xref: /openbmc/linux/kernel/bpf/helpers.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/rcupdate.h>
8 #include <linux/random.h>
9 #include <linux/smp.h>
10 #include <linux/topology.h>
11 #include <linux/ktime.h>
12 #include <linux/sched.h>
13 #include <linux/uidgid.h>
14 #include <linux/filter.h>
15 #include <linux/ctype.h>
16 #include <linux/jiffies.h>
17 #include <linux/pid_namespace.h>
18 #include <linux/proc_ns.h>
19 #include <linux/security.h>
20 #include <linux/btf_ids.h>
21 
22 #include "../../lib/kstrtox.h"
23 
24 /* If kernel subsystem is allowing eBPF programs to call this function,
25  * inside its own verifier_ops->get_func_proto() callback it should return
26  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
27  *
28  * Different map implementations will rely on rcu in map methods
29  * lookup/update/delete, therefore eBPF programs must run under rcu lock
30  * if program is allowed to access maps, so check rcu_read_lock_held in
31  * all three functions.
32  */
33 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
34 {
35 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
36 	return (unsigned long) map->ops->map_lookup_elem(map, key);
37 }
38 
39 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
40 	.func		= bpf_map_lookup_elem,
41 	.gpl_only	= false,
42 	.pkt_access	= true,
43 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
44 	.arg1_type	= ARG_CONST_MAP_PTR,
45 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
46 };
47 
48 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
49 	   void *, value, u64, flags)
50 {
51 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
52 	return map->ops->map_update_elem(map, key, value, flags);
53 }
54 
55 const struct bpf_func_proto bpf_map_update_elem_proto = {
56 	.func		= bpf_map_update_elem,
57 	.gpl_only	= false,
58 	.pkt_access	= true,
59 	.ret_type	= RET_INTEGER,
60 	.arg1_type	= ARG_CONST_MAP_PTR,
61 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
62 	.arg3_type	= ARG_PTR_TO_MAP_VALUE,
63 	.arg4_type	= ARG_ANYTHING,
64 };
65 
66 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
67 {
68 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
69 	return map->ops->map_delete_elem(map, key);
70 }
71 
72 const struct bpf_func_proto bpf_map_delete_elem_proto = {
73 	.func		= bpf_map_delete_elem,
74 	.gpl_only	= false,
75 	.pkt_access	= true,
76 	.ret_type	= RET_INTEGER,
77 	.arg1_type	= ARG_CONST_MAP_PTR,
78 	.arg2_type	= ARG_PTR_TO_MAP_KEY,
79 };
80 
81 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
82 {
83 	return map->ops->map_push_elem(map, value, flags);
84 }
85 
86 const struct bpf_func_proto bpf_map_push_elem_proto = {
87 	.func		= bpf_map_push_elem,
88 	.gpl_only	= false,
89 	.pkt_access	= true,
90 	.ret_type	= RET_INTEGER,
91 	.arg1_type	= ARG_CONST_MAP_PTR,
92 	.arg2_type	= ARG_PTR_TO_MAP_VALUE,
93 	.arg3_type	= ARG_ANYTHING,
94 };
95 
96 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
97 {
98 	return map->ops->map_pop_elem(map, value);
99 }
100 
101 const struct bpf_func_proto bpf_map_pop_elem_proto = {
102 	.func		= bpf_map_pop_elem,
103 	.gpl_only	= false,
104 	.ret_type	= RET_INTEGER,
105 	.arg1_type	= ARG_CONST_MAP_PTR,
106 	.arg2_type	= ARG_PTR_TO_UNINIT_MAP_VALUE,
107 };
108 
109 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
110 {
111 	return map->ops->map_peek_elem(map, value);
112 }
113 
114 const struct bpf_func_proto bpf_map_peek_elem_proto = {
115 	.func		= bpf_map_peek_elem,
116 	.gpl_only	= false,
117 	.ret_type	= RET_INTEGER,
118 	.arg1_type	= ARG_CONST_MAP_PTR,
119 	.arg2_type	= ARG_PTR_TO_UNINIT_MAP_VALUE,
120 };
121 
122 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
123 	.func		= bpf_user_rnd_u32,
124 	.gpl_only	= false,
125 	.ret_type	= RET_INTEGER,
126 };
127 
128 BPF_CALL_0(bpf_get_smp_processor_id)
129 {
130 	return smp_processor_id();
131 }
132 
133 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
134 	.func		= bpf_get_smp_processor_id,
135 	.gpl_only	= false,
136 	.ret_type	= RET_INTEGER,
137 };
138 
139 BPF_CALL_0(bpf_get_numa_node_id)
140 {
141 	return numa_node_id();
142 }
143 
144 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
145 	.func		= bpf_get_numa_node_id,
146 	.gpl_only	= false,
147 	.ret_type	= RET_INTEGER,
148 };
149 
150 BPF_CALL_0(bpf_ktime_get_ns)
151 {
152 	/* NMI safe access to clock monotonic */
153 	return ktime_get_mono_fast_ns();
154 }
155 
156 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
157 	.func		= bpf_ktime_get_ns,
158 	.gpl_only	= false,
159 	.ret_type	= RET_INTEGER,
160 };
161 
162 BPF_CALL_0(bpf_ktime_get_boot_ns)
163 {
164 	/* NMI safe access to clock boottime */
165 	return ktime_get_boot_fast_ns();
166 }
167 
168 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
169 	.func		= bpf_ktime_get_boot_ns,
170 	.gpl_only	= false,
171 	.ret_type	= RET_INTEGER,
172 };
173 
174 BPF_CALL_0(bpf_ktime_get_coarse_ns)
175 {
176 	return ktime_get_coarse_ns();
177 }
178 
179 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
180 	.func		= bpf_ktime_get_coarse_ns,
181 	.gpl_only	= false,
182 	.ret_type	= RET_INTEGER,
183 };
184 
185 BPF_CALL_0(bpf_get_current_pid_tgid)
186 {
187 	struct task_struct *task = current;
188 
189 	if (unlikely(!task))
190 		return -EINVAL;
191 
192 	return (u64) task->tgid << 32 | task->pid;
193 }
194 
