1 #include <linux/bpf.h> 2 #include <linux/btf.h> 3 #include <linux/err.h> 4 #include <linux/irq_work.h> 5 #include <linux/slab.h> 6 #include <linux/filter.h> 7 #include <linux/mm.h> 8 #include <linux/vmalloc.h> 9 #include <linux/wait.h> 10 #include <linux/poll.h> 11 #include <linux/kmemleak.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/btf_ids.h> 14 15 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) 16 17 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ 18 #define RINGBUF_PGOFF \ 19 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) 20 /* consumer page and producer page */ 21 #define RINGBUF_POS_PAGES 2 22 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES) 23 24 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) 25 26 /* Maximum size of ring buffer area is limited by 32-bit page offset within 27 * record header, counted in pages. Reserve 8 bits for extensibility, and take 28 * into account few extra pages for consumer/producer pages and 29 * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single 30 * ring buffer. 31 */ 32 #define RINGBUF_MAX_DATA_SZ \ 33 (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) 34 35 struct bpf_ringbuf { 36 wait_queue_head_t waitq; 37 struct irq_work work; 38 u64 mask; 39 struct page **pages; 40 int nr_pages; 41 spinlock_t spinlock ____cacheline_aligned_in_smp; 42 /* For user-space producer ring buffers, an atomic_t busy bit is used 43 * to synchronize access to the ring buffers in the kernel, rather than 44 * the spinlock that is used for kernel-producer ring buffers. This is 45 * done because the ring buffer must hold a lock across a BPF program's 46 * callback: 47 * 48 * __bpf_user_ringbuf_peek() // lock acquired 49 * -> program callback_fn() 50 * -> __bpf_user_ringbuf_sample_release() // lock released 51 * 52 * It is unsafe and incorrect to hold an IRQ spinlock across what could 53 * be a long execution window, so we instead simply disallow concurrent 54 * access to the ring buffer by kernel consumers, and return -EBUSY from 55 * __bpf_user_ringbuf_peek() if the busy bit is held by another task. 56 */ 57 atomic_t busy ____cacheline_aligned_in_smp; 58 /* Consumer and producer counters are put into separate pages to 59 * allow each position to be mapped with different permissions. 60 * This prevents a user-space application from modifying the 61 * position and ruining in-kernel tracking. The permissions of the 62 * pages depend on who is producing samples: user-space or the 63 * kernel. 64 * 65 * Kernel-producer 66 * --------------- 67 * The producer position and data pages are mapped as r/o in 68 * userspace. For this approach, bits in the header of samples are 69 * used to signal to user-space, and to other producers, whether a 70 * sample is currently being written. 71 * 72 * User-space producer 73 * ------------------- 74 * Only the page containing the consumer position is mapped r/o in 75 * user-space. User-space producers also use bits of the header to 76 * communicate to the kernel, but the kernel must carefully check and 77 * validate each sample to ensure that they're correctly formatted, and 78 * fully contained within the ring buffer. 79 */ 80 unsigned long consumer_pos __aligned(PAGE_SIZE); 81 unsigned long producer_pos __aligned(PAGE_SIZE); 82 char data[] __aligned(PAGE_SIZE); 83 }; 84 85 struct bpf_ringbuf_map { 86 struct bpf_map map; 87 struct bpf_ringbuf *rb; 88 }; 89 90 /* 8-byte ring buffer record header structure */ 91 struct bpf_ringbuf_hdr { 92 u32 len; 93 u32 pg_off; 94 }; 95 96 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) 97 { 98 const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | 99 __GFP_NOWARN | __GFP_ZERO; 100 int nr_meta_pages = RINGBUF_NR_META_PAGES; 101 int nr_data_pages = data_sz >> PAGE_SHIFT; 102 int nr_pages = nr_meta_pages + nr_data_pages; 103 struct page **pages, *page; 104 struct bpf_ringbuf *rb; 105 size_t array_size; 106 int i; 107 108 /* Each data page is mapped twice to allow "virtual" 109 * continuous read of samples