xref: /openbmc/linux/kernel/bpf/helpers.c (revision 56b5b1c7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/rcupdate.h>
8 #include <linux/random.h>
9 #include <linux/smp.h>
10 #include <linux/topology.h>
11 #include <linux/ktime.h>
12 #include <linux/sched.h>
13 #include <linux/uidgid.h>
14 #include <linux/filter.h>
15 #include <linux/ctype.h>
16 #include <linux/jiffies.h>
17 #include <linux/pid_namespace.h>
18 #include <linux/proc_ns.h>
19 #include <linux/security.h>
20 
21 #include "../../lib/kstrtox.h"
22 
23 /* If kernel subsystem is allowing eBPF programs to call this function,
24  * inside its own verifier_ops->get_func_proto() callback it should return
25  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
26  *
27  * Different map implementations will rely on rcu in map methods
28  * lookup/update/delete, therefore eBPF programs must run under rcu lock
29  * if program is allowed to access maps, so check rcu_read_lock_held in
30  * all three functions.
31  */
32 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
33 {
34 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
35 	return (unsigned long) map->ops->map_lookup_elem(map, key);
36 }
37 
38 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
39 	.func		= bpf_map_lookup_elem,
40 	.gpl_only	= false,
41 	.pkt_access	= true,
42 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
43 	.arg1_type	= ARG_CONST_MAP_PTR,
44 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
45 };
46 
47 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
48 	   void *, value, u64, flags)
49 {
50 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
51 	return map->ops->map_update_elem(map, key, value, flags);
52 }
53 
54 const struct bpf_func_proto bpf_map_update_elem_proto = {
55 	.func		= bpf_map_update_elem,
56 	.gpl_only	= false,
57 	.pkt_access	= true,
58 	.ret_type	= RET_INTEGER,
59 	.arg1_type	= ARG_CONST_MAP_PTR,
60 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
61 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
62 	.arg4_type	= ARG_ANYTHING,
63 };
64 
65 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
66 {
67 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
68 	return map->ops->map_delete_elem(map, key);
69 }
70 
71 const struct bpf_func_proto bpf_map_delete_elem_proto = {
72 	.func		= bpf_map_delete_elem,
73 	.gpl_only	= false,
74 	.pkt_access	= true,
75 	.ret_type	= RET_INTEGER,
76 	.arg1_type	= ARG_CONST_MAP_PTR,
77 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
78 };
79 
80 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
81 {
82 	return map->ops->map_push_elem(map, value, flags);
83 }
84 
85 const struct bpf_func_proto bpf_map_push_elem_proto = {
86 	.func		= bpf_map_push_elem,
87 	.gpl_only	= false,
88 	.pkt_access	= true,
89 	.ret_type	= RET_INTEGER,
90 	.arg1_type	= ARG_CONST_MAP_PTR,
91 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
92 	.arg3_type	= ARG_ANYTHING,
93 };
94 
95 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
96 {
97 	return map->ops->map_pop_elem(map, value);
98 }
99 
100 const struct bpf_func_proto bpf_map_pop_elem_proto = {
101 	.func		= bpf_map_pop_elem,
102 	.gpl_only	= false,
103 	.ret_type	= RET_INTEGER,
104 	.arg1_type	= ARG_CONST_MAP_PTR,
105 	.arg2_type	= ARG_PTR_TO_UNINIT_MAP_VALUE,
106 };
107 
108 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
109 {
110 	return map->ops->map_peek_elem(map, value);
111 }
112 
113 const struct bpf_func_proto bpf_map_peek_elem_proto = {
114 	.func		= bpf_map_peek_elem,
115 	.gpl_only	= false,
116 	.ret_type	= RET_INTEGER,
117 	.arg1_type	= ARG_CONST_MAP_PTR,
118 	.arg2_type	= ARG_PTR_TO_UNINIT_MAP_VALUE,
119 };
120 
121 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
122 	.func		= bpf_user_rnd_u32,
123 	.gpl_only	= false,
124 	.ret_type	= RET_INTEGER,
125 };
126 
127 BPF_CALL_0(bpf_get_smp_processor_id)
128 {
129 	return smp_processor_id();
130 }
131 
132 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
133 	.func		= bpf_get_smp_processor_id,
134 	.gpl_only	= false,
135 	.ret_type	= RET_INTEGER,
136 };
137 
138 BPF_CALL_0(bpf_get_numa_node_id)
139 {
140 	return numa_node_id();
141 }
142 
143 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
144 	.func		= bpf_get_numa_node_id,
145 	.gpl_only	= false,
146 	.ret_type	= RET_INTEGER,
147 };
148 
149 BPF_CALL_0(bpf_ktime_get_ns)
150 {
151 	/* NMI safe access to clock monotonic */
152 	return ktime_get_mono_fast_ns();
153 }
154 
155 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
156 	.func		= bpf_ktime_get_ns,
157 	.gpl_only	= false,
158 	.ret_type	= RET_INTEGER,
159 };
160 
161 BPF_CALL_0(bpf_ktime_get_boot_ns)
162 {
163 	/* NMI safe access to clock boottime */
164 	return ktime_get_boot_fast_ns();
165 }
166 
167 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
168 	.func		= bpf_ktime_get_boot_ns,
169 	.gpl_only	= false,
170 	.ret_type	= RET_INTEGER,
171 };
172 
173 BPF_CALL_0(bpf_ktime_get_coarse_ns)
174 {
175 	return ktime_get_coarse_ns();
176 }
177 
178 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
179 	.func		= bpf_ktime_get_coarse_ns,
180 	.gpl_only	= false,
181 	.ret_type	= RET_INTEGER,
182 };
183 
184 BPF_CALL_0(bpf_get_current_pid_tgid)
185 {
186 	struct task_struct *task = current;
187 
188 	if (unlikely(!task))
189 		return -EINVAL;
190 
191 	return (u64) task->tgid << 32 | task->pid;
192 }
193 
194 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
195 	.func		= bpf_get_current_pid_tgid,
196 	.gpl_only	= false,
197 	.ret_type	= RET_INTEGER,
198 };
199 
200 BPF_CALL_0(bpf_get_current_uid_gid)
201 {
202 	struct task_struct *task = current;
203 	kuid_t uid;
204 	kgid_t gid;
205 
206 	if (unlikely(!task))
207 		return -EINVAL;
208 
209 	current_uid_gid(&uid, &gid);
210 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
211 		     from_kuid(&init_user_ns, uid);
212 }
213 
214 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
215 	.func		= bpf_get_current_uid_gid,
216 	.gpl_only	= false,
217 	.ret_type	= RET_INTEGER,
218 };
219 
220 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
221 {
222 	struct task_struct *task = current;
223 
224 	if (unlikely(!task))
225 		goto err_clear;
226 
227 	strncpy(buf, task->comm, size);
228 
229 	/* Verifier guarantees that size > 0. For task->comm exceeding
230 	 * size, guarantee that buf is %NUL-terminated. Unconditionally
231 	 * done here to save the size test.
