1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/rcupdate.h> 8 #include <linux/random.h> 9 #include <linux/smp.h> 10 #include <linux/topology.h> 11 #include <linux/ktime.h> 12 #include <linux/sched.h> 13 #include <linux/uidgid.h> 14 #include <linux/filter.h> 15 #include <linux/ctype.h> 16 #include <linux/jiffies.h> 17 #include <linux/pid_namespace.h> 18 #include <linux/proc_ns.h> 19 #include <linux/security.h> 20 #include <linux/btf_ids.h> 21 22 #include "../../lib/kstrtox.h" 23 24 /* If kernel subsystem is allowing eBPF programs to call this function, 25 * inside its own verifier_ops->get_func_proto() callback it should return 26 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 27 * 28 * Different map implementations will rely on rcu in map methods 29 * lookup/update/delete, therefore eBPF programs must run under rcu lock 30 * if program is allowed to access maps, so check rcu_read_lock_held in 31 * all three functions. 32 */ 33 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 34 { 35 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 36 return (unsigned long) map->ops->map_lookup_elem(map, key); 37 } 38 39 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 40 .func = bpf_map_lookup_elem, 41 .gpl_only = false, 42 .pkt_access = true, 43 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 44 .arg1_type = ARG_CONST_MAP_PTR, 45 .arg2_type = ARG_PTR_TO_MAP_KEY, 46 }; 47 48 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 49 void *, value, u64, flags) 50 { 51 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 52 return map->ops->map_update_elem(map, key, value, flags); 53 } 54 55 const struct bpf_func_proto bpf_map_update_elem_proto = { 56 .func = bpf_map_update_elem, 57 .gpl_only = false, 58 .pkt_access = true, 59 .ret_type = RET_INTEGER, 60 .arg1_type = ARG_CONST_MAP_PTR, 61 .arg2_type = ARG_PTR_TO_MAP_KEY, 62 .arg3_type = ARG_PTR_TO_MAP_VALUE, 63 .arg4_type = ARG_ANYTHING, 64 }; 65 66 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 67 { 68 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 69 return map->ops->map_delete_elem(map, key); 70 } 71 72 const struct bpf_func_proto bpf_map_delete_elem_proto = { 73 .func = bpf_map_delete_elem, 74 .gpl_only = false, 75 .pkt_access = true, 76 .ret_type = RET_INTEGER, 77 .arg1_type = ARG_CONST_MAP_PTR, 78 .arg2_type = ARG_PTR_TO_MAP_KEY, 79 }; 80 81 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 82 { 83 return map->ops->map_push_elem(map, value, flags); 84 } 85 86 const struct bpf_func_proto bpf_map_push_elem_proto = { 87 .func = bpf_map_push_elem, 88 .gpl_only = false, 89 .pkt_access = true, 90 .ret_type = RET_INTEGER, 91 .arg1_type = ARG_CONST_MAP_PTR, 92 .arg2_type = ARG_PTR_TO_MAP_VALUE, 93 .arg3_type = ARG_ANYTHING, 94 }; 95 96 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 97 { 98 return map->ops->map_pop_elem(map, value); 99 } 100 101 const struct bpf_func_proto bpf_map_pop_elem_proto = { 102 .func = bpf_map_pop_elem, 103 .gpl_only = false, 104 .ret_type = RET_INTEGER, 105 .arg1_type = ARG_CONST_MAP_PTR, 106 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 107 }; 108 109 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 110 { 111 return map->ops->map_peek_elem(map, value); 112 } 113 114 const struct bpf_func_proto bpf_map_peek_elem_proto = { 115 .func = bpf_map_peek_elem, 116 .gpl_only = false, 117 .ret_type = RET_INTEGER, 118 .arg1_type = ARG_CONST_MAP_PTR, 119 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 120 }; 121 122 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 123 { 124 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 125 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 126 } 127 128 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 129 .func = bpf_map_lookup_percpu_elem, 130 .gpl_only = false, 131 .pkt_access = true, 132 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 133 .arg1_type = ARG_CONST_MAP_PTR, 134 .arg2_type = ARG_PTR_TO_MAP_KEY, 135 .arg3_type = ARG_ANYTHING, 136 }; 137 138 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 139 .func = bpf_user_rnd_u32, 140 .gpl_only = false, 141 .ret_type = RET_INTEGER, 142 }; 143 144 BPF_CALL_0(bpf_get_smp_processor_id) 145 { 146 return smp_processor_id(); 147 } 148 149 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 150 .func = bpf_get_smp_processor_id, 151 .gpl_only = false, 152 .ret_type = RET_INTEGER, 153 }; 154 155 BPF_CALL_0(bpf_get_numa_node_id) 156 { 157 return numa_node_id(); 158 } 159 160 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 161 .func = bpf_get_numa_node_id, 162 .gpl_only = false, 163 .ret_type = RET_INTEGER, 164 }; 165 166 BPF_CALL_0(bpf_ktime_get_ns) 167 { 168 /* NMI safe access to clock monotonic */ 169 return ktime_get_mono_fast_ns(); 170 } 171 172 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 173 .func = bpf_ktime_get_ns, 174 .gpl_only = false, 175 .ret_type = RET_INTEGER, 176 }; 177 178 BPF_CALL_0(bpf_ktime_get_boot_ns) 179 { 180 /* NMI safe access to clock boottime */ 181 return ktime_get_boot_fast_ns(); 182 } 183 184 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 185 .func = bpf_ktime_get_boot_ns, 186 .gpl_only = false, 187 .ret_type = RET_INTEGER, 188 }; 189 190 BPF_CALL_0(bpf_ktime_get_coarse_ns) 191 { 192 return ktime_get_coarse_ns(); 193 } 194 195 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 196 .func = bpf_ktime_get_coarse_ns, 197 .gpl_only = false, 198 .ret_type = RET_INTEGER, 199 }; 200 201 BPF_CALL_0(bpf_ktime_get_tai_ns) 202 { 203 /* NMI safe access to clock tai */ 204 return ktime_get_tai_fast_ns(); 205 } 206 207 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 208 .func = bpf_ktime_get_tai_ns, 209 .gpl_only = false, 210 .ret_type = RET_INTEGER, 211 }; 212 213 BPF_CALL_0(bpf_get_current_pid_tgid) 214 { 215 struct task_struct *task = current; 216 217 if (unlikely(!task)) 218 return -EINVAL; 219 220 return (u64) task->tgid << 32 | task->pid; 221 } 222 223 