xref: /openbmc/linux/kernel/bpf/stackmap.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2016 Facebook
3  */
4 #include <linux/bpf.h>
5 #include <linux/jhash.h>
6 #include <linux/filter.h>
7 #include <linux/stacktrace.h>
8 #include <linux/perf_event.h>
9 #include <linux/elf.h>
10 #include <linux/pagemap.h>
11 #include <linux/irq_work.h>
12 #include "percpu_freelist.h"
13 
14 #define STACK_CREATE_FLAG_MASK					\
15 	(BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY |	\
16 	 BPF_F_STACK_BUILD_ID)
17 
18 struct stack_map_bucket {
19 	struct pcpu_freelist_node fnode;
20 	u32 hash;
21 	u32 nr;
22 	u64 data[];
23 };
24 
25 struct bpf_stack_map {
26 	struct bpf_map map;
27 	void *elems;
28 	struct pcpu_freelist freelist;
29 	u32 n_buckets;
30 	struct stack_map_bucket *buckets[];
31 };
32 
33 /* irq_work to run up_read() for build_id lookup in nmi context */
34 struct stack_map_irq_work {
35 	struct irq_work irq_work;
36 	struct rw_semaphore *sem;
37 };
38 
39 static void do_up_read(struct irq_work *entry)
40 {
41 	struct stack_map_irq_work *work;
42 
43 	work = container_of(entry, struct stack_map_irq_work, irq_work);
44 	up_read_non_owner(work->sem);
45 	work->sem = NULL;
46 }
47 
48 static DEFINE_PER_CPU(struct stack_map_irq_work, up_read_work);
49 
50 static inline bool stack_map_use_build_id(struct bpf_map *map)
51 {
52 	return (map->map_flags & BPF_F_STACK_BUILD_ID);
53 }
54 
55 static inline int stack_map_data_size(struct bpf_map *map)
56 {
57 	return stack_map_use_build_id(map) ?
58 		sizeof(struct bpf_stack_build_id) : sizeof(u64);
59 }
60 
61 static int prealloc_elems_and_freelist(struct bpf_stack_map *smap)
62 {
63 	u32 elem_size = sizeof(struct stack_map_bucket) + smap->map.value_size;
64 	int err;
65 
66 	smap->elems = bpf_map_area_alloc(elem_size * smap->map.max_entries,
67 					 smap->map.numa_node);
68 	if (!smap->elems)
69 		return -ENOMEM;
70 
71 	err = pcpu_freelist_init(&smap->freelist);
72 	if (err)
73 		goto free_elems;
74 
75 	pcpu_freelist_populate(&smap->freelist, smap->elems, elem_size,
76 			       smap->map.max_entries);
77 	return 0;
78 
79 free_elems:
80 	bpf_map_area_free(smap->elems);
81 	return err;
82 }
83 
84 /* Called from syscall */
85 static struct bpf_map *stack_map_alloc(union bpf_attr *attr)
86 {
87 	u32 value_size = attr->value_size;
88 	struct bpf_stack_map *smap;
89 	u64 cost, n_buckets;
90 	int err;
91 
92 	if (!capable(CAP_SYS_ADMIN))
93 		return ERR_PTR(-EPERM);
94 
95 	if (attr->map_flags & ~STACK_CREATE_FLAG_MASK)
96 		return ERR_PTR(-EINVAL);
97 
98 	/* check sanity of attributes */
99 	if (attr->max_entries == 0 || attr->key_size != 4 ||
100 	    value_size < 8 || value_size % 8)
101 		return ERR_PTR(-EINVAL);
102 
103 	BUILD_BUG_ON(sizeof(struct bpf_stack_build_id) % sizeof(u64));
104 	if (attr->map_flags & BPF_F_STACK_BUILD_ID) {
105 		if (value_size % sizeof(struct bpf_stack_build_id) ||
106 		    value_size / sizeof(struct bpf_stack_build_id)
107 		    > sysctl_perf_event_max_stack)
108 			return ERR_PTR(-EINVAL);
109 	} else if (value_size / 8 > sysctl_perf_event_max_stack)
