1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/rcupdate.h> 8 #include <linux/random.h> 9 #include <linux/smp.h> 10 #include <linux/topology.h> 11 #include <linux/ktime.h> 12 #include <linux/sched.h> 13 #include <linux/uidgid.h> 14 #include <linux/filter.h> 15 #include <linux/ctype.h> 16 #include <linux/jiffies.h> 17 #include <linux/pid_namespace.h> 18 #include <linux/proc_ns.h> 19 #include <linux/security.h> 20 21 #include "../../lib/kstrtox.h" 22 23 /* If kernel subsystem is allowing eBPF programs to call this function, 24 * inside its own verifier_ops->get_func_proto() callback it should return 25 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 26 * 27 * Different map implementations will rely on rcu in map methods 28 * lookup/update/delete, therefore eBPF programs must run under rcu lock 29 * if program is allowed to access maps, so check rcu_read_lock_held in 30 * all three functions. 31 */ 32 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 33 { 34 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 35 return (unsigned long) map->ops->map_lookup_elem(map, key); 36 } 37 38 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 39 .func = bpf_map_lookup_elem, 40 .gpl_only = false, 41 .pkt_access = true, 42 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 43 .arg1_type = ARG_CONST_MAP_PTR, 44 .arg2_type = ARG_PTR_TO_MAP_KEY, 45 }; 46 47 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 48 void *, value, u64, flags) 49 { 50 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 51 return map->ops->map_update_elem(map, key, value, flags); 52 } 53 54 const struct bpf_func_proto bpf_map_update_elem_proto = { 55 .func = bpf_map_update_elem, 56 .gpl_only = false, 57 .pkt_access = true, 58 .ret_type = RET_INTEGER, 59 .arg1_type = ARG_CONST_MAP_PTR, 60 .arg2_type = ARG_PTR_TO_MAP_KEY, 61 .arg3_type = ARG_PTR_TO_MAP_VALUE, 62 .arg4_type = ARG_ANYTHING, 63 }; 64 65 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 66 { 67 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 68 return map->ops->map_delete_elem(map, key); 69 } 70 71 const struct bpf_func_proto bpf_map_delete_elem_proto = { 72 .func = bpf_map_delete_elem, 73 .gpl_only = false, 74 .pkt_access = true, 75 .ret_type = RET_INTEGER, 76 .arg1_type = ARG_CONST_MAP_PTR, 77 .arg2_type = ARG_PTR_TO_MAP_KEY, 78 }; 79 80 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 81 { 82 return map->ops->map_push_elem(map, value, flags); 83 } 84 85 const struct bpf_func_proto bpf_map_push_elem_proto = { 86 .func = bpf_map_push_elem, 87 .gpl_only = false, 88 .pkt_access = true, 89 .ret_type = RET_INTEGER, 90 .arg1_type = ARG_CONST_MAP_PTR, 91 .arg2_type = ARG_PTR_TO_MAP_VALUE, 92 .arg3_type = ARG_ANYTHING, 93 }; 94 95 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 96 { 97 return map->ops->map_pop_elem(map, value); 98 } 99 100 const struct bpf_func_proto bpf_map_pop_elem_proto = { 101 .func = bpf_map_pop_elem, 102 .gpl_only = false, 103 .ret_type = RET_INTEGER, 104 .arg1_type = ARG_CONST_MAP_PTR, 105 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE, 106 }; 107 108 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 109 { 110 return map->ops->map_peek_elem(map, value); 111 } 112 113 const struct bpf_func_proto bpf_map_peek_elem_proto = { 114 .func = bpf_map_peek_elem, 115 .gpl_only = false, 116 .ret_type = RET_INTEGER, 117 .arg1_type = ARG_CONST_MAP_PTR, 118 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE, 119 }; 120 121 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 122 .func = bpf_user_rnd_u32, 123 .gpl_only = false, 124 .ret_type = RET_INTEGER, 125 }; 126 127 BPF_CALL_0(bpf_get_smp_processor_id) 128 { 129 return smp_processor_id(); 130 } 131 132 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 133 .func = bpf_get_smp_processor_id, 134 .gpl_only = false, 135 .ret_type = RET_INTEGER, 136 }; 137 138 BPF_CALL_0(bpf_get_numa_node_id) 139 { 140 return numa_node_id(); 141 } 142 143 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 144 .func = bpf_get_numa_node_id, 145 .gpl_only = false, 146 .ret_type = RET_INTEGER, 147 }; 148 149 BPF_CALL_0(bpf_ktime_get_ns) 150 { 151 /* NMI safe access to clock monotonic */ 152 return ktime_get_mono_fast_ns(); 153 } 154 155 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 156 .func = bpf_ktime_get_ns, 157 .gpl_only = false, 158 .ret_type = RET_INTEGER, 159 }; 160 161 BPF_CALL_0(bpf_ktime_get_boot_ns) 162 { 163 /* NMI safe access to clock boottime */ 164 return ktime_get_boot_fast_ns(); 165 } 166 167 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 168 .func = bpf_ktime_get_boot_ns, 169 .gpl_only = false, 170 .ret_type = RET_INTEGER, 171 }; 172 173 BPF_CALL_0(bpf_ktime_get_coarse_ns) 174 { 175 return ktime_get_coarse_ns(); 176 } 177 178 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 179 .func = bpf_ktime_get_coarse_ns, 180 .gpl_only = false, 181 .ret_type = RET_INTEGER, 182 }; 183 184 BPF_CALL_0(bpf_get_current_pid_tgid) 