1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Longest prefix match list implementation 4 * 5 * Copyright (c) 2016,2017 Daniel Mack 6 * Copyright (c) 2016 David Herrmann 7 */ 8 9 #include <linux/bpf.h> 10 #include <linux/btf.h> 11 #include <linux/err.h> 12 #include <linux/slab.h> 13 #include <linux/spinlock.h> 14 #include <linux/vmalloc.h> 15 #include <net/ipv6.h> 16 #include <uapi/linux/btf.h> 17 #include <linux/btf_ids.h> 18 19 /* Intermediate node */ 20 #define LPM_TREE_NODE_FLAG_IM BIT(0) 21 22 struct lpm_trie_node; 23 24 struct lpm_trie_node { 25 struct rcu_head rcu; 26 struct lpm_trie_node __rcu *child[2]; 27 u32 prefixlen; 28 u32 flags; 29 u8 data[]; 30 }; 31 32 struct lpm_trie { 33 struct bpf_map map; 34 struct lpm_trie_node __rcu *root; 35 size_t n_entries; 36 size_t max_prefixlen; 37 size_t data_size; 38 spinlock_t lock; 39 }; 40 41 /* This trie implements a longest prefix match algorithm that can be used to 42 * match IP addresses to a stored set of ranges. 43 * 44 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is 45 * interpreted as big endian, so data[0] stores the most significant byte. 46 * 47 * Match ranges are internally stored in instances of struct lpm_trie_node 48 * which each contain their prefix length as well as two pointers that may 49 * lead to more nodes containing more specific matches. Each node also stores 50 * a value that is defined by and returned to userspace via the update_elem 51 * and lookup functions. 52 * 53 * For instance, let's start with a trie that was created with a prefix length 54 * of 32, so it can be used for IPv4 addresses, and one single element that 55 * matches 192.168.0.0/16. The data array would hence contain 56 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will 57 * stick to IP-address notation for readability though. 58 * 59 * As the trie is empty initially, the new node (1) will be places as root 60 * node, denoted as (R) in the example below. As there are no other node, both 61 * child pointers are %NULL. 62 * 63 * +----------------+ 64 * | (1) (R) | 65 * | 192.168.0.0/16 | 66 * | value: 1 | 67 * | [0] [1] | 68 * +----------------+ 69 * 70 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already 71 * a node with the same data and a smaller prefix (ie, a less specific one), 72 * node (2) will become a child of (1). In child index depends on the next bit 73 * that is outside of what (1) matches, and that bit is 0, so (2) will be 74 * child[0] of (1): 75 * 76 * +----------------+ 77 * | (1) (R) | 78 * | 192.168.0.0/16 | 79 * | value: 1 | 80 * | [0] [1] | 81 * +----------------+ 82 * | 83 * +----------------+ 84 * | (2) | 85 * | 192.168.0.0/24 | 86 * | value: 2 | 87 * | [0] [1] | 88 * +----------------+ 89 * 90 * The child[1] slot of (1) could be filled with another node which has bit #17 91 * (the next bit after the ones that (1) matches on) set to 1. For instance, 92 * 192.168.128.0/24: 93 * 94 * +----------------+ 95 * | (1) (R) | 96 * | 192.168.0.0/16 | 97 * | value: 1 | 98 * | [0] [1] | 99 * +----------------+ 100 * | | 101 * +----------------+ +------------------+ 102 * | (2) | | (3) | 103 * | 192.168.0.0/24 | | 192.168.128.0/24 | 104 * | value: 2 | | value: 3 | 105 * | [0] [1] | | [0] [1] | 106 * +----------------+ +------------------+ 107 * 108 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place 109 * it, node (1) is looked at first, and because (4) of the semantics laid out 110 * above (bit #17 is 0), it would normally be attached to (1) as child[0]. 111 * However, that slot is already allocated, so a new node is needed in between. 