1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2016 Facebook 3 */ 4 #include <linux/bpf.h> 5 #include <linux/jhash.h> 6 #include <linux/filter.h> 7 #include <linux/kernel.h> 8 #include <linux/stacktrace.h> 9 #include <linux/perf_event.h> 10 #include <linux/elf.h> 11 #include <linux/pagemap.h> 12 #include <linux/irq_work.h> 13 #include <linux/btf_ids.h> 14 #include "percpu_freelist.h" 15 16 #define STACK_CREATE_FLAG_MASK \ 17 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY | \ 18 BPF_F_STACK_BUILD_ID) 19 20 struct stack_map_bucket { 21 struct pcpu_freelist_node fnode; 22 u32 hash; 23 u32 nr; 24 u64 data[]; 25 }; 26 27 struct bpf_stack_map { 28 struct bpf_map map; 29 void *elems; 30 struct pcpu_freelist freelist; 31 u32 n_buckets; 32 struct stack_map_bucket *buckets[]; 33 }; 34 35 /* irq_work to run up_read() for build_id lookup in nmi context */ 36 struct stack_map_irq_work { 37 struct irq_work irq_work; 38 struct mm_struct *mm; 39 }; 40 41 static void do_up_read(struct irq_work *entry) 42 { 43 struct stack_map_irq_work *work; 44 45 if (WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_RT))) 46 return; 47 48 work = container_of(entry, struct stack_map_irq_work, irq_work); 49 mmap_read_unlock_non_owner(work->mm); 50 } 51 52 static DEFINE_PER_CPU(struct stack_map_irq_work, up_read_work); 53 54 static inline bool stack_map_use_build_id(struct bpf_map *map) 55 { 56 return (map->map_flags & BPF_F_STACK_BUILD_ID); 57 } 58 59 static inline int stack_map_data_size(struct bpf_map *map) 60 { 61 return stack_map_use_build_id(map) ? 62 sizeof(struct bpf_stack_build_id) : sizeof(u64); 63 } 64 65 static int prealloc_elems_and_freelist(struct bpf_stack_map *smap) 66 { 67 u32 elem_size = sizeof(struct stack_map_bucket) + smap->map.value_size; 68 int err; 69 70 smap->elems = bpf_map_area_alloc(elem_size * smap->map.max_entries, 71 smap->map.numa_node); 72 if (!smap->elems) 73 return -ENOMEM; 74 75 err = pcpu_freelist_init(&smap->freelist); 76 if (err) 77 goto free_elems; 78 79 pcpu_freelist_populate(&smap->freelist, smap->elems, elem_size, 80 smap->map.max_entries); 81 return 0; 82 83 free_elems: 84 bpf_map_area_free(smap->elems); 85 return err; 86 } 87 88 /* Called from syscall */ 89 static struct bpf_map *stack_map_alloc(union bpf_attr *attr) 90 { 91 u32 value_size = attr->value_size; 92 struct bpf_stack_map *smap; 93 struct bpf_map_memory mem; 94 u64 cost, n_buckets; 95 int err; 96 97 if (!bpf_capable()) 98 return ERR_PTR(-EPERM); 99 100 if (attr->map_flags & ~STACK_CREATE_FLAG_MASK) 101 return ERR_PTR(-EINVAL); 102 103 /* check sanity of attributes */ 104 if (attr->max_entries == 0 || attr->key_size != 4 || 105 value_size < 8 || value_size % 8) 106 return ERR_PTR(-EINVAL); 107 108 BUILD_BUG_ON(sizeof(struct bpf_stack_build_id) % sizeof(u64)); 109 if (attr->map_flags & BPF_F_STACK_BUILD_ID) { 110 if (value_size % sizeof(struct bpf_stack_build_id) || 111 value_size / sizeof(struct bpf_stack_build_id) 112 > sysctl_perf_event_max_stack) 113 return ERR_PTR(-EINVAL); 114 } else if (value_size / 8 > sysctl_perf_event_max_stack) 115 return