1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/cgroup.h> 8 #include <linux/rcupdate.h> 9 #include <linux/random.h> 10 #include <linux/smp.h> 11 #include <linux/topology.h> 12 #include <linux/ktime.h> 13 #include <linux/sched.h> 14 #include <linux/uidgid.h> 15 #include <linux/filter.h> 16 #include <linux/ctype.h> 17 #include <linux/jiffies.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/poison.h> 20 #include <linux/proc_ns.h> 21 #include <linux/sched/task.h> 22 #include <linux/security.h> 23 #include <linux/btf_ids.h> 24 #include <linux/bpf_mem_alloc.h> 25 26 #include "../../lib/kstrtox.h" 27 28 /* If kernel subsystem is allowing eBPF programs to call this function, 29 * inside its own verifier_ops->get_func_proto() callback it should return 30 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 31 * 32 * Different map implementations will rely on rcu in map methods 33 * lookup/update/delete, therefore eBPF programs must run under rcu lock 34 * if program is allowed to access maps, so check rcu_read_lock_held in 35 * all three functions. 36 */ 37 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 38 { 39 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 40 return (unsigned long) map->ops->map_lookup_elem(map, key); 41 } 42 43 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 44 .func = bpf_map_lookup_elem, 45 .gpl_only = false, 46 .pkt_access = true, 47 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 48 .arg1_type = ARG_CONST_MAP_PTR, 49 .arg2_type = ARG_PTR_TO_MAP_KEY, 50 }; 51 52 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 53 void *, value, u64, flags) 54 { 55 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 56 return map->ops->map_update_elem(map, key, value, flags); 57 } 58 59 const struct bpf_func_proto bpf_map_update_elem_proto = { 60 .func = bpf_map_update_elem, 61 .gpl_only = false, 62 .pkt_access = true, 63 .ret_type = RET_INTEGER, 64 .arg1_type = ARG_CONST_MAP_PTR, 65 .arg2_type = ARG_PTR_TO_MAP_KEY, 66 .arg3_type = ARG_PTR_TO_MAP_VALUE, 67 .arg4_type = ARG_ANYTHING, 68 }; 69 70 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 71 { 72 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 73 return map->ops->map_delete_elem(map, key); 74 } 75 76 const struct bpf_func_proto bpf_map_delete_elem_proto = { 77 .func = bpf_map_delete_elem, 78 .gpl_only = false, 79 .pkt_access = true, 80 .ret_type = RET_INTEGER, 81 .arg1_type = ARG_CONST_MAP_PTR, 82 .arg2_type = ARG_PTR_TO_MAP_KEY, 83 }; 84 85 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 86 { 87 return map->ops->map_push_elem(map, value, flags); 88 } 89 90 const struct bpf_func_proto bpf_map_push_elem_proto = { 91 .func = bpf_map_push_elem, 92 .gpl_only = false, 93 .pkt_access = true, 94 .ret_type = RET_INTEGER, 95 .arg1_type = ARG_CONST_MAP_PTR, 96 .arg2_type = ARG_PTR_TO_MAP_VALUE, 97 .arg3_type = ARG_ANYTHING, 98 }; 99 100 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 101 { 102 return map->ops->map_pop_elem(map, value); 103 } 104 105 const struct bpf_func_proto bpf_map_pop_elem_proto = { 106 .func = bpf_map_pop_elem, 107 .gpl_only = false, 108 .ret_type = RET_INTEGER, 109 .arg1_type = ARG_CONST_MAP_PTR, 110 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 111 }; 112 113 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 114 { 115 return map->ops->map_peek_elem(map, value); 116 } 117 118 const struct bpf_func_proto bpf_map_peek_elem_proto = { 119 .func = bpf_map_peek_elem, 120 .gpl_only = false, 121 .ret_type = RET_INTEGER, 122 .arg1_type = ARG_CONST_MAP_PTR, 123 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 124 }; 125 126 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 127 { 128 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 129 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 130 } 131 132 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 133 .func = bpf_map_lookup_percpu_elem, 134 .gpl_only = false, 135 .pkt_access = true, 136 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 137 .arg1_type = ARG_CONST_MAP_PTR, 138 .arg2_type = ARG_PTR_TO_MAP_KEY, 139 .arg3_type = ARG_ANYTHING, 140 }; 141 142 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 143 .func = bpf_user_rnd_u32, 144 .gpl_only = false, 145 .ret_type = RET_INTEGER, 146 }; 147 148 BPF_CALL_0(bpf_get_smp_processor_id) 149 { 150 return smp_processor_id(); 151 } 152 153 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 154 .func = bpf_get_smp_processor_id, 155 .gpl_only = false, 156 .ret_type = RET_INTEGER, 157 }; 158 159 BPF_CALL_0(bpf_get_numa_node_id) 160 { 161 return numa_node_id(); 162 } 163 164 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 165 .func = bpf_get_numa_node_id, 166 .gpl_only = false, 167 .ret_type = RET_INTEGER, 168 }; 169 170 BPF_CALL_0(bpf_ktime_get_ns) 171 { 172 /* NMI safe access to clock monotonic */ 173 return ktime_get_mono_fast_ns(); 174 } 175 176 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 177 .func = bpf_ktime_get_ns, 178 .gpl_only = false, 179 .ret_type = RET_INTEGER, 180 }; 181 182 BPF_CALL_0(bpf_ktime_get_boot_ns) 183 { 184 /* NMI safe access to clock boottime */ 185 return ktime_get_boot_fast_ns(); 186 } 187 188 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 189 .func = bpf_ktime_get_boot_ns, 190 .gpl_only = false, 191 .ret_type = RET_INTEGER, 192 }; 193 194 BPF_CALL_0(bpf_ktime_get_coarse_ns) 195 { 196 return ktime_get_coarse_ns(); 197 } 198 199 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 200 .func = bpf_ktime_get_coarse_ns, 201 .gpl_only = false, 202 .ret_type = RET_INTEGER, 203 }; 204 205 BPF_CALL_0(bpf_ktime_get_tai_ns) 206 { 207 /* NMI safe access to clock tai */ 208 return ktime_get_tai_fast_ns(); 209 } 210 211 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 212 .func = bpf_ktime_get_tai_ns, 213 .gpl_only = false, 214 .ret_type = RET_INTEGER, 215 }; 216 217 BPF_CALL_0(bpf_get_current_pid_tgid) 218 { 219 struct task_struct *task = current; 220 221 if (unlikely(!task)) 222 return -EINVAL; 223 224 return (u64) task->tgid << 32 | task->pid; 225 } 226 227 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 228 .func = bpf_get_current_pid_tgid, 229 .gpl_only = false, 230 .ret_type = RET_INTEGER, 231 }; 232 233 BPF_CALL_0(bpf_get_current_uid_gid) 234 { 235 struct task_struct *task = current; 236 kuid_t uid; 237 kgid_t gid; 238 239 if (unlikely(!task)) 240 return -EINVAL; 241 242 current_uid_gid(&uid, &gid); 243 return (u64) from_kgid(&init_user_ns, gid) << 32 | 244 from_kuid(&init_user_ns, uid); 245 } 246 247 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 248 .func = bpf_get_current_uid_gid, 249 .gpl_only = false, 250 .ret_type = RET_INTEGER, 251 }; 252 253 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 254 { 255 struct task_struct *task = current; 256 257 if (unlikely(!task)) 258 goto err_clear; 259 260 /* Verifier guarantees that size > 0 */ 261 strscpy_pad(buf, task->comm, size); 262 return 0; 263 err_clear: 264 memset(buf, 0, size); 265 return -EINVAL; 266 } 267 268 const struct bpf_func_proto bpf_get_current_comm_proto = { 269 .func = bpf_get_current_comm, 270 .gpl_only = false, 271 .ret_type = RET_INTEGER, 272 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 273 .arg2_type = ARG_CONST_SIZE, 274 }; 275 276 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 277 278 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 279 { 280 arch_spinlock_t *l = (void *)lock; 281 union { 282 __u32 val; 283 arch_spinlock_t lock; 284 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 285 286 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 287 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 288 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 289 arch_spin_lock(l); 290 } 291 292 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 293 { 294 arch_spinlock_t *l = (void *)lock; 295 296 arch_spin_unlock(l); 297 } 298 299 #else 300 301 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 302 { 303 atomic_t *l = (void *)lock; 304 305 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 306 do { 307 atomic_cond_read_relaxed(l, !VAL); 308 } while (atomic_xchg(l, 1)); 309 } 310 311 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 312 { 313 atomic_t *l = (void *)lock; 314 315 atomic_set_release(l, 0); 316 } 317 318 #endif 319 320 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 321 322 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 323 { 324 unsigned long flags; 325 326 local_irq_save(flags); 327 __bpf_spin_lock(lock); 328 __this_cpu_write(irqsave_flags, flags); 329 } 330 331 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 332 { 333 __bpf_spin_lock_irqsave(lock); 334 return 0; 335 } 336 337 const struct bpf_func_proto bpf_spin_lock_proto = { 338 .func = bpf_spin_lock, 339 .gpl_only = false, 340 .ret_type = RET_VOID, 341 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 342 .arg1_btf_id = BPF_PTR_POISON, 343 }; 344 345 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 