1 #include <linux/bpf.h> 2 #include <linux/btf.h> 3 #include <linux/err.h> 4 #include <linux/irq_work.h> 5 #include <linux/slab.h> 6 #include <linux/filter.h> 7 #include <linux/mm.h> 8 #include <linux/vmalloc.h> 9 #include <linux/wait.h> 10 #include <linux/poll.h> 11 #include <uapi/linux/btf.h> 12 13 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) 14 15 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ 16 #define RINGBUF_PGOFF \ 17 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) 18 /* consumer page and producer page */ 19 #define RINGBUF_POS_PAGES 2 20 21 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) 22 23 /* Maximum size of ring buffer area is limited by 32-bit page offset within 24 * record header, counted in pages. Reserve 8 bits for extensibility, and take 25 * into account few extra pages for consumer/producer pages and 26 * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single 27 * ring buffer. 28 */ 29 #define RINGBUF_MAX_DATA_SZ \ 30 (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) 31 32 struct bpf_ringbuf { 33 wait_queue_head_t waitq; 34 struct irq_work work; 35 u64 mask; 36 struct page **pages; 37 int nr_pages; 38 spinlock_t spinlock ____cacheline_aligned_in_smp; 39 /* Consumer and producer counters are put into separate pages to allow 40 * mapping consumer page as r/w, but restrict producer page to r/o. 41 * This protects producer position from being modified by user-space 42 * application and ruining in-kernel position tracking. 43 */ 44 unsigned long consumer_pos __aligned(PAGE_SIZE); 45 unsigned long producer_pos __aligned(PAGE_SIZE); 46 char data[] __aligned(PAGE_SIZE); 47 }; 48 49 struct bpf_ringbuf_map { 50 struct bpf_map map; 51 struct bpf_map_memory memory; 52 struct bpf_ringbuf *rb; 53 }; 54 55 /* 8-byte ring buffer record header structure */ 56 struct bpf_ringbuf_hdr { 57 u32 len; 58 u32 pg_off; 59 }; 60 61 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) 62 { 63 const gfp_t flags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 64 __GFP_ZERO; 65 int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES; 66 int nr_data_pages = data_sz >> PAGE_SHIFT; 67 int nr_pages = nr_meta_pages + nr_data_pages; 68 struct page **pages, *page; 69 struct bpf_ringbuf *rb; 70 size_t array_size; 71 int i; 72 73 /* Each data page is mapped twice to allow "virtual" 74 * continuous read of samples wrapping around the end of ring 75 * buffer area: 76 * ------------------------------------------------------ 77 * | meta pages | real data pages | same data pages | 78 * ------------------------------------------------------ 79 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | 80 * ------------------------------------------------------ 81 * | | TA DA | TA DA | 82 * ------------------------------------------------------ 83 * ^^^^^^^ 84 * | 85 * Here, no need to worry about special handling of wrapped-around 86 * data due to double-mapped data pages. This works both in kernel and 87 * when mmap()'ed in user-space, simplifying both kernel and 88 * user-space implementations significantly. 