xref: /openbmc/linux/kernel/bpf/ringbuf.c (revision fbb6b31a)
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13 
14 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
15 
16 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
17 #define RINGBUF_PGOFF \
18 	(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
19 /* consumer page and producer page */
20 #define RINGBUF_POS_PAGES 2
21 
22 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
23 
24 /* Maximum size of ring buffer area is limited by 32-bit page offset within
25  * record header, counted in pages. Reserve 8 bits for extensibility, and take
26  * into account few extra pages for consumer/producer pages and
27  * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
28  * ring buffer.
29  */
30 #define RINGBUF_MAX_DATA_SZ \
31 	(((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
32 
33 struct bpf_ringbuf {
34 	wait_queue_head_t waitq;
35 	struct irq_work work;
36 	u64 mask;
37 	struct page **pages;
38 	int nr_pages;
39 	spinlock_t spinlock ____cacheline_aligned_in_smp;
40 	/* Consumer and producer counters are put into separate pages to allow
41 	 * mapping consumer page as r/w, but restrict producer page to r/o.
42 	 * This protects producer position from being modified by user-space
43 	 * application and ruining in-kernel position tracking.
44 	 */
45 	unsigned long consumer_pos __aligned(PAGE_SIZE);
46 	unsigned long producer_pos __aligned(PAGE_SIZE);
47 	char data[] __aligned(PAGE_SIZE);
48 };
49 
50 struct bpf_ringbuf_map {
51 	struct bpf_map map;
52 	struct bpf_ringbuf *rb;
53 };
54 
55 /* 8-byte ring buffer record header structure */
56 struct bpf_ringbuf_hdr {
57 	u32 len;
58 	u32 pg_off;
59 };
60 
61 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
62 {
63 	const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
64 			    __GFP_NOWARN | __GFP_ZERO;
65 	int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
66 	int nr_data_pages = data_sz >> PAGE_SHIFT;
67 	int nr_pages = nr_meta_pages + nr_data_pages;
68 	struct page **pages, *page;
69 	struct bpf_ringbuf *rb;
70 	size_t array_size;
71 	int i;
72 
73 	/* Each data page is mapped twice to allow "virtual"
74 	 * continuous read of samples wrapping around the end of ring
75 	 * buffer area:
76 	 * ------------------------------------------------------
77 	 * | meta pages |  real data pages  |  same data pages  |
78 	 * ------------------------------------------------------
79 	 * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
80 	 * ------------------------------------------------------
81 	 * |            | TA             DA | TA             DA |
82 	 * ------------------------------------------------------
83 	 *                               ^^^^^^^
84 	 *                                  |
85 	 * Here, no need to worry about special handling of wrapped-around
86 	 * data due to double-mapped data pages. This works both in kernel and
87 	 * when mmap()'ed in user-space, simplifying both kernel and
88 	 * user-space implementations significantly.
89 	 */
90 	array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
91 	pages = bpf_map_area_alloc(array_size, numa_node);
92 	if (!pages)
93 		return NULL;
94 
95 	for (i = 0; i < nr_pages; i++) {
96 		page = alloc_pages_node(numa_node, flags, 0);
97 		if (!page) {
98 			nr_pages = i;
99 			goto err_free_pages;
100 		}
101 		pages[i] = page;
102 		if (i >= nr_meta_pages)
103 			pages[nr_data_pages + i] = page;
104 	}
105 
106 	rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
107 		  VM_MAP | VM_USERMAP, PAGE_KERNEL);
108 	if (rb) {
109 		kmemleak_not_leak(pages);
110 		rb->pages = pages;
111 		rb->nr_pages = nr_pages;
112 		return rb;
113 	}
114 
115 err_free_pages:
116 	for (i = 0; i < nr_pages; i++)
117 		__free_page(pages[i]);
118 	kvfree(pages);
119 	return NULL;
120 }
121 
122 static void bpf_ringbuf_notify(struct irq_work *work)
123 {
124 	struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
125 
126 	wake_up_all(&rb->waitq);
127 }
128 
129 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
130 {
131 	struct bpf_ringbuf *rb;
132 
133 	rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
134 	if (!rb)
135 		return NULL;
136 
137 	spin_lock_init(&rb->spinlock);
138 	init_waitqueue_head(&rb->waitq);
