xref: /openbmc/linux/kernel/bpf/ringbuf.c (revision 583c1f42)
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/btf_ids.h>
14 
15 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
16 
17 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
18 #define RINGBUF_PGOFF \
19 	(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
20 /* consumer page and producer page */
21 #define RINGBUF_POS_PAGES 2
22 
23 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
24 
25 /* Maximum size of ring buffer area is limited by 32-bit page offset within
26  * record header, counted in pages. Reserve 8 bits for extensibility, and take
27  * into account few extra pages for consumer/producer pages and
28  * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
29  * ring buffer.
30  */
31 #define RINGBUF_MAX_DATA_SZ \
32 	(((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
33 
34 struct bpf_ringbuf {
35 	wait_queue_head_t waitq;
36 	struct irq_work work;
37 	u64 mask;
38 	struct page **pages;
39 	int nr_pages;
40 	spinlock_t spinlock ____cacheline_aligned_in_smp;
41 	/* Consumer and producer counters are put into separate pages to
42 	 * allow each position to be mapped with different permissions.
43 	 * This prevents a user-space application from modifying the
44 	 * position and ruining in-kernel tracking. The permissions of the
45 	 * pages depend on who is producing samples: user-space or the
46 	 * kernel.
47 	 *
48 	 * Kernel-producer
49 	 * ---------------
50 	 * The producer position and data pages are mapped as r/o in
51 	 * userspace. For this approach, bits in the header of samples are
52 	 * used to signal to user-space, and to other producers, whether a
53 	 * sample is currently being written.
54 	 *
55 	 * User-space producer
56 	 * -------------------
57 	 * Only the page containing the consumer position is mapped r/o in
58 	 * user-space. User-space producers also use bits of the header to
59 	 * communicate to the kernel, but the kernel must carefully check and
60 	 * validate each sample to ensure that they're correctly formatted, and
61 	 * fully contained within the ring buffer.
62 	 */
63 	unsigned long consumer_pos __aligned(PAGE_SIZE);
64 	unsigned long producer_pos __aligned(PAGE_SIZE);
65 	char data[] __aligned(PAGE_SIZE);
66 };
67 
68 struct bpf_ringbuf_map {
69 	struct bpf_map map;
70 	struct bpf_ringbuf *rb;
71 };
72 
73 /* 8-byte ring buffer record header structure */
74 struct bpf_ringbuf_hdr {
75 	u32 len;
76 	u32 pg_off;
77 };
78 
79 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
80 {
81 	const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
82 			    __GFP_NOWARN | __GFP_ZERO;
83 	int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
84 	int nr_data_pages = data_sz >> PAGE_SHIFT;
85 	int nr_pages = nr_meta_pages + nr_data_pages;
86 	struct page **pages, *page;
87 	struct bpf_ringbuf *rb;
88 	size_t array_size;
89 	int i;
90 
91 	/* Each data page is mapped twice to allow "virtual"
92 	 * continuous read of samples wrapping around the end of ring
93 	 * buffer area:
94 	 * ------------------------------------------------------
95 	 * | meta pages |  real data pages  |  same data pages  |
96 	 * ------------------------------------------------------
97 	 * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
98 	 * ------------------------------------------------------
99 	 * |            | TA             DA | TA             DA |
100 	 * ------------------------------------------------------
101 	 *                               ^^^^^^^
102 	 *                                  |
103 	 * Here, no need to worry about special handling of wrapped-around
104 	 * data due to double-mapped data pages. This works both in kernel and
105 	 * when mmap()'ed in user-space, simplifying both kernel and
106 	 * user-space implementations significantly.
