... unbound scalar, ID=a ...
16067 		 *   2: r7 = ... unbound scalar, ID=b ...
16068 		 *   3: if (r6 > r7) goto +1
16069 		 *   4: r6 = r7
16070 		 *   5: if (r6 > X) goto ...
16071 		 *   6: ... memory operation using r7 ...
16072 		 *
16073 		 * First verification path is [1-6]:
16074 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
16075 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
16076 		 *   r7 <= X, because r6 and r7 share same id.
16077 		 * Next verification path is [1-4, 6].
16078 		 *
16079 		 * Instruction (6) would be reached in two states:
16080 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
16081 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
16082 		 *
16083 		 * Use check_ids() to distinguish these states.
16084 		 * ---
16085 		 * Also verify that new value satisfies old value range knowledge.
16086 		 */
16087 		return range_within(rold, rcur) &&
16088 		       tnum_in(rold->var_off, rcur->var_off) &&
16089 		       check_scalar_ids(rold->id, rcur->id, idmap);
16090 	case PTR_TO_MAP_KEY:
16091 	case PTR_TO_MAP_VALUE:
16092 	case PTR_TO_MEM:
16093 	case PTR_TO_BUF:
16094 	case PTR_TO_TP_BUFFER:
16095 		/* If the new min/max/var_off satisfy the old ones and
16096 		 * everything else matches, we are OK.
16097 		 */
16098 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
16099 		       range_within(rold, rcur) &&
16100 		       tnum_in(rold->var_off, rcur->var_off) &&
16101 		       check_ids(rold->id, rcur->id, idmap) &&
16102 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
16103 	case PTR_TO_PACKET_META:
16104 	case PTR_TO_PACKET:
16105 		/* We must have at least as much range as the old ptr
16106 		 * did, so that any accesses which were safe before are
16107 		 * still safe.  This is true even if old range < old off,
16108 		 * since someone could have accessed through (ptr - k), or
16109 		 * even done ptr -= k in a register, to get a safe access.
16110 		 */
16111 		if (rold->range > rcur->range)
16112 			return false;
16113 		/* If the offsets don't match, we can't trust our alignment;
16114 		 * nor can we be sure that we won't fall out of range.
16115 		 */
16116 		if (rold->off != rcur->off)
16117 			return false;
16118 		/* id relations must be preserved */
16119 		if (!check_ids(rold->id, rcur->id, idmap))
16120 			return false;
16121 		/* new val must satisfy old val knowledge */
16122 		return range_within(rold, rcur) &&
16123 		       tnum_in(rold->var_off, rcur->var_off);
16124 	case PTR_TO_STACK:
16125 		/* two stack pointers are equal only if they're pointing to
16126 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
16127 		 */
16128 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
16129 	default:
16130 		return regs_exact(rold, rcur, idmap);
16131 	}
16132 }
16133 
16134 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
16135 		      struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact)
16136 {
16137 	int i, spi;
16138 
16139 	/* walk slots of the explored stack and ignore any additional
16140 	 * slots in the current stack, since explored(safe) state
16141 	 * didn't use them
16142 	 */
16143 	for (i = 0; i < old->allocated_stack; i++) {
16144 		struct bpf_reg_state *old_reg, *cur_reg;
16145 
16146 		spi = i / BPF_REG_SIZE;
16147 
16148 		if (exact &&
16149 		    (i >= cur->allocated_stack ||
16150 		     old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16151 		     cur->stack[spi].slot_type[i % BPF_REG_SIZE]))
16152 			return false;
16153 
16154 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) {
16155 			i += BPF_REG_SIZE - 1;
16156 			/* explored state didn't use this */
16157 			continue;
16158 		}
16159 
16160 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
16161 			continue;
16162 
16163 		if (env->allow_uninit_stack &&
16164 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
16165 			continue;
16166 
16167 		/* explored stack has more populated slots than current stack
16168 		 * and these slots were used
16169 		 */
16170 		if (i >= cur->allocated_stack)
16171 			return false;
16172 
16173 		/* if old state was safe with misc data in the stack
16174 		 * it will be safe with zero-initialized stack.
16175 		 * The opposite is not true
16176 		 */
16177 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
16178 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
16179 			continue;
16180 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
16181 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
16182 			/* Ex: old explored (safe) state has STACK_SPILL in
16183 			 * this stack slot, but current has STACK_MISC ->
16184 			 * this verifier states are not equivalent,
16185 			 * return false to continue verification of this path
16186 			 */
16187 			return false;
16188 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
16189 			continue;
16190 		/* Both old and cur are having same slot_type */
16191 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
16192 		case STACK_SPILL:
16193 			/* when explored and current stack slot are both storing
16194 			 * spilled registers, check that stored pointers types
16195 			 * are the same as well.
16196 			 * Ex: explored safe path could have stored
16197 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
16198 			 * but current path has stored:
16199 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
16200 			 * such verifier states are not equivalent.
16201 			 * return false to continue verification of this path
16202 			 */
16203 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
16204 				     &cur->stack[spi].spilled_ptr, idmap, exact))
16205 				return false;
16206 			break;
16207 		case STACK_DYNPTR:
16208 			old_reg = &old->stack[spi].spilled_ptr;
16209 			cur_reg = &cur->stack[spi].spilled_ptr;
16210 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
16211 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
16212 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16213 				return false;
16214 			break;
16215 		case STACK_ITER:
16216 			old_reg = &old->stack[spi].spilled_ptr;
16217 			cur_reg = &cur->stack[spi].spilled_ptr;
16218 			/* iter.depth is not compared between states as it
16219 			 * doesn't matter for correctness and would otherwise
16220 			 * prevent convergence; we maintain it only to prevent
16221 			 * infinite loop check triggering, see
16222 			 * iter_active_depths_differ()
16223 			 */
16224 			if (old_reg->iter.btf != cur_reg->iter.btf ||
16225 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
16226 			    old_reg->iter.state != cur_reg->iter.state ||
16227 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
16228 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
16229 				return false;
16230 			break;
16231 		case STACK_MISC:
16232 		case STACK_ZERO:
16233 		case STACK_INVALID:
16234 			continue;
16235 		/* Ensure that new unhandled slot types return false by default */
16236 		default:
16237 			return false;
16238 		}
16239 	}
16240 	return true;
16241 }
16242 
16243 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
16244 		    struct bpf_idmap *idmap)
16245 {
16246 	int i;
16247 
16248 	if (old->acquired_refs != cur->acquired_refs)
16249 		return false;
16250 
16251 	for (i = 0; i < old->acquired_refs; i++) {
16252 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
16253 			return false;
16254 	}
16255 
16256 	return true;
16257 }
16258 
16259 /* compare two verifier states
16260  *
16261  * all states stored in state_list are known to be valid, since
16262  * verifier reached 'bpf_exit' instruction through them
16263  *
16264  * this function is called when verifier exploring different branches of
16265  * execution popped from the state stack. If it sees an old state that has
16266  * more strict register state and more strict stack state then this execution
16267  * branch doesn't need to be explored further, since verifier already
16268  * concluded that more strict state leads to valid finish.
16269  *
16270  * Therefore two states are equivalent if register state is more conservative
16271  * and explored stack state is more conservative than the current one.
16272  * Example:
16273  *       explored                   current
16274  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
16275  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
16276  *
16277  * In other words if current stack state (one being explored) has more
16278  * valid slots than old one that already passed validation, it means
16279  * the verifier can stop exploring and conclude that current state is valid too
16280  *
16281  * Similarly with registers. If explored state has register type as invalid
16282  * whereas register type in current state is meaningful, it means that
16283  * the current state will reach 'bpf_exit' instruction safely
16284  */
16285 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
16286 			      struct bpf_func_state *cur, bool exact)
16287 {
16288 	int i;
16289 
16290 	if (old->callback_depth > cur->callback_depth)
16291 		return false;
16292 
16293 	for (i = 0; i < MAX_BPF_REG; i++)
16294 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
16295 			     &env->idmap_scratch, exact))
16296 			return false;
16297 
16298 	if (!stacksafe(env, old, cur, &env->idmap_scratch, exact))
16299 		return false;
16300 
16301 	if (!refsafe(old, cur, &env->idmap_scratch))
16302 		return false;
16303 
16304 	return true;
16305 }
16306 
16307 static void reset_idmap_scratch(struct bpf_verifier_env *env)
16308 {
16309 	env->idmap_scratch.tmp_id_gen = env->id_gen;
16310 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
16311 }
16312 
16313 static bool states_equal(struct bpf_verifier_env *env,
16314 			 struct bpf_verifier_state *old,
16315 			 struct bpf_verifier_state *cur,
16316 			 bool exact)
16317 {
16318 	int i;
16319 
16320 	if (old->curframe != cur->curframe)
16321 		return false;
16322 
16323 	reset_idmap_scratch(env);
16324 
16325 	/* Verification state from speculative execution simulation
16326 	 * must never prune a non-speculative execution one.
16327 	 */
16328 	if (old->speculative && !cur->speculative)
16329 		return false;
16330 
16331 	if (old->active_lock.ptr != cur->active_lock.ptr)
16332 		return false;
16333 
16334 	/* Old and cur active_lock's have to be either both present
16335 	 * or both absent.
16336 	 */
16337 	if (!!old->active_lock.id != !!cur->active_lock.id)
16338 		return false;
16339 
16340 	if (old->active_lock.id &&
16341 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
16342 		return false;
16343 
16344 	if (old->active_rcu_lock != cur->active_rcu_lock)
16345 		return false;
16346 
16347 	/* for states to be equal callsites have to be the same
16348 	 * and all frame states need to be equivalent
16349 	 */
16350 	for (i = 0; i <= old->curframe; i++) {
16351 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
16352 			return false;
16353 		if (!func_states_equal(env, old->frame[i], cur->frame[i], exact))
16354 			return false;
16355 	}
16356 	return true;
16357 }
16358 
16359 /* Return 0 if no propagation happened. Return negative error code if error
16360  * happened. Otherwise, return the propagated bit.
16361  */
16362 static int propagate_liveness_reg(struct bpf_verifier_env *env,
16363 				  struct bpf_reg_state *reg,
16364 				  struct bpf_reg_state *parent_reg)
16365 {
16366 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
16367 	u8 flag = reg->live & REG_LIVE_READ;
16368 	int err;
16369 
16370 	/* When comes here, read flags of PARENT_REG or REG could be any of
16371 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
16372 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
16373 	 */
16374 	if (parent_flag == REG_LIVE_READ64 ||
16375 	    /* Or if there is no read flag from REG. */
16376 	    !flag ||
16377 	    /* Or if the read flag from REG is the same as PARENT_REG. */
16378 	    parent_flag == flag)
16379 		return 0;
16380 
16381 	err = mark_reg_read(env, reg, parent_reg, flag);
16382 	if (err)
16383 		return err;
16384 
16385 	return flag;
16386 }
16387 
16388 /* A write screens off any subsequent reads; but write marks come from the
16389  * straight-line code between a state and its parent.  When we arrive at an
16390  * equivalent state (jump target or such) we didn't arrive by the straight-line
16391  * code, so read marks in the state must propagate to the parent regardless
16392  * of the state's write marks. That's what 'parent == state->parent' comparison
16393  * in mark_reg_read() is for.
16394  */
16395 static int propagate_liveness(struct bpf_verifier_env *env,
16396 			      const struct bpf_verifier_state *vstate,
16397 			      struct bpf_verifier_state *vparent)
16398 {
16399 	struct bpf_reg_state *state_reg, *parent_reg;
16400 	struct bpf_func_state *state, *parent;
16401 	int i, frame, err = 0;
16402 
16403 	if (vparent->curframe != vstate->curframe) {
16404 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
16405 		     vparent->curframe, vstate->curframe);
16406 		return -EFAULT;
16407 	}
16408 	/* Propagate read liveness of registers... */
16409 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
16410 	for (frame = 0; frame <= vstate->curframe; frame++) {
16411 		parent = vparent->frame[frame];
16412 		state = vstate->frame[frame];
16413 		parent_reg = parent->regs;
16414 		state_reg = state->regs;
16415 		/* We don't need to worry about FP liveness, it's read-only */
16416 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
16417 			err = propagate_liveness_reg(env, &state_reg[i],
16418 						     &parent_reg[i]);
16419 			if (err < 0)
16420 				return err;
16421 			if (err == REG_LIVE_READ64)
16422 				mark_insn_zext(env, &parent_reg[i]);
16423 		}
16424 
16425 		/* Propagate stack slots. */
16426 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
16427 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
16428 			parent_reg = &parent->stack[i].spilled_ptr;
16429 			state_reg = &state->stack[i].spilled_ptr;
16430 			err = propagate_liveness_reg(env, state_reg,
16431 						     parent_reg);
16432 			if (err < 0)
16433 				return err;
16434 		}
16435 	}
16436 	return 0;
16437 }
16438 
16439 /* find precise scalars in the previous equivalent state and
16440  * propagate them into the current state
16441  */
16442 static int propagate_precision(struct bpf_verifier_env *env,
16443 			       const struct bpf_verifier_state *old)
16444 {
16445 	struct bpf_reg_state *state_reg;
16446 	struct bpf_func_state *state;
16447 	int i, err = 0, fr;
16448 	bool first;
16449 
16450 	for (fr = old->curframe; fr >= 0; fr--) {
16451 		state = old->frame[fr];
16452 		state_reg = state->regs;
16453 		first = true;
16454 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
16455 			if (state_reg->type != SCALAR_VALUE ||
16456 			    !state_reg->precise ||
16457 			    !(state_reg->live & REG_LIVE_READ))
16458 				continue;
16459 			if (env->log.level & BPF_LOG_LEVEL2) {
16460 				if (first)
16461 					verbose(env, "frame %d: propagating r%d", fr, i);
16462 				else
16463 					verbose(env, ",r%d", i);
16464 			}
16465 			bt_set_frame_reg(&env->bt, fr, i);
16466 			first = false;
16467 		}
16468 
16469 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16470 			if (!is_spilled_reg(&state->stack[i]))
16471 				continue;
16472 			state_reg = &state->stack[i].spilled_ptr;
16473 			if (state_reg->type != SCALAR_VALUE ||
16474 			    !state_reg->precise ||
16475 			    !(state_reg->live & REG_LIVE_READ))
16476 				continue;
16477 			if (env->log.level & BPF_LOG_LEVEL2) {
16478 				if (first)
16479 					verbose(env, "frame %d: propagating fp%d",
16480 						fr, (-i - 1) * BPF_REG_SIZE);
16481 				else
16482 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16483 			}
16484 			bt_set_frame_slot(&env->bt, fr, i);
16485 			first = false;
16486 		}
16487 		if (!first)
16488 			verbose(env, "\n");
16489 	}
16490 
16491 	err = mark_chain_precision_batch(env);
16492 	if (err < 0)
16493 		return err;
16494 
16495 	return 0;
16496 }
16497 
16498 static bool states_maybe_looping(struct bpf_verifier_state *old,
16499 				 struct bpf_verifier_state *cur)
16500 {
16501 	struct bpf_func_state *fold, *fcur;
16502 	int i, fr = cur->curframe;
16503 
16504 	if (old->curframe != fr)
16505 		return false;
16506 
16507 	fold = old->frame[fr];
16508 	fcur = cur->frame[fr];
16509 	for (i = 0; i < MAX_BPF_REG; i++)
16510 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16511 			   offsetof(struct bpf_reg_state, parent)))
16512 			return false;
16513 	return true;
16514 }
16515 
16516 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16517 {
16518 	return env->insn_aux_data[insn_idx].is_iter_next;
16519 }
16520 
16521 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16522  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16523  * states to match, which otherwise would look like an infinite loop. So while
16524  * iter_next() calls are taken care of, we still need to be careful and
16525  * prevent erroneous and too eager declaration of "ininite loop", when
16526  * iterators are involved.
16527  *
16528  * Here's a situation in pseudo-BPF assembly form:
16529  *
16530  *   0: again:                          ; set up iter_next() call args
16531  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16532  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16533  *   3:   if r0 == 0 goto done
16534  *   4:   ... something useful here ...
16535  *   5:   goto again                    ; another iteration
16536  *   6: done:
16537  *   7:   r1 = &it
16538  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16539  *   9:   exit
16540  *
16541  * This is a typical loop. Let's assume that we have a prune point at 1:,
16542  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16543  * again`, assuming other heuristics don't get in a way).
16544  *
16545  * When we first time come to 1:, let's say we have some state X. We proceed
16546  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16547  * Now we come back to validate that forked ACTIVE state. We proceed through
16548  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16549  * are converging. But the problem is that we don't know that yet, as this
16550  * convergence has to happen at iter_next() call site only. So if nothing is
16551  * done, at 1: verifier will use bounded loop logic and declare infinite
16552  * looping (and would be *technically* correct, if not for iterator's
16553  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16554  * don't want that. So what we do in process_iter_next_call() when we go on
16555  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16556  * a different iteration. So when we suspect an infinite loop, we additionally
16557  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16558  * pretend we are not looping and wait for next iter_next() call.
16559  *
16560  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16561  * loop, because that would actually mean infinite loop, as DRAINED state is
16562  * "sticky", and so we'll keep returning into the same instruction with the
16563  * same state (at least in one of possible code paths).
16564  *
16565  * This approach allows to keep infinite loop heuristic even in the face of
16566  * active iterator. E.g., C snippet below is and will be detected as
16567  * inifintely looping:
16568  *
16569  *   struct bpf_iter_num it;
16570  *   int *p, x;
16571  *
16572  *   bpf_iter_num_new(&it, 0, 10);
16573  *   while ((p = bpf_iter_num_next(&t))) {
16574  *       x = p;
16575  *       while (x--) {} // <<-- infinite loop here
16576  *   }
16577  *
16578  */
16579 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16580 {
16581 	struct bpf_reg_state *slot, *cur_slot;
16582 	struct bpf_func_state *state;
16583 	int i, fr;
16584 
16585 	for (fr = old->curframe; fr >= 0; fr--) {
16586 		state = old->frame[fr];
16587 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16588 			if (state->stack[i].slot_type[0] != STACK_ITER)
16589 				continue;
16590 
16591 			slot = &state->stack[i].spilled_ptr;
16592 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16593 				continue;
16594 
16595 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16596 			if (cur_slot->iter.depth != slot->iter.depth)
16597 				return true;
16598 		}
16599 	}
16600 	return false;
16601 }
16602 
16603 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16604 {
16605 	struct bpf_verifier_state_list *new_sl;
16606 	struct bpf_verifier_state_list *sl, **pprev;
16607 	struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
16608 	int i, j, n, err, states_cnt = 0;
16609 	bool force_new_state, add_new_state, force_exact;
16610 
16611 	force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
16612 			  /* Avoid accumulating infinitely long jmp history */
16613 			  cur->jmp_history_cnt > 40;
16614 
16615 	/* bpf progs typically have pruning point every 4 instructions
16616 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16617 	 * Do not add new state for future pruning if the verifier hasn't seen
16618 	 * at least 2 jumps and at least 8 instructions.
