xref: /openbmc/linux/kernel/bpf/helpers.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/rcupdate.h>
6 #include <linux/random.h>
7 #include <linux/smp.h>
8 #include <linux/topology.h>
9 #include <linux/ktime.h>
10 #include <linux/sched.h>
11 #include <linux/uidgid.h>
12 #include <linux/filter.h>
13 #include <linux/ctype.h>
14 #include <linux/jiffies.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/proc_ns.h>
17 #include <linux/security.h>
18 
19 #include "../../lib/kstrtox.h"
20 
21 /* If kernel subsystem is allowing eBPF programs to call this function,
22  * inside its own verifier_ops->get_func_proto() callback it should return
23  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
24  *
25  * Different map implementations will rely on rcu in map methods
26  * lookup/update/delete, therefore eBPF programs must run under rcu lock
27  * if program is allowed to access maps, so check rcu_read_lock_held in
28  * all three functions.
29  */
30 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
31 {
32 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
33 	return (unsigned long) map->ops->map_lookup_elem(map, key);
34 }
35 
36 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
37 	.func		= bpf_map_lookup_elem,
38 	.gpl_only	= false,
39 	.pkt_access	= true,
40 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
41 	.arg1_type	= ARG_CONST_MAP_PTR,
42 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
43 };
44 
45 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
46 	   void *, value, u64, flags)
47 {
48 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
49 	return map->ops->map_update_elem(map, key, value, flags);
50 }
51 
52 const struct bpf_func_proto bpf_map_update_elem_proto = {
53 	.func		= bpf_map_update_elem,
54 	.gpl_only	= false,
55 	.pkt_access	= true,
56 	.ret_type	= RET_INTEGER,
57 	.arg1_type	= ARG_CONST_MAP_PTR,
58 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
59 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
60 	.arg4_type	= ARG_ANYTHING,
61 };
62 
63 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
64 {
65 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
66 	return map->ops->map_delete_elem(map, key);
67 }
68 
69 const struct bpf_func_proto bpf_map_delete_elem_proto = {
70 	.func		= bpf_map_delete_elem,
71 	.gpl_only	= false,
72 	.pkt_access	= true,
73 	.ret_type	= RET_INTEGER,
74 	.arg1_type	= ARG_CONST_MAP_PTR,
75 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
76 };
77 
78 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
79 {
80 	return map->ops->map_push_elem(map, value, flags);
81 }
82 
83 const struct bpf_func_proto bpf_map_push_elem_proto = {
84 	.func		= bpf_map_push_elem,
85 	.gpl_only	= false,
86 	.pkt_access	= true,
87 	.ret_type	= RET_INTEGER,
88 	.arg1_type	= ARG_CONST_MAP_PTR,
89 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
90 	.arg3_type	= ARG_ANYTHING,
91 };
92 
93 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
94 {
95 	return map->ops->map_pop_elem(map, value);
96 }
97 
98 const struct bpf_func_proto bpf_map_pop_elem_proto = {
99 	.func		= bpf_map_pop_elem,
100 	.gpl_only	= false,
101 	.ret_type	= RET_INTEGER,
