1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ 3 #include <linux/mm.h> 4 #include <linux/llist.h> 5 #include <linux/bpf.h> 6 #include <linux/irq_work.h> 7 #include <linux/bpf_mem_alloc.h> 8 #include <linux/memcontrol.h> 9 #include <asm/local.h> 10 11 /* Any context (including NMI) BPF specific memory allocator. 12 * 13 * Tracing BPF programs can attach to kprobe and fentry. Hence they 14 * run in unknown context where calling plain kmalloc() might not be safe. 15 * 16 * Front-end kmalloc() with per-cpu per-bucket cache of free elements. 17 * Refill this cache asynchronously from irq_work. 18 * 19 * CPU_0 buckets 20 * 16 32 64 96 128 196 256 512 1024 2048 4096 21 * ... 22 * CPU_N buckets 23 * 16 32 64 96 128 196 256 512 1024 2048 4096 24 * 25 * The buckets are prefilled at the start. 26 * BPF programs always run with migration disabled. 27 * It's safe to allocate from cache of the current cpu with irqs disabled. 28 * Free-ing is always done into bucket of the current cpu as well. 29 * irq_work trims extra free elements from buckets with kfree 30 * and refills them with kmalloc, so global kmalloc logic takes care 31 * of freeing objects allocated by one cpu and freed on another. 32 * 33 * Every allocated objected is padded with extra 8 bytes that contains 34 * struct llist_node. 35 */ 36 #define LLIST_NODE_SZ sizeof(struct llist_node) 37 38 /* similar to kmalloc, but sizeof == 8 bucket is gone */ 39 static u8 size_index[24] __ro_after_init = { 40 3, /* 8 */ 41 3, /* 16 */ 42 4, /* 24 */ 43 4, /* 32 */ 44 5, /* 40 */ 45 5, /* 48 */ 46 5, /* 56 */ 47 5, /* 64 */ 48 1, /* 72 */ 49 1, /* 80 */ 50 1, /* 88 */ 51 1, /* 96 */ 52 6, /* 104 */ 53 6, /* 112 */ 54 6, /* 120 */ 55 6, /* 128 */ 56 2, /* 136 */ 57 2, /* 144 */ 58 2, /* 152 */ 59 2, /* 160 */ 60 2, /* 168 */ 61 2, /* 176 */ 62 2, /* 184 */ 63 2 /* 192 */ 64 }; 65 66 static int bpf_mem_cache_idx(size_t size) 67 { 68 if (!size || size > 4096) 69 return -1; 70 71 if (size <= 192) 72 return size_index[(size - 1) / 8] - 1; 73 74 return fls(size - 1) - 2; 75 } 76 77 #define NUM_CACHES 11 78 79 struct bpf_mem_cache { 80 /* per-cpu list of free objects of size 'unit_size'. 81 * All accesses are done with interrupts disabled and 'active' counter 82 * protection with __llist_add() and __llist_del_first(). 83 */ 84 struct llist_head free_llist; 85 local_t active; 86 87 /* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill 88 * are sequenced by per-cpu 'active' counter. But unit_free() cannot 89 * fail. When 'active' is busy the unit_free() will add an object to 90 * free_llist_extra. 91 */ 92 struct llist_head free_llist_extra; 93 94 struct irq_work refill_work; 95 struct obj_cgroup *objcg; 96 int unit_size; 97 /* count of objects in free_llist */ 98 int free_cnt; 99 int low_watermark, high_watermark, batch; 100 int percpu_size; 101 bool draining; 102 struct bpf_mem_cache *tgt; 103 104 /* list of objects to be freed after RCU GP */ 105 struct llist_head free_by_rcu; 106 struct llist_node *free_by_rcu_tail; 107 struct llist_head waiting_for_gp; 108 struct llist_node *waiting_for_gp_tail; 109 struct rcu_head rcu; 110 atomic_t call_rcu_in_progress; 111 struct llist_head free_llist_extra_rcu; 112 113 /* list of objects to be freed after RCU tasks trace GP */ 114 struct llist_head free_by_rcu_ttrace; 115 struct llist_head waiting_for_gp_ttrace; 116 struct rcu_head rcu_ttrace; 117 atomic_t call_rcu_ttrace_in_progress; 118 }; 119 120 struct bpf_mem_caches { 121 struct bpf_mem_cache cache[NUM_CACHES]; 122 }; 123 124 static struct llist_node notrace *__llist_del_first(struct llist_head *head) 125 { 126 struct llist_node *entry, *next; 127 128 entry = head->first; 129 if (!entry) 130 return NULL; 131 next = entry->next; 132 head->first = next; 133 return entry; 134 } 135 136 