107 	 */
108 	array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
109 	pages = bpf_map_area_alloc(array_size, numa_node);
110 	if (!pages)
111 		return NULL;
112 
113 	for (i = 0; i < nr_pages; i++) {
114 		page = alloc_pages_node(numa_node, flags, 0);
115 		if (!page) {
116 			nr_pages = i;
117 			goto err_free_pages;
118 		}
119 		pages[i] = page;
120 		if (i >= nr_meta_pages)
121 			pages[nr_data_pages + i] = page;
122 	}
123 
124 	rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
125 		  VM_MAP | VM_USERMAP, PAGE_KERNEL);
126 	if (rb) {
127 		kmemleak_not_leak(pages);
128 		rb->pages = pages;
129 		rb->nr_pages = nr_pages;
130 		return rb;
131 	}
132 
133 err_free_pages:
134 	for (i = 0; i < nr_pages; i++)
135 		__free_page(pages[i]);
136 	bpf_map_area_free(pages);
137 	return NULL;
138 }
139 
140 static void bpf_ringbuf_notify(struct irq_work *work)
141 {
142 	struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
143 
144 	wake_up_all(&rb->waitq);
145 }
146 
147 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
148 {
149 	struct bpf_ringbuf *rb;
150 
151 	rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
152 	if (!rb)
153 		return NULL;
154 
155 	spin_lock_init(&rb->spinlock);
156 	init_waitqueue_head(&rb->waitq);
157 	init_irq_work(&rb->work, bpf_ringbuf_notify);
158 
159 	rb->mask = data_sz - 1;
160 	rb->consumer_pos = 0;
161 	rb->producer_pos = 0;
162 
163 	return rb;
164 }
165 
166 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
167 {
168 	struct bpf_ringbuf_map *rb_map;
169 
170 	if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
171 		return ERR_PTR(-EINVAL);
172 
173 	if (attr->key_size || attr->value_size ||
174 	    !is_power_of_2(attr->max_entries) ||
175 	    !PAGE_ALIGNED(attr->max_entries))
176 		return ERR_PTR(-EINVAL);
177 
178 #ifdef CONFIG_64BIT
179 	/* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
180 	if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
181 		return ERR_PTR(-E2BIG);
182 #endif
183 
184 	rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
185 	if (!rb_map)
186 		return ERR_PTR(-ENOMEM);
187 
188 	bpf_map_init_from_attr(&rb_map->map, attr);
189 
190 	rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
191 	if (!rb_map->rb) {
192 		bpf_map_area_free(rb_map);
193 		return ERR_PTR(-ENOMEM);
194 	}
195 
196 	return &rb_map->map;
197 }
198 
199 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
200 {
201 	/* copy pages pointer and nr_pages to local variable, as we are going
202 	 * to unmap rb itself with vunmap() below
203 	 */
204 	struct page **pages = rb->pages;
205 	int i, nr_pages = rb->nr_pages;
206 
207 	vunmap(rb);
208 	for (i = 0; i < nr_pages; i++)
209 		__free_page(pages[i]);
210 	bpf_map_area_free(pages);
211 }
212 
213 static void ringbuf_map_free(struct bpf_map *map)
214 {
215 	struct bpf_ringbuf_map *rb_map;
216 
217 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
218 	bpf_ringbuf_free(rb_map->rb);
219 	bpf_map_area_free(rb_map);
220 }
221 
222 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
223 {
224 	return ERR_PTR(-ENOTSUPP);
225 }
226 
227 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
228 				   u64 flags)
229 {
230 	return -ENOTSUPP;
231 }
232 
233 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
234 {
235 	return -ENOTSUPP;
236 }
237 
238 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
239 				    void *next_key)
240 {
241 	return -ENOTSUPP;
242 }
243 
244 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
245 {
246 	struct bpf_ringbuf_map *rb_map;
247 
248 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
249 
250 	if (vma->vm_flags & VM_WRITE) {
251 		/* allow writable mapping for the consumer_pos only */
252 		if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
253 			return -EPERM;
254 	} else {
255 		vma->vm_flags &= ~VM_MAYWRITE;
256 	}
257 	/* remap_vmalloc_range() checks size and offset constraints */
258 	return remap_vmalloc_range(vma, rb_map->rb,
259 				   vma->vm_pgoff + RINGBUF_PGOFF);
260 }
261 
262 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
263 {
264 	struct bpf_ringbuf_map *rb_map;
265 
266 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
267 
268 	if (vma->vm_flags & VM_WRITE) {
269 		if (vma->vm_pgoff == 0)
270 			/* Disallow writable mappings to the consumer pointer,
271 			 * and allow writable mappings to both the producer
272 			 * position, and the ring buffer data itself.
