xref: /openbmc/linux/kernel/bpf/trampoline.c (revision ffcdf473)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2019 Facebook */
3 #include <linux/hash.h>
4 #include <linux/bpf.h>
5 #include <linux/filter.h>
6 #include <linux/ftrace.h>
7 #include <linux/rbtree_latch.h>
8 #include <linux/perf_event.h>
9 #include <linux/btf.h>
10 #include <linux/rcupdate_trace.h>
11 #include <linux/rcupdate_wait.h>
12 #include <linux/static_call.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/bpf_lsm.h>
15 #include <linux/delay.h>
16 
17 /* dummy _ops. The verifier will operate on target program's ops. */
18 const struct bpf_verifier_ops bpf_extension_verifier_ops = {
19 };
20 const struct bpf_prog_ops bpf_extension_prog_ops = {
21 };
22 
23 /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */
24 #define TRAMPOLINE_HASH_BITS 10
25 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS)
26 
27 static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE];
28 
29 /* serializes access to trampoline_table */
30 static DEFINE_MUTEX(trampoline_mutex);
31 
32 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
33 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex);
34 
35 static int bpf_tramp_ftrace_ops_func(struct ftrace_ops *ops, enum ftrace_ops_cmd cmd)
36 {
37 	struct bpf_trampoline *tr = ops->private;
38 	int ret = 0;
39 
40 	if (cmd == FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF) {
41 		/* This is called inside register_ftrace_direct_multi(), so
42 		 * tr->mutex is already locked.
43 		 */
44 		lockdep_assert_held_once(&tr->mutex);
45 
46 		/* Instead of updating the trampoline here, we propagate
47 		 * -EAGAIN to register_ftrace_direct(). Then we can
48 		 * retry register_ftrace_direct() after updating the
49 		 * trampoline.
50 		 */
51 		if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) &&
52 		    !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) {
53 			if (WARN_ON_ONCE(tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY))
54 				return -EBUSY;
55 
56 			tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY;
57 			return -EAGAIN;
58 		}
59 
60 		return 0;
61 	}
62 
63 	/* The normal locking order is
64 	 *    tr->mutex => direct_mutex (ftrace.c) => ftrace_lock (ftrace.c)
65 	 *
66 	 * The following two commands are called from
67 	 *
68 	 *   prepare_direct_functions_for_ipmodify
69 	 *   cleanup_direct_functions_after_ipmodify
70 	 *
71 	 * In both cases, direct_mutex is already locked. Use
72 	 * mutex_trylock(&tr->mutex) to avoid deadlock in race condition
73 	 * (something else is making changes to this same trampoline).
74 	 */
75 	if (!mutex_trylock(&tr->mutex)) {
76 		/* sleep 1 ms to make sure whatever holding tr->mutex makes
77 		 * some progress.
78 		 */
79 		msleep(1);
80 		return -EAGAIN;
81 	}
82 
83 	switch (cmd) {
84 	case FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER:
85 		tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY;
86 
87 		if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) &&
88 		    !(tr->flags & BPF_TRAMP_F_ORIG_STACK))
89 			ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */);
90 		break;
91 	case FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER:
92 		tr->flags &= ~BPF_TRAMP_F_SHARE_IPMODIFY;
93 
94 		if (tr->flags & BPF_TRAMP_F_ORIG_STACK)
95 			ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */);
96 		break;
97 	default:
98 		ret = -EINVAL;
99 		break;
100 	}
101 
102 	mutex_unlock(&tr->mutex);
103 	return ret;
104 }
105 #endif
106 
107 bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
108 {
109 	enum bpf_attach_type eatype = prog->expected_attach_type;
110 	enum bpf_prog_type ptype = prog->type;
111 
112 	return (ptype == BPF_PROG_TYPE_TRACING &&
113 		(eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT ||
114 		 eatype == BPF_MODIFY_RETURN)) ||
115 		(ptype == BPF_PROG_TYPE_LSM && eatype == BPF_LSM_MAC);