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags) 137 { 138 if (c->percpu_size) { 139 void **obj = kmalloc_node(c->percpu_size, flags, node); 140 void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags); 141 142 if (!obj || !pptr) { 143 free_percpu(pptr); 144 kfree(obj); 145 return NULL; 146 } 147 obj[1] = pptr; 148 return obj; 149 } 150 151 return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node); 152 } 153 154 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c) 155 { 156 #ifdef CONFIG_MEMCG_KMEM 157 if (c->objcg) 158 return get_mem_cgroup_from_objcg(c->objcg); 159 #endif 160 161 #ifdef CONFIG_MEMCG 162 return root_mem_cgroup; 163 #else 164 return NULL; 165 #endif 166 } 167 168 static void inc_active(struct bpf_mem_cache *c, unsigned long *flags) 169 { 170 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 171 /* In RT irq_work runs in per-cpu kthread, so disable 172 * interrupts to avoid preemption and interrupts and 173 * reduce the chance of bpf prog executing on this cpu 174 * when active counter is busy. 175 */ 176 local_irq_save(*flags); 177 /* alloc_bulk runs from irq_work which will not preempt a bpf 178 * program that does unit_alloc/unit_free since IRQs are 179 * disabled there. There is no race to increment 'active' 180 * counter. It protects free_llist from corruption in case NMI 181 * bpf prog preempted this loop. 182 */ 183 WARN_ON_ONCE(local_inc_return(&c->active) != 1); 184 } 185 186 static void dec_active(struct bpf_mem_cache *c, unsigned long *flags) 187 { 188 local_dec(&c->active); 189 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 190 local_irq_restore(*flags); 191 } 192 193 static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj) 194 { 195 unsigned long flags; 196 197 inc_active(c, &flags); 198 __llist_add(obj, &c->free_llist); 199 c->free_cnt++; 200 dec_active(c, &flags); 201 } 202 203 /* Mostly runs from irq_work except __init phase. */ 204 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic) 205 { 206 struct mem_cgroup *memcg = NULL, *old_memcg; 207 gfp_t gfp; 208 void *obj; 209 int i; 210 211 gfp = __GFP_NOWARN | __GFP_ACCOUNT; 212 gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL; 213 214 for (i = 0; i < cnt; i++) { 215 /* 216 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is 217 * done only by one CPU == current CPU. Other CPUs might 218 * llist_add() and llist_del_all() in parallel. 219 */ 220 obj = llist_del_first(&c->free_by_rcu_ttrace); 221 if (!obj) 222 break; 223 add_obj_to_free_list(c, obj); 224 } 225 if (i >= cnt) 226 return; 227 228 for (; i < cnt; i++) { 229 obj = llist_del_first(&c->waiting_for_gp_ttrace); 230 if (!obj) 231 break; 232 add_obj_to_free_list(c, obj); 233 } 234 if (i >= cnt) 235 return; 236 237 memcg = get_memcg(c); 238 old_memcg = set_active_memcg(memcg); 239 for (; i < cnt; i++) { 240 /* Allocate, but don't deplete atomic reserves that typical 241 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc 242 * will allocate from the current numa node which is what we 243 * want here. 244 */ 245 obj = __alloc(c, node, gfp); 246 if (!obj) 247 break; 248 add_obj_to_free_list(c, obj); 249 } 250 set_active_memcg(old_memcg); 251 mem_cgroup_put(memcg); 252 } 253 254 static void free_one(void *obj, bool percpu) 255 { 256 if (percpu) { 257 free_percpu(((void **)obj)[1]); 258 kfree(obj); 259 return; 260 } 261 262 kfree(obj); 263 } 264 265 static int free_all(struct llist_node *llnode, bool percpu) 266 { 267 struct llist_node *pos, *t; 268 int cnt = 0; 269 270 llist_for_each_safe(pos, t, llnode) { 271 free_one(pos, percpu); 272 cnt++; 273 } 274 return cnt; 275 } 276 277 static void __free_rcu(struct rcu_head *head) 278 { 279 struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace); 280 281 free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size); 282 atomic_set(&c->call_rcu_ttrace_in_progress, 0); 283 } 284 285 static void __free_rcu_tasks_trace(struct rcu_head *head) 286 { 287 /* If RCU Tasks Trace grace period implies RCU grace period, 288 * there is no need to invoke call_rcu(). 