102 	.arg1_type	= ARG_CONST_MAP_PTR,
103 	.arg2_type	= ARG_PTR_TO_UNINIT_MAP_VALUE,
104 };
105 
106 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
107 {
108 	return map->ops->map_peek_elem(map, value);
109 }
110 
111 const struct bpf_func_proto bpf_map_peek_elem_proto = {
112 	.func		= bpf_map_peek_elem,
113 	.gpl_only	= false,
114 	.ret_type	= RET_INTEGER,
115 	.arg1_type	= ARG_CONST_MAP_PTR,
116 	.arg2_type	= ARG_PTR_TO_UNINIT_MAP_VALUE,
117 };
118 
119 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
120 	.func		= bpf_user_rnd_u32,
121 	.gpl_only	= false,
122 	.ret_type	= RET_INTEGER,
123 };
124 
125 BPF_CALL_0(bpf_get_smp_processor_id)
126 {
127 	return smp_processor_id();
128 }
129 
130 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
131 	.func		= bpf_get_smp_processor_id,
132 	.gpl_only	= false,
133 	.ret_type	= RET_INTEGER,
134 };
135 
136 BPF_CALL_0(bpf_get_numa_node_id)
137 {
138 	return numa_node_id();
139 }
140 
141 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
142 	.func		= bpf_get_numa_node_id,
143 	.gpl_only	= false,
144 	.ret_type	= RET_INTEGER,
145 };
146 
147 BPF_CALL_0(bpf_ktime_get_ns)
148 {
149 	/* NMI safe access to clock monotonic */
150 	return ktime_get_mono_fast_ns();
151 }
152 
153 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
154 	.func		= bpf_ktime_get_ns,
155 	.gpl_only	= false,
156 	.ret_type	= RET_INTEGER,
157 };
158 
159 BPF_CALL_0(bpf_ktime_get_boot_ns)
160 {
161 	/* NMI safe access to clock boottime */
162 	return ktime_get_boot_fast_ns();
163 }
164 
165 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
166 	.func		= bpf_ktime_get_boot_ns,
167 	.gpl_only	= false,
168 	.ret_type	= RET_INTEGER,
169 };
170 
171 BPF_CALL_0(bpf_ktime_get_coarse_ns)
172 {
173 	return ktime_get_coarse_ns();
174 }
175 
176 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
177 	.func		= bpf_ktime_get_coarse_ns,
178 	.gpl_only	= false,
179 	.ret_type	= RET_INTEGER,
180 };
181 
182 BPF_CALL_0(bpf_get_current_pid_tgid)
183 {
184 	struct task_struct *task = current;
185 
186 	if (unlikely(!task))
187 		return -EINVAL;
188 
189 	return (u64) task->tgid << 32 | task->pid;
190 }
191 
192 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
193 	.func		= bpf_get_current_pid_tgid,
194 	.gpl_only	= false,
195 	.ret_type	= RET_INTEGER,
196 };
197 
198 BPF_CALL_0(bpf_get_current_uid_gid)
199 {
200 	struct task_struct *task = current;
201 	kuid_t uid;
202 	kgid_t gid;
203 
204 	if (unlikely(!task))
205 		return -EINVAL;
206 
207 	current_uid_gid(&uid, &gid);
208 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
209 		     from_kuid(&init_user_ns, uid);
210 }
211 
212 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
213 	.func		= bpf_get_current_uid_gid,
214 	.gpl_only	= false,
215 	.ret_type	= RET_INTEGER,
216 };
217 
218 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
219 {
220 	struct task_struct *task = current;
221 
222 	if (unlikely(!task))
223 		goto err_clear;
224 
225 	strncpy(buf, task->comm, size);
226 
227 	/* Verifier guarantees that size > 0. For task->comm exceeding
228 	 * size, guarantee that buf is %NUL-terminated. Unconditionally
229 	 * done here to save the size test.