116 }
117 
118 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym)
119 {
120 	ksym->start = (unsigned long) data;
121 	ksym->end = ksym->start + PAGE_SIZE;
122 	bpf_ksym_add(ksym);
123 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
124 			   PAGE_SIZE, false, ksym->name);
125 }
126 
127 void bpf_image_ksym_del(struct bpf_ksym *ksym)
128 {
129 	bpf_ksym_del(ksym);
130 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
131 			   PAGE_SIZE, true, ksym->name);
132 }
133 
134 static struct bpf_trampoline *bpf_trampoline_lookup(u64 key)
135 {
136 	struct bpf_trampoline *tr;
137 	struct hlist_head *head;
138 	int i;
139 
140 	mutex_lock(&trampoline_mutex);
141 	head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)];
142 	hlist_for_each_entry(tr, head, hlist) {
143 		if (tr->key == key) {
144 			refcount_inc(&tr->refcnt);
145 			goto out;
146 		}
147 	}
148 	tr = kzalloc(sizeof(*tr), GFP_KERNEL);
149 	if (!tr)
150 		goto out;
151 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
152 	tr->fops = kzalloc(sizeof(struct ftrace_ops), GFP_KERNEL);
153 	if (!tr->fops) {
154 		kfree(tr);
155 		tr = NULL;
156 		goto out;
157 	}
158 	tr->fops->private = tr;
159 	tr->fops->ops_func = bpf_tramp_ftrace_ops_func;
160 #endif
161 
162 	tr->key = key;
163 	INIT_HLIST_NODE(&tr->hlist);
164 	hlist_add_head(&tr->hlist, head);
165 	refcount_set(&tr->refcnt, 1);
166 	mutex_init(&tr->mutex);
167 	for (i = 0; i < BPF_TRAMP_MAX; i++)
168 		INIT_HLIST_HEAD(&tr->progs_hlist[i]);
169 out:
170 	mutex_unlock(&trampoline_mutex);
171 	return tr;
172 }
173 
174 static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr)
175 {
176 	void *ip = tr->func.addr;
177 	int ret;
178 
179 	if (tr->func.ftrace_managed)
180 		ret = unregister_ftrace_direct(tr->fops, (long)old_addr, false);
181 	else
182 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL);
183 
184 	return ret;
185 }
186 
187 static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr,
188 			 bool lock_direct_mutex)
189 {
190 	void *ip = tr->func.addr;
191 	int ret;
192 
193 	if (tr->func.ftrace_managed) {
194 		if (lock_direct_mutex)
195 			ret = modify_ftrace_direct(tr->fops, (long)new_addr);
196 		else
197 			ret = modify_ftrace_direct_nolock(tr->fops, (long)new_addr);
198 	} else {
199 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr);
200 	}
201 	return ret;
202 }
203 
204 /* first time registering */
205 static int register_fentry(struct bpf_trampoline *tr, void *new_addr)
206 {
207 	void *ip = tr->func.addr;
208 	unsigned long faddr;
209 	int ret;
210 
211 	faddr = ftrace_location((unsigned long)ip);
212 	if (faddr) {
213 		if (!tr->fops)
214 			return -ENOTSUPP;
215 		tr->func.ftrace_managed = true;
216 	}
217 
218 	if (tr->func.ftrace_managed) {
219 		ftrace_set_filter_ip(tr->fops, (unsigned long)ip, 0, 1);
220 		ret = register_ftrace_direct(tr->fops, (long)new_addr);
221 	} else {
222 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr);
223 	}
224 
225 	return ret;
226 }
227 
228 static struct bpf_tramp_links *
229 bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg)
230 {
231 	struct bpf_tramp_link *link;
232 	struct bpf_tramp_links *tlinks;
233 	struct bpf_tramp_link **links;
234 	int kind;
235 
236 	*total = 0;
237 	tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL);
238 	if (!tlinks)
239 		return ERR_PTR(-ENOMEM);
240 
241 	for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
242 		tlinks[kind].nr_links = tr->progs_cnt[kind];
243 		*total += tr->progs_cnt[kind];
244 		links = tlinks[kind].links;
245 
246 		hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) {
247 			*ip_arg |= link->link.prog->call_get_func_ip;
248 			*links++ = link;
249 		}
250 	}
251 	return tlinks;
252 }
253 
254 static void __bpf_tramp_image_put_deferred(struct work_struct *work)
255 {
256 	struct bpf_tramp_image *im;
257 
