xref: /openbmc/linux/kernel/bpf/ringbuf.c (revision d89775fc)
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <uapi/linux/btf.h>
12 
13 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
14 
15 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
16 #define RINGBUF_PGOFF \
17 	(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
18 /* consumer page and producer page */
19 #define RINGBUF_POS_PAGES 2
20 
21 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
22 
23 /* Maximum size of ring buffer area is limited by 32-bit page offset within
24  * record header, counted in pages. Reserve 8 bits for extensibility, and take
25  * into account few extra pages for consumer/producer pages and
26  * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
27  * ring buffer.
28  */
29 #define RINGBUF_MAX_DATA_SZ \
30 	(((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
31 
32 struct bpf_ringbuf {
33 	wait_queue_head_t waitq;
34 	struct irq_work work;
35 	u64 mask;
36 	struct page **pages;
37 	int nr_pages;
38 	spinlock_t spinlock ____cacheline_aligned_in_smp;
39 	/* Consumer and producer counters are put into separate pages to allow
40 	 * mapping consumer page as r/w, but restrict producer page to r/o.
41 	 * This protects producer position from being modified by user-space
42 	 * application and ruining in-kernel position tracking.
43 	 */
44 	unsigned long consumer_pos __aligned(PAGE_SIZE);
45 	unsigned long producer_pos __aligned(PAGE_SIZE);
46 	char data[] __aligned(PAGE_SIZE);
47 };
48 
49 struct bpf_ringbuf_map {
50 	struct bpf_map map;
51 	struct bpf_map_memory memory;
52 	struct bpf_ringbuf *rb;
53 };
54 
55 /* 8-byte ring buffer record header structure */
56 struct bpf_ringbuf_hdr {
57 	u32 len;
58 	u32 pg_off;
59 };
60 
61 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
62 {
63 	const gfp_t flags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
64 			    __GFP_ZERO;
65 	int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
66 	int nr_data_pages = data_sz >> PAGE_SHIFT;
67 	int nr_pages = nr_meta_pages + nr_data_pages;
68 	struct page **pages, *page;
69 	struct bpf_ringbuf *rb;
70 	size_t array_size;
71 	int i;
72 
73 	/* Each data page is mapped twice to allow "virtual"
74 	 * continuous read of samples wrapping around the end of ring
75 	 * buffer area:
76 	 * ------------------------------------------------------
77 	 * | meta pages |  real data pages  |  same data pages  |
78 	 * ------------------------------------------------------
79 	 * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
80 	 * ------------------------------------------------------
81 	 * |            | TA             DA | TA             DA |
82 	 * ------------------------------------------------------
83 	 *                               ^^^^^^^
84 	 *                                  |
85 	 * Here, no need to worry about special handling of wrapped-around
86 	 * data due to double-mapped data pages. This works both in kernel and
87 	 * when mmap()'ed in user-space, simplifying both kernel and
88 	 * user-space implementations significantly.