195 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
196 	.func		= bpf_get_current_pid_tgid,
197 	.gpl_only	= false,
198 	.ret_type	= RET_INTEGER,
199 };
200 
201 BPF_CALL_0(bpf_get_current_uid_gid)
202 {
203 	struct task_struct *task = current;
204 	kuid_t uid;
205 	kgid_t gid;
206 
207 	if (unlikely(!task))
208 		return -EINVAL;
209 
210 	current_uid_gid(&uid, &gid);
211 	return (u64) from_kgid(&init_user_ns, gid) << 32 |
212 		     from_kuid(&init_user_ns, uid);
213 }
214 
215 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
216 	.func		= bpf_get_current_uid_gid,
217 	.gpl_only	= false,
218 	.ret_type	= RET_INTEGER,
219 };
220 
221 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
222 {
223 	struct task_struct *task = current;
224 
225 	if (unlikely(!task))
226 		goto err_clear;
227 
228 	/* Verifier guarantees that size > 0 */
229 	strscpy(buf, task->comm, size);
230 	return 0;
231 err_clear:
232 	memset(buf, 0, size);
233 	return -EINVAL;
234 }
235 
236 const struct bpf_func_proto bpf_get_current_comm_proto = {
237 	.func		= bpf_get_current_comm,
238 	.gpl_only	= false,
239 	.ret_type	= RET_INTEGER,
240 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
241 	.arg2_type	= ARG_CONST_SIZE,
242 };
243 
244 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
245 
246 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
247 {
248 	arch_spinlock_t *l = (void *)lock;
249 	union {
250 		__u32 val;
251 		arch_spinlock_t lock;
252 	} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
253 
254 	compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
255 	BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
256 	BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
257 	arch_spin_lock(l);
258 }
259 
260 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
261 {
262 	arch_spinlock_t *l = (void *)lock;
263 
264 	arch_spin_unlock(l);
265 }
266 
267 #else
268 
269 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
270 {
271 	atomic_t *l = (void *)lock;
272 
273 	BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
274 	do {
275 		atomic_cond_read_relaxed(l, !VAL);
276 	} while (atomic_xchg(l, 1));
277 }
278 
279 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
280 {
281 	atomic_t *l = (void *)lock;
282 
283 	atomic_set_release(l, 0);
284 }
285 
286 #endif
287 
288 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
289 
290 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
291 {
292 	unsigned long flags;
293 
294 	local_irq_save(flags);
295 	__bpf_spin_lock(lock);
296 	__this_cpu_write(irqsave_flags, flags);
297 }
298 
299 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
300 {
301 	__bpf_spin_lock_irqsave(lock);
302 	return 0;
303 }
304 
305 const struct bpf_func_proto bpf_spin_lock_proto = {
306 	.func		= bpf_spin_lock,
307 	.gpl_only	= false,
308 	.ret_type	= RET_VOID,
309 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
310 };
311 
312 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
313 {
314 	unsigned long flags;
315 
316 	flags = __this_cpu_read(irqsave_flags);
317 	__bpf_spin_unlock(lock);
318 	local_irq_restore(flags);
319 }
320 
321 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
322 {
323 	__bpf_spin_unlock_irqrestore(lock);
324 	return 0;
325 }
326 
327 const struct bpf_func_proto bpf_spin_unlock_proto = {
328 	.func		= bpf_spin_unlock,
329 	.gpl_only	= false,
330 	.ret_type	= RET_VOID,
331 	.arg1_type	= ARG_PTR_TO_SPIN_LOCK,
332 };
333 
334 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
335 			   bool lock_src)
336 {
337 	struct bpf_spin_lock *lock;
338 
339 	if (lock_src)
340 		lock = src + map->spin_lock_off;
341 	else
342 		lock = dst + map->spin_lock_off;
343 	preempt_disable();
344 	__bpf_spin_lock_irqsave(lock);
345 	copy_map_value(map, dst, src);
346 	__bpf_spin_unlock_irqrestore(lock);
347 	preempt_enable();
348 }
349 
350 BPF_CALL_0(bpf_jiffies64)
351 {
352 	return get_jiffies_64();
353 }
354 
355 const struct bpf_func_proto bpf_jiffies64_proto = {
356 	.func		= bpf_jiffies64,
357 	.gpl_only	= false,
358 	.ret_type	= RET_INTEGER,
359 };
360 
361 #ifdef CONFIG_CGROUPS
362 BPF_CALL_0(bpf_get_current_cgroup_id)
363 {
364 	struct cgroup *cgrp;
365 	u64 cgrp_id;
366 
367 	rcu_read_lock();
368 	cgrp = task_dfl_cgroup(current);
369 	cgrp_id = cgroup_id(cgrp);
370 	rcu_read_unlock();
371 
372 	return cgrp_id;
373 }
374 
375 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
376 	.func		= bpf_get_current_cgroup_id,
377 	.gpl_only	= false,
378 	.ret_type	= RET_INTEGER,
379 };
380 
381 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
382 {
383 	struct cgroup *cgrp;
384 	struct cgroup *ancestor;
385 	u64 cgrp_id;
386 
387 	rcu_read_lock();
388 	cgrp = task_dfl_cgroup(current);
389 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
390 	cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
391 	rcu_read_unlock();
392 
393 	return cgrp_id;
394 }
395 
396 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
397 	.func		= bpf_get_current_ancestor_cgroup_id,
398 	.gpl_only	= false,
399 	.ret_type	= RET_INTEGER,
400 	.arg1_type	= ARG_ANYTHING,
401 };
402 
403 #ifdef CONFIG_CGROUP_BPF
404 
405 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
406 {
407 	/* flags argument is not used now,
408 	 * but provides an ability to extend the API.
409 	 * verifier checks that its value is correct.