16619 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16620 	 * In tests that amounts to up to 50% reduction into total verifier
16621 	 * memory consumption and 20% verifier time speedup.
16622 	 */
16623 	add_new_state = force_new_state;
16624 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16625 	    env->insn_processed - env->prev_insn_processed >= 8)
16626 		add_new_state = true;
16627 
16628 	pprev = explored_state(env, insn_idx);
16629 	sl = *pprev;
16630 
16631 	clean_live_states(env, insn_idx, cur);
16632 
16633 	while (sl) {
16634 		states_cnt++;
16635 		if (sl->state.insn_idx != insn_idx)
16636 			goto next;
16637 
16638 		if (sl->state.branches) {
16639 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16640 
16641 			if (frame->in_async_callback_fn &&
16642 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16643 				/* Different async_entry_cnt means that the verifier is
16644 				 * processing another entry into async callback.
16645 				 * Seeing the same state is not an indication of infinite
16646 				 * loop or infinite recursion.
16647 				 * But finding the same state doesn't mean that it's safe
16648 				 * to stop processing the current state. The previous state
16649 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16650 				 * Checking in_async_callback_fn alone is not enough either.
16651 				 * Since the verifier still needs to catch infinite loops
16652 				 * inside async callbacks.
16653 				 */
16654 				goto skip_inf_loop_check;
16655 			}
16656 			/* BPF open-coded iterators loop detection is special.
16657 			 * states_maybe_looping() logic is too simplistic in detecting
16658 			 * states that *might* be equivalent, because it doesn't know
16659 			 * about ID remapping, so don't even perform it.
16660 			 * See process_iter_next_call() and iter_active_depths_differ()
16661 			 * for overview of the logic. When current and one of parent
16662 			 * states are detected as equivalent, it's a good thing: we prove
16663 			 * convergence and can stop simulating further iterations.
16664 			 * It's safe to assume that iterator loop will finish, taking into
16665 			 * account iter_next() contract of eventually returning
16666 			 * sticky NULL result.
16667 			 *
16668 			 * Note, that states have to be compared exactly in this case because
16669 			 * read and precision marks might not be finalized inside the loop.
16670 			 * E.g. as in the program below:
16671 			 *
16672 			 *     1. r7 = -16
16673 			 *     2. r6 = bpf_get_prandom_u32()
16674 			 *     3. while (bpf_iter_num_next(&fp[-8])) {
16675 			 *     4.   if (r6 != 42) {
16676 			 *     5.     r7 = -32
16677 			 *     6.     r6 = bpf_get_prandom_u32()
16678 			 *     7.     continue
16679 			 *     8.   }
16680 			 *     9.   r0 = r10
16681 			 *    10.   r0 += r7
16682 			 *    11.   r8 = *(u64 *)(r0 + 0)
16683 			 *    12.   r6 = bpf_get_prandom_u32()
16684 			 *    13. }
16685 			 *
16686 			 * Here verifier would first visit path 1-3, create a checkpoint at 3
16687 			 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does
16688 			 * not have read or precision mark for r7 yet, thus inexact states
16689 			 * comparison would discard current state with r7=-32
16690 			 * => unsafe memory access at 11 would not be caught.
16691 			 */
16692 			if (is_iter_next_insn(env, insn_idx)) {
16693 				if (states_equal(env, &sl->state, cur, true)) {
16694 					struct bpf_func_state *cur_frame;
16695 					struct bpf_reg_state *iter_state, *iter_reg;
16696 					int spi;
16697 
16698 					cur_frame = cur->frame[cur->curframe];
16699 					/* btf_check_iter_kfuncs() enforces that
16700 					 * iter state pointer is always the first arg
16701 					 */
16702 					iter_reg = &cur_frame->regs[BPF_REG_1];
16703 					/* current state is valid due to states_equal(),
16704 					 * so we can assume valid iter and reg state,
16705 					 * no need for extra (re-)validations
16706 					 */
16707 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16708 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16709 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) {
16710 						update_loop_entry(cur, &sl->state);
16711 						goto hit;
16712 					}
16713 				}
16714 				goto skip_inf_loop_check;
16715 			}
16716 			if (calls_callback(env, insn_idx)) {
16717 				if (states_equal(env, &sl->state, cur, true))
16718 					goto hit;
16719 				goto skip_inf_loop_check;
16720 			}
16721 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16722 			if (states_maybe_looping(&sl->state, cur) &&
16723 			    states_equal(env, &sl->state, cur, false) &&
16724 			    !iter_active_depths_differ(&sl->state, cur) &&
16725 			    sl->state.callback_unroll_depth == cur->callback_unroll_depth) {
16726 				verbose_linfo(env, insn_idx, "; ");
16727 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16728 				verbose(env, "cur state:");
16729 				print_verifier_state(env, cur->frame[cur->curframe], true);
16730 				verbose(env, "old state:");
16731 				print_verifier_state(env, sl->state.frame[cur->curframe], true);
16732 				return -EINVAL;
16733 			}
16734 			/* if the verifier is processing a loop, avoid adding new state
16735 			 * too often, since different loop iterations have distinct
16736 			 * states and may not help future pruning.
16737 			 * This threshold shouldn't be too low to make sure that
16738 			 * a loop with large bound will be rejected quickly.
16739 			 * The most abusive loop will be:
16740 			 * r1 += 1
16741 			 * if r1 < 1000000 goto pc-2
16742 			 * 1M insn_procssed limit / 100 == 10k peak states.
16743 			 * This threshold shouldn't be too high either, since states
16744 			 * at the end of the loop are likely to be useful in pruning.
16745 			 */
16746 skip_inf_loop_check:
16747 			if (!force_new_state &&
16748 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16749 			    env->insn_processed - env->prev_insn_processed < 100)
16750 				add_new_state = false;
16751 			goto miss;
16752 		}
16753 		/* If sl->state is a part of a loop and this loop's entry is a part of
16754 		 * current verification path then states have to be compared exactly.
16755 		 * 'force_exact' is needed to catch the following case:
16756 		 *
16757 		 *                initial     Here state 'succ' was processed first,
16758 		 *                  |         it was eventually tracked to produce a
16759 		 *                  V         state identical to 'hdr'.
16760 		 *     .---------> hdr        All branches from 'succ' had been explored
16761 		 *     |            |         and thus 'succ' has its .branches == 0.
16762 		 *     |            V
16763 		 *     |    .------...        Suppose states 'cur' and 'succ' correspond
16764 		 *     |    |       |         to the same instruction + callsites.
16765 		 *     |    V       V         In such case it is necessary to check
16766 		 *     |   ...     ...        if 'succ' and 'cur' are states_equal().
16767 		 *     |    |       |         If 'succ' and 'cur' are a part of the
16768 		 *     |    V       V         same loop exact flag has to be set.
16769 		 *     |   succ <- cur        To check if that is the case, verify
16770 		 *     |    |                 if loop entry of 'succ' is in current
16771 		 *     |    V                 DFS path.
16772 		 *     |   ...
16773 		 *     |    |
16774 		 *     '----'
16775 		 *
16776 		 * Additional details are in the comment before get_loop_entry().
16777 		 */
16778 		loop_entry = get_loop_entry(&sl->state);
16779 		force_exact = loop_entry && loop_entry->branches > 0;
16780 		if (states_equal(env, &sl->state, cur, force_exact)) {
16781 			if (force_exact)
16782 				update_loop_entry(cur, loop_entry);
16783 hit:
16784 			sl->hit_cnt++;
16785 			/* reached equivalent register/stack state,
16786 			 * prune the search.
16787 			 * Registers read by the continuation are read by us.
16788 			 * If we have any write marks in env->cur_state, they
16789 			 * will prevent corresponding reads in the continuation
16790 			 * from reaching our parent (an explored_state).  Our
16791 			 * own state will get the read marks recorded, but
16792 			 * they'll be immediately forgotten as we're pruning
16793 			 * this state and will pop a new one.
16794 			 */
16795 			err = propagate_liveness(env, &sl->state, cur);
16796 
16797 			/* if previous state reached the exit with precision and
16798 			 * current state is equivalent to it (except precsion marks)
16799 			 * the precision needs to be propagated back in
16800 			 * the current state.
16801 			 */
16802 			if (is_jmp_point(env, env->insn_idx))
16803 				err = err ? : push_jmp_history(env, cur, 0);
16804 			err = err ? : propagate_precision(env, &sl->state);
16805 			if (err)
16806 				return err;
16807 			return 1;
16808 		}
16809 miss:
16810 		/* when new state is not going to be added do not increase miss count.
16811 		 * Otherwise several loop iterations will remove the state
16812 		 * recorded earlier. The goal of these heuristics is to have
16813 		 * states from some iterations of the loop (some in the beginning
16814 		 * and some at the end) to help pruning.
16815 		 */
16816 		if (add_new_state)
16817 			sl->miss_cnt++;
16818 		/* heuristic to determine whether this state is beneficial
16819 		 * to keep checking from state equivalence point of view.
16820 		 * Higher numbers increase max_states_per_insn and verification time,
16821 		 * but do not meaningfully decrease insn_processed.
16822 		 * 'n' controls how many times state could miss before eviction.
16823 		 * Use bigger 'n' for checkpoints because evicting checkpoint states
16824 		 * too early would hinder iterator convergence.
16825 		 */
16826 		n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3;
16827 		if (sl->miss_cnt > sl->hit_cnt * n + n) {
16828 			/* the state is unlikely to be useful. Remove it to
16829 			 * speed up verification
16830 			 */
16831 			*pprev = sl->next;
16832 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE &&
16833 			    !sl->state.used_as_loop_entry) {
16834 				u32 br = sl->state.branches;
16835 
16836 				WARN_ONCE(br,
16837 					  "BUG live_done but branches_to_explore %d\n",
16838 					  br);
16839 				free_verifier_state(&sl->state, false);
16840 				kfree(sl);
16841 				env->peak_states--;
16842 			} else {
16843 				/* cannot free this state, since parentage chain may
16844 				 * walk it later. Add it for free_list instead to
16845 				 * be freed at the end of verification
16846 				 */
16847 				sl->next = env->free_list;
16848 				env->free_list = sl;
16849 			}
16850 			sl = *pprev;
16851 			continue;
16852 		}
16853 next:
16854 		pprev = &sl->next;
16855 		sl = *pprev;
16856 	}
16857 
16858 	if (env->max_states_per_insn < states_cnt)
16859 		env->max_states_per_insn = states_cnt;
16860 
16861 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16862 		return 0;
16863 
16864 	if (!add_new_state)
16865 		return 0;
16866 
16867 	/* There were no equivalent states, remember the current one.
16868 	 * Technically the current state is not proven to be safe yet,
16869 	 * but it will either reach outer most bpf_exit (which means it's safe)
16870 	 * or it will be rejected. When there are no loops the verifier won't be
16871 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16872 	 * again on the way to bpf_exit.
16873 	 * When looping the sl->state.branches will be > 0 and this state
16874 	 * will not be considered for equivalence until branches == 0.
16875 	 */
16876 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16877 	if (!new_sl)
16878 		return -ENOMEM;
16879 	env->total_states++;
16880 	env->peak_states++;
16881 	env->prev_jmps_processed = env->jmps_processed;
16882 	env->prev_insn_processed = env->insn_processed;
16883 
16884 	/* forget precise markings we inherited, see __mark_chain_precision */
16885 	if (env->bpf_capable)
16886 		mark_all_scalars_imprecise(env, cur);
16887 
16888 	/* add new state to the head of linked list */
16889 	new = &new_sl->state;
16890 	err = copy_verifier_state(new, cur);
16891 	if (err) {
16892 		free_verifier_state(new, false);
16893 		kfree(new_sl);
16894 		return err;
16895 	}
16896 	new->insn_idx = insn_idx;
16897 	WARN_ONCE(new->branches != 1,
16898 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16899 
16900 	cur->parent = new;
16901 	cur->first_insn_idx = insn_idx;
16902 	cur->dfs_depth = new->dfs_depth + 1;
16903 	clear_jmp_history(cur);
16904 	new_sl->next = *explored_state(env, insn_idx);
16905 	*explored_state(env, insn_idx) = new_sl;
16906 	/* connect new state to parentage chain. Current frame needs all
16907 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
16908 	 * to the stack implicitly by JITs) so in callers' frames connect just
16909 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16910 	 * the state of the call instruction (with WRITTEN set), and r0 comes
16911 	 * from callee with its full parentage chain, anyway.
16912 	 */
16913 	/* clear write marks in current state: the writes we did are not writes
16914 	 * our child did, so they don't screen off its reads from us.
16915 	 * (There are no read marks in current state, because reads always mark
16916 	 * their parent and current state never has children yet.  Only
16917 	 * explored_states can get read marks.)
16918 	 */
16919 	for (j = 0; j <= cur->curframe; j++) {
16920 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16921 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16922 		for (i = 0; i < BPF_REG_FP; i++)
16923 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16924 	}
16925 
16926 	/* all stack frames are accessible from callee, clear them all */
16927 	for (j = 0; j <= cur->curframe; j++) {
16928 		struct bpf_func_state *frame = cur->frame[j];
16929 		struct bpf_func_state *newframe = new->frame[j];
16930 
16931 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16932 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16933 			frame->stack[i].spilled_ptr.parent =
16934 						&newframe->stack[i].spilled_ptr;
16935 		}
16936 	}
16937 	return 0;
16938 }
16939 
16940 /* Return true if it's OK to have the same insn return a different type. */
16941 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16942 {
16943 	switch (base_type(type)) {
16944 	case PTR_TO_CTX:
16945 	case PTR_TO_SOCKET:
16946 	case PTR_TO_SOCK_COMMON:
16947 	case PTR_TO_TCP_SOCK:
16948 	case PTR_TO_XDP_SOCK:
16949 	case PTR_TO_BTF_ID:
16950 		return false;
16951 	default:
16952 		return true;
16953 	}
16954 }
16955 
16956 /* If an instruction was previously used with particular pointer types, then we
16957  * need to be careful to avoid cases such as the below, where it may be ok
16958  * for one branch accessing the pointer, but not ok for the other branch:
16959  *
16960  * R1 = sock_ptr
16961  * goto X;
16962  * ...
16963  * R1 = some_other_valid_ptr;
16964  * goto X;
16965  * ...
16966  * R2 = *(u32 *)(R1 + 0);
16967  */
16968 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16969 {
16970 	return src != prev && (!reg_type_mismatch_ok(src) ||
16971 			       !reg_type_mismatch_ok(prev));
16972 }
16973 
16974 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16975 			     bool allow_trust_missmatch)
16976 {
16977 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16978 
16979 	if (*prev_type == NOT_INIT) {
16980 		/* Saw a valid insn
16981 		 * dst_reg = *(u32 *)(src_reg + off)
16982 		 * save type to validate intersecting paths
16983 		 */
16984 		*prev_type = type;
16985 	} else if (reg_type_mismatch(type, *prev_type)) {
16986 		/* Abuser program is trying to use the same insn
16987 		 * dst_reg = *(u32*) (src_reg + off)
16988 		 * with different pointer types:
16989 		 * src_reg == ctx in one branch and
16990 		 * src_reg == stack|map in some other branch.
16991 		 * Reject it.
16992 		 */
16993 		if (allow_trust_missmatch &&
16994 		    base_type(type) == PTR_TO_BTF_ID &&
16995 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
16996 			/*
16997 			 * Have to support a use case when one path through
16998 			 * the program yields TRUSTED pointer while another
16999 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
17000 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
17001 			 */
17002 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
17003 		} else {
17004 			verbose(env, "same insn cannot be used with different pointers\n");
17005 			return -EINVAL;
17006 		}
17007 	}
17008 
17009 	return 0;
17010 }
17011 
17012 static int do_check(struct bpf_verifier_env *env)
17013 {
17014 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
17015 	struct bpf_verifier_state *state = env->cur_state;
17016 	struct bpf_insn *insns = env->prog->insnsi;
17017 	struct bpf_reg_state *regs;
17018 	int insn_cnt = env->prog->len;
17019 	bool do_print_state = false;
17020 	int prev_insn_idx = -1;
17021 
17022 	for (;;) {
17023 		struct bpf_insn *insn;
17024 		u8 class;
17025 		int err;
17026 
17027 		/* reset current history entry on each new instruction */
17028 		env->cur_hist_ent = NULL;
17029 
17030 		env->prev_insn_idx = prev_insn_idx;
17031 		if (env->insn_idx >= insn_cnt) {
17032 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
17033 				env->insn_idx, insn_cnt);
17034 			return -EFAULT;
17035 		}
17036 
17037 		insn = &insns[env->insn_idx];
17038 		class = BPF_CLASS(insn->code);
17039 
17040 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
17041 			verbose(env,
17042 				"BPF program is too large. Processed %d insn\n",
17043 				env->insn_processed);
17044 			return -E2BIG;
17045 		}
17046 
17047 		state->last_insn_idx = env->prev_insn_idx;
17048 
17049 		if (is_prune_point(env, env->insn_idx)) {
17050 			err = is_state_visited(env, env->insn_idx);
17051 			if (err < 0)
17052 				return err;
17053 			if (err == 1) {
17054 				/* found equivalent state, can prune the search */
17055 				if (env->log.level & BPF_LOG_LEVEL) {
17056 					if (do_print_state)
17057 						verbose(env, "\nfrom %d to %d%s: safe\n",
17058 							env->prev_insn_idx, env->insn_idx,
17059 							env->cur_state->speculative ?
17060 							" (speculative execution)" : "");
17061 					else
17062 						verbose(env, "%d: safe\n", env->insn_idx);
17063 				}
17064 				goto process_bpf_exit;
17065 			}
17066 		}
17067 
17068 		if (is_jmp_point(env, env->insn_idx)) {
17069 			err = push_jmp_history(env, state, 0);
17070 			if (err)
17071 				return err;
17072 		}
17073 
17074 		if (signal_pending(current))
17075 			return -EAGAIN;
17076 
17077 		if (need_resched())
17078 			cond_resched();
17079 
17080 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
17081 			verbose(env, "\nfrom %d to %d%s:",
17082 				env->prev_insn_idx, env->insn_idx,
17083 				env->cur_state->speculative ?