230 	 */
231 	buf[size - 1] = 0;
232 	return 0;
233 err_clear:
234 	memset(buf, 0, size);
235 	return -EINVAL;
236 }
237 
238 const struct bpf_func_proto bpf_get_current_comm_proto = {
239 	.func		= bpf_get_current_comm,
240 	.gpl_only	= false,
241 	.ret_type	= RET_INTEGER,
242 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
243 	.arg2_type	= ARG_CONST_SIZE,
244 };
245 
246 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
247 
248 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
249 {
250 	arch_spinlock_t *l = (void *)lock;
251 	union {
252 		__u32 val;
253 		arch_spinlock_t lock;
254 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
255 
256 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
257 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
258 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
259 	arch_spin_lock(l);
260 }
261 
262 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
263 {
264 	arch_spinlock_t *l = (void *)lock;
265 
266 	arch_spin_unlock(l);
267 }
268 
269 #else
270 
271 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
272 {
273 	atomic_t *l = (void *)lock;
274 
275 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
276 	do {
277 		atomic_cond_read_relaxed(l, !VAL);
278 	} while (atomic_xchg(l, 1));
279 }
280 
281 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
282 {
283 	atomic_t *l = (void *)lock;
284 
285 	atomic_set_release(l, 0);
286 }
287 
288 #endif
289 
290 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
291 
292 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
293 {
294 	unsigned long flags;
295 
296 	local_irq_save(flags);
297 	__bpf_spin_lock(lock);
298 	__this_cpu_write(irqsave_flags, flags);
299 	return 0;
300 }
301 
302 const struct bpf_func_proto bpf_spin_lock_proto = {
303 	.func		= bpf_spin_lock,
304 	.gpl_only	= false,
305 	.ret_type	= RET_VOID,
306 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
307 };
308 
309 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
310 {
311 	unsigned long flags;
312 
313 	flags = __this_cpu_read(irqsave_flags);
314 	__bpf_spin_unlock(lock);
315 	local_irq_restore(flags);
316 	return 0;
317 }
318 
319 const struct bpf_func_proto bpf_spin_unlock_proto = {
320 	.func		= bpf_spin_unlock,
321 	.gpl_only	= false,
322 	.ret_type	= RET_VOID,
323 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
324 };
325 
326 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
327 			   bool lock_src)
328 {
329 	struct bpf_spin_lock *lock;
330 
331 	if (lock_src)
332 		lock = src + map->spin_lock_off;
333 	else
334 		lock = dst + map->spin_lock_off;
335 	preempt_disable();
336 	____bpf_spin_lock(lock);
337 	copy_map_value(map, dst, src);
338 	____bpf_spin_unlock(lock);
339 	preempt_enable();
340 }
341 
342 BPF_CALL_0(bpf_jiffies64)
343 {
344 	return get_jiffies_64();
345 }
346 
347 const struct bpf_func_proto bpf_jiffies64_proto = {
348 	.func		= bpf_jiffies64,
349 	.gpl_only	= false,
350 	.ret_type	= RET_INTEGER,
351 };
352 
353 #ifdef CONFIG_CGROUPS
354 BPF_CALL_0(bpf_get_current_cgroup_id)
355 {
356 	struct cgroup *cgrp = task_dfl_cgroup(current);
357 
358 	return cgroup_id(cgrp);
359 }
360 
361 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
362 	.func		= bpf_get_current_cgroup_id,
363 	.gpl_only	= false,
364 	.ret_type	= RET_INTEGER,
365 };
366 
367 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
368 {
369 	struct cgroup *cgrp = task_dfl_cgroup(current);
370 	struct cgroup *ancestor;
371 
372 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
373 	if (!ancestor)
374 		return 0;
375 	return cgroup_id(ancestor);
376 }
377 
378 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
379 	.func		= bpf_get_current_ancestor_cgroup_id,
380 	.gpl_only	= false,
381 	.ret_type	= RET_INTEGER,
382 	.arg1_type	= ARG_ANYTHING,
383 };
384 
385 #ifdef CONFIG_CGROUP_BPF
386 DECLARE_PER_CPU(struct bpf_cgroup_storage_info,
387 		bpf_cgroup_storage_info[BPF_CGROUP_STORAGE_NEST_MAX]);
388 
389 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
390 {
391 	/* flags argument is not used now,
392 	 * but provides an ability to extend the API.
393 	 * verifier checks that its value is correct.
