1 #include <linux/bpf.h> 2 #include <linux/btf.h> 3 #include <linux/err.h> 4 #include <linux/irq_work.h> 5 #include <linux/slab.h> 6 #include <linux/filter.h> 7 #include <linux/mm.h> 8 #include <linux/vmalloc.h> 9 #include <linux/wait.h> 10 #include <linux/poll.h> 11 #include <uapi/linux/btf.h> 12 13 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) 14 15 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ 16 #define RINGBUF_PGOFF \ 17 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) 18 /* consumer page and producer page */ 19 #define RINGBUF_POS_PAGES 2 20 21 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) 22 23 /* Maximum size of ring buffer area is limited by 32-bit page offset within 24 * record header, counted in pages. Reserve 8 bits for extensibility, and take 25 * into account few extra pages for consumer/producer pages and 26 * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single 27 * ring buffer. 28 */ 29 #define RINGBUF_MAX_DATA_SZ \ 30 (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) 31 32 struct bpf_ringbuf { 33 wait_queue_head_t waitq; 34 struct irq_work work; 35 u64 mask; 36 struct page **pages; 37 int nr_pages; 38 spinlock_t spinlock ____cacheline_aligned_in_smp; 39 /* Consumer and producer counters are put into separate pages to allow 40 * mapping consumer page as r/w, but restrict producer page to r/o. 41 * This protects producer position from being modified by user-space 42 * application and ruining in-kernel position tracking. 43 */ 44 unsigned long consumer_pos __aligned(PAGE_SIZE); 45 unsigned long producer_pos __aligned(PAGE_SIZE); 46 char data[] __aligned(PAGE_SIZE); 47 }; 48 49 struct bpf_ringbuf_map { 50 struct bpf_map map; 51 struct bpf_map_memory memory; 52 struct bpf_ringbuf *rb; 53 }; 54 55 /* 8-byte ring buffer record header structure */ 56 struct bpf_ringbuf_hdr { 57 u32 len; 58 u32 pg_off; 59 }; 60 61 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) 62 { 63 const gfp_t flags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 64 __GFP_ZERO; 65 int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES; 66 int nr_data_pages = data_sz >> PAGE_SHIFT; 67 int nr_pages = nr_meta_pages + nr_data_pages; 68 struct page **pages, *page; 69 struct bpf_ringbuf *rb; 70 size_t array_size; 71 int i; 72 73 /* Each data page is mapped twice to allow "virtual" 74 * continuous read of samples wrapping around the end of ring 75 * buffer area: 76 * ------------------------------------------------------ 77 * | meta pages | real data pages | same data pages | 78 * ------------------------------------------------------ 79 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | 80 * ------------------------------------------------------ 81 * | | TA DA | TA DA | 82 * ------------------------------------------------------ 83 * ^^^^^^^ 84 * | 85 * Here, no need to worry about special handling of wrapped-around 86 * data due to double-mapped data pages. This works both in kernel and 87 * when mmap()'ed in user-space, simplifying both kernel and 88 * user-space implementations significantly. 