1 #include <linux/bpf.h> 2 #include <linux/btf.h> 3 #include <linux/err.h> 4 #include <linux/irq_work.h> 5 #include <linux/slab.h> 6 #include <linux/filter.h> 7 #include <linux/mm.h> 8 #include <linux/vmalloc.h> 9 #include <linux/wait.h> 10 #include <linux/poll.h> 11 #include <linux/kmemleak.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/btf_ids.h> 14 15 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE) 16 17 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */ 18 #define RINGBUF_PGOFF \ 19 (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT) 20 /* consumer page and producer page */ 21 #define RINGBUF_POS_PAGES 2 22 #define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES) 23 24 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4) 25 26 struct bpf_ringbuf { 27 wait_queue_head_t waitq; 28 struct irq_work work; 29 u64 mask; 30 struct page **pages; 31 int nr_pages; 32 raw_spinlock_t spinlock ____cacheline_aligned_in_smp; 33 /* For user-space producer ring buffers, an atomic_t busy bit is used 34 * to synchronize access to the ring buffers in the kernel, rather than 35 * the spinlock that is used for kernel-producer ring buffers. This is 36 * done because the ring buffer must hold a lock across a BPF program's 37 * callback: 38 * 39 * __bpf_user_ringbuf_peek() // lock acquired 40 * -> program callback_fn() 41 * -> __bpf_user_ringbuf_sample_release() // lock released 42 * 43 * It is unsafe and incorrect to hold an IRQ spinlock across what could 44 * be a long execution window, so we instead simply disallow concurrent 45 * access to the ring buffer by kernel consumers, and return -EBUSY from 46 * __bpf_user_ringbuf_peek() if the busy bit is held by another task. 47 */ 48 atomic_t busy ____cacheline_aligned_in_smp; 49 /* Consumer and producer counters are put into separate pages to 50 * allow each position to be mapped with different permissions. 51 * This prevents a user-space application from modifying the 52 * position and ruining in-kernel tracking. The permissions of the 53 * pages depend on who is producing samples: user-space or the 54 * kernel. Note that the pending counter is placed in the same 55 * page as the producer, so that it shares the same cache line. 56 * 57 * Kernel-producer 58 * --------------- 59 * The producer position and data pages are mapped as r/o in 60 * userspace. For this approach, bits in the header of samples are 61 * used to signal to user-space, and to other producers, whether a 62 * sample is currently being written. 63 * 64 * User-space producer 65 * ------------------- 66 * Only the page containing the consumer position is mapped r/o in 67 * user-space. User-space producers also use bits of the header to 68 * communicate to the kernel, but the kernel must carefully check and 69 * validate each sample to ensure that they're correctly formatted, and 70 * fully contained within the ring buffer. 71 */ 72 unsigned long consumer_pos __aligned(PAGE_SIZE); 73 unsigned long producer_pos __aligned(PAGE_SIZE); 74 unsigned long pending_pos; 75 char data[] __aligned(PAGE_SIZE); 76 }; 77 78 struct bpf_ringbuf_map { 79 struct bpf_map map; 80 struct bpf_ringbuf *rb; 81 }; 82 83 /* 8-byte ring buffer record header structure */ 84 struct bpf_ringbuf_hdr { 85 u32 len; 86 u32 pg_off; 87 }; 88 89 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node) 90 { 91 const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL | 92 __GFP_NOWARN | __GFP_ZERO; 93 int nr_meta_pages = RINGBUF_NR_META_PAGES; 94 int nr_data_pages = data_sz >> PAGE_SHIFT; 95 int nr_pages = nr_meta_pages + nr_data_pages; 96 struct page **pages, *page; 97 struct bpf_ringbuf *rb; 98 size_t array_size; 99 int i; 100 101 /* Each data page is mapped twice to allow "virtual" 102 * continuous read of samples wrapping around the end of ring 103 * buffer area: 104 * ------------------------------------------------------ 105 * | meta pages | real data pages | same data pages | 106 * ------------------------------------------------------ 107 * | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 | 108 * ------------------------------------------------------ 109 * | | TA DA | TA DA | 110 * ------------------------------------------------------ 111 * ^^^^^^^ 112 * | 113 * Here, no need to worry about special handling of wrapped-around 114 * data due to double-mapped data pages. This works both in kernel and 115 * when mmap()'ed in user-space, simplifying both kernel and 116 * user-space implementations significantly. 117 */ 118 array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages); 119 pages = bpf_map_area_alloc(array_size, numa_node); 120 if (!pages) 121 return NULL; 122 123 for (i = 0; i < nr_pages; i++) { 124 page = alloc_pages_node(numa_node, flags, 0); 125 if (!page) { 126 nr_pages = i; 127 goto err_free_pages; 128 } 129 pages[i] = page; 130 if (i >= nr_meta_pages) 131 pages[nr_data_pages + i] = page; 132 } 133 134 rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages, 135 VM_MAP | VM_USERMAP, PAGE_KERNEL); 136 if (rb) { 137 kmemleak_not_leak(pages); 138 rb->pages = pages; 139 rb->nr_pages = nr_pages; 140 return rb; 141 } 142 143 err_free_pages: 144 for (i = 0; i < nr_pages; i++) 145 __free_page(pages[i]); 146 bpf_map_area_free(pages); 147 return NULL; 148 } 149 150 static void bpf_ringbuf_notify(struct irq_work *work) 151 { 152 struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work); 153 154 wake_up_all(&rb->waitq); 155 } 156 157 /* Maximum size of ring buffer area is limited by 32-bit page offset within 158 * record header, counted in pages. Reserve 8 bits for extensibility, and 159 * take into account few extra pages for consumer/producer pages and 160 * non-mmap()'able parts, the current maximum size would be: 161 * 162 * (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE) 163 * 164 * This gives 64GB limit, which seems plenty for single ring buffer. Now 165 * considering that the maximum value of data_sz is (4GB - 1), there 166 * will be no overflow, so just note the size limit in the comments. 167 */ 168 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node) 169 { 170 struct bpf_ringbuf *rb; 171 172 rb = bpf_ringbuf_area_alloc(data_sz, numa_node); 173 if (!rb) 174 return NULL; 175 176 raw_spin_lock_init(&rb->spinlock); 177 atomic_set(&rb->busy, 0); 178 init_waitqueue_head(&rb->waitq); 179 init_irq_work(&rb->work, bpf_ringbuf_notify); 180 181 rb->mask = data_sz - 1; 182 rb->consumer_pos = 0; 183 rb->producer_pos = 0; 184 rb->pending_pos = 0; 185 186 return rb; 187 } 188 189 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr) 190 { 191 struct bpf_ringbuf_map *rb_map; 192 193 if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK) 194 return ERR_PTR(-EINVAL); 195 196 if (attr->key_size || attr->value_size || 197 !is_power_of_2(attr->max_entries) || 198 !PAGE_ALIGNED(attr->max_entries)) 199 return ERR_PTR(-EINVAL); 200 201 rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE); 202 if (!rb_map) 203 return ERR_PTR(-ENOMEM); 204 205 bpf_map_init_from_attr(&rb_map->map, attr); 206 207 rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node); 208 if (!rb_map->rb) { 209 