xref: /openbmc/linux/kernel/bpf/memalloc.c (revision 9de3e815)
17c8199e2SAlexei Starovoitov // SPDX-License-Identifier: GPL-2.0-only
27c8199e2SAlexei Starovoitov /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
37c8199e2SAlexei Starovoitov #include <linux/mm.h>
47c8199e2SAlexei Starovoitov #include <linux/llist.h>
57c8199e2SAlexei Starovoitov #include <linux/bpf.h>
67c8199e2SAlexei Starovoitov #include <linux/irq_work.h>
77c8199e2SAlexei Starovoitov #include <linux/bpf_mem_alloc.h>
87c8199e2SAlexei Starovoitov #include <linux/memcontrol.h>
97c8199e2SAlexei Starovoitov #include <asm/local.h>
107c8199e2SAlexei Starovoitov 
117c8199e2SAlexei Starovoitov /* Any context (including NMI) BPF specific memory allocator.
127c8199e2SAlexei Starovoitov  *
137c8199e2SAlexei Starovoitov  * Tracing BPF programs can attach to kprobe and fentry. Hence they
147c8199e2SAlexei Starovoitov  * run in unknown context where calling plain kmalloc() might not be safe.
157c8199e2SAlexei Starovoitov  *
167c8199e2SAlexei Starovoitov  * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
177c8199e2SAlexei Starovoitov  * Refill this cache asynchronously from irq_work.
187c8199e2SAlexei Starovoitov  *
197c8199e2SAlexei Starovoitov  * CPU_0 buckets
207c8199e2SAlexei Starovoitov  * 16 32 64 96 128 196 256 512 1024 2048 4096
217c8199e2SAlexei Starovoitov  * ...
227c8199e2SAlexei Starovoitov  * CPU_N buckets
237c8199e2SAlexei Starovoitov  * 16 32 64 96 128 196 256 512 1024 2048 4096
247c8199e2SAlexei Starovoitov  *
257c8199e2SAlexei Starovoitov  * The buckets are prefilled at the start.
267c8199e2SAlexei Starovoitov  * BPF programs always run with migration disabled.
277c8199e2SAlexei Starovoitov  * It's safe to allocate from cache of the current cpu with irqs disabled.
287c8199e2SAlexei Starovoitov  * Free-ing is always done into bucket of the current cpu as well.
297c8199e2SAlexei Starovoitov  * irq_work trims extra free elements from buckets with kfree
307c8199e2SAlexei Starovoitov  * and refills them with kmalloc, so global kmalloc logic takes care
317c8199e2SAlexei Starovoitov  * of freeing objects allocated by one cpu and freed on another.
327c8199e2SAlexei Starovoitov  *
337c8199e2SAlexei Starovoitov  * Every allocated objected is padded with extra 8 bytes that contains
347c8199e2SAlexei Starovoitov  * struct llist_node.
357c8199e2SAlexei Starovoitov  */
367c8199e2SAlexei Starovoitov #define LLIST_NODE_SZ sizeof(struct llist_node)
377c8199e2SAlexei Starovoitov 
387c8199e2SAlexei Starovoitov /* similar to kmalloc, but sizeof == 8 bucket is gone */
397c8199e2SAlexei Starovoitov static u8 size_index[24] __ro_after_init = {
407c8199e2SAlexei Starovoitov 	3,	/* 8 */
417c8199e2SAlexei Starovoitov 	3,	/* 16 */
427c8199e2SAlexei Starovoitov 	4,	/* 24 */
437c8199e2SAlexei Starovoitov 	4,	/* 32 */
447c8199e2SAlexei Starovoitov 	5,	/* 40 */
457c8199e2SAlexei Starovoitov 	5,	/* 48 */
467c8199e2SAlexei Starovoitov 	5,	/* 56 */
477c8199e2SAlexei Starovoitov 	5,	/* 64 */
487c8199e2SAlexei Starovoitov 	1,	/* 72 */
497c8199e2SAlexei Starovoitov 	1,	/* 80 */
507c8199e2SAlexei Starovoitov 	1,	/* 88 */
517c8199e2SAlexei Starovoitov 	1,	/* 96 */
527c8199e2SAlexei Starovoitov 	6,	/* 104 */
537c8199e2SAlexei Starovoitov 	6,	/* 112 */
547c8199e2SAlexei Starovoitov 	6,	/* 120 */
557c8199e2SAlexei Starovoitov 	6,	/* 128 */
567c8199e2SAlexei Starovoitov 	2,	/* 136 */
577c8199e2SAlexei Starovoitov 	2,	/* 144 */
587c8199e2SAlexei Starovoitov 	2,	/* 152 */
597c8199e2SAlexei Starovoitov 	2,	/* 160 */
607c8199e2SAlexei Starovoitov 	2,	/* 168 */
617c8199e2SAlexei Starovoitov 	2,	/* 176 */
627c8199e2SAlexei Starovoitov 	2,	/* 184 */
637c8199e2SAlexei Starovoitov 	2	/* 192 */
647c8199e2SAlexei Starovoitov };
657c8199e2SAlexei Starovoitov 
667c8199e2SAlexei Starovoitov static int bpf_mem_cache_idx(size_t size)
677c8199e2SAlexei Starovoitov {
687c8199e2SAlexei Starovoitov 	if (!size || size > 4096)
697c8199e2SAlexei Starovoitov 		return -1;
707c8199e2SAlexei Starovoitov 
717c8199e2SAlexei Starovoitov 	if (size <= 192)
727c8199e2SAlexei Starovoitov 		return size_index[(size - 1) / 8] - 1;
737c8199e2SAlexei Starovoitov 
7436024d02SHou Tao 	return fls(size - 1) - 2;
757c8199e2SAlexei Starovoitov }
767c8199e2SAlexei Starovoitov 
777c8199e2SAlexei Starovoitov #define NUM_CACHES 11
787c8199e2SAlexei Starovoitov 
797c8199e2SAlexei Starovoitov struct bpf_mem_cache {
807c8199e2SAlexei Starovoitov 	/* per-cpu list of free objects of size 'unit_size'.
817c8199e2SAlexei Starovoitov 	 * All accesses are done with interrupts disabled and 'active' counter
827c8199e2SAlexei Starovoitov 	 * protection with __llist_add() and __llist_del_first().
837c8199e2SAlexei Starovoitov 	 */
847c8199e2SAlexei Starovoitov 	struct llist_head free_llist;
857c8199e2SAlexei Starovoitov 	local_t active;
867c8199e2SAlexei Starovoitov 
877c8199e2SAlexei Starovoitov 	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
887c8199e2SAlexei Starovoitov 	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
897c8199e2SAlexei Starovoitov 	 * fail. When 'active' is busy the unit_free() will add an object to
907c8199e2SAlexei Starovoitov 	 * free_llist_extra.
