xref: /openbmc/linux/kernel/bpf/memalloc.c (revision 74680482)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <linux/mm.h>
4 #include <linux/llist.h>
5 #include <linux/bpf.h>
6 #include <linux/irq_work.h>
7 #include <linux/bpf_mem_alloc.h>
8 #include <linux/memcontrol.h>
9 #include <asm/local.h>
10 
11 /* Any context (including NMI) BPF specific memory allocator.
12  *
13  * Tracing BPF programs can attach to kprobe and fentry. Hence they
14  * run in unknown context where calling plain kmalloc() might not be safe.
15  *
16  * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
17  * Refill this cache asynchronously from irq_work.
18  *
19  * CPU_0 buckets
20  * 16 32 64 96 128 196 256 512 1024 2048 4096
21  * ...
22  * CPU_N buckets
23  * 16 32 64 96 128 196 256 512 1024 2048 4096
24  *
25  * The buckets are prefilled at the start.
26  * BPF programs always run with migration disabled.
27  * It's safe to allocate from cache of the current cpu with irqs disabled.
28  * Free-ing is always done into bucket of the current cpu as well.
29  * irq_work trims extra free elements from buckets with kfree
30  * and refills them with kmalloc, so global kmalloc logic takes care
31  * of freeing objects allocated by one cpu and freed on another.
32  *
33  * Every allocated objected is padded with extra 8 bytes that contains
34  * struct llist_node.
35  */
36 #define LLIST_NODE_SZ sizeof(struct llist_node)
37 
38 /* similar to kmalloc, but sizeof == 8 bucket is gone */
39 static u8 size_index[24] __ro_after_init = {
40 	3,	/* 8 */
41 	3,	/* 16 */
42 	4,	/* 24 */
43 	4,	/* 32 */
44 	5,	/* 40 */
45 	5,	/* 48 */
46 	5,	/* 56 */
47 	5,	/* 64 */
48 	1,	/* 72 */
49 	1,	/* 80 */
50 	1,	/* 88 */
51 	1,	/* 96 */
52 	6,	/* 104 */
53 	6,	/* 112 */
54 	6,	/* 120 */
55 	6,	/* 128 */
56 	2,	/* 136 */
57 	2,	/* 144 */
58 	2,	/* 152 */
59 	2,	/* 160 */
60 	2,	/* 168 */
61 	2,	/* 176 */
62 	2,	/* 184 */
63 	2	/* 192 */
64 };
65 
66 static int bpf_mem_cache_idx(size_t size)
67 {
68 	if (!size || size > 4096)
69 		return -1;
70 
71 	if (size <= 192)
72 		return size_index[(size - 1) / 8] - 1;
73 
74 	return fls(size - 1) - 2;
75 }
76 
77 #define NUM_CACHES 11
78 
79 struct bpf_mem_cache {
80 	/* per-cpu list of free objects of size 'unit_size'.
81 	 * All accesses are done with interrupts disabled and 'active' counter
82 	 * protection with __llist_add() and __llist_del_first().
83 	 */
84 	struct llist_head free_llist;
85 	local_t active;
86 
87 	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
88 	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
89 	 * fail. When 'active' is busy the unit_free() will add an object to
90 	 * free_llist_extra.
