xref: /openbmc/linux/kernel/bpf/stackmap.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2016 Facebook
3  */
4 #include <linux/bpf.h>
5 #include <linux/jhash.h>
6 #include <linux/filter.h>
7 #include <linux/stacktrace.h>
8 #include <linux/perf_event.h>
9 #include <linux/elf.h>
10 #include <linux/pagemap.h>
11 #include <linux/irq_work.h>
12 #include "percpu_freelist.h"
13 
14 #define STACK_CREATE_FLAG_MASK					\
15 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY |	\
16 	 BPF_F_STACK_BUILD_ID)
17 
18 struct stack_map_bucket {
19 	struct pcpu_freelist_node fnode;
20 	u32 hash;
21 	u32 nr;
22 	u64 data[];
23 };
24 
25 struct bpf_stack_map {
26 	struct bpf_map map;
27 	void *elems;
28 	struct pcpu_freelist freelist;
29 	u32 n_buckets;
30 	struct stack_map_bucket *buckets[];
31 };
32 
33 /* irq_work to run up_read() for build_id lookup in nmi context */
34 struct stack_map_irq_work {
35 	struct irq_work irq_work;
36 	struct rw_semaphore *sem;
37 };
38 
39 static void do_up_read(struct irq_work *entry)
40 {
41 	struct stack_map_irq_work *work;
42 
43 	work = container_of(entry, struct stack_map_irq_work, irq_work);
44 	up_read_non_owner(work->sem);
45 	work->sem = NULL;
46 }
47 
48 static DEFINE_PER_CPU(struct stack_map_irq_work, up_read_work);
49 
50 static inline bool stack_map_use_build_id(struct bpf_map *map)
51 {
52 	return (map->map_flags & BPF_F_STACK_BUILD_ID);
53 }
54 
55 static inline int stack_map_data_size(struct bpf_map *map)
56 {
57 	return stack_map_use_build_id(map) ?
58 		sizeof(struct bpf_stack_build_id) : sizeof(u64);
59 }
60 
61 static int prealloc_elems_and_freelist(struct bpf_stack_map *smap)
62 {
63 	u32 elem_size = sizeof(struct stack_map_bucket) + smap->map.value_size;
64 	int err;
65 
66 	smap->elems = bpf_map_area_alloc(elem_size * smap->map.max_entries,
67 					 smap->map.numa_node);
68 	if (!smap->elems)
69 		return -ENOMEM;
70 
71 	err = pcpu_freelist_init(&smap->freelist);
72 	if (err)
73 		goto free_elems;
74 
75 	pcpu_freelist_populate(&smap->freelist, smap->elems, elem_size,
76 			       smap->map.max_entries);
77 	return 0;
78 
79 free_elems:
80 	bpf_map_area_free(smap->elems);
81 	return err;
82 }
83 
84 /* Called from syscall */
85 static struct bpf_map *stack_map_alloc(union bpf_attr *attr)
86 {
87 	u32 value_size = attr->value_size;
88 	struct bpf_stack_map *smap;
89 	struct bpf_map_memory mem;
90 	u64 cost, n_buckets;
91 	int err;
92 
93 	if (!capable(CAP_SYS_ADMIN))
94 		return ERR_PTR(-EPERM);
95 
96 	if (attr->map_flags & ~STACK_CREATE_FLAG_MASK)
97 		return ERR_PTR(-EINVAL);
98 
99 	/* check sanity of attributes */
100 	if (attr->max_entries == 0 || attr->key_size != 4 ||
101 	    value_size < 8 || value_size % 8)
102 		return ERR_PTR(-EINVAL);
103 
104 	BUILD_BUG_ON(sizeof(struct bpf_stack_build_id) % sizeof(u64));
105 	if (attr->map_flags & BPF_F_STACK_BUILD_ID) {
106 		if (value_size % sizeof(struct bpf_stack_build_id) ||
107 		    value_size / sizeof(struct bpf_stack_build_id)
108 		    > sysctl_perf_event_max_stack)
109 			return ERR_PTR(-EINVAL);