112 * That node does not have a value attached to it and it will never be 113 * returned to users as result of a lookup. It is only there to differentiate 114 * the traversal further. It will get a prefix as wide as necessary to 115 * distinguish its two children: 116 * 117 * +----------------+ 118 * | (1) (R) | 119 * | 192.168.0.0/16 | 120 * | value: 1 | 121 * | [0] [1] | 122 * +----------------+ 123 * | | 124 * +----------------+ +------------------+ 125 * | (4) (I) | | (3) | 126 * | 192.168.0.0/23 | | 192.168.128.0/24 | 127 * | value: --- | | value: 3 | 128 * | [0] [1] | | [0] [1] | 129 * +----------------+ +------------------+ 130 * | | 131 * +----------------+ +----------------+ 132 * | (2) | | (5) | 133 * | 192.168.0.0/24 | | 192.168.1.0/24 | 134 * | value: 2 | | value: 5 | 135 * | [0] [1] | | [0] [1] | 136 * +----------------+ +----------------+ 137 * 138 * 192.168.1.1/32 would be a child of (5) etc. 139 * 140 * An intermediate node will be turned into a 'real' node on demand. In the 141 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie. 142 * 143 * A fully populated trie would have a height of 32 nodes, as the trie was 144 * created with a prefix length of 32. 145 * 146 * The lookup starts at the root node. If the current node matches and if there 147 * is a child that can be used to become more specific, the trie is traversed 148 * downwards. The last node in the traversal that is a non-intermediate one is 149 * returned. 150 */ 151 152 static inline int extract_bit(const u8 *data, size_t index) 153 { 154 return !!(data[index / 8] & (1 << (7 - (index % 8)))); 155 } 156 157 /** 158 * longest_prefix_match() - determine the longest prefix 159 * @trie: The trie to get internal sizes from 160 * @node: The node to operate on 161 * @key: The key to compare to @node 162 * 163 * Determine the longest prefix of @node that matches the bits in @key. 164 */ 165 static size_t longest_prefix_match(const struct lpm_trie *trie, 166 const struct lpm_trie_node *node, 167 const struct bpf_lpm_trie_key *key) 168 { 169 u32 limit = min(node->prefixlen, key->prefixlen); 170 u32 prefixlen = 0, i = 0; 171 172 BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32)); 173 BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32)); 174 175 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT) 176 177 /* data_size >= 16 has very small probability. 178 * We do not use a loop for optimal code generation. 179 */ 180 if (trie->data_size >= 8) { 181 u64 diff = be64_to_cpu(*(__be64 *)node->data ^ 182 *(__be64 *)key->data); 183 184 prefixlen = 64 - fls64(diff); 185 if (prefixlen >= limit) 186 return limit; 187 if (diff) 188 return prefixlen; 189 i = 8; 190 } 191 #endif 192 193 while (trie->data_size >= i + 4) { 194 u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^ 195 *(__be32 *)&key->data[i]); 196 197 prefixlen += 32 - fls(diff); 198 if (prefixlen >= limit) 199 return limit; 200 if (diff) 201 return prefixlen; 202 i += 4; 203 } 204 205 if (trie->data_size >= i + 2) { 206 u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^ 207 *(__be16 *)&key->data[i]); 208 209 prefixlen += 16 - fls(diff); 210 if (prefixlen >= limit) 211 return limit; 212 if (diff) 213 return prefixlen; 214 i += 2; 215 } 216 217 if (trie->data_size >= i + 1) { 218 prefixlen += 8 - fls(node->data[i] ^ key->data[i]); 219 220 if (prefixlen >= limit) 221 return limit; 222 } 223 224 return prefixlen; 225 } 226 227 /* Called from syscall or from eBPF program */ 228 static void *trie_lookup_elem(struct bpf_map *map, void *_key) 229 { 230 struct lpm_trie *trie = container_of(map, struct lpm_trie, map); 231 struct lpm_trie_node *node, *found = NULL; 232 struct bpf_lpm_trie_key *key = _key; 233 234 /* Start walking the trie from the root node ... */ 235 236 for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held()); 237 node;) { 238 unsigned int next_bit; 239 size_t matchlen; 240 241 /* Determine the longest prefix of @node that matches @key. 242 * If it's the maximum possible prefix for this trie, we have 243 * an exact match and can return it directly. 