ERR_PTR(-EINVAL); 116 117 /* hash table size must be power of 2 */ 118 n_buckets = roundup_pow_of_two(attr->max_entries); 119 120 cost = n_buckets * sizeof(struct stack_map_bucket *) + sizeof(*smap); 121 cost += n_buckets * (value_size + sizeof(struct stack_map_bucket)); 122 err = bpf_map_charge_init(&mem, cost); 123 if (err) 124 return ERR_PTR(err); 125 126 smap = bpf_map_area_alloc(cost, bpf_map_attr_numa_node(attr)); 127 if (!smap) { 128 bpf_map_charge_finish(&mem); 129 return ERR_PTR(-ENOMEM); 130 } 131 132 bpf_map_init_from_attr(&smap->map, attr); 133 smap->map.value_size = value_size; 134 smap->n_buckets = n_buckets; 135 136 err = get_callchain_buffers(sysctl_perf_event_max_stack); 137 if (err) 138 goto free_charge; 139 140 err = prealloc_elems_and_freelist(smap); 141 if (err) 142 goto put_buffers; 143 144 bpf_map_charge_move(&smap->map.memory, &mem); 145 146 return &smap->map; 147 148 put_buffers: 149 put_callchain_buffers(); 150 free_charge: 151 bpf_map_charge_finish(&mem); 152 bpf_map_area_free(smap); 153 return ERR_PTR(err); 154 } 155 156 #define BPF_BUILD_ID 3 157 /* 158 * Parse build id from the note segment. This logic can be shared between 159 * 32-bit and 64-bit system, because Elf32_Nhdr and Elf64_Nhdr are 160 * identical. 161 */ 162 static inline int stack_map_parse_build_id(void *page_addr, 163 unsigned char *build_id, 164 void *note_start, 165 Elf32_Word note_size) 166 { 167 Elf32_Word note_offs = 0, new_offs; 168 169 /* check for overflow */ 170 if (note_start < page_addr || note_start + note_size < note_start) 171 return -EINVAL; 172 173 /* only supports note that fits in the first page */ 174 if (note_start + note_size > page_addr + PAGE_SIZE) 175 return -EINVAL; 176 177 while (note_offs + sizeof(Elf32_Nhdr) < note_size) { 178 Elf32_Nhdr *nhdr = (Elf32_Nhdr *)(note_start + note_offs); 179 180 if (nhdr->n_type == BPF_BUILD_ID && 181 nhdr->n_namesz == sizeof("GNU") && 182 nhdr->n_descsz > 0 && 183 nhdr->n_descsz <= BPF_BUILD_ID_SIZE) { 184 memcpy(build_id, 185 note_start + note_offs + 186 ALIGN(sizeof("GNU"), 4) + sizeof(Elf32_Nhdr), 187 nhdr->n_descsz); 188 memset(build_id + nhdr->n_descsz, 0, 189 BPF_BUILD_ID_SIZE - nhdr->n_descsz); 190 return 0; 191 } 192 new_offs = note_offs + sizeof(Elf32_Nhdr) + 193 ALIGN(nhdr->n_namesz, 4) + ALIGN(nhdr->n_descsz, 4); 194 if (new_offs <= note_offs) /* overflow */ 195 break; 196 note_offs = new_offs; 197 } 198 return -EINVAL; 199 } 200 201 /* Parse build ID from 32-bit ELF */ 202 static int stack_map_get_build_id_32(void *page_addr, 203 unsigned char *build_id) 204 { 205 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)page_addr; 206 Elf32_Phdr *phdr; 207 int i; 208 209 /* only supports phdr that fits in one page */ 210 if (ehdr->e_phnum > 211 (PAGE_SIZE - sizeof(Elf32_Ehdr)) / sizeof(Elf32_Phdr)) 212 return -EINVAL; 213 214 phdr = (Elf32_Phdr *)(page_addr + sizeof(Elf32_Ehdr)); 215 216 for (i = 0; i < ehdr->e_phnum; ++i) { 217 if (phdr[i].p_type == PT_NOTE && 218 !stack_map_parse_build_id(page_addr, build_id, 219 page_addr + phdr[i].p_offset, 220 phdr[i].p_filesz)) 221 return 0; 222 } 223 return -EINVAL; 224 } 225 226 /* Parse build ID from 64-bit ELF */ 227 static int stack_map_get_build_id_64(void *page_addr, 228 unsigned char *build_id) 229 { 230 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)page_addr; 231 Elf64_Phdr *phdr; 232 int i; 233 234 /* only supports phdr that fits in one page */ 235 if (ehdr->e_phnum > 236 (PAGE_SIZE - sizeof(Elf64_Ehdr)) / sizeof(Elf64_Phdr)) 237 return -EINVAL; 238 239 phdr = (Elf64_Phdr *)(page_addr + sizeof(Elf64_Ehdr)); 240 241 for (i = 0; i < ehdr->e_phnum; ++i) { 242 if (phdr[i].p_type == PT_NOTE && 243 !stack_map_parse_build_id(page_addr, build_id, 244 page_addr + phdr[i].p_offset, 245 phdr[i].p_filesz)) 246 return 0; 247 } 248 return -EINVAL; 249 } 250 251 /* Parse build ID of ELF file mapped to vma */ 252 static int stack_map_get_build_id(struct vm_area_struct *vma, 253 unsigned char *build_id) 254 { 255 Elf32_Ehdr *ehdr; 256 struct page *page; 257 void *page_addr; 258 int ret; 259 260 /* only works for page backed storage */ 261 if (!vma->vm_file) 262 return -EINVAL; 263 264 page = find_get_page(vma->vm_file->f_mapping, 0); 265 if (!page) 266 return -EFAULT; /* page not mapped */ 267 268 ret = -EINVAL; 269 page_addr = kmap_atomic(page); 270 ehdr = (Elf32_Ehdr *)page_addr; 271 272 /* compare magic x7f "ELF" */ 273 if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) != 0) 274 goto out; 275 276 /* only support executable file and shared object file */ 277 if (ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) 278 goto out; 279 280 if (ehdr->e_ident[EI_CLASS] == ELFCLASS32) 281 ret = stack_map_get_build_id_32(page_addr, build_id); 282 else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64) 283 ret = stack_map_get_build_id_64(page_addr, build_id); 284 out: 285 kunmap_atomic(page_addr); 286 put_page(page); 287 return ret; 288 } 289 290 static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs, 291 u64 *ips, u32 trace_nr, bool user) 292 { 293 int i; 294 struct vm_area_struct *vma; 295 bool irq_work_busy = false; 296 struct stack_map_irq_work *work = NULL; 297 298 if (irqs_disabled()) { 299 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 300 work = this_cpu_ptr(&up_read_work); 301 if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY) { 302 /* cannot queue more up_read, fallback */ 303 irq_work_busy = true; 304 } 305 } else { 306 /* 307 * PREEMPT_RT does not allow to trylock mmap sem in 308 * interrupt disabled context. Force the fallback code. 309 */ 310 irq_work_busy = true; 311 } 312 } 313 314 /* 315 * We cannot do up_read() when the irq is disabled, because of 316 * risk to deadlock with rq_lock. To do build_id lookup when the 317 * irqs are disabled, we need to run up_read() in irq_work. We use 318 * a percpu variable to do the irq_work. If the irq_work is 319 * already used by another lookup, we fall back to report ips. 320 * 321 * Same fallback is used for kernel stack (!user) on a stackmap 322 * with build_id. 323 */ 324 if (!user || !current || !current->mm || irq_work_busy || 325 !mmap_read_trylock_non_owner(current->mm)) { 326 /* cannot access