1 #include <linux/bpf.h> 2 #include <linux/btf.h> 3 #include <linux/err.h> 4 #include <linux/irq_work.h> 5 #include <linux/slab.h> 6 #include <linux/filter.h> 7 #include <linux/mm.h> 8 #include <linux/vmalloc.h> 9 #include <linux/wait.h> 10 #include <linux/poll.h> 11 #include <linux/kmemleak.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/btf_ids.h> 14 15 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) 16 17 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ 18 #define RINGBUF_PGOFF \ 19 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) 20 /* consumer page and producer page */ 21 #define RINGBUF_POS_PAGES 2 22 23 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) 24 25 /* Maximum size of ring buffer area is limited by 32-bit page offset within 26 * record header, counted in pages. Reserve 8 bits for extensibility, and take 27 * into account few extra pages for consumer/producer pages and 28 * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single 29 * ring buffer. 30 */ 31 #define RINGBUF_MAX_DATA_SZ \ 32 (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) 33 34 struct bpf_ringbuf { 35 wait_queue_head_t waitq; 36 struct irq_work work; 37 u64 mask; 38 struct page **pages; 39 int nr_pages; 40 spinlock_t spinlock ____cacheline_aligned_in_smp; 41 /* For user-space producer ring buffers, an atomic_t busy bit is used 42 * to synchronize access to the ring buffers in the kernel, rather than 43 * the spinlock that is used for kernel-producer ring buffers. This is 44 * done because the ring buffer must hold a lock across a BPF program's 45 * callback: 46 * 47 * __bpf_user_ringbuf_peek() // lock acquired 48 * -> program callback_fn() 49 * -> __bpf_user_ringbuf_sample_release() // lock released 50 * 51 * It is unsafe and incorrect to hold an IRQ spinlock across what could 52 * be a long execution window, so we instead simply disallow concurrent 53 * access to the ring buffer by kernel consumers, and return -EBUSY from 54 * __bpf_user_ringbuf_peek() if the busy bit is held by another task. 55 */ 56 atomic_t busy ____cacheline_aligned_in_smp; 57 /* Consumer and producer counters are put into separate pages to 58 * allow each position to be mapped with different permissions. 59 * This prevents a user-space application from modifying the 60 * position and ruining in-kernel tracking. The permissions of the 61 * pages depend on who is producing samples: user-space or the 62 * kernel. 63 * 64 * Kernel-producer 65 * --------------- 66 * The producer position and data pages are mapped as r/o in 67 * userspace. For this approach, bits in the header of samples are 68 * used to signal to user-space, and to other producers, whether a 69 * sample is currently being written. 70 * 71 * User-space producer 72 * ------------------- 73 * Only the page containing the consumer position is mapped r/o in 74 * user-space. User-space producers also use bits of the header to 75 * communicate to the kernel, but the kernel must carefully check and 76 * validate each sample to ensure that they're correctly formatted, and 77 * fully contained within the ring buffer. 78 */ 79 unsigned long consumer_pos __aligned(PAGE_SIZE); 80 unsigned long producer_pos __aligned(PAGE_SIZE); 81 char data[] __aligned(PAGE_SIZE); 82 }; 83 84 struct bpf_ringbuf_map { 85 struct bpf_map map; 86 struct bpf_ringbuf *rb; 87 }; 88 89 /* 8-byte ring buffer record header structure */ 90 struct bpf_ringbuf_hdr { 91 u32 len; 92 u32 pg_off; 93 }; 94 95 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) 96 { 97 const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | 98 __GFP_NOWARN | __GFP_ZERO; 99 int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES; 100 int nr_data_pages = data_sz >> PAGE_SHIFT; 101 int nr_pages = nr_meta_pages + nr_data_pages; 102 struct page **pages, *page; 103 struct bpf_ringbuf *rb; 104 size_t array_size; 105 int i; 106 107 /* Each data page is mapped twice