1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/cgroup.h> 8 #include <linux/rcupdate.h> 9 #include <linux/random.h> 10 #include <linux/smp.h> 11 #include <linux/topology.h> 12 #include <linux/ktime.h> 13 #include <linux/sched.h> 14 #include <linux/uidgid.h> 15 #include <linux/filter.h> 16 #include <linux/ctype.h> 17 #include <linux/jiffies.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/poison.h> 20 #include <linux/proc_ns.h> 21 #include <linux/sched/task.h> 22 #include <linux/security.h> 23 #include <linux/btf_ids.h> 24 #include <linux/bpf_mem_alloc.h> 25 26 #include "../../lib/kstrtox.h" 27 28 /* If kernel subsystem is allowing eBPF programs to call this function, 29 * inside its own verifier_ops->get_func_proto() callback it should return 30 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 31 * 32 * Different map implementations will rely on rcu in map methods 33 * lookup/update/delete, therefore eBPF programs must run under rcu lock 34 * if program is allowed to access maps, so check rcu_read_lock_held() or 35 * rcu_read_lock_trace_held() in all three functions. 36 */ 37 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 38 { 39 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 40 !rcu_read_lock_bh_held()); 41 return (unsigned long) map->ops->map_lookup_elem(map, key); 42 } 43 44 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 45 .func = bpf_map_lookup_elem, 46 .gpl_only = false, 47 .pkt_access = true, 48 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 49 .arg1_type = ARG_CONST_MAP_PTR, 50 .arg2_type = ARG_PTR_TO_MAP_KEY, 51 }; 52 53 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 54 void *, value, u64, flags) 55 { 56 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 57 !rcu_read_lock_bh_held()); 58 return map->ops->map_update_elem(map, key, value, flags); 59 } 60 61 const struct bpf_func_proto bpf_map_update_elem_proto = { 62 .func = bpf_map_update_elem, 63 .gpl_only = false, 64 .pkt_access = true, 65 .ret_type = RET_INTEGER, 66 .arg1_type = ARG_CONST_MAP_PTR, 67 .arg2_type = ARG_PTR_TO_MAP_KEY, 68 .arg3_type = ARG_PTR_TO_MAP_VALUE, 69 .arg4_type = ARG_ANYTHING, 70 }; 71 72 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 73 { 74 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 75 !rcu_read_lock_bh_held()); 76 return map->ops->map_delete_elem(map, key); 77 } 78 79 const struct bpf_func_proto bpf_map_delete_elem_proto = { 80 .func = bpf_map_delete_elem, 81 .gpl_only = false, 82 .pkt_access = true, 83 .ret_type = RET_INTEGER, 84 .arg1_type = ARG_CONST_MAP_PTR, 85 .arg2_type = ARG_PTR_TO_MAP_KEY, 86 }; 87 88 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 89 { 90 return map->ops->map_push_elem(map, value, flags); 91 } 92 93 const struct bpf_func_proto bpf_map_push_elem_proto = { 94 .func = bpf_map_push_elem, 95 .gpl_only = false, 96 .pkt_access = true, 97 .ret_type = RET_INTEGER, 98 .arg1_type = ARG_CONST_MAP_PTR, 99 .arg2_type = ARG_PTR_TO_MAP_VALUE, 100 .arg3_type = ARG_ANYTHING, 101 }; 102 103 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 104 { 105 return map->ops->map_pop_elem(map, value); 106 } 107 108 const struct bpf_func_proto bpf_map_pop_elem_proto = { 109 .func = bpf_map_pop_elem, 110 .gpl_only = false, 111 .ret_type = RET_INTEGER, 112 .arg1_type = ARG_CONST_MAP_PTR, 113 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 114 }; 115 116 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 117 { 118 return map->ops->map_peek_elem(map, value); 119 } 120 121 const struct bpf_func_proto bpf_map_peek_elem_proto = { 122 .func = bpf_map_peek_elem, 123 .gpl_only = false, 124 .ret_type = RET_INTEGER, 125 .arg1_type = ARG_CONST_MAP_PTR, 126 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 127 }; 128 129 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 130 { 131 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 132 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 133 } 134 135 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 136 .func = bpf_map_lookup_percpu_elem, 137 .gpl_only = false, 138 .pkt_access = true, 139 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 140 .arg1_type = ARG_CONST_MAP_PTR, 141 .arg2_type = ARG_PTR_TO_MAP_KEY, 142 .arg3_type = ARG_ANYTHING, 143 }; 144 145 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 146 .func = bpf_user_rnd_u32, 147 .gpl_only = false, 148 .ret_type = RET_INTEGER, 149 }; 150 151 BPF_CALL_0(bpf_get_smp_processor_id) 152 { 153 return smp_processor_id(); 154 } 155 156 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 157 .func = bpf_get_smp_processor_id, 158 .gpl_only = false, 159 .ret_type = RET_INTEGER, 160 }; 161 162 BPF_CALL_0(bpf_get_numa_node_id) 163 { 164 return numa_node_id(); 165 } 166 167 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 168 .func = bpf_get_numa_node_id, 169 .gpl_only = false, 170 .ret_type = RET_INTEGER, 171 }; 172 173 BPF_CALL_0(bpf_ktime_get_ns) 174 { 175 /* NMI safe access to clock monotonic */ 176 return ktime_get_mono_fast_ns(); 177 } 178 179 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 180 .func = bpf_ktime_get_ns, 181 .gpl_only = false, 182 .ret_type = RET_INTEGER, 183 }; 184 185 BPF_CALL_0(bpf_ktime_get_boot_ns) 186 { 187 /* NMI safe access to clock boottime */ 188 return ktime_get_boot_fast_ns(); 189 } 190 191 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 192 .func = bpf_ktime_get_boot_ns, 193 .gpl_only = false, 194 .ret_type = RET_INTEGER, 195 }; 196 197 BPF_CALL_0(bpf_ktime_get_coarse_ns) 198 { 199 return ktime_get_coarse_ns(); 200 } 201 202 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 203 .func = bpf_ktime_get_coarse_ns, 204 .gpl_only = false, 205 .ret_type = RET_INTEGER, 206 }; 207 208 BPF_CALL_0(bpf_ktime_get_tai_ns) 209 { 210 /* NMI safe access to clock tai */ 211 return ktime_get_tai_fast_ns(); 212 } 213 214 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 215 .func = bpf_ktime_get_tai_ns, 216 .gpl_only = false, 217 .ret_type = RET_INTEGER, 218 }; 219 220 BPF_CALL_0(bpf_get_current_pid_tgid) 221 { 222 struct task_struct *task = current; 223 224 if (unlikely(!task)) 225 return -EINVAL; 226 227 return (u64) task->tgid << 32 | task->pid; 228 } 229 230 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 231 .func = bpf_get_current_pid_tgid, 232 .gpl_only = false, 233 .ret_type = RET_INTEGER, 234 }; 235 236 BPF_CALL_0(bpf_get_current_uid_gid) 237 { 238 struct task_struct *task = current; 239 kuid_t uid; 240 kgid_t gid; 241 242 if (unlikely(!task)) 243 return -EINVAL; 244 245 current_uid_gid(&uid, &gid); 246 return (u64) from_kgid(&init_user_ns, gid) << 32 | 247 from_kuid(&init_user_ns, uid); 248 } 249 250 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 251 .func = bpf_get_current_uid_gid, 252 .gpl_only = false, 253 .ret_type = RET_INTEGER, 254 }; 255 256 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 257 { 258 struct task_struct *task = current; 259 260 if (unlikely(!task)) 261 goto err_clear; 262 263 /* Verifier guarantees that size > 0 */ 264 strscpy_pad(buf, task->comm, size); 265 return 0; 266 err_clear: 267 memset(buf, 0, size); 268 return -EINVAL; 269 } 270 271 const struct bpf_func_proto bpf_get_current_comm_proto = { 272 .func = bpf_get_current_comm, 273 .gpl_only = false, 274 .ret_type = RET_INTEGER, 275 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 276 .arg2_type = ARG_CONST_SIZE, 277 }; 278 279 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 280 281 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 282 { 283 arch_spinlock_t *l = (void *)lock; 284 union { 285 __u32 val; 286 arch_spinlock_t lock; 287 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 288 289 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 290 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 291 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 292 preempt_disable(); 293 arch_spin_lock(l); 294 } 295 296 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 297 { 298 arch_spinlock_t *l = (void *)lock; 299 300 arch_spin_unlock(l); 301 preempt_enable(); 302 } 303 304 #else 305 306 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 307 { 308 atomic_t *l = (void *)lock; 309 310 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 311 do { 312 atomic_cond_read_relaxed(l, !VAL); 313 } while (atomic_xchg(l, 1)); 314 } 315 316 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 317 { 318 atomic_t *l = (void *)lock; 319 320 atomic_set_release(l, 0); 321 } 322 323 #endif 324 325 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 326 327 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 328 { 329 unsigned long flags; 330 331 local_irq_save(flags); 332 __bpf_spin_lock(lock); 333 __this_cpu_write(irqsave_flags, flags); 334 } 335 336 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 337 { 338 __bpf_spin_lock_irqsave(lock); 339 return 0; 340 } 341 342 const struct bpf_func_proto bpf_spin_lock_proto = { 343 .func = bpf_spin_lock, 344 .gpl_only = false, 345 .ret_type = RET_VOID, 346 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 347 .arg1_btf_id = BPF_PTR_POISON, 348 }; 349 350 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 351 { 352 unsigned long flags; 353 354 flags = __this_cpu_read(irqsave_flags); 355 __bpf_spin_unlock(lock); 356 local_irq_restore(flags); 357 } 358 359 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 360 { 361 __bpf_spin_unlock_irqrestore(lock); 362 return 0; 363 } 364 365 const struct bpf_func_proto