17084 				" (speculative execution)" : "");
17085 			print_verifier_state(env, state->frame[state->curframe], true);
17086 			do_print_state = false;
17087 		}
17088 
17089 		if (env->log.level & BPF_LOG_LEVEL) {
17090 			const struct bpf_insn_cbs cbs = {
17091 				.cb_call	= disasm_kfunc_name,
17092 				.cb_print	= verbose,
17093 				.private_data	= env,
17094 			};
17095 
17096 			if (verifier_state_scratched(env))
17097 				print_insn_state(env, state->frame[state->curframe]);
17098 
17099 			verbose_linfo(env, env->insn_idx, "; ");
17100 			env->prev_log_pos = env->log.end_pos;
17101 			verbose(env, "%d: ", env->insn_idx);
17102 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
17103 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
17104 			env->prev_log_pos = env->log.end_pos;
17105 		}
17106 
17107 		if (bpf_prog_is_offloaded(env->prog->aux)) {
17108 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
17109 							   env->prev_insn_idx);
17110 			if (err)
17111 				return err;
17112 		}
17113 
17114 		regs = cur_regs(env);
17115 		sanitize_mark_insn_seen(env);
17116 		prev_insn_idx = env->insn_idx;
17117 
17118 		if (class == BPF_ALU || class == BPF_ALU64) {
17119 			err = check_alu_op(env, insn);
17120 			if (err)
17121 				return err;
17122 
17123 		} else if (class == BPF_LDX) {
17124 			enum bpf_reg_type src_reg_type;
17125 
17126 			/* check for reserved fields is already done */
17127 
17128 			/* check src operand */
17129 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17130 			if (err)
17131 				return err;
17132 
17133 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17134 			if (err)
17135 				return err;
17136 
17137 			src_reg_type = regs[insn->src_reg].type;
17138 
17139 			/* check that memory (src_reg + off) is readable,
17140 			 * the state of dst_reg will be updated by this func
17141 			 */
17142 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
17143 					       insn->off, BPF_SIZE(insn->code),
17144 					       BPF_READ, insn->dst_reg, false,
17145 					       BPF_MODE(insn->code) == BPF_MEMSX);
17146 			if (err)
17147 				return err;
17148 
17149 			err = save_aux_ptr_type(env, src_reg_type, true);
17150 			if (err)
17151 				return err;
17152 		} else if (class == BPF_STX) {
17153 			enum bpf_reg_type dst_reg_type;
17154 
17155 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
17156 				err = check_atomic(env, env->insn_idx, insn);
17157 				if (err)
17158 					return err;
17159 				env->insn_idx++;
17160 				continue;
17161 			}
17162 
17163 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
17164 				verbose(env, "BPF_STX uses reserved fields\n");
17165 				return -EINVAL;
17166 			}
17167 
17168 			/* check src1 operand */
17169 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
17170 			if (err)
17171 				return err;
17172 			/* check src2 operand */
17173 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17174 			if (err)
17175 				return err;
17176 
17177 			dst_reg_type = regs[insn->dst_reg].type;
17178 
17179 			/* check that memory (dst_reg + off) is writeable */
17180 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17181 					       insn->off, BPF_SIZE(insn->code),
17182 					       BPF_WRITE, insn->src_reg, false, false);
17183 			if (err)
17184 				return err;
17185 
17186 			err = save_aux_ptr_type(env, dst_reg_type, false);
17187 			if (err)
17188 				return err;
17189 		} else if (class == BPF_ST) {
17190 			enum bpf_reg_type dst_reg_type;
17191 
17192 			if (BPF_MODE(insn->code) != BPF_MEM ||
17193 			    insn->src_reg != BPF_REG_0) {
17194 				verbose(env, "BPF_ST uses reserved fields\n");
17195 				return -EINVAL;
17196 			}
17197 			/* check src operand */
17198 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17199 			if (err)
17200 				return err;
17201 
17202 			dst_reg_type = regs[insn->dst_reg].type;
17203 
17204 			/* check that memory (dst_reg + off) is writeable */
17205 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
17206 					       insn->off, BPF_SIZE(insn->code),
17207 					       BPF_WRITE, -1, false, false);
17208 			if (err)
17209 				return err;
17210 
17211 			err = save_aux_ptr_type(env, dst_reg_type, false);
17212 			if (err)
17213 				return err;
17214 		} else if (class == BPF_JMP || class == BPF_JMP32) {
17215 			u8 opcode = BPF_OP(insn->code);
17216 
17217 			env->jmps_processed++;
17218 			if (opcode == BPF_CALL) {
17219 				if (BPF_SRC(insn->code) != BPF_K ||
17220 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
17221 				     && insn->off != 0) ||
17222 				    (insn->src_reg != BPF_REG_0 &&
17223 				     insn->src_reg != BPF_PSEUDO_CALL &&
17224 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
17225 				    insn->dst_reg != BPF_REG_0 ||
17226 				    class == BPF_JMP32) {
17227 					verbose(env, "BPF_CALL uses reserved fields\n");
17228 					return -EINVAL;
17229 				}
17230 
17231 				if (env->cur_state->active_lock.ptr) {
17232 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
17233 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
17234 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
17235 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
17236 						verbose(env, "function calls are not allowed while holding a lock\n");
17237 						return -EINVAL;
17238 					}
17239 				}
17240 				if (insn->src_reg == BPF_PSEUDO_CALL)
17241 					err = check_func_call(env, insn, &env->insn_idx);
17242 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
17243 					err = check_kfunc_call(env, insn, &env->insn_idx);
17244 				else
17245 					err = check_helper_call(env, insn, &env->insn_idx);
17246 				if (err)
17247 					return err;
17248 
17249 				mark_reg_scratched(env, BPF_REG_0);
17250 			} else if (opcode == BPF_JA) {
17251 				if (BPF_SRC(insn->code) != BPF_K ||
17252 				    insn->src_reg != BPF_REG_0 ||
17253 				    insn->dst_reg != BPF_REG_0 ||
17254 				    (class == BPF_JMP && insn->imm != 0) ||
17255 				    (class == BPF_JMP32 && insn->off != 0)) {
17256 					verbose(env, "BPF_JA uses reserved fields\n");
17257 					return -EINVAL;
17258 				}
17259 
17260 				if (class == BPF_JMP)
17261 					env->insn_idx += insn->off + 1;
17262 				else
17263 					env->insn_idx += insn->imm + 1;
17264 				continue;
17265 
17266 			} else if (opcode == BPF_EXIT) {
17267 				if (BPF_SRC(insn->code) != BPF_K ||
17268 				    insn->imm != 0 ||
17269 				    insn->src_reg != BPF_REG_0 ||
17270 				    insn->dst_reg != BPF_REG_0 ||
17271 				    class == BPF_JMP32) {
17272 					verbose(env, "BPF_EXIT uses reserved fields\n");
17273 					return -EINVAL;
17274 				}
17275 
17276 				if (env->cur_state->active_lock.ptr &&
17277 				    !in_rbtree_lock_required_cb(env)) {
17278 					verbose(env, "bpf_spin_unlock is missing\n");
17279 					return -EINVAL;
17280 				}
17281 
17282 				if (env->cur_state->active_rcu_lock &&
17283 				    !in_rbtree_lock_required_cb(env)) {
17284 					verbose(env, "bpf_rcu_read_unlock is missing\n");
17285 					return -EINVAL;
17286 				}
17287 
17288 				/* We must do check_reference_leak here before
17289 				 * prepare_func_exit to handle the case when
17290 				 * state->curframe > 0, it may be a callback
17291 				 * function, for which reference_state must
17292 				 * match caller reference state when it exits.
17293 				 */
17294 				err = check_reference_leak(env);
17295 				if (err)
17296 					return err;
17297 
17298 				if (state->curframe) {
17299 					/* exit from nested function */
17300 					err = prepare_func_exit(env, &env->insn_idx);
17301 					if (err)
17302 						return err;
17303 					do_print_state = true;
17304 					continue;
17305 				}
17306 
17307 				err = check_return_code(env);
17308 				if (err)
17309 					return err;
17310 process_bpf_exit:
17311 				mark_verifier_state_scratched(env);
17312 				update_branch_counts(env, env->cur_state);
17313 				err = pop_stack(env, &prev_insn_idx,
17314 						&env->insn_idx, pop_log);
17315 				if (err < 0) {
17316 					if (err != -ENOENT)
17317 						return err;
17318 					break;
17319 				} else {
17320 					do_print_state = true;
17321 					continue;
17322 				}
17323 			} else {
17324 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
17325 				if (err)
17326 					return err;
17327 			}
17328 		} else if (class == BPF_LD) {
17329 			u8 mode = BPF_MODE(insn->code);
17330 
17331 			if (mode == BPF_ABS || mode == BPF_IND) {
17332 				err = check_ld_abs(env, insn);
17333 				if (err)
17334 					return err;
17335 
17336 			} else if (mode == BPF_IMM) {
17337 				err = check_ld_imm(env, insn);
17338 				if (err)
17339 					return err;
17340 
17341 				env->insn_idx++;
17342 				sanitize_mark_insn_seen(env);
17343 			} else {
17344 				verbose(env, "invalid BPF_LD mode\n");
17345 				return -EINVAL;
17346 			}
17347 		} else {
17348 			verbose(env, "unknown insn class %d\n", class);
17349 			return -EINVAL;
17350 		}
17351 
17352 		env->insn_idx++;
17353 	}
17354 
17355 	return 0;
17356 }
17357 
17358 static int find_btf_percpu_datasec(struct btf *btf)
17359 {
17360 	const struct btf_type *t;
17361 	const char *tname;
17362 	int i, n;
17363 
17364 	/*
17365 	 * Both vmlinux and module each have their own ".data..percpu"
17366 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
17367 	 * types to look at only module's own BTF types.
17368 	 */
17369 	n = btf_nr_types(btf);
17370 	if (btf_is_module(btf))
17371 		i = btf_nr_types(btf_vmlinux);
17372 	else
17373 		i = 1;
17374 
17375 	for(; i < n; i++) {
17376 		t = btf_type_by_id(btf, i);
17377 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
17378 			continue;
17379 
17380 		tname = btf_name_by_offset(btf, t->name_off);
17381 		if (!strcmp(tname, ".data..percpu"))
17382 			return i;
17383 	}
17384 
17385 	return -ENOENT;
17386 }
17387 
17388 /* replace pseudo btf_id with kernel symbol address */
17389 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
17390 			       struct bpf_insn *insn,
17391 			       struct bpf_insn_aux_data *aux)
17392 {
17393 	const struct btf_var_secinfo *vsi;
17394 	const struct btf_type *datasec;
17395 	struct btf_mod_pair *btf_mod;
17396 	const struct btf_type *t;
17397 	const char *sym_name;
17398 	bool percpu = false;
17399 	u32 type, id = insn->imm;
17400 	struct btf *btf;
17401 	s32 datasec_id;
17402 	u64 addr;
17403 	int i, btf_fd, err;
17404 
17405 	btf_fd = insn[1].imm;
17406 	if (btf_fd) {
17407 		btf = btf_get_by_fd(btf_fd);
17408 		if (IS_ERR(btf)) {
17409 			verbose(env, "invalid module BTF object FD specified.\n");
17410 			return -EINVAL;
17411 		}
17412 	} else {
17413 		if (!btf_vmlinux) {
17414 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
17415 			return -EINVAL;
17416 		}
17417 		btf = btf_vmlinux;
17418 		btf_get(btf);
17419 	}
17420 
17421 	t = btf_type_by_id(btf, id);
17422 	if (!t) {
17423 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
17424 		err = -ENOENT;
17425 		goto err_put;
17426 	}
17427 
17428 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
17429 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
17430 		err = -EINVAL;
17431 		goto err_put;
17432 	}
17433 
17434 	sym_name = btf_name_by_offset(btf, t->name_off);
17435 	addr = kallsyms_lookup_name(sym_name);
17436 	if (!addr) {
17437 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
17438 			sym_name);
17439 		err = -ENOENT;
17440 		goto err_put;
17441 	}
17442 	insn[0].imm = (u32)addr;
17443 	insn[1].imm = addr >> 32;
17444 
17445 	if (btf_type_is_func(t)) {
17446 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17447 		aux->btf_var.mem_size = 0;
17448 		goto check_btf;
17449 	}
17450 
17451 	datasec_id = find_btf_percpu_datasec(btf);
17452 	if (datasec_id > 0) {
17453 		datasec = btf_type_by_id(btf, datasec_id);
17454 		for_each_vsi(i, datasec, vsi) {
17455 			if (vsi->type == id) {
17456 				percpu = true;
17457 				break;
17458 			}
17459 		}
17460 	}
17461 
17462 	type = t->type;
17463 	t = btf_type_skip_modifiers(btf, type, NULL);
17464 	if (percpu) {
17465 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
17466 		aux->btf_var.btf = btf;
17467 		aux->btf_var.btf_id = type;
17468 	} else if (!btf_type_is_struct(t)) {
17469 		const struct btf_type *ret;
17470 		const char *tname;
17471 		u32 tsize;
17472 
17473 		/* resolve the type size of ksym. */
17474 		ret = btf_resolve_size(btf, t, &tsize);
17475 		if (IS_ERR(ret)) {
17476 			tname = btf_name_by_offset(btf, t->name_off);
17477 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
17478 				tname, PTR_ERR(ret));
17479 			err = -EINVAL;
17480 			goto err_put;
17481 		}
17482 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
17483 		aux->btf_var.mem_size = tsize;
17484 	} else {
17485 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
17486 		aux->btf_var.btf = btf;
17487 		aux->btf_var.btf_id = type;
17488 	}
17489 check_btf:
17490 	/* check whether we recorded this BTF (and maybe module) already */
17491 	for (i = 0; i < env->used_btf_cnt; i++) {
17492 		if (env->used_btfs[i].btf == btf) {
17493 			btf_put(btf);
17494 			return 0;
17495 		}
17496 	}
17497 
17498 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
17499 		err = -E2BIG;
17500 		goto err_put;
17501 	}
17502 
17503 	btf_mod = &env->used_btfs[env->used_btf_cnt];
17504 	btf_mod->btf = btf;
17505 	btf_mod->module = NULL;
17506 
17507 	/* if we reference variables from kernel module, bump its refcount */
17508 	if (btf_is_module(btf)) {
17509 		btf_mod->module = btf_try_get_module(btf);
17510 		if (!btf_mod->module) {
17511 			err = -ENXIO;
17512 			goto err_put;
17513 		}
17514 	}
17515 
17516 	env->used_btf_cnt++;
17517 
17518 	return 0;
17519 err_put:
17520 	btf_put(btf);
17521 	return err;
17522 }
17523 
17524 static bool is_tracing_prog_type(enum bpf_prog_type type)
17525 {
17526 	switch (type) {
17527 	case BPF_PROG_TYPE_KPROBE:
17528 	case BPF_PROG_TYPE_TRACEPOINT:
17529 	case BPF_PROG_TYPE_PERF_EVENT:
17530 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
17531 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
17532 		return true;
17533 	default:
17534 		return false;
17535 	}
17536 }
17537 
17538 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
17539 					struct bpf_map *map,
17540 					struct bpf_prog *prog)
17541 
17542 {
17543 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
17544 
17545 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
17546 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
17547 		if (is_tracing_prog_type(prog_type)) {
17548 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
17549 			return -EINVAL;
17550 		}
17551 	}
17552 
17553 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
17554 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
17555 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17556 			return -EINVAL;
17557 		}
17558 
17559 		if (is_tracing_prog_type(prog_type)) {
17560 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17561 			return -EINVAL;
17562 		}
17563 	}
17564 
17565 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17566 		if (is_tracing_prog_type(prog_type)) {
17567 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17568 			return -EINVAL;
17569 		}
17570 	}
17571 
17572 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17573 	    !bpf_offload_prog_map_match(prog, map)) {
17574 		verbose(env, "offload device mismatch between prog and map\n");
17575 		return -EINVAL;
17576 	}
17577 
17578 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17579 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17580 		return -EINVAL;
17581 	}
17582 
17583 	if (prog->aux->sleepable)
17584 		switch (map->map_type) {
17585 		case BPF_MAP_TYPE_HASH:
17586 		case BPF_MAP_TYPE_LRU_HASH:
17587 		case BPF_MAP_TYPE_ARRAY:
17588 		case BPF_MAP_TYPE_PERCPU_HASH:
17589 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17590 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17591 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17592 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17593 		case BPF_MAP_TYPE_RINGBUF:
17594 		case BPF_MAP_TYPE_USER_RINGBUF:
17595 		case BPF_MAP_TYPE_INODE_STORAGE:
17596 		case BPF_MAP_TYPE_SK_STORAGE:
17597 		case BPF_MAP_TYPE_TASK_STORAGE:
17598 		case BPF_MAP_TYPE_CGRP_STORAGE:
17599 			break;
17600 		default:
17601 			verbose(env,
17602 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17603 			return -EINVAL;
17604 		}
17605 
17606 	return 0;
17607 }
17608 
17609 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17610 {
17611 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17612 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17613 }
17614 
17615 /* find and rewrite pseudo imm in ld_imm64 instructions:
17616  *
17617  * 1. if it accesses map FD, replace it with actual map pointer.
17618  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17619  *
17620  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17621  */
17622 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17623 {
17624 	struct bpf_insn *insn = env->prog->insnsi;
17625 	int insn_cnt = env->prog->len;
17626 	int i, j, err;
17627 
17628 	err = bpf_prog_calc_tag(env->prog);
17629 	if (err)
17630 		return err;
17631 
17632 	for (i = 0; i < insn_cnt; i++, insn++) {
17633 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17634 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17635 		    insn->imm != 0)) {
17636 			verbose(env, "BPF_LDX uses reserved fields\n");
17637 			return -EINVAL;
17638 		}
17639 
17640 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17641 			struct bpf_insn_aux_data *aux;
17642 			struct bpf_map *map;
17643 			struct fd f;
17644 			u64 addr;
17645 			u32 fd;
17646 
17647 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17648 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17649 			    insn[1].off != 0) {
17650 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17651 				return -EINVAL;
17652 			}
17653 
17654 			if (insn[0].src_reg == 0)
17655 				/* valid generic load 64-bit imm */
17656 				goto next_insn;
17657 
17658 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17659 				aux = &env->insn_aux_data[i];
17660 				err = check_pseudo_btf_id(env, insn, aux);
17661 				if (err)
17662 					return err;
17663 				goto next_insn;
17664 			}
17665 
17666 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17667 				aux = &env->insn_aux_data[i];
17668 				aux->ptr_type = PTR_TO_FUNC;
17669 				goto next_insn;
17670 			}
17671 
17672 			/* In final convert_pseudo_ld_imm64() step, this is
17673 			 * converted into regular 64-bit imm load insn.