to allow "virtual" 108 * continuous read of samples wrapping around the end of ring 109 * buffer area: 110 * ------------------------------------------------------ 111 * | meta pages | real data pages | same data pages | 112 * ------------------------------------------------------ 113 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | 114 * ------------------------------------------------------ 115 * | | TA DA | TA DA | 116 * ------------------------------------------------------ 117 * ^^^^^^^ 118 * | 119 * Here, no need to worry about special handling of wrapped-around 120 * data due to double-mapped data pages. This works both in kernel and 121 * when mmap()'ed in user-space, simplifying both kernel and 122 * user-space implementations significantly. 123 */ 124 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); 125 pages = bpf_map_area_alloc(array_size, numa_node); 126 if (!pages) 127 return NULL; 128 129 for (i = 0; i < nr_pages; i++) { 130 page = alloc_pages_node(numa_node, flags, 0); 131 if (!page) { 132 nr_pages = i; 133 goto err_free_pages; 134 } 135 pages[i] = page; 136 if (i >= nr_meta_pages) 137 pages[nr_data_pages + i] = page; 138 } 139 140 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, 141 VM_MAP | VM_USERMAP, PAGE_KERNEL); 142 if (rb) { 143 kmemleak_not_leak(pages); 144 rb->pages = pages; 145 rb->nr_pages = nr_pages; 146 return rb; 147 } 148 149 err_free_pages: 150 for (i = 0; i < nr_pages; i++) 151 __free_page(pages[i]); 152 bpf_map_area_free(pages); 153 return NULL; 154 } 155 156 static void bpf_ringbuf_notify(struct irq_work *work) 157 { 158 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); 159 160 wake_up_all(&rb->waitq); 161 } 162 163 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) 164 { 165 struct bpf_ringbuf *rb; 166 167 rb = bpf_ringbuf_area_alloc(data_sz, numa_node); 168 if (!rb) 169 return NULL; 170 171 spin_lock_init(&rb->spinlock); 172 atomic_set(&rb->busy, 0); 173 init_waitqueue_head(&rb->waitq); 174 init_irq_work(&rb->work, bpf_ringbuf_notify); 175 176 rb->mask = data_sz - 1; 177 rb->consumer_pos = 0; 178 rb->producer_pos = 0; 179 180 return rb; 181 } 182 183 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) 184 { 185 struct bpf_ringbuf_map *rb_map; 186 187 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) 188 return ERR_PTR(-EINVAL); 189 190 if (attr->key_size || attr->value_size || 191 !is_power_of_2(attr->max_entries) || 192 !PAGE_ALIGNED(attr->max_entries)) 193 return ERR_PTR(-EINVAL); 194 195 #ifdef CONFIG_64BIT 196 /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */ 197 if (attr->max_entries > RINGBUF_MAX_DATA_SZ) 198 return ERR_PTR(-E2BIG); 199 #endif 200 201 rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE); 202 if (!rb_map) 203 return ERR_PTR(-ENOMEM); 204 205 bpf_map_init_from_attr(&rb_map->map, attr); 206 207 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); 208 if (!rb_map->rb) { 209 bpf_map_area_free(rb_map); 210 return ERR_PTR(-ENOMEM); 211 } 212 213 return &rb_map->map; 214 } 215 216 static void bpf_ringbuf_free(struct bpf_ringbuf *rb) 217 { 218 /* copy pages pointer and nr_pages to local variable, as we are going 219 * to unmap rb itself with vunmap() below 220 */ 221 struct page **pages = rb->pages; 222 int i, nr_pages = rb->nr_pages; 223 224 vunmap(rb); 225 for (i = 0; i < nr_pages; i++) 226 __free_page(pages[i]); 227 bpf_map_area_free(pages); 228 } 229 230 static void ringbuf_map_free(struct bpf_map *map) 231 { 232 struct bpf_ringbuf_map *rb_map; 233 234 rb_map = container_of(map, struct bpf_ringbuf_map, map); 235 bpf_ringbuf_free(rb_map->rb); 236 bpf_map_area_free(rb_map); 237 } 238 239 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) 240 { 241 return ERR_PTR(-ENOTSUPP); 242 } 243 244 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, 245 u64 flags) 246 { 247 return -ENOTSUPP; 248 } 249 250 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key) 