xref: /openbmc/linux/kernel/bpf/stackmap.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2016 Facebook
3  */
4 #include <linux/bpf.h>
5 #include <linux/jhash.h>
6 #include <linux/filter.h>
7 #include <linux/stacktrace.h>
8 #include <linux/perf_event.h>
9 #include <linux/elf.h>
10 #include <linux/pagemap.h>
11 #include <linux/irq_work.h>
12 #include "percpu_freelist.h"
13 
14 #define STACK_CREATE_FLAG_MASK					\
15 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY |	\
16 	 BPF_F_STACK_BUILD_ID)
17 
18 struct stack_map_bucket {
19 	struct pcpu_freelist_node fnode;
20 	u32 hash;
21 	u32 nr;
22 	u64 data[];
23 };
24 
25 struct bpf_stack_map {
26 	struct bpf_map map;
27 	void *elems;
28 	struct pcpu_freelist freelist;
29 	u32 n_buckets;
30 	struct stack_map_bucket *buckets[];
31 };
32 
33 /* irq_work to run up_read() for build_id lookup in nmi context */
34 struct stack_map_irq_work {
35 	struct irq_work irq_work;
36 	struct mm_struct *mm;
37 };
38 
39 static void do_up_read(struct irq_work *entry)
40 {
41 	struct stack_map_irq_work *work;
42 
43 	if (WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_RT)))
44 		return;
45 
46 	work = container_of(entry, struct stack_map_irq_work, irq_work);
47 	mmap_read_unlock_non_owner(work->mm);
48 }
49 
50 static DEFINE_PER_CPU(struct stack_map_irq_work, up_read_work);
51 
52 static inline bool stack_map_use_build_id(struct bpf_map *map)
53 {
54 	return (map->map_flags & BPF_F_STACK_BUILD_ID);
55 }
56 
57 static inline int stack_map_data_size(struct bpf_map *map)
58 {
59 	return stack_map_use_build_id(map) ?
60 		sizeof(struct bpf_stack_build_id) : sizeof(u64);
61 }
62 
63 static int prealloc_elems_and_freelist(struct bpf_stack_map *smap)
64 {
65 	u32 elem_size = sizeof(struct stack_map_bucket) + smap->map.value_size;
66 	int err;
67 
68 	smap->elems = bpf_map_area_alloc(elem_size * smap->map.max_entries,
69 					 smap->map.numa_node);
70 	if (!smap->elems)
71 		return -ENOMEM;
72 
73 	err = pcpu_freelist_init(&smap->freelist);
74 	if (err)
75 		goto free_elems;
76 
77 	pcpu_freelist_populate(&smap->freelist, smap->elems, elem_size,
78 			       smap->map.max_entries);
79 	return 0;
80 
81 free_elems:
82 	bpf_map_area_free(smap->elems);
83 	return err;
84 }
85 
86 /* Called from syscall */
87 static struct bpf_map *stack_map_alloc(union bpf_attr *attr)
88 {
89 	u32 value_size = attr->value_size;
90 	struct bpf_stack_map *smap;
91 	struct bpf_map_memory mem;
92 	u64 cost, n_buckets;
93 	int err;
94 
95 	if (!bpf_capable())
96 		return ERR_PTR(-EPERM);
97 
98 	if (attr->map_flags & ~STACK_CREATE_FLAG_MASK)
99 		return ERR_PTR(-EINVAL);
100 
101 	/* check sanity of attributes */
102 	if (attr->max_entries == 0 || attr->key_size != 4 ||
103 	    value_size < 8 || value_size % 8)
104 		return ERR_PTR(-EINVAL);
105 
106 	BUILD_BUG_ON(sizeof(struct bpf_stack_build_id) % sizeof(u64));
107 	if (attr->map_flags & BPF_F_STACK_BUILD_ID) {
108 		if (value_size % sizeof(struct bpf_stack_build_id) ||
109 		    value_size / sizeof(struct bpf_stack_build_id)
110 		    > sysctl_perf_event_max_stack)
111 			return ERR_PTR(-EINVAL);
112 	} else if (value_size / 8 > sysctl_perf_event_max_stack)