185 { 186 struct task_struct *task = current; 187 188 if (unlikely(!task)) 189 return -EINVAL; 190 191 return (u64) task->tgid << 32 | task->pid; 192 } 193 194 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 195 .func = bpf_get_current_pid_tgid, 196 .gpl_only = false, 197 .ret_type = RET_INTEGER, 198 }; 199 200 BPF_CALL_0(bpf_get_current_uid_gid) 201 { 202 struct task_struct *task = current; 203 kuid_t uid; 204 kgid_t gid; 205 206 if (unlikely(!task)) 207 return -EINVAL; 208 209 current_uid_gid(&uid, &gid); 210 return (u64) from_kgid(&init_user_ns, gid) << 32 | 211 from_kuid(&init_user_ns, uid); 212 } 213 214 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 215 .func = bpf_get_current_uid_gid, 216 .gpl_only = false, 217 .ret_type = RET_INTEGER, 218 }; 219 220 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 221 { 222 struct task_struct *task = current; 223 224 if (unlikely(!task)) 225 goto err_clear; 226 227 strncpy(buf, task->comm, size); 228 229 /* Verifier guarantees that size > 0. For task->comm exceeding 230 * size, guarantee that buf is %NUL-terminated. Unconditionally 231 * done here to save the size test. 232 */ 233 buf[size - 1] = 0; 234 return 0; 235 err_clear: 236 memset(buf, 0, size); 237 return -EINVAL; 238 } 239 240 const struct bpf_func_proto bpf_get_current_comm_proto = { 241 .func = bpf_get_current_comm, 242 .gpl_only = false, 243 .ret_type = RET_INTEGER, 244 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 245 .arg2_type = ARG_CONST_SIZE, 246 }; 247 248 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 249 250 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 251 { 252 arch_spinlock_t *l = (void *)lock; 253 union { 254 __u32 val; 255 arch_spinlock_t lock; 256 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 257 258 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 259 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 260 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 261 arch_spin_lock(l); 262 } 263 264 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 265 { 266 arch_spinlock_t *l = (void *)lock; 267 268 arch_spin_unlock(l); 269 } 270 271 #else 272 273 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 274 { 275 atomic_t *l = (void *)lock; 276 277 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 278 do { 279 atomic_cond_read_relaxed(l, !VAL); 280 } while (atomic_xchg(l, 1)); 281 } 282 283 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 284 { 285 atomic_t *l = (void *)lock; 286 287 atomic_set_release(l, 0); 288 } 289 290 #endif 291 292 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 293 294 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 295 { 296 unsigned long flags; 297 298 local_irq_save(flags); 299 __bpf_spin_lock(lock); 300 __this_cpu_write(irqsave_flags, flags); 301 } 302 303 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 304 { 305 __bpf_spin_lock_irqsave(lock); 306 return 0; 307 } 308 309 const struct bpf_func_proto bpf_spin_lock_proto = { 310 .func = bpf_spin_lock, 311 .gpl_only = false, 312 .ret_type = RET_VOID, 313 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 314 }; 315 316 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 317 { 318 unsigned long flags; 319 320 flags = __this_cpu_read(irqsave_flags); 321 __bpf_spin_unlock(lock); 322 local_irq_restore(flags); 323 } 324 325 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 326 { 327 __bpf_spin_unlock_irqrestore(lock); 328 return 0; 329 } 330 331 const struct bpf_func_proto bpf_spin_unlock_proto = { 332 .func = bpf_spin_unlock, 333 .gpl_only = false, 334 .ret_type = RET_VOID, 335 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 336 }; 337 338 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 339 bool lock_src) 340 { 341 struct bpf_spin_lock *lock; 342 343 if (lock_src) 344 lock = src + map->spin_lock_off; 345 else 346 lock = dst + map->spin_lock_off; 347 preempt_disable(); 348 __bpf_spin_lock_irqsave(lock); 349 copy_map_value(map, dst, src); 350 __bpf_spin_unlock_irqrestore(lock); 351 preempt_enable(); 352 } 353 354 BPF_CALL_0(bpf_jiffies64) 355 { 356 return get_jiffies_64(); 357 } 358 359 const struct bpf_func_proto bpf_jiffies64_proto = { 360 .func = bpf_jiffies64, 361 .gpl_only = false, 362 .ret_type = RET_INTEGER, 363 }; 364 365 #ifdef CONFIG_CGROUPS 366 BPF_CALL_0(bpf_get_current_cgroup_id) 367 { 368 struct cgroup *cgrp; 369 u64 cgrp_id; 370 371 rcu_read_lock(); 372 cgrp = task_dfl_cgroup(current); 373 cgrp_id = cgroup_id(cgrp); 374 rcu_read_unlock(); 375 376 return cgrp_id; 377 } 378 379 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 380 .func = bpf_get_current_cgroup_id, 381 .gpl_only = false, 382 .ret_type = RET_INTEGER, 383 }; 384 385 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 386 { 387 struct cgroup *cgrp; 388 struct cgroup *ancestor; 389 u64 cgrp_id; 390 391 rcu_read_lock(); 392 cgrp = task_dfl_cgroup(current); 393 ancestor = cgroup_ancestor(cgrp, ancestor_level); 394 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 395 rcu_read_unlock(); 396 397 return cgrp_id; 398 } 399 400 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 401 .func = bpf_get_current_ancestor_cgroup_id, 402 .gpl_only = false, 403 .ret_type = RET_INTEGER, 404 .arg1_type = ARG_ANYTHING, 405 }; 406 407 #ifdef CONFIG_CGROUP_BPF 408 409 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) 410 { 411 /* flags argument is not used now, 412 * but provides an ability to extend the API. 413 * verifier checks that its value is correct. 