1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/rcupdate.h> 8 #include <linux/random.h> 9 #include <linux/smp.h> 10 #include <linux/topology.h> 11 #include <linux/ktime.h> 12 #include <linux/sched.h> 13 #include <linux/uidgid.h> 14 #include <linux/filter.h> 15 #include <linux/ctype.h> 16 #include <linux/jiffies.h> 17 #include <linux/pid_namespace.h> 18 #include <linux/proc_ns.h> 19 #include <linux/security.h> 20 #include <linux/btf_ids.h> 21 22 #include "../../lib/kstrtox.h" 23 24 /* If kernel subsystem is allowing eBPF programs to call this function, 25 * inside its own verifier_ops->get_func_proto() callback it should return 26 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 27 * 28 * Different map implementations will rely on rcu in map methods 29 * lookup/update/delete, therefore eBPF programs must run under rcu lock 30 * if program is allowed to access maps, so check rcu_read_lock_held in 31 * all three functions. 32 */ 33 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 34 { 35 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 36 return (unsigned long) map->ops->map_lookup_elem(map, key); 37 } 38 39 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 40 .func = bpf_map_lookup_elem, 41 .gpl_only = false, 42 .pkt_access = true, 43 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 44 .arg1_type = ARG_CONST_MAP_PTR, 45 .arg2_type = ARG_PTR_TO_MAP_KEY, 46 }; 47 48 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 49 void *, value, u64, flags) 50 { 51 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 52 return map->ops->map_update_elem(map, key, value, flags); 53 } 54 55 const struct bpf_func_proto bpf_map_update_elem_proto = { 56 .func = bpf_map_update_elem, 57 .gpl_only = false, 58 .pkt_access = true, 59 .ret_type = RET_INTEGER, 60 .arg1_type = ARG_CONST_MAP_PTR, 61 .arg2_type = ARG_PTR_TO_MAP_KEY, 62 .arg3_type = ARG_PTR_TO_MAP_VALUE, 63 .arg4_type = ARG_ANYTHING, 64 }; 65 66 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 67 { 68 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 69 return map->ops->map_delete_elem(map, key); 70 } 71 72 const struct bpf_func_proto bpf_map_delete_elem_proto = { 73 .func = bpf_map_delete_elem, 74 .gpl_only = false, 75 .pkt_access = true, 76 .ret_type = RET_INTEGER, 77 .arg1_type = ARG_CONST_MAP_PTR, 78 .arg2_type = ARG_PTR_TO_MAP_KEY, 79 }; 80 81 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 82 { 83 return map->ops->map_push_elem(map, value, flags); 84 } 85 86 const struct bpf_func_proto bpf_map_push_elem_proto = { 87 .func = bpf_map_push_elem, 88 .gpl_only = false, 89 .pkt_access = true, 90 .ret_type = RET_INTEGER, 91 .arg1_type = ARG_CONST_MAP_PTR, 92 .arg2_type = ARG_PTR_TO_MAP_VALUE, 93 .arg3_type = ARG_ANYTHING, 94 }; 95 96 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 97 { 98 return map->ops->map_pop_elem(map, value); 99 } 100 101 const struct bpf_func_proto bpf_map_pop_elem_proto = { 102 .func = bpf_map_pop_elem, 103 .gpl_only = false, 104 .ret_type = RET_INTEGER, 105 .arg1_type = ARG_CONST_MAP_PTR, 106 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE, 107 }; 108 109 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 110 { 111 return map->ops->map_peek_elem(map, value); 112 } 113 114 const struct bpf_func_proto bpf_map_peek_elem_proto = { 115 .func = bpf_map_peek_elem, 116 .gpl_only = false, 117 .ret_type = RET_INTEGER, 118 .arg1_type = ARG_CONST_MAP_PTR, 119 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE, 120 }; 121 122 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 123 .func = bpf_user_rnd_u32, 124 .gpl_only = false, 125 .ret_type = RET_INTEGER, 126 }; 127 128 BPF_CALL_0(bpf_get_smp_processor_id) 129 { 130 return smp_processor_id(); 131 } 132 133 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 134 .func = bpf_get_smp_processor_id, 135 .gpl_only = false, 136 .ret_type = RET_INTEGER, 137 }; 138 139 BPF_CALL_0(bpf_get_numa_node_id) 140 { 141 return numa_node_id(); 142 } 143 144 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 145 .func = bpf_get_numa_node_id, 146 .gpl_only = false, 147 .ret_type = RET_INTEGER, 148 }; 149 150 BPF_CALL_0(bpf_ktime_get_ns) 151 { 152 /* NMI safe access to clock monotonic */ 153 return ktime_get_mono_fast_ns(); 154 } 155 156 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 157 .func = bpf_ktime_get_ns, 158 .gpl_only = false, 159 .ret_type = RET_INTEGER, 160 }; 161 162 BPF_CALL_0(bpf_ktime_get_boot_ns) 163 { 164 /* NMI safe access to clock boottime */ 165 return ktime_get_boot_fast_ns(); 166 } 167 168 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 169 .func = bpf_ktime_get_boot_ns, 170 .gpl_only = false, 171 .ret_type = RET_INTEGER, 172 }; 173 174 BPF_CALL_0(bpf_ktime_get_coarse_ns) 175 { 176 return ktime_get_coarse_ns(); 177 } 178 179 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 180 .func = bpf_ktime_get_coarse_ns, 181 .gpl_only = false, 182 .ret_type = RET_INTEGER, 183 }; 184 185 BPF_CALL_0(bpf_get_current_pid_tgid) 186 { 187 struct task_struct *task = current; 188 189 if (unlikely(!task)) 