410 	 */
411 	enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
412 	struct bpf_cgroup_storage *storage;
413 	struct bpf_cg_run_ctx *ctx;
414 	void *ptr;
415 
416 	/* get current cgroup storage from BPF run context */
417 	ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
418 	storage = ctx->prog_item->cgroup_storage[stype];
419 
420 	if (stype == BPF_CGROUP_STORAGE_SHARED)
421 		ptr = &READ_ONCE(storage->buf)->data[0];
422 	else
423 		ptr = this_cpu_ptr(storage->percpu_buf);
424 
425 	return (unsigned long)ptr;
426 }
427 
428 const struct bpf_func_proto bpf_get_local_storage_proto = {
429 	.func		= bpf_get_local_storage,
430 	.gpl_only	= false,
431 	.ret_type	= RET_PTR_TO_MAP_VALUE,
432 	.arg1_type	= ARG_CONST_MAP_PTR,
433 	.arg2_type	= ARG_ANYTHING,
434 };
435 #endif
436 
437 #define BPF_STRTOX_BASE_MASK 0x1F
438 
439 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
440 			  unsigned long long *res, bool *is_negative)
441 {
442 	unsigned int base = flags & BPF_STRTOX_BASE_MASK;
443 	const char *cur_buf = buf;
444 	size_t cur_len = buf_len;
445 	unsigned int consumed;
446 	size_t val_len;
447 	char str[64];
448 
449 	if (!buf || !buf_len || !res || !is_negative)
450 		return -EINVAL;
451 
452 	if (base != 0 && base != 8 && base != 10 && base != 16)
453 		return -EINVAL;
454 
455 	if (flags & ~BPF_STRTOX_BASE_MASK)
456 		return -EINVAL;
457 
458 	while (cur_buf < buf + buf_len && isspace(*cur_buf))
459 		++cur_buf;
460 
461 	*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
462 	if (*is_negative)
463 		++cur_buf;
464 
465 	consumed = cur_buf - buf;
466 	cur_len -= consumed;
467 	if (!cur_len)
468 		return -EINVAL;
469 
470 	cur_len = min(cur_len, sizeof(str) - 1);
471 	memcpy(str, cur_buf, cur_len);
472 	str[cur_len] = '\0';
473 	cur_buf = str;
474 
475 	cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
476 	val_len = _parse_integer(cur_buf, base, res);
477 
478 	if (val_len & KSTRTOX_OVERFLOW)
479 		return -ERANGE;
480 
481 	if (val_len == 0)
482 		return -EINVAL;
483 
484 	cur_buf += val_len;
485 	consumed += cur_buf - str;
486 
487 	return consumed;
488 }
489 
490 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
491 			 long long *res)
492 {
493 	unsigned long long _res;
494 	bool is_negative;
495 	int err;
496 
497 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
498 	if (err < 0)
499 		return err;
500 	if (is_negative) {
501 		if ((long long)-_res > 0)
502 			return -ERANGE;
503 		*res = -_res;
504 	} else {
505 		if ((long long)_res < 0)
506 			return -ERANGE;
507 		*res = _res;
508 	}
509 	return err;
510 }
511 
512 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
513 	   long *, res)
514 {
515 	long long _res;
516 	int err;
517 
518 	err = __bpf_strtoll(buf, buf_len, flags, &_res);
519 	if (err < 0)
520 		return err;
521 	if (_res != (long)_res)
522 		return -ERANGE;
523 	*res = _res;
524 	return err;
525 }
526 
527 const struct bpf_func_proto bpf_strtol_proto = {
528 	.func		= bpf_strtol,
529 	.gpl_only	= false,
530 	.ret_type	= RET_INTEGER,
531 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
532 	.arg2_type	= ARG_CONST_SIZE,
533 	.arg3_type	= ARG_ANYTHING,
534 	.arg4_type	= ARG_PTR_TO_LONG,
535 };
536 
537 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
538 	   unsigned long *, res)
539 {
540 	unsigned long long _res;
541 	bool is_negative;
542 	int err;
543 
544 	err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
545 	if (err < 0)
546 		return err;
547 	if (is_negative)
548 		return -EINVAL;
549 	if (_res != (unsigned long)_res)
550 		return -ERANGE;
551 	*res = _res;
552 	return err;
553 }
554 
555 const struct bpf_func_proto bpf_strtoul_proto = {
556 	.func		= bpf_strtoul,
557 	.gpl_only	= false,
558 	.ret_type	= RET_INTEGER,
559 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
560 	.arg2_type	= ARG_CONST_SIZE,
561 	.arg3_type	= ARG_ANYTHING,
562 	.arg4_type	= ARG_PTR_TO_LONG,
563 };
564 #endif
565 
566 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
567 {
568 	return strncmp(s1, s2, s1_sz);
569 }
570 
571 const struct bpf_func_proto bpf_strncmp_proto = {
572 	.func		= bpf_strncmp,
573 	.gpl_only	= false,
574 	.ret_type	= RET_INTEGER,
575 	.arg1_type	= ARG_PTR_TO_MEM,
576 	.arg2_type	= ARG_CONST_SIZE,
577 	.arg3_type	= ARG_PTR_TO_CONST_STR,
578 };
579 
580 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
581 	   struct bpf_pidns_info *, nsdata, u32, size)
582 {
583 	struct task_struct *task = current;
584 	struct pid_namespace *pidns;
585 	int err = -EINVAL;
586 
587 	if (unlikely(size != sizeof(struct bpf_pidns_info)))
588 		goto clear;
589 
590 	if (unlikely((u64)(dev_t)dev != dev))
591 		goto clear;
592 
593 	if (unlikely(!task))
594 		goto clear;
595 
596 	pidns = task_active_pid_ns(task);
597 	if (unlikely(!pidns)) {
598 		err = -ENOENT;
599 		goto clear;
600 	}
601 
602 	if (!ns_match(&pidns->ns, (dev_t)dev, ino))
603 		goto clear;
604 
605 	nsdata->pid = task_pid_nr_ns(task, pidns);
606 	nsdata->tgid = task_tgid_nr_ns(task, pidns);
607 	return 0;
608 clear:
609 	memset((void *)nsdata, 0, (size_t) size);
610 	return err;
611 }
612 
613 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
614 	.func		= bpf_get_ns_current_pid_tgid,
615 	.gpl_only	= false,
616 	.ret_type	= RET_INTEGER,
617 	.arg1_type	= ARG_ANYTHING,
618 	.arg2_type	= ARG_ANYTHING,
619 	.arg3_type      = ARG_PTR_TO_UNINIT_MEM,
620 	.arg4_type      = ARG_CONST_SIZE,
621 };
622 
623 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
624 	.func		= bpf_get_raw_cpu_id,