251 { 252 return -ENOTSUPP; 253 } 254 255 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, 256 void *next_key) 257 { 258 return -ENOTSUPP; 259 } 260 261 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma) 262 { 263 struct bpf_ringbuf_map *rb_map; 264 265 rb_map = container_of(map, struct bpf_ringbuf_map, map); 266 267 if (vma->vm_flags & VM_WRITE) { 268 /* allow writable mapping for the consumer_pos only */ 269 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) 270 return -EPERM; 271 } else { 272 vm_flags_clear(vma, VM_MAYWRITE); 273 } 274 /* remap_vmalloc_range() checks size and offset constraints */ 275 return remap_vmalloc_range(vma, rb_map->rb, 276 vma->vm_pgoff + RINGBUF_PGOFF); 277 } 278 279 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma) 280 { 281 struct bpf_ringbuf_map *rb_map; 282 283 rb_map = container_of(map, struct bpf_ringbuf_map, map); 284 285 if (vma->vm_flags & VM_WRITE) { 286 if (vma->vm_pgoff == 0) 287 /* Disallow writable mappings to the consumer pointer, 288 * and allow writable mappings to both the producer 289 * position, and the ring buffer data itself. 290 */ 291 return -EPERM; 292 } else { 293 vm_flags_clear(vma, VM_MAYWRITE); 294 } 295 /* remap_vmalloc_range() checks size and offset constraints */ 296 return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); 297 } 298 299 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) 300 { 301 unsigned long cons_pos, prod_pos; 302 303 cons_pos = smp_load_acquire(&rb->consumer_pos); 304 prod_pos = smp_load_acquire(&rb->producer_pos); 305 return prod_pos - cons_pos; 306 } 307 308 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb) 309 { 310 return rb->mask + 1; 311 } 312 313 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp, 314 struct poll_table_struct *pts) 315 { 316 struct bpf_ringbuf_map *rb_map; 317 318 rb_map = container_of(map, struct bpf_ringbuf_map, map); 319 poll_wait(filp, &rb_map->rb->waitq, pts); 320 321 if (ringbuf_avail_data_sz(rb_map->rb)) 322 return EPOLLIN | EPOLLRDNORM; 323 return 0; 324 } 325 326 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp, 327 struct poll_table_struct *pts) 328 { 329 struct bpf_ringbuf_map *rb_map; 330 331 rb_map = container_of(map, struct bpf_ringbuf_map, map); 332 poll_wait(filp, &rb_map->rb->waitq, pts); 333 334 if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb)) 335 return EPOLLOUT | EPOLLWRNORM; 336 return 0; 337 } 338 339 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 340 const struct bpf_map_ops ringbuf_map_ops = { 341 .map_meta_equal = bpf_map_meta_equal, 342 .map_alloc = ringbuf_map_alloc, 343 .map_free = ringbuf_map_free, 344 .map_mmap = ringbuf_map_mmap_kern, 345 .map_poll = ringbuf_map_poll_kern, 346 .map_lookup_elem = ringbuf_map_lookup_elem, 347 .map_update_elem = ringbuf_map_update_elem, 348 .map_delete_elem = ringbuf_map_delete_elem, 349 .map_get_next_key = ringbuf_map_get_next_key, 350 .map_btf_id = &ringbuf_map_btf_ids[0], 351 }; 352 353 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 354 const struct bpf_map_ops user_ringbuf_map_ops = { 355 .map_meta_equal = bpf_map_meta_equal, 356 .map_alloc = ringbuf_map_alloc, 357 .map_free = ringbuf_map_free, 358 .map_mmap = ringbuf_map_mmap_user, 359 .map_poll = ringbuf_map_poll_user, 360 .map_lookup_elem = ringbuf_map_lookup_elem, 361 .map_update_elem = ringbuf_map_update_elem, 362 .map_delete_elem = ringbuf_map_delete_elem, 363 .map_get_next_key = ringbuf_map_get_next_key, 364 .map_btf_id = &user_ringbuf_map_btf_ids[0], 365 }; 366 367 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, 368 * calculate offset from record metadata to ring buffer in pages, rounded 369 * down. This page offset is stored as part of record metadata and allows to 370 * restore struct bpf_ringbuf * from record pointer. This page offset is 371 * stored at offset 4 of record metadata header. 