232 	 */
233 	buf[size - 1] = 0;
234 	return 0;
235 err_clear:
236 	memset(buf, 0, size);
237 	return -EINVAL;
238 }
239 
240 const struct bpf_func_proto bpf_get_current_comm_proto = {
241 	.func		= bpf_get_current_comm,
242 	.gpl_only	= false,
243 	.ret_type	= RET_INTEGER,
244 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
245 	.arg2_type	= ARG_CONST_SIZE,
246 };
247 
248 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
249 
250 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
251 {
252 	arch_spinlock_t *l = (void *)lock;
253 	union {
254 		__u32 val;
255 		arch_spinlock_t lock;
256 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
257 
258 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
259 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
260 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
261 	arch_spin_lock(l);
262 }
263 
264 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
265 {
266 	arch_spinlock_t *l = (void *)lock;
267 
268 	arch_spin_unlock(l);
269 }
270 
271 #else
272 
273 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
274 {
275 	atomic_t *l = (void *)lock;
276 
277 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
278 	do {
279 		atomic_cond_read_relaxed(l, !VAL);
280 	} while (atomic_xchg(l, 1));
281 }
282 
283 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
284 {
285 	atomic_t *l = (void *)lock;
286 
287 	atomic_set_release(l, 0);
288 }
289 
290 #endif
291 
292 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
293 
294 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
295 {
296 	unsigned long flags;
297 
298 	local_irq_save(flags);
299 	__bpf_spin_lock(lock);
300 	__this_cpu_write(irqsave_flags, flags);
301 }
302 
303 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
304 {
305 	__bpf_spin_lock_irqsave(lock);
306 	return 0;
307 }
308 
309 const struct bpf_func_proto bpf_spin_lock_proto = {
310 	.func		= bpf_spin_lock,
311 	.gpl_only	= false,
312 	.ret_type	= RET_VOID,
313 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
314 };
315 
316 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
317 {
318 	unsigned long flags;
319 
320 	flags = __this_cpu_read(irqsave_flags);
321 	__bpf_spin_unlock(lock);
322 	local_irq_restore(flags);
323 }
324 
325 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
326 {
327 	__bpf_spin_unlock_irqrestore(lock);
328 	return 0;
329 }
330 
331 const struct bpf_func_proto bpf_spin_unlock_proto = {
332 	.func		= bpf_spin_unlock,
333 	.gpl_only	= false,
334 	.ret_type	= RET_VOID,
335 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
336 };
337 
338 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
339 			   bool lock_src)
340 {
341 	struct bpf_spin_lock *lock;
342 
343 	if (lock_src)
344 		lock = src + map->spin_lock_off;
345 	else
346 		lock = dst + map->spin_lock_off;
347 	preempt_disable();
348 	__bpf_spin_lock_irqsave(lock);
349 	copy_map_value(map, dst, src);
350 	__bpf_spin_unlock_irqrestore(lock);
351 	preempt_enable();
352 }
353 
354 BPF_CALL_0(bpf_jiffies64)
355 {
356 	return get_jiffies_64();
357 }
358 
359 const struct bpf_func_proto bpf_jiffies64_proto = {
360 	.func		= bpf_jiffies64,
361 	.gpl_only	= false,
362 	.ret_type	= RET_INTEGER,
363 };
364 
365 #ifdef CONFIG_CGROUPS
366 BPF_CALL_0(bpf_get_current_cgroup_id)
367 {
368 	struct cgroup *cgrp;
369 	u64 cgrp_id;
370 
371 	rcu_read_lock();
372 	cgrp = task_dfl_cgroup(current);
373 	cgrp_id = cgroup_id(cgrp);
374 	rcu_read_unlock();
375 
376 	return cgrp_id;
377 }
378 
379 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
380 	.func		= bpf_get_current_cgroup_id,
381 	.gpl_only	= false,
382 	.ret_type	= RET_INTEGER,
383 };
384 
385 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
386 {
387 	struct cgroup *cgrp;
388 	struct cgroup *ancestor;
389 	u64 cgrp_id;
390 
391 	rcu_read_lock();
392 	cgrp = task_dfl_cgroup(current);
393 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
394 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
395 	rcu_read_unlock();
396 
397 	return cgrp_id;
398 }
399 
400 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
401 	.func		= bpf_get_current_ancestor_cgroup_id,
402 	.gpl_only	= false,
403 	.ret_type	= RET_INTEGER,
404 	.arg1_type	= ARG_ANYTHING,
405 };
406 
407 #ifdef CONFIG_CGROUP_BPF
408 
409 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
410 {
411 	/* flags argument is not used now,
412 	 * but provides an ability to extend the API.