244 */ 245 matchlen = longest_prefix_match(trie, node, key); 246 if (matchlen == trie->max_prefixlen) { 247 found = node; 248 break; 249 } 250 251 /* If the number of bits that match is smaller than the prefix 252 * length of @node, bail out and return the node we have seen 253 * last in the traversal (ie, the parent). 254 */ 255 if (matchlen < node->prefixlen) 256 break; 257 258 /* Consider this node as return candidate unless it is an 259 * artificially added intermediate one. 260 */ 261 if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) 262 found = node; 263 264 /* If the node match is fully satisfied, let's see if we can 265 * become more specific. Determine the next bit in the key and 266 * traverse down. 267 */ 268 next_bit = extract_bit(key->data, node->prefixlen); 269 node = rcu_dereference_check(node->child[next_bit], 270 rcu_read_lock_bh_held()); 271 } 272 273 if (!found) 274 return NULL; 275 276 return found->data + trie->data_size; 277 } 278 279 static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie, 280 const void *value) 281 { 282 struct lpm_trie_node *node; 283 size_t size = sizeof(struct lpm_trie_node) + trie->data_size; 284 285 if (value) 286 size += trie->map.value_size; 287 288 node = bpf_map_kmalloc_node(&trie->map, size, GFP_ATOMIC | __GFP_NOWARN, 289 trie->map.numa_node); 290 if (!node) 291 return NULL; 292 293 node->flags = 0; 294 295 if (value) 296 memcpy(node->data + trie->data_size, value, 297 trie->map.value_size); 298 299 return node; 300 } 301 302 /* Called from syscall or from eBPF program */ 303 static int trie_update_elem(struct bpf_map *map, 304 void *_key, void *value, u64 flags) 305 { 306 struct lpm_trie *trie = container_of(map, struct lpm_trie, map); 307 struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL; 308 struct lpm_trie_node __rcu **slot; 309 struct bpf_lpm_trie_key *key = _key; 310 unsigned long irq_flags; 311 unsigned int next_bit; 312 size_t matchlen = 0; 313 int ret = 0; 314 315 if (unlikely(flags > BPF_EXIST)) 316 return -EINVAL; 317 318 if (key->prefixlen > trie->max_prefixlen) 319 return -EINVAL; 320 321 spin_lock_irqsave(&trie->lock, irq_flags); 322 323 /* Allocate and fill a new node */ 324 325 if (trie->n_entries == trie->map.max_entries) { 326 ret = -ENOSPC; 327 goto out; 328 } 329 330 new_node = lpm_trie_node_alloc(trie, value); 331 if (!new_node) { 332 ret = -ENOMEM; 333 goto out; 334 } 335 336 trie->n_entries++; 337 338 new_node->prefixlen = key->prefixlen; 339 RCU_INIT_POINTER(new_node->child[0], NULL); 340 RCU_INIT_POINTER(new_node->child[1], NULL); 341 memcpy(new_node->data, key->data, trie->data_size); 342 343 /* Now find a slot to attach the new node. To do that, walk the tree 344 * from the root and match as many bits as possible for each node until 345 * we either find an empty slot or a slot that needs to be replaced by 346 * an intermediate node. 347 */ 348 slot = &trie->root; 349 350 while ((node = rcu_dereference_protected(*slot, 351 lockdep_is_held(&trie->lock)))) { 352 matchlen = longest_prefix_match(trie, node, key); 353 354 if (node->prefixlen != matchlen || 355 node->prefixlen == key->prefixlen || 356 node->prefixlen == trie->max_prefixlen) 357 break; 358 359 next_bit = extract_bit(key->data, node->prefixlen); 360 slot = &node->child[next_bit]; 361 } 362 363 /* If the slot is empty (a free child pointer or an empty root), 364 * simply assign the @new_node to that slot and be done. 365 */ 366 if (!node) { 