bpf_spin_unlock_proto = { 366 .func = bpf_spin_unlock, 367 .gpl_only = false, 368 .ret_type = RET_VOID, 369 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 370 .arg1_btf_id = BPF_PTR_POISON, 371 }; 372 373 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 374 bool lock_src) 375 { 376 struct bpf_spin_lock *lock; 377 378 if (lock_src) 379 lock = src + map->record->spin_lock_off; 380 else 381 lock = dst + map->record->spin_lock_off; 382 preempt_disable(); 383 __bpf_spin_lock_irqsave(lock); 384 copy_map_value(map, dst, src); 385 __bpf_spin_unlock_irqrestore(lock); 386 preempt_enable(); 387 } 388 389 BPF_CALL_0(bpf_jiffies64) 390 { 391 return get_jiffies_64(); 392 } 393 394 const struct bpf_func_proto bpf_jiffies64_proto = { 395 .func = bpf_jiffies64, 396 .gpl_only = false, 397 .ret_type = RET_INTEGER, 398 }; 399 400 #ifdef CONFIG_CGROUPS 401 BPF_CALL_0(bpf_get_current_cgroup_id) 402 { 403 struct cgroup *cgrp; 404 u64 cgrp_id; 405 406 rcu_read_lock(); 407 cgrp = task_dfl_cgroup(current); 408 cgrp_id = cgroup_id(cgrp); 409 rcu_read_unlock(); 410 411 return cgrp_id; 412 } 413 414 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 415 .func = bpf_get_current_cgroup_id, 416 .gpl_only = false, 417 .ret_type = RET_INTEGER, 418 }; 419 420 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 421 { 422 struct cgroup *cgrp; 423 struct cgroup *ancestor; 424 u64 cgrp_id; 425 426 rcu_read_lock(); 427 cgrp = task_dfl_cgroup(current); 428 ancestor = cgroup_ancestor(cgrp, ancestor_level); 429 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 430 rcu_read_unlock(); 431 432 return cgrp_id; 433 } 434 435 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 436 .func = bpf_get_current_ancestor_cgroup_id, 437 .gpl_only = false, 438 .ret_type = RET_INTEGER, 439 .arg1_type = ARG_ANYTHING, 440 }; 441 #endif /* CONFIG_CGROUPS */ 442 443 #define BPF_STRTOX_BASE_MASK 0x1F 444 445 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 446 unsigned long long *res, bool *is_negative) 447 { 448 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 449 const char *cur_buf = buf; 450 size_t cur_len = buf_len; 451 unsigned int consumed; 452 size_t val_len; 453 char str[64]; 454 455 if (!buf || !buf_len || !res || !is_negative) 456 return -EINVAL; 457 458 if (base != 0 && base != 8 && base != 10 && base != 16) 459 return -EINVAL; 460 461 if (flags & ~BPF_STRTOX_BASE_MASK) 462 return -EINVAL; 463 464 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 465 ++cur_buf; 466 467 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 468 if (*is_negative) 469 ++cur_buf; 470 471 consumed = cur_buf - buf; 472 cur_len -= consumed; 473 if (!cur_len) 474 return -EINVAL; 475 476 cur_len = min(cur_len, sizeof(str) - 1); 477 memcpy(str, cur_buf, cur_len); 478 str[cur_len] = '\0'; 479 cur_buf = str; 480 481 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 482 val_len = _parse_integer(cur_buf, base, res); 483 484 if (val_len & KSTRTOX_OVERFLOW) 485 return -ERANGE; 486 487 if (val_len == 0) 488 return -EINVAL; 489 490 cur_buf += val_len; 491 consumed += cur_buf - str; 492 493 return consumed; 494 } 495 496 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 497 long long *res) 498 { 499 unsigned long long _res; 500 bool is_negative; 501 int err; 502 503 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 504 if (err < 0) 505 return err; 506 if (is_negative) { 507 if ((long long)-_res > 0) 508 return -ERANGE; 509 *res = -_res; 510 } else { 511 if ((long long)_res < 0) 512 return -ERANGE; 513 *res = _res; 514 } 515 return err; 516 } 517 518 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 519 long *, res) 520 { 521 long long _res; 522 int err; 523 524 err = __bpf_strtoll(buf, buf_len, flags, &_res); 525 if (err < 0) 526 return err; 527 if (_res != (long)_res) 528 return -ERANGE; 529 *res = _res; 530 return err; 531 } 532 533 const struct bpf_func_proto bpf_strtol_proto = { 534 .func = bpf_strtol, 535 .gpl_only = false, 536 .ret_type = RET_INTEGER, 537 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 538 .arg2_type = ARG_CONST_SIZE, 539 .arg3_type = ARG_ANYTHING, 540 .arg4_type = ARG_PTR_TO_LONG, 541 }; 542 543 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 544 unsigned long *, res) 545 { 546 unsigned long long _res; 547 bool is_negative; 548 int err; 549 550 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 551 if (err < 0) 552 return err; 553 if (is_negative) 554 return -EINVAL; 555 if (_res != (unsigned long)_res) 556 return -ERANGE; 557 *res = _res; 558 return err; 559 } 560 561 const struct bpf_func_proto bpf_strtoul_proto = { 562 .func = bpf_strtoul, 563 .gpl_only = false, 564 .ret_type = RET_INTEGER, 565 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 566 .arg2_type = ARG_CONST_SIZE, 567 .arg3_type = ARG_ANYTHING, 568 .arg4_type = ARG_PTR_TO_LONG, 569 }; 570 571 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 572 { 573 return strncmp(s1, s2, s1_sz); 574 } 575 576 static const struct bpf_func_proto bpf_strncmp_proto = { 577 .func = bpf_strncmp, 578 .gpl_only = false, 579 .ret_type = RET_INTEGER, 580 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 581 .arg2_type = ARG_CONST_SIZE, 582 .arg3_type = ARG_PTR_TO_CONST_STR, 583 }; 584 585 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 586 struct bpf_pidns_info *, nsdata, u32, size) 587 { 588 struct task_struct *task = current; 589 struct pid_namespace *pidns; 590 int err = -EINVAL; 591 592 if (unlikely(size != sizeof(struct bpf_pidns_info))) 593 goto clear; 594 595 if (unlikely((u64)(dev_t)dev != dev)) 596 goto clear; 597 598 if (unlikely(!task)) 599 goto clear; 600 601 pidns = task_active_pid_ns(task); 602 if (unlikely(!pidns)) { 603 err = -ENOENT; 604 goto clear; 605 } 606 607 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 608 goto clear; 609 610 nsdata->pid = task_pid_nr_ns(task, pidns); 611 nsdata->tgid = task_tgid_nr_ns(task, pidns); 612 return 0; 613 clear: 614 memset((void *)nsdata, 0, (size_t) size); 615 return err; 616 } 617 618 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 619 .func = bpf_get_ns_current_pid_tgid, 620 .gpl_only = false, 621 .ret_type = RET_INTEGER, 622 .arg1_type = ARG_ANYTHING, 623 .arg2_type = ARG_ANYTHING, 624 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 625 .arg4_type = ARG_CONST_SIZE, 626 }; 627 628 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 629 .func = bpf_get_raw_cpu_id, 630 .gpl_only = false, 631 .ret_type = RET_INTEGER, 632 }; 633 634 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 635 u64, flags, void *, data, u64, size) 636 { 637 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 638 return -EINVAL; 639 640 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 641 } 642 643 const struct bpf_func_proto bpf_event_output_data_proto = { 644 .func = bpf_event_output_data, 645 .gpl_only = true, 646 .ret_type = RET_INTEGER, 647 .arg1_type = ARG_PTR_TO_CTX, 648 .arg2_type = ARG_CONST_MAP_PTR, 649 .arg3_type = ARG_ANYTHING, 650 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 651 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 652 }; 653 654 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 655 const void __user *, user_ptr) 656 { 657 int ret = copy_from_user(dst, user_ptr, size); 658 659 if (unlikely(ret)) { 660 memset(dst, 0, size); 661 ret = -EFAULT; 662 } 663 664 return ret; 665 } 666 667 const struct bpf_func_proto bpf_copy_from_user_proto = { 668 .func = bpf_copy_from_user, 669 .gpl_only = false, 670 .might_sleep = true, 671 .ret_type = RET_INTEGER, 672 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 673 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 674 .arg3_type = ARG_ANYTHING, 675 }; 676 677 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 678 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 679 { 680 int ret; 681 682 /* flags is not used yet */ 683 if (unlikely(flags)) 684 return -EINVAL; 685 686 if (unlikely(!size)) 687 return 0; 688 689 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 690 if (ret == size) 691 return 0; 692 693 memset(dst, 0, size); 694 /* Return -EFAULT for partial read */ 695 return ret < 0 ? ret : -EFAULT; 696 } 697 698 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 699 .func = bpf_copy_from_user_task, 700 .gpl_only = true, 701 .might_sleep = true, 702 .ret_type = RET_INTEGER, 703 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 704 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 705 .arg3_type = ARG_ANYTHING, 706 .arg4_type = ARG_PTR_TO_BTF_ID, 707 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 708 .arg5_type = ARG_ANYTHING 709 }; 710 711 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 712 { 713 if (cpu >= nr_cpu_ids) 714 return (unsigned long)NULL; 715 716 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 717 } 718 719 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 720 .func = bpf_per_cpu_ptr, 721 .gpl_only = false, 722 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 723 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 724 .arg2_type = ARG_ANYTHING, 725 }; 726 727 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 728 { 729 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 730 } 731 732 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 733 .func = bpf_this_cpu_ptr, 734 .gpl_only = false, 735 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 736 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 737 }; 738 739 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 740 size_t bufsz) 741 { 742 void __user *user_ptr = (__force void __user *)unsafe_ptr; 743 744 buf[0] = 0; 745 746 switch (fmt_ptype) { 747 case 's': 748 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 749 if ((unsigned long)unsafe_ptr < TASK_SIZE) 750 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 751 fallthrough; 752 #endif 753 case 'k': 754 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 755 case 'u': 756 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 757 } 758 759 return -EINVAL; 760 } 761 762 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 763 * arguments representation. 