625 	.gpl_only	= false,
626 	.ret_type	= RET_INTEGER,
627 };
628 
629 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
630 	   u64, flags, void *, data, u64, size)
631 {
632 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
633 		return -EINVAL;
634 
635 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
636 }
637 
638 const struct bpf_func_proto bpf_event_output_data_proto =  {
639 	.func		= bpf_event_output_data,
640 	.gpl_only       = true,
641 	.ret_type       = RET_INTEGER,
642 	.arg1_type      = ARG_PTR_TO_CTX,
643 	.arg2_type      = ARG_CONST_MAP_PTR,
644 	.arg3_type      = ARG_ANYTHING,
645 	.arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
646 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
647 };
648 
649 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
650 	   const void __user *, user_ptr)
651 {
652 	int ret = copy_from_user(dst, user_ptr, size);
653 
654 	if (unlikely(ret)) {
655 		memset(dst, 0, size);
656 		ret = -EFAULT;
657 	}
658 
659 	return ret;
660 }
661 
662 const struct bpf_func_proto bpf_copy_from_user_proto = {
663 	.func		= bpf_copy_from_user,
664 	.gpl_only	= false,
665 	.ret_type	= RET_INTEGER,
666 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
667 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
668 	.arg3_type	= ARG_ANYTHING,
669 };
670 
671 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
672 	   const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
673 {
674 	int ret;
675 
676 	/* flags is not used yet */
677 	if (unlikely(flags))
678 		return -EINVAL;
679 
680 	if (unlikely(!size))
681 		return 0;
682 
683 	ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
684 	if (ret == size)
685 		return 0;
686 
687 	memset(dst, 0, size);
688 	/* Return -EFAULT for partial read */
689 	return ret < 0 ? ret : -EFAULT;
690 }
691 
692 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
693 	.func		= bpf_copy_from_user_task,
694 	.gpl_only	= true,
695 	.ret_type	= RET_INTEGER,
696 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
697 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
698 	.arg3_type	= ARG_ANYTHING,
699 	.arg4_type	= ARG_PTR_TO_BTF_ID,
700 	.arg4_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
701 	.arg5_type	= ARG_ANYTHING
702 };
703 
704 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
705 {
706 	if (cpu >= nr_cpu_ids)
707 		return (unsigned long)NULL;
708 
709 	return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
710 }
711 
712 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
713 	.func		= bpf_per_cpu_ptr,
714 	.gpl_only	= false,
715 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
716 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
717 	.arg2_type	= ARG_ANYTHING,
718 };
719 
720 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
721 {
722 	return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
723 }
724 
725 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
726 	.func		= bpf_this_cpu_ptr,
727 	.gpl_only	= false,
728 	.ret_type	= RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
729 	.arg1_type	= ARG_PTR_TO_PERCPU_BTF_ID,
730 };
731 
732 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
733 		size_t bufsz)
734 {
735 	void __user *user_ptr = (__force void __user *)unsafe_ptr;
736 
737 	buf[0] = 0;
738 
739 	switch (fmt_ptype) {
740 	case 's':
741 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
742 		if ((unsigned long)unsafe_ptr < TASK_SIZE)
743 			return strncpy_from_user_nofault(buf, user_ptr, bufsz);
744 		fallthrough;
745 #endif
746 	case 'k':
747 		return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
748 	case 'u':
749 		return strncpy_from_user_nofault(buf, user_ptr, bufsz);
750 	}
751 
752 	return -EINVAL;
753 }
754 
755 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
756  * arguments representation.
757  */
758 #define MAX_BPRINTF_BUF_LEN	512
759 
760 /* Support executing three nested bprintf helper calls on a given CPU */
761 #define MAX_BPRINTF_NEST_LEVEL	3
762 struct bpf_bprintf_buffers {
763 	char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
764 };
765 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
766 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
767 
768 static int try_get_fmt_tmp_buf(char **tmp_buf)
769 {
770 	struct bpf_bprintf_buffers *bufs;
771 	int nest_level;
772 
773 	preempt_disable();
774 	nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
775 	if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
776 		this_cpu_dec(bpf_bprintf_nest_level);
777 		preempt_enable();
778 		return -EBUSY;
779 	}
780 	bufs = this_cpu_ptr(&bpf_bprintf_bufs);
781 	*tmp_buf = bufs->tmp_bufs[nest_level - 1];
782 
783 	return 0;
784 }
785 
786 void bpf_bprintf_cleanup(void)
787 {
788 	if (this_cpu_read(bpf_bprintf_nest_level)) {
789 		this_cpu_dec(bpf_bprintf_nest_level);
790 		preempt_enable();
791 	}
792 }
793 
794 /*
795  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
796  *
797  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
798  *
799  * This can be used in two ways:
800  * - Format string verification only: when bin_args is NULL
801  * - Arguments preparation: in addition to the above verification, it writes in
802  *   bin_args a binary representation of arguments usable by bstr_printf where
803  *   pointers from BPF have been sanitized.
804  *
805  * In argument preparation mode, if 0 is returned, safe temporary buffers are
806  * allocated and bpf_bprintf_cleanup should be called to free them after use.