113 		return ERR_PTR(-EINVAL);
114 
115 	/* hash table size must be power of 2 */
116 	n_buckets = roundup_pow_of_two(attr->max_entries);
117 
118 	cost = n_buckets * sizeof(struct stack_map_bucket *) + sizeof(*smap);
119 	cost += n_buckets * (value_size + sizeof(struct stack_map_bucket));
120 	err = bpf_map_charge_init(&mem, cost);
121 	if (err)
122 		return ERR_PTR(err);
123 
124 	smap = bpf_map_area_alloc(cost, bpf_map_attr_numa_node(attr));
125 	if (!smap) {
126 		bpf_map_charge_finish(&mem);
127 		return ERR_PTR(-ENOMEM);
128 	}
129 
130 	bpf_map_init_from_attr(&smap->map, attr);
131 	smap->map.value_size = value_size;
132 	smap->n_buckets = n_buckets;
133 
134 	err = get_callchain_buffers(sysctl_perf_event_max_stack);
135 	if (err)
136 		goto free_charge;
137 
138 	err = prealloc_elems_and_freelist(smap);
139 	if (err)
140 		goto put_buffers;
141 
142 	bpf_map_charge_move(&smap->map.memory, &mem);
143 
144 	return &smap->map;
145 
146 put_buffers:
147 	put_callchain_buffers();
148 free_charge:
149 	bpf_map_charge_finish(&mem);
150 	bpf_map_area_free(smap);
151 	return ERR_PTR(err);
152 }
153 
154 #define BPF_BUILD_ID 3
155 /*
156  * Parse build id from the note segment. This logic can be shared between
157  * 32-bit and 64-bit system, because Elf32_Nhdr and Elf64_Nhdr are
158  * identical.
159  */
160 static inline int stack_map_parse_build_id(void *page_addr,
161 					   unsigned char *build_id,
162 					   void *note_start,
163 					   Elf32_Word note_size)
164 {
165 	Elf32_Word note_offs = 0, new_offs;
166 
167 	/* check for overflow */
168 	if (note_start < page_addr || note_start + note_size < note_start)
169 		return -EINVAL;
170 
171 	/* only supports note that fits in the first page */
172 	if (note_start + note_size > page_addr + PAGE_SIZE)
173 		return -EINVAL;
174 
175 	while (note_offs + sizeof(Elf32_Nhdr) < note_size) {
176 		Elf32_Nhdr *nhdr = (Elf32_Nhdr *)(note_start + note_offs);
177 
178 		if (nhdr->n_type == BPF_BUILD_ID &&
179 		    nhdr->n_namesz == sizeof("GNU") &&
180 		    nhdr->n_descsz > 0 &&
181 		    nhdr->n_descsz <= BPF_BUILD_ID_SIZE) {
182 			memcpy(build_id,
183 			       note_start + note_offs +
184 			       ALIGN(sizeof("GNU"), 4) + sizeof(Elf32_Nhdr),
185 			       nhdr->n_descsz);
186 			memset(build_id + nhdr->n_descsz, 0,
187 			       BPF_BUILD_ID_SIZE - nhdr->n_descsz);
188 			return 0;
189 		}
190 		new_offs = note_offs + sizeof(Elf32_Nhdr) +
191 			ALIGN(nhdr->n_namesz, 4) + ALIGN(nhdr->n_descsz, 4);
192 		if (new_offs <= note_offs)  /* overflow */
193 			break;
194 		note_offs = new_offs;
195 	}
196 	return -EINVAL;
197 }
198 
199 /* Parse build ID from 32-bit ELF */
200 static int stack_map_get_build_id_32(void *page_addr,
201 				     unsigned char *build_id)
202 {
203 	Elf32_Ehdr *ehdr = (Elf32_Ehdr *)page_addr;
204 	Elf32_Phdr *phdr;
205 	int i;
206 
207 	/* only supports phdr that fits in one page */
208 	if (ehdr->e_phnum >
209 	    (PAGE_SIZE - sizeof(Elf32_Ehdr)) / sizeof(Elf32_Phdr))
210 		return -EINVAL;
211 
212 	phdr = (Elf32_Phdr *)(page_addr + sizeof(Elf32_Ehdr));
213 
214 	for (i = 0; i < ehdr->e_phnum; ++i)
215 		if (phdr[i].p_type == PT_NOTE)
