1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ 3 #include <linux/mm.h> 4 #include <linux/llist.h> 5 #include <linux/bpf.h> 6 #include <linux/irq_work.h> 7 #include <linux/bpf_mem_alloc.h> 8 #include <linux/memcontrol.h> 9 #include <asm/local.h> 10 11 /* Any context (including NMI) BPF specific memory allocator. 12 * 13 * Tracing BPF programs can attach to kprobe and fentry. Hence they 14 * run in unknown context where calling plain kmalloc() might not be safe. 15 * 16 * Front-end kmalloc() with per-cpu per-bucket cache of free elements. 17 * Refill this cache asynchronously from irq_work. 18 * 19 * CPU_0 buckets 20 * 16 32 64 96 128 196 256 512 1024 2048 4096 21 * ... 22 * CPU_N buckets 23 * 16 32 64 96 128 196 256 512 1024 2048 4096 24 * 25 * The buckets are prefilled at the start. 26 * BPF programs always run with migration disabled. 27 * It's safe to allocate from cache of the current cpu with irqs disabled. 28 * Free-ing is always done into bucket of the current cpu as well. 29 * irq_work trims extra free elements from buckets with kfree 30 * and refills them with kmalloc, so global kmalloc logic takes care 31 * of freeing objects allocated by one cpu and freed on another. 32 * 33 * Every allocated objected is padded with extra 8 bytes that contains 34 * struct llist_node. 35 */ 36 #define LLIST_NODE_SZ sizeof(struct llist_node) 37 38 /* similar to kmalloc, but sizeof == 8 bucket is gone */ 39 static u8 size_index[24] __ro_after_init = { 40 3, /* 8 */ 41 3, /* 16 */ 42 4, /* 24 */ 43 4, /* 32 */ 44 5, /* 40 */ 45 5, /* 48 */ 46 5, /* 56 */ 47 5, /* 64 */ 48 1, /* 72 */ 49 1, /* 80 */ 50 1, /* 88 */ 51 1, /* 96 */ 52 6, /* 104 */ 53 6, /* 112 */ 54 6, /* 120 */ 55 6, /* 128 */ 56 2, /* 136 */ 57 2, /* 144 */ 58 2, /* 152 */ 59 2, /* 160 */ 60 2, /* 168 */ 61 2, /* 176 */ 62 2, /* 184 */ 63 2 /* 192 */ 64 }; 65 66 static int bpf_mem_cache_idx(size_t size) 67 { 68 if (!size || size > 4096) 69 return -1; 70 71 if (size <= 192) 72 return size_index[(size - 1) / 8] - 1; 73 74 return fls(size - 1) - 2; 75 } 76 77 #define NUM_CACHES 11 78 79 struct bpf_mem_cache { 80 /* per-cpu list of free objects of size 'unit_size'. 81 * All accesses are done with interrupts disabled and 'active' counter 82 * protection with __llist_add() and __llist_del_first(). 83 */ 84 struct llist_head free_llist; 85 local_t active; 86 87 /* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill 88 * are sequenced by per-cpu 'active' counter. But unit_free() cannot 89 * fail. When 'active' is busy the unit_free() will add an object to 90 * free_llist_extra. 91 */ 92 struct llist_head free_llist_extra; 93 94 struct irq_work refill_work; 95 struct obj_cgroup *objcg; 96 int unit_size; 97 /* count of objects in free_llist */ 98 int free_cnt; 99 int low_watermark, high_watermark, batch; 100 int percpu_size; 101 102 struct rcu_head rcu; 103 struct llist_head free_by_rcu; 104 struct llist_head waiting_for_gp; 105 atomic_t call_rcu_in_progress; 106 }; 107 108 struct bpf_mem_caches { 109 struct bpf_mem_cache cache[NUM_CACHES]; 110 }; 111 112 static struct llist_node notrace *__llist_del_first(struct llist_head *head) 113 { 114 struct llist_node *entry, *next; 115 116 entry = head->first; 117 if (!entry) 118 return NULL; 119 next = entry->next; 120 head->first = next; 121 return entry; 122 } 123 124 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags) 125 { 126 if (c->percpu_size) { 127 void **obj = kmalloc_node(c->percpu_size, flags, node); 128 void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags); 129 130 if (!obj || !pptr) { 131 free_percpu(pptr); 132 kfree(obj); 