346 { 347 unsigned long flags; 348 349 flags = __this_cpu_read(irqsave_flags); 350 __bpf_spin_unlock(lock); 351 local_irq_restore(flags); 352 } 353 354 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 355 { 356 __bpf_spin_unlock_irqrestore(lock); 357 return 0; 358 } 359 360 const struct bpf_func_proto bpf_spin_unlock_proto = { 361 .func = bpf_spin_unlock, 362 .gpl_only = false, 363 .ret_type = RET_VOID, 364 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 365 .arg1_btf_id = BPF_PTR_POISON, 366 }; 367 368 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 369 bool lock_src) 370 { 371 struct bpf_spin_lock *lock; 372 373 if (lock_src) 374 lock = src + map->record->spin_lock_off; 375 else 376 lock = dst + map->record->spin_lock_off; 377 preempt_disable(); 378 __bpf_spin_lock_irqsave(lock); 379 copy_map_value(map, dst, src); 380 __bpf_spin_unlock_irqrestore(lock); 381 preempt_enable(); 382 } 383 384 BPF_CALL_0(bpf_jiffies64) 385 { 386 return get_jiffies_64(); 387 } 388 389 const struct bpf_func_proto bpf_jiffies64_proto = { 390 .func = bpf_jiffies64, 391 .gpl_only = false, 392 .ret_type = RET_INTEGER, 393 }; 394 395 #ifdef CONFIG_CGROUPS 396 BPF_CALL_0(bpf_get_current_cgroup_id) 397 { 398 struct cgroup *cgrp; 399 u64 cgrp_id; 400 401 rcu_read_lock(); 402 cgrp = task_dfl_cgroup(current); 403 cgrp_id = cgroup_id(cgrp); 404 rcu_read_unlock(); 405 406 return cgrp_id; 407 } 408 409 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 410 .func = bpf_get_current_cgroup_id, 411 .gpl_only = false, 412 .ret_type = RET_INTEGER, 413 }; 414 415 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 416 { 417 struct cgroup *cgrp; 418 struct cgroup *ancestor; 419 u64 cgrp_id; 420 421 rcu_read_lock(); 422 cgrp = task_dfl_cgroup(current); 423 ancestor = cgroup_ancestor(cgrp, ancestor_level); 424 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 425 rcu_read_unlock(); 426 427 return cgrp_id; 428 } 429 430 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 431 .func = bpf_get_current_ancestor_cgroup_id, 432 .gpl_only = false, 433 .ret_type = RET_INTEGER, 434 .arg1_type = ARG_ANYTHING, 435 }; 436 #endif /* CONFIG_CGROUPS */ 437 438 #define BPF_STRTOX_BASE_MASK 0x1F 439 440 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 441 unsigned long long *res, bool *is_negative) 442 { 443 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 444 const char *cur_buf = buf; 445 size_t cur_len = buf_len; 446 unsigned int consumed; 447 size_t val_len; 448 char str[64]; 449 450 if (!buf || !buf_len || !res || !is_negative) 451 return -EINVAL; 452 453 if (base != 0 && base != 8 && base != 10 && base != 16) 454 return -EINVAL; 455 456 if (flags & ~BPF_STRTOX_BASE_MASK) 457 return -EINVAL; 458 459 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 460 ++cur_buf; 461 462 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 463 if (*is_negative) 464 ++cur_buf; 465 466 consumed = cur_buf - buf; 467 cur_len -= consumed; 468 if (!cur_len) 469 return -EINVAL; 470 471 cur_len = min(cur_len, sizeof(str) - 1); 472 memcpy(str, cur_buf, cur_len); 473 str[cur_len] = '\0'; 474 cur_buf = str; 475 476 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 477 val_len = _parse_integer(cur_buf, base, res); 478 479 if (val_len & KSTRTOX_OVERFLOW) 480 return -ERANGE; 481 482 if (val_len == 0) 483 return -EINVAL; 484 485 cur_buf += val_len; 486 consumed += cur_buf - str; 487 488 return consumed; 489 } 490 491 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 492 long long *res) 493 { 494 unsigned long long _res; 495 bool is_negative; 496 int err; 497 498 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 499 if (err < 0) 500 return err; 501 if (is_negative) { 502 if ((long long)-_res > 0) 503 return -ERANGE; 504 *res = -_res; 505 } else { 506 if ((long long)_res < 0) 507 return -ERANGE; 508 *res = _res; 509 } 510 return err; 511 } 512 513 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 514 long *, res) 515 { 516 long long _res; 517 int err; 518 519 err = __bpf_strtoll(buf, buf_len, flags, &_res); 520 if (err < 0) 521 return err; 522 if (_res != (long)_res) 523 return -ERANGE; 524 *res = _res; 525 return err; 526 } 527 528 const struct bpf_func_proto bpf_strtol_proto = { 529 .func = bpf_strtol, 530 .gpl_only = false, 531 .ret_type = RET_INTEGER, 532 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 533 .arg2_type = ARG_CONST_SIZE, 534 .arg3_type = ARG_ANYTHING, 535 .arg4_type = ARG_PTR_TO_LONG, 536 }; 537 538 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 539 unsigned long *, res) 540 { 541 unsigned long long _res; 542 bool is_negative; 543 int err; 544 545 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 546 if (err < 0) 547 return err; 548 if (is_negative) 549 return -EINVAL; 550 if (_res != (unsigned long)_res) 551 return -ERANGE; 552 *res = _res; 553 return err; 554 } 555 556 const struct bpf_func_proto bpf_strtoul_proto = { 557 .func = bpf_strtoul, 558 .gpl_only = false, 559 .ret_type = RET_INTEGER, 560 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 561 .arg2_type = ARG_CONST_SIZE, 562 .arg3_type = ARG_ANYTHING, 563 .arg4_type = ARG_PTR_TO_LONG, 564 }; 565 566 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 567 { 568 return strncmp(s1, s2, s1_sz); 569 } 570 571 static const struct bpf_func_proto bpf_strncmp_proto = { 572 .func = bpf_strncmp, 573 .gpl_only = false, 574 .ret_type = RET_INTEGER, 575 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 576 .arg2_type = ARG_CONST_SIZE, 577 .arg3_type = ARG_PTR_TO_CONST_STR, 578 }; 579 580 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 581 struct bpf_pidns_info *, nsdata, u32, size) 582 { 583 struct task_struct *task = current; 584 struct pid_namespace *pidns; 585 int err = -EINVAL; 586 587 if (unlikely(size != sizeof(struct bpf_pidns_info))) 588 goto clear; 589 590 if (unlikely((u64)(dev_t)dev != dev)) 591 goto clear; 592 593 if (unlikely(!task)) 594 goto clear; 595 596 pidns = task_active_pid_ns(task); 597 if (unlikely(!pidns)) { 598 err = -ENOENT; 599 goto clear; 600 } 601 602 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 603 goto clear; 604 605 nsdata->pid = task_pid_nr_ns(task, pidns); 606 nsdata->tgid = task_tgid_nr_ns(task, pidns); 607 return 0; 608 clear: 609 memset((void *)nsdata, 0, (size_t) size); 610 return err; 611 } 612 613 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 614 .func = bpf_get_ns_current_pid_tgid, 615 .gpl_only = false, 616 .ret_type = RET_INTEGER, 617 .arg1_type = ARG_ANYTHING, 618 .arg2_type = ARG_ANYTHING, 619 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 620 .arg4_type = ARG_CONST_SIZE, 621 }; 622 623 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 624 .func = bpf_get_raw_cpu_id, 625 .gpl_only = false, 626 .ret_type = RET_INTEGER, 627 }; 628 629 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 630 u64, flags, void *, data, u64, size) 631 { 632 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 633 return -EINVAL; 634 635 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 636 } 637 638 const struct bpf_func_proto bpf_event_output_data_proto = { 639 .func = bpf_event_output_data, 640 .gpl_only = true, 641 .ret_type = RET_INTEGER, 642 .arg1_type = ARG_PTR_TO_CTX, 643 .arg2_type = ARG_CONST_MAP_PTR, 644 .arg3_type = ARG_ANYTHING, 645 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 646 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 647 }; 648 649 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 650 const void __user *, user_ptr) 651 { 652 int ret = copy_from_user(dst, user_ptr, size); 653 654 if (unlikely(ret)) { 655 memset(dst, 0, size); 656 ret = -EFAULT; 657 } 658 659 return ret; 660 } 661 662 const struct bpf_func_proto bpf_copy_from_user_proto = { 663 .func = bpf_copy_from_user, 664 .gpl_only = false, 665 .might_sleep = true, 666 .ret_type = RET_INTEGER, 667 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 668 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 669 .arg3_type = ARG_ANYTHING, 670 }; 671 672 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 673 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 674 { 675 int ret; 676 677 /* flags is not used yet */ 678 if (unlikely(flags)) 679 return -EINVAL; 680 681 if (unlikely(!size)) 682 return 0; 683 684 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 685 if (ret == size) 686 return 0; 687 688 memset(dst, 0, size); 689 /* Return -EFAULT for partial read */ 690 return ret < 0 ? ret : -EFAULT; 691 } 692 693 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 694 .func = bpf_copy_from_user_task, 695 .gpl_only = true, 696 .might_sleep = true, 697 .ret_type = RET_INTEGER, 698 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 699 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 700 .arg3_type = ARG_ANYTHING, 701 .arg4_type = ARG_PTR_TO_BTF_ID, 702 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 703 .arg5_type = ARG_ANYTHING 704 }; 705 706 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 