xref: /openbmc/linux/kernel/bpf/lpm_trie.c (revision 82e6fdd6)
1 /*
2  * Longest prefix match list implementation
3  *
4  * Copyright (c) 2016,2017 Daniel Mack
5  * Copyright (c) 2016 David Herrmann
6  *
7  * This file is subject to the terms and conditions of version 2 of the GNU
8  * General Public License.  See the file COPYING in the main directory of the
9  * Linux distribution for more details.
10  */
11 
12 #include <linux/bpf.h>
13 #include <linux/err.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/vmalloc.h>
17 #include <net/ipv6.h>
18 
19 /* Intermediate node */
20 #define LPM_TREE_NODE_FLAG_IM BIT(0)
21 
22 struct lpm_trie_node;
23 
24 struct lpm_trie_node {
25 	struct rcu_head rcu;
26 	struct lpm_trie_node __rcu	*child[2];
27 	u32				prefixlen;
28 	u32				flags;
29 	u8				data[0];
30 };
31 
32 struct lpm_trie {
33 	struct bpf_map			map;
34 	struct lpm_trie_node __rcu	*root;
35 	size_t				n_entries;
36 	size_t				max_prefixlen;
37 	size_t				data_size;
38 	raw_spinlock_t			lock;
39 };
40 
41 /* This trie implements a longest prefix match algorithm that can be used to
42  * match IP addresses to a stored set of ranges.
43  *
44  * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
45  * interpreted as big endian, so data[0] stores the most significant byte.
46  *
47  * Match ranges are internally stored in instances of struct lpm_trie_node
48  * which each contain their prefix length as well as two pointers that may
49  * lead to more nodes containing more specific matches. Each node also stores
50  * a value that is defined by and returned to userspace via the update_elem
51  * and lookup functions.
52  *
53  * For instance, let's start with a trie that was created with a prefix length
54  * of 32, so it can be used for IPv4 addresses, and one single element that
55  * matches 192.168.0.0/16. The data array would hence contain
56  * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
57  * stick to IP-address notation for readability though.
58  *
59  * As the trie is empty initially, the new node (1) will be places as root
60  * node, denoted as (R) in the example below. As there are no other node, both
61  * child pointers are %NULL.
62  *
63  *              +----------------+
64  *              |       (1)  (R) |
65  *              | 192.168.0.0/16 |
66  *              |    value: 1    |
67  *              |   [0]    [1]   |
68  *              +----------------+
69  *
70  * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
71  * a node with the same data and a smaller prefix (ie, a less specific one),
72  * node (2) will become a child of (1). In child index depends on the next bit
73  * that is outside of what (1) matches, and that bit is 0, so (2) will be
74  * child[0] of (1):
75  *
76  *              +----------------+
77  *              |       (1)  (R) |
78  *              | 192.168.0.0/16 |
79  *              |    value: 1    |
80  *              |   [0]    [1]   |
81  *              +----------------+
82  *                   |
83  *    +----------------+
84  *    |       (2)      |
85  *    | 192.168.0.0/24 |
86  *    |    value: 2    |
87  *    |   [0]    [1]   |
88  *    +----------------+
89  *
90  * The child[1] slot of (1) could be filled with another node which has bit #17
91  * (the next bit after the ones that (1) matches on) set to 1. For instance,
92  * 192.168.128.0/24:
93  *
94  *              +----------------+
95  *              |       (1)  (R) |
96  *              | 192.168.0.0/16 |
97  *              |    value: 1    |
98  *              |   [0]    [1]   |
99  *              +----------------+
100  *                   |      |
101  *    +----------------+  +------------------+
102  *    |       (2)      |  |        (3)       |
103  *    | 192.168.0.0/24 |  | 192.168.128.0/24 |
104  *    |    value: 2    |  |     value: 3     |
105  *    |   [0]    [1]   |  |    [0]    [1]    |
106  *    +----------------+  +------------------+
107  *
108  * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
109  * it, node (1) is looked at first, and because (4) of the semantics laid out
110  * above (bit #17 is 0), it would normally be attached to (1) as child[0].