764 */ 765 #define MAX_BPRINTF_BIN_ARGS 512 766 767 /* Support executing three nested bprintf helper calls on a given CPU */ 768 #define MAX_BPRINTF_NEST_LEVEL 3 769 struct bpf_bprintf_buffers { 770 char bin_args[MAX_BPRINTF_BIN_ARGS]; 771 char buf[MAX_BPRINTF_BUF]; 772 }; 773 774 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); 775 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 776 777 static int try_get_buffers(struct bpf_bprintf_buffers **bufs) 778 { 779 int nest_level; 780 781 preempt_disable(); 782 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 783 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 784 this_cpu_dec(bpf_bprintf_nest_level); 785 preempt_enable(); 786 return -EBUSY; 787 } 788 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); 789 790 return 0; 791 } 792 793 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) 794 { 795 if (!data->bin_args && !data->buf) 796 return; 797 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) 798 return; 799 this_cpu_dec(bpf_bprintf_nest_level); 800 preempt_enable(); 801 } 802 803 /* 804 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 805 * 806 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 807 * 808 * This can be used in two ways: 809 * - Format string verification only: when data->get_bin_args is false 810 * - Arguments preparation: in addition to the above verification, it writes in 811 * data->bin_args a binary representation of arguments usable by bstr_printf 812 * where pointers from BPF have been sanitized. 813 * 814 * In argument preparation mode, if 0 is returned, safe temporary buffers are 815 * allocated and bpf_bprintf_cleanup should be called to free them after use. 816 */ 817 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 818 u32 num_args, struct bpf_bprintf_data *data) 819 { 820 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; 821 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 822 struct bpf_bprintf_buffers *buffers = NULL; 823 size_t sizeof_cur_arg, sizeof_cur_ip; 824 int err, i, num_spec = 0; 825 u64 cur_arg; 826 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 827 828 fmt_end = strnchr(fmt, fmt_size, 0); 829 if (!fmt_end) 830 return -EINVAL; 831 fmt_size = fmt_end - fmt; 832 833 if (get_buffers && try_get_buffers(&buffers)) 834 return -EBUSY; 835 836 if (data->get_bin_args) { 837 if (num_args) 838 tmp_buf = buffers->bin_args; 839 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; 840 data->bin_args = (u32 *)tmp_buf; 841 } 842 843 if (data->get_buf) 844 data->buf = buffers->buf; 845 846 for (i = 0; i < fmt_size; i++) { 847 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 848 err = -EINVAL; 849 goto out; 850 } 851 852 if (fmt[i] != '%') 853 continue; 854 855 if (fmt[i + 1] == '%') { 856 i++; 857 continue; 858 } 859 860 if (num_spec >= num_args) { 861 err = -EINVAL; 862 goto out; 863 } 864 865 /* The string is zero-terminated so if fmt[i] != 0, we can 866 * always access fmt[i + 1], in the worst case it will be a 0 867 */ 868 i++; 869 870 /* skip optional "[0 +-][num]" width formatting field */ 871 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 872 fmt[i] == ' ') 873 i++; 874 if (fmt[i] >= '1' && fmt[i] <= '9') { 875 i++; 876 while (fmt[i] >= '0' && fmt[i] <= '9') 877 i++; 878 } 879 880 if (fmt[i] == 'p') { 881 sizeof_cur_arg = sizeof(long); 882 883 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 884 fmt[i + 2] == 's') { 885 fmt_ptype = fmt[i + 1]; 886 i += 2; 887 goto fmt_str; 888 } 889 890 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 891 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 892 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 893 fmt[i + 1] == 'S') { 894 /* just kernel pointers */ 895 if (tmp_buf) 896 cur_arg = raw_args[num_spec]; 897 i++; 898 goto nocopy_fmt; 899 } 900 901 if (fmt[i + 1] == 'B') { 902 if (tmp_buf) { 903 err = snprintf(tmp_buf, 904 (tmp_buf_end - tmp_buf), 905 "%pB", 906 (void *)(long)raw_args[num_spec]); 907 tmp_buf += (err + 1); 908 } 909 910 i++; 911 num_spec++; 912 continue; 913 } 914 915 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 916 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 917 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 918 err = -EINVAL; 919 goto out; 920 } 921 922 i += 2; 923 if (!tmp_buf) 924 goto nocopy_fmt; 925 926 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 927 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 928 err = -ENOSPC; 929 goto out; 930 } 931 932 unsafe_ptr = (char *)(long)raw_args[num_spec]; 933 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 934 sizeof_cur_ip); 935 if (err < 0) 936 memset(cur_ip, 0, sizeof_cur_ip); 937 938 /* hack: bstr_printf expects IP addresses to be 939 * pre-formatted as strings, ironically, the easiest way 940 * to do that is to call snprintf. 941 */ 942 ip_spec[2] = fmt[i - 1]; 943 ip_spec[3] = fmt[i]; 944 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 945 ip_spec, &cur_ip); 946 947 tmp_buf += err + 1; 948 num_spec++; 949 950 continue; 951 } else if (fmt[i] == 's') { 952 fmt_ptype = fmt[i]; 953 fmt_str: 954 if (fmt[i + 1] != 0 && 955 !isspace(fmt[i + 1]) && 956 !ispunct(fmt[i + 1])) { 957 err = -EINVAL; 958 goto out; 959 } 960 961 if (!tmp_buf) 962 goto nocopy_fmt; 963 964 if (tmp_buf_end == tmp_buf) { 965 err = -ENOSPC; 966 goto out; 967 } 968 969 unsafe_ptr = (char *)(long)raw_args[num_spec]; 970 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 971 fmt_ptype, 972 tmp_buf_end - tmp_buf); 973 if (err < 0) { 974 tmp_buf[0] = '\0'; 975 err = 1; 976 } 977 978 tmp_buf += err; 979 num_spec++; 980 981 continue; 982 } else if (fmt[i] == 'c') { 983 if (!tmp_buf) 984 goto nocopy_fmt; 985 986 if (tmp_buf_end == tmp_buf) { 987 err = -ENOSPC; 988 goto out; 989 } 990 991 *tmp_buf = raw_args[num_spec]; 992 tmp_buf++; 993 num_spec++; 994 995 continue; 996 } 997 998 sizeof_cur_arg = sizeof(int); 999 1000 if (fmt[i] == 'l') { 1001 sizeof_cur_arg = sizeof(long); 1002 i++; 1003 } 1004 if (fmt[i] == 'l') { 1005 sizeof_cur_arg = sizeof(long long); 1006 i++; 1007 } 1008 1009 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1010 fmt[i] != 'x' && fmt[i] != 'X') { 1011 err = -EINVAL; 1012 goto out; 1013 } 1014 1015 if (tmp_buf) 1016 cur_arg = raw_args[num_spec]; 1017 nocopy_fmt: 1018 if (tmp_buf) { 1019 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1020 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1021 err = -ENOSPC; 1022 goto out; 1023 } 1024 1025 if (sizeof_cur_arg == 8) { 1026 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1027 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1028 } else { 1029 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1030 } 1031 tmp_buf += sizeof_cur_arg; 1032 } 1033 num_spec++; 1034 } 1035 1036 err = 0; 1037 out: 1038 if (err) 1039 bpf_bprintf_cleanup(data); 1040 return err; 1041 } 1042 1043 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1044 const void *, args, u32, data_len) 1045 { 1046 struct bpf_bprintf_data data = { 1047 .get_bin_args = true, 1048 }; 1049 int err, num_args; 1050 1051 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1052 (data_len && !args)) 1053 return -EINVAL; 1054 num_args = data_len / 8; 1055 1056 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1057 * can safely give an unbounded size. 1058 */ 1059 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); 1060 if (err < 0) 1061 return err; 1062 1063 err = bstr_printf(str, str_size, fmt, data.bin_args); 1064 1065 bpf_bprintf_cleanup(&data); 1066 1067 return err + 1; 1068 } 1069 1070 const struct bpf_func_proto bpf_snprintf_proto = { 1071 .func = bpf_snprintf, 1072 .gpl_only = true, 1073 .ret_type = RET_INTEGER, 1074 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1075 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1076 .arg3_type = ARG_PTR_TO_CONST_STR, 1077 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1078 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1079 }; 1080 1081 struct bpf_async_cb { 1082 struct bpf_map *map; 1083 struct bpf_prog *prog; 1084 void __rcu *callback_fn; 1085 void *value; 1086 struct rcu_head rcu; 1087 u64 flags; 1088 }; 1089 1090 /* BPF map elements can contain 'struct bpf_timer'. 1091 * Such map owns all of its BPF timers. 1092 * 'struct bpf_timer' is allocated as part of map element allocation 1093 * and it's zero initialized. 1094 * That space is used to keep 'struct bpf_async_kern'. 1095 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1096 * remembers 'struct bpf_map *' pointer it's part of. 1097 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1098 * bpf_timer_start() arms the timer. 1099 * If user space reference to a map goes to zero at this point 1100 * ops->map_release_uref callback is responsible for cancelling the timers, 1101 * freeing their memory, and decrementing prog's refcnts. 