707 { 708 if (cpu >= nr_cpu_ids) 709 return (unsigned long)NULL; 710 711 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 712 } 713 714 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 715 .func = bpf_per_cpu_ptr, 716 .gpl_only = false, 717 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 718 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 719 .arg2_type = ARG_ANYTHING, 720 }; 721 722 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 723 { 724 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 725 } 726 727 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 728 .func = bpf_this_cpu_ptr, 729 .gpl_only = false, 730 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 731 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 732 }; 733 734 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 735 size_t bufsz) 736 { 737 void __user *user_ptr = (__force void __user *)unsafe_ptr; 738 739 buf[0] = 0; 740 741 switch (fmt_ptype) { 742 case 's': 743 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 744 if ((unsigned long)unsafe_ptr < TASK_SIZE) 745 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 746 fallthrough; 747 #endif 748 case 'k': 749 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 750 case 'u': 751 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 752 } 753 754 return -EINVAL; 755 } 756 757 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 758 * arguments representation. 759 */ 760 #define MAX_BPRINTF_BIN_ARGS 512 761 762 /* Support executing three nested bprintf helper calls on a given CPU */ 763 #define MAX_BPRINTF_NEST_LEVEL 3 764 struct bpf_bprintf_buffers { 765 char bin_args[MAX_BPRINTF_BIN_ARGS]; 766 char buf[MAX_BPRINTF_BUF]; 767 }; 768 769 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); 770 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 771 772 static int try_get_buffers(struct bpf_bprintf_buffers **bufs) 773 { 774 int nest_level; 775 776 preempt_disable(); 777 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 778 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 779 this_cpu_dec(bpf_bprintf_nest_level); 780 preempt_enable(); 781 return -EBUSY; 782 } 783 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); 784 785 return 0; 786 } 787 788 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) 789 { 790 if (!data->bin_args && !data->buf) 791 return; 792 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) 793 return; 794 this_cpu_dec(bpf_bprintf_nest_level); 795 preempt_enable(); 796 } 797 798 /* 799 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 800 * 801 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 802 * 803 * This can be used in two ways: 804 * - Format string verification only: when data->get_bin_args is false 805 * - Arguments preparation: in addition to the above verification, it writes in 806 * data->bin_args a binary representation of arguments usable by bstr_printf 807 * where pointers from BPF have been sanitized. 808 * 809 * In argument preparation mode, if 0 is returned, safe temporary buffers are 810 * allocated and bpf_bprintf_cleanup should be called to free them after use. 811 */ 812 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 813 u32 num_args, struct bpf_bprintf_data *data) 814 { 815 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; 816 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 817 struct bpf_bprintf_buffers *buffers = NULL; 818 size_t sizeof_cur_arg, sizeof_cur_ip; 819 int err, i, num_spec = 0; 820 u64 cur_arg; 821 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 822 823 fmt_end = strnchr(fmt, fmt_size, 0); 824 if (!fmt_end) 825 return -EINVAL; 826 fmt_size = fmt_end - fmt; 827 828 if (get_buffers && try_get_buffers(&buffers)) 829 return -EBUSY; 830 831 if (data->get_bin_args) { 832 if (num_args) 833 tmp_buf = buffers->bin_args; 834 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; 835 data->bin_args = (u32 *)tmp_buf; 836 } 837 838 if (data->get_buf) 839 data->buf = buffers->buf; 840 841 for (i = 0; i < fmt_size; i++) { 842 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 843 err = -EINVAL; 844 goto out; 845 } 846 847 if (fmt[i] != '%') 848 continue; 849 850 if (fmt[i + 1] == '%') { 851 i++; 852 continue; 853 } 854 855 if (num_spec >= num_args) { 856 err = -EINVAL; 857 goto out; 858 } 859 860 /* The string is zero-terminated so if fmt[i] != 0, we can 861 * always access fmt[i + 1], in the worst case it will be a 0 862 */ 863 i++; 864 865 /* skip optional "[0 +-][num]" width formatting field */ 866 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 867 fmt[i] == ' ') 868 i++; 869 if (fmt[i] >= '1' && fmt[i] <= '9') { 870 i++; 871 while (fmt[i] >= '0' && fmt[i] <= '9') 872 i++; 873 } 874 875 if (fmt[i] == 'p') { 876 sizeof_cur_arg = sizeof(long); 877 878 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 879 fmt[i + 2] == 's') { 880 fmt_ptype = fmt[i + 1]; 881 i += 2; 882 goto fmt_str; 883 } 884 885 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 886 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 887 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 888 fmt[i + 1] == 'S') { 889 /* just kernel pointers */ 890 if (tmp_buf) 891 cur_arg = raw_args[num_spec]; 892 i++; 893 goto nocopy_fmt; 894 } 895 896 if (fmt[i + 1] == 'B') { 897 if (tmp_buf) { 898 err = snprintf(tmp_buf, 899 (tmp_buf_end - tmp_buf), 900 "%pB", 901 (void *)(long)raw_args[num_spec]); 902 tmp_buf += (err + 1); 903 } 904 905 i++; 906 num_spec++; 907 continue; 908 } 909 910 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 911 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 912 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 913 err = -EINVAL; 914 goto out; 915 } 916 917 i += 2; 918 if (!tmp_buf) 919 goto nocopy_fmt; 920 921 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 922 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 923 err = -ENOSPC; 924 goto out; 925 } 926 927 unsafe_ptr = (char *)(long)raw_args[num_spec]; 928 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 929 sizeof_cur_ip); 930 if (err < 0) 931 memset(cur_ip, 0, sizeof_cur_ip); 932 933 /* hack: bstr_printf expects IP addresses to be 934 * pre-formatted as strings, ironically, the easiest way 935 * to do that is to call snprintf. 936 */ 937 ip_spec[2] = fmt[i - 1]; 938 ip_spec[3] = fmt[i]; 939 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 940 ip_spec, &cur_ip); 941 942 tmp_buf += err + 1; 943 num_spec++; 944 945 continue; 946 } else if (fmt[i] == 's') { 947 fmt_ptype = fmt[i]; 948 fmt_str: 949 if (fmt[i + 1] != 0 && 950 !isspace(fmt[i + 1]) && 951 !ispunct(fmt[i + 1])) { 952 err = -EINVAL; 953 goto out; 954 } 955 956 if (!tmp_buf) 957 goto nocopy_fmt; 958 959 if (tmp_buf_end == tmp_buf) { 960 err = -ENOSPC; 961 goto out; 962 } 963 964 unsafe_ptr = (char *)(long)raw_args[num_spec]; 965 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 966 fmt_ptype, 967 tmp_buf_end - tmp_buf); 968 if (err < 0) { 969 tmp_buf[0] = '\0'; 970 err = 1; 971 } 972 973 tmp_buf += err; 974 num_spec++; 975 976 continue; 977 } else if (fmt[i] == 'c') { 978 if (!tmp_buf) 979 goto nocopy_fmt; 980 981 if (tmp_buf_end == tmp_buf) { 982 err = -ENOSPC; 983 goto out; 984 } 985 986 *tmp_buf = raw_args[num_spec]; 987 tmp_buf++; 988 num_spec++; 989 990 continue; 991 } 992 993 sizeof_cur_arg = sizeof(int); 994 995 if (fmt[i] == 'l') { 996 sizeof_cur_arg = sizeof(long); 997 i++; 998 } 999 if (fmt[i] == 'l') { 1000 sizeof_cur_arg = sizeof(long long); 1001 i++; 1002 } 1003 1004 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1005 fmt[i] != 'x' && fmt[i] != 'X') { 1006 err = -EINVAL; 1007 goto out; 1008 } 1009 1010 if (tmp_buf) 1011 cur_arg = raw_args[num_spec]; 1012 nocopy_fmt: 1013 if (tmp_buf) { 1014 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1015 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1016 err = -ENOSPC; 1017 goto out; 1018 } 1019 1020 if (sizeof_cur_arg == 8) { 1021 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1022 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1023 } else { 1024 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1025 } 1026 tmp_buf += sizeof_cur_arg; 1027 } 1028 num_spec++; 1029 } 1030 1031 err = 0; 1032 out: 1033 if (err) 1034 bpf_bprintf_cleanup(data); 1035 return err; 1036 } 1037 1038 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1039 const void *, args, u32, data_len) 1040 { 1041 struct bpf_bprintf_data data = { 1042 .get_bin_args = true, 1043 }; 1044 int err, num_args; 1045 1046 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1047 (data_len && !args)) 1048 return -EINVAL; 1049 num_args = data_len / 8; 1050 1051 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1052 * can safely give an unbounded size. 1053 */ 1054 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); 1055 if (err < 0) 1056 return err; 1057 1058 err = bstr_printf(str, str_size, fmt, data.bin_args); 1059 1060 bpf_bprintf_cleanup(&data); 1061 1062 return err + 1; 1063 } 1064 1065 const struct bpf_func_proto bpf_snprintf_proto = { 1066 .func = bpf_snprintf, 1067 .gpl_only = true, 1068 .ret_type = RET_INTEGER, 1069 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1070 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1071 .arg3_type = ARG_PTR_TO_CONST_STR, 1072 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1073 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1074 }; 1075 1076 /* BPF map elements can contain 'struct bpf_timer'. 