1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #include <linux/bpf.h> 5 #include <linux/btf.h> 6 #include <linux/bpf-cgroup.h> 7 #include <linux/cgroup.h> 8 #include <linux/rcupdate.h> 9 #include <linux/random.h> 10 #include <linux/smp.h> 11 #include <linux/topology.h> 12 #include <linux/ktime.h> 13 #include <linux/sched.h> 14 #include <linux/uidgid.h> 15 #include <linux/filter.h> 16 #include <linux/ctype.h> 17 #include <linux/jiffies.h> 18 #include <linux/pid_namespace.h> 19 #include <linux/poison.h> 20 #include <linux/proc_ns.h> 21 #include <linux/sched/task.h> 22 #include <linux/security.h> 23 #include <linux/btf_ids.h> 24 #include <linux/bpf_mem_alloc.h> 25 26 #include "../../lib/kstrtox.h" 27 28 /* If kernel subsystem is allowing eBPF programs to call this function, 29 * inside its own verifier_ops->get_func_proto() callback it should return 30 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments 31 * 32 * Different map implementations will rely on rcu in map methods 33 * lookup/update/delete, therefore eBPF programs must run under rcu lock 34 * if program is allowed to access maps, so check rcu_read_lock_held() or 35 * rcu_read_lock_trace_held() in all three functions. 36 */ 37 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key) 38 { 39 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 40 !rcu_read_lock_bh_held()); 41 return (unsigned long) map->ops->map_lookup_elem(map, key); 42 } 43 44 const struct bpf_func_proto bpf_map_lookup_elem_proto = { 45 .func = bpf_map_lookup_elem, 46 .gpl_only = false, 47 .pkt_access = true, 48 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 49 .arg1_type = ARG_CONST_MAP_PTR, 50 .arg2_type = ARG_PTR_TO_MAP_KEY, 51 }; 52 53 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key, 54 void *, value, u64, flags) 55 { 56 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 57 !rcu_read_lock_bh_held()); 58 return map->ops->map_update_elem(map, key, value, flags); 59 } 60 61 const struct bpf_func_proto bpf_map_update_elem_proto = { 62 .func = bpf_map_update_elem, 63 .gpl_only = false, 64 .pkt_access = true, 65 .ret_type = RET_INTEGER, 66 .arg1_type = ARG_CONST_MAP_PTR, 67 .arg2_type = ARG_PTR_TO_MAP_KEY, 68 .arg3_type = ARG_PTR_TO_MAP_VALUE, 69 .arg4_type = ARG_ANYTHING, 70 }; 71 72 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key) 73 { 74 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() && 75 !rcu_read_lock_bh_held()); 76 return map->ops->map_delete_elem(map, key); 77 } 78 79 const struct bpf_func_proto bpf_map_delete_elem_proto = { 80 .func = bpf_map_delete_elem, 81 .gpl_only = false, 82 .pkt_access = true, 83 .ret_type = RET_INTEGER, 84 .arg1_type = ARG_CONST_MAP_PTR, 85 .arg2_type = ARG_PTR_TO_MAP_KEY, 86 }; 87 88 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags) 89 { 90 return map->ops->map_push_elem(map, value, flags); 91 } 92 93 const struct bpf_func_proto bpf_map_push_elem_proto = { 94 .func = bpf_map_push_elem, 95 .gpl_only = false, 96 .pkt_access = true, 97 .ret_type = RET_INTEGER, 98 .arg1_type = ARG_CONST_MAP_PTR, 99 .arg2_type = ARG_PTR_TO_MAP_VALUE, 100 .arg3_type = ARG_ANYTHING, 101 }; 102 103 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value) 104 { 105 return map->ops->map_pop_elem(map, value); 106 } 107 108 const struct bpf_func_proto bpf_map_pop_elem_proto = { 109 .func = bpf_map_pop_elem, 110 .gpl_only = false, 111 .ret_type = RET_INTEGER, 112 .arg1_type = ARG_CONST_MAP_PTR, 113 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 114 }; 115 116 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value) 117 { 118 return map->ops->map_peek_elem(map, value); 119 } 120 121 const struct bpf_func_proto bpf_map_peek_elem_proto = { 122 .func = bpf_map_peek_elem, 123 .gpl_only = false, 124 .ret_type = RET_INTEGER, 125 .arg1_type = ARG_CONST_MAP_PTR, 126 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT, 127 }; 128 129 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu) 130 { 131 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 132 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu); 133 } 134 135 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = { 136 .func = bpf_map_lookup_percpu_elem, 137 .gpl_only = false, 138 .pkt_access = true, 139 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 140 .arg1_type = ARG_CONST_MAP_PTR, 141 .arg2_type = ARG_PTR_TO_MAP_KEY, 142 .arg3_type = ARG_ANYTHING, 143 }; 144 145 const struct bpf_func_proto bpf_get_prandom_u32_proto = { 146 .func = bpf_user_rnd_u32, 147 .gpl_only = false, 148 .ret_type = RET_INTEGER, 149 }; 150 151 BPF_CALL_0(bpf_get_smp_processor_id) 152 { 153 return smp_processor_id(); 154 } 155 156 const struct bpf_func_proto bpf_get_smp_processor_id_proto = { 157 .func = bpf_get_smp_processor_id, 158 .gpl_only = false, 159 .ret_type = RET_INTEGER, 160 }; 161 162 BPF_CALL_0(bpf_get_numa_node_id) 163 { 164 return numa_node_id(); 165 } 166 167 const struct bpf_func_proto bpf_get_numa_node_id_proto = { 168 .func = bpf_get_numa_node_id, 169 .gpl_only = false, 170 .ret_type = RET_INTEGER, 171 }; 172 173 BPF_CALL_0(bpf_ktime_get_ns) 174 { 175 /* NMI safe access to clock monotonic */ 176 return ktime_get_mono_fast_ns(); 177 } 178 179 const struct bpf_func_proto bpf_ktime_get_ns_proto = { 180 .func = bpf_ktime_get_ns, 181 .gpl_only = false, 182 .ret_type = RET_INTEGER, 183 }; 184 185 BPF_CALL_0(bpf_ktime_get_boot_ns) 186 { 187 /* NMI safe access to clock boottime */ 188 return ktime_get_boot_fast_ns(); 189 } 190 191 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = { 192 .func = bpf_ktime_get_boot_ns, 193 .gpl_only = false, 194 .ret_type = RET_INTEGER, 195 }; 196 197 BPF_CALL_0(bpf_ktime_get_coarse_ns) 198 { 199 return ktime_get_coarse_ns(); 200 } 201 202 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = { 203 .func = bpf_ktime_get_coarse_ns, 204 .gpl_only = false, 205 .ret_type = RET_INTEGER, 206 }; 207 208 BPF_CALL_0(bpf_ktime_get_tai_ns) 209 { 210 /* NMI safe access to clock tai */ 211 return ktime_get_tai_fast_ns(); 212 } 213 214 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = { 215 .func = bpf_ktime_get_tai_ns, 216 .gpl_only = false, 217 .ret_type = RET_INTEGER, 218 }; 219 220 BPF_CALL_0(bpf_get_current_pid_tgid) 221 { 222 struct task_struct *task = current; 223 224 if (unlikely(!task)) 225 return -EINVAL; 226 227 return (u64) task->tgid << 32 | task->pid; 228 } 229 230 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = { 231 .func = bpf_get_current_pid_tgid, 232 .gpl_only = false, 233 .ret_type = RET_INTEGER, 234 }; 235 236 BPF_CALL_0(bpf_get_current_uid_gid) 237 { 238 struct task_struct *task = current; 239 kuid_t uid; 240 kgid_t gid; 241 242 if (unlikely(!task)) 243 return -EINVAL; 244 245 current_uid_gid(&uid, &gid); 246 return (u64) from_kgid(&init_user_ns, gid) << 32 | 247 from_kuid(&init_user_ns, uid); 248 } 249 250 const struct bpf_func_proto bpf_get_current_uid_gid_proto = { 251 .func = bpf_get_current_uid_gid, 252 .gpl_only = false, 253 .ret_type = RET_INTEGER, 254 }; 255 256 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size) 257 { 258 struct task_struct *task = current; 259 260 if (unlikely(!task)) 261 goto err_clear; 262 263 /* Verifier guarantees that size > 0 */ 264 strscpy_pad(buf, task->comm, size); 265 return 0; 266 err_clear: 267 memset(buf, 0, size); 268 return -EINVAL; 269 } 270 271 const struct bpf_func_proto bpf_get_current_comm_proto = { 272 .func = bpf_get_current_comm, 273 .gpl_only = false, 274 .ret_type = RET_INTEGER, 275 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 276 .arg2_type = ARG_CONST_SIZE, 277 }; 278 279 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK) 280 281 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 282 { 283 arch_spinlock_t *l = (void *)lock; 284 union { 285 __u32 val; 286 arch_spinlock_t lock; 287 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED }; 288 289 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0"); 290 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32)); 291 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32)); 292 preempt_disable(); 293 arch_spin_lock(l); 294 } 295 296 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 297 { 298 arch_spinlock_t *l = (void *)lock; 299 300 arch_spin_unlock(l); 301 preempt_enable(); 302 } 303 304 #else 305 306 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock) 307 { 308 atomic_t *l = (void *)lock; 309 310 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock)); 311 do { 312 atomic_cond_read_relaxed(l, !VAL); 313 } while (atomic_xchg(l, 1)); 314 } 315 316 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock) 317 { 318 atomic_t *l = (void *)lock; 319 320 atomic_set_release(l, 0); 321 } 322 323 #endif 324 325 static DEFINE_PER_CPU(unsigned long, irqsave_flags); 326 327 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock) 328 { 329 unsigned long flags; 330 331 local_irq_save(flags); 332 __bpf_spin_lock(lock); 333 __this_cpu_write(irqsave_flags, flags); 334 } 335 336 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock) 337 { 338 __bpf_spin_lock_irqsave(lock); 339 return 0; 340 } 341 342 const struct bpf_func_proto bpf_spin_lock_proto = { 343 .func = bpf_spin_lock, 344 .gpl_only = false, 345 .ret_type = RET_VOID, 346 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 347 .arg1_btf_id = BPF_PTR_POISON, 348 }; 349 350 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock) 351 { 352 unsigned long flags; 353 354 flags = __this_cpu_read(irqsave_flags); 355 __bpf_spin_unlock(lock); 356 local_irq_restore(flags); 357 } 358 359 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock) 360 { 361 __bpf_spin_unlock_irqrestore(lock); 362 return 0; 363 } 364 365 const struct bpf_func_proto bpf_spin_unlock_proto = { 366 .func = bpf_spin_unlock, 367 .gpl_only = false, 368 .ret_type = RET_VOID, 369 .arg1_type = ARG_PTR_TO_SPIN_LOCK, 370 .arg1_btf_id = BPF_PTR_POISON, 371 }; 372 373 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 374 bool lock_src) 375 { 376 struct bpf_spin_lock *lock; 377 378 if (lock_src) 379 lock = src + map->record->spin_lock_off; 380 else 381 lock = dst + map->record->spin_lock_off; 382 preempt_disable(); 383 __bpf_spin_lock_irqsave(lock); 384 copy_map_value(map, dst, src); 385 __bpf_spin_unlock_irqrestore(lock); 386 preempt_enable(); 387 } 388 389 BPF_CALL_0(bpf_jiffies64) 390 { 391 return get_jiffies_64(); 392 } 393 394 const struct bpf_func_proto bpf_jiffies64_proto = { 395 .func = bpf_jiffies64, 396 .gpl_only = false, 397 .ret_type = RET_INTEGER, 398 }; 399 400 #ifdef CONFIG_CGROUPS 401 BPF_CALL_0(bpf_get_current_cgroup_id) 402 { 403 struct cgroup *cgrp; 404 u64 cgrp_id; 405 406 rcu_read_lock(); 407 cgrp = task_dfl_cgroup(current); 408 cgrp_id = cgroup_id(cgrp); 409 rcu_read_unlock(); 410 411 return cgrp_id; 412 } 413 414 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = { 415 .func = bpf_get_current_cgroup_id, 416 .gpl_only = false, 417 .ret_type = RET_INTEGER, 418 }; 419 420 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level) 421 { 422 struct cgroup *cgrp; 423 struct cgroup *ancestor; 424 u64 cgrp_id; 