917c8199e2SAlexei Starovoitov 	 */
927c8199e2SAlexei Starovoitov 	struct llist_head free_llist_extra;
937c8199e2SAlexei Starovoitov 
947c8199e2SAlexei Starovoitov 	struct irq_work refill_work;
957c8199e2SAlexei Starovoitov 	struct obj_cgroup *objcg;
967c8199e2SAlexei Starovoitov 	int unit_size;
977c8199e2SAlexei Starovoitov 	/* count of objects in free_llist */
987c8199e2SAlexei Starovoitov 	int free_cnt;
997c266178SAlexei Starovoitov 	int low_watermark, high_watermark, batch;
100bfc03c15SAlexei Starovoitov 	int percpu_size;
1018d5a8011SAlexei Starovoitov 
10212c8d0f4SAlexei Starovoitov 	/* list of objects to be freed after RCU tasks trace GP */
10312c8d0f4SAlexei Starovoitov 	struct llist_head free_by_rcu_ttrace;
10412c8d0f4SAlexei Starovoitov 	struct llist_head waiting_for_gp_ttrace;
10512c8d0f4SAlexei Starovoitov 	struct rcu_head rcu_ttrace;
10612c8d0f4SAlexei Starovoitov 	atomic_t call_rcu_ttrace_in_progress;
1077c8199e2SAlexei Starovoitov };
1087c8199e2SAlexei Starovoitov 
1097c8199e2SAlexei Starovoitov struct bpf_mem_caches {
1107c8199e2SAlexei Starovoitov 	struct bpf_mem_cache cache[NUM_CACHES];
1117c8199e2SAlexei Starovoitov };
1127c8199e2SAlexei Starovoitov 
1137c8199e2SAlexei Starovoitov static struct llist_node notrace *__llist_del_first(struct llist_head *head)
1147c8199e2SAlexei Starovoitov {
1157c8199e2SAlexei Starovoitov 	struct llist_node *entry, *next;
1167c8199e2SAlexei Starovoitov 
1177c8199e2SAlexei Starovoitov 	entry = head->first;
1187c8199e2SAlexei Starovoitov 	if (!entry)
1197c8199e2SAlexei Starovoitov 		return NULL;
1207c8199e2SAlexei Starovoitov 	next = entry->next;
1217c8199e2SAlexei Starovoitov 	head->first = next;
1227c8199e2SAlexei Starovoitov 	return entry;
1237c8199e2SAlexei Starovoitov }
1247c8199e2SAlexei Starovoitov 
125e65a5c6eSMartin KaFai Lau static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
1267c8199e2SAlexei Starovoitov {
127bfc03c15SAlexei Starovoitov 	if (c->percpu_size) {
128bfc03c15SAlexei Starovoitov 		void **obj = kmalloc_node(c->percpu_size, flags, node);
1294ab67149SAlexei Starovoitov 		void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
1304ab67149SAlexei Starovoitov 
1314ab67149SAlexei Starovoitov 		if (!obj || !pptr) {
1324ab67149SAlexei Starovoitov 			free_percpu(pptr);
1334ab67149SAlexei Starovoitov 			kfree(obj);
1344ab67149SAlexei Starovoitov 			return NULL;
1354ab67149SAlexei Starovoitov 		}
1364ab67149SAlexei Starovoitov 		obj[1] = pptr;
1374ab67149SAlexei Starovoitov 		return obj;
1384ab67149SAlexei Starovoitov 	}
1394ab67149SAlexei Starovoitov 
140997849c4SHou Tao 	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
1417c8199e2SAlexei Starovoitov }
1427c8199e2SAlexei Starovoitov 
1437c8199e2SAlexei Starovoitov static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
1447c8199e2SAlexei Starovoitov {
1457c8199e2SAlexei Starovoitov #ifdef CONFIG_MEMCG_KMEM
1467c8199e2SAlexei Starovoitov 	if (c->objcg)
1477c8199e2SAlexei Starovoitov 		return get_mem_cgroup_from_objcg(c->objcg);
1487c8199e2SAlexei Starovoitov #endif
1497c8199e2SAlexei Starovoitov 
1507c8199e2SAlexei Starovoitov #ifdef CONFIG_MEMCG
1517c8199e2SAlexei Starovoitov 	return root_mem_cgroup;
1527c8199e2SAlexei Starovoitov #else
1537c8199e2SAlexei Starovoitov 	return NULL;
1547c8199e2SAlexei Starovoitov #endif
1557c8199e2SAlexei Starovoitov }
1567c8199e2SAlexei Starovoitov 
1577c8199e2SAlexei Starovoitov /* Mostly runs from irq_work except __init phase. */
1587c8199e2SAlexei Starovoitov static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node)
1597c8199e2SAlexei Starovoitov {
1607c8199e2SAlexei Starovoitov 	struct mem_cgroup *memcg = NULL, *old_memcg;
1617c8199e2SAlexei Starovoitov 	unsigned long flags;
1627c8199e2SAlexei Starovoitov 	void *obj;
1637c8199e2SAlexei Starovoitov 	int i;
1647c8199e2SAlexei Starovoitov 
1657c8199e2SAlexei Starovoitov 	memcg = get_memcg(c);
1667c8199e2SAlexei Starovoitov 	old_memcg = set_active_memcg(memcg);
1677c8199e2SAlexei Starovoitov 	for (i = 0; i < cnt; i++) {
1680893d600SHou Tao 		/*
16912c8d0f4SAlexei Starovoitov 		 * free_by_rcu_ttrace is only manipulated by irq work refill_work().
1700893d600SHou Tao 		 * IRQ works on the same CPU are called sequentially, so it is
1710893d600SHou Tao 		 * safe to use __llist_del_first() here. If alloc_bulk() is
1720893d600SHou Tao 		 * invoked by the initial prefill, there will be no running
1730893d600SHou Tao 		 * refill_work(), so __llist_del_first() is fine as well.
1740893d600SHou Tao 		 *
17512c8d0f4SAlexei Starovoitov 		 * In most cases, objects on free_by_rcu_ttrace are from the same CPU.
1760893d600SHou Tao 		 * If some objects come from other CPUs, it doesn't incur any
1770893d600SHou Tao 		 * harm because NUMA_NO_NODE means the preference for current
1780893d600SHou Tao 		 * numa node and it is not a guarantee.