414 */ 415 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); 416 struct bpf_cgroup_storage *storage; 417 struct bpf_cg_run_ctx *ctx; 418 void *ptr; 419 420 /* get current cgroup storage from BPF run context */ 421 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 422 storage = ctx->prog_item->cgroup_storage[stype]; 423 424 if (stype == BPF_CGROUP_STORAGE_SHARED) 425 ptr = &READ_ONCE(storage->buf)->data[0]; 426 else 427 ptr = this_cpu_ptr(storage->percpu_buf); 428 429 return (unsigned long)ptr; 430 } 431 432 const struct bpf_func_proto bpf_get_local_storage_proto = { 433 .func = bpf_get_local_storage, 434 .gpl_only = false, 435 .ret_type = RET_PTR_TO_MAP_VALUE, 436 .arg1_type = ARG_CONST_MAP_PTR, 437 .arg2_type = ARG_ANYTHING, 438 }; 439 #endif 440 441 #define BPF_STRTOX_BASE_MASK 0x1F 442 443 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 444 unsigned long long *res, bool *is_negative) 445 { 446 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 447 const char *cur_buf = buf; 448 size_t cur_len = buf_len; 449 unsigned int consumed; 450 size_t val_len; 451 char str[64]; 452 453 if (!buf || !buf_len || !res || !is_negative) 454 return -EINVAL; 455 456 if (base != 0 && base != 8 && base != 10 && base != 16) 457 return -EINVAL; 458 459 if (flags & ~BPF_STRTOX_BASE_MASK) 460 return -EINVAL; 461 462 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 463 ++cur_buf; 464 465 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 466 if (*is_negative) 467 ++cur_buf; 468 469 consumed = cur_buf - buf; 470 cur_len -= consumed; 471 if (!cur_len) 472 return -EINVAL; 473 474 cur_len = min(cur_len, sizeof(str) - 1); 475 memcpy(str, cur_buf, cur_len); 476 str[cur_len] = '\0'; 477 cur_buf = str; 478 479 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 480 val_len = _parse_integer(cur_buf, base, res); 481 482 if (val_len & KSTRTOX_OVERFLOW) 483 return -ERANGE; 484 485 if (val_len == 0) 486 return -EINVAL; 487 488 cur_buf += val_len; 489 consumed += cur_buf - str; 490 491 return consumed; 492 } 493 494 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 495 long long *res) 496 { 497 unsigned long long _res; 498 bool is_negative; 499 int err; 500 501 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 502 if (err < 0) 503 return err; 504 if (is_negative) { 505 if ((long long)-_res > 0) 506 return -ERANGE; 507 *res = -_res; 508 } else { 509 if ((long long)_res < 0) 510 return -ERANGE; 511 *res = _res; 512 } 513 return err; 514 } 515 516 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 517 long *, res) 518 { 519 long long _res; 520 int err; 521 522 err = __bpf_strtoll(buf, buf_len, flags, &_res); 523 if (err < 0) 524 return err; 525 if (_res != (long)_res) 526 return -ERANGE; 527 *res = _res; 528 return err; 529 } 530 531 const struct bpf_func_proto bpf_strtol_proto = { 532 .func = bpf_strtol, 533 .gpl_only = false, 534 .ret_type = RET_INTEGER, 535 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 536 .arg2_type = ARG_CONST_SIZE, 537 .arg3_type = ARG_ANYTHING, 538 .arg4_type = ARG_PTR_TO_LONG, 539 }; 540 541 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 542 unsigned long *, res) 543 { 544 unsigned long long _res; 545 bool is_negative; 546 int err; 547 548 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 549 if (err < 0) 550 return err; 551 if (is_negative) 552 return -EINVAL; 553 if (_res != (unsigned long)_res) 554 return -ERANGE; 555 *res = _res; 556 return err; 557 } 558 559 const struct bpf_func_proto bpf_strtoul_proto = { 560 .func = bpf_strtoul, 561 .gpl_only = false, 562 .ret_type = RET_INTEGER, 563 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 564 .arg2_type = ARG_CONST_SIZE, 565 .arg3_type = ARG_ANYTHING, 566 .arg4_type = ARG_PTR_TO_LONG, 567 }; 568 #endif 569 570 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 571 { 572 return strncmp(s1, s2, s1_sz); 573 } 574 575 const struct bpf_func_proto bpf_strncmp_proto = { 576 .func = bpf_strncmp, 577 .gpl_only = false, 578 .ret_type = RET_INTEGER, 579 .arg1_type = ARG_PTR_TO_MEM, 580 .arg2_type = ARG_CONST_SIZE, 581 .arg3_type = ARG_PTR_TO_CONST_STR, 582 }; 583 584 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 585 struct bpf_pidns_info *, nsdata, u32, size) 586 { 587 struct task_struct *task = current; 588 struct pid_namespace *pidns; 589 int err = -EINVAL; 590 591 if (unlikely(size != sizeof(struct bpf_pidns_info))) 592 goto