394 	 */
395 	enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
396 	struct bpf_cgroup_storage *storage = NULL;
397 	void *ptr;
398 	int i;
399 
400 	for (i = 0; i < BPF_CGROUP_STORAGE_NEST_MAX; i++) {
401 		if (unlikely(this_cpu_read(bpf_cgroup_storage_info[i].task) != current))
402 			continue;
403 
404 		storage = this_cpu_read(bpf_cgroup_storage_info[i].storage[stype]);
405 		break;
406 	}
407 
408 	if (stype == BPF_CGROUP_STORAGE_SHARED)
409 		ptr = &READ_ONCE(storage->buf)->data[0];
410 	else
411 		ptr = this_cpu_ptr(storage->percpu_buf);
412 
413 	return (unsigned long)ptr;
414 }
415 
416 const struct bpf_func_proto bpf_get_local_storage_proto = {
417 	.func		= bpf_get_local_storage,
418 	.gpl_only	= false,
419 	.ret_type	= RET_PTR_TO_MAP_VALUE,
420 	.arg1_type	= ARG_CONST_MAP_PTR,
421 	.arg2_type	= ARG_ANYTHING,
422 };
423 #endif
424 
425 #define BPF_STRTOX_BASE_MASK 0x1F
426 
427 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
428 			  unsigned long long *res, bool *is_negative)
429 {
430 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
431 	const char *cur_buf = buf;
432 	size_t cur_len = buf_len;
433 	unsigned int consumed;
434 	size_t val_len;
435 	char str[64];
436 
437 	if (!buf || !buf_len || !res || !is_negative)
438 		return -EINVAL;
439 
440 	if (base != 0 && base != 8 && base != 10 && base != 16)
441 		return -EINVAL;
442 
443 	if (flags & ~BPF_STRTOX_BASE_MASK)
444 		return -EINVAL;
445 
446 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
447 		++cur_buf;
448 
449 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
450 	if (*is_negative)
451 		++cur_buf;
452 
453 	consumed = cur_buf - buf;
454 	cur_len -= consumed;
455 	if (!cur_len)
456 		return -EINVAL;
457 
458 	cur_len = min(cur_len, sizeof(str) - 1);
459 	memcpy(str, cur_buf, cur_len);
460 	str[cur_len] = '\0';
461 	cur_buf = str;
462 
463 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
464 	val_len = _parse_integer(cur_buf, base, res);
465 
466 	if (val_len & KSTRTOX_OVERFLOW)
467 		return -ERANGE;
468 
469 	if (val_len == 0)
470 		return -EINVAL;
471 
472 	cur_buf += val_len;
473 	consumed += cur_buf - str;
474 
475 	return consumed;
476 }
477 
478 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
479 			 long long *res)
480 {
481 	unsigned long long _res;
482 	bool is_negative;
483 	int err;
484 
485 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
486 	if (err < 0)
487 		return err;
488 	if (is_negative) {
489 		if ((long long)-_res > 0)
490 			return -ERANGE;
491 		*res = -_res;
492 	} else {
493 		if ((long long)_res < 0)
494 			return -ERANGE;
495 		*res = _res;
496 	}
497 	return err;
498 }
499 
500 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
501 	   long *, res)
502 {
503 	long long _res;
504 	int err;
505 
506 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
507 	if (err < 0)
508 		return err;
509 	if (_res != (long)_res)
510 		return -ERANGE;
511 	*res = _res;
512 	return err;
513 }
514 
515 const struct bpf_func_proto bpf_strtol_proto = {
516 	.func		= bpf_strtol,
517 	.gpl_only	= false,
518 	.ret_type	= RET_INTEGER,
519 	.arg1_type	= ARG_PTR_TO_MEM,
520 	.arg2_type	= ARG_CONST_SIZE,
521 	.arg3_type	= ARG_ANYTHING,
522 	.arg4_type	= ARG_PTR_TO_LONG,
523 };
524 
525 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
526 	   unsigned long *, res)
527 {
528 	unsigned long long _res;
529 	bool is_negative;
530 	int err;
531 
532 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
533 	if (err < 0)
534 		return err;
535 	if (is_negative)
536 		return -EINVAL;
537 	if (_res != (unsigned long)_res)
538 		return -ERANGE;
539 	*res = _res;
540 	return err;
541 }
542 
543 const struct bpf_func_proto bpf_strtoul_proto = {
544 	.func		= bpf_strtoul,
545 	.gpl_only	= false,
546 	.ret_type	= RET_INTEGER,
547 	.arg1_type	= ARG_PTR_TO_MEM,
548 	.arg2_type	= ARG_CONST_SIZE,
549 	.arg3_type	= ARG_ANYTHING,
550 	.arg4_type	= ARG_PTR_TO_LONG,
551 };
552 #endif
553 
554 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