367 rcu_assign_pointer(*slot, new_node); 368 goto out; 369 } 370 371 /* If the slot we picked already exists, replace it with @new_node 372 * which already has the correct data array set. 373 */ 374 if (node->prefixlen == matchlen) { 375 new_node->child[0] = node->child[0]; 376 new_node->child[1] = node->child[1]; 377 378 if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) 379 trie->n_entries--; 380 381 rcu_assign_pointer(*slot, new_node); 382 kfree_rcu(node, rcu); 383 384 goto out; 385 } 386 387 /* If the new node matches the prefix completely, it must be inserted 388 * as an ancestor. Simply insert it between @node and *@slot. 389 */ 390 if (matchlen == key->prefixlen) { 391 next_bit = extract_bit(node->data, matchlen); 392 rcu_assign_pointer(new_node->child[next_bit], node); 393 rcu_assign_pointer(*slot, new_node); 394 goto out; 395 } 396 397 im_node = lpm_trie_node_alloc(trie, NULL); 398 if (!im_node) { 399 ret = -ENOMEM; 400 goto out; 401 } 402 403 im_node->prefixlen = matchlen; 404 im_node->flags |= LPM_TREE_NODE_FLAG_IM; 405 memcpy(im_node->data, node->data, trie->data_size); 406 407 /* Now determine which child to install in which slot */ 408 if (extract_bit(key->data, matchlen)) { 409 rcu_assign_pointer(im_node->child[0], node); 410 rcu_assign_pointer(im_node->child[1], new_node); 411 } else { 412 rcu_assign_pointer(im_node->child[0], new_node); 413 rcu_assign_pointer(im_node->child[1], node); 414 } 415 416 /* Finally, assign the intermediate node to the determined slot */ 417 rcu_assign_pointer(*slot, im_node); 418 419 out: 420 if (ret) { 421 if (new_node) 422 trie->n_entries--; 423 424 kfree(new_node); 425 kfree(im_node); 426 } 427 428 spin_unlock_irqrestore(&trie->lock, irq_flags); 429 430 return ret; 431 } 432 433 /* Called from syscall or from eBPF program */ 434 static int trie_delete_elem(struct bpf_map *map, void *_key) 435 { 436 struct lpm_trie *trie = container_of(map, struct lpm_trie, map); 437 struct bpf_lpm_trie_key *key = _key; 438 struct lpm_trie_node __rcu **trim, **trim2; 439 struct lpm_trie_node *node, *parent; 440 unsigned long irq_flags; 441 unsigned int next_bit; 442 size_t matchlen = 0; 443 int ret = 0; 444 445 if (key->prefixlen > trie->max_prefixlen) 446 return -EINVAL; 447 448 spin_lock_irqsave(&trie->lock, irq_flags); 449 450 /* Walk the tree looking for an exact key/length match and keeping 451 * track of the path we traverse. We will need to know the node 452 * we wish to delete, and the slot that points to the node we want 453 * to delete. We may also need to know the nodes parent and the 454 * slot that contains it. 455 */ 456 trim = &trie->root; 457 trim2 = trim; 458 parent = NULL; 459 while ((node = rcu_dereference_protected( 460 *trim, lockdep_is_held(&trie->lock)))) { 461 matchlen = longest_prefix_match(trie, node, key); 462 463 if (node->prefixlen != matchlen || 464 node->prefixlen == key->prefixlen) 465 break; 466 467 parent = node; 468 trim2 = trim; 469 next_bit = extract_bit(key->data, node->prefixlen); 470 trim = &node->child[next_bit]; 471 } 472 473 if (!node || node->prefixlen != key->prefixlen || 474 node->prefixlen != matchlen || 475 (node->flags & LPM_TREE_NODE_FLAG_IM)) { 476 ret = -ENOENT; 477 goto out; 478 } 479 480 trie->n_entries--; 481 482 /* If the node we are removing has two children, simply mark it 483 * as intermediate and we are done. 484 */ 485 if (rcu_access_pointer(node->child[0]) && 486 rcu_access_pointer(node->child[1])) { 487 node->flags |= LPM_TREE_NODE_FLAG_IM; 488 goto out; 489 } 490 491 /* If the parent of the node we are about to delete is an intermediate 492 * node, and the deleted node doesn't have any children, we can delete 493 * the intermediate parent as