413 	 * verifier checks that its value is correct.
414 	 */
415 	enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
416 	struct bpf_cgroup_storage *storage;
417 	struct bpf_cg_run_ctx *ctx;
418 	void *ptr;
419 
420 	/* get current cgroup storage from BPF run context */
421 	ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
422 	storage = ctx->prog_item->cgroup_storage[stype];
423 
424 	if (stype == BPF_CGROUP_STORAGE_SHARED)
425 		ptr = &READ_ONCE(storage->buf)->data[0];
426 	else
427 		ptr = this_cpu_ptr(storage->percpu_buf);
428 
429 	return (unsigned long)ptr;
430 }
431 
432 const struct bpf_func_proto bpf_get_local_storage_proto = {
433 	.func		= bpf_get_local_storage,
434 	.gpl_only	= false,
435 	.ret_type	= RET_PTR_TO_MAP_VALUE,
436 	.arg1_type	= ARG_CONST_MAP_PTR,
437 	.arg2_type	= ARG_ANYTHING,
438 };
439 #endif
440 
441 #define BPF_STRTOX_BASE_MASK 0x1F
442 
443 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
444 			  unsigned long long *res, bool *is_negative)
445 {
446 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
447 	const char *cur_buf = buf;
448 	size_t cur_len = buf_len;
449 	unsigned int consumed;
450 	size_t val_len;
451 	char str[64];
452 
453 	if (!buf || !buf_len || !res || !is_negative)
454 		return -EINVAL;
455 
456 	if (base != 0 && base != 8 && base != 10 && base != 16)
457 		return -EINVAL;
458 
459 	if (flags & ~BPF_STRTOX_BASE_MASK)
460 		return -EINVAL;
461 
462 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
463 		++cur_buf;
464 
465 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
466 	if (*is_negative)
467 		++cur_buf;
468 
469 	consumed = cur_buf - buf;
470 	cur_len -= consumed;
471 	if (!cur_len)
472 		return -EINVAL;
473 
474 	cur_len = min(cur_len, sizeof(str) - 1);
475 	memcpy(str, cur_buf, cur_len);
476 	str[cur_len] = '\0';
477 	cur_buf = str;
478 
479 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
480 	val_len = _parse_integer(cur_buf, base, res);
481 
482 	if (val_len & KSTRTOX_OVERFLOW)
483 		return -ERANGE;
484 
485 	if (val_len == 0)
486 		return -EINVAL;
487 
488 	cur_buf += val_len;
489 	consumed += cur_buf - str;
490 
491 	return consumed;
492 }
493 
494 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
495 			 long long *res)
496 {
497 	unsigned long long _res;
498 	bool is_negative;
499 	int err;
500 
501 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
502 	if (err < 0)
503 		return err;
504 	if (is_negative) {
505 		if ((long long)-_res > 0)
506 			return -ERANGE;
507 		*res = -_res;
508 	} else {
509 		if ((long long)_res < 0)
510 			return -ERANGE;
511 		*res = _res;
512 	}
513 	return err;
514 }
515 
516 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
517 	   long *, res)
518 {
519 	long long _res;
520 	int err;
521 
522 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
523 	if (err < 0)
524 		return err;
525 	if (_res != (long)_res)
526 		return -ERANGE;
527 	*res = _res;
528 	return err;
529 }
530 
531 const struct bpf_func_proto bpf_strtol_proto = {
532 	.func		= bpf_strtol,
533 	.gpl_only	= false,
534 	.ret_type	= RET_INTEGER,
535 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
536 	.arg2_type	= ARG_CONST_SIZE,
537 	.arg3_type	= ARG_ANYTHING,
538 	.arg4_type	= ARG_PTR_TO_LONG,
539 };
540 
541 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
542 	   unsigned long *, res)
543 {
544 	unsigned long long _res;
545 	bool is_negative;
546 	int err;
547 
548 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
549 	if (err < 0)
550 		return err;
551 	if (is_negative)
552 		return -EINVAL;
553 	if (_res != (unsigned long)_res)
554 		return -ERANGE;
555 	*res = _res;
556 	return err;
557 }
558 
559 const struct bpf_func_proto bpf_strtoul_proto = {
560 	.func		= bpf_strtoul,
561 	.gpl_only	= false,
562 	.ret_type	= RET_INTEGER,
563 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
564 	.arg2_type	= ARG_CONST_SIZE,
565 	.arg3_type	= ARG_ANYTHING,
566 	.arg4_type	= ARG_PTR_TO_LONG,
567 };
568 #endif
569 
570 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
571 {
572 	return strncmp(s1, s2, s1_sz);
573 }
574 
575 const struct bpf_func_proto bpf_strncmp_proto = {
576 	.func		= bpf_strncmp,
577 	.gpl_only	= false,
578 	.ret_type	= RET_INTEGER,
579 	.arg1_type	= ARG_PTR_TO_MEM,
580 	.arg2_type	= ARG_CONST_SIZE,
581 	.arg3_type	= ARG_PTR_TO_CONST_STR,
582 };
583 
584 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
585 	   struct bpf_pidns_info *, nsdata, u32, size)
586 {
587 	struct task_struct *task = current;
588 	struct pid_namespace *pidns;
589 	int err = -EINVAL;
590 
591 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
592 		goto clear;
593 
594 	if (unlikely((u64)(dev_t)dev != dev))
595 		goto clear;
596 
597 	if (unlikely(!task))
598 		goto clear;
599 
600 	pidns = task_active_pid_ns(task);
601 	if (unlikely(!pidns)) {
602 		err = -ENOENT;
603 		goto clear;
604 	}
605 
606 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
607 		goto clear;
608 
609 	nsdata->pid = task_pid_nr_ns(task, pidns);
610 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