555 	   struct bpf_pidns_info *, nsdata, u32, size)
556 {
557 	struct task_struct *task = current;
558 	struct pid_namespace *pidns;
559 	int err = -EINVAL;
560 
561 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
562 		goto clear;
563 
564 	if (unlikely((u64)(dev_t)dev != dev))
565 		goto clear;
566 
567 	if (unlikely(!task))
568 		goto clear;
569 
570 	pidns = task_active_pid_ns(task);
571 	if (unlikely(!pidns)) {
572 		err = -ENOENT;
573 		goto clear;
574 	}
575 
576 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
577 		goto clear;
578 
579 	nsdata->pid = task_pid_nr_ns(task, pidns);
580 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
581 	return 0;
582 clear:
583 	memset((void *)nsdata, 0, (size_t) size);
584 	return err;
585 }
586 
587 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
588 	.func		= bpf_get_ns_current_pid_tgid,
589 	.gpl_only	= false,
590 	.ret_type	= RET_INTEGER,
591 	.arg1_type	= ARG_ANYTHING,
592 	.arg2_type	= ARG_ANYTHING,
593 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
594 	.arg4_type      = ARG_CONST_SIZE,
595 };
596 
597 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
598 	.func		= bpf_get_raw_cpu_id,
599 	.gpl_only	= false,
600 	.ret_type	= RET_INTEGER,
601 };
602 
603 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
604 	   u64, flags, void *, data, u64, size)
605 {
606 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
607 		return -EINVAL;
608 
609 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
610 }
611 
612 const struct bpf_func_proto bpf_event_output_data_proto =  {
613 	.func		= bpf_event_output_data,
614 	.gpl_only       = true,
615 	.ret_type       = RET_INTEGER,
616 	.arg1_type      = ARG_PTR_TO_CTX,
617 	.arg2_type      = ARG_CONST_MAP_PTR,
618 	.arg3_type      = ARG_ANYTHING,
619 	.arg4_type      = ARG_PTR_TO_MEM,
620 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
621 };
622 
623 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
624 	   const void __user *, user_ptr)
625 {
626 	int ret = copy_from_user(dst, user_ptr, size);
627 
628 	if (unlikely(ret)) {
629 		memset(dst, 0, size);
630 		ret = -EFAULT;
631 	}
632 
633 	return ret;
634 }
635 
636 const struct bpf_func_proto bpf_copy_from_user_proto = {
637 	.func		= bpf_copy_from_user,
638 	.gpl_only	= false,
639 	.ret_type	= RET_INTEGER,
640 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
641 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
642 	.arg3_type	= ARG_ANYTHING,
643 };
644 
645 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
646 {
647 	if (cpu >= nr_cpu_ids)
648 		return (unsigned long)NULL;
649 
650 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
651 }
652 
653 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
654 	.func		= bpf_per_cpu_ptr,
655 	.gpl_only	= false,
656 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL,
657 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
658 	.arg2_type	= ARG_ANYTHING,
659 };
660 
661 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
662 {
663 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
664 }
665 
666 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
667 	.func		= bpf_this_cpu_ptr,
668 	.gpl_only	= false,
669 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID,
670 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
671 };
672 
673 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
674 		size_t bufsz)
675 {
676 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
677 
678 	buf[0] = 0;
679 
680 	switch (fmt_ptype) {
681 	case 's':
682 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
683 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
684 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
685 		fallthrough;
686 #endif
687 	case 'k':
688 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
689 	case 'u':
690 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
691 	}
692 
693 	return -EINVAL;
694 }
695 
696 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
697  * arguments representation.