bpf_map_area_free(rb_map); 210 return ERR_PTR(-ENOMEM); 211 } 212 213 return &rb_map->map; 214 } 215 216 static void bpf_ringbuf_free(struct bpf_ringbuf *rb) 217 { 218 /* copy pages pointer and nr_pages to local variable, as we are going 219 * to unmap rb itself with vunmap() below 220 */ 221 struct page **pages = rb->pages; 222 int i, nr_pages = rb->nr_pages; 223 224 vunmap(rb); 225 for (i = 0; i < nr_pages; i++) 226 __free_page(pages[i]); 227 bpf_map_area_free(pages); 228 } 229 230 static void ringbuf_map_free(struct bpf_map *map) 231 { 232 struct bpf_ringbuf_map *rb_map; 233 234 rb_map = container_of(map, struct bpf_ringbuf_map, map); 235 bpf_ringbuf_free(rb_map->rb); 236 bpf_map_area_free(rb_map); 237 } 238 239 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key) 240 { 241 return ERR_PTR(-ENOTSUPP); 242 } 243 244 static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value, 245 u64 flags) 246 { 247 return -ENOTSUPP; 248 } 249 250 static long ringbuf_map_delete_elem(struct bpf_map *map, void *key) 251 { 252 return -ENOTSUPP; 253 } 254 255 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key, 256 void *next_key) 257 { 258 return -ENOTSUPP; 259 } 260 261 static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma) 262 { 263 struct bpf_ringbuf_map *rb_map; 264 265 rb_map = container_of(map, struct bpf_ringbuf_map, map); 266 267 if (vma->vm_flags & VM_WRITE) { 268 /* allow writable mapping for the consumer_pos only */ 269 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE) 270 return -EPERM; 271 } 272 /* remap_vmalloc_range() checks size and offset constraints */ 273 return remap_vmalloc_range(vma, rb_map->rb, 274 vma->vm_pgoff + RINGBUF_PGOFF); 275 } 276 277 static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma) 278 { 279 struct bpf_ringbuf_map *rb_map; 280 281 rb_map = container_of(map, struct bpf_ringbuf_map, map); 282 283 if (vma->vm_flags & VM_WRITE) { 284 if (vma->vm_pgoff == 0) 285 /* Disallow writable mappings to the consumer pointer, 286 * and allow writable mappings to both the producer 287 * position, and the ring buffer data itself. 288 */ 289 return -EPERM; 290 } 291 /* remap_vmalloc_range() checks size and offset constraints */ 292 return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF); 293 } 294 295 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb) 296 { 297 unsigned long cons_pos, prod_pos; 298 299 cons_pos = smp_load_acquire(&rb->consumer_pos); 300 prod_pos = smp_load_acquire(&rb->producer_pos); 301 return prod_pos - cons_pos; 302 } 303 304 static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb) 305 { 306 return rb->mask + 1; 307 } 308 309 static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp, 310 struct poll_table_struct *pts) 311 { 312 struct bpf_ringbuf_map *rb_map; 313 314 rb_map = container_of(map, struct bpf_ringbuf_map, map); 315 poll_wait(filp, &rb_map->rb->waitq, pts); 316 317 if (ringbuf_avail_data_sz(rb_map->rb)) 318 return EPOLLIN | EPOLLRDNORM; 319 return 0; 320 } 321 322 static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp, 323 struct poll_table_struct *pts) 324 { 325 struct bpf_ringbuf_map *rb_map; 326 327 rb_map = container_of(map, struct bpf_ringbuf_map, map); 328 poll_wait(filp, &rb_map->rb->waitq, pts); 329 330 if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb)) 331 return EPOLLOUT | EPOLLWRNORM; 332 return 0; 333 } 334 335 static u64 ringbuf_map_mem_usage(const struct bpf_map *map) 336 { 337 struct bpf_ringbuf *rb; 338 int nr_data_pages; 339 int nr_meta_pages; 340 u64 usage = sizeof(struct bpf_ringbuf_map); 341 342 