110 	} else if (value_size / 8 > sysctl_perf_event_max_stack)
111 		return ERR_PTR(-EINVAL);
112 
113 	/* hash table size must be power of 2 */
114 	n_buckets = roundup_pow_of_two(attr->max_entries);
115 
116 	cost = n_buckets * sizeof(struct stack_map_bucket *) + sizeof(*smap);
117 	cost += n_buckets * (value_size + sizeof(struct stack_map_bucket));
118 	err = bpf_map_charge_init(&mem, cost);
119 	if (err)
120 		return ERR_PTR(err);
121 
122 	smap = bpf_map_area_alloc(cost, bpf_map_attr_numa_node(attr));
123 	if (!smap) {
124 		bpf_map_charge_finish(&mem);
125 		return ERR_PTR(-ENOMEM);
126 	}
127 
128 	bpf_map_init_from_attr(&smap->map, attr);
129 	smap->map.value_size = value_size;
130 	smap->n_buckets = n_buckets;
131 
132 	err = get_callchain_buffers(sysctl_perf_event_max_stack);
133 	if (err)
134 		goto free_charge;
135 
136 	err = prealloc_elems_and_freelist(smap);
137 	if (err)
138 		goto put_buffers;
139 
140 	bpf_map_charge_move(&smap->map.memory, &mem);
141 
142 	return &smap->map;
143 
144 put_buffers:
145 	put_callchain_buffers();
146 free_charge:
147 	bpf_map_charge_finish(&mem);
148 	bpf_map_area_free(smap);
149 	return ERR_PTR(err);
150 }
151 
152 #define BPF_BUILD_ID 3
153 /*
154  * Parse build id from the note segment. This logic can be shared between
155  * 32-bit and 64-bit system, because Elf32_Nhdr and Elf64_Nhdr are
156  * identical.
157  */
158 static inline int stack_map_parse_build_id(void *page_addr,
159 					   unsigned char *build_id,
160 					   void *note_start,
161 					   Elf32_Word note_size)
162 {
163 	Elf32_Word note_offs = 0, new_offs;
164 
165 	/* check for overflow */
166 	if (note_start < page_addr || note_start + note_size < note_start)
167 		return -EINVAL;
168 
169 	/* only supports note that fits in the first page */
170 	if (note_start + note_size > page_addr + PAGE_SIZE)
171 		return -EINVAL;
172 
173 	while (note_offs + sizeof(Elf32_Nhdr) < note_size) {
174 		Elf32_Nhdr *nhdr = (Elf32_Nhdr *)(note_start + note_offs);
175 
176 		if (nhdr->n_type == BPF_BUILD_ID &&
177 		    nhdr->n_namesz == sizeof("GNU") &&
178 		    nhdr->n_descsz > 0 &&
179 		    nhdr->n_descsz <= BPF_BUILD_ID_SIZE) {
180 			memcpy(build_id,
181 			       note_start + note_offs +
182 			       ALIGN(sizeof("GNU"), 4) + sizeof(Elf32_Nhdr),
183 			       nhdr->n_descsz);
184 			memset(build_id + nhdr->n_descsz, 0,
185 			       BPF_BUILD_ID_SIZE - nhdr->n_descsz);
186 			return 0;
187 		}
188 		new_offs = note_offs + sizeof(Elf32_Nhdr) +
189 			ALIGN(nhdr->n_namesz, 4) + ALIGN(nhdr->n_descsz, 4);
190 		if (new_offs <= note_offs)  /* overflow */
191 			break;
192 		note_offs = new_offs;
193 	}
194 	return -EINVAL;
195 }
196 
197 /* Parse build ID from 32-bit ELF */
198 static int stack_map_get_build_id_32(void *page_addr,
199 				     unsigned char *build_id)
200 {
201 	Elf32_Ehdr *ehdr = (Elf32_Ehdr *)page_addr;
202 	Elf32_Phdr *phdr;
203 	int i;
204 
205 	/* only supports phdr that fits in one page */
206 	if (ehdr->e_phnum >
207 	    (PAGE_SIZE - sizeof(Elf32_Ehdr)) / sizeof(Elf32_Phdr))
208 		return -EINVAL;
209 