698  */
699 #define MAX_BPRINTF_BUF_LEN	512
700 
701 /* Support executing three nested bprintf helper calls on a given CPU */
702 #define MAX_BPRINTF_NEST_LEVEL	3
703 struct bpf_bprintf_buffers {
704 	char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
705 };
706 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
707 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
708 
709 static int try_get_fmt_tmp_buf(char **tmp_buf)
710 {
711 	struct bpf_bprintf_buffers *bufs;
712 	int nest_level;
713 
714 	preempt_disable();
715 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
716 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
717 		this_cpu_dec(bpf_bprintf_nest_level);
718 		preempt_enable();
719 		return -EBUSY;
720 	}
721 	bufs = this_cpu_ptr(&bpf_bprintf_bufs);
722 	*tmp_buf = bufs->tmp_bufs[nest_level - 1];
723 
724 	return 0;
725 }
726 
727 void bpf_bprintf_cleanup(void)
728 {
729 	if (this_cpu_read(bpf_bprintf_nest_level)) {
730 		this_cpu_dec(bpf_bprintf_nest_level);
731 		preempt_enable();
732 	}
733 }
734 
735 /*
736  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
737  *
738  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
739  *
740  * This can be used in two ways:
741  * - Format string verification only: when bin_args is NULL
742  * - Arguments preparation: in addition to the above verification, it writes in
743  *   bin_args a binary representation of arguments usable by bstr_printf where
744  *   pointers from BPF have been sanitized.
745  *
746  * In argument preparation mode, if 0 is returned, safe temporary buffers are
747  * allocated and bpf_bprintf_cleanup should be called to free them after use.
748  */
749 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
750 			u32 **bin_args, u32 num_args)
751 {
752 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
753 	size_t sizeof_cur_arg, sizeof_cur_ip;
754 	int err, i, num_spec = 0;
755 	u64 cur_arg;
756 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
757 
758 	fmt_end = strnchr(fmt, fmt_size, 0);
759 	if (!fmt_end)
760 		return -EINVAL;
761 	fmt_size = fmt_end - fmt;
762 
763 	if (bin_args) {
764 		if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
765 			return -EBUSY;
766 
767 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
768 		*bin_args = (u32 *)tmp_buf;
769 	}
770 
771 	for (i = 0; i < fmt_size; i++) {
772 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
773 			err = -EINVAL;
774 			goto out;
775 		}
776 
777 		if (fmt[i] != '%')
778 			continue;
779 
780 		if (fmt[i + 1] == '%') {
781 			i++;
782 			continue;
783 		}
784 
785 		if (num_spec >= num_args) {
786 			err = -EINVAL;
787 			goto out;
788 		}
789 
790 		/* The string is zero-terminated so if fmt[i] != 0, we can
791 		 * always access fmt[i + 1], in the worst case it will be a 0
792 		 */
793 		i++;
794 
795 		/* skip optional "[0 +-][num]" width formatting field */
796 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
797 		       fmt[i] == ' ')
798 			i++;
799 		if (fmt[i] >= '1' && fmt[i] <= '9') {
800 			i++;
801 			while (fmt[i] >= '0' && fmt[i] <= '9')
802 				i++;
803 		}
804 
805 		if (fmt[i] == 'p') {
806 			sizeof_cur_arg = sizeof(long);
807 
808 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
809 			    fmt[i + 2] == 's') {
810 				fmt_ptype = fmt[i + 1];
811 				i += 2;
812 				goto fmt_str;
813 			}
814 
815 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
816 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
817 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
818 			    fmt[i + 1] == 'S') {
819 				/* just kernel pointers */
820 				if (tmp_buf)
821 					cur_arg = raw_args[num_spec];
822 				i++;
823 				goto nocopy_fmt;
824 			}
825 
826 			if (fmt[i + 1] == 'B') {
827 				if (tmp_buf)  {
828 					err = snprintf(tmp_buf,
829 						       (tmp_buf_end - tmp_buf),
830 						       "%pB",
831 						       (void *)(long)raw_args[num_spec]);
832 					tmp_buf += (err + 1);
833 				}
834 
835 				i++;
836 				num_spec++;
837 				continue;
838 			}
839 
840 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
841 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
842 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
843 				err = -EINVAL;
844 				goto out;
845 			}
846 
847 			i += 2;
848 			if (!tmp_buf)
849 				goto nocopy_fmt;
850 
851 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
852 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
853 				err = -ENOSPC;
854 				goto out;
855 			}
856 
857 			unsafe_ptr = (char *)(long)raw_args[num_spec];
858 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
859 						       sizeof_cur_ip);
860 			if (err < 0)
861 				memset(cur_ip, 0, sizeof_cur_ip);
862 
863 			/* hack: bstr_printf expects IP addresses to be
864 			 * pre-formatted as strings, ironically, the easiest way
865 			 * to do that is to call snprintf.