258 	im = container_of(work, struct bpf_tramp_image, work);
259 	bpf_image_ksym_del(&im->ksym);
260 	bpf_jit_free_exec(im->image);
261 	bpf_jit_uncharge_modmem(PAGE_SIZE);
262 	percpu_ref_exit(&im->pcref);
263 	kfree_rcu(im, rcu);
264 }
265 
266 /* callback, fexit step 3 or fentry step 2 */
267 static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu)
268 {
269 	struct bpf_tramp_image *im;
270 
271 	im = container_of(rcu, struct bpf_tramp_image, rcu);
272 	INIT_WORK(&im->work, __bpf_tramp_image_put_deferred);
273 	schedule_work(&im->work);
274 }
275 
276 /* callback, fexit step 2. Called after percpu_ref_kill confirms. */
277 static void __bpf_tramp_image_release(struct percpu_ref *pcref)
278 {
279 	struct bpf_tramp_image *im;
280 
281 	im = container_of(pcref, struct bpf_tramp_image, pcref);
282 	call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
283 }
284 
285 /* callback, fexit or fentry step 1 */
286 static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu)
287 {
288 	struct bpf_tramp_image *im;
289 
290 	im = container_of(rcu, struct bpf_tramp_image, rcu);
291 	if (im->ip_after_call)
292 		/* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */
293 		percpu_ref_kill(&im->pcref);
294 	else
295 		/* the case of fentry trampoline */
296 		call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
297 }
298 
299 static void bpf_tramp_image_put(struct bpf_tramp_image *im)
300 {
301 	/* The trampoline image that calls original function is using:
302 	 * rcu_read_lock_trace to protect sleepable bpf progs
303 	 * rcu_read_lock to protect normal bpf progs
304 	 * percpu_ref to protect trampoline itself
305 	 * rcu tasks to protect trampoline asm not covered by percpu_ref
306 	 * (which are few asm insns before __bpf_tramp_enter and
307 	 *  after __bpf_tramp_exit)
308 	 *
309 	 * The trampoline is unreachable before bpf_tramp_image_put().
310 	 *
311 	 * First, patch the trampoline to avoid calling into fexit progs.
312 	 * The progs will be freed even if the original function is still
313 	 * executing or sleeping.
314 	 * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on
315 	 * first few asm instructions to execute and call into
316 	 * __bpf_tramp_enter->percpu_ref_get.
317 	 * Then use percpu_ref_kill to wait for the trampoline and the original
318 	 * function to finish.
319 	 * Then use call_rcu_tasks() to make sure few asm insns in
320 	 * the trampoline epilogue are done as well.
321 	 *
322 	 * In !PREEMPT case the task that got interrupted in the first asm
323 	 * insns won't go through an RCU quiescent state which the
324 	 * percpu_ref_kill will be waiting for. Hence the first
325 	 * call_rcu_tasks() is not necessary.
326 	 */
327 	if (im->ip_after_call) {
328 		int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP,
329 					     NULL, im->ip_epilogue);
330 		WARN_ON(err);
331 		if (IS_ENABLED(CONFIG_PREEMPTION))
332 			call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
333 		else
334 			percpu_ref_kill(&im->pcref);
335 		return;
336 	}
337 
338 	/* The trampoline without fexit and fmod_ret progs doesn't call original
339 	 * function and doesn't use percpu_ref.
340 	 * Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
341 	 * Then use call_rcu_tasks() to wait for the rest of trampoline asm
342 	 * and normal progs.
343 	 */
344 	call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
345 }
346 
347 static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, u32 idx)
348 {
349 	struct bpf_tramp_image *im;
350 	struct bpf_ksym *ksym;
351 	void *image;
352 	int err = -ENOMEM;
353 
354 	im = kzalloc(sizeof(*im), GFP_KERNEL);
355 	if (!im)
356 		goto out;
357 
358 	err = bpf_jit_charge_modmem(PAGE_SIZE);
359 	if (err)
360 		goto out_free_im;
361 
362 	err = -ENOMEM;
363 	im->image = image = bpf_jit_alloc_exec(PAGE_SIZE);
364 	if (!image)
365 		goto out_uncharge;
366 	set_vm_flush_reset_perms(image);