210 	phdr = (Elf32_Phdr *)(page_addr + sizeof(Elf32_Ehdr));
211 
212 	for (i = 0; i < ehdr->e_phnum; ++i)
213 		if (phdr[i].p_type == PT_NOTE)
214 			return stack_map_parse_build_id(page_addr, build_id,
215 					page_addr + phdr[i].p_offset,
216 					phdr[i].p_filesz);
217 	return -EINVAL;
218 }
219 
220 /* Parse build ID from 64-bit ELF */
221 static int stack_map_get_build_id_64(void *page_addr,
222 				     unsigned char *build_id)
223 {
224 	Elf64_Ehdr *ehdr = (Elf64_Ehdr *)page_addr;
225 	Elf64_Phdr *phdr;
226 	int i;
227 
228 	/* only supports phdr that fits in one page */
229 	if (ehdr->e_phnum >
230 	    (PAGE_SIZE - sizeof(Elf64_Ehdr)) / sizeof(Elf64_Phdr))
231 		return -EINVAL;
232 
233 	phdr = (Elf64_Phdr *)(page_addr + sizeof(Elf64_Ehdr));
234 
235 	for (i = 0; i < ehdr->e_phnum; ++i)
236 		if (phdr[i].p_type == PT_NOTE)
237 			return stack_map_parse_build_id(page_addr, build_id,
238 					page_addr + phdr[i].p_offset,
239 					phdr[i].p_filesz);
240 	return -EINVAL;
241 }
242 
243 /* Parse build ID of ELF file mapped to vma */
244 static int stack_map_get_build_id(struct vm_area_struct *vma,
245 				  unsigned char *build_id)
246 {
247 	Elf32_Ehdr *ehdr;
248 	struct page *page;
249 	void *page_addr;
250 	int ret;
251 
252 	/* only works for page backed storage  */
253 	if (!vma->vm_file)
254 		return -EINVAL;
255 
256 	page = find_get_page(vma->vm_file->f_mapping, 0);
257 	if (!page)
258 		return -EFAULT;	/* page not mapped */
259 
260 	ret = -EINVAL;
261 	page_addr = kmap_atomic(page);
262 	ehdr = (Elf32_Ehdr *)page_addr;
263 
264 	/* compare magic x7f "ELF" */
265 	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) != 0)
266 		goto out;
267 
268 	/* only support executable file and shared object file */
269 	if (ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN)
270 		goto out;
271 
272 	if (ehdr->e_ident[EI_CLASS] == ELFCLASS32)
273 		ret = stack_map_get_build_id_32(page_addr, build_id);
274 	else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64)
275 		ret = stack_map_get_build_id_64(page_addr, build_id);
276 out:
277 	kunmap_atomic(page_addr);
278 	put_page(page);
279 	return ret;
280 }
281 
282 static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs,
283 					  u64 *ips, u32 trace_nr, bool user)
284 {
285 	int i;
286 	struct vm_area_struct *vma;
287 	bool irq_work_busy = false;
288 	struct stack_map_irq_work *work = NULL;
289 
290 	if (irqs_disabled()) {
291 		work = this_cpu_ptr(&up_read_work);
292 		if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
293 			/* cannot queue more up_read, fallback */
294 			irq_work_busy = true;
295 	}
296 
297 	/*
298 	 * We cannot do up_read() when the irq is disabled, because of
299 	 * risk to deadlock with rq_lock. To do build_id lookup when the
300 	 * irqs are disabled, we need to run up_read() in irq_work. We use
301 	 * a percpu variable to do the irq_work. If the irq_work is
302 	 * already used by another lookup, we fall back to report ips.
303 	 *
304 	 * Same fallback is used for kernel stack (!user) on a stackmap
305 	 * with build_id.