1790893d600SHou Tao 		 */
18012c8d0f4SAlexei Starovoitov 		obj = __llist_del_first(&c->free_by_rcu_ttrace);
1810893d600SHou Tao 		if (!obj) {
182e65a5c6eSMartin KaFai Lau 			/* Allocate, but don't deplete atomic reserves that typical
183e65a5c6eSMartin KaFai Lau 			 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
184e65a5c6eSMartin KaFai Lau 			 * will allocate from the current numa node which is what we
185e65a5c6eSMartin KaFai Lau 			 * want here.
186e65a5c6eSMartin KaFai Lau 			 */
187e65a5c6eSMartin KaFai Lau 			obj = __alloc(c, node, GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT);
1887c8199e2SAlexei Starovoitov 			if (!obj)
1897c8199e2SAlexei Starovoitov 				break;
1900893d600SHou Tao 		}
1917c8199e2SAlexei Starovoitov 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
1927c8199e2SAlexei Starovoitov 			/* In RT irq_work runs in per-cpu kthread, so disable
1937c8199e2SAlexei Starovoitov 			 * interrupts to avoid preemption and interrupts and
1947c8199e2SAlexei Starovoitov 			 * reduce the chance of bpf prog executing on this cpu
1957c8199e2SAlexei Starovoitov 			 * when active counter is busy.
1967c8199e2SAlexei Starovoitov 			 */
1977c8199e2SAlexei Starovoitov 			local_irq_save(flags);
1987c8199e2SAlexei Starovoitov 		/* alloc_bulk runs from irq_work which will not preempt a bpf
1997c8199e2SAlexei Starovoitov 		 * program that does unit_alloc/unit_free since IRQs are
2007c8199e2SAlexei Starovoitov 		 * disabled there. There is no race to increment 'active'
2017c8199e2SAlexei Starovoitov 		 * counter. It protects free_llist from corruption in case NMI
2027c8199e2SAlexei Starovoitov 		 * bpf prog preempted this loop.
2037c8199e2SAlexei Starovoitov 		 */
2047c8199e2SAlexei Starovoitov 		WARN_ON_ONCE(local_inc_return(&c->active) != 1);
2057c8199e2SAlexei Starovoitov 		__llist_add(obj, &c->free_llist);
2067c8199e2SAlexei Starovoitov 		c->free_cnt++;
2077c8199e2SAlexei Starovoitov 		local_dec(&c->active);
2087c8199e2SAlexei Starovoitov 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
2097c8199e2SAlexei Starovoitov 			local_irq_restore(flags);
2107c8199e2SAlexei Starovoitov 	}
2117c8199e2SAlexei Starovoitov 	set_active_memcg(old_memcg);
2127c8199e2SAlexei Starovoitov 	mem_cgroup_put(memcg);
2137c8199e2SAlexei Starovoitov }
2147c8199e2SAlexei Starovoitov 
215aa7881fcSHou Tao static void free_one(void *obj, bool percpu)
2167c8199e2SAlexei Starovoitov {
217aa7881fcSHou Tao 	if (percpu) {
2184ab67149SAlexei Starovoitov 		free_percpu(((void **)obj)[1]);
219bfc03c15SAlexei Starovoitov 		kfree(obj);
2204ab67149SAlexei Starovoitov 		return;
2214ab67149SAlexei Starovoitov 	}
2224ab67149SAlexei Starovoitov 
2237c8199e2SAlexei Starovoitov 	kfree(obj);
2247c8199e2SAlexei Starovoitov }
2257c8199e2SAlexei Starovoitov 
226*9de3e815SAlexei Starovoitov static int free_all(struct llist_node *llnode, bool percpu)
2278d5a8011SAlexei Starovoitov {
2288d5a8011SAlexei Starovoitov 	struct llist_node *pos, *t;
229*9de3e815SAlexei Starovoitov 	int cnt = 0;
2308d5a8011SAlexei Starovoitov 
231*9de3e815SAlexei Starovoitov 	llist_for_each_safe(pos, t, llnode) {
232aa7881fcSHou Tao 		free_one(pos, percpu);
233*9de3e815SAlexei Starovoitov 		cnt++;
234*9de3e815SAlexei Starovoitov 	}
235*9de3e815SAlexei Starovoitov 	return cnt;
236aa7881fcSHou Tao }
237aa7881fcSHou Tao 
238aa7881fcSHou Tao static void __free_rcu(struct rcu_head *head)
239aa7881fcSHou Tao {
24012c8d0f4SAlexei Starovoitov 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
241aa7881fcSHou Tao 
24212c8d0f4SAlexei Starovoitov 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
24312c8d0f4SAlexei Starovoitov 	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
2448d5a8011SAlexei Starovoitov }
2458d5a8011SAlexei Starovoitov 
246dccb4a90SAlexei Starovoitov static void __free_rcu_tasks_trace(struct rcu_head *head)
247dccb4a90SAlexei Starovoitov {
24859be91e5SHou Tao 	/* If RCU Tasks Trace grace period implies RCU grace period,
24959be91e5SHou Tao 	 * there is no need to invoke call_rcu().
25059be91e5SHou Tao 	 */
25159be91e5SHou Tao 	if (rcu_trace_implies_rcu_gp())
25259be91e5SHou Tao 		__free_rcu(head);
25359be91e5SHou Tao 	else
25459be91e5SHou Tao 		call_rcu(head, __free_rcu);
255dccb4a90SAlexei Starovoitov }
256dccb4a90SAlexei Starovoitov 
2578d5a8011SAlexei Starovoitov static void enque_to_free(struct bpf_mem_cache *c, void *obj)
2588d5a8011SAlexei Starovoitov {
2598d5a8011SAlexei Starovoitov 	struct llist_node *llnode = obj;
2608d5a8011SAlexei Starovoitov 
2618d5a8011SAlexei Starovoitov 	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
26212c8d0f4SAlexei Starovoitov 	 * Nothing races to add to free_by_rcu_ttrace list.
2638d5a8011SAlexei Starovoitov 	 */
26412c8d0f4SAlexei Starovoitov 	__llist_add(llnode, &c->free_by_rcu_ttrace);
2658d5a8011SAlexei Starovoitov }
2668d5a8011SAlexei Starovoitov 
26712c8d0f4SAlexei Starovoitov static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
2688d5a8011SAlexei Starovoitov {
2698d5a8011SAlexei Starovoitov 	struct llist_node *llnode, *t;
2708d5a8011SAlexei Starovoitov 
27112c8d0f4SAlexei Starovoitov 	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1))
2728d5a8011SAlexei Starovoitov 		return;
2738d5a8011SAlexei Starovoitov 
27412c8d0f4SAlexei Starovoitov 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
27512c8d0f4SAlexei Starovoitov 	llist_for_each_safe(llnode, t, __llist_del_all(&c->free_by_rcu_ttrace))
27612c8d0f4SAlexei Starovoitov 		/* There is no concurrent __llist_add(waiting_for_gp_ttrace) access.