110 		return ERR_PTR(-EINVAL);
111 
112 	/* hash table size must be power of 2 */
113 	n_buckets = roundup_pow_of_two(attr->max_entries);
114 
115 	cost = n_buckets * sizeof(struct stack_map_bucket *) + sizeof(*smap);
116 	if (cost >= U32_MAX - PAGE_SIZE)
117 		return ERR_PTR(-E2BIG);
118 
119 	smap = bpf_map_area_alloc(cost, bpf_map_attr_numa_node(attr));
120 	if (!smap)
121 		return ERR_PTR(-ENOMEM);
122 
123 	err = -E2BIG;
124 	cost += n_buckets * (value_size + sizeof(struct stack_map_bucket));
125 	if (cost >= U32_MAX - PAGE_SIZE)
126 		goto free_smap;
127 
128 	bpf_map_init_from_attr(&smap->map, attr);
129 	smap->map.value_size = value_size;
130 	smap->n_buckets = n_buckets;
131 	smap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
132 
133 	err = bpf_map_precharge_memlock(smap->map.pages);
134 	if (err)
135 		goto free_smap;
136 
137 	err = get_callchain_buffers(sysctl_perf_event_max_stack);
138 	if (err)
139 		goto free_smap;
140 
141 	err = prealloc_elems_and_freelist(smap);
142 	if (err)
143 		goto put_buffers;
144 
145 	return &smap->map;
146 
147 put_buffers:
148 	put_callchain_buffers();
149 free_smap:
150 	bpf_map_area_free(smap);
151 	return ERR_PTR(err);
152 }
153 
154 #define BPF_BUILD_ID 3
155 /*
156  * Parse build id from the note segment. This logic can be shared between
157  * 32-bit and 64-bit system, because Elf32_Nhdr and Elf64_Nhdr are
158  * identical.
159  */
160 static inline int stack_map_parse_build_id(void *page_addr,
161 					   unsigned char *build_id,
162 					   void *note_start,
163 					   Elf32_Word note_size)
164 {
165 	Elf32_Word note_offs = 0, new_offs;
166 
167 	/* check for overflow */
168 	if (note_start < page_addr || note_start + note_size < note_start)
169 		return -EINVAL;
170 
171 	/* only supports note that fits in the first page */
172 	if (note_start + note_size > page_addr + PAGE_SIZE)
173 		return -EINVAL;
174 
175 	while (note_offs + sizeof(Elf32_Nhdr) < note_size) {
176 		Elf32_Nhdr *nhdr = (Elf32_Nhdr *)(note_start + note_offs);
177 
178 		if (nhdr->n_type == BPF_BUILD_ID &&
179 		    nhdr->n_namesz == sizeof("GNU") &&
180 		    nhdr->n_descsz > 0 &&
181 		    nhdr->n_descsz <= BPF_BUILD_ID_SIZE) {
182 			memcpy(build_id,
183 			       note_start + note_offs +
184 			       ALIGN(sizeof("GNU"), 4) + sizeof(Elf32_Nhdr),
185 			       nhdr->n_descsz);
186 			memset(build_id + nhdr->n_descsz, 0,
187 			       BPF_BUILD_ID_SIZE - nhdr->n_descsz);
188 			return 0;
189 		}
190 		new_offs = note_offs + sizeof(Elf32_Nhdr) +
191 			ALIGN(nhdr->n_namesz, 4) + ALIGN(nhdr->n_descsz, 4);
192 		if (new_offs <= note_offs)  /* overflow */
193 			break;
194 		note_offs = new_offs;
195 	}
196 	return -EINVAL;
197 }
198 
199 /* Parse build ID from 32-bit ELF */
200 static int stack_map_get_build_id_32(void *page_addr,
201 				     unsigned char *build_id)
202 {
203 	Elf32_Ehdr *ehdr = (Elf32_Ehdr *)page_addr;
204 	Elf32_Phdr *phdr;
205 	int i;
206 
207 	/* only supports phdr that fits in one page */
208 	if (ehdr->e_phnum >
