xref: /openbmc/linux/kernel/bpf/trampoline.c (revision ac73d4bf2cdaf2cb8a43df8ee4a5c066d2c5d7b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2019 Facebook */
3 #include <linux/hash.h>
4 #include <linux/bpf.h>
5 #include <linux/filter.h>
6 #include <linux/ftrace.h>
7 #include <linux/rbtree_latch.h>
8 #include <linux/perf_event.h>
9 #include <linux/btf.h>
10 #include <linux/rcupdate_trace.h>
11 #include <linux/rcupdate_wait.h>
12 #include <linux/module.h>
13 #include <linux/static_call.h>
14 #include <linux/bpf_verifier.h>
15 #include <linux/bpf_lsm.h>
16 #include <linux/delay.h>
17 
18 /* dummy _ops. The verifier will operate on target program's ops. */
19 const struct bpf_verifier_ops bpf_extension_verifier_ops = {
20 };
21 const struct bpf_prog_ops bpf_extension_prog_ops = {
22 };
23 
24 /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */
25 #define TRAMPOLINE_HASH_BITS 10
26 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS)
27 
28 static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE];
29 
30 /* serializes access to trampoline_table */
31 static DEFINE_MUTEX(trampoline_mutex);
32 
33 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
34 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex);
35 
36 static int bpf_tramp_ftrace_ops_func(struct ftrace_ops *ops, enum ftrace_ops_cmd cmd)
37 {
38 	struct bpf_trampoline *tr = ops->private;
39 	int ret = 0;
40 
41 	if (cmd == FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_SELF) {
42 		/* This is called inside register_ftrace_direct_multi(), so
43 		 * tr->mutex is already locked.
44 		 */
45 		lockdep_assert_held_once(&tr->mutex);
46 
47 		/* Instead of updating the trampoline here, we propagate
48 		 * -EAGAIN to register_ftrace_direct_multi(). Then we can
49 		 * retry register_ftrace_direct_multi() after updating the
50 		 * trampoline.
51 		 */
52 		if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) &&
53 		    !(tr->flags & BPF_TRAMP_F_ORIG_STACK)) {
54 			if (WARN_ON_ONCE(tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY))
55 				return -EBUSY;
56 
57 			tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY;
58 			return -EAGAIN;
59 		}
60 
61 		return 0;
62 	}
63 
64 	/* The normal locking order is
65 	 *    tr->mutex => direct_mutex (ftrace.c) => ftrace_lock (ftrace.c)
66 	 *
67 	 * The following two commands are called from
68 	 *
69 	 *   prepare_direct_functions_for_ipmodify
70 	 *   cleanup_direct_functions_after_ipmodify
71 	 *
72 	 * In both cases, direct_mutex is already locked. Use
73 	 * mutex_trylock(&tr->mutex) to avoid deadlock in race condition
74 	 * (something else is making changes to this same trampoline).
75 	 */
76 	if (!mutex_trylock(&tr->mutex)) {
77 		/* sleep 1 ms to make sure whatever holding tr->mutex makes
78 		 * some progress.
79 		 */
80 		msleep(1);
81 		return -EAGAIN;
82 	}
83 
84 	switch (cmd) {
85 	case FTRACE_OPS_CMD_ENABLE_SHARE_IPMODIFY_PEER:
86 		tr->flags |= BPF_TRAMP_F_SHARE_IPMODIFY;
87 
88 		if ((tr->flags & BPF_TRAMP_F_CALL_ORIG) &&
89 		    !(tr->flags & BPF_TRAMP_F_ORIG_STACK))
90 			ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */);
91 		break;
92 	case FTRACE_OPS_CMD_DISABLE_SHARE_IPMODIFY_PEER:
93 		tr->flags &= ~BPF_TRAMP_F_SHARE_IPMODIFY;
94 
95 		if (tr->flags & BPF_TRAMP_F_ORIG_STACK)
96 			ret = bpf_trampoline_update(tr, false /* lock_direct_mutex */);
97 		break;
98 	default:
99 		ret = -EINVAL;
100 		break;
101 	}
102 
103 	mutex_unlock(&tr->mutex);
104 	return ret;
105 }
106 #endif
107 
108 bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
109 {
110 	enum bpf_attach_type eatype = prog->expected_attach_type;
111 	enum bpf_prog_type ptype = prog->type;
112 
113 	return (ptype == BPF_PROG_TYPE_TRACING &&
114 		(eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT ||
115 		 eatype == BPF_MODIFY_RETURN)) ||
116 		(ptype == BPF_PROG_TYPE_LSM && eatype == BPF_LSM_MAC);
117 }
118 
