1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/cgroup.h> 8 #include <linux/rcupdate.h> 9 #include <linux/random.h> 10 #include <linux/smp.h> 11 #include <linux/topology.h> 12 #include <linux/ktime.h> 13 #include <linux/sched.h> 14 #include <linux/uidgid.h> 15 #include <linux/filter.h> 16 #include <linux/ctype.h> 17 #include <linux/jiffies.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/poison.h> 20 #include <linux/proc_ns.h> 21 #include <linux/sched/task.h> 22 #include <linux/security.h> 23 #include <linux/btf_ids.h> 24 #include <linux/bpf_mem_alloc.h> 25 26 #include "../../lib/kstrtox.h" 27 28 /* If kernel subsystem is allowing eBPF programs to call this function, 29 * inside its own verifier_ops->get_func_proto() callback it should return 30 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 31 * 32 * Different map implementations will rely on rcu in map methods 33 * lookup/update/delete, therefore eBPF programs must run under rcu lock 34 * if program is allowed to access maps, so check rcu_read_lock_held() or 35 * rcu_read_lock_trace_held() in all three functions. 36 */ 37 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 38 { 39 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 40 !rcu_read_lock_bh_held()); 41 return (unsigned long) map->ops->map_lookup_elem(map, key); 42 } 43 44 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 45 .func = bpf_map_lookup_elem, 46 .gpl_only = false, 47 .pkt_access = true, 48 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 49 .arg1_type = ARG_CONST_MAP_PTR, 50 .arg2_type = ARG_PTR_TO_MAP_KEY, 51 }; 52 53 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 54 void *, value, u64, flags) 55 { 56 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 57 !rcu_read_lock_bh_held()); 58 return map->ops->map_update_elem(map, key, value, flags); 59 } 60 61 const struct bpf_func_proto bpf_map_update_elem_proto = { 62 .func = bpf_map_update_elem, 63 .gpl_only = false, 64 .pkt_access = true, 65 .ret_type = RET_INTEGER, 66 .arg1_type = ARG_CONST_MAP_PTR, 67 .arg2_type = ARG_PTR_TO_MAP_KEY, 68 .arg3_type = ARG_PTR_TO_MAP_VALUE, 69 .arg4_type = ARG_ANYTHING, 70 }; 71 72 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 73 { 74 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 75 !rcu_read_lock_bh_held()); 76 return map->ops->map_delete_elem(map, key); 77 } 78 79 const struct bpf_func_proto bpf_map_delete_elem_proto = { 80 .func = bpf_map_delete_elem, 81 .gpl_only = false, 82 .pkt_access = true, 83 .ret_type = RET_INTEGER, 84 .arg1_type = ARG_CONST_MAP_PTR, 85 .arg2_type = ARG_PTR_TO_MAP_KEY, 86 }; 87 88 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 89 { 90 return map->ops->map_push_elem(map, value, flags); 91 } 92 93 const struct bpf_func_proto bpf_map_push_elem_proto = { 94 .func = bpf_map_push_elem, 95 .gpl_only = false, 96 .pkt_access = true, 97 .ret_type = RET_INTEGER, 98 .arg1_type = ARG_CONST_MAP_PTR, 99 .arg2_type = ARG_PTR_TO_MAP_VALUE, 100 .arg3_type = ARG_ANYTHING, 101 }; 102 103 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 104 { 105 return map->ops->map_pop_elem(map, value); 106 } 107 108 const struct bpf_func_proto bpf_map_pop_elem_proto = { 109 .func = bpf_map_pop_elem, 110 .gpl_only = false, 111 .ret_type = RET_INTEGER, 112 .arg1_type = ARG_CONST_MAP_PTR, 113 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 114 }; 115 116 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 117 { 118 return map->ops->map_peek_elem(map, value); 119 } 120 121 const struct bpf_func_proto bpf_map_peek_elem_proto = { 122 .func = bpf_map_peek_elem, 123 .gpl_only = false, 124 .ret_type = RET_INTEGER, 125 .arg1_type = ARG_CONST_MAP_PTR, 126 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 127 }; 128 129 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 130 { 131 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 132 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 133 } 134 135 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 136 .func = bpf_map_lookup_percpu_elem, 137 .gpl_only = false, 138 .pkt_access = true, 139 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 140 .arg1_type = ARG_CONST_MAP_PTR, 141 .arg2_type = ARG_PTR_TO_MAP_KEY, 142 .arg3_type = ARG_ANYTHING, 143 }; 144 145 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 146 .func = bpf_user_rnd_u32, 147 .gpl_only = false, 148 .ret_type = RET_INTEGER, 149 }; 150 151 BPF_CALL_0(bpf_get_smp_processor_id) 152 { 153 return smp_processor_id(); 154 } 155 156 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 157 .func = bpf_get_smp_processor_id, 158 .gpl_only = false, 159 .ret_type = RET_INTEGER, 160 }; 161 162 BPF_CALL_0(bpf_get_numa_node_id) 163 { 164 return numa_node_id(); 165 } 166 167 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 168 .func = bpf_get_numa_node_id, 169 .gpl_only = false, 170 .ret_type = RET_INTEGER, 171 }; 172 173 BPF_CALL_0(bpf_ktime_get_ns) 174 { 175 /* NMI safe access to clock monotonic */ 176 return ktime_get_mono_fast_ns(); 177 } 178 179 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 180 .func = bpf_ktime_get_ns, 181 .gpl_only = false, 182 .ret_type = RET_INTEGER, 183 }; 184 185 BPF_CALL_0(bpf_ktime_get_boot_ns) 186 { 187 /* NMI safe access to clock boottime */ 188 return ktime_get_boot_fast_ns(); 189 } 190 191 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 192 .func = bpf_ktime_get_boot_ns, 193 .gpl_only = false, 194 .ret_type = RET_INTEGER, 195 }; 196 197 BPF_CALL_0(bpf_ktime_get_coarse_ns) 198 { 199 return ktime_get_coarse_ns(); 200 } 201 202 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 203 .func = bpf_ktime_get_coarse_ns, 204 .gpl_only = false, 205 .ret_type = RET_INTEGER, 206 }; 207 208 BPF_CALL_0(bpf_ktime_get_tai_ns) 209 { 210 /* NMI safe access to clock tai */ 211 return ktime_get_tai_fast_ns(); 212 } 213 214 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 215 .func = bpf_ktime_get_tai_ns, 216 .gpl_only = false, 217 .ret_type = RET_INTEGER, 218 }; 219 220 BPF_CALL_0(bpf_get_current_pid_tgid) 221 { 222 struct task_struct *task = current; 223 224 if (unlikely(!task)) 225 return -EINVAL; 226 227 return (u64) task->tgid << 32 | task->pid; 228 } 229 230 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 231 .func = bpf_get_current_pid_tgid, 232 .gpl_only = false, 233 .ret_type = RET_INTEGER, 234 }; 235 236 BPF_CALL_0(bpf_get_current_uid_gid) 237 { 238 struct task_struct *task = current; 239 kuid_t uid; 240 kgid_t gid; 241 242 if (unlikely(!task)) 243 return -EINVAL; 244 245 current_uid_gid(&uid, &gid); 246 return (u64) from_kgid(&init_user_ns, gid) << 32 | 247 from_kuid(&init_user_ns, uid); 248 } 249 250 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 251 .func = bpf_get_current_uid_gid, 252 .gpl_only = false, 253 .ret_type = RET_INTEGER, 254 }; 255 256 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 257 { 258 struct task_struct *task = current; 259 260 if (unlikely(!task)) 261 goto err_clear; 262 263 /* Verifier guarantees that size > 0 */ 264 strscpy_pad(buf, task->comm, size); 265 return 0; 266 err_clear: 267 memset(buf, 0, size); 268 return -EINVAL; 269 } 270 271 const struct bpf_func_proto bpf_get_current_comm_proto = { 272 .func = bpf_get_current_comm, 273 .gpl_only = false, 274 .ret_type = RET_INTEGER, 275 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 276 .arg2_type = ARG_CONST_SIZE, 277 }; 278 279 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 280 281 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 282 { 283 arch_spinlock_t *l = (void *)lock; 284 union { 285 __u32 val; 286 arch_spinlock_t lock; 287 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 288 289 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 290 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 291 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 292 preempt_disable(); 293 arch_spin_lock(l); 294 } 295 296 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 297 { 298 arch_spinlock_t *l = (void *)lock; 299 300 arch_spin_unlock(l); 301 preempt_enable(); 302 } 303 304 #else 305 306 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 307 { 308 atomic_t *l = (void *)lock; 309 310 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 311 do { 312 atomic_cond_read_relaxed(l, !VAL); 313 } while (atomic_xchg(l, 1)); 314 } 315 316 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 317 { 318 atomic_t *l = (void *)lock; 319 320 atomic_set_release(l, 0); 321 } 322 323 #endif 324 325 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 326 327 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 328 { 329 unsigned long flags; 330 331 local_irq_save(flags); 332 __bpf_spin_lock(lock); 333 __this_cpu_write(irqsave_flags, flags); 334 } 335 336 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 337 { 338 __bpf_spin_lock_irqsave(lock); 339 return 0; 340 } 341 342 const struct bpf_func_proto bpf_spin_lock_proto = { 343 .func = bpf_spin_lock, 344 .gpl_only = false, 345 .ret_type = RET_VOID, 346 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 347 .arg1_btf_id = BPF_PTR_POISON, 348 }; 349 350 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 351 { 352 unsigned long flags; 353 354 flags = __this_cpu_read(irqsave_flags); 355 __bpf_spin_unlock(lock); 356 local_irq_restore(flags); 357 } 358 359 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 360 { 361 __bpf_spin_unlock_irqrestore(lock); 362 return 0; 363 } 364 365 const struct bpf_func_proto bpf_spin_unlock_proto = { 366 .func = bpf_spin_unlock, 367 .gpl_only = false, 368 .ret_type = RET_VOID, 369 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 370 .arg1_btf_id = BPF_PTR_POISON, 371 }; 372 373 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 374 bool lock_src) 375 { 376 struct bpf_spin_lock *lock; 377 378 if (lock_src) 379 lock = src + map->record->spin_lock_off; 380 else 381 lock = dst + map->record->spin_lock_off; 382 preempt_disable(); 383 __bpf_spin_lock_irqsave(lock); 384 copy_map_value(map, dst, src); 385 __bpf_spin_unlock_irqrestore(lock); 386 preempt_enable(); 387 } 388 389 BPF_CALL_0(bpf_jiffies64) 390 { 391 return get_jiffies_64(); 392 } 393 394 const struct bpf_func_proto bpf_jiffies64_proto = { 395 .func = bpf_jiffies64, 396 .gpl_only = false, 397 .ret_type = RET_INTEGER, 398 }; 399 400 #ifdef CONFIG_CGROUPS 401 BPF_CALL_0(bpf_get_current_cgroup_id) 402 { 403 struct cgroup *cgrp; 404 u64 cgrp_id; 405 406 rcu_read_lock(); 407 cgrp = task_dfl_cgroup(current); 408 cgrp_id = cgroup_id(cgrp); 409 rcu_read_unlock(); 410 411 return cgrp_id; 412 } 413 414 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 415 .func = bpf_get_current_cgroup_id, 416 .gpl_only = false, 417 .ret_type = RET_INTEGER, 418 }; 419 420 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 421 { 422 struct cgroup *cgrp; 423 struct cgroup *ancestor; 424 u64 cgrp_id; 425 426 rcu_read_lock(); 427 cgrp = task_dfl_cgroup(current); 428 ancestor = cgroup_ancestor(cgrp, ancestor_level); 429 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 430 rcu_read_unlock(); 431 432 return cgrp_id; 433 } 434 435 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 436 .func = bpf_get_current_ancestor_cgroup_id, 437 .gpl_only = false, 438 .ret_type = RET_INTEGER, 439 .arg1_type = ARG_ANYTHING, 440 }; 441 #endif /* CONFIG_CGROUPS */ 442 443 #define BPF_STRTOX_BASE_MASK 0x1F 444 445 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 446 unsigned long long *res, bool *is_negative) 447 { 448 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 449 const char *cur_buf = buf; 450 size_t cur_len = buf_len; 451 unsigned int consumed; 452 size_t val_len; 453 char str[64]; 454 455 if (!buf || !buf_len || !res || !is_negative) 456 return -EINVAL; 457 458 if (base != 0 && base != 8 && base != 10 && base != 16) 459 return -EINVAL; 460 461 if (flags & ~BPF_STRTOX_BASE_MASK) 462 return -EINVAL; 463 464 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 465 ++cur_buf; 466 467 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 468 if (*is_negative) 469 ++cur_buf; 470 471 consumed = cur_buf - buf; 472 cur_len -= consumed; 473 if (!cur_len) 474 return -EINVAL; 475 476 cur_len = min(cur_len, sizeof(str) - 1); 477 memcpy(str, cur_buf, cur_len); 478 str[cur_len] = '\0'; 479 cur_buf = str; 480 481 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 482 val_len = _parse_integer(cur_buf, base, res); 483 484 if (val_len & KSTRTOX_OVERFLOW) 485 return -ERANGE; 486 487 if (val_len == 0) 488 return -EINVAL; 489 490 cur_buf += val_len; 491 consumed += cur_buf - str; 492 493 return consumed; 494 } 495 496 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 497 long long *res) 498 { 499 unsigned long long _res; 500 bool is_negative; 501 int err; 502 503 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 504 if (err < 0) 505 return err; 506 if (is_negative) { 507 if ((long long)-_res > 0) 508 return -ERANGE; 509 *res = -_res; 510 } else { 511 if ((long long)_res < 0) 512 return -ERANGE; 513 *res = _res; 514 } 515 return err; 516 } 517 518 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 519 long *, res) 520 { 521 long long _res; 522 int err; 523 524 err = __bpf_strtoll(buf, buf_len, flags, &_res); 525 if (err < 0) 526 return err; 527 if (_res != (long)_res) 528 return -ERANGE; 529 *res = _res; 530 return err; 531 } 532 533 const struct bpf_func_proto bpf_strtol_proto = { 534 .func = bpf_strtol, 535 .gpl_only = false, 536 .ret_type = RET_INTEGER, 537 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 538 .arg2_type = ARG_CONST_SIZE, 539 .arg3_type = ARG_ANYTHING, 540 .arg4_type = ARG_PTR_TO_LONG, 541 }; 542 543 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 544 unsigned long *, res) 545 { 546 unsigned long long _res; 547 bool is_negative; 548 int err; 549 550 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 551 if (err < 0) 552 return err; 553 if (is_negative) 554 return -EINVAL; 555 if (_res != (unsigned long)_res) 556 return -ERANGE; 557 *res = _res; 558 return err; 559 } 560 561 const struct bpf_func_proto bpf_strtoul_proto = { 562 .func = bpf_strtoul, 563 .gpl_only = false, 564 .ret_type = RET_INTEGER, 565 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 566 .arg2_type = ARG_CONST_SIZE, 567 .arg3_type = ARG_ANYTHING, 568 .arg4_type = ARG_PTR_TO_LONG, 569 }; 570 571 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 572 { 573 return strncmp(s1, s2, s1_sz); 574 } 575 576 static const struct bpf_func_proto bpf_strncmp_proto = { 577 .func = bpf_strncmp, 578 .gpl_only = false, 579 .ret_type = RET_INTEGER, 580 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 581 .arg2_type = ARG_CONST_SIZE, 582 .arg3_type = ARG_PTR_TO_CONST_STR, 583 }; 584 585 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 586 struct bpf_pidns_info *, nsdata, u32, size) 587 { 588 struct task_struct *task = current; 589 struct pid_namespace *pidns; 590 int err = -EINVAL; 591 592 if (unlikely(size != sizeof(struct bpf_pidns_info))) 593 goto clear; 594 595 if (unlikely((u64)(dev_t)dev != dev)) 596 goto clear; 597 598 if (unlikely(!task)) 599 goto clear; 600 601 pidns = task_active_pid_ns(task); 602 if (unlikely(!pidns)) { 603 err = -ENOENT; 604 goto clear; 605 } 606 607 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 608 goto clear; 609 610 nsdata->pid = task_pid_nr_ns(task, pidns); 611 nsdata->tgid = task_tgid_nr_ns(task, pidns); 612 return 0; 613 clear: 614 memset((void *)nsdata, 0, (size_t) size); 615 return err; 616 } 617 618 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 619 .func = bpf_get_ns_current_pid_tgid, 620 .gpl_only = false, 621 .ret_type = RET_INTEGER, 622 .arg1_type = ARG_ANYTHING, 623 .arg2_type = ARG_ANYTHING, 624 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 625 .arg4_type = ARG_CONST_SIZE, 626 }; 627 628 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 629 .func = bpf_get_raw_cpu_id, 630 .gpl_only = false, 631 .ret_type = RET_INTEGER, 632 }; 633 634 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 635 u64, flags, void *, data, u64, size) 636 { 637 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 638 return -EINVAL; 639 640 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 641 } 642 643 const struct bpf_func_proto bpf_event_output_data_proto = { 644 .func = bpf_event_output_data, 645 .gpl_only = true, 646 .ret_type = RET_INTEGER, 647 .arg1_type = ARG_PTR_TO_CTX, 648 .arg2_type = ARG_CONST_MAP_PTR, 649 .arg3_type = ARG_ANYTHING, 650 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 651 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 652 }; 653 654 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 655 const void __user *, user_ptr) 656 { 657 int ret = copy_from_user(dst, user_ptr, size); 658 659 if (unlikely(ret)) { 660 memset(dst, 0, size); 661 ret = -EFAULT; 662 } 663 664 return ret; 665 } 666 667 const struct bpf_func_proto bpf_copy_from_user_proto = { 668 .func = bpf_copy_from_user, 669 .gpl_only = false, 670 .might_sleep = true, 671 .ret_type = RET_INTEGER, 672 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 673 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 674 .arg3_type = ARG_ANYTHING, 675 }; 676 677 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 678 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 679 { 680 int ret; 681 682 /* flags is not used yet */ 683 if (unlikely(flags)) 684 return -EINVAL; 685 686 if (unlikely(!size)) 687 return 0; 688 689 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 690 if (ret == size) 691 return 0; 692 693 memset(dst, 0, size); 694 /* Return -EFAULT for partial read */ 695 return ret < 0 ? ret : -EFAULT; 696 } 697 698 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 699 .func = bpf_copy_from_user_task, 700 .gpl_only = true, 701 .might_sleep = true, 702 .ret_type = RET_INTEGER, 703 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 704 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 705 .arg3_type = ARG_ANYTHING, 706 .arg4_type = ARG_PTR_TO_BTF_ID, 707 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 708 .arg5_type = ARG_ANYTHING 709 }; 710 711 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 712 { 713 if (cpu >= nr_cpu_ids) 714 return (unsigned long)NULL; 715 716 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 717 } 718 719 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 720 .func = bpf_per_cpu_ptr, 721 .gpl_only = false, 722 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 723 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 724 .arg2_type = ARG_ANYTHING, 725 }; 726 727 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 728 { 729 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 730 } 731 732 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 733 .func = bpf_this_cpu_ptr, 734 .gpl_only = false, 735 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 736 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 737 }; 738 739 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 740 size_t bufsz) 741 { 742 void __user *user_ptr = (__force void __user *)unsafe_ptr; 743 744 buf[0] = 0; 745 746 switch (fmt_ptype) { 747 case 's': 748 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 749 if ((unsigned long)unsafe_ptr < TASK_SIZE) 750 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 751 fallthrough; 752 #endif 753 case 'k': 754 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 755 case 'u': 756 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 757 } 758 759 return -EINVAL; 760 } 761 762 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 763 * arguments representation. 