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 224 .func = bpf_get_current_pid_tgid, 225 .gpl_only = false, 226 .ret_type = RET_INTEGER, 227 }; 228 229 BPF_CALL_0(bpf_get_current_uid_gid) 230 { 231 struct task_struct *task = current; 232 kuid_t uid; 233 kgid_t gid; 234 235 if (unlikely(!task)) 236 return -EINVAL; 237 238 current_uid_gid(&uid, &gid); 239 return (u64) from_kgid(&init_user_ns, gid) << 32 | 240 from_kuid(&init_user_ns, uid); 241 } 242 243 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 244 .func = bpf_get_current_uid_gid, 245 .gpl_only = false, 246 .ret_type = RET_INTEGER, 247 }; 248 249 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 250 { 251 struct task_struct *task = current; 252 253 if (unlikely(!task)) 254 goto err_clear; 255 256 /* Verifier guarantees that size > 0 */ 257 strscpy(buf, task->comm, size); 258 return 0; 259 err_clear: 260 memset(buf, 0, size); 261 return -EINVAL; 262 } 263 264 const struct bpf_func_proto bpf_get_current_comm_proto = { 265 .func = bpf_get_current_comm, 266 .gpl_only = false, 267 .ret_type = RET_INTEGER, 268 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 269 .arg2_type = ARG_CONST_SIZE, 270 }; 271 272 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 273 274 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 275 { 276 arch_spinlock_t *l = (void *)lock; 277 union { 278 __u32 val; 279 arch_spinlock_t lock; 280 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 281 282 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 283 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 284 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 285 arch_spin_lock(l); 286 } 287 288 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 289 { 290 arch_spinlock_t *l = (void *)lock; 291 292 arch_spin_unlock(l); 293 } 294 295 #else 296 297 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 298 { 299 atomic_t *l = (void *)lock; 300 301 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 302 do { 303 atomic_cond_read_relaxed(l, !VAL); 304 } while (atomic_xchg(l, 1)); 305 } 306 307 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 308 { 309 atomic_t *l = (void *)lock; 310 311 atomic_set_release(l, 0); 312 } 313 314 #endif 315 316 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 317 318 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 319 { 320 unsigned long flags; 321 322 local_irq_save(flags); 323 __bpf_spin_lock(lock); 324 __this_cpu_write(irqsave_flags, flags); 325 } 326 327 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 328 { 329 __bpf_spin_lock_irqsave(lock); 330 return 0; 331 } 332 333 const struct bpf_func_proto bpf_spin_lock_proto = { 334 .func = bpf_spin_lock, 335 .gpl_only = false, 336 .ret_type = RET_VOID, 337 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 338 }; 339 340 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 341 { 342 unsigned long flags; 343 344 flags = __this_cpu_read(irqsave_flags); 345 __bpf_spin_unlock(lock); 346 local_irq_restore(flags); 347 } 348 349 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 350 { 351 __bpf_spin_unlock_irqrestore(lock); 352 return 0; 353 } 354 355 const struct bpf_func_proto bpf_spin_unlock_proto = { 356 .func = bpf_spin_unlock, 357 .gpl_only = false, 358 .ret_type = RET_VOID, 359 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 360 }; 361 362 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 363 bool lock_src) 364 { 365 struct bpf_spin_lock *lock; 366 367 if (lock_src) 368 lock = src + map->spin_lock_off; 369 else 370 lock = dst + map->spin_lock_off; 371 preempt_disable(); 372 __bpf_spin_lock_irqsave(lock); 373 copy_map_value(map, dst, src); 374 __bpf_spin_unlock_irqrestore(lock); 375 preempt_enable(); 376 } 377 378 BPF_CALL_0(bpf_jiffies64) 379 { 380 return get_jiffies_64(); 381 } 382 383 const struct bpf_func_proto bpf_jiffies64_proto = { 384 .func = bpf_jiffies64, 385 .gpl_only = false, 386 .ret_type = RET_INTEGER, 387 }; 388 389 #ifdef CONFIG_CGROUPS 390 BPF_CALL_0(bpf_get_current_cgroup_id) 391 { 392 struct cgroup *cgrp; 393 u64 cgrp_id; 394 395 rcu_read_lock(); 396 cgrp = task_dfl_cgroup(current); 397 cgrp_id = cgroup_id(cgrp); 398 rcu_read_unlock(); 399 400 return cgrp_id; 401 } 402 403 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 404 .func = bpf_get_current_cgroup_id, 405 .gpl_only = false, 406 .ret_type = RET_INTEGER, 407 }; 408 409 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 410 { 411 struct cgroup *cgrp; 412 struct cgroup *ancestor; 413 u64 cgrp_id; 414 415 rcu_read_lock(); 416 cgrp = task_dfl_cgroup(current); 417 ancestor = cgroup_ancestor(cgrp, ancestor_level); 418 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 419 rcu_read_unlock(); 420 421 return cgrp_id; 422 } 423 424 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 425 .func = bpf_get_current_ancestor_cgroup_id, 426 .gpl_only = false, 427 .ret_type = RET_INTEGER, 428 .arg1_type = ARG_ANYTHING, 429 }; 430 431 #ifdef CONFIG_CGROUP_BPF 432 433 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) 434 { 435 /* flags argument is not used now, 436 * but provides an ability to extend the API. 437 * verifier checks that its value is correct. 