306 	 */
307 	if (!user || !current || !current->mm || irq_work_busy ||
308 	    down_read_trylock(&current->mm->mmap_sem) == 0) {
309 		/* cannot access current->mm, fall back to ips */
310 		for (i = 0; i < trace_nr; i++) {
311 			id_offs[i].status = BPF_STACK_BUILD_ID_IP;
312 			id_offs[i].ip = ips[i];
313 			memset(id_offs[i].build_id, 0, BPF_BUILD_ID_SIZE);
314 		}
315 		return;
316 	}
317 
318 	for (i = 0; i < trace_nr; i++) {
319 		vma = find_vma(current->mm, ips[i]);
320 		if (!vma || stack_map_get_build_id(vma, id_offs[i].build_id)) {
321 			/* per entry fall back to ips */
322 			id_offs[i].status = BPF_STACK_BUILD_ID_IP;
323 			id_offs[i].ip = ips[i];
324 			memset(id_offs[i].build_id, 0, BPF_BUILD_ID_SIZE);
325 			continue;
326 		}
327 		id_offs[i].offset = (vma->vm_pgoff << PAGE_SHIFT) + ips[i]
328 			- vma->vm_start;
329 		id_offs[i].status = BPF_STACK_BUILD_ID_VALID;
330 	}
331 
332 	if (!work) {
333 		up_read(&current->mm->mmap_sem);
334 	} else {
335 		work->sem = &current->mm->mmap_sem;
336 		irq_work_queue(&work->irq_work);
337 		/*
338 		 * The irq_work will release the mmap_sem with
339 		 * up_read_non_owner(). The rwsem_release() is called
340 		 * here to release the lock from lockdep's perspective.
341 		 */
342 		rwsem_release(&current->mm->mmap_sem.dep_map, _RET_IP_);
343 	}
344 }
345 
346 BPF_CALL_3(bpf_get_stackid, struct pt_regs *, regs, struct bpf_map *, map,
347 	   u64, flags)
348 {
349 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
350 	struct perf_callchain_entry *trace;
351 	struct stack_map_bucket *bucket, *new_bucket, *old_bucket;
352 	u32 max_depth = map->value_size / stack_map_data_size(map);
353 	/* stack_map_alloc() checks that max_depth <= sysctl_perf_event_max_stack */
354 	u32 init_nr = sysctl_perf_event_max_stack - max_depth;
355 	u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
356 	u32 hash, id, trace_nr, trace_len;
357 	bool user = flags & BPF_F_USER_STACK;
358 	bool kernel = !user;
359 	u64 *ips;
360 	bool hash_matches;
361 
362 	if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
363 			       BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID)))
364 		return -EINVAL;
365 
366 	trace = get_perf_callchain(regs, init_nr, kernel, user,
367 				   sysctl_perf_event_max_stack, false, false);
368 
369 	if (unlikely(!trace))
370 		/* couldn't fetch the stack trace */
371 		return -EFAULT;
372 
373 	/* get_perf_callchain() guarantees that trace->nr >= init_nr
374 	 * and trace-nr <= sysctl_perf_event_max_stack, so trace_nr <= max_depth
375 	 */
376 	trace_nr = trace->nr - init_nr;
377 
378 	if (trace_nr <= skip)
379 		/* skipping more than usable stack trace */
380 		return -EFAULT;
381 
382 	trace_nr -= skip;
383 	trace_len = trace_nr * sizeof(u64);
384 	ips = trace->ip + skip + init_nr;
385 	hash = jhash2((u32 *)ips, trace_len / sizeof(u32), 0);
386 	id = hash & (smap->n_buckets - 1);
387 	bucket = READ_ONCE(smap->buckets[id]);
388 
389 	hash_matches = bucket && bucket->hash == hash;
390 	/* fast cmp */
391 	if (hash_matches && flags & BPF_F_FAST_STACK_CMP)
392 		return id;
393 
394 	if (stack_map_use_build_id(map)) {
395 		/* for build_id+offset, pop a bucket before slow cmp */
396 		new_bucket = (struct stack_map_bucket *)
397 			pcpu_freelist_pop(&smap->freelist);
398 		if (unlikely(!new_bucket))
399 			return -ENOMEM;
400 		new_bucket->nr = trace_nr;