2778d5a8011SAlexei Starovoitov 		 * It doesn't race with llist_del_all either.
27812c8d0f4SAlexei Starovoitov 		 * But there could be two concurrent llist_del_all(waiting_for_gp_ttrace):
2798d5a8011SAlexei Starovoitov 		 * from __free_rcu() and from drain_mem_cache().
2808d5a8011SAlexei Starovoitov 		 */
28112c8d0f4SAlexei Starovoitov 		__llist_add(llnode, &c->waiting_for_gp_ttrace);
282dccb4a90SAlexei Starovoitov 	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
28359be91e5SHou Tao 	 * If RCU Tasks Trace grace period implies RCU grace period, free
28459be91e5SHou Tao 	 * these elements directly, else use call_rcu() to wait for normal
28559be91e5SHou Tao 	 * progs to finish and finally do free_one() on each element.
286dccb4a90SAlexei Starovoitov 	 */
28712c8d0f4SAlexei Starovoitov 	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
2888d5a8011SAlexei Starovoitov }
2898d5a8011SAlexei Starovoitov 
2907c8199e2SAlexei Starovoitov static void free_bulk(struct bpf_mem_cache *c)
2917c8199e2SAlexei Starovoitov {
2927c8199e2SAlexei Starovoitov 	struct llist_node *llnode, *t;
2937c8199e2SAlexei Starovoitov 	unsigned long flags;
2947c8199e2SAlexei Starovoitov 	int cnt;
2957c8199e2SAlexei Starovoitov 
2967c8199e2SAlexei Starovoitov 	do {
2977c8199e2SAlexei Starovoitov 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
2987c8199e2SAlexei Starovoitov 			local_irq_save(flags);
2997c8199e2SAlexei Starovoitov 		WARN_ON_ONCE(local_inc_return(&c->active) != 1);
3007c8199e2SAlexei Starovoitov 		llnode = __llist_del_first(&c->free_llist);
3017c8199e2SAlexei Starovoitov 		if (llnode)
3027c8199e2SAlexei Starovoitov 			cnt = --c->free_cnt;
3037c8199e2SAlexei Starovoitov 		else
3047c8199e2SAlexei Starovoitov 			cnt = 0;
3057c8199e2SAlexei Starovoitov 		local_dec(&c->active);
3067c8199e2SAlexei Starovoitov 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
3077c8199e2SAlexei Starovoitov 			local_irq_restore(flags);
308c31b38cbSHou Tao 		if (llnode)
3098d5a8011SAlexei Starovoitov 			enque_to_free(c, llnode);
3107c266178SAlexei Starovoitov 	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
3117c8199e2SAlexei Starovoitov 
3127c8199e2SAlexei Starovoitov 	/* and drain free_llist_extra */
3137c8199e2SAlexei Starovoitov 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
3148d5a8011SAlexei Starovoitov 		enque_to_free(c, llnode);
31512c8d0f4SAlexei Starovoitov 	do_call_rcu_ttrace(c);
3167c8199e2SAlexei Starovoitov }
3177c8199e2SAlexei Starovoitov 
3187c8199e2SAlexei Starovoitov static void bpf_mem_refill(struct irq_work *work)
3197c8199e2SAlexei Starovoitov {
3207c8199e2SAlexei Starovoitov 	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
3217c8199e2SAlexei Starovoitov 	int cnt;
3227c8199e2SAlexei Starovoitov 
3237c8199e2SAlexei Starovoitov 	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
3247c8199e2SAlexei Starovoitov 	cnt = c->free_cnt;
3257c266178SAlexei Starovoitov 	if (cnt < c->low_watermark)
3267c8199e2SAlexei Starovoitov 		/* irq_work runs on this cpu and kmalloc will allocate
3277c8199e2SAlexei Starovoitov 		 * from the current numa node which is what we want here.
3287c8199e2SAlexei Starovoitov 		 */
3297c266178SAlexei Starovoitov 		alloc_bulk(c, c->batch, NUMA_NO_NODE);
3307c266178SAlexei Starovoitov 	else if (cnt > c->high_watermark)
3317c8199e2SAlexei Starovoitov 		free_bulk(c);
3327c8199e2SAlexei Starovoitov }
3337c8199e2SAlexei Starovoitov 
3347c8199e2SAlexei Starovoitov static void notrace irq_work_raise(struct bpf_mem_cache *c)
3357c8199e2SAlexei Starovoitov {
3367c8199e2SAlexei Starovoitov 	irq_work_queue(&c->refill_work);
3377c8199e2SAlexei Starovoitov }
3387c8199e2SAlexei Starovoitov 
3397c266178SAlexei Starovoitov /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
3407c266178SAlexei Starovoitov  * the freelist cache will be elem_size * 64 (or less) on each cpu.
3417c266178SAlexei Starovoitov  *
3427c266178SAlexei Starovoitov  * For bpf programs that don't have statically known allocation sizes and
3437c266178SAlexei Starovoitov  * assuming (low_mark + high_mark) / 2 as an average number of elements per
3447c266178SAlexei Starovoitov  * bucket and all buckets are used the total amount of memory in freelists
3457c266178SAlexei Starovoitov  * on each cpu will be:
3467c266178SAlexei Starovoitov  * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
3477c266178SAlexei Starovoitov  * == ~ 116 Kbyte using below heuristic.
3487c266178SAlexei Starovoitov  * Initialized, but unused bpf allocator (not bpf map specific one) will
3497c266178SAlexei Starovoitov  * consume ~ 11 Kbyte per cpu.
3507c266178SAlexei Starovoitov  * Typical case will be between 11K and 116K closer to 11K.
3517c266178SAlexei Starovoitov  * bpf progs can and should share bpf_mem_cache when possible.
3527c266178SAlexei Starovoitov  */
3537c266178SAlexei Starovoitov 
3547c8199e2SAlexei Starovoitov static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
3557c8199e2SAlexei Starovoitov {
3567c8199e2SAlexei Starovoitov 	init_irq_work(&c->refill_work, bpf_mem_refill);
3577c266178SAlexei Starovoitov 	if (c->unit_size <= 256) {
3587c266178SAlexei Starovoitov 		c->low_watermark = 32;
3597c266178SAlexei Starovoitov 		c->high_watermark = 96;
3607c266178SAlexei Starovoitov 	} else {
3617c266178SAlexei Starovoitov 		/* When page_size == 4k, order-0 cache will have low_mark == 2
3627c266178SAlexei Starovoitov 		 * and high_mark == 6 with batch alloc of 3 individual pages at
3637c266178SAlexei Starovoitov 		 * a time.
3647c266178SAlexei Starovoitov 		 * 8k allocs and above low == 1, high == 3, batch == 1.