17674 			 */
17675 			switch (insn[0].src_reg) {
17676 			case BPF_PSEUDO_MAP_VALUE:
17677 			case BPF_PSEUDO_MAP_IDX_VALUE:
17678 				break;
17679 			case BPF_PSEUDO_MAP_FD:
17680 			case BPF_PSEUDO_MAP_IDX:
17681 				if (insn[1].imm == 0)
17682 					break;
17683 				fallthrough;
17684 			default:
17685 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17686 				return -EINVAL;
17687 			}
17688 
17689 			switch (insn[0].src_reg) {
17690 			case BPF_PSEUDO_MAP_IDX_VALUE:
17691 			case BPF_PSEUDO_MAP_IDX:
17692 				if (bpfptr_is_null(env->fd_array)) {
17693 					verbose(env, "fd_idx without fd_array is invalid\n");
17694 					return -EPROTO;
17695 				}
17696 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17697 							    insn[0].imm * sizeof(fd),
17698 							    sizeof(fd)))
17699 					return -EFAULT;
17700 				break;
17701 			default:
17702 				fd = insn[0].imm;
17703 				break;
17704 			}
17705 
17706 			f = fdget(fd);
17707 			map = __bpf_map_get(f);
17708 			if (IS_ERR(map)) {
17709 				verbose(env, "fd %d is not pointing to valid bpf_map\n", fd);
17710 				return PTR_ERR(map);
17711 			}
17712 
17713 			err = check_map_prog_compatibility(env, map, env->prog);
17714 			if (err) {
17715 				fdput(f);
17716 				return err;
17717 			}
17718 
17719 			aux = &env->insn_aux_data[i];
17720 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17721 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17722 				addr = (unsigned long)map;
17723 			} else {
17724 				u32 off = insn[1].imm;
17725 
17726 				if (off >= BPF_MAX_VAR_OFF) {
17727 					verbose(env, "direct value offset of %u is not allowed\n", off);
17728 					fdput(f);
17729 					return -EINVAL;
17730 				}
17731 
17732 				if (!map->ops->map_direct_value_addr) {
17733 					verbose(env, "no direct value access support for this map type\n");
17734 					fdput(f);
17735 					return -EINVAL;
17736 				}
17737 
17738 				err = map->ops->map_direct_value_addr(map, &addr, off);
17739 				if (err) {
17740 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17741 						map->value_size, off);
17742 					fdput(f);
17743 					return err;
17744 				}
17745 
17746 				aux->map_off = off;
17747 				addr += off;
17748 			}
17749 
17750 			insn[0].imm = (u32)addr;
17751 			insn[1].imm = addr >> 32;
17752 
17753 			/* check whether we recorded this map already */
17754 			for (j = 0; j < env->used_map_cnt; j++) {
17755 				if (env->used_maps[j] == map) {
17756 					aux->map_index = j;
17757 					fdput(f);
17758 					goto next_insn;
17759 				}
17760 			}
17761 
17762 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17763 				fdput(f);
17764 				return -E2BIG;
17765 			}
17766 
17767 			if (env->prog->aux->sleepable)
17768 				atomic64_inc(&map->sleepable_refcnt);
17769 			/* hold the map. If the program is rejected by verifier,
17770 			 * the map will be released by release_maps() or it
17771 			 * will be used by the valid program until it's unloaded
17772 			 * and all maps are released in bpf_free_used_maps()
17773 			 */
17774 			bpf_map_inc(map);
17775 
17776 			aux->map_index = env->used_map_cnt;
17777 			env->used_maps[env->used_map_cnt++] = map;
17778 
17779 			if (bpf_map_is_cgroup_storage(map) &&
17780 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
17781 				verbose(env, "only one cgroup storage of each type is allowed\n");
17782 				fdput(f);
17783 				return -EBUSY;
17784 			}
17785 
17786 			fdput(f);
17787 next_insn:
17788 			insn++;
17789 			i++;
17790 			continue;
17791 		}
17792 
17793 		/* Basic sanity check before we invest more work here. */
17794 		if (!bpf_opcode_in_insntable(insn->code)) {
17795 			verbose(env, "unknown opcode %02x\n", insn->code);
17796 			return -EINVAL;
17797 		}
17798 	}
17799 
17800 	/* now all pseudo BPF_LD_IMM64 instructions load valid
17801 	 * 'struct bpf_map *' into a register instead of user map_fd.
17802 	 * These pointers will be used later by verifier to validate map access.
17803 	 */
17804 	return 0;
17805 }
17806 
17807 /* drop refcnt of maps used by the rejected program */
17808 static void release_maps(struct bpf_verifier_env *env)
17809 {
17810 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
17811 			     env->used_map_cnt);
17812 }
17813 
17814 /* drop refcnt of maps used by the rejected program */
17815 static void release_btfs(struct bpf_verifier_env *env)
17816 {
17817 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17818 			     env->used_btf_cnt);
17819 }
17820 
17821 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
17822 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17823 {
17824 	struct bpf_insn *insn = env->prog->insnsi;
17825 	int insn_cnt = env->prog->len;
17826 	int i;
17827 
17828 	for (i = 0; i < insn_cnt; i++, insn++) {
17829 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17830 			continue;
17831 		if (insn->src_reg == BPF_PSEUDO_FUNC)
17832 			continue;
17833 		insn->src_reg = 0;
17834 	}
17835 }
17836 
17837 /* single env->prog->insni[off] instruction was replaced with the range
17838  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
17839  * [0, off) and [off, end) to new locations, so the patched range stays zero
17840  */
17841 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17842 				 struct bpf_insn_aux_data *new_data,
17843 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
17844 {
17845 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17846 	struct bpf_insn *insn = new_prog->insnsi;
17847 	u32 old_seen = old_data[off].seen;
17848 	u32 prog_len;
17849 	int i;
17850 
17851 	/* aux info at OFF always needs adjustment, no matter fast path
17852 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17853 	 * original insn at old prog.
17854 	 */
17855 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17856 
17857 	if (cnt == 1)
17858 		return;
17859 	prog_len = new_prog->len;
17860 
17861 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17862 	memcpy(new_data + off + cnt - 1, old_data + off,
17863 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17864 	for (i = off; i < off + cnt - 1; i++) {
17865 		/* Expand insni[off]'s seen count to the patched range. */
17866 		new_data[i].seen = old_seen;
17867 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
17868 	}
17869 	env->insn_aux_data = new_data;
17870 	vfree(old_data);
17871 }
17872 
17873 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17874 {
17875 	int i;
17876 
17877 	if (len == 1)
17878 		return;
17879 	/* NOTE: fake 'exit' subprog should be updated as well. */
17880 	for (i = 0; i <= env->subprog_cnt; i++) {
17881 		if (env->subprog_info[i].start <= off)
17882 			continue;
17883 		env->subprog_info[i].start += len - 1;
17884 	}
17885 }
17886 
17887 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17888 {
17889 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17890 	int i, sz = prog->aux->size_poke_tab;
17891 	struct bpf_jit_poke_descriptor *desc;
17892 
17893 	for (i = 0; i < sz; i++) {
17894 		desc = &tab[i];
17895 		if (desc->insn_idx <= off)
17896 			continue;
17897 		desc->insn_idx += len - 1;
17898 	}
17899 }
17900 
17901 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17902 					    const struct bpf_insn *patch, u32 len)
17903 {
17904 	struct bpf_prog *new_prog;
17905 	struct bpf_insn_aux_data *new_data = NULL;
17906 
17907 	if (len > 1) {
17908 		new_data = vzalloc(array_size(env->prog->len + len - 1,
17909 					      sizeof(struct bpf_insn_aux_data)));
17910 		if (!new_data)
17911 			return NULL;
17912 	}
17913 
17914 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17915 	if (IS_ERR(new_prog)) {
17916 		if (PTR_ERR(new_prog) == -ERANGE)
17917 			verbose(env,
17918 				"insn %d cannot be patched due to 16-bit range\n",
17919 				env->insn_aux_data[off].orig_idx);
17920 		vfree(new_data);
17921 		return NULL;
17922 	}
17923 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
17924 	adjust_subprog_starts(env, off, len);
17925 	adjust_poke_descs(new_prog, off, len);
17926 	return new_prog;
17927 }
17928 
17929 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17930 					      u32 off, u32 cnt)
17931 {
17932 	int i, j;
17933 
17934 	/* find first prog starting at or after off (first to remove) */
17935 	for (i = 0; i < env->subprog_cnt; i++)
17936 		if (env->subprog_info[i].start >= off)
17937 			break;
17938 	/* find first prog starting at or after off + cnt (first to stay) */
17939 	for (j = i; j < env->subprog_cnt; j++)
17940 		if (env->subprog_info[j].start >= off + cnt)
17941 			break;
17942 	/* if j doesn't start exactly at off + cnt, we are just removing
17943 	 * the front of previous prog
17944 	 */
17945 	if (env->subprog_info[j].start != off + cnt)
17946 		j--;
17947 
17948 	if (j > i) {
17949 		struct bpf_prog_aux *aux = env->prog->aux;
17950 		int move;
17951 
17952 		/* move fake 'exit' subprog as well */
17953 		move = env->subprog_cnt + 1 - j;
17954 
17955 		memmove(env->subprog_info + i,
17956 			env->subprog_info + j,
17957 			sizeof(*env->subprog_info) * move);
17958 		env->subprog_cnt -= j - i;
17959 
17960 		/* remove func_info */
17961 		if (aux->func_info) {
17962 			move = aux->func_info_cnt - j;
17963 
17964 			memmove(aux->func_info + i,
17965 				aux->func_info + j,
17966 				sizeof(*aux->func_info) * move);
17967 			aux->func_info_cnt -= j - i;
17968 			/* func_info->insn_off is set after all code rewrites,
17969 			 * in adjust_btf_func() - no need to adjust
17970 			 */
17971 		}
17972 	} else {
17973 		/* convert i from "first prog to remove" to "first to adjust" */
17974 		if (env->subprog_info[i].start == off)
17975 			i++;
17976 	}
17977 
17978 	/* update fake 'exit' subprog as well */
17979 	for (; i <= env->subprog_cnt; i++)
17980 		env->subprog_info[i].start -= cnt;
17981 
17982 	return 0;
17983 }
17984 
17985 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17986 				      u32 cnt)
17987 {
17988 	struct bpf_prog *prog = env->prog;
17989 	u32 i, l_off, l_cnt, nr_linfo;
17990 	struct bpf_line_info *linfo;
17991 
17992 	nr_linfo = prog->aux->nr_linfo;
17993 	if (!nr_linfo)
17994 		return 0;
17995 
17996 	linfo = prog->aux->linfo;
17997 
17998 	/* find first line info to remove, count lines to be removed */
17999 	for (i = 0; i < nr_linfo; i++)
18000 		if (linfo[i].insn_off >= off)
18001 			break;
18002 
18003 	l_off = i;
18004 	l_cnt = 0;
18005 	for (; i < nr_linfo; i++)
18006 		if (linfo[i].insn_off < off + cnt)
18007 			l_cnt++;
18008 		else
18009 			break;
18010 
18011 	/* First live insn doesn't match first live linfo, it needs to "inherit"
18012 	 * last removed linfo.  prog is already modified, so prog->len == off
18013 	 * means no live instructions after (tail of the program was removed).
18014 	 */
18015 	if (prog->len != off && l_cnt &&
18016 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
18017 		l_cnt--;
18018 		linfo[--i].insn_off = off + cnt;
18019 	}
18020 
18021 	/* remove the line info which refer to the removed instructions */
18022 	if (l_cnt) {
18023 		memmove(linfo + l_off, linfo + i,
18024 			sizeof(*linfo) * (nr_linfo - i));
18025 
18026 		prog->aux->nr_linfo -= l_cnt;
18027 		nr_linfo = prog->aux->nr_linfo;
18028 	}
18029 
18030 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
18031 	for (i = l_off; i < nr_linfo; i++)
18032 		linfo[i].insn_off -= cnt;
18033 
18034 	/* fix up all subprogs (incl. 'exit') which start >= off */
18035 	for (i = 0; i <= env->subprog_cnt; i++)
18036 		if (env->subprog_info[i].linfo_idx > l_off) {
18037 			/* program may have started in the removed region but
18038 			 * may not be fully removed
18039 			 */
18040 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
18041 				env->subprog_info[i].linfo_idx -= l_cnt;
18042 			else
18043 				env->subprog_info[i].linfo_idx = l_off;
18044 		}
18045 
18046 	return 0;
18047 }
18048 
18049 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
18050 {
18051 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18052 	unsigned int orig_prog_len = env->prog->len;
18053 	int err;
18054 
18055 	if (bpf_prog_is_offloaded(env->prog->aux))
18056 		bpf_prog_offload_remove_insns(env, off, cnt);
18057 
18058 	err = bpf_remove_insns(env->prog, off, cnt);
18059 	if (err)
18060 		return err;
18061 
18062 	err = adjust_subprog_starts_after_remove(env, off, cnt);
18063 	if (err)
18064 		return err;
18065 
18066 	err = bpf_adj_linfo_after_remove(env, off, cnt);
18067 	if (err)
18068 		return err;
18069 
18070 	memmove(aux_data + off,	aux_data + off + cnt,
18071 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
18072 
18073 	return 0;
18074 }
18075 
18076 /* The verifier does more data flow analysis than llvm and will not
18077  * explore branches that are dead at run time. Malicious programs can
18078  * have dead code too. Therefore replace all dead at-run-time code
18079  * with 'ja -1'.
18080  *
18081  * Just nops are not optimal, e.g. if they would sit at the end of the
18082  * program and through another bug we would manage to jump there, then
18083  * we'd execute beyond program memory otherwise. Returning exception
18084  * code also wouldn't work since we can have subprogs where the dead
18085  * code could be located.
18086  */
18087 static void sanitize_dead_code(struct bpf_verifier_env *env)
18088 {
18089 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18090 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
18091 	struct bpf_insn *insn = env->prog->insnsi;
18092 	const int insn_cnt = env->prog->len;
18093 	int i;
18094 
18095 	for (i = 0; i < insn_cnt; i++) {
18096 		if (aux_data[i].seen)
18097 			continue;
18098 		memcpy(insn + i, &trap, sizeof(trap));
18099 		aux_data[i].zext_dst = false;
18100 	}
18101 }
18102 
18103 static bool insn_is_cond_jump(u8 code)
18104 {
18105 	u8 op;
18106 
18107 	op = BPF_OP(code);
18108 	if (BPF_CLASS(code) == BPF_JMP32)
18109 		return op != BPF_JA;
18110 
18111 	if (BPF_CLASS(code) != BPF_JMP)
18112 		return false;
18113 
18114 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
18115 }
18116 
18117 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
18118 {
18119 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18120 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18121 	struct bpf_insn *insn = env->prog->insnsi;
18122 	const int insn_cnt = env->prog->len;
18123 	int i;
18124 
18125 	for (i = 0; i < insn_cnt; i++, insn++) {
18126 		if (!insn_is_cond_jump(insn->code))
18127 			continue;
18128 
18129 		if (!aux_data[i + 1].seen)
18130 			ja.off = insn->off;
18131 		else if (!aux_data[i + 1 + insn->off].seen)
18132 			ja.off = 0;
18133 		else
18134 			continue;
18135 
18136 		if (bpf_prog_is_offloaded(env->prog->aux))
18137 			bpf_prog_offload_replace_insn(env, i, &ja);
18138 
18139 		memcpy(insn, &ja, sizeof(ja));
18140 	}
18141 }
18142 
18143 static int opt_remove_dead_code(struct bpf_verifier_env *env)
18144 {
18145 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
18146 	int insn_cnt = env->prog->len;
18147 	int i, err;
18148 
18149 	for (i = 0; i < insn_cnt; i++) {
18150 		int j;
18151 
18152 		j = 0;
18153 		while (i + j < insn_cnt && !aux_data[i + j].seen)
18154 			j++;
18155 		if (!j)
18156 			continue;
18157 
18158 		err = verifier_remove_insns(env, i, j);
18159 		if (err)
18160 			return err;
18161 		insn_cnt = env->prog->len;
18162 	}
18163 
18164 	return 0;
18165 }
18166 
18167 static int opt_remove_nops(struct bpf_verifier_env *env)
18168 {
18169 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
18170 	struct bpf_insn *insn = env->prog->insnsi;
18171 	int insn_cnt = env->prog->len;
18172 	int i, err;
18173 
18174 	for (i = 0; i < insn_cnt; i++) {
18175 		if (memcmp(&insn[i], &ja, sizeof(ja)))
18176 			continue;
18177 
18178 		err = verifier_remove_insns(env, i, 1);
18179 		if (err)
18180 			return err;
18181 		insn_cnt--;
18182 		i--;
18183 	}
18184 
18185 	return 0;
18186 }
18187 
18188 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
18189 					 const union bpf_attr *attr)
18190 {
18191 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
18192 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
18193 	int i, patch_len, delta = 0, len = env->prog->len;
18194 	struct bpf_insn *insns = env->prog->insnsi;
18195 	struct bpf_prog *new_prog;
18196 	bool rnd_hi32;
18197 
18198 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
18199 	zext_patch[1] = BPF_ZEXT_REG(0);
18200 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
18201 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
18202 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
18203 	for (i = 0; i < len; i++) {
18204 		int adj_idx = i + delta;
18205 		struct bpf_insn insn;
18206 		int load_reg;
18207 
18208 		insn = insns[adj_idx];
18209 		load_reg = insn_def_regno(&insn);
18210 		if (!aux[adj_idx].zext_dst) {
18211 			u8 code, class;
18212 			u32 imm_rnd;
18213 
18214 			if (!rnd_hi32)
18215 				continue;
18216 
18217 			code = insn.code;
18218 			class = BPF_CLASS(code);
18219 			if (load_reg == -1)
18220 				continue;
18221 
18222 			/* NOTE: arg "reg" (the fourth one) is only used for
18223 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
18224 			 *       here.