611 	return 0;
612 clear:
613 	memset((void *)nsdata, 0, (size_t) size);
614 	return err;
615 }
616 
617 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
618 	.func		= bpf_get_ns_current_pid_tgid,
619 	.gpl_only	= false,
620 	.ret_type	= RET_INTEGER,
621 	.arg1_type	= ARG_ANYTHING,
622 	.arg2_type	= ARG_ANYTHING,
623 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
624 	.arg4_type      = ARG_CONST_SIZE,
625 };
626 
627 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
628 	.func		= bpf_get_raw_cpu_id,
629 	.gpl_only	= false,
630 	.ret_type	= RET_INTEGER,
631 };
632 
633 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
634 	   u64, flags, void *, data, u64, size)
635 {
636 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
637 		return -EINVAL;
638 
639 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
640 }
641 
642 const struct bpf_func_proto bpf_event_output_data_proto =  {
643 	.func		= bpf_event_output_data,
644 	.gpl_only       = true,
645 	.ret_type       = RET_INTEGER,
646 	.arg1_type      = ARG_PTR_TO_CTX,
647 	.arg2_type      = ARG_CONST_MAP_PTR,
648 	.arg3_type      = ARG_ANYTHING,
649 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
650 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
651 };
652 
653 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
654 	   const void __user *, user_ptr)
655 {
656 	int ret = copy_from_user(dst, user_ptr, size);
657 
658 	if (unlikely(ret)) {
659 		memset(dst, 0, size);
660 		ret = -EFAULT;
661 	}
662 
663 	return ret;
664 }
665 
666 const struct bpf_func_proto bpf_copy_from_user_proto = {
667 	.func		= bpf_copy_from_user,
668 	.gpl_only	= false,
669 	.ret_type	= RET_INTEGER,
670 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
671 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
672 	.arg3_type	= ARG_ANYTHING,
673 };
674 
675 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
676 {
677 	if (cpu >= nr_cpu_ids)
678 		return (unsigned long)NULL;
679 
680 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
681 }
682 
683 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
684 	.func		= bpf_per_cpu_ptr,
685 	.gpl_only	= false,
686 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
687 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
688 	.arg2_type	= ARG_ANYTHING,
689 };
690 
691 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
692 {
693 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
694 }
695 
696 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
697 	.func		= bpf_this_cpu_ptr,
698 	.gpl_only	= false,
699 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
700 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
701 };
702 
703 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
704 		size_t bufsz)
705 {
706 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
707 
708 	buf[0] = 0;
709 
710 	switch (fmt_ptype) {
711 	case 's':
712 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
713 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
714 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
715 		fallthrough;
716 #endif
717 	case 'k':
718 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
719 	case 'u':
720 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
721 	}
722 
723 	return -EINVAL;
724 }
725 
726 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
727  * arguments representation.
728  */
729 #define MAX_BPRINTF_BUF_LEN	512
730 
731 /* Support executing three nested bprintf helper calls on a given CPU */
732 #define MAX_BPRINTF_NEST_LEVEL	3
733 struct bpf_bprintf_buffers {
734 	char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
735 };
736 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
737 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
738 
739 static int try_get_fmt_tmp_buf(char **tmp_buf)
740 {
741 	struct bpf_bprintf_buffers *bufs;
742 	int nest_level;
743 
744 	preempt_disable();
745 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
746 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
747 		this_cpu_dec(bpf_bprintf_nest_level);
748 		preempt_enable();
749 		return -EBUSY;
750 	}
751 	bufs = this_cpu_ptr(&bpf_bprintf_bufs);
752 	*tmp_buf = bufs->tmp_bufs[nest_level - 1];
753 
754 	return 0;
755 }
756 
757 void bpf_bprintf_cleanup(void)
758 {
759 	if (this_cpu_read(bpf_bprintf_nest_level)) {
760 		this_cpu_dec(bpf_bprintf_nest_level);
761 		preempt_enable();
762 	}
763 }
764 
765 /*
766  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
767  *
768  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
769  *
770  * This can be used in two ways:
771  * - Format string verification only: when bin_args is NULL
772  * - Arguments preparation: in addition to the above verification, it writes in
773  *   bin_args a binary representation of arguments usable by bstr_printf where
774  *   pointers from BPF have been sanitized.
775  *
776  * In argument preparation mode, if 0 is returned, safe temporary buffers are
777  * allocated and bpf_bprintf_cleanup should be called to free them after use.