216 			return stack_map_parse_build_id(page_addr, build_id,
217 					page_addr + phdr[i].p_offset,
218 					phdr[i].p_filesz);
219 	return -EINVAL;
220 }
221 
222 /* Parse build ID from 64-bit ELF */
223 static int stack_map_get_build_id_64(void *page_addr,
224 				     unsigned char *build_id)
225 {
226 	Elf64_Ehdr *ehdr = (Elf64_Ehdr *)page_addr;
227 	Elf64_Phdr *phdr;
228 	int i;
229 
230 	/* only supports phdr that fits in one page */
231 	if (ehdr->e_phnum >
232 	    (PAGE_SIZE - sizeof(Elf64_Ehdr)) / sizeof(Elf64_Phdr))
233 		return -EINVAL;
234 
235 	phdr = (Elf64_Phdr *)(page_addr + sizeof(Elf64_Ehdr));
236 
237 	for (i = 0; i < ehdr->e_phnum; ++i)
238 		if (phdr[i].p_type == PT_NOTE)
239 			return stack_map_parse_build_id(page_addr, build_id,
240 					page_addr + phdr[i].p_offset,
241 					phdr[i].p_filesz);
242 	return -EINVAL;
243 }
244 
245 /* Parse build ID of ELF file mapped to vma */
246 static int stack_map_get_build_id(struct vm_area_struct *vma,
247 				  unsigned char *build_id)
248 {
249 	Elf32_Ehdr *ehdr;
250 	struct page *page;
251 	void *page_addr;
252 	int ret;
253 
254 	/* only works for page backed storage  */
255 	if (!vma->vm_file)
256 		return -EINVAL;
257 
258 	page = find_get_page(vma->vm_file->f_mapping, 0);
259 	if (!page)
260 		return -EFAULT;	/* page not mapped */
261 
262 	ret = -EINVAL;
263 	page_addr = kmap_atomic(page);
264 	ehdr = (Elf32_Ehdr *)page_addr;
265 
266 	/* compare magic x7f "ELF" */
267 	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) != 0)
268 		goto out;
269 
270 	/* only support executable file and shared object file */
271 	if (ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN)
272 		goto out;
273 
274 	if (ehdr->e_ident[EI_CLASS] == ELFCLASS32)
275 		ret = stack_map_get_build_id_32(page_addr, build_id);
276 	else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64)
277 		ret = stack_map_get_build_id_64(page_addr, build_id);
278 out:
279 	kunmap_atomic(page_addr);
280 	put_page(page);
281 	return ret;
282 }
283 
284 static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs,
285 					  u64 *ips, u32 trace_nr, bool user)
286 {
287 	int i;
288 	struct vm_area_struct *vma;
289 	bool irq_work_busy = false;
290 	struct stack_map_irq_work *work = NULL;
291 
292 	if (irqs_disabled()) {
293 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
294 			work = this_cpu_ptr(&up_read_work);
295 			if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY) {
296 				/* cannot queue more up_read, fallback */
297 				irq_work_busy = true;
298 			}
299 		} else {
300 			/*
301 			 * PREEMPT_RT does not allow to trylock mmap sem in
302 			 * interrupt disabled context. Force the fallback code.
303 			 */
304 			irq_work_busy = true;
305 		}
306 	}
307 
308 	/*
309 	 * We cannot do up_read() when the irq is disabled, because of
310 	 * risk to deadlock with rq_lock. To do build_id lookup when the
311 	 * irqs are disabled, we need to run up_read() in irq_work. We use
312 	 * a percpu variable to do the irq_work. If the irq_work is
313 	 * already used by another lookup, we fall back to report ips.
314 	 *
315 	 * Same fallback is used for kernel stack (!user) on a stackmap
316 	 * with build_id.