18225 			 */
18226 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
18227 				if (class == BPF_LD &&
18228 				    BPF_MODE(code) == BPF_IMM)
18229 					i++;
18230 				continue;
18231 			}
18232 
18233 			/* ctx load could be transformed into wider load. */
18234 			if (class == BPF_LDX &&
18235 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
18236 				continue;
18237 
18238 			imm_rnd = get_random_u32();
18239 			rnd_hi32_patch[0] = insn;
18240 			rnd_hi32_patch[1].imm = imm_rnd;
18241 			rnd_hi32_patch[3].dst_reg = load_reg;
18242 			patch = rnd_hi32_patch;
18243 			patch_len = 4;
18244 			goto apply_patch_buffer;
18245 		}
18246 
18247 		/* Add in an zero-extend instruction if a) the JIT has requested
18248 		 * it or b) it's a CMPXCHG.
18249 		 *
18250 		 * The latter is because: BPF_CMPXCHG always loads a value into
18251 		 * R0, therefore always zero-extends. However some archs'
18252 		 * equivalent instruction only does this load when the
18253 		 * comparison is successful. This detail of CMPXCHG is
18254 		 * orthogonal to the general zero-extension behaviour of the
18255 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
18256 		 */
18257 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
18258 			continue;
18259 
18260 		/* Zero-extension is done by the caller. */
18261 		if (bpf_pseudo_kfunc_call(&insn))
18262 			continue;
18263 
18264 		if (WARN_ON(load_reg == -1)) {
18265 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
18266 			return -EFAULT;
18267 		}
18268 
18269 		zext_patch[0] = insn;
18270 		zext_patch[1].dst_reg = load_reg;
18271 		zext_patch[1].src_reg = load_reg;
18272 		patch = zext_patch;
18273 		patch_len = 2;
18274 apply_patch_buffer:
18275 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
18276 		if (!new_prog)
18277 			return -ENOMEM;
18278 		env->prog = new_prog;
18279 		insns = new_prog->insnsi;
18280 		aux = env->insn_aux_data;
18281 		delta += patch_len - 1;
18282 	}
18283 
18284 	return 0;
18285 }
18286 
18287 /* convert load instructions that access fields of a context type into a
18288  * sequence of instructions that access fields of the underlying structure:
18289  *     struct __sk_buff    -> struct sk_buff
18290  *     struct bpf_sock_ops -> struct sock
18291  */
18292 static int convert_ctx_accesses(struct bpf_verifier_env *env)
18293 {
18294 	const struct bpf_verifier_ops *ops = env->ops;
18295 	int i, cnt, size, ctx_field_size, delta = 0;
18296 	const int insn_cnt = env->prog->len;
18297 	struct bpf_insn insn_buf[16], *insn;
18298 	u32 target_size, size_default, off;
18299 	struct bpf_prog *new_prog;
18300 	enum bpf_access_type type;
18301 	bool is_narrower_load;
18302 
18303 	if (ops->gen_prologue || env->seen_direct_write) {
18304 		if (!ops->gen_prologue) {
18305 			verbose(env, "bpf verifier is misconfigured\n");
18306 			return -EINVAL;
18307 		}
18308 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
18309 					env->prog);
18310 		if (cnt >= ARRAY_SIZE(insn_buf)) {
18311 			verbose(env, "bpf verifier is misconfigured\n");
18312 			return -EINVAL;
18313 		} else if (cnt) {
18314 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
18315 			if (!new_prog)
18316 				return -ENOMEM;
18317 
18318 			env->prog = new_prog;
18319 			delta += cnt - 1;
18320 		}
18321 	}
18322 
18323 	if (bpf_prog_is_offloaded(env->prog->aux))
18324 		return 0;
18325 
18326 	insn = env->prog->insnsi + delta;
18327 
18328 	for (i = 0; i < insn_cnt; i++, insn++) {
18329 		bpf_convert_ctx_access_t convert_ctx_access;
18330 		u8 mode;
18331 
18332 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
18333 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
18334 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
18335 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
18336 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
18337 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
18338 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
18339 			type = BPF_READ;
18340 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
18341 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
18342 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
18343 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
18344 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
18345 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
18346 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
18347 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
18348 			type = BPF_WRITE;
18349 		} else {
18350 			continue;
18351 		}
18352 
18353 		if (type == BPF_WRITE &&
18354 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
18355 			struct bpf_insn patch[] = {
18356 				*insn,
18357 				BPF_ST_NOSPEC(),
18358 			};
18359 
18360 			cnt = ARRAY_SIZE(patch);
18361 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
18362 			if (!new_prog)
18363 				return -ENOMEM;
18364 
18365 			delta    += cnt - 1;
18366 			env->prog = new_prog;
18367 			insn      = new_prog->insnsi + i + delta;
18368 			continue;
18369 		}
18370 
18371 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
18372 		case PTR_TO_CTX:
18373 			if (!ops->convert_ctx_access)
18374 				continue;
18375 			convert_ctx_access = ops->convert_ctx_access;
18376 			break;
18377 		case PTR_TO_SOCKET:
18378 		case PTR_TO_SOCK_COMMON:
18379 			convert_ctx_access = bpf_sock_convert_ctx_access;
18380 			break;
18381 		case PTR_TO_TCP_SOCK:
18382 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
18383 			break;
18384 		case PTR_TO_XDP_SOCK:
18385 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
18386 			break;
18387 		case PTR_TO_BTF_ID:
18388 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
18389 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
18390 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
18391 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
18392 		 * any faults for loads into such types. BPF_WRITE is disallowed
18393 		 * for this case.
18394 		 */
18395 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
18396 			if (type == BPF_READ) {
18397 				if (BPF_MODE(insn->code) == BPF_MEM)
18398 					insn->code = BPF_LDX | BPF_PROBE_MEM |
18399 						     BPF_SIZE((insn)->code);
18400 				else
18401 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
18402 						     BPF_SIZE((insn)->code);
18403 				env->prog->aux->num_exentries++;
18404 			}
18405 			continue;
18406 		default:
18407 			continue;
18408 		}
18409 
18410 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
18411 		size = BPF_LDST_BYTES(insn);
18412 		mode = BPF_MODE(insn->code);
18413 
18414 		/* If the read access is a narrower load of the field,
18415 		 * convert to a 4/8-byte load, to minimum program type specific
18416 		 * convert_ctx_access changes. If conversion is successful,
18417 		 * we will apply proper mask to the result.
18418 		 */
18419 		is_narrower_load = size < ctx_field_size;
18420 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
18421 		off = insn->off;
18422 		if (is_narrower_load) {
18423 			u8 size_code;
18424 
18425 			if (type == BPF_WRITE) {
18426 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
18427 				return -EINVAL;
18428 			}
18429 
18430 			size_code = BPF_H;
18431 			if (ctx_field_size == 4)
18432 				size_code = BPF_W;
18433 			else if (ctx_field_size == 8)
18434 				size_code = BPF_DW;
18435 
18436 			insn->off = off & ~(size_default - 1);
18437 			insn->code = BPF_LDX | BPF_MEM | size_code;
18438 		}
18439 
18440 		target_size = 0;
18441 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
18442 					 &target_size);
18443 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
18444 		    (ctx_field_size && !target_size)) {
18445 			verbose(env, "bpf verifier is misconfigured\n");
18446 			return -EINVAL;
18447 		}
18448 
18449 		if (is_narrower_load && size < target_size) {
18450 			u8 shift = bpf_ctx_narrow_access_offset(
18451 				off, size, size_default) * 8;
18452 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
18453 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
18454 				return -EINVAL;
18455 			}
18456 			if (ctx_field_size <= 4) {
18457 				if (shift)
18458 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
18459 									insn->dst_reg,
18460 									shift);
18461 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18462 								(1 << size * 8) - 1);
18463 			} else {
18464 				if (shift)
18465 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
18466 									insn->dst_reg,
18467 									shift);
18468 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
18469 								(1ULL << size * 8) - 1);
18470 			}
18471 		}
18472 		if (mode == BPF_MEMSX)
18473 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
18474 						       insn->dst_reg, insn->dst_reg,
18475 						       size * 8, 0);
18476 
18477 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18478 		if (!new_prog)
18479 			return -ENOMEM;
18480 
18481 		delta += cnt - 1;
18482 
18483 		/* keep walking new program and skip insns we just inserted */
18484 		env->prog = new_prog;
18485 		insn      = new_prog->insnsi + i + delta;
18486 	}
18487 
18488 	return 0;
18489 }
18490 
18491 static int jit_subprogs(struct bpf_verifier_env *env)
18492 {
18493 	struct bpf_prog *prog = env->prog, **func, *tmp;
18494 	int i, j, subprog_start, subprog_end = 0, len, subprog;
18495 	struct bpf_map *map_ptr;
18496 	struct bpf_insn *insn;
18497 	void *old_bpf_func;
18498 	int err, num_exentries;
18499 
18500 	if (env->subprog_cnt <= 1)
18501 		return 0;
18502 
18503 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18504 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
18505 			continue;
18506 
18507 		/* Upon error here we cannot fall back to interpreter but
18508 		 * need a hard reject of the program. Thus -EFAULT is
18509 		 * propagated in any case.
18510 		 */
18511 		subprog = find_subprog(env, i + insn->imm + 1);
18512 		if (subprog < 0) {
18513 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
18514 				  i + insn->imm + 1);
18515 			return -EFAULT;
18516 		}
18517 		/* temporarily remember subprog id inside insn instead of
18518 		 * aux_data, since next loop will split up all insns into funcs
18519 		 */
18520 		insn->off = subprog;
18521 		/* remember original imm in case JIT fails and fallback
18522 		 * to interpreter will be needed
18523 		 */
18524 		env->insn_aux_data[i].call_imm = insn->imm;
18525 		/* point imm to __bpf_call_base+1 from JITs point of view */
18526 		insn->imm = 1;
18527 		if (bpf_pseudo_func(insn))
18528 			/* jit (e.g. x86_64) may emit fewer instructions
18529 			 * if it learns a u32 imm is the same as a u64 imm.
18530 			 * Force a non zero here.
18531 			 */
18532 			insn[1].imm = 1;
18533 	}
18534 
18535 	err = bpf_prog_alloc_jited_linfo(prog);
18536 	if (err)
18537 		goto out_undo_insn;
18538 
18539 	err = -ENOMEM;
18540 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
18541 	if (!func)
18542 		goto out_undo_insn;
18543 
18544 	for (i = 0; i < env->subprog_cnt; i++) {
18545 		subprog_start = subprog_end;
18546 		subprog_end = env->subprog_info[i + 1].start;
18547 
18548 		len = subprog_end - subprog_start;
18549 		/* bpf_prog_run() doesn't call subprogs directly,
18550 		 * hence main prog stats include the runtime of subprogs.
18551 		 * subprogs don't have IDs and not reachable via prog_get_next_id
18552 		 * func[i]->stats will never be accessed and stays NULL
18553 		 */
18554 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
18555 		if (!func[i])
18556 			goto out_free;
18557 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18558 		       len * sizeof(struct bpf_insn));
18559 		func[i]->type = prog->type;
18560 		func[i]->len = len;
18561 		if (bpf_prog_calc_tag(func[i]))
18562 			goto out_free;
18563 		func[i]->is_func = 1;
18564 		func[i]->aux->func_idx = i;
18565 		/* Below members will be freed only at prog->aux */
18566 		func[i]->aux->btf = prog->aux->btf;
18567 		func[i]->aux->func_info = prog->aux->func_info;
18568 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18569 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18570 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18571 
18572 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18573 			struct bpf_jit_poke_descriptor *poke;
18574 
18575 			poke = &prog->aux->poke_tab[j];
18576 			if (poke->insn_idx < subprog_end &&
18577 			    poke->insn_idx >= subprog_start)
18578 				poke->aux = func[i]->aux;
18579 		}
18580 
18581 		func[i]->aux->name[0] = 'F';
18582 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18583 		func[i]->jit_requested = 1;
18584 		func[i]->blinding_requested = prog->blinding_requested;
18585 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18586 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18587 		func[i]->aux->linfo = prog->aux->linfo;
18588 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18589 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18590 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18591 		num_exentries = 0;
18592 		insn = func[i]->insnsi;
18593 		for (j = 0; j < func[i]->len; j++, insn++) {
18594 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18595 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18596 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18597 				num_exentries++;
18598 		}
18599 		func[i]->aux->num_exentries = num_exentries;
18600 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18601 		func[i] = bpf_int_jit_compile(func[i]);
18602 		if (!func[i]->jited) {
18603 			err = -ENOTSUPP;
18604 			goto out_free;
18605 		}
18606 		cond_resched();
18607 	}
18608 
18609 	/* at this point all bpf functions were successfully JITed
18610 	 * now populate all bpf_calls with correct addresses and
18611 	 * run last pass of JIT
18612 	 */
18613 	for (i = 0; i < env->subprog_cnt; i++) {
18614 		insn = func[i]->insnsi;
18615 		for (j = 0; j < func[i]->len; j++, insn++) {
18616 			if (bpf_pseudo_func(insn)) {
18617 				subprog = insn->off;
18618 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18619 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18620 				continue;
18621 			}
18622 			if (!bpf_pseudo_call(insn))
18623 				continue;
18624 			subprog = insn->off;
18625 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18626 		}
18627 
18628 		/* we use the aux data to keep a list of the start addresses
18629 		 * of the JITed images for each function in the program
18630 		 *
18631 		 * for some architectures, such as powerpc64, the imm field
18632 		 * might not be large enough to hold the offset of the start
18633 		 * address of the callee's JITed image from __bpf_call_base
18634 		 *
18635 		 * in such cases, we can lookup the start address of a callee
18636 		 * by using its subprog id, available from the off field of
18637 		 * the call instruction, as an index for this list
18638 		 */
18639 		func[i]->aux->func = func;
18640 		func[i]->aux->func_cnt = env->subprog_cnt;
18641 	}
18642 	for (i = 0; i < env->subprog_cnt; i++) {
18643 		old_bpf_func = func[i]->bpf_func;
18644 		tmp = bpf_int_jit_compile(func[i]);
18645 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18646 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18647 			err = -ENOTSUPP;
18648 			goto out_free;
18649 		}
18650 		cond_resched();
18651 	}
18652 
18653 	/* finally lock prog and jit images for all functions and
18654 	 * populate kallsysm. Begin at the first subprogram, since
18655 	 * bpf_prog_load will add the kallsyms for the main program.
18656 	 */
18657 	for (i = 1; i < env->subprog_cnt; i++) {
18658 		bpf_prog_lock_ro(func[i]);
18659 		bpf_prog_kallsyms_add(func[i]);
18660 	}
18661 
18662 	/* Last step: make now unused interpreter insns from main
18663 	 * prog consistent for later dump requests, so they can
18664 	 * later look the same as if they were interpreted only.
18665 	 */
18666 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18667 		if (bpf_pseudo_func(insn)) {
18668 			insn[0].imm = env->insn_aux_data[i].call_imm;
18669 			insn[1].imm = insn->off;
18670 			insn->off = 0;
18671 			continue;
18672 		}
18673 		if (!bpf_pseudo_call(insn))
18674 			continue;
18675 		insn->off = env->insn_aux_data[i].call_imm;
18676 		subprog = find_subprog(env, i + insn->off + 1);
18677 		insn->imm = subprog;
18678 	}
18679 
18680 	prog->jited = 1;
18681 	prog->bpf_func = func[0]->bpf_func;
18682 	prog->jited_len = func[0]->jited_len;
18683 	prog->aux->extable = func[0]->aux->extable;
18684 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18685 	prog->aux->func = func;
18686 	prog->aux->func_cnt = env->subprog_cnt;
18687 	bpf_prog_jit_attempt_done(prog);
18688 	return 0;
18689 out_free:
18690 	/* We failed JIT'ing, so at this point we need to unregister poke
18691 	 * descriptors from subprogs, so that kernel is not attempting to
18692 	 * patch it anymore as we're freeing the subprog JIT memory.
18693 	 */
18694 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18695 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18696 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18697 	}
18698 	/* At this point we're guaranteed that poke descriptors are not
18699 	 * live anymore. We can just unlink its descriptor table as it's
18700 	 * released with the main prog.
18701 	 */
18702 	for (i = 0; i < env->subprog_cnt; i++) {
18703 		if (!func[i])
18704 			continue;
18705 		func[i]->aux->poke_tab = NULL;
18706 		bpf_jit_free(func[i]);
18707 	}
18708 	kfree(func);
18709 out_undo_insn:
18710 	/* cleanup main prog to be interpreted */
18711 	prog->jit_requested = 0;
18712 	prog->blinding_requested = 0;
18713 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18714 		if (!bpf_pseudo_call(insn))
18715 			continue;
18716 		insn->off = 0;
18717 		insn->imm = env->insn_aux_data[i].call_imm;
18718 	}
18719 	bpf_prog_jit_attempt_done(prog);
18720 	return err;
18721 }
18722 
18723 static int fixup_call_args(struct bpf_verifier_env *env)
18724 {
18725 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18726 	struct bpf_prog *prog = env->prog;
18727 	struct bpf_insn *insn = prog->insnsi;
18728 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18729 	int i, depth;
18730 #endif
18731 	int err = 0;
18732 
18733 	if (env->prog->jit_requested &&
18734 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18735 		err = jit_subprogs(env);
18736 		if (err == 0)
18737 			return 0;
18738 		if (err == -EFAULT)
18739 			return err;
18740 	}
18741 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18742 	if (has_kfunc_call) {
18743 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18744 		return -EINVAL;
18745 	}
18746 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18747 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18748 		 * have to be rejected, since interpreter doesn't support them yet.
18749 		 */
18750 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18751 		return -EINVAL;
18752 	}
18753 	for (i = 0; i < prog->len; i++, insn++) {
18754 		if (bpf_pseudo_func(insn)) {
18755 			/* When JIT fails the progs with callback calls
18756 			 * have to be rejected, since interpreter doesn't support them yet.