91 	 */
92 	struct llist_head free_llist_extra;
93 
94 	struct irq_work refill_work;
95 	struct obj_cgroup *objcg;
96 	int unit_size;
97 	/* count of objects in free_llist */
98 	int free_cnt;
99 	int low_watermark, high_watermark, batch;
100 	int percpu_size;
101 
102 	/* list of objects to be freed after RCU tasks trace GP */
103 	struct llist_head free_by_rcu_ttrace;
104 	struct llist_head waiting_for_gp_ttrace;
105 	struct rcu_head rcu_ttrace;
106 	atomic_t call_rcu_ttrace_in_progress;
107 };
108 
109 struct bpf_mem_caches {
110 	struct bpf_mem_cache cache[NUM_CACHES];
111 };
112 
113 static struct llist_node notrace *__llist_del_first(struct llist_head *head)
114 {
115 	struct llist_node *entry, *next;
116 
117 	entry = head->first;
118 	if (!entry)
119 		return NULL;
120 	next = entry->next;
121 	head->first = next;
122 	return entry;
123 }
124 
125 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
126 {
127 	if (c->percpu_size) {
128 		void **obj = kmalloc_node(c->percpu_size, flags, node);
129 		void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
130 
131 		if (!obj || !pptr) {
132 			free_percpu(pptr);
133 			kfree(obj);
134 			return NULL;
135 		}
136 		obj[1] = pptr;
137 		return obj;
138 	}
139 
140 	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
141 }
142 
143 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
144 {
145 #ifdef CONFIG_MEMCG_KMEM
146 	if (c->objcg)
147 		return get_mem_cgroup_from_objcg(c->objcg);
148 #endif
149 
150 #ifdef CONFIG_MEMCG
151 	return root_mem_cgroup;
152 #else
153 	return NULL;
154 #endif
155 }
156 
157 static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
158 {
159 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
160 		/* In RT irq_work runs in per-cpu kthread, so disable
161 		 * interrupts to avoid preemption and interrupts and
162 		 * reduce the chance of bpf prog executing on this cpu
163 		 * when active counter is busy.
164 		 */
165 		local_irq_save(*flags);
166 	/* alloc_bulk runs from irq_work which will not preempt a bpf
167 	 * program that does unit_alloc/unit_free since IRQs are
168 	 * disabled there. There is no race to increment 'active'
169 	 * counter. It protects free_llist from corruption in case NMI
170 	 * bpf prog preempted this loop.
171 	 */
172 	WARN_ON_ONCE(local_inc_return(&c->active) != 1);
173 }
174 
175 static void dec_active(struct bpf_mem_cache *c, unsigned long flags)
176 {
177 	local_dec(&c->active);
178 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
179 		local_irq_restore(flags);
180 }
181 
182 static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
183 {
184 	unsigned long flags;
185 
186 	inc_active(c, &flags);
187 	__llist_add(obj, &c->free_llist);
188 	c->free_cnt++;
189 	dec_active(c, flags);
190 }
191 
192 /* Mostly runs from irq_work except __init phase. */
193 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node)
194 {
195 	struct mem_cgroup *memcg = NULL, *old_memcg;
196 	void *obj;
197 	int i;
198 
199 	for (i = 0; i < cnt; i++) {
200 		/*
201 		 * free_by_rcu_ttrace is only manipulated by irq work refill_work().
202 		 * IRQ works on the same CPU are called sequentially, so it is
203 		 * safe to use __llist_del_first() here. If alloc_bulk() is
204 		 * invoked by the initial prefill, there will be no running
205 		 * refill_work(), so __llist_del_first() is fine as well.
206 		 *
207 		 * In most cases, objects on free_by_rcu_ttrace are from the same CPU.
208 		 * If some objects come from other CPUs, it doesn't incur any
209 		 * harm because NUMA_NO_NODE means the preference for current
210 		 * numa node and it is not a guarantee.
211 		 */
212 		obj = __llist_del_first(&c->free_by_rcu_ttrace);
213 		if (!obj)
214 			break;
215 		add_obj_to_free_list(c, obj);
216 	}
217 	if (i >= cnt)
218 		return;
219 
220 	memcg = get_memcg(c);
221 	old_memcg = set_active_memcg(memcg);
222 	for (; i < cnt; i++) {
223 		/* Allocate, but don't deplete atomic reserves that typical
224 		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
225 		 * will allocate from the current numa node which is what we
226 		 * want here.