807  */
808 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
809 			u32 **bin_args, u32 num_args)
810 {
811 	char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
812 	size_t sizeof_cur_arg, sizeof_cur_ip;
813 	int err, i, num_spec = 0;
814 	u64 cur_arg;
815 	char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
816 
817 	fmt_end = strnchr(fmt, fmt_size, 0);
818 	if (!fmt_end)
819 		return -EINVAL;
820 	fmt_size = fmt_end - fmt;
821 
822 	if (bin_args) {
823 		if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
824 			return -EBUSY;
825 
826 		tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
827 		*bin_args = (u32 *)tmp_buf;
828 	}
829 
830 	for (i = 0; i < fmt_size; i++) {
831 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
832 			err = -EINVAL;
833 			goto out;
834 		}
835 
836 		if (fmt[i] != '%')
837 			continue;
838 
839 		if (fmt[i + 1] == '%') {
840 			i++;
841 			continue;
842 		}
843 
844 		if (num_spec >= num_args) {
845 			err = -EINVAL;
846 			goto out;
847 		}
848 
849 		/* The string is zero-terminated so if fmt[i] != 0, we can
850 		 * always access fmt[i + 1], in the worst case it will be a 0
851 		 */
852 		i++;
853 
854 		/* skip optional "[0 +-][num]" width formatting field */
855 		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
856 		       fmt[i] == ' ')
857 			i++;
858 		if (fmt[i] >= '1' && fmt[i] <= '9') {
859 			i++;
860 			while (fmt[i] >= '0' && fmt[i] <= '9')
861 				i++;
862 		}
863 
864 		if (fmt[i] == 'p') {
865 			sizeof_cur_arg = sizeof(long);
866 
867 			if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
868 			    fmt[i + 2] == 's') {
869 				fmt_ptype = fmt[i + 1];
870 				i += 2;
871 				goto fmt_str;
872 			}
873 
874 			if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
875 			    ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
876 			    fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
877 			    fmt[i + 1] == 'S') {
878 				/* just kernel pointers */
879 				if (tmp_buf)
880 					cur_arg = raw_args[num_spec];
881 				i++;
882 				goto nocopy_fmt;
883 			}
884 
885 			if (fmt[i + 1] == 'B') {
886 				if (tmp_buf)  {
887 					err = snprintf(tmp_buf,
888 						       (tmp_buf_end - tmp_buf),
889 						       "%pB",
890 						       (void *)(long)raw_args[num_spec]);
891 					tmp_buf += (err + 1);
892 				}
893 
894 				i++;
895 				num_spec++;
896 				continue;
897 			}
898 
899 			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
900 			if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
901 			    (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
902 				err = -EINVAL;
903 				goto out;
904 			}
905 
906 			i += 2;
907 			if (!tmp_buf)
908 				goto nocopy_fmt;
909 
910 			sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
911 			if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
912 				err = -ENOSPC;
913 				goto out;
914 			}
915 
916 			unsafe_ptr = (char *)(long)raw_args[num_spec];
917 			err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
918 						       sizeof_cur_ip);
919 			if (err < 0)
920 				memset(cur_ip, 0, sizeof_cur_ip);
921 
922 			/* hack: bstr_printf expects IP addresses to be
923 			 * pre-formatted as strings, ironically, the easiest way
924 			 * to do that is to call snprintf.
925 			 */
926 			ip_spec[2] = fmt[i - 1];
927 			ip_spec[3] = fmt[i];
928 			err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
929 				       ip_spec, &cur_ip);
930 
931 			tmp_buf += err + 1;
932 			num_spec++;
933 
934 			continue;
935 		} else if (fmt[i] == 's') {
936 			fmt_ptype = fmt[i];
937 fmt_str:
938 			if (fmt[i + 1] != 0 &&
939 			    !isspace(fmt[i + 1]) &&
940 			    !ispunct(fmt[i + 1])) {
941 				err = -EINVAL;
942 				goto out;
943 			}
944 
945 			if (!tmp_buf)
946 				goto nocopy_fmt;
947 
948 			if (tmp_buf_end == tmp_buf) {
949 				err = -ENOSPC;
950 				goto out;
951 			}
952 
953 			unsafe_ptr = (char *)(long)raw_args[num_spec];
954 			err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
955 						    fmt_ptype,
956 						    tmp_buf_end - tmp_buf);
957 			if (err < 0) {
958 				tmp_buf[0] = '\0';
959 				err = 1;
960 			}
961 
962 			tmp_buf += err;
963 			num_spec++;
964 
965 			continue;
966 		} else if (fmt[i] == 'c') {
967 			if (!tmp_buf)
968 				goto nocopy_fmt;
969 
970 			if (tmp_buf_end == tmp_buf) {
971 				err = -ENOSPC;
972 				goto out;
973 			}
974 
975 			*tmp_buf = raw_args[num_spec];
976 			tmp_buf++;
977 			num_spec++;
978 
979 			continue;
980 		}
981 
982 		sizeof_cur_arg = sizeof(int);
983 
984 		if (fmt[i] == 'l') {
985 			sizeof_cur_arg = sizeof(long);
986 			i++;
987 		}
988 		if (fmt[i] == 'l') {
989 			sizeof_cur_arg = sizeof(long long);
990 			i++;
991 		}
992 
993 		if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
994 		    fmt[i] != 'x' && fmt[i] != 'X') {
995 			err = -EINVAL;
996 			goto out;
997 		}
998 
999 		if (tmp_buf)
1000 			cur_arg = raw_args[num_spec];
1001 nocopy_fmt:
1002 		if (tmp_buf) {
1003 			tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1004 			if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1005 				err = -ENOSPC;
1006 				goto out;
1007 			}
1008 
1009 			if (sizeof_cur_arg == 8) {
1010 				*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1011 				*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1012 			} else {
1013 				*(u32 *)tmp_buf = (u32)(long)cur_arg;
1014 			}
1015 			tmp_buf += sizeof_cur_arg;
1016 		}
1017 		num_spec++;
1018 	}
1019 
1020 	err = 0;
1021 out:
1022 	if (err)
1023 		bpf_bprintf_cleanup();
1024 	return err;
1025 }
1026 
1027 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1028 	   const void *, data, u32, data_len)
1029 {
1030 	int err, num_args;
1031 	u32 *bin_args;
1032 
1033 	if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1034 	    (data_len && !data))
1035 		return -EINVAL;
1036 	num_args = data_len / 8;
1037 
1038 	/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1039 	 * can safely give an unbounded size.