289 */ 290 if (rcu_trace_implies_rcu_gp()) 291 __free_rcu(head); 292 else 293 call_rcu(head, __free_rcu); 294 } 295 296 static void enque_to_free(struct bpf_mem_cache *c, void *obj) 297 { 298 struct llist_node *llnode = obj; 299 300 /* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work. 301 * Nothing races to add to free_by_rcu_ttrace list. 302 */ 303 llist_add(llnode, &c->free_by_rcu_ttrace); 304 } 305 306 static void do_call_rcu_ttrace(struct bpf_mem_cache *c) 307 { 308 struct llist_node *llnode, *t; 309 310 if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) { 311 if (unlikely(READ_ONCE(c->draining))) { 312 llnode = llist_del_all(&c->free_by_rcu_ttrace); 313 free_all(llnode, !!c->percpu_size); 314 } 315 return; 316 } 317 318 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); 319 llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace)) 320 llist_add(llnode, &c->waiting_for_gp_ttrace); 321 322 if (unlikely(READ_ONCE(c->draining))) { 323 __free_rcu(&c->rcu_ttrace); 324 return; 325 } 326 327 /* Use call_rcu_tasks_trace() to wait for sleepable progs to finish. 328 * If RCU Tasks Trace grace period implies RCU grace period, free 329 * these elements directly, else use call_rcu() to wait for normal 330 * progs to finish and finally do free_one() on each element. 331 */ 332 call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace); 333 } 334 335 static void free_bulk(struct bpf_mem_cache *c) 336 { 337 struct bpf_mem_cache *tgt = c->tgt; 338 struct llist_node *llnode, *t; 339 unsigned long flags; 340 int cnt; 341 342 WARN_ON_ONCE(tgt->unit_size != c->unit_size); 343 344 do { 345 inc_active(c, &flags); 346 llnode = __llist_del_first(&c->free_llist); 347 if (llnode) 348 cnt = --c->free_cnt; 349 else 350 cnt = 0; 351 dec_active(c, &flags); 352 if (llnode) 353 enque_to_free(tgt, llnode); 354 } while (cnt > (c->high_watermark + c->low_watermark) / 2); 355 356 /* and drain free_llist_extra */ 357 llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra)) 358 enque_to_free(tgt, llnode); 359 do_call_rcu_ttrace(tgt); 360 } 361 362 static void __free_by_rcu(struct rcu_head *head) 363 { 364 struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu); 365 struct bpf_mem_cache *tgt = c->tgt; 366 struct llist_node *llnode; 367 368 llnode = llist_del_all(&c->waiting_for_gp); 369 if (!llnode) 370 goto out; 371 372 llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace); 373 374 /* Objects went through regular RCU GP. Send them to RCU tasks trace */ 375 do_call_rcu_ttrace(tgt); 376 out: 377 atomic_set(&c->call_rcu_in_progress, 0); 378 } 379 380 static void check_free_by_rcu(struct bpf_mem_cache *c) 381 { 382 struct llist_node *llnode, *t; 383 unsigned long flags; 384 385 /* drain free_llist_extra_rcu */ 386 if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) { 387 inc_active(c, &flags); 388 llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu)) 389 if (__llist_add(llnode, &c->free_by_rcu)) 390 c->free_by_rcu_tail = llnode; 391 dec_active(c, &flags); 392 } 393 394 if (llist_empty(&c->free_by_rcu)) 395 return; 396 397 if (atomic_xchg(&c->call_rcu_in_progress, 1)) { 398 /* 399 * Instead of kmalloc-ing new rcu_head and triggering 10k 400 * call_rcu() to hit rcutree.qhimark and force RCU to notice 401 * the overload just ask RCU to hurry up. There could be many 402 * objects in free_by_rcu list. 403 * This hint reduces memory consumption for an artificial 404 * benchmark from 2 Gbyte to 150 Mbyte. 