133 return NULL; 134 } 135 obj[1] = pptr; 136 return obj; 137 } 138 139 return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node); 140 } 141 142 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c) 143 { 144 #ifdef CONFIG_MEMCG_KMEM 145 if (c->objcg) 146 return get_mem_cgroup_from_objcg(c->objcg); 147 #endif 148 149 #ifdef CONFIG_MEMCG 150 return root_mem_cgroup; 151 #else 152 return NULL; 153 #endif 154 } 155 156 /* Mostly runs from irq_work except __init phase. */ 157 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node) 158 { 159 struct mem_cgroup *memcg = NULL, *old_memcg; 160 unsigned long flags; 161 void *obj; 162 int i; 163 164 memcg = get_memcg(c); 165 old_memcg = set_active_memcg(memcg); 166 for (i = 0; i < cnt; i++) { 167 /* 168 * free_by_rcu is only manipulated by irq work refill_work(). 169 * IRQ works on the same CPU are called sequentially, so it is 170 * safe to use __llist_del_first() here. If alloc_bulk() is 171 * invoked by the initial prefill, there will be no running 172 * refill_work(), so __llist_del_first() is fine as well. 173 * 174 * In most cases, objects on free_by_rcu are from the same CPU. 175 * If some objects come from other CPUs, it doesn't incur any 176 * harm because NUMA_NO_NODE means the preference for current 177 * numa node and it is not a guarantee. 178 */ 179 obj = __llist_del_first(&c->free_by_rcu); 180 if (!obj) { 181 /* Allocate, but don't deplete atomic reserves that typical 182 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc 183 * will allocate from the current numa node which is what we 184 * want here. 185 */ 186 obj = __alloc(c, node, GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT); 187 if (!obj) 188 break; 189 } 190 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 191 /* In RT irq_work runs in per-cpu kthread, so disable 192 * interrupts to avoid preemption and interrupts and 193 * reduce the chance of bpf prog executing on this cpu 194 * when active counter is busy. 195 */ 196 local_irq_save(flags); 197 /* alloc_bulk runs from irq_work which will not preempt a bpf 198 * program that does unit_alloc/unit_free since IRQs are 199 * disabled there. There is no race to increment 'active' 200 * counter. It protects free_llist from corruption in case NMI 201 * bpf prog preempted this loop. 202 */ 203 WARN_ON_ONCE(local_inc_return(&c->active) != 1); 204 __llist_add(obj, &c->free_llist); 205 c->free_cnt++; 206 local_dec(&c->active); 207 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 208 local_irq_restore(flags); 209 } 210 set_active_memcg(old_memcg); 211 mem_cgroup_put(memcg); 212 } 213 214 static void free_one(struct bpf_mem_cache *c, void *obj) 215 { 216 if (c->percpu_size) { 217 free_percpu(((void **)obj)[1]); 218 kfree(obj); 219 return; 220 } 221 222 kfree(obj); 223 } 224 225 static void __free_rcu(struct rcu_head *head) 226 { 227 struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); 228 struct llist_node *llnode = llist_del_all(&c->waiting_for_gp); 229 struct llist_node *pos, *t; 230 231 llist_for_each_safe(pos, t, llnode) 232 free_one(c, pos); 233 atomic_set(&c->call_rcu_in_progress, 0); 234 } 235 236 static void __free_rcu_tasks_trace(struct rcu_head *head) 237 { 238 /* If RCU Tasks Trace grace period implies RCU grace period, 239 * there is no need to invoke call_rcu(). 