1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/bpf-cgroup.h> 6 #include <linux/rcupdate.h> 7 #include <linux/random.h> 8 #include <linux/smp.h> 9 #include <linux/topology.h> 10 #include <linux/ktime.h> 11 #include <linux/sched.h> 12 #include <linux/uidgid.h> 13 #include <linux/filter.h> 14 #include <linux/ctype.h> 15 #include <linux/jiffies.h> 16 #include <linux/pid_namespace.h> 17 #include <linux/proc_ns.h> 18 #include <linux/security.h> 19 20 #include "../../lib/kstrtox.h" 21 22 /* If kernel subsystem is allowing eBPF programs to call this function, 23 * inside its own verifier_ops->get_func_proto() callback it should return 24 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 25 * 26 * Different map implementations will rely on rcu in map methods 27 * lookup/update/delete, therefore eBPF programs must run under rcu lock 28 * if program is allowed to access maps, so check rcu_read_lock_held in 29 * all three functions. 30 */ 31 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 32 { 33 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 34 return (unsigned long) map->ops->map_lookup_elem(map, key); 35 } 36 37 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 38 .func = bpf_map_lookup_elem, 39 .gpl_only = false, 40 .pkt_access = true, 41 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 42 .arg1_type = ARG_CONST_MAP_PTR, 43 .arg2_type = ARG_PTR_TO_MAP_KEY, 44 }; 45 46 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 47 void *, value, u64, flags) 48 { 49 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 50 return map->ops->map_update_elem(map, key, value, flags); 51 } 52 53 const struct bpf_func_proto bpf_map_update_elem_proto = { 54 .func = bpf_map_update_elem, 55 .gpl_only = false, 56 .pkt_access = true, 57 .ret_type = RET_INTEGER, 58 .arg1_type = ARG_CONST_MAP_PTR, 59 .arg2_type = ARG_PTR_TO_MAP_KEY, 60 .arg3_type = ARG_PTR_TO_MAP_VALUE, 61 .arg4_type = ARG_ANYTHING, 62 }; 63 64 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 65 { 66 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 67 return map->ops->map_delete_elem(map, key); 68 } 69 70 const struct bpf_func_proto bpf_map_delete_elem_proto = { 71 .func = bpf_map_delete_elem, 72 .gpl_only = false, 73 .pkt_access = true, 74 .ret_type = RET_INTEGER, 75 .arg1_type = ARG_CONST_MAP_PTR, 76 .arg2_type = ARG_PTR_TO_MAP_KEY, 77 }; 78 79 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 80 { 81 return map->ops->map_push_elem(map, value, flags); 82 } 83 84 const struct bpf_func_proto bpf_map_push_elem_proto = { 85 .func = bpf_map_push_elem, 86 .gpl_only = false, 87 .pkt_access = true, 88 .ret_type = RET_INTEGER, 89 .arg1_type = ARG_CONST_MAP_PTR, 90 .arg2_type = ARG_PTR_TO_MAP_VALUE, 91 .arg3_type = ARG_ANYTHING, 92 }; 93 94 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 95 { 96 return map->ops->map_pop_elem(map, value); 97 } 98 99 const struct bpf_func_proto bpf_map_pop_elem_proto = { 100 .func = bpf_map_pop_elem, 101 .gpl_only = false, 102 .ret_type = RET_INTEGER, 103 .arg1_type = ARG_CONST_MAP_PTR, 104 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE, 105 }; 106 107 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 108 { 109 return map->ops->map_peek_elem(map, value); 110 } 111 112 const struct bpf_func_proto bpf_map_peek_elem_proto = { 113 .func = bpf_map_peek_elem, 114 .gpl_only = false, 115 .ret_type = RET_INTEGER, 116 .arg1_type = ARG_CONST_MAP_PTR, 117 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE, 118 }; 119 120 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 121 .func = bpf_user_rnd_u32, 122 .gpl_only = false, 123 .ret_type = RET_INTEGER, 124 }; 125 126 BPF_CALL_0(bpf_get_smp_processor_id) 127 { 128 return smp_processor_id(); 129 } 130 131 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 132 .func = bpf_get_smp_processor_id, 133 .gpl_only = false, 134 .ret_type = RET_INTEGER, 135 }; 136 137 BPF_CALL_0(bpf_get_numa_node_id) 138 { 139 return numa_node_id(); 140 } 141 142 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 143 .func = bpf_get_numa_node_id, 144 .gpl_only = false, 145 .ret_type = RET_INTEGER, 146 }; 147 148 BPF_CALL_0(bpf_ktime_get_ns) 149 { 150 /* NMI safe access to clock monotonic */ 151 return ktime_get_mono_fast_ns(); 152 } 153 154 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 155 .func = bpf_ktime_get_ns, 156 .gpl_only = false, 157 .ret_type = RET_INTEGER, 158 }; 159 160 BPF_CALL_0(bpf_ktime_get_boot_ns) 161 { 162 /* NMI safe access to clock boottime */ 163 return ktime_get_boot_fast_ns(); 164 } 165 166 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 167 .func = bpf_ktime_get_boot_ns, 168 .gpl_only = false, 169 .ret_type = RET_INTEGER, 170 }; 171 172 BPF_CALL_0(bpf_ktime_get_coarse_ns) 173 { 174 return ktime_get_coarse_ns(); 175 } 176 177 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 178 .func = bpf_ktime_get_coarse_ns, 179 .gpl_only = false, 180 .ret_type = RET_INTEGER, 181 }; 182 183 