89 */ 90 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); 91 if (array_size > PAGE_SIZE) 92 pages = vmalloc_node(array_size, numa_node); 93 else 94 pages = kmalloc_node(array_size, flags, numa_node); 95 if (!pages) 96 return NULL; 97 98 for (i = 0; i < nr_pages; i++) { 99 page = alloc_pages_node(numa_node, flags, 0); 100 if (!page) { 101 nr_pages = i; 102 goto err_free_pages; 103 } 104 pages[i] = page; 105 if (i >= nr_meta_pages) 106 pages[nr_data_pages + i] = page; 107 } 108 109 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, 110 VM_ALLOC | VM_USERMAP, PAGE_KERNEL); 111 if (rb) { 112 rb->pages = pages; 113 rb->nr_pages = nr_pages; 114 return rb; 115 } 116 117 err_free_pages: 118 for (i = 0; i < nr_pages; i++) 119 __free_page(pages[i]); 120 kvfree(pages); 121 return NULL; 122 } 123 124 static void bpf_ringbuf_notify(struct irq_work *work) 125 { 126 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); 127 128 wake_up_all(&rb->waitq); 129 } 130 131 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) 132 { 133 struct bpf_ringbuf *rb; 134 135 rb = bpf_ringbuf_area_alloc(data_sz, numa_node); 136 if (!rb) 137 return ERR_PTR(-ENOMEM); 138 139 spin_lock_init(&rb->spinlock); 140 init_waitqueue_head(&rb->waitq); 141 init_irq_work(&rb->work, bpf_ringbuf_notify); 142 143 rb->mask = data_sz - 1; 144 rb->consumer_pos = 0; 145 rb->producer_pos = 0; 146 147 return rb; 148 } 149 150 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) 151 { 152 struct bpf_ringbuf_map *rb_map; 153 u64 cost; 154 int err; 155 156 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) 157 return ERR_PTR(-EINVAL); 158 159 if (attr->key_size || attr->value_size || 160 !is_power_of_2(attr->max_entries) || 161 !PAGE_ALIGNED(attr->max_entries)) 162 return ERR_PTR(-EINVAL); 163 164 #ifdef CONFIG_64BIT 165 /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */ 166 if (attr->max_entries > RINGBUF_MAX_DATA_SZ) 167 return ERR_PTR(-E2BIG); 168 #endif 169 170 rb_map = kzalloc(sizeof(*rb_map), GFP_USER); 171 if (!rb_map) 172 return ERR_PTR(-ENOMEM); 173 174 bpf_map_init_from_attr(&rb_map->map, attr); 175 176 cost = sizeof(struct bpf_ringbuf_map) + 177 sizeof(struct bpf_ringbuf) + 178 attr->max_entries; 179 err = bpf_map_charge_init(&rb_map->map.memory, cost); 180 if (err) 181 goto err_free_map; 182 183 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); 184 if (IS_ERR(rb_map->rb)) { 185 err = PTR_ERR(rb_map->rb); 186 goto err_uncharge; 187 } 188 189 return &rb_map->map; 190 191 err_uncharge: 192 bpf_map_charge_finish(&rb_map->map.memory); 193 err_free_map: 194 kfree(rb_map); 195 return ERR_PTR(err); 196 } 197 198 static void bpf_ringbuf_free(struct bpf_ringbuf *rb) 199 { 200 /* copy pages pointer and nr_pages to local variable, as we are going 201 * to unmap rb itself with vunmap() below 202 */ 203 struct page **pages = rb->pages; 204 int i, nr_pages = rb->nr_pages; 205 206 vunmap(rb); 207 for (i = 0; i < nr_pages; i++) 208 __free_page(pages[i]); 209 kvfree(pages); 210 } 211 212 static void ringbuf_map_free(struct bpf_map *map) 213 { 214 struct bpf_ringbuf_map *rb_map; 215 216 /* at this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0, 217 * so the programs (can be more than one that used this map) were 218 * disconnected from events. Wait for outstanding critical sections in 219 * these programs to complete 220 */ 221 synchronize_rcu(); 222 223 rb_map = container_of(map, struct bpf_ringbuf_map, map); 224 bpf_ringbuf_free(rb_map->rb); 225 kfree(rb_map); 226 } 227 228 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) 229 { 230 return ERR_PTR(-ENOTSUPP); 231 } 232 233 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, 234 u64 flags) 235 { 236 return -ENOTSUPP; 237 } 238 239 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key) 240 { 241 return -ENOTSUPP; 242 } 243 244 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, 245 void *next_key) 246 { 247 return -ENOTSUPP; 248 } 249 250 static size_t bpf_ringbuf_mmap_page_cnt(const struct bpf_ringbuf *rb) 251 { 252 size_t data_pages = (rb->mask + 1) >> PAGE_SHIFT; 253 254 /* consumer page + producer page + 2 x data pages */ 255 return RINGBUF_POS_PAGES + 2 * data_pages; 256 } 257 258 static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 259 { 260 struct bpf_ringbuf_map *rb_map; 261 size_t mmap_sz; 262 263 rb_map = container_of(map, struct bpf_ringbuf_map, map); 264 mmap_sz = bpf_ringbuf_mmap_page_cnt(rb_map->rb) << PAGE_SHIFT; 265 266 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > mmap_sz) 267 return -EINVAL; 268 269 return remap_vmalloc_range(vma, rb_map->rb, 270 vma->vm_pgoff + RINGBUF_PGOFF); 271 } 272 273 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) 274 { 275 unsigned long cons_pos, prod_pos; 276 277 cons_pos = smp_load_acquire(&rb->consumer_pos); 278 prod_pos = smp_load_acquire(&rb->producer_pos); 279 return prod_pos - cons_pos; 280 } 281 282 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp, 283 struct poll_table_struct *pts) 284 { 285 struct bpf_ringbuf_map *rb_map; 286 287 rb_map = container_of(map, struct bpf_ringbuf_map, map); 288 poll_wait(filp, &rb_map->rb->waitq, pts); 289 290 if (ringbuf_avail_data_sz(rb_map->rb)) 291 return EPOLLIN | EPOLLRDNORM; 292 return 0; 293 } 294 295 const struct bpf_map_ops ringbuf_map_ops = { 296 .map_alloc = ringbuf_map_alloc, 297 .map_free = ringbuf_map_free, 298 .map_mmap = ringbuf_map_mmap, 299 .map_poll = ringbuf_map_poll, 300 .map_lookup_elem = ringbuf_map_lookup_elem, 301 .map_update_elem = ringbuf_map_update_elem, 302 .map_delete_elem = ringbuf_map_delete_elem, 303 .map_get_next_key = ringbuf_map_get_next_key, 304 }; 305 306 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, 307 * calculate offset from record metadata to ring buffer in pages, rounded 308 * down. This page offset is stored as part of record metadata and allows to 309 * restore struct bpf_ringbuf * from record pointer. This page offset is 310 * stored at offset 4 of record metadata header. 311 */ 312 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, 313 struct bpf_ringbuf_hdr *hdr) 314 { 315 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; 316 } 317 318 /* Given pointer to ring buffer record header, restore pointer to struct 319 * bpf_ringbuf itself by using page offset stored at offset 4 320 */ 321 static struct bpf_ringbuf * 322 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) 323 { 324 unsigned long addr = (unsigned long)(void *)hdr; 325 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; 326 327 return (void*)((addr & PAGE_MASK) - off); 328 } 329 330 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) 331 { 332 unsigned long cons_pos, prod_pos, new_prod_pos, flags; 333 u32 len, pg_off; 334 struct bpf_ringbuf_hdr *hdr; 335 336 if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) 337 return NULL; 338 339 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 340 cons_pos = smp_load_acquire(&rb->consumer_pos); 341 342 if (in_nmi()) { 343 if (!spin_trylock_irqsave(&rb->spinlock, flags)) 344 return NULL; 345 } else { 346 spin_lock_irqsave(&rb->spinlock, flags); 347 } 348 349 prod_pos = rb->producer_pos; 350 new_prod_pos = prod_pos + len; 351 352 /* check for out of ringbuf space by ensuring producer position 353 * doesn't advance more than (ringbuf_size - 1) ahead 354 */ 355 if (new_prod_pos - cons_pos > rb->mask) { 356 spin_unlock_irqrestore(&rb->spinlock, flags); 357 return NULL; 358 } 359 360 hdr = (void *)rb->data + (prod_pos & rb->mask); 361 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); 362 hdr->len = size | BPF_RINGBUF_BUSY_BIT; 363 hdr->pg_off = pg_off; 364 365 /* pairs with consumer's smp_load_acquire() */ 366 smp_store_release(&rb->producer_pos, new_prod_pos); 367 368 spin_unlock_irqrestore(&rb->spinlock, flags); 369 370 