wrapping around the end of ring 110 * buffer area: 111 * ------------------------------------------------------ 112 * | meta pages | real data pages | same data pages | 113 * ------------------------------------------------------ 114 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | 115 * ------------------------------------------------------ 116 * | | TA DA | TA DA | 117 * ------------------------------------------------------ 118 * ^^^^^^^ 119 * | 120 * Here, no need to worry about special handling of wrapped-around 121 * data due to double-mapped data pages. This works both in kernel and 122 * when mmap()'ed in user-space, simplifying both kernel and 123 * user-space implementations significantly. 124 */ 125 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); 126 pages = bpf_map_area_alloc(array_size, numa_node); 127 if (!pages) 128 return NULL; 129 130 for (i = 0; i < nr_pages; i++) { 131 page = alloc_pages_node(numa_node, flags, 0); 132 if (!page) { 133 nr_pages = i; 134 goto err_free_pages; 135 } 136 pages[i] = page; 137 if (i >= nr_meta_pages) 138 pages[nr_data_pages + i] = page; 139 } 140 141 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, 142 VM_MAP | VM_USERMAP, PAGE_KERNEL); 143 if (rb) { 144 kmemleak_not_leak(pages); 145 rb->pages = pages; 146 rb->nr_pages = nr_pages; 147 return rb; 148 } 149 150 err_free_pages: 151 for (i = 0; i < nr_pages; i++) 152 __free_page(pages[i]); 153 bpf_map_area_free(pages); 154 return NULL; 155 } 156 157 static void bpf_ringbuf_notify(struct irq_work *work) 158 { 159 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); 160 161 wake_up_all(&rb->waitq); 162 } 163 164 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) 165 { 166 struct bpf_ringbuf *rb; 167 168 rb = bpf_ringbuf_area_alloc(data_sz, numa_node); 169 if (!rb) 170 return NULL; 171 172 spin_lock_init(&rb->spinlock); 173 atomic_set(&rb->busy, 0); 174 init_waitqueue_head(&rb->waitq); 175 init_irq_work(&rb->work, bpf_ringbuf_notify); 176 177 rb->mask = data_sz - 1; 178 rb->consumer_pos = 0; 179 rb->producer_pos = 0; 180 181 return rb; 182 } 183 184 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) 185 { 186 struct bpf_ringbuf_map *rb_map; 187 188 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) 189 return ERR_PTR(-EINVAL); 190 191 if (attr->key_size || attr->value_size || 192 !is_power_of_2(attr->max_entries) || 193 !PAGE_ALIGNED(attr->max_entries)) 194 return ERR_PTR(-EINVAL); 195 196 #ifdef CONFIG_64BIT 197 /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */ 198 if (attr->max_entries > RINGBUF_MAX_DATA_SZ) 199 return ERR_PTR(-E2BIG); 200 #endif 201 202 rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE); 203 if (!rb_map) 204 return ERR_PTR(-ENOMEM); 205 206 bpf_map_init_from_attr(&rb_map->map, attr); 207 208 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); 209 if (!rb_map->rb) { 210 bpf_map_area_free(rb_map); 211 return ERR_PTR(-ENOMEM); 212 } 213 214 return &rb_map->map; 215 } 216 217 static void bpf_ringbuf_free(struct bpf_ringbuf *rb) 218 { 219 /* copy pages pointer and nr_pages to local variable, as we are going 220 * to unmap rb itself with vunmap() below 221 */ 222 struct page **pages = rb->pages; 223 int i, nr_pages = rb->nr_pages; 224 225 vunmap(rb); 226 for (i = 0; i < nr_pages; i++) 227 __free_page(pages[i]); 228 bpf_map_area_free(pages); 229 } 230 231 static void ringbuf_map_free(struct bpf_map *map) 232 { 233 struct bpf_ringbuf_map *rb_map; 234 235 rb_map = container_of(map, struct bpf_ringbuf_map, map); 236 bpf_ringbuf_free(rb_map->rb); 237 bpf_map_area_free(rb_map); 238 } 239 240 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) 241 { 242 return ERR_PTR(-ENOTSUPP); 243 } 244 245 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, 246 u64 flags) 247 { 248 return -ENOTSUPP; 249 } 250 251 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key) 252 { 253 return -ENOTSUPP; 254 } 255 256 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, 257 void *next_key) 258 { 259 return -ENOTSUPP; 260 } 261 262 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma) 263 { 264 struct bpf_ringbuf_map *rb_map; 265 266 rb_map = container_of(map, struct bpf_ringbuf_map, map); 267 268 if (vma->vm_flags & VM_WRITE) { 269 /* allow writable mapping for the consumer_pos only */ 270 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) 271 return -EPERM; 272 } else { 273 vm_flags_clear(vma, VM_MAYWRITE); 274 } 275 /* remap_vmalloc_range() checks size and offset constraints */ 276 return remap_vmalloc_range(vma, rb_map->rb, 277 vma->vm_pgoff + RINGBUF_PGOFF); 278 } 279 280 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma) 281 { 282 struct bpf_ringbuf_map *rb_map; 283 284 rb_map = container_of(map, struct bpf_ringbuf_map, map); 285 286 if (vma->vm_flags & VM_WRITE) { 287 if (vma->vm_pgoff == 0) 288 /* Disallow writable mappings to the consumer pointer, 289 * and allow writable mappings to both the producer 290 * position, and the ring buffer data itself. 291 */ 292 return -EPERM; 293 } else { 294 vm_flags_clear(vma, VM_MAYWRITE); 295 } 296 /* remap_vmalloc_range() checks size and offset constraints */ 297 return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); 298 } 299 300 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) 301 { 302 unsigned long cons_pos, prod_pos; 303 304 cons_pos = smp_load_acquire(&rb->consumer_pos); 305 prod_pos = smp_load_acquire(&rb->producer_pos); 306 return prod_pos - cons_pos; 307 } 308 309 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb) 310 { 311 return rb->mask + 1; 312 } 313 314 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp, 315 struct poll_table_struct *pts) 316 { 317 struct bpf_ringbuf_map *rb_map; 318 319 rb_map = container_of(map, struct bpf_ringbuf_map, map); 320 poll_wait(filp, &rb_map->rb->waitq, pts); 321 322 if (ringbuf_avail_data_sz(rb_map->rb)) 323 return EPOLLIN | EPOLLRDNORM; 324 return 0; 325 } 326 327 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp, 328 struct poll_table_struct *pts) 329 { 330 struct bpf_ringbuf_map *rb_map; 331 332 rb_map = container_of(map, struct bpf_ringbuf_map, map); 333 poll_wait(filp, &rb_map->rb->waitq, pts); 334 335 if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb)) 336 return EPOLLOUT | EPOLLWRNORM; 337 return 0; 338 } 339 340 static u64 ringbuf_map_mem_usage(const struct bpf_map *map) 341 { 342 struct bpf_ringbuf *rb; 343 int nr_data_pages; 344 int nr_meta_pages; 345 u64 usage = sizeof(struct bpf_ringbuf_map); 346 347 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 348 usage += (u64)rb->nr_pages << PAGE_SHIFT; 349 nr_meta_pages = RINGBUF_NR_META_PAGES; 350 nr_data_pages = map->max_entries >> PAGE_SHIFT; 351 usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *); 352 return usage; 353 } 354 355 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 356 const struct bpf_map_ops ringbuf_map_ops = { 357 .map_meta_equal = bpf_map_meta_equal, 358 .map_alloc = ringbuf_map_alloc, 359 .map_free = ringbuf_map_free, 360 .map_mmap = ringbuf_map_mmap_kern, 361 .map_poll = ringbuf_map_poll_kern, 362 .map_lookup_elem = ringbuf_map_lookup_elem, 363 .map_update_elem = ringbuf_map_update_elem, 364 .map_delete_elem = ringbuf_map_delete_elem, 365 .map_get_next_key = ringbuf_map_get_next_key, 366 .map_mem_usage = ringbuf_map_mem_usage, 367 .map_btf_id = &ringbuf_map_btf_ids[0], 368 }; 369 370 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 371 const struct bpf_map_ops user_ringbuf_map_ops = { 372 .map_meta_equal = bpf_map_meta_equal, 373 .map_alloc = ringbuf_map_alloc, 374 .map_free = ringbuf_map_free, 375 .map_mmap = ringbuf_map_mmap_user, 376 .map_poll = ringbuf_map_poll_user, 377 .map_lookup_elem = ringbuf_map_lookup_elem, 378 .map_update_elem = ringbuf_map_update_elem, 379 .map_delete_elem = ringbuf_map_delete_elem, 380 .map_get_next_key = ringbuf_map_get_next_key, 381 .map_mem_usage = ringbuf_map_mem_usage, 382 .map_btf_id = &user_ringbuf_map_btf_ids[0], 383 }; 384 385 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, 386 * calculate offset from record metadata to ring buffer in pages, rounded 387 * down. This page offset is stored as part of record metadata and allows to 388 * restore struct bpf_ringbuf * from record pointer. This page offset is 389 * stored at offset 4 of record metadata header. 