317 	 */
318 	if (!user || !current || !current->mm || irq_work_busy ||
319 	    !mmap_read_trylock_non_owner(current->mm)) {
320 		/* cannot access current->mm, fall back to ips */
321 		for (i = 0; i < trace_nr; i++) {
322 			id_offs[i].status = BPF_STACK_BUILD_ID_IP;
323 			id_offs[i].ip = ips[i];
324 			memset(id_offs[i].build_id, 0, BPF_BUILD_ID_SIZE);
325 		}
326 		return;
327 	}
328 
329 	for (i = 0; i < trace_nr; i++) {
330 		vma = find_vma(current->mm, ips[i]);
331 		if (!vma || stack_map_get_build_id(vma, id_offs[i].build_id)) {
332 			/* per entry fall back to ips */
333 			id_offs[i].status = BPF_STACK_BUILD_ID_IP;
334 			id_offs[i].ip = ips[i];
335 			memset(id_offs[i].build_id, 0, BPF_BUILD_ID_SIZE);
336 			continue;
337 		}
338 		id_offs[i].offset = (vma->vm_pgoff << PAGE_SHIFT) + ips[i]
339 			- vma->vm_start;
340 		id_offs[i].status = BPF_STACK_BUILD_ID_VALID;
341 	}
342 
343 	if (!work) {
344 		mmap_read_unlock_non_owner(current->mm);
345 	} else {
346 		work->mm = current->mm;
347 		irq_work_queue(&work->irq_work);
348 	}
349 }
350 
351 BPF_CALL_3(bpf_get_stackid, struct pt_regs *, regs, struct bpf_map *, map,
352 	   u64, flags)
353 {
354 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
355 	struct perf_callchain_entry *trace;
356 	struct stack_map_bucket *bucket, *new_bucket, *old_bucket;
357 	u32 max_depth = map->value_size / stack_map_data_size(map);
358 	/* stack_map_alloc() checks that max_depth <= sysctl_perf_event_max_stack */
359 	u32 init_nr = sysctl_perf_event_max_stack - max_depth;
360 	u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
361 	u32 hash, id, trace_nr, trace_len;
362 	bool user = flags & BPF_F_USER_STACK;
363 	bool kernel = !user;
364 	u64 *ips;
365 	bool hash_matches;
366 
367 	if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
368 			       BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID)))
369 		return -EINVAL;
370 
371 	trace = get_perf_callchain(regs, init_nr, kernel, user,
372 				   sysctl_perf_event_max_stack, false, false);
373 
374 	if (unlikely(!trace))
375 		/* couldn't fetch the stack trace */
376 		return -EFAULT;
377 
378 	/* get_perf_callchain() guarantees that trace->nr >= init_nr
379 	 * and trace-nr <= sysctl_perf_event_max_stack, so trace_nr <= max_depth
380 	 */
381 	trace_nr = trace->nr - init_nr;
382 
383 	if (trace_nr <= skip)
384 		/* skipping more than usable stack trace */
385 		return -EFAULT;
386 
387 	trace_nr -= skip;
388 	trace_len = trace_nr * sizeof(u64);
389 	ips = trace->ip + skip + init_nr;
390 	hash = jhash2((u32 *)ips, trace_len / sizeof(u32), 0);
391 	id = hash & (smap->n_buckets - 1);
392 	bucket = READ_ONCE(smap->buckets[id]);
393 
394 	hash_matches = bucket && bucket->hash == hash;
395 	/* fast cmp */
396 	if (hash_matches && flags & BPF_F_FAST_STACK_CMP)
397 		return id;
398 
399 	if (stack_map_use_build_id(map)) {
400 		/* for build_id+offset, pop a bucket before slow cmp */
401 		new_bucket = (struct stack_map_bucket *)
402 			pcpu_freelist_pop(&smap->freelist);
403 		if (unlikely(!new_bucket))
404 			return -ENOMEM;
405 		new_bucket->nr = trace_nr;
406 		stack_map_get_build_id_offset(
407 			(struct bpf_stack_build_id *)new_bucket->data,
408 			ips, trace_nr, user);
409 		trace_len = trace_nr * sizeof(struct bpf_stack_build_id);