1040 	 */
1041 	err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
1042 	if (err < 0)
1043 		return err;
1044 
1045 	err = bstr_printf(str, str_size, fmt, bin_args);
1046 
1047 	bpf_bprintf_cleanup();
1048 
1049 	return err + 1;
1050 }
1051 
1052 const struct bpf_func_proto bpf_snprintf_proto = {
1053 	.func		= bpf_snprintf,
1054 	.gpl_only	= true,
1055 	.ret_type	= RET_INTEGER,
1056 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1057 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1058 	.arg3_type	= ARG_PTR_TO_CONST_STR,
1059 	.arg4_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1060 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1061 };
1062 
1063 /* BPF map elements can contain 'struct bpf_timer'.
1064  * Such map owns all of its BPF timers.
1065  * 'struct bpf_timer' is allocated as part of map element allocation
1066  * and it's zero initialized.
1067  * That space is used to keep 'struct bpf_timer_kern'.
1068  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1069  * remembers 'struct bpf_map *' pointer it's part of.
1070  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1071  * bpf_timer_start() arms the timer.
1072  * If user space reference to a map goes to zero at this point
1073  * ops->map_release_uref callback is responsible for cancelling the timers,
1074  * freeing their memory, and decrementing prog's refcnts.
1075  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1076  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1077  * freeing the timers when inner map is replaced or deleted by user space.
1078  */
1079 struct bpf_hrtimer {
1080 	struct hrtimer timer;
1081 	struct bpf_map *map;
1082 	struct bpf_prog *prog;
1083 	void __rcu *callback_fn;
1084 	void *value;
1085 };
1086 
1087 /* the actual struct hidden inside uapi struct bpf_timer */
1088 struct bpf_timer_kern {
1089 	struct bpf_hrtimer *timer;
1090 	/* bpf_spin_lock is used here instead of spinlock_t to make
1091 	 * sure that it always fits into space reserved by struct bpf_timer
1092 	 * regardless of LOCKDEP and spinlock debug flags.
1093 	 */
1094 	struct bpf_spin_lock lock;
1095 } __attribute__((aligned(8)));
1096 
1097 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1098 
1099 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1100 {
1101 	struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1102 	struct bpf_map *map = t->map;
1103 	void *value = t->value;
1104 	bpf_callback_t callback_fn;
1105 	void *key;
1106 	u32 idx;
1107 
1108 	BTF_TYPE_EMIT(struct bpf_timer);
1109 	callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1110 	if (!callback_fn)
1111 		goto out;
1112 
1113 	/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1114 	 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1115 	 * Remember the timer this callback is servicing to prevent
1116 	 * deadlock if callback_fn() calls bpf_timer_cancel() or
1117 	 * bpf_map_delete_elem() on the same timer.
1118 	 */
1119 	this_cpu_write(hrtimer_running, t);
1120 	if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1121 		struct bpf_array *array = container_of(map, struct bpf_array, map);
1122 
1123 		/* compute the key */
1124 		idx = ((char *)value - array->value) / array->elem_size;
1125 		key = &idx;
1126 	} else { /* hash or lru */
1127 		key = value - round_up(map->key_size, 8);
1128 	}
1129 
1130 	callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1131 	/* The verifier checked that return value is zero. */
1132 
1133 	this_cpu_write(hrtimer_running, NULL);
1134 out:
1135 	return HRTIMER_NORESTART;
1136 }
1137 
1138 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1139 	   u64, flags)
1140 {
1141 	clockid_t clockid = flags & (MAX_CLOCKS - 1);
1142 	struct bpf_hrtimer *t;
1143 	int ret = 0;
1144 
1145 	BUILD_BUG_ON(MAX_CLOCKS != 16);
1146 	BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1147 	BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1148 
1149 	if (in_nmi())
1150 		return -EOPNOTSUPP;
1151 
1152 	if (flags >= MAX_CLOCKS ||
1153 	    /* similar to timerfd except _ALARM variants are not supported */
1154 	    (clockid != CLOCK_MONOTONIC &&
1155 	     clockid != CLOCK_REALTIME &&
1156 	     clockid != CLOCK_BOOTTIME))
1157 		return -EINVAL;
1158 	__bpf_spin_lock_irqsave(&timer->lock);
1159 	t = timer->timer;
1160 	if (t) {
1161 		ret = -EBUSY;
1162 		goto out;
1163 	}
1164 	if (!atomic64_read(&map->usercnt)) {
1165 		/* maps with timers must be either held by user space
1166 		 * or pinned in bpffs.
1167 		 */
1168 		ret = -EPERM;
1169 		goto out;
1170 	}
1171 	/* allocate hrtimer via map_kmalloc to use memcg accounting */
1172 	t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1173 	if (!t) {
1174 		ret = -ENOMEM;
1175 		goto out;
1176 	}
1177 	t->value = (void *)timer - map->timer_off;
1178 	t->map = map;
1179 	t->prog = NULL;
1180 	rcu_assign_pointer(t->callback_fn, NULL);
1181 	hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1182 	t->timer.function = bpf_timer_cb;
1183 	timer->timer = t;
1184 out:
1185 	__bpf_spin_unlock_irqrestore(&timer->lock);
1186 	return ret;
1187 }
1188 
1189 static const struct bpf_func_proto bpf_timer_init_proto = {
1190 	.func		= bpf_timer_init,
1191 	.gpl_only	= true,
1192 	.ret_type	= RET_INTEGER,
1193 	.arg1_type	= ARG_PTR_TO_TIMER,
1194 	.arg2_type	= ARG_CONST_MAP_PTR,
1195 	.arg3_type	= ARG_ANYTHING,
1196 };
1197 
1198 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1199 	   struct bpf_prog_aux *, aux)
1200 {
1201 	struct bpf_prog *prev, *prog = aux->prog;
1202 	struct bpf_hrtimer *t;
1203 	int ret = 0;
1204 
1205 	if (in_nmi())
1206 		return -EOPNOTSUPP;
1207 	__bpf_spin_lock_irqsave(&timer->lock);
1208 	t = timer->timer;
1209 	if (!t) {
1210 		ret = -EINVAL;
1211 		goto out;
1212 	}
1213 	if (!atomic64_read(&t->map->usercnt)) {
1214 		/* maps with timers must be either held by user space
1215 		 * or pinned in bpffs. Otherwise timer might still be
1216 		 * running even when bpf prog is detached and user space
1217 		 * is gone, since map_release_uref won't ever be called.