111  * However, that slot is already allocated, so a new node is needed in between.
112  * That node does not have a value attached to it and it will never be
113  * returned to users as result of a lookup. It is only there to differentiate
114  * the traversal further. It will get a prefix as wide as necessary to
115  * distinguish its two children:
116  *
117  *                      +----------------+
118  *                      |       (1)  (R) |
119  *                      | 192.168.0.0/16 |
120  *                      |    value: 1    |
121  *                      |   [0]    [1]   |
122  *                      +----------------+
123  *                           |      |
124  *            +----------------+  +------------------+
125  *            |       (4)  (I) |  |        (3)       |
126  *            | 192.168.0.0/23 |  | 192.168.128.0/24 |
127  *            |    value: ---  |  |     value: 3     |
128  *            |   [0]    [1]   |  |    [0]    [1]    |
129  *            +----------------+  +------------------+
130  *                 |      |
131  *  +----------------+  +----------------+
132  *  |       (2)      |  |       (5)      |
133  *  | 192.168.0.0/24 |  | 192.168.1.0/24 |
134  *  |    value: 2    |  |     value: 5   |
135  *  |   [0]    [1]   |  |   [0]    [1]   |
136  *  +----------------+  +----------------+
137  *
138  * 192.168.1.1/32 would be a child of (5) etc.
139  *
140  * An intermediate node will be turned into a 'real' node on demand. In the
141  * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
142  *
143  * A fully populated trie would have a height of 32 nodes, as the trie was
144  * created with a prefix length of 32.
145  *
146  * The lookup starts at the root node. If the current node matches and if there
147  * is a child that can be used to become more specific, the trie is traversed
148  * downwards. The last node in the traversal that is a non-intermediate one is
149  * returned.
150  */
151 
152 static inline int extract_bit(const u8 *data, size_t index)
153 {
154 	return !!(data[index / 8] & (1 << (7 - (index % 8))));
155 }
156 
157 /**
158  * longest_prefix_match() - determine the longest prefix
159  * @trie:	The trie to get internal sizes from
160  * @node:	The node to operate on
161  * @key:	The key to compare to @node
162  *
163  * Determine the longest prefix of @node that matches the bits in @key.
164  */
165 static size_t longest_prefix_match(const struct lpm_trie *trie,
166 				   const struct lpm_trie_node *node,
167 				   const struct bpf_lpm_trie_key *key)
168 {
169 	size_t prefixlen = 0;
170 	size_t i;
171 
172 	for (i = 0; i < trie->data_size; i++) {
173 		size_t b;
174 
175 		b = 8 - fls(node->data[i] ^ key->data[i]);
176 		prefixlen += b;
177 
178 		if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen)
179 			return min(node->prefixlen, key->prefixlen);
180 
181 		if (b < 8)
182 			break;
183 	}
184 
185 	return prefixlen;
186 }
187 
188 /* Called from syscall or from eBPF program */
189 static void *trie_lookup_elem(struct bpf_map *map, void *_key)
190 {
191 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
192 	struct lpm_trie_node *node, *found = NULL;
193 	struct bpf_lpm_trie_key *key = _key;
194 
195 	/* Start walking the trie from the root node ... */
196 
197 	for (node = rcu_dereference(trie->root); node;) {
198 		unsigned int next_bit;
199 		size_t matchlen;
200 
201 		/* Determine the longest prefix of @node that matches @key.
202 		 * If it's the maximum possible prefix for this trie, we have
203 		 * an exact match and can return it directly.
204 		 */
205 		matchlen = longest_prefix_match(trie, node, key);
206 		if (matchlen == trie->max_prefixlen) {
207 			found = node;
208 			break;
209 		}
210 
211 		/* If the number of bits that match is smaller than the prefix
212 		 * length of @node, bail out and return the node we have seen
213 		 * last in the traversal (ie, the parent).
214 		 */
215 		if (matchlen < node->prefixlen)
216 			break;
217 
218 		/* Consider this node as return candidate unless it is an
219 		 * artificially added intermediate one.