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 343 usage += (u64)rb->nr_pages << PAGE_SHIFT; 344 nr_meta_pages = RINGBUF_NR_META_PAGES; 345 nr_data_pages = map->max_entries >> PAGE_SHIFT; 346 usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *); 347 return usage; 348 } 349 350 BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 351 const struct bpf_map_ops ringbuf_map_ops = { 352 .map_meta_equal = bpf_map_meta_equal, 353 .map_alloc = ringbuf_map_alloc, 354 .map_free = ringbuf_map_free, 355 .map_mmap = ringbuf_map_mmap_kern, 356 .map_poll = ringbuf_map_poll_kern, 357 .map_lookup_elem = ringbuf_map_lookup_elem, 358 .map_update_elem = ringbuf_map_update_elem, 359 .map_delete_elem = ringbuf_map_delete_elem, 360 .map_get_next_key = ringbuf_map_get_next_key, 361 .map_mem_usage = ringbuf_map_mem_usage, 362 .map_btf_id = &ringbuf_map_btf_ids[0], 363 }; 364 365 BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map) 366 const struct bpf_map_ops user_ringbuf_map_ops = { 367 .map_meta_equal = bpf_map_meta_equal, 368 .map_alloc = ringbuf_map_alloc, 369 .map_free = ringbuf_map_free, 370 .map_mmap = ringbuf_map_mmap_user, 371 .map_poll = ringbuf_map_poll_user, 372 .map_lookup_elem = ringbuf_map_lookup_elem, 373 .map_update_elem = ringbuf_map_update_elem, 374 .map_delete_elem = ringbuf_map_delete_elem, 375 .map_get_next_key = ringbuf_map_get_next_key, 376 .map_mem_usage = ringbuf_map_mem_usage, 377 .map_btf_id = &user_ringbuf_map_btf_ids[0], 378 }; 379 380 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself, 381 * calculate offset from record metadata to ring buffer in pages, rounded 382 * down. This page offset is stored as part of record metadata and allows to 383 * restore struct bpf_ringbuf * from record pointer. This page offset is 384 * stored at offset 4 of record metadata header. 385 */ 386 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb, 387 struct bpf_ringbuf_hdr *hdr) 388 { 389 return ((void *)hdr - (void *)rb) >> PAGE_SHIFT; 390 } 391 392 /* Given pointer to ring buffer record header, restore pointer to struct 393 * bpf_ringbuf itself by using page offset stored at offset 4 394 */ 395 static struct bpf_ringbuf * 396 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr) 397 { 398 unsigned long addr = (unsigned long)(void *)hdr; 399 unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT; 400 401 return (void*)((addr & PAGE_MASK) - off); 402 } 403 404 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size) 405 { 406 unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, flags; 407 struct bpf_ringbuf_hdr *hdr; 408 u32 len, pg_off, tmp_size, hdr_len; 409 410 if (unlikely(size > RINGBUF_MAX_RECORD_SZ)) 411 return NULL; 412 413 len = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 414 if (len > ringbuf_total_data_sz(rb)) 415 return NULL; 416 417 cons_pos = smp_load_acquire(&rb->consumer_pos); 418 419 if (in_nmi()) { 420 if (!raw_spin_trylock_irqsave(&rb->spinlock, flags)) 421 return NULL; 422 } else { 423 raw_spin_lock_irqsave(&rb->spinlock, flags); 424 } 425 426 pend_pos = rb->pending_pos; 427 prod_pos = rb->producer_pos; 428 new_prod_pos = prod_pos + len; 429 430 while (pend_pos < prod_pos) { 431 hdr = (void *)rb->data + (pend_pos & rb->mask); 432 hdr_len = READ_ONCE(hdr->len); 433 if (hdr_len & BPF_RINGBUF_BUSY_BIT) 434 break; 435 tmp_size = hdr_len & ~BPF_RINGBUF_DISCARD_BIT; 436 tmp_size = round_up(tmp_size + BPF_RINGBUF_HDR_SZ, 8); 437 pend_pos += tmp_size; 438 } 439 rb->pending_pos = pend_pos; 440 441 /* check for out of ringbuf space: 442 * - by ensuring producer position