clear; 593 594 if (unlikely((u64)(dev_t)dev != dev)) 595 goto clear; 596 597 if (unlikely(!task)) 598 goto clear; 599 600 pidns = task_active_pid_ns(task); 601 if (unlikely(!pidns)) { 602 err = -ENOENT; 603 goto clear; 604 } 605 606 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 607 goto clear; 608 609 nsdata->pid = task_pid_nr_ns(task, pidns); 610 nsdata->tgid = task_tgid_nr_ns(task, pidns); 611 return 0; 612 clear: 613 memset((void *)nsdata, 0, (size_t) size); 614 return err; 615 } 616 617 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 618 .func = bpf_get_ns_current_pid_tgid, 619 .gpl_only = false, 620 .ret_type = RET_INTEGER, 621 .arg1_type = ARG_ANYTHING, 622 .arg2_type = ARG_ANYTHING, 623 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 624 .arg4_type = ARG_CONST_SIZE, 625 }; 626 627 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 628 .func = bpf_get_raw_cpu_id, 629 .gpl_only = false, 630 .ret_type = RET_INTEGER, 631 }; 632 633 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 634 u64, flags, void *, data, u64, size) 635 { 636 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 637 return -EINVAL; 638 639 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 640 } 641 642 const struct bpf_func_proto bpf_event_output_data_proto = { 643 .func = bpf_event_output_data, 644 .gpl_only = true, 645 .ret_type = RET_INTEGER, 646 .arg1_type = ARG_PTR_TO_CTX, 647 .arg2_type = ARG_CONST_MAP_PTR, 648 .arg3_type = ARG_ANYTHING, 649 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 650 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 651 }; 652 653 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 654 const void __user *, user_ptr) 655 { 656 int ret = copy_from_user(dst, user_ptr, size); 657 658 if (unlikely(ret)) { 659 memset(dst, 0, size); 660 ret = -EFAULT; 661 } 662 663 return ret; 664 } 665 666 const struct bpf_func_proto bpf_copy_from_user_proto = { 667 .func = bpf_copy_from_user, 668 .gpl_only = false, 669 .ret_type = RET_INTEGER, 670 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 671 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 672 .arg3_type = ARG_ANYTHING, 673 }; 674 675 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 676 { 677 if (cpu >= nr_cpu_ids) 678 return (unsigned long)NULL; 679 680 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 681 } 682 683 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 684 .func = bpf_per_cpu_ptr, 685 .gpl_only = false, 686 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 687 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 688 .arg2_type = ARG_ANYTHING, 689 }; 690 691 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 692 { 693 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 694 } 695 696 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 697 .func = bpf_this_cpu_ptr, 698 .gpl_only = false, 699 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 700 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 701 }; 702 703 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 704 size_t bufsz) 705 { 706 void __user *user_ptr = (__force void __user *)unsafe_ptr; 707 708 buf[0] = 0; 709 710 switch (fmt_ptype) { 711 case 's': 712 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 713 if ((unsigned long)unsafe_ptr < TASK_SIZE) 714 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 715 fallthrough; 716 #endif 717 case 'k': 718 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 719 case 'u': 720 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 721 } 722 723 return -EINVAL; 724 } 725 726 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 727 * arguments representation. 728 */ 729 #define MAX_BPRINTF_BUF_LEN 512 730 731 /* Support executing three nested bprintf helper calls on a given CPU */ 732 #define MAX_BPRINTF_NEST_LEVEL 3 733 struct bpf_bprintf_buffers { 734 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN]; 735 }; 736 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs); 737 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 738 739 static int try_get_fmt_tmp_buf(char **tmp_buf) 740 { 741 struct bpf_bprintf_buffers *bufs; 742 int nest_level; 743 744 preempt_disable(); 745 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 746 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 747 this_cpu_dec(bpf_bprintf_nest_level); 748 preempt_enable(); 749 return -EBUSY; 750 } 751 bufs = this_cpu_ptr(&bpf_bprintf_bufs); 752 *tmp_buf = bufs->tmp_bufs[nest_level - 1]; 753 754 return 0; 755 } 756 757 void bpf_bprintf_cleanup(void) 758 { 759 if (this_cpu_read(bpf_bprintf_nest_level)) { 760 this_cpu_dec(bpf_bprintf_nest_level); 761 preempt_enable(); 762 } 763 } 764 765 /* 766 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 767 * 768 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 769 * 770 * This can be used in two ways: 771 * - Format string verification only: when bin_args is NULL 772 * - Arguments preparation: in addition to the above verification, it writes in 773 * bin_args a binary representation of arguments usable by bstr_printf where 774 * pointers from BPF have been sanitized. 