xref: /openbmc/linux/kernel/bpf/tnum.c (revision 74ba9207e1adf1966c57450340534ae9742d00af)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* tnum: tracked (or tristate) numbers
3  *
4  * A tnum tracks knowledge about the bits of a value.  Each bit can be either
5  * known (0 or 1), or unknown (x).  Arithmetic operations on tnums will
6  * propagate the unknown bits such that the tnum result represents all the
7  * possible results for possible values of the operands.
8  */
9 #include <linux/kernel.h>
10 #include <linux/tnum.h>
11 
12 #define TNUM(_v, _m)	(struct tnum){.value = _v, .mask = _m}
13 /* A completely unknown value */
14 const struct tnum tnum_unknown = { .value = 0, .mask = -1 };
15 
16 struct tnum tnum_const(u64 value)
17 {
18 	return TNUM(value, 0);
19 }
20 
21 struct tnum tnum_range(u64 min, u64 max)
22 {
23 	u64 chi = min ^ max, delta;
24 	u8 bits = fls64(chi);
25 
26 	/* special case, needed because 1ULL << 64 is undefined */
27 	if (bits > 63)
28 		return tnum_unknown;
29 	/* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7.
30 	 * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return
31 	 *  constant min (since min == max).
32 	 */
33 	delta = (1ULL << bits) - 1;
34 	return TNUM(min & ~delta, delta);
35 }
36 
37 struct tnum tnum_lshift(struct tnum a, u8 shift)
38 {
39 	return TNUM(a.value << shift, a.mask << shift);
40 }
41 
42 struct tnum tnum_rshift(struct tnum a, u8 shift)
43 {
44 	return TNUM(a.value >> shift, a.mask >> shift);
45 }
46 
47 struct tnum tnum_arshift(struct tnum a, u8 min_shift)
48 {
49 	/* if a.value is negative, arithmetic shifting by minimum shift
50 	 * will have larger negative offset compared to more shifting.
51 	 * If a.value is nonnegative, arithmetic shifting by minimum shift
52 	 * will have larger positive offset compare to more shifting.
53 	 */
54 	return TNUM((s64)a.value >> min_shift, (s64)a.mask >> min_shift);
55 }
56 
57 struct tnum tnum_add(struct tnum a, struct tnum b)
58 {
59 	u64 sm, sv, sigma, chi, mu;
60 
61 	sm = a.mask + b.mask;
62 	sv = a.value + b.value;
63 	sigma = sm + sv;
64 	chi = sigma ^ sv;
65 	mu = chi | a.mask | b.mask;
66 	return TNUM(sv & ~mu, mu);
67 }
68 
69 struct tnum tnum_sub(struct tnum a, struct tnum b)
70 {
71 	u64 dv, alpha, beta, chi, mu;
72 
73 	dv = a.value - b.value;
74 	alpha = dv + a.mask;
75 	beta = dv - b.mask;
76 	chi = alpha ^ beta;
77 	mu = chi | a.mask | b.mask;
78 	return TNUM(dv & ~mu, mu);
79 }
80 
81 struct tnum tnum_and(struct tnum a, struct tnum b)
82 {
83 	u64 alpha, beta, v;
84 
85 	alpha = a.value | a.mask;
86 	beta = b.value | b.mask;
87 	v = a.value & b.value;
88 	return TNUM(v, alpha & beta & ~v);
89 }
90 
91 struct tnum tnum_or(struct tnum a, struct tnum b)
92 {
93 	u64 v, mu;
94 
95 	v = a.value | b.value;
96 	mu = a.mask | b.mask;
97 	return TNUM(v, mu & ~v);
98 }
99 
100 struct tnum tnum_xor(struct tnum a, struct tnum b)
101 {
102 	u64 v, mu;
103 
104 	v = a.value ^ b.value;
105 	mu = a.mask | b.mask;
106 	return TNUM(v & ~mu, mu);
107 }
108 
109 /* half-multiply add: acc += (unknown * mask * value).
110  * An intermediate step in the multiply algorithm.
111  */
112 static struct tnum hma(struct tnum acc, u64 value, u64 mask)
113 {
114 	while (mask) {
115 		if (mask & 1)
116 			acc = tnum_add(acc, TNUM(0, value));
117 		mask >>= 1;
118 		value <<= 1;
119 	}
120 	return acc;
121 }
122 
123 struct tnum tnum_mul(struct tnum a, struct tnum b)
124 {
125 	struct tnum acc;
126 	u64 pi;
127 
128 	pi = a.value * b.value;
129 	acc = hma(TNUM(pi, 0), a.mask, b.mask | b.value);
130 	return hma(acc, b.mask, a.value);
131 }
132 
133 /* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
134  * a 'known 0' - this will return a 'known 1' for that bit.
135  */
136 struct tnum tnum_intersect(struct tnum a, struct tnum b)
137 {
138 	u64 v, mu;
139 
140 	v = a.value | b.value;
141 	mu = a.mask & b.mask;
142 	return TNUM(v & ~mu, mu);
143 }
144 
145 struct tnum tnum_cast(struct tnum a, u8 size)
146 {
147 	a.value &= (1ULL << (size * 8)) - 1;
148 	a.mask &= (1ULL << (size * 8)) - 1;
149 	return a;
150 }
151 
152 bool tnum_is_aligned(struct tnum a, u64 size)
153 {
154 	if (!size)
155 		return true;
156 	return !((a.value | a.mask) & (size - 1));
157 }
158 
159 bool tnum_in(struct tnum a, struct tnum b)
160 {
161 	if (b.mask & ~a.mask)
162 		return false;
163 	b.value &= ~a.mask;
164 	return a.value == b.value;
165 }
166 
167 int tnum_strn(char *str, size_t size, struct tnum a)
168 {
169 	return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
170 }
171 EXPORT_SYMBOL_GPL(tnum_strn);
172 
173 int tnum_sbin(char *str, size_t size, struct tnum a)
174 {
175 	size_t n;
176 
177 	for (n = 64; n; n--) {
178 		if (n < size) {
179 			if (a.mask & 1)
180 				str[n - 1] = 'x';
181 			else if (a.value & 1)
182 				str[n - 1] = '1';
183 			else
184 				str[n - 1] = '0';
185 		}
186 		a.mask >>= 1;
187 		a.value >>= 1;
188 	}
189 	str[min(size - 1, (size_t)64)] = 0;
190 	return 64;
191 }
192