current->mm, fall back to ips */ 327 for (i = 0; i < trace_nr; i++) { 328 id_offs[i].status = BPF_STACK_BUILD_ID_IP; 329 id_offs[i].ip = ips[i]; 330 memset(id_offs[i].build_id, 0, BPF_BUILD_ID_SIZE); 331 } 332 return; 333 } 334 335 for (i = 0; i < trace_nr; i++) { 336 vma = find_vma(current->mm, ips[i]); 337 if (!vma || stack_map_get_build_id(vma, id_offs[i].build_id)) { 338 /* per entry fall back to ips */ 339 id_offs[i].status = BPF_STACK_BUILD_ID_IP; 340 id_offs[i].ip = ips[i]; 341 memset(id_offs[i].build_id, 0, BPF_BUILD_ID_SIZE); 342 continue; 343 } 344 id_offs[i].offset = (vma->vm_pgoff << PAGE_SHIFT) + ips[i] 345 - vma->vm_start; 346 id_offs[i].status = BPF_STACK_BUILD_ID_VALID; 347 } 348 349 if (!work) { 350 mmap_read_unlock_non_owner(current->mm); 351 } else { 352 work->mm = current->mm; 353 irq_work_queue(&work->irq_work); 354 } 355 } 356 357 static struct perf_callchain_entry * 358 get_callchain_entry_for_task(struct task_struct *task, u32 init_nr) 359 { 360 #ifdef CONFIG_STACKTRACE 361 struct perf_callchain_entry *entry; 362 int rctx; 363 364 entry = get_callchain_entry(&rctx); 365 366 if (!entry) 367 return NULL; 368 369 entry->nr = init_nr + 370 stack_trace_save_tsk(task, (unsigned long *)(entry->ip + init_nr), 371 sysctl_perf_event_max_stack - init_nr, 0); 372 373 /* stack_trace_save_tsk() works on unsigned long array, while 374 * perf_callchain_entry uses u64 array. For 32-bit systems, it is 375 * necessary to fix this mismatch. 376 */ 377 if (__BITS_PER_LONG != 64) { 378 unsigned long *from = (unsigned long *) entry->ip; 379 u64 *to = entry->ip; 380 int i; 381 382 /* copy data from the end to avoid using extra buffer */ 383 for (i = entry->nr - 1; i >= (int)init_nr; i--) 384 to[i] = (u64)(from[i]); 385 } 386 387 put_callchain_entry(rctx); 388 389 return entry; 390 #else /* CONFIG_STACKTRACE */ 391 return NULL; 392 #endif 393 } 394 395 static long __bpf_get_stackid(struct bpf_map *map, 396 struct perf_callchain_entry *trace, u64 flags) 397 { 398 struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); 399 struct stack_map_bucket *bucket, *new_bucket, *old_bucket; 400 u32 max_depth = map->value_size / stack_map_data_size(map); 401 /* stack_map_alloc() checks that max_depth <= sysctl_perf_event_max_stack */ 402 u32 init_nr = sysctl_perf_event_max_stack - max_depth; 403 u32 skip = flags & BPF_F_SKIP_FIELD_MASK; 404 u32 hash, id, trace_nr, trace_len; 405 bool user = flags & BPF_F_USER_STACK; 406 u64 *ips; 407 bool hash_matches; 408 409 /* get_perf_callchain() guarantees that trace->nr >= init_nr 410 * and trace-nr <= sysctl_perf_event_max_stack, so trace_nr <= max_depth 411 */ 412 trace_nr = trace->nr - init_nr; 413 414 if (trace_nr <= skip) 415 /* skipping more than usable stack trace */ 416 return -EFAULT; 417 418 trace_nr -= skip; 419 trace_len = trace_nr * sizeof(u64); 420 ips = trace->ip + skip + init_nr; 421 hash = jhash2((u32 *)ips, trace_len / sizeof(u32), 0); 422 id = hash & (smap->n_buckets - 1); 423 bucket = READ_ONCE(smap->buckets[id]); 424 425 hash_matches = bucket && bucket->hash == hash; 426 /* fast cmp */ 427 if (hash_matches && flags & BPF_F_FAST_STACK_CMP) 428 return id; 429 430 if (stack_map_use_build_id(map)) { 431 /* for build_id+offset, pop a bucket before slow cmp */ 432 new_bucket = (struct stack_map_bucket *) 433 pcpu_freelist_pop(&smap->freelist); 434 if (unlikely(!new_bucket)) 435 return -ENOMEM; 436 new_bucket->nr = trace_nr; 437 stack_map_get_build_id_offset( 438 (struct bpf_stack_build_id *)new_bucket->data, 439 ips, trace_nr, user); 440 trace_len = trace_nr * sizeof(struct bpf_stack_build_id); 441 if (hash_matches && bucket->nr == trace_nr && 442 memcmp(bucket->data, new_bucket->data, trace_len) == 0) { 443 pcpu_freelist_push(&smap->freelist, &new_bucket->fnode); 444 return id; 445 } 446 if (bucket && !(flags & BPF_F_REUSE_STACKID)) { 447 pcpu_freelist_push(&smap->freelist, &new_bucket->fnode); 448 return -EEXIST; 449 } 450 } else { 451 if (hash_matches && bucket->nr == trace_nr && 452 memcmp(bucket->data, ips, trace_len) == 0) 453 return id; 454 if (bucket && !(flags & BPF_F_REUSE_STACKID)) 455 return -EEXIST; 456 457 new_bucket = (struct stack_map_bucket *) 458 pcpu_freelist_pop(&smap->freelist); 459 if (unlikely(!new_bucket)) 460 return -ENOMEM; 461 memcpy(new_bucket->data, ips, trace_len); 462 } 463 464 new_bucket->hash = hash; 465 new_bucket->nr = trace_nr; 466 467 old_bucket = xchg(&smap->buckets[id], new_bucket); 468 if (old_bucket) 469 pcpu_freelist_push(&smap->freelist, &old_bucket->fnode); 470 return id; 471 } 472 473 BPF_CALL_3(bpf_get_stackid, struct pt_regs *, regs, struct bpf_map *, map, 474 u64, flags) 475 { 476 u32 max_depth = map->value_size / stack_map_data_size(map); 477 /* stack_map_alloc() checks that max_depth <= sysctl_perf_event_max_stack */ 478 u32 init_nr = sysctl_perf_event_max_stack - max_depth; 479 bool user = flags & BPF_F_USER_STACK; 480 struct perf_callchain_entry *trace; 481 bool kernel = !user; 482 483 if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK | 484 BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID))) 485 return -EINVAL; 486 487 trace = get_perf_callchain(regs, init_nr, kernel, user, 488 sysctl_perf_event_max_stack, false, false); 489 490 if (unlikely(!trace)) 491 /* couldn't fetch the stack trace */ 492 return -EFAULT; 493 494 return __bpf_get_stackid(map, trace, flags); 495 } 496 497 const struct bpf_func_proto bpf_get_stackid_proto = { 498 .func = bpf_get_stackid, 499 .gpl_only = true, 500 .ret_type = RET_INTEGER, 501 .arg1_type = ARG_PTR_TO_CTX, 502 .arg2_type = ARG_CONST_MAP_PTR, 503 .arg3_type = ARG_ANYTHING, 504 }; 505 506 static __u64 count_kernel_ip(struct perf_callchain_entry *trace) 507 { 508 __u64 nr_kernel = 0; 509 510 while (nr_kernel < trace->nr) { 511 if (trace->ip[nr_kernel] == PERF_CONTEXT_USER) 512 break; 513 nr_kernel++; 514 } 515 return nr_kernel; 516 } 517 518 BPF_CALL_3(bpf_get_stackid_pe, struct bpf_perf_event_data_kern *, ctx, 519 struct bpf_map *, map, u64, flags) 520 { 521 struct perf_event *event = ctx->event; 522 struct perf_callchain_entry *trace; 523 bool kernel, user; 524 __u64 nr_kernel; 525 int ret; 526 527 /* perf_sample_data doesn't have