425 426 rcu_read_lock(); 427 cgrp = task_dfl_cgroup(current); 428 ancestor = cgroup_ancestor(cgrp, ancestor_level); 429 cgrp_id = ancestor ? cgroup_id(ancestor) : 0; 430 rcu_read_unlock(); 431 432 return cgrp_id; 433 } 434 435 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = { 436 .func = bpf_get_current_ancestor_cgroup_id, 437 .gpl_only = false, 438 .ret_type = RET_INTEGER, 439 .arg1_type = ARG_ANYTHING, 440 }; 441 #endif /* CONFIG_CGROUPS */ 442 443 #define BPF_STRTOX_BASE_MASK 0x1F 444 445 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags, 446 unsigned long long *res, bool *is_negative) 447 { 448 unsigned int base = flags & BPF_STRTOX_BASE_MASK; 449 const char *cur_buf = buf; 450 size_t cur_len = buf_len; 451 unsigned int consumed; 452 size_t val_len; 453 char str[64]; 454 455 if (!buf || !buf_len || !res || !is_negative) 456 return -EINVAL; 457 458 if (base != 0 && base != 8 && base != 10 && base != 16) 459 return -EINVAL; 460 461 if (flags & ~BPF_STRTOX_BASE_MASK) 462 return -EINVAL; 463 464 while (cur_buf < buf + buf_len && isspace(*cur_buf)) 465 ++cur_buf; 466 467 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-'); 468 if (*is_negative) 469 ++cur_buf; 470 471 consumed = cur_buf - buf; 472 cur_len -= consumed; 473 if (!cur_len) 474 return -EINVAL; 475 476 cur_len = min(cur_len, sizeof(str) - 1); 477 memcpy(str, cur_buf, cur_len); 478 str[cur_len] = '\0'; 479 cur_buf = str; 480 481 cur_buf = _parse_integer_fixup_radix(cur_buf, &base); 482 val_len = _parse_integer(cur_buf, base, res); 483 484 if (val_len & KSTRTOX_OVERFLOW) 485 return -ERANGE; 486 487 if (val_len == 0) 488 return -EINVAL; 489 490 cur_buf += val_len; 491 consumed += cur_buf - str; 492 493 return consumed; 494 } 495 496 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags, 497 long long *res) 498 { 499 unsigned long long _res; 500 bool is_negative; 501 int err; 502 503 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 504 if (err < 0) 505 return err; 506 if (is_negative) { 507 if ((long long)-_res > 0) 508 return -ERANGE; 509 *res = -_res; 510 } else { 511 if ((long long)_res < 0) 512 return -ERANGE; 513 *res = _res; 514 } 515 return err; 516 } 517 518 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags, 519 s64 *, res) 520 { 521 long long _res; 522 int err; 523 524 *res = 0; 525 err = __bpf_strtoll(buf, buf_len, flags, &_res); 526 if (err < 0) 527 return err; 528 if (_res != (long)_res) 529 return -ERANGE; 530 *res = _res; 531 return err; 532 } 533 534 const struct bpf_func_proto bpf_strtol_proto = { 535 .func = bpf_strtol, 536 .gpl_only = false, 537 .ret_type = RET_INTEGER, 538 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 539 .arg2_type = ARG_CONST_SIZE, 540 .arg3_type = ARG_ANYTHING, 541 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_ALIGNED, 542 .arg4_size = sizeof(s64), 543 }; 544 545 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags, 546 u64 *, res) 547 { 548 unsigned long long _res; 549 bool is_negative; 550 int err; 551 552 *res = 0; 553 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative); 554 if (err < 0) 555 return err; 556 if (is_negative) 557 return -EINVAL; 558 if (_res != (unsigned long)_res) 559 return -ERANGE; 560 *res = _res; 561 return err; 562 } 563 564 const struct bpf_func_proto bpf_strtoul_proto = { 565 .func = bpf_strtoul, 566 .gpl_only = false, 567 .ret_type = RET_INTEGER, 568 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 569 .arg2_type = ARG_CONST_SIZE, 570 .arg3_type = ARG_ANYTHING, 571 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_ALIGNED, 572 .arg4_size = sizeof(u64), 573 }; 574 575 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2) 576 { 577 return strncmp(s1, s2, s1_sz); 578 } 579 580 static const struct bpf_func_proto bpf_strncmp_proto = { 581 .func = bpf_strncmp, 582 .gpl_only = false, 583 .ret_type = RET_INTEGER, 584 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 585 .arg2_type = ARG_CONST_SIZE, 586 .arg3_type = ARG_PTR_TO_CONST_STR, 587 }; 588 589 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino, 590 struct bpf_pidns_info *, nsdata, u32, size) 591 { 592 struct task_struct *task = current; 593 struct pid_namespace *pidns; 594 int err = -EINVAL; 595 596 if (unlikely(size != sizeof(struct bpf_pidns_info))) 597 goto clear; 598 599 if (unlikely((u64)(dev_t)dev != dev)) 600 goto clear; 601 602 if (unlikely(!task)) 603 goto clear; 604 605 pidns = task_active_pid_ns(task); 606 if (unlikely(!pidns)) { 607 err = -ENOENT; 608 goto clear; 609 } 610 611 if (!ns_match(&pidns->ns, (dev_t)dev, ino)) 612 goto clear; 613 614 nsdata->pid = task_pid_nr_ns(task, pidns); 615 nsdata->tgid = task_tgid_nr_ns(task, pidns); 616 return 0; 617 clear: 618 memset((void *)nsdata, 0, (size_t) size); 619 return err; 620 } 621 622 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = { 623 .func = bpf_get_ns_current_pid_tgid, 624 .gpl_only = false, 625 .ret_type = RET_INTEGER, 626 .arg1_type = ARG_ANYTHING, 627 .arg2_type = ARG_ANYTHING, 628 .arg3_type = ARG_PTR_TO_UNINIT_MEM, 629 .arg4_type = ARG_CONST_SIZE, 630 }; 631 632 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { 633 .func = bpf_get_raw_cpu_id, 634 .gpl_only = false, 635 .ret_type = RET_INTEGER, 636 }; 637 638 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map, 639 u64, flags, void *, data, u64, size) 640 { 641 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) 642 return -EINVAL; 643 644 return bpf_event_output(map, flags, data, size, NULL, 0, NULL); 645 } 646 647 const struct bpf_func_proto