220 		 */
221 		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
222 			found = node;
223 
224 		/* If the node match is fully satisfied, let's see if we can
225 		 * become more specific. Determine the next bit in the key and
226 		 * traverse down.
227 		 */
228 		next_bit = extract_bit(key->data, node->prefixlen);
229 		node = rcu_dereference(node->child[next_bit]);
230 	}
231 
232 	if (!found)
233 		return NULL;
234 
235 	return found->data + trie->data_size;
236 }
237 
238 static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
239 						 const void *value)
240 {
241 	struct lpm_trie_node *node;
242 	size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
243 
244 	if (value)
245 		size += trie->map.value_size;
246 
247 	node = kmalloc_node(size, GFP_ATOMIC | __GFP_NOWARN,
248 			    trie->map.numa_node);
249 	if (!node)
250 		return NULL;
251 
252 	node->flags = 0;
253 
254 	if (value)
255 		memcpy(node->data + trie->data_size, value,
256 		       trie->map.value_size);
257 
258 	return node;
259 }
260 
261 /* Called from syscall or from eBPF program */
262 static int trie_update_elem(struct bpf_map *map,
263 			    void *_key, void *value, u64 flags)
264 {
265 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
266 	struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
267 	struct lpm_trie_node __rcu **slot;
268 	struct bpf_lpm_trie_key *key = _key;
269 	unsigned long irq_flags;
270 	unsigned int next_bit;
271 	size_t matchlen = 0;
272 	int ret = 0;
273 
274 	if (unlikely(flags > BPF_EXIST))
275 		return -EINVAL;
276 
277 	if (key->prefixlen > trie->max_prefixlen)
278 		return -EINVAL;
279 
280 	raw_spin_lock_irqsave(&trie->lock, irq_flags);
281 
282 	/* Allocate and fill a new node */
283 
284 	if (trie->n_entries == trie->map.max_entries) {
285 		ret = -ENOSPC;
286 		goto out;
287 	}
288 
289 	new_node = lpm_trie_node_alloc(trie, value);
290 	if (!new_node) {
291 		ret = -ENOMEM;
292 		goto out;
293 	}
294 
295 	trie->n_entries++;
296 
297 	new_node->prefixlen = key->prefixlen;
298 	RCU_INIT_POINTER(new_node->child[0], NULL);
299 	RCU_INIT_POINTER(new_node->child[1], NULL);
300 	memcpy(new_node->data, key->data, trie->data_size);
301 
302 	/* Now find a slot to attach the new node. To do that, walk the tree
303 	 * from the root and match as many bits as possible for each node until
304 	 * we either find an empty slot or a slot that needs to be replaced by
305 	 * an intermediate node.
306 	 */
307 	slot = &trie->root;
308 
309 	while ((node = rcu_dereference_protected(*slot,
310 					lockdep_is_held(&trie->lock)))) {
311 		matchlen = longest_prefix_match(trie, node, key);
312 
313 		if (node->prefixlen != matchlen ||
314 		    node->prefixlen == key->prefixlen ||
315 		    node->prefixlen == trie->max_prefixlen)
316 			break;
317 
318 		next_bit = extract_bit(key->data, node->prefixlen);
319 		slot = &node->child[next_bit];
320 	}
321 
322 	/* If the slot is empty (a free child pointer or an empty root),
323 	 * simply assign the @new_node to that slot and be done.
324 	 */
325 	if (!node) {
326 		rcu_assign_pointer(*slot, new_node);
327 		goto out;
328 	}
329 
330 	/* If the slot we picked already exists, replace it with @new_node
331 	 * which already has the correct data array set.
332 	 */
333 	if (node->prefixlen == matchlen) {
334 		new_node->child[0] = node->child[0];
335 		new_node->child[1] = node->child[1];
336 
337 		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
338 			trie->n_entries--;
339 
340 		rcu_assign_pointer(*slot, new_node);
341 		kfree_rcu(node, rcu);
342 
343 		goto out;
344 	}
345 
346 	/* If the new node matches the prefix completely, it must be inserted
347 	 * as an ancestor. Simply insert it between @node and *@slot.
