xref: /openbmc/linux/kernel/bpf/tnum.c (revision 3b23dc52)
1 /* tnum: tracked (or tristate) numbers
2  *
3  * A tnum tracks knowledge about the bits of a value.  Each bit can be either
4  * known (0 or 1), or unknown (x).  Arithmetic operations on tnums will
5  * propagate the unknown bits such that the tnum result represents all the
6  * possible results for possible values of the operands.
7  */
8 #include <linux/kernel.h>
9 #include <linux/tnum.h>
10 
11 #define TNUM(_v, _m)	(struct tnum){.value = _v, .mask = _m}
12 /* A completely unknown value */
13 const struct tnum tnum_unknown = { .value = 0, .mask = -1 };
14 
15 struct tnum tnum_const(u64 value)
16 {
17 	return TNUM(value, 0);
18 }
19 
20 struct tnum tnum_range(u64 min, u64 max)
21 {
22 	u64 chi = min ^ max, delta;
23 	u8 bits = fls64(chi);
24 
25 	/* special case, needed because 1ULL << 64 is undefined */
26 	if (bits > 63)
27 		return tnum_unknown;
28 	/* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7.
29 	 * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return
30 	 *  constant min (since min == max).
31 	 */
32 	delta = (1ULL << bits) - 1;
33 	return TNUM(min & ~delta, delta);
34 }
35 
36 struct tnum tnum_lshift(struct tnum a, u8 shift)
37 {
38 	return TNUM(a.value << shift, a.mask << shift);
39 }
40 
41 struct tnum tnum_rshift(struct tnum a, u8 shift)
42 {
43 	return TNUM(a.value >> shift, a.mask >> shift);
44 }
45 
46 struct tnum tnum_arshift(struct tnum a, u8 min_shift)
47 {
48 	/* if a.value is negative, arithmetic shifting by minimum shift
49 	 * will have larger negative offset compared to more shifting.
50 	 * If a.value is nonnegative, arithmetic shifting by minimum shift
51 	 * will have larger positive offset compare to more shifting.
52 	 */
53 	return TNUM((s64)a.value >> min_shift, (s64)a.mask >> min_shift);
54 }
55 
56 struct tnum tnum_add(struct tnum a, struct tnum b)
57 {
58 	u64 sm, sv, sigma, chi, mu;
59 
60 	sm = a.mask + b.mask;
61 	sv = a.value + b.value;
62 	sigma = sm + sv;
63 	chi = sigma ^ sv;
64 	mu = chi | a.mask | b.mask;
65 	return TNUM(sv & ~mu, mu);
66 }
67 
68 struct tnum tnum_sub(struct tnum a, struct tnum b)
69 {
70 	u64 dv, alpha, beta, chi, mu;
71 
72 	dv = a.value - b.value;
73 	alpha = dv + a.mask;
74 	beta = dv - b.mask;
75 	chi = alpha ^ beta;
76 	mu = chi | a.mask | b.mask;
77 	return TNUM(dv & ~mu, mu);
78 }
79 
80 struct tnum tnum_and(struct tnum a, struct tnum b)
81 {
82 	u64 alpha, beta, v;
83 
84 	alpha = a.value | a.mask;
85 	beta = b.value | b.mask;
86 	v = a.value & b.value;
87 	return TNUM(v, alpha & beta & ~v);
88 }
89 
90 struct tnum tnum_or(struct tnum a, struct tnum b)
91 {
92 	u64 v, mu;
93 
94 	v = a.value | b.value;
95 	mu = a.mask | b.mask;
96 	return TNUM(v, mu & ~v);
97 }
98 
99 struct tnum tnum_xor(struct tnum a, struct tnum b)
100 {
101 	u64 v, mu;
102 
103 	v = a.value ^ b.value;
104 	mu = a.mask | b.mask;
105 	return TNUM(v & ~mu, mu);
106 }
107 
108 /* half-multiply add: acc += (unknown * mask * value).
109  * An intermediate step in the multiply algorithm.
110  */
111 static struct tnum hma(struct tnum acc, u64 value, u64 mask)
112 {
113 	while (mask) {
114 		if (mask & 1)
115 			acc = tnum_add(acc, TNUM(0, value));
116 		mask >>= 1;
117 		value <<= 1;
118 	}
119 	return acc;
120 }
121 
122 struct tnum tnum_mul(struct tnum a, struct tnum b)
123 {
124 	struct tnum acc;
125 	u64 pi;
126 
127 	pi = a.value * b.value;
128 	acc = hma(TNUM(pi, 0), a.mask, b.mask | b.value);
129 	return hma(acc, b.mask, a.value);
130 }
131 
132 /* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
133  * a 'known 0' - this will return a 'known 1' for that bit.
134  */
135 struct tnum tnum_intersect(struct tnum a, struct tnum b)
136 {
137 	u64 v, mu;
138 
139 	v = a.value | b.value;
140 	mu = a.mask & b.mask;
141 	return TNUM(v & ~mu, mu);
142 }
143 
144 struct tnum tnum_cast(struct tnum a, u8 size)
145 {
146 	a.value &= (1ULL << (size * 8)) - 1;
147 	a.mask &= (1ULL << (size * 8)) - 1;
148 	return a;
149 }
150 
151 bool tnum_is_aligned(struct tnum a, u64 size)
152 {
153 	if (!size)
154 		return true;
155 	return !((a.value | a.mask) & (size - 1));
156 }
157 
158 bool tnum_in(struct tnum a, struct tnum b)
159 {
160 	if (b.mask & ~a.mask)
161 		return false;
162 	b.value &= ~a.mask;
163 	return a.value == b.value;
164 }
165 
166 int tnum_strn(char *str, size_t size, struct tnum a)
167 {
168 	return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
169 }
170 EXPORT_SYMBOL_GPL(tnum_strn);
171 
172 int tnum_sbin(char *str, size_t size, struct tnum a)
173 {
174 	size_t n;
175 
176 	for (n = 64; n; n--) {
177 		if (n < size) {
178 			if (a.mask & 1)
179 				str[n - 1] = 'x';
180 			else if (a.value & 1)
181 				str[n - 1] = '1';
182 			else
183 				str[n - 1] = '0';
184 		}
185 		a.mask >>= 1;
186 		a.value >>= 1;
187 	}
188 	str[min(size - 1, (size_t)64)] = 0;
189 	return 64;
190 }
191