438 */ 439 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); 440 struct bpf_cgroup_storage *storage; 441 struct bpf_cg_run_ctx *ctx; 442 void *ptr; 443 444 /* get current cgroup storage from BPF run context */ 445 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 446 storage = ctx->prog_item->cgroup_storage[stype]; 447 448 if (stype == BPF_CGROUP_STORAGE_SHARED) 449 ptr = &READ_ONCE(storage->buf)->data[0]; 450 else 451 ptr = this_cpu_ptr(storage->percpu_buf); 452 453 return (unsigned long)ptr; 454 } 455 456 const struct bpf_func_proto bpf_get_local_storage_proto = { 457 .func = bpf_get_local_storage, 458 .gpl_only = false, 459 .ret_type = RET_PTR_TO_MAP_VALUE, 460 .arg1_type = ARG_CONST_MAP_PTR, 461 .arg2_type = ARG_ANYTHING, 462 }; 463 #endif 464 465 #define BPF_STRTOX_BASE_MASK 0x1F 466 467 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 468 unsigned long long *res, bool *is_negative) 469 { 470 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 471 const char *cur_buf = buf; 472 size_t cur_len = buf_len; 473 unsigned int consumed; 474 size_t val_len; 475 char str[64]; 476 477 if (!buf || !buf_len || !res || !is_negative) 478 return -EINVAL; 479 480 if (base != 0 && base != 8 && base != 10 && base != 16) 481 return -EINVAL; 482 483 if (flags & ~BPF_STRTOX_BASE_MASK) 484 return -EINVAL; 485 486 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 487 ++cur_buf; 488 489 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 490 if (*is_negative) 491 ++cur_buf; 492 493 consumed = cur_buf - buf; 494 cur_len -= consumed; 495 if (!cur_len) 496 return -EINVAL; 497 498 cur_len = min(cur_len, sizeof(str) - 1); 499 memcpy(str, cur_buf, cur_len); 500 str[cur_len] = '\0'; 501 cur_buf = str; 502 503 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 504 val_len = _parse_integer(cur_buf, base, res); 505 506 if (val_len & KSTRTOX_OVERFLOW) 507 return -ERANGE; 508 509 if (val_len == 0) 510 return -EINVAL; 511 512 cur_buf += val_len; 513 consumed += cur_buf - str; 514 515 return consumed; 516 } 517 518 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 519 long long *res) 520 { 521 unsigned long long _res; 522 bool is_negative; 523 int err; 524 525 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 526 if (err < 0) 527 return err; 528 if (is_negative) { 529 if ((long long)-_res > 0) 530 return -ERANGE; 531 *res = -_res; 532 } else { 533 if ((long long)_res < 0) 534 return -ERANGE; 535 *res = _res; 536 } 537 return err; 538 } 539 540 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 541 long *, res) 542 { 543 long long _res; 544 int err; 545 546 err = __bpf_strtoll(buf, buf_len, flags, &_res); 547 if (err < 0) 548 return err; 549 if (_res != (long)_res) 550 return -ERANGE; 551 *res = _res; 552 return err; 553 } 554 555 const struct bpf_func_proto bpf_strtol_proto = { 556 .func = bpf_strtol, 557 .gpl_only = false, 558 .ret_type = RET_INTEGER, 559 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 560 .arg2_type = ARG_CONST_SIZE, 561 .arg3_type = ARG_ANYTHING, 562 .arg4_type = ARG_PTR_TO_LONG, 563 }; 564 565 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 566 unsigned long *, res) 567 { 568 unsigned long long _res; 569 bool is_negative; 570 int err; 571 572 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 573 if (err < 0) 574 return err; 575 if (is_negative) 576 return -EINVAL; 577 if (_res != (unsigned long)_res) 578 return -ERANGE; 579 *res = _res; 580 return err; 581 } 582 583 const struct bpf_func_proto bpf_strtoul_proto = { 584 .func = bpf_strtoul, 585 .gpl_only = false, 586 .ret_type = RET_INTEGER, 587 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 588 .arg2_type = ARG_CONST_SIZE, 589 .arg3_type = ARG_ANYTHING, 590 .arg4_type = ARG_PTR_TO_LONG, 591 }; 592 #endif 593 594 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 595 { 596 return strncmp(s1, s2, s1_sz); 597 } 598 599 static const struct bpf_func_proto bpf_strncmp_proto = { 600 .func = bpf_strncmp, 601 .gpl_only = false, 602 .ret_type = RET_INTEGER, 603 .arg1_type = ARG_PTR_TO_MEM, 604 .arg2_type = ARG_CONST_SIZE, 605 .arg3_type = ARG_PTR_TO_CONST_STR, 606 }; 607 608 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 609 struct bpf_pidns_info *, nsdata, u32, size) 610 { 611 struct task_struct *task = current; 612 struct pid_namespace *pidns; 613 int err = -EINVAL; 614 615 if (unlikely(size != sizeof(struct bpf_pidns_info))) 616 goto clear; 617 618 if (unlikely((u64)(dev_t)dev != dev)) 619 goto clear; 620 621 if (unlikely(!task)) 622 goto clear; 623 624 pidns = task_active_pid_ns(task); 625 if (unlikely(!pidns)) { 626 err = -ENOENT; 627 goto clear; 628 } 629 630 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 631 goto clear; 632 633 nsdata->pid = task_pid_nr_ns(task, pidns); 634 nsdata->tgid = task_tgid_nr_ns(task, pidns); 635 return 0; 636 clear: 637 memset((void *)nsdata, 0, (size_t) size); 638 return err; 639 } 640 641 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 642 .func = bpf_get_ns_current_pid_tgid, 643 .gpl_only = false, 644 .ret_type = RET_INTEGER, 645 .arg1_type = ARG_ANYTHING, 646 .arg2_type = ARG_ANYTHING, 647 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 648 .arg4_type = ARG_CONST_SIZE, 649 }; 650 651 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 652 .func = bpf_get_raw_cpu_id, 653 .gpl_only = false, 654 .ret_type = RET_INTEGER, 655 }; 656 657 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 658 u64, flags, void *, data, u64, size) 659 { 660 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 661 return -EINVAL; 662 663 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 664 } 665 666 const struct bpf_func_proto bpf_event_output_data_proto = { 667 .func = bpf_event_output_data, 668 .gpl_only = true, 669 .ret_type = RET_INTEGER, 670 .arg1_type = ARG_PTR_TO_CTX, 671 .arg2_type = ARG_CONST_MAP_PTR, 672 .arg3_type = ARG_ANYTHING, 673 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 674 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 675 }; 676 677 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 678 const void __user *, user_ptr) 679 { 680 int ret = copy_from_user(dst, user_ptr, size); 681 682 if (unlikely(ret)) { 683 memset(dst, 0, size); 684 ret = -EFAULT; 685 } 686 687 return ret; 688 } 689 690 const struct bpf_func_proto bpf_copy_from_user_proto = { 691 .func = bpf_copy_from_user, 692 .gpl_only = false, 693 .ret_type = RET_INTEGER, 694 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 695 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 696 .arg3_type = ARG_ANYTHING, 697 }; 698 699 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 700 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 701 { 702 int ret; 703 704 /* flags