405 */ 406 rcu_request_urgent_qs_task(current); 407 return; 408 } 409 410 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); 411 412 inc_active(c, &flags); 413 WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu)); 414 c->waiting_for_gp_tail = c->free_by_rcu_tail; 415 dec_active(c, &flags); 416 417 if (unlikely(READ_ONCE(c->draining))) { 418 free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size); 419 atomic_set(&c->call_rcu_in_progress, 0); 420 } else { 421 call_rcu_hurry(&c->rcu, __free_by_rcu); 422 } 423 } 424 425 static void bpf_mem_refill(struct irq_work *work) 426 { 427 struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work); 428 int cnt; 429 430 /* Racy access to free_cnt. It doesn't need to be 100% accurate */ 431 cnt = c->free_cnt; 432 if (cnt < c->low_watermark) 433 /* irq_work runs on this cpu and kmalloc will allocate 434 * from the current numa node which is what we want here. 435 */ 436 alloc_bulk(c, c->batch, NUMA_NO_NODE, true); 437 else if (cnt > c->high_watermark) 438 free_bulk(c); 439 440 check_free_by_rcu(c); 441 } 442 443 static void notrace irq_work_raise(struct bpf_mem_cache *c) 444 { 445 irq_work_queue(&c->refill_work); 446 } 447 448 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket 449 * the freelist cache will be elem_size * 64 (or less) on each cpu. 450 * 451 * For bpf programs that don't have statically known allocation sizes and 452 * assuming (low_mark + high_mark) / 2 as an average number of elements per 453 * bucket and all buckets are used the total amount of memory in freelists 454 * on each cpu will be: 455 * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096 456 * == ~ 116 Kbyte using below heuristic. 457 * Initialized, but unused bpf allocator (not bpf map specific one) will 458 * consume ~ 11 Kbyte per cpu. 459 * Typical case will be between 11K and 116K closer to 11K. 460 * bpf progs can and should share bpf_mem_cache when possible. 461 */ 462 463 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu) 464 { 465 init_irq_work(&c->refill_work, bpf_mem_refill); 466 if (c->unit_size <= 256) { 467 c->low_watermark = 32; 468 c->high_watermark = 96; 469 } else { 470 /* When page_size == 4k, order-0 cache will have low_mark == 2 471 * and high_mark == 6 with batch alloc of 3 individual pages at 472 * a time. 473 * 8k allocs and above low == 1, high == 3, batch == 1. 474 */ 475 c->low_watermark = max(32 * 256 / c->unit_size, 1); 476 c->high_watermark = max(96 * 256 / c->unit_size, 3); 477 } 478 c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1); 479 480 /* To avoid consuming memory assume that 1st run of bpf 481 * prog won't be doing more than 4 map_update_elem from 482 * irq disabled region 483 */ 484 alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu), false); 485 } 486 487 /* When size != 0 bpf_mem_cache for each cpu. 488 * This is typical bpf hash map use case when all elements have equal size. 489 * 490 * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on 491 * kmalloc/kfree. Max allocation size is 4096 in this case. 492 * This is bpf_dynptr and bpf_kptr use case. 493 */ 494 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu) 495 { 496 static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}; 497 struct bpf_mem_caches *cc, __percpu *pcc; 498 struct bpf_mem_cache *c, __percpu *pc; 499 struct obj_cgroup *objcg = NULL; 500 int cpu, i, unit_size, percpu_size = 0; 501 502 if (size) { 503 pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL); 504 if (!pc) 505 return -ENOMEM; 506 507 if (percpu) 508 /* room for llist_node and per-cpu pointer */ 509 percpu_size = LLIST_NODE_SZ + sizeof(void *); 510 else 511 size += LLIST_NODE_SZ; /* room for llist_node */ 512 unit_size = size; 513 514 #ifdef CONFIG_MEMCG_KMEM 515 if (memcg_bpf_enabled()) 516 objcg = get_obj_cgroup_from_current(); 517 #endif 518 for_each_possible_cpu(cpu) { 519 