89 	 */
90 	array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
91 	if (array_size > PAGE_SIZE)
92 		pages = vmalloc_node(array_size, numa_node);
93 	else
94 		pages = kmalloc_node(array_size, flags, numa_node);
95 	if (!pages)
96 		return NULL;
97 
98 	for (i = 0; i < nr_pages; i++) {
99 		page = alloc_pages_node(numa_node, flags, 0);
100 		if (!page) {
101 			nr_pages = i;
102 			goto err_free_pages;
103 		}
104 		pages[i] = page;
105 		if (i >= nr_meta_pages)
106 			pages[nr_data_pages + i] = page;
107 	}
108 
109 	rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
110 		  VM_ALLOC | VM_USERMAP, PAGE_KERNEL);
111 	if (rb) {
112 		rb->pages = pages;
113 		rb->nr_pages = nr_pages;
114 		return rb;
115 	}
116 
117 err_free_pages:
118 	for (i = 0; i < nr_pages; i++)
119 		__free_page(pages[i]);
120 	kvfree(pages);
121 	return NULL;
122 }
123 
124 static void bpf_ringbuf_notify(struct irq_work *work)
125 {
126 	struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
127 
128 	wake_up_all(&rb->waitq);
129 }
130 
131 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
132 {
133 	struct bpf_ringbuf *rb;
134 
135 	rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
136 	if (!rb)
137 		return ERR_PTR(-ENOMEM);
138 
139 	spin_lock_init(&rb->spinlock);
140 	init_waitqueue_head(&rb->waitq);
141 	init_irq_work(&rb->work, bpf_ringbuf_notify);
142 
143 	rb->mask = data_sz - 1;
144 	rb->consumer_pos = 0;
145 	rb->producer_pos = 0;
146 
147 	return rb;
148 }
149 
150 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
151 {
152 	struct bpf_ringbuf_map *rb_map;
153 	u64 cost;
154 	int err;
155 
156 	if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
157 		return ERR_PTR(-EINVAL);
158 
159 	if (attr->key_size || attr->value_size ||
160 	    !is_power_of_2(attr->max_entries) ||
161 	    !PAGE_ALIGNED(attr->max_entries))
162 		return ERR_PTR(-EINVAL);
163 
164 #ifdef CONFIG_64BIT
165 	/* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
166 	if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
167 		return ERR_PTR(-E2BIG);
168 #endif
169 
170 	rb_map = kzalloc(sizeof(*rb_map), GFP_USER);
171 	if (!rb_map)
172 		return ERR_PTR(-ENOMEM);
173 
174 	bpf_map_init_from_attr(&rb_map->map, attr);
175 
176 	cost = sizeof(struct bpf_ringbuf_map) +
177 	       sizeof(struct bpf_ringbuf) +
178 	       attr->max_entries;
179 	err = bpf_map_charge_init(&rb_map->map.memory, cost);
180 	if (err)
181 		goto err_free_map;
182 
183 	rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
184 	if (IS_ERR(rb_map->rb)) {
185 		err = PTR_ERR(rb_map->rb);
186 		goto err_uncharge;
187 	}
188 
189 	return &rb_map->map;
190 
191 err_uncharge:
192 	bpf_map_charge_finish(&rb_map->map.memory);
193 err_free_map:
194 	kfree(rb_map);
195 	return ERR_PTR(err);
196 }
197 
198 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
199 {
200 	/* copy pages pointer and nr_pages to local variable, as we are going
201 	 * to unmap rb itself with vunmap() below
202 	 */
203 	struct page **pages = rb->pages;
204 	int i, nr_pages = rb->nr_pages;
205 
206 	vunmap(rb);
207 	for (i = 0; i < nr_pages; i++)
208 		__free_page(pages[i]);
209 	kvfree(pages);
210 }
211 
212 static void ringbuf_map_free(struct bpf_map *map)
213 {
214 	struct bpf_ringbuf_map *rb_map;
215 
216 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
217 	bpf_ringbuf_free(rb_map->rb);
218 	kfree(rb_map);
219 }
220 
221 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
222 {
223 	return ERR_PTR(-ENOTSUPP);
224 }
225 
226 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
227 				   u64 flags)
228 {
229 	return -ENOTSUPP;
230 }
231 
232 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
233 {
234 	return -ENOTSUPP;
235 }
236 
237 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
238 				    void *next_key)
239 {
240 	return -ENOTSUPP;
241 }
242 