390 */ 391 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, 392 struct bpf_ringbuf_hdr *hdr) 393 { 394 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; 395 } 396 397 /* Given pointer to ring buffer record header, restore pointer to struct 398 * bpf_ringbuf itself by using page offset stored at offset 4 399 */ 400 static struct bpf_ringbuf * 401 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) 402 { 403 unsigned long addr = (unsigned long)(void *)hdr; 404 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; 405 406 return (void*)((addr & PAGE_MASK) - off); 407 } 408 409 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) 410 { 411 unsigned long cons_pos, prod_pos, new_prod_pos, flags; 412 u32 len, pg_off; 413 struct bpf_ringbuf_hdr *hdr; 414 415 if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) 416 return NULL; 417 418 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 419 if (len > ringbuf_total_data_sz(rb)) 420 return NULL; 421 422 cons_pos = smp_load_acquire(&rb->consumer_pos); 423 424 if (in_nmi()) { 425 if (!spin_trylock_irqsave(&rb->spinlock, flags)) 426 return NULL; 427 } else { 428 spin_lock_irqsave(&rb->spinlock, flags); 429 } 430 431 prod_pos = rb->producer_pos; 432 new_prod_pos = prod_pos + len; 433 434 /* check for out of ringbuf space by ensuring producer position 435 * doesn't advance more than (ringbuf_size - 1) ahead 436 */ 437 if (new_prod_pos - cons_pos > rb->mask) { 438 spin_unlock_irqrestore(&rb->spinlock, flags); 439 return NULL; 440 } 441 442 hdr = (void *)rb->data + (prod_pos & rb->mask); 443 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); 444 hdr->len = size | BPF_RINGBUF_BUSY_BIT; 445 hdr->pg_off = pg_off; 446 447 /* pairs with consumer's smp_load_acquire() */ 448 smp_store_release(&rb->producer_pos, new_prod_pos); 449 450 spin_unlock_irqrestore(&rb->spinlock, flags); 451 452 return (void *)hdr + BPF_RINGBUF_HDR_SZ; 453 } 454 455 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) 456 { 457 struct bpf_ringbuf_map *rb_map; 458 459 if (unlikely(flags)) 460 return 0; 461 462 rb_map = container_of(map, struct bpf_ringbuf_map, map); 463 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); 464 } 465 466 const struct bpf_func_proto bpf_ringbuf_reserve_proto = { 467 .func = bpf_ringbuf_reserve, 468 .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL, 469 .arg1_type = ARG_CONST_MAP_PTR, 470 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 471 .arg3_type = ARG_ANYTHING, 472 }; 473 474 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) 475 { 476 unsigned long rec_pos, cons_pos; 477 struct bpf_ringbuf_hdr *hdr; 478 struct bpf_ringbuf *rb; 479 u32 new_len; 480 481 hdr = sample - BPF_RINGBUF_HDR_SZ; 482 rb = bpf_ringbuf_restore_from_rec(hdr); 483 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; 484 if (discard) 485 new_len |= BPF_RINGBUF_DISCARD_BIT; 486 487 /* update record header with correct final size prefix */ 488 xchg(&hdr->len, new_len); 489 490 /* if consumer caught up and is waiting for our record, notify about 491 * new data availability 492 */ 493 rec_pos = (void *)hdr - (void *)rb->data; 494 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; 495 496 if (flags & BPF_RB_FORCE_WAKEUP) 497 irq_work_queue(&rb->work); 498 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) 499 irq_work_queue(&rb->work); 500 } 501 502 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) 503 { 504 bpf_ringbuf_commit(sample, flags, false /* discard */); 505 return 0; 506 } 507 508 const struct bpf_func_proto bpf_ringbuf_submit_proto = { 509 .func = bpf_ringbuf_submit, 510 .ret_type = RET_VOID, 511 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 512 .arg2_type = ARG_ANYTHING, 513 }; 514 515 