190 return -EINVAL; 191 192 return (u64) task->tgid << 32 | task->pid; 193 } 194 195 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 196 .func = bpf_get_current_pid_tgid, 197 .gpl_only = false, 198 .ret_type = RET_INTEGER, 199 }; 200 201 BPF_CALL_0(bpf_get_current_uid_gid) 202 { 203 struct task_struct *task = current; 204 kuid_t uid; 205 kgid_t gid; 206 207 if (unlikely(!task)) 208 return -EINVAL; 209 210 current_uid_gid(&uid, &gid); 211 return (u64) from_kgid(&init_user_ns, gid) << 32 | 212 from_kuid(&init_user_ns, uid); 213 } 214 215 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 216 .func = bpf_get_current_uid_gid, 217 .gpl_only = false, 218 .ret_type = RET_INTEGER, 219 }; 220 221 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 222 { 223 struct task_struct *task = current; 224 225 if (unlikely(!task)) 226 goto err_clear; 227 228 /* Verifier guarantees that size > 0 */ 229 strscpy(buf, task->comm, size); 230 return 0; 231 err_clear: 232 memset(buf, 0, size); 233 return -EINVAL; 234 } 235 236 const struct bpf_func_proto bpf_get_current_comm_proto = { 237 .func = bpf_get_current_comm, 238 .gpl_only = false, 239 .ret_type = RET_INTEGER, 240 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 241 .arg2_type = ARG_CONST_SIZE, 242 }; 243 244 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 245 246 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 247 { 248 arch_spinlock_t *l = (void *)lock; 249 union { 250 __u32 val; 251 arch_spinlock_t lock; 252 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 253 254 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 255 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 256 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 257 arch_spin_lock(l); 258 } 259 260 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 261 { 262 arch_spinlock_t *l = (void *)lock; 263 264 arch_spin_unlock(l); 265 } 266 267 #else 268 269 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 270 { 271 atomic_t *l = (void *)lock; 272 273 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 274 do { 275 atomic_cond_read_relaxed(l, !VAL); 276 } while (atomic_xchg(l, 1)); 277 } 278 279 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 280 { 281 atomic_t *l = (void *)lock; 282 283 atomic_set_release(l, 0); 284 } 285 286 #endif 287 288 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 289 290 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 291 { 292 unsigned long flags; 293 294 local_irq_save(flags); 295 __bpf_spin_lock(lock); 296 __this_cpu_write(irqsave_flags, flags); 297 } 298 299 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 300 { 301 __bpf_spin_lock_irqsave(lock); 302 return 0; 303 } 304 305 const struct bpf_func_proto bpf_spin_lock_proto = { 306 .func = bpf_spin_lock, 307 .gpl_only = false, 308 .ret_type = RET_VOID, 309 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 310 }; 311 312 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 313 { 314 unsigned long flags; 315 316 flags = __this_cpu_read(irqsave_flags); 317 __bpf_spin_unlock(lock); 318 local_irq_restore(flags); 319 } 320 321 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 322 { 323 __bpf_spin_unlock_irqrestore(lock); 324 return 0; 325 } 326 327 const struct bpf_func_proto bpf_spin_unlock_proto = { 328 .func = bpf_spin_unlock, 329 .gpl_only = false, 330 .ret_type = RET_VOID, 331 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 332 }; 333 334 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 335 bool lock_src) 336 { 337 struct bpf_spin_lock *lock; 338 339 if (lock_src) 340 lock = src + map->spin_lock_off; 341 else 342 lock = dst + map->spin_lock_off; 343 preempt_disable(); 344 __bpf_spin_lock_irqsave(lock); 345 copy_map_value(map, dst, src); 346 __bpf_spin_unlock_irqrestore(lock); 347 preempt_enable(); 348 } 349 350 BPF_CALL_0(bpf_jiffies64) 351 { 352 return get_jiffies_64(); 353 } 354 355 const struct bpf_func_proto bpf_jiffies64_proto = { 356 .func = bpf_jiffies64, 357 .gpl_only = false, 358 .ret_type = RET_INTEGER, 359 }; 360 361 #ifdef CONFIG_CGROUPS 362 BPF_CALL_0(bpf_get_current_cgroup_id) 363 { 364 struct cgroup *cgrp; 365 u64 cgrp_id; 366 367 rcu_read_lock(); 368 cgrp = task_dfl_cgroup(current); 369 cgrp_id = cgroup_id(cgrp); 370 rcu_read_unlock(); 371 372 return cgrp_id; 373 } 374 375 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 376 .func = bpf_get_current_cgroup_id, 377 .gpl_only = false, 378 .ret_type = RET_INTEGER, 379 }; 380 381 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 382 { 383 struct cgroup *cgrp; 384 struct cgroup *ancestor; 385 u64 cgrp_id; 386 387 rcu_read_lock(); 388 cgrp = task_dfl_cgroup(current); 389 ancestor = cgroup_ancestor(cgrp, ancestor_level); 390 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 391 rcu_read_unlock(); 392 393 return cgrp_id; 394 } 395 396 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 397 .func = bpf_get_current_ancestor_cgroup_id, 398 .gpl_only = false, 399 .ret_type = RET_INTEGER, 400 .arg1_type = ARG_ANYTHING, 401 }; 402 403 #ifdef CONFIG_CGROUP_BPF 404 405 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) 406 { 407 /* flags argument is not used now, 408 * but provides an ability to extend the API. 409 * verifier checks that its value is correct. 