BPF_CALL_0(bpf_get_current_pid_tgid) 184 { 185 struct task_struct *task = current; 186 187 if (unlikely(!task)) 188 return -EINVAL; 189 190 return (u64) task->tgid << 32 | task->pid; 191 } 192 193 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 194 .func = bpf_get_current_pid_tgid, 195 .gpl_only = false, 196 .ret_type = RET_INTEGER, 197 }; 198 199 BPF_CALL_0(bpf_get_current_uid_gid) 200 { 201 struct task_struct *task = current; 202 kuid_t uid; 203 kgid_t gid; 204 205 if (unlikely(!task)) 206 return -EINVAL; 207 208 current_uid_gid(&uid, &gid); 209 return (u64) from_kgid(&init_user_ns, gid) << 32 | 210 from_kuid(&init_user_ns, uid); 211 } 212 213 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 214 .func = bpf_get_current_uid_gid, 215 .gpl_only = false, 216 .ret_type = RET_INTEGER, 217 }; 218 219 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 220 { 221 struct task_struct *task = current; 222 223 if (unlikely(!task)) 224 goto err_clear; 225 226 strncpy(buf, task->comm, size); 227 228 /* Verifier guarantees that size > 0. For task->comm exceeding 229 * size, guarantee that buf is %NUL-terminated. Unconditionally 230 * done here to save the size test. 231 */ 232 buf[size - 1] = 0; 233 return 0; 234 err_clear: 235 memset(buf, 0, size); 236 return -EINVAL; 237 } 238 239 const struct bpf_func_proto bpf_get_current_comm_proto = { 240 .func = bpf_get_current_comm, 241 .gpl_only = false, 242 .ret_type = RET_INTEGER, 243 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 244 .arg2_type = ARG_CONST_SIZE, 245 }; 246 247 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 248 249 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 250 { 251 arch_spinlock_t *l = (void *)lock; 252 union { 253 __u32 val; 254 arch_spinlock_t lock; 255 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 256 257 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 258 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 259 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 260 arch_spin_lock(l); 261 } 262 263 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 264 { 265 arch_spinlock_t *l = (void *)lock; 266 267 arch_spin_unlock(l); 268 } 269 270 #else 271 272 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 273 { 274 atomic_t *l = (void *)lock; 275 276 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 277 do { 278 atomic_cond_read_relaxed(l, !VAL); 279 } while (atomic_xchg(l, 1)); 280 } 281 282 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 283 { 284 atomic_t *l = (void *)lock; 285 286 atomic_set_release(l, 0); 287 } 288 289 #endif 290 291 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 292 293 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 294 { 295 unsigned long flags; 296 297 local_irq_save(flags); 298 __bpf_spin_lock(lock); 299 __this_cpu_write(irqsave_flags, flags); 300 } 301 302 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 303 { 304 __bpf_spin_lock_irqsave(lock); 305 return 0; 306 } 307 308 const struct bpf_func_proto bpf_spin_lock_proto = { 309 .func = bpf_spin_lock, 310 .gpl_only = false, 311 .ret_type = RET_VOID, 312 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 313 }; 314 315 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 316 { 317 unsigned long flags; 318 319 flags = __this_cpu_read(irqsave_flags); 320 __bpf_spin_unlock(lock); 321 local_irq_restore(flags); 322 } 323 324 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 325 { 326 __bpf_spin_unlock_irqrestore(lock); 327 return 0; 328 } 329 330 const struct bpf_func_proto bpf_spin_unlock_proto = { 331 .func = bpf_spin_unlock, 332 .gpl_only = false, 333 .ret_type = RET_VOID, 334 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 335 }; 336 337 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 338 bool lock_src) 339 { 340 struct bpf_spin_lock *lock; 341 342 if (lock_src) 343 lock = src + map->spin_lock_off; 344 else 345 lock = dst + map->spin_lock_off; 346 preempt_disable(); 347 __bpf_spin_lock_irqsave(lock); 348 copy_map_value(map, dst, src); 349 __bpf_spin_unlock_irqrestore(lock); 350 preempt_enable(); 351 } 352 353 BPF_CALL_0(bpf_jiffies64) 354 { 355 return get_jiffies_64(); 356 } 357 358 const struct bpf_func_proto bpf_jiffies64_proto = { 359 .func = bpf_jiffies64, 360 .gpl_only = false, 361 .ret_type = RET_INTEGER, 362 }; 363 364 #ifdef CONFIG_CGROUPS 365 BPF_CALL_0(bpf_get_current_cgroup_id) 366 { 367 struct cgroup *cgrp; 368 u64 cgrp_id; 369 370 rcu_read_lock(); 371 cgrp = task_dfl_cgroup(current); 372 cgrp_id = cgroup_id(cgrp); 373 rcu_read_unlock(); 374 375 return cgrp_id; 376 } 377 378 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 379 .func = bpf_get_current_cgroup_id, 380 .gpl_only = false, 381 .ret_type = RET_INTEGER, 382 }; 383 384 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 385 { 386 struct cgroup *cgrp; 387 struct cgroup *ancestor; 388 u64 cgrp_id; 389 390 rcu_read_lock(); 391 cgrp = task_dfl_cgroup(current); 392 ancestor = cgroup_ancestor(cgrp, ancestor_level); 393 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 394 rcu_read_unlock(); 395 396 return cgrp_id; 397 } 398 399 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 400 .func = bpf_get_current_ancestor_cgroup_id, 401 .gpl_only = false, 402 .ret_type = RET_INTEGER, 403 .arg1_type = ARG_ANYTHING, 404 }; 405 406 #ifdef CONFIG_CGROUP_BPF 407 408 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags) 409 { 410 /* flags argument is not used now, 411 * but provides an ability to extend the API. 412 * verifier checks that its value is correct. 