c = per_cpu_ptr(pc, cpu); 520 c->unit_size = unit_size; 521 c->objcg = objcg; 522 c->percpu_size = percpu_size; 523 c->tgt = c; 524 prefill_mem_cache(c, cpu); 525 } 526 ma->cache = pc; 527 return 0; 528 } 529 530 /* size == 0 && percpu is an invalid combination */ 531 if (WARN_ON_ONCE(percpu)) 532 return -EINVAL; 533 534 pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL); 535 if (!pcc) 536 return -ENOMEM; 537 #ifdef CONFIG_MEMCG_KMEM 538 objcg = get_obj_cgroup_from_current(); 539 #endif 540 for_each_possible_cpu(cpu) { 541 cc = per_cpu_ptr(pcc, cpu); 542 for (i = 0; i < NUM_CACHES; i++) { 543 c = &cc->cache[i]; 544 c->unit_size = sizes[i]; 545 c->objcg = objcg; 546 c->tgt = c; 547 prefill_mem_cache(c, cpu); 548 } 549 } 550 ma->caches = pcc; 551 return 0; 552 } 553 554 static void drain_mem_cache(struct bpf_mem_cache *c) 555 { 556 bool percpu = !!c->percpu_size; 557 558 /* No progs are using this bpf_mem_cache, but htab_map_free() called 559 * bpf_mem_cache_free() for all remaining elements and they can be in 560 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now. 561 * 562 * Except for waiting_for_gp_ttrace list, there are no concurrent operations 563 * on these lists, so it is safe to use __llist_del_all(). 564 */ 565 free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu); 566 free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu); 567 free_all(__llist_del_all(&c->free_llist), percpu); 568 free_all(__llist_del_all(&c->free_llist_extra), percpu); 569 free_all(__llist_del_all(&c->free_by_rcu), percpu); 570 free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu); 571 free_all(llist_del_all(&c->waiting_for_gp), percpu); 572 } 573 574 static void check_mem_cache(struct bpf_mem_cache *c) 575 { 576 WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace)); 577 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace)); 578 WARN_ON_ONCE(!llist_empty(&c->free_llist)); 579 WARN_ON_ONCE(!llist_empty(&c->free_llist_extra)); 580 WARN_ON_ONCE(!llist_empty(&c->free_by_rcu)); 581 WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu)); 582 WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp)); 583 } 584 585 static void check_leaked_objs(struct bpf_mem_alloc *ma) 586 { 587 struct bpf_mem_caches *cc; 588 struct bpf_mem_cache *c; 589 int cpu, i; 590 591 if (ma->cache) { 592 for_each_possible_cpu(cpu) { 593 c = per_cpu_ptr(ma->cache, cpu); 594 check_mem_cache(c); 595 } 596 } 597 if (ma->caches) { 598 for_each_possible_cpu(cpu) { 599 cc = per_cpu_ptr(ma->caches, cpu); 600 for (i = 0; i < NUM_CACHES; i++) { 601 c = &cc->cache[i]; 602 check_mem_cache(c); 603 } 604 } 605 } 606 } 607 608 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma) 609 { 610 check_leaked_objs(ma); 611 free_percpu(ma->cache); 612 free_percpu(ma->caches); 613 ma->cache = NULL; 614 ma->caches = NULL; 615 } 616 617 static void free_mem_alloc(struct bpf_mem_alloc *ma) 618 { 619 /* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks 620 * might still execute. Wait for them. 621 * 622 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(), 623 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used 624 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(), 625 * so if call_rcu(head, __free_rcu) is skipped due to 626 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by 627 * using rcu_trace_implies_rcu_gp() as well. 628 */ 629 rcu_barrier(); /* wait for __free_by_rcu */ 630 rcu_barrier_tasks_trace(); /* wait for __free_rcu */ 631 if (!rcu_trace_implies_rcu_gp()) 632 rcu_barrier(); 633 free_mem_alloc_no_barrier(ma); 634 } 635 636 static void free_mem_alloc_deferred(struct work_struct *work) 637 { 638 struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work); 639 640 free_mem_alloc(ma); 641 kfree(ma); 642 } 643 644 