bpf_event_output_data_proto = { 648 .func = bpf_event_output_data, 649 .gpl_only = true, 650 .ret_type = RET_INTEGER, 651 .arg1_type = ARG_PTR_TO_CTX, 652 .arg2_type = ARG_CONST_MAP_PTR, 653 .arg3_type = ARG_ANYTHING, 654 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY, 655 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 656 }; 657 658 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size, 659 const void __user *, user_ptr) 660 { 661 int ret = copy_from_user(dst, user_ptr, size); 662 663 if (unlikely(ret)) { 664 memset(dst, 0, size); 665 ret = -EFAULT; 666 } 667 668 return ret; 669 } 670 671 const struct bpf_func_proto bpf_copy_from_user_proto = { 672 .func = bpf_copy_from_user, 673 .gpl_only = false, 674 .might_sleep = true, 675 .ret_type = RET_INTEGER, 676 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 677 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 678 .arg3_type = ARG_ANYTHING, 679 }; 680 681 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size, 682 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags) 683 { 684 int ret; 685 686 /* flags is not used yet */ 687 if (unlikely(flags)) 688 return -EINVAL; 689 690 if (unlikely(!size)) 691 return 0; 692 693 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0); 694 if (ret == size) 695 return 0; 696 697 memset(dst, 0, size); 698 /* Return -EFAULT for partial read */ 699 return ret < 0 ? ret : -EFAULT; 700 } 701 702 const struct bpf_func_proto bpf_copy_from_user_task_proto = { 703 .func = bpf_copy_from_user_task, 704 .gpl_only = true, 705 .might_sleep = true, 706 .ret_type = RET_INTEGER, 707 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 708 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 709 .arg3_type = ARG_ANYTHING, 710 .arg4_type = ARG_PTR_TO_BTF_ID, 711 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK], 712 .arg5_type = ARG_ANYTHING 713 }; 714 715 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu) 716 { 717 if (cpu >= nr_cpu_ids) 718 return (unsigned long)NULL; 719 720 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu); 721 } 722 723 const struct bpf_func_proto bpf_per_cpu_ptr_proto = { 724 .func = bpf_per_cpu_ptr, 725 .gpl_only = false, 726 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY, 727 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 728 .arg2_type = ARG_ANYTHING, 729 }; 730 731 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr) 732 { 733 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr); 734 } 735 736 const struct bpf_func_proto bpf_this_cpu_ptr_proto = { 737 .func = bpf_this_cpu_ptr, 738 .gpl_only = false, 739 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY, 740 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID, 741 }; 742 743 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype, 744 size_t bufsz) 745 { 746 void __user *user_ptr = (__force void __user *)unsafe_ptr; 747 748 buf[0] = 0; 749 750 switch (fmt_ptype) { 751 case 's': 752 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 753 if ((unsigned long)unsafe_ptr < TASK_SIZE) 754 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 755 fallthrough; 756 #endif 757 case 'k': 758 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz); 759 case 'u': 760 return strncpy_from_user_nofault(buf, user_ptr, bufsz); 761 } 762 763 return -EINVAL; 764 } 765 766 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary 767 * arguments representation. 768 */ 769 #define MAX_BPRINTF_BIN_ARGS 512 770 771 /* Support executing three nested bprintf helper calls on a given CPU */ 772 #define MAX_BPRINTF_NEST_LEVEL 3 773 struct bpf_bprintf_buffers { 774 char bin_args[MAX_BPRINTF_BIN_ARGS]; 775 char buf[MAX_BPRINTF_BUF]; 776 }; 777 778 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs); 779 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level); 780 781 static int try_get_buffers(struct bpf_bprintf_buffers **bufs) 782 { 783 int nest_level; 784 785 preempt_disable(); 786 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level); 787 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) { 788 this_cpu_dec(bpf_bprintf_nest_level); 789 preempt_enable(); 790 return -EBUSY; 791 } 792 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]); 793 794 return 0; 795 } 796 797 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data) 798 { 799 if (!data->bin_args && !data->buf) 800 return; 801 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0)) 802 return; 803 this_cpu_dec(bpf_bprintf_nest_level); 804 preempt_enable(); 805 } 806 807 /* 808 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers 809 * 810 * Returns a negative value if fmt is an invalid format string or 0 otherwise. 811 * 812 * This can be used in two ways: 813 * - Format string verification only: when data->get_bin_args is false 814 * - Arguments preparation: in addition to the above verification, it writes in 815 * data->bin_args a binary representation of arguments usable by bstr_printf 816 * where pointers from BPF have been sanitized. 