413 */ 414 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map); 415 struct bpf_cgroup_storage *storage; 416 struct bpf_cg_run_ctx *ctx; 417 void *ptr; 418 419 /* get current cgroup storage from BPF run context */ 420 ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx); 421 storage = ctx->prog_item->cgroup_storage[stype]; 422 423 if (stype == BPF_CGROUP_STORAGE_SHARED) 424 ptr = &READ_ONCE(storage->buf)->data[0]; 425 else 426 ptr = this_cpu_ptr(storage->percpu_buf); 427 428 return (unsigned long)ptr; 429 } 430 431 const struct bpf_func_proto bpf_get_local_storage_proto = { 432 .func = bpf_get_local_storage, 433 .gpl_only = false, 434 .ret_type = RET_PTR_TO_MAP_VALUE, 435 .arg1_type = ARG_CONST_MAP_PTR, 436 .arg2_type = ARG_ANYTHING, 437 }; 438 #endif 439 440 #define BPF_STRTOX_BASE_MASK 0x1F 441 442 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 443 unsigned long long *res, bool *is_negative) 444 { 445 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 446 const char *cur_buf = buf; 447 size_t cur_len = buf_len; 448 unsigned int consumed; 449 size_t val_len; 450 char str[64]; 451 452 if (!buf || !buf_len || !res || !is_negative) 453 return -EINVAL; 454 455 if (base != 0 && base != 8 && base != 10 && base != 16) 456 return -EINVAL; 457 458 if (flags & ~BPF_STRTOX_BASE_MASK) 459 return -EINVAL; 460 461 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 462 ++cur_buf; 463 464 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 465 if (*is_negative) 466 ++cur_buf; 467 468 consumed = cur_buf - buf; 469 cur_len -= consumed; 470 if (!cur_len) 471 return -EINVAL; 472 473 cur_len = min(cur_len, sizeof(str) - 1); 474 memcpy(str, cur_buf, cur_len); 475 str[cur_len] = '\0'; 476 cur_buf = str; 477 478 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 479 val_len = _parse_integer(cur_buf, base, res); 480 481 if (val_len & KSTRTOX_OVERFLOW) 482 return -ERANGE; 483 484 if (val_len == 0) 485 return -EINVAL; 486 487 cur_buf += val_len; 488 consumed += cur_buf - str; 489 490 return consumed; 491 } 492 493 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 494 long long *res) 495 { 496 unsigned long long _res; 497 bool is_negative; 498 int err; 499 500 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 501 if (err < 0) 502 return err; 503 if (is_negative) { 504 if ((long long)-_res > 0) 505 return -ERANGE; 506 *res = -_res; 507 } else { 508 if ((long long)_res < 0) 509 return -ERANGE; 510 *res = _res; 511 } 512 return err; 513 } 514 515 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 516 long *, res) 517 { 518 long long _res; 519 int err; 520 521 err = __bpf_strtoll(buf, buf_len, flags, &_res); 522 if (err < 0) 523 return err; 524 if (_res != (long)_res) 525 return -ERANGE; 526 *res = _res; 527 return err; 528 } 529 530 const struct bpf_func_proto bpf_strtol_proto = { 531 .func = bpf_strtol, 532 .gpl_only = false, 533 .ret_type = RET_INTEGER, 534 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 535 .arg2_type = ARG_CONST_SIZE, 536 .arg3_type = ARG_ANYTHING, 537 .arg4_type = ARG_PTR_TO_LONG, 538 }; 539 540 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 541 unsigned long *, res) 542 { 543 unsigned long long _res; 544 bool is_negative; 545 int err; 546 547 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 548 if (err < 0) 549 return err; 550 if (is_negative) 551 return -EINVAL; 552 if (_res != (unsigned long)_res) 553 return -ERANGE; 554 *res = _res; 555 return err; 556 } 557 558 const struct bpf_func_proto bpf_strtoul_proto = { 559 .func = bpf_strtoul, 560 .gpl_only = false, 561 .ret_type = RET_INTEGER, 562 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 563 .arg2_type = ARG_CONST_SIZE, 564 .arg3_type = ARG_ANYTHING, 565 .arg4_type = ARG_PTR_TO_LONG, 566 }; 567 #endif 568 569 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 570 { 571 return strncmp(s1, s2, s1_sz); 572 } 573 574 const struct bpf_func_proto bpf_strncmp_proto = { 575 .func = bpf_strncmp, 576 .gpl_only = false, 577 .ret_type = RET_INTEGER, 578 .arg1_type = ARG_PTR_TO_MEM, 579 .arg2_type = ARG_CONST_SIZE, 580 .arg3_type = ARG_PTR_TO_CONST_STR, 581 }; 582 583 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 584 struct bpf_pidns_info *, nsdata, u32, size) 585 { 586 struct task_struct *task = current; 587 struct pid_namespace *pidns; 588 int err = -EINVAL; 589 590 if (unlikely(size != sizeof(struct bpf_pidns_info))) 