778  */
779 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
780 			u32 **bin_args, u32 num_args)
781 {
782 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
783 	size_t sizeof_cur_arg, sizeof_cur_ip;
784 	int err, i, num_spec = 0;
785 	u64 cur_arg;
786 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
787 
788 	fmt_end = strnchr(fmt, fmt_size, 0);
789 	if (!fmt_end)
790 		return -EINVAL;
791 	fmt_size = fmt_end - fmt;
792 
793 	if (bin_args) {
794 		if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
795 			return -EBUSY;
796 
797 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
798 		*bin_args = (u32 *)tmp_buf;
799 	}
800 
801 	for (i = 0; i < fmt_size; i++) {
802 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
803 			err = -EINVAL;
804 			goto out;
805 		}
806 
807 		if (fmt[i] != '%')
808 			continue;
809 
810 		if (fmt[i + 1] == '%') {
811 			i++;
812 			continue;
813 		}
814 
815 		if (num_spec >= num_args) {
816 			err = -EINVAL;
817 			goto out;
818 		}
819 
820 		/* The string is zero-terminated so if fmt[i] != 0, we can
821 		 * always access fmt[i + 1], in the worst case it will be a 0
822 		 */
823 		i++;
824 
825 		/* skip optional "[0 +-][num]" width formatting field */
826 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
827 		       fmt[i] == ' ')
828 			i++;
829 		if (fmt[i] >= '1' && fmt[i] <= '9') {
830 			i++;
831 			while (fmt[i] >= '0' && fmt[i] <= '9')
832 				i++;
833 		}
834 
835 		if (fmt[i] == 'p') {
836 			sizeof_cur_arg = sizeof(long);
837 
838 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
839 			    fmt[i + 2] == 's') {
840 				fmt_ptype = fmt[i + 1];
841 				i += 2;
842 				goto fmt_str;
843 			}
844 
845 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
846 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
847 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
848 			    fmt[i + 1] == 'S') {
849 				/* just kernel pointers */
850 				if (tmp_buf)
851 					cur_arg = raw_args[num_spec];
852 				i++;
853 				goto nocopy_fmt;
854 			}
855 
856 			if (fmt[i + 1] == 'B') {
857 				if (tmp_buf)  {
858 					err = snprintf(tmp_buf,
859 						       (tmp_buf_end - tmp_buf),
860 						       "%pB",
861 						       (void *)(long)raw_args[num_spec]);
862 					tmp_buf += (err + 1);
863 				}
864 
865 				i++;
866 				num_spec++;
867 				continue;
868 			}
869 
870 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
871 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
872 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
873 				err = -EINVAL;
874 				goto out;
875 			}
876 
877 			i += 2;
878 			if (!tmp_buf)
879 				goto nocopy_fmt;
880 
881 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
882 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
883 				err = -ENOSPC;
884 				goto out;
885 			}
886 
887 			unsafe_ptr = (char *)(long)raw_args[num_spec];
888 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
889 						       sizeof_cur_ip);
890 			if (err < 0)
891 				memset(cur_ip, 0, sizeof_cur_ip);
892 
893 			/* hack: bstr_printf expects IP addresses to be
894 			 * pre-formatted as strings, ironically, the easiest way
895 			 * to do that is to call snprintf.
896 			 */
897 			ip_spec[2] = fmt[i - 1];
898 			ip_spec[3] = fmt[i];
899 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
900 				       ip_spec, &cur_ip);
901 
902 			tmp_buf += err + 1;
903 			num_spec++;
904 
905 			continue;
906 		} else if (fmt[i] == 's') {
907 			fmt_ptype = fmt[i];
908 fmt_str:
909 			if (fmt[i + 1] != 0 &&
910 			    !isspace(fmt[i + 1]) &&
911 			    !ispunct(fmt[i + 1])) {
912 				err = -EINVAL;
913 				goto out;
914 			}
915 
916 			if (!tmp_buf)
917 				goto nocopy_fmt;
918 
919 			if (tmp_buf_end == tmp_buf) {
920 				err = -ENOSPC;
921 				goto out;
922 			}
923 
924 			unsafe_ptr = (char *)(long)raw_args[num_spec];
925 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
926 						    fmt_ptype,
927 						    tmp_buf_end - tmp_buf);
928 			if (err < 0) {
929 				tmp_buf[0] = '\0';
930 				err = 1;
931 			}
932 
933 			tmp_buf += err;
934 			num_spec++;
935 
936 			continue;
937 		} else if (fmt[i] == 'c') {
938 			if (!tmp_buf)
939 				goto nocopy_fmt;
940 
941 			if (tmp_buf_end == tmp_buf) {
942 				err = -ENOSPC;
943 				goto out;
944 			}
945 
946 			*tmp_buf = raw_args[num_spec];
947 			tmp_buf++;
948 			num_spec++;
949 
950 			continue;
951 		}
952 
953 		sizeof_cur_arg = sizeof(int);
954 
955 		if (fmt[i] == 'l') {
956 			sizeof_cur_arg = sizeof(long);
957 			i++;
958 		}
959 		if (fmt[i] == 'l') {
960 			sizeof_cur_arg = sizeof(long long);
961 			i++;
962 		}
963 
964 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
965 		    fmt[i] != 'x' && fmt[i] != 'X') {
966 			err = -EINVAL;
967 			goto out;
968 		}
969 
970 		if (tmp_buf)
971 			cur_arg = raw_args[num_spec];
972 nocopy_fmt:
973 		if (tmp_buf) {
974 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
975 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
976 				err = -ENOSPC;
977 				goto out;
978 			}
979 
980 			if (sizeof_cur_arg == 8) {
981 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
982 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
983 			} else {
984 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
985 			}
986 			tmp_buf += sizeof_cur_arg;
987 		}
988 		num_spec++;
989 	}
990 
991 	err = 0;
992 out:
993 	if (err)
994 		bpf_bprintf_cleanup();
995 	return err;
996 }
997 
998 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
999 	   const void *, data, u32, data_len)
1000 {
1001 	int err, num_args;
1002 	u32 *bin_args;
1003 
1004 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1005 	    (data_len && !data))
1006 		return -EINVAL;
1007 	num_args = data_len / 8;
1008 
1009 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1010 	 * can safely give an unbounded size.