243 static size_t bpf_ringbuf_mmap_page_cnt(const struct bpf_ringbuf *rb)
244 {
245 	size_t data_pages = (rb->mask + 1) >> PAGE_SHIFT;
246 
247 	/* consumer page + producer page + 2 x data pages */
248 	return RINGBUF_POS_PAGES + 2 * data_pages;
249 }
250 
251 static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
252 {
253 	struct bpf_ringbuf_map *rb_map;
254 	size_t mmap_sz;
255 
256 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
257 	mmap_sz = bpf_ringbuf_mmap_page_cnt(rb_map->rb) << PAGE_SHIFT;
258 
259 	if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > mmap_sz)
260 		return -EINVAL;
261 
262 	return remap_vmalloc_range(vma, rb_map->rb,
263 				   vma->vm_pgoff + RINGBUF_PGOFF);
264 }
265 
266 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
267 {
268 	unsigned long cons_pos, prod_pos;
269 
270 	cons_pos = smp_load_acquire(&rb->consumer_pos);
271 	prod_pos = smp_load_acquire(&rb->producer_pos);
272 	return prod_pos - cons_pos;
273 }
274 
275 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp,
276 				 struct poll_table_struct *pts)
277 {
278 	struct bpf_ringbuf_map *rb_map;
279 
280 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
281 	poll_wait(filp, &rb_map->rb->waitq, pts);
282 
283 	if (ringbuf_avail_data_sz(rb_map->rb))
284 		return EPOLLIN | EPOLLRDNORM;
285 	return 0;
286 }
287 
288 static int ringbuf_map_btf_id;
289 const struct bpf_map_ops ringbuf_map_ops = {
290 	.map_alloc = ringbuf_map_alloc,
291 	.map_free = ringbuf_map_free,
292 	.map_mmap = ringbuf_map_mmap,
293 	.map_poll = ringbuf_map_poll,
294 	.map_lookup_elem = ringbuf_map_lookup_elem,
295 	.map_update_elem = ringbuf_map_update_elem,
296 	.map_delete_elem = ringbuf_map_delete_elem,
297 	.map_get_next_key = ringbuf_map_get_next_key,
298 	.map_btf_name = "bpf_ringbuf_map",
299 	.map_btf_id = &ringbuf_map_btf_id,
300 };
301 
302 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
303  * calculate offset from record metadata to ring buffer in pages, rounded
304  * down. This page offset is stored as part of record metadata and allows to
305  * restore struct bpf_ringbuf * from record pointer. This page offset is
306  * stored at offset 4 of record metadata header.
307  */
308 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
309 				     struct bpf_ringbuf_hdr *hdr)
310 {
311 	return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
312 }
313 
314 /* Given pointer to ring buffer record header, restore pointer to struct
315  * bpf_ringbuf itself by using page offset stored at offset 4
316  */
317 static struct bpf_ringbuf *
318 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
319 {
320 	unsigned long addr = (unsigned long)(void *)hdr;
321 	unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
322 
323 	return (void*)((addr & PAGE_MASK) - off);
324 }
325 
326 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
327 {
328 	unsigned long cons_pos, prod_pos, new_prod_pos, flags;
329 	u32 len, pg_off;
330 	struct bpf_ringbuf_hdr *hdr;
331 
332 	if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
333 		return NULL;
334 
335 	len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
336 	cons_pos = smp_load_acquire(&rb->consumer_pos);
337 
338 	if (in_nmi()) {
339 		if (!spin_trylock_irqsave(&rb->spinlock, flags))
340 			return NULL;
341 	} else {
342 		spin_lock_irqsave(&rb->spinlock, flags);
343 	}
344 
345 	prod_pos = rb->producer_pos;
346 	new_prod_pos = prod_pos + len;
347 
348 	/* check for out of ringbuf space by ensuring producer position
349 	 * doesn't advance more than (ringbuf_size - 1) ahead
350 	 */
351 	if (new_prod_pos - cons_pos > rb->mask) {
352 		spin_unlock_irqrestore(&rb->spinlock, flags);
353 		return NULL;
354 	}
355 
356 	hdr = (void *)rb->data + (prod_pos & rb->mask);
357 	pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
358 	hdr->len = size | BPF_RINGBUF_BUSY_BIT;
359 	hdr->pg_off = pg_off;
360 