1077 * Such map owns all of its BPF timers. 1078 * 'struct bpf_timer' is allocated as part of map element allocation 1079 * and it's zero initialized. 1080 * That space is used to keep 'struct bpf_timer_kern'. 1081 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1082 * remembers 'struct bpf_map *' pointer it's part of. 1083 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1084 * bpf_timer_start() arms the timer. 1085 * If user space reference to a map goes to zero at this point 1086 * ops->map_release_uref callback is responsible for cancelling the timers, 1087 * freeing their memory, and decrementing prog's refcnts. 1088 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1089 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1090 * freeing the timers when inner map is replaced or deleted by user space. 1091 */ 1092 struct bpf_hrtimer { 1093 struct hrtimer timer; 1094 struct bpf_map *map; 1095 struct bpf_prog *prog; 1096 void __rcu *callback_fn; 1097 void *value; 1098 }; 1099 1100 /* the actual struct hidden inside uapi struct bpf_timer */ 1101 struct bpf_timer_kern { 1102 struct bpf_hrtimer *timer; 1103 /* bpf_spin_lock is used here instead of spinlock_t to make 1104 * sure that it always fits into space reserved by struct bpf_timer 1105 * regardless of LOCKDEP and spinlock debug flags. 1106 */ 1107 struct bpf_spin_lock lock; 1108 } __attribute__((aligned(8))); 1109 1110 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1111 1112 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1113 { 1114 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1115 struct bpf_map *map = t->map; 1116 void *value = t->value; 1117 bpf_callback_t callback_fn; 1118 void *key; 1119 u32 idx; 1120 1121 BTF_TYPE_EMIT(struct bpf_timer); 1122 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1123 if (!callback_fn) 1124 goto out; 1125 1126 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1127 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1128 * Remember the timer this callback is servicing to prevent 1129 * deadlock if callback_fn() calls bpf_timer_cancel() or 1130 * bpf_map_delete_elem() on the same timer. 1131 */ 1132 this_cpu_write(hrtimer_running, t); 1133 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1134 struct bpf_array *array = container_of(map, struct bpf_array, map); 1135 1136 /* compute the key */ 1137 idx = ((char *)value - array->value) / array->elem_size; 1138 key = &idx; 1139 } else { /* hash or lru */ 1140 key = value - round_up(map->key_size, 8); 1141 } 1142 1143 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1144 /* The verifier checked that return value is zero. */ 1145 1146 this_cpu_write(hrtimer_running, NULL); 1147 out: 1148 return HRTIMER_NORESTART; 1149 } 1150 1151 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1152 u64, flags) 1153 { 1154 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1155 struct bpf_hrtimer *t; 1156 int ret = 0; 1157 1158 BUILD_BUG_ON(MAX_CLOCKS != 16); 1159 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1160 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1161 1162 if (in_nmi()) 1163 return -EOPNOTSUPP; 1164 1165 if (flags >= MAX_CLOCKS || 1166 /* similar to timerfd except _ALARM variants are not supported */ 1167 (clockid != CLOCK_MONOTONIC && 1168 clockid != CLOCK_REALTIME && 1169 clockid != CLOCK_BOOTTIME)) 1170 return -EINVAL; 1171 __bpf_spin_lock_irqsave(&timer->lock); 1172 t = timer->timer; 1173 if (t) { 1174 ret = -EBUSY; 1175 goto out; 1176 } 1177 if (!atomic64_read(&map->usercnt)) { 1178 /* maps with timers must be either held by user space 1179 * or pinned in bpffs. 1180 */ 1181 ret = -EPERM; 1182 goto out; 1183 } 1184 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1185 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1186 if (!t) { 1187 ret = -ENOMEM; 1188 goto out; 1189 } 1190 t->value = (void *)timer - map->record->timer_off; 1191 t->map = map; 1192 t->prog = NULL; 1193 rcu_assign_pointer(t->callback_fn, NULL); 1194 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1195 t->timer.function = bpf_timer_cb; 1196 timer->timer = t; 1197 out: 1198 __bpf_spin_unlock_irqrestore(&timer->lock); 1199 return ret; 1200 } 1201 1202 static const struct bpf_func_proto bpf_timer_init_proto = { 1203 .func = bpf_timer_init, 1204 .gpl_only = true, 1205 .ret_type = RET_INTEGER, 1206 .arg1_type = ARG_PTR_TO_TIMER, 1207 .arg2_type = ARG_CONST_MAP_PTR, 1208 .arg3_type = ARG_ANYTHING, 1209 }; 1210 1211 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1212 struct bpf_prog_aux *, aux) 1213 { 1214 struct bpf_prog *prev, *prog = aux->prog; 1215 struct bpf_hrtimer *t; 1216 int ret = 0; 1217 1218 if (in_nmi()) 1219 return -EOPNOTSUPP; 1220 __bpf_spin_lock_irqsave(&timer->lock); 1221 t = timer->timer; 1222 if (!t) { 1223 ret = -EINVAL; 1224 goto out; 1225 } 1226 if (!atomic64_read(&t->map->usercnt)) { 1227 /* maps with timers must be either held by user space 1228 * or pinned in bpffs. Otherwise timer might still be 1229 * running even when bpf prog is detached and user space 1230 * is gone, since map_release_uref won't ever be called. 1231 */ 1232 ret = -EPERM; 1233 goto out; 1234 } 1235 prev = t->prog; 1236 if (prev != prog) { 1237 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1238 * can pick different callback_fn-s within the same prog. 1239 */ 1240 prog = bpf_prog_inc_not_zero(prog); 1241 if (IS_ERR(prog)) { 1242 ret = PTR_ERR(prog); 1243 goto out; 1244 } 1245 if (prev) 1246 /* Drop prev prog refcnt when swapping with new prog */ 1247 bpf_prog_put(prev); 1248 t->prog = prog; 1249 } 1250 rcu_assign_pointer(t->callback_fn, callback_fn); 1251 out: 1252 __bpf_spin_unlock_irqrestore(&timer->lock); 1253 return ret; 1254 } 1255 1256 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1257 .func = bpf_timer_set_callback, 1258 .gpl_only = true, 1259 .ret_type = RET_INTEGER, 1260 .arg1_type = ARG_PTR_TO_TIMER, 1261 .arg2_type = ARG_PTR_TO_FUNC, 1262 }; 1263 1264 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1265 { 1266 struct bpf_hrtimer *t; 1267 int ret = 0; 1268 enum hrtimer_mode mode; 1269 1270 if (in_nmi()) 1271 return -EOPNOTSUPP; 1272 if (flags > BPF_F_TIMER_ABS) 1273 return -EINVAL; 1274 __bpf_spin_lock_irqsave(&timer->lock); 1275 t = timer->timer; 1276 if (!t || !t->prog) { 1277 ret = -EINVAL; 1278 goto out; 1279 } 1280 1281 if (flags & BPF_F_TIMER_ABS) 1282 mode = HRTIMER_MODE_ABS_SOFT; 1283 else 1284 mode = HRTIMER_MODE_REL_SOFT; 1285 1286 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); 1287 out: 1288 __bpf_spin_unlock_irqrestore(&timer->lock); 1289 return ret; 1290 } 1291 1292 static const struct bpf_func_proto bpf_timer_start_proto = { 1293 .func = bpf_timer_start, 1294 .gpl_only = true, 1295 .ret_type = RET_INTEGER, 1296 .arg1_type = ARG_PTR_TO_TIMER, 1297 .arg2_type = ARG_ANYTHING, 1298 .arg3_type = ARG_ANYTHING, 1299 }; 1300 1301 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1302 { 1303 struct bpf_prog *prog = t->prog; 1304 1305 if (prog) { 1306 bpf_prog_put(prog); 1307 t->prog = NULL; 1308 rcu_assign_pointer(t->callback_fn, NULL); 1309 } 1310 } 1311 1312 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1313 { 1314 struct bpf_hrtimer *t; 1315 int ret = 0; 1316 1317 if (in_nmi()) 1318 return -EOPNOTSUPP; 1319 __bpf_spin_lock_irqsave(&timer->lock); 1320 t = timer->timer; 1321 if (!t) { 1322 ret = -EINVAL; 1323 goto out; 1324 } 1325 if (this_cpu_read(hrtimer_running) == t) { 1326 /* If bpf callback_fn is trying to bpf_timer_cancel() 1327 * its own timer the hrtimer_cancel() will deadlock 1328 * since it waits for callback_fn to finish 1329 */ 1330 ret = -EDEADLK; 1331 goto out; 1332 } 1333 drop_prog_refcnt(t); 1334 out: 1335 __bpf_spin_unlock_irqrestore(&timer->lock); 1336 /* Cancel the timer and wait for associated callback to finish 1337 * if it was running. 1338 */ 1339 ret = ret ?: hrtimer_cancel(&t->timer); 1340 return ret; 1341 } 1342 1343 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1344 .func = bpf_timer_cancel, 1345 .gpl_only = true, 1346 .ret_type = RET_INTEGER, 1347 .arg1_type = ARG_PTR_TO_TIMER, 1348 }; 1349 1350 /* This function is called by map_delete/update_elem for individual element and 1351 * by ops->map_release_uref when the user space reference to a map reaches zero. 1352 */ 1353 void bpf_timer_cancel_and_free(void *val) 1354 { 1355 struct bpf_timer_kern *timer = val; 1356 struct bpf_hrtimer *t; 1357 1358 /* Performance optimization: read timer->timer without lock first. */ 1359 if (!READ_ONCE(timer->timer)) 1360 return; 1361 1362 __bpf_spin_lock_irqsave(&timer->lock); 1363 /* re-read it under lock */ 1364 t = timer->timer; 1365 if (!t) 1366 goto out; 1367 drop_prog_refcnt(t); 1368 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1369 * this timer, since it won't be initialized. 