doesn't advance more than 443 * (ringbuf_size - 1) ahead 444 * - by ensuring oldest not yet committed record until newest 445 * record does not span more than (ringbuf_size - 1) 446 */ 447 if (new_prod_pos - cons_pos > rb->mask || 448 new_prod_pos - pend_pos > rb->mask) { 449 raw_spin_unlock_irqrestore(&rb->spinlock, flags); 450 return NULL; 451 } 452 453 hdr = (void *)rb->data + (prod_pos & rb->mask); 454 pg_off = bpf_ringbuf_rec_pg_off(rb, hdr); 455 hdr->len = size | BPF_RINGBUF_BUSY_BIT; 456 hdr->pg_off = pg_off; 457 458 /* pairs with consumer's smp_load_acquire() */ 459 smp_store_release(&rb->producer_pos, new_prod_pos); 460 461 raw_spin_unlock_irqrestore(&rb->spinlock, flags); 462 463 return (void *)hdr + BPF_RINGBUF_HDR_SZ; 464 } 465 466 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags) 467 { 468 struct bpf_ringbuf_map *rb_map; 469 470 if (unlikely(flags)) 471 return 0; 472 473 rb_map = container_of(map, struct bpf_ringbuf_map, map); 474 return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size); 475 } 476 477 const struct bpf_func_proto bpf_ringbuf_reserve_proto = { 478 .func = bpf_ringbuf_reserve, 479 .ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL, 480 .arg1_type = ARG_CONST_MAP_PTR, 481 .arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 482 .arg3_type = ARG_ANYTHING, 483 }; 484 485 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard) 486 { 487 unsigned long rec_pos, cons_pos; 488 struct bpf_ringbuf_hdr *hdr; 489 struct bpf_ringbuf *rb; 490 u32 new_len; 491 492 hdr = sample - BPF_RINGBUF_HDR_SZ; 493 rb = bpf_ringbuf_restore_from_rec(hdr); 494 new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT; 495 if (discard) 496 new_len |= BPF_RINGBUF_DISCARD_BIT; 497 498 /* update record header with correct final size prefix */ 499 xchg(&hdr->len, new_len); 500 501 /* if consumer caught up and is waiting for our record, notify about 502 * new data availability 503 */ 504 rec_pos = (void *)hdr - (void *)rb->data; 505 cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask; 506 507 if (flags & BPF_RB_FORCE_WAKEUP) 508 irq_work_queue(&rb->work); 509 else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP)) 510 irq_work_queue(&rb->work); 511 } 512 513 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags) 514 { 515 bpf_ringbuf_commit(sample, flags, false /* discard */); 516 return 0; 517 } 518 519 const struct bpf_func_proto bpf_ringbuf_submit_proto = { 520 .func = bpf_ringbuf_submit, 521 .ret_type = RET_VOID, 522 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 523 .arg2_type = ARG_ANYTHING, 524 }; 525 526 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags) 527 { 528 bpf_ringbuf_commit(sample, flags, true /* discard */); 529 return 0; 530 } 531 532 const struct bpf_func_proto bpf_ringbuf_discard_proto = { 533 .func = bpf_ringbuf_discard, 534 .ret_type = RET_VOID, 535 .arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE, 536 .arg2_type = ARG_ANYTHING, 537 }; 538 539 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size, 540 u64, flags) 541 { 542 struct bpf_ringbuf_map *rb_map; 543 void *rec; 544 545 if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP))) 546 return -EINVAL; 547 548 rb_map = container_of(map, struct bpf_ringbuf_map, map); 549 rec = __bpf_ringbuf_reserve(rb_map->rb, size); 550 if (!rec) 551 return -EAGAIN; 552 553 memcpy(rec, data, size); 554 bpf_ringbuf_commit(rec, flags, false /* discard */); 555 return 0; 556 } 557 558 const struct bpf_func_proto bpf_ringbuf_output_proto = { 559 .func = bpf_ringbuf_output, 560 .ret_type = RET_INTEGER, 