209 	    (PAGE_SIZE - sizeof(Elf32_Ehdr)) / sizeof(Elf32_Phdr))
210 		return -EINVAL;
211 
212 	phdr = (Elf32_Phdr *)(page_addr + sizeof(Elf32_Ehdr));
213 
214 	for (i = 0; i < ehdr->e_phnum; ++i)
215 		if (phdr[i].p_type == PT_NOTE)
216 			return stack_map_parse_build_id(page_addr, build_id,
217 					page_addr + phdr[i].p_offset,
218 					phdr[i].p_filesz);
219 	return -EINVAL;
220 }
221 
222 /* Parse build ID from 64-bit ELF */
223 static int stack_map_get_build_id_64(void *page_addr,
224 				     unsigned char *build_id)
225 {
226 	Elf64_Ehdr *ehdr = (Elf64_Ehdr *)page_addr;
227 	Elf64_Phdr *phdr;
228 	int i;
229 
230 	/* only supports phdr that fits in one page */
231 	if (ehdr->e_phnum >
232 	    (PAGE_SIZE - sizeof(Elf64_Ehdr)) / sizeof(Elf64_Phdr))
233 		return -EINVAL;
234 
235 	phdr = (Elf64_Phdr *)(page_addr + sizeof(Elf64_Ehdr));
236 
237 	for (i = 0; i < ehdr->e_phnum; ++i)
238 		if (phdr[i].p_type == PT_NOTE)
239 			return stack_map_parse_build_id(page_addr, build_id,
240 					page_addr + phdr[i].p_offset,
241 					phdr[i].p_filesz);
242 	return -EINVAL;
243 }
244 
245 /* Parse build ID of ELF file mapped to vma */
246 static int stack_map_get_build_id(struct vm_area_struct *vma,
247 				  unsigned char *build_id)
248 {
249 	Elf32_Ehdr *ehdr;
250 	struct page *page;
251 	void *page_addr;
252 	int ret;
253 
254 	/* only works for page backed storage  */
255 	if (!vma->vm_file)
256 		return -EINVAL;
257 
258 	page = find_get_page(vma->vm_file->f_mapping, 0);
259 	if (!page)
260 		return -EFAULT;	/* page not mapped */
261 
262 	ret = -EINVAL;
263 	page_addr = kmap_atomic(page);
264 	ehdr = (Elf32_Ehdr *)page_addr;
265 
266 	/* compare magic x7f "ELF" */
267 	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) != 0)
268 		goto out;
269 
270 	/* only support executable file and shared object file */
271 	if (ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN)
272 		goto out;
273 
274 	if (ehdr->e_ident[EI_CLASS] == ELFCLASS32)
275 		ret = stack_map_get_build_id_32(page_addr, build_id);
276 	else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64)
277 		ret = stack_map_get_build_id_64(page_addr, build_id);
278 out:
279 	kunmap_atomic(page_addr);
280 	put_page(page);
281 	return ret;
282 }
283 
284 static void stack_map_get_build_id_offset(struct bpf_stack_build_id *id_offs,
285 					  u64 *ips, u32 trace_nr, bool user)
286 {
287 	int i;
288 	struct vm_area_struct *vma;
289 	bool irq_work_busy = false;
290 	struct stack_map_irq_work *work = NULL;
291 
292 	if (in_nmi()) {
293 		work = this_cpu_ptr(&up_read_work);
294 		if (work->irq_work.flags & IRQ_WORK_BUSY)
295 			/* cannot queue more up_read, fallback */
296 			irq_work_busy = true;
297 	}
298 
299 	/*
300 	 * We cannot do up_read() in nmi context. To do build_id lookup
301 	 * in nmi context, we need to run up_read() in irq_work. We use
302 	 * a percpu variable to do the irq_work. If the irq_work is
303 	 * already used by another lookup, we fall back to report ips.
304 	 *
305 	 * Same fallback is used for kernel stack (!user) on a stackmap
306 	 * with build_id.