273 			 */
274 			return -EPERM;
275 	} else {
276 		vma->vm_flags &= ~VM_MAYWRITE;
277 	}
278 	/* remap_vmalloc_range() checks size and offset constraints */
279 	return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
280 }
281 
282 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
283 {
284 	unsigned long cons_pos, prod_pos;
285 
286 	cons_pos = smp_load_acquire(&rb->consumer_pos);
287 	prod_pos = smp_load_acquire(&rb->producer_pos);
288 	return prod_pos - cons_pos;
289 }
290 
291 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp,
292 				 struct poll_table_struct *pts)
293 {
294 	struct bpf_ringbuf_map *rb_map;
295 
296 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
297 	poll_wait(filp, &rb_map->rb->waitq, pts);
298 
299 	if (ringbuf_avail_data_sz(rb_map->rb))
300 		return EPOLLIN | EPOLLRDNORM;
301 	return 0;
302 }
303 
304 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
305 const struct bpf_map_ops ringbuf_map_ops = {
306 	.map_meta_equal = bpf_map_meta_equal,
307 	.map_alloc = ringbuf_map_alloc,
308 	.map_free = ringbuf_map_free,
309 	.map_mmap = ringbuf_map_mmap_kern,
310 	.map_poll = ringbuf_map_poll,
311 	.map_lookup_elem = ringbuf_map_lookup_elem,
312 	.map_update_elem = ringbuf_map_update_elem,
313 	.map_delete_elem = ringbuf_map_delete_elem,
314 	.map_get_next_key = ringbuf_map_get_next_key,
315 	.map_btf_id = &ringbuf_map_btf_ids[0],
316 };
317 
318 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
319 const struct bpf_map_ops user_ringbuf_map_ops = {
320 	.map_meta_equal = bpf_map_meta_equal,
321 	.map_alloc = ringbuf_map_alloc,
322 	.map_free = ringbuf_map_free,
323 	.map_mmap = ringbuf_map_mmap_user,
324 	.map_lookup_elem = ringbuf_map_lookup_elem,
325 	.map_update_elem = ringbuf_map_update_elem,
326 	.map_delete_elem = ringbuf_map_delete_elem,
327 	.map_get_next_key = ringbuf_map_get_next_key,
328 	.map_btf_id = &user_ringbuf_map_btf_ids[0],
329 };
330 
331 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
332  * calculate offset from record metadata to ring buffer in pages, rounded
333  * down. This page offset is stored as part of record metadata and allows to
334  * restore struct bpf_ringbuf * from record pointer. This page offset is
335  * stored at offset 4 of record metadata header.
336  */
337 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
338 				     struct bpf_ringbuf_hdr *hdr)
339 {
340 	return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
341 }
342 
343 /* Given pointer to ring buffer record header, restore pointer to struct
344  * bpf_ringbuf itself by using page offset stored at offset 4
345  */
346 static struct bpf_ringbuf *
347 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
348 {
349 	unsigned long addr = (unsigned long)(void *)hdr;
350 	unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
351 
352 	return (void*)((addr & PAGE_MASK) - off);
353 }
354 
355 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
356 {
357 	unsigned long cons_pos, prod_pos, new_prod_pos, flags;
358 	u32 len, pg_off;
359 	struct bpf_ringbuf_hdr *hdr;
360 
361 	if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
362 		return NULL;
363 
364 	len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
365 	if (len > rb->mask + 1)
366 		return NULL;
367 
368 	cons_pos = smp_load_acquire(&rb->consumer_pos);
369 
370 	if (in_nmi()) {
371 		if (!spin_trylock_irqsave(&rb->spinlock, flags))
372 			return NULL;
373 	} else {
374 		spin_lock_irqsave(&rb->spinlock, flags);
375 	}
376 
377 	prod_pos = rb->producer_pos;
378 	new_prod_pos = prod_pos + len;
379 
380 	/* check for out of ringbuf space by ensuring producer position
381 	 * doesn't advance more than (ringbuf_size - 1) ahead
382 	 */
383 	if (new_prod_pos - cons_pos > rb->mask) {
384 		spin_unlock_irqrestore(&rb->spinlock, flags);
385 		return NULL;
386 	}
387 
388 	hdr = (void *)rb->data + (prod_pos & rb->mask);
389 	pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
390 	hdr->len = size | BPF_RINGBUF_BUSY_BIT;
391 	hdr->pg_off = pg_off;
392 
393 	/* pairs with consumer's smp_load_acquire() */
394 	smp_store_release(&rb->producer_pos, new_prod_pos);
395 
396 	spin_unlock_irqrestore(&rb->spinlock, flags);
397 
398 	return (void *)hdr + BPF_RINGBUF_HDR_SZ;
399 }
400 
401 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
402 {
403 	struct bpf_ringbuf_map *rb_map;
404 
405 	if (unlikely(flags))
406 		return 0;
407 
408 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
409 	return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
410 }
411 
412 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
413 	.func		= bpf_ringbuf_reserve,
414 	.ret_type	= RET_PTR_TO_ALLOC_MEM_OR_NULL,
415 	.arg1_type	= ARG_CONST_MAP_PTR,
416 	.arg2_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
417 	.arg3_type	= ARG_ANYTHING,
418 };
419 
420 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
421 {
422 	unsigned long rec_pos, cons_pos;
423 	struct bpf_ringbuf_hdr *hdr;