410 		if (hash_matches && bucket->nr == trace_nr &&
411 		    memcmp(bucket->data, new_bucket->data, trace_len) == 0) {
412 			pcpu_freelist_push(&smap->freelist, &new_bucket->fnode);
413 			return id;
414 		}
415 		if (bucket && !(flags & BPF_F_REUSE_STACKID)) {
416 			pcpu_freelist_push(&smap->freelist, &new_bucket->fnode);
417 			return -EEXIST;
418 		}
419 	} else {
420 		if (hash_matches && bucket->nr == trace_nr &&
421 		    memcmp(bucket->data, ips, trace_len) == 0)
422 			return id;
423 		if (bucket && !(flags & BPF_F_REUSE_STACKID))
424 			return -EEXIST;
425 
426 		new_bucket = (struct stack_map_bucket *)
427 			pcpu_freelist_pop(&smap->freelist);
428 		if (unlikely(!new_bucket))
429 			return -ENOMEM;
430 		memcpy(new_bucket->data, ips, trace_len);
431 	}
432 
433 	new_bucket->hash = hash;
434 	new_bucket->nr = trace_nr;
435 
436 	old_bucket = xchg(&smap->buckets[id], new_bucket);
437 	if (old_bucket)
438 		pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
439 	return id;
440 }
441 
442 const struct bpf_func_proto bpf_get_stackid_proto = {
443 	.func		= bpf_get_stackid,
444 	.gpl_only	= true,
445 	.ret_type	= RET_INTEGER,
446 	.arg1_type	= ARG_PTR_TO_CTX,
447 	.arg2_type	= ARG_CONST_MAP_PTR,
448 	.arg3_type	= ARG_ANYTHING,
449 };
450 
451 BPF_CALL_4(bpf_get_stack, struct pt_regs *, regs, void *, buf, u32, size,
452 	   u64, flags)
453 {
454 	u32 init_nr, trace_nr, copy_len, elem_size, num_elem;
455 	bool user_build_id = flags & BPF_F_USER_BUILD_ID;
456 	u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
457 	bool user = flags & BPF_F_USER_STACK;
458 	struct perf_callchain_entry *trace;
459 	bool kernel = !user;
460 	int err = -EINVAL;
461 	u64 *ips;
462 
463 	if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
464 			       BPF_F_USER_BUILD_ID)))
465 		goto clear;
466 	if (kernel && user_build_id)
467 		goto clear;
468 
469 	elem_size = (user && user_build_id) ? sizeof(struct bpf_stack_build_id)
470 					    : sizeof(u64);
471 	if (unlikely(size % elem_size))
472 		goto clear;
473 
474 	num_elem = size / elem_size;
475 	if (sysctl_perf_event_max_stack < num_elem)
476 		init_nr = 0;
477 	else
478 		init_nr = sysctl_perf_event_max_stack - num_elem;
479 	trace = get_perf_callchain(regs, init_nr, kernel, user,
480 				   sysctl_perf_event_max_stack, false, false);
481 	if (unlikely(!trace))
482 		goto err_fault;
483 
484 	trace_nr = trace->nr - init_nr;
485 	if (trace_nr < skip)
486 		goto err_fault;
487 
488 	trace_nr -= skip;
489 	trace_nr = (trace_nr <= num_elem) ? trace_nr : num_elem;
490 	copy_len = trace_nr * elem_size;
491 	ips = trace->ip + skip + init_nr;
492 	if (user && user_build_id)
493 		stack_map_get_build_id_offset(buf, ips, trace_nr, user);
494 	else
495 		memcpy(buf, ips, copy_len);
496 
497 	if (size > copy_len)
498 		memset(buf + copy_len, 0, size - copy_len);
499 	return copy_len;
500 
501 err_fault:
502 	err = -EFAULT;
503 clear:
504 	memset(buf, 0, size);
505 	return err;
506 }
507 
508 const struct bpf_func_proto bpf_get_stack_proto = {
509 	.func		= bpf_get_stack,
510 	.gpl_only	= true,
511 	.ret_type	= RET_INTEGER,
512 	.arg1_type	= ARG_PTR_TO_CTX,
513 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
514 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
515 	.arg4_type	= ARG_ANYTHING,