139 	init_irq_work(&rb->work, bpf_ringbuf_notify);
140 
141 	rb->mask = data_sz - 1;
142 	rb->consumer_pos = 0;
143 	rb->producer_pos = 0;
144 
145 	return rb;
146 }
147 
148 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
149 {
150 	struct bpf_ringbuf_map *rb_map;
151 
152 	if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
153 		return ERR_PTR(-EINVAL);
154 
155 	if (attr->key_size || attr->value_size ||
156 	    !is_power_of_2(attr->max_entries) ||
157 	    !PAGE_ALIGNED(attr->max_entries))
158 		return ERR_PTR(-EINVAL);
159 
160 #ifdef CONFIG_64BIT
161 	/* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
162 	if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
163 		return ERR_PTR(-E2BIG);
164 #endif
165 
166 	rb_map = kzalloc(sizeof(*rb_map), GFP_USER | __GFP_ACCOUNT);
167 	if (!rb_map)
168 		return ERR_PTR(-ENOMEM);
169 
170 	bpf_map_init_from_attr(&rb_map->map, attr);
171 
172 	rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
173 	if (!rb_map->rb) {
174 		kfree(rb_map);
175 		return ERR_PTR(-ENOMEM);
176 	}
177 
178 	return &rb_map->map;
179 }
180 
181 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
182 {
183 	/* copy pages pointer and nr_pages to local variable, as we are going
184 	 * to unmap rb itself with vunmap() below
185 	 */
186 	struct page **pages = rb->pages;
187 	int i, nr_pages = rb->nr_pages;
188 
189 	vunmap(rb);
190 	for (i = 0; i < nr_pages; i++)
191 		__free_page(pages[i]);
192 	kvfree(pages);
193 }
194 
195 static void ringbuf_map_free(struct bpf_map *map)
196 {
197 	struct bpf_ringbuf_map *rb_map;
198 
199 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
200 	bpf_ringbuf_free(rb_map->rb);
201 	kfree(rb_map);
202 }
203 
204 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
205 {
206 	return ERR_PTR(-ENOTSUPP);
207 }
208 
209 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
210 				   u64 flags)
211 {
212 	return -ENOTSUPP;
213 }
214 
215 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
216 {
217 	return -ENOTSUPP;
218 }
219 
220 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
221 				    void *next_key)
222 {
223 	return -ENOTSUPP;
224 }
225 
226 static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
227 {
228 	struct bpf_ringbuf_map *rb_map;
229 
230 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
231 
232 	if (vma->vm_flags & VM_WRITE) {
233 		/* allow writable mapping for the consumer_pos only */
234 		if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
235 			return -EPERM;
236 	} else {
237 		vma->vm_flags &= ~VM_MAYWRITE;
238 	}
239 	/* remap_vmalloc_range() checks size and offset constraints */
240 	return remap_vmalloc_range(vma, rb_map->rb,
241 				   vma->vm_pgoff + RINGBUF_PGOFF);
242 }
243 
244 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
245 {
246 	unsigned long cons_pos, prod_pos;
247 
248 	cons_pos = smp_load_acquire(&rb->consumer_pos);
249 	prod_pos = smp_load_acquire(&rb->producer_pos);
250 	return prod_pos - cons_pos;
251 }
252 
253 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp,
254 				 struct poll_table_struct *pts)
255 {
256 	struct bpf_ringbuf_map *rb_map;
257 
258 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
259 	poll_wait(filp, &rb_map->rb->waitq, pts);
260 
261 	if (ringbuf_avail_data_sz(rb_map->rb))
262 		return EPOLLIN | EPOLLRDNORM;
263 	return 0;
264 }
265 
266 static int ringbuf_map_btf_id;
267 const struct bpf_map_ops ringbuf_map_ops = {
268 	.map_meta_equal = bpf_map_meta_equal,
269 	.map_alloc = ringbuf_map_alloc,
270 	.map_free = ringbuf_map_free,
271 	.map_mmap = ringbuf_map_mmap,
272 	.map_poll = ringbuf_map_poll,
273 	.map_lookup_elem = ringbuf_map_lookup_elem,
274 	.map_update_elem = ringbuf_map_update_elem,
275 	.map_delete_elem = ringbuf_map_delete_elem,
276 	.map_get_next_key = ringbuf_map_get_next_key,
277 	.map_btf_name = "bpf_ringbuf_map",
278 	.map_btf_id = &ringbuf_map_btf_id,
279 };
280 
281 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
282  * calculate offset from record metadata to ring buffer in pages, rounded
283  * down. This page offset is stored as part of record metadata and allows to
284  * restore struct bpf_ringbuf * from record pointer. This page offset is
285  * stored at offset 4 of record metadata header.
