xref: /openbmc/linux/kernel/bpf/trampoline.c (revision 869b6ca39c08c5b10eeb29d4b3c4bc433bf8ba5e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2019 Facebook */
3 #include <linux/hash.h>
4 #include <linux/bpf.h>
5 #include <linux/filter.h>
6 #include <linux/ftrace.h>
7 #include <linux/rbtree_latch.h>
8 #include <linux/perf_event.h>
9 #include <linux/btf.h>
10 #include <linux/rcupdate_trace.h>
11 #include <linux/rcupdate_wait.h>
12 #include <linux/module.h>
13 #include <linux/static_call.h>
14 
15 /* dummy _ops. The verifier will operate on target program's ops. */
16 const struct bpf_verifier_ops bpf_extension_verifier_ops = {
17 };
18 const struct bpf_prog_ops bpf_extension_prog_ops = {
19 };
20 
21 /* btf_vmlinux has ~22k attachable functions. 1k htab is enough. */
22 #define TRAMPOLINE_HASH_BITS 10
23 #define TRAMPOLINE_TABLE_SIZE (1 << TRAMPOLINE_HASH_BITS)
24 
25 static struct hlist_head trampoline_table[TRAMPOLINE_TABLE_SIZE];
26 
27 /* serializes access to trampoline_table */
28 static DEFINE_MUTEX(trampoline_mutex);
29 
30 void *bpf_jit_alloc_exec_page(void)
31 {
32 	void *image;
33 
34 	image = bpf_jit_alloc_exec(PAGE_SIZE);
35 	if (!image)
36 		return NULL;
37 
38 	set_vm_flush_reset_perms(image);
39 	/* Keep image as writeable. The alternative is to keep flipping ro/rw
40 	 * everytime new program is attached or detached.
41 	 */
42 	set_memory_x((long)image, 1);
43 	return image;
44 }
45 
46 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym)
47 {
48 	ksym->start = (unsigned long) data;
49 	ksym->end = ksym->start + PAGE_SIZE;
50 	bpf_ksym_add(ksym);
51 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
52 			   PAGE_SIZE, false, ksym->name);
53 }
54 
55 void bpf_image_ksym_del(struct bpf_ksym *ksym)
56 {
57 	bpf_ksym_del(ksym);
58 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF, ksym->start,
59 			   PAGE_SIZE, true, ksym->name);
60 }
61 
62 static struct bpf_trampoline *bpf_trampoline_lookup(u64 key)
63 {
64 	struct bpf_trampoline *tr;
65 	struct hlist_head *head;
66 	int i;
67 
68 	mutex_lock(&trampoline_mutex);
69 	head = &trampoline_table[hash_64(key, TRAMPOLINE_HASH_BITS)];
70 	hlist_for_each_entry(tr, head, hlist) {
71 		if (tr->key == key) {
72 			refcount_inc(&tr->refcnt);
73 			goto out;
74 		}
75 	}
76 	tr = kzalloc(sizeof(*tr), GFP_KERNEL);
77 	if (!tr)
78 		goto out;
79 
80 	tr->key = key;
81 	INIT_HLIST_NODE(&tr->hlist);
82 	hlist_add_head(&tr->hlist, head);
83 	refcount_set(&tr->refcnt, 1);
84 	mutex_init(&tr->mutex);
85 	for (i = 0; i < BPF_TRAMP_MAX; i++)
86 		INIT_HLIST_HEAD(&tr->progs_hlist[i]);
87 out:
88 	mutex_unlock(&trampoline_mutex);
89 	return tr;
90 }
91 
92 static int bpf_trampoline_module_get(struct bpf_trampoline *tr)
93 {
94 	struct module *mod;
95 	int err = 0;
96 
97 	preempt_disable();
98 	mod = __module_text_address((unsigned long) tr->func.addr);
99 	if (mod && !try_module_get(mod))
100 		err = -ENOENT;
101 	preempt_enable();
102 	tr->mod = mod;
103 	return err;