307 	 */
308 	if (!user || !current || !current->mm || irq_work_busy ||
309 	    down_read_trylock(&current->mm->mmap_sem) == 0) {
310 		/* cannot access current->mm, fall back to ips */
311 		for (i = 0; i < trace_nr; i++) {
312 			id_offs[i].status = BPF_STACK_BUILD_ID_IP;
313 			id_offs[i].ip = ips[i];
314 			memset(id_offs[i].build_id, 0, BPF_BUILD_ID_SIZE);
315 		}
316 		return;
317 	}
318 
319 	for (i = 0; i < trace_nr; i++) {
320 		vma = find_vma(current->mm, ips[i]);
321 		if (!vma || stack_map_get_build_id(vma, id_offs[i].build_id)) {
322 			/* per entry fall back to ips */
323 			id_offs[i].status = BPF_STACK_BUILD_ID_IP;
324 			id_offs[i].ip = ips[i];
325 			memset(id_offs[i].build_id, 0, BPF_BUILD_ID_SIZE);
326 			continue;
327 		}
328 		id_offs[i].offset = (vma->vm_pgoff << PAGE_SHIFT) + ips[i]
329 			- vma->vm_start;
330 		id_offs[i].status = BPF_STACK_BUILD_ID_VALID;
331 	}
332 
333 	if (!work) {
334 		up_read(&current->mm->mmap_sem);
335 	} else {
336 		work->sem = &current->mm->mmap_sem;
337 		irq_work_queue(&work->irq_work);
338 		/*
339 		 * The irq_work will release the mmap_sem with
340 		 * up_read_non_owner(). The rwsem_release() is called
341 		 * here to release the lock from lockdep's perspective.
342 		 */
343 		rwsem_release(&current->mm->mmap_sem.dep_map, 1, _RET_IP_);
344 	}
345 }
346 
347 BPF_CALL_3(bpf_get_stackid, struct pt_regs *, regs, struct bpf_map *, map,
348 	   u64, flags)
349 {
350 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
351 	struct perf_callchain_entry *trace;
352 	struct stack_map_bucket *bucket, *new_bucket, *old_bucket;
353 	u32 max_depth = map->value_size / stack_map_data_size(map);
354 	/* stack_map_alloc() checks that max_depth <= sysctl_perf_event_max_stack */
355 	u32 init_nr = sysctl_perf_event_max_stack - max_depth;
356 	u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
357 	u32 hash, id, trace_nr, trace_len;
358 	bool user = flags & BPF_F_USER_STACK;
359 	bool kernel = !user;
360 	u64 *ips;
361 	bool hash_matches;
362 
363 	if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
364 			       BPF_F_FAST_STACK_CMP | BPF_F_REUSE_STACKID)))
365 		return -EINVAL;
366 
367 	trace = get_perf_callchain(regs, init_nr, kernel, user,
368 				   sysctl_perf_event_max_stack, false, false);
369 
370 	if (unlikely(!trace))
371 		/* couldn't fetch the stack trace */
372 		return -EFAULT;
373 
374 	/* get_perf_callchain() guarantees that trace->nr >= init_nr
375 	 * and trace-nr <= sysctl_perf_event_max_stack, so trace_nr <= max_depth
376 	 */
377 	trace_nr = trace->nr - init_nr;
378 
379 	if (trace_nr <= skip)
380 		/* skipping more than usable stack trace */
381 		return -EFAULT;
382 
383 	trace_nr -= skip;
384 	trace_len = trace_nr * sizeof(u64);
385 	ips = trace->ip + skip + init_nr;
386 	hash = jhash2((u32 *)ips, trace_len / sizeof(u32), 0);
387 	id = hash & (smap->n_buckets - 1);
388 	bucket = READ_ONCE(smap->buckets[id]);
389 
390 	hash_matches = bucket && bucket->hash == hash;
391 	/* fast cmp */
392 	if (hash_matches && flags & BPF_F_FAST_STACK_CMP)
393 		return id;
394 
395 	if (stack_map_use_build_id(map)) {
396 		/* for build_id+offset, pop a bucket before slow cmp */
397 		new_bucket = (struct stack_map_bucket *)
398 			pcpu_freelist_pop(&smap->freelist);
399 		if (unlikely(!new_bucket))
400 			return -ENOMEM;
401 		new_bucket->nr = trace_nr;
402 		stack_map_get_build_id_offset(