227 		 */
228 		obj = __alloc(c, node, GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT);
229 		if (!obj)
230 			break;
231 		add_obj_to_free_list(c, obj);
232 	}
233 	set_active_memcg(old_memcg);
234 	mem_cgroup_put(memcg);
235 }
236 
237 static void free_one(void *obj, bool percpu)
238 {
239 	if (percpu) {
240 		free_percpu(((void **)obj)[1]);
241 		kfree(obj);
242 		return;
243 	}
244 
245 	kfree(obj);
246 }
247 
248 static int free_all(struct llist_node *llnode, bool percpu)
249 {
250 	struct llist_node *pos, *t;
251 	int cnt = 0;
252 
253 	llist_for_each_safe(pos, t, llnode) {
254 		free_one(pos, percpu);
255 		cnt++;
256 	}
257 	return cnt;
258 }
259 
260 static void __free_rcu(struct rcu_head *head)
261 {
262 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
263 
264 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
265 	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
266 }
267 
268 static void __free_rcu_tasks_trace(struct rcu_head *head)
269 {
270 	/* If RCU Tasks Trace grace period implies RCU grace period,
271 	 * there is no need to invoke call_rcu().
272 	 */
273 	if (rcu_trace_implies_rcu_gp())
274 		__free_rcu(head);
275 	else
276 		call_rcu(head, __free_rcu);
277 }
278 
279 static void enque_to_free(struct bpf_mem_cache *c, void *obj)
280 {
281 	struct llist_node *llnode = obj;
282 
283 	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
284 	 * Nothing races to add to free_by_rcu_ttrace list.
285 	 */
286 	__llist_add(llnode, &c->free_by_rcu_ttrace);
287 }
288 
289 static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
290 {
291 	struct llist_node *llnode, *t;
292 
293 	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1))
294 		return;
295 
296 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
297 	llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu_ttrace))
298 		/* There is no concurrent __llist_add(waiting_for_gp_ttrace) access.
299 		 * It doesn't race with llist_del_all either.
300 		 * But there could be two concurrent llist_del_all(waiting_for_gp_ttrace):
301 		 * from __free_rcu() and from drain_mem_cache().
302 		 */
303 		__llist_add(llnode, &c->waiting_for_gp_ttrace);
304 	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
305 	 * If RCU Tasks Trace grace period implies RCU grace period, free
306 	 * these elements directly, else use call_rcu() to wait for normal
307 	 * progs to finish and finally do free_one() on each element.
308 	 */
309 	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
310 }
311 
312 static void free_bulk(struct bpf_mem_cache *c)
313 {
314 	struct llist_node *llnode, *t;
315 	unsigned long flags;
316 	int cnt;
317 
318 	do {
319 		inc_active(c, &flags);
320 		llnode = __llist_del_first(&c->free_llist);
321 		if (llnode)
322 			cnt = --c->free_cnt;
323 		else
324 			cnt = 0;
325 		dec_active(c, flags);
326 		if (llnode)
327 			enque_to_free(c, llnode);
328 	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
329 
330 	/* and drain free_llist_extra */
331 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
332 		enque_to_free(c, llnode);
333 	do_call_rcu_ttrace(c);
334 }
335 
336 static void bpf_mem_refill(struct irq_work *work)
337 {
338 	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
339 	int cnt;
340 
341 	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
342 	cnt = c->free_cnt;
343 	if (cnt < c->low_watermark)
344 		/* irq_work runs on this cpu and kmalloc will allocate
345 		 * from the current numa node which is what we want here.
346 		 */
347 		alloc_bulk(c, c->batch, NUMA_NO_NODE);
348 	else if (cnt > c->high_watermark)
349 		free_bulk(c);
350 }
351 
352 static void notrace irq_work_raise(struct bpf_mem_cache *c)
353 {
354 	irq_work_queue(&c->refill_work);
355 }
356 
357 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
358  * the freelist cache will be elem_size * 64 (or less) on each cpu.
359  *
360  * For bpf programs that don't have statically known allocation sizes and
361  * assuming (low_mark + high_mark) / 2 as an average number of elements per
362  * bucket and all buckets are used the total amount of memory in freelists
363  * on each cpu will be:
364  * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
365  * == ~ 116 Kbyte using below heuristic.
366  * Initialized, but unused bpf allocator (not bpf map specific one) will
367  * consume ~ 11 Kbyte per cpu.
368  * Typical case will be between 11K and 116K closer to 11K.
369  * bpf progs can and should share bpf_mem_cache when possible.