372 */ 373 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, 374 struct bpf_ringbuf_hdr *hdr) 375 { 376 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; 377 } 378 379 /* Given pointer to ring buffer record header, restore pointer to struct 380 * bpf_ringbuf itself by using page offset stored at offset 4 381 */ 382 static struct bpf_ringbuf * 383 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) 384 { 385 unsigned long addr = (unsigned long)(void *)hdr; 386 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; 387 388 return (void*)((addr & PAGE_MASK) - off); 389 } 390 391 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) 392 { 393 unsigned long cons_pos, prod_pos, new_prod_pos, flags; 394 u32 len, pg_off; 395 struct bpf_ringbuf_hdr *hdr; 396 397 if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) 398 return NULL; 399 400 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 401 if (len > ringbuf_total_data_sz(rb)) 402 return NULL; 403 404 cons_pos = smp_load_acquire(&rb->consumer_pos); 405 406 if (in_nmi()) { 407 if (!spin_trylock_irqsave(&rb->spinlock, flags)) 408 return NULL; 409 } else { 410 spin_lock_irqsave(&rb->spinlock, flags); 411 } 412 413 prod_pos = rb->producer_pos; 414 new_prod_pos = prod_pos + len; 415 416 /* check for out of ringbuf space by ensuring producer position 417 * doesn't advance more than (ringbuf_size - 1) ahead 418 */ 419 if (new_prod_pos - cons_pos > rb->mask) { 420 spin_unlock_irqrestore(&rb->spinlock, flags); 421 return NULL; 422 } 423 424 hdr = (void *)rb->data + (prod_pos & rb->mask); 425 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); 426 hdr->len = size | BPF_RINGBUF_BUSY_BIT; 427 hdr->pg_off = pg_off; 428 429 /* pairs with consumer's smp_load_acquire() */ 430 smp_store_release(&rb->producer_pos, new_prod_pos); 431 432 spin_unlock_irqrestore(&rb->spinlock, flags); 433 434 return (void *)hdr + BPF_RINGBUF_HDR_SZ; 435 } 436 437 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) 438 { 439 struct bpf_ringbuf_map *rb_map; 440 441 if (unlikely(flags)) 442 return 0; 443 444 rb_map = container_of(map, struct bpf_ringbuf_map, map); 445 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); 446 } 447 448 const struct bpf_func_proto bpf_ringbuf_reserve_proto = { 449 .func = bpf_ringbuf_reserve, 450 .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL, 451 .arg1_type = ARG_CONST_MAP_PTR, 452 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 453 .arg3_type = ARG_ANYTHING, 454 }; 455 456 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) 457 { 458 unsigned long rec_pos, cons_pos; 459 struct bpf_ringbuf_hdr *hdr; 460 struct bpf_ringbuf *rb; 461 u32 new_len; 462 463 hdr = sample - BPF_RINGBUF_HDR_SZ; 464 rb = bpf_ringbuf_restore_from_rec(hdr); 465 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; 466 if (discard) 467 new_len |= BPF_RINGBUF_DISCARD_BIT; 468 469 /* update record header with correct final size prefix */ 470 xchg(&hdr->len, new_len); 471 472 /* if consumer caught up and is waiting for our record, notify about 473 * new data availability 474 */ 475 rec_pos = (void *)hdr - (void *)rb->data; 476 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; 477 478 if (flags & BPF_RB_FORCE_WAKEUP) 479 irq_work_queue(&rb->work); 480 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) 481 irq_work_queue(&rb->work); 482 } 483 484 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) 485 { 486 bpf_ringbuf_commit(sample, flags, false /* discard */); 487 return 0; 488 } 489 490 const struct bpf_func_proto bpf_ringbuf_submit_proto = { 491 .func = bpf_ringbuf_submit, 492 .ret_type = RET_VOID, 493 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 494 .arg2_type = ARG_ANYTHING, 495 }; 496 497 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) 498 { 499 bpf_ringbuf_commit(sample, flags, true /* discard */); 500 return 0; 501 } 502 503 const struct bpf_func_proto bpf_ringbuf_discard_proto = { 504 .func = bpf_ringbuf_discard, 