89 */ 90 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); 91 if (array_size > PAGE_SIZE) 92 pages = vmalloc_node(array_size, numa_node); 93 else 94 pages = kmalloc_node(array_size, flags, numa_node); 95 if (!pages) 96 return NULL; 97 98 for (i = 0; i < nr_pages; i++) { 99 page = alloc_pages_node(numa_node, flags, 0); 100 if (!page) { 101 nr_pages = i; 102 goto err_free_pages; 103 } 104 pages[i] = page; 105 if (i >= nr_meta_pages) 106 pages[nr_data_pages + i] = page; 107 } 108 109 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, 110 VM_ALLOC | VM_USERMAP, PAGE_KERNEL); 111 if (rb) { 112 rb->pages = pages; 113 rb->nr_pages = nr_pages; 114 return rb; 115 } 116 117 err_free_pages: 118 for (i = 0; i < nr_pages; i++) 119 __free_page(pages[i]); 120 kvfree(pages); 121 return NULL; 122 } 123 124 static void bpf_ringbuf_notify(struct irq_work *work) 125 { 126 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); 127 128 wake_up_all(&rb->waitq); 129 } 130 131 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) 132 { 133 struct bpf_ringbuf *rb; 134 135 rb = bpf_ringbuf_area_alloc(data_sz, numa_node); 136 if (!rb) 137 return ERR_PTR(-ENOMEM); 138 139 spin_lock_init(&rb->spinlock); 140 init_waitqueue_head(&rb->waitq); 141 init_irq_work(&rb->work, bpf_ringbuf_notify); 142 143 rb->mask = data_sz - 1; 144 rb->consumer_pos = 0; 145 rb->producer_pos = 0; 146 147 return rb; 148 } 149 150 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) 151 { 152 struct bpf_ringbuf_map *rb_map; 153 u64 cost; 154 int err; 155 156 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) 157 return ERR_PTR(-EINVAL); 158 159 if (attr->key_size || attr->value_size || 160 !is_power_of_2(attr->max_entries) || 161 !PAGE_ALIGNED(attr->max_entries)) 162 return ERR_PTR(-EINVAL); 163 164 #ifdef CONFIG_64BIT 165 /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */ 166 if (attr->max_entries > RINGBUF_MAX_DATA_SZ) 167 return ERR_PTR(-E2BIG); 168 #endif 169 170 rb_map = kzalloc(sizeof(*rb_map), GFP_USER); 171 if (!rb_map) 172 return ERR_PTR(-ENOMEM); 173 174 bpf_map_init_from_attr(&rb_map->map, attr); 175 176 cost = sizeof(struct bpf_ringbuf_map) + 177 sizeof(struct bpf_ringbuf) + 178 attr->max_entries; 179 err = bpf_map_charge_init(&rb_map->map.memory, cost); 180 if (err) 181 goto err_free_map; 182 183 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); 184 if (IS_ERR(rb_map->rb)) { 185 err = PTR_ERR(rb_map->rb); 186 goto err_uncharge; 187 } 188 189 return &rb_map->map; 190 191 err_uncharge: 192 bpf_map_charge_finish(&rb_map->map.memory); 193 err_free_map: 194 kfree(rb_map); 195 return ERR_PTR(err); 196 } 197 198 static void bpf_ringbuf_free(struct bpf_ringbuf *rb) 199 { 200 /* copy pages pointer and nr_pages to local variable, as we are going 201 * to unmap rb itself with vunmap() below 202 */ 203 struct page **pages = rb->pages; 204 int i, nr_pages = rb->nr_pages; 205 206 vunmap(rb); 207 for (i = 0; i < nr_pages; i++) 208 __free_page(pages[i]); 209 kvfree(pages); 210 } 211 212 static void ringbuf_map_free(struct bpf_map *map) 213 { 214 struct bpf_ringbuf_map *rb_map; 215 216 rb_map = container_of(map, struct bpf_ringbuf_map, map); 217 bpf_ringbuf_free(rb_map->rb); 218 kfree(rb_map); 219 } 220 221 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) 222 { 223 return ERR_PTR(-ENOTSUPP); 224 } 225 226 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, 227 u64 flags) 228 { 229 return -ENOTSUPP; 230 } 231 232 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key) 233 { 234 return -ENOTSUPP; 235 } 236 237 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, 238 void *next_key) 239 { 240 return -ENOTSUPP; 241 } 242 243 static size_t bpf_ringbuf_mmap_page_cnt(const struct bpf_ringbuf *rb) 244 { 245 size_t data_pages = (rb->mask + 1) >> PAGE_SHIFT; 246 247 /* consumer page + producer page + 2 x data pages */ 248 return RINGBUF_POS_PAGES + 2 * data_pages; 249 } 250 251 static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 252 { 253 struct bpf_ringbuf_map *rb_map; 254 size_t mmap_sz; 255 256 rb_map = container_of(map, struct bpf_ringbuf_map, map); 