1102 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1103 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1104 * freeing the timers when inner map is replaced or deleted by user space. 1105 */ 1106 struct bpf_hrtimer { 1107 struct bpf_async_cb cb; 1108 struct hrtimer timer; 1109 atomic_t cancelling; 1110 }; 1111 1112 /* the actual struct hidden inside uapi struct bpf_timer */ 1113 struct bpf_async_kern { 1114 union { 1115 struct bpf_async_cb *cb; 1116 struct bpf_hrtimer *timer; 1117 }; 1118 /* bpf_spin_lock is used here instead of spinlock_t to make 1119 * sure that it always fits into space reserved by struct bpf_timer 1120 * regardless of LOCKDEP and spinlock debug flags. 1121 */ 1122 struct bpf_spin_lock lock; 1123 } __attribute__((aligned(8))); 1124 1125 enum bpf_async_type { 1126 BPF_ASYNC_TYPE_TIMER = 0, 1127 }; 1128 1129 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1130 1131 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1132 { 1133 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1134 struct bpf_map *map = t->cb.map; 1135 void *value = t->cb.value; 1136 bpf_callback_t callback_fn; 1137 void *key; 1138 u32 idx; 1139 1140 BTF_TYPE_EMIT(struct bpf_timer); 1141 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held()); 1142 if (!callback_fn) 1143 goto out; 1144 1145 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1146 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1147 * Remember the timer this callback is servicing to prevent 1148 * deadlock if callback_fn() calls bpf_timer_cancel() or 1149 * bpf_map_delete_elem() on the same timer. 1150 */ 1151 this_cpu_write(hrtimer_running, t); 1152 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1153 struct bpf_array *array = container_of(map, struct bpf_array, map); 1154 1155 /* compute the key */ 1156 idx = ((char *)value - array->value) / array->elem_size; 1157 key = &idx; 1158 } else { /* hash or lru */ 1159 key = value - round_up(map->key_size, 8); 1160 } 1161 1162 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1163 /* The verifier checked that return value is zero. */ 1164 1165 this_cpu_write(hrtimer_running, NULL); 1166 out: 1167 return HRTIMER_NORESTART; 1168 } 1169 1170 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, 1171 enum bpf_async_type type) 1172 { 1173 struct bpf_async_cb *cb; 1174 struct bpf_hrtimer *t; 1175 clockid_t clockid; 1176 size_t size; 1177 int ret = 0; 1178 1179 if (in_nmi()) 1180 return -EOPNOTSUPP; 1181 1182 switch (type) { 1183 case BPF_ASYNC_TYPE_TIMER: 1184 size = sizeof(struct bpf_hrtimer); 1185 break; 1186 default: 1187 return -EINVAL; 1188 } 1189 1190 __bpf_spin_lock_irqsave(&async->lock); 1191 t = async->timer; 1192 if (t) { 1193 ret = -EBUSY; 1194 goto out; 1195 } 1196 1197 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1198 cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node); 1199 if (!cb) { 1200 ret = -ENOMEM; 1201 goto out; 1202 } 1203 1204 if (type == BPF_ASYNC_TYPE_TIMER) { 1205 clockid = flags & (MAX_CLOCKS - 1); 1206 t = (struct bpf_hrtimer *)cb; 1207 1208 atomic_set(&t->cancelling, 0); 1209 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1210 t->timer.function = bpf_timer_cb; 1211 cb->value = (void *)async - map->record->timer_off; 1212 } 1213 cb->map = map; 1214 cb->prog = NULL; 1215 cb->flags = flags; 1216 rcu_assign_pointer(cb->callback_fn, NULL); 1217 1218 WRITE_ONCE(async->cb, cb); 1219 /* Guarantee the order between async->cb and map->usercnt. So 1220 * when there are concurrent uref release and bpf timer init, either 1221 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL 1222 * timer or atomic64_read() below returns a zero usercnt. 1223 */ 1224 smp_mb(); 1225 if (!atomic64_read(&map->usercnt)) { 1226 /* maps with timers must be either held by user space 1227 * or pinned in bpffs. 1228 */ 1229 WRITE_ONCE(async->cb, NULL); 1230 kfree(cb); 1231 ret = -EPERM; 1232 } 1233 out: 1234 __bpf_spin_unlock_irqrestore(&async->lock); 1235 return ret; 1236 } 1237 1238 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map, 1239 u64, flags) 1240 { 1241 clock_t clockid = flags & (MAX_CLOCKS - 1); 1242 1243 BUILD_BUG_ON(MAX_CLOCKS != 16); 1244 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer)); 1245 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer)); 1246 1247 if (flags >= MAX_CLOCKS || 1248 /* similar to timerfd except _ALARM variants are not supported */ 1249 (clockid != CLOCK_MONOTONIC && 1250 clockid != CLOCK_REALTIME && 1251 clockid != CLOCK_BOOTTIME)) 1252 return -EINVAL; 1253 1254 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER); 1255 } 1256 1257 static const struct bpf_func_proto bpf_timer_init_proto = { 1258 .func = bpf_timer_init, 1259 .gpl_only = true, 1260 .ret_type = RET_INTEGER, 1261 .arg1_type = ARG_PTR_TO_TIMER, 1262 .arg2_type = ARG_CONST_MAP_PTR, 1263 .arg3_type = ARG_ANYTHING, 1264 }; 1265 1266 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn, 1267 struct bpf_prog_aux *, aux) 1268 { 1269 struct bpf_prog *prev, *prog = aux->prog; 1270 struct bpf_hrtimer *t; 1271 int ret = 0; 1272 1273 if (in_nmi()) 1274 return -EOPNOTSUPP; 1275 __bpf_spin_lock_irqsave(&timer->lock); 1276 t = timer->timer; 1277 if (!t) { 1278 ret = -EINVAL; 1279 goto out; 1280 } 1281 if (!atomic64_read(&t->cb.map->usercnt)) { 1282 /* maps with timers must be either held by user space 1283 * or pinned in bpffs. Otherwise timer might still be 1284 * running even when bpf prog is detached and user space 1285 * is gone, since map_release_uref won't ever be called. 1286 */ 1287 ret = -EPERM; 1288 goto out; 1289 } 1290 prev = t->cb.prog; 1291 if (prev != prog) { 1292 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1293 * can pick different callback_fn-s within the same prog. 1294 */ 1295 prog = bpf_prog_inc_not_zero(prog); 1296 if (IS_ERR(prog)) { 1297 ret = PTR_ERR(prog); 1298 goto out; 1299 } 1300 if (prev) 1301 /* Drop prev prog refcnt when swapping with new prog */ 1302 bpf_prog_put(prev); 1303 t->cb.prog = prog; 1304 } 1305 rcu_assign_pointer(t->cb.callback_fn, callback_fn); 1306 out: 1307 __bpf_spin_unlock_irqrestore(&timer->lock); 1308 return ret; 1309 } 1310 1311 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1312 .func = bpf_timer_set_callback, 1313 .gpl_only = true, 1314 .ret_type = RET_INTEGER, 1315 .arg1_type = ARG_PTR_TO_TIMER, 1316 .arg2_type = ARG_PTR_TO_FUNC, 1317 }; 1318 1319 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags) 1320 { 1321 struct bpf_hrtimer *t; 1322 int ret = 0; 1323 enum hrtimer_mode mode; 1324 1325 if (in_nmi()) 1326 return -EOPNOTSUPP; 1327 if (flags > BPF_F_TIMER_ABS) 1328 return -EINVAL; 1329 __bpf_spin_lock_irqsave(&timer->lock); 1330 t = timer->timer; 1331 if (!t || !t->cb.prog) { 1332 ret = -EINVAL; 1333 goto out; 1334 } 1335 1336 if (flags & BPF_F_TIMER_ABS) 1337 mode = HRTIMER_MODE_ABS_SOFT; 1338 else 1339 mode = HRTIMER_MODE_REL_SOFT; 1340 1341 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); 1342 out: 1343 __bpf_spin_unlock_irqrestore(&timer->lock); 1344 return ret; 1345 } 1346 1347 static const struct bpf_func_proto bpf_timer_start_proto = { 1348 .func = bpf_timer_start, 1349 .gpl_only = true, 1350 .ret_type = RET_INTEGER, 1351 .arg1_type = ARG_PTR_TO_TIMER, 1352 .arg2_type = ARG_ANYTHING, 1353 .arg3_type = ARG_ANYTHING, 1354 }; 1355 1356 static void drop_prog_refcnt(struct bpf_async_cb *async) 1357 { 1358 struct bpf_prog *prog = async->prog; 1359 1360 if (prog) { 1361 bpf_prog_put(prog); 1362 async->prog = NULL; 1363 rcu_assign_pointer(async->callback_fn, NULL); 1364 } 1365 } 1366 1367 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) 1368 { 1369 struct bpf_hrtimer *t, *cur_t; 1370 bool inc = false; 1371 int ret = 0; 1372 1373 if (in_nmi()) 1374 return -EOPNOTSUPP; 1375 rcu_read_lock(); 1376 __bpf_spin_lock_irqsave(&timer->lock); 1377 t = timer->timer; 1378 if (!t) { 1379 ret = -EINVAL; 1380 goto out; 1381 } 1382 1383 cur_t = this_cpu_read(hrtimer_running); 1384 if (cur_t == t) { 1385 /* If bpf callback_fn is trying to bpf_timer_cancel() 1386 * its own timer the hrtimer_cancel() will deadlock 1387 * since it waits for callback_fn to finish. 1388 */ 1389 ret = -EDEADLK; 1390 goto out; 1391 } 1392 1393 /* Only account in-flight cancellations when invoked from a timer 1394 * callback, since we want to avoid waiting only if other _callbacks_ 1395 * are waiting on us, to avoid introducing lockups. Non-callback paths 1396 * are ok, since nobody would synchronously wait for their completion. 1397 */ 1398 if (!cur_t) 1399 goto drop; 1400 atomic_inc(&t->cancelling); 1401 /* Need full barrier after relaxed atomic_inc */ 1402 smp_mb__after_atomic(); 1403 inc = true; 1404 if (atomic_read(&cur_t->cancelling)) { 1405 /* We're cancelling timer t, while some other timer callback is 1406 * attempting to cancel us. In such a case, it might be possible 1407 * that timer t belongs to the other callback, or some other 1408 * callback waiting upon it (creating transitive dependencies 1409 * upon us), and we will enter a deadlock if we continue 1410 * cancelling and waiting for it synchronously, since it might 1411 * do the same. Bail! 1412 */ 1413 ret = -EDEADLK; 1414 goto out; 1415 } 1416 drop: 1417 drop_prog_refcnt(&t->cb); 1418 out: 1419 __bpf_spin_unlock_irqrestore(&timer->lock); 1420 /* Cancel the timer and wait for associated callback to finish 1421 * if it was running. 