403 			(struct bpf_stack_build_id *)new_bucket->data,
404 			ips, trace_nr, user);
405 		trace_len = trace_nr * sizeof(struct bpf_stack_build_id);
406 		if (hash_matches && bucket->nr == trace_nr &&
407 		    memcmp(bucket->data, new_bucket->data, trace_len) == 0) {
408 			pcpu_freelist_push(&smap->freelist, &new_bucket->fnode);
409 			return id;
410 		}
411 		if (bucket && !(flags & BPF_F_REUSE_STACKID)) {
412 			pcpu_freelist_push(&smap->freelist, &new_bucket->fnode);
413 			return -EEXIST;
414 		}
415 	} else {
416 		if (hash_matches && bucket->nr == trace_nr &&
417 		    memcmp(bucket->data, ips, trace_len) == 0)
418 			return id;
419 		if (bucket && !(flags & BPF_F_REUSE_STACKID))
420 			return -EEXIST;
421 
422 		new_bucket = (struct stack_map_bucket *)
423 			pcpu_freelist_pop(&smap->freelist);
424 		if (unlikely(!new_bucket))
425 			return -ENOMEM;
426 		memcpy(new_bucket->data, ips, trace_len);
427 	}
428 
429 	new_bucket->hash = hash;
430 	new_bucket->nr = trace_nr;
431 
432 	old_bucket = xchg(&smap->buckets[id], new_bucket);
433 	if (old_bucket)
434 		pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
435 	return id;
436 }
437 
438 const struct bpf_func_proto bpf_get_stackid_proto = {
439 	.func		= bpf_get_stackid,
440 	.gpl_only	= true,
441 	.ret_type	= RET_INTEGER,
442 	.arg1_type	= ARG_PTR_TO_CTX,
443 	.arg2_type	= ARG_CONST_MAP_PTR,
444 	.arg3_type	= ARG_ANYTHING,
445 };
446 
447 BPF_CALL_4(bpf_get_stack, struct pt_regs *, regs, void *, buf, u32, size,
448 	   u64, flags)
449 {
450 	u32 init_nr, trace_nr, copy_len, elem_size, num_elem;
451 	bool user_build_id = flags & BPF_F_USER_BUILD_ID;
452 	u32 skip = flags & BPF_F_SKIP_FIELD_MASK;
453 	bool user = flags & BPF_F_USER_STACK;
454 	struct perf_callchain_entry *trace;
455 	bool kernel = !user;
456 	int err = -EINVAL;
457 	u64 *ips;
458 
459 	if (unlikely(flags & ~(BPF_F_SKIP_FIELD_MASK | BPF_F_USER_STACK |
460 			       BPF_F_USER_BUILD_ID)))
461 		goto clear;
462 	if (kernel && user_build_id)
463 		goto clear;
464 
465 	elem_size = (user && user_build_id) ? sizeof(struct bpf_stack_build_id)
466 					    : sizeof(u64);
467 	if (unlikely(size % elem_size))
468 		goto clear;
469 
470 	num_elem = size / elem_size;
471 	if (sysctl_perf_event_max_stack < num_elem)
472 		init_nr = 0;
473 	else
474 		init_nr = sysctl_perf_event_max_stack - num_elem;
475 	trace = get_perf_callchain(regs, init_nr, kernel, user,
476 				   sysctl_perf_event_max_stack, false, false);
477 	if (unlikely(!trace))
478 		goto err_fault;
479 
480 	trace_nr = trace->nr - init_nr;
481 	if (trace_nr < skip)
482 		goto err_fault;
483 
484 	trace_nr -= skip;
485 	trace_nr = (trace_nr <= num_elem) ? trace_nr : num_elem;
486 	copy_len = trace_nr * elem_size;
487 	ips = trace->ip + skip + init_nr;
488 	if (user && user_build_id)
489 		stack_map_get_build_id_offset(buf, ips, trace_nr, user);
490 	else
491 		memcpy(buf, ips, copy_len);
492 
493 	if (size > copy_len)
494 		memset(buf + copy_len, 0, size - copy_len);
495 	return copy_len;
496 
497 err_fault:
498 	err = -EFAULT;
499 clear:
500 	memset(buf, 0, size);
501 	return err;
502 }
503 
504 const struct bpf_func_proto bpf_get_stack_proto = {
505 	.func		= bpf_get_stack,
506 	.gpl_only	= true,
507 	.ret_type	= RET_INTEGER,
508 	.arg1_type	= ARG_PTR_TO_CTX,
509 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