348 	 */
349 	if (matchlen == key->prefixlen) {
350 		next_bit = extract_bit(node->data, matchlen);
351 		rcu_assign_pointer(new_node->child[next_bit], node);
352 		rcu_assign_pointer(*slot, new_node);
353 		goto out;
354 	}
355 
356 	im_node = lpm_trie_node_alloc(trie, NULL);
357 	if (!im_node) {
358 		ret = -ENOMEM;
359 		goto out;
360 	}
361 
362 	im_node->prefixlen = matchlen;
363 	im_node->flags |= LPM_TREE_NODE_FLAG_IM;
364 	memcpy(im_node->data, node->data, trie->data_size);
365 
366 	/* Now determine which child to install in which slot */
367 	if (extract_bit(key->data, matchlen)) {
368 		rcu_assign_pointer(im_node->child[0], node);
369 		rcu_assign_pointer(im_node->child[1], new_node);
370 	} else {
371 		rcu_assign_pointer(im_node->child[0], new_node);
372 		rcu_assign_pointer(im_node->child[1], node);
373 	}
374 
375 	/* Finally, assign the intermediate node to the determined spot */
376 	rcu_assign_pointer(*slot, im_node);
377 
378 out:
379 	if (ret) {
380 		if (new_node)
381 			trie->n_entries--;
382 
383 		kfree(new_node);
384 		kfree(im_node);
385 	}
386 
387 	raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
388 
389 	return ret;
390 }
391 
392 /* Called from syscall or from eBPF program */
393 static int trie_delete_elem(struct bpf_map *map, void *_key)
394 {
395 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
396 	struct bpf_lpm_trie_key *key = _key;
397 	struct lpm_trie_node __rcu **trim, **trim2;
398 	struct lpm_trie_node *node, *parent;
399 	unsigned long irq_flags;
400 	unsigned int next_bit;
401 	size_t matchlen = 0;
402 	int ret = 0;
403 
404 	if (key->prefixlen > trie->max_prefixlen)
405 		return -EINVAL;
406 
407 	raw_spin_lock_irqsave(&trie->lock, irq_flags);
408 
409 	/* Walk the tree looking for an exact key/length match and keeping
410 	 * track of the path we traverse.  We will need to know the node
411 	 * we wish to delete, and the slot that points to the node we want
412 	 * to delete.  We may also need to know the nodes parent and the
413 	 * slot that contains it.
414 	 */
415 	trim = &trie->root;
416 	trim2 = trim;
417 	parent = NULL;
418 	while ((node = rcu_dereference_protected(
419 		       *trim, lockdep_is_held(&trie->lock)))) {
420 		matchlen = longest_prefix_match(trie, node, key);
421 
422 		if (node->prefixlen != matchlen ||
423 		    node->prefixlen == key->prefixlen)
424 			break;
425 
426 		parent = node;
427 		trim2 = trim;
428 		next_bit = extract_bit(key->data, node->prefixlen);
429 		trim = &node->child[next_bit];
430 	}
431 
432 	if (!node || node->prefixlen != key->prefixlen ||
433 	    (node->flags & LPM_TREE_NODE_FLAG_IM)) {
434 		ret = -ENOENT;
435 		goto out;
436 	}
437 
438 	trie->n_entries--;
439 
440 	/* If the node we are removing has two children, simply mark it
441 	 * as intermediate and we are done.
442 	 */
443 	if (rcu_access_pointer(node->child[0]) &&
444 	    rcu_access_pointer(node->child[1])) {
445 		node->flags |= LPM_TREE_NODE_FLAG_IM;
446 		goto out;
447 	}
448 
449 	/* If the parent of the node we are about to delete is an intermediate
450 	 * node, and the deleted node doesn't have any children, we can delete
451 	 * the intermediate parent as well and promote its other child
452 	 * up the tree.  Doing this maintains the invariant that all
453 	 * intermediate nodes have exactly 2 children and that there are no
454 	 * unnecessary intermediate nodes in the tree.