1422 */ 1423 ret = ret ?: hrtimer_cancel(&t->timer); 1424 if (inc) 1425 atomic_dec(&t->cancelling); 1426 rcu_read_unlock(); 1427 return ret; 1428 } 1429 1430 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1431 .func = bpf_timer_cancel, 1432 .gpl_only = true, 1433 .ret_type = RET_INTEGER, 1434 .arg1_type = ARG_PTR_TO_TIMER, 1435 }; 1436 1437 /* This function is called by map_delete/update_elem for individual element and 1438 * by ops->map_release_uref when the user space reference to a map reaches zero. 1439 */ 1440 void bpf_timer_cancel_and_free(void *val) 1441 { 1442 struct bpf_async_kern *timer = val; 1443 struct bpf_hrtimer *t; 1444 1445 /* Performance optimization: read timer->timer without lock first. */ 1446 if (!READ_ONCE(timer->timer)) 1447 return; 1448 1449 __bpf_spin_lock_irqsave(&timer->lock); 1450 /* re-read it under lock */ 1451 t = timer->timer; 1452 if (!t) 1453 goto out; 1454 drop_prog_refcnt(&t->cb); 1455 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1456 * this timer, since it won't be initialized. 1457 */ 1458 WRITE_ONCE(timer->timer, NULL); 1459 out: 1460 __bpf_spin_unlock_irqrestore(&timer->lock); 1461 if (!t) 1462 return; 1463 /* Cancel the timer and wait for callback to complete if it was running. 1464 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1465 * right after for both preallocated and non-preallocated maps. 1466 * The timer->timer = NULL was already done and no code path can 1467 * see address 't' anymore. 1468 * 1469 * Check that bpf_map_delete/update_elem() wasn't called from timer 1470 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1471 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1472 * return -1). Though callback_fn is still running on this cpu it's 1473 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1474 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1475 * since timer->timer = NULL was already done. The timer will be 1476 * effectively cancelled because bpf_timer_cb() will return 1477 * HRTIMER_NORESTART. 1478 */ 1479 if (this_cpu_read(hrtimer_running) != t) 1480 hrtimer_cancel(&t->timer); 1481 kfree_rcu(t, cb.rcu); 1482 } 1483 1484 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) 1485 { 1486 unsigned long *kptr = map_value; 1487 1488 return xchg(kptr, (unsigned long)ptr); 1489 } 1490 1491 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1492 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1493 * denote type that verifier will determine. 1494 */ 1495 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1496 .func = bpf_kptr_xchg, 1497 .gpl_only = false, 1498 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1499 .ret_btf_id = BPF_PTR_POISON, 1500 .arg1_type = ARG_PTR_TO_KPTR, 1501 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1502 .arg2_btf_id = BPF_PTR_POISON, 1503 }; 1504 1505 /* Since the upper 8 bits of dynptr->size is reserved, the 1506 * maximum supported size is 2^24 - 1. 1507 */ 1508 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1509 #define DYNPTR_TYPE_SHIFT 28 1510 #define DYNPTR_SIZE_MASK 0xFFFFFF 1511 #define DYNPTR_RDONLY_BIT BIT(31) 1512 1513 static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) 1514 { 1515 return ptr->size & DYNPTR_RDONLY_BIT; 1516 } 1517 1518 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 1519 { 1520 ptr->size |= DYNPTR_RDONLY_BIT; 1521 } 1522 1523 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1524 { 1525 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1526 } 1527 1528 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) 1529 { 1530 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; 1531 } 1532 1533 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 1534 { 1535 return ptr->size & DYNPTR_SIZE_MASK; 1536 } 1537 1538 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) 1539 { 1540 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; 1541 1542 ptr->size = new_size | metadata; 1543 } 1544 1545 int bpf_dynptr_check_size(u32 size) 1546 { 1547 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1548 } 1549 1550 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1551 enum bpf_dynptr_type type, u32 offset, u32 size) 1552 { 1553 ptr->data = data; 1554 ptr->offset = offset; 1555 ptr->size = size; 1556 bpf_dynptr_set_type(ptr, type); 1557 } 1558 1559 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1560 { 1561 memset(ptr, 0, sizeof(*ptr)); 1562 } 1563 1564 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1565 { 1566 u32 size = __bpf_dynptr_size(ptr); 1567 1568 if (len > size || offset > size - len) 1569 return -E2BIG; 1570 1571 return 0; 1572 } 1573 1574 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1575 { 1576 int err; 1577 1578 BTF_TYPE_EMIT(struct bpf_dynptr); 1579 1580 err = bpf_dynptr_check_size(size); 1581 if (err) 1582 goto error; 1583 1584 /* flags is currently unsupported */ 1585 if (flags) { 1586 err = -EINVAL; 1587 goto error; 1588 } 1589 1590 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1591 1592 return 0; 1593 1594 error: 1595 bpf_dynptr_set_null(ptr); 1596 return err; 1597 } 1598 1599 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1600 .func = bpf_dynptr_from_mem, 1601 .gpl_only = false, 1602 .ret_type = RET_INTEGER, 1603 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1604 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1605 .arg3_type = ARG_ANYTHING, 1606 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, 1607 }; 1608 1609 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, 1610 u32, offset, u64, flags) 1611 { 1612 enum bpf_dynptr_type type; 1613 int err; 1614 1615 if (!src->data || flags) 1616 return -EINVAL; 1617 1618 err = bpf_dynptr_check_off_len(src, offset, len); 1619 if (err) 1620 return err; 1621 1622 type = bpf_dynptr_get_type(src); 1623 1624 switch (type) { 1625 case BPF_DYNPTR_TYPE_LOCAL: 1626 case BPF_DYNPTR_TYPE_RINGBUF: 1627 /* Source and destination may possibly overlap, hence use memmove to 1628 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1629 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1630 */ 1631 memmove(dst, src->data + src->offset + offset, len); 1632 return 0; 1633 case BPF_DYNPTR_TYPE_SKB: 1634 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); 1635 case BPF_DYNPTR_TYPE_XDP: 1636 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); 1637 default: 1638 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); 1639 return -EFAULT; 1640 } 1641 } 1642 1643 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1644 .func = bpf_dynptr_read, 1645 .gpl_only = false, 1646 .ret_type = RET_INTEGER, 1647 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1648 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1649 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1650 .arg4_type = ARG_ANYTHING, 1651 .arg5_type = ARG_ANYTHING, 1652 }; 1653 1654 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1655 u32, len, u64, flags) 1656 { 1657 enum bpf_dynptr_type type; 1658 int err; 1659 1660 if (!dst->data || __bpf_dynptr_is_rdonly(dst)) 1661 return -EINVAL; 1662 1663 err = bpf_dynptr_check_off_len(dst, offset, len); 1664 if (err) 1665 return err; 1666 1667 type = bpf_dynptr_get_type(dst); 1668 1669 switch (type) { 1670 case BPF_DYNPTR_TYPE_LOCAL: 1671 case BPF_DYNPTR_TYPE_RINGBUF: 1672 if (flags) 1673 return -EINVAL; 1674 /* Source and destination may possibly overlap, hence use memmove to 1675 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1676 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1677 */ 1678 memmove(dst->data + dst->offset + offset, src, len); 1679 return 0; 1680 case BPF_DYNPTR_TYPE_SKB: 1681 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, 1682 flags); 1683 case BPF_DYNPTR_TYPE_XDP: 1684 if (flags) 1685 return -EINVAL; 1686 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); 1687 default: 1688 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); 1689 return -EFAULT; 1690 } 1691 } 1692 1693 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1694 .func = bpf_dynptr_write, 1695 .gpl_only = false, 1696 .ret_type = RET_INTEGER, 1697 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1698 .arg2_type = ARG_ANYTHING, 1699 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1700 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1701 .arg5_type = ARG_ANYTHING, 1702 }; 1703 1704 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1705 { 1706 enum bpf_dynptr_type type; 1707 int err; 1708 1709 if (!ptr->data) 1710 return 0; 1711 1712 err = bpf_dynptr_check_off_len(ptr, offset, len); 1713 if (err) 1714 return 0; 1715 1716 if (__bpf_dynptr_is_rdonly(ptr)) 1717 return 0; 1718 1719 type = bpf_dynptr_get_type(ptr); 1720 1721 switch (type) { 1722 case BPF_DYNPTR_TYPE_LOCAL: 1723 case BPF_DYNPTR_TYPE_RINGBUF: 1724 return (unsigned long)(ptr->data + ptr->offset + offset); 1725 case BPF_DYNPTR_TYPE_SKB: 1726 case BPF_DYNPTR_TYPE_XDP: 1727 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ 1728 return 0; 1729 default: 1730 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); 1731 return 0; 1732 } 1733 } 1734 1735 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1736 .func = bpf_dynptr_data, 1737 .gpl_only = false, 1738 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1739 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1740 .arg2_type = ARG_ANYTHING, 1741 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1742 }; 1743 1744 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1745 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1746 