775 * 776 * In argument preparation mode, if 0 is returned, safe temporary buffers are 777 * allocated and bpf_bprintf_cleanup should be called to free them after use. 778 */ 779 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 780 u32 **bin_args, u32 num_args) 781 { 782 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 783 size_t sizeof_cur_arg, sizeof_cur_ip; 784 int err, i, num_spec = 0; 785 u64 cur_arg; 786 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 787 788 fmt_end = strnchr(fmt, fmt_size, 0); 789 if (!fmt_end) 790 return -EINVAL; 791 fmt_size = fmt_end - fmt; 792 793 if (bin_args) { 794 if (num_args && try_get_fmt_tmp_buf(&tmp_buf)) 795 return -EBUSY; 796 797 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN; 798 *bin_args = (u32 *)tmp_buf; 799 } 800 801 for (i = 0; i < fmt_size; i++) { 802 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 803 err = -EINVAL; 804 goto out; 805 } 806 807 if (fmt[i] != '%') 808 continue; 809 810 if (fmt[i + 1] == '%') { 811 i++; 812 continue; 813 } 814 815 if (num_spec >= num_args) { 816 err = -EINVAL; 817 goto out; 818 } 819 820 /* The string is zero-terminated so if fmt[i] != 0, we can 821 * always access fmt[i + 1], in the worst case it will be a 0 822 */ 823 i++; 824 825 /* skip optional "[0 +-][num]" width formatting field */ 826 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 827 fmt[i] == ' ') 828 i++; 829 if (fmt[i] >= '1' && fmt[i] <= '9') { 830 i++; 831 while (fmt[i] >= '0' && fmt[i] <= '9') 832 i++; 833 } 834 835 if (fmt[i] == 'p') { 836 sizeof_cur_arg = sizeof(long); 837 838 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 839 fmt[i + 2] == 's') { 840 fmt_ptype = fmt[i + 1]; 841 i += 2; 842 goto fmt_str; 843 } 844 845 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 846 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 847 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 848 fmt[i + 1] == 'S') { 849 /* just kernel pointers */ 850 if (tmp_buf) 851 cur_arg = raw_args[num_spec]; 852 i++; 853 goto nocopy_fmt; 854 } 855 856 if (fmt[i + 1] == 'B') { 857 if (tmp_buf) { 858 err = snprintf(tmp_buf, 859 (tmp_buf_end - tmp_buf), 860 "%pB", 861 (void *)(long)raw_args[num_spec]); 862 tmp_buf += (err + 1); 863 } 864 865 i++; 866 num_spec++; 867 continue; 868 } 869 870 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 871 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 872 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 873 err = -EINVAL; 874 goto out; 875 } 876 877 i += 2; 878 if (!tmp_buf) 879 goto nocopy_fmt; 880 881 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 882 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 883 err = -ENOSPC; 884 goto out; 885 } 886 887 unsafe_ptr = (char *)(long)raw_args[num_spec]; 888 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 889 sizeof_cur_ip); 890 if (err < 0) 891 memset(cur_ip, 0, sizeof_cur_ip); 892 893 /* hack: bstr_printf expects IP addresses to be 894 * pre-formatted as strings, ironically, the easiest way 895 * to do that is to call snprintf. 896 */ 897 ip_spec[2] = fmt[i - 1]; 898 ip_spec[3] = fmt[i]; 899 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 900 ip_spec, &cur_ip); 901 902 tmp_buf += err + 1; 903 num_spec++; 904 905 continue; 906 } else if (fmt[i] == 's') { 907 fmt_ptype = fmt[i]; 908 fmt_str: 909 if (fmt[i + 1] != 0 && 910 !isspace(fmt[i + 1]) && 911 !ispunct(fmt[i + 1])) { 912 err = -EINVAL; 913 goto out; 914 } 915 916 if (!tmp_buf) 917 goto nocopy_fmt; 918 919 if (tmp_buf_end == tmp_buf) { 920 err = -ENOSPC; 921 goto out; 922 } 923 924 unsafe_ptr = (char *)(long)raw_args[num_spec]; 925 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 926 fmt_ptype, 927 tmp_buf_end - tmp_buf); 928 if (err < 0) { 929 tmp_buf[0] = '\0'; 930 err = 1; 931 } 932 933 tmp_buf += err; 934 num_spec++; 935 936 continue; 937 } else if (fmt[i] == 'c') { 938 if (!tmp_buf) 939 goto nocopy_fmt; 940 941 if (tmp_buf_end == tmp_buf) { 942 err = -ENOSPC; 943 goto out; 944 } 945 946 *tmp_buf = raw_args[num_spec]; 947 tmp_buf++; 948 num_spec++; 949 950 continue; 951 } 952 953 sizeof_cur_arg = sizeof(int); 954 955 if (fmt[i] == 'l') { 956 sizeof_cur_arg = sizeof(long); 957 i++; 958 } 959 if (fmt[i] == 'l') { 960 sizeof_cur_arg = sizeof(long long); 961 i++; 962 } 963 964 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 965 fmt[i] != 'x' && fmt[i] != 'X') { 966 err = -EINVAL; 967 goto out; 968 } 969 970 if (tmp_buf) 971 cur_arg = raw_args[num_spec]; 972 nocopy_fmt: 973 if (tmp_buf) { 974 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 975 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 976 err = -ENOSPC; 977 goto out; 978 } 979 980 if (sizeof_cur_arg == 8) { 981 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 982 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 