104 }
105 
106 static void bpf_trampoline_module_put(struct bpf_trampoline *tr)
107 {
108 	module_put(tr->mod);
109 	tr->mod = NULL;
110 }
111 
112 static int is_ftrace_location(void *ip)
113 {
114 	long addr;
115 
116 	addr = ftrace_location((long)ip);
117 	if (!addr)
118 		return 0;
119 	if (WARN_ON_ONCE(addr != (long)ip))
120 		return -EFAULT;
121 	return 1;
122 }
123 
124 static int unregister_fentry(struct bpf_trampoline *tr, void *old_addr)
125 {
126 	void *ip = tr->func.addr;
127 	int ret;
128 
129 	if (tr->func.ftrace_managed)
130 		ret = unregister_ftrace_direct((long)ip, (long)old_addr);
131 	else
132 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, NULL);
133 
134 	if (!ret)
135 		bpf_trampoline_module_put(tr);
136 	return ret;
137 }
138 
139 static int modify_fentry(struct bpf_trampoline *tr, void *old_addr, void *new_addr)
140 {
141 	void *ip = tr->func.addr;
142 	int ret;
143 
144 	if (tr->func.ftrace_managed)
145 		ret = modify_ftrace_direct((long)ip, (long)old_addr, (long)new_addr);
146 	else
147 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, old_addr, new_addr);
148 	return ret;
149 }
150 
151 /* first time registering */
152 static int register_fentry(struct bpf_trampoline *tr, void *new_addr)
153 {
154 	void *ip = tr->func.addr;
155 	int ret;
156 
157 	ret = is_ftrace_location(ip);
158 	if (ret < 0)
159 		return ret;
160 	tr->func.ftrace_managed = ret;
161 
162 	if (bpf_trampoline_module_get(tr))
163 		return -ENOENT;
164 
165 	if (tr->func.ftrace_managed)
166 		ret = register_ftrace_direct((long)ip, (long)new_addr);
167 	else
168 		ret = bpf_arch_text_poke(ip, BPF_MOD_CALL, NULL, new_addr);
169 
170 	if (ret)
171 		bpf_trampoline_module_put(tr);
172 	return ret;
173 }
174 
175 static struct bpf_tramp_progs *
176 bpf_trampoline_get_progs(const struct bpf_trampoline *tr, int *total, bool *ip_arg)
177 {
178 	const struct bpf_prog_aux *aux;
179 	struct bpf_tramp_progs *tprogs;
180 	struct bpf_prog **progs;
181 	int kind;
182 
183 	*total = 0;
184 	tprogs = kcalloc(BPF_TRAMP_MAX, sizeof(*tprogs), GFP_KERNEL);
185 	if (!tprogs)
186 		return ERR_PTR(-ENOMEM);
187 
188 	for (kind = 0; kind < BPF_TRAMP_MAX; kind++) {
189 		tprogs[kind].nr_progs = tr->progs_cnt[kind];
190 		*total += tr->progs_cnt[kind];
191 		progs = tprogs[kind].progs;
192 
193 		hlist_for_each_entry(aux, &tr->progs_hlist[kind], tramp_hlist) {
194 			*ip_arg |= aux->prog->call_get_func_ip;
195 			*progs++ = aux->prog;
196 		}
197 	}
198 	return tprogs;
199 }
200 
201 static void __bpf_tramp_image_put_deferred(struct work_struct *work)
202 {
203 	struct bpf_tramp_image *im;
204 
205 	im = container_of(work, struct bpf_tramp_image, work);
206 	bpf_image_ksym_del(&im->ksym);
207 	bpf_jit_free_exec(im->image);
208 	bpf_jit_uncharge_modmem(1);
209 	percpu_ref_exit(&im->pcref);
210 	kfree_rcu(im, rcu);
211 }
212 
213 /* callback, fexit step 3 or fentry step 2 */
214 static void __bpf_tramp_image_put_rcu(struct rcu_head *rcu)
215 {