561 .arg1_type = ARG_CONST_MAP_PTR, 562 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY, 563 .arg3_type = ARG_CONST_SIZE_OR_ZERO, 564 .arg4_type = ARG_ANYTHING, 565 }; 566 567 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags) 568 { 569 struct bpf_ringbuf *rb; 570 571 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 572 573 switch (flags) { 574 case BPF_RB_AVAIL_DATA: 575 return ringbuf_avail_data_sz(rb); 576 case BPF_RB_RING_SIZE: 577 return ringbuf_total_data_sz(rb); 578 case BPF_RB_CONS_POS: 579 return smp_load_acquire(&rb->consumer_pos); 580 case BPF_RB_PROD_POS: 581 return smp_load_acquire(&rb->producer_pos); 582 default: 583 return 0; 584 } 585 } 586 587 const struct bpf_func_proto bpf_ringbuf_query_proto = { 588 .func = bpf_ringbuf_query, 589 .ret_type = RET_INTEGER, 590 .arg1_type = ARG_CONST_MAP_PTR, 591 .arg2_type = ARG_ANYTHING, 592 }; 593 594 BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags, 595 struct bpf_dynptr_kern *, ptr) 596 { 597 struct bpf_ringbuf_map *rb_map; 598 void *sample; 599 int err; 600 601 if (unlikely(flags)) { 602 bpf_dynptr_set_null(ptr); 603 return -EINVAL; 604 } 605 606 err = bpf_dynptr_check_size(size); 607 if (err) { 608 bpf_dynptr_set_null(ptr); 609 return err; 610 } 611 612 rb_map = container_of(map, struct bpf_ringbuf_map, map); 613 614 sample = __bpf_ringbuf_reserve(rb_map->rb, size); 615 if (!sample) { 616 bpf_dynptr_set_null(ptr); 617 return -EINVAL; 618 } 619 620 bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size); 621 622 return 0; 623 } 624 625 const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = { 626 .func = bpf_ringbuf_reserve_dynptr, 627 .ret_type = RET_INTEGER, 628 .arg1_type = ARG_CONST_MAP_PTR, 629 .arg2_type = ARG_ANYTHING, 630 .arg3_type = ARG_ANYTHING, 631 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE, 632 }; 633 634 BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 635 { 636 if (!ptr->data) 637 return 0; 638 639 bpf_ringbuf_commit(ptr->data, flags, false /* discard */); 640 641 bpf_dynptr_set_null(ptr); 642 643 return 0; 644 } 645 646 const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = { 647 .func = bpf_ringbuf_submit_dynptr, 648 .ret_type = RET_VOID, 649 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 650 .arg2_type = ARG_ANYTHING, 651 }; 652 653 BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags) 654 { 655 if (!ptr->data) 656 return 0; 657 658 bpf_ringbuf_commit(ptr->data, flags, true /* discard */); 659 660 bpf_dynptr_set_null(ptr); 661 662 return 0; 663 } 664 665 const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = { 666 .func = bpf_ringbuf_discard_dynptr, 667 .ret_type = RET_VOID, 668 .arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE, 669 .arg2_type = ARG_ANYTHING, 670 }; 671 672 static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size) 673 { 674 int err; 675 u32 hdr_len, sample_len, total_len, flags, *hdr; 676 u64 cons_pos, prod_pos; 677 678 /* Synchronizes with smp_store_release() in user-space producer. */ 679 prod_pos = smp_load_acquire(&rb->producer_pos); 680 if (prod_pos % 8) 681 return -EINVAL; 682 683 /* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */ 684 cons_pos = smp_load_acquire(&rb->consumer_pos); 685 if (cons_pos >= prod_pos) 686 return -ENODATA; 687 688 hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask)); 689 /* Synchronizes with smp_store_release() in user-space producer. */ 690 hdr_len = smp_load_acquire(hdr); 691 flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT); 692 sample_len = hdr_len & ~flags; 693 