410 */ 411 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); 412 struct bpf_cgroup_storage *storage; 413 struct bpf_cg_run_ctx *ctx; 414 void *ptr; 415 416 /* get current cgroup storage from BPF run context */ 417 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 418 storage = ctx->prog_item->cgroup_storage[stype]; 419 420 if (stype == BPF_CGROUP_STORAGE_SHARED) 421 ptr = &READ_ONCE(storage->buf)->data[0]; 422 else 423 ptr = this_cpu_ptr(storage->percpu_buf); 424 425 return (unsigned long)ptr; 426 } 427 428 const struct bpf_func_proto bpf_get_local_storage_proto = { 429 .func = bpf_get_local_storage, 430 .gpl_only = false, 431 .ret_type = RET_PTR_TO_MAP_VALUE, 432 .arg1_type = ARG_CONST_MAP_PTR, 433 .arg2_type = ARG_ANYTHING, 434 }; 435 #endif 436 437 #define BPF_STRTOX_BASE_MASK 0x1F 438 439 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 440 unsigned long long *res, bool *is_negative) 441 { 442 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 443 const char *cur_buf = buf; 444 size_t cur_len = buf_len; 445 unsigned int consumed; 446 size_t val_len; 447 char str[64]; 448 449 if (!buf || !buf_len || !res || !is_negative) 450 return -EINVAL; 451 452 if (base != 0 && base != 8 && base != 10 && base != 16) 453 return -EINVAL; 454 455 if (flags & ~BPF_STRTOX_BASE_MASK) 456 return -EINVAL; 457 458 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 459 ++cur_buf; 460 461 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 462 if (*is_negative) 463 ++cur_buf; 464 465 consumed = cur_buf - buf; 466 cur_len -= consumed; 467 if (!cur_len) 468 return -EINVAL; 469 470 cur_len = min(cur_len, sizeof(str) - 1); 471 memcpy(str, cur_buf, cur_len); 472 str[cur_len] = '\0'; 473 cur_buf = str; 474 475 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 476 val_len = _parse_integer(cur_buf, base, res); 477 478 if (val_len & KSTRTOX_OVERFLOW) 479 return -ERANGE; 480 481 if (val_len == 0) 482 return -EINVAL; 483 484 cur_buf += val_len; 485 consumed += cur_buf - str; 486 487 return consumed; 488 } 489 490 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 491 long long *res) 492 { 493 unsigned long long _res; 494 bool is_negative; 495 int err; 496 497 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 498 if (err < 0) 499 return err; 500 if (is_negative) { 501 if ((long long)-_res > 0) 502 return -ERANGE; 503 *res = -_res; 504 } else { 505 if ((long long)_res < 0) 506 return -ERANGE; 507 *res = _res; 508 } 509 return err; 510 } 511 512 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 513 long *, res) 514 { 515 long long _res; 516 int err; 517 518 err = __bpf_strtoll(buf, buf_len, flags, &_res); 519 if (err < 0) 520 return err; 521 if (_res != (long)_res) 522 return -ERANGE; 523 *res = _res; 524 return err; 525 } 526 527 const struct bpf_func_proto bpf_strtol_proto = { 528 .func = bpf_strtol, 529 .gpl_only = false, 530 .ret_type = RET_INTEGER, 531 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 532 .arg2_type = ARG_CONST_SIZE, 533 .arg3_type = ARG_ANYTHING, 534 .arg4_type = ARG_PTR_TO_LONG, 535 }; 536 537 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 538 unsigned long *, res) 539 { 540 unsigned long long _res; 541 bool is_negative; 542 int err; 543 544 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 545 if (err < 0) 546 return err; 547 if (is_negative) 548 return -EINVAL; 549 if (_res != (unsigned long)_res) 550 return -ERANGE; 551 *res = _res; 552 return err; 553 } 554 555 const struct bpf_func_proto bpf_strtoul_proto = { 556 .func = bpf_strtoul, 557 .gpl_only = false, 558 .ret_type = RET_INTEGER, 559 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 560 .arg2_type = ARG_CONST_SIZE, 561 .arg3_type = ARG_ANYTHING, 562 .arg4_type = ARG_PTR_TO_LONG, 563 }; 564 #endif 565 566 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 567 { 568 return strncmp(s1, s2, s1_sz); 569 } 570 571 const struct bpf_func_proto bpf_strncmp_proto = { 572 .func = bpf_strncmp, 573 .gpl_only = false, 574 .ret_type = RET_INTEGER, 575 .arg1_type = ARG_PTR_TO_MEM, 576 .arg2_type = ARG_CONST_SIZE, 577 .arg3_type = ARG_PTR_TO_CONST_STR, 578 }; 579 580 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 581 struct bpf_pidns_info *, nsdata, u32, size) 582 { 583 struct task_struct *task = current; 584 struct pid_namespace *pidns; 585 int err = -EINVAL; 586 587 if (unlikely(size != sizeof(struct bpf_pidns_info))) 588 goto clear; 589 590 if (unlikely((u64)(dev_t)dev != dev)) 591 goto clear; 592 593 if (unlikely(!task)) 594 goto clear; 595 596 pidns = task_active_pid_ns(task); 597 if (unlikely(!pidns)) { 598 err = -ENOENT; 599 goto clear; 600 } 601 602 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 603 goto clear; 604 605 nsdata->pid = task_pid_nr_ns(task, pidns); 606 nsdata->tgid = task_tgid_nr_ns(task, pidns); 607 return 0; 608 clear: 609 