1218 		 */
1219 		ret = -EPERM;
1220 		goto out;
1221 	}
1222 	prev = t->prog;
1223 	if (prev != prog) {
1224 		/* Bump prog refcnt once. Every bpf_timer_set_callback()
1225 		 * can pick different callback_fn-s within the same prog.
1226 		 */
1227 		prog = bpf_prog_inc_not_zero(prog);
1228 		if (IS_ERR(prog)) {
1229 			ret = PTR_ERR(prog);
1230 			goto out;
1231 		}
1232 		if (prev)
1233 			/* Drop prev prog refcnt when swapping with new prog */
1234 			bpf_prog_put(prev);
1235 		t->prog = prog;
1236 	}
1237 	rcu_assign_pointer(t->callback_fn, callback_fn);
1238 out:
1239 	__bpf_spin_unlock_irqrestore(&timer->lock);
1240 	return ret;
1241 }
1242 
1243 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1244 	.func		= bpf_timer_set_callback,
1245 	.gpl_only	= true,
1246 	.ret_type	= RET_INTEGER,
1247 	.arg1_type	= ARG_PTR_TO_TIMER,
1248 	.arg2_type	= ARG_PTR_TO_FUNC,
1249 };
1250 
1251 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1252 {
1253 	struct bpf_hrtimer *t;
1254 	int ret = 0;
1255 
1256 	if (in_nmi())
1257 		return -EOPNOTSUPP;
1258 	if (flags)
1259 		return -EINVAL;
1260 	__bpf_spin_lock_irqsave(&timer->lock);
1261 	t = timer->timer;
1262 	if (!t || !t->prog) {
1263 		ret = -EINVAL;
1264 		goto out;
1265 	}
1266 	hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1267 out:
1268 	__bpf_spin_unlock_irqrestore(&timer->lock);
1269 	return ret;
1270 }
1271 
1272 static const struct bpf_func_proto bpf_timer_start_proto = {
1273 	.func		= bpf_timer_start,
1274 	.gpl_only	= true,
1275 	.ret_type	= RET_INTEGER,
1276 	.arg1_type	= ARG_PTR_TO_TIMER,
1277 	.arg2_type	= ARG_ANYTHING,
1278 	.arg3_type	= ARG_ANYTHING,
1279 };
1280 
1281 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1282 {
1283 	struct bpf_prog *prog = t->prog;
1284 
1285 	if (prog) {
1286 		bpf_prog_put(prog);
1287 		t->prog = NULL;
1288 		rcu_assign_pointer(t->callback_fn, NULL);
1289 	}
1290 }
1291 
1292 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1293 {
1294 	struct bpf_hrtimer *t;
1295 	int ret = 0;
1296 
1297 	if (in_nmi())
1298 		return -EOPNOTSUPP;
1299 	__bpf_spin_lock_irqsave(&timer->lock);
1300 	t = timer->timer;
1301 	if (!t) {
1302 		ret = -EINVAL;
1303 		goto out;
1304 	}
1305 	if (this_cpu_read(hrtimer_running) == t) {
1306 		/* If bpf callback_fn is trying to bpf_timer_cancel()
1307 		 * its own timer the hrtimer_cancel() will deadlock
1308 		 * since it waits for callback_fn to finish
1309 		 */
1310 		ret = -EDEADLK;
1311 		goto out;
1312 	}
1313 	drop_prog_refcnt(t);
1314 out:
1315 	__bpf_spin_unlock_irqrestore(&timer->lock);
1316 	/* Cancel the timer and wait for associated callback to finish
1317 	 * if it was running.
1318 	 */
1319 	ret = ret ?: hrtimer_cancel(&t->timer);
1320 	return ret;
1321 }
1322 
1323 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1324 	.func		= bpf_timer_cancel,
1325 	.gpl_only	= true,
1326 	.ret_type	= RET_INTEGER,
1327 	.arg1_type	= ARG_PTR_TO_TIMER,
1328 };
1329 
1330 /* This function is called by map_delete/update_elem for individual element and
1331  * by ops->map_release_uref when the user space reference to a map reaches zero.
1332  */
1333 void bpf_timer_cancel_and_free(void *val)
1334 {
1335 	struct bpf_timer_kern *timer = val;
1336 	struct bpf_hrtimer *t;
1337 
1338 	/* Performance optimization: read timer->timer without lock first. */
1339 	if (!READ_ONCE(timer->timer))
1340 		return;
1341 
1342 	__bpf_spin_lock_irqsave(&timer->lock);
1343 	/* re-read it under lock */
1344 	t = timer->timer;
1345 	if (!t)
1346 		goto out;
1347 	drop_prog_refcnt(t);
1348 	/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1349 	 * this timer, since it won't be initialized.
1350 	 */
1351 	timer->timer = NULL;
1352 out:
1353 	__bpf_spin_unlock_irqrestore(&timer->lock);
1354 	if (!t)
1355 		return;
1356 	/* Cancel the timer and wait for callback to complete if it was running.
1357 	 * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1358 	 * right after for both preallocated and non-preallocated maps.