286  */
287 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
288 				     struct bpf_ringbuf_hdr *hdr)
289 {
290 	return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
291 }
292 
293 /* Given pointer to ring buffer record header, restore pointer to struct
294  * bpf_ringbuf itself by using page offset stored at offset 4
295  */
296 static struct bpf_ringbuf *
297 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
298 {
299 	unsigned long addr = (unsigned long)(void *)hdr;
300 	unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
301 
302 	return (void*)((addr & PAGE_MASK) - off);
303 }
304 
305 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
306 {
307 	unsigned long cons_pos, prod_pos, new_prod_pos, flags;
308 	u32 len, pg_off;
309 	struct bpf_ringbuf_hdr *hdr;
310 
311 	if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
312 		return NULL;
313 
314 	len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
315 	if (len > rb->mask + 1)
316 		return NULL;
317 
318 	cons_pos = smp_load_acquire(&rb->consumer_pos);
319 
320 	if (in_nmi()) {
321 		if (!spin_trylock_irqsave(&rb->spinlock, flags))
322 			return NULL;
323 	} else {
324 		spin_lock_irqsave(&rb->spinlock, flags);
325 	}
326 
327 	prod_pos = rb->producer_pos;
328 	new_prod_pos = prod_pos + len;
329 
330 	/* check for out of ringbuf space by ensuring producer position
331 	 * doesn't advance more than (ringbuf_size - 1) ahead
332 	 */
333 	if (new_prod_pos - cons_pos > rb->mask) {
334 		spin_unlock_irqrestore(&rb->spinlock, flags);
335 		return NULL;
336 	}
337 
338 	hdr = (void *)rb->data + (prod_pos & rb->mask);
339 	pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
340 	hdr->len = size | BPF_RINGBUF_BUSY_BIT;
341 	hdr->pg_off = pg_off;
342 
343 	/* pairs with consumer's smp_load_acquire() */
344 	smp_store_release(&rb->producer_pos, new_prod_pos);
345 
346 	spin_unlock_irqrestore(&rb->spinlock, flags);
347 
348 	return (void *)hdr + BPF_RINGBUF_HDR_SZ;
349 }
350 
351 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
352 {
353 	struct bpf_ringbuf_map *rb_map;
354 
355 	if (unlikely(flags))
356 		return 0;
357 
358 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
359 	return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
360 }
361 
362 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
363 	.func		= bpf_ringbuf_reserve,
364 	.ret_type	= RET_PTR_TO_ALLOC_MEM_OR_NULL,
365 	.arg1_type	= ARG_CONST_MAP_PTR,
366 	.arg2_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
367 	.arg3_type	= ARG_ANYTHING,
368 };
369 
370 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
371 {
372 	unsigned long rec_pos, cons_pos;
373 	struct bpf_ringbuf_hdr *hdr;
374 	struct bpf_ringbuf *rb;
375 	u32 new_len;
376 
377 	hdr = sample - BPF_RINGBUF_HDR_SZ;
378 	rb = bpf_ringbuf_restore_from_rec(hdr);
379 	new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
380 	if (discard)
381 		new_len |= BPF_RINGBUF_DISCARD_BIT;
382 
383 	/* update record header with correct final size prefix */
384 	xchg(&hdr->len, new_len);
385 
386 	/* if consumer caught up and is waiting for our record, notify about
387 	 * new data availability
388 	 */
389 	rec_pos = (void *)hdr - (void *)rb->data;
390 	cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
391 
392 	if (flags & BPF_RB_FORCE_WAKEUP)
393 		irq_work_queue(&rb->work);
394 	else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
395 		irq_work_queue(&rb->work);
396 }
397 
398 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
399 {
400 	bpf_ringbuf_commit(sample, flags, false /* discard */);
401 	return 0;
402 }
403 
404 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
405 	.func		= bpf_ringbuf_submit,
406 	.ret_type	= RET_VOID,
407 	.arg1_type	= ARG_PTR_TO_ALLOC_MEM,
408 	.arg2_type	= ARG_ANYTHING,
409 };
410 
411 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
412 {
413 	bpf_ringbuf_commit(sample, flags, true /* discard */);
414 	return 0;
415 }
416 
417 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
418 	.func		= bpf_ringbuf_discard,
419 	.ret_type	= RET_VOID,
420 	.arg1_type	= ARG_PTR_TO_ALLOC_MEM,
421 	.arg2_type	= ARG_ANYTHING,
422 };
423 
424 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
425 	   u64, flags)
426 {
427 	struct bpf_ringbuf_map *rb_map;
428 	void *rec;
429 
430 	if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
431 		return -EINVAL;
432 
433 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
434 	rec = __bpf_ringbuf_reserve(rb_map->rb, size);
435 	if (!rec)
436 		return -EAGAIN;
437 
438 	memcpy(rec, data, size);
439 	bpf_ringbuf_commit(rec, flags, false /* discard */);
440 	return 0;
441 }
442 
443 const struct bpf_func_proto bpf_ringbuf_output_proto = {
444 	.func		= bpf_ringbuf_output,
445 	.ret_type	= RET_INTEGER,
446 	.arg1_type	= ARG_CONST_MAP_PTR,
447 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
448 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
449 	.arg4_type	= ARG_ANYTHING,
450 };
451 
452 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
453 {
454 	struct bpf_ringbuf *rb;
455 
456 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
457 
458 	switch (flags) {
459 	case BPF_RB_AVAIL_DATA:
460 		return ringbuf_avail_data_sz(rb);
461 	case BPF_RB_RING_SIZE:
462 		return rb->mask + 1;
463 	case BPF_RB_CONS_POS:
464 		return smp_load_acquire(&rb->consumer_pos);
465 	case BPF_RB_PROD_POS:
466 		return smp_load_acquire(&rb->producer_pos);
467 	default:
468 		return 0;
469 	}
470 }
471 
472 const struct bpf_func_proto bpf_ringbuf_query_proto = {
473 	.func		= bpf_ringbuf_query,
474 	.ret_type	= RET_INTEGER,
475 	.arg1_type	= ARG_CONST_MAP_PTR,
476 	.arg2_type	= ARG_ANYTHING,
477 };
478