983 } else { 984 *(u32 *)tmp_buf = (u32)(long)cur_arg; 985 } 986 tmp_buf += sizeof_cur_arg; 987 } 988 num_spec++; 989 } 990 991 err = 0; 992 out: 993 if (err) 994 bpf_bprintf_cleanup(); 995 return err; 996 } 997 998 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 999 const void *, data, u32, data_len) 1000 { 1001 int err, num_args; 1002 u32 *bin_args; 1003 1004 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1005 (data_len && !data)) 1006 return -EINVAL; 1007 num_args = data_len / 8; 1008 1009 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1010 * can safely give an unbounded size. 1011 */ 1012 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args); 1013 if (err < 0) 1014 return err; 1015 1016 err = bstr_printf(str, str_size, fmt, bin_args); 1017 1018 bpf_bprintf_cleanup(); 1019 1020 return err + 1; 1021 } 1022 1023 const struct bpf_func_proto bpf_snprintf_proto = { 1024 .func = bpf_snprintf, 1025 .gpl_only = true, 1026 .ret_type = RET_INTEGER, 1027 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1028 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1029 .arg3_type = ARG_PTR_TO_CONST_STR, 1030 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1031 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1032 }; 1033 1034 /* BPF map elements can contain 'struct bpf_timer'. 1035 * Such map owns all of its BPF timers. 1036 * 'struct bpf_timer' is allocated as part of map element allocation 1037 * and it's zero initialized. 1038 * That space is used to keep 'struct bpf_timer_kern'. 1039 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1040 * remembers 'struct bpf_map *' pointer it's part of. 1041 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1042 * bpf_timer_start() arms the timer. 1043 * If user space reference to a map goes to zero at this point 1044 * ops->map_release_uref callback is responsible for cancelling the timers, 1045 * freeing their memory, and decrementing prog's refcnts. 1046 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1047 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1048 * freeing the timers when inner map is replaced or deleted by user space. 1049 */ 1050 struct bpf_hrtimer { 1051 struct hrtimer timer; 1052 struct bpf_map *map; 1053 struct bpf_prog *prog; 1054 void __rcu *callback_fn; 1055 void *value; 1056 }; 1057 1058 /* the actual struct hidden inside uapi struct bpf_timer */ 1059 struct bpf_timer_kern { 1060 struct bpf_hrtimer *timer; 1061 /* bpf_spin_lock is used here instead of spinlock_t to make 1062 * sure that it always fits into space resereved by struct bpf_timer 1063 * regardless of LOCKDEP and spinlock debug flags. 1064 */ 1065 struct bpf_spin_lock lock; 1066 } __attribute__((aligned(8))); 1067 1068 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1069 1070 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1071 { 1072 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1073 struct bpf_map *map = t->map; 1074 void *value = t->value; 1075 bpf_callback_t callback_fn; 1076 void *key; 1077 u32 idx; 1078 1079 BTF_TYPE_EMIT(struct bpf_timer); 1080 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1081 if (!callback_fn) 1082 goto out; 1083 1084 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1085 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1086 * Remember the timer this callback is servicing to prevent 1087 * deadlock if callback_fn() calls bpf_timer_cancel() or 1088 * bpf_map_delete_elem() on the same timer. 1089 */ 1090 this_cpu_write(hrtimer_running, t); 1091 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1092 struct bpf_array *array = container_of(map, struct bpf_array, map); 1093 1094 /* compute the key */ 1095 idx = ((char *)value - array->value) / array->elem_size; 1096 key = &idx; 1097 } else { /* hash or lru */ 1098 key = value - round_up(map->key_size, 8); 1099 } 1100 1101 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1102 /* The verifier checked that return value is zero. */ 1103 1104 this_cpu_write(hrtimer_running, NULL); 1105 out: 1106 return HRTIMER_NORESTART; 1107 } 1108 1109 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1110 u64, flags) 1111 { 1112 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1113 struct bpf_hrtimer *t; 1114 int ret = 0; 1115 1116 BUILD_BUG_ON(MAX_CLOCKS != 16); 1117 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1118 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1119 1120 if (in_nmi()) 1121 return -EOPNOTSUPP; 1122 1123 if (flags >= MAX_CLOCKS || 1124 /* similar to timerfd except _ALARM variants are not supported */ 1125 (clockid != CLOCK_MONOTONIC && 1126 clockid != CLOCK_REALTIME && 1127 clockid != CLOCK_BOOTTIME)) 1128 return -EINVAL; 1129 __bpf_spin_lock_irqsave(&timer->lock); 1130 t = timer->timer; 1131 if (t) { 1132 ret = -EBUSY; 1133 goto out; 1134 } 1135 if (!atomic64_read(&map->usercnt)) { 1136 /* maps with timers must be either held by user space 1137 * or pinned in bpffs. 