817 * 818 * In argument preparation mode, if 0 is returned, safe temporary buffers are 819 * allocated and bpf_bprintf_cleanup should be called to free them after use. 820 */ 821 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 822 u32 num_args, struct bpf_bprintf_data *data) 823 { 824 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf; 825 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end; 826 struct bpf_bprintf_buffers *buffers = NULL; 827 size_t sizeof_cur_arg, sizeof_cur_ip; 828 int err, i, num_spec = 0; 829 u64 cur_arg; 830 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX"; 831 832 fmt_end = strnchr(fmt, fmt_size, 0); 833 if (!fmt_end) 834 return -EINVAL; 835 fmt_size = fmt_end - fmt; 836 837 if (get_buffers && try_get_buffers(&buffers)) 838 return -EBUSY; 839 840 if (data->get_bin_args) { 841 if (num_args) 842 tmp_buf = buffers->bin_args; 843 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS; 844 data->bin_args = (u32 *)tmp_buf; 845 } 846 847 if (data->get_buf) 848 data->buf = buffers->buf; 849 850 for (i = 0; i < fmt_size; i++) { 851 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) { 852 err = -EINVAL; 853 goto out; 854 } 855 856 if (fmt[i] != '%') 857 continue; 858 859 if (fmt[i + 1] == '%') { 860 i++; 861 continue; 862 } 863 864 if (num_spec >= num_args) { 865 err = -EINVAL; 866 goto out; 867 } 868 869 /* The string is zero-terminated so if fmt[i] != 0, we can 870 * always access fmt[i + 1], in the worst case it will be a 0 871 */ 872 i++; 873 874 /* skip optional "[0 +-][num]" width formatting field */ 875 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' || 876 fmt[i] == ' ') 877 i++; 878 if (fmt[i] >= '1' && fmt[i] <= '9') { 879 i++; 880 while (fmt[i] >= '0' && fmt[i] <= '9') 881 i++; 882 } 883 884 if (fmt[i] == 'p') { 885 sizeof_cur_arg = sizeof(long); 886 887 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') && 888 fmt[i + 2] == 's') { 889 fmt_ptype = fmt[i + 1]; 890 i += 2; 891 goto fmt_str; 892 } 893 894 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) || 895 ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' || 896 fmt[i + 1] == 'x' || fmt[i + 1] == 's' || 897 fmt[i + 1] == 'S') { 898 /* just kernel pointers */ 899 if (tmp_buf) 900 cur_arg = raw_args[num_spec]; 901 i++; 902 goto nocopy_fmt; 903 } 904 905 if (fmt[i + 1] == 'B') { 906 if (tmp_buf) { 907 err = snprintf(tmp_buf, 908 (tmp_buf_end - tmp_buf), 909 "%pB", 910 (void *)(long)raw_args[num_spec]); 911 tmp_buf += (err + 1); 912 } 913 914 i++; 915 num_spec++; 916 continue; 917 } 918 919 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */ 920 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') || 921 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) { 922 err = -EINVAL; 923 goto out; 924 } 925 926 i += 2; 927 if (!tmp_buf) 928 goto nocopy_fmt; 929 930 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16; 931 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) { 932 err = -ENOSPC; 933 goto out; 934 } 935 936 unsafe_ptr = (char *)(long)raw_args[num_spec]; 937 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr, 938 sizeof_cur_ip); 939 if (err < 0) 940 memset(cur_ip, 0, sizeof_cur_ip); 941 942 /* hack: bstr_printf expects IP addresses to be 943 * pre-formatted as strings, ironically, the easiest way 944 * to do that is to call snprintf. 945 */ 946 ip_spec[2] = fmt[i - 1]; 947 ip_spec[3] = fmt[i]; 948 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf, 949 ip_spec, &cur_ip); 950 951 tmp_buf += err + 1; 952 num_spec++; 953 954 continue; 955 } else if (fmt[i] == 's') { 956 fmt_ptype = fmt[i]; 957 fmt_str: 958 if (fmt[i + 1] != 0 && 959 !isspace(fmt[i + 1]) && 960 !ispunct(fmt[i + 1])) { 961 err = -EINVAL; 962 goto out; 963 } 964 965 if (!tmp_buf) 966 goto nocopy_fmt; 967 968 if (tmp_buf_end == tmp_buf) { 969 err = -ENOSPC; 970 goto out; 971 } 972 973 unsafe_ptr = (char *)(long)raw_args[num_spec]; 974 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr, 975 fmt_ptype, 976 tmp_buf_end - tmp_buf); 977 if (err < 0) { 978 tmp_buf[0] = '\0'; 979 err = 1; 980 } 981 982 tmp_buf += err; 983 num_spec++; 984 985 continue; 986 } else if (fmt[i] == 'c') { 987 if (!tmp_buf) 988 goto nocopy_fmt; 989 990 if (tmp_buf_end == tmp_buf) { 991 err = -ENOSPC; 992 goto out; 993 } 994 995 *tmp_buf = raw_args[num_spec]; 996 tmp_buf++; 997 num_spec++; 998 999 continue; 1000 } 1001 1002 sizeof_cur_arg = sizeof(int); 1003 1004 if (fmt[i] == 'l') { 1005 sizeof_cur_arg = sizeof(long); 1006 i++; 1007 } 1008 if (fmt[i] == 'l') { 1009 sizeof_cur_arg = sizeof(long long); 1010 i++; 1011 } 1012 1013 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' && 1014 fmt[i] != 'x' && fmt[i] != 'X') { 1015 err = -EINVAL; 1016 goto out; 1017 } 1018 1019 if (tmp_buf) 1020 cur_arg = raw_args[num_spec]; 1021 nocopy_fmt: 1022 if (tmp_buf) { 1023 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32)); 1024 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) { 1025 err = -ENOSPC; 1026 goto out; 1027 } 1028 1029 if (sizeof_cur_arg == 8) { 1030 *(u32 *)tmp_buf = *(u32 *)&cur_arg; 1031 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1); 1032 } else { 1033 *(u32 *)tmp_buf = (u32)(long)cur_arg; 1034 } 1035 tmp_buf += sizeof_cur_arg; 1036 } 1037 num_spec++; 1038 } 1039 1040 err = 0; 1041 out: 1042 if (err) 1043 bpf_bprintf_cleanup(data); 1044 return err; 1045 } 1046 1047 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt, 1048 const void *, args, u32, data_len) 1049 { 1050 struct bpf_bprintf_data data = { 1051 .get_bin_args = true, 1052 }; 1053 int err, num_args; 1054 1055 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 || 1056 (data_len && !args)) 1057 return -EINVAL; 1058 num_args = data_len / 8; 1059 1060 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we 1061 * can safely give an unbounded size. 1062 */ 1063 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data); 1064 if (err < 0) 1065 return err; 1066 1067 err = bstr_printf(str, str_size, fmt, data.bin_args); 1068 1069 bpf_bprintf_cleanup(&data); 1070 1071 return err + 1; 1072 } 1073 1074 const struct bpf_func_proto bpf_snprintf_proto = { 1075 .func = bpf_snprintf, 1076 .gpl_only = true, 1077 .ret_type = RET_INTEGER, 1078 .arg1_type = ARG_PTR_TO_MEM_OR_NULL, 1079 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1080 .arg3_type = ARG_PTR_TO_CONST_STR, 1081 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY, 1082 .arg5_type = ARG_CONST_SIZE_OR_ZERO, 1083 }; 1084 1085 struct bpf_async_cb { 1086 struct bpf_map *map; 1087 struct bpf_prog *prog; 1088 void __rcu *callback_fn; 1089 void *value; 1090 struct rcu_head rcu; 1091 u64 flags; 1092 }; 1093 1094 /* BPF map elements can contain 'struct bpf_timer'. 