510 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
511 	.arg4_type	= ARG_ANYTHING,
512 };
513 
514 /* Called from eBPF program */
515 static void *stack_map_lookup_elem(struct bpf_map *map, void *key)
516 {
517 	return ERR_PTR(-EOPNOTSUPP);
518 }
519 
520 /* Called from syscall */
521 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value)
522 {
523 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
524 	struct stack_map_bucket *bucket, *old_bucket;
525 	u32 id = *(u32 *)key, trace_len;
526 
527 	if (unlikely(id >= smap->n_buckets))
528 		return -ENOENT;
529 
530 	bucket = xchg(&smap->buckets[id], NULL);
531 	if (!bucket)
532 		return -ENOENT;
533 
534 	trace_len = bucket->nr * stack_map_data_size(map);
535 	memcpy(value, bucket->data, trace_len);
536 	memset(value + trace_len, 0, map->value_size - trace_len);
537 
538 	old_bucket = xchg(&smap->buckets[id], bucket);
539 	if (old_bucket)
540 		pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
541 	return 0;
542 }
543 
544 static int stack_map_get_next_key(struct bpf_map *map, void *key,
545 				  void *next_key)
546 {
547 	struct bpf_stack_map *smap = container_of(map,
548 						  struct bpf_stack_map, map);
549 	u32 id;
550 
551 	WARN_ON_ONCE(!rcu_read_lock_held());
552 
553 	if (!key) {
554 		id = 0;
555 	} else {
556 		id = *(u32 *)key;
557 		if (id >= smap->n_buckets || !smap->buckets[id])
558 			id = 0;
559 		else
560 			id++;
561 	}
562 
563 	while (id < smap->n_buckets && !smap->buckets[id])
564 		id++;
565 
566 	if (id >= smap->n_buckets)
567 		return -ENOENT;
568 
569 	*(u32 *)next_key = id;
570 	return 0;
571 }
572 
573 static int stack_map_update_elem(struct bpf_map *map, void *key, void *value,
574 				 u64 map_flags)
575 {
576 	return -EINVAL;
577 }
578 
579 /* Called from syscall or from eBPF program */
580 static int stack_map_delete_elem(struct bpf_map *map, void *key)
581 {
582 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
583 	struct stack_map_bucket *old_bucket;
584 	u32 id = *(u32 *)key;
585 
586 	if (unlikely(id >= smap->n_buckets))
587 		return -E2BIG;
588 
589 	old_bucket = xchg(&smap->buckets[id], NULL);
590 	if (old_bucket) {
591 		pcpu_freelist_push(&smap->freelist, &old_bucket->fnode);
592 		return 0;
593 	} else {
594 		return -ENOENT;
595 	}
596 }
597 
598 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
599 static void stack_map_free(struct bpf_map *map)
600 {
601 	struct bpf_stack_map *smap = container_of(map, struct bpf_stack_map, map);
602 
603 	/* wait for bpf programs to complete before freeing stack map */
604 	synchronize_rcu();
605 
606 	bpf_map_area_free(smap->elems);
607 	pcpu_freelist_destroy(&smap->freelist);
608 	bpf_map_area_free(smap);
609 	put_callchain_buffers();
610 }
611 
612 const struct bpf_map_ops stack_trace_map_ops = {
613 	.map_alloc = stack_map_alloc,
614 	.map_free = stack_map_free,
615 	.map_get_next_key = stack_map_get_next_key,
616 	.map_lookup_elem = stack_map_lookup_elem,
617 	.map_update_elem = stack_map_update_elem,
618 	.map_delete_elem = stack_map_delete_elem,
619 	.map_check_btf = map_check_no_btf,
620 };
621 
622 static int __init stack_map_init(void)
623 {
624 	int cpu;
625 	struct stack_map_irq_work *work;
626 
627 	for_each_possible_cpu(cpu) {
628 		work = per_cpu_ptr(&up_read_work, cpu);
629 		init_irq_work(&work->irq_work, do_up_read);
630 	}
631 	return 0;
632 }
633 subsys_initcall(stack_map_init);
634