591 goto clear; 592 593 if (unlikely((u64)(dev_t)dev != dev)) 594 goto clear; 595 596 if (unlikely(!task)) 597 goto clear; 598 599 pidns = task_active_pid_ns(task); 600 if (unlikely(!pidns)) { 601 err = -ENOENT; 602 goto clear; 603 } 604 605 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 606 goto clear; 607 608 nsdata->pid = task_pid_nr_ns(task, pidns); 609 nsdata->tgid = task_tgid_nr_ns(task, pidns); 610 return 0; 611 clear: 612 memset((void *)nsdata, 0, (size_t) size); 613 return err; 614 } 615 616 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 617 .func = bpf_get_ns_current_pid_tgid, 618 .gpl_only = false, 619 .ret_type = RET_INTEGER, 620 .arg1_type = ARG_ANYTHING, 621 .arg2_type = ARG_ANYTHING, 622 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 623 .arg4_type = ARG_CONST_SIZE, 624 }; 625 626 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 627 .func = bpf_get_raw_cpu_id, 628 .gpl_only = false, 629 .ret_type = RET_INTEGER, 630 }; 631 632 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 633 u64, flags, void *, data, u64, size) 634 { 635 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 636 return -EINVAL; 637 638 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 639 } 640 641 const struct bpf_func_proto bpf_event_output_data_proto = { 642 .func = bpf_event_output_data, 643 .gpl_only = true, 644 .ret_type = RET_INTEGER, 645 .arg1_type = ARG_PTR_TO_CTX, 646 .arg2_type = ARG_CONST_MAP_PTR, 647 .arg3_type = ARG_ANYTHING, 648 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 649 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 650 }; 651 652 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 653 const void __user *, user_ptr) 654 { 655 int ret = copy_from_user(dst, user_ptr, size); 656 657 if (unlikely(ret)) { 658 memset(dst, 0, size); 659 ret = -EFAULT; 660 } 661 662 return ret; 663 } 664 665 const struct bpf_func_proto bpf_copy_from_user_proto = { 666 .func = bpf_copy_from_user, 667 .gpl_only = false, 668 .ret_type = RET_INTEGER, 669 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 670 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 671 .arg3_type = ARG_ANYTHING, 672 }; 673 674 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 675 { 676 if (cpu >= nr_cpu_ids) 677 return (unsigned long)NULL; 678 679 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 680 } 681 682 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 683 .func = bpf_per_cpu_ptr, 684 .gpl_only = false, 685 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 686 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 687 .arg2_type = ARG_ANYTHING, 688 }; 689 690 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 691 { 692 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 693 } 694 695 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 696 .func = bpf_this_cpu_ptr, 697 .gpl_only = false, 698 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 699 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 700 }; 701 702 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 703 size_t bufsz) 704 { 705 void __user *user_ptr = (__force void __user *)unsafe_ptr; 706 707 buf[0] = 0; 708 709 switch (fmt_ptype) { 710 case 's': 711 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 712 if ((unsigned long)unsafe_ptr < TASK_SIZE) 713 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 714 fallthrough; 715 #endif 716 case 'k': 717 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 718 case 'u': 719 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 720 } 721 722 return -EINVAL; 723 } 724 725 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 726 * arguments representation. 727 */ 728 #define MAX_BPRINTF_BUF_LEN 512 729 730 /* Support executing three nested bprintf helper calls on a given CPU */ 731 #define MAX_BPRINTF_NEST_LEVEL 3 732 struct bpf_bprintf_buffers { 733 char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN]; 734 }; 735 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs); 736 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 737 738 static int try_get_fmt_tmp_buf(char **tmp_buf) 739 { 740 struct bpf_bprintf_buffers *bufs; 741 int nest_level; 742 743 preempt_disable(); 744 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 745 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 746 this_cpu_dec(bpf_bprintf_nest_level); 747 preempt_enable(); 748 return -EBUSY; 749 } 750 bufs = this_cpu_ptr(&bpf_bprintf_bufs); 751 *tmp_buf = bufs->tmp_bufs[nest_level - 1]; 752 753 return 0; 754 } 755 756 void bpf_bprintf_cleanup(void) 757 { 758 if (this_cpu_read(bpf_bprintf_nest_level)) { 759 this_cpu_dec(bpf_bprintf_nest_level); 760 preempt_enable(); 761 } 762 } 763 764 /* 765 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 766 * 767 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 768 * 769 * This can be used in two ways: 770 * - Format string verification only: when bin_args is NULL 771 * - Arguments preparation: in addition to the above verification, it writes in 772 * bin_args a binary representation of arguments usable by bstr_printf where 773 * pointers from BPF have been sanitized. 