216 	struct bpf_tramp_image *im;
217 
218 	im = container_of(rcu, struct bpf_tramp_image, rcu);
219 	INIT_WORK(&im->work, __bpf_tramp_image_put_deferred);
220 	schedule_work(&im->work);
221 }
222 
223 /* callback, fexit step 2. Called after percpu_ref_kill confirms. */
224 static void __bpf_tramp_image_release(struct percpu_ref *pcref)
225 {
226 	struct bpf_tramp_image *im;
227 
228 	im = container_of(pcref, struct bpf_tramp_image, pcref);
229 	call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
230 }
231 
232 /* callback, fexit or fentry step 1 */
233 static void __bpf_tramp_image_put_rcu_tasks(struct rcu_head *rcu)
234 {
235 	struct bpf_tramp_image *im;
236 
237 	im = container_of(rcu, struct bpf_tramp_image, rcu);
238 	if (im->ip_after_call)
239 		/* the case of fmod_ret/fexit trampoline and CONFIG_PREEMPTION=y */
240 		percpu_ref_kill(&im->pcref);
241 	else
242 		/* the case of fentry trampoline */
243 		call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu);
244 }
245 
246 static void bpf_tramp_image_put(struct bpf_tramp_image *im)
247 {
248 	/* The trampoline image that calls original function is using:
249 	 * rcu_read_lock_trace to protect sleepable bpf progs
250 	 * rcu_read_lock to protect normal bpf progs
251 	 * percpu_ref to protect trampoline itself
252 	 * rcu tasks to protect trampoline asm not covered by percpu_ref
253 	 * (which are few asm insns before __bpf_tramp_enter and
254 	 *  after __bpf_tramp_exit)
255 	 *
256 	 * The trampoline is unreachable before bpf_tramp_image_put().
257 	 *
258 	 * First, patch the trampoline to avoid calling into fexit progs.
259 	 * The progs will be freed even if the original function is still
260 	 * executing or sleeping.
261 	 * In case of CONFIG_PREEMPT=y use call_rcu_tasks() to wait on
262 	 * first few asm instructions to execute and call into
263 	 * __bpf_tramp_enter->percpu_ref_get.
264 	 * Then use percpu_ref_kill to wait for the trampoline and the original
265 	 * function to finish.
266 	 * Then use call_rcu_tasks() to make sure few asm insns in
267 	 * the trampoline epilogue are done as well.
268 	 *
269 	 * In !PREEMPT case the task that got interrupted in the first asm
270 	 * insns won't go through an RCU quiescent state which the
271 	 * percpu_ref_kill will be waiting for. Hence the first
272 	 * call_rcu_tasks() is not necessary.
273 	 */
274 	if (im->ip_after_call) {
275 		int err = bpf_arch_text_poke(im->ip_after_call, BPF_MOD_JUMP,
276 					     NULL, im->ip_epilogue);
277 		WARN_ON(err);
278 		if (IS_ENABLED(CONFIG_PREEMPTION))
279 			call_rcu_tasks(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
280 		else
281 			percpu_ref_kill(&im->pcref);
282 		return;
283 	}
284 
285 	/* The trampoline without fexit and fmod_ret progs doesn't call original
286 	 * function and doesn't use percpu_ref.
287 	 * Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
288 	 * Then use call_rcu_tasks() to wait for the rest of trampoline asm
289 	 * and normal progs.