424 	struct bpf_ringbuf *rb;
425 	u32 new_len;
426 
427 	hdr = sample - BPF_RINGBUF_HDR_SZ;
428 	rb = bpf_ringbuf_restore_from_rec(hdr);
429 	new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
430 	if (discard)
431 		new_len |= BPF_RINGBUF_DISCARD_BIT;
432 
433 	/* update record header with correct final size prefix */
434 	xchg(&hdr->len, new_len);
435 
436 	/* if consumer caught up and is waiting for our record, notify about
437 	 * new data availability
438 	 */
439 	rec_pos = (void *)hdr - (void *)rb->data;
440 	cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
441 
442 	if (flags & BPF_RB_FORCE_WAKEUP)
443 		irq_work_queue(&rb->work);
444 	else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
445 		irq_work_queue(&rb->work);
446 }
447 
448 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
449 {
450 	bpf_ringbuf_commit(sample, flags, false /* discard */);
451 	return 0;
452 }
453 
454 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
455 	.func		= bpf_ringbuf_submit,
456 	.ret_type	= RET_VOID,
457 	.arg1_type	= ARG_PTR_TO_ALLOC_MEM | OBJ_RELEASE,
458 	.arg2_type	= ARG_ANYTHING,
459 };
460 
461 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
462 {
463 	bpf_ringbuf_commit(sample, flags, true /* discard */);
464 	return 0;
465 }
466 
467 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
468 	.func		= bpf_ringbuf_discard,
469 	.ret_type	= RET_VOID,
470 	.arg1_type	= ARG_PTR_TO_ALLOC_MEM | OBJ_RELEASE,
471 	.arg2_type	= ARG_ANYTHING,
472 };
473 
474 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
475 	   u64, flags)
476 {
477 	struct bpf_ringbuf_map *rb_map;
478 	void *rec;
479 
480 	if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
481 		return -EINVAL;
482 
483 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
484 	rec = __bpf_ringbuf_reserve(rb_map->rb, size);
485 	if (!rec)
486 		return -EAGAIN;
487 
488 	memcpy(rec, data, size);
489 	bpf_ringbuf_commit(rec, flags, false /* discard */);
490 	return 0;
491 }
492 
493 const struct bpf_func_proto bpf_ringbuf_output_proto = {
494 	.func		= bpf_ringbuf_output,
495 	.ret_type	= RET_INTEGER,
496 	.arg1_type	= ARG_CONST_MAP_PTR,
497 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
498 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
499 	.arg4_type	= ARG_ANYTHING,
500 };
501 
502 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
503 {
504 	struct bpf_ringbuf *rb;
505 
506 	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
507 
508 	switch (flags) {
509 	case BPF_RB_AVAIL_DATA:
510 		return ringbuf_avail_data_sz(rb);
511 	case BPF_RB_RING_SIZE:
512 		return rb->mask + 1;
513 	case BPF_RB_CONS_POS:
514 		return smp_load_acquire(&rb->consumer_pos);
515 	case BPF_RB_PROD_POS:
516 		return smp_load_acquire(&rb->producer_pos);
517 	default:
518 		return 0;
519 	}
520 }
521 
522 const struct bpf_func_proto bpf_ringbuf_query_proto = {
523 	.func		= bpf_ringbuf_query,
524 	.ret_type	= RET_INTEGER,
525 	.arg1_type	= ARG_CONST_MAP_PTR,
526 	.arg2_type	= ARG_ANYTHING,
527 };
528 
529 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
530 	   struct bpf_dynptr_kern *, ptr)
531 {
532 	struct bpf_ringbuf_map *rb_map;
533 	void *sample;
534 	int err;
535 
536 	if (unlikely(flags)) {
537 		bpf_dynptr_set_null(ptr);
538 		return -EINVAL;
539 	}
540 
541 	err = bpf_dynptr_check_size(size);
542 	if (err) {
543 		bpf_dynptr_set_null(ptr);
544 		return err;
545 	}
546 
547 	rb_map = container_of(map, struct bpf_ringbuf_map, map);
548 
549 	sample = __bpf_ringbuf_reserve(rb_map->rb, size);
550 	if (!sample) {
551 		bpf_dynptr_set_null(ptr);
552 		return -EINVAL;
553 	}
554 
555 	bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
556 
557 	return 0;
558 }
559 
560 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
561 	.func		= bpf_ringbuf_reserve_dynptr,
562 	.ret_type	= RET_INTEGER,
563 	.arg1_type	= ARG_CONST_MAP_PTR,
564 	.arg2_type	= ARG_ANYTHING,
565 	.arg3_type	= ARG_ANYTHING,
566 	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
567 };
568 
569 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
570 {
571 	if (!ptr->data)
572 		return 0;
573 
574 	bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
575 
576 	bpf_dynptr_set_null(ptr);
577 
578 	return 0;
579 }
580 
581 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
582 	.func		= bpf_ringbuf_submit_dynptr,
583 	.ret_type	= RET_VOID,
584 	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
585 	.arg2_type	= ARG_ANYTHING,
586 };
587 
588 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
589 {
590 	if (!ptr->data)
591 		return 0;
592 
593 	bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
594 
595 	bpf_dynptr_set_null(ptr);
596 
597 	return 0;
598 }
599 
600 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
601 	.func		= bpf_ringbuf_discard_dynptr,
602 	.ret_type	= RET_VOID,
603 	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
604 	.arg2_type	= ARG_ANYTHING,
605 };
606