367 
368 	err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL);
369 	if (err)
370 		goto out_free_image;
371 
372 	ksym = &im->ksym;
373 	INIT_LIST_HEAD_RCU(&ksym->lnode);
374 	snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu_%u", key, idx);
375 	bpf_image_ksym_add(image, ksym);
376 	return im;
377 
378 out_free_image:
379 	bpf_jit_free_exec(im->image);
380 out_uncharge:
381 	bpf_jit_uncharge_modmem(PAGE_SIZE);
382 out_free_im:
383 	kfree(im);
384 out:
385 	return ERR_PTR(err);
386 }
387 
388 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex)
389 {
390 	struct bpf_tramp_image *im;
391 	struct bpf_tramp_links *tlinks;
392 	u32 orig_flags = tr->flags;
393 	bool ip_arg = false;
394 	int err, total;
395 
396 	tlinks = bpf_trampoline_get_progs(tr, &total, &ip_arg);
397 	if (IS_ERR(tlinks))
398 		return PTR_ERR(tlinks);
399 
400 	if (total == 0) {
401 		err = unregister_fentry(tr, tr->cur_image->image);
402 		bpf_tramp_image_put(tr->cur_image);
403 		tr->cur_image = NULL;
404 		tr->selector = 0;
405 		goto out;
406 	}
407 
408 	im = bpf_tramp_image_alloc(tr->key, tr->selector);
409 	if (IS_ERR(im)) {
410 		err = PTR_ERR(im);
411 		goto out;
412 	}
413 
414 	/* clear all bits except SHARE_IPMODIFY */
415 	tr->flags &= BPF_TRAMP_F_SHARE_IPMODIFY;
416 
417 	if (tlinks[BPF_TRAMP_FEXIT].nr_links ||
418 	    tlinks[BPF_TRAMP_MODIFY_RETURN].nr_links) {
419 		/* NOTE: BPF_TRAMP_F_RESTORE_REGS and BPF_TRAMP_F_SKIP_FRAME
420 		 * should not be set together.
421 		 */
422 		tr->flags |= BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME;
423 	} else {
424 		tr->flags |= BPF_TRAMP_F_RESTORE_REGS;
425 	}
426 
427 	if (ip_arg)
428 		tr->flags |= BPF_TRAMP_F_IP_ARG;
429 
430 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
431 again:
432 	if ((tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY) &&
433 	    (tr->flags & BPF_TRAMP_F_CALL_ORIG))
434 		tr->flags |= BPF_TRAMP_F_ORIG_STACK;
435 #endif
436 
437 	err = arch_prepare_bpf_trampoline(im, im->image, im->image + PAGE_SIZE,
438 					  &tr->func.model, tr->flags, tlinks,
439 					  tr->func.addr);
440 	if (err < 0)
441 		goto out;
442 
443 	set_memory_rox((long)im->image, 1);
444 
445 	WARN_ON(tr->cur_image && tr->selector == 0);
446 	WARN_ON(!tr->cur_image && tr->selector);
447 	if (tr->cur_image)
448 		/* progs already running at this address */
449 		err = modify_fentry(tr, tr->cur_image->image, im->image, lock_direct_mutex);
450 	else
451 		/* first time registering */
452 		err = register_fentry(tr, im->image);
453 
454 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
455 	if (err == -EAGAIN) {
456 		/* -EAGAIN from bpf_tramp_ftrace_ops_func. Now
457 		 * BPF_TRAMP_F_SHARE_IPMODIFY is set, we can generate the
458 		 * trampoline again, and retry register.
459 		 */
460 		/* reset fops->func and fops->trampoline for re-register */
461 		tr->fops->func = NULL;
462 		tr->fops->trampoline = 0;
463 
464 		/* reset im->image memory attr for arch_prepare_bpf_trampoline */
465 		set_memory_nx((long)im->image, 1);
466 		set_memory_rw((long)im->image, 1);
467 		goto again;
468 	}
469 #endif
470 	if (err)
471 		goto out;
472 
473 	if (tr->cur_image)
474 		bpf_tramp_image_put(tr->cur_image);
475 	tr->cur_image = im;
476 	tr->selector++;
477 out:
478 	/* If any error happens, restore previous flags */
479 	if (err)
480 		tr->flags = orig_flags;
481 	kfree(tlinks);
482 	return err;
483 }
484 
485 static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog)
486 {
487 	switch (prog->expected_attach_type) {
488 	case BPF_TRACE_FENTRY:
489 		return BPF_TRAMP_FENTRY;
490 	case BPF_MODIFY_RETURN:
491 		return BPF_TRAMP_MODIFY_RETURN;
492 	case BPF_TRACE_FEXIT:
493 		return BPF_TRAMP_FEXIT;
494 	case BPF_LSM_MAC:
495 		if (!prog->aux->attach_func_proto->type)
496 			/* The function returns void, we cannot modify its
497 			 * return value.