764 */ 765 #define MAX_BPRINTF_BIN_ARGS 512 766 767 /* Support executing three nested bprintf helper calls on a given CPU */ 768 #define MAX_BPRINTF_NEST_LEVEL 3 769 struct bpf_bprintf_buffers { 770 char bin_args[MAX_BPRINTF_BIN_ARGS]; 771 char buf[MAX_BPRINTF_BUF]; 772 }; 773 774 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); 775 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 776 777 static int try_get_buffers(struct bpf_bprintf_buffers **bufs) 778 { 779 int nest_level; 780 781 preempt_disable(); 782 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 783 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 784 this_cpu_dec(bpf_bprintf_nest_level); 785 preempt_enable(); 786 return -EBUSY; 787 } 788 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); 789 790 return 0; 791 } 792 793 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) 794 { 795 if (!data->bin_args && !data->buf) 796 return; 797 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) 798 return; 799 this_cpu_dec(bpf_bprintf_nest_level); 800 preempt_enable(); 801 } 802 803 /* 804 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 805 * 806 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 807 * 808 * This can be used in two ways: 809 * - Format string verification only: when data->get_bin_args is false 810 * - Arguments preparation: in addition to the above verification, it writes in 811 * data->bin_args a binary representation of arguments usable by bstr_printf 812 * where pointers from BPF have been sanitized. 813 * 814 * In argument preparation mode, if 0 is returned, safe temporary buffers are 815 * allocated and bpf_bprintf_cleanup should be called to free them after use. 816 */ 817 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 818 u32 num_args, struct bpf_bprintf_data *data) 819 { 820 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; 821 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 822 struct bpf_bprintf_buffers *buffers = NULL; 823 size_t sizeof_cur_arg, sizeof_cur_ip; 824 int err, i, num_spec = 0; 825 u64 cur_arg; 826 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 827 828 fmt_end = strnchr(fmt, fmt_size, 0); 829 if (!fmt_end) 830 return -EINVAL; 831 fmt_size = fmt_end - fmt; 832 833 if (get_buffers && try_get_buffers(&buffers)) 834 return -EBUSY; 835 836 if (data->get_bin_args) { 837 if (num_args) 838 tmp_buf = buffers->bin_args; 839 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; 840 data->bin_args = (u32 *)tmp_buf; 841 } 842 843 if (data->get_buf) 844 data->buf = buffers->buf; 845 846 for (i = 0; i < fmt_size; i++) { 847 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 848 err = -EINVAL; 849 goto out; 850 } 851 852 if (fmt[i] != '%') 853 continue; 854 855 if (fmt[i + 1] == '%') { 856 i++; 857 continue; 858 } 859 860 if (num_spec >= num_args) { 861 err = -EINVAL; 862 goto out; 863 } 864 865 /* The string is zero-terminated so if fmt[i] != 0, we can 866 * always access fmt[i + 1], in the worst case it will be a 0 867 */ 868 i++; 869 870 /* skip optional "[0 +-][num]" width formatting field */ 871 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 872 fmt[i] == ' ') 873 i++; 874 if (fmt[i] >= '1' && fmt[i] <= '9') { 875 i++; 876 while (fmt[i] >= '0' && fmt[i] <= '9') 877 i++; 878 } 879 880 if (fmt[i] == 'p') { 881 sizeof_cur_arg = sizeof(long); 882 883 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 884 fmt[i + 2] == 's') { 885 fmt_ptype = fmt[i + 1]; 886 i += 2; 887 goto fmt_str; 888 } 889 890 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 891 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 892 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 893 fmt[i + 1] == 'S') { 894 /* just kernel pointers */ 895 if (tmp_buf) 896 cur_arg = raw_args[num_spec]; 897 i++; 898 goto nocopy_fmt; 899 } 900 901 if (fmt[i + 1] == 'B') { 902 if (tmp_buf) { 903 err = snprintf(tmp_buf, 904 (tmp_buf_end - tmp_buf), 905 "%pB", 906 (void *)(long)raw_args[num_spec]); 907 tmp_buf += (err + 1); 908 } 909 910 i++; 911 num_spec++; 912 continue; 913 } 914 915 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 916 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 917 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 918 err = -EINVAL; 919 goto out; 920 } 921 922 i += 2; 923 if (!tmp_buf) 924 goto nocopy_fmt; 925 926 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 927 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 928 err = -ENOSPC; 929 goto out; 930 } 931 932 unsafe_ptr = (char *)(long)raw_args[num_spec]; 933 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 934 sizeof_cur_ip); 935 if (err < 0) 936 memset(cur_ip, 0, sizeof_cur_ip); 937 938 /* hack: bstr_printf expects IP addresses to be 939 * pre-formatted as strings, ironically, the easiest way 940 * to do that is to call snprintf. 941 */ 942 ip_spec[2] = fmt[i - 1]; 943 ip_spec[3] = fmt[i]; 944 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 945 ip_spec, &cur_ip); 946 947 tmp_buf += err + 1; 948 num_spec++; 949 950 continue; 951 } else if (fmt[i] == 's') { 952 fmt_ptype = fmt[i]; 953 fmt_str: 954 if (fmt[i + 1] != 0 && 955 !isspace(fmt[i + 1]) && 956 !ispunct(fmt[i + 1])) { 957 err = -EINVAL; 958 goto out; 959 } 960 961 if (!tmp_buf) 962 goto nocopy_fmt; 963 964 if (tmp_buf_end == tmp_buf) { 965 err = -ENOSPC; 966 goto out; 967 } 968 969 unsafe_ptr = (char *)(long)raw_args[num_spec]; 970 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 971 fmt_ptype, 972 tmp_buf_end - tmp_buf); 973 if (err < 0) { 974 tmp_buf[0] = '\0'; 975 err = 1; 976 } 977 978 tmp_buf += err; 979 num_spec++; 980 981 continue; 982 } else if (fmt[i] == 'c') { 983 if (!tmp_buf) 984 goto nocopy_fmt; 985 986 if (tmp_buf_end == tmp_buf) { 987 err = -ENOSPC; 988 goto out; 989 } 990 991 *tmp_buf = raw_args[num_spec]; 992 tmp_buf++; 993 num_spec++; 994 995 continue; 996 } 997 998 sizeof_cur_arg = sizeof(int); 999 1000 if (fmt[i] == 'l') { 1001 sizeof_cur_arg = sizeof(long); 1002 i++; 1003 } 1004 if (fmt[i] == 'l') { 1005 sizeof_cur_arg = sizeof(long long); 1006 i++; 1007 } 1008 1009 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1010 fmt[i] != 'x' && fmt[i] != 'X') { 1011 err = -EINVAL; 1012 goto out; 1013 } 1014 1015 if (tmp_buf) 1016 cur_arg = raw_args[num_spec]; 1017 nocopy_fmt: 1018 if (tmp_buf) { 1019 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1020 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1021 err = -ENOSPC; 1022 goto out; 1023 } 1024 1025 if (sizeof_cur_arg == 8) { 1026 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1027 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1028 } else { 1029 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1030 } 1031 tmp_buf += sizeof_cur_arg; 1032 } 1033 num_spec++; 1034 } 1035 1036 err = 0; 1037 out: 1038 if (err) 1039 bpf_bprintf_cleanup(data); 1040 return err; 1041 } 1042 1043 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1044 const void *, args, u32, data_len) 1045 { 1046 struct bpf_bprintf_data data = { 1047 .get_bin_args = true, 1048 }; 1049 int err, num_args; 1050 1051 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1052 (data_len && !args)) 1053 return -EINVAL; 1054 num_args = data_len / 8; 1055 1056 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1057 * can safely give an unbounded size. 1058 */ 1059 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); 1060 if (err < 0) 1061 return err; 1062 1063 err = bstr_printf(str, str_size, fmt, data.bin_args); 1064 1065 bpf_bprintf_cleanup(&data); 1066 1067 return err + 1; 1068 } 1069 1070 const struct bpf_func_proto bpf_snprintf_proto = { 1071 .func = bpf_snprintf, 1072 .gpl_only = true, 1073 .ret_type = RET_INTEGER, 1074 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1075 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1076 .arg3_type = ARG_PTR_TO_CONST_STR, 1077 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1078 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1079 }; 1080 1081 /* BPF map elements can contain 'struct bpf_timer'. 