is not used yet */ 705 if (unlikely(flags)) 706 return -EINVAL; 707 708 if (unlikely(!size)) 709 return 0; 710 711 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 712 if (ret == size) 713 return 0; 714 715 memset(dst, 0, size); 716 /* Return -EFAULT for partial read */ 717 return ret < 0 ? ret : -EFAULT; 718 } 719 720 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 721 .func = bpf_copy_from_user_task, 722 .gpl_only = true, 723 .ret_type = RET_INTEGER, 724 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 725 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 726 .arg3_type = ARG_ANYTHING, 727 .arg4_type = ARG_PTR_TO_BTF_ID, 728 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 729 .arg5_type = ARG_ANYTHING 730 }; 731 732 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 733 { 734 if (cpu >= nr_cpu_ids) 735 return (unsigned long)NULL; 736 737 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 738 } 739 740 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 741 .func = bpf_per_cpu_ptr, 742 .gpl_only = false, 743 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 744 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 745 .arg2_type = ARG_ANYTHING, 746 }; 747 748 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 749 { 750 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 751 } 752 753 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 754 .func = bpf_this_cpu_ptr, 755 .gpl_only = false, 756 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 757 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 758 }; 759 760 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 761 size_t bufsz) 762 { 763 void __user *user_ptr = (__force void __user *)unsafe_ptr; 764 765 buf[0] = 0; 766 767 switch (fmt_ptype) { 768 case 's': 769 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 770 if ((unsigned long)unsafe_ptr < TASK_SIZE) 771 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 772 fallthrough; 773 #endif 774 case 'k': 775 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 776 case 'u': 777 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 778 } 779 780 return -EINVAL; 781 } 782 783 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 784 * arguments representation. 785 */ 786 #define MAX_BPRINTF_BUF_LEN 512 787 788 /* Support executing three nested bprintf helper calls on a given CPU */ 789 #define MAX_BPRINTF_NEST_LEVEL 3 790 struct bpf_bprintf_buffers { 791 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN]; 792 }; 793 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs); 794 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 795 796 static int try_get_fmt_tmp_buf(char **tmp_buf) 797 { 798 struct bpf_bprintf_buffers *bufs; 799 int nest_level; 800 801 preempt_disable(); 802 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 803 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 804 this_cpu_dec(bpf_bprintf_nest_level); 805 preempt_enable(); 806 return -EBUSY; 807 } 808 bufs = this_cpu_ptr(&bpf_bprintf_bufs); 809 *tmp_buf = bufs->tmp_bufs[nest_level - 1]; 810 811 return 0; 812 } 813 814 void bpf_bprintf_cleanup(void) 815 { 816 if (this_cpu_read(bpf_bprintf_nest_level)) { 817 this_cpu_dec(bpf_bprintf_nest_level); 818 preempt_enable(); 819 } 820 } 821 822 /* 823 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 824 * 825 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 826 * 827 * This can be used in two ways: 828 * - Format string verification only: when bin_args is NULL 829 * - Arguments preparation: in addition to the above verification, it writes in 830 * bin_args a binary representation of arguments usable by bstr_printf where 831 * pointers from BPF have been sanitized. 832 * 833 * In argument preparation mode, if 0 is returned, safe temporary buffers are 834 * allocated and bpf_bprintf_cleanup should be called to free them after use. 835 */ 836 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 837 u32 **bin_args, u32 num_args) 838 { 839 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 840 size_t sizeof_cur_arg, sizeof_cur_ip; 841 int err, i, num_spec = 0; 842 u64 cur_arg; 843 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 844 845 fmt_end = strnchr(fmt, fmt_size, 0); 846 if (!fmt_end) 847 return -EINVAL; 848 fmt_size = fmt_end - fmt; 849 850 if (bin_args) { 851 if (num_args && try_get_fmt_tmp_buf(&tmp_buf)) 852 return -EBUSY; 853 854 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN; 855 *bin_args = (u32 *)tmp_buf; 856 } 857 858 for (i = 0; i < fmt_size; i++) { 859 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 860 err = -EINVAL; 861 goto out; 862 } 863 864 if (fmt[i] != '%') 865 continue; 866 867 if (fmt[i + 1] == '%') { 868 i++; 869 continue; 870 } 871 872 if (num_spec >= num_args) { 873 err = -EINVAL; 874 goto out; 875 } 876 877 /* The string is zero-terminated so if fmt[i] != 0, we can 878 * always access fmt[i + 1], in the worst case it will be a 0 879 */ 880 i++; 881 882 /* skip optional "[0 +-][num]" width formatting field */ 883 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 884 fmt[i] == ' ') 885 i++; 886 if (fmt[i] >= '1' && fmt[i] <= '9') { 887 i++; 888 while (fmt[i] >= '0' && fmt[i] <= '9') 889 i++; 890 } 891 892 if (fmt[i] == 'p') { 893 sizeof_cur_arg = sizeof(long); 894 895 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 896 fmt[i + 2] == 's') { 897 fmt_ptype = fmt[i + 1]; 898 i += 2; 899 goto fmt_str; 900 } 901 902 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 903 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 904 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 905 fmt[i + 1] == 'S') { 906 /* just kernel pointers */ 907 if (tmp_buf) 908 cur_arg = raw_args[num_spec]; 909 i++; 910 goto nocopy_fmt; 911 } 912 913 if (fmt[i + 1] == 'B') { 914 if (tmp_buf) { 915 err = snprintf(tmp_buf, 916 (tmp_buf_end - tmp_buf), 917 "%pB", 918 (void *)(long)raw_args[num_spec]); 919 tmp_buf += (err + 1); 920 } 921 922 i++; 923 num_spec++; 924 continue; 925 } 926 927 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 928 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 929 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 930 err = -EINVAL; 931 goto out; 932 } 933 934 i += 2; 935 if (!tmp_buf) 936 goto nocopy_fmt; 937 938 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 939 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 940 err = -ENOSPC; 941 goto out; 942 } 943 944 unsafe_ptr = (char *)(long)raw_args[num_spec]; 945 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 946 sizeof_cur_ip); 947 if (err < 0) 948 memset(cur_ip, 0, sizeof_cur_ip); 949 950 /* hack: bstr_printf expects IP addresses to be 951 * pre-formatted as strings, ironically, the easiest way 952 * to do that is to call snprintf. 