370  */
371 
372 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
373 {
374 	init_irq_work(&c->refill_work, bpf_mem_refill);
375 	if (c->unit_size <= 256) {
376 		c->low_watermark = 32;
377 		c->high_watermark = 96;
378 	} else {
379 		/* When page_size == 4k, order-0 cache will have low_mark == 2
380 		 * and high_mark == 6 with batch alloc of 3 individual pages at
381 		 * a time.
382 		 * 8k allocs and above low == 1, high == 3, batch == 1.
383 		 */
384 		c->low_watermark = max(32 * 256 / c->unit_size, 1);
385 		c->high_watermark = max(96 * 256 / c->unit_size, 3);
386 	}
387 	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
388 
389 	/* To avoid consuming memory assume that 1st run of bpf
390 	 * prog won't be doing more than 4 map_update_elem from
391 	 * irq disabled region
392 	 */
393 	alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu));
394 }
395 
396 /* When size != 0 bpf_mem_cache for each cpu.
397  * This is typical bpf hash map use case when all elements have equal size.
398  *
399  * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
400  * kmalloc/kfree. Max allocation size is 4096 in this case.
401  * This is bpf_dynptr and bpf_kptr use case.
402  */
403 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
404 {
405 	static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
406 	struct bpf_mem_caches *cc, __percpu *pcc;
407 	struct bpf_mem_cache *c, __percpu *pc;
408 	struct obj_cgroup *objcg = NULL;
409 	int cpu, i, unit_size, percpu_size = 0;
410 
411 	if (size) {
412 		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
413 		if (!pc)
414 			return -ENOMEM;
415 
416 		if (percpu)
417 			/* room for llist_node and per-cpu pointer */
418 			percpu_size = LLIST_NODE_SZ + sizeof(void *);
419 		else
420 			size += LLIST_NODE_SZ; /* room for llist_node */
421 		unit_size = size;
422 
423 #ifdef CONFIG_MEMCG_KMEM
424 		if (memcg_bpf_enabled())
425 			objcg = get_obj_cgroup_from_current();
426 #endif
427 		for_each_possible_cpu(cpu) {
428 			c = per_cpu_ptr(pc, cpu);
429 			c->unit_size = unit_size;
430 			c->objcg = objcg;
431 			c->percpu_size = percpu_size;
432 			prefill_mem_cache(c, cpu);
433 		}
434 		ma->cache = pc;
435 		return 0;
436 	}
437 
438 	/* size == 0 && percpu is an invalid combination */
439 	if (WARN_ON_ONCE(percpu))
440 		return -EINVAL;
441 
442 	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
443 	if (!pcc)
444 		return -ENOMEM;
445 #ifdef CONFIG_MEMCG_KMEM
446 	objcg = get_obj_cgroup_from_current();
447 #endif
448 	for_each_possible_cpu(cpu) {
449 		cc = per_cpu_ptr(pcc, cpu);
450 		for (i = 0; i < NUM_CACHES; i++) {
451 			c = &cc->cache[i];
452 			c->unit_size = sizes[i];
453 			c->objcg = objcg;
454 			prefill_mem_cache(c, cpu);
455 		}
456 	}
457 	ma->caches = pcc;
458 	return 0;
459 }
460 
461 static void drain_mem_cache(struct bpf_mem_cache *c)
462 {
463 	bool percpu = !!c->percpu_size;
464 
465 	/* No progs are using this bpf_mem_cache, but htab_map_free() called
466 	 * bpf_mem_cache_free() for all remaining elements and they can be in
467 	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
468 	 *
469 	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
470 	 * on these lists, so it is safe to use __llist_del_all().
471 	 */
472 	free_all(__llist_del_all(&c->free_by_rcu_ttrace), percpu);
473 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
474 	free_all(__llist_del_all(&c->free_llist), percpu);
475 	free_all(__llist_del_all(&c->free_llist_extra), percpu);
476 }
477 
478 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
479 {
480 	free_percpu(ma->cache);
481 	free_percpu(ma->caches);
482 	ma->cache = NULL;
483 	ma->caches = NULL;
484 }
485 
486 static void free_mem_alloc(struct bpf_mem_alloc *ma)
487 {
488 	/* waiting_for_gp_ttrace lists was drained, but __free_rcu might
489 	 * still execute. Wait for it now before we freeing percpu caches.