1082 * Such map owns all of its BPF timers. 1083 * 'struct bpf_timer' is allocated as part of map element allocation 1084 * and it's zero initialized. 1085 * That space is used to keep 'struct bpf_timer_kern'. 1086 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1087 * remembers 'struct bpf_map *' pointer it's part of. 1088 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1089 * bpf_timer_start() arms the timer. 1090 * If user space reference to a map goes to zero at this point 1091 * ops->map_release_uref callback is responsible for cancelling the timers, 1092 * freeing their memory, and decrementing prog's refcnts. 1093 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1094 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1095 * freeing the timers when inner map is replaced or deleted by user space. 1096 */ 1097 struct bpf_hrtimer { 1098 struct hrtimer timer; 1099 struct bpf_map *map; 1100 struct bpf_prog *prog; 1101 void __rcu *callback_fn; 1102 void *value; 1103 struct rcu_head rcu; 1104 }; 1105 1106 /* the actual struct hidden inside uapi struct bpf_timer */ 1107 struct bpf_timer_kern { 1108 struct bpf_hrtimer *timer; 1109 /* bpf_spin_lock is used here instead of spinlock_t to make 1110 * sure that it always fits into space reserved by struct bpf_timer 1111 * regardless of LOCKDEP and spinlock debug flags. 1112 */ 1113 struct bpf_spin_lock lock; 1114 } __attribute__((aligned(8))); 1115 1116 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1117 1118 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1119 { 1120 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1121 struct bpf_map *map = t->map; 1122 void *value = t->value; 1123 bpf_callback_t callback_fn; 1124 void *key; 1125 u32 idx; 1126 1127 BTF_TYPE_EMIT(struct bpf_timer); 1128 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1129 if (!callback_fn) 1130 goto out; 1131 1132 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1133 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1134 * Remember the timer this callback is servicing to prevent 1135 * deadlock if callback_fn() calls bpf_timer_cancel() or 1136 * bpf_map_delete_elem() on the same timer. 1137 */ 1138 this_cpu_write(hrtimer_running, t); 1139 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1140 struct bpf_array *array = container_of(map, struct bpf_array, map); 1141 1142 /* compute the key */ 1143 idx = ((char *)value - array->value) / array->elem_size; 1144 key = &idx; 1145 } else { /* hash or lru */ 1146 key = value - round_up(map->key_size, 8); 1147 } 1148 1149 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1150 /* The verifier checked that return value is zero. */ 1151 1152 this_cpu_write(hrtimer_running, NULL); 1153 out: 1154 return HRTIMER_NORESTART; 1155 } 1156 1157 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1158 u64, flags) 1159 { 1160 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1161 struct bpf_hrtimer *t; 1162 int ret = 0; 1163 1164 BUILD_BUG_ON(MAX_CLOCKS != 16); 1165 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1166 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1167 1168 if (in_nmi()) 1169 return -EOPNOTSUPP; 1170 1171 if (flags >= MAX_CLOCKS || 1172 /* similar to timerfd except _ALARM variants are not supported */ 1173 (clockid != CLOCK_MONOTONIC && 1174 clockid != CLOCK_REALTIME && 1175 clockid != CLOCK_BOOTTIME)) 1176 return -EINVAL; 1177 __bpf_spin_lock_irqsave(&timer->lock); 1178 t = timer->timer; 1179 if (t) { 1180 ret = -EBUSY; 1181 goto out; 1182 } 1183 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1184 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1185 if (!t) { 1186 ret = -ENOMEM; 1187 goto out; 1188 } 1189 t->value = (void *)timer - map->record->timer_off; 1190 t->map = map; 1191 t->prog = NULL; 1192 rcu_assign_pointer(t->callback_fn, NULL); 1193 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1194 t->timer.function = bpf_timer_cb; 1195 WRITE_ONCE(timer->timer, t); 1196 /* Guarantee the order between timer->timer and map->usercnt. So 1197 * when there are concurrent uref release and bpf timer init, either 1198 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL 1199 * timer or atomic64_read() below returns a zero usercnt. 1200 */ 1201 smp_mb(); 1202 if (!atomic64_read(&map->usercnt)) { 1203 /* maps with timers must be either held by user space 1204 * or pinned in bpffs. 1205 */ 1206 WRITE_ONCE(timer->timer, NULL); 1207 kfree(t); 1208 ret = -EPERM; 1209 } 1210 out: 1211 __bpf_spin_unlock_irqrestore(&timer->lock); 1212 return ret; 1213 } 1214 1215 static const struct bpf_func_proto bpf_timer_init_proto = { 1216 .func = bpf_timer_init, 1217 .gpl_only = true, 1218 .ret_type = RET_INTEGER, 1219 .arg1_type = ARG_PTR_TO_TIMER, 1220 .arg2_type = ARG_CONST_MAP_PTR, 1221 .arg3_type = ARG_ANYTHING, 1222 }; 1223 1224 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1225 struct bpf_prog_aux *, aux) 1226 { 1227 struct bpf_prog *prev, *prog = aux->prog; 1228 struct bpf_hrtimer *t; 1229 int ret = 0; 1230 1231 if (in_nmi()) 1232 return -EOPNOTSUPP; 1233 __bpf_spin_lock_irqsave(&timer->lock); 1234 t = timer->timer; 1235 if (!t) { 1236 ret = -EINVAL; 1237 goto out; 1238 } 1239 if (!atomic64_read(&t->map->usercnt)) { 1240 /* maps with timers must be either held by user space 1241 * or pinned in bpffs. Otherwise timer might still be 1242 * running even when bpf prog is detached and user space 1243 * is gone, since map_release_uref won't ever be called. 1244 */ 1245 ret = -EPERM; 1246 goto out; 1247 } 1248 prev = t->prog; 1249 if (prev != prog) { 1250 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1251 * can pick different callback_fn-s within the same prog. 1252 */ 1253 prog = bpf_prog_inc_not_zero(prog); 1254 if (IS_ERR(prog)) { 1255 ret = PTR_ERR(prog); 1256 goto out; 1257 } 1258 if (prev) 1259 /* Drop prev prog refcnt when swapping with new prog */ 1260 bpf_prog_put(prev); 1261 t->prog = prog; 1262 } 1263 rcu_assign_pointer(t->callback_fn, callback_fn); 1264 out: 1265 __bpf_spin_unlock_irqrestore(&timer->lock); 1266 return ret; 1267 } 1268 1269 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1270 .func = bpf_timer_set_callback, 1271 .gpl_only = true, 1272 .ret_type = RET_INTEGER, 1273 .arg1_type = ARG_PTR_TO_TIMER, 1274 .arg2_type = ARG_PTR_TO_FUNC, 1275 }; 1276 1277 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1278 { 1279 struct bpf_hrtimer *t; 1280 int ret = 0; 1281 enum hrtimer_mode mode; 1282 1283 if (in_nmi()) 1284 return -EOPNOTSUPP; 1285 if (flags > BPF_F_TIMER_ABS) 1286 return -EINVAL; 1287 __bpf_spin_lock_irqsave(&timer->lock); 1288 t = timer->timer; 1289 if (!t || !t->prog) { 1290 ret = -EINVAL; 1291 goto out; 1292 } 1293 1294 if (flags & BPF_F_TIMER_ABS) 1295 mode = HRTIMER_MODE_ABS_SOFT; 1296 else 1297 mode = HRTIMER_MODE_REL_SOFT; 1298 1299 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); 1300 out: 1301 __bpf_spin_unlock_irqrestore(&timer->lock); 1302 return ret; 1303 } 1304 1305 static const struct bpf_func_proto bpf_timer_start_proto = { 1306 .func = bpf_timer_start, 1307 .gpl_only = true, 1308 .ret_type = RET_INTEGER, 1309 .arg1_type = ARG_PTR_TO_TIMER, 1310 .arg2_type = ARG_ANYTHING, 1311 .arg3_type = ARG_ANYTHING, 1312 }; 1313 1314 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1315 { 1316 struct bpf_prog *prog = t->prog; 1317 1318 if (prog) { 1319 bpf_prog_put(prog); 1320 t->prog = NULL; 1321 rcu_assign_pointer(t->callback_fn, NULL); 1322 } 1323 } 1324 1325 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1326 { 1327 struct bpf_hrtimer *t; 1328 int ret = 0; 1329 1330 if (in_nmi()) 1331 return -EOPNOTSUPP; 1332 rcu_read_lock(); 1333 __bpf_spin_lock_irqsave(&timer->lock); 1334 t = timer->timer; 1335 if (!t) { 1336 ret = -EINVAL; 1337 goto out; 1338 } 1339 if (this_cpu_read(hrtimer_running) == t) { 1340 /* If bpf callback_fn is trying to bpf_timer_cancel() 1341 * its own timer the hrtimer_cancel() will deadlock 1342 * since it waits for callback_fn to finish 1343 */ 1344 ret = -EDEADLK; 1345 goto out; 1346 } 1347 drop_prog_refcnt(t); 1348 out: 1349 __bpf_spin_unlock_irqrestore(&timer->lock); 1350 /* Cancel the timer and wait for associated callback to finish 1351 * if it was running. 1352 */ 1353 ret = ret ?: hrtimer_cancel(&t->timer); 1354 rcu_read_unlock(); 1355 return ret; 1356 } 1357 1358 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1359 .func = bpf_timer_cancel, 1360 .gpl_only = true, 1361 .ret_type = RET_INTEGER, 1362 .arg1_type = ARG_PTR_TO_TIMER, 1363 }; 1364 1365 /* This function is called by map_delete/update_elem for individual element and 1366 * by ops->map_release_uref when the user space reference to a map reaches zero. 1367 */ 1368 void bpf_timer_cancel_and_free(void *val) 1369 { 1370 struct bpf_timer_kern *timer = val; 1371 struct bpf_hrtimer *t; 1372 1373 /* Performance optimization: read timer->timer without lock first. */ 1374 if (!READ_ONCE(timer->timer)) 1375 return; 1376 1377 __bpf_spin_lock_irqsave(&timer->lock); 1378 /* re-read it under lock */ 1379 t = timer->timer; 1380 if (!t) 1381 goto out; 1382 drop_prog_refcnt(t); 1383 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1384 * this timer, since it won't be initialized. 