774 * 775 * In argument preparation mode, if 0 is returned, safe temporary buffers are 776 * allocated and bpf_bprintf_cleanup should be called to free them after use. 777 */ 778 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 779 u32 **bin_args, u32 num_args) 780 { 781 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 782 size_t sizeof_cur_arg, sizeof_cur_ip; 783 int err, i, num_spec = 0; 784 u64 cur_arg; 785 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 786 787 fmt_end = strnchr(fmt, fmt_size, 0); 788 if (!fmt_end) 789 return -EINVAL; 790 fmt_size = fmt_end - fmt; 791 792 if (bin_args) { 793 if (num_args && try_get_fmt_tmp_buf(&tmp_buf)) 794 return -EBUSY; 795 796 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN; 797 *bin_args = (u32 *)tmp_buf; 798 } 799 800 for (i = 0; i < fmt_size; i++) { 801 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 802 err = -EINVAL; 803 goto out; 804 } 805 806 if (fmt[i] != '%') 807 continue; 808 809 if (fmt[i + 1] == '%') { 810 i++; 811 continue; 812 } 813 814 if (num_spec >= num_args) { 815 err = -EINVAL; 816 goto out; 817 } 818 819 /* The string is zero-terminated so if fmt[i] != 0, we can 820 * always access fmt[i + 1], in the worst case it will be a 0 821 */ 822 i++; 823 824 /* skip optional "[0 +-][num]" width formatting field */ 825 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 826 fmt[i] == ' ') 827 i++; 828 if (fmt[i] >= '1' && fmt[i] <= '9') { 829 i++; 830 while (fmt[i] >= '0' && fmt[i] <= '9') 831 i++; 832 } 833 834 if (fmt[i] == 'p') { 835 sizeof_cur_arg = sizeof(long); 836 837 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 838 fmt[i + 2] == 's') { 839 fmt_ptype = fmt[i + 1]; 840 i += 2; 841 goto fmt_str; 842 } 843 844 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 845 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 846 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 847 fmt[i + 1] == 'S') { 848 /* just kernel pointers */ 849 if (tmp_buf) 850 cur_arg = raw_args[num_spec]; 851 i++; 852 goto nocopy_fmt; 853 } 854 855 if (fmt[i + 1] == 'B') { 856 if (tmp_buf) { 857 err = snprintf(tmp_buf, 858 (tmp_buf_end - tmp_buf), 859 "%pB", 860 (void *)(long)raw_args[num_spec]); 861 tmp_buf += (err + 1); 862 } 863 864 i++; 865 num_spec++; 866 continue; 867 } 868 869 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 870 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 871 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 872 err = -EINVAL; 873 goto out; 874 } 875 876 i += 2; 877 if (!tmp_buf) 878 goto nocopy_fmt; 879 880 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 881 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 882 err = -ENOSPC; 883 goto out; 884 } 885 886 unsafe_ptr = (char *)(long)raw_args[num_spec]; 887 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 888 sizeof_cur_ip); 889 if (err < 0) 890 memset(cur_ip, 0, sizeof_cur_ip); 891 892 /* hack: bstr_printf expects IP addresses to be 893 * pre-formatted as strings, ironically, the easiest way 894 * to do that is to call snprintf. 895 */ 896 ip_spec[2] = fmt[i - 1]; 897 ip_spec[3] = fmt[i]; 898 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 899 ip_spec, &cur_ip); 900 901 tmp_buf += err + 1; 902 num_spec++; 903 904 continue; 905 } else if (fmt[i] == 's') { 906 fmt_ptype = fmt[i]; 907 fmt_str: 908 if (fmt[i + 1] != 0 && 909 !isspace(fmt[i + 1]) && 910 !ispunct(fmt[i + 1])) { 911 err = -EINVAL; 912 goto out; 913 } 914 915 if (!tmp_buf) 916 goto nocopy_fmt; 917 918 if (tmp_buf_end == tmp_buf) { 919 err = -ENOSPC; 920 goto out; 921 } 922 923 unsafe_ptr = (char *)(long)raw_args[num_spec]; 924 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 925 fmt_ptype, 926 tmp_buf_end - tmp_buf); 927 if (err < 0) { 928 tmp_buf[0] = '\0'; 929 err = 1; 930 } 931 932 tmp_buf += err; 933 num_spec++; 934 935 continue; 936 } else if (fmt[i] == 'c') { 937 if (!tmp_buf) 938 goto nocopy_fmt; 939 940 if (tmp_buf_end == tmp_buf) { 941 err = -ENOSPC; 942 goto out; 943 } 944 945 *tmp_buf = raw_args[num_spec]; 946 tmp_buf++; 947 num_spec++; 948 949 continue; 950 } 951 952 sizeof_cur_arg = sizeof(int); 953 954 if (fmt[i] == 'l') { 955 sizeof_cur_arg = sizeof(long); 956 i++; 957 } 958 if (fmt[i] == 'l') { 959 sizeof_cur_arg = sizeof(long long); 960 i++; 961 } 962 963 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 964 fmt[i] != 'x' && fmt[i] != 'X') { 965 err = -EINVAL; 966 goto out; 967 } 968 969 if (tmp_buf) 970 cur_arg = raw_args[num_spec]; 971 nocopy_fmt: 972 if (tmp_buf) { 973 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 974 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 975 err = -ENOSPC; 976 goto out; 977 } 978 979 if (sizeof_cur_arg == 8) { 980 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 981 