498 			 */
499 			return BPF_TRAMP_FEXIT;
500 		else
501 			return BPF_TRAMP_MODIFY_RETURN;
502 	default:
503 		return BPF_TRAMP_REPLACE;
504 	}
505 }
506 
507 static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
508 {
509 	enum bpf_tramp_prog_type kind;
510 	struct bpf_tramp_link *link_exiting;
511 	int err = 0;
512 	int cnt = 0, i;
513 
514 	kind = bpf_attach_type_to_tramp(link->link.prog);
515 	if (tr->extension_prog)
516 		/* cannot attach fentry/fexit if extension prog is attached.
517 		 * cannot overwrite extension prog either.
518 		 */
519 		return -EBUSY;
520 
521 	for (i = 0; i < BPF_TRAMP_MAX; i++)
522 		cnt += tr->progs_cnt[i];
523 
524 	if (kind == BPF_TRAMP_REPLACE) {
525 		/* Cannot attach extension if fentry/fexit are in use. */
526 		if (cnt)
527 			return -EBUSY;
528 		tr->extension_prog = link->link.prog;
529 		return bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL,
530 					  link->link.prog->bpf_func);
531 	}
532 	if (cnt >= BPF_MAX_TRAMP_LINKS)
533 		return -E2BIG;
534 	if (!hlist_unhashed(&link->tramp_hlist))
535 		/* prog already linked */
536 		return -EBUSY;
537 	hlist_for_each_entry(link_exiting, &tr->progs_hlist[kind], tramp_hlist) {
538 		if (link_exiting->link.prog != link->link.prog)
539 			continue;
540 		/* prog already linked */
541 		return -EBUSY;
542 	}
543 
544 	hlist_add_head(&link->tramp_hlist, &tr->progs_hlist[kind]);
545 	tr->progs_cnt[kind]++;
546 	err = bpf_trampoline_update(tr, true /* lock_direct_mutex */);
547 	if (err) {
548 		hlist_del_init(&link->tramp_hlist);
549 		tr->progs_cnt[kind]--;
550 	}
551 	return err;
552 }
553 
554 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
555 {
556 	int err;
557 
558 	mutex_lock(&tr->mutex);
559 	err = __bpf_trampoline_link_prog(link, tr);
560 	mutex_unlock(&tr->mutex);
561 	return err;
562 }
563 
564 static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
565 {
566 	enum bpf_tramp_prog_type kind;
567 	int err;
568 
569 	kind = bpf_attach_type_to_tramp(link->link.prog);
570 	if (kind == BPF_TRAMP_REPLACE) {
571 		WARN_ON_ONCE(!tr->extension_prog);
572 		err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP,
573 					 tr->extension_prog->bpf_func, NULL);
574 		tr->extension_prog = NULL;
575 		return err;
576 	}
577 	hlist_del_init(&link->tramp_hlist);
578 	tr->progs_cnt[kind]--;
579 	return bpf_trampoline_update(tr, true /* lock_direct_mutex */);
580 }
581 
582 /* bpf_trampoline_unlink_prog() should never fail. */
583 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
584 {
585 	int err;
586 
587 	mutex_lock(&tr->mutex);
588 	err = __bpf_trampoline_unlink_prog(link, tr);
589 	mutex_unlock(&tr->mutex);
590 	return err;
591 }
592 
593 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
594 static void bpf_shim_tramp_link_release(struct bpf_link *link)
595 {
596 	struct bpf_shim_tramp_link *shim_link =
597 		container_of(link, struct bpf_shim_tramp_link, link.link);
598 
599 	/* paired with 'shim_link->trampoline = tr' in bpf_trampoline_link_cgroup_shim */
600 	if (!shim_link->trampoline)
601 		return;
602 
603 	WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline));
604 	bpf_trampoline_put(shim_link->trampoline);
605 }
606 
607 static void bpf_shim_tramp_link_dealloc(struct bpf_link *link)
608 {
609 	struct bpf_shim_tramp_link *shim_link =
610 		container_of(link, struct bpf_shim_tramp_link, link.link);
611 
612 	kfree(shim_link);
613 }
614 
615 static const struct bpf_link_ops bpf_shim_tramp_link_lops = {
616 	.release = bpf_shim_tramp_link_release,
617 	.dealloc = bpf_shim_tramp_link_dealloc,
618 };
619 
620 static struct bpf_shim_tramp_link *cgroup_shim_alloc(const struct bpf_prog *prog,
621 						     bpf_func_t bpf_func,
622 						     int cgroup_atype)
623 {
624 	struct bpf_shim_tramp_link *shim_link = NULL;