memset((void *)nsdata, 0, (size_t) size); 610 return err; 611 } 612 613 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 614 .func = bpf_get_ns_current_pid_tgid, 615 .gpl_only = false, 616 .ret_type = RET_INTEGER, 617 .arg1_type = ARG_ANYTHING, 618 .arg2_type = ARG_ANYTHING, 619 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 620 .arg4_type = ARG_CONST_SIZE, 621 }; 622 623 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 624 .func = bpf_get_raw_cpu_id, 625 .gpl_only = false, 626 .ret_type = RET_INTEGER, 627 }; 628 629 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 630 u64, flags, void *, data, u64, size) 631 { 632 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 633 return -EINVAL; 634 635 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 636 } 637 638 const struct bpf_func_proto bpf_event_output_data_proto = { 639 .func = bpf_event_output_data, 640 .gpl_only = true, 641 .ret_type = RET_INTEGER, 642 .arg1_type = ARG_PTR_TO_CTX, 643 .arg2_type = ARG_CONST_MAP_PTR, 644 .arg3_type = ARG_ANYTHING, 645 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 646 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 647 }; 648 649 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 650 const void __user *, user_ptr) 651 { 652 int ret = copy_from_user(dst, user_ptr, size); 653 654 if (unlikely(ret)) { 655 memset(dst, 0, size); 656 ret = -EFAULT; 657 } 658 659 return ret; 660 } 661 662 const struct bpf_func_proto bpf_copy_from_user_proto = { 663 .func = bpf_copy_from_user, 664 .gpl_only = false, 665 .ret_type = RET_INTEGER, 666 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 667 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 668 .arg3_type = ARG_ANYTHING, 669 }; 670 671 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 672 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 673 { 674 int ret; 675 676 /* flags is not used yet */ 677 if (unlikely(flags)) 678 return -EINVAL; 679 680 if (unlikely(!size)) 681 return 0; 682 683 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 684 if (ret == size) 685 return 0; 686 687 memset(dst, 0, size); 688 /* Return -EFAULT for partial read */ 689 return ret < 0 ? ret : -EFAULT; 690 } 691 692 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 693 .func = bpf_copy_from_user_task, 694 .gpl_only = true, 695 .ret_type = RET_INTEGER, 696 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 697 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 698 .arg3_type = ARG_ANYTHING, 699 .arg4_type = ARG_PTR_TO_BTF_ID, 700 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 701 .arg5_type = ARG_ANYTHING 702 }; 703 704 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 705 { 706 if (cpu >= nr_cpu_ids) 707 return (unsigned long)NULL; 708 709 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 710 } 711 712 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 713 .func = bpf_per_cpu_ptr, 714 .gpl_only = false, 715 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 716 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 717 .arg2_type = ARG_ANYTHING, 718 }; 719 720 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 721 { 722 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 723 } 724 725 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 726 .func = bpf_this_cpu_ptr, 727 .gpl_only = false, 728 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 729 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 730 }; 731 732 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 733 size_t bufsz) 734 { 735 void __user *user_ptr = (__force void __user *)unsafe_ptr; 736 737 buf[0] = 0; 738 739 switch (fmt_ptype) { 740 case 's': 741 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 742 if ((unsigned long)unsafe_ptr < TASK_SIZE) 743 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 744 fallthrough; 745 #endif 746 case 'k': 747 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 748 case 'u': 749 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 750 } 751 752 return -EINVAL; 753 } 754 755 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 756 * arguments representation. 757 */ 758 #define MAX_BPRINTF_BUF_LEN 512 759 760 /* Support executing three nested bprintf helper calls on a given CPU */ 761 #define MAX_BPRINTF_NEST_LEVEL 3 762 struct bpf_bprintf_buffers { 763 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN]; 764 }; 765 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs); 766 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 767 768 static int try_get_fmt_tmp_buf(char **tmp_buf) 769 { 770 struct bpf_bprintf_buffers *bufs; 771 int nest_level; 772 773 preempt_disable(); 774 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 775 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 776 this_cpu_dec(bpf_bprintf_nest_level); 777 preempt_enable(); 778 return -EBUSY; 779 } 780 bufs = this_cpu_ptr(&bpf_bprintf_bufs); 781 *tmp_buf = bufs->tmp_bufs[nest_level - 1]; 782 783 return 0; 784 } 785 786 void bpf_bprintf_cleanup(void) 787 { 788 if (this_cpu_read(bpf_bprintf_nest_level)) { 789 this_cpu_dec(bpf_bprintf_nest_level); 790 preempt_enable(); 791 } 792 } 793 794 /* 795 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 796 * 797 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 798 * 799 * This can be used in two ways: 800 * - Format string verification only: when bin_args is NULL 801 * - Arguments preparation: in addition to the above verification, it writes in 802 * bin_args a binary representation of arguments usable by bstr_printf where 803 * pointers from BPF have been sanitized. 