361 	/* pairs with consumer's smp_load_acquire() */
362 	smp_store_release(&rb->producer_pos, new_prod_pos);
363 
364 	spin_unlock_irqrestore(&rb->spinlock, flags);
365 
366 	return (void *)hdr + BPF_RINGBUF_HDR_SZ;
367 }
368 
369 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
370 {
371 	struct bpf_ringbuf_map *rb_map;
372 
373 	if (unlikely(flags))
374 		return 0;
375 
376 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
377 	return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
378 }
379 
380 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
381 	.func		= bpf_ringbuf_reserve,
382 	.ret_type	= RET_PTR_TO_ALLOC_MEM_OR_NULL,
383 	.arg1_type	= ARG_CONST_MAP_PTR,
384 	.arg2_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
385 	.arg3_type	= ARG_ANYTHING,
386 };
387 
388 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
389 {
390 	unsigned long rec_pos, cons_pos;
391 	struct bpf_ringbuf_hdr *hdr;
392 	struct bpf_ringbuf *rb;
393 	u32 new_len;
394 
395 	hdr = sample - BPF_RINGBUF_HDR_SZ;
396 	rb = bpf_ringbuf_restore_from_rec(hdr);
397 	new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
398 	if (discard)
399 		new_len |= BPF_RINGBUF_DISCARD_BIT;
400 
401 	/* update record header with correct final size prefix */
402 	xchg(&hdr->len, new_len);
403 
404 	/* if consumer caught up and is waiting for our record, notify about
405 	 * new data availability
406 	 */
407 	rec_pos = (void *)hdr - (void *)rb->data;
408 	cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
409 
410 	if (flags & BPF_RB_FORCE_WAKEUP)
411 		irq_work_queue(&rb->work);
412 	else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
413 		irq_work_queue(&rb->work);
414 }
415 
416 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
417 {
418 	bpf_ringbuf_commit(sample, flags, false /* discard */);
419 	return 0;
420 }
421 
422 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
423 	.func		= bpf_ringbuf_submit,
424 	.ret_type	= RET_VOID,
425 	.arg1_type	= ARG_PTR_TO_ALLOC_MEM,
426 	.arg2_type	= ARG_ANYTHING,
427 };
428 
429 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
430 {
431 	bpf_ringbuf_commit(sample, flags, true /* discard */);
432 	return 0;
433 }
434 
435 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
436 	.func		= bpf_ringbuf_discard,
437 	.ret_type	= RET_VOID,
438 	.arg1_type	= ARG_PTR_TO_ALLOC_MEM,
439 	.arg2_type	= ARG_ANYTHING,
440 };
441 
442 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
443 	   u64, flags)
444 {
445 	struct bpf_ringbuf_map *rb_map;
446 	void *rec;
447 
448 	if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
449 		return -EINVAL;
450 
451 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
452 	rec = __bpf_ringbuf_reserve(rb_map->rb, size);
453 	if (!rec)
454 		return -EAGAIN;
455 
456 	memcpy(rec, data, size);
457 	bpf_ringbuf_commit(rec, flags, false /* discard */);
458 	return 0;
459 }
460 
461 const struct bpf_func_proto bpf_ringbuf_output_proto = {
462 	.func		= bpf_ringbuf_output,
463 	.ret_type	= RET_INTEGER,
464 	.arg1_type	= ARG_CONST_MAP_PTR,
465 	.arg2_type	= ARG_PTR_TO_MEM,
466 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
467 	.arg4_type	= ARG_ANYTHING,
468 };
469 
470 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
471 {
472 	struct bpf_ringbuf *rb;
473 
474 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
475 
476 	switch (flags) {
477 	case BPF_RB_AVAIL_DATA:
478 		return ringbuf_avail_data_sz(rb);
479 	case BPF_RB_RING_SIZE:
480 		return rb->mask + 1;
481 	case BPF_RB_CONS_POS:
482 		return smp_load_acquire(&rb->consumer_pos);
483 	case BPF_RB_PROD_POS:
484 		return smp_load_acquire(&rb->producer_pos);
485 	default:
486 		return 0;
487 	}
488 }
489 
490 const struct bpf_func_proto bpf_ringbuf_query_proto = {
491 	.func		= bpf_ringbuf_query,
492 	.ret_type	= RET_INTEGER,
493 	.arg1_type	= ARG_CONST_MAP_PTR,
494 	.arg2_type	= ARG_ANYTHING,
495 };
496