625 	struct bpf_prog *p;
626 
627 	shim_link = kzalloc(sizeof(*shim_link), GFP_USER);
628 	if (!shim_link)
629 		return NULL;
630 
631 	p = bpf_prog_alloc(1, 0);
632 	if (!p) {
633 		kfree(shim_link);
634 		return NULL;
635 	}
636 
637 	p->jited = false;
638 	p->bpf_func = bpf_func;
639 
640 	p->aux->cgroup_atype = cgroup_atype;
641 	p->aux->attach_func_proto = prog->aux->attach_func_proto;
642 	p->aux->attach_btf_id = prog->aux->attach_btf_id;
643 	p->aux->attach_btf = prog->aux->attach_btf;
644 	btf_get(p->aux->attach_btf);
645 	p->type = BPF_PROG_TYPE_LSM;
646 	p->expected_attach_type = BPF_LSM_MAC;
647 	bpf_prog_inc(p);
648 	bpf_link_init(&shim_link->link.link, BPF_LINK_TYPE_UNSPEC,
649 		      &bpf_shim_tramp_link_lops, p);
650 	bpf_cgroup_atype_get(p->aux->attach_btf_id, cgroup_atype);
651 
652 	return shim_link;
653 }
654 
655 static struct bpf_shim_tramp_link *cgroup_shim_find(struct bpf_trampoline *tr,
656 						    bpf_func_t bpf_func)
657 {
658 	struct bpf_tramp_link *link;
659 	int kind;
660 
661 	for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
662 		hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) {
663 			struct bpf_prog *p = link->link.prog;
664 
665 			if (p->bpf_func == bpf_func)
666 				return container_of(link, struct bpf_shim_tramp_link, link);
667 		}
668 	}
669 
670 	return NULL;
671 }
672 
673 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
674 				    int cgroup_atype)
675 {
676 	struct bpf_shim_tramp_link *shim_link = NULL;
677 	struct bpf_attach_target_info tgt_info = {};
678 	struct bpf_trampoline *tr;
679 	bpf_func_t bpf_func;
680 	u64 key;
681 	int err;
682 
683 	err = bpf_check_attach_target(NULL, prog, NULL,
684 				      prog->aux->attach_btf_id,
685 				      &tgt_info);
686 	if (err)
687 		return err;
688 
689 	key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf,
690 					 prog->aux->attach_btf_id);
691 
692 	bpf_lsm_find_cgroup_shim(prog, &bpf_func);
693 	tr = bpf_trampoline_get(key, &tgt_info);
694 	if (!tr)
695 		return  -ENOMEM;
696 
697 	mutex_lock(&tr->mutex);
698 
699 	shim_link = cgroup_shim_find(tr, bpf_func);
700 	if (shim_link) {
701 		/* Reusing existing shim attached by the other program. */
702 		bpf_link_inc(&shim_link->link.link);
703 
704 		mutex_unlock(&tr->mutex);
705 		bpf_trampoline_put(tr); /* bpf_trampoline_get above */
706 		return 0;
707 	}
708 
709 	/* Allocate and install new shim. */
710 
711 	shim_link = cgroup_shim_alloc(prog, bpf_func, cgroup_atype);
712 	if (!shim_link) {
713 		err = -ENOMEM;
714 		goto err;
715 	}
716 
717 	err = __bpf_trampoline_link_prog(&shim_link->link, tr);
718 	if (err)
719 		goto err;
720 
721 	shim_link->trampoline = tr;
722 	/* note, we're still holding tr refcnt from above */
723 
724 	mutex_unlock(&tr->mutex);
725 
726 	return 0;
727 err:
728 	mutex_unlock(&tr->mutex);
729 
730 	if (shim_link)
731 		bpf_link_put(&shim_link->link.link);
732 
733 	/* have to release tr while _not_ holding its mutex */
734 	bpf_trampoline_put(tr); /* bpf_trampoline_get above */
735 
736 	return err;
737 }
738 
739 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
740 {
741 	struct bpf_shim_tramp_link *shim_link = NULL;
742 	struct bpf_trampoline *tr;
743 	bpf_func_t bpf_func;
744 	u64 key;
745 
746 	key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf,
747 					 prog->aux->attach_btf_id);
748 
749 	bpf_lsm_find_cgroup_shim(prog, &bpf_func);
750 	tr = bpf_trampoline_lookup(key);
751 	if (WARN_ON_ONCE(!tr))
752 		return;
753 
754 	mutex_lock(&tr->mutex);
755 	shim_link = cgroup_shim_find(tr, bpf_func);
756 	mutex_unlock(&tr->mutex);
757 
758 	if (shim_link)
759 		bpf_link_put(&shim_link->link.link);
760 
761 	bpf_trampoline_put(tr); /* bpf_trampoline_lookup above */
762 }
763 #endif
764 
765 struct bpf_trampoline *bpf_trampoline_get(u64 key,