455 	 */
456 	if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
457 	    !node->child[0] && !node->child[1]) {
458 		if (node == rcu_access_pointer(parent->child[0]))
459 			rcu_assign_pointer(
460 				*trim2, rcu_access_pointer(parent->child[1]));
461 		else
462 			rcu_assign_pointer(
463 				*trim2, rcu_access_pointer(parent->child[0]));
464 		kfree_rcu(parent, rcu);
465 		kfree_rcu(node, rcu);
466 		goto out;
467 	}
468 
469 	/* The node we are removing has either zero or one child. If there
470 	 * is a child, move it into the removed node's slot then delete
471 	 * the node.  Otherwise just clear the slot and delete the node.
472 	 */
473 	if (node->child[0])
474 		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
475 	else if (node->child[1])
476 		rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
477 	else
478 		RCU_INIT_POINTER(*trim, NULL);
479 	kfree_rcu(node, rcu);
480 
481 out:
482 	raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
483 
484 	return ret;
485 }
486 
487 #define LPM_DATA_SIZE_MAX	256
488 #define LPM_DATA_SIZE_MIN	1
489 
490 #define LPM_VAL_SIZE_MAX	(KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
491 				 sizeof(struct lpm_trie_node))
492 #define LPM_VAL_SIZE_MIN	1
493 
494 #define LPM_KEY_SIZE(X)		(sizeof(struct bpf_lpm_trie_key) + (X))
495 #define LPM_KEY_SIZE_MAX	LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
496 #define LPM_KEY_SIZE_MIN	LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
497 
498 #define LPM_CREATE_FLAG_MASK	(BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE |	\
499 				 BPF_F_RDONLY | BPF_F_WRONLY)
500 
501 static struct bpf_map *trie_alloc(union bpf_attr *attr)
502 {
503 	struct lpm_trie *trie;
504 	u64 cost = sizeof(*trie), cost_per_node;
505 	int ret;
506 
507 	if (!capable(CAP_SYS_ADMIN))
508 		return ERR_PTR(-EPERM);
509 
510 	/* check sanity of attributes */
511 	if (attr->max_entries == 0 ||
512 	    !(attr->map_flags & BPF_F_NO_PREALLOC) ||
513 	    attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
514 	    attr->key_size < LPM_KEY_SIZE_MIN ||
515 	    attr->key_size > LPM_KEY_SIZE_MAX ||
516 	    attr->value_size < LPM_VAL_SIZE_MIN ||
517 	    attr->value_size > LPM_VAL_SIZE_MAX)
518 		return ERR_PTR(-EINVAL);
519 
520 	trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
521 	if (!trie)
522 		return ERR_PTR(-ENOMEM);
523 
524 	/* copy mandatory map attributes */
525 	bpf_map_init_from_attr(&trie->map, attr);
526 	trie->data_size = attr->key_size -
527 			  offsetof(struct bpf_lpm_trie_key, data);
528 	trie->max_prefixlen = trie->data_size * 8;
529 
530 	cost_per_node = sizeof(struct lpm_trie_node) +
531 			attr->value_size + trie->data_size;
532 	cost += (u64) attr->max_entries * cost_per_node;
533 	if (cost >= U32_MAX - PAGE_SIZE) {
534 		ret = -E2BIG;
535 		goto out_err;
536 	}
537 
538 	trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
539 
540 	ret = bpf_map_precharge_memlock(trie->map.pages);
541 	if (ret)
542 		goto out_err;
543 
544 	raw_spin_lock_init(&trie->lock);
545 
546 	return &trie->map;
547 out_err:
548 	kfree(trie);
549 	return ERR_PTR(ret);
550 }
551 
552 static void trie_free(struct bpf_map *map)
553 {
554 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
555 	struct lpm_trie_node __rcu **slot;
556 	struct lpm_trie_node *node;
557 
558 	/* Wait for outstanding programs to complete
559 	 * update/lookup/delete/get_next_key and free the trie.
560 	 */
561 	synchronize_rcu();
562 
563 	/* Always start at the root and walk down to a node that has no
564 	 * children. Then free that node, nullify its reference in the parent
565 	 * and start over.