119 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym)
120 {
121 	ksym->start = (unsigned long) data;
122 	ksym->end = ksym->start + PAGE_SIZE;
123 	bpf_ksym_add(ksym);
124 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
125 			   PAGE_SIZE, false, ksym->name);
126 }
127 
128 void bpf_image_ksym_del(struct bpf_ksym *ksym)
129 {
130 	bpf_ksym_del(ksym);
131 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
132 			   PAGE_SIZE, true, ksym->name);
133 }
134 
135 static struct bpf_trampoline *bpf_trampoline_lookup(u64 key)
136 {
137 	struct bpf_trampoline *tr;
138 	struct hlist_head *head;
139 	int i;
140 
141 	mutex_lock(&trampoline_mutex);
142 	head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)];
143 	hlist_for_each_entry(tr, head, hlist) {
144 		if (tr->key == key) {
145 			refcount_inc(&tr->refcnt);
146 			goto out;
147 		}
148 	}
149 	tr = kzalloc(sizeof(*tr), GFP_KERNEL);
150 	if (!tr)
151 		goto out;
152 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
153 	tr->fops = kzalloc(sizeof(struct ftrace_ops), GFP_KERNEL);
154 	if (!tr->fops) {
155 		kfree(tr);
156 		tr = NULL;
157 		goto out;
158 	}
159 	tr->fops->private = tr;
160 	tr->fops->ops_func = bpf_tramp_ftrace_ops_func;
161 #endif
162 
163 	tr->key = key;
164 	INIT_HLIST_NODE(&tr->hlist);
165 	hlist_add_head(&tr->hlist, head);
166 	refcount_set(&tr->refcnt, 1);
167 	mutex_init(&tr->mutex);
168 	for (i = 0; i < BPF_TRAMP_MAX; i++)
169 		INIT_HLIST_HEAD(&tr->progs_hlist[i]);
170 out:
171 	mutex_unlock(&trampoline_mutex);
172 	return tr;
173 }
174 
175 static int bpf_trampoline_module_get(struct bpf_trampoline *tr)
176 {
177 	struct module *mod;
178 	int err = 0;
179 
180 	preempt_disable();
181 	mod = __module_text_address((unsigned long) tr->func.addr);
182 	if (mod && !try_module_get(mod))
183 		err = -ENOENT;
184 	preempt_enable();
185 	tr->mod = mod;
186 	return err;
187 }
188 
189 static void bpf_trampoline_module_put(struct bpf_trampoline *tr)
190 {
191 	module_put(tr->mod);
192 	tr->mod = NULL;
193 }
194 
195 static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr)
196 {
197 	void *ip = tr->func.addr;
198 	int ret;
199 
200 	if (tr->func.ftrace_managed)
201 		ret = unregister_ftrace_direct_multi(tr->fops, (long)old_addr);
202 	else
203 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL);
204 
205 	if (!ret)
206 		bpf_trampoline_module_put(tr);
207 	return ret;
208 }
209 
210 static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr,
211 			 bool lock_direct_mutex)
212 {
213 	void *ip = tr->func.addr;
214 	int ret;
215 
216 	if (tr->func.ftrace_managed) {
217 		if (lock_direct_mutex)
218 			ret = modify_ftrace_direct_multi(tr->fops, (long)new_addr);
219 		else
220 			ret = modify_ftrace_direct_multi_nolock(tr->fops, (long)new_addr);
221 	} else {
222 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr);
223 	}
224 	return ret;
225 }
226 
227 /* first time registering */
228 static int register_fentry(struct bpf_trampoline *tr, void *new_addr)
229 {
230 	void *ip = tr->func.addr;
231 	unsigned long faddr;
232 	int ret;
233 
234 	faddr = ftrace_location((unsigned long)ip);
235 	if (faddr) {
236 		if (!tr->fops)
237 			return -ENOTSUPP;
238 		tr->func.ftrace_managed = true;
239 	}
240 
241 	if (bpf_trampoline_module_get(tr))
242 		return -ENOENT;
243 
244 	if (tr->func.ftrace_managed) {
245 		ftrace_set_filter_ip(tr->fops, (unsigned long)ip, 0, 1);
246 		ret = register_ftrace_direct_multi(tr->fops, (long)new_addr);
247 	} else {
248 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr);
249 	}
250 
251 	if (ret)
252 		bpf_trampoline_module_put(tr);
253 	return ret;
254 }
255 
256 static struct bpf_tramp_links *
257 bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg)
258 {
259 	struct bpf_tramp_link *link;
260 	struct bpf_tramp_links *tlinks;
261 	struct bpf_tramp_link **links;
262 	int kind;
263 
264 	*total = 0;
265 	tlinks = kcalloc(BPF_TRAMP_MAX, sizeof(*tlinks), GFP_KERNEL);
266 	if (!tlinks)
267 		return ERR_PTR(-ENOMEM);
268 
269 	for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
270 		tlinks[kind].nr_links = tr->progs_cnt[kind];
271 		*total += tr->progs_cnt[kind];
272 		links = tlinks[kind].links;
273 
274 		hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) {
275 			*ip_arg |= link->link.prog->call_get_func_ip;
276 			*links++ = link;
277 		}
278 	}
279 	return tlinks;
280 }
281 
282 static void __bpf_tramp_image_put_deferred(struct work_struct *work)
283 {
284 	struct bpf_tramp_image *im;
285 
286 	im = container_of(work, struct bpf_tramp_image, work);
287 	bpf_image_ksym_del(&im->ksym);
288 	bpf_jit_free_exec(im->image);
289 	bpf_jit_uncharge_modmem(PAGE_SIZE);
290 	percpu_ref_exit(&im->pcref);
291 	kfree_rcu(im, rcu);
292 }
293 
294 /* callback, fexit step 3 or fentry step 2 */
295 static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu)
296 {
297 	struct bpf_tramp_image *im;
298 
299 	im = container_of(rcu, struct bpf_tramp_image, rcu);
300 	INIT_WORK(&im->work, __bpf_tramp_image_put_deferred);
301 	schedule_work(&im->work);
302 }
303 
304 /* callback, fexit step 2. Called after percpu_ref_kill confirms. */
305 static void __bpf_tramp_image_release(struct percpu_ref *pcref)
306 {
307 	struct bpf_tramp_image *im;
308 
309 	im = container_of(pcref, struct bpf_tramp_image, pcref);
310 	call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
311 }
312 
313 /* callback, fexit or fentry step 1 */
314 static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu)
315 {
316 	struct bpf_tramp_image *im;
317 
318 	im = container_of(rcu, struct bpf_tramp_image, rcu);
319 	if (im->ip_after_call)
320 		/* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */
321 		percpu_ref_kill(&im->pcref);
322 	else
323 		/* the case of fentry trampoline */
324 		call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
325 }
326 
327 static void bpf_tramp_image_put(struct bpf_tramp_image *im)
328 {
329 	/* The trampoline image that calls original function is using:
330 	 * rcu_read_lock_trace to protect sleepable bpf progs
331 	 * rcu_read_lock to protect normal bpf progs
332 	 * percpu_ref to protect trampoline itself
333 	 * rcu tasks to protect trampoline asm not covered by percpu_ref
334 	 * (which are few asm insns before __bpf_tramp_enter and
335 	 *  after __bpf_tramp_exit)
336 	 *
337 	 * The trampoline is unreachable before bpf_tramp_image_put().
338 	 *
339 	 * First, patch the trampoline to avoid calling into fexit progs.
340 	 * The progs will be freed even if the original function is still
341 	 * executing or sleeping.
342 	 * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on
343 	 * first few asm instructions to execute and call into
344 	 * __bpf_tramp_enter->percpu_ref_get.
345 	 * Then use percpu_ref_kill to wait for the trampoline and the original
346 	 * function to finish.
347 	 * Then use call_rcu_tasks() to make sure few asm insns in
348 	 * the trampoline epilogue are done as well.
349 	 *
350 	 * In !PREEMPT case the task that got interrupted in the first asm
351 	 * insns won't go through an RCU quiescent state which the
352 	 * percpu_ref_kill will be waiting for. Hence the first
353 	 * call_rcu_tasks() is not necessary.
354 	 */
355 	if (im->ip_after_call) {
356 		int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP,
357 					     NULL, im->ip_epilogue);
358 		WARN_ON(err);
359 		if (IS_ENABLED(CONFIG_PREEMPTION))
360 			call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
361 		else
362 			percpu_ref_kill(&im->pcref);
363 		return;
364 	}
365 
366 	/* The trampoline without fexit and fmod_ret progs doesn't call original
367 	 * function and doesn't use percpu_ref.
368 	 * Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
369 	 * Then use call_rcu_tasks() to wait for the rest of trampoline asm
370 	 * and normal progs.
371 	 */
372 	call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
373 }
374 
375 static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, u32 idx)
376 {
377 	struct bpf_tramp_image *im;
378 	struct bpf_ksym *ksym;
379 	void *image;
380 	int err = -ENOMEM;
381 
382 	im = kzalloc(sizeof(*im), GFP_KERNEL);
383 	if (!im)
384 		goto out;
385 
386 	err = bpf_jit_charge_modmem(PAGE_SIZE);
387 	if (err)
388 		goto out_free_im;
389 
390 	err = -ENOMEM;
391 	im->image = image = bpf_jit_alloc_exec(PAGE_SIZE);
392 	if (!image)
393 		goto out_uncharge;
394 	set_vm_flush_reset_perms(image);
395 
396 	err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL);
397 	if (err)
398 		goto out_free_image;
399 
400 	ksym = &im->ksym;
401 	INIT_LIST_HEAD_RCU(&ksym->lnode);
402 	snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu_%u", key, idx);
403 	bpf_image_ksym_add(image, ksym);
404 	return im;
405 
406 out_free_image:
407 	bpf_jit_free_exec(im->image);
408 out_uncharge:
409 	bpf_jit_uncharge_modmem(PAGE_SIZE);
410 out_free_im:
411 	kfree(im);
412 out:
413 	return ERR_PTR(err);
414 }
415 
416 static int bpf_trampoline_update(struct bpf_trampoline *tr, bool lock_direct_mutex)
417 {
418 	struct bpf_tramp_image *im;
419 	struct bpf_tramp_links *tlinks;
420 	u32 orig_flags = tr->flags;
421 	bool ip_arg = false;
422 	int err, total;
423 
424 	tlinks = bpf_trampoline_get_progs(tr, &total, &ip_arg);
425 	if (IS_ERR(tlinks))
426 		return PTR_ERR(tlinks);
427 
428 	if (total == 0) {
429 		err = unregister_fentry(tr, tr->cur_image->image);
430 		bpf_tramp_image_put(tr->cur_image);
431 		tr->cur_image = NULL;
432 		tr->selector = 0;
433 		goto out;
434 	}
435 
436 	im = bpf_tramp_image_alloc(tr->key, tr->selector);
437 	if (IS_ERR(im)) {
438 		err = PTR_ERR(im);
439 		goto out;
440 	}
441 
442 	/* clear all bits except SHARE_IPMODIFY */
443 	tr->flags &= BPF_TRAMP_F_SHARE_IPMODIFY;
444 
445 	if (tlinks[BPF_TRAMP_FEXIT].nr_links ||
446 	    tlinks[BPF_TRAMP_MODIFY_RETURN].nr_links) {
447 		/* NOTE: BPF_TRAMP_F_RESTORE_REGS and BPF_TRAMP_F_SKIP_FRAME
448 		 * should not be set together.
449 		 */
450 		tr->flags |= BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME;
451 	} else {
452 		tr->flags |= BPF_TRAMP_F_RESTORE_REGS;
453 	}
454 
455 	if (ip_arg)
456 		tr->flags |= BPF_TRAMP_F_IP_ARG;
457 
458 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
459 again:
460 	if ((tr->flags & BPF_TRAMP_F_SHARE_IPMODIFY) &&
461 	    (tr->flags & BPF_TRAMP_F_CALL_ORIG))
462 		tr->flags |= BPF_TRAMP_F_ORIG_STACK;
463 #endif
464 
465 	err = arch_prepare_bpf_trampoline(im, im->image, im->image + PAGE_SIZE,
466 					  &tr->func.model, tr->flags, tlinks,
467 					  tr->func.addr);
468 	if (err < 0)
469 		goto out;
470 
471 	set_memory_ro((long)im->image, 1);
472 	set_memory_x((long)im->image, 1);
473 
474 	WARN_ON(tr->cur_image && tr->selector == 0);
475 	WARN_ON(!tr->cur_image && tr->selector);
476 	if (tr->cur_image)
477 		/* progs already running at this address */
478 		err = modify_fentry(tr, tr->cur_image->image, im->image, lock_direct_mutex);
479 	else
480 		/* first time registering */
481 		err = register_fentry(tr, im->image);
482 
483 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
484 	if (err == -EAGAIN) {
485 		/* -EAGAIN from bpf_tramp_ftrace_ops_func. Now
486 		 * BPF_TRAMP_F_SHARE_IPMODIFY is set, we can generate the
487 		 * trampoline again, and retry register.
488 		 */
489 		/* reset fops->func and fops->trampoline for re-register */
490 		tr->fops->func = NULL;
491 		tr->fops->trampoline = 0;
492 		goto again;
493 	}
494 #endif
495 	if (err)
496 		goto out;
497 
498 	if (tr->cur_image)
499 		bpf_tramp_image_put(tr->cur_image);
500 	tr->cur_image = im;
501 	tr->selector++;
502 out:
503 	/* If any error happens, restore previous flags */
504 	if (err)
505 		tr->flags = orig_flags;
506 	kfree(tlinks);
507 	return err;
508 }
509 
510 static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog)
511 {
512 	switch (prog->expected_attach_type) {
513 	case BPF_TRACE_FENTRY:
514 		return BPF_TRAMP_FENTRY;
515 	case BPF_MODIFY_RETURN:
516 		return BPF_TRAMP_MODIFY_RETURN;
517 	case BPF_TRACE_FEXIT:
518 		return BPF_TRAMP_FEXIT;
519 	case BPF_LSM_MAC:
520 		if (!prog->aux->attach_func_proto->type)
521 			/* The function returns void, we cannot modify its
522 			 * return value.
523 			 */
524 			return BPF_TRAMP_FEXIT;
525 		else
526 			return BPF_TRAMP_MODIFY_RETURN;
527 	default:
528 		return BPF_TRAMP_REPLACE;
529 	}
530 }
531 
532 static int __bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
533 {
534 	enum bpf_tramp_prog_type kind;
535 	struct bpf_tramp_link *link_exiting;
536 	int err = 0;
537 	int cnt = 0, i;
538 
539 	kind = bpf_attach_type_to_tramp(link->link.prog);
540 	if (tr->extension_prog)
541 		/* cannot attach fentry/fexit if extension prog is attached.
542 		 * cannot overwrite extension prog either.
543 		 */
544 		return -EBUSY;
545 
546 	for (i = 0; i < BPF_TRAMP_MAX; i++)
547 		cnt += tr->progs_cnt[i];
548 
549 	if (kind == BPF_TRAMP_REPLACE) {
550 		/* Cannot attach extension if fentry/fexit are in use. */
551 		if (cnt)
552 			return -EBUSY;
553 		tr->extension_prog = link->link.prog;
554 		return bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL,
555 					  link->link.prog->bpf_func);
556 	}
557 	if (cnt >= BPF_MAX_TRAMP_LINKS)
558 		return -E2BIG;
559 	if (!hlist_unhashed(&link->tramp_hlist))
560 		/* prog already linked */
561 		return -EBUSY;
562 	hlist_for_each_entry(link_exiting, &tr->progs_hlist[kind], tramp_hlist) {
563 		if (link_exiting->link.prog != link->link.prog)
564 			continue;
565 		/* prog already linked */
566 		return -EBUSY;
567 	}
568 
569 	hlist_add_head(&link->tramp_hlist, &tr->progs_hlist[kind]);
570 	tr->progs_cnt[kind]++;
571 	err = bpf_trampoline_update(tr, true /* lock_direct_mutex */);
572 	if (err) {
573 		hlist_del_init(&link->tramp_hlist);
574 		tr->progs_cnt[kind]--;
575 	}
576 	return err;
577 }
578 
579 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
580 {
581 	int err;
582 
583 	mutex_lock(&tr->mutex);
584 	err = __bpf_trampoline_link_prog(link, tr);
585 	mutex_unlock(&tr->mutex);
586 	return err;
587 }
588 
589 static int __bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
590 {
591 	enum bpf_tramp_prog_type kind;
592 	int err;
593 
594 	kind = bpf_attach_type_to_tramp(link->link.prog);
595 	if (kind == BPF_TRAMP_REPLACE) {
596 		WARN_ON_ONCE(!tr->extension_prog);
597 		err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP,
598 					 tr->extension_prog->bpf_func, NULL);
599 		tr->extension_prog = NULL;
600 		return err;
601 	}
602 	hlist_del_init(&link->tramp_hlist);
603 	tr->progs_cnt[kind]--;
604 	return bpf_trampoline_update(tr, true /* lock_direct_mutex */);
605 }
606 
607 /* bpf_trampoline_unlink_prog() should never fail. */
608 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr)
609 {
610 	int err;
611 
612 	mutex_lock(&tr->mutex);
613 	err = __bpf_trampoline_unlink_prog(link, tr);
614 	mutex_unlock(&tr->mutex);
615 	return err;
616 }
617 
618 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
619 static void bpf_shim_tramp_link_release(struct bpf_link *link)
620 {
621 	struct bpf_shim_tramp_link *shim_link =
622 		container_of(link, struct bpf_shim_tramp_link, link.link);
623 
624 	/* paired with 'shim_link->trampoline = tr' in bpf_trampoline_link_cgroup_shim */
625 	if (!shim_link->trampoline)
626 		return;
627 
628 	WARN_ON_ONCE(bpf_trampoline_unlink_prog(&shim_link->link, shim_link->trampoline));
629 	bpf_trampoline_put(shim_link->trampoline);
630 }
631 
632 static void bpf_shim_tramp_link_dealloc(struct bpf_link *link)
633 {
634 	struct bpf_shim_tramp_link *shim_link =
635 		container_of(link, struct bpf_shim_tramp_link, link.link);
636 
637 	kfree(shim_link);
638 }
639 
640 static const struct bpf_link_ops bpf_shim_tramp_link_lops = {
641 	.release = bpf_shim_tramp_link_release,
642 	.dealloc = bpf_shim_tramp_link_dealloc,
643 };
644 
645 static struct bpf_shim_tramp_link *cgroup_shim_alloc(const struct bpf_prog *prog,
646 						     bpf_func_t bpf_func,
647 						     int cgroup_atype)
648 {
649 	struct bpf_shim_tramp_link *shim_link = NULL;
650 	struct bpf_prog *p;
651 
652 	shim_link = kzalloc(sizeof(*shim_link), GFP_USER);
653 	if (!shim_link)
654 		return NULL;
655 
656 	p = bpf_prog_alloc(1, 0);
657 	if (!p) {
658 		kfree(shim_link);
659 		return NULL;
660 	}
661 
662 	p->jited = false;
663 	p->bpf_func = bpf_func;
664 
665 	p->aux->cgroup_atype = cgroup_atype;
666 	p->aux->attach_func_proto = prog->aux->attach_func_proto;
667 	p->aux->attach_btf_id = prog->aux->attach_btf_id;
668 	p->aux->attach_btf = prog->aux->attach_btf;
669 	btf_get(p->aux->attach_btf);
670 	p->type = BPF_PROG_TYPE_LSM;
671 	p->expected_attach_type = BPF_LSM_MAC;
672 	bpf_prog_inc(p);
673 	bpf_link_init(&shim_link->link.link, BPF_LINK_TYPE_UNSPEC,
674 		      &bpf_shim_tramp_link_lops, p);
675 	bpf_cgroup_atype_get(p->aux->attach_btf_id, cgroup_atype);
676 
677 	return shim_link;
678 }
679 
680 static struct bpf_shim_tramp_link *cgroup_shim_find(struct bpf_trampoline *tr,
681 						    bpf_func_t bpf_func)
682 {
683 	struct bpf_tramp_link *link;
684 	int kind;
685 
686 	for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
687 		hlist_for_each_entry(link, &tr->progs_hlist[kind], tramp_hlist) {
688 			struct bpf_prog *p = link->link.prog;
689 
690 			if (p->bpf_func == bpf_func)
691 				return container_of(link, struct bpf_shim_tramp_link, link);
692 		}
693 	}
694 
695 	return NULL;
696 }
697 
698 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
699 				    int cgroup_atype)
700 {
701 	struct bpf_shim_tramp_link *shim_link = NULL;
702 	struct bpf_attach_target_info tgt_info = {};
703 	struct bpf_trampoline *tr;
704 	bpf_func_t bpf_func;
705 	u64 key;
706 	int err;
707 
708 	err = bpf_check_attach_target(NULL, prog, NULL,
709 				      prog->aux->attach_btf_id,
710 				      &tgt_info);
711 	if (err)
712 		return err;
713 
714 	key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf,
715 					 prog->aux->attach_btf_id);
716 
717 	bpf_lsm_find_cgroup_shim(prog, &bpf_func);
718 	tr = bpf_trampoline_get(key, &tgt_info);
719 	if (!tr)
720 		return  -ENOMEM;
721 
722 	mutex_lock(&tr->mutex);
723 
724 	shim_link = cgroup_shim_find(tr, bpf_func);
725 	if (shim_link) {
726 		/* Reusing existing shim attached by the other program. */
727 		bpf_link_inc(&shim_link->link.link);
728 
729 		mutex_unlock(&tr->mutex);
730 		bpf_trampoline_put(tr); /* bpf_trampoline_get above */
731 		return 0;
732 	}
733 
734 	/* Allocate and install new shim. */
735 
736 	shim_link = cgroup_shim_alloc(prog, bpf_func, cgroup_atype);
737 	if (!shim_link) {
738 		err = -ENOMEM;
739 		goto err;
740 	}
741 
742 	err = __bpf_trampoline_link_prog(&shim_link->link, tr);
743 	if (err)
744 		goto err;
745 
746 	shim_link->trampoline = tr;
747 	/* note, we're still holding tr refcnt from above */
748 
749 	mutex_unlock(&tr->mutex);
750 
751 	return 0;
752 err:
753 	mutex_unlock(&tr->mutex);
754 
755 	if (shim_link)
756 		bpf_link_put(&shim_link->link.link);
757 
758 	/* have to release tr while _not_ holding its mutex */
759 	bpf_trampoline_put(tr); /* bpf_trampoline_get above */
760 
761 	return err;
762 }
763 
764 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
765 {
766 	struct bpf_shim_tramp_link *shim_link = NULL;
767 	struct bpf_trampoline *tr;
768 	bpf_func_t bpf_func;
769 	u64 key;
770 
771 	key = bpf_trampoline_compute_key(NULL, prog->aux->attach_btf,
772 					 prog->aux->attach_btf_id);
773 
774 	bpf_lsm_find_cgroup_shim(prog, &bpf_func);
775 	tr = bpf_trampoline_lookup(key);
776 	if (WARN_ON_ONCE(!tr))
777 		return;
778 
779 	mutex_lock(&tr->mutex);
780 	shim_link = cgroup_shim_find(tr, bpf_func);
781 	mutex_unlock(&tr->mutex);
782 
783 	if (shim_link)
784 		bpf_link_put(&shim_link->link.link);
785 
786 	bpf_trampoline_put(tr); /* bpf_trampoline_lookup above */
787 }
788 #endif
789 
790 struct bpf_trampoline *bpf_trampoline_get(u64 key,
791 					  struct bpf_attach_target_info *tgt_info)
792 {
793 	struct bpf_trampoline *tr;
794 
795 	tr = bpf_trampoline_lookup(key);
796 	if (!tr)
797 		return NULL;
798 
799 	mutex_lock(&tr->mutex);
800 	if (tr->func.addr)
801 		goto out;
802 
803 	memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel));
804 	tr->func.addr = (void *)tgt_info->tgt_addr;
805 out:
806 	mutex_unlock(&tr->mutex);
807 	return tr;
808 }
809 
810 void bpf_trampoline_put(struct bpf_trampoline *tr)
811 {
812 	int i;
813 
814 	if (!tr)
815 		return;
816 	mutex_lock(&trampoline_mutex);
817 	if (!refcount_dec_and_test(&tr->refcnt))
818 		goto out;
819 	WARN_ON_ONCE(mutex_is_locked(&tr->mutex));
820 
821 	for (i = 0; i < BPF_TRAMP_MAX; i++)
822 		if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[i])))
823 			goto out;
824 
825 	/* This code will be executed even when the last bpf_tramp_image
826 	 * is alive. All progs are detached from the trampoline and the
827 	 * trampoline image is patched with jmp into epilogue to skip
828 	 * fexit progs. The fentry-only trampoline will be freed via
829 	 * multiple rcu callbacks.
830 	 */
831 	hlist_del(&tr->hlist);
832 	if (tr->fops) {
833 		ftrace_free_filter(tr->fops);
834 		kfree(tr->fops);
835 	}
836 	kfree(tr);
837 out:
838 	mutex_unlock(&trampoline_mutex);
839 }
840 
841 #define NO_START_TIME 1
842 static __always_inline u64 notrace bpf_prog_start_time(void)
843 {
844 	u64 start = NO_START_TIME;
845 
846 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
847 		start = sched_clock();
848 		if (unlikely(!start))
849 			start = NO_START_TIME;
850 	}
851 	return start;
852 }
853 
854 /* The logic is similar to bpf_prog_run(), but with an explicit
855  * rcu_read_lock() and migrate_disable() which are required
856  * for the trampoline. The macro is split into
857  * call __bpf_prog_enter
858  * call prog->bpf_func
859  * call __bpf_prog_exit
860  *
861  * __bpf_prog_enter returns:
862  * 0 - skip execution of the bpf prog
863  * 1 - execute bpf prog
864  * [2..MAX_U64] - execute bpf prog and record execution time.
865  *     This is start time.
866  */
867 static u64 notrace __bpf_prog_enter_recur(struct bpf_prog *prog, struct bpf_tramp_run_ctx *run_ctx)
868 	__acquires(RCU)
869 {
870 	rcu_read_lock();
871 	migrate_disable();
872 
873 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
874 
875 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
876 		bpf_prog_inc_misses_counter(prog);
877 		return 0;
878 	}
879 	return bpf_prog_start_time();
880 }
881 
882 static void notrace update_prog_stats(struct bpf_prog *prog,
883 				      u64 start)
884 {
885 	struct bpf_prog_stats *stats;
886 
887 	if (static_branch_unlikely(&bpf_stats_enabled_key) &&
888 	    /* static_key could be enabled in __bpf_prog_enter*
889 	     * and disabled in __bpf_prog_exit*.
890 	     * And vice versa.
891 	     * Hence check that 'start' is valid.
892 	     */
893 	    start > NO_START_TIME) {
894 		unsigned long flags;
895 
896 		stats = this_cpu_ptr(prog->stats);
897 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
898 		u64_stats_inc(&stats->cnt);
899 		u64_stats_add(&stats->nsecs, sched_clock() - start);
900 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
901 	}
902 }
903 
904 static void notrace __bpf_prog_exit_recur(struct bpf_prog *prog, u64 start,
905 					  struct bpf_tramp_run_ctx *run_ctx)
906 	__releases(RCU)
907 {
908 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
909 
910 	update_prog_stats(prog, start);
911 	this_cpu_dec(*(prog->active));
912 	migrate_enable();
913 	rcu_read_unlock();
914 }
915 
916 static u64 notrace __bpf_prog_enter_lsm_cgroup(struct bpf_prog *prog,
917 					       struct bpf_tramp_run_ctx *run_ctx)
918 	__acquires(RCU)
919 {
920 	/* Runtime stats are exported via actual BPF_LSM_CGROUP
921 	 * programs, not the shims.
922 	 */
923 	rcu_read_lock();
924 	migrate_disable();
925 
926 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
927 
928 	return NO_START_TIME;
929 }
930 
931 static void notrace __bpf_prog_exit_lsm_cgroup(struct bpf_prog *prog, u64 start,
932 					       struct bpf_tramp_run_ctx *run_ctx)
933 	__releases(RCU)
934 {
935 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
936 
937 	migrate_enable();
938 	rcu_read_unlock();
939 }
940 
941 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
942 					     struct bpf_tramp_run_ctx *run_ctx)
943 {
944 	rcu_read_lock_trace();
945 	migrate_disable();
946 	might_fault();
947 
948 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
949 		bpf_prog_inc_misses_counter(prog);
950 		return 0;
951 	}
952 
953 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
954 
955 	return bpf_prog_start_time();
956 }
957 
958 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
959 					     struct bpf_tramp_run_ctx *run_ctx)
960 {
961 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
962 
963 	update_prog_stats(prog, start);
964 	this_cpu_dec(*(prog->active));
965 	migrate_enable();
966 	rcu_read_unlock_trace();
967 }
968 
969 static u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog,
970 					      struct bpf_tramp_run_ctx *run_ctx)
971 {
972 	rcu_read_lock_trace();
973 	migrate_disable();
974 	might_fault();
975 
976 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
977 
978 	return bpf_prog_start_time();
979 }
980 
981 static void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start,
982 					      struct bpf_tramp_run_ctx *run_ctx)
983 {
984 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
985 
986 	update_prog_stats(prog, start);
987 	migrate_enable();
988 	rcu_read_unlock_trace();
989 }
990 
991 static u64 notrace __bpf_prog_enter(struct bpf_prog *prog,
992 				    struct bpf_tramp_run_ctx *run_ctx)
993 	__acquires(RCU)
994 {
995 	rcu_read_lock();
996 	migrate_disable();
997 
998 	run_ctx->saved_run_ctx = bpf_set_run_ctx(&run_ctx->run_ctx);
999 
1000 	return bpf_prog_start_time();
1001 }
1002 
1003 static void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start,
1004 				    struct bpf_tramp_run_ctx *run_ctx)
1005 	__releases(RCU)
1006 {
1007 	bpf_reset_run_ctx(run_ctx->saved_run_ctx);
1008 
1009 	update_prog_stats(prog, start);
1010 	migrate_enable();
1011 	rcu_read_unlock();
1012 }
1013 
1014 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr)
1015 {
1016 	percpu_ref_get(&tr->pcref);
1017 }
1018 
1019 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr)
1020 {
1021 	percpu_ref_put(&tr->pcref);
1022 }
1023 
1024 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog)
1025 {
1026 	bool sleepable = prog->aux->sleepable;
1027 
1028 	if (bpf_prog_check_recur(prog))
1029 		return sleepable ? __bpf_prog_enter_sleepable_recur :
1030 			__bpf_prog_enter_recur;
1031 
1032 	if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM &&
1033 	    prog->expected_attach_type == BPF_LSM_CGROUP)
1034 		return __bpf_prog_enter_lsm_cgroup;
1035 
1036 	return sleepable ? __bpf_prog_enter_sleepable : __bpf_prog_enter;
1037 }
1038 
1039 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog)
1040 {
1041 	bool sleepable = prog->aux->sleepable;
1042 
1043 	if (bpf_prog_check_recur(prog))
1044 		return sleepable ? __bpf_prog_exit_sleepable_recur :
1045 			__bpf_prog_exit_recur;
1046 
1047 	if (resolve_prog_type(prog) == BPF_PROG_TYPE_LSM &&
1048 	    prog->expected_attach_type == BPF_LSM_CGROUP)
1049 		return __bpf_prog_exit_lsm_cgroup;
1050 
1051 	return sleepable ? __bpf_prog_exit_sleepable : __bpf_prog_exit;
1052 }
1053 
1054 int __weak
1055 arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1056 			    const struct btf_func_model *m, u32 flags,
1057 			    struct bpf_tramp_links *tlinks,
1058 			    void *orig_call)
1059 {
1060 	return -ENOTSUPP;
1061 }
1062 
1063 static int __init init_trampolines(void)
1064 {
1065 	int i;
1066 
1067 	for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++)
1068 		INIT_HLIST_HEAD(&trampoline_table[i]);
1069 	return 0;
1070 }
1071 late_initcall(init_trampolines);
1072