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1747 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1748 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1749 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1750 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1751 1752 const struct bpf_func_proto * 1753 bpf_base_func_proto(enum bpf_func_id func_id) 1754 { 1755 switch (func_id) { 1756 case BPF_FUNC_map_lookup_elem: 1757 return &bpf_map_lookup_elem_proto; 1758 case BPF_FUNC_map_update_elem: 1759 return &bpf_map_update_elem_proto; 1760 case BPF_FUNC_map_delete_elem: 1761 return &bpf_map_delete_elem_proto; 1762 case BPF_FUNC_map_push_elem: 1763 return &bpf_map_push_elem_proto; 1764 case BPF_FUNC_map_pop_elem: 1765 return &bpf_map_pop_elem_proto; 1766 case BPF_FUNC_map_peek_elem: 1767 return &bpf_map_peek_elem_proto; 1768 case BPF_FUNC_map_lookup_percpu_elem: 1769 return &bpf_map_lookup_percpu_elem_proto; 1770 case BPF_FUNC_get_prandom_u32: 1771 return &bpf_get_prandom_u32_proto; 1772 case BPF_FUNC_get_smp_processor_id: 1773 return &bpf_get_raw_smp_processor_id_proto; 1774 case BPF_FUNC_get_numa_node_id: 1775 return &bpf_get_numa_node_id_proto; 1776 case BPF_FUNC_tail_call: 1777 return &bpf_tail_call_proto; 1778 case BPF_FUNC_ktime_get_ns: 1779 return &bpf_ktime_get_ns_proto; 1780 case BPF_FUNC_ktime_get_boot_ns: 1781 return &bpf_ktime_get_boot_ns_proto; 1782 case BPF_FUNC_ktime_get_tai_ns: 1783 return &bpf_ktime_get_tai_ns_proto; 1784 case BPF_FUNC_ringbuf_output: 1785 return &bpf_ringbuf_output_proto; 1786 case BPF_FUNC_ringbuf_reserve: 1787 return &bpf_ringbuf_reserve_proto; 1788 case BPF_FUNC_ringbuf_submit: 1789 return &bpf_ringbuf_submit_proto; 1790 case BPF_FUNC_ringbuf_discard: 1791 return &bpf_ringbuf_discard_proto; 1792 case BPF_FUNC_ringbuf_query: 1793 return &bpf_ringbuf_query_proto; 1794 case BPF_FUNC_strncmp: 1795 return &bpf_strncmp_proto; 1796 case BPF_FUNC_strtol: 1797 return &bpf_strtol_proto; 1798 case BPF_FUNC_strtoul: 1799 return &bpf_strtoul_proto; 1800 default: 1801 break; 1802 } 1803 1804 if (!bpf_capable()) 1805 return NULL; 1806 1807 switch (func_id) { 1808 case BPF_FUNC_spin_lock: 1809 return &bpf_spin_lock_proto; 1810 case BPF_FUNC_spin_unlock: 1811 return &bpf_spin_unlock_proto; 1812 case BPF_FUNC_jiffies64: 1813 return &bpf_jiffies64_proto; 1814 case BPF_FUNC_per_cpu_ptr: 1815 return &bpf_per_cpu_ptr_proto; 1816 case BPF_FUNC_this_cpu_ptr: 1817 return &bpf_this_cpu_ptr_proto; 1818 case BPF_FUNC_timer_init: 1819 return &bpf_timer_init_proto; 1820 case BPF_FUNC_timer_set_callback: 1821 return &bpf_timer_set_callback_proto; 1822 case BPF_FUNC_timer_start: 1823 return &bpf_timer_start_proto; 1824 case BPF_FUNC_timer_cancel: 1825 return &bpf_timer_cancel_proto; 1826 case BPF_FUNC_kptr_xchg: 1827 return &bpf_kptr_xchg_proto; 1828 case BPF_FUNC_for_each_map_elem: 1829 return &bpf_for_each_map_elem_proto; 1830 case BPF_FUNC_loop: 1831 return &bpf_loop_proto; 1832 case BPF_FUNC_user_ringbuf_drain: 1833 return &bpf_user_ringbuf_drain_proto; 1834 case BPF_FUNC_ringbuf_reserve_dynptr: 1835 return &bpf_ringbuf_reserve_dynptr_proto; 1836 case BPF_FUNC_ringbuf_submit_dynptr: 1837 return &bpf_ringbuf_submit_dynptr_proto; 1838 case BPF_FUNC_ringbuf_discard_dynptr: 1839 return &bpf_ringbuf_discard_dynptr_proto; 1840 case BPF_FUNC_dynptr_from_mem: 1841 return &bpf_dynptr_from_mem_proto; 1842 case BPF_FUNC_dynptr_read: 1843 return &bpf_dynptr_read_proto; 1844 case BPF_FUNC_dynptr_write: 1845 return &bpf_dynptr_write_proto; 1846 case BPF_FUNC_dynptr_data: 1847 return &bpf_dynptr_data_proto; 1848 #ifdef CONFIG_CGROUPS 1849 case BPF_FUNC_cgrp_storage_get: 1850 return &bpf_cgrp_storage_get_proto; 1851 case BPF_FUNC_cgrp_storage_delete: 1852 return &bpf_cgrp_storage_delete_proto; 1853 case BPF_FUNC_get_current_cgroup_id: 1854 return &bpf_get_current_cgroup_id_proto; 1855 case BPF_FUNC_get_current_ancestor_cgroup_id: 1856 return &bpf_get_current_ancestor_cgroup_id_proto; 1857 #endif 1858 default: 1859 break; 1860 } 1861 1862 if (!perfmon_capable()) 1863 return NULL; 1864 1865 switch (func_id) { 1866 case BPF_FUNC_trace_printk: 1867 return bpf_get_trace_printk_proto(); 1868 case BPF_FUNC_get_current_task: 1869 return &bpf_get_current_task_proto; 1870 case BPF_FUNC_get_current_task_btf: 1871 return &bpf_get_current_task_btf_proto; 1872 case BPF_FUNC_probe_read_user: 1873 return &bpf_probe_read_user_proto; 1874 case BPF_FUNC_probe_read_kernel: 1875 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1876 NULL : &bpf_probe_read_kernel_proto; 1877 case BPF_FUNC_probe_read_user_str: 1878 return &bpf_probe_read_user_str_proto; 1879 case BPF_FUNC_probe_read_kernel_str: 1880 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1881 NULL : &bpf_probe_read_kernel_str_proto; 1882 case BPF_FUNC_snprintf_btf: 1883 return &bpf_snprintf_btf_proto; 1884 case BPF_FUNC_snprintf: 1885 return &bpf_snprintf_proto; 1886 case BPF_FUNC_task_pt_regs: 1887 return &bpf_task_pt_regs_proto; 1888 case BPF_FUNC_trace_vprintk: 1889 return bpf_get_trace_vprintk_proto(); 1890 default: 1891 return NULL; 1892 } 1893 } 1894 1895 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec); 1896 1897 void bpf_list_head_free(const struct btf_field *field, void *list_head, 1898 struct bpf_spin_lock *spin_lock) 1899 { 1900 struct list_head *head = list_head, *orig_head = list_head; 1901 1902 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); 1903 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); 1904 1905 /* Do the actual list draining outside the lock to not hold the lock for 1906 * too long, and also prevent deadlocks if tracing programs end up 1907 * executing on entry/exit of functions called inside the critical 1908 * section, and end up doing map ops that call bpf_list_head_free for 1909 * the same map value again. 1910 */ 1911 __bpf_spin_lock_irqsave(spin_lock); 1912 if (!head->next || list_empty(head)) 1913 goto unlock; 1914 head = head->next; 1915 unlock: 1916 INIT_LIST_HEAD(orig_head); 1917 __bpf_spin_unlock_irqrestore(spin_lock); 1918 1919 while (head != orig_head) { 1920 void *obj = head; 1921 1922 obj -= field->graph_root.node_offset; 1923 head = head->next; 1924 /* The contained type can also have resources, including a 1925 * bpf_list_head which needs to be freed. 1926 */ 1927 migrate_disable(); 1928 __bpf_obj_drop_impl(obj, field->graph_root.value_rec); 1929 migrate_enable(); 1930 } 1931 } 1932 1933 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are 1934 * 'rb_node *', so field name of rb_node within containing struct is not 1935 * needed. 1936 * 1937 * Since bpf_rb_tree's node type has a corresponding struct btf_field with 1938 * graph_root.node_offset, it's not necessary to know field name 1939 * or type of node struct 1940 */ 1941 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ 1942 for (pos = rb_first_postorder(root); \ 1943 pos && ({ n = rb_next_postorder(pos); 1; }); \ 1944 pos = n) 1945 1946 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 1947 struct bpf_spin_lock *spin_lock) 1948 { 1949 struct rb_root_cached orig_root, *root = rb_root; 1950 struct rb_node *pos, *n; 1951 void *obj; 1952 1953 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); 1954 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); 1955 1956 __bpf_spin_lock_irqsave(spin_lock); 1957 orig_root = *root; 1958 *root = RB_ROOT_CACHED; 1959 __bpf_spin_unlock_irqrestore(spin_lock); 1960 1961 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { 1962 obj = pos; 1963 obj -= field->graph_root.node_offset; 1964 1965 1966 migrate_disable(); 1967 __bpf_obj_drop_impl(obj, field->graph_root.value_rec); 1968 migrate_enable(); 1969 } 1970 } 1971 1972 __diag_push(); 1973 __diag_ignore_all("-Wmissing-prototypes", 1974 "Global functions as their definitions will be in vmlinux BTF"); 1975 1976 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) 1977 { 1978 struct btf_struct_meta *meta = meta__ign; 1979 u64 size = local_type_id__k; 1980 void *p; 1981 1982 p = bpf_mem_alloc(&bpf_global_ma, size); 1983 if (!p) 1984 return NULL; 1985 if (meta) 1986 bpf_obj_init(meta->record, p); 1987 return p; 1988 } 1989 1990 /* Must be called under migrate_disable(), as required by bpf_mem_free */ 1991 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec) 1992 { 1993 if (rec && rec->refcount_off >= 0 && 1994 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { 1995 /* Object is refcounted and refcount_dec didn't result in 0 1996 * refcount. Return without freeing the object 1997 */ 1998 return; 1999 } 2000 2001 if (rec) 2002 bpf_obj_free_fields(rec, p); 2003 2004 if (rec && rec->refcount_off >= 0) 2005 bpf_mem_free_rcu(&bpf_global_ma, p); 2006 else 2007 bpf_mem_free(&bpf_global_ma, p); 2008 } 2009 2010 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) 2011 { 2012 struct btf_struct_meta *meta = meta__ign; 2013 void *p = p__alloc; 2014 2015 __bpf_obj_drop_impl(p, meta ? meta->record : NULL); 2016 } 2017 2018 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) 2019 { 2020 struct btf_struct_meta *meta = meta__ign; 2021 struct bpf_refcount *ref; 2022 2023 /* Could just cast directly to refcount_t *, but need some code using 2024 * bpf_refcount type so that it is emitted in vmlinux BTF 2025 */ 2026 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); 2027 if (!refcount_inc_not_zero((refcount_t *)ref)) 2028 return NULL; 2029 2030 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null 2031 * in