18757 			 */
18758 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18759 			return -EINVAL;
18760 		}
18761 
18762 		if (!bpf_pseudo_call(insn))
18763 			continue;
18764 		depth = get_callee_stack_depth(env, insn, i);
18765 		if (depth < 0)
18766 			return depth;
18767 		bpf_patch_call_args(insn, depth);
18768 	}
18769 	err = 0;
18770 #endif
18771 	return err;
18772 }
18773 
18774 /* replace a generic kfunc with a specialized version if necessary */
18775 static void specialize_kfunc(struct bpf_verifier_env *env,
18776 			     u32 func_id, u16 offset, unsigned long *addr)
18777 {
18778 	struct bpf_prog *prog = env->prog;
18779 	bool seen_direct_write;
18780 	void *xdp_kfunc;
18781 	bool is_rdonly;
18782 
18783 	if (bpf_dev_bound_kfunc_id(func_id)) {
18784 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18785 		if (xdp_kfunc) {
18786 			*addr = (unsigned long)xdp_kfunc;
18787 			return;
18788 		}
18789 		/* fallback to default kfunc when not supported by netdev */
18790 	}
18791 
18792 	if (offset)
18793 		return;
18794 
18795 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18796 		seen_direct_write = env->seen_direct_write;
18797 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18798 
18799 		if (is_rdonly)
18800 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18801 
18802 		/* restore env->seen_direct_write to its original value, since
18803 		 * may_access_direct_pkt_data mutates it
18804 		 */
18805 		env->seen_direct_write = seen_direct_write;
18806 	}
18807 }
18808 
18809 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18810 					    u16 struct_meta_reg,
18811 					    u16 node_offset_reg,
18812 					    struct bpf_insn *insn,
18813 					    struct bpf_insn *insn_buf,
18814 					    int *cnt)
18815 {
18816 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18817 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18818 
18819 	insn_buf[0] = addr[0];
18820 	insn_buf[1] = addr[1];
18821 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18822 	insn_buf[3] = *insn;
18823 	*cnt = 4;
18824 }
18825 
18826 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18827 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18828 {
18829 	const struct bpf_kfunc_desc *desc;
18830 
18831 	if (!insn->imm) {
18832 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18833 		return -EINVAL;
18834 	}
18835 
18836 	*cnt = 0;
18837 
18838 	/* insn->imm has the btf func_id. Replace it with an offset relative to
18839 	 * __bpf_call_base, unless the JIT needs to call functions that are
18840 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18841 	 */
18842 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18843 	if (!desc) {
18844 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18845 			insn->imm);
18846 		return -EFAULT;
18847 	}
18848 
18849 	if (!bpf_jit_supports_far_kfunc_call())
18850 		insn->imm = BPF_CALL_IMM(desc->addr);
18851 	if (insn->off)
18852 		return 0;
18853 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18854 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18855 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18856 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18857 
18858 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18859 		insn_buf[1] = addr[0];
18860 		insn_buf[2] = addr[1];
18861 		insn_buf[3] = *insn;
18862 		*cnt = 4;
18863 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18864 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18865 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18866 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18867 
18868 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18869 		    !kptr_struct_meta) {
18870 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18871 				insn_idx);
18872 			return -EFAULT;
18873 		}
18874 
18875 		insn_buf[0] = addr[0];
18876 		insn_buf[1] = addr[1];
18877 		insn_buf[2] = *insn;
18878 		*cnt = 3;
18879 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18880 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18881 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18882 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18883 		int struct_meta_reg = BPF_REG_3;
18884 		int node_offset_reg = BPF_REG_4;
18885 
18886 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18887 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18888 			struct_meta_reg = BPF_REG_4;
18889 			node_offset_reg = BPF_REG_5;
18890 		}
18891 
18892 		if (!kptr_struct_meta) {
18893 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18894 				insn_idx);
18895 			return -EFAULT;
18896 		}
18897 
18898 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18899 						node_offset_reg, insn, insn_buf, cnt);
18900 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18901 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18902 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18903 		*cnt = 1;
18904 	}
18905 	return 0;
18906 }
18907 
18908 /* Do various post-verification rewrites in a single program pass.
18909  * These rewrites simplify JIT and interpreter implementations.
18910  */
18911 static int do_misc_fixups(struct bpf_verifier_env *env)
18912 {
18913 	struct bpf_prog *prog = env->prog;
18914 	enum bpf_attach_type eatype = prog->expected_attach_type;
18915 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18916 	struct bpf_insn *insn = prog->insnsi;
18917 	const struct bpf_func_proto *fn;
18918 	const int insn_cnt = prog->len;
18919 	const struct bpf_map_ops *ops;
18920 	struct bpf_insn_aux_data *aux;
18921 	struct bpf_insn insn_buf[16];
18922 	struct bpf_prog *new_prog;
18923 	struct bpf_map *map_ptr;
18924 	int i, ret, cnt, delta = 0;
18925 
18926 	for (i = 0; i < insn_cnt; i++, insn++) {
18927 		/* Make divide-by-zero exceptions impossible. */
18928 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18929 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18930 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18931 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18932 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18933 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18934 			struct bpf_insn *patchlet;
18935 			struct bpf_insn chk_and_div[] = {
18936 				/* [R,W]x div 0 -> 0 */
18937 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18938 					     BPF_JNE | BPF_K, insn->src_reg,
18939 					     0, 2, 0),
18940 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18941 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18942 				*insn,
18943 			};
18944 			struct bpf_insn chk_and_mod[] = {
18945 				/* [R,W]x mod 0 -> [R,W]x */
18946 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18947 					     BPF_JEQ | BPF_K, insn->src_reg,
18948 					     0, 1 + (is64 ? 0 : 1), 0),
18949 				*insn,
18950 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18951 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18952 			};
18953 
18954 			patchlet = isdiv ? chk_and_div : chk_and_mod;
18955 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18956 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18957 
18958 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18959 			if (!new_prog)
18960 				return -ENOMEM;
18961 
18962 			delta    += cnt - 1;
18963 			env->prog = prog = new_prog;
18964 			insn      = new_prog->insnsi + i + delta;
18965 			continue;
18966 		}
18967 
18968 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18969 		if (BPF_CLASS(insn->code) == BPF_LD &&
18970 		    (BPF_MODE(insn->code) == BPF_ABS ||
18971 		     BPF_MODE(insn->code) == BPF_IND)) {
18972 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
18973 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18974 				verbose(env, "bpf verifier is misconfigured\n");
18975 				return -EINVAL;
18976 			}
18977 
18978 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18979 			if (!new_prog)
18980 				return -ENOMEM;
18981 
18982 			delta    += cnt - 1;
18983 			env->prog = prog = new_prog;
18984 			insn      = new_prog->insnsi + i + delta;
18985 			continue;
18986 		}
18987 
18988 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
18989 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18990 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18991 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18992 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18993 			struct bpf_insn *patch = &insn_buf[0];
18994 			bool issrc, isneg, isimm;
18995 			u32 off_reg;
18996 
18997 			aux = &env->insn_aux_data[i + delta];
18998 			if (!aux->alu_state ||
18999 			    aux->alu_state == BPF_ALU_NON_POINTER)
19000 				continue;
19001 
19002 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
19003 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
19004 				BPF_ALU_SANITIZE_SRC;
19005 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
19006 
19007 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
19008 			if (isimm) {
19009 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19010 			} else {
19011 				if (isneg)
19012 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19013 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
19014 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
19015 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
19016 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
19017 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
19018 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
19019 			}
19020 			if (!issrc)
19021 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
19022 			insn->src_reg = BPF_REG_AX;
19023 			if (isneg)
19024 				insn->code = insn->code == code_add ?
19025 					     code_sub : code_add;
19026 			*patch++ = *insn;
19027 			if (issrc && isneg && !isimm)
19028 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
19029 			cnt = patch - insn_buf;
19030 
19031 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19032 			if (!new_prog)
19033 				return -ENOMEM;
19034 
19035 			delta    += cnt - 1;
19036 			env->prog = prog = new_prog;
19037 			insn      = new_prog->insnsi + i + delta;
19038 			continue;
19039 		}
19040 
19041 		if (insn->code != (BPF_JMP | BPF_CALL))
19042 			continue;
19043 		if (insn->src_reg == BPF_PSEUDO_CALL)
19044 			continue;
19045 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
19046 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
19047 			if (ret)
19048 				return ret;
19049 			if (cnt == 0)
19050 				continue;
19051 
19052 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19053 			if (!new_prog)
19054 				return -ENOMEM;
19055 
19056 			delta	 += cnt - 1;
19057 			env->prog = prog = new_prog;
19058 			insn	  = new_prog->insnsi + i + delta;
19059 			continue;
19060 		}
19061 
19062 		if (insn->imm == BPF_FUNC_get_route_realm)
19063 			prog->dst_needed = 1;
19064 		if (insn->imm == BPF_FUNC_get_prandom_u32)
19065 			bpf_user_rnd_init_once();
19066 		if (insn->imm == BPF_FUNC_override_return)
19067 			prog->kprobe_override = 1;
19068 		if (insn->imm == BPF_FUNC_tail_call) {
19069 			/* If we tail call into other programs, we
19070 			 * cannot make any assumptions since they can
19071 			 * be replaced dynamically during runtime in
19072 			 * the program array.
19073 			 */
19074 			prog->cb_access = 1;
19075 			if (!allow_tail_call_in_subprogs(env))
19076 				prog->aux->stack_depth = MAX_BPF_STACK;
19077 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
19078 
19079 			/* mark bpf_tail_call as different opcode to avoid
19080 			 * conditional branch in the interpreter for every normal
19081 			 * call and to prevent accidental JITing by JIT compiler
19082 			 * that doesn't support bpf_tail_call yet
19083 			 */
19084 			insn->imm = 0;
19085 			insn->code = BPF_JMP | BPF_TAIL_CALL;
19086 
19087 			aux = &env->insn_aux_data[i + delta];
19088 			if (env->bpf_capable && !prog->blinding_requested &&
19089 			    prog->jit_requested &&
19090 			    !bpf_map_key_poisoned(aux) &&
19091 			    !bpf_map_ptr_poisoned(aux) &&
19092 			    !bpf_map_ptr_unpriv(aux)) {
19093 				struct bpf_jit_poke_descriptor desc = {
19094 					.reason = BPF_POKE_REASON_TAIL_CALL,
19095 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
19096 					.tail_call.key = bpf_map_key_immediate(aux),
19097 					.insn_idx = i + delta,
19098 				};
19099 
19100 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
19101 				if (ret < 0) {
19102 					verbose(env, "adding tail call poke descriptor failed\n");
19103 					return ret;
19104 				}
19105 
19106 				insn->imm = ret + 1;
19107 				continue;
19108 			}
19109 
19110 			if (!bpf_map_ptr_unpriv(aux))
19111 				continue;
19112 
19113 			/* instead of changing every JIT dealing with tail_call
19114 			 * emit two extra insns:
19115 			 * if (index >= max_entries) goto out;
19116 			 * index &= array->index_mask;
19117 			 * to avoid out-of-bounds cpu speculation
19118 			 */
19119 			if (bpf_map_ptr_poisoned(aux)) {
19120 				verbose(env, "tail_call abusing map_ptr\n");
19121 				return -EINVAL;
19122 			}
19123 
19124 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19125 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
19126 						  map_ptr->max_entries, 2);
19127 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
19128 						    container_of(map_ptr,
19129 								 struct bpf_array,
19130 								 map)->index_mask);
19131 			insn_buf[2] = *insn;
19132 			cnt = 3;
19133 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19134 			if (!new_prog)
19135 				return -ENOMEM;
19136 
19137 			delta    += cnt - 1;
19138 			env->prog = prog = new_prog;
19139 			insn      = new_prog->insnsi + i + delta;
19140 			continue;
19141 		}
19142 
19143 		if (insn->imm == BPF_FUNC_timer_set_callback) {
19144 			/* The verifier will process callback_fn as many times as necessary
19145 			 * with different maps and the register states prepared by
19146 			 * set_timer_callback_state will be accurate.
19147 			 *
19148 			 * The following use case is valid:
19149 			 *   map1 is shared by prog1, prog2, prog3.
19150 			 *   prog1 calls bpf_timer_init for some map1 elements
19151 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
19152 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
19153 			 *   prog3 calls bpf_timer_start for some map1 elements.
19154 			 *     Those that were not both bpf_timer_init-ed and
19155 			 *     bpf_timer_set_callback-ed will return -EINVAL.
19156 			 */
19157 			struct bpf_insn ld_addrs[2] = {
19158 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
19159 			};
19160 
19161 			insn_buf[0] = ld_addrs[0];
19162 			insn_buf[1] = ld_addrs[1];
19163 			insn_buf[2] = *insn;
19164 			cnt = 3;
19165 
19166 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19167 			if (!new_prog)
19168 				return -ENOMEM;
19169 
19170 			delta    += cnt - 1;
19171 			env->prog = prog = new_prog;
19172 			insn      = new_prog->insnsi + i + delta;
19173 			goto patch_call_imm;
19174 		}
19175 
19176 		if (is_storage_get_function(insn->imm)) {
19177 			if (!env->prog->aux->sleepable ||
19178 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
19179 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
19180 			else
19181 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
19182 			insn_buf[1] = *insn;
19183 			cnt = 2;
19184 
19185 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19186 			if (!new_prog)
19187 				return -ENOMEM;
19188 
19189 			delta += cnt - 1;
19190 			env->prog = prog = new_prog;
19191 			insn = new_prog->insnsi + i + delta;
19192 			goto patch_call_imm;
19193 		}
19194 
19195 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
19196 		 * and other inlining handlers are currently limited to 64 bit
19197 		 * only.
19198 		 */
19199 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19200 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
19201 		     insn->imm == BPF_FUNC_map_update_elem ||
19202 		     insn->imm == BPF_FUNC_map_delete_elem ||
19203 		     insn->imm == BPF_FUNC_map_push_elem   ||
19204 		     insn->imm == BPF_FUNC_map_pop_elem    ||
19205 		     insn->imm == BPF_FUNC_map_peek_elem   ||
19206 		     insn->imm == BPF_FUNC_redirect_map    ||
19207 		     insn->imm == BPF_FUNC_for_each_map_elem ||
19208 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
19209 			aux = &env->insn_aux_data[i + delta];
19210 			if (bpf_map_ptr_poisoned(aux))
19211 				goto patch_call_imm;
19212 
19213 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
19214 			ops = map_ptr->ops;
19215 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
19216 			    ops->map_gen_lookup) {
19217 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
19218 				if (cnt == -EOPNOTSUPP)
19219 					goto patch_map_ops_generic;
19220 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
19221 					verbose(env, "bpf verifier is misconfigured\n");
19222 					return -EINVAL;
19223 				}
19224 
19225 				new_prog = bpf_patch_insn_data(env, i + delta,
19226 							       insn_buf, cnt);
19227 				if (!new_prog)
19228 					return -ENOMEM;
19229 
19230 				delta    += cnt - 1;
19231 				env->prog = prog = new_prog;
19232 				insn      = new_prog->insnsi + i + delta;
19233 				continue;
19234 			}
19235 
19236 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
19237 				     (void *(*)(struct bpf_map *map, void *key))NULL));
19238 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
19239 				     (long (*)(struct bpf_map *map, void *key))NULL));
19240 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
19241 				     (long (*)(struct bpf_map *map, void *key, void *value,
19242 					      u64 flags))NULL));
19243 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
19244 				     (long (*)(struct bpf_map *map, void *value,
19245 					      u64 flags))NULL));
19246 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
19247 				     (long (*)(struct bpf_map *map, void *value))NULL));
19248 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
19249 				     (long (*)(struct bpf_map *map, void *value))NULL));
19250 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
19251 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
19252 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
19253 				     (long (*)(struct bpf_map *map,
19254 					      bpf_callback_t callback_fn,
19255 					      void *callback_ctx,
19256 					      u64 flags))NULL));
19257 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
19258 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
19259 
19260 patch_map_ops_generic:
19261 			switch (insn->imm) {
19262 			case BPF_FUNC_map_lookup_elem:
19263 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
19264 				continue;
19265 			case BPF_FUNC_map_update_elem:
19266 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
19267 				continue;
19268 			case BPF_FUNC_map_delete_elem:
19269 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
19270 				continue;
19271 			case BPF_FUNC_map_push_elem:
19272 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
19273 				continue;
19274 			case BPF_FUNC_map_pop_elem:
19275 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
19276 				continue;
19277 			case BPF_FUNC_map_peek_elem:
19278 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
19279 				continue;
19280 			case BPF_FUNC_redirect_map:
19281 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
19282 				continue;
19283 			case BPF_FUNC_for_each_map_elem:
19284 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
19285 				continue;
19286 			case BPF_FUNC_map_lookup_percpu_elem:
19287 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
19288 				continue;
19289 			}
19290 
19291 			goto patch_call_imm;
19292 		}
19293 
19294 		/* Implement bpf_jiffies64 inline. */
19295 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
19296 		    insn->imm == BPF_FUNC_jiffies64) {
19297 			struct bpf_insn ld_jiffies_addr[2] = {
19298 				BPF_LD_IMM64(BPF_REG_0,
19299 					     (unsigned long)&jiffies),
19300 			};
19301 
19302 			insn_buf[0] = ld_jiffies_addr[0];
19303 			insn_buf[1] = ld_jiffies_addr[1];
19304 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
19305 						  BPF_REG_0, 0);
19306 			cnt = 3;
19307 
19308 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
19309 						       cnt);
19310 			if (!new_prog)
19311 				return -ENOMEM;
19312 
19313 			delta    += cnt - 1;
19314 			env->prog = prog = new_prog;
19315 			insn      = new_prog->insnsi + i + delta;
19316 			continue;
19317 		}
19318 
19319 		/* Implement bpf_get_func_arg inline. */
19320 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19321 		    insn->imm == BPF_FUNC_get_func_arg) {
19322 			/* Load nr_args from ctx - 8 */
19323 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19324 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
19325 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
19326 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
19327 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
19328 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19329 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
19330 			insn_buf[7] = BPF_JMP_A(1);
19331 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
19332 			cnt = 9;
19333 
19334 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19335 			if (!new_prog)
19336 				return -ENOMEM;
19337 
19338 			delta    += cnt - 1;
19339 			env->prog = prog = new_prog;
19340 			insn      = new_prog->insnsi + i + delta;
19341 			continue;
19342 		}
19343 
19344 		/* Implement bpf_get_func_ret inline. */
19345 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19346 		    insn->imm == BPF_FUNC_get_func_ret) {
19347 			if (eatype == BPF_TRACE_FEXIT ||
19348 			    eatype == BPF_MODIFY_RETURN) {
19349 				/* Load nr_args from ctx - 8 */
19350 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19351 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
19352 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
19353 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
19354 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
19355 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
19356 				cnt = 6;
19357 			} else {
19358 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
19359 				cnt = 1;
19360 			}
19361 
19362 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
19363 			if (!new_prog)
19364 				return -ENOMEM;
19365 
19366 			delta    += cnt - 1;
19367 			env->prog = prog = new_prog;
19368 			insn      = new_prog->insnsi + i + delta;
19369 			continue;
19370 		}
19371 
19372 		/* Implement get_func_arg_cnt inline. */
19373 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19374 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
19375 			/* Load nr_args from ctx - 8 */
19376 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
19377 
19378 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19379 			if (!new_prog)
19380 				return -ENOMEM;
19381 
19382 			env->prog = prog = new_prog;
19383 			insn      = new_prog->insnsi + i + delta;
19384 			continue;
19385 		}
19386 
19387 		/* Implement bpf_get_func_ip inline. */
19388 		if (prog_type == BPF_PROG_TYPE_TRACING &&
19389 		    insn->imm == BPF_FUNC_get_func_ip) {
19390 			/* Load IP address from ctx - 16 */
19391 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
19392 
19393 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
19394 			if (!new_prog)
19395 				return -ENOMEM;
19396 
19397 			env->prog = prog = new_prog;
19398 			insn      = new_prog->insnsi + i + delta;
19399 			continue;
19400 		}
19401 
19402 patch_call_imm:
19403 		fn = env->ops->get_func_proto(insn->imm, env->prog);
19404 		/* all functions that have prototype and verifier allowed
19405 		 * programs to call them, must be real in-kernel functions
19406 		 */
19407 		if (!fn->func) {
19408 			verbose(env,
19409 				"kernel subsystem misconfigured func %s#%d\n",
19410 				func_id_name(insn->imm), insn->imm);
19411 			return -EFAULT;
19412 		}
19413 		insn->imm = fn->func - __bpf_call_base;
19414 	}
19415 
19416 	/* Since poke tab is now finalized, publish aux to tracker. */
19417 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
19418 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
19419 		if (!map_ptr->ops->map_poke_track ||
19420 		    !map_ptr->ops->map_poke_untrack ||
19421 		    !map_ptr->ops->map_poke_run) {
19422 			verbose(env, "bpf verifier is misconfigured\n");
19423 			return -EINVAL;
19424 		}
19425 
19426 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
19427 		if (ret < 0) {
19428 			verbose(env, "tracking tail call prog failed\n");
19429 			return ret;
19430 		}
19431 	}
19432 
19433 	sort_kfunc_descs_by_imm_off(env->prog);
19434 
19435 	return 0;
19436 }
19437 
19438 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
19439 					int position,
19440 					s32 stack_base,
19441 					u32 callback_subprogno,
19442 					u32 *cnt)
19443 {
19444 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
19445 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
19446 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
19447 	int reg_loop_max = BPF_REG_6;
19448 	int reg_loop_cnt = BPF_REG_7;
19449 	int reg_loop_ctx = BPF_REG_8;
19450 
19451 	struct bpf_prog *new_prog;
19452 	u32 callback_start;
19453 	u32 call_insn_offset;
19454 	s32 callback_offset;
19455 
19456 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
19457 	 * be careful to modify this code in sync.