1370 */ 1371 timer->timer = NULL; 1372 out: 1373 __bpf_spin_unlock_irqrestore(&timer->lock); 1374 if (!t) 1375 return; 1376 /* Cancel the timer and wait for callback to complete if it was running. 1377 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1378 * right after for both preallocated and non-preallocated maps. 1379 * The timer->timer = NULL was already done and no code path can 1380 * see address 't' anymore. 1381 * 1382 * Check that bpf_map_delete/update_elem() wasn't called from timer 1383 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1384 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1385 * return -1). Though callback_fn is still running on this cpu it's 1386 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1387 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1388 * since timer->timer = NULL was already done. The timer will be 1389 * effectively cancelled because bpf_timer_cb() will return 1390 * HRTIMER_NORESTART. 1391 */ 1392 if (this_cpu_read(hrtimer_running) != t) 1393 hrtimer_cancel(&t->timer); 1394 kfree(t); 1395 } 1396 1397 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) 1398 { 1399 unsigned long *kptr = map_value; 1400 1401 return xchg(kptr, (unsigned long)ptr); 1402 } 1403 1404 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1405 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1406 * denote type that verifier will determine. 1407 */ 1408 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1409 .func = bpf_kptr_xchg, 1410 .gpl_only = false, 1411 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1412 .ret_btf_id = BPF_PTR_POISON, 1413 .arg1_type = ARG_PTR_TO_KPTR, 1414 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1415 .arg2_btf_id = BPF_PTR_POISON, 1416 }; 1417 1418 /* Since the upper 8 bits of dynptr->size is reserved, the 1419 * maximum supported size is 2^24 - 1. 1420 */ 1421 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1422 #define DYNPTR_TYPE_SHIFT 28 1423 #define DYNPTR_SIZE_MASK 0xFFFFFF 1424 #define DYNPTR_RDONLY_BIT BIT(31) 1425 1426 static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) 1427 { 1428 return ptr->size & DYNPTR_RDONLY_BIT; 1429 } 1430 1431 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 1432 { 1433 ptr->size |= DYNPTR_RDONLY_BIT; 1434 } 1435 1436 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1437 { 1438 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1439 } 1440 1441 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) 1442 { 1443 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; 1444 } 1445 1446 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 1447 { 1448 return ptr->size & DYNPTR_SIZE_MASK; 1449 } 1450 1451 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) 1452 { 1453 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; 1454 1455 ptr->size = new_size | metadata; 1456 } 1457 1458 int bpf_dynptr_check_size(u32 size) 1459 { 1460 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1461 } 1462 1463 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1464 enum bpf_dynptr_type type, u32 offset, u32 size) 1465 { 1466 ptr->data = data; 1467 ptr->offset = offset; 1468 ptr->size = size; 1469 bpf_dynptr_set_type(ptr, type); 1470 } 1471 1472 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1473 { 1474 memset(ptr, 0, sizeof(*ptr)); 1475 } 1476 1477 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1478 { 1479 u32 size = __bpf_dynptr_size(ptr); 1480 1481 if (len > size || offset > size - len) 1482 return -E2BIG; 1483 1484 return 0; 1485 } 1486 1487 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1488 { 1489 int err; 1490 1491 BTF_TYPE_EMIT(struct bpf_dynptr); 1492 1493 err = bpf_dynptr_check_size(size); 1494 if (err) 1495 goto error; 1496 1497 /* flags is currently unsupported */ 1498 if (flags) { 1499 err = -EINVAL; 1500 goto error; 1501 } 1502 1503 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1504 1505 return 0; 1506 1507 error: 1508 bpf_dynptr_set_null(ptr); 1509 return err; 1510 } 1511 1512 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1513 .func = bpf_dynptr_from_mem, 1514 .gpl_only = false, 1515 .ret_type = RET_INTEGER, 1516 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1517 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1518 .arg3_type = ARG_ANYTHING, 1519 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, 1520 }; 1521 1522 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, 1523 u32, offset, u64, flags) 1524 { 1525 enum bpf_dynptr_type type; 1526 int err; 1527 1528 if (!src->data || flags) 1529 return -EINVAL; 1530 1531 err = bpf_dynptr_check_off_len(src, offset, len); 1532 if (err) 1533 return err; 1534 1535 type = bpf_dynptr_get_type(src); 1536 1537 switch (type) { 1538 case BPF_DYNPTR_TYPE_LOCAL: 1539 case BPF_DYNPTR_TYPE_RINGBUF: 1540 /* Source and destination may possibly overlap, hence use memmove to 1541 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1542 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1543 */ 1544 memmove(dst, src->data + src->offset + offset, len); 1545 return 0; 1546 case BPF_DYNPTR_TYPE_SKB: 1547 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); 1548 case BPF_DYNPTR_TYPE_XDP: 1549 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); 1550 default: 1551 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); 1552 return -EFAULT; 1553 } 1554 } 1555 1556 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1557 .func = bpf_dynptr_read, 1558 .gpl_only = false, 1559 .ret_type = RET_INTEGER, 1560 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1561 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1562 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1563 .arg4_type = ARG_ANYTHING, 1564 .arg5_type = ARG_ANYTHING, 1565 }; 1566 1567 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1568 u32, len, u64, flags) 1569 { 1570 enum bpf_dynptr_type type; 1571 int err; 1572 1573 if (!dst->data || __bpf_dynptr_is_rdonly(dst)) 1574 return -EINVAL; 1575 1576 err = bpf_dynptr_check_off_len(dst, offset, len); 1577 if (err) 1578 return err; 1579 1580 type = bpf_dynptr_get_type(dst); 1581 1582 switch (type) { 1583 case BPF_DYNPTR_TYPE_LOCAL: 1584 case BPF_DYNPTR_TYPE_RINGBUF: 1585 if (flags) 1586 return -EINVAL; 1587 /* Source and destination may possibly overlap, hence use memmove to 1588 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1589 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1590 */ 1591 memmove(dst->data + dst->offset + offset, src, len); 1592 return 0; 1593 case BPF_DYNPTR_TYPE_SKB: 1594 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, 1595 flags); 1596 case BPF_DYNPTR_TYPE_XDP: 1597 if (flags) 1598 return -EINVAL; 1599 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); 1600 default: 1601 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); 1602 return -EFAULT; 1603 } 1604 } 1605 1606 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1607 .func = bpf_dynptr_write, 1608 .gpl_only = false, 1609 .ret_type = RET_INTEGER, 1610 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1611 .arg2_type = ARG_ANYTHING, 1612 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1613 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1614 .arg5_type = ARG_ANYTHING, 1615 }; 1616 1617 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1618 { 1619 enum bpf_dynptr_type type; 1620 int err; 1621 1622 if (!ptr->data) 1623 return 0; 1624 1625 err = bpf_dynptr_check_off_len(ptr, offset, len); 1626 if (err) 1627 return 0; 1628 1629 if (__bpf_dynptr_is_rdonly(ptr)) 1630 return 0; 1631 1632 type = bpf_dynptr_get_type(ptr); 1633 1634 switch (type) { 1635 case BPF_DYNPTR_TYPE_LOCAL: 1636 case BPF_DYNPTR_TYPE_RINGBUF: 1637 return (unsigned long)(ptr->data + ptr->offset + offset); 1638 case BPF_DYNPTR_TYPE_SKB: 1639 case BPF_DYNPTR_TYPE_XDP: 1640 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ 1641 return 0; 1642 default: 1643 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); 1644 return 0; 1645 } 1646 } 1647 1648 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1649 .func = bpf_dynptr_data, 1650 .gpl_only = false, 1651 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1652 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1653 .arg2_type = ARG_ANYTHING, 1654 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1655 }; 1656 1657 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1658 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1659 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1660 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1661 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1662 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1663 