516 };
517 
518 /* Called from eBPF program */
519 static void *stack_map_lookup_elem(struct bpf_map *map, void *key)
520 {
521 	return ERR_PTR(-EOPNOTSUPP);
522 }
523 
524 /* Called from syscall */
525 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value)
526 {
527 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
528 	struct stack_map_bucket *bucket, *old_bucket;
529 	u32 id = *(u32 *)key, trace_len;
530 
531 	if (unlikely(id >= smap->n_buckets))
532 		return -ENOENT;
533 
534 	bucket = xchg(&smap->buckets[id], NULL);
535 	if (!bucket)
536 		return -ENOENT;
537 
538 	trace_len = bucket->nr * stack_map_data_size(map);
539 	memcpy(value, bucket->data, trace_len);
540 	memset(value + trace_len, 0, map->value_size - trace_len);
541 
542 	old_bucket = xchg(&smap->buckets[id], bucket);
543 	if (old_bucket)
544 		pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
545 	return 0;
546 }
547 
548 static int stack_map_get_next_key(struct bpf_map *map, void *key,
549 				  void *next_key)
550 {
551 	struct bpf_stack_map *smap = container_of(map,
552 						  struct bpf_stack_map, map);
553 	u32 id;
554 
555 	WARN_ON_ONCE(!rcu_read_lock_held());
556 
557 	if (!key) {
558 		id = 0;
559 	} else {
560 		id = *(u32 *)key;
561 		if (id >= smap->n_buckets || !smap->buckets[id])
562 			id = 0;
563 		else
564 			id++;
565 	}
566 
567 	while (id < smap->n_buckets && !smap->buckets[id])
568 		id++;
569 
570 	if (id >= smap->n_buckets)
571 		return -ENOENT;
572 
573 	*(u32 *)next_key = id;
574 	return 0;
575 }
576 
577 static int stack_map_update_elem(struct bpf_map *map, void *key, void *value,
578 				 u64 map_flags)
579 {
580 	return -EINVAL;
581 }
582 
583 /* Called from syscall or from eBPF program */
584 static int stack_map_delete_elem(struct bpf_map *map, void *key)
585 {
586 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
587 	struct stack_map_bucket *old_bucket;
588 	u32 id = *(u32 *)key;
589 
590 	if (unlikely(id >= smap->n_buckets))
591 		return -E2BIG;
592 
593 	old_bucket = xchg(&smap->buckets[id], NULL);
594 	if (old_bucket) {
595 		pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
596 		return 0;
597 	} else {
598 		return -ENOENT;
599 	}
600 }
601 
602 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
603 static void stack_map_free(struct bpf_map *map)
604 {
605 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
606 
607 	/* wait for bpf programs to complete before freeing stack map */
608 	synchronize_rcu();
609 
610 	bpf_map_area_free(smap->elems);
611 	pcpu_freelist_destroy(&smap->freelist);
612 	bpf_map_area_free(smap);
613 	put_callchain_buffers();
614 }
615 
616 const struct bpf_map_ops stack_trace_map_ops = {
617 	.map_alloc = stack_map_alloc,
618 	.map_free = stack_map_free,
619 	.map_get_next_key = stack_map_get_next_key,
620 	.map_lookup_elem = stack_map_lookup_elem,
621 	.map_update_elem = stack_map_update_elem,
622 	.map_delete_elem = stack_map_delete_elem,
623 	.map_check_btf = map_check_no_btf,
624 };
625 
626 static int __init stack_map_init(void)
627 {
628 	int cpu;
629 	struct stack_map_irq_work *work;
630 
631 	for_each_possible_cpu(cpu) {
632 		work = per_cpu_ptr(&up_read_work, cpu);
633 		init_irq_work(&work->irq_work, do_up_read);
634 	}
635 	return 0;
636 }
637 subsys_initcall(stack_map_init);
638