total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8); 694 695 /* The sample must fit within the region advertised by the producer position. */ 696 if (total_len > prod_pos - cons_pos) 697 return -EINVAL; 698 699 /* The sample must fit within the data region of the ring buffer. */ 700 if (total_len > ringbuf_total_data_sz(rb)) 701 return -E2BIG; 702 703 /* The sample must fit into a struct bpf_dynptr. */ 704 err = bpf_dynptr_check_size(sample_len); 705 if (err) 706 return -E2BIG; 707 708 if (flags & BPF_RINGBUF_DISCARD_BIT) { 709 /* If the discard bit is set, the sample should be skipped. 710 * 711 * Update the consumer pos, and return -EAGAIN so the caller 712 * knows to skip this sample and try to read the next one. 713 */ 714 smp_store_release(&rb->consumer_pos, cons_pos + total_len); 715 return -EAGAIN; 716 } 717 718 if (flags & BPF_RINGBUF_BUSY_BIT) 719 return -ENODATA; 720 721 *sample = (void *)((uintptr_t)rb->data + 722 (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask)); 723 *size = sample_len; 724 return 0; 725 } 726 727 static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags) 728 { 729 u64 consumer_pos; 730 u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8); 731 732 /* Using smp_load_acquire() is unnecessary here, as the busy-bit 733 * prevents another task from writing to consumer_pos after it was read 734 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek(). 735 */ 736 consumer_pos = rb->consumer_pos; 737 /* Synchronizes with smp_load_acquire() in user-space producer. */ 738 smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size); 739 } 740 741 BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map, 742 void *, callback_fn, void *, callback_ctx, u64, flags) 743 { 744 struct bpf_ringbuf *rb; 745 long samples, discarded_samples = 0, ret = 0; 746 bpf_callback_t callback = (bpf_callback_t)callback_fn; 747 u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP; 748 int busy = 0; 749 750 if (unlikely(flags & ~wakeup_flags)) 751 return -EINVAL; 752 753 rb = container_of(map, struct bpf_ringbuf_map, map)->rb; 754 755 /* If another consumer is already consuming a sample, wait for them to finish. */ 756 if (!atomic_try_cmpxchg(&rb->busy, &busy, 1)) 757 return -EBUSY; 758 759 for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) { 760 int err; 761 u32 size; 762 void *sample; 763 struct bpf_dynptr_kern dynptr; 764 765 err = __bpf_user_ringbuf_peek(rb, &sample, &size); 766 if (err) { 767 if (err == -ENODATA) { 768 break; 769 } else if (err == -EAGAIN) { 770 discarded_samples++; 771 continue; 772 } else { 773 ret = err; 774 goto schedule_work_return; 775 } 776 } 777 778 bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size); 779 ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0); 780 __bpf_user_ringbuf_sample_release(rb, size, flags); 781 } 782 ret = samples - discarded_samples; 783 784 schedule_work_return: 785 /* Prevent the clearing of the busy-bit from being reordered before the 786 * storing of any rb consumer or producer positions. 787 */ 788 smp_mb__before_atomic(); 789 atomic_set(&rb->busy, 0); 790 791 if (flags & BPF_RB_FORCE_WAKEUP) 792 irq_work_queue(&rb->work); 793 else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0) 794 irq_work_queue(&rb->work); 795 return ret; 796 } 797 798 const struct bpf_func_proto bpf_user_ringbuf_drain_proto = { 799 .func = bpf_user_ringbuf_drain, 800 .ret_type = RET_INTEGER, 801 .arg1_type = ARG_CONST_MAP_PTR, 802 .arg2_type = ARG_PTR_TO_FUNC, 803 .arg3_type = ARG_PTR_TO_STACK_OR_NULL, 804 .arg4_type = ARG_ANYTHING, 805 }; 806