566 	 */
567 
568 	for (;;) {
569 		slot = &trie->root;
570 
571 		for (;;) {
572 			node = rcu_dereference_protected(*slot, 1);
573 			if (!node)
574 				goto out;
575 
576 			if (rcu_access_pointer(node->child[0])) {
577 				slot = &node->child[0];
578 				continue;
579 			}
580 
581 			if (rcu_access_pointer(node->child[1])) {
582 				slot = &node->child[1];
583 				continue;
584 			}
585 
586 			kfree(node);
587 			RCU_INIT_POINTER(*slot, NULL);
588 			break;
589 		}
590 	}
591 
592 out:
593 	kfree(trie);
594 }
595 
596 static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
597 {
598 	struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
599 	struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
600 	struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
601 	struct lpm_trie_node **node_stack = NULL;
602 	int err = 0, stack_ptr = -1;
603 	unsigned int next_bit;
604 	size_t matchlen;
605 
606 	/* The get_next_key follows postorder. For the 4 node example in
607 	 * the top of this file, the trie_get_next_key() returns the following
608 	 * one after another:
609 	 *   192.168.0.0/24
610 	 *   192.168.1.0/24
611 	 *   192.168.128.0/24
612 	 *   192.168.0.0/16
613 	 *
614 	 * The idea is to return more specific keys before less specific ones.
615 	 */
616 
617 	/* Empty trie */
618 	search_root = rcu_dereference(trie->root);
619 	if (!search_root)
620 		return -ENOENT;
621 
622 	/* For invalid key, find the leftmost node in the trie */
623 	if (!key || key->prefixlen > trie->max_prefixlen)
624 		goto find_leftmost;
625 
626 	node_stack = kmalloc(trie->max_prefixlen * sizeof(struct lpm_trie_node *),
627 			     GFP_ATOMIC | __GFP_NOWARN);
628 	if (!node_stack)
629 		return -ENOMEM;
630 
631 	/* Try to find the exact node for the given key */
632 	for (node = search_root; node;) {
633 		node_stack[++stack_ptr] = node;
634 		matchlen = longest_prefix_match(trie, node, key);
635 		if (node->prefixlen != matchlen ||
636 		    node->prefixlen == key->prefixlen)
637 			break;
638 
639 		next_bit = extract_bit(key->data, node->prefixlen);
640 		node = rcu_dereference(node->child[next_bit]);
641 	}
642 	if (!node || node->prefixlen != key->prefixlen ||
643 	    (node->flags & LPM_TREE_NODE_FLAG_IM))
644 		goto find_leftmost;
645 
646 	/* The node with the exactly-matching key has been found,
647 	 * find the first node in postorder after the matched node.
648 	 */
649 	node = node_stack[stack_ptr];
650 	while (stack_ptr > 0) {
651 		parent = node_stack[stack_ptr - 1];
652 		if (rcu_dereference(parent->child[0]) == node) {
653 			search_root = rcu_dereference(parent->child[1]);
654 			if (search_root)
655 				goto find_leftmost;
656 		}
657 		if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
658 			next_node = parent;
659 			goto do_copy;
660 		}
661 
662 		node = parent;
663 		stack_ptr--;
664 	}
665 
666 	/* did not find anything */
667 	err = -ENOENT;
668 	goto free_stack;
669 
670 find_leftmost:
671 	/* Find the leftmost non-intermediate node, all intermediate nodes
672 	 * have exact two children, so this function will never return NULL.
673 	 */
674 	for (node = search_root; node;) {
675 		if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
676 			next_node = node;
677 		node = rcu_dereference(node->child[0]);
678 	}
679 do_copy:
680 	next_key->prefixlen = next_node->prefixlen;
681 	memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
682 	       next_node->data, trie->data_size);
683 free_stack:
684 	kfree(node_stack);
685 	return err;
686 }
687 
688 const struct bpf_map_ops trie_map_ops = {
689 	.map_alloc = trie_alloc,
690 	.map_free = trie_free,
691 	.map_get_next_key = trie_get_next_key,
692 	.map_lookup_elem = trie_lookup_elem,
693 	.map_update_elem = trie_update_elem,
694 	.map_delete_elem = trie_delete_elem,
695 };
696