490 	 *
491 	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
492 	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
493 	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
494 	 * so if call_rcu(head, __free_rcu) is skipped due to
495 	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
496 	 * using rcu_trace_implies_rcu_gp() as well.
497 	 */
498 	rcu_barrier_tasks_trace();
499 	if (!rcu_trace_implies_rcu_gp())
500 		rcu_barrier();
501 	free_mem_alloc_no_barrier(ma);
502 }
503 
504 static void free_mem_alloc_deferred(struct work_struct *work)
505 {
506 	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
507 
508 	free_mem_alloc(ma);
509 	kfree(ma);
510 }
511 
512 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
513 {
514 	struct bpf_mem_alloc *copy;
515 
516 	if (!rcu_in_progress) {
517 		/* Fast path. No callbacks are pending, hence no need to do
518 		 * rcu_barrier-s.
519 		 */
520 		free_mem_alloc_no_barrier(ma);
521 		return;
522 	}
523 
524 	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
525 	if (!copy) {
526 		/* Slow path with inline barrier-s */
527 		free_mem_alloc(ma);
528 		return;
529 	}
530 
531 	/* Defer barriers into worker to let the rest of map memory to be freed */
532 	memset(ma, 0, sizeof(*ma));
533 	INIT_WORK(&copy->work, free_mem_alloc_deferred);
534 	queue_work(system_unbound_wq, &copy->work);
535 }
536 
537 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
538 {
539 	struct bpf_mem_caches *cc;
540 	struct bpf_mem_cache *c;
541 	int cpu, i, rcu_in_progress;
542 
543 	if (ma->cache) {
544 		rcu_in_progress = 0;
545 		for_each_possible_cpu(cpu) {
546 			c = per_cpu_ptr(ma->cache, cpu);
547 			/*
548 			 * refill_work may be unfinished for PREEMPT_RT kernel
549 			 * in which irq work is invoked in a per-CPU RT thread.
550 			 * It is also possible for kernel with
551 			 * arch_irq_work_has_interrupt() being false and irq
552 			 * work is invoked in timer interrupt. So waiting for
553 			 * the completion of irq work to ease the handling of
554 			 * concurrency.
555 			 */
556 			irq_work_sync(&c->refill_work);
557 			drain_mem_cache(c);
558 			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
559 		}
560 		/* objcg is the same across cpus */
561 		if (c->objcg)
562 			obj_cgroup_put(c->objcg);
563 		destroy_mem_alloc(ma, rcu_in_progress);
564 	}
565 	if (ma->caches) {
566 		rcu_in_progress = 0;
567 		for_each_possible_cpu(cpu) {
568 			cc = per_cpu_ptr(ma->caches, cpu);
569 			for (i = 0; i < NUM_CACHES; i++) {
570 				c = &cc->cache[i];
571 				irq_work_sync(&c->refill_work);
572 				drain_mem_cache(c);
573 				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
574 			}
575 		}
576 		if (c->objcg)
577 			obj_cgroup_put(c->objcg);
578 		destroy_mem_alloc(ma, rcu_in_progress);
579 	}
580 }
581 
582 /* notrace is necessary here and in other functions to make sure
583  * bpf programs cannot attach to them and cause llist corruptions.
584  */
585 static void notrace *unit_alloc(struct bpf_mem_cache *c)
586 {
587 	struct llist_node *llnode = NULL;
588 	unsigned long flags;
589 	int cnt = 0;
590 
591 	/* Disable irqs to prevent the following race for majority of prog types:
592 	 * prog_A
593 	 *   bpf_mem_alloc
594 	 *      preemption or irq -> prog_B
595 	 *        bpf_mem_alloc
596 	 *
597 	 * but prog_B could be a perf_event NMI prog.
598 	 * Use per-cpu 'active' counter to order free_list access between
599 	 * unit_alloc/unit_free/bpf_mem_refill.