well and promote its other child 494 * up the tree. Doing this maintains the invariant that all 495 * intermediate nodes have exactly 2 children and that there are no 496 * unnecessary intermediate nodes in the tree. 497 */ 498 if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) && 499 !node->child[0] && !node->child[1]) { 500 if (node == rcu_access_pointer(parent->child[0])) 501 rcu_assign_pointer( 502 *trim2, rcu_access_pointer(parent->child[1])); 503 else 504 rcu_assign_pointer( 505 *trim2, rcu_access_pointer(parent->child[0])); 506 kfree_rcu(parent, rcu); 507 kfree_rcu(node, rcu); 508 goto out; 509 } 510 511 /* The node we are removing has either zero or one child. If there 512 * is a child, move it into the removed node's slot then delete 513 * the node. Otherwise just clear the slot and delete the node. 514 */ 515 if (node->child[0]) 516 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0])); 517 else if (node->child[1]) 518 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1])); 519 else 520 RCU_INIT_POINTER(*trim, NULL); 521 kfree_rcu(node, rcu); 522 523 out: 524 spin_unlock_irqrestore(&trie->lock, irq_flags); 525 526 return ret; 527 } 528 529 #define LPM_DATA_SIZE_MAX 256 530 #define LPM_DATA_SIZE_MIN 1 531 532 #define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \ 533 sizeof(struct lpm_trie_node)) 534 #define LPM_VAL_SIZE_MIN 1 535 536 #define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key) + (X)) 537 #define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX) 538 #define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN) 539 540 #define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \ 541 BPF_F_ACCESS_MASK) 542 543 static struct bpf_map *trie_alloc(union bpf_attr *attr) 544 { 545 struct lpm_trie *trie; 546 547 if (!bpf_capable()) 548 return ERR_PTR(-EPERM); 549 550 /* check sanity of attributes */ 551 if (attr->max_entries == 0 || 552 !(attr->map_flags & BPF_F_NO_PREALLOC) || 553 attr->map_flags & ~LPM_CREATE_FLAG_MASK || 554 !bpf_map_flags_access_ok(attr->map_flags) || 555 attr->key_size < LPM_KEY_SIZE_MIN || 556 attr->key_size > LPM_KEY_SIZE_MAX || 557 attr->value_size < LPM_VAL_SIZE_MIN || 558 attr->value_size > LPM_VAL_SIZE_MAX) 559 return ERR_PTR(-EINVAL); 560 561 trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN | __GFP_ACCOUNT); 562 if (!trie) 563 return ERR_PTR(-ENOMEM); 564 565 /* copy mandatory map attributes */ 566 bpf_map_init_from_attr(&trie->map, attr); 567 trie->data_size = attr->key_size - 568 offsetof(struct bpf_lpm_trie_key, data); 569 trie->max_prefixlen = trie->data_size * 8; 570 571 spin_lock_init(&trie->lock); 572 573 return &trie->map; 574 } 575 576 static void trie_free(struct bpf_map *map) 577 { 578 struct lpm_trie *trie = container_of(map, struct lpm_trie, map); 579 struct lpm_trie_node __rcu **slot; 580 struct lpm_trie_node *node; 581 582 /* Always start at the root and walk down to a node that has no 583 * children. Then free that node, nullify its reference in the parent 584 * and start over. 585 */ 586 587 for (;;) { 588 slot = &trie->root; 589 590 for (;;) { 591 node = rcu_dereference_protected(*slot, 1); 592 if (!node) 593 goto out; 594 595 if (rcu_access_pointer(node->child[0])) { 596 slot = &node->child[0]; 597 continue; 598 } 599 600 if (rcu_access_pointer(node->child[1])) { 601 slot = &node->child[1]; 602 continue; 603 } 604 605 kfree(node); 606 RCU_INIT_POINTER(*slot, NULL); 607 break; 608 } 609 } 610 611 out: 612 kfree(trie); 613 } 614 615 static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key) 616 { 617 struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root; 618 struct lpm_trie *trie = container_of(map, struct lpm_trie, map); 619 