953 */ 954 ip_spec[2] = fmt[i - 1]; 955 ip_spec[3] = fmt[i]; 956 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 957 ip_spec, &cur_ip); 958 959 tmp_buf += err + 1; 960 num_spec++; 961 962 continue; 963 } else if (fmt[i] == 's') { 964 fmt_ptype = fmt[i]; 965 fmt_str: 966 if (fmt[i + 1] != 0 && 967 !isspace(fmt[i + 1]) && 968 !ispunct(fmt[i + 1])) { 969 err = -EINVAL; 970 goto out; 971 } 972 973 if (!tmp_buf) 974 goto nocopy_fmt; 975 976 if (tmp_buf_end == tmp_buf) { 977 err = -ENOSPC; 978 goto out; 979 } 980 981 unsafe_ptr = (char *)(long)raw_args[num_spec]; 982 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 983 fmt_ptype, 984 tmp_buf_end - tmp_buf); 985 if (err < 0) { 986 tmp_buf[0] = '\0'; 987 err = 1; 988 } 989 990 tmp_buf += err; 991 num_spec++; 992 993 continue; 994 } else if (fmt[i] == 'c') { 995 if (!tmp_buf) 996 goto nocopy_fmt; 997 998 if (tmp_buf_end == tmp_buf) { 999 err = -ENOSPC; 1000 goto out; 1001 } 1002 1003 *tmp_buf = raw_args[num_spec]; 1004 tmp_buf++; 1005 num_spec++; 1006 1007 continue; 1008 } 1009 1010 sizeof_cur_arg = sizeof(int); 1011 1012 if (fmt[i] == 'l') { 1013 sizeof_cur_arg = sizeof(long); 1014 i++; 1015 } 1016 if (fmt[i] == 'l') { 1017 sizeof_cur_arg = sizeof(long long); 1018 i++; 1019 } 1020 1021 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1022 fmt[i] != 'x' && fmt[i] != 'X') { 1023 err = -EINVAL; 1024 goto out; 1025 } 1026 1027 if (tmp_buf) 1028 cur_arg = raw_args[num_spec]; 1029 nocopy_fmt: 1030 if (tmp_buf) { 1031 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1032 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1033 err = -ENOSPC; 1034 goto out; 1035 } 1036 1037 if (sizeof_cur_arg == 8) { 1038 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1039 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1040 } else { 1041 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1042 } 1043 tmp_buf += sizeof_cur_arg; 1044 } 1045 num_spec++; 1046 } 1047 1048 err = 0; 1049 out: 1050 if (err) 1051 bpf_bprintf_cleanup(); 1052 return err; 1053 } 1054 1055 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1056 const void *, data, u32, data_len) 1057 { 1058 int err, num_args; 1059 u32 *bin_args; 1060 1061 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1062 (data_len && !data)) 1063 return -EINVAL; 1064 num_args = data_len / 8; 1065 1066 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1067 * can safely give an unbounded size. 1068 */ 1069 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args); 1070 if (err < 0) 1071 return err; 1072 1073 err = bstr_printf(str, str_size, fmt, bin_args); 1074 1075 bpf_bprintf_cleanup(); 1076 1077 return err + 1; 1078 } 1079 1080 const struct bpf_func_proto bpf_snprintf_proto = { 1081 .func = bpf_snprintf, 1082 .gpl_only = true, 1083 .ret_type = RET_INTEGER, 1084 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1085 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1086 .arg3_type = ARG_PTR_TO_CONST_STR, 1087 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1088 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1089 }; 1090 1091 /* BPF map elements can contain 'struct bpf_timer'. 1092 * Such map owns all of its BPF timers. 1093 * 'struct bpf_timer' is allocated as part of map element allocation 1094 * and it's zero initialized. 1095 * That space is used to keep 'struct bpf_timer_kern'. 1096 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1097 * remembers 'struct bpf_map *' pointer it's part of. 1098 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1099 * bpf_timer_start() arms the timer. 1100 * If user space reference to a map goes to zero at this point 1101 * ops->map_release_uref callback is responsible for cancelling the timers, 1102 * freeing their memory, and decrementing prog's refcnts. 1103 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1104 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1105 * freeing the timers when inner map is replaced or deleted by user space. 1106 */ 1107 struct bpf_hrtimer { 1108 struct hrtimer timer; 1109 struct bpf_map *map; 1110 struct bpf_prog *prog; 1111 void __rcu *callback_fn; 1112 void *value; 1113 }; 1114 1115 /* the actual struct hidden inside uapi struct bpf_timer */ 1116 struct bpf_timer_kern { 1117 struct bpf_hrtimer *timer; 1118 /* bpf_spin_lock is used here instead of spinlock_t to make 1119 * sure that it always fits into space reserved by struct bpf_timer 1120 * regardless of LOCKDEP and spinlock debug flags. 1121 */ 1122 struct bpf_spin_lock lock; 1123 } __attribute__((aligned(8))); 1124 1125 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1126 1127 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1128 { 1129 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1130 struct bpf_map *map = t->map; 1131 void *value = t->value; 1132 bpf_callback_t callback_fn; 1133 void *key; 1134 u32 idx; 1135 1136 BTF_TYPE_EMIT(struct bpf_timer); 1137 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1138 if (!callback_fn) 1139 goto out; 1140 1141 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1142 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1143 * Remember the timer this callback is servicing to prevent 1144 * deadlock if callback_fn() calls bpf_timer_cancel() or 1145 * bpf_map_delete_elem() on the same timer. 