1095 * Such map owns all of its BPF timers. 1096 * 'struct bpf_timer' is allocated as part of map element allocation 1097 * and it's zero initialized. 1098 * That space is used to keep 'struct bpf_async_kern'. 1099 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and 1100 * remembers 'struct bpf_map *' pointer it's part of. 1101 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn. 1102 * bpf_timer_start() arms the timer. 1103 * If user space reference to a map goes to zero at this point 1104 * ops->map_release_uref callback is responsible for cancelling the timers, 1105 * freeing their memory, and decrementing prog's refcnts. 1106 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt. 1107 * Inner maps can contain bpf timers as well. ops->map_release_uref is 1108 * freeing the timers when inner map is replaced or deleted by user space. 1109 */ 1110 struct bpf_hrtimer { 1111 struct bpf_async_cb cb; 1112 struct hrtimer timer; 1113 atomic_t cancelling; 1114 }; 1115 1116 /* the actual struct hidden inside uapi struct bpf_timer */ 1117 struct bpf_async_kern { 1118 union { 1119 struct bpf_async_cb *cb; 1120 struct bpf_hrtimer *timer; 1121 }; 1122 /* bpf_spin_lock is used here instead of spinlock_t to make 1123 * sure that it always fits into space reserved by struct bpf_timer 1124 * regardless of LOCKDEP and spinlock debug flags. 1125 */ 1126 struct bpf_spin_lock lock; 1127 } __attribute__((aligned(8))); 1128 1129 enum bpf_async_type { 1130 BPF_ASYNC_TYPE_TIMER = 0, 1131 }; 1132 1133 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running); 1134 1135 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer) 1136 { 1137 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer); 1138 struct bpf_map *map = t->cb.map; 1139 void *value = t->cb.value; 1140 bpf_callback_t callback_fn; 1141 void *key; 1142 u32 idx; 1143 1144 BTF_TYPE_EMIT(struct bpf_timer); 1145 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held()); 1146 if (!callback_fn) 1147 goto out; 1148 1149 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and 1150 * cannot be preempted by another bpf_timer_cb() on the same cpu. 1151 * Remember the timer this callback is servicing to prevent 1152 * deadlock if callback_fn() calls bpf_timer_cancel() or 1153 * bpf_map_delete_elem() on the same timer. 1154 */ 1155 this_cpu_write(hrtimer_running, t); 1156 if (map->map_type == BPF_MAP_TYPE_ARRAY) { 1157 struct bpf_array *array = container_of(map, struct bpf_array, map); 1158 1159 /* compute the key */ 1160 idx = ((char *)value - array->value) / array->elem_size; 1161 key = &idx; 1162 } else { /* hash or lru */ 1163 key = value - round_up(map->key_size, 8); 1164 } 1165 1166 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0); 1167 /* The verifier checked that return value is zero. */ 1168 1169 this_cpu_write(hrtimer_running, NULL); 1170 out: 1171 return HRTIMER_NORESTART; 1172 } 1173 1174 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags, 1175 enum bpf_async_type type) 1176 { 1177 struct bpf_async_cb *cb; 1178 struct bpf_hrtimer *t; 1179 clockid_t clockid; 1180 size_t size; 1181 int ret = 0; 1182 1183 if (in_nmi()) 1184 return -EOPNOTSUPP; 1185 1186 switch (type) { 1187 case BPF_ASYNC_TYPE_TIMER: 1188 size = sizeof(struct bpf_hrtimer); 1189 break; 1190 default: 1191 return -EINVAL; 1192 } 1193 1194 __bpf_spin_lock_irqsave(&async->lock); 1195 t = async->timer; 1196 if (t) { 1197 ret = -EBUSY; 1198 goto out; 1199 } 1200 1201 /* allocate hrtimer via map_kmalloc to use memcg accounting */ 1202 cb = bpf_map_kmalloc_node(map, size, GFP_ATOMIC, map->numa_node); 1203 if (!cb) { 1204 ret = -ENOMEM; 1205 goto out; 1206 } 1207 1208 if (type == BPF_ASYNC_TYPE_TIMER) { 1209 clockid = flags & (MAX_CLOCKS - 1); 1210 t = (struct bpf_hrtimer *)cb; 1211 1212 atomic_set(&t->cancelling, 0); 1213 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT); 1214 t->timer.function = bpf_timer_cb; 1215 cb->value = (void *)async - map->record->timer_off; 1216 } 1217 cb->map = map; 1218 cb->prog = NULL; 1219 cb->flags = flags; 1220 rcu_assign_pointer(cb->callback_fn, NULL); 1221 1222 WRITE_ONCE(async->cb, cb); 1223 /* Guarantee the order between async->cb and map->usercnt. So 1224 * when there are concurrent uref release and bpf timer init, either 1225 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL 1226 * timer or atomic64_read() below returns a zero usercnt. 1227 */ 1228 smp_mb(); 1229 if (!atomic64_read(&map->usercnt)) { 1230 /* maps with timers must be either held by user space 1231 * or pinned in bpffs. 