866 			 */
867 			ip_spec[2] = fmt[i - 1];
868 			ip_spec[3] = fmt[i];
869 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
870 				       ip_spec, &cur_ip);
871 
872 			tmp_buf += err + 1;
873 			num_spec++;
874 
875 			continue;
876 		} else if (fmt[i] == 's') {
877 			fmt_ptype = fmt[i];
878 fmt_str:
879 			if (fmt[i + 1] != 0 &&
880 			    !isspace(fmt[i + 1]) &&
881 			    !ispunct(fmt[i + 1])) {
882 				err = -EINVAL;
883 				goto out;
884 			}
885 
886 			if (!tmp_buf)
887 				goto nocopy_fmt;
888 
889 			if (tmp_buf_end == tmp_buf) {
890 				err = -ENOSPC;
891 				goto out;
892 			}
893 
894 			unsafe_ptr = (char *)(long)raw_args[num_spec];
895 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
896 						    fmt_ptype,
897 						    tmp_buf_end - tmp_buf);
898 			if (err < 0) {
899 				tmp_buf[0] = '\0';
900 				err = 1;
901 			}
902 
903 			tmp_buf += err;
904 			num_spec++;
905 
906 			continue;
907 		}
908 
909 		sizeof_cur_arg = sizeof(int);
910 
911 		if (fmt[i] == 'l') {
912 			sizeof_cur_arg = sizeof(long);
913 			i++;
914 		}
915 		if (fmt[i] == 'l') {
916 			sizeof_cur_arg = sizeof(long long);
917 			i++;
918 		}
919 
920 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
921 		    fmt[i] != 'x' && fmt[i] != 'X') {
922 			err = -EINVAL;
923 			goto out;
924 		}
925 
926 		if (tmp_buf)
927 			cur_arg = raw_args[num_spec];
928 nocopy_fmt:
929 		if (tmp_buf) {
930 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
931 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
932 				err = -ENOSPC;
933 				goto out;
934 			}
935 
936 			if (sizeof_cur_arg == 8) {
937 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
938 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
939 			} else {
940 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
941 			}
942 			tmp_buf += sizeof_cur_arg;
943 		}
944 		num_spec++;
945 	}
946 
947 	err = 0;
948 out:
949 	if (err)
950 		bpf_bprintf_cleanup();
951 	return err;
952 }
953 
954 #define MAX_SNPRINTF_VARARGS		12
955 
956 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
957 	   const void *, data, u32, data_len)
958 {
959 	int err, num_args;
960 	u32 *bin_args;
961 
962 	if (data_len % 8 || data_len > MAX_SNPRINTF_VARARGS * 8 ||
963 	    (data_len && !data))
964 		return -EINVAL;
965 	num_args = data_len / 8;
966 
967 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
968 	 * can safely give an unbounded size.