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 982 } else { 983 *(u32 *)tmp_buf = (u32)(long)cur_arg; 984 } 985 tmp_buf += sizeof_cur_arg; 986 } 987 num_spec++; 988 } 989 990 err = 0; 991 out: 992 if (err) 993 bpf_bprintf_cleanup(); 994 return err; 995 } 996 997 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 998 const void *, data, u32, data_len) 999 { 1000 int err, num_args; 1001 u32 *bin_args; 1002 1003 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1004 (data_len && !data)) 1005 return -EINVAL; 1006 num_args = data_len / 8; 1007 1008 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1009 * can safely give an unbounded size. 1010 */ 1011 err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args); 1012 if (err < 0) 1013 return err; 1014 1015 err = bstr_printf(str, str_size, fmt, bin_args); 1016 1017 bpf_bprintf_cleanup(); 1018 1019 return err + 1; 1020 } 1021 1022 const struct bpf_func_proto bpf_snprintf_proto = { 1023 .func = bpf_snprintf, 1024 .gpl_only = true, 1025 .ret_type = RET_INTEGER, 1026 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1027 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1028 .arg3_type = ARG_PTR_TO_CONST_STR, 1029 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1030 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1031 }; 1032 1033 /* BPF map elements can contain 'struct bpf_timer'. 1034 * Such map owns all of its BPF timers. 1035 * 'struct bpf_timer' is allocated as part of map element allocation 1036 * and it's zero initialized. 1037 * That space is used to keep 'struct bpf_timer_kern'. 1038 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1039 * remembers 'struct bpf_map *' pointer it's part of. 1040 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1041 * bpf_timer_start() arms the timer. 1042 * If user space reference to a map goes to zero at this point 1043 * ops->map_release_uref callback is responsible for cancelling the timers, 1044 * freeing their memory, and decrementing prog's refcnts. 1045 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1046 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1047 * freeing the timers when inner map is replaced or deleted by user space. 1048 */ 1049 struct bpf_hrtimer { 1050 struct hrtimer timer; 1051 struct bpf_map *map; 1052 struct bpf_prog *prog; 1053 void __rcu *callback_fn; 1054 void *value; 1055 }; 1056 1057 /* the actual struct hidden inside uapi struct bpf_timer */ 1058 struct bpf_timer_kern { 1059 struct bpf_hrtimer *timer; 1060 /* bpf_spin_lock is used here instead of spinlock_t to make 1061 * sure that it always fits into space resereved by struct bpf_timer 1062 * regardless of LOCKDEP and spinlock debug flags. 1063 */ 1064 struct bpf_spin_lock lock; 1065 } __attribute__((aligned(8))); 1066 1067 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1068 1069 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1070 { 1071 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1072 struct bpf_map *map = t->map; 1073 void *value = t->value; 1074 bpf_callback_t callback_fn; 1075 void *key; 1076 u32 idx; 1077 1078 callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held()); 1079 if (!callback_fn) 1080 goto out; 1081 1082 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1083 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1084 * Remember the timer this callback is servicing to prevent 1085 * deadlock if callback_fn() calls bpf_timer_cancel() or 1086 * bpf_map_delete_elem() on the same timer. 1087 */ 1088 this_cpu_write(hrtimer_running, t); 1089 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1090 struct bpf_array *array = container_of(map, struct bpf_array, map); 1091 1092 /* compute the key */ 1093 idx = ((char *)value - array->value) / array->elem_size; 1094 key = &idx; 1095 } else { /* hash or lru */ 1096 key = value - round_up(map->key_size, 8); 1097 } 1098 1099 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1100 /* The verifier checked that return value is zero. */ 1101 1102 this_cpu_write(hrtimer_running, NULL); 1103 out: 1104 return HRTIMER_NORESTART; 1105 } 1106 1107 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map, 1108 u64, flags) 1109 { 1110 clockid_t clockid = flags & (MAX_CLOCKS - 1); 1111 struct bpf_hrtimer *t; 1112 int ret = 0; 1113 1114 BUILD_BUG_ON(MAX_CLOCKS != 16); 1115 BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer)); 1116 BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer)); 1117 1118 if (in_nmi()) 1119 return -EOPNOTSUPP; 1120 1121 if (flags >= MAX_CLOCKS || 1122 /* similar to timerfd except _ALARM variants are not supported */ 1123 (clockid != CLOCK_MONOTONIC && 1124 clockid != CLOCK_REALTIME && 1125 clockid != CLOCK_BOOTTIME)) 1126 return -EINVAL; 1127 __bpf_spin_lock_irqsave(&timer->lock); 1128 t = timer->timer; 1129 if (t) { 1130 ret = -EBUSY; 1131 goto out; 1132 } 1133 if (!atomic64_read(&map->usercnt)) { 1134 /* maps with timers must be either held by user space 1135 * or pinned in bpffs. 