callchain, use bpf_get_stackid */ 528 if (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 529 return bpf_get_stackid((unsigned long)(ctx->regs), 530 (unsigned long) map, flags, 0, 0); 531 532 if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK | 533 BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID))) 534 return -EINVAL; 535 536 user = flags & BPF_F_USER_STACK; 537 kernel = !user; 538 539 trace = ctx->data->callchain; 540 if (unlikely(!trace)) 541 return -EFAULT; 542 543 nr_kernel = count_kernel_ip(trace); 544 545 if (kernel) { 546 __u64 nr = trace->nr; 547 548 trace->nr = nr_kernel; 549 ret = __bpf_get_stackid(map, trace, flags); 550 551 /* restore nr */ 552 trace->nr = nr; 553 } else { /* user */ 554 u64 skip = flags & BPF_F_SKIP_FIELD_MASK; 555 556 skip += nr_kernel; 557 if (skip > BPF_F_SKIP_FIELD_MASK) 558 return -EFAULT; 559 560 flags = (flags & ~BPF_F_SKIP_FIELD_MASK) | skip; 561 ret = __bpf_get_stackid(map, trace, flags); 562 } 563 return ret; 564 } 565 566 const struct bpf_func_proto bpf_get_stackid_proto_pe = { 567 .func = bpf_get_stackid_pe, 568 .gpl_only = false, 569 .ret_type = RET_INTEGER, 570 .arg1_type = ARG_PTR_TO_CTX, 571 .arg2_type = ARG_CONST_MAP_PTR, 572 .arg3_type = ARG_ANYTHING, 573 }; 574 575 static long __bpf_get_stack(struct pt_regs *regs, struct task_struct *task, 576 struct perf_callchain_entry *trace_in, 577 void *buf, u32 size, u64 flags) 578 { 579 u32 init_nr, trace_nr, copy_len, elem_size, num_elem; 580 bool user_build_id = flags & BPF_F_USER_BUILD_ID; 581 u32 skip = flags & BPF_F_SKIP_FIELD_MASK; 582 bool user = flags & BPF_F_USER_STACK; 583 struct perf_callchain_entry *trace; 584 bool kernel = !user; 585 int err = -EINVAL; 586 u64 *ips; 587 588 if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK | 589 BPF_F_USER_BUILD_ID))) 590 goto clear; 591 if (kernel && user_build_id) 592 goto clear; 593 594 elem_size = (user && user_build_id) ? sizeof(struct bpf_stack_build_id) 595 : sizeof(u64); 596 if (unlikely(size % elem_size)) 597 goto clear; 598 599 /* cannot get valid user stack for task without user_mode regs */ 600 if (task && user && !user_mode(regs)) 601 goto err_fault; 602 603 num_elem = size / elem_size; 604 if (sysctl_perf_event_max_stack < num_elem) 605 init_nr = 0; 606 else 607 init_nr = sysctl_perf_event_max_stack - num_elem; 608 609 if (trace_in) 610 trace = trace_in; 611 else if (kernel && task) 612 trace = get_callchain_entry_for_task(task, init_nr); 613 else 614 trace = get_perf_callchain(regs, init_nr, kernel, user, 615 sysctl_perf_event_max_stack, 616 false, false); 617 if (unlikely(!trace)) 618 goto err_fault; 619 620 trace_nr = trace->nr - init_nr; 621 if (trace_nr < skip) 622 goto err_fault; 623 624 trace_nr -= skip; 625 trace_nr = (trace_nr <= num_elem) ? trace_nr : num_elem; 626 copy_len = trace_nr * elem_size; 627 ips = trace->ip + skip + init_nr; 628 if (user && user_build_id) 629 stack_map_get_build_id_offset(buf, ips, trace_nr, user); 630 else 631 memcpy(buf, ips, copy_len); 632 633 if (size > copy_len) 634 memset(buf + copy_len, 0, size - copy_len); 635 return copy_len; 