969 	 */
970 	err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
971 	if (err < 0)
972 		return err;
973 
974 	err = bstr_printf(str, str_size, fmt, bin_args);
975 
976 	bpf_bprintf_cleanup();
977 
978 	return err + 1;
979 }
980 
981 const struct bpf_func_proto bpf_snprintf_proto = {
982 	.func		= bpf_snprintf,
983 	.gpl_only	= true,
984 	.ret_type	= RET_INTEGER,
985 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
986 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
987 	.arg3_type	= ARG_PTR_TO_CONST_STR,
988 	.arg4_type	= ARG_PTR_TO_MEM_OR_NULL,
989 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
990 };
991 
992 const struct bpf_func_proto bpf_get_current_task_proto __weak;
993 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
994 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
995 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
996 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
997 
998 const struct bpf_func_proto *
999 bpf_base_func_proto(enum bpf_func_id func_id)
1000 {
1001 	switch (func_id) {
1002 	case BPF_FUNC_map_lookup_elem:
1003 		return &bpf_map_lookup_elem_proto;
1004 	case BPF_FUNC_map_update_elem:
1005 		return &bpf_map_update_elem_proto;
1006 	case BPF_FUNC_map_delete_elem:
1007 		return &bpf_map_delete_elem_proto;
1008 	case BPF_FUNC_map_push_elem:
1009 		return &bpf_map_push_elem_proto;
1010 	case BPF_FUNC_map_pop_elem:
1011 		return &bpf_map_pop_elem_proto;
1012 	case BPF_FUNC_map_peek_elem:
1013 		return &bpf_map_peek_elem_proto;
1014 	case BPF_FUNC_get_prandom_u32:
1015 		return &bpf_get_prandom_u32_proto;
1016 	case BPF_FUNC_get_smp_processor_id:
1017 		return &bpf_get_raw_smp_processor_id_proto;
1018 	case BPF_FUNC_get_numa_node_id:
1019 		return &bpf_get_numa_node_id_proto;
1020 	case BPF_FUNC_tail_call:
1021 		return &bpf_tail_call_proto;
1022 	case BPF_FUNC_ktime_get_ns:
1023 		return &bpf_ktime_get_ns_proto;
1024 	case BPF_FUNC_ktime_get_boot_ns:
1025 		return &bpf_ktime_get_boot_ns_proto;
1026 	case BPF_FUNC_ktime_get_coarse_ns:
1027 		return &bpf_ktime_get_coarse_ns_proto;
1028 	case BPF_FUNC_ringbuf_output:
1029 		return &bpf_ringbuf_output_proto;
1030 	case BPF_FUNC_ringbuf_reserve:
1031 		return &bpf_ringbuf_reserve_proto;
1032 	case BPF_FUNC_ringbuf_submit:
1033 		return &bpf_ringbuf_submit_proto;
1034 	case BPF_FUNC_ringbuf_discard:
1035 		return &bpf_ringbuf_discard_proto;
1036 	case BPF_FUNC_ringbuf_query:
1037 		return &bpf_ringbuf_query_proto;
1038 	case BPF_FUNC_for_each_map_elem:
1039 		return &bpf_for_each_map_elem_proto;
1040 	default:
1041 		break;
1042 	}
1043 
1044 	if (!bpf_capable())
1045 		return NULL;
1046 
1047 	switch (func_id) {
1048 	case BPF_FUNC_spin_lock:
1049 		return &bpf_spin_lock_proto;
1050 	case BPF_FUNC_spin_unlock:
1051 		return &bpf_spin_unlock_proto;
1052 	case BPF_FUNC_jiffies64:
1053 		return &bpf_jiffies64_proto;
1054 	case BPF_FUNC_per_cpu_ptr:
1055 		return &bpf_per_cpu_ptr_proto;
1056 	case BPF_FUNC_this_cpu_ptr:
1057 		return &bpf_this_cpu_ptr_proto;
1058 	default:
1059 		break;
1060 	}
1061 
1062 	if (!perfmon_capable())
1063 		return NULL;
1064 
1065 	switch (func_id) {
1066 	case BPF_FUNC_trace_printk:
1067 		return bpf_get_trace_printk_proto();
1068 	case BPF_FUNC_get_current_task:
1069 		return &bpf_get_current_task_proto;
1070 	case BPF_FUNC_probe_read_user:
1071 		return &bpf_probe_read_user_proto;
1072 	case BPF_FUNC_probe_read_kernel:
1073 		return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1074 		       NULL : &bpf_probe_read_kernel_proto;
1075 	case BPF_FUNC_probe_read_user_str:
1076 		return &bpf_probe_read_user_str_proto;
1077 	case BPF_FUNC_probe_read_kernel_str:
1078 		return security_locked_down(LOCKDOWN_BPF_READ) < 0 ?
1079 		       NULL : &bpf_probe_read_kernel_str_proto;
1080 	case BPF_FUNC_snprintf_btf:
1081 		return &bpf_snprintf_btf_proto;
1082 	case BPF_FUNC_snprintf:
1083 		return &bpf_snprintf_proto;
1084 	default:
1085 		return NULL;
1086 	}
1087 }
1088