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) 516 { 517 bpf_ringbuf_commit(sample, flags, true /* discard */); 518 return 0; 519 } 520 521 const struct bpf_func_proto bpf_ringbuf_discard_proto = { 522 .func = bpf_ringbuf_discard, 523 .ret_type = RET_VOID, 524 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 525 .arg2_type = ARG_ANYTHING, 526 }; 527 528 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, 529 u64, flags) 530 { 531 struct bpf_ringbuf_map *rb_map; 532 void *rec; 533 534 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) 535 return -EINVAL; 536 537 rb_map = container_of(map, struct bpf_ringbuf_map, map); 538 rec = __bpf_ringbuf_reserve(rb_map->rb, size); 539 if (!rec) 540 return -EAGAIN; 541 542 memcpy(rec, data, size); 543 bpf_ringbuf_commit(rec, flags, false /* discard */); 544 return 0; 545 } 546 547 const struct bpf_func_proto bpf_ringbuf_output_proto = { 548 .func = bpf_ringbuf_output, 549 .ret_type = RET_INTEGER, 550 .arg1_type = ARG_CONST_MAP_PTR, 551 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 552 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 553 .arg4_type = ARG_ANYTHING, 554 }; 555 556 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) 557 { 558 struct bpf_ringbuf *rb; 559 560 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 561 562 switch (flags) { 563 case BPF_RB_AVAIL_DATA: 564 return ringbuf_avail_data_sz(rb); 565 case BPF_RB_RING_SIZE: 566 return ringbuf_total_data_sz(rb); 567 case BPF_RB_CONS_POS: 568 return smp_load_acquire(&rb->consumer_pos); 569 case BPF_RB_PROD_POS: 570 return smp_load_acquire(&rb->producer_pos); 571 default: 572 return 0; 573 } 574 } 575 576 const struct bpf_func_proto bpf_ringbuf_query_proto = { 577 .func = bpf_ringbuf_query, 578 .ret_type = RET_INTEGER, 579 .arg1_type = ARG_CONST_MAP_PTR, 580 .arg2_type = ARG_ANYTHING, 581 }; 582 583 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags, 584 struct bpf_dynptr_kern *, ptr) 585 { 586 struct bpf_ringbuf_map *rb_map; 587 void *sample; 588 int err; 589 590 if (unlikely(flags)) { 591 bpf_dynptr_set_null(ptr); 592 return -EINVAL; 593 } 594 595 err = bpf_dynptr_check_size(size); 596 if (err) { 597 bpf_dynptr_set_null(ptr); 598 return err; 599 } 600 601 rb_map = container_of(map, struct bpf_ringbuf_map, map); 602 603 sample = __bpf_ringbuf_reserve(rb_map->rb, size); 604 if (!sample) { 605 bpf_dynptr_set_null(ptr); 606 return -EINVAL; 607 } 608 609 bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size); 610 611 return 0; 612 } 613 614 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = { 615 .func = bpf_ringbuf_reserve_dynptr, 616 .ret_type = RET_INTEGER, 617 .arg1_type = ARG_CONST_MAP_PTR, 618 .arg2_type = ARG_ANYTHING, 619 .arg3_type = ARG_ANYTHING, 620 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT, 621 }; 622 623 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 624 { 625 if (!ptr->data) 626 return 0; 627 628 bpf_ringbuf_commit(ptr->data, flags, false /* discard */); 629 630 bpf_dynptr_set_null(ptr); 631 632 return 0; 633 } 634 635 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = { 636 .func = bpf_ringbuf_submit_dynptr, 637 .ret_type = RET_VOID, 638 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 639 .arg2_type = ARG_ANYTHING, 640 }; 641 642 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 643 { 644 if (!ptr->data) 645 return 0; 646 647 bpf_ringbuf_commit(ptr->data, flags, true /* discard */); 648 649 bpf_dynptr_set_null(ptr); 650 651 return 0; 652 } 653 654 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = { 655 .func = bpf_ringbuf_discard_dynptr, 656 .ret_type = RET_VOID, 657 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 658 .arg2_type = ARG_ANYTHING, 659 }; 660 661 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size) 662 { 663 int err; 664 u32 hdr_len, sample_len, total_len, flags, *hdr; 665 u64 cons_pos, prod_pos; 666 667 /* Synchronizes with smp_store_release() in user-space producer. */ 668 prod_pos = smp_load_acquire(&rb->producer_pos); 669 if (prod_pos % 8) 670 return -EINVAL; 671 672 /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */ 673 cons_pos = smp_load_acquire(&rb->consumer_pos); 674 if (cons_pos >= prod_pos) 675 return -ENODATA; 676 677 hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask)); 678 /* Synchronizes with smp_store_release() in user-space producer. */ 679 hdr_len = smp_load_acquire(hdr); 680 flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT); 681 sample_len = hdr_len & ~flags; 682 total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8); 683 684 /* The sample must fit within the region advertised by the producer position. */ 685 if (total_len > prod_pos - cons_pos) 686 return -EINVAL; 687 688 /* The sample must fit within the data region of the ring buffer. */ 689 if (total_len > ringbuf_total_data_sz(rb)) 690 return -E2BIG; 691 692 /* The sample must fit into a struct bpf_dynptr. */ 693 err = bpf_dynptr_check_size(sample_len); 694 if (err) 695 return -E2BIG; 696 697 if (flags & BPF_RINGBUF_DISCARD_BIT) { 698 /* If the discard bit is set, the sample should be skipped. 699 * 700 * Update the consumer pos, and return -EAGAIN so the caller 701 * knows to skip this sample and try to read the next one. 702 */ 703 smp_store_release(&rb->consumer_pos, cons_pos + total_len); 704 return -EAGAIN; 705 } 706 707 if (flags & BPF_RINGBUF_BUSY_BIT) 708 return -ENODATA; 709 710 *sample = (void *)((uintptr_t)rb->data + 711 (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask)); 712 *size = sample_len; 713 return 0; 714 } 715 716 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags) 717 { 718 u64 consumer_pos; 719 u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 720 721 /* Using smp_load_acquire() is unnecessary here, as the busy-bit 722 * prevents another task from writing to consumer_pos after it was read 723 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek(). 724 */ 725 consumer_pos = rb->consumer_pos; 726 /* Synchronizes with smp_load_acquire() in user-space producer. */ 727 smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size); 728 } 729 730 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map, 731 void *, callback_fn, void *, callback_ctx, u64, flags) 732 { 733 struct bpf_ringbuf *rb; 734 long samples, discarded_samples = 0, ret = 0; 735 bpf_callback_t callback = (bpf_callback_t)callback_fn; 736 u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP; 737 int busy = 0; 738 739 if (unlikely(flags & ~wakeup_flags)) 740 return -EINVAL; 741 742 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 743 744 /* If another consumer is already consuming a sample, wait for them to finish. */ 745 if (!atomic_try_cmpxchg(&rb->busy, &busy, 1)) 746 return -EBUSY; 747 748 for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) { 749 int err; 750 u32 size; 751 void *sample; 752 struct bpf_dynptr_kern dynptr; 753 754 err = __bpf_user_ringbuf_peek(rb, &sample, &size); 755 if (err) { 756 if (err == -ENODATA) { 757 break; 758 } else if (err == -EAGAIN) { 759 discarded_samples++; 760 continue; 761 } else { 762 ret = err; 763 goto schedule_work_return; 764 } 765 } 766 767 bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size); 768 ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0); 769 __bpf_user_ringbuf_sample_release(rb, size, flags); 770 } 771 ret = samples - discarded_samples; 772 773 schedule_work_return: 774 /* Prevent the clearing of the busy-bit from being reordered before the 775 * storing of any rb consumer or producer positions. 776 */ 777 smp_mb__before_atomic(); 778 atomic_set(&rb->busy, 0); 779 780 if (flags & BPF_RB_FORCE_WAKEUP) 781 irq_work_queue(&rb->work); 782 else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0) 783 irq_work_queue(&rb->work); 784 return ret; 785 } 786 787 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = { 788 .func = bpf_user_ringbuf_drain, 789 .ret_type = RET_INTEGER, 790 .arg1_type = ARG_CONST_MAP_PTR, 791 .arg2_type = ARG_PTR_TO_FUNC, 792 .arg3_type = ARG_PTR_TO_STACK_OR_NULL, 793 .arg4_type = ARG_ANYTHING, 794 }; 795