1011 	 */
1012 	err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
1013 	if (err < 0)
1014 		return err;
1015 
1016 	err = bstr_printf(str, str_size, fmt, bin_args);
1017 
1018 	bpf_bprintf_cleanup();
1019 
1020 	return err + 1;
1021 }
1022 
1023 const struct bpf_func_proto bpf_snprintf_proto = {
1024 	.func		= bpf_snprintf,
1025 	.gpl_only	= true,
1026 	.ret_type	= RET_INTEGER,
1027 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1028 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1029 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1030 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1031 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1032 };
1033 
1034 /* BPF map elements can contain 'struct bpf_timer'.
1035  * Such map owns all of its BPF timers.
1036  * 'struct bpf_timer' is allocated as part of map element allocation
1037  * and it's zero initialized.
1038  * That space is used to keep 'struct bpf_timer_kern'.
1039  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1040  * remembers 'struct bpf_map *' pointer it's part of.
1041  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1042  * bpf_timer_start() arms the timer.
1043  * If user space reference to a map goes to zero at this point
1044  * ops->map_release_uref callback is responsible for cancelling the timers,
1045  * freeing their memory, and decrementing prog's refcnts.
1046  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1047  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1048  * freeing the timers when inner map is replaced or deleted by user space.
1049  */
1050 struct bpf_hrtimer {
1051 	struct hrtimer timer;
1052 	struct bpf_map *map;
1053 	struct bpf_prog *prog;
1054 	void __rcu *callback_fn;
1055 	void *value;
1056 };
1057 
1058 /* the actual struct hidden inside uapi struct bpf_timer */
1059 struct bpf_timer_kern {
1060 	struct bpf_hrtimer *timer;
1061 	/* bpf_spin_lock is used here instead of spinlock_t to make
1062 	 * sure that it always fits into space resereved by struct bpf_timer
1063 	 * regardless of LOCKDEP and spinlock debug flags.
1064 	 */
1065 	struct bpf_spin_lock lock;
1066 } __attribute__((aligned(8)));
1067 
1068 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1069 
1070 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1071 {
1072 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1073 	struct bpf_map *map = t->map;
1074 	void *value = t->value;
1075 	bpf_callback_t callback_fn;
1076 	void *key;
1077 	u32 idx;
1078 
1079 	BTF_TYPE_EMIT(struct bpf_timer);
1080 	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1081 	if (!callback_fn)
1082 		goto out;
1083 
1084 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1085 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1086 	 * Remember the timer this callback is servicing to prevent
1087 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1088 	 * bpf_map_delete_elem() on the same timer.
1089 	 */
1090 	this_cpu_write(hrtimer_running, t);
1091 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1092 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1093 
1094 		/* compute the key */
1095 		idx = ((char *)value - array->value) / array->elem_size;
1096 		key = &idx;
1097 	} else { /* hash or lru */
1098 		key = value - round_up(map->key_size, 8);
1099 	}
1100 
1101 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1102 	/* The verifier checked that return value is zero. */
1103 
1104 	this_cpu_write(hrtimer_running, NULL);
1105 out:
1106 	return HRTIMER_NORESTART;
1107 }
1108 
1109 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1110 	   u64, flags)
1111 {
1112 	clockid_t clockid = flags & (MAX_CLOCKS - 1);
1113 	struct bpf_hrtimer *t;
1114 	int ret = 0;
1115 
1116 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1117 	BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1118 	BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1119 
1120 	if (in_nmi())
1121 		return -EOPNOTSUPP;
1122 
1123 	if (flags >= MAX_CLOCKS ||
1124 	    /* similar to timerfd except _ALARM variants are not supported */
1125 	    (clockid != CLOCK_MONOTONIC &&
1126 	     clockid != CLOCK_REALTIME &&
1127 	     clockid != CLOCK_BOOTTIME))
1128 		return -EINVAL;
1129 	__bpf_spin_lock_irqsave(&timer->lock);
1130 	t = timer->timer;
1131 	if (t) {
1132 		ret = -EBUSY;
1133 		goto out;
1134 	}
1135 	if (!atomic64_read(&map->usercnt)) {
1136 		/* maps with timers must be either held by user space
1137 		 * or pinned in bpffs.
1138 		 */
1139 		ret = -EPERM;
1140 		goto out;
1141 	}
1142 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1143 	t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1144 	if (!t) {
1145 		ret = -ENOMEM;
1146 		goto out;
1147 	}
1148 	t->value = (void *)timer - map->timer_off;
1149 	t->map = map;
1150 	t->prog = NULL;
1151 	rcu_assign_pointer(t->callback_fn, NULL);
1152 	hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1153 	t->timer.function = bpf_timer_cb;
1154 	timer->timer = t;
1155 out:
1156 	__bpf_spin_unlock_irqrestore(&timer->lock);
1157 	return ret;
1158 }
1159 
1160 static const struct bpf_func_proto bpf_timer_init_proto = {
1161 	.func		= bpf_timer_init,
1162 	.gpl_only	= true,
1163 	.ret_type	= RET_INTEGER,
1164 	.arg1_type	= ARG_PTR_TO_TIMER,
1165 	.arg2_type	= ARG_CONST_MAP_PTR,
1166 	.arg3_type	= ARG_ANYTHING,
1167 };
1168 
1169 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1170 	   struct bpf_prog_aux *, aux)
1171 {
1172 	struct bpf_prog *prev, *prog = aux->prog;
1173 	struct bpf_hrtimer *t;
1174 	int ret = 0;
1175 
1176 	if (in_nmi())
1177 		return -EOPNOTSUPP;
1178 	__bpf_spin_lock_irqsave(&timer->lock);
1179 	t = timer->timer;
1180 	if (!t) {
1181 		ret = -EINVAL;
1182 		goto out;
1183 	}
1184 	if (!atomic64_read(&t->map->usercnt)) {
1185 		/* maps with timers must be either held by user space
1186 		 * or pinned in bpffs. Otherwise timer might still be
1187 		 * running even when bpf prog is detached and user space
1188 		 * is gone, since map_release_uref won't ever be called.