19458 	 */
19459 	struct bpf_insn insn_buf[] = {
19460 		/* Return error and jump to the end of the patch if
19461 		 * expected number of iterations is too big.
19462 		 */
19463 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
19464 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
19465 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
19466 		/* spill R6, R7, R8 to use these as loop vars */
19467 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
19468 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
19469 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
19470 		/* initialize loop vars */
19471 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
19472 		BPF_MOV32_IMM(reg_loop_cnt, 0),
19473 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
19474 		/* loop header,
19475 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
19476 		 */
19477 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
19478 		/* callback call,
19479 		 * correct callback offset would be set after patching
19480 		 */
19481 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
19482 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
19483 		BPF_CALL_REL(0),
19484 		/* increment loop counter */
19485 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
19486 		/* jump to loop header if callback returned 0 */
19487 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
19488 		/* return value of bpf_loop,
19489 		 * set R0 to the number of iterations
19490 		 */
19491 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
19492 		/* restore original values of R6, R7, R8 */
19493 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
19494 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
19495 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
19496 	};
19497 
19498 	*cnt = ARRAY_SIZE(insn_buf);
19499 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
19500 	if (!new_prog)
19501 		return new_prog;
19502 
19503 	/* callback start is known only after patching */
19504 	callback_start = env->subprog_info[callback_subprogno].start;
19505 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
19506 	call_insn_offset = position + 12;
19507 	callback_offset = callback_start - call_insn_offset - 1;
19508 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
19509 
19510 	return new_prog;
19511 }
19512 
19513 static bool is_bpf_loop_call(struct bpf_insn *insn)
19514 {
19515 	return insn->code == (BPF_JMP | BPF_CALL) &&
19516 		insn->src_reg == 0 &&
19517 		insn->imm == BPF_FUNC_loop;
19518 }
19519 
19520 /* For all sub-programs in the program (including main) check
19521  * insn_aux_data to see if there are bpf_loop calls that require
19522  * inlining. If such calls are found the calls are replaced with a
19523  * sequence of instructions produced by `inline_bpf_loop` function and
19524  * subprog stack_depth is increased by the size of 3 registers.
19525  * This stack space is used to spill values of the R6, R7, R8.  These
19526  * registers are used to store the loop bound, counter and context
19527  * variables.
19528  */
19529 static int optimize_bpf_loop(struct bpf_verifier_env *env)
19530 {
19531 	struct bpf_subprog_info *subprogs = env->subprog_info;
19532 	int i, cur_subprog = 0, cnt, delta = 0;
19533 	struct bpf_insn *insn = env->prog->insnsi;
19534 	int insn_cnt = env->prog->len;
19535 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
19536 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19537 	u16 stack_depth_extra = 0;
19538 
19539 	for (i = 0; i < insn_cnt; i++, insn++) {
19540 		struct bpf_loop_inline_state *inline_state =
19541 			&env->insn_aux_data[i + delta].loop_inline_state;
19542 
19543 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
19544 			struct bpf_prog *new_prog;
19545 
19546 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
19547 			new_prog = inline_bpf_loop(env,
19548 						   i + delta,
19549 						   -(stack_depth + stack_depth_extra),
19550 						   inline_state->callback_subprogno,
19551 						   &cnt);
19552 			if (!new_prog)
19553 				return -ENOMEM;
19554 
19555 			delta     += cnt - 1;
19556 			env->prog  = new_prog;
19557 			insn       = new_prog->insnsi + i + delta;
19558 		}
19559 
19560 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19561 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19562 			cur_subprog++;
19563 			stack_depth = subprogs[cur_subprog].stack_depth;
19564 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19565 			stack_depth_extra = 0;
19566 		}
19567 	}
19568 
19569 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19570 
19571 	return 0;
19572 }
19573 
19574 static void free_states(struct bpf_verifier_env *env)
19575 {
19576 	struct bpf_verifier_state_list *sl, *sln;
19577 	int i;
19578 
19579 	sl = env->free_list;
19580 	while (sl) {
19581 		sln = sl->next;
19582 		free_verifier_state(&sl->state, false);
19583 		kfree(sl);
19584 		sl = sln;
19585 	}
19586 	env->free_list = NULL;
19587 
19588 	if (!env->explored_states)
19589 		return;
19590 
19591 	for (i = 0; i < state_htab_size(env); i++) {
19592 		sl = env->explored_states[i];
19593 
19594 		while (sl) {
19595 			sln = sl->next;
19596 			free_verifier_state(&sl->state, false);
19597 			kfree(sl);
19598 			sl = sln;
19599 		}
19600 		env->explored_states[i] = NULL;
19601 	}
19602 }
19603 
19604 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19605 {
19606 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19607 	struct bpf_verifier_state *state;
19608 	struct bpf_reg_state *regs;
19609 	int ret, i;
19610 
19611 	env->prev_linfo = NULL;
19612 	env->pass_cnt++;
19613 
19614 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19615 	if (!state)
19616 		return -ENOMEM;
19617 	state->curframe = 0;
19618 	state->speculative = false;
19619 	state->branches = 1;
19620 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19621 	if (!state->frame[0]) {
19622 		kfree(state);
19623 		return -ENOMEM;
19624 	}
19625 	env->cur_state = state;
19626 	init_func_state(env, state->frame[0],
19627 			BPF_MAIN_FUNC /* callsite */,
19628 			0 /* frameno */,
19629 			subprog);
19630 	state->first_insn_idx = env->subprog_info[subprog].start;
19631 	state->last_insn_idx = -1;
19632 
19633 	regs = state->frame[state->curframe]->regs;
19634 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19635 		ret = btf_prepare_func_args(env, subprog, regs);
19636 		if (ret)
19637 			goto out;
19638 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19639 			if (regs[i].type == PTR_TO_CTX)
19640 				mark_reg_known_zero(env, regs, i);
19641 			else if (regs[i].type == SCALAR_VALUE)
19642 				mark_reg_unknown(env, regs, i);
19643 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19644 				const u32 mem_size = regs[i].mem_size;
19645 
19646 				mark_reg_known_zero(env, regs, i);
19647 				regs[i].mem_size = mem_size;
19648 				regs[i].id = ++env->id_gen;
19649 			}
19650 		}
19651 	} else {
19652 		/* 1st arg to a function */
19653 		regs[BPF_REG_1].type = PTR_TO_CTX;
19654 		mark_reg_known_zero(env, regs, BPF_REG_1);
19655 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19656 		if (ret == -EFAULT)
19657 			/* unlikely verifier bug. abort.
19658 			 * ret == 0 and ret < 0 are sadly acceptable for
19659 			 * main() function due to backward compatibility.
19660 			 * Like socket filter program may be written as:
19661 			 * int bpf_prog(struct pt_regs *ctx)
19662 			 * and never dereference that ctx in the program.
19663 			 * 'struct pt_regs' is a type mismatch for socket
19664 			 * filter that should be using 'struct __sk_buff'.
19665 			 */
19666 			goto out;
19667 	}
19668 
19669 	ret = do_check(env);
19670 out:
19671 	/* check for NULL is necessary, since cur_state can be freed inside
19672 	 * do_check() under memory pressure.
19673 	 */
19674 	if (env->cur_state) {
19675 		free_verifier_state(env->cur_state, true);
19676 		env->cur_state = NULL;
19677 	}
19678 	while (!pop_stack(env, NULL, NULL, false));
19679 	if (!ret && pop_log)
19680 		bpf_vlog_reset(&env->log, 0);
19681 	free_states(env);
19682 	return ret;
19683 }
19684 
19685 /* Verify all global functions in a BPF program one by one based on their BTF.
19686  * All global functions must pass verification. Otherwise the whole program is rejected.
19687  * Consider:
19688  * int bar(int);
19689  * int foo(int f)
19690  * {
19691  *    return bar(f);
19692  * }
19693  * int bar(int b)
19694  * {
19695  *    ...
19696  * }
19697  * foo() will be verified first for R1=any_scalar_value. During verification it
19698  * will be assumed that bar() already verified successfully and call to bar()
19699  * from foo() will be checked for type match only. Later bar() will be verified
19700  * independently to check that it's safe for R1=any_scalar_value.
19701  */
19702 static int do_check_subprogs(struct bpf_verifier_env *env)
19703 {
19704 	struct bpf_prog_aux *aux = env->prog->aux;
19705 	int i, ret;
19706 
19707 	if (!aux->func_info)
19708 		return 0;
19709 
19710 	for (i = 1; i < env->subprog_cnt; i++) {
19711 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19712 			continue;
19713 		env->insn_idx = env->subprog_info[i].start;
19714 		WARN_ON_ONCE(env->insn_idx == 0);
19715 		ret = do_check_common(env, i);
19716 		if (ret) {
19717 			return ret;
19718 		} else if (env->log.level & BPF_LOG_LEVEL) {
19719 			verbose(env,
19720 				"Func#%d is safe for any args that match its prototype\n",
19721 				i);
19722 		}
19723 	}
19724 	return 0;
19725 }
19726 
19727 static int do_check_main(struct bpf_verifier_env *env)
19728 {
19729 	int ret;
19730 
19731 	env->insn_idx = 0;
19732 	ret = do_check_common(env, 0);
19733 	if (!ret)
19734 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19735 	return ret;
19736 }
19737 
19738 
19739 static void print_verification_stats(struct bpf_verifier_env *env)
19740 {
19741 	int i;
19742 
19743 	if (env->log.level & BPF_LOG_STATS) {
19744 		verbose(env, "verification time %lld usec\n",
19745 			div_u64(env->verification_time, 1000));
19746 		verbose(env, "stack depth ");
19747 		for (i = 0; i < env->subprog_cnt; i++) {
19748 			u32 depth = env->subprog_info[i].stack_depth;
19749 
19750 			verbose(env, "%d", depth);
19751 			if (i + 1 < env->subprog_cnt)
19752 				verbose(env, "+");
19753 		}
19754 		verbose(env, "\n");
19755 	}
19756 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19757 		"total_states %d peak_states %d mark_read %d\n",
19758 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19759 		env->max_states_per_insn, env->total_states,
19760 		env->peak_states, env->longest_mark_read_walk);
19761 }
19762 
19763 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19764 {
19765 	const struct btf_type *t, *func_proto;
19766 	const struct bpf_struct_ops *st_ops;
19767 	const struct btf_member *member;
19768 	struct bpf_prog *prog = env->prog;
19769 	u32 btf_id, member_idx;
19770 	const char *mname;
19771 
19772 	if (!prog->gpl_compatible) {
19773 		verbose(env, "struct ops programs must have a GPL compatible license\n");
19774 		return -EINVAL;
19775 	}
19776 
19777 	btf_id = prog->aux->attach_btf_id;
19778 	st_ops = bpf_struct_ops_find(btf_id);
19779 	if (!st_ops) {
19780 		verbose(env, "attach_btf_id %u is not a supported struct\n",
19781 			btf_id);
19782 		return -ENOTSUPP;
19783 	}
19784 
19785 	t = st_ops->type;
19786 	member_idx = prog->expected_attach_type;
19787 	if (member_idx >= btf_type_vlen(t)) {
19788 		verbose(env, "attach to invalid member idx %u of struct %s\n",
19789 			member_idx, st_ops->name);
19790 		return -EINVAL;
19791 	}
19792 
19793 	member = &btf_type_member(t)[member_idx];
19794 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19795 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19796 					       NULL);
19797 	if (!func_proto) {
19798 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19799 			mname, member_idx, st_ops->name);
19800 		return -EINVAL;
19801 	}
19802 
19803 	if (st_ops->check_member) {
19804 		int err = st_ops->check_member(t, member, prog);
19805 
19806 		if (err) {
19807 			verbose(env, "attach to unsupported member %s of struct %s\n",
19808 				mname, st_ops->name);
19809 			return err;
19810 		}
19811 	}
19812 
19813 	prog->aux->attach_func_proto = func_proto;
19814 	prog->aux->attach_func_name = mname;
19815 	env->ops = st_ops->verifier_ops;
19816 
19817 	return 0;
19818 }
19819 #define SECURITY_PREFIX "security_"
19820 
19821 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19822 {
19823 	if (within_error_injection_list(addr) ||
19824 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19825 		return 0;
19826 
19827 	return -EINVAL;
19828 }
19829 
19830 /* list of non-sleepable functions that are otherwise on
19831  * ALLOW_ERROR_INJECTION list
19832  */
19833 BTF_SET_START(btf_non_sleepable_error_inject)
19834 /* Three functions below can be called from sleepable and non-sleepable context.
19835  * Assume non-sleepable from bpf safety point of view.
19836  */
19837 BTF_ID(func, __filemap_add_folio)
19838 BTF_ID(func, should_fail_alloc_page)
19839 BTF_ID(func, should_failslab)
19840 BTF_SET_END(btf_non_sleepable_error_inject)
19841 
19842 static int check_non_sleepable_error_inject(u32 btf_id)
19843 {
19844 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19845 }
19846 
19847 int bpf_check_attach_target(struct bpf_verifier_log *log,
19848 			    const struct bpf_prog *prog,
19849 			    const struct bpf_prog *tgt_prog,
19850 			    u32 btf_id,
19851 			    struct bpf_attach_target_info *tgt_info)
19852 {
19853 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19854 	const char prefix[] = "btf_trace_";
19855 	int ret = 0, subprog = -1, i;
19856 	const struct btf_type *t;
19857 	bool conservative = true;
19858 	const char *tname;
19859 	struct btf *btf;
19860 	long addr = 0;
19861 	struct module *mod = NULL;
19862 
19863 	if (!btf_id) {
19864 		bpf_log(log, "Tracing programs must provide btf_id\n");
19865 		return -EINVAL;
19866 	}
19867 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19868 	if (!btf) {
19869 		bpf_log(log,
19870 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19871 		return -EINVAL;
19872 	}
19873 	t = btf_type_by_id(btf, btf_id);
19874 	if (!t) {
19875 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19876 		return -EINVAL;
19877 	}
19878 	tname = btf_name_by_offset(btf, t->name_off);
19879 	if (!tname) {
19880 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19881 		return -EINVAL;
19882 	}
19883 	if (tgt_prog) {
19884 		struct bpf_prog_aux *aux = tgt_prog->aux;
19885 
19886 		if (bpf_prog_is_dev_bound(prog->aux) &&
19887 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19888 			bpf_log(log, "Target program bound device mismatch");
19889 			return -EINVAL;
19890 		}
19891 
19892 		for (i = 0; i < aux->func_info_cnt; i++)
19893 			if (aux->func_info[i].type_id == btf_id) {
19894 				subprog = i;
19895 				break;
19896 			}
19897 		if (subprog == -1) {
19898 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
19899 			return -EINVAL;
19900 		}
19901 		conservative = aux->func_info_aux[subprog].unreliable;
19902 		if (prog_extension) {
19903 			if (conservative) {
19904 				bpf_log(log,
19905 					"Cannot replace static functions\n");
19906 				return -EINVAL;
19907 			}
19908 			if (!prog->jit_requested) {
19909 				bpf_log(log,
19910 					"Extension programs should be JITed\n");
19911 				return -EINVAL;
19912 			}
19913 		}
19914 		if (!tgt_prog->jited) {
19915 			bpf_log(log, "Can attach to only JITed progs\n");
19916 			return -EINVAL;
19917 		}
19918 		if (tgt_prog->type == prog->type) {
19919 			/* Cannot fentry/fexit another fentry/fexit program.
19920 			 * Cannot attach program extension to another extension.
19921 			 * It's ok to attach fentry/fexit to extension program.