1146 */ 1147 this_cpu_write(hrtimer_running, t); 1148 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1149 struct bpf_array *array = container_of(map, struct bpf_array, map); 1150 1151 /* compute the key */ 1152 idx = ((char *)value - array->value) / array->elem_size; 1153 key = &idx; 1154 } else { /* hash or lru */ 1155 key = value - round_up(map->key_size, 8); 1156 } 1157 1158 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1159 /* The verifier checked that return value is zero. */ 1160 1161 this_cpu_write(hrtimer_running, NULL); 1162 out: 1163 return HRTIMER_NORESTART; 1164 } 1165 1166 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1167 u64, flags) 1168 { 1169 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1170 struct bpf_hrtimer *t; 1171 int ret = 0; 1172 1173 BUILD_BUG_ON(MAX_CLOCKS != 16); 1174 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1175 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1176 1177 if (in_nmi()) 1178 return -EOPNOTSUPP; 1179 1180 if (flags >= MAX_CLOCKS || 1181 /* similar to timerfd except _ALARM variants are not supported */ 1182 (clockid != CLOCK_MONOTONIC && 1183 clockid != CLOCK_REALTIME && 1184 clockid != CLOCK_BOOTTIME)) 1185 return -EINVAL; 1186 __bpf_spin_lock_irqsave(&timer->lock); 1187 t = timer->timer; 1188 if (t) { 1189 ret = -EBUSY; 1190 goto out; 1191 } 1192 if (!atomic64_read(&map->usercnt)) { 1193 /* maps with timers must be either held by user space 1194 * or pinned in bpffs. 1195 */ 1196 ret = -EPERM; 1197 goto out; 1198 } 1199 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1200 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1201 if (!t) { 1202 ret = -ENOMEM; 1203 goto out; 1204 } 1205 t->value = (void *)timer - map->timer_off; 1206 t->map = map; 1207 t->prog = NULL; 1208 rcu_assign_pointer(t->callback_fn, NULL); 1209 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1210 t->timer.function = bpf_timer_cb; 1211 timer->timer = t; 1212 out: 1213 __bpf_spin_unlock_irqrestore(&timer->lock); 1214 return ret; 1215 } 1216 1217 static const struct bpf_func_proto bpf_timer_init_proto = { 1218 .func = bpf_timer_init, 1219 .gpl_only = true, 1220 .ret_type = RET_INTEGER, 1221 .arg1_type = ARG_PTR_TO_TIMER, 1222 .arg2_type = ARG_CONST_MAP_PTR, 1223 .arg3_type = ARG_ANYTHING, 1224 }; 1225 1226 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1227 struct bpf_prog_aux *, aux) 1228 { 1229 struct bpf_prog *prev, *prog = aux->prog; 1230 struct bpf_hrtimer *t; 1231 int ret = 0; 1232 1233 if (in_nmi()) 1234 return -EOPNOTSUPP; 1235 __bpf_spin_lock_irqsave(&timer->lock); 1236 t = timer->timer; 1237 if (!t) { 1238 ret = -EINVAL; 1239 goto out; 1240 } 1241 if (!atomic64_read(&t->map->usercnt)) { 1242 /* maps with timers must be either held by user space 1243 * or pinned in bpffs. Otherwise timer might still be 1244 * running even when bpf prog is detached and user space 1245 * is gone, since map_release_uref won't ever be called. 1246 */ 1247 ret = -EPERM; 1248 goto out; 1249 } 1250 prev = t->prog; 1251 if (prev != prog) { 1252 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1253 * can pick different callback_fn-s within the same prog. 1254 */ 1255 prog = bpf_prog_inc_not_zero(prog); 1256 if (IS_ERR(prog)) { 1257 ret = PTR_ERR(prog); 1258 goto out; 1259 } 1260 if (prev) 1261 /* Drop prev prog refcnt when swapping with new prog */ 1262 bpf_prog_put(prev); 1263 t->prog = prog; 1264 } 1265 rcu_assign_pointer(t->callback_fn, callback_fn); 1266 out: 1267 __bpf_spin_unlock_irqrestore(&timer->lock); 1268 return ret; 1269 } 1270 1271 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1272 .func = bpf_timer_set_callback, 1273 .gpl_only = true, 1274 .ret_type = RET_INTEGER, 1275 .arg1_type = ARG_PTR_TO_TIMER, 1276 .arg2_type = ARG_PTR_TO_FUNC, 1277 }; 1278 1279 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1280 { 1281 struct bpf_hrtimer *t; 1282 int ret = 0; 1283 1284 if (in_nmi()) 1285 return -EOPNOTSUPP; 1286 if (flags) 1287 return -EINVAL; 1288 __bpf_spin_lock_irqsave(&timer->lock); 1289 t = timer->timer; 1290 if (!t || !t->prog) { 1291 ret = -EINVAL; 1292 goto out; 1293 } 1294 hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); 1295 out: 1296 __bpf_spin_unlock_irqrestore(&timer->lock); 1297 return ret; 1298 } 1299 1300 static const struct bpf_func_proto bpf_timer_start_proto = { 1301 .func = bpf_timer_start, 1302 .gpl_only = true, 1303 .ret_type = RET_INTEGER, 1304 .arg1_type = ARG_PTR_TO_TIMER, 1305 .arg2_type = ARG_ANYTHING, 1306 .arg3_type = ARG_ANYTHING, 1307 }; 1308 1309 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1310 { 1311 struct bpf_prog *prog = t->prog; 1312 1313 if (prog) { 1314 bpf_prog_put(prog); 1315 t->prog = NULL; 1316 rcu_assign_pointer(t->callback_fn, NULL); 1317 } 1318 } 1319 1320 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1321 { 1322 struct bpf_hrtimer *t; 1323 int ret = 0; 1324 1325 if (in_nmi()) 1326 return -EOPNOTSUPP; 1327 __bpf_spin_lock_irqsave(&timer->lock); 1328 t = timer->timer; 1329 if (!t) { 1330 ret = -EINVAL; 1331 goto out; 1332 } 1333 if (this_cpu_read(hrtimer_running) == t) { 1334 /* If bpf callback_fn is trying to bpf_timer_cancel() 1335 * its own timer the hrtimer_cancel() will deadlock 1336 * since it waits for callback_fn to finish 1337 */ 1338 ret = -EDEADLK; 1339 goto out; 1340 } 1341 drop_prog_refcnt(t); 1342 out: 1343 __bpf_spin_unlock_irqrestore(&timer->lock); 1344 /* Cancel the timer and wait for associated callback to finish 1345 * if it was running. 