636 637 err_fault: 638 err = -EFAULT; 639 clear: 640 memset(buf, 0, size); 641 return err; 642 } 643 644 BPF_CALL_4(bpf_get_stack, struct pt_regs *, regs, void *, buf, u32, size, 645 u64, flags) 646 { 647 return __bpf_get_stack(regs, NULL, NULL, buf, size, flags); 648 } 649 650 const struct bpf_func_proto bpf_get_stack_proto = { 651 .func = bpf_get_stack, 652 .gpl_only = true, 653 .ret_type = RET_INTEGER, 654 .arg1_type = ARG_PTR_TO_CTX, 655 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 656 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 657 .arg4_type = ARG_ANYTHING, 658 }; 659 660 BPF_CALL_4(bpf_get_task_stack, struct task_struct *, task, void *, buf, 661 u32, size, u64, flags) 662 { 663 struct pt_regs *regs = task_pt_regs(task); 664 665 return __bpf_get_stack(regs, task, NULL, buf, size, flags); 666 } 667 668 BTF_ID_LIST_SINGLE(bpf_get_task_stack_btf_ids, struct, task_struct) 669 670 const struct bpf_func_proto bpf_get_task_stack_proto = { 671 .func = bpf_get_task_stack, 672 .gpl_only = false, 673 .ret_type = RET_INTEGER, 674 .arg1_type = ARG_PTR_TO_BTF_ID, 675 .arg1_btf_id = &bpf_get_task_stack_btf_ids[0], 676 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 677 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 678 .arg4_type = ARG_ANYTHING, 679 }; 680 681 BPF_CALL_4(bpf_get_stack_pe, struct bpf_perf_event_data_kern *, ctx, 682 void *, buf, u32, size, u64, flags) 683 { 684 struct pt_regs *regs = (struct pt_regs *)(ctx->regs); 685 struct perf_event *event = ctx->event; 686 struct perf_callchain_entry *trace; 687 bool kernel, user; 688 int err = -EINVAL; 689 __u64 nr_kernel; 690 691 if (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY)) 692 return __bpf_get_stack(regs, NULL, NULL, buf, size, flags); 693 694 if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK | 695 BPF_F_USER_BUILD_ID))) 696 goto clear; 697 698 user = flags & BPF_F_USER_STACK; 699 kernel = !user; 700 701 err = -EFAULT; 702 trace = ctx->data->callchain; 703 if (unlikely(!trace)) 704 goto clear; 705 706 nr_kernel = count_kernel_ip(trace); 707 708 if (kernel) { 709 __u64 nr = trace->nr; 710 711 trace->nr = nr_kernel; 712 err = __bpf_get_stack(regs, NULL, trace, buf, size, flags); 713 714 /* restore nr */ 715 trace->nr = nr; 716 } else { /* user */ 717 u64 skip = flags & BPF_F_SKIP_FIELD_MASK; 718 719 skip += nr_kernel; 720 if (skip > BPF_F_SKIP_FIELD_MASK) 721 goto clear; 722 723 flags = (flags & ~BPF_F_SKIP_FIELD_MASK) | skip; 724 err = __bpf_get_stack(regs, NULL, trace, buf, size, flags); 725 } 726 return err; 727 728 clear: 729 memset(buf, 0, size); 730 return err; 731 732 } 733 734 const struct bpf_func_proto bpf_get_stack_proto_pe = { 735 .func = bpf_get_stack_pe, 736 .gpl_only = true, 737 .ret_type = RET_INTEGER, 738 .arg1_type = ARG_PTR_TO_CTX, 739 .arg2_type = ARG_PTR_TO_UNINIT_MEM, 740 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 741 .arg4_type = ARG_ANYTHING, 742 }; 743 744 /* Called from eBPF program */ 745 static void *stack_map_lookup_elem(struct bpf_map *map, void *key) 746 { 747 return ERR_PTR(-EOPNOTSUPP); 748 } 749 750 /* Called from syscall */ 751 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value) 752 { 753 struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); 754 struct stack_map_bucket *bucket, *old_bucket; 755 u32 id = *(u32 *)key, trace_len; 756 757 if (unlikely(id >= smap->n_buckets)) 758 return -ENOENT; 759 760 bucket = xchg(&smap->buckets[id], NULL); 761 if (!bucket) 762 return -ENOENT; 763 764 trace_len = bucket->nr * stack_map_data_size(map); 765 memcpy(value, bucket->data, trace_len); 766 memset(value + trace_len, 0, map->value_size - trace_len); 767 768 old_bucket = xchg(&smap->buckets[id], bucket); 769 if (old_bucket) 770 pcpu_freelist_push(&smap->freelist, &old_bucket->fnode); 771 return 0; 772 } 773 774 static int stack_map_get_next_key(struct bpf_map *map, void *key, 775 void *next_key) 776 { 777 struct bpf_stack_map *smap = container_of(map, 778 struct bpf_stack_map, map); 779 u32 id; 780 781 WARN_ON_ONCE(!rcu_read_lock_held()); 782 783 if (!key) { 784 id = 0; 785 } else { 786 id = *(u32 *)key; 787 if (id >= smap->n_buckets || !smap->buckets[id]) 788 id = 0; 789 else 790 id++; 791 } 792 793 while (id < smap->n_buckets && !smap->buckets[id]) 794 id++; 795 796 if (id >= smap->n_buckets) 797 return -ENOENT; 798 799 *(u32 *)next_key = id; 800 return 0; 801 } 802 803 static int stack_map_update_elem(struct bpf_map *map, void *key, void *value, 804 u64 map_flags) 805 { 806 return -EINVAL; 807 } 808 809 /* Called from syscall or from eBPF program */ 810 static int stack_map_delete_elem(struct bpf_map *map, void *key) 811 { 812 struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); 813 struct stack_map_bucket *old_bucket; 814 u32 id = *(u32 *)key; 815 816 if (unlikely(id >= smap->n_buckets)) 817 return -E2BIG; 818 819 old_bucket = xchg(&smap->buckets[id], NULL); 820 if (old_bucket) { 821 pcpu_freelist_push(&smap->freelist, &old_bucket->fnode); 822 return 0; 823 } else { 824 return -ENOENT; 825 } 826 } 827 828 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 829 static void stack_map_free(struct bpf_map *map) 830 { 831 struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map); 832 833 bpf_map_area_free(smap->elems); 834 pcpu_freelist_destroy(&smap->freelist); 835 bpf_map_area_free(smap); 836 put_callchain_buffers(); 837 } 838 839 static int stack_trace_map_btf_id; 840 const struct bpf_map_ops stack_trace_map_ops = { 841 .map_meta_equal = bpf_map_meta_equal, 842 .map_alloc = stack_map_alloc, 843 .map_free = stack_map_free, 844 .map_get_next_key = stack_map_get_next_key, 845 .map_lookup_elem = stack_map_lookup_elem, 846 .map_update_elem = stack_map_update_elem, 847 .map_delete_elem = stack_map_delete_elem, 848 .map_check_btf = map_check_no_btf, 849 .map_btf_name = "bpf_stack_map", 850 .map_btf_id = &stack_trace_map_btf_id, 851 }; 852 853 static int __init stack_map_init(void) 854 { 855 int cpu; 856 struct stack_map_irq_work *work; 857 858 for_each_possible_cpu(cpu) { 859 work = per_cpu_ptr(&up_read_work, cpu); 860 init_irq_work(&work->irq_work, do_up_read); 861 } 862 return 0; 863 } 864 subsys_initcall(stack_map_init); 865