804 * 805 * In argument preparation mode, if 0 is returned, safe temporary buffers are 806 * allocated and bpf_bprintf_cleanup should be called to free them after use. 807 */ 808 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 809 u32 **bin_args, u32 num_args) 810 { 811 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 812 size_t sizeof_cur_arg, sizeof_cur_ip; 813 int err, i, num_spec = 0; 814 u64 cur_arg; 815 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 816 817 fmt_end = strnchr(fmt, fmt_size, 0); 818 if (!fmt_end) 819 return -EINVAL; 820 fmt_size = fmt_end - fmt; 821 822 if (bin_args) { 823 if (num_args && try_get_fmt_tmp_buf(&tmp_buf)) 824 return -EBUSY; 825 826 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN; 827 *bin_args = (u32 *)tmp_buf; 828 } 829 830 for (i = 0; i < fmt_size; i++) { 831 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 832 err = -EINVAL; 833 goto out; 834 } 835 836 if (fmt[i] != '%') 837 continue; 838 839 if (fmt[i + 1] == '%') { 840 i++; 841 continue; 842 } 843 844 if (num_spec >= num_args) { 845 err = -EINVAL; 846 goto out; 847 } 848 849 /* The string is zero-terminated so if fmt[i] != 0, we can 850 * always access fmt[i + 1], in the worst case it will be a 0 851 */ 852 i++; 853 854 /* skip optional "[0 +-][num]" width formatting field */ 855 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 856 fmt[i] == ' ') 857 i++; 858 if (fmt[i] >= '1' && fmt[i] <= '9') { 859 i++; 860 while (fmt[i] >= '0' && fmt[i] <= '9') 861 i++; 862 } 863 864 if (fmt[i] == 'p') { 865 sizeof_cur_arg = sizeof(long); 866 867 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 868 fmt[i + 2] == 's') { 869 fmt_ptype = fmt[i + 1]; 870 i += 2; 871 goto fmt_str; 872 } 873 874 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 875 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 876 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 877 fmt[i + 1] == 'S') { 878 /* just kernel pointers */ 879 if (tmp_buf) 880 cur_arg = raw_args[num_spec]; 881 i++; 882 goto nocopy_fmt; 883 } 884 885 if (fmt[i + 1] == 'B') { 886 if (tmp_buf) { 887 err = snprintf(tmp_buf, 888 (tmp_buf_end - tmp_buf), 889 "%pB", 890 (void *)(long)raw_args[num_spec]); 891 tmp_buf += (err + 1); 892 } 893 894 i++; 895 num_spec++; 896 continue; 897 } 898 899 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 900 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 901 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 902 err = -EINVAL; 903 goto out; 904 } 905 906 i += 2; 907 if (!tmp_buf) 908 goto nocopy_fmt; 909 910 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 911 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 912 err = -ENOSPC; 913 goto out; 914 } 915 916 unsafe_ptr = (char *)(long)raw_args[num_spec]; 917 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 918 sizeof_cur_ip); 919 if (err < 0) 920 memset(cur_ip, 0, sizeof_cur_ip); 921 922 /* hack: bstr_printf expects IP addresses to be 923 * pre-formatted as strings, ironically, the easiest way 924 * to do that is to call snprintf. 925 */ 926 ip_spec[2] = fmt[i - 1]; 927 ip_spec[3] = fmt[i]; 928 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 929 ip_spec, &cur_ip); 930 931 tmp_buf += err + 1; 932 num_spec++; 933 934 continue; 935 } else if (fmt[i] == 's') { 936 fmt_ptype = fmt[i]; 937 fmt_str: 938 if (fmt[i + 1] != 0 && 939 !isspace(fmt[i + 1]) && 940 !ispunct(fmt[i + 1])) { 941 err = -EINVAL; 942 goto out; 943 } 944 945 if (!tmp_buf) 946 goto nocopy_fmt; 947 948 if (tmp_buf_end == tmp_buf) { 949 err = -ENOSPC; 950 goto out; 951 } 952 953 unsafe_ptr = (char *)(long)raw_args[num_spec]; 954 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 955 fmt_ptype, 956 tmp_buf_end - tmp_buf); 957 if (err < 0) { 958 tmp_buf[0] = '\0'; 959 err = 1; 960 } 961 962 tmp_buf += err; 963 num_spec++; 964 965 continue; 966 } else if (fmt[i] == 'c') { 967 if (!tmp_buf) 968 goto nocopy_fmt; 969 970 if (tmp_buf_end == tmp_buf) { 971 err = -ENOSPC; 972 goto out; 973 } 974 975 *tmp_buf = raw_args[num_spec]; 976 tmp_buf++; 977 num_spec++; 978 979 continue; 980 } 981 982 sizeof_cur_arg = sizeof(int); 983 984 if (fmt[i] == 'l') { 985 sizeof_cur_arg = sizeof(long); 986 i++; 987 } 988 if (fmt[i] == 'l') { 989 sizeof_cur_arg = sizeof(long long); 990 i++; 991 } 992 993 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 994 fmt[i] != 'x' && fmt[i] != 'X') { 995 err = -EINVAL; 996 goto out; 997 } 998 999 if (tmp_buf) 1000 cur_arg = raw_args[num_spec]; 1001 nocopy_fmt: 1002 if (tmp_buf) { 1003 