return (void *)hdr + BPF_RINGBUF_HDR_SZ; 371 } 372 373 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) 374 { 375 struct bpf_ringbuf_map *rb_map; 376 377 if (unlikely(flags)) 378 return 0; 379 380 rb_map = container_of(map, struct bpf_ringbuf_map, map); 381 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); 382 } 383 384 const struct bpf_func_proto bpf_ringbuf_reserve_proto = { 385 .func = bpf_ringbuf_reserve, 386 .ret_type = RET_PTR_TO_ALLOC_MEM_OR_NULL, 387 .arg1_type = ARG_CONST_MAP_PTR, 388 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 389 .arg3_type = ARG_ANYTHING, 390 }; 391 392 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) 393 { 394 unsigned long rec_pos, cons_pos; 395 struct bpf_ringbuf_hdr *hdr; 396 struct bpf_ringbuf *rb; 397 u32 new_len; 398 399 hdr = sample - BPF_RINGBUF_HDR_SZ; 400 rb = bpf_ringbuf_restore_from_rec(hdr); 401 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; 402 if (discard) 403 new_len |= BPF_RINGBUF_DISCARD_BIT; 404 405 /* update record header with correct final size prefix */ 406 xchg(&hdr->len, new_len); 407 408 /* if consumer caught up and is waiting for our record, notify about 409 * new data availability 410 */ 411 rec_pos = (void *)hdr - (void *)rb->data; 412 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; 413 414 if (flags & BPF_RB_FORCE_WAKEUP) 415 irq_work_queue(&rb->work); 416 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) 417 irq_work_queue(&rb->work); 418 } 419 420 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) 421 { 422 bpf_ringbuf_commit(sample, flags, false /* discard */); 423 return 0; 424 } 425 426 const struct bpf_func_proto bpf_ringbuf_submit_proto = { 427 .func = bpf_ringbuf_submit, 428 .ret_type = RET_VOID, 429 .arg1_type = ARG_PTR_TO_ALLOC_MEM, 430 .arg2_type = ARG_ANYTHING, 431 }; 432 433 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) 434 { 435 bpf_ringbuf_commit(sample, flags, true /* discard */); 436 return 0; 437 } 438 439 const struct bpf_func_proto bpf_ringbuf_discard_proto = { 440 .func = bpf_ringbuf_discard, 441 .ret_type = RET_VOID, 442 .arg1_type = ARG_PTR_TO_ALLOC_MEM, 443 .arg2_type = ARG_ANYTHING, 444 }; 445 446 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, 447 u64, flags) 448 { 449 struct bpf_ringbuf_map *rb_map; 450 void *rec; 451 452 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) 453 return -EINVAL; 454 455 rb_map = container_of(map, struct bpf_ringbuf_map, map); 456 rec = __bpf_ringbuf_reserve(rb_map->rb, size); 457 if (!rec) 458 return -EAGAIN; 459 460 memcpy(rec, data, size); 461 bpf_ringbuf_commit(rec, flags, false /* discard */); 462 return 0; 463 } 464 465 const struct bpf_func_proto bpf_ringbuf_output_proto = { 466 .func = bpf_ringbuf_output, 467 .ret_type = RET_INTEGER, 468 .arg1_type = ARG_CONST_MAP_PTR, 469 .arg2_type = ARG_PTR_TO_MEM, 470 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 471 .arg4_type = ARG_ANYTHING, 472 }; 473 474 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) 475 { 476 struct bpf_ringbuf *rb; 477 478 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 479 480 switch (flags) { 481 case BPF_RB_AVAIL_DATA: 482 return ringbuf_avail_data_sz(rb); 483 case BPF_RB_RING_SIZE: 484 return rb->mask + 1; 485 case BPF_RB_CONS_POS: 486 return smp_load_acquire(&rb->consumer_pos); 487 case BPF_RB_PROD_POS: 488 return smp_load_acquire(&rb->producer_pos); 489 default: 490 return 0; 491 } 492 } 493 494 const struct bpf_func_proto bpf_ringbuf_query_proto = { 495 .func = bpf_ringbuf_query, 496 .ret_type = RET_INTEGER, 497 .arg1_type = ARG_CONST_MAP_PTR, 498 .arg2_type = ARG_ANYTHING, 499 }; 500