1359 	 * The timer->timer = NULL was already done and no code path can
1360 	 * see address 't' anymore.
1361 	 *
1362 	 * Check that bpf_map_delete/update_elem() wasn't called from timer
1363 	 * callback_fn. In such case don't call hrtimer_cancel() (since it will
1364 	 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1365 	 * return -1). Though callback_fn is still running on this cpu it's
1366 	 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1367 	 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1368 	 * since timer->timer = NULL was already done. The timer will be
1369 	 * effectively cancelled because bpf_timer_cb() will return
1370 	 * HRTIMER_NORESTART.
1371 	 */
1372 	if (this_cpu_read(hrtimer_running) != t)
1373 		hrtimer_cancel(&t->timer);
1374 	kfree(t);
1375 }
1376 
1377 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1378 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1379 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1380 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1381 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1382 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1383 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1384 
1385 const struct bpf_func_proto *
1386 bpf_base_func_proto(enum bpf_func_id func_id)
1387 {
1388 	switch (func_id) {
1389 	case BPF_FUNC_map_lookup_elem:
1390 		return &bpf_map_lookup_elem_proto;
1391 	case BPF_FUNC_map_update_elem:
1392 		return &bpf_map_update_elem_proto;
1393 	case BPF_FUNC_map_delete_elem:
1394 		return &bpf_map_delete_elem_proto;
1395 	case BPF_FUNC_map_push_elem:
1396 		return &bpf_map_push_elem_proto;
1397 	case BPF_FUNC_map_pop_elem:
1398 		return &bpf_map_pop_elem_proto;
1399 	case BPF_FUNC_map_peek_elem:
1400 		return &bpf_map_peek_elem_proto;
1401 	case BPF_FUNC_get_prandom_u32:
1402 		return &bpf_get_prandom_u32_proto;
1403 	case BPF_FUNC_get_smp_processor_id:
1404 		return &bpf_get_raw_smp_processor_id_proto;
1405 	case BPF_FUNC_get_numa_node_id:
1406 		return &bpf_get_numa_node_id_proto;
1407 	case BPF_FUNC_tail_call:
1408 		return &bpf_tail_call_proto;
1409 	case BPF_FUNC_ktime_get_ns:
1410 		return &bpf_ktime_get_ns_proto;
1411 	case BPF_FUNC_ktime_get_boot_ns:
1412 		return &bpf_ktime_get_boot_ns_proto;
1413 	case BPF_FUNC_ringbuf_output:
1414 		return &bpf_ringbuf_output_proto;
1415 	case BPF_FUNC_ringbuf_reserve:
1416 		return &bpf_ringbuf_reserve_proto;
1417 	case BPF_FUNC_ringbuf_submit:
1418 		return &bpf_ringbuf_submit_proto;
1419 	case BPF_FUNC_ringbuf_discard:
1420 		return &bpf_ringbuf_discard_proto;
1421 	case BPF_FUNC_ringbuf_query:
1422 		return &bpf_ringbuf_query_proto;
1423 	case BPF_FUNC_for_each_map_elem:
1424 		return &bpf_for_each_map_elem_proto;
1425 	case BPF_FUNC_loop:
1426 		return &bpf_loop_proto;
1427 	case BPF_FUNC_strncmp:
1428 		return &bpf_strncmp_proto;
1429 	default:
1430 		break;
1431 	}
1432 
1433 	if (!bpf_capable())
1434 		return NULL;
1435 
1436 	switch (func_id) {
1437 	case BPF_FUNC_spin_lock:
1438 		return &bpf_spin_lock_proto;
1439 	case BPF_FUNC_spin_unlock:
1440 		return &bpf_spin_unlock_proto;
1441 	case BPF_FUNC_jiffies64:
1442 		return &bpf_jiffies64_proto;
1443 	case BPF_FUNC_per_cpu_ptr:
1444 		return &bpf_per_cpu_ptr_proto;
1445 	case BPF_FUNC_this_cpu_ptr:
1446 		return &bpf_this_cpu_ptr_proto;
1447 	case BPF_FUNC_timer_init:
1448 		return &bpf_timer_init_proto;
1449 	case BPF_FUNC_timer_set_callback:
1450 		return &bpf_timer_set_callback_proto;
1451 	case BPF_FUNC_timer_start:
1452 		return &bpf_timer_start_proto;
1453 	case BPF_FUNC_timer_cancel:
1454 		return &bpf_timer_cancel_proto;
1455 	default:
1456 		break;
1457 	}
1458 
1459 	if (!perfmon_capable())
1460 		return NULL;
1461 
1462 	switch (func_id) {
1463 	case BPF_FUNC_trace_printk:
1464 		return bpf_get_trace_printk_proto();
1465 	case BPF_FUNC_get_current_task:
1466 		return &bpf_get_current_task_proto;
1467 	case BPF_FUNC_get_current_task_btf:
1468 		return &bpf_get_current_task_btf_proto;
1469 	case BPF_FUNC_probe_read_user:
1470 		return &bpf_probe_read_user_proto;
1471 	case BPF_FUNC_probe_read_kernel:
1472 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1473 		       NULL : &bpf_probe_read_kernel_proto;
1474 	case BPF_FUNC_probe_read_user_str:
1475 		return &bpf_probe_read_user_str_proto;
1476 	case BPF_FUNC_probe_read_kernel_str:
1477 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1478 		       NULL : &bpf_probe_read_kernel_str_proto;
1479 	case BPF_FUNC_snprintf_btf:
1480 		return &bpf_snprintf_btf_proto;
1481 	case BPF_FUNC_snprintf:
1482 		return &bpf_snprintf_proto;
1483 	case BPF_FUNC_task_pt_regs:
1484 		return &bpf_task_pt_regs_proto;
1485 	case BPF_FUNC_trace_vprintk:
1486 		return bpf_get_trace_vprintk_proto();
1487 	default:
1488 		return NULL;
1489 	}
1490 }
1491