1138 */ 1139 ret = -EPERM; 1140 goto out; 1141 } 1142 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1143 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1144 if (!t) { 1145 ret = -ENOMEM; 1146 goto out; 1147 } 1148 t->value = (void *)timer - map->timer_off; 1149 t->map = map; 1150 t->prog = NULL; 1151 rcu_assign_pointer(t->callback_fn, NULL); 1152 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1153 t->timer.function = bpf_timer_cb; 1154 timer->timer = t; 1155 out: 1156 __bpf_spin_unlock_irqrestore(&timer->lock); 1157 return ret; 1158 } 1159 1160 static const struct bpf_func_proto bpf_timer_init_proto = { 1161 .func = bpf_timer_init, 1162 .gpl_only = true, 1163 .ret_type = RET_INTEGER, 1164 .arg1_type = ARG_PTR_TO_TIMER, 1165 .arg2_type = ARG_CONST_MAP_PTR, 1166 .arg3_type = ARG_ANYTHING, 1167 }; 1168 1169 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1170 struct bpf_prog_aux *, aux) 1171 { 1172 struct bpf_prog *prev, *prog = aux->prog; 1173 struct bpf_hrtimer *t; 1174 int ret = 0; 1175 1176 if (in_nmi()) 1177 return -EOPNOTSUPP; 1178 __bpf_spin_lock_irqsave(&timer->lock); 1179 t = timer->timer; 1180 if (!t) { 1181 ret = -EINVAL; 1182 goto out; 1183 } 1184 if (!atomic64_read(&t->map->usercnt)) { 1185 /* maps with timers must be either held by user space 1186 * or pinned in bpffs. Otherwise timer might still be 1187 * running even when bpf prog is detached and user space 1188 * is gone, since map_release_uref won't ever be called. 1189 */ 1190 ret = -EPERM; 1191 goto out; 1192 } 1193 prev = t->prog; 1194 if (prev != prog) { 1195 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1196 * can pick different callback_fn-s within the same prog. 1197 */ 1198 prog = bpf_prog_inc_not_zero(prog); 1199 if (IS_ERR(prog)) { 1200 ret = PTR_ERR(prog); 1201 goto out; 1202 } 1203 if (prev) 1204 /* Drop prev prog refcnt when swapping with new prog */ 1205 bpf_prog_put(prev); 1206 t->prog = prog; 1207 } 1208 rcu_assign_pointer(t->callback_fn, callback_fn); 1209 out: 1210 __bpf_spin_unlock_irqrestore(&timer->lock); 1211 return ret; 1212 } 1213 1214 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1215 .func = bpf_timer_set_callback, 1216 .gpl_only = true, 1217 .ret_type = RET_INTEGER, 1218 .arg1_type = ARG_PTR_TO_TIMER, 1219 .arg2_type = ARG_PTR_TO_FUNC, 1220 }; 1221 1222 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1223 { 1224 struct bpf_hrtimer *t; 1225 int ret = 0; 1226 1227 if (in_nmi()) 1228 return -EOPNOTSUPP; 1229 if (flags) 1230 return -EINVAL; 1231 __bpf_spin_lock_irqsave(&timer->lock); 1232 t = timer->timer; 1233 if (!t || !t->prog) { 1234 ret = -EINVAL; 1235 goto out; 1236 } 1237 hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); 1238 out: 1239 __bpf_spin_unlock_irqrestore(&timer->lock); 1240 return ret; 1241 } 1242 1243 static const struct bpf_func_proto bpf_timer_start_proto = { 1244 .func = bpf_timer_start, 1245 .gpl_only = true, 1246 .ret_type = RET_INTEGER, 1247 .arg1_type = ARG_PTR_TO_TIMER, 1248 .arg2_type = ARG_ANYTHING, 1249 .arg3_type = ARG_ANYTHING, 1250 }; 1251 1252 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1253 { 1254 struct bpf_prog *prog = t->prog; 1255 1256 if (prog) { 1257 bpf_prog_put(prog); 1258 t->prog = NULL; 1259 rcu_assign_pointer(t->callback_fn, NULL); 1260 } 1261 } 1262 1263 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1264 { 1265 struct bpf_hrtimer *t; 1266 int ret = 0; 1267 1268 if (in_nmi()) 1269 return -EOPNOTSUPP; 1270 __bpf_spin_lock_irqsave(&timer->lock); 1271 t = timer->timer; 1272 if (!t) { 1273 ret = -EINVAL; 1274 goto out; 1275 } 1276 if (this_cpu_read(hrtimer_running) == t) { 1277 /* If bpf callback_fn is trying to bpf_timer_cancel() 1278 * its own timer the hrtimer_cancel() will deadlock 1279 * since it waits for callback_fn to finish 1280 */ 1281 ret = -EDEADLK; 1282 goto out; 1283 } 1284 drop_prog_refcnt(t); 1285 out: 1286 __bpf_spin_unlock_irqrestore(&timer->lock); 1287 /* Cancel the timer and wait for associated callback to finish 1288 * if it was running. 1289 */ 1290 ret = ret ?: hrtimer_cancel(&t->timer); 1291 return ret; 1292 } 1293 1294 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1295 .func = bpf_timer_cancel, 1296 .gpl_only = true, 1297 .ret_type = RET_INTEGER, 1298 .arg1_type = ARG_PTR_TO_TIMER, 1299 }; 1300 1301 /* This function is called by map_delete/update_elem for individual element and 1302 * by ops->map_release_uref when the user space reference to a map reaches zero. 1303 */ 1304 void bpf_timer_cancel_and_free(void *val) 1305 { 1306 struct bpf_timer_kern *timer = val; 1307 struct bpf_hrtimer *t; 1308 1309 /* Performance optimization: read timer->timer without lock first. */ 1310 if (!READ_ONCE(timer->timer)) 1311 return; 1312 1313 __bpf_spin_lock_irqsave(&timer->lock); 1314 /* re-read it under lock */ 1315 t = timer->timer; 1316 if (!t) 1317 goto out; 1318 drop_prog_refcnt(t); 1319 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1320 * this timer, since it won't be initialized. 