505 .ret_type = RET_VOID, 506 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 507 .arg2_type = ARG_ANYTHING, 508 }; 509 510 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, 511 u64, flags) 512 { 513 struct bpf_ringbuf_map *rb_map; 514 void *rec; 515 516 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) 517 return -EINVAL; 518 519 rb_map = container_of(map, struct bpf_ringbuf_map, map); 520 rec = __bpf_ringbuf_reserve(rb_map->rb, size); 521 if (!rec) 522 return -EAGAIN; 523 524 memcpy(rec, data, size); 525 bpf_ringbuf_commit(rec, flags, false /* discard */); 526 return 0; 527 } 528 529 const struct bpf_func_proto bpf_ringbuf_output_proto = { 530 .func = bpf_ringbuf_output, 531 .ret_type = RET_INTEGER, 532 .arg1_type = ARG_CONST_MAP_PTR, 533 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 534 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 535 .arg4_type = ARG_ANYTHING, 536 }; 537 538 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) 539 { 540 struct bpf_ringbuf *rb; 541 542 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 543 544 switch (flags) { 545 case BPF_RB_AVAIL_DATA: 546 return ringbuf_avail_data_sz(rb); 547 case BPF_RB_RING_SIZE: 548 return ringbuf_total_data_sz(rb); 549 case BPF_RB_CONS_POS: 550 return smp_load_acquire(&rb->consumer_pos); 551 case BPF_RB_PROD_POS: 552 return smp_load_acquire(&rb->producer_pos); 553 default: 554 return 0; 555 } 556 } 557 558 const struct bpf_func_proto bpf_ringbuf_query_proto = { 559 .func = bpf_ringbuf_query, 560 .ret_type = RET_INTEGER, 561 .arg1_type = ARG_CONST_MAP_PTR, 562 .arg2_type = ARG_ANYTHING, 563 }; 564 565 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags, 566 struct bpf_dynptr_kern *, ptr) 567 { 568 struct bpf_ringbuf_map *rb_map; 569 void *sample; 570 int err; 571 572 if (unlikely(flags)) { 573 bpf_dynptr_set_null(ptr); 574 return -EINVAL; 575 } 576 577 err = bpf_dynptr_check_size(size); 578 if (err) { 579 bpf_dynptr_set_null(ptr); 580 return err; 581 } 582 583 rb_map = container_of(map, struct bpf_ringbuf_map, map); 584 585 sample = __bpf_ringbuf_reserve(rb_map->rb, size); 586 if (!sample) { 587 bpf_dynptr_set_null(ptr); 588 return -EINVAL; 589 } 590 591 bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size); 592 593 return 0; 594 } 595 596 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = { 597 .func = bpf_ringbuf_reserve_dynptr, 598 .ret_type = RET_INTEGER, 599 .arg1_type = ARG_CONST_MAP_PTR, 600 .arg2_type = ARG_ANYTHING, 601 .arg3_type = ARG_ANYTHING, 602 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT, 603 }; 604 605 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 606 { 607 if (!ptr->data) 608 return 0; 609 610 bpf_ringbuf_commit(ptr->data, flags, false /* discard */); 611 612 bpf_dynptr_set_null(ptr); 613 614 return 0; 615 } 616 617 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = { 618 .func = bpf_ringbuf_submit_dynptr, 619 .ret_type = RET_VOID, 620 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 621 .arg2_type = ARG_ANYTHING, 622 }; 623 624 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 625 { 626 if (!ptr->data) 627 return 0; 628 629 bpf_ringbuf_commit(ptr->data, flags, true /* discard */); 630 631 bpf_dynptr_set_null(ptr); 632 633 return 0; 634 } 635 636 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = { 637 .func = bpf_ringbuf_discard_dynptr, 638 .ret_type = RET_VOID, 639 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 640 .arg2_type = ARG_ANYTHING, 641 }; 642 643 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size) 644 { 645 int err; 646 u32 hdr_len, sample_len, total_len, flags, *hdr; 647 u64 cons_pos, prod_pos; 648 649 /* Synchronizes with smp_store_release() in user-space producer. */ 650 prod_pos = smp_load_acquire(&rb->producer_pos); 651 if (prod_pos % 8) 652 return -EINVAL; 653 654 /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */ 655 cons_pos = smp_load_acquire(&rb->consumer_pos); 656 if (cons_pos >= prod_pos) 657 return -ENODATA; 658 659 hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask)); 660 /* Synchronizes with smp_store_release() in user-space producer. */ 661 hdr_len = smp_load_acquire(hdr); 662 flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT); 663 sample_len = hdr_len & ~flags; 664 total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8); 665 666 /* The sample must fit within the region advertised by the producer position. */ 667 if (total_len > prod_pos - cons_pos) 668 return -EINVAL; 669 670 /* The sample must fit within the data region of the ring buffer. */ 671 if (total_len > ringbuf_total_data_sz(rb)) 672 return -E2BIG; 673 674 /* The sample must fit into a struct bpf_dynptr. */ 675 err = bpf_dynptr_check_size(sample_len); 676 if (err) 677 return -E2BIG; 678 679 if (flags & BPF_RINGBUF_DISCARD_BIT) { 680 /* If the discard bit is set, the sample should be skipped. 681 * 682 * Update the consumer pos, and return -EAGAIN so the caller 683 * knows to skip this sample and try to read the next one. 684 */ 685 smp_store_release(&rb->consumer_pos, cons_pos + total_len); 686 return -EAGAIN; 687 } 688 689 if (flags & BPF_RINGBUF_BUSY_BIT) 690 return -ENODATA; 691 692 *sample = (void *)((uintptr_t)rb->data + 693 (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask)); 694 *size = sample_len; 695 return 0; 696 } 697 698 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags) 699 { 700 u64 consumer_pos; 701 u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 702 703 /* Using smp_load_acquire() is unnecessary here, as the busy-bit 704 * prevents another task from writing to consumer_pos after it was read 705 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek(). 706 */ 707 consumer_pos = rb->consumer_pos; 708 /* Synchronizes with smp_load_acquire() in user-space producer. */ 709 smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size); 710 } 711 712 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map, 713 void *, callback_fn, void *, callback_ctx, u64, flags) 714 { 715 struct bpf_ringbuf *rb; 716 long samples, discarded_samples = 0, ret = 0; 717 bpf_callback_t callback = (bpf_callback_t)callback_fn; 718 u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP; 719 int busy = 0; 720 721 if (unlikely(flags & ~wakeup_flags)) 722 return -EINVAL; 723 724 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 725 726 /* If another consumer is already consuming a sample, wait for them to finish. */ 727 if (!atomic_try_cmpxchg(&rb->busy, &busy, 1)) 728 return -EBUSY; 729 730 for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) { 731 int err; 732 u32 size; 733 void *sample; 734 struct bpf_dynptr_kern dynptr; 735 736 err = __bpf_user_ringbuf_peek(rb, &sample, &size); 737 if (err) { 738 if (err == -ENODATA) { 739 break; 740 } else if (err == -EAGAIN) { 741 discarded_samples++; 742 continue; 743 } else { 744 ret = err; 745 goto schedule_work_return; 746 } 747 } 748 749 bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size); 750 ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0); 751 __bpf_user_ringbuf_sample_release(rb, size, flags); 752 } 753 ret = samples - discarded_samples; 754 755 schedule_work_return: 756 /* Prevent the clearing of the busy-bit from being reordered before the 757 * storing of any rb consumer or producer positions. 758 */ 759 smp_mb__before_atomic(); 760 atomic_set(&rb->busy, 0); 761 762 if (flags & BPF_RB_FORCE_WAKEUP) 763 irq_work_queue(&rb->work); 764 else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0) 765 irq_work_queue(&rb->work); 766 return ret; 767 } 768 769 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = { 770 .func = bpf_user_ringbuf_drain, 771 .ret_type = RET_INTEGER, 772 .arg1_type = ARG_CONST_MAP_PTR, 773 .arg2_type = ARG_PTR_TO_FUNC, 774 .arg3_type = ARG_PTR_TO_STACK_OR_NULL, 775 .arg4_type = ARG_ANYTHING, 776 }; 777