290 	 */
291 	call_rcu_tasks_trace(&im->rcu, __bpf_tramp_image_put_rcu_tasks);
292 }
293 
294 static struct bpf_tramp_image *bpf_tramp_image_alloc(u64 key, u32 idx)
295 {
296 	struct bpf_tramp_image *im;
297 	struct bpf_ksym *ksym;
298 	void *image;
299 	int err = -ENOMEM;
300 
301 	im = kzalloc(sizeof(*im), GFP_KERNEL);
302 	if (!im)
303 		goto out;
304 
305 	err = bpf_jit_charge_modmem(1);
306 	if (err)
307 		goto out_free_im;
308 
309 	err = -ENOMEM;
310 	im->image = image = bpf_jit_alloc_exec_page();
311 	if (!image)
312 		goto out_uncharge;
313 
314 	err = percpu_ref_init(&im->pcref, __bpf_tramp_image_release, 0, GFP_KERNEL);
315 	if (err)
316 		goto out_free_image;
317 
318 	ksym = &im->ksym;
319 	INIT_LIST_HEAD_RCU(&ksym->lnode);
320 	snprintf(ksym->name, KSYM_NAME_LEN, "bpf_trampoline_%llu_%u", key, idx);
321 	bpf_image_ksym_add(image, ksym);
322 	return im;
323 
324 out_free_image:
325 	bpf_jit_free_exec(im->image);
326 out_uncharge:
327 	bpf_jit_uncharge_modmem(1);
328 out_free_im:
329 	kfree(im);
330 out:
331 	return ERR_PTR(err);
332 }
333 
334 static int bpf_trampoline_update(struct bpf_trampoline *tr)
335 {
336 	struct bpf_tramp_image *im;
337 	struct bpf_tramp_progs *tprogs;
338 	u32 flags = BPF_TRAMP_F_RESTORE_REGS;
339 	bool ip_arg = false;
340 	int err, total;
341 
342 	tprogs = bpf_trampoline_get_progs(tr, &total, &ip_arg);
343 	if (IS_ERR(tprogs))
344 		return PTR_ERR(tprogs);
345 
346 	if (total == 0) {
347 		err = unregister_fentry(tr, tr->cur_image->image);
348 		bpf_tramp_image_put(tr->cur_image);
349 		tr->cur_image = NULL;
350 		tr->selector = 0;
351 		goto out;
352 	}
353 
354 	im = bpf_tramp_image_alloc(tr->key, tr->selector);
355 	if (IS_ERR(im)) {
356 		err = PTR_ERR(im);
357 		goto out;
358 	}
359 
360 	if (tprogs[BPF_TRAMP_FEXIT].nr_progs ||
361 	    tprogs[BPF_TRAMP_MODIFY_RETURN].nr_progs)
362 		flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME;
363 
364 	if (ip_arg)
365 		flags |= BPF_TRAMP_F_IP_ARG;
366 
367 	err = arch_prepare_bpf_trampoline(im, im->image, im->image + PAGE_SIZE,
368 					  &tr->func.model, flags, tprogs,
369 					  tr->func.addr);
370 	if (err < 0)
371 		goto out;
372 
373 	WARN_ON(tr->cur_image && tr->selector == 0);
374 	WARN_ON(!tr->cur_image && tr->selector);
375 	if (tr->cur_image)
376 		/* progs already running at this address */
377 		err = modify_fentry(tr, tr->cur_image->image, im->image);
378 	else
379 		/* first time registering */
380 		err = register_fentry(tr, im->image);
381 	if (err)
382 		goto out;
383 	if (tr->cur_image)
384 		bpf_tramp_image_put(tr->cur_image);
385 	tr->cur_image = im;
386 	tr->selector++;
387 out:
388 	kfree(tprogs);
389 	return err;
390 }
391 
392 static enum bpf_tramp_prog_type bpf_attach_type_to_tramp(struct bpf_prog *prog)
393 {
394 	switch (prog->expected_attach_type) {
395 	case BPF_TRACE_FENTRY:
396 		return BPF_TRAMP_FENTRY;
397 	case BPF_MODIFY_RETURN:
398 		return BPF_TRAMP_MODIFY_RETURN;
399 	case BPF_TRACE_FEXIT:
400 		return BPF_TRAMP_FEXIT;
401 	case BPF_LSM_MAC:
402 		if (!prog->aux->attach_func_proto->type)
403 			/* The function returns void, we cannot modify its
404 			 * return value.
405 			 */
406 			return BPF_TRAMP_FEXIT;
407 		else
408 			return BPF_TRAMP_MODIFY_RETURN;
409 	default:
410 		return BPF_TRAMP_REPLACE;
411 	}
412 }
413 
414 int bpf_trampoline_link_prog(struct bpf_prog *prog, struct bpf_trampoline *tr)
415 {
416 	enum bpf_tramp_prog_type kind;
417 	int err = 0;
418 	int cnt;
419 
420 	kind = bpf_attach_type_to_tramp(prog);
421 	mutex_lock(&tr->mutex);
422 	if (tr->extension_prog) {
423 		/* cannot attach fentry/fexit if extension prog is attached.
424 		 * cannot overwrite extension prog either.