240 */ 241 if (rcu_trace_implies_rcu_gp()) 242 __free_rcu(head); 243 else 244 call_rcu(head, __free_rcu); 245 } 246 247 static void enque_to_free(struct bpf_mem_cache *c, void *obj) 248 { 249 struct llist_node *llnode = obj; 250 251 /* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work. 252 * Nothing races to add to free_by_rcu list. 253 */ 254 __llist_add(llnode, &c->free_by_rcu); 255 } 256 257 static void do_call_rcu(struct bpf_mem_cache *c) 258 { 259 struct llist_node *llnode, *t; 260 261 if (atomic_xchg(&c->call_rcu_in_progress, 1)) 262 return; 263 264 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); 265 llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu)) 266 /* There is no concurrent __llist_add(waiting_for_gp) access. 267 * It doesn't race with llist_del_all either. 268 * But there could be two concurrent llist_del_all(waiting_for_gp): 269 * from __free_rcu() and from drain_mem_cache(). 270 */ 271 __llist_add(llnode, &c->waiting_for_gp); 272 /* Use call_rcu_tasks_trace() to wait for sleepable progs to finish. 273 * If RCU Tasks Trace grace period implies RCU grace period, free 274 * these elements directly, else use call_rcu() to wait for normal 275 * progs to finish and finally do free_one() on each element. 276 */ 277 call_rcu_tasks_trace(&c->rcu, __free_rcu_tasks_trace); 278 } 279 280 static void free_bulk(struct bpf_mem_cache *c) 281 { 282 struct llist_node *llnode, *t; 283 unsigned long flags; 284 int cnt; 285 286 do { 287 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 288 local_irq_save(flags); 289 WARN_ON_ONCE(local_inc_return(&c->active) != 1); 290 llnode = __llist_del_first(&c->free_llist); 291 if (llnode) 292 cnt = --c->free_cnt; 293 else 294 cnt = 0; 295 local_dec(&c->active); 296 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 297 local_irq_restore(flags); 298 if (llnode) 299 enque_to_free(c, llnode); 300 } while (cnt > (c->high_watermark + c->low_watermark) / 2); 301 302 /* and drain free_llist_extra */ 303 llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra)) 304 enque_to_free(c, llnode); 305 do_call_rcu(c); 306 } 307 308 static void bpf_mem_refill(struct irq_work *work) 309 { 310 struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work); 311 int cnt; 312 313 /* Racy access to free_cnt. It doesn't need to be 100% accurate */ 314 cnt = c->free_cnt; 315 if (cnt < c->low_watermark) 316 /* irq_work runs on this cpu and kmalloc will allocate 317 * from the current numa node which is what we want here. 318 */ 319 alloc_bulk(c, c->batch, NUMA_NO_NODE); 320 else if (cnt > c->high_watermark) 321 free_bulk(c); 322 } 323 324 static void notrace irq_work_raise(struct bpf_mem_cache *c) 325 { 326 irq_work_queue(&c->refill_work); 327 } 328 329 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket 330 * the freelist cache will be elem_size * 64 (or less) on each cpu. 331 * 332 * For bpf programs that don't have statically known allocation sizes and 333 * assuming (low_mark + high_mark) / 2 as an average number of elements per 334 * bucket and all buckets are used the total amount of memory in freelists 335 * on each cpu will be: 336 * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096 337 * == ~ 116 Kbyte using below heuristic. 338 * Initialized, but unused bpf allocator (not bpf map specific one) will 339 * consume ~ 11 Kbyte per cpu. 340 * Typical case will be between 11K and 116K closer to 11K. 341 * bpf progs can and should share bpf_mem_cache when possible. 342 */ 343 344 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu) 345 { 346 init_irq_work(&c->refill_work, bpf_mem_refill); 347 if (c->unit_size <= 256) { 348 c->low_watermark = 32; 349 c->high_watermark = 96; 350 } else { 351 /* When page_size == 4k, order-0 cache will have low_mark == 2 352 * and high_mark == 6 with batch alloc of 3 individual pages at 353 * a time. 354 * 8k allocs and above low == 1, high == 3, batch == 1. 