1189 		 */
1190 		ret = -EPERM;
1191 		goto out;
1192 	}
1193 	prev = t->prog;
1194 	if (prev != prog) {
1195 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1196 		 * can pick different callback_fn-s within the same prog.
1197 		 */
1198 		prog = bpf_prog_inc_not_zero(prog);
1199 		if (IS_ERR(prog)) {
1200 			ret = PTR_ERR(prog);
1201 			goto out;
1202 		}
1203 		if (prev)
1204 			/* Drop prev prog refcnt when swapping with new prog */
1205 			bpf_prog_put(prev);
1206 		t->prog = prog;
1207 	}
1208 	rcu_assign_pointer(t->callback_fn, callback_fn);
1209 out:
1210 	__bpf_spin_unlock_irqrestore(&timer->lock);
1211 	return ret;
1212 }
1213 
1214 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1215 	.func		= bpf_timer_set_callback,
1216 	.gpl_only	= true,
1217 	.ret_type	= RET_INTEGER,
1218 	.arg1_type	= ARG_PTR_TO_TIMER,
1219 	.arg2_type	= ARG_PTR_TO_FUNC,
1220 };
1221 
1222 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1223 {
1224 	struct bpf_hrtimer *t;
1225 	int ret = 0;
1226 
1227 	if (in_nmi())
1228 		return -EOPNOTSUPP;
1229 	if (flags)
1230 		return -EINVAL;
1231 	__bpf_spin_lock_irqsave(&timer->lock);
1232 	t = timer->timer;
1233 	if (!t || !t->prog) {
1234 		ret = -EINVAL;
1235 		goto out;
1236 	}
1237 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1238 out:
1239 	__bpf_spin_unlock_irqrestore(&timer->lock);
1240 	return ret;
1241 }
1242 
1243 static const struct bpf_func_proto bpf_timer_start_proto = {
1244 	.func		= bpf_timer_start,
1245 	.gpl_only	= true,
1246 	.ret_type	= RET_INTEGER,
1247 	.arg1_type	= ARG_PTR_TO_TIMER,
1248 	.arg2_type	= ARG_ANYTHING,
1249 	.arg3_type	= ARG_ANYTHING,
1250 };
1251 
1252 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1253 {
1254 	struct bpf_prog *prog = t->prog;
1255 
1256 	if (prog) {
1257 		bpf_prog_put(prog);
1258 		t->prog = NULL;
1259 		rcu_assign_pointer(t->callback_fn, NULL);
1260 	}
1261 }
1262 
1263 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1264 {
1265 	struct bpf_hrtimer *t;
1266 	int ret = 0;
1267 
1268 	if (in_nmi())
1269 		return -EOPNOTSUPP;
1270 	__bpf_spin_lock_irqsave(&timer->lock);
1271 	t = timer->timer;
1272 	if (!t) {
1273 		ret = -EINVAL;
1274 		goto out;
1275 	}
1276 	if (this_cpu_read(hrtimer_running) == t) {
1277 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1278 		 * its own timer the hrtimer_cancel() will deadlock
1279 		 * since it waits for callback_fn to finish
1280 		 */
1281 		ret = -EDEADLK;
1282 		goto out;
1283 	}
1284 	drop_prog_refcnt(t);
1285 out:
1286 	__bpf_spin_unlock_irqrestore(&timer->lock);
1287 	/* Cancel the timer and wait for associated callback to finish
1288 	 * if it was running.
1289 	 */
1290 	ret = ret ?: hrtimer_cancel(&t->timer);
1291 	return ret;
1292 }
1293 
1294 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1295 	.func		= bpf_timer_cancel,
1296 	.gpl_only	= true,
1297 	.ret_type	= RET_INTEGER,
1298 	.arg1_type	= ARG_PTR_TO_TIMER,
1299 };
1300 
1301 /* This function is called by map_delete/update_elem for individual element and
1302  * by ops->map_release_uref when the user space reference to a map reaches zero.
1303  */
1304 void bpf_timer_cancel_and_free(void *val)
1305 {
1306 	struct bpf_timer_kern *timer = val;
1307 	struct bpf_hrtimer *t;
1308 
1309 	/* Performance optimization: read timer->timer without lock first. */
1310 	if (!READ_ONCE(timer->timer))
1311 		return;
1312 
1313 	__bpf_spin_lock_irqsave(&timer->lock);
1314 	/* re-read it under lock */
1315 	t = timer->timer;
1316 	if (!t)
1317 		goto out;
1318 	drop_prog_refcnt(t);
1319 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1320 	 * this timer, since it won't be initialized.
1321 	 */
1322 	timer->timer = NULL;
1323 out:
1324 	__bpf_spin_unlock_irqrestore(&timer->lock);
1325 	if (!t)
1326 		return;
1327 	/* Cancel the timer and wait for callback to complete if it was running.
1328 	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1329 	 * right after for both preallocated and non-preallocated maps.
1330 	 * The timer->timer = NULL was already done and no code path can
1331 	 * see address 't' anymore.