1136 */ 1137 ret = -EPERM; 1138 goto out; 1139 } 1140 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1141 t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node); 1142 if (!t) { 1143 ret = -ENOMEM; 1144 goto out; 1145 } 1146 t->value = (void *)timer - map->timer_off; 1147 t->map = map; 1148 t->prog = NULL; 1149 rcu_assign_pointer(t->callback_fn, NULL); 1150 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1151 t->timer.function = bpf_timer_cb; 1152 timer->timer = t; 1153 out: 1154 __bpf_spin_unlock_irqrestore(&timer->lock); 1155 return ret; 1156 } 1157 1158 static const struct bpf_func_proto bpf_timer_init_proto = { 1159 .func = bpf_timer_init, 1160 .gpl_only = true, 1161 .ret_type = RET_INTEGER, 1162 .arg1_type = ARG_PTR_TO_TIMER, 1163 .arg2_type = ARG_CONST_MAP_PTR, 1164 .arg3_type = ARG_ANYTHING, 1165 }; 1166 1167 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn, 1168 struct bpf_prog_aux *, aux) 1169 { 1170 struct bpf_prog *prev, *prog = aux->prog; 1171 struct bpf_hrtimer *t; 1172 int ret = 0; 1173 1174 if (in_nmi()) 1175 return -EOPNOTSUPP; 1176 __bpf_spin_lock_irqsave(&timer->lock); 1177 t = timer->timer; 1178 if (!t) { 1179 ret = -EINVAL; 1180 goto out; 1181 } 1182 if (!atomic64_read(&t->map->usercnt)) { 1183 /* maps with timers must be either held by user space 1184 * or pinned in bpffs. Otherwise timer might still be 1185 * running even when bpf prog is detached and user space 1186 * is gone, since map_release_uref won't ever be called. 1187 */ 1188 ret = -EPERM; 1189 goto out; 1190 } 1191 prev = t->prog; 1192 if (prev != prog) { 1193 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1194 * can pick different callback_fn-s within the same prog. 1195 */ 1196 prog = bpf_prog_inc_not_zero(prog); 1197 if (IS_ERR(prog)) { 1198 ret = PTR_ERR(prog); 1199 goto out; 1200 } 1201 if (prev) 1202 /* Drop prev prog refcnt when swapping with new prog */ 1203 bpf_prog_put(prev); 1204 t->prog = prog; 1205 } 1206 rcu_assign_pointer(t->callback_fn, callback_fn); 1207 out: 1208 __bpf_spin_unlock_irqrestore(&timer->lock); 1209 return ret; 1210 } 1211 1212 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1213 .func = bpf_timer_set_callback, 1214 .gpl_only = true, 1215 .ret_type = RET_INTEGER, 1216 .arg1_type = ARG_PTR_TO_TIMER, 1217 .arg2_type = ARG_PTR_TO_FUNC, 1218 }; 1219 1220 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags) 1221 { 1222 struct bpf_hrtimer *t; 1223 int ret = 0; 1224 1225 if (in_nmi()) 1226 return -EOPNOTSUPP; 1227 if (flags) 1228 return -EINVAL; 1229 __bpf_spin_lock_irqsave(&timer->lock); 1230 t = timer->timer; 1231 if (!t || !t->prog) { 1232 ret = -EINVAL; 1233 goto out; 1234 } 1235 hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT); 1236 out: 1237 __bpf_spin_unlock_irqrestore(&timer->lock); 1238 return ret; 1239 } 1240 1241 static const struct bpf_func_proto bpf_timer_start_proto = { 1242 .func = bpf_timer_start, 1243 .gpl_only = true, 1244 .ret_type = RET_INTEGER, 1245 .arg1_type = ARG_PTR_TO_TIMER, 1246 .arg2_type = ARG_ANYTHING, 1247 .arg3_type = ARG_ANYTHING, 1248 }; 1249 1250 static void drop_prog_refcnt(struct bpf_hrtimer *t) 1251 { 1252 struct bpf_prog *prog = t->prog; 1253 1254 if (prog) { 1255 bpf_prog_put(prog); 1256 t->prog = NULL; 1257 rcu_assign_pointer(t->callback_fn, NULL); 1258 } 1259 } 1260 1261 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer) 1262 { 1263 struct bpf_hrtimer *t; 1264 int ret = 0; 1265 1266 if (in_nmi()) 1267 return -EOPNOTSUPP; 1268 __bpf_spin_lock_irqsave(&timer->lock); 1269 t = timer->timer; 1270 if (!t) { 1271 ret = -EINVAL; 1272 goto out; 1273 } 1274 if (this_cpu_read(hrtimer_running) == t) { 1275 /* If bpf callback_fn is trying to bpf_timer_cancel() 1276 * its own timer the hrtimer_cancel() will deadlock 1277 * since it waits for callback_fn to finish 1278 */ 1279 ret = -EDEADLK; 1280 goto out; 1281 } 1282 drop_prog_refcnt(t); 1283 out: 1284 __bpf_spin_unlock_irqrestore(&timer->lock); 1285 /* Cancel the timer and wait for associated callback to finish 1286 * if it was running. 1287 */ 1288 ret = ret ?: hrtimer_cancel(&t->timer); 1289 return ret; 1290 } 1291 1292 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1293 .func = bpf_timer_cancel, 1294 .gpl_only = true, 1295 .ret_type = RET_INTEGER, 1296 .arg1_type = ARG_PTR_TO_TIMER, 1297 }; 1298 1299 /* This function is called by map_delete/update_elem for individual element and 1300 * by ops->map_release_uref when the user space reference to a map reaches zero. 1301 */ 1302 void bpf_timer_cancel_and_free(void *val) 1303 { 1304 struct bpf_timer_kern *timer = val; 1305 struct bpf_hrtimer *t; 1306 1307 /* Performance optimization: read timer->timer without lock first. */ 1308 if (!READ_ONCE(timer->timer)) 1309 return; 1310 1311 __bpf_spin_lock_irqsave(&timer->lock); 1312 /* re-read it under lock */ 1313 t = timer->timer; 1314 if (!t) 1315 goto out; 1316 drop_prog_refcnt(t); 1317 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1318 * this timer, since it won't be initialized. 