257 mmap_sz = bpf_ringbuf_mmap_page_cnt(rb_map->rb) << PAGE_SHIFT; 258 259 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > mmap_sz) 260 return -EINVAL; 261 262 return remap_vmalloc_range(vma, rb_map->rb, 263 vma->vm_pgoff + RINGBUF_PGOFF); 264 } 265 266 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) 267 { 268 unsigned long cons_pos, prod_pos; 269 270 cons_pos = smp_load_acquire(&rb->consumer_pos); 271 prod_pos = smp_load_acquire(&rb->producer_pos); 272 return prod_pos - cons_pos; 273 } 274 275 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp, 276 struct poll_table_struct *pts) 277 { 278 struct bpf_ringbuf_map *rb_map; 279 280 rb_map = container_of(map, struct bpf_ringbuf_map, map); 281 poll_wait(filp, &rb_map->rb->waitq, pts); 282 283 if (ringbuf_avail_data_sz(rb_map->rb)) 284 return EPOLLIN | EPOLLRDNORM; 285 return 0; 286 } 287 288 static int ringbuf_map_btf_id; 289 const struct bpf_map_ops ringbuf_map_ops = { 290 .map_meta_equal = bpf_map_meta_equal, 291 .map_alloc = ringbuf_map_alloc, 292 .map_free = ringbuf_map_free, 293 .map_mmap = ringbuf_map_mmap, 294 .map_poll = ringbuf_map_poll, 295 .map_lookup_elem = ringbuf_map_lookup_elem, 296 .map_update_elem = ringbuf_map_update_elem, 297 .map_delete_elem = ringbuf_map_delete_elem, 298 .map_get_next_key = ringbuf_map_get_next_key, 299 .map_btf_name = "bpf_ringbuf_map", 300 .map_btf_id = &ringbuf_map_btf_id, 301 }; 302 303 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, 304 * calculate offset from record metadata to ring buffer in pages, rounded 305 * down. This page offset is stored as part of record metadata and allows to 306 * restore struct bpf_ringbuf * from record pointer. This page offset is 307 * stored at offset 4 of record metadata header. 308 */ 309 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, 310 struct bpf_ringbuf_hdr *hdr) 311 { 312 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; 313 } 314 315 /* Given pointer to ring buffer record header, restore pointer to struct 316 * bpf_ringbuf itself by using page offset stored at offset 4 317 */ 318 static struct bpf_ringbuf * 319 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) 320 { 321 unsigned long addr = (unsigned long)(void *)hdr; 322 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; 323 324 return (void*)((addr & PAGE_MASK) - off); 325 } 326 327 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) 328 { 329 unsigned long cons_pos, prod_pos, new_prod_pos, flags; 330 u32 len, pg_off; 331 struct bpf_ringbuf_hdr *hdr; 332 333 if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) 334 return NULL; 335 336 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 337 cons_pos = smp_load_acquire(&rb->consumer_pos); 338 339 if (in_nmi()) { 340 if (!spin_trylock_irqsave(&rb->spinlock, flags)) 341 return NULL; 342 } else { 343 spin_lock_irqsave(&rb->spinlock, flags); 344 } 345 346 prod_pos = rb->producer_pos; 347 new_prod_pos = prod_pos + len; 348 349 /* check for out of ringbuf space by ensuring producer position 350 * doesn't advance more than (ringbuf_size - 1) ahead 351 */ 352 if (new_prod_pos - cons_pos > rb->mask) { 353 spin_unlock_irqrestore(&rb->spinlock, flags); 354 return NULL; 355 } 356 357 hdr = (void *)rb->data + (prod_pos & rb->mask); 358 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); 359 hdr->len = size | BPF_RINGBUF_BUSY_BIT; 360 hdr->pg_off = pg_off; 361 362 /* pairs with consumer's smp_load_acquire() */ 363 smp_store_release(&rb->producer_pos, new_prod_pos); 364 365 spin_unlock_irqrestore(&rb->spinlock, flags); 366 367 return (void *)hdr + BPF_RINGBUF_HDR_SZ; 