1385 */ 1386 WRITE_ONCE(timer->timer, NULL); 1387 out: 1388 __bpf_spin_unlock_irqrestore(&timer->lock); 1389 if (!t) 1390 return; 1391 /* Cancel the timer and wait for callback to complete if it was running. 1392 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1393 * right after for both preallocated and non-preallocated maps. 1394 * The timer->timer = NULL was already done and no code path can 1395 * see address 't' anymore. 1396 * 1397 * Check that bpf_map_delete/update_elem() wasn't called from timer 1398 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1399 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1400 * return -1). Though callback_fn is still running on this cpu it's 1401 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1402 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1403 * since timer->timer = NULL was already done. The timer will be 1404 * effectively cancelled because bpf_timer_cb() will return 1405 * HRTIMER_NORESTART. 1406 */ 1407 if (this_cpu_read(hrtimer_running) != t) 1408 hrtimer_cancel(&t->timer); 1409 kfree_rcu(t, rcu); 1410 } 1411 1412 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) 1413 { 1414 unsigned long *kptr = map_value; 1415 1416 return xchg(kptr, (unsigned long)ptr); 1417 } 1418 1419 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1420 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1421 * denote type that verifier will determine. 1422 */ 1423 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1424 .func = bpf_kptr_xchg, 1425 .gpl_only = false, 1426 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1427 .ret_btf_id = BPF_PTR_POISON, 1428 .arg1_type = ARG_PTR_TO_KPTR, 1429 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1430 .arg2_btf_id = BPF_PTR_POISON, 1431 }; 1432 1433 /* Since the upper 8 bits of dynptr->size is reserved, the 1434 * maximum supported size is 2^24 - 1. 1435 */ 1436 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1437 #define DYNPTR_TYPE_SHIFT 28 1438 #define DYNPTR_SIZE_MASK 0xFFFFFF 1439 #define DYNPTR_RDONLY_BIT BIT(31) 1440 1441 static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) 1442 { 1443 return ptr->size & DYNPTR_RDONLY_BIT; 1444 } 1445 1446 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 1447 { 1448 ptr->size |= DYNPTR_RDONLY_BIT; 1449 } 1450 1451 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1452 { 1453 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1454 } 1455 1456 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) 1457 { 1458 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; 1459 } 1460 1461 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 1462 { 1463 return ptr->size & DYNPTR_SIZE_MASK; 1464 } 1465 1466 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) 1467 { 1468 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; 1469 1470 ptr->size = new_size | metadata; 1471 } 1472 1473 int bpf_dynptr_check_size(u32 size) 1474 { 1475 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1476 } 1477 1478 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1479 enum bpf_dynptr_type type, u32 offset, u32 size) 1480 { 1481 ptr->data = data; 1482 ptr->offset = offset; 1483 ptr->size = size; 1484 bpf_dynptr_set_type(ptr, type); 1485 } 1486 1487 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1488 { 1489 memset(ptr, 0, sizeof(*ptr)); 1490 } 1491 1492 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1493 { 1494 u32 size = __bpf_dynptr_size(ptr); 1495 1496 if (len > size || offset > size - len) 1497 return -E2BIG; 1498 1499 return 0; 1500 } 1501 1502 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1503 { 1504 int err; 1505 1506 BTF_TYPE_EMIT(struct bpf_dynptr); 1507 1508 err = bpf_dynptr_check_size(size); 1509 if (err) 1510 goto error; 1511 1512 /* flags is currently unsupported */ 1513 if (flags) { 1514 err = -EINVAL; 1515 goto error; 1516 } 1517 1518 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1519 1520 return 0; 1521 1522 error: 1523 bpf_dynptr_set_null(ptr); 1524 return err; 1525 } 1526 1527 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1528 .func = bpf_dynptr_from_mem, 1529 .gpl_only = false, 1530 .ret_type = RET_INTEGER, 1531 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1532 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1533 .arg3_type = ARG_ANYTHING, 1534 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, 1535 }; 1536 1537 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, 1538 u32, offset, u64, flags) 1539 { 1540 enum bpf_dynptr_type type; 1541 int err; 1542 1543 if (!src->data || flags) 1544 return -EINVAL; 1545 1546 err = bpf_dynptr_check_off_len(src, offset, len); 1547 if (err) 1548 return err; 1549 1550 type = bpf_dynptr_get_type(src); 1551 1552 switch (type) { 1553 case BPF_DYNPTR_TYPE_LOCAL: 1554 case BPF_DYNPTR_TYPE_RINGBUF: 1555 /* Source and destination may possibly overlap, hence use memmove to 1556 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1557 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1558 */ 1559 memmove(dst, src->data + src->offset + offset, len); 1560 return 0; 1561 case BPF_DYNPTR_TYPE_SKB: 1562 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); 1563 case BPF_DYNPTR_TYPE_XDP: 1564 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); 1565 default: 1566 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); 1567 return -EFAULT; 1568 } 1569 } 1570 1571 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1572 .func = bpf_dynptr_read, 1573 .gpl_only = false, 1574 .ret_type = RET_INTEGER, 1575 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1576 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1577 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1578 .arg4_type = ARG_ANYTHING, 1579 .arg5_type = ARG_ANYTHING, 1580 }; 1581 1582 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1583 u32, len, u64, flags) 1584 { 1585 enum bpf_dynptr_type type; 1586 int err; 1587 1588 if (!dst->data || __bpf_dynptr_is_rdonly(dst)) 1589 return -EINVAL; 1590 1591 err = bpf_dynptr_check_off_len(dst, offset, len); 1592 if (err) 1593 return err; 1594 1595 type = bpf_dynptr_get_type(dst); 1596 1597 switch (type) { 1598 case BPF_DYNPTR_TYPE_LOCAL: 1599 case BPF_DYNPTR_TYPE_RINGBUF: 1600 if (flags) 1601 return -EINVAL; 1602 /* Source and destination may possibly overlap, hence use memmove to 1603 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1604 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1605 */ 1606 memmove(dst->data + dst->offset + offset, src, len); 1607 return 0; 1608 case BPF_DYNPTR_TYPE_SKB: 1609 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, 1610 flags); 1611 case BPF_DYNPTR_TYPE_XDP: 1612 if (flags) 1613 return -EINVAL; 1614 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); 1615 default: 1616 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); 1617 return -EFAULT; 1618 } 1619 } 1620 1621 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1622 .func = bpf_dynptr_write, 1623 .gpl_only = false, 1624 .ret_type = RET_INTEGER, 1625 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1626 .arg2_type = ARG_ANYTHING, 1627 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1628 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1629 .arg5_type = ARG_ANYTHING, 1630 }; 1631 1632 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1633 { 1634 enum bpf_dynptr_type type; 1635 int err; 1636 1637 if (!ptr->data) 1638 return 0; 1639 1640 err = bpf_dynptr_check_off_len(ptr, offset, len); 1641 if (err) 1642 return 0; 1643 1644 if (__bpf_dynptr_is_rdonly(ptr)) 1645 return 0; 1646 1647 type = bpf_dynptr_get_type(ptr); 1648 1649 switch (type) { 1650 case BPF_DYNPTR_TYPE_LOCAL: 1651 case BPF_DYNPTR_TYPE_RINGBUF: 1652 return (unsigned long)(ptr->data + ptr->offset + offset); 1653 case BPF_DYNPTR_TYPE_SKB: 1654 case BPF_DYNPTR_TYPE_XDP: 1655 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ 1656 return 0; 1657 default: 1658 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); 1659 return 0; 1660 } 1661 } 1662 1663 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1664 .func = bpf_dynptr_data, 1665 .gpl_only = false, 1666 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1667 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1668 .arg2_type = ARG_ANYTHING, 1669 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1670 }; 1671 1672 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1673 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1674 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1675 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1676 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1677 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1678 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1679 1680 const struct bpf_func_proto * 1681 bpf_base_func_proto(enum bpf_func_id func_id) 1682 { 1683 switch (func_id) { 1684 case BPF_FUNC_map_lookup_elem: 1685 return &bpf_map_lookup_elem_proto; 1686 case BPF_FUNC_map_update_elem: 1687 return &bpf_map_update_elem_proto; 1688 case BPF_FUNC_map_delete_elem: 1689 return &bpf_map_delete_elem_proto; 1690 case BPF_FUNC_map_push_elem: 1691 return &bpf_map_push_elem_proto; 1692 case BPF_FUNC_map_pop_elem: 1693 return &bpf_map_pop_elem_proto; 1694 case BPF_FUNC_map_peek_elem: 1695 return &bpf_map_peek_elem_proto; 1696 case BPF_FUNC_map_lookup_percpu_elem: 1697 return &bpf_map_lookup_percpu_elem_proto; 1698 case BPF_FUNC_get_prandom_u32: 1699 return &bpf_get_prandom_u32_proto; 1700 case BPF_FUNC_get_smp_processor_id: 1701 return &bpf_get_raw_smp_processor_id_proto; 1702 case BPF_FUNC_get_numa_node_id: 1703 return &bpf_get_numa_node_id_proto; 1704 case BPF_FUNC_tail_call: 1705 return &bpf_tail_call_proto; 1706 case BPF_FUNC_ktime_get_ns: 1707 return &bpf_ktime_get_ns_proto; 1708 case BPF_FUNC_ktime_get_boot_ns: 1709 return &bpf_ktime_get_boot_ns_proto; 1710 case BPF_FUNC_ktime_get_tai_ns: 1711 return &bpf_ktime_get_tai_ns_proto; 1712 case BPF_FUNC_ringbuf_output: 1713 return &bpf_ringbuf_output_proto; 1714 case BPF_FUNC_ringbuf_reserve: 1715 return &bpf_ringbuf_reserve_proto; 1716 case BPF_FUNC_ringbuf_submit: 1717 return &bpf_ringbuf_submit_proto; 1718 case BPF_FUNC_ringbuf_discard: 1719 return &bpf_ringbuf_discard_proto; 1720 case BPF_FUNC_ringbuf_query: 1721 return &bpf_ringbuf_query_proto; 1722 case BPF_FUNC_strncmp: 1723 return &bpf_strncmp_proto; 1724 case BPF_FUNC_strtol: 1725 return &bpf_strtol_proto; 1726 case BPF_FUNC_strtoul: 1727 return &bpf_strtoul_proto; 1728 default: 1729 break; 1730 } 1731 1732 if (!bpf_capable()) 1733 return NULL; 1734 1735 switch (func_id) { 1736 case BPF_FUNC_spin_lock: 1737 return &bpf_spin_lock_proto; 1738 case BPF_FUNC_spin_unlock: 1739 return &bpf_spin_unlock_proto; 1740 case BPF_FUNC_jiffies64: 1741 return &bpf_jiffies64_proto; 1742 case BPF_FUNC_per_cpu_ptr: 1743 return &bpf_per_cpu_ptr_proto; 1744 case BPF_FUNC_this_cpu_ptr: 1745 return &bpf_this_cpu_ptr_proto; 1746 case BPF_FUNC_timer_init: 1747 return &bpf_timer_init_proto; 1748 case BPF_FUNC_timer_set_callback: 1749 return &bpf_timer_set_callback_proto; 1750 case BPF_FUNC_timer_start: 1751 return &bpf_timer_start_proto; 1752 case BPF_FUNC_timer_cancel: 1753 return &bpf_timer_cancel_proto; 1754 case BPF_FUNC_kptr_xchg: 1755 return &bpf_kptr_xchg_proto; 1756 case BPF_FUNC_for_each_map_elem: 1757 return &bpf_for_each_map_elem_proto; 1758 case BPF_FUNC_loop: 1759 return &bpf_loop_proto; 1760 case BPF_FUNC_user_ringbuf_drain: 1761 return &bpf_user_ringbuf_drain_proto; 1762 case BPF_FUNC_ringbuf_reserve_dynptr: 1763 return &bpf_ringbuf_reserve_dynptr_proto; 1764 case BPF_FUNC_ringbuf_submit_dynptr: 1765 return &bpf_ringbuf_submit_dynptr_proto; 1766 case BPF_FUNC_ringbuf_discard_dynptr: 1767 return &bpf_ringbuf_discard_dynptr_proto; 1768 case BPF_FUNC_dynptr_from_mem: 1769 return &bpf_dynptr_from_mem_proto; 1770 case BPF_FUNC_dynptr_read: 1771 return &bpf_dynptr_read_proto; 1772 case BPF_FUNC_dynptr_write: 1773 return &bpf_dynptr_write_proto; 1774 case BPF_FUNC_dynptr_data: 1775 return &bpf_dynptr_data_proto; 1776 #ifdef CONFIG_CGROUPS 1777 case BPF_FUNC_cgrp_storage_get: 1778 return &bpf_cgrp_storage_get_proto; 1779 case BPF_FUNC_cgrp_storage_delete: 1780 return &bpf_cgrp_storage_delete_proto; 1781 case BPF_FUNC_get_current_cgroup_id: 1782 return &bpf_get_current_cgroup_id_proto; 1783 case BPF_FUNC_get_current_ancestor_cgroup_id: 1784 return &bpf_get_current_ancestor_cgroup_id_proto; 1785 #endif 1786 default: 1787 break; 1788 } 1789 1790 if (!perfmon_capable()) 1791 return NULL; 1792 1793 switch (func_id) { 1794 case BPF_FUNC_trace_printk: 1795 return bpf_get_trace_printk_proto(); 1796 case BPF_FUNC_get_current_task: 1797 return &bpf_get_current_task_proto; 1798 case BPF_FUNC_get_current_task_btf: 1799 return &bpf_get_current_task_btf_proto; 1800 case BPF_FUNC_probe_read_user: 1801 return &bpf_probe_read_user_proto; 1802 case BPF_FUNC_probe_read_kernel: 1803 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1804 NULL : &bpf_probe_read_kernel_proto; 1805 case BPF_FUNC_probe_read_user_str: 1806 return &bpf_probe_read_user_str_proto; 1807 case BPF_FUNC_probe_read_kernel_str: 1808 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1809 NULL : &bpf_probe_read_kernel_str_proto; 1810 case BPF_FUNC_snprintf_btf: 1811 return &bpf_snprintf_btf_proto; 1812 case BPF_FUNC_snprintf: 1813 return &bpf_snprintf_proto; 1814 case BPF_FUNC_task_pt_regs: 1815 return &bpf_task_pt_regs_proto; 1816 case BPF_FUNC_trace_vprintk: 1817 return bpf_get_trace_vprintk_proto(); 1818 default: 1819 return NULL; 1820 } 1821 } 1822 1823 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec); 1824 1825 void bpf_list_head_free(const struct btf_field *field, void *list_head, 1826 struct bpf_spin_lock *spin_lock) 1827 { 1828 struct list_head *head = list_head, *orig_head = list_head; 1829 1830 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); 1831 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); 1832 1833 /* Do the actual list draining outside the lock to not hold the lock for 1834 * too long, and also prevent deadlocks if tracing programs end up 1835 * executing on entry/exit of functions called inside the critical 1836 * section, and end up doing map ops that call bpf_list_head_free for 1837 * the same map value again. 1838 */ 1839 __bpf_spin_lock_irqsave(spin_lock); 1840 if (!head->next || list_empty(head)) 1841 goto unlock; 1842 head = head->next; 1843 unlock: 1844 INIT_LIST_HEAD(orig_head); 1845 __bpf_spin_unlock_irqrestore(spin_lock); 1846 1847 while (head != orig_head) { 1848 void *obj = head; 1849 1850 obj -= field->graph_root.node_offset; 1851 head = head->next; 1852 /* The contained type can also have resources, including a 1853 * bpf_list_head which needs to be freed. 1854 */ 1855 migrate_disable(); 1856 __bpf_obj_drop_impl(obj, field->graph_root.value_rec); 1857 migrate_enable(); 1858 } 1859 } 1860 1861 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are 1862 * 'rb_node *', so field name of rb_node within containing struct is not 1863 * needed. 1864 * 1865 * Since bpf_rb_tree's node type has a corresponding struct btf_field with 1866 * graph_root.node_offset, it's not necessary to know field name 1867 * or type of node struct 1868 */ 1869 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ 1870 for (pos = rb_first_postorder(root); \ 1871 pos && ({ n = rb_next_postorder(pos); 1; }); \ 1872 pos = n) 1873 1874 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 1875 struct bpf_spin_lock *spin_lock) 1876 { 1877 struct rb_root_cached orig_root, *root = rb_root; 1878 struct rb_node *pos, *n; 1879 void *obj; 1880 1881 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); 1882 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); 1883 1884 __bpf_spin_lock_irqsave(spin_lock); 1885 orig_root = *root; 1886 *root = RB_ROOT_CACHED; 1887 __bpf_spin_unlock_irqrestore(spin_lock); 1888 1889 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { 1890 obj = pos; 1891 obj -= field->graph_root.node_offset; 1892 1893 1894 migrate_disable(); 1895 __bpf_obj_drop_impl(obj, field->graph_root.value_rec); 1896 migrate_enable(); 1897 } 1898 } 1899 1900 __diag_push(); 1901 __diag_ignore_all("-Wmissing-prototypes", 1902 "Global functions as their definitions will be in vmlinux BTF"); 1903 1904 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) 1905 { 1906 struct btf_struct_meta *meta = meta__ign; 1907 u64 size = local_type_id__k; 1908 void *p; 1909 1910 p = bpf_mem_alloc(&bpf_global_ma, size); 1911 if (!p) 1912 return NULL; 1913 if (meta) 1914 bpf_obj_init(meta->record, p); 1915 return p; 1916 } 1917 1918 /* Must be called under migrate_disable(), as required by bpf_mem_free */ 1919 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec) 1920 { 1921 if (rec && rec->refcount_off >= 0 && 1922 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { 1923 /* Object is refcounted and refcount_dec didn't result in 0 1924 * refcount. Return without freeing the object 1925 */ 1926 return; 1927 } 1928 1929 if (rec) 1930 bpf_obj_free_fields(rec, p); 1931 1932 if (rec && rec->refcount_off >= 0) 1933 bpf_mem_free_rcu(&bpf_global_ma, p); 1934 else 1935 bpf_mem_free(&bpf_global_ma, p); 1936 } 1937 1938 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) 1939 { 1940 struct btf_struct_meta *meta = meta__ign; 1941 void *p = p__alloc; 1942 1943 __bpf_obj_drop_impl(p, meta ? meta->record : NULL); 1944 } 1945 1946 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) 1947 { 1948 struct btf_struct_meta *meta = meta__ign; 1949 struct bpf_refcount *ref; 1950 1951 /* Could just cast directly to refcount_t *, but need some code using 1952 * bpf_refcount type so that it is emitted in vmlinux BTF 1953 */ 1954 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); 1955 if (!refcount_inc_not_zero((refcount_t *)ref)) 1956 return NULL; 1957 1958 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null 1959 * in verifier.c 1960 */ 1961 return (void *)p__refcounted_kptr; 1962 } 1963 1964 static int __bpf_list_add(struct bpf_list_node_kern *node, 1965 struct bpf_list_head *head, 1966 bool tail, struct btf_record *rec, u64 off) 1967 { 1968 struct list_head *n = &node->list_head, *h = (void *)head; 1969 1970 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 1971 * called on its fields, so init here 1972 */ 1973 if (unlikely(!h->next)) 1974 INIT_LIST_HEAD(h); 1975 1976 /* node->owner != NULL implies !list_empty(n), no