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1664 1665 const struct bpf_func_proto * 1666 bpf_base_func_proto(enum bpf_func_id func_id) 1667 { 1668 switch (func_id) { 1669 case BPF_FUNC_map_lookup_elem: 1670 return &bpf_map_lookup_elem_proto; 1671 case BPF_FUNC_map_update_elem: 1672 return &bpf_map_update_elem_proto; 1673 case BPF_FUNC_map_delete_elem: 1674 return &bpf_map_delete_elem_proto; 1675 case BPF_FUNC_map_push_elem: 1676 return &bpf_map_push_elem_proto; 1677 case BPF_FUNC_map_pop_elem: 1678 return &bpf_map_pop_elem_proto; 1679 case BPF_FUNC_map_peek_elem: 1680 return &bpf_map_peek_elem_proto; 1681 case BPF_FUNC_map_lookup_percpu_elem: 1682 return &bpf_map_lookup_percpu_elem_proto; 1683 case BPF_FUNC_get_prandom_u32: 1684 return &bpf_get_prandom_u32_proto; 1685 case BPF_FUNC_get_smp_processor_id: 1686 return &bpf_get_raw_smp_processor_id_proto; 1687 case BPF_FUNC_get_numa_node_id: 1688 return &bpf_get_numa_node_id_proto; 1689 case BPF_FUNC_tail_call: 1690 return &bpf_tail_call_proto; 1691 case BPF_FUNC_ktime_get_ns: 1692 return &bpf_ktime_get_ns_proto; 1693 case BPF_FUNC_ktime_get_boot_ns: 1694 return &bpf_ktime_get_boot_ns_proto; 1695 case BPF_FUNC_ktime_get_tai_ns: 1696 return &bpf_ktime_get_tai_ns_proto; 1697 case BPF_FUNC_ringbuf_output: 1698 return &bpf_ringbuf_output_proto; 1699 case BPF_FUNC_ringbuf_reserve: 1700 return &bpf_ringbuf_reserve_proto; 1701 case BPF_FUNC_ringbuf_submit: 1702 return &bpf_ringbuf_submit_proto; 1703 case BPF_FUNC_ringbuf_discard: 1704 return &bpf_ringbuf_discard_proto; 1705 case BPF_FUNC_ringbuf_query: 1706 return &bpf_ringbuf_query_proto; 1707 case BPF_FUNC_strncmp: 1708 return &bpf_strncmp_proto; 1709 case BPF_FUNC_strtol: 1710 return &bpf_strtol_proto; 1711 case BPF_FUNC_strtoul: 1712 return &bpf_strtoul_proto; 1713 default: 1714 break; 1715 } 1716 1717 if (!bpf_capable()) 1718 return NULL; 1719 1720 switch (func_id) { 1721 case BPF_FUNC_spin_lock: 1722 return &bpf_spin_lock_proto; 1723 case BPF_FUNC_spin_unlock: 1724 return &bpf_spin_unlock_proto; 1725 case BPF_FUNC_jiffies64: 1726 return &bpf_jiffies64_proto; 1727 case BPF_FUNC_per_cpu_ptr: 1728 return &bpf_per_cpu_ptr_proto; 1729 case BPF_FUNC_this_cpu_ptr: 1730 return &bpf_this_cpu_ptr_proto; 1731 case BPF_FUNC_timer_init: 1732 return &bpf_timer_init_proto; 1733 case BPF_FUNC_timer_set_callback: 1734 return &bpf_timer_set_callback_proto; 1735 case BPF_FUNC_timer_start: 1736 return &bpf_timer_start_proto; 1737 case BPF_FUNC_timer_cancel: 1738 return &bpf_timer_cancel_proto; 1739 case BPF_FUNC_kptr_xchg: 1740 return &bpf_kptr_xchg_proto; 1741 case BPF_FUNC_for_each_map_elem: 1742 return &bpf_for_each_map_elem_proto; 1743 case BPF_FUNC_loop: 1744 return &bpf_loop_proto; 1745 case BPF_FUNC_user_ringbuf_drain: 1746 return &bpf_user_ringbuf_drain_proto; 1747 case BPF_FUNC_ringbuf_reserve_dynptr: 1748 return &bpf_ringbuf_reserve_dynptr_proto; 1749 case BPF_FUNC_ringbuf_submit_dynptr: 1750 return &bpf_ringbuf_submit_dynptr_proto; 1751 case BPF_FUNC_ringbuf_discard_dynptr: 1752 return &bpf_ringbuf_discard_dynptr_proto; 1753 case BPF_FUNC_dynptr_from_mem: 1754 return &bpf_dynptr_from_mem_proto; 1755 case BPF_FUNC_dynptr_read: 1756 return &bpf_dynptr_read_proto; 1757 case BPF_FUNC_dynptr_write: 1758 return &bpf_dynptr_write_proto; 1759 case BPF_FUNC_dynptr_data: 1760 return &bpf_dynptr_data_proto; 1761 #ifdef CONFIG_CGROUPS 1762 case BPF_FUNC_cgrp_storage_get: 1763 return &bpf_cgrp_storage_get_proto; 1764 case BPF_FUNC_cgrp_storage_delete: 1765 return &bpf_cgrp_storage_delete_proto; 1766 case BPF_FUNC_get_current_cgroup_id: 1767 return &bpf_get_current_cgroup_id_proto; 1768 case BPF_FUNC_get_current_ancestor_cgroup_id: 1769 return &bpf_get_current_ancestor_cgroup_id_proto; 1770 #endif 1771 default: 1772 break; 1773 } 1774 1775 if (!perfmon_capable()) 1776 return NULL; 1777 1778 switch (func_id) { 1779 case BPF_FUNC_trace_printk: 1780 return bpf_get_trace_printk_proto(); 1781 case BPF_FUNC_get_current_task: 1782 return &bpf_get_current_task_proto; 1783 case BPF_FUNC_get_current_task_btf: 1784 return &bpf_get_current_task_btf_proto; 1785 case BPF_FUNC_probe_read_user: 1786 return &bpf_probe_read_user_proto; 1787 case BPF_FUNC_probe_read_kernel: 1788 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1789 NULL : &bpf_probe_read_kernel_proto; 1790 case BPF_FUNC_probe_read_user_str: 1791 return &bpf_probe_read_user_str_proto; 1792 case BPF_FUNC_probe_read_kernel_str: 1793 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1794 NULL : &bpf_probe_read_kernel_str_proto; 1795 case BPF_FUNC_snprintf_btf: 1796 return &bpf_snprintf_btf_proto; 1797 case BPF_FUNC_snprintf: 1798 return &bpf_snprintf_proto; 1799 case BPF_FUNC_task_pt_regs: 1800 return &bpf_task_pt_regs_proto; 1801 case BPF_FUNC_trace_vprintk: 1802 return bpf_get_trace_vprintk_proto(); 1803 default: 1804 return NULL; 1805 } 1806 } 1807 1808 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec); 1809 1810 void bpf_list_head_free(const struct btf_field *field, void *list_head, 1811 struct bpf_spin_lock *spin_lock) 1812 { 1813 struct list_head *head = list_head, *orig_head = list_head; 1814 1815 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); 1816 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); 1817 1818 /* Do the actual list draining outside the lock to not hold the lock for 1819 * too long, and also prevent deadlocks if tracing programs end up 1820 * executing on entry/exit of functions called inside the critical 1821 * section, and end up doing map ops that call bpf_list_head_free for 1822 * the same map value again. 1823 */ 1824 __bpf_spin_lock_irqsave(spin_lock); 1825 if (!head->next || list_empty(head)) 1826 goto unlock; 1827 head = head->next; 1828 unlock: 1829 INIT_LIST_HEAD(orig_head); 1830 __bpf_spin_unlock_irqrestore(spin_lock); 1831 1832 while (head != orig_head) { 1833 void *obj = head; 1834 1835 obj -= field->graph_root.node_offset; 1836 head = head->next; 1837 /* The contained type can also have resources, including a 1838 * bpf_list_head which needs to be freed. 1839 */ 1840 migrate_disable(); 1841 __bpf_obj_drop_impl(obj, field->graph_root.value_rec); 1842 migrate_enable(); 1843 } 1844 } 1845 1846 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are 1847 * 'rb_node *', so field name of rb_node within containing struct is not 1848 * needed. 1849 * 1850 * Since bpf_rb_tree's node type has a corresponding struct btf_field with 1851 * graph_root.node_offset, it's not necessary to know field name 1852 * or type of node struct 1853 */ 1854 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ 1855 for (pos = rb_first_postorder(root); \ 1856 pos && ({ n = rb_next_postorder(pos); 1; }); \ 1857 pos = n) 1858 1859 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 1860 struct bpf_spin_lock *spin_lock) 1861 { 1862 struct rb_root_cached orig_root, *root = rb_root; 1863 struct rb_node *pos, *n; 1864 void *obj; 1865 1866 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); 1867 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); 1868 1869 __bpf_spin_lock_irqsave(spin_lock); 1870 orig_root = *root; 1871 *root = RB_ROOT_CACHED; 1872 __bpf_spin_unlock_irqrestore(spin_lock); 1873 1874 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { 1875 obj = pos; 1876 obj -= field->graph_root.node_offset; 1877 1878 1879 migrate_disable(); 1880 __bpf_obj_drop_impl(obj, field->graph_root.value_rec); 1881 migrate_enable(); 1882 } 1883 } 1884 1885 __diag_push(); 1886 __diag_ignore_all("-Wmissing-prototypes", 1887 "Global functions as their definitions will be in vmlinux BTF"); 1888 1889 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) 1890 { 1891 struct btf_struct_meta *meta = meta__ign; 1892 u64 size = local_type_id__k; 1893 void *p; 1894 1895 p = bpf_mem_alloc(&bpf_global_ma, size); 1896 if (!p) 1897 return NULL; 1898 if (meta) 1899 bpf_obj_init(meta->record, p); 1900 return p; 1901 } 1902 1903 /* Must be called under migrate_disable(), as required by bpf_mem_free */ 1904 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec) 1905 { 1906 if (rec && rec->refcount_off >= 0 && 1907 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { 1908 /* Object is refcounted and refcount_dec didn't result in 0 1909 * refcount. Return without freeing the object 1910 */ 1911 return; 1912 } 1913 1914 if (rec) 1915 bpf_obj_free_fields(rec, p); 1916 bpf_mem_free(&bpf_global_ma, p); 1917 } 1918 1919 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) 1920 { 1921 struct btf_struct_meta *meta = meta__ign; 1922 void *p = p__alloc; 1923 1924 __bpf_obj_drop_impl(p, meta ? meta->record : NULL); 1925 } 1926 1927 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) 1928 { 1929 struct btf_struct_meta *meta = meta__ign; 1930 struct bpf_refcount *ref; 1931 1932 /* Could just cast directly to refcount_t *, but need some code using 1933 * bpf_refcount type so that it is emitted in vmlinux BTF 1934 */ 1935 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); 1936 