368 } 369 370 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) 371 { 372 struct bpf_ringbuf_map *rb_map; 373 374 if (unlikely(flags)) 375 return 0; 376 377 rb_map = container_of(map, struct bpf_ringbuf_map, map); 378 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); 379 } 380 381 const struct bpf_func_proto bpf_ringbuf_reserve_proto = { 382 .func = bpf_ringbuf_reserve, 383 .ret_type = RET_PTR_TO_ALLOC_MEM_OR_NULL, 384 .arg1_type = ARG_CONST_MAP_PTR, 385 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 386 .arg3_type = ARG_ANYTHING, 387 }; 388 389 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) 390 { 391 unsigned long rec_pos, cons_pos; 392 struct bpf_ringbuf_hdr *hdr; 393 struct bpf_ringbuf *rb; 394 u32 new_len; 395 396 hdr = sample - BPF_RINGBUF_HDR_SZ; 397 rb = bpf_ringbuf_restore_from_rec(hdr); 398 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; 399 if (discard) 400 new_len |= BPF_RINGBUF_DISCARD_BIT; 401 402 /* update record header with correct final size prefix */ 403 xchg(&hdr->len, new_len); 404 405 /* if consumer caught up and is waiting for our record, notify about 406 * new data availability 407 */ 408 rec_pos = (void *)hdr - (void *)rb->data; 409 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; 410 411 if (flags & BPF_RB_FORCE_WAKEUP) 412 irq_work_queue(&rb->work); 413 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) 414 irq_work_queue(&rb->work); 415 } 416 417 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) 418 { 419 bpf_ringbuf_commit(sample, flags, false /* discard */); 420 return 0; 421 } 422 423 const struct bpf_func_proto bpf_ringbuf_submit_proto = { 424 .func = bpf_ringbuf_submit, 425 .ret_type = RET_VOID, 426 .arg1_type = ARG_PTR_TO_ALLOC_MEM, 427 .arg2_type = ARG_ANYTHING, 428 }; 429 430 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) 431 { 432 bpf_ringbuf_commit(sample, flags, true /* discard */); 433 return 0; 434 } 435 436 const struct bpf_func_proto bpf_ringbuf_discard_proto = { 437 .func = bpf_ringbuf_discard, 438 .ret_type = RET_VOID, 439 .arg1_type = ARG_PTR_TO_ALLOC_MEM, 440 .arg2_type = ARG_ANYTHING, 441 }; 442 443 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, 444 u64, flags) 445 { 446 struct bpf_ringbuf_map *rb_map; 447 void *rec; 448 449 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) 450 return -EINVAL; 451 452 rb_map = container_of(map, struct bpf_ringbuf_map, map); 453 rec = __bpf_ringbuf_reserve(rb_map->rb, size); 454 if (!rec) 455 return -EAGAIN; 456 457 memcpy(rec, data, size); 458 bpf_ringbuf_commit(rec, flags, false /* discard */); 459 return 0; 460 } 461 462 const struct bpf_func_proto bpf_ringbuf_output_proto = { 463 .func = bpf_ringbuf_output, 464 .ret_type = RET_INTEGER, 465 .arg1_type = ARG_CONST_MAP_PTR, 466 .arg2_type = ARG_PTR_TO_MEM, 467 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 468 .arg4_type = ARG_ANYTHING, 469 }; 470 471 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) 472 { 473 struct bpf_ringbuf *rb; 474 475 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 476 477 switch (flags) { 478 case BPF_RB_AVAIL_DATA: 479 return ringbuf_avail_data_sz(rb); 480 case BPF_RB_RING_SIZE: 481 return rb->mask + 1; 482 case BPF_RB_CONS_POS: 483 return smp_load_acquire(&rb->consumer_pos); 484 case BPF_RB_PROD_POS: 485 return smp_load_acquire(&rb->producer_pos); 486 default: 487 return 0; 488 } 489 } 490 491 const struct bpf_func_proto bpf_ringbuf_query_proto = { 492 .func = bpf_ringbuf_query, 493 .ret_type = RET_INTEGER, 494 .arg1_type = ARG_CONST_MAP_PTR, 495 .arg2_type = ARG_ANYTHING, 496 }; 497