need to separately 1977 * check the latter 1978 */ 1979 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 1980 /* Only called from BPF prog, no need to migrate_disable */ 1981 __bpf_obj_drop_impl((void *)n - off, rec); 1982 return -EINVAL; 1983 } 1984 1985 tail ? list_add_tail(n, h) : list_add(n, h); 1986 WRITE_ONCE(node->owner, head); 1987 1988 return 0; 1989 } 1990 1991 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, 1992 struct bpf_list_node *node, 1993 void *meta__ign, u64 off) 1994 { 1995 struct bpf_list_node_kern *n = (void *)node; 1996 struct btf_struct_meta *meta = meta__ign; 1997 1998 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); 1999 } 2000 2001 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, 2002 struct bpf_list_node *node, 2003 void *meta__ign, u64 off) 2004 { 2005 struct bpf_list_node_kern *n = (void *)node; 2006 struct btf_struct_meta *meta = meta__ign; 2007 2008 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); 2009 } 2010 2011 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) 2012 { 2013 struct list_head *n, *h = (void *)head; 2014 struct bpf_list_node_kern *node; 2015 2016 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2017 * called on its fields, so init here 2018 */ 2019 if (unlikely(!h->next)) 2020 INIT_LIST_HEAD(h); 2021 if (list_empty(h)) 2022 return NULL; 2023 2024 n = tail ? h->prev : h->next; 2025 node = container_of(n, struct bpf_list_node_kern, list_head); 2026 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) 2027 return NULL; 2028 2029 list_del_init(n); 2030 WRITE_ONCE(node->owner, NULL); 2031 return (struct bpf_list_node *)n; 2032 } 2033 2034 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) 2035 { 2036 return __bpf_list_del(head, false); 2037 } 2038 2039 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) 2040 { 2041 return __bpf_list_del(head, true); 2042 } 2043 2044 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 2045 struct bpf_rb_node *node) 2046 { 2047 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2048 struct rb_root_cached *r = (struct rb_root_cached *)root; 2049 struct rb_node *n = &node_internal->rb_node; 2050 2051 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or 2052 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) 2053 */ 2054 if (READ_ONCE(node_internal->owner) != root) 2055 return NULL; 2056 2057 rb_erase_cached(n, r); 2058 RB_CLEAR_NODE(n); 2059 WRITE_ONCE(node_internal->owner, NULL); 2060 return (struct bpf_rb_node *)n; 2061 } 2062 2063 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF 2064 * program 2065 */ 2066 static int __bpf_rbtree_add(struct bpf_rb_root *root, 2067 struct bpf_rb_node_kern *node, 2068 void *less, struct btf_record *rec, u64 off) 2069 { 2070 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; 2071 struct rb_node *parent = NULL, *n = &node->rb_node; 2072 bpf_callback_t cb = (bpf_callback_t)less; 2073 bool leftmost = true; 2074 2075 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately 2076 * check the latter 2077 */ 2078 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2079 /* Only called from BPF prog, no need to migrate_disable */ 2080 __bpf_obj_drop_impl((void *)n - off, rec); 2081 return -EINVAL; 2082 } 2083 2084 while (*link) { 2085 parent = *link; 2086 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { 2087 link = &parent->rb_left; 2088 } else { 2089 link = &parent->rb_right; 2090 leftmost = false; 2091 } 2092 } 2093 2094 rb_link_node(n, parent, link); 2095 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); 2096 WRITE_ONCE(node->owner, root); 2097 return 0; 2098 } 2099 2100 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 2101 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 2102 void *meta__ign, u64 off) 2103 { 2104 struct btf_struct_meta *meta = meta__ign; 2105 struct bpf_rb_node_kern *n = (void *)node; 2106 2107 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); 2108 } 2109 2110 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) 2111 { 2112 struct rb_root_cached *r = (struct rb_root_cached *)root; 2113 2114 return (struct bpf_rb_node *)rb_first_cached(r); 2115 } 2116 2117 /** 2118 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this 2119 * kfunc which is not stored in a map as a kptr, must be released by calling 2120 * bpf_task_release(). 2121 * @p: The task on which a reference is being acquired. 2122 */ 2123 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) 2124 { 2125 if (refcount_inc_not_zero(&p->rcu_users)) 2126 return p; 2127 return NULL; 2128 } 2129 2130 /** 2131 * bpf_task_release - Release the reference acquired on a task. 2132 * @p: The task on which a reference is being released. 2133 */ 2134 __bpf_kfunc void bpf_task_release(struct task_struct *p) 2135 { 2136 put_task_struct_rcu_user(p); 2137 } 2138 2139 #ifdef CONFIG_CGROUPS 2140 /** 2141 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by 2142 * this kfunc which is not stored in a map as a kptr, must be released by 2143 * calling bpf_cgroup_release(). 2144 * @cgrp: The cgroup on which a reference is being acquired. 2145 */ 2146 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) 2147 { 2148 return cgroup_tryget(cgrp) ? cgrp : NULL; 2149 } 2150 2151 /** 2152 * bpf_cgroup_release - Release the reference acquired on a cgroup. 2153 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to 2154 * not be freed until the current grace period has ended, even if its refcount 2155 * drops to 0. 2156 * @cgrp: The cgroup on which a reference is being released. 2157 */ 2158 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) 2159 { 2160 cgroup_put(cgrp); 2161 } 2162 2163 /** 2164 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor 2165 * array. A cgroup returned by this kfunc which is not subsequently stored in a 2166 * map, must be released by calling bpf_cgroup_release(). 2167 * @cgrp: The cgroup for which we're performing a lookup. 2168 * @level: The level of ancestor to look up. 2169 */ 2170 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) 2171 { 2172 struct cgroup *ancestor; 2173 2174 if (level > cgrp->level || level < 0) 2175 return NULL; 2176 2177 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ 2178 ancestor = cgrp->ancestors[level]; 2179 if (!cgroup_tryget(ancestor)) 2180 return NULL; 2181 return ancestor; 2182 } 2183 2184 /** 2185 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this 2186 * kfunc which is not subsequently stored in a map, must be released by calling 2187 * bpf_cgroup_release(). 2188 * @cgid: cgroup id. 2189 */ 2190 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) 2191 { 2192 struct cgroup *cgrp; 2193 2194 cgrp = cgroup_get_from_id(cgid); 2195 if (IS_ERR(cgrp)) 2196 return NULL; 2197 return cgrp; 2198 } 2199 2200 /** 2201 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test 2202 * task's membership of cgroup ancestry. 2203 * @task: the task to be tested 2204 * @ancestor: possible ancestor of @task's cgroup 2205 * 2206 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. 2207 * It follows all the same rules as cgroup_is_descendant, and only applies 2208 * to the default hierarchy. 2209 */ 2210 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, 2211 struct cgroup *ancestor) 2212 { 2213 long ret; 2214 2215 rcu_read_lock(); 2216 ret = task_under_cgroup_hierarchy(task, ancestor); 2217 rcu_read_unlock(); 2218 return ret; 2219 } 2220 #endif /* CONFIG_CGROUPS */ 2221 2222 /** 2223 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up 2224 * in the root pid namespace idr. If a task is returned, it must either be 2225 * stored in a map, or released with bpf_task_release(). 2226 * @pid: The pid of the task being looked up. 2227 */ 2228 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) 2229 { 2230 struct task_struct *p; 2231 2232 rcu_read_lock(); 2233 p = find_task_by_pid_ns(pid, &init_pid_ns); 2234 if (p) 2235 p = bpf_task_acquire(p); 2236 rcu_read_unlock(); 2237 2238 return p; 2239 } 2240 2241 /** 2242 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. 2243 * @ptr: The dynptr whose data slice to retrieve 2244 * @offset: Offset into the dynptr 2245 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2246 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2247 * length of the requested slice. This must be a constant. 2248 * 2249 * For non-skb and non-xdp type dynptrs, there is no difference between 2250 * bpf_dynptr_slice and bpf_dynptr_data. 2251 * 2252 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2253 * 2254 * If the intention is to write to the data slice, please use 2255 * bpf_dynptr_slice_rdwr. 2256 * 2257 * The user must check that the returned pointer is not null before using it. 2258 * 2259 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice 2260 * does not change the underlying packet data pointers, so a call to 2261 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in 2262 * the bpf program. 