19922 			 */
19923 			bpf_log(log, "Cannot recursively attach\n");
19924 			return -EINVAL;
19925 		}
19926 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19927 		    prog_extension &&
19928 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19929 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19930 			/* Program extensions can extend all program types
19931 			 * except fentry/fexit. The reason is the following.
19932 			 * The fentry/fexit programs are used for performance
19933 			 * analysis, stats and can be attached to any program
19934 			 * type except themselves. When extension program is
19935 			 * replacing XDP function it is necessary to allow
19936 			 * performance analysis of all functions. Both original
19937 			 * XDP program and its program extension. Hence
19938 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19939 			 * allowed. If extending of fentry/fexit was allowed it
19940 			 * would be possible to create long call chain
19941 			 * fentry->extension->fentry->extension beyond
19942 			 * reasonable stack size. Hence extending fentry is not
19943 			 * allowed.
19944 			 */
19945 			bpf_log(log, "Cannot extend fentry/fexit\n");
19946 			return -EINVAL;
19947 		}
19948 	} else {
19949 		if (prog_extension) {
19950 			bpf_log(log, "Cannot replace kernel functions\n");
19951 			return -EINVAL;
19952 		}
19953 	}
19954 
19955 	switch (prog->expected_attach_type) {
19956 	case BPF_TRACE_RAW_TP:
19957 		if (tgt_prog) {
19958 			bpf_log(log,
19959 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19960 			return -EINVAL;
19961 		}
19962 		if (!btf_type_is_typedef(t)) {
19963 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
19964 				btf_id);
19965 			return -EINVAL;
19966 		}
19967 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19968 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19969 				btf_id, tname);
19970 			return -EINVAL;
19971 		}
19972 		tname += sizeof(prefix) - 1;
19973 		t = btf_type_by_id(btf, t->type);
19974 		if (!btf_type_is_ptr(t))
19975 			/* should never happen in valid vmlinux build */
19976 			return -EINVAL;
19977 		t = btf_type_by_id(btf, t->type);
19978 		if (!btf_type_is_func_proto(t))
19979 			/* should never happen in valid vmlinux build */
19980 			return -EINVAL;
19981 
19982 		break;
19983 	case BPF_TRACE_ITER:
19984 		if (!btf_type_is_func(t)) {
19985 			bpf_log(log, "attach_btf_id %u is not a function\n",
19986 				btf_id);
19987 			return -EINVAL;
19988 		}
19989 		t = btf_type_by_id(btf, t->type);
19990 		if (!btf_type_is_func_proto(t))
19991 			return -EINVAL;
19992 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19993 		if (ret)
19994 			return ret;
19995 		break;
19996 	default:
19997 		if (!prog_extension)
19998 			return -EINVAL;
19999 		fallthrough;
20000 	case BPF_MODIFY_RETURN:
20001 	case BPF_LSM_MAC:
20002 	case BPF_LSM_CGROUP:
20003 	case BPF_TRACE_FENTRY:
20004 	case BPF_TRACE_FEXIT:
20005 		if (!btf_type_is_func(t)) {
20006 			bpf_log(log, "attach_btf_id %u is not a function\n",
20007 				btf_id);
20008 			return -EINVAL;
20009 		}
20010 		if (prog_extension &&
20011 		    btf_check_type_match(log, prog, btf, t))
20012 			return -EINVAL;
20013 		t = btf_type_by_id(btf, t->type);
20014 		if (!btf_type_is_func_proto(t))
20015 			return -EINVAL;
20016 
20017 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
20018 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
20019 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
20020 			return -EINVAL;
20021 
20022 		if (tgt_prog && conservative)
20023 			t = NULL;
20024 
20025 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
20026 		if (ret < 0)
20027 			return ret;
20028 
20029 		if (tgt_prog) {
20030 			if (subprog == 0)
20031 				addr = (long) tgt_prog->bpf_func;
20032 			else
20033 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
20034 		} else {
20035 			if (btf_is_module(btf)) {
20036 				mod = btf_try_get_module(btf);
20037 				if (mod)
20038 					addr = find_kallsyms_symbol_value(mod, tname);
20039 				else
20040 					addr = 0;
20041 			} else {
20042 				addr = kallsyms_lookup_name(tname);
20043 			}
20044 			if (!addr) {
20045 				module_put(mod);
20046 				bpf_log(log,
20047 					"The address of function %s cannot be found\n",
20048 					tname);
20049 				return -ENOENT;
20050 			}
20051 		}
20052 
20053 		if (prog->aux->sleepable) {
20054 			ret = -EINVAL;
20055 			switch (prog->type) {
20056 			case BPF_PROG_TYPE_TRACING:
20057 
20058 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
20059 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
20060 				 */
20061 				if (!check_non_sleepable_error_inject(btf_id) &&
20062 				    within_error_injection_list(addr))
20063 					ret = 0;
20064 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
20065 				 * in the fmodret id set with the KF_SLEEPABLE flag.
20066 				 */
20067 				else {
20068 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
20069 										prog);
20070 
20071 					if (flags && (*flags & KF_SLEEPABLE))
20072 						ret = 0;
20073 				}
20074 				break;
20075 			case BPF_PROG_TYPE_LSM:
20076 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
20077 				 * Only some of them are sleepable.
20078 				 */
20079 				if (bpf_lsm_is_sleepable_hook(btf_id))
20080 					ret = 0;
20081 				break;
20082 			default:
20083 				break;
20084 			}
20085 			if (ret) {
20086 				module_put(mod);
20087 				bpf_log(log, "%s is not sleepable\n", tname);
20088 				return ret;
20089 			}
20090 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
20091 			if (tgt_prog) {
20092 				module_put(mod);
20093 				bpf_log(log, "can't modify return codes of BPF programs\n");
20094 				return -EINVAL;
20095 			}
20096 			ret = -EINVAL;
20097 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
20098 			    !check_attach_modify_return(addr, tname))
20099 				ret = 0;
20100 			if (ret) {
20101 				module_put(mod);
20102 				bpf_log(log, "%s() is not modifiable\n", tname);
20103 				return ret;
20104 			}
20105 		}
20106 
20107 		break;
20108 	}
20109 	tgt_info->tgt_addr = addr;
20110 	tgt_info->tgt_name = tname;
20111 	tgt_info->tgt_type = t;
20112 	tgt_info->tgt_mod = mod;
20113 	return 0;
20114 }
20115 
20116 BTF_SET_START(btf_id_deny)
20117 BTF_ID_UNUSED
20118 #ifdef CONFIG_SMP
20119 BTF_ID(func, migrate_disable)
20120 BTF_ID(func, migrate_enable)
20121 #endif
20122 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
20123 BTF_ID(func, rcu_read_unlock_strict)
20124 #endif
20125 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
20126 BTF_ID(func, preempt_count_add)
20127 BTF_ID(func, preempt_count_sub)
20128 #endif
20129 #ifdef CONFIG_PREEMPT_RCU
20130 BTF_ID(func, __rcu_read_lock)
20131 BTF_ID(func, __rcu_read_unlock)
20132 #endif
20133 BTF_SET_END(btf_id_deny)
20134 
20135 static bool can_be_sleepable(struct bpf_prog *prog)
20136 {
20137 	if (prog->type == BPF_PROG_TYPE_TRACING) {
20138 		switch (prog->expected_attach_type) {
20139 		case BPF_TRACE_FENTRY:
20140 		case BPF_TRACE_FEXIT:
20141 		case BPF_MODIFY_RETURN:
20142 		case BPF_TRACE_ITER:
20143 			return true;
20144 		default:
20145 			return false;
20146 		}
20147 	}
20148 	return prog->type == BPF_PROG_TYPE_LSM ||
20149 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
20150 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
20151 }
20152 
20153 static int check_attach_btf_id(struct bpf_verifier_env *env)
20154 {
20155 	struct bpf_prog *prog = env->prog;
20156 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
20157 	struct bpf_attach_target_info tgt_info = {};
20158 	u32 btf_id = prog->aux->attach_btf_id;
20159 	struct bpf_trampoline *tr;
20160 	int ret;
20161 	u64 key;
20162 
20163 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
20164 		if (prog->aux->sleepable)
20165 			/* attach_btf_id checked to be zero already */
20166 			return 0;
20167 		verbose(env, "Syscall programs can only be sleepable\n");
20168 		return -EINVAL;
20169 	}
20170 
20171 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
20172 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
20173 		return -EINVAL;
20174 	}
20175 
20176 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
20177 		return check_struct_ops_btf_id(env);
20178 
20179 	if (prog->type != BPF_PROG_TYPE_TRACING &&
20180 	    prog->type != BPF_PROG_TYPE_LSM &&
20181 	    prog->type != BPF_PROG_TYPE_EXT)
20182 		return 0;
20183 
20184 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
20185 	if (ret)
20186 		return ret;
20187 
20188 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
20189 		/* to make freplace equivalent to their targets, they need to
20190 		 * inherit env->ops and expected_attach_type for the rest of the
20191 		 * verification
20192 		 */
20193 		env->ops = bpf_verifier_ops[tgt_prog->type];
20194 		prog->expected_attach_type = tgt_prog->expected_attach_type;
20195 	}
20196 
20197 	/* store info about the attachment target that will be used later */
20198 	prog->aux->attach_func_proto = tgt_info.tgt_type;
20199 	prog->aux->attach_func_name = tgt_info.tgt_name;
20200 	prog->aux->mod = tgt_info.tgt_mod;
20201 
20202 	if (tgt_prog) {
20203 		prog->aux->saved_dst_prog_type = tgt_prog->type;
20204 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
20205 	}
20206 
20207 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
20208 		prog->aux->attach_btf_trace = true;
20209 		return 0;
20210 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
20211 		if (!bpf_iter_prog_supported(prog))
20212 			return -EINVAL;
20213 		return 0;
20214 	}
20215 
20216 	if (prog->type == BPF_PROG_TYPE_LSM) {
20217 		ret = bpf_lsm_verify_prog(&env->log, prog);
20218 		if (ret < 0)
20219 			return ret;
20220 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
20221 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
20222 		return -EINVAL;
20223 	}
20224 
20225 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
20226 	tr = bpf_trampoline_get(key, &tgt_info);
20227 	if (!tr)
20228 		return -ENOMEM;
20229 
20230 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
20231 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
20232 
20233 	prog->aux->dst_trampoline = tr;
20234 	return 0;
20235 }
20236 
20237 struct btf *bpf_get_btf_vmlinux(void)
20238 {
20239 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
20240 		mutex_lock(&bpf_verifier_lock);
20241 		if (!btf_vmlinux)
20242 			btf_vmlinux = btf_parse_vmlinux();
20243 		mutex_unlock(&bpf_verifier_lock);
20244 	}
20245 	return btf_vmlinux;
20246 }
20247 
20248 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
20249 {
20250 	u64 start_time = ktime_get_ns();
20251 	struct bpf_verifier_env *env;
20252 	int i, len, ret = -EINVAL, err;
20253 	u32 log_true_size;
20254 	bool is_priv;
20255 
20256 	/* no program is valid */
20257 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
20258 		return -EINVAL;
20259 
20260 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
20261 	 * allocate/free it every time bpf_check() is called
20262 	 */
20263 	env = kvzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
20264 	if (!env)
20265 		return -ENOMEM;
20266 
20267 	env->bt.env = env;
20268 
20269 	len = (*prog)->len;
20270 	env->insn_aux_data =
20271 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
20272 	ret = -ENOMEM;
20273 	if (!env->insn_aux_data)
20274 		goto err_free_env;
20275 	for (i = 0; i < len; i++)
20276 		env->insn_aux_data[i].orig_idx = i;
20277 	env->prog = *prog;
20278 	env->ops = bpf_verifier_ops[env->prog->type];
20279 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
20280 	is_priv = bpf_capable();
20281 
20282 	bpf_get_btf_vmlinux();
20283 
20284 	/* grab the mutex to protect few globals used by verifier */
20285 	if (!is_priv)
20286 		mutex_lock(&bpf_verifier_lock);
20287 
20288 	/* user could have requested verbose verifier output
20289 	 * and supplied buffer to store the verification trace
20290 	 */
20291 	ret = bpf_vlog_init(&env->log, attr->log_level,
20292 			    (char __user *) (unsigned long) attr->log_buf,
20293 			    attr->log_size);
20294 	if (ret)
20295 		goto err_unlock;
20296 
20297 	mark_verifier_state_clean(env);
20298 
20299 	if (IS_ERR(btf_vmlinux)) {
20300 		/* Either gcc or pahole or kernel are broken. */
20301 		verbose(env, "in-kernel BTF is malformed\n");
20302 		ret = PTR_ERR(btf_vmlinux);
20303 		goto skip_full_check;
20304 	}
20305 
20306 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
20307 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
20308 		env->strict_alignment = true;
20309 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
20310 		env->strict_alignment = false;
20311 
20312 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
20313 	env->allow_uninit_stack = bpf_allow_uninit_stack();
20314 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
20315 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
20316 	env->bpf_capable = bpf_capable();
20317 
20318 	if (is_priv)
20319 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
20320 
20321 	env->explored_states = kvcalloc(state_htab_size(env),
20322 				       sizeof(struct bpf_verifier_state_list *),
20323 				       GFP_USER);
20324 	ret = -ENOMEM;
20325 	if (!env->explored_states)
20326 		goto skip_full_check;
20327 
20328 	ret = add_subprog_and_kfunc(env);
20329 	if (ret < 0)
20330 		goto skip_full_check;
20331 
20332 	ret = check_subprogs(env);
20333 	if (ret < 0)
20334 		goto skip_full_check;
20335 
20336 	ret = check_btf_info(env, attr, uattr);
20337 	if (ret < 0)
20338 		goto skip_full_check;
20339 
20340 	ret = check_attach_btf_id(env);
20341 	if (ret)
20342 		goto skip_full_check;
20343 
20344 	ret = resolve_pseudo_ldimm64(env);
20345 	if (ret < 0)
20346 		goto skip_full_check;
20347 
20348 	if (bpf_prog_is_offloaded(env->prog->aux)) {
20349 		ret = bpf_prog_offload_verifier_prep(env->prog);
20350 		if (ret)
20351 			goto skip_full_check;
20352 	}
20353 
20354 	ret = check_cfg(env);
20355 	if (ret < 0)
20356 		goto skip_full_check;
20357 
20358 	ret = do_check_subprogs(env);
20359 	ret = ret ?: do_check_main(env);
20360 
20361 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
20362 		ret = bpf_prog_offload_finalize(env);
20363 
20364 skip_full_check:
20365 	kvfree(env->explored_states);
20366 
20367 	if (ret == 0)
20368 		ret = check_max_stack_depth(env);
20369 
20370 	/* instruction rewrites happen after this point */
20371 	if (ret == 0)
20372 		ret = optimize_bpf_loop(env);
20373 
20374 	if (is_priv) {
20375 		if (ret == 0)
20376 			opt_hard_wire_dead_code_branches(env);
20377 		if (ret == 0)
20378 			ret = opt_remove_dead_code(env);
20379 		if (ret == 0)
20380 			ret = opt_remove_nops(env);
20381 	} else {
20382 		if (ret == 0)
20383 			sanitize_dead_code(env);
20384 	}
20385 
20386 	if (ret == 0)
20387 		/* program is valid, convert *(u32*)(ctx + off) accesses */
20388 		ret = convert_ctx_accesses(env);
20389 
20390 	if (ret == 0)
20391 		ret = do_misc_fixups(env);
20392 
20393 	/* do 32-bit optimization after insn patching has done so those patched
20394 	 * insns could be handled correctly.
20395 	 */
20396 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
20397 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
20398 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
20399 								     : false;
20400 	}
20401 
20402 	if (ret == 0)
20403 		ret = fixup_call_args(env);
20404 
20405 	env->verification_time = ktime_get_ns() - start_time;
20406 	print_verification_stats(env);
20407 	env->prog->aux->verified_insns = env->insn_processed;
20408 
20409 	/* preserve original error even if log finalization is successful */
20410 	err = bpf_vlog_finalize(&env->log, &log_true_size);
20411 	if (err)
20412 		ret = err;
20413 
20414 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
20415 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
20416 				  &log_true_size, sizeof(log_true_size))) {
20417 		ret = -EFAULT;
20418 		goto err_release_maps;
20419 	}
20420 
20421 	if (ret)
20422 		goto err_release_maps;
20423 
20424 	if (env->used_map_cnt) {
20425 		/* if program passed verifier, update used_maps in bpf_prog_info */
20426 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
20427 							  sizeof(env->used_maps[0]),
20428 							  GFP_KERNEL);
20429 
20430 		if (!env->prog->aux->used_maps) {
20431 			ret = -ENOMEM;
20432 			goto err_release_maps;
20433 		}
20434 
20435 		memcpy(env->prog->aux->used_maps, env->used_maps,
20436 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
20437 		env->prog->aux->used_map_cnt = env->used_map_cnt;
20438 	}
20439 	if (env->used_btf_cnt) {
20440 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
20441 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
20442 							  sizeof(env->used_btfs[0]),
20443 							  GFP_KERNEL);
20444 		if (!env->prog->aux->used_btfs) {
20445 			ret = -ENOMEM;
20446 			goto err_release_maps;
20447 		}
20448 
20449 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
20450 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
20451 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
20452 	}
20453 	if (env->used_map_cnt || env->used_btf_cnt) {
20454 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
20455 		 * bpf_ld_imm64 instructions
20456 		 */
20457 		convert_pseudo_ld_imm64(env);
20458 	}
20459 
20460 	adjust_btf_func(env);
20461 
20462 err_release_maps:
20463 	if (!env->prog->aux->used_maps)
20464 		/* if we didn't copy map pointers into bpf_prog_info, release
20465 		 * them now. Otherwise free_used_maps() will release them.
20466 		 */
20467 		release_maps(env);
20468 	if (!env->prog->aux->used_btfs)
20469 		release_btfs(env);
20470 
20471 	/* extension progs temporarily inherit the attach_type of their targets
20472 	   for verification purposes, so set it back to zero before returning
20473 	 */
20474 	if (env->prog->type == BPF_PROG_TYPE_EXT)
20475 		env->prog->expected_attach_type = 0;
20476 
20477 	*prog = env->prog;
20478 err_unlock:
20479 	if (!is_priv)
20480 		mutex_unlock(&bpf_verifier_lock);
20481 	vfree(env->insn_aux_data);
20482 err_free_env:
20483 	kvfree(env);
20484 	return ret;
20485 }
20486