verifier.c 2032 */ 2033 return (void *)p__refcounted_kptr; 2034 } 2035 2036 static int __bpf_list_add(struct bpf_list_node_kern *node, 2037 struct bpf_list_head *head, 2038 bool tail, struct btf_record *rec, u64 off) 2039 { 2040 struct list_head *n = &node->list_head, *h = (void *)head; 2041 2042 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2043 * called on its fields, so init here 2044 */ 2045 if (unlikely(!h->next)) 2046 INIT_LIST_HEAD(h); 2047 2048 /* node->owner != NULL implies !list_empty(n), no need to separately 2049 * check the latter 2050 */ 2051 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2052 /* Only called from BPF prog, no need to migrate_disable */ 2053 __bpf_obj_drop_impl((void *)n - off, rec); 2054 return -EINVAL; 2055 } 2056 2057 tail ? list_add_tail(n, h) : list_add(n, h); 2058 WRITE_ONCE(node->owner, head); 2059 2060 return 0; 2061 } 2062 2063 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, 2064 struct bpf_list_node *node, 2065 void *meta__ign, u64 off) 2066 { 2067 struct bpf_list_node_kern *n = (void *)node; 2068 struct btf_struct_meta *meta = meta__ign; 2069 2070 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); 2071 } 2072 2073 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, 2074 struct bpf_list_node *node, 2075 void *meta__ign, u64 off) 2076 { 2077 struct bpf_list_node_kern *n = (void *)node; 2078 struct btf_struct_meta *meta = meta__ign; 2079 2080 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); 2081 } 2082 2083 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) 2084 { 2085 struct list_head *n, *h = (void *)head; 2086 struct bpf_list_node_kern *node; 2087 2088 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2089 * called on its fields, so init here 2090 */ 2091 if (unlikely(!h->next)) 2092 INIT_LIST_HEAD(h); 2093 if (list_empty(h)) 2094 return NULL; 2095 2096 n = tail ? h->prev : h->next; 2097 node = container_of(n, struct bpf_list_node_kern, list_head); 2098 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) 2099 return NULL; 2100 2101 list_del_init(n); 2102 WRITE_ONCE(node->owner, NULL); 2103 return (struct bpf_list_node *)n; 2104 } 2105 2106 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) 2107 { 2108 return __bpf_list_del(head, false); 2109 } 2110 2111 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) 2112 { 2113 return __bpf_list_del(head, true); 2114 } 2115 2116 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 2117 struct bpf_rb_node *node) 2118 { 2119 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2120 struct rb_root_cached *r = (struct rb_root_cached *)root; 2121 struct rb_node *n = &node_internal->rb_node; 2122 2123 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or 2124 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) 2125 */ 2126 if (READ_ONCE(node_internal->owner) != root) 2127 return NULL; 2128 2129 rb_erase_cached(n, r); 2130 RB_CLEAR_NODE(n); 2131 WRITE_ONCE(node_internal->owner, NULL); 2132 return (struct bpf_rb_node *)n; 2133 } 2134 2135 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF 2136 * program 2137 */ 2138 static int __bpf_rbtree_add(struct bpf_rb_root *root, 2139 struct bpf_rb_node_kern *node, 2140 void *less, struct btf_record *rec, u64 off) 2141 { 2142 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; 2143 struct rb_node *parent = NULL, *n = &node->rb_node; 2144 bpf_callback_t cb = (bpf_callback_t)less; 2145 bool leftmost = true; 2146 2147 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately 2148 * check the latter 2149 */ 2150 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2151 /* Only called from BPF prog, no need to migrate_disable */ 2152 __bpf_obj_drop_impl((void *)n - off, rec); 2153 return -EINVAL; 2154 } 2155 2156 while (*link) { 2157 parent = *link; 2158 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { 2159 link = &parent->rb_left; 2160 } else { 2161 link = &parent->rb_right; 2162 leftmost = false; 2163 } 2164 } 2165 2166 rb_link_node(n, parent, link); 2167 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); 2168 WRITE_ONCE(node->owner, root); 2169 return 0; 2170 } 2171 2172 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 2173 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 2174 void *meta__ign, u64 off) 2175 { 2176 struct btf_struct_meta *meta = meta__ign; 2177 struct bpf_rb_node_kern *n = (void *)node; 2178 2179 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); 2180 } 2181 2182 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) 2183 { 2184 struct rb_root_cached *r = (struct rb_root_cached *)root; 2185 2186 return (struct bpf_rb_node *)rb_first_cached(r); 2187 } 2188 2189 /** 2190 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this 2191 * kfunc which is not stored in a map as a kptr, must be released by calling 2192 * bpf_task_release(). 2193 * @p: The task on which a reference is being acquired. 2194 */ 2195 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) 2196 { 2197 if (refcount_inc_not_zero(&p->rcu_users)) 2198 return p; 2199 return NULL; 2200 } 2201 2202 /** 2203 * bpf_task_release - Release the reference acquired on a task. 2204 * @p: The task on which a reference is being released. 2205 */ 2206 __bpf_kfunc void bpf_task_release(struct task_struct *p) 2207 { 2208 put_task_struct_rcu_user(p); 2209 } 2210 2211 #ifdef CONFIG_CGROUPS 2212 /** 2213 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by 2214 * this kfunc which is not stored in a map as a kptr, must be released by 2215 * calling bpf_cgroup_release(). 2216 * @cgrp: The cgroup on which a reference is being acquired. 2217 */ 2218 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) 2219 { 2220 return cgroup_tryget(cgrp) ? cgrp : NULL; 2221 } 2222 2223 /** 2224 * bpf_cgroup_release - Release the reference acquired on a cgroup. 2225 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to 2226 * not be freed until the current grace period has ended, even if its refcount 2227 * drops to 0. 2228 * @cgrp: The cgroup on which a reference is being released. 2229 */ 2230 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) 2231 { 2232 cgroup_put(cgrp); 2233 } 2234 2235 /** 2236 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor 2237 * array. A cgroup returned by this kfunc which is not subsequently stored in a 2238 * map, must be released by calling bpf_cgroup_release(). 2239 * @cgrp: The cgroup for which we're performing a lookup. 2240 * @level: The level of ancestor to look up. 2241 */ 2242 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) 2243 { 2244 struct cgroup *ancestor; 2245 2246 if (level > cgrp->level || level < 0) 2247 return NULL; 2248 2249 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ 2250 ancestor = cgrp->ancestors[level]; 2251 if (!cgroup_tryget(ancestor)) 2252 return NULL; 2253 return ancestor; 2254 } 2255 2256 /** 2257 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this 2258 * kfunc which is not subsequently stored in a map, must be released by calling 2259 * bpf_cgroup_release(). 2260 * @cgid: cgroup id. 2261 */ 2262 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) 2263 { 2264 struct cgroup *cgrp; 2265 2266 cgrp = cgroup_get_from_id(cgid); 2267 if (IS_ERR(cgrp)) 2268 return NULL; 2269 return cgrp; 2270 } 2271 2272 /** 2273 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test 2274 * task's membership of cgroup ancestry. 2275 * @task: the task to be tested 2276 * @ancestor: possible ancestor of @task's cgroup 2277 * 2278 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. 2279 * It follows all the same rules as cgroup_is_descendant, and only applies 2280 * to the default hierarchy. 2281 */ 2282 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, 2283 struct cgroup *ancestor) 2284 { 2285 long ret; 2286 2287 rcu_read_lock(); 2288 ret = task_under_cgroup_hierarchy(task, ancestor); 2289 rcu_read_unlock(); 2290 return ret; 2291 } 2292 #endif /* CONFIG_CGROUPS */ 2293 2294 /** 2295 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up 2296 * in the root pid namespace idr. If a task is returned, it must either be 2297 * stored in a map, or released with bpf_task_release(). 2298 * @pid: The pid of the task being looked up. 2299 */ 2300 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) 2301 { 2302 struct task_struct *p; 2303 2304 rcu_read_lock(); 2305 p = find_task_by_pid_ns(pid, &init_pid_ns); 2306 if (p) 2307 p = bpf_task_acquire(p); 2308 rcu_read_unlock(); 2309 2310 return p; 2311 } 2312 2313 /** 2314 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. 2315 * @ptr: The dynptr whose data slice to retrieve 2316 * @offset: Offset into the dynptr 2317 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2318 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2319 * length of the requested slice. This must be a constant. 2320 * 2321 * For non-skb and non-xdp type dynptrs, there is no difference between 2322 * bpf_dynptr_slice and bpf_dynptr_data. 2323 * 2324 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2325 * 2326 * If the intention is to write to the data slice, please use 2327 * bpf_dynptr_slice_rdwr. 2328 * 2329 * The user must check that the returned pointer is not null before using it. 2330 * 2331 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice 2332 * does not change the underlying packet data pointers, so a call to 2333 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in 2334 * the bpf program. 