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1004 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1005 err = -ENOSPC; 1006 goto out; 1007 } 1008 1009 if (sizeof_cur_arg == 8) { 1010 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1011 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1012 } else { 1013 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1014 } 1015 tmp_buf += sizeof_cur_arg; 1016 } 1017 num_spec++; 1018 } 1019 1020 err = 0; 1021 out: 1022 if (err) 1023 bpf_bprintf_cleanup(); 1024 return err; 1025 } 1026 1027 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1028 const void *, data, u32, data_len) 1029 { 1030 int err, num_args; 1031 u32 *bin_args; 1032 1033 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1034 (data_len && !data)) 1035 return -EINVAL; 1036 num_args = data_len / 8; 1037 1038 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1039 * can safely give an unbounded size. 1040 */ 1041 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args); 1042 if (err < 0) 1043 return err; 1044 1045 err = bstr_printf(str, str_size, fmt, bin_args); 1046 1047 bpf_bprintf_cleanup(); 1048 1049 return err + 1; 1050 } 1051 1052 const struct bpf_func_proto bpf_snprintf_proto = { 1053 .func = bpf_snprintf, 1054 .gpl_only = true, 1055 .ret_type = RET_INTEGER, 1056 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1057 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1058 .arg3_type = ARG_PTR_TO_CONST_STR, 1059 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1060 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1061 }; 1062 1063 /* BPF map elements can contain 'struct bpf_timer'. 1064 * Such map owns all of its BPF timers. 1065 * 'struct bpf_timer' is allocated as part of map element allocation 1066 * and it's zero initialized. 1067 * That space is used to keep 'struct bpf_timer_kern'. 1068 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1069 * remembers 'struct bpf_map *' pointer it's part of. 1070 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1071 * bpf_timer_start() arms the timer. 1072 * If user space reference to a map goes to zero at this point 1073 * ops->map_release_uref callback is responsible for cancelling the timers, 1074 * freeing their memory, and decrementing prog's refcnts. 1075 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1076 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1077 * freeing the timers when inner map is replaced or deleted by user space. 1078 */ 1079 struct bpf_hrtimer { 1080 struct hrtimer timer; 1081 struct bpf_map *map; 1082 struct bpf_prog *prog; 1083 void __rcu *callback_fn; 1084 void *value; 1085 }; 1086 1087 /* the actual struct hidden inside uapi struct bpf_timer */ 1088 struct bpf_timer_kern { 1089 struct bpf_hrtimer *timer; 1090 /* bpf_spin_lock is used here instead of spinlock_t to make 1091 * sure that it always fits into space reserved by struct bpf_timer 1092 * regardless of LOCKDEP and spinlock debug flags. 1093 */ 1094 struct bpf_spin_lock lock; 1095 } __attribute__((aligned(8))); 1096 1097 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1098 1099 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1100 { 1101 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1102 struct bpf_map *map = t->map; 1103 void *value = t->value; 1104 bpf_callback_t callback_fn; 1105 void *key; 1106 u32 idx; 1107 1108 BTF_TYPE_EMIT(struct bpf_timer); 1109 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1110 if (!callback_fn) 1111 goto out; 1112 1113 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1114 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1115 * Remember the timer this callback is servicing to prevent 1116 * deadlock if callback_fn() calls bpf_timer_cancel() or 1117 * bpf_map_delete_elem() on the same timer. 1118 */ 1119 this_cpu_write(hrtimer_running, t); 1120 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1121 struct bpf_array *array = container_of(map, struct bpf_array, map); 1122 1123 /* compute the key */ 1124 idx = ((char *)value - array->value) / array->elem_size; 1125 key = &idx; 1126 } else { /* hash or lru */ 1127 key = value - round_up(map->key_size, 8); 1128 } 1129 1130 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1131 /* The verifier checked that return value is zero. */ 1132 1133 this_cpu_write(hrtimer_running, NULL); 1134 out: 1135 return HRTIMER_NORESTART; 1136 } 1137 1138 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1139 u64, flags) 1140 { 1141 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1142 struct bpf_hrtimer *t; 1143 int ret = 0; 1144 1145 BUILD_BUG_ON(MAX_CLOCKS != 16); 1146 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1147 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1148 1149 if (in_nmi()) 1150 return -EOPNOTSUPP; 1151 1152 if (flags >= MAX_CLOCKS || 1153 /* similar to timerfd except _ALARM variants are not supported */ 1154 (clockid != CLOCK_MONOTONIC && 1155 clockid != CLOCK_REALTIME && 1156 clockid != CLOCK_BOOTTIME)) 1157 return -EINVAL; 1158 __bpf_spin_lock_irqsave(&timer->lock); 1159 t = timer->timer; 1160 if (t) { 1161 ret = -EBUSY; 1162 goto out; 1163 } 1164 if (!atomic64_read(&map->usercnt)) { 1165 /* maps with timers must be either held by user space 1166 * or pinned in bpffs. 