600 	 */
601 	local_irq_save(flags);
602 	if (local_inc_return(&c->active) == 1) {
603 		llnode = __llist_del_first(&c->free_llist);
604 		if (llnode)
605 			cnt = --c->free_cnt;
606 	}
607 	local_dec(&c->active);
608 	local_irq_restore(flags);
609 
610 	WARN_ON(cnt < 0);
611 
612 	if (cnt < c->low_watermark)
613 		irq_work_raise(c);
614 	return llnode;
615 }
616 
617 /* Though 'ptr' object could have been allocated on a different cpu
618  * add it to the free_llist of the current cpu.
619  * Let kfree() logic deal with it when it's later called from irq_work.
620  */
621 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
622 {
623 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
624 	unsigned long flags;
625 	int cnt = 0;
626 
627 	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
628 
629 	local_irq_save(flags);
630 	if (local_inc_return(&c->active) == 1) {
631 		__llist_add(llnode, &c->free_llist);
632 		cnt = ++c->free_cnt;
633 	} else {
634 		/* unit_free() cannot fail. Therefore add an object to atomic
635 		 * llist. free_bulk() will drain it. Though free_llist_extra is
636 		 * a per-cpu list we have to use atomic llist_add here, since
637 		 * it also can be interrupted by bpf nmi prog that does another
638 		 * unit_free() into the same free_llist_extra.
639 		 */
640 		llist_add(llnode, &c->free_llist_extra);
641 	}
642 	local_dec(&c->active);
643 	local_irq_restore(flags);
644 
645 	if (cnt > c->high_watermark)
646 		/* free few objects from current cpu into global kmalloc pool */
647 		irq_work_raise(c);
648 }
649 
650 /* Called from BPF program or from sys_bpf syscall.
651  * In both cases migration is disabled.
652  */
653 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
654 {
655 	int idx;
656 	void *ret;
657 
658 	if (!size)
659 		return ZERO_SIZE_PTR;
660 
661 	idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ);
662 	if (idx < 0)
663 		return NULL;
664 
665 	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
666 	return !ret ? NULL : ret + LLIST_NODE_SZ;
667 }
668 
669 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
670 {
671 	int idx;
672 
673 	if (!ptr)
674 		return;
675 
676 	idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ));
677 	if (idx < 0)
678 		return;
679 
680 	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
681 }
682 
683 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
684 {
685 	void *ret;
686 
687 	ret = unit_alloc(this_cpu_ptr(ma->cache));
688 	return !ret ? NULL : ret + LLIST_NODE_SZ;
689 }
690 
691 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
692 {
693 	if (!ptr)
694 		return;
695 
696 	unit_free(this_cpu_ptr(ma->cache), ptr);
697 }
698 
699 /* Directly does a kfree() without putting 'ptr' back to the free_llist
700  * for reuse and without waiting for a rcu_tasks_trace gp.
701  * The caller must first go through the rcu_tasks_trace gp for 'ptr'
702  * before calling bpf_mem_cache_raw_free().
703  * It could be used when the rcu_tasks_trace callback does not have
704  * a hold on the original bpf_mem_alloc object that allocated the
705  * 'ptr'. This should only be used in the uncommon code path.
706  * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
707  * and may affect performance.
708  */
709 void bpf_mem_cache_raw_free(void *ptr)
710 {
711 	if (!ptr)
712 		return;
713 
714 	kfree(ptr - LLIST_NODE_SZ);
715 }
716 
717 /* When flags == GFP_KERNEL, it signals that the caller will not cause
718  * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
719  * kmalloc if the free_llist is empty.
720  */
721 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
722 {
723 	struct bpf_mem_cache *c;
724 	void *ret;
725 
726 	c = this_cpu_ptr(ma->cache);
727 
728 	ret = unit_alloc(c);
729 	if (!ret && flags == GFP_KERNEL) {
730 		struct mem_cgroup *memcg, *old_memcg;
731 
732 		memcg = get_memcg(c);
733 		old_memcg = set_active_memcg(memcg);
734 		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
735 		set_active_memcg(old_memcg);
736 		mem_cgroup_put(memcg);
737 	}
738 
739 	return !ret ? NULL : ret + LLIST_NODE_SZ;
740 }
741