1319 */ 1320 timer->timer = NULL; 1321 out: 1322 __bpf_spin_unlock_irqrestore(&timer->lock); 1323 if (!t) 1324 return; 1325 /* Cancel the timer and wait for callback to complete if it was running. 1326 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1327 * right after for both preallocated and non-preallocated maps. 1328 * The timer->timer = NULL was already done and no code path can 1329 * see address 't' anymore. 1330 * 1331 * Check that bpf_map_delete/update_elem() wasn't called from timer 1332 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1333 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1334 * return -1). Though callback_fn is still running on this cpu it's 1335 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1336 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1337 * since timer->timer = NULL was already done. The timer will be 1338 * effectively cancelled because bpf_timer_cb() will return 1339 * HRTIMER_NORESTART. 1340 */ 1341 if (this_cpu_read(hrtimer_running) != t) 1342 hrtimer_cancel(&t->timer); 1343 kfree(t); 1344 } 1345 1346 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1347 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1348 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1349 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1350 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1351 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1352 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1353 1354 const struct bpf_func_proto * 1355 bpf_base_func_proto(enum bpf_func_id func_id) 1356 { 1357 switch (func_id) { 1358 case BPF_FUNC_map_lookup_elem: 1359 return &bpf_map_lookup_elem_proto; 1360 case BPF_FUNC_map_update_elem: 1361 return &bpf_map_update_elem_proto; 1362 case BPF_FUNC_map_delete_elem: 1363 return &bpf_map_delete_elem_proto; 1364 case BPF_FUNC_map_push_elem: 1365 return &bpf_map_push_elem_proto; 1366 case BPF_FUNC_map_pop_elem: 1367 return &bpf_map_pop_elem_proto; 1368 case BPF_FUNC_map_peek_elem: 1369 return &bpf_map_peek_elem_proto; 1370 case BPF_FUNC_get_prandom_u32: 1371 return &bpf_get_prandom_u32_proto; 1372 case BPF_FUNC_get_smp_processor_id: 1373 return &bpf_get_raw_smp_processor_id_proto; 1374 case BPF_FUNC_get_numa_node_id: 1375 return &bpf_get_numa_node_id_proto; 1376 case BPF_FUNC_tail_call: 1377 return &bpf_tail_call_proto; 1378 case BPF_FUNC_ktime_get_ns: 1379 return &bpf_ktime_get_ns_proto; 1380 case BPF_FUNC_ktime_get_boot_ns: 1381 return &bpf_ktime_get_boot_ns_proto; 1382 case BPF_FUNC_ringbuf_output: 1383 return &bpf_ringbuf_output_proto; 1384 case BPF_FUNC_ringbuf_reserve: 1385 return &bpf_ringbuf_reserve_proto; 1386 case BPF_FUNC_ringbuf_submit: 1387 return &bpf_ringbuf_submit_proto; 1388 case BPF_FUNC_ringbuf_discard: 1389 return &bpf_ringbuf_discard_proto; 1390 case BPF_FUNC_ringbuf_query: 1391 return &bpf_ringbuf_query_proto; 1392 case BPF_FUNC_for_each_map_elem: 1393 return &bpf_for_each_map_elem_proto; 1394 case BPF_FUNC_loop: 1395 return &bpf_loop_proto; 1396 case BPF_FUNC_strncmp: 1397 return &bpf_strncmp_proto; 1398 default: 1399 break; 1400 } 1401 1402 if (!bpf_capable()) 1403 return NULL; 1404 1405 switch (func_id) { 1406 case BPF_FUNC_spin_lock: 1407 return &bpf_spin_lock_proto; 1408 case BPF_FUNC_spin_unlock: 1409 return &bpf_spin_unlock_proto; 1410 case BPF_FUNC_jiffies64: 1411 return &bpf_jiffies64_proto; 1412 case BPF_FUNC_per_cpu_ptr: 1413 return &bpf_per_cpu_ptr_proto; 1414 case BPF_FUNC_this_cpu_ptr: 1415 return &bpf_this_cpu_ptr_proto; 1416 case BPF_FUNC_timer_init: 1417 return &bpf_timer_init_proto; 1418 case BPF_FUNC_timer_set_callback: 1419 return &bpf_timer_set_callback_proto; 1420 case BPF_FUNC_timer_start: 1421 return &bpf_timer_start_proto; 1422 case BPF_FUNC_timer_cancel: 1423 return &bpf_timer_cancel_proto; 1424 default: 1425 break; 1426 } 1427 1428 if (!perfmon_capable()) 1429 return NULL; 1430 1431 switch (func_id) { 1432 case BPF_FUNC_trace_printk: 1433 return bpf_get_trace_printk_proto(); 1434 case BPF_FUNC_get_current_task: 1435 return &bpf_get_current_task_proto; 1436 case BPF_FUNC_get_current_task_btf: 1437 return &bpf_get_current_task_btf_proto; 1438 case BPF_FUNC_probe_read_user: 1439 return &bpf_probe_read_user_proto; 1440 case BPF_FUNC_probe_read_kernel: 1441 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1442 NULL : &bpf_probe_read_kernel_proto; 1443 case BPF_FUNC_probe_read_user_str: 1444 return &bpf_probe_read_user_str_proto; 1445 case BPF_FUNC_probe_read_kernel_str: 1446 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1447 NULL : &bpf_probe_read_kernel_str_proto; 1448 case BPF_FUNC_snprintf_btf: 1449 return &bpf_snprintf_btf_proto; 1450 case BPF_FUNC_snprintf: 1451 return &bpf_snprintf_proto; 1452 case BPF_FUNC_task_pt_regs: 1453 return &bpf_task_pt_regs_proto; 1454 case BPF_FUNC_trace_vprintk: 1455 return bpf_get_trace_vprintk_proto(); 1456 default: 1457 return NULL; 1458 } 1459 } 1460