766 					  struct bpf_attach_target_info *tgt_info)
767 {
768 	struct bpf_trampoline *tr;
769 
770 	tr = bpf_trampoline_lookup(key);
771 	if (!tr)
772 		return NULL;
773 
774 	mutex_lock(&tr->mutex);
775 	if (tr->func.addr)
776 		goto out;
777 
778 	memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel));
779 	tr->func.addr = (void *)tgt_info->tgt_addr;
780 out:
781 	mutex_unlock(&tr->mutex);
782 	return tr;
783 }
784 
785 void bpf_trampoline_put(struct bpf_trampoline *tr)
786 {
787 	int i;
788 
789 	if (!tr)
790 		return;
791 	mutex_lock(&trampoline_mutex);
792 	if (!refcount_dec_and_test(&tr->refcnt))
793 		goto out;
794 	WARN_ON_ONCE(mutex_is_locked(&tr->mutex));
795 
796 	for (i = 0; i < BPF_TRAMP_MAX; i++)
797 		if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[i])))
798 			goto out;
799 
800 	/* This code will be executed even when the last bpf_tramp_image
801 	 * is alive. All progs are detached from the trampoline and the
802 	 * trampoline image is patched with jmp into epilogue to skip
803 	 * fexit progs. The fentry-only trampoline will be freed via
804 	 * multiple rcu callbacks.
805 	 */
806 	hlist_del(&tr->hlist);
807 	if (tr->fops) {
808 		ftrace_free_filter(tr->fops);
809 		kfree(tr->fops);
810 	}
811 	kfree(tr);
812 out:
813 	mutex_unlock(&trampoline_mutex);
814 }
815 
816 #define NO_START_TIME 1
817 static __always_inline u64 notrace bpf_prog_start_time(void)
818 {
819 	u64 start = NO_START_TIME;
820 
821 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
822 		start = sched_clock();
823 		if (unlikely(!start))
824 			start = NO_START_TIME;
825 	}
826 	return start;
827 }
828 
829 /* The logic is similar to bpf_prog_run(), but with an explicit
830  * rcu_read_lock() and migrate_disable() which are required
831  * for the trampoline. The macro is split into
832  * call __bpf_prog_enter
833  * call prog->bpf_func
834  * call __bpf_prog_exit
835  *
836  * __bpf_prog_enter returns:
837  * 0 - skip execution of the bpf prog
838  * 1 - execute bpf prog
839  * [2..MAX_U64] - execute bpf prog and record execution time.
840  *     This is start time.
841  */
842 static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx)
843 	__acquires(RCU)
844 {
845 	rcu_read_lock();
846 	migrate_disable();
847 
848 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
849 
850 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
851 		bpf_prog_inc_misses_counter(prog);
852 		return 0;
853 	}
854 	return bpf_prog_start_time();
855 }
856 
857 static void notrace update_prog_stats(struct bpf_prog *prog,
858 				      u64 start)
859 {
860 	struct bpf_prog_stats *stats;
861 
862 	if (static_branch_unlikely(&bpf_stats_enabled_key) &&
863 	    /* static_key could be enabled in __bpf_prog_enter*
864 	     * and disabled in __bpf_prog_exit*.
865 	     * And vice versa.
866 	     * Hence check that 'start' is valid.
867 	     */
868 	    start > NO_START_TIME) {
869 		unsigned long flags;
870 
871 		stats = this_cpu_ptr(prog->stats);
872 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
873 		u64_stats_inc(&stats->cnt);
874 		u64_stats_add(&stats->nsecs, sched_clock() - start);
875 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
876 	}
877 }
878 
879 static void notrace __bpf_prog_exit_recur(struct bpf_prog *prog, u64 start,
880 					  struct bpf_tramp_run_ctx *run_ctx)
881 	__releases(RCU)
882 {
883 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
884 
885 	update_prog_stats(prog, start);
886 	this_cpu_dec(*(prog->active));
887 	migrate_enable();
888 	rcu_read_unlock();
889 }
890 
891 static u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog,
892 					       struct bpf_tramp_run_ctx *run_ctx)
893 	__acquires(RCU)
894 {
895 	/* Runtime stats are exported via actual BPF_LSM_CGROUP
896 	 * programs, not the shims.