425 		 */
426 		err = -EBUSY;
427 		goto out;
428 	}
429 	cnt = tr->progs_cnt[BPF_TRAMP_FENTRY] + tr->progs_cnt[BPF_TRAMP_FEXIT];
430 	if (kind == BPF_TRAMP_REPLACE) {
431 		/* Cannot attach extension if fentry/fexit are in use. */
432 		if (cnt) {
433 			err = -EBUSY;
434 			goto out;
435 		}
436 		tr->extension_prog = prog;
437 		err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP, NULL,
438 					 prog->bpf_func);
439 		goto out;
440 	}
441 	if (cnt >= BPF_MAX_TRAMP_PROGS) {
442 		err = -E2BIG;
443 		goto out;
444 	}
445 	if (!hlist_unhashed(&prog->aux->tramp_hlist)) {
446 		/* prog already linked */
447 		err = -EBUSY;
448 		goto out;
449 	}
450 	hlist_add_head(&prog->aux->tramp_hlist, &tr->progs_hlist[kind]);
451 	tr->progs_cnt[kind]++;
452 	err = bpf_trampoline_update(tr);
453 	if (err) {
454 		hlist_del_init(&prog->aux->tramp_hlist);
455 		tr->progs_cnt[kind]--;
456 	}
457 out:
458 	mutex_unlock(&tr->mutex);
459 	return err;
460 }
461 
462 /* bpf_trampoline_unlink_prog() should never fail. */
463 int bpf_trampoline_unlink_prog(struct bpf_prog *prog, struct bpf_trampoline *tr)
464 {
465 	enum bpf_tramp_prog_type kind;
466 	int err;
467 
468 	kind = bpf_attach_type_to_tramp(prog);
469 	mutex_lock(&tr->mutex);
470 	if (kind == BPF_TRAMP_REPLACE) {
471 		WARN_ON_ONCE(!tr->extension_prog);
472 		err = bpf_arch_text_poke(tr->func.addr, BPF_MOD_JUMP,
473 					 tr->extension_prog->bpf_func, NULL);
474 		tr->extension_prog = NULL;
475 		goto out;
476 	}
477 	hlist_del_init(&prog->aux->tramp_hlist);
478 	tr->progs_cnt[kind]--;
479 	err = bpf_trampoline_update(tr);
480 out:
481 	mutex_unlock(&tr->mutex);
482 	return err;
483 }
484 
485 struct bpf_trampoline *bpf_trampoline_get(u64 key,
486 					  struct bpf_attach_target_info *tgt_info)
487 {
488 	struct bpf_trampoline *tr;
489 
490 	tr = bpf_trampoline_lookup(key);
491 	if (!tr)
492 		return NULL;
493 
494 	mutex_lock(&tr->mutex);
495 	if (tr->func.addr)
496 		goto out;
497 
498 	memcpy(&tr->func.model, &tgt_info->fmodel, sizeof(tgt_info->fmodel));
499 	tr->func.addr = (void *)tgt_info->tgt_addr;
500 out:
501 	mutex_unlock(&tr->mutex);
502 	return tr;
503 }
504 
505 void bpf_trampoline_put(struct bpf_trampoline *tr)
506 {
507 	if (!tr)
508 		return;
509 	mutex_lock(&trampoline_mutex);
510 	if (!refcount_dec_and_test(&tr->refcnt))
511 		goto out;
512 	WARN_ON_ONCE(mutex_is_locked(&tr->mutex));
513 	if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[BPF_TRAMP_FENTRY])))
514 		goto out;
515 	if (WARN_ON_ONCE(!hlist_empty(&tr->progs_hlist[BPF_TRAMP_FEXIT])))
516 		goto out;
517 	/* This code will be executed even when the last bpf_tramp_image
518 	 * is alive. All progs are detached from the trampoline and the
519 	 * trampoline image is patched with jmp into epilogue to skip
520 	 * fexit progs. The fentry-only trampoline will be freed via
521 	 * multiple rcu callbacks.