1167 */ 1168 ret = -EPERM; 1169 goto out; 1170 } 1171 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1172 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1173 if (!t) { 1174 ret = -ENOMEM; 1175 goto out; 1176 } 1177 t->value = (void *)timer - map->timer_off; 1178 t->map = map; 1179 t->prog = NULL; 1180 rcu_assign_pointer(t->callback_fn, NULL); 1181 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1182 t->timer.function = bpf_timer_cb; 1183 timer->timer = t; 1184 out: 1185 __bpf_spin_unlock_irqrestore(&timer->lock); 1186 return ret; 1187 } 1188 1189 static const struct bpf_func_proto bpf_timer_init_proto = { 1190 .func = bpf_timer_init, 1191 .gpl_only = true, 1192 .ret_type = RET_INTEGER, 1193 .arg1_type = ARG_PTR_TO_TIMER, 1194 .arg2_type = ARG_CONST_MAP_PTR, 1195 .arg3_type = ARG_ANYTHING, 1196 }; 1197 1198 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1199 struct bpf_prog_aux *, aux) 1200 { 1201 struct bpf_prog *prev, *prog = aux->prog; 1202 struct bpf_hrtimer *t; 1203 int ret = 0; 1204 1205 if (in_nmi()) 1206 return -EOPNOTSUPP; 1207 __bpf_spin_lock_irqsave(&timer->lock); 1208 t = timer->timer; 1209 if (!t) { 1210 ret = -EINVAL; 1211 goto out; 1212 } 1213 if (!atomic64_read(&t->map->usercnt)) { 1214 /* maps with timers must be either held by user space 1215 * or pinned in bpffs. Otherwise timer might still be 1216 * running even when bpf prog is detached and user space 1217 * is gone, since map_release_uref won't ever be called. 1218 */ 1219 ret = -EPERM; 1220 goto out; 1221 } 1222 prev = t->prog; 1223 if (prev != prog) { 1224 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1225 * can pick different callback_fn-s within the same prog. 1226 */ 1227 prog = bpf_prog_inc_not_zero(prog); 1228 if (IS_ERR(prog)) { 1229 ret = PTR_ERR(prog); 1230 goto out; 1231 } 1232 if (prev) 1233 /* Drop prev prog refcnt when swapping with new prog */ 1234 bpf_prog_put(prev); 1235 t->prog = prog; 1236 } 1237 rcu_assign_pointer(t->callback_fn, callback_fn); 1238 out: 1239 __bpf_spin_unlock_irqrestore(&timer->lock); 1240 return ret; 1241 } 1242 1243 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1244 .func = bpf_timer_set_callback, 1245 .gpl_only = true, 1246 .ret_type = RET_INTEGER, 1247 .arg1_type = ARG_PTR_TO_TIMER, 1248 .arg2_type = ARG_PTR_TO_FUNC, 1249 }; 1250 1251 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1252 { 1253 struct bpf_hrtimer *t; 1254 int ret = 0; 1255 1256 if (in_nmi()) 1257 return -EOPNOTSUPP; 1258 if (flags) 1259 return -EINVAL; 1260 __bpf_spin_lock_irqsave(&timer->lock); 1261 t = timer->timer; 1262 if (!t || !t->prog) { 1263 ret = -EINVAL; 1264 goto out; 1265 } 1266 hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); 1267 out: 1268 __bpf_spin_unlock_irqrestore(&timer->lock); 1269 return ret; 1270 } 1271 1272 static const struct bpf_func_proto bpf_timer_start_proto = { 1273 .func = bpf_timer_start, 1274 .gpl_only = true, 1275 .ret_type = RET_INTEGER, 1276 .arg1_type = ARG_PTR_TO_TIMER, 1277 .arg2_type = ARG_ANYTHING, 1278 .arg3_type = ARG_ANYTHING, 1279 }; 1280 1281 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1282 { 1283 struct bpf_prog *prog = t->prog; 1284 1285 if (prog) { 1286 bpf_prog_put(prog); 1287 t->prog = NULL; 1288 rcu_assign_pointer(t->callback_fn, NULL); 1289 } 1290 } 1291 1292 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1293 { 1294 struct bpf_hrtimer *t; 1295 int ret = 0; 1296 1297 if (in_nmi()) 1298 return -EOPNOTSUPP; 1299 __bpf_spin_lock_irqsave(&timer->lock); 1300 t = timer->timer; 1301 if (!t) { 1302 ret = -EINVAL; 1303 goto out; 1304 } 1305 if (this_cpu_read(hrtimer_running) == t) { 1306 /* If bpf callback_fn is trying to bpf_timer_cancel() 1307 * its own timer the hrtimer_cancel() will deadlock 1308 * since it waits for callback_fn to finish 1309 */ 1310 ret = -EDEADLK; 1311 goto out; 1312 } 1313 drop_prog_refcnt(t); 1314 out: 1315 __bpf_spin_unlock_irqrestore(&timer->lock); 1316 /* Cancel the timer and wait for associated callback to finish 1317 * if it was running. 1318 */ 1319 ret = ret ?: hrtimer_cancel(&t->timer); 1320 return ret; 1321 } 1322 1323 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1324 .func = bpf_timer_cancel, 1325 .gpl_only = true, 1326 .ret_type = RET_INTEGER, 1327 .arg1_type = ARG_PTR_TO_TIMER, 1328 }; 1329 1330 /* This function is called by map_delete/update_elem for individual element and 1331 * by ops->map_release_uref when the user space reference to a map reaches zero. 1332 */ 1333 void bpf_timer_cancel_and_free(void *val) 1334 { 1335 struct bpf_timer_kern *timer = val; 1336 struct bpf_hrtimer *t; 1337 1338 /* Performance optimization: read timer->timer without lock first. */ 1339 if (!READ_ONCE(timer->timer)) 1340 return; 1341 1342 __bpf_spin_lock_irqsave(&timer->lock); 1343 /* re-read it under lock */ 1344 t = timer->timer; 1345 if (!t) 1346 goto out; 1347 drop_prog_refcnt(t); 1348 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1349 * this timer, since it won't be initialized. 