if (!refcount_inc_not_zero((refcount_t *)ref)) 1937 return NULL; 1938 1939 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null 1940 * in verifier.c 1941 */ 1942 return (void *)p__refcounted_kptr; 1943 } 1944 1945 static int __bpf_list_add(struct bpf_list_node *node, struct bpf_list_head *head, 1946 bool tail, struct btf_record *rec, u64 off) 1947 { 1948 struct list_head *n = (void *)node, *h = (void *)head; 1949 1950 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 1951 * called on its fields, so init here 1952 */ 1953 if (unlikely(!h->next)) 1954 INIT_LIST_HEAD(h); 1955 if (!list_empty(n)) { 1956 /* Only called from BPF prog, no need to migrate_disable */ 1957 __bpf_obj_drop_impl((void *)n - off, rec); 1958 return -EINVAL; 1959 } 1960 1961 tail ? list_add_tail(n, h) : list_add(n, h); 1962 1963 return 0; 1964 } 1965 1966 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, 1967 struct bpf_list_node *node, 1968 void *meta__ign, u64 off) 1969 { 1970 struct btf_struct_meta *meta = meta__ign; 1971 1972 return __bpf_list_add(node, head, false, 1973 meta ? meta->record : NULL, off); 1974 } 1975 1976 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, 1977 struct bpf_list_node *node, 1978 void *meta__ign, u64 off) 1979 { 1980 struct btf_struct_meta *meta = meta__ign; 1981 1982 return __bpf_list_add(node, head, true, 1983 meta ? meta->record : NULL, off); 1984 } 1985 1986 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) 1987 { 1988 struct list_head *n, *h = (void *)head; 1989 1990 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 1991 * called on its fields, so init here 1992 */ 1993 if (unlikely(!h->next)) 1994 INIT_LIST_HEAD(h); 1995 if (list_empty(h)) 1996 return NULL; 1997 n = tail ? h->prev : h->next; 1998 list_del_init(n); 1999 return (struct bpf_list_node *)n; 2000 } 2001 2002 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) 2003 { 2004 return __bpf_list_del(head, false); 2005 } 2006 2007 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) 2008 { 2009 return __bpf_list_del(head, true); 2010 } 2011 2012 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 2013 struct bpf_rb_node *node) 2014 { 2015 struct rb_root_cached *r = (struct rb_root_cached *)root; 2016 struct rb_node *n = (struct rb_node *)node; 2017 2018 if (RB_EMPTY_NODE(n)) 2019 return NULL; 2020 2021 rb_erase_cached(n, r); 2022 RB_CLEAR_NODE(n); 2023 return (struct bpf_rb_node *)n; 2024 } 2025 2026 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF 2027 * program 2028 */ 2029 static int __bpf_rbtree_add(struct bpf_rb_root *root, struct bpf_rb_node *node, 2030 void *less, struct btf_record *rec, u64 off) 2031 { 2032 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; 2033 struct rb_node *parent = NULL, *n = (struct rb_node *)node; 2034 bpf_callback_t cb = (bpf_callback_t)less; 2035 bool leftmost = true; 2036 2037 if (!RB_EMPTY_NODE(n)) { 2038 /* Only called from BPF prog, no need to migrate_disable */ 2039 __bpf_obj_drop_impl((void *)n - off, rec); 2040 return -EINVAL; 2041 } 2042 2043 while (*link) { 2044 parent = *link; 2045 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { 2046 link = &parent->rb_left; 2047 } else { 2048 link = &parent->rb_right; 2049 leftmost = false; 2050 } 2051 } 2052 2053 rb_link_node(n, parent, link); 2054 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); 2055 return 0; 2056 } 2057 2058 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 2059 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 2060 void *meta__ign, u64 off) 2061 { 2062 struct btf_struct_meta *meta = meta__ign; 2063 2064 return __bpf_rbtree_add(root, node, (void *)less, meta ? meta->record : NULL, off); 2065 } 2066 2067 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) 2068 { 2069 struct rb_root_cached *r = (struct rb_root_cached *)root; 2070 2071 return (struct bpf_rb_node *)rb_first_cached(r); 2072 } 2073 2074 /** 2075 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this 2076 * kfunc which is not stored in a map as a kptr, must be released by calling 2077 * bpf_task_release(). 2078 * @p: The task on which a reference is being acquired. 2079 */ 2080 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) 2081 { 2082 if (refcount_inc_not_zero(&p->rcu_users)) 2083 return p; 2084 return NULL; 2085 } 2086 2087 /** 2088 * bpf_task_release - Release the reference acquired on a task. 2089 * @p: The task on which a reference is being released. 2090 */ 2091 __bpf_kfunc void bpf_task_release(struct task_struct *p) 2092 { 2093 put_task_struct_rcu_user(p); 2094 } 2095 2096 #ifdef CONFIG_CGROUPS 2097 /** 2098 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by 2099 * this kfunc which is not stored in a map as a kptr, must be released by 2100 * calling bpf_cgroup_release(). 2101 * @cgrp: The cgroup on which a reference is being acquired. 2102 */ 2103 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) 2104 { 2105 return cgroup_tryget(cgrp) ? cgrp : NULL; 2106 } 2107 2108 /** 2109 * bpf_cgroup_release - Release the reference acquired on a cgroup. 2110 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to 2111 * not be freed until the current grace period has ended, even if its refcount 2112 * drops to 0. 2113 * @cgrp: The cgroup on which a reference is being released. 2114 */ 2115 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) 2116 { 2117 cgroup_put(cgrp); 2118 } 2119 2120 /** 2121 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor 2122 * array. A cgroup returned by this kfunc which is not subsequently stored in a 2123 * map, must be released by calling bpf_cgroup_release(). 2124 * @cgrp: The cgroup for which we're performing a lookup. 2125 * @level: The level of ancestor to look up. 2126 */ 2127 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) 2128 { 2129 struct cgroup *ancestor; 2130 2131 if (level > cgrp->level || level < 0) 2132 return NULL; 2133 2134 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ 2135 ancestor = cgrp->ancestors[level]; 2136 if (!cgroup_tryget(ancestor)) 2137 return NULL; 2138 return ancestor; 2139 } 2140 2141 /** 2142 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this 2143 * kfunc which is not subsequently stored in a map, must be released by calling 2144 * bpf_cgroup_release(). 2145 * @cgid: cgroup id. 2146 */ 2147 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) 2148 { 2149 struct cgroup *cgrp; 2150 2151 cgrp = cgroup_get_from_id(cgid); 2152 if (IS_ERR(cgrp)) 2153 return NULL; 2154 return cgrp; 2155 } 2156 2157 /** 2158 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test 2159 * task's membership of cgroup ancestry. 2160 * @task: the task to be tested 2161 * @ancestor: possible ancestor of @task's cgroup 2162 * 2163 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. 2164 * It follows all the same rules as cgroup_is_descendant, and only applies 2165 * to the default hierarchy. 2166 */ 2167 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, 2168 struct cgroup *ancestor) 2169 { 2170 return task_under_cgroup_hierarchy(task, ancestor); 2171 } 2172 #endif /* CONFIG_CGROUPS */ 2173 2174 /** 2175 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up 2176 * in the root pid namespace idr. If a task is returned, it must either be 2177 * stored in a map, or released with bpf_task_release(). 2178 * @pid: The pid of the task being looked up. 2179 */ 2180 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) 2181 { 2182 struct task_struct *p; 2183 2184 rcu_read_lock(); 2185 p = find_task_by_pid_ns(pid, &init_pid_ns); 2186 if (p) 2187 p = bpf_task_acquire(p); 2188 rcu_read_unlock(); 2189 2190 return p; 2191 } 2192 2193 /** 2194 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. 2195 * @ptr: The dynptr whose data slice to retrieve 2196 * @offset: Offset into the dynptr 2197 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2198 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2199 * length of the requested slice. This must be a constant. 2200 * 2201 * For non-skb and non-xdp type dynptrs, there is no difference between 2202 * bpf_dynptr_slice and bpf_dynptr_data. 2203 * 2204 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2205 * 2206 * If the intention is to write to the data slice, please use 2207 * bpf_dynptr_slice_rdwr. 2208 * 2209 * The user must check that the returned pointer is not null before using it. 2210 * 2211 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice 2212 * does not change the underlying packet data pointers, so a call to 2213 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in 2214 * the bpf program. 