struct bpf_lpm_trie_key *key = _key, *next_key = _next_key; 620 struct lpm_trie_node **node_stack = NULL; 621 int err = 0, stack_ptr = -1; 622 unsigned int next_bit; 623 size_t matchlen; 624 625 /* The get_next_key follows postorder. For the 4 node example in 626 * the top of this file, the trie_get_next_key() returns the following 627 * one after another: 628 * 192.168.0.0/24 629 * 192.168.1.0/24 630 * 192.168.128.0/24 631 * 192.168.0.0/16 632 * 633 * The idea is to return more specific keys before less specific ones. 634 */ 635 636 /* Empty trie */ 637 search_root = rcu_dereference(trie->root); 638 if (!search_root) 639 return -ENOENT; 640 641 /* For invalid key, find the leftmost node in the trie */ 642 if (!key || key->prefixlen > trie->max_prefixlen) 643 goto find_leftmost; 644 645 node_stack = kmalloc_array(trie->max_prefixlen, 646 sizeof(struct lpm_trie_node *), 647 GFP_ATOMIC | __GFP_NOWARN); 648 if (!node_stack) 649 return -ENOMEM; 650 651 /* Try to find the exact node for the given key */ 652 for (node = search_root; node;) { 653 node_stack[++stack_ptr] = node; 654 matchlen = longest_prefix_match(trie, node, key); 655 if (node->prefixlen != matchlen || 656 node->prefixlen == key->prefixlen) 657 break; 658 659 next_bit = extract_bit(key->data, node->prefixlen); 660 node = rcu_dereference(node->child[next_bit]); 661 } 662 if (!node || node->prefixlen != key->prefixlen || 663 (node->flags & LPM_TREE_NODE_FLAG_IM)) 664 goto find_leftmost; 665 666 /* The node with the exactly-matching key has been found, 667 * find the first node in postorder after the matched node. 668 */ 669 node = node_stack[stack_ptr]; 670 while (stack_ptr > 0) { 671 parent = node_stack[stack_ptr - 1]; 672 if (rcu_dereference(parent->child[0]) == node) { 673 search_root = rcu_dereference(parent->child[1]); 674 if (search_root) 675 goto find_leftmost; 676 } 677 if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) { 678 next_node = parent; 679 goto do_copy; 680 } 681 682 node = parent; 683 stack_ptr--; 684 } 685 686 /* did not find anything */ 687 err = -ENOENT; 688 goto free_stack; 689 690 find_leftmost: 691 /* Find the leftmost non-intermediate node, all intermediate nodes 692 * have exact two children, so this function will never return NULL. 693 */ 694 for (node = search_root; node;) { 695 if (node->flags & LPM_TREE_NODE_FLAG_IM) { 696 node = rcu_dereference(node->child[0]); 697 } else { 698 next_node = node; 699 node = rcu_dereference(node->child[0]); 700 if (!node) 701 node = rcu_dereference(next_node->child[1]); 702 } 703 } 704 do_copy: 705 next_key->prefixlen = next_node->prefixlen; 706 memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data), 707 next_node->data, trie->data_size); 708 free_stack: 709 kfree(node_stack); 710 return err; 711 } 712 713 static int trie_check_btf(const struct bpf_map *map, 714 const struct btf *btf, 715 const struct btf_type *key_type, 716 const struct btf_type *value_type) 717 { 718 /* Keys must have struct bpf_lpm_trie_key embedded. */ 719 return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ? 720 -EINVAL : 0; 721 } 722 723 BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie) 724 const struct bpf_map_ops trie_map_ops = { 725 .map_meta_equal = bpf_map_meta_equal, 726 .map_alloc = trie_alloc, 727 .map_free = trie_free, 728 .map_get_next_key = trie_get_next_key, 729 .map_lookup_elem = trie_lookup_elem, 730 .map_update_elem = trie_update_elem, 731 .map_delete_elem = trie_delete_elem, 732 .map_lookup_batch = generic_map_lookup_batch, 733 .map_update_batch = generic_map_update_batch, 734 .map_delete_batch = generic_map_delete_batch, 735 .map_check_btf = trie_check_btf, 736 .map_btf_id = &trie_map_btf_ids[0], 737 }; 738