1232 */ 1233 WRITE_ONCE(async->cb, NULL); 1234 kfree(cb); 1235 ret = -EPERM; 1236 } 1237 out: 1238 __bpf_spin_unlock_irqrestore(&async->lock); 1239 return ret; 1240 } 1241 1242 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map, 1243 u64, flags) 1244 { 1245 clock_t clockid = flags & (MAX_CLOCKS - 1); 1246 1247 BUILD_BUG_ON(MAX_CLOCKS != 16); 1248 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer)); 1249 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer)); 1250 1251 if (flags >= MAX_CLOCKS || 1252 /* similar to timerfd except _ALARM variants are not supported */ 1253 (clockid != CLOCK_MONOTONIC && 1254 clockid != CLOCK_REALTIME && 1255 clockid != CLOCK_BOOTTIME)) 1256 return -EINVAL; 1257 1258 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER); 1259 } 1260 1261 static const struct bpf_func_proto bpf_timer_init_proto = { 1262 .func = bpf_timer_init, 1263 .gpl_only = true, 1264 .ret_type = RET_INTEGER, 1265 .arg1_type = ARG_PTR_TO_TIMER, 1266 .arg2_type = ARG_CONST_MAP_PTR, 1267 .arg3_type = ARG_ANYTHING, 1268 }; 1269 1270 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn, 1271 struct bpf_prog_aux *, aux) 1272 { 1273 struct bpf_prog *prev, *prog = aux->prog; 1274 struct bpf_hrtimer *t; 1275 int ret = 0; 1276 1277 if (in_nmi()) 1278 return -EOPNOTSUPP; 1279 __bpf_spin_lock_irqsave(&timer->lock); 1280 t = timer->timer; 1281 if (!t) { 1282 ret = -EINVAL; 1283 goto out; 1284 } 1285 if (!atomic64_read(&t->cb.map->usercnt)) { 1286 /* maps with timers must be either held by user space 1287 * or pinned in bpffs. Otherwise timer might still be 1288 * running even when bpf prog is detached and user space 1289 * is gone, since map_release_uref won't ever be called. 1290 */ 1291 ret = -EPERM; 1292 goto out; 1293 } 1294 prev = t->cb.prog; 1295 if (prev != prog) { 1296 /* Bump prog refcnt once. Every bpf_timer_set_callback() 1297 * can pick different callback_fn-s within the same prog. 1298 */ 1299 prog = bpf_prog_inc_not_zero(prog); 1300 if (IS_ERR(prog)) { 1301 ret = PTR_ERR(prog); 1302 goto out; 1303 } 1304 if (prev) 1305 /* Drop prev prog refcnt when swapping with new prog */ 1306 bpf_prog_put(prev); 1307 t->cb.prog = prog; 1308 } 1309 rcu_assign_pointer(t->cb.callback_fn, callback_fn); 1310 out: 1311 __bpf_spin_unlock_irqrestore(&timer->lock); 1312 return ret; 1313 } 1314 1315 static const struct bpf_func_proto bpf_timer_set_callback_proto = { 1316 .func = bpf_timer_set_callback, 1317 .gpl_only = true, 1318 .ret_type = RET_INTEGER, 1319 .arg1_type = ARG_PTR_TO_TIMER, 1320 .arg2_type = ARG_PTR_TO_FUNC, 1321 }; 1322 1323 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags) 1324 { 1325 struct bpf_hrtimer *t; 1326 int ret = 0; 1327 enum hrtimer_mode mode; 1328 1329 if (in_nmi()) 1330 return -EOPNOTSUPP; 1331 if (flags > BPF_F_TIMER_ABS) 1332 return -EINVAL; 1333 __bpf_spin_lock_irqsave(&timer->lock); 1334 t = timer->timer; 1335 if (!t || !t->cb.prog) { 1336 ret = -EINVAL; 1337 goto out; 1338 } 1339 1340 if (flags & BPF_F_TIMER_ABS) 1341 mode = HRTIMER_MODE_ABS_SOFT; 1342 else 1343 mode = HRTIMER_MODE_REL_SOFT; 1344 1345 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode); 1346 out: 1347 __bpf_spin_unlock_irqrestore(&timer->lock); 1348 return ret; 1349 } 1350 1351 static const struct bpf_func_proto bpf_timer_start_proto = { 1352 .func = bpf_timer_start, 1353 .gpl_only = true, 1354 .ret_type = RET_INTEGER, 1355 .arg1_type = ARG_PTR_TO_TIMER, 1356 .arg2_type = ARG_ANYTHING, 1357 .arg3_type = ARG_ANYTHING, 1358 }; 1359 1360 static void drop_prog_refcnt(struct bpf_async_cb *async) 1361 { 1362 struct bpf_prog *prog = async->prog; 1363 1364 if (prog) { 1365 bpf_prog_put(prog); 1366 async->prog = NULL; 1367 rcu_assign_pointer(async->callback_fn, NULL); 1368 } 1369 } 1370 1371 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer) 1372 { 1373 struct bpf_hrtimer *t, *cur_t; 1374 bool inc = false; 1375 int ret = 0; 1376 1377 if (in_nmi()) 1378 return -EOPNOTSUPP; 1379 rcu_read_lock(); 1380 __bpf_spin_lock_irqsave(&timer->lock); 1381 t = timer->timer; 1382 if (!t) { 1383 ret = -EINVAL; 1384 goto out; 1385 } 1386 1387 cur_t = this_cpu_read(hrtimer_running); 1388 if (cur_t == t) { 1389 /* If bpf callback_fn is trying to bpf_timer_cancel() 1390 * its own timer the hrtimer_cancel() will deadlock 1391 * since it waits for callback_fn to finish. 1392 */ 1393 ret = -EDEADLK; 1394 goto out; 1395 } 1396 1397 /* Only account in-flight cancellations when invoked from a timer 1398 * callback, since we want to avoid waiting only if other _callbacks_ 1399 * are waiting on us, to avoid introducing lockups. Non-callback paths 1400 * are ok, since nobody would synchronously wait for their completion. 1401 */ 1402 if (!cur_t) 1403 goto drop; 1404 atomic_inc(&t->cancelling); 1405 /* Need full barrier after relaxed atomic_inc */ 1406 smp_mb__after_atomic(); 1407 inc = true; 1408 if (atomic_read(&cur_t->cancelling)) { 1409 /* We're cancelling timer t, while some other timer callback is 1410 * attempting to cancel us. In such a case, it might be possible 1411 * that timer t belongs to the other callback, or some other 1412 * callback waiting upon it (creating transitive dependencies 1413 * upon us), and we will enter a deadlock if we continue 1414 * cancelling and waiting for it synchronously, since it might 1415 * do the same. Bail! 1416 */ 1417 ret = -EDEADLK; 1418 goto out; 1419 } 1420 drop: 1421 drop_prog_refcnt(&t->cb); 1422 out: 1423 __bpf_spin_unlock_irqrestore(&timer->lock); 1424 /* Cancel the timer and wait for associated callback to finish 1425 * if it was running. 