1321 */ 1322 timer->timer = NULL; 1323 out: 1324 __bpf_spin_unlock_irqrestore(&timer->lock); 1325 if (!t) 1326 return; 1327 /* Cancel the timer and wait for callback to complete if it was running. 1328 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1329 * right after for both preallocated and non-preallocated maps. 1330 * The timer->timer = NULL was already done and no code path can 1331 * see address 't' anymore. 1332 * 1333 * Check that bpf_map_delete/update_elem() wasn't called from timer 1334 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1335 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1336 * return -1). Though callback_fn is still running on this cpu it's 1337 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1338 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1339 * since timer->timer = NULL was already done. The timer will be 1340 * effectively cancelled because bpf_timer_cb() will return 1341 * HRTIMER_NORESTART. 1342 */ 1343 if (this_cpu_read(hrtimer_running) != t) 1344 hrtimer_cancel(&t->timer); 1345 kfree(t); 1346 } 1347 1348 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1349 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1350 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1351 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1352 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1353 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1354 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1355 1356 const struct bpf_func_proto * 1357 bpf_base_func_proto(enum bpf_func_id func_id) 1358 { 1359 switch (func_id) { 1360 case BPF_FUNC_map_lookup_elem: 1361 return &bpf_map_lookup_elem_proto; 1362 case BPF_FUNC_map_update_elem: 1363 return &bpf_map_update_elem_proto; 1364 case BPF_FUNC_map_delete_elem: 1365 return &bpf_map_delete_elem_proto; 1366 case BPF_FUNC_map_push_elem: 1367 return &bpf_map_push_elem_proto; 1368 case BPF_FUNC_map_pop_elem: 1369 return &bpf_map_pop_elem_proto; 1370 case BPF_FUNC_map_peek_elem: 1371 return &bpf_map_peek_elem_proto; 1372 case BPF_FUNC_get_prandom_u32: 1373 return &bpf_get_prandom_u32_proto; 1374 case BPF_FUNC_get_smp_processor_id: 1375 return &bpf_get_raw_smp_processor_id_proto; 1376 case BPF_FUNC_get_numa_node_id: 1377 return &bpf_get_numa_node_id_proto; 1378 case BPF_FUNC_tail_call: 1379 return &bpf_tail_call_proto; 1380 case BPF_FUNC_ktime_get_ns: 1381 return &bpf_ktime_get_ns_proto; 1382 case BPF_FUNC_ktime_get_boot_ns: 1383 return &bpf_ktime_get_boot_ns_proto; 1384 case BPF_FUNC_ringbuf_output: 1385 return &bpf_ringbuf_output_proto; 1386 case BPF_FUNC_ringbuf_reserve: 1387 return &bpf_ringbuf_reserve_proto; 1388 case BPF_FUNC_ringbuf_submit: 1389 return &bpf_ringbuf_submit_proto; 1390 case BPF_FUNC_ringbuf_discard: 1391 return &bpf_ringbuf_discard_proto; 1392 case BPF_FUNC_ringbuf_query: 1393 return &bpf_ringbuf_query_proto; 1394 case BPF_FUNC_for_each_map_elem: 1395 return &bpf_for_each_map_elem_proto; 1396 case BPF_FUNC_loop: 1397 return &bpf_loop_proto; 1398 case BPF_FUNC_strncmp: 1399 return &bpf_strncmp_proto; 1400 default: 1401 break; 1402 } 1403 1404 if (!bpf_capable()) 1405 return NULL; 1406 1407 switch (func_id) { 1408 case BPF_FUNC_spin_lock: 1409 return &bpf_spin_lock_proto; 1410 case BPF_FUNC_spin_unlock: 1411 return &bpf_spin_unlock_proto; 1412 case BPF_FUNC_jiffies64: 1413 return &bpf_jiffies64_proto; 1414 case BPF_FUNC_per_cpu_ptr: 1415 return &bpf_per_cpu_ptr_proto; 1416 case BPF_FUNC_this_cpu_ptr: 1417 return &bpf_this_cpu_ptr_proto; 1418 case BPF_FUNC_timer_init: 1419 return &bpf_timer_init_proto; 1420 case BPF_FUNC_timer_set_callback: 1421 return &bpf_timer_set_callback_proto; 1422 case BPF_FUNC_timer_start: 1423 return &bpf_timer_start_proto; 1424 case BPF_FUNC_timer_cancel: 1425 return &bpf_timer_cancel_proto; 1426 default: 1427 break; 1428 } 1429 1430 if (!perfmon_capable()) 1431 return NULL; 1432 1433 switch (func_id) { 1434 case BPF_FUNC_trace_printk: 1435 return bpf_get_trace_printk_proto(); 1436 case BPF_FUNC_get_current_task: 1437 return &bpf_get_current_task_proto; 1438 case BPF_FUNC_get_current_task_btf: 1439 return &bpf_get_current_task_btf_proto; 1440 case BPF_FUNC_probe_read_user: 1441 return &bpf_probe_read_user_proto; 1442 case BPF_FUNC_probe_read_kernel: 1443 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1444 NULL : &bpf_probe_read_kernel_proto; 1445 case BPF_FUNC_probe_read_user_str: 1446 return &bpf_probe_read_user_str_proto; 1447 case BPF_FUNC_probe_read_kernel_str: 1448 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1449 NULL : &bpf_probe_read_kernel_str_proto; 1450 case BPF_FUNC_snprintf_btf: 1451 return &bpf_snprintf_btf_proto; 1452 case BPF_FUNC_snprintf: 1453 return &bpf_snprintf_proto; 1454 case BPF_FUNC_task_pt_regs: 1455 return &bpf_task_pt_regs_proto; 1456 case BPF_FUNC_trace_vprintk: 1457 return bpf_get_trace_vprintk_proto(); 1458 default: 1459 return NULL; 1460 } 1461 } 1462