3657c266178SAlexei Starovoitov 		 */
3667c266178SAlexei Starovoitov 		c->low_watermark = max(32 * 256 / c->unit_size, 1);
3677c266178SAlexei Starovoitov 		c->high_watermark = max(96 * 256 / c->unit_size, 3);
3687c266178SAlexei Starovoitov 	}
3697c266178SAlexei Starovoitov 	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
3707c266178SAlexei Starovoitov 
3717c8199e2SAlexei Starovoitov 	/* To avoid consuming memory assume that 1st run of bpf
3727c8199e2SAlexei Starovoitov 	 * prog won't be doing more than 4 map_update_elem from
3737c8199e2SAlexei Starovoitov 	 * irq disabled region
3747c8199e2SAlexei Starovoitov 	 */
3757c8199e2SAlexei Starovoitov 	alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu));
3767c8199e2SAlexei Starovoitov }
3777c8199e2SAlexei Starovoitov 
378bfc03c15SAlexei Starovoitov /* When size != 0 bpf_mem_cache for each cpu.
3797c8199e2SAlexei Starovoitov  * This is typical bpf hash map use case when all elements have equal size.
3807c8199e2SAlexei Starovoitov  *
3817c8199e2SAlexei Starovoitov  * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
3827c8199e2SAlexei Starovoitov  * kmalloc/kfree. Max allocation size is 4096 in this case.
3837c8199e2SAlexei Starovoitov  * This is bpf_dynptr and bpf_kptr use case.
3847c8199e2SAlexei Starovoitov  */
3854ab67149SAlexei Starovoitov int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
3867c8199e2SAlexei Starovoitov {
3877c8199e2SAlexei Starovoitov 	static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
3887c8199e2SAlexei Starovoitov 	struct bpf_mem_caches *cc, __percpu *pcc;
3897c8199e2SAlexei Starovoitov 	struct bpf_mem_cache *c, __percpu *pc;
3907c8199e2SAlexei Starovoitov 	struct obj_cgroup *objcg = NULL;
391bfc03c15SAlexei Starovoitov 	int cpu, i, unit_size, percpu_size = 0;
3927c8199e2SAlexei Starovoitov 
3937c8199e2SAlexei Starovoitov 	if (size) {
3947c8199e2SAlexei Starovoitov 		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
3957c8199e2SAlexei Starovoitov 		if (!pc)
3967c8199e2SAlexei Starovoitov 			return -ENOMEM;
3974ab67149SAlexei Starovoitov 
398bfc03c15SAlexei Starovoitov 		if (percpu)
3994ab67149SAlexei Starovoitov 			/* room for llist_node and per-cpu pointer */
400bfc03c15SAlexei Starovoitov 			percpu_size = LLIST_NODE_SZ + sizeof(void *);
401bfc03c15SAlexei Starovoitov 		else
4027c8199e2SAlexei Starovoitov 			size += LLIST_NODE_SZ; /* room for llist_node */
4034ab67149SAlexei Starovoitov 		unit_size = size;
4044ab67149SAlexei Starovoitov 
4057c8199e2SAlexei Starovoitov #ifdef CONFIG_MEMCG_KMEM
406ee53cbfbSYafang Shao 		if (memcg_bpf_enabled())
4077c8199e2SAlexei Starovoitov 			objcg = get_obj_cgroup_from_current();
4087c8199e2SAlexei Starovoitov #endif
4097c8199e2SAlexei Starovoitov 		for_each_possible_cpu(cpu) {
4107c8199e2SAlexei Starovoitov 			c = per_cpu_ptr(pc, cpu);
4114ab67149SAlexei Starovoitov 			c->unit_size = unit_size;
4127c8199e2SAlexei Starovoitov 			c->objcg = objcg;
413bfc03c15SAlexei Starovoitov 			c->percpu_size = percpu_size;
4147c8199e2SAlexei Starovoitov 			prefill_mem_cache(c, cpu);
4157c8199e2SAlexei Starovoitov 		}
4167c8199e2SAlexei Starovoitov 		ma->cache = pc;
4177c8199e2SAlexei Starovoitov 		return 0;
4187c8199e2SAlexei Starovoitov 	}
4197c8199e2SAlexei Starovoitov 
4204ab67149SAlexei Starovoitov 	/* size == 0 && percpu is an invalid combination */
4214ab67149SAlexei Starovoitov 	if (WARN_ON_ONCE(percpu))
4224ab67149SAlexei Starovoitov 		return -EINVAL;
4234ab67149SAlexei Starovoitov 
4247c8199e2SAlexei Starovoitov 	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
4257c8199e2SAlexei Starovoitov 	if (!pcc)
4267c8199e2SAlexei Starovoitov 		return -ENOMEM;
4277c8199e2SAlexei Starovoitov #ifdef CONFIG_MEMCG_KMEM
4287c8199e2SAlexei Starovoitov 	objcg = get_obj_cgroup_from_current();
4297c8199e2SAlexei Starovoitov #endif
4307c8199e2SAlexei Starovoitov 	for_each_possible_cpu(cpu) {
4317c8199e2SAlexei Starovoitov 		cc = per_cpu_ptr(pcc, cpu);
4327c8199e2SAlexei Starovoitov 		for (i = 0; i < NUM_CACHES; i++) {
4337c8199e2SAlexei Starovoitov 			c = &cc->cache[i];
4347c8199e2SAlexei Starovoitov 			c->unit_size = sizes[i];
4357c8199e2SAlexei Starovoitov 			c->objcg = objcg;
4367c8199e2SAlexei Starovoitov 			prefill_mem_cache(c, cpu);
4377c8199e2SAlexei Starovoitov 		}
4387c8199e2SAlexei Starovoitov 	}
4397c8199e2SAlexei Starovoitov 	ma->caches = pcc;
4407c8199e2SAlexei Starovoitov 	return 0;
4417c8199e2SAlexei Starovoitov }
4427c8199e2SAlexei Starovoitov 
4437c8199e2SAlexei Starovoitov static void drain_mem_cache(struct bpf_mem_cache *c)
4447c8199e2SAlexei Starovoitov {
445aa7881fcSHou Tao 	bool percpu = !!c->percpu_size;
4467c8199e2SAlexei Starovoitov 
4479f2c6e96SAlexei Starovoitov 	/* No progs are using this bpf_mem_cache, but htab_map_free() called
4489f2c6e96SAlexei Starovoitov 	 * bpf_mem_cache_free() for all remaining elements and they can be in
44912c8d0f4SAlexei Starovoitov 	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
450fa4447cbSHou Tao 	 *
45112c8d0f4SAlexei Starovoitov 	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
452fa4447cbSHou Tao 	 * on these lists, so it is safe to use __llist_del_all().