2263 * 2264 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only 2265 * data slice (can be either direct pointer to the data or a pointer to the user 2266 * provided buffer, with its contents containing the data, if unable to obtain 2267 * direct pointer) 2268 */ 2269 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset, 2270 void *buffer__opt, u32 buffer__szk) 2271 { 2272 enum bpf_dynptr_type type; 2273 u32 len = buffer__szk; 2274 int err; 2275 2276 if (!ptr->data) 2277 return NULL; 2278 2279 err = bpf_dynptr_check_off_len(ptr, offset, len); 2280 if (err) 2281 return NULL; 2282 2283 type = bpf_dynptr_get_type(ptr); 2284 2285 switch (type) { 2286 case BPF_DYNPTR_TYPE_LOCAL: 2287 case BPF_DYNPTR_TYPE_RINGBUF: 2288 return ptr->data + ptr->offset + offset; 2289 case BPF_DYNPTR_TYPE_SKB: 2290 if (buffer__opt) 2291 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); 2292 else 2293 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); 2294 case BPF_DYNPTR_TYPE_XDP: 2295 { 2296 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); 2297 if (!IS_ERR_OR_NULL(xdp_ptr)) 2298 return xdp_ptr; 2299 2300 if (!buffer__opt) 2301 return NULL; 2302 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); 2303 return buffer__opt; 2304 } 2305 default: 2306 WARN_ONCE(true, "unknown dynptr type %d\n", type); 2307 return NULL; 2308 } 2309 } 2310 2311 /** 2312 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. 2313 * @ptr: The dynptr whose data slice to retrieve 2314 * @offset: Offset into the dynptr 2315 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2316 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2317 * length of the requested slice. This must be a constant. 2318 * 2319 * For non-skb and non-xdp type dynptrs, there is no difference between 2320 * bpf_dynptr_slice and bpf_dynptr_data. 2321 * 2322 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2323 * 2324 * The returned pointer is writable and may point to either directly the dynptr 2325 * data at the requested offset or to the buffer if unable to obtain a direct 2326 * data pointer to (example: the requested slice is to the paged area of an skb 2327 * packet). In the case where the returned pointer is to the buffer, the user 2328 * is responsible for persisting writes through calling bpf_dynptr_write(). This 2329 * usually looks something like this pattern: 2330 * 2331 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); 2332 * if (!eth) 2333 * return TC_ACT_SHOT; 2334 * 2335 * // mutate eth header // 2336 * 2337 * if (eth == buffer) 2338 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); 2339 * 2340 * Please note that, as in the example above, the user must check that the 2341 * returned pointer is not null before using it. 2342 * 2343 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr 2344 * does not change the underlying packet data pointers, so a call to 2345 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in 2346 * the bpf program. 2347 * 2348 * Return: NULL if the call failed (eg invalid dynptr), pointer to a 2349 * data slice (can be either direct pointer to the data or a pointer to the user 2350 * provided buffer, with its contents containing the data, if unable to obtain 2351 * direct pointer) 2352 */ 2353 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset, 2354 void *buffer__opt, u32 buffer__szk) 2355 { 2356 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) 2357 return NULL; 2358 2359 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. 2360 * 2361 * For skb-type dynptrs, it is safe to write into the returned pointer 2362 * if the bpf program allows skb data writes. There are two possiblities 2363 * that may occur when calling bpf_dynptr_slice_rdwr: 2364 * 2365 * 1) The requested slice is in the head of the skb. In this case, the 2366 * returned pointer is directly to skb data, and if the skb is cloned, the 2367 * verifier will have uncloned it (see bpf_unclone_prologue()) already. 2368 * The pointer can be directly written into. 2369 * 2370 * 2) Some portion of the requested slice is in the paged buffer area. 2371 * In this case, the requested data will be copied out into the buffer 2372 * and the returned pointer will be a pointer to the buffer. The skb 2373 * will not be pulled. To persist the write, the user will need to call 2374 * bpf_dynptr_write(), which will pull the skb and commit the write. 2375 * 2376 * Similarly for xdp programs, if the requested slice is not across xdp 2377 * fragments, then a direct pointer will be returned, otherwise the data 2378 * will be copied out into the buffer and the user will need to call 2379 * bpf_dynptr_write() to commit changes. 2380 */ 2381 return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk); 2382 } 2383 2384 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end) 2385 { 2386 u32 size; 2387 2388 if (!ptr->data || start > end) 2389 return -EINVAL; 2390 2391 size = __bpf_dynptr_size(ptr); 2392 2393 if (start > size || end > size) 2394 return -ERANGE; 2395 2396 ptr->offset += start; 2397 bpf_dynptr_set_size(ptr, end - start); 2398 2399 return 0; 2400 } 2401 2402 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr) 2403 { 2404 return !ptr->data; 2405 } 2406 2407 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) 2408 { 2409 if (!ptr->data) 2410 return false; 2411 2412 return __bpf_dynptr_is_rdonly(ptr); 2413 } 2414 2415 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 2416 { 2417 if (!ptr->data) 2418 return -EINVAL; 2419 2420 return __bpf_dynptr_size(ptr); 2421 } 2422 2423 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr, 2424 struct bpf_dynptr_kern *clone__uninit) 2425 { 2426 if (!ptr->data) { 2427 bpf_dynptr_set_null(clone__uninit); 2428 return -EINVAL; 2429 } 2430 2431 *clone__uninit = *ptr; 2432 2433 return 0; 2434 } 2435 2436 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) 2437 { 2438 return obj; 2439 } 2440 2441 __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k) 2442 { 2443 return obj__ign; 2444 } 2445 2446 __bpf_kfunc void bpf_rcu_read_lock(void) 2447 { 2448 rcu_read_lock(); 2449 } 2450 2451 __bpf_kfunc void bpf_rcu_read_unlock(void) 2452 { 2453 rcu_read_unlock(); 2454 } 2455 2456 __diag_pop(); 2457 2458 BTF_SET8_START(generic_btf_ids) 2459 #ifdef CONFIG_KEXEC_CORE 2460 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 2461 #endif 2462 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 2463 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) 2464 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL) 2465 BTF_ID_FLAGS(func, bpf_list_push_front_impl) 2466 BTF_ID_FLAGS(func, bpf_list_push_back_impl) 2467 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) 2468 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) 2469 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2470 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) 2471 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) 2472 BTF_ID_FLAGS(func, bpf_rbtree_add_impl) 2473 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) 2474 2475 #ifdef CONFIG_CGROUPS 2476 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2477 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) 2478 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2479 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) 2480 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) 2481 #endif 2482 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) 2483 BTF_SET8_END(generic_btf_ids) 2484 2485 static const struct btf_kfunc_id_set generic_kfunc_set = { 2486 .owner = THIS_MODULE, 2487 .set = &generic_btf_ids, 2488 }; 2489 2490 2491 BTF_ID_LIST(generic_dtor_ids) 2492 BTF_ID(struct, task_struct) 2493 BTF_ID(func, bpf_task_release) 2494 #ifdef CONFIG_CGROUPS 2495 BTF_ID(struct, cgroup) 2496 BTF_ID(func, bpf_cgroup_release) 2497 #endif 2498 2499 BTF_SET8_START(common_btf_ids) 2500 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx) 2501 BTF_ID_FLAGS(func, bpf_rdonly_cast) 2502 BTF_ID_FLAGS(func, bpf_rcu_read_lock) 2503 BTF_ID_FLAGS(func, bpf_rcu_read_unlock) 2504 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) 2505 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) 2506 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) 2507 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) 2508 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) 2509 BTF_ID_FLAGS(func, bpf_dynptr_adjust) 2510 BTF_ID_FLAGS(func, bpf_dynptr_is_null) 2511 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) 2512 BTF_ID_FLAGS(func, bpf_dynptr_size) 2513 BTF_ID_FLAGS(func, bpf_dynptr_clone) 2514 BTF_SET8_END(common_btf_ids) 2515 2516 static const struct btf_kfunc_id_set common_kfunc_set = { 2517 .owner = THIS_MODULE, 2518 .set = &common_btf_ids, 2519 }; 2520 2521 static int __init kfunc_init(void) 2522 { 2523 int ret; 2524 const struct btf_id_dtor_kfunc generic_dtors[] = { 2525 { 2526 .btf_id = generic_dtor_ids[0], 2527 .kfunc_btf_id = generic_dtor_ids[1] 2528 }, 2529 #ifdef CONFIG_CGROUPS 2530 { 2531 .btf_id = generic_dtor_ids[2], 2532 .kfunc_btf_id = generic_dtor_ids[3] 2533 }, 2534 #endif 2535 }; 2536 2537 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); 2538 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); 2539 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); 2540 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, 2541 ARRAY_SIZE(generic_dtors), 2542 THIS_MODULE); 2543 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 2544 } 2545 2546 late_initcall(kfunc_init); 2547