401 		stack_map_get_build_id_offset(
402 			(struct bpf_stack_build_id *)new_bucket->data,
403 			ips, trace_nr, user);
404 		trace_len = trace_nr * sizeof(struct bpf_stack_build_id);
405 		if (hash_matches && bucket->nr == trace_nr &&
406 		    memcmp(bucket->data, new_bucket->data, trace_len) == 0) {
407 			pcpu_freelist_push(&smap->freelist, &new_bucket->fnode);
408 			return id;
409 		}
410 		if (bucket && !(flags & BPF_F_REUSE_STACKID)) {
411 			pcpu_freelist_push(&smap->freelist, &new_bucket->fnode);
412 			return -EEXIST;
413 		}
414 	} else {
415 		if (hash_matches && bucket->nr == trace_nr &&
416 		    memcmp(bucket->data, ips, trace_len) == 0)
417 			return id;
418 		if (bucket && !(flags & BPF_F_REUSE_STACKID))
419 			return -EEXIST;
420 
421 		new_bucket = (struct stack_map_bucket *)
422 			pcpu_freelist_pop(&smap->freelist);
423 		if (unlikely(!new_bucket))
424 			return -ENOMEM;
425 		memcpy(new_bucket->data, ips, trace_len);
426 	}
427 
428 	new_bucket->hash = hash;
429 	new_bucket->nr = trace_nr;
430 
431 	old_bucket = xchg(&smap->buckets[id], new_bucket);
432 	if (old_bucket)
433 		pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
434 	return id;
435 }
436 
437 const struct bpf_func_proto bpf_get_stackid_proto = {
438 	.func		= bpf_get_stackid,
439 	.gpl_only	= true,
440 	.ret_type	= RET_INTEGER,
441 	.arg1_type	= ARG_PTR_TO_CTX,
442 	.arg2_type	= ARG_CONST_MAP_PTR,
443 	.arg3_type	= ARG_ANYTHING,
444 };
445 
446 BPF_CALL_4(bpf_get_stack, struct pt_regs *, regs, void *, buf, u32, size,
447 	   u64, flags)
448 {
449 	u32 init_nr, trace_nr, copy_len, elem_size, num_elem;
450 	bool user_build_id = flags & BPF_F_USER_BUILD_ID;
451 	u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
452 	bool user = flags & BPF_F_USER_STACK;
453 	struct perf_callchain_entry *trace;
454 	bool kernel = !user;
455 	int err = -EINVAL;
456 	u64 *ips;
457 
458 	if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
459 			       BPF_F_USER_BUILD_ID)))
460 		goto clear;
461 	if (kernel && user_build_id)
462 		goto clear;
463 
464 	elem_size = (user && user_build_id) ? sizeof(struct bpf_stack_build_id)
465 					    : sizeof(u64);
466 	if (unlikely(size % elem_size))
467 		goto clear;
468 
469 	num_elem = size / elem_size;
470 	if (sysctl_perf_event_max_stack < num_elem)
471 		init_nr = 0;
472 	else
473 		init_nr = sysctl_perf_event_max_stack - num_elem;
474 	trace = get_perf_callchain(regs, init_nr, kernel, user,
475 				   sysctl_perf_event_max_stack, false, false);
476 	if (unlikely(!trace))
477 		goto err_fault;
478 
479 	trace_nr = trace->nr - init_nr;
480 	if (trace_nr < skip)
481 		goto err_fault;
482 
483 	trace_nr -= skip;
484 	trace_nr = (trace_nr <= num_elem) ? trace_nr : num_elem;
485 	copy_len = trace_nr * elem_size;
486 	ips = trace->ip + skip + init_nr;
487 	if (user && user_build_id)
488 		stack_map_get_build_id_offset(buf, ips, trace_nr, user);
489 	else
490 		memcpy(buf, ips, copy_len);
491 
492 	if (size > copy_len)
493 		memset(buf + copy_len, 0, size - copy_len);
494 	return copy_len;
495 
496 err_fault:
497 	err = -EFAULT;
498 clear:
499 	memset(buf, 0, size);
500 	return err;
501 }
502 
503 const struct bpf_func_proto bpf_get_stack_proto = {
504 	.func		= bpf_get_stack,
505 	.gpl_only	= true,
506 	.ret_type	= RET_INTEGER,
507 	.arg1_type	= ARG_PTR_TO_CTX,
508 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