2335 * 2336 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only 2337 * data slice (can be either direct pointer to the data or a pointer to the user 2338 * provided buffer, with its contents containing the data, if unable to obtain 2339 * direct pointer) 2340 */ 2341 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset, 2342 void *buffer__opt, u32 buffer__szk) 2343 { 2344 enum bpf_dynptr_type type; 2345 u32 len = buffer__szk; 2346 int err; 2347 2348 if (!ptr->data) 2349 return NULL; 2350 2351 err = bpf_dynptr_check_off_len(ptr, offset, len); 2352 if (err) 2353 return NULL; 2354 2355 type = bpf_dynptr_get_type(ptr); 2356 2357 switch (type) { 2358 case BPF_DYNPTR_TYPE_LOCAL: 2359 case BPF_DYNPTR_TYPE_RINGBUF: 2360 return ptr->data + ptr->offset + offset; 2361 case BPF_DYNPTR_TYPE_SKB: 2362 if (buffer__opt) 2363 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); 2364 else 2365 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); 2366 case BPF_DYNPTR_TYPE_XDP: 2367 { 2368 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); 2369 if (!IS_ERR_OR_NULL(xdp_ptr)) 2370 return xdp_ptr; 2371 2372 if (!buffer__opt) 2373 return NULL; 2374 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); 2375 return buffer__opt; 2376 } 2377 default: 2378 WARN_ONCE(true, "unknown dynptr type %d\n", type); 2379 return NULL; 2380 } 2381 } 2382 2383 /** 2384 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. 2385 * @ptr: The dynptr whose data slice to retrieve 2386 * @offset: Offset into the dynptr 2387 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2388 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2389 * length of the requested slice. This must be a constant. 2390 * 2391 * For non-skb and non-xdp type dynptrs, there is no difference between 2392 * bpf_dynptr_slice and bpf_dynptr_data. 2393 * 2394 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2395 * 2396 * The returned pointer is writable and may point to either directly the dynptr 2397 * data at the requested offset or to the buffer if unable to obtain a direct 2398 * data pointer to (example: the requested slice is to the paged area of an skb 2399 * packet). In the case where the returned pointer is to the buffer, the user 2400 * is responsible for persisting writes through calling bpf_dynptr_write(). This 2401 * usually looks something like this pattern: 2402 * 2403 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); 2404 * if (!eth) 2405 * return TC_ACT_SHOT; 2406 * 2407 * // mutate eth header // 2408 * 2409 * if (eth == buffer) 2410 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); 2411 * 2412 * Please note that, as in the example above, the user must check that the 2413 * returned pointer is not null before using it. 2414 * 2415 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr 2416 * does not change the underlying packet data pointers, so a call to 2417 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in 2418 * the bpf program. 2419 * 2420 * Return: NULL if the call failed (eg invalid dynptr), pointer to a 2421 * data slice (can be either direct pointer to the data or a pointer to the user 2422 * provided buffer, with its contents containing the data, if unable to obtain 2423 * direct pointer) 2424 */ 2425 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset, 2426 void *buffer__opt, u32 buffer__szk) 2427 { 2428 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) 2429 return NULL; 2430 2431 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. 2432 * 2433 * For skb-type dynptrs, it is safe to write into the returned pointer 2434 * if the bpf program allows skb data writes. There are two possiblities 2435 * that may occur when calling bpf_dynptr_slice_rdwr: 2436 * 2437 * 1) The requested slice is in the head of the skb. In this case, the 2438 * returned pointer is directly to skb data, and if the skb is cloned, the 2439 * verifier will have uncloned it (see bpf_unclone_prologue()) already. 2440 * The pointer can be directly written into. 2441 * 2442 * 2) Some portion of the requested slice is in the paged buffer area. 2443 * In this case, the requested data will be copied out into the buffer 2444 * and the returned pointer will be a pointer to the buffer. The skb 2445 * will not be pulled. To persist the write, the user will need to call 2446 * bpf_dynptr_write(), which will pull the skb and commit the write. 2447 * 2448 * Similarly for xdp programs, if the requested slice is not across xdp 2449 * fragments, then a direct pointer will be returned, otherwise the data 2450 * will be copied out into the buffer and the user will need to call 2451 * bpf_dynptr_write() to commit changes. 2452 */ 2453 return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk); 2454 } 2455 2456 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end) 2457 { 2458 u32 size; 2459 2460 if (!ptr->data || start > end) 2461 return -EINVAL; 2462 2463 size = __bpf_dynptr_size(ptr); 2464 2465 if (start > size || end > size) 2466 return -ERANGE; 2467 2468 ptr->offset += start; 2469 bpf_dynptr_set_size(ptr, end - start); 2470 2471 return 0; 2472 } 2473 2474 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr) 2475 { 2476 return !ptr->data; 2477 } 2478 2479 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) 2480 { 2481 if (!ptr->data) 2482 return false; 2483 2484 return __bpf_dynptr_is_rdonly(ptr); 2485 } 2486 2487 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 2488 { 2489 if (!ptr->data) 2490 return -EINVAL; 2491 2492 return __bpf_dynptr_size(ptr); 2493 } 2494 2495 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr, 2496 struct bpf_dynptr_kern *clone__uninit) 2497 { 2498 if (!ptr->data) { 2499 bpf_dynptr_set_null(clone__uninit); 2500 return -EINVAL; 2501 } 2502 2503 *clone__uninit = *ptr; 2504 2505 return 0; 2506 } 2507 2508 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) 2509 { 2510 return obj; 2511 } 2512 2513 __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k) 2514 { 2515 return obj__ign; 2516 } 2517 2518 __bpf_kfunc void bpf_rcu_read_lock(void) 2519 { 2520 rcu_read_lock(); 2521 } 2522 2523 __bpf_kfunc void bpf_rcu_read_unlock(void) 2524 { 2525 rcu_read_unlock(); 2526 } 2527 2528 __diag_pop(); 2529 2530 BTF_SET8_START(generic_btf_ids) 2531 #ifdef CONFIG_KEXEC_CORE 2532 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 2533 #endif 2534 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 2535 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) 2536 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL) 2537 BTF_ID_FLAGS(func, bpf_list_push_front_impl) 2538 BTF_ID_FLAGS(func, bpf_list_push_back_impl) 2539 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) 2540 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) 2541 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2542 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) 2543 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) 2544 BTF_ID_FLAGS(func, bpf_rbtree_add_impl) 2545 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) 2546 2547 #ifdef CONFIG_CGROUPS 2548 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2549 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) 2550 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2551 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) 2552 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) 2553 #endif 2554 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) 2555 BTF_SET8_END(generic_btf_ids) 2556 2557 static const struct btf_kfunc_id_set generic_kfunc_set = { 2558 .owner = THIS_MODULE, 2559 .set = &generic_btf_ids, 2560 }; 2561 2562 2563 BTF_ID_LIST(generic_dtor_ids) 2564 BTF_ID(struct, task_struct) 2565 BTF_ID(func, bpf_task_release) 2566 #ifdef CONFIG_CGROUPS 2567 BTF_ID(struct, cgroup) 2568 BTF_ID(func, bpf_cgroup_release) 2569 #endif 2570 2571 BTF_SET8_START(common_btf_ids) 2572 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx) 2573 BTF_ID_FLAGS(func, bpf_rdonly_cast) 2574 BTF_ID_FLAGS(func, bpf_rcu_read_lock) 2575 BTF_ID_FLAGS(func, bpf_rcu_read_unlock) 2576 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) 2577 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) 2578 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) 2579 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) 2580 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) 2581 BTF_ID_FLAGS(func, bpf_dynptr_adjust) 2582 BTF_ID_FLAGS(func, bpf_dynptr_is_null) 2583 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) 2584 BTF_ID_FLAGS(func, bpf_dynptr_size) 2585 BTF_ID_FLAGS(func, bpf_dynptr_clone) 2586 BTF_SET8_END(common_btf_ids) 2587 2588 static const struct btf_kfunc_id_set common_kfunc_set = { 2589 .owner = THIS_MODULE, 2590 .set = &common_btf_ids, 2591 }; 2592 2593 static int __init kfunc_init(void) 2594 { 2595 int ret; 2596 const struct btf_id_dtor_kfunc generic_dtors[] = { 2597 { 2598 .btf_id = generic_dtor_ids[0], 2599 .kfunc_btf_id = generic_dtor_ids[1] 2600 }, 2601 #ifdef CONFIG_CGROUPS 2602 { 2603 .btf_id = generic_dtor_ids[2], 2604 .kfunc_btf_id = generic_dtor_ids[3] 2605 }, 2606 #endif 2607 }; 2608 2609 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); 2610 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); 2611 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); 2612 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, 2613 ARRAY_SIZE(generic_dtors), 2614 THIS_MODULE); 2615 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 2616 } 2617 2618 late_initcall(kfunc_init); 2619