4538d5a8011SAlexei Starovoitov 	 */
45412c8d0f4SAlexei Starovoitov 	free_all(__llist_del_all(&c->free_by_rcu_ttrace), percpu);
45512c8d0f4SAlexei Starovoitov 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
456aa7881fcSHou Tao 	free_all(__llist_del_all(&c->free_llist), percpu);
457aa7881fcSHou Tao 	free_all(__llist_del_all(&c->free_llist_extra), percpu);
4587c8199e2SAlexei Starovoitov }
4597c8199e2SAlexei Starovoitov 
4609f2c6e96SAlexei Starovoitov static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
4619f2c6e96SAlexei Starovoitov {
4629f2c6e96SAlexei Starovoitov 	free_percpu(ma->cache);
4639f2c6e96SAlexei Starovoitov 	free_percpu(ma->caches);
4649f2c6e96SAlexei Starovoitov 	ma->cache = NULL;
4659f2c6e96SAlexei Starovoitov 	ma->caches = NULL;
4669f2c6e96SAlexei Starovoitov }
4679f2c6e96SAlexei Starovoitov 
4689f2c6e96SAlexei Starovoitov static void free_mem_alloc(struct bpf_mem_alloc *ma)
4699f2c6e96SAlexei Starovoitov {
47012c8d0f4SAlexei Starovoitov 	/* waiting_for_gp_ttrace lists was drained, but __free_rcu might
4719f2c6e96SAlexei Starovoitov 	 * still execute. Wait for it now before we freeing percpu caches.
472822ed78fSHou Tao 	 *
473822ed78fSHou Tao 	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
474822ed78fSHou Tao 	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
475822ed78fSHou Tao 	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
476822ed78fSHou Tao 	 * so if call_rcu(head, __free_rcu) is skipped due to
477822ed78fSHou Tao 	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
478822ed78fSHou Tao 	 * using rcu_trace_implies_rcu_gp() as well.
4799f2c6e96SAlexei Starovoitov 	 */
4809f2c6e96SAlexei Starovoitov 	rcu_barrier_tasks_trace();
481822ed78fSHou Tao 	if (!rcu_trace_implies_rcu_gp())
4829f2c6e96SAlexei Starovoitov 		rcu_barrier();
4839f2c6e96SAlexei Starovoitov 	free_mem_alloc_no_barrier(ma);
4849f2c6e96SAlexei Starovoitov }
4859f2c6e96SAlexei Starovoitov 
4869f2c6e96SAlexei Starovoitov static void free_mem_alloc_deferred(struct work_struct *work)
4879f2c6e96SAlexei Starovoitov {
4889f2c6e96SAlexei Starovoitov 	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
4899f2c6e96SAlexei Starovoitov 
4909f2c6e96SAlexei Starovoitov 	free_mem_alloc(ma);
4919f2c6e96SAlexei Starovoitov 	kfree(ma);
4929f2c6e96SAlexei Starovoitov }
4939f2c6e96SAlexei Starovoitov 
4949f2c6e96SAlexei Starovoitov static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
4959f2c6e96SAlexei Starovoitov {
4969f2c6e96SAlexei Starovoitov 	struct bpf_mem_alloc *copy;
4979f2c6e96SAlexei Starovoitov 
4989f2c6e96SAlexei Starovoitov 	if (!rcu_in_progress) {
4999f2c6e96SAlexei Starovoitov 		/* Fast path. No callbacks are pending, hence no need to do
5009f2c6e96SAlexei Starovoitov 		 * rcu_barrier-s.
5019f2c6e96SAlexei Starovoitov 		 */
5029f2c6e96SAlexei Starovoitov 		free_mem_alloc_no_barrier(ma);
5039f2c6e96SAlexei Starovoitov 		return;
5049f2c6e96SAlexei Starovoitov 	}
5059f2c6e96SAlexei Starovoitov 
506a80672d7SAlexei Starovoitov 	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
5079f2c6e96SAlexei Starovoitov 	if (!copy) {
5089f2c6e96SAlexei Starovoitov 		/* Slow path with inline barrier-s */
5099f2c6e96SAlexei Starovoitov 		free_mem_alloc(ma);
5109f2c6e96SAlexei Starovoitov 		return;
5119f2c6e96SAlexei Starovoitov 	}
5129f2c6e96SAlexei Starovoitov 
5139f2c6e96SAlexei Starovoitov 	/* Defer barriers into worker to let the rest of map memory to be freed */
514a80672d7SAlexei Starovoitov 	memset(ma, 0, sizeof(*ma));
5159f2c6e96SAlexei Starovoitov 	INIT_WORK(&copy->work, free_mem_alloc_deferred);
5169f2c6e96SAlexei Starovoitov 	queue_work(system_unbound_wq, &copy->work);
5179f2c6e96SAlexei Starovoitov }
5189f2c6e96SAlexei Starovoitov 
5197c8199e2SAlexei Starovoitov void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
5207c8199e2SAlexei Starovoitov {
5217c8199e2SAlexei Starovoitov 	struct bpf_mem_caches *cc;
5227c8199e2SAlexei Starovoitov 	struct bpf_mem_cache *c;
5239f2c6e96SAlexei Starovoitov 	int cpu, i, rcu_in_progress;
5247c8199e2SAlexei Starovoitov 
5257c8199e2SAlexei Starovoitov 	if (ma->cache) {
5269f2c6e96SAlexei Starovoitov 		rcu_in_progress = 0;
5277c8199e2SAlexei Starovoitov 		for_each_possible_cpu(cpu) {
5287c8199e2SAlexei Starovoitov 			c = per_cpu_ptr(ma->cache, cpu);
5293d058187SHou Tao 			/*
5303d058187SHou Tao 			 * refill_work may be unfinished for PREEMPT_RT kernel
5313d058187SHou Tao 			 * in which irq work is invoked in a per-CPU RT thread.
5323d058187SHou Tao 			 * It is also possible for kernel with
5333d058187SHou Tao 			 * arch_irq_work_has_interrupt() being false and irq
5343d058187SHou Tao 			 * work is invoked in timer interrupt. So waiting for
5353d058187SHou Tao 			 * the completion of irq work to ease the handling of
5363d058187SHou Tao 			 * concurrency.