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress) 645 { 646 struct bpf_mem_alloc *copy; 647 648 if (!rcu_in_progress) { 649 /* Fast path. No callbacks are pending, hence no need to do 650 * rcu_barrier-s. 651 */ 652 free_mem_alloc_no_barrier(ma); 653 return; 654 } 655 656 copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL); 657 if (!copy) { 658 /* Slow path with inline barrier-s */ 659 free_mem_alloc(ma); 660 return; 661 } 662 663 /* Defer barriers into worker to let the rest of map memory to be freed */ 664 memset(ma, 0, sizeof(*ma)); 665 INIT_WORK(©->work, free_mem_alloc_deferred); 666 queue_work(system_unbound_wq, ©->work); 667 } 668 669 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma) 670 { 671 struct bpf_mem_caches *cc; 672 struct bpf_mem_cache *c; 673 int cpu, i, rcu_in_progress; 674 675 if (ma->cache) { 676 rcu_in_progress = 0; 677 for_each_possible_cpu(cpu) { 678 c = per_cpu_ptr(ma->cache, cpu); 679 WRITE_ONCE(c->draining, true); 680 irq_work_sync(&c->refill_work); 681 drain_mem_cache(c); 682 rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); 683 rcu_in_progress += atomic_read(&c->call_rcu_in_progress); 684 } 685 /* objcg is the same across cpus */ 686 if (c->objcg) 687 obj_cgroup_put(c->objcg); 688 destroy_mem_alloc(ma, rcu_in_progress); 689 } 690 if (ma->caches) { 691 rcu_in_progress = 0; 692 for_each_possible_cpu(cpu) { 693 cc = per_cpu_ptr(ma->caches, cpu); 694 for (i = 0; i < NUM_CACHES; i++) { 695 c = &cc->cache[i]; 696 WRITE_ONCE(c->draining, true); 697 irq_work_sync(&c->refill_work); 698 drain_mem_cache(c); 699 rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress); 700 rcu_in_progress += atomic_read(&c->call_rcu_in_progress); 701 } 702 } 703 if (c->objcg) 704 obj_cgroup_put(c->objcg); 705 destroy_mem_alloc(ma, rcu_in_progress); 706 } 707 } 708 709 /* notrace is necessary here and in other functions to make sure 710 * bpf programs cannot attach to them and cause llist corruptions. 711 */ 712 static void notrace *unit_alloc(struct bpf_mem_cache *c) 713 { 714 struct llist_node *llnode = NULL; 715 unsigned long flags; 716 int cnt = 0; 717 718 /* Disable irqs to prevent the following race for majority of prog types: 719 * prog_A 720 * bpf_mem_alloc 721 * preemption or irq -> prog_B 722 * bpf_mem_alloc 723 * 724 * but prog_B could be a perf_event NMI prog. 725 * Use per-cpu 'active' counter to order free_list access between 726 * unit_alloc/unit_free/bpf_mem_refill. 727 */ 728 local_irq_save(flags); 729 if (local_inc_return(&c->active) == 1) { 730 llnode = __llist_del_first(&c->free_llist); 731 if (llnode) { 732 cnt = --c->free_cnt; 733 *(struct bpf_mem_cache **)llnode = c; 734 } 735 } 736 local_dec(&c->active); 737 local_irq_restore(flags); 738 739 WARN_ON(cnt < 0); 740 741 if (cnt < c->low_watermark) 742 irq_work_raise(c); 743 return llnode; 744 } 745 746 /* Though 'ptr' object could have been allocated on a different cpu 747 * add it to the free_llist of the current cpu. 748 * Let kfree() logic deal with it when it's later called from irq_work. 749 */ 750 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr) 751 { 752 struct llist_node *llnode = ptr - LLIST_NODE_SZ; 753 unsigned long flags; 754 int cnt = 0; 755 756 BUILD_BUG_ON(LLIST_NODE_SZ > 8); 757 758 /* 759 * Remember bpf_mem_cache that allocated this object. 760 * The hint is not accurate. 761 */ 762 c->tgt = *(struct bpf_mem_cache **)llnode; 763 764 local_irq_save(flags); 765 if (local_inc_return(&c->active) == 1) { 766 __llist_add(llnode, &c->free_llist); 767 cnt = ++c->free_cnt; 768 } else { 769 /* unit_free() cannot fail. Therefore add an object to atomic 770 * llist. free_bulk() will drain it. Though free_llist_extra is 771 * a per-cpu list we have to use atomic llist_add here, since 772 * it also can be interrupted by bpf nmi prog that does another 773 * unit_free() into the same free_llist_extra. 