2215 * 2216 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only 2217 * data slice (can be either direct pointer to the data or a pointer to the user 2218 * provided buffer, with its contents containing the data, if unable to obtain 2219 * direct pointer) 2220 */ 2221 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset, 2222 void *buffer__opt, u32 buffer__szk) 2223 { 2224 enum bpf_dynptr_type type; 2225 u32 len = buffer__szk; 2226 int err; 2227 2228 if (!ptr->data) 2229 return NULL; 2230 2231 err = bpf_dynptr_check_off_len(ptr, offset, len); 2232 if (err) 2233 return NULL; 2234 2235 type = bpf_dynptr_get_type(ptr); 2236 2237 switch (type) { 2238 case BPF_DYNPTR_TYPE_LOCAL: 2239 case BPF_DYNPTR_TYPE_RINGBUF: 2240 return ptr->data + ptr->offset + offset; 2241 case BPF_DYNPTR_TYPE_SKB: 2242 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); 2243 case BPF_DYNPTR_TYPE_XDP: 2244 { 2245 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); 2246 if (xdp_ptr) 2247 return xdp_ptr; 2248 2249 if (!buffer__opt) 2250 return NULL; 2251 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); 2252 return buffer__opt; 2253 } 2254 default: 2255 WARN_ONCE(true, "unknown dynptr type %d\n", type); 2256 return NULL; 2257 } 2258 } 2259 2260 /** 2261 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. 2262 * @ptr: The dynptr whose data slice to retrieve 2263 * @offset: Offset into the dynptr 2264 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2265 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2266 * length of the requested slice. This must be a constant. 2267 * 2268 * For non-skb and non-xdp type dynptrs, there is no difference between 2269 * bpf_dynptr_slice and bpf_dynptr_data. 2270 * 2271 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2272 * 2273 * The returned pointer is writable and may point to either directly the dynptr 2274 * data at the requested offset or to the buffer if unable to obtain a direct 2275 * data pointer to (example: the requested slice is to the paged area of an skb 2276 * packet). In the case where the returned pointer is to the buffer, the user 2277 * is responsible for persisting writes through calling bpf_dynptr_write(). This 2278 * usually looks something like this pattern: 2279 * 2280 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); 2281 * if (!eth) 2282 * return TC_ACT_SHOT; 2283 * 2284 * // mutate eth header // 2285 * 2286 * if (eth == buffer) 2287 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); 2288 * 2289 * Please note that, as in the example above, the user must check that the 2290 * returned pointer is not null before using it. 2291 * 2292 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr 2293 * does not change the underlying packet data pointers, so a call to 2294 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in 2295 * the bpf program. 2296 * 2297 * Return: NULL if the call failed (eg invalid dynptr), pointer to a 2298 * data slice (can be either direct pointer to the data or a pointer to the user 2299 * provided buffer, with its contents containing the data, if unable to obtain 2300 * direct pointer) 2301 */ 2302 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset, 2303 void *buffer__opt, u32 buffer__szk) 2304 { 2305 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) 2306 return NULL; 2307 2308 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. 2309 * 2310 * For skb-type dynptrs, it is safe to write into the returned pointer 2311 * if the bpf program allows skb data writes. There are two possiblities 2312 * that may occur when calling bpf_dynptr_slice_rdwr: 2313 * 2314 * 1) The requested slice is in the head of the skb. In this case, the 2315 * returned pointer is directly to skb data, and if the skb is cloned, the 2316 * verifier will have uncloned it (see bpf_unclone_prologue()) already. 2317 * The pointer can be directly written into. 2318 * 2319 * 2) Some portion of the requested slice is in the paged buffer area. 2320 * In this case, the requested data will be copied out into the buffer 2321 * and the returned pointer will be a pointer to the buffer. The skb 2322 * will not be pulled. To persist the write, the user will need to call 2323 * bpf_dynptr_write(), which will pull the skb and commit the write. 2324 * 2325 * Similarly for xdp programs, if the requested slice is not across xdp 2326 * fragments, then a direct pointer will be returned, otherwise the data 2327 * will be copied out into the buffer and the user will need to call 2328 * bpf_dynptr_write() to commit changes. 2329 */ 2330 return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk); 2331 } 2332 2333 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end) 2334 { 2335 u32 size; 2336 2337 if (!ptr->data || start > end) 2338 return -EINVAL; 2339 2340 size = __bpf_dynptr_size(ptr); 2341 2342 if (start > size || end > size) 2343 return -ERANGE; 2344 2345 ptr->offset += start; 2346 bpf_dynptr_set_size(ptr, end - start); 2347 2348 return 0; 2349 } 2350 2351 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr) 2352 { 2353 return !ptr->data; 2354 } 2355 2356 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) 2357 { 2358 if (!ptr->data) 2359 return false; 2360 2361 return __bpf_dynptr_is_rdonly(ptr); 2362 } 2363 2364 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 2365 { 2366 if (!ptr->data) 2367 return -EINVAL; 2368 2369 return __bpf_dynptr_size(ptr); 2370 } 2371 2372 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr, 2373 struct bpf_dynptr_kern *clone__uninit) 2374 { 2375 if (!ptr->data) { 2376 bpf_dynptr_set_null(clone__uninit); 2377 return -EINVAL; 2378 } 2379 2380 *clone__uninit = *ptr; 2381 2382 return 0; 2383 } 2384 2385 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) 2386 { 2387 return obj; 2388 } 2389 2390 __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k) 2391 { 2392 return obj__ign; 2393 } 2394 2395 __bpf_kfunc void bpf_rcu_read_lock(void) 2396 { 2397 rcu_read_lock(); 2398 } 2399 2400 __bpf_kfunc void bpf_rcu_read_unlock(void) 2401 { 2402 rcu_read_unlock(); 2403 } 2404 2405 __diag_pop(); 2406 2407 BTF_SET8_START(generic_btf_ids) 2408 #ifdef CONFIG_KEXEC_CORE 2409 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 2410 #endif 2411 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 2412 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) 2413 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL) 2414 BTF_ID_FLAGS(func, bpf_list_push_front_impl) 2415 BTF_ID_FLAGS(func, bpf_list_push_back_impl) 2416 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) 2417 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) 2418 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2419 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) 2420 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) 2421 BTF_ID_FLAGS(func, bpf_rbtree_add_impl) 2422 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) 2423 2424 #ifdef CONFIG_CGROUPS 2425 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2426 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) 2427 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2428 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) 2429 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) 2430 #endif 2431 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) 2432 BTF_SET8_END(generic_btf_ids) 2433 2434 static const struct btf_kfunc_id_set generic_kfunc_set = { 2435 .owner = THIS_MODULE, 2436 .set = &generic_btf_ids, 2437 }; 2438 2439 2440 BTF_ID_LIST(generic_dtor_ids) 2441 BTF_ID(struct, task_struct) 2442 BTF_ID(func, bpf_task_release) 2443 #ifdef CONFIG_CGROUPS 2444 BTF_ID(struct, cgroup) 2445 BTF_ID(func, bpf_cgroup_release) 2446 #endif 2447 2448 BTF_SET8_START(common_btf_ids) 2449 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx) 2450 BTF_ID_FLAGS(func, bpf_rdonly_cast) 2451 BTF_ID_FLAGS(func, bpf_rcu_read_lock) 2452 BTF_ID_FLAGS(func, bpf_rcu_read_unlock) 2453 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) 2454 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) 2455 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) 2456 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) 2457 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) 2458 BTF_ID_FLAGS(func, bpf_dynptr_adjust) 2459 BTF_ID_FLAGS(func, bpf_dynptr_is_null) 2460 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) 2461 BTF_ID_FLAGS(func, bpf_dynptr_size) 2462 BTF_ID_FLAGS(func, bpf_dynptr_clone) 2463 BTF_SET8_END(common_btf_ids) 2464 2465 static const struct btf_kfunc_id_set common_kfunc_set = { 2466 .owner = THIS_MODULE, 2467 .set = &common_btf_ids, 2468 }; 2469 2470 static int __init kfunc_init(void) 2471 { 2472 int ret; 2473 const struct btf_id_dtor_kfunc generic_dtors[] = { 2474 { 2475 .btf_id = generic_dtor_ids[0], 2476 .kfunc_btf_id = generic_dtor_ids[1] 2477 }, 2478 #ifdef CONFIG_CGROUPS 2479 { 2480 .btf_id = generic_dtor_ids[2], 2481 .kfunc_btf_id = generic_dtor_ids[3] 2482 }, 2483 #endif 2484 }; 2485 2486 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); 2487 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); 2488 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); 2489 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, 2490 ARRAY_SIZE(generic_dtors), 2491 THIS_MODULE); 2492 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 2493 } 2494 2495 late_initcall(kfunc_init); 2496