509 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
510 	.arg4_type	= ARG_ANYTHING,
511 };
512 
513 /* Called from eBPF program */
514 static void *stack_map_lookup_elem(struct bpf_map *map, void *key)
515 {
516 	return ERR_PTR(-EOPNOTSUPP);
517 }
518 
519 /* Called from syscall */
520 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value)
521 {
522 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
523 	struct stack_map_bucket *bucket, *old_bucket;
524 	u32 id = *(u32 *)key, trace_len;
525 
526 	if (unlikely(id >= smap->n_buckets))
527 		return -ENOENT;
528 
529 	bucket = xchg(&smap->buckets[id], NULL);
530 	if (!bucket)
531 		return -ENOENT;
532 
533 	trace_len = bucket->nr * stack_map_data_size(map);
534 	memcpy(value, bucket->data, trace_len);
535 	memset(value + trace_len, 0, map->value_size - trace_len);
536 
537 	old_bucket = xchg(&smap->buckets[id], bucket);
538 	if (old_bucket)
539 		pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
540 	return 0;
541 }
542 
543 static int stack_map_get_next_key(struct bpf_map *map, void *key,
544 				  void *next_key)
545 {
546 	struct bpf_stack_map *smap = container_of(map,
547 						  struct bpf_stack_map, map);
548 	u32 id;
549 
550 	WARN_ON_ONCE(!rcu_read_lock_held());
551 
552 	if (!key) {
553 		id = 0;
554 	} else {
555 		id = *(u32 *)key;
556 		if (id >= smap->n_buckets || !smap->buckets[id])
557 			id = 0;
558 		else
559 			id++;
560 	}
561 
562 	while (id < smap->n_buckets && !smap->buckets[id])
563 		id++;
564 
565 	if (id >= smap->n_buckets)
566 		return -ENOENT;
567 
568 	*(u32 *)next_key = id;
569 	return 0;
570 }
571 
572 static int stack_map_update_elem(struct bpf_map *map, void *key, void *value,
573 				 u64 map_flags)
574 {
575 	return -EINVAL;
576 }
577 
578 /* Called from syscall or from eBPF program */
579 static int stack_map_delete_elem(struct bpf_map *map, void *key)
580 {
581 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
582 	struct stack_map_bucket *old_bucket;
583 	u32 id = *(u32 *)key;
584 
585 	if (unlikely(id >= smap->n_buckets))
586 		return -E2BIG;
587 
588 	old_bucket = xchg(&smap->buckets[id], NULL);
589 	if (old_bucket) {
590 		pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
591 		return 0;
592 	} else {
593 		return -ENOENT;
594 	}
595 }
596 
597 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
598 static void stack_map_free(struct bpf_map *map)
599 {
600 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
601 
602 	/* wait for bpf programs to complete before freeing stack map */
603 	synchronize_rcu();
604 
605 	bpf_map_area_free(smap->elems);
606 	pcpu_freelist_destroy(&smap->freelist);
607 	bpf_map_area_free(smap);
608 	put_callchain_buffers();
609 }
610 
611 const struct bpf_map_ops stack_trace_map_ops = {
612 	.map_alloc = stack_map_alloc,
613 	.map_free = stack_map_free,
614 	.map_get_next_key = stack_map_get_next_key,
615 	.map_lookup_elem = stack_map_lookup_elem,
616 	.map_update_elem = stack_map_update_elem,
617 	.map_delete_elem = stack_map_delete_elem,
618 	.map_check_btf = map_check_no_btf,
619 };
620 
621 static int __init stack_map_init(void)
622 {
623 	int cpu;
624 	struct stack_map_irq_work *work;
625 
626 	for_each_possible_cpu(cpu) {
627 		work = per_cpu_ptr(&up_read_work, cpu);
628 		init_irq_work(&work->irq_work, do_up_read);
629 	}
630 	return 0;
631 }
632 subsys_initcall(stack_map_init);
633