5373d058187SHou Tao 			 */
5383d058187SHou Tao 			irq_work_sync(&c->refill_work);
5397c8199e2SAlexei Starovoitov 			drain_mem_cache(c);
54012c8d0f4SAlexei Starovoitov 			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
5417c8199e2SAlexei Starovoitov 		}
542bfc03c15SAlexei Starovoitov 		/* objcg is the same across cpus */
5437c8199e2SAlexei Starovoitov 		if (c->objcg)
5447c8199e2SAlexei Starovoitov 			obj_cgroup_put(c->objcg);
5459f2c6e96SAlexei Starovoitov 		destroy_mem_alloc(ma, rcu_in_progress);
5467c8199e2SAlexei Starovoitov 	}
5477c8199e2SAlexei Starovoitov 	if (ma->caches) {
5489f2c6e96SAlexei Starovoitov 		rcu_in_progress = 0;
5497c8199e2SAlexei Starovoitov 		for_each_possible_cpu(cpu) {
5507c8199e2SAlexei Starovoitov 			cc = per_cpu_ptr(ma->caches, cpu);
5517c8199e2SAlexei Starovoitov 			for (i = 0; i < NUM_CACHES; i++) {
5527c8199e2SAlexei Starovoitov 				c = &cc->cache[i];
5533d058187SHou Tao 				irq_work_sync(&c->refill_work);
5547c8199e2SAlexei Starovoitov 				drain_mem_cache(c);
55512c8d0f4SAlexei Starovoitov 				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
5567c8199e2SAlexei Starovoitov 			}
5577c8199e2SAlexei Starovoitov 		}
5587c8199e2SAlexei Starovoitov 		if (c->objcg)
5597c8199e2SAlexei Starovoitov 			obj_cgroup_put(c->objcg);
5609f2c6e96SAlexei Starovoitov 		destroy_mem_alloc(ma, rcu_in_progress);
5617c8199e2SAlexei Starovoitov 	}
5627c8199e2SAlexei Starovoitov }
5637c8199e2SAlexei Starovoitov 
5647c8199e2SAlexei Starovoitov /* notrace is necessary here and in other functions to make sure
5657c8199e2SAlexei Starovoitov  * bpf programs cannot attach to them and cause llist corruptions.
5667c8199e2SAlexei Starovoitov  */
5677c8199e2SAlexei Starovoitov static void notrace *unit_alloc(struct bpf_mem_cache *c)
5687c8199e2SAlexei Starovoitov {
5697c8199e2SAlexei Starovoitov 	struct llist_node *llnode = NULL;
5707c8199e2SAlexei Starovoitov 	unsigned long flags;
5717c8199e2SAlexei Starovoitov 	int cnt = 0;
5727c8199e2SAlexei Starovoitov 
5737c8199e2SAlexei Starovoitov 	/* Disable irqs to prevent the following race for majority of prog types:
5747c8199e2SAlexei Starovoitov 	 * prog_A
5757c8199e2SAlexei Starovoitov 	 *   bpf_mem_alloc
5767c8199e2SAlexei Starovoitov 	 *      preemption or irq -> prog_B
5777c8199e2SAlexei Starovoitov 	 *        bpf_mem_alloc
5787c8199e2SAlexei Starovoitov 	 *
5797c8199e2SAlexei Starovoitov 	 * but prog_B could be a perf_event NMI prog.
5807c8199e2SAlexei Starovoitov 	 * Use per-cpu 'active' counter to order free_list access between
5817c8199e2SAlexei Starovoitov 	 * unit_alloc/unit_free/bpf_mem_refill.
5827c8199e2SAlexei Starovoitov 	 */
5837c8199e2SAlexei Starovoitov 	local_irq_save(flags);
5847c8199e2SAlexei Starovoitov 	if (local_inc_return(&c->active) == 1) {
5857c8199e2SAlexei Starovoitov 		llnode = __llist_del_first(&c->free_llist);
5867c8199e2SAlexei Starovoitov 		if (llnode)
5877c8199e2SAlexei Starovoitov 			cnt = --c->free_cnt;
5887c8199e2SAlexei Starovoitov 	}
5897c8199e2SAlexei Starovoitov 	local_dec(&c->active);
5907c8199e2SAlexei Starovoitov 	local_irq_restore(flags);
5917c8199e2SAlexei Starovoitov 
5927c8199e2SAlexei Starovoitov 	WARN_ON(cnt < 0);
5937c8199e2SAlexei Starovoitov 
5947c266178SAlexei Starovoitov 	if (cnt < c->low_watermark)
5957c8199e2SAlexei Starovoitov 		irq_work_raise(c);
5967c8199e2SAlexei Starovoitov 	return llnode;
5977c8199e2SAlexei Starovoitov }
5987c8199e2SAlexei Starovoitov 
5997c8199e2SAlexei Starovoitov /* Though 'ptr' object could have been allocated on a different cpu
6007c8199e2SAlexei Starovoitov  * add it to the free_llist of the current cpu.
6017c8199e2SAlexei Starovoitov  * Let kfree() logic deal with it when it's later called from irq_work.
6027c8199e2SAlexei Starovoitov  */
6037c8199e2SAlexei Starovoitov static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
6047c8199e2SAlexei Starovoitov {
6057c8199e2SAlexei Starovoitov 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
6067c8199e2SAlexei Starovoitov 	unsigned long flags;
6077c8199e2SAlexei Starovoitov 	int cnt = 0;
6087c8199e2SAlexei Starovoitov 
6097c8199e2SAlexei Starovoitov 	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
6107c8199e2SAlexei Starovoitov 
6117c8199e2SAlexei Starovoitov 	local_irq_save(flags);
6127c8199e2SAlexei Starovoitov 	if (local_inc_return(&c->active) == 1) {
6137c8199e2SAlexei Starovoitov 		__llist_add(llnode, &c->free_llist);
6147c8199e2SAlexei Starovoitov 		cnt = ++c->free_cnt;
6157c8199e2SAlexei Starovoitov 	} else {
6167c8199e2SAlexei Starovoitov 		/* unit_free() cannot fail. Therefore add an object to atomic
6177c8199e2SAlexei Starovoitov 		 * llist. free_bulk() will drain it. Though free_llist_extra is
6187c8199e2SAlexei Starovoitov 		 * a per-cpu list we have to use atomic llist_add here, since
6197c8199e2SAlexei Starovoitov 		 * it also can be interrupted by bpf nmi prog that does another
6207c8199e2SAlexei Starovoitov 		 * unit_free() into the same free_llist_extra.
6217c8199e2SAlexei Starovoitov 		 */
6227c8199e2SAlexei Starovoitov 		llist_add(llnode, &c->free_llist_extra);
6237c8199e2SAlexei Starovoitov 	}
6247c8199e2SAlexei Starovoitov 	local_dec(&c->active);
6257c8199e2SAlexei Starovoitov 	local_irq_restore(flags);
6267c8199e2SAlexei Starovoitov 
6277c266178SAlexei Starovoitov 	if (cnt > c->high_watermark)
6287c8199e2SAlexei Starovoitov 		/* free few objects from current cpu into global kmalloc pool */
6297c8199e2SAlexei Starovoitov 		irq_work_raise(c);
6307c8199e2SAlexei Starovoitov }
6317c8199e2SAlexei Starovoitov 
6327c8199e2SAlexei Starovoitov /* Called from BPF program or from sys_bpf syscall.