1350 */ 1351 timer->timer = NULL; 1352 out: 1353 __bpf_spin_unlock_irqrestore(&timer->lock); 1354 if (!t) 1355 return; 1356 /* Cancel the timer and wait for callback to complete if it was running. 1357 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1358 * right after for both preallocated and non-preallocated maps. 1359 * The timer->timer = NULL was already done and no code path can 1360 * see address 't' anymore. 1361 * 1362 * Check that bpf_map_delete/update_elem() wasn't called from timer 1363 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1364 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1365 * return -1). Though callback_fn is still running on this cpu it's 1366 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1367 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1368 * since timer->timer = NULL was already done. The timer will be 1369 * effectively cancelled because bpf_timer_cb() will return 1370 * HRTIMER_NORESTART. 1371 */ 1372 if (this_cpu_read(hrtimer_running) != t) 1373 hrtimer_cancel(&t->timer); 1374 kfree(t); 1375 } 1376 1377 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1378 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1379 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1380 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1381 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1382 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1383 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1384 1385 const struct bpf_func_proto * 1386 bpf_base_func_proto(enum bpf_func_id func_id) 1387 { 1388 switch (func_id) { 1389 case BPF_FUNC_map_lookup_elem: 1390 return &bpf_map_lookup_elem_proto; 1391 case BPF_FUNC_map_update_elem: 1392 return &bpf_map_update_elem_proto; 1393 case BPF_FUNC_map_delete_elem: 1394 return &bpf_map_delete_elem_proto; 1395 case BPF_FUNC_map_push_elem: 1396 return &bpf_map_push_elem_proto; 1397 case BPF_FUNC_map_pop_elem: 1398 return &bpf_map_pop_elem_proto; 1399 case BPF_FUNC_map_peek_elem: 1400 return &bpf_map_peek_elem_proto; 1401 case BPF_FUNC_get_prandom_u32: 1402 return &bpf_get_prandom_u32_proto; 1403 case BPF_FUNC_get_smp_processor_id: 1404 return &bpf_get_raw_smp_processor_id_proto; 1405 case BPF_FUNC_get_numa_node_id: 1406 return &bpf_get_numa_node_id_proto; 1407 case BPF_FUNC_tail_call: 1408 return &bpf_tail_call_proto; 1409 case BPF_FUNC_ktime_get_ns: 1410 return &bpf_ktime_get_ns_proto; 1411 case BPF_FUNC_ktime_get_boot_ns: 1412 return &bpf_ktime_get_boot_ns_proto; 1413 case BPF_FUNC_ringbuf_output: 1414 return &bpf_ringbuf_output_proto; 1415 case BPF_FUNC_ringbuf_reserve: 1416 return &bpf_ringbuf_reserve_proto; 1417 case BPF_FUNC_ringbuf_submit: 1418 return &bpf_ringbuf_submit_proto; 1419 case BPF_FUNC_ringbuf_discard: 1420 return &bpf_ringbuf_discard_proto; 1421 case BPF_FUNC_ringbuf_query: 1422 return &bpf_ringbuf_query_proto; 1423 case BPF_FUNC_for_each_map_elem: 1424 return &bpf_for_each_map_elem_proto; 1425 case BPF_FUNC_loop: 1426 return &bpf_loop_proto; 1427 case BPF_FUNC_strncmp: 1428 return &bpf_strncmp_proto; 1429 default: 1430 break; 1431 } 1432 1433 if (!bpf_capable()) 1434 return NULL; 1435 1436 switch (func_id) { 1437 case BPF_FUNC_spin_lock: 1438 return &bpf_spin_lock_proto; 1439 case BPF_FUNC_spin_unlock: 1440 return &bpf_spin_unlock_proto; 1441 case BPF_FUNC_jiffies64: 1442 return &bpf_jiffies64_proto; 1443 case BPF_FUNC_per_cpu_ptr: 1444 return &bpf_per_cpu_ptr_proto; 1445 case BPF_FUNC_this_cpu_ptr: 1446 return &bpf_this_cpu_ptr_proto; 1447 case BPF_FUNC_timer_init: 1448 return &bpf_timer_init_proto; 1449 case BPF_FUNC_timer_set_callback: 1450 return &bpf_timer_set_callback_proto; 1451 case BPF_FUNC_timer_start: 1452 return &bpf_timer_start_proto; 1453 case BPF_FUNC_timer_cancel: 1454 return &bpf_timer_cancel_proto; 1455 default: 1456 break; 1457 } 1458 1459 if (!perfmon_capable()) 1460 return NULL; 1461 1462 switch (func_id) { 1463 case BPF_FUNC_trace_printk: 1464 return bpf_get_trace_printk_proto(); 1465 case BPF_FUNC_get_current_task: 1466 return &bpf_get_current_task_proto; 1467 case BPF_FUNC_get_current_task_btf: 1468 return &bpf_get_current_task_btf_proto; 1469 case BPF_FUNC_probe_read_user: 1470 return &bpf_probe_read_user_proto; 1471 case BPF_FUNC_probe_read_kernel: 1472 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1473 NULL : &bpf_probe_read_kernel_proto; 1474 case BPF_FUNC_probe_read_user_str: 1475 return &bpf_probe_read_user_str_proto; 1476 case BPF_FUNC_probe_read_kernel_str: 1477 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1478 NULL : &bpf_probe_read_kernel_str_proto; 1479 case BPF_FUNC_snprintf_btf: 1480 return &bpf_snprintf_btf_proto; 1481 case BPF_FUNC_snprintf: 1482 return &bpf_snprintf_proto; 1483 case BPF_FUNC_task_pt_regs: 1484 return &bpf_task_pt_regs_proto; 1485 case BPF_FUNC_trace_vprintk: 1486 return bpf_get_trace_vprintk_proto(); 1487 default: 1488 return NULL; 1489 } 1490 } 1491