355 */ 356 c->low_watermark = max(32 * 256 / c->unit_size, 1); 357 c->high_watermark = max(96 * 256 / c->unit_size, 3); 358 } 359 c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1); 360 361 /* To avoid consuming memory assume that 1st run of bpf 362 * prog won't be doing more than 4 map_update_elem from 363 * irq disabled region 364 */ 365 alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu)); 366 } 367 368 /* When size != 0 bpf_mem_cache for each cpu. 369 * This is typical bpf hash map use case when all elements have equal size. 370 * 371 * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on 372 * kmalloc/kfree. Max allocation size is 4096 in this case. 373 * This is bpf_dynptr and bpf_kptr use case. 374 */ 375 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu) 376 { 377 static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}; 378 struct bpf_mem_caches *cc, __percpu *pcc; 379 struct bpf_mem_cache *c, __percpu *pc; 380 struct obj_cgroup *objcg = NULL; 381 int cpu, i, unit_size, percpu_size = 0; 382 383 if (size) { 384 pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL); 385 if (!pc) 386 return -ENOMEM; 387 388 if (percpu) 389 /* room for llist_node and per-cpu pointer */ 390 percpu_size = LLIST_NODE_SZ + sizeof(void *); 391 else 392 size += LLIST_NODE_SZ; /* room for llist_node */ 393 unit_size = size; 394 395 #ifdef CONFIG_MEMCG_KMEM 396 if (memcg_bpf_enabled()) 397 objcg = get_obj_cgroup_from_current(); 398 #endif 399 for_each_possible_cpu(cpu) { 400 c = per_cpu_ptr(pc, cpu); 401 c->unit_size = unit_size; 402 c->objcg = objcg; 403 c->percpu_size = percpu_size; 404 prefill_mem_cache(c, cpu); 405 } 406 ma->cache = pc; 407 return 0; 408 } 409 410 /* size == 0 && percpu is an invalid combination */ 411 if (WARN_ON_ONCE(percpu)) 412 return -EINVAL; 413 414 pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL); 415 if (!pcc) 416 return -ENOMEM; 417 #ifdef CONFIG_MEMCG_KMEM 418 objcg = get_obj_cgroup_from_current(); 419 #endif 420 for_each_possible_cpu(cpu) { 421 cc = per_cpu_ptr(pcc, cpu); 422 for (i = 0; i < NUM_CACHES; i++) { 423 c = &cc->cache[i]; 424 c->unit_size = sizes[i]; 425 c->objcg = objcg; 426 prefill_mem_cache(c, cpu); 427 } 428 } 429 ma->caches = pcc; 430 return 0; 431 } 432 433 static void drain_mem_cache(struct bpf_mem_cache *c) 434 { 435 struct llist_node *llnode, *t; 436 437 /* No progs are using this bpf_mem_cache, but htab_map_free() called 438 * bpf_mem_cache_free() for all remaining elements and they can be in 439 * free_by_rcu or in waiting_for_gp lists, so drain those lists now. 440 * 441 * Except for waiting_for_gp list, there are no concurrent operations 442 * on these lists, so it is safe to use __llist_del_all(). 443 */ 444 llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu)) 445 free_one(c, llnode); 446 llist_for_each_safe(llnode, t, llist_del_all(&c->waiting_for_gp)) 447 free_one(c, llnode); 448 llist_for_each_safe(llnode, t, __llist_del_all(&c->free_llist)) 449 free_one(c, llnode); 450 llist_for_each_safe(llnode, t, __llist_del_all(&c->free_llist_extra)) 451 free_one(c, llnode); 452 } 453 454 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma) 455 { 456 free_percpu(ma->cache); 457 free_percpu(ma->caches); 458 ma->cache = NULL; 459 ma->caches = NULL; 460 } 461 462 static void free_mem_alloc(struct bpf_mem_alloc *ma) 463 { 464 /* waiting_for_gp lists was drained, but __free_rcu might 465 * still execute. Wait for it now before we freeing percpu caches. 