6337c8199e2SAlexei Starovoitov  * In both cases migration is disabled.
6347c8199e2SAlexei Starovoitov  */
6357c8199e2SAlexei Starovoitov void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
6367c8199e2SAlexei Starovoitov {
6377c8199e2SAlexei Starovoitov 	int idx;
6387c8199e2SAlexei Starovoitov 	void *ret;
6397c8199e2SAlexei Starovoitov 
6407c8199e2SAlexei Starovoitov 	if (!size)
6417c8199e2SAlexei Starovoitov 		return ZERO_SIZE_PTR;
6427c8199e2SAlexei Starovoitov 
6437c8199e2SAlexei Starovoitov 	idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ);
6447c8199e2SAlexei Starovoitov 	if (idx < 0)
6457c8199e2SAlexei Starovoitov 		return NULL;
6467c8199e2SAlexei Starovoitov 
6477c8199e2SAlexei Starovoitov 	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
6487c8199e2SAlexei Starovoitov 	return !ret ? NULL : ret + LLIST_NODE_SZ;
6497c8199e2SAlexei Starovoitov }
6507c8199e2SAlexei Starovoitov 
6517c8199e2SAlexei Starovoitov void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
6527c8199e2SAlexei Starovoitov {
6537c8199e2SAlexei Starovoitov 	int idx;
6547c8199e2SAlexei Starovoitov 
6557c8199e2SAlexei Starovoitov 	if (!ptr)
6567c8199e2SAlexei Starovoitov 		return;
6577c8199e2SAlexei Starovoitov 
6581e660f7eSAlexei Starovoitov 	idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ));
6597c8199e2SAlexei Starovoitov 	if (idx < 0)
6607c8199e2SAlexei Starovoitov 		return;
6617c8199e2SAlexei Starovoitov 
6627c8199e2SAlexei Starovoitov 	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
6637c8199e2SAlexei Starovoitov }
6647c8199e2SAlexei Starovoitov 
6657c8199e2SAlexei Starovoitov void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
6667c8199e2SAlexei Starovoitov {
6677c8199e2SAlexei Starovoitov 	void *ret;
6687c8199e2SAlexei Starovoitov 
6697c8199e2SAlexei Starovoitov 	ret = unit_alloc(this_cpu_ptr(ma->cache));
6707c8199e2SAlexei Starovoitov 	return !ret ? NULL : ret + LLIST_NODE_SZ;
6717c8199e2SAlexei Starovoitov }
6727c8199e2SAlexei Starovoitov 
6737c8199e2SAlexei Starovoitov void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
6747c8199e2SAlexei Starovoitov {
6757c8199e2SAlexei Starovoitov 	if (!ptr)
6767c8199e2SAlexei Starovoitov 		return;
6777c8199e2SAlexei Starovoitov 
6787c8199e2SAlexei Starovoitov 	unit_free(this_cpu_ptr(ma->cache), ptr);
6797c8199e2SAlexei Starovoitov }
680e65a5c6eSMartin KaFai Lau 
681e65a5c6eSMartin KaFai Lau /* Directly does a kfree() without putting 'ptr' back to the free_llist
682e65a5c6eSMartin KaFai Lau  * for reuse and without waiting for a rcu_tasks_trace gp.
683e65a5c6eSMartin KaFai Lau  * The caller must first go through the rcu_tasks_trace gp for 'ptr'
684e65a5c6eSMartin KaFai Lau  * before calling bpf_mem_cache_raw_free().
685e65a5c6eSMartin KaFai Lau  * It could be used when the rcu_tasks_trace callback does not have
686e65a5c6eSMartin KaFai Lau  * a hold on the original bpf_mem_alloc object that allocated the
687e65a5c6eSMartin KaFai Lau  * 'ptr'. This should only be used in the uncommon code path.
688e65a5c6eSMartin KaFai Lau  * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
689e65a5c6eSMartin KaFai Lau  * and may affect performance.
690e65a5c6eSMartin KaFai Lau  */
691e65a5c6eSMartin KaFai Lau void bpf_mem_cache_raw_free(void *ptr)
692e65a5c6eSMartin KaFai Lau {
693e65a5c6eSMartin KaFai Lau 	if (!ptr)
694e65a5c6eSMartin KaFai Lau 		return;
695e65a5c6eSMartin KaFai Lau 
696e65a5c6eSMartin KaFai Lau 	kfree(ptr - LLIST_NODE_SZ);
697e65a5c6eSMartin KaFai Lau }
698e65a5c6eSMartin KaFai Lau 
699e65a5c6eSMartin KaFai Lau /* When flags == GFP_KERNEL, it signals that the caller will not cause
700e65a5c6eSMartin KaFai Lau  * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
701e65a5c6eSMartin KaFai Lau  * kmalloc if the free_llist is empty.
702e65a5c6eSMartin KaFai Lau  */
703e65a5c6eSMartin KaFai Lau void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
704e65a5c6eSMartin KaFai Lau {
705e65a5c6eSMartin KaFai Lau 	struct bpf_mem_cache *c;
706e65a5c6eSMartin KaFai Lau 	void *ret;
707e65a5c6eSMartin KaFai Lau 
708e65a5c6eSMartin KaFai Lau 	c = this_cpu_ptr(ma->cache);
709e65a5c6eSMartin KaFai Lau 
710e65a5c6eSMartin KaFai Lau 	ret = unit_alloc(c);
711e65a5c6eSMartin KaFai Lau 	if (!ret && flags == GFP_KERNEL) {
712e65a5c6eSMartin KaFai Lau 		struct mem_cgroup *memcg, *old_memcg;
713e65a5c6eSMartin KaFai Lau 
714e65a5c6eSMartin KaFai Lau 		memcg = get_memcg(c);
715e65a5c6eSMartin KaFai Lau 		old_memcg = set_active_memcg(memcg);
716e65a5c6eSMartin KaFai Lau 		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
717e65a5c6eSMartin KaFai Lau 		set_active_memcg(old_memcg);
718e65a5c6eSMartin KaFai Lau 		mem_cgroup_put(memcg);
719e65a5c6eSMartin KaFai Lau 	}
720e65a5c6eSMartin KaFai Lau 
721e65a5c6eSMartin KaFai Lau 	return !ret ? NULL : ret + LLIST_NODE_SZ;
722e65a5c6eSMartin KaFai Lau }
723