1426 */ 1427 ret = ret ?: hrtimer_cancel(&t->timer); 1428 if (inc) 1429 atomic_dec(&t->cancelling); 1430 rcu_read_unlock(); 1431 return ret; 1432 } 1433 1434 static const struct bpf_func_proto bpf_timer_cancel_proto = { 1435 .func = bpf_timer_cancel, 1436 .gpl_only = true, 1437 .ret_type = RET_INTEGER, 1438 .arg1_type = ARG_PTR_TO_TIMER, 1439 }; 1440 1441 /* This function is called by map_delete/update_elem for individual element and 1442 * by ops->map_release_uref when the user space reference to a map reaches zero. 1443 */ 1444 void bpf_timer_cancel_and_free(void *val) 1445 { 1446 struct bpf_async_kern *timer = val; 1447 struct bpf_hrtimer *t; 1448 1449 /* Performance optimization: read timer->timer without lock first. */ 1450 if (!READ_ONCE(timer->timer)) 1451 return; 1452 1453 __bpf_spin_lock_irqsave(&timer->lock); 1454 /* re-read it under lock */ 1455 t = timer->timer; 1456 if (!t) 1457 goto out; 1458 drop_prog_refcnt(&t->cb); 1459 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use 1460 * this timer, since it won't be initialized. 1461 */ 1462 WRITE_ONCE(timer->timer, NULL); 1463 out: 1464 __bpf_spin_unlock_irqrestore(&timer->lock); 1465 if (!t) 1466 return; 1467 /* Cancel the timer and wait for callback to complete if it was running. 1468 * If hrtimer_cancel() can be safely called it's safe to call kfree(t) 1469 * right after for both preallocated and non-preallocated maps. 1470 * The timer->timer = NULL was already done and no code path can 1471 * see address 't' anymore. 1472 * 1473 * Check that bpf_map_delete/update_elem() wasn't called from timer 1474 * callback_fn. In such case don't call hrtimer_cancel() (since it will 1475 * deadlock) and don't call hrtimer_try_to_cancel() (since it will just 1476 * return -1). Though callback_fn is still running on this cpu it's 1477 * safe to do kfree(t) because bpf_timer_cb() read everything it needed 1478 * from 't'. The bpf subprog callback_fn won't be able to access 't', 1479 * since timer->timer = NULL was already done. The timer will be 1480 * effectively cancelled because bpf_timer_cb() will return 1481 * HRTIMER_NORESTART. 1482 */ 1483 if (this_cpu_read(hrtimer_running) != t) 1484 hrtimer_cancel(&t->timer); 1485 kfree_rcu(t, cb.rcu); 1486 } 1487 1488 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr) 1489 { 1490 unsigned long *kptr = map_value; 1491 1492 return xchg(kptr, (unsigned long)ptr); 1493 } 1494 1495 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg() 1496 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to 1497 * denote type that verifier will determine. 1498 */ 1499 static const struct bpf_func_proto bpf_kptr_xchg_proto = { 1500 .func = bpf_kptr_xchg, 1501 .gpl_only = false, 1502 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL, 1503 .ret_btf_id = BPF_PTR_POISON, 1504 .arg1_type = ARG_PTR_TO_KPTR, 1505 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE, 1506 .arg2_btf_id = BPF_PTR_POISON, 1507 }; 1508 1509 /* Since the upper 8 bits of dynptr->size is reserved, the 1510 * maximum supported size is 2^24 - 1. 1511 */ 1512 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1) 1513 #define DYNPTR_TYPE_SHIFT 28 1514 #define DYNPTR_SIZE_MASK 0xFFFFFF 1515 #define DYNPTR_RDONLY_BIT BIT(31) 1516 1517 static bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr) 1518 { 1519 return ptr->size & DYNPTR_RDONLY_BIT; 1520 } 1521 1522 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 1523 { 1524 ptr->size |= DYNPTR_RDONLY_BIT; 1525 } 1526 1527 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type) 1528 { 1529 ptr->size |= type << DYNPTR_TYPE_SHIFT; 1530 } 1531 1532 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr) 1533 { 1534 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT; 1535 } 1536 1537 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 1538 { 1539 return ptr->size & DYNPTR_SIZE_MASK; 1540 } 1541 1542 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size) 1543 { 1544 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK; 1545 1546 ptr->size = new_size | metadata; 1547 } 1548 1549 int bpf_dynptr_check_size(u32 size) 1550 { 1551 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0; 1552 } 1553 1554 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 1555 enum bpf_dynptr_type type, u32 offset, u32 size) 1556 { 1557 ptr->data = data; 1558 ptr->offset = offset; 1559 ptr->size = size; 1560 bpf_dynptr_set_type(ptr, type); 1561 } 1562 1563 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 1564 { 1565 memset(ptr, 0, sizeof(*ptr)); 1566 } 1567 1568 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len) 1569 { 1570 u32 size = __bpf_dynptr_size(ptr); 1571 1572 if (len > size || offset > size - len) 1573 return -E2BIG; 1574 1575 return 0; 1576 } 1577 1578 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr) 1579 { 1580 int err; 1581 1582 BTF_TYPE_EMIT(struct bpf_dynptr); 1583 1584 err = bpf_dynptr_check_size(size); 1585 if (err) 1586 goto error; 1587 1588 /* flags is currently unsupported */ 1589 if (flags) { 1590 err = -EINVAL; 1591 goto error; 1592 } 1593 1594 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size); 1595 1596 return 0; 1597 1598 error: 1599 bpf_dynptr_set_null(ptr); 1600 return err; 1601 } 1602 1603 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = { 1604 .func = bpf_dynptr_from_mem, 1605 .gpl_only = false, 1606 .ret_type = RET_INTEGER, 1607 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1608 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1609 .arg3_type = ARG_ANYTHING, 1610 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT, 1611 }; 1612 1613 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src, 1614 u32, offset, u64, flags) 1615 { 1616 enum bpf_dynptr_type type; 1617 int err; 1618 1619 if (!src->data || flags) 1620 return -EINVAL; 1621 1622 err = bpf_dynptr_check_off_len(src, offset, len); 1623 if (err) 1624 return err; 1625 1626 type = bpf_dynