xref: /openbmc/linux/kernel/bpf/trampoline.c (revision 8e74a48d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2019 Facebook */
3 #include <linux/hash.h>
4 #include <linux/bpf.h>
5 #include <linux/filter.h>
6 #include <linux/ftrace.h>
7 #include <linux/rbtree_latch.h>
8 #include <linux/perf_event.h>
9 #include <linux/btf.h>
10 #include <linux/rcupdate_trace.h>
11 #include <linux/rcupdate_wait.h>
12 #include <linux/module.h>
13 #include <linux/static_call.h>
14 
15 /* dummy _ops. The verifier will operate on target program's ops. */
16 const struct bpf_verifier_ops bpf_extension_verifier_ops = {
17 };
18 const struct bpf_prog_ops bpf_extension_prog_ops = {
19 };
20 
21 /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */
22 #define TRAMPOLINE_HASH_BITS 10
23 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS)
24 
25 static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE];
26 
27 /* serializes access to trampoline_table */
28 static DEFINE_MUTEX(trampoline_mutex);
29 
30 bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
31 {
32 	enum bpf_attach_type eatype = prog->expected_attach_type;
33 
34 	return eatype == BPF_TRACE_FENTRY || eatype == BPF_TRACE_FEXIT ||
35 	       eatype == BPF_MODIFY_RETURN;
36 }
37 
38 void *bpf_jit_alloc_exec_page(void)
39 {
40 	void *image;
41 
42 	image = bpf_jit_alloc_exec(PAGE_SIZE);
43 	if (!image)
44 		return NULL;
45 
46 	set_vm_flush_reset_perms(image);
47 	/* Keep image as writeable. The alternative is to keep flipping ro/rw
48 	 * everytime new program is attached or detached.
49 	 */
50 	set_memory_x((long)image, 1);
51 	return image;
52 }
53 
54 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym)
55 {
56 	ksym->start = (unsigned long) data;
57 	ksym->end = ksym->start + PAGE_SIZE;
58 	bpf_ksym_add(ksym);
59 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
60 			   PAGE_SIZE, false, ksym->name);
61 }
62 
63 void bpf_image_ksym_del(struct bpf_ksym *ksym)
64 {
65 	bpf_ksym_del(ksym);
66 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
67 			   PAGE_SIZE, true, ksym->name);
68 }
69 
70 static struct bpf_trampoline *bpf_trampoline_lookup(u64 key)
71 {
72 	struct bpf_trampoline *tr;
73 	struct hlist_head *head;
74 	int i;
75 
76 	mutex_lock(&trampoline_mutex);
77 	head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)];
78 	hlist_for_each_entry(tr, head, hlist) {
79 		if (tr->key == key) {
80 			refcount_inc(&tr->refcnt);
81 			goto out;
82 		}
83 	}
84 	tr = kzalloc(sizeof(*tr), GFP_KERNEL);
85 	if (!tr)
86 		goto out;
87 
88 	tr->key = key;
89 	INIT_HLIST_NODE(&tr->hlist);
90 	hlist_add_head(&tr->hlist, head);
91 	refcount_set(&tr->refcnt, 1);
92 	mutex_init(&tr->mutex);
93 	for (i = 0; i < BPF_TRAMP_MAX; i++)
94 		INIT_HLIST_HEAD(&tr->progs_hlist[i]);
95 out:
96 	mutex_unlock(&trampoline_mutex);
97 	return tr;
98 }
99 
100 static int bpf_trampoline_module_get(struct bpf_trampoline *tr)
101 {
102 	struct module *mod;
103 	int err = 0;
104 
105 	preempt_disable();
106 	mod = __module_text_address((unsigned long) tr->func.addr);
107 	if (mod && !try_module_get(mod))
108 		err = -ENOENT;
109 	preempt_enable();
110 	tr->mod = mod;
111 	return err;
112 }
113 
114 static void bpf_trampoline_module_put(struct bpf_trampoline *tr)
115 {
116 	module_put(tr->mod);
117 	tr->mod = NULL;
118 }
119 
120 static int is_ftrace_location(void *ip)
121 {
122 	long addr;
123 
124 	addr = ftrace_location((long)ip);
125 	if (!addr)
126 		return 0;
127 	if (WARN_ON_ONCE(addr != (long)ip))
128 		return -EFAULT;
129 	return 1;
130 }
131 
132 static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr)
133 {
134 	void *ip = tr->func.addr;
135 	int ret;
136 
137 	if (tr->func.ftrace_managed)
138 		ret = unregister_ftrace_direct((long)ip, (long)old_addr);
139 	else
140 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL);
141 
142 	if (!ret)
143 		bpf_trampoline_module_put(tr);
144 	return ret;
145 }
146 
147 static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr)
148 {
149 	void *ip = tr->func.addr;
150 	int ret;
151 
152 	if (tr->func.ftrace_managed)
153 		ret = modify_ftrace_direct((long)ip, (long)old_addr, (long)new_addr);
154 	else
155 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr);
156 	return ret;
157 }
158 
159 /* first time registering */
160 static int register_fentry(struct bpf_trampoline *tr, void *new_addr)
161 {
162 	void *ip = tr->func.addr;
163 	int ret;
164 
165 	ret = is_ftrace_location(ip);
166 	if (ret < 0)
167 		return ret;
168 	tr->func.ftrace_managed = ret;
169 
170 	if (bpf_trampoline_module_get(tr))
171 		return -ENOENT;
172 
173 	if (tr->func.ftrace_managed)
174 		ret = register_ftrace_direct((long)ip, (long)new_addr);
175 	else
176 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr);
177 
178 	if (ret)
179 		bpf_trampoline_module_put(tr);
180 	return ret;
181 }
182 
183 static struct bpf_tramp_progs *
184 bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg)
185 {
186 	const struct bpf_prog_aux *aux;
187 	struct bpf_tramp_progs *tprogs;
188 	struct bpf_prog **progs;
189 	int kind;
190 
191 	*total = 0;
192 	tprogs = kcalloc(BPF_TRAMP_MAX, sizeof(*tprogs), GFP_KERNEL);
193 	if (!tprogs)
194 		return ERR_PTR(-ENOMEM);
195 
196 	for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
197 		tprogs[kind].nr_progs = tr->progs_cnt[kind];
198 		*total += tr->progs_cnt[kind];
199 		progs = tprogs[kind].progs;
200 
201 		hlist_for_each_entry(aux, &tr->progs_hlist[kind], tramp_hlist) {
202 			*ip_arg |= aux->prog->call_get_func_ip;
203 			*progs++ = aux->prog;
204 		}
205 	}
206 	return tprogs;
207 }
208 
209 static void __bpf_tramp_image_put_deferred(struct work_struct *work)
210 {
211 	struct bpf_tramp_image *im;
212 
213 	im = container_of(work, struct bpf_tramp_image, work);
214 	bpf_image_ksym_del(&im->ksym);
215 	bpf_jit_free_exec(im->image);
216 	bpf_jit_uncharge_modmem(1);
217 	percpu_ref_exit(&im->pcref);
218 	kfree_rcu(im, rcu);
219 }
220 
221 /* callback, fexit step 3 or fentry step 2 */
222 static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu)
223 {
224 	struct bpf_tramp_image *im;
225 
226 	im = container_of(rcu, struct bpf_tramp_image, rcu);
227 	INIT_WORK(&im->work, __bpf_tramp_image_put_deferred);
228 	schedule_work(&im->work);
229 }
230 
231 /* callback, fexit step 2. Called after percpu_ref_kill confirms. */
232 static void __bpf_tramp_image_release(struct percpu_ref *pcref)
233 {
234 	struct bpf_tramp_image *im;
235 
236 	im = container_of(pcref, struct bpf_tramp_image, pcref);
237 	call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
238 }
239 
240 /* callback, fexit or fentry step 1 */
241 static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu)
242 {
243 	struct bpf_tramp_image *im;
244 
245 	im = container_of(rcu, struct bpf_tramp_image, rcu);
246 	if (im->ip_after_call)
247 		/* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */
248 		percpu_ref_kill(&im->pcref);
249 	else
250 		/* the case of fentry trampoline */
251 		call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
252 }
253 
254 static void bpf_tramp_image_put(struct bpf_tramp_image *im)
255 {
256 	/* The trampoline image that calls original function is using:
257 	 * rcu_read_lock_trace to protect sleepable bpf progs
258 	 * rcu_read_lock to protect normal bpf progs
259 	 * percpu_ref to protect trampoline itself
260 	 * rcu tasks to protect trampoline asm not covered by percpu_ref
261 	 * (which are few asm insns before __bpf_tramp_enter and
262 	 *  after __bpf_tramp_exit)
263 	 *
264 	 * The trampoline is unreachable before bpf_tramp_image_put().
265 	 *
266 	 * First, patch the trampoline to avoid calling into fexit progs.
267 	 * The progs will be freed even if the original function is still
268 	 * executing or sleeping.
269 	 * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on
270 	 * first few asm instructions to execute and call into
271 	 * __bpf_tramp_enter->percpu_ref_get.
272 	 * Then use percpu_ref_kill to wait for the trampoline and the original
273 	 * function to finish.
274 	 * Then use call_rcu_tasks() to make sure few asm insns in
275 	 * the trampoline epilogue are done as well.
276 	 *
277 	 * In !PREEMPT case the task that got interrupted in the first asm
278 	 * insns won't go through an RCU quiescent state which the
279 	 * percpu_ref_kill will be waiting for. Hence the first
280 	 * call_rcu_tasks() is not necessary.
281 	 */
282 	if (im->ip_after_call) {
283 		int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP,
284 					     NULL, im->ip_epilogue);
285 		WARN_ON(err);
286 		if (IS_ENABLED(CONFIG_PREEMPTION))
287 			call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
288 		else
289 			percpu_ref_kill(&im->pcref);
290 		return;
291 	}
292 
293 	/* The trampoline without fexit and fmod_ret progs doesn't call original
294 	 * function and doesn't use percpu_ref.
295 	 * Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
296 	 * Then use call_rcu_tasks() to wait for the rest of trampoline asm
297 	 * and normal progs.
298 	 */
299 	call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
300 }
301 
302 static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, u32 idx)
303 {
304 	struct bpf_tramp_image *im;
305 	struct bpf_ksym *ksym;
306 	void *image;
307 	int err = -ENOMEM;
308 
309 	im = kzalloc(sizeof(*im), GFP_KERNEL);
310 	if (!im)
311 		goto out;
312 
313 	err = bpf_jit_charge_modmem(1);
314 	if (err)
315 		goto out_free_im;
316 
317 	err = -ENOMEM;
318 	im->image = image = bpf_jit_alloc_exec_page();
319 	if (!image)
320 		goto out_uncharge;
321 
322 	err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL);
323 	if (err)
324 		goto out_free_image;
325 
326 	ksym = &im->ksym;
327 	INIT_LIST_HEAD_RCU(&ksym->lnode);
328 	snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu_%u", key, idx);
329 	bpf_image_ksym_add(image, ksym);
330 	return im;
331 
332 out_free_image:
333 	bpf_jit_free_exec(im->image);
334 out_uncharge:
335 	bpf_jit_uncharge_modmem(1);
336 out_free_im:
337 	kfree(im);
338 out:
339 	return ERR_PTR(err);
340 }
341 
342 static int bpf_trampoline_update(struct bpf_trampoline *tr)
343 {
344 	struct bpf_tramp_image *im;
345 	struct bpf_tramp_progs *tprogs;
346 	u32 flags = BPF_TRAMP_F_RESTORE_REGS;
347 	bool ip_arg = false;
348 	int err, total;
349 
350 	tprogs = bpf_trampoline_get_progs(tr, &total, &ip_arg);
351 	if (IS_ERR(tprogs))
352 		return PTR_ERR(tprogs);
353 
354 	if (total == 0) {
355 		err = unregister_fentry(tr, tr->cur_image->image);
356 		bpf_tramp_image_put(tr->cur_image);
357 		tr->cur_image = NULL;
358 		tr->selector = 0;
359 		goto out;
360 	}
361 
362 	im = bpf_tramp_image_alloc(tr->key, tr->selector);
363 	if (IS_ERR(im)) {
364 		err = PTR_ERR(im);
365 		goto out;
366 	}
367 
368 	if (tprogs[BPF_TRAMP_FEXIT].nr_progs ||
369 	    tprogs[BPF_TRAMP_MODIFY_RETURN].nr_progs)
370 		flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME;
371 
372 	if (ip_arg)
373 		flags |= BPF_TRAMP_F_IP_ARG;
374 
375 	err = arch_prepare_bpf_trampoline(im, im->image, im->image + PAGE_SIZE,
376 					  &tr->func.model, flags, tprogs,
377 					  tr->func.addr);
378 	if (err < 0)
379 		goto out;
380 
381 	WARN_ON(tr->cur_image && tr->selector == 0);
382 	WARN_ON(!tr->cur_image && tr->selector);
383 	if (tr->cur_image)
384 		/* progs already running at this address */
385 		err = modify_fentry(tr, tr->cur_image->image, im->image);
386 	else
387 		/* first time registering */
388 		err = register_fentry(tr, im->image);
389 	if (err)
390 		goto out;
391 	if (tr->cur_image)
392 		bpf_tramp_image_put(tr->cur_image);
393 	tr->cur_image = im;
394 	tr->selector++;
395 out:
396 	kfree(tprogs);
397 	return err;
398 }
399 
400 static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog)
401 {
402 	switch (prog->expected_attach_type) {
403 	case BPF_TRACE_FENTRY:
404 		return BPF_TRAMP_FENTRY;
405 	case BPF_MODIFY_RETURN:
406 		return BPF_TRAMP_MODIFY_RETURN;
407 	case BPF_TRACE_FEXIT:
408 		return BPF_TRAMP_FEXIT;
409 	case BPF_LSM_MAC:
410 		if (!prog->aux->attach_func_proto->type)
411 			/* The function returns void, we cannot modify its
412 			 * return value.
413 			 */
414 			return BPF_TRAMP_FEXIT;
415 		else
416 			return BPF_TRAMP_MODIFY_RETURN;
417 	default:
418 		return BPF_TRAMP_REPLACE;
419 	}
420 }
421 
422 int bpf_trampoline_link_prog(struct bpf_prog *prog, struct bpf_trampoline *tr)
423 {
424 	enum bpf_tramp_prog_type kind;
425 	int err = 0;
426 	int cnt;
427 
428 	kind = bpf_attach_type_to_tramp(prog);
429 	mutex_lock(&tr->mutex);
430 	if (tr->extension_prog) {
431 		/* cannot attach fentry/fexit if extension prog is attached.
432 		 * cannot overwrite extension prog either.
433 		 */
434 		err = -EBUSY;
435 		goto out;
436 	}
437 	cnt = tr->progs_cnt[BPF_TRAMP_FENTRY] + tr->progs_cnt[BPF_TRAMP_FEXIT];
438 	if (kind == BPF_TRAMP_REPLACE) {
439 		/* Cannot attach extension if fentry/fexit are in use. */
440 		if (cnt) {
441 			err = -EBUSY;
442 			goto out;
443 		}
444 		tr->extension_prog = prog;
445 		err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL,
446 					 prog->bpf_func);
447 		goto out;
448 	}
449 	if (cnt >= BPF_MAX_TRAMP_PROGS) {
450 		err = -E2BIG;
451 		goto out;
452 	}
453 	if (!hlist_unhashed(&prog->aux->tramp_hlist)) {
454 		/* prog already linked */
455 		err = -EBUSY;
456 		goto out;
457 	}
458 	hlist_add_head(&prog->aux->tramp_hlist, &tr->progs_hlist[kind]);
459 	tr->progs_cnt[kind]++;
460 	err = bpf_trampoline_update(tr);
461 	if (err) {
462 		hlist_del_init(&prog->aux->tramp_hlist);
463 		tr->progs_cnt[kind]--;
464 	}
465 out:
466 	mutex_unlock(&tr->mutex);
467 	return err;
468 }
469 
470 /* bpf_trampoline_unlink_prog() should never fail. */
471 int bpf_trampoline_unlink_prog(struct bpf_prog *prog, struct bpf_trampoline *tr)
472 {
473 	enum bpf_tramp_prog_type kind;
474 	int err;
475 
476 	kind = bpf_attach_type_to_tramp(prog);
477 	mutex_lock(&tr->mutex);
478 	if (kind == BPF_TRAMP_REPLACE) {
479 		WARN_ON_ONCE(!tr->extension_prog);
480 		err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP,
481 					 tr->extension_prog->bpf_func, NULL);
482 		tr->extension_prog = NULL;
483 		goto out;
484 	}
485 	hlist_del_init(&prog->aux->tramp_hlist);
486 	tr->progs_cnt[kind]--;
487 	err = bpf_trampoline_update(tr);
488 out:
489 	mutex_unlock(&tr->mutex);
490 	return err;
491 }
492 
493 struct bpf_trampoline *bpf_trampoline_get(u64 key,
494 					  struct bpf_attach_target_info *tgt_info)
495 {
496 	struct bpf_trampoline *tr;
497 
498 	tr = bpf_trampoline_lookup(key);
499 	if (!tr)
500 		return NULL;
501 
502 	mutex_lock(&tr->mutex);
503 	if (tr->func.addr)
504 		goto out;
505 
506 	memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel));
507 	tr->func.addr = (void *)tgt_info->tgt_addr;
508 out:
509 	mutex_unlock(&tr->mutex);
510 	return tr;
511 }
512 
513 void bpf_trampoline_put(struct bpf_trampoline *tr)
514 {
515 	if (!tr)
516 		return;
517 	mutex_lock(&trampoline_mutex);
518 	if (!refcount_dec_and_test(&tr->refcnt))
519 		goto out;
520 	WARN_ON_ONCE(mutex_is_locked(&tr->mutex));
521 	if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[BPF_TRAMP_FENTRY])))
522 		goto out;
523 	if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[BPF_TRAMP_FEXIT])))
524 		goto out;
525 	/* This code will be executed even when the last bpf_tramp_image
526 	 * is alive. All progs are detached from the trampoline and the
527 	 * trampoline image is patched with jmp into epilogue to skip
528 	 * fexit progs. The fentry-only trampoline will be freed via
529 	 * multiple rcu callbacks.
530 	 */
531 	hlist_del(&tr->hlist);
532 	kfree(tr);
533 out:
534 	mutex_unlock(&trampoline_mutex);
535 }
536 
537 #define NO_START_TIME 1
538 static __always_inline u64 notrace bpf_prog_start_time(void)
539 {
540 	u64 start = NO_START_TIME;
541 
542 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
543 		start = sched_clock();
544 		if (unlikely(!start))
545 			start = NO_START_TIME;
546 	}
547 	return start;
548 }
549 
550 static void notrace inc_misses_counter(struct bpf_prog *prog)
551 {
552 	struct bpf_prog_stats *stats;
553 
554 	stats = this_cpu_ptr(prog->stats);
555 	u64_stats_update_begin(&stats->syncp);
556 	u64_stats_inc(&stats->misses);
557 	u64_stats_update_end(&stats->syncp);
558 }
559 
560 /* The logic is similar to bpf_prog_run(), but with an explicit
561  * rcu_read_lock() and migrate_disable() which are required
562  * for the trampoline. The macro is split into
563  * call __bpf_prog_enter
564  * call prog->bpf_func
565  * call __bpf_prog_exit
566  *
567  * __bpf_prog_enter returns:
568  * 0 - skip execution of the bpf prog
569  * 1 - execute bpf prog
570  * [2..MAX_U64] - execute bpf prog and record execution time.
571  *     This is start time.
572  */
573 u64 notrace __bpf_prog_enter(struct bpf_prog *prog)
574 	__acquires(RCU)
575 {
576 	rcu_read_lock();
577 	migrate_disable();
578 	if (unlikely(__this_cpu_inc_return(*(prog->active)) != 1)) {
579 		inc_misses_counter(prog);
580 		return 0;
581 	}
582 	return bpf_prog_start_time();
583 }
584 
585 static void notrace update_prog_stats(struct bpf_prog *prog,
586 				      u64 start)
587 {
588 	struct bpf_prog_stats *stats;
589 
590 	if (static_branch_unlikely(&bpf_stats_enabled_key) &&
591 	    /* static_key could be enabled in __bpf_prog_enter*
592 	     * and disabled in __bpf_prog_exit*.
593 	     * And vice versa.
594 	     * Hence check that 'start' is valid.
595 	     */
596 	    start > NO_START_TIME) {
597 		unsigned long flags;
598 
599 		stats = this_cpu_ptr(prog->stats);
600 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
601 		u64_stats_inc(&stats->cnt);
602 		u64_stats_add(&stats->nsecs, sched_clock() - start);
603 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
604 	}
605 }
606 
607 void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start)
608 	__releases(RCU)
609 {
610 	update_prog_stats(prog, start);
611 	__this_cpu_dec(*(prog->active));
612 	migrate_enable();
613 	rcu_read_unlock();
614 }
615 
616 u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog)
617 {
618 	rcu_read_lock_trace();
619 	migrate_disable();
620 	might_fault();
621 	if (unlikely(__this_cpu_inc_return(*(prog->active)) != 1)) {
622 		inc_misses_counter(prog);
623 		return 0;
624 	}
625 	return bpf_prog_start_time();
626 }
627 
628 void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start)
629 {
630 	update_prog_stats(prog, start);
631 	__this_cpu_dec(*(prog->active));
632 	migrate_enable();
633 	rcu_read_unlock_trace();
634 }
635 
636 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr)
637 {
638 	percpu_ref_get(&tr->pcref);
639 }
640 
641 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr)
642 {
643 	percpu_ref_put(&tr->pcref);
644 }
645 
646 int __weak
647 arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
648 			    const struct btf_func_model *m, u32 flags,
649 			    struct bpf_tramp_progs *tprogs,
650 			    void *orig_call)
651 {
652 	return -ENOTSUPP;
653 }
654 
655 static int __init init_trampolines(void)
656 {
657 	int i;
658 
659 	for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++)
660 		INIT_HLIST_HEAD(&trampoline_table[i]);
661 	return 0;
662 }
663 late_initcall(init_trampolines);
664