522 	 */
523 	hlist_del(&tr->hlist);
524 	kfree(tr);
525 out:
526 	mutex_unlock(&trampoline_mutex);
527 }
528 
529 #define NO_START_TIME 1
530 static __always_inline u64 notrace bpf_prog_start_time(void)
531 {
532 	u64 start = NO_START_TIME;
533 
534 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {
535 		start = sched_clock();
536 		if (unlikely(!start))
537 			start = NO_START_TIME;
538 	}
539 	return start;
540 }
541 
542 static void notrace inc_misses_counter(struct bpf_prog *prog)
543 {
544 	struct bpf_prog_stats *stats;
545 
546 	stats = this_cpu_ptr(prog->stats);
547 	u64_stats_update_begin(&stats->syncp);
548 	u64_stats_inc(&stats->misses);
549 	u64_stats_update_end(&stats->syncp);
550 }
551 
552 /* The logic is similar to bpf_prog_run(), but with an explicit
553  * rcu_read_lock() and migrate_disable() which are required
554  * for the trampoline. The macro is split into
555  * call __bpf_prog_enter
556  * call prog->bpf_func
557  * call __bpf_prog_exit
558  *
559  * __bpf_prog_enter returns:
560  * 0 - skip execution of the bpf prog
561  * 1 - execute bpf prog
562  * [2..MAX_U64] - execute bpf prog and record execution time.
563  *     This is start time.
564  */
565 u64 notrace __bpf_prog_enter(struct bpf_prog *prog)
566 	__acquires(RCU)
567 {
568 	rcu_read_lock();
569 	migrate_disable();
570 	if (unlikely(__this_cpu_inc_return(*(prog->active)) != 1)) {
571 		inc_misses_counter(prog);
572 		return 0;
573 	}
574 	return bpf_prog_start_time();
575 }
576 
577 static void notrace update_prog_stats(struct bpf_prog *prog,
578 				      u64 start)
579 {
580 	struct bpf_prog_stats *stats;
581 
582 	if (static_branch_unlikely(&bpf_stats_enabled_key) &&
583 	    /* static_key could be enabled in __bpf_prog_enter*
584 	     * and disabled in __bpf_prog_exit*.
585 	     * And vice versa.
586 	     * Hence check that 'start' is valid.
587 	     */
588 	    start > NO_START_TIME) {
589 		unsigned long flags;
590 
591 		stats = this_cpu_ptr(prog->stats);
592 		flags = u64_stats_update_begin_irqsave(&stats->syncp);
593 		u64_stats_inc(&stats->cnt);
594 		u64_stats_add(&stats->nsecs, sched_clock() - start);
595 		u64_stats_update_end_irqrestore(&stats->syncp, flags);
596 	}
597 }
598 
599 void notrace __bpf_prog_exit(struct bpf_prog *prog, u64 start)
600 	__releases(RCU)
601 {
602 	update_prog_stats(prog, start);
603 	__this_cpu_dec(*(prog->active));
604 	migrate_enable();
605 	rcu_read_unlock();
606 }
607 
608 u64 notrace __bpf_prog_enter_sleepable(struct bpf_prog *prog)
609 {
610 	rcu_read_lock_trace();
611 	migrate_disable();
612 	might_fault();
613 	if (unlikely(__this_cpu_inc_return(*(prog->active)) != 1)) {
614 		inc_misses_counter(prog);
615 		return 0;
616 	}
617 	return bpf_prog_start_time();
618 }
619 
620 void notrace __bpf_prog_exit_sleepable(struct bpf_prog *prog, u64 start)
621 {
622 	update_prog_stats(prog, start);
623 	__this_cpu_dec(*(prog->active));
624 	migrate_enable();
625 	rcu_read_unlock_trace();
626 }
627 
628 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr)
629 {
630 	percpu_ref_get(&tr->pcref);
631 }
632 
633 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr)
634 {
635 	percpu_ref_put(&tr->pcref);
636 }
637 
638 int __weak
639 arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
640 			    const struct btf_func_model *m, u32 flags,
641 			    struct bpf_tramp_progs *tprogs,
642 			    void *orig_call)
643 {
644 	return -ENOTSUPP;
645 }
646 
647 static int __init init_trampolines(void)
648 {
649 	int i;
650 
651 	for (i = 0; i < TRAMPOLINE_TABLE_SIZE; i++)
652 		INIT_HLIST_HEAD(&trampoline_table[i]);
653 	return 0;
654 }
655 late_initcall(init_trampolines);
656