1346 */ 1347 ret = ret ?: hrtimer_cancel(&t->timer); 1348 return ret; 1349 } 1350 1351 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1352 .func = bpf_timer_cancel, 1353 .gpl_only = true, 1354 .ret_type = RET_INTEGER, 1355 .arg1_type = ARG_PTR_TO_TIMER, 1356 }; 1357 1358 /* This function is called by map_delete/update_elem for individual element and 1359 * by ops->map_release_uref when the user space reference to a map reaches zero. 1360 */ 1361 void bpf_timer_cancel_and_free(void *val) 1362 { 1363 struct bpf_timer_kern *timer = val; 1364 struct bpf_hrtimer *t; 1365 1366 /* Performance optimization: read timer->timer without lock first. */ 1367 if (!READ_ONCE(timer->timer)) 1368 return; 1369 1370 __bpf_spin_lock_irqsave(&timer->lock); 1371 /* re-read it under lock */ 1372 t = timer->timer; 1373 if (!t) 1374 goto out; 1375 drop_prog_refcnt(t); 1376 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1377 * this timer, since it won't be initialized. 1378 */ 1379 timer->timer = NULL; 1380 out: 1381 __bpf_spin_unlock_irqrestore(&timer->lock); 1382 if (!t) 1383 return; 1384 /* Cancel the timer and wait for callback to complete if it was running. 1385 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1386 * right after for both preallocated and non-preallocated maps. 1387 * The timer->timer = NULL was already done and no code path can 1388 * see address 't' anymore. 1389 * 1390 * Check that bpf_map_delete/update_elem() wasn't called from timer 1391 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1392 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1393 * return -1). Though callback_fn is still running on this cpu it's 1394 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1395 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1396 * since timer->timer = NULL was already done. The timer will be 1397 * effectively cancelled because bpf_timer_cb() will return 1398 * HRTIMER_NORESTART. 1399 */ 1400 if (this_cpu_read(hrtimer_running) != t) 1401 hrtimer_cancel(&t->timer); 1402 kfree(t); 1403 } 1404 1405 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) 1406 { 1407 unsigned long *kptr = map_value; 1408 1409 return xchg(kptr, (unsigned long)ptr); 1410 } 1411 1412 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1413 * helper is determined dynamically by the verifier. 1414 */ 1415 #define BPF_PTR_POISON ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1416 1417 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1418 .func = bpf_kptr_xchg, 1419 .gpl_only = false, 1420 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1421 .ret_btf_id = BPF_PTR_POISON, 1422 .arg1_type = ARG_PTR_TO_KPTR, 1423 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1424 .arg2_btf_id = BPF_PTR_POISON, 1425 }; 1426 1427 /* Since the upper 8 bits of dynptr->size is reserved, the 1428 * maximum supported size is 2^24 - 1. 1429 */ 1430 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1431 #define DYNPTR_TYPE_SHIFT 28 1432 #define DYNPTR_SIZE_MASK 0xFFFFFF 1433 #define DYNPTR_RDONLY_BIT BIT(31) 1434 1435 static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) 1436 { 1437 return ptr->size & DYNPTR_RDONLY_BIT; 1438 } 1439 1440 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1441 { 1442 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1443 } 1444 1445 static u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr) 1446 { 1447 return ptr->size & DYNPTR_SIZE_MASK; 1448 } 1449 1450 int bpf_dynptr_check_size(u32 size) 1451 { 1452 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1453 } 1454 1455 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1456 enum bpf_dynptr_type type, u32 offset, u32 size) 1457 { 1458 ptr->data = data; 1459 ptr->offset = offset; 1460 ptr->size = size; 1461 bpf_dynptr_set_type(ptr, type); 1462 } 1463 1464 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1465 { 1466 memset(ptr, 0, sizeof(*ptr)); 1467 } 1468 1469 static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1470 { 1471 u32 size = bpf_dynptr_get_size(ptr); 1472 1473 if (len > size || offset > size - len) 1474 return -E2BIG; 1475 1476 return 0; 1477 } 1478 1479 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1480 { 1481 int err; 1482 1483 err = bpf_dynptr_check_size(size); 1484 if (err) 1485 goto error; 1486 1487 /* flags is currently unsupported */ 1488 if (flags) { 1489 err = -EINVAL; 1490 goto error; 1491 } 1492 1493 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1494 1495 return 0; 1496 1497 error: 1498 bpf_dynptr_set_null(ptr); 1499 return err; 1500 } 1501 1502 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1503 .func = bpf_dynptr_from_mem, 1504 .gpl_only = false, 1505 .ret_type = RET_INTEGER, 1506 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1507 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1508 .arg3_type = ARG_ANYTHING, 1509 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, 1510 }; 1511 1512 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src, 1513 u32, offset, u64, flags) 1514 { 1515 int err; 1516 1517 if (!src->data || flags) 1518 return -EINVAL; 1519 1520 err = bpf_dynptr_check_off_len(src, offset, len); 1521 if (err) 1522 return err; 1523 1524 memcpy(dst, src->data + src->offset + offset, len); 1525 1526 return 0; 1527 } 1528 1529 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1530 .func = bpf_dynptr_read, 1531 .gpl_only = false, 1532 .ret_type = RET_INTEGER, 1533 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1534 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1535 .arg3_type = ARG_PTR_TO_DYNPTR, 1536 .arg4_type = ARG_ANYTHING, 1537 .arg5_type = ARG_ANYTHING, 1538 }; 1539 1540 BPF_CALL_5(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1541 u32, len, u64, flags) 1542 { 1543 int err; 1544 1545 if (!dst->data || flags || bpf_dynptr_is_rdonly(dst)) 1546 return -EINVAL; 1547 1548 err = bpf_dynptr_check_off_len(dst, offset, len); 1549 if (err) 1550 return err; 1551 1552 memcpy(dst->data + dst->offset + offset, src, len); 1553 1554 return 0; 1555 } 1556 1557 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1558 .func = bpf_dynptr_write, 1559 .gpl_only = false, 1560 .ret_type = RET_INTEGER, 1561 .arg1_type = ARG_PTR_TO_DYNPTR, 1562 .arg2_type = ARG_ANYTHING, 1563 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1564 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1565 .arg5_type = ARG_ANYTHING, 1566 }; 1567 1568 BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1569 { 1570 int err; 1571 1572 if (!ptr->data) 1573 return 0; 1574 1575 err = bpf_dynptr_check_off_len(ptr, offset, len); 1576 if (err) 1577 return 0; 1578 1579 if (bpf_dynptr_is_rdonly(ptr)) 1580 return 0; 1581 1582 return (unsigned long)(ptr->data + ptr->offset + offset); 1583 } 1584 1585 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1586 .func = bpf_dynptr_data, 1587 .gpl_only = false, 1588 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1589 .arg1_type = ARG_PTR_TO_DYNPTR, 1590 .arg2_type = ARG_ANYTHING, 1591 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1592 }; 1593 1594 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1595 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1596 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1597 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1598 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1599 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1600 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1601 1602 const struct bpf_func_proto * 1603 bpf_base_func_proto(enum bpf_func_id func_id) 1604 { 1605 switch (func_id) { 1606 case BPF_FUNC_map_lookup_elem: 1607 return &bpf_map_lookup_elem_proto; 1608 case BPF_FUNC_map_update_elem: 1609 return &bpf_map_update_elem_proto; 1610 case BPF_FUNC_map_delete_elem: 1611 return &bpf_map_delete_elem_proto; 1612 case BPF_FUNC_map_push_elem: 1613 return &bpf_map_push_elem_proto; 1614 case BPF_FUNC_map_pop_elem: 1615 return &bpf_map_pop_elem_proto; 1616 case BPF_FUNC_map_peek_elem: 1617 return &bpf_map_peek_elem_proto; 1618 case BPF_FUNC_map_lookup_percpu_elem: 1619 return &bpf_map_lookup_percpu_elem_proto; 1620 case BPF_FUNC_get_prandom_u32: 1621 return &bpf_get_prandom_u32_proto; 1622 case BPF_FUNC_get_smp_processor_id: 1623 return &bpf_get_raw_smp_processor_id_proto; 1624 case BPF_FUNC_get_numa_node_id: 1625 return &bpf_get_numa_node_id_proto; 1626 case BPF_FUNC_tail_call: 1627 return &bpf_tail_call_proto; 1628 case BPF_FUNC_ktime_get_ns: 1629 return &bpf_ktime_get_ns_proto; 1630 case BPF_FUNC_ktime_get_boot_ns: 1631 return &bpf_ktime_get_boot_ns_proto; 1632 case BPF_FUNC_ktime_get_tai_ns: 1633 return &bpf_ktime_get_tai_ns_proto; 1634 case BPF_FUNC_ringbuf_output: 1635 return &bpf_ringbuf_output_proto; 1636 case BPF_FUNC_ringbuf_reserve: 1637 return &bpf_ringbuf_reserve_proto; 1638 case BPF_FUNC_ringbuf_submit: 1639 return &bpf_ringbuf_submit_proto; 1640 case BPF_FUNC_ringbuf_discard: 1641 return &bpf_ringbuf_discard_proto; 1642 case BPF_FUNC_ringbuf_query: 1643 return &bpf_ringbuf_query_proto; 1644 case BPF_FUNC_ringbuf_reserve_dynptr: 1645 return &bpf_ringbuf_reserve_dynptr_proto; 1646 case BPF_FUNC_ringbuf_submit_dynptr: 1647 return &bpf_ringbuf_submit_dynptr_proto; 1648 case BPF_FUNC_ringbuf_discard_dynptr: 1649 return &bpf_ringbuf_discard_dynptr_proto; 1650 case BPF_FUNC_for_each_map_elem: 1651 return &bpf_for_each_map_elem_proto; 1652 case BPF_FUNC_loop: 1653 return &bpf_loop_proto; 1654 case BPF_FUNC_strncmp: 1655 return &bpf_strncmp_proto; 1656 case BPF_FUNC_dynptr_from_mem: 1657 return &bpf_dynptr_from_mem_proto; 1658 case BPF_FUNC_dynptr_read: 1659 return &bpf_dynptr_read_proto; 1660 case BPF_FUNC_dynptr_write: 1661 return &bpf_dynptr_write_proto; 1662 case BPF_FUNC_dynptr_data: 1663 return &bpf_dynptr_data_proto; 1664 default: 1665 break; 1666 } 1667 1668 if (!bpf_capable()) 1669 return NULL; 1670 1671 switch (func_id) { 1672 case BPF_FUNC_spin_lock: 1673 return &bpf_spin_lock_proto; 1674 case BPF_FUNC_spin_unlock: 1675 return &bpf_spin_unlock_proto; 1676 case BPF_FUNC_jiffies64: 1677 return &bpf_jiffies64_proto; 1678 case BPF_FUNC_per_cpu_ptr: 1679 return &bpf_per_cpu_ptr_proto; 1680 case BPF_FUNC_this_cpu_ptr: 1681 return &bpf_this_cpu_ptr_proto; 1682 case BPF_FUNC_timer_init: 1683 return &bpf_timer_init_proto; 1684 case BPF_FUNC_timer_set_callback: 1685 return &bpf_timer_set_callback_proto; 1686 case BPF_FUNC_timer_start: 1687 return &bpf_timer_start_proto; 1688 case BPF_FUNC_timer_cancel: 1689 return &bpf_timer_cancel_proto; 1690 case BPF_FUNC_kptr_xchg: 1691 return &bpf_kptr_xchg_proto; 1692 default: 1693 break; 1694 } 1695 1696 if (!perfmon_capable()) 1697 return NULL; 1698 1699 switch (func_id) { 1700 case BPF_FUNC_trace_printk: 1701 return bpf_get_trace_printk_proto(); 1702 case BPF_FUNC_get_current_task: 1703 return &bpf_get_current_task_proto; 1704 case BPF_FUNC_get_current_task_btf: 1705 return &bpf_get_current_task_btf_proto; 1706 case BPF_FUNC_probe_read_user: 1707 return &bpf_probe_read_user_proto; 1708 case BPF_FUNC_probe_read_kernel: 1709 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1710 NULL : &bpf_probe_read_kernel_proto; 1711 case BPF_FUNC_probe_read_user_str: 1712 return &bpf_probe_read_user_str_proto; 1713 case BPF_FUNC_probe_read_kernel_str: 1714 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1715 NULL : &bpf_probe_read_kernel_str_proto; 1716 case BPF_FUNC_snprintf_btf: 1717 return &bpf_snprintf_btf_proto; 1718 case BPF_FUNC_snprintf: 1719 return &bpf_snprintf_proto; 1720 case BPF_FUNC_task_pt_regs: 1721 return &bpf_task_pt_regs_proto; 1722 case BPF_FUNC_trace_vprintk: 1723 return bpf_get_trace_vprintk_proto(); 1724 default: 1725 return NULL; 1726 } 1727 } 1728 1729 BTF_SET8_START(tracing_btf_ids) 1730 #ifdef CONFIG_KEXEC_CORE 1731 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 1732 #endif 1733 BTF_SET8_END(tracing_btf_ids) 1734 1735 static const struct btf_kfunc_id_set tracing_kfunc_set = { 1736 .owner = THIS_MODULE, 1737 .set = &tracing_btf_ids, 1738 }; 1739 1740 static int __init kfunc_init(void) 1741 { 1742 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &tracing_kfunc_set); 1743 } 1744 1745 late_initcall(kfunc_init); 1746