774 */ 775 llist_add(llnode, &c->free_llist_extra); 776 } 777 local_dec(&c->active); 778 local_irq_restore(flags); 779 780 if (cnt > c->high_watermark) 781 /* free few objects from current cpu into global kmalloc pool */ 782 irq_work_raise(c); 783 } 784 785 static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr) 786 { 787 struct llist_node *llnode = ptr - LLIST_NODE_SZ; 788 unsigned long flags; 789 790 c->tgt = *(struct bpf_mem_cache **)llnode; 791 792 local_irq_save(flags); 793 if (local_inc_return(&c->active) == 1) { 794 if (__llist_add(llnode, &c->free_by_rcu)) 795 c->free_by_rcu_tail = llnode; 796 } else { 797 llist_add(llnode, &c->free_llist_extra_rcu); 798 } 799 local_dec(&c->active); 800 local_irq_restore(flags); 801 802 if (!atomic_read(&c->call_rcu_in_progress)) 803 irq_work_raise(c); 804 } 805 806 /* Called from BPF program or from sys_bpf syscall. 807 * In both cases migration is disabled. 808 */ 809 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size) 810 { 811 int idx; 812 void *ret; 813 814 if (!size) 815 return ZERO_SIZE_PTR; 816 817 idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ); 818 if (idx < 0) 819 return NULL; 820 821 ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx); 822 return !ret ? NULL : ret + LLIST_NODE_SZ; 823 } 824 825 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr) 826 { 827 int idx; 828 829 if (!ptr) 830 return; 831 832 idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ)); 833 if (idx < 0) 834 return; 835 836 unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr); 837 } 838 839 void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr) 840 { 841 int idx; 842 843 if (!ptr) 844 return; 845 846 idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ)); 847 if (idx < 0) 848 return; 849 850 unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr); 851 } 852 853 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma) 854 { 855 void *ret; 856 857 ret = unit_alloc(this_cpu_ptr(ma->cache)); 858 return !ret ? NULL : ret + LLIST_NODE_SZ; 859 } 860 861 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr) 862 { 863 if (!ptr) 864 return; 865 866 unit_free(this_cpu_ptr(ma->cache), ptr); 867 } 868 869 void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr) 870 { 871 if (!ptr) 872 return; 873 874 unit_free_rcu(this_cpu_ptr(ma->cache), ptr); 875 } 876 877 /* Directly does a kfree() without putting 'ptr' back to the free_llist 878 * for reuse and without waiting for a rcu_tasks_trace gp. 879 * The caller must first go through the rcu_tasks_trace gp for 'ptr' 880 * before calling bpf_mem_cache_raw_free(). 881 * It could be used when the rcu_tasks_trace callback does not have 882 * a hold on the original bpf_mem_alloc object that allocated the 883 * 'ptr'. This should only be used in the uncommon code path. 884 * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled 885 * and may affect performance. 886 */ 887 void bpf_mem_cache_raw_free(void *ptr) 888 { 889 if (!ptr) 890 return; 891 892 kfree(ptr - LLIST_NODE_SZ); 893 } 894 895 /* When flags == GFP_KERNEL, it signals that the caller will not cause 896 * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use 897 * kmalloc if the free_llist is empty. 898 */ 899 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags) 900 { 901 struct bpf_mem_cache *c; 902 void *ret; 903 904 c = this_cpu_ptr(ma->cache); 905 906 ret = unit_alloc(c); 907 if (!ret && flags == GFP_KERNEL) { 908 struct mem_cgroup *memcg, *old_memcg; 909 910 memcg = get_memcg(c); 911 old_memcg = set_active_memcg(memcg); 912 ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT); 913 set_active_memcg(old_memcg); 914 mem_cgroup_put(memcg); 915 } 916 917 return !ret ? NULL : ret + LLIST_NODE_SZ; 918 } 919