466 * 467 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(), 468 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used 469 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(), 470 * so if call_rcu(head, __free_rcu) is skipped due to 471 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by 472 * using rcu_trace_implies_rcu_gp() as well. 473 */ 474 rcu_barrier_tasks_trace(); 475 if (!rcu_trace_implies_rcu_gp()) 476 rcu_barrier(); 477 free_mem_alloc_no_barrier(ma); 478 } 479 480 static void free_mem_alloc_deferred(struct work_struct *work) 481 { 482 struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work); 483 484 free_mem_alloc(ma); 485 kfree(ma); 486 } 487 488 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress) 489 { 490 struct bpf_mem_alloc *copy; 491 492 if (!rcu_in_progress) { 493 /* Fast path. No callbacks are pending, hence no need to do 494 * rcu_barrier-s. 495 */ 496 free_mem_alloc_no_barrier(ma); 497 return; 498 } 499 500 copy = kmalloc(sizeof(*ma), GFP_KERNEL); 501 if (!copy) { 502 /* Slow path with inline barrier-s */ 503 free_mem_alloc(ma); 504 return; 505 } 506 507 /* Defer barriers into worker to let the rest of map memory to be freed */ 508 copy->cache = ma->cache; 509 ma->cache = NULL; 510 copy->caches = ma->caches; 511 ma->caches = NULL; 512 INIT_WORK(©->work, free_mem_alloc_deferred); 513 queue_work(system_unbound_wq, ©->work); 514 } 515 516 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma) 517 { 518 struct bpf_mem_caches *cc; 519 struct bpf_mem_cache *c; 520 int cpu, i, rcu_in_progress; 521 522 if (ma->cache) { 523 rcu_in_progress = 0; 524 for_each_possible_cpu(cpu) { 525 c = per_cpu_ptr(ma->cache, cpu); 526 /* 527 * refill_work may be unfinished for PREEMPT_RT kernel 528 * in which irq work is invoked in a per-CPU RT thread. 529 * It is also possible for kernel with 530 * arch_irq_work_has_interrupt() being false and irq 531 * work is invoked in timer interrupt. So waiting for 532 * the completion of irq work to ease the handling of 533 * concurrency. 534 */ 535 irq_work_sync(&c->refill_work); 536 drain_mem_cache(c); 537 rcu_in_progress += atomic_read(&c->call_rcu_in_progress); 538 } 539 /* objcg is the same across cpus */ 540 if (c->objcg) 541 obj_cgroup_put(c->objcg); 542 destroy_mem_alloc(ma, rcu_in_progress); 543 } 544 if (ma->caches) { 545 rcu_in_progress = 0; 546 for_each_possible_cpu(cpu) { 547 cc = per_cpu_ptr(ma->caches, cpu); 548 for (i = 0; i < NUM_CACHES; i++) { 549 c = &cc->cache[i]; 550 irq_work_sync(&c->refill_work); 551 drain_mem_cache(c); 552 rcu_in_progress += atomic_read(&c->call_rcu_in_progress); 553 } 554 } 555 if (c->objcg) 556 obj_cgroup_put(c->objcg); 557 destroy_mem_alloc(ma, rcu_in_progress); 558 } 559 } 560 561 /* notrace is necessary here and in other functions to make sure 562 * bpf programs cannot attach to them and cause llist corruptions. 563 */ 564 static void notrace *unit_alloc(struct bpf_mem_cache *c) 565 { 566 struct llist_node *llnode = NULL; 567 unsigned long flags; 568 int cnt = 0; 569 570 /* Disable irqs to prevent the following race for majority of prog types: 571 * prog_A 572 * bpf_mem_alloc 573 * preemption or irq -> prog_B 574 * bpf_mem_alloc 575 * 576 * but prog_B could be a perf_event NMI prog. 577 * Use per-cpu 'active' counter to order free_list access between 578 * unit_alloc/unit_free/bpf_mem_refill. 