1332 	 *
1333 	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1334 	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1335 	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1336 	 * return -1). Though callback_fn is still running on this cpu it's
1337 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1338 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1339 	 * since timer->timer = NULL was already done. The timer will be
1340 	 * effectively cancelled because bpf_timer_cb() will return
1341 	 * HRTIMER_NORESTART.
1342 	 */
1343 	if (this_cpu_read(hrtimer_running) != t)
1344 		hrtimer_cancel(&t->timer);
1345 	kfree(t);
1346 }
1347 
1348 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1349 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1350 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1351 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1352 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1353 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1354 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1355 
1356 const struct bpf_func_proto *
1357 bpf_base_func_proto(enum bpf_func_id func_id)
1358 {
1359 	switch (func_id) {
1360 	case BPF_FUNC_map_lookup_elem:
1361 		return &bpf_map_lookup_elem_proto;
1362 	case BPF_FUNC_map_update_elem:
1363 		return &bpf_map_update_elem_proto;
1364 	case BPF_FUNC_map_delete_elem:
1365 		return &bpf_map_delete_elem_proto;
1366 	case BPF_FUNC_map_push_elem:
1367 		return &bpf_map_push_elem_proto;
1368 	case BPF_FUNC_map_pop_elem:
1369 		return &bpf_map_pop_elem_proto;
1370 	case BPF_FUNC_map_peek_elem:
1371 		return &bpf_map_peek_elem_proto;
1372 	case BPF_FUNC_get_prandom_u32:
1373 		return &bpf_get_prandom_u32_proto;
1374 	case BPF_FUNC_get_smp_processor_id:
1375 		return &bpf_get_raw_smp_processor_id_proto;
1376 	case BPF_FUNC_get_numa_node_id:
1377 		return &bpf_get_numa_node_id_proto;
1378 	case BPF_FUNC_tail_call:
1379 		return &bpf_tail_call_proto;
1380 	case BPF_FUNC_ktime_get_ns:
1381 		return &bpf_ktime_get_ns_proto;
1382 	case BPF_FUNC_ktime_get_boot_ns:
1383 		return &bpf_ktime_get_boot_ns_proto;
1384 	case BPF_FUNC_ringbuf_output:
1385 		return &bpf_ringbuf_output_proto;
1386 	case BPF_FUNC_ringbuf_reserve:
1387 		return &bpf_ringbuf_reserve_proto;
1388 	case BPF_FUNC_ringbuf_submit:
1389 		return &bpf_ringbuf_submit_proto;
1390 	case BPF_FUNC_ringbuf_discard:
1391 		return &bpf_ringbuf_discard_proto;
1392 	case BPF_FUNC_ringbuf_query:
1393 		return &bpf_ringbuf_query_proto;
1394 	case BPF_FUNC_for_each_map_elem:
1395 		return &bpf_for_each_map_elem_proto;
1396 	case BPF_FUNC_loop:
1397 		return &bpf_loop_proto;
1398 	case BPF_FUNC_strncmp:
1399 		return &bpf_strncmp_proto;
1400 	default:
1401 		break;
1402 	}
1403 
1404 	if (!bpf_capable())
1405 		return NULL;
1406 
1407 	switch (func_id) {
1408 	case BPF_FUNC_spin_lock:
1409 		return &bpf_spin_lock_proto;
1410 	case BPF_FUNC_spin_unlock:
1411 		return &bpf_spin_unlock_proto;
1412 	case BPF_FUNC_jiffies64:
1413 		return &bpf_jiffies64_proto;
1414 	case BPF_FUNC_per_cpu_ptr:
1415 		return &bpf_per_cpu_ptr_proto;
1416 	case BPF_FUNC_this_cpu_ptr:
1417 		return &bpf_this_cpu_ptr_proto;
1418 	case BPF_FUNC_timer_init:
1419 		return &bpf_timer_init_proto;
1420 	case BPF_FUNC_timer_set_callback:
1421 		return &bpf_timer_set_callback_proto;
1422 	case BPF_FUNC_timer_start:
1423 		return &bpf_timer_start_proto;
1424 	case BPF_FUNC_timer_cancel:
1425 		return &bpf_timer_cancel_proto;
1426 	default:
1427 		break;
1428 	}
1429 
1430 	if (!perfmon_capable())
1431 		return NULL;
1432 
1433 	switch (func_id) {
1434 	case BPF_FUNC_trace_printk:
1435 		return bpf_get_trace_printk_proto();
1436 	case BPF_FUNC_get_current_task:
1437 		return &bpf_get_current_task_proto;
1438 	case BPF_FUNC_get_current_task_btf:
1439 		return &bpf_get_current_task_btf_proto;
1440 	case BPF_FUNC_probe_read_user:
1441 		return &bpf_probe_read_user_proto;
1442 	case BPF_FUNC_probe_read_kernel:
1443 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1444 		       NULL : &bpf_probe_read_kernel_proto;
1445 	case BPF_FUNC_probe_read_user_str:
1446 		return &bpf_probe_read_user_str_proto;
1447 	case BPF_FUNC_probe_read_kernel_str:
1448 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1449 		       NULL : &bpf_probe_read_kernel_str_proto;
1450 	case BPF_FUNC_snprintf_btf:
1451 		return &bpf_snprintf_btf_proto;
1452 	case BPF_FUNC_snprintf:
1453 		return &bpf_snprintf_proto;
1454 	case BPF_FUNC_task_pt_regs:
1455 		return &bpf_task_pt_regs_proto;
1456 	case BPF_FUNC_trace_vprintk:
1457 		return bpf_get_trace_vprintk_proto();
1458 	default:
1459 		return NULL;
1460 	}
1461 }
1462