897 	 */
898 	rcu_read_lock();
899 	migrate_disable();
900 
901 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
902 
903 	return NO_START_TIME;
904 }
905 
906 static void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start,
907 					       struct bpf_tramp_run_ctx *run_ctx)
908 	__releases(RCU)
909 {
910 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
911 
912 	migrate_enable();
913 	rcu_read_unlock();
914 }
915 
916 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
917 					     struct bpf_tramp_run_ctx *run_ctx)
918 {
919 	rcu_read_lock_trace();
920 	migrate_disable();
921 	might_fault();
922 
923 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
924 		bpf_prog_inc_misses_counter(prog);
925 		return 0;
926 	}
927 
928 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
929 
930 	return bpf_prog_start_time();
931 }
932 
933 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
934 					     struct bpf_tramp_run_ctx *run_ctx)
935 {
936 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
937 
938 	update_prog_stats(prog, start);
939 	this_cpu_dec(*(prog->active));
940 	migrate_enable();
941 	rcu_read_unlock_trace();
942 }
943 
944 static u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog,
945 					      struct bpf_tramp_run_ctx *run_ctx)
946 {
947 	rcu_read_lock_trace();
948 	migrate_disable();
949 	might_fault();
950 
951 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
952 
953 	return bpf_prog_start_time();
954 }
955 
956 static void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start,
957 					      struct bpf_tramp_run_ctx *run_ctx)
958 {
959 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
960 
961 	update_prog_stats(prog, start);
962 	migrate_enable();
963 	rcu_read_unlock_trace();
964 }
965 
966 static u64 notrace __bpf_prog_enter(struct bpf_prog *prog,
967 				    struct bpf_tramp_run_ctx *run_ctx)
968 	__acquires(RCU)
969 {
970 	rcu_read_lock();
971 	migrate_disable();
972 
973 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
974 
975 	return bpf_prog_start_time();
976 }
977 
978 static void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start,
979 				    struct bpf_tramp_run_ctx *run_ctx)
980 	__releases(RCU)
981 {
982 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
983 
984 	update_prog_stats(prog, start);
985 	migrate_enable();
986 	rcu_read_unlock();
987 }
988 
989 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr)
990 {
991 	percpu_ref_get(&tr->pcref);
992 }
993 
994 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr)
995 {
996 	percpu_ref_put(&tr->pcref);
997 }
998 
999 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog)
1000 {
1001 	bool sleepable = prog->aux->sleepable;
1002 
1003 	if (bpf_prog_check_recur(prog))
1004 		return sleepable ? __bpf_prog_enter_sleepable_recur :
1005 			__bpf_prog_enter_recur;
1006 
1007 	if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM &&
1008 	    prog->expected_attach_type == BPF_LSM_CGROUP)
1009 		return __bpf_prog_enter_lsm_cgroup;
1010 
1011 	return sleepable ? __bpf_prog_enter_sleepable : __bpf_prog_enter;
1012 }
1013 
1014 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog)
1015 {
1016 	bool sleepable = prog->aux->sleepable;
1017 
1018 	if (bpf_prog_check_recur(prog))
1019 		return sleepable ? __bpf_prog_exit_sleepable_recur :
1020 			__bpf_prog_exit_recur;
1021 
1022 	if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM &&
1023 	    prog->expected_attach_type == BPF_LSM_CGROUP)
1024 		return __bpf_prog_exit_lsm_cgroup;
1025 
1026 	return sleepable ? __bpf_prog_exit_sleepable : __bpf_prog_exit;
1027 }
1028 
1029 int __weak
1030 arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1031 			    const struct btf_func_model *m, u32 flags,
1032 			    struct bpf_tramp_links *tlinks,
1033 			    void *orig_call)
1034 {
1035 	return -ENOTSUPP;
1036 }
1037 
1038 static int __init init_trampolines(void)
1039 {
1040 	int i;
1041 
1042 	for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++)
1043 		INIT_HLIST_HEAD(&trampoline_table[i]);
1044 	return 0;
1045 }
1046 late_initcall(init_trampolines);
1047