579 */ 580 local_irq_save(flags); 581 if (local_inc_return(&c->active) == 1) { 582 llnode = __llist_del_first(&c->free_llist); 583 if (llnode) 584 cnt = --c->free_cnt; 585 } 586 local_dec(&c->active); 587 local_irq_restore(flags); 588 589 WARN_ON(cnt < 0); 590 591 if (cnt < c->low_watermark) 592 irq_work_raise(c); 593 return llnode; 594 } 595 596 /* Though 'ptr' object could have been allocated on a different cpu 597 * add it to the free_llist of the current cpu. 598 * Let kfree() logic deal with it when it's later called from irq_work. 599 */ 600 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr) 601 { 602 struct llist_node *llnode = ptr - LLIST_NODE_SZ; 603 unsigned long flags; 604 int cnt = 0; 605 606 BUILD_BUG_ON(LLIST_NODE_SZ > 8); 607 608 local_irq_save(flags); 609 if (local_inc_return(&c->active) == 1) { 610 __llist_add(llnode, &c->free_llist); 611 cnt = ++c->free_cnt; 612 } else { 613 /* unit_free() cannot fail. Therefore add an object to atomic 614 * llist. free_bulk() will drain it. Though free_llist_extra is 615 * a per-cpu list we have to use atomic llist_add here, since 616 * it also can be interrupted by bpf nmi prog that does another 617 * unit_free() into the same free_llist_extra. 618 */ 619 llist_add(llnode, &c->free_llist_extra); 620 } 621 local_dec(&c->active); 622 local_irq_restore(flags); 623 624 if (cnt > c->high_watermark) 625 /* free few objects from current cpu into global kmalloc pool */ 626 irq_work_raise(c); 627 } 628 629 /* Called from BPF program or from sys_bpf syscall. 630 * In both cases migration is disabled. 631 */ 632 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size) 633 { 634 int idx; 635 void *ret; 636 637 if (!size) 638 return ZERO_SIZE_PTR; 639 640 idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ); 641 if (idx < 0) 642 return NULL; 643 644 ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx); 645 return !ret ? NULL : ret + LLIST_NODE_SZ; 646 } 647 648 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr) 649 { 650 int idx; 651 652 if (!ptr) 653 return; 654 655 idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ)); 656 if (idx < 0) 657 return; 658 659 unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr); 660 } 661 662 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma) 663 { 664 void *ret; 665 666 ret = unit_alloc(this_cpu_ptr(ma->cache)); 667 return !ret ? NULL : ret + LLIST_NODE_SZ; 668 } 669 670 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr) 671 { 672 if (!ptr) 673 return; 674 675 unit_free(this_cpu_ptr(ma->cache), ptr); 676 } 677 678 /* Directly does a kfree() without putting 'ptr' back to the free_llist 679 * for reuse and without waiting for a rcu_tasks_trace gp. 680 * The caller must first go through the rcu_tasks_trace gp for 'ptr' 681 * before calling bpf_mem_cache_raw_free(). 682 * It could be used when the rcu_tasks_trace callback does not have 683 * a hold on the original bpf_mem_alloc object that allocated the 684 * 'ptr'. This should only be used in the uncommon code path. 685 * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled 686 * and may affect performance. 687 */ 688 void bpf_mem_cache_raw_free(void *ptr) 689 { 690 if (!ptr) 691 return; 692 693 kfree(ptr - LLIST_NODE_SZ); 694 } 695 696 /* When flags == GFP_KERNEL, it signals that the caller will not cause 697 * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use 698 * kmalloc if the free_llist is empty. 699 */ 700 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags) 701 { 702 struct bpf_mem_cache *c; 703 void *ret; 704 705 c = this_cpu_ptr(ma->cache); 706 707 ret = unit_alloc(c); 708 if (!ret && flags == GFP_KERNEL) { 709 struct mem_cgroup *memcg, *old_memcg; 710 711 memcg = get_memcg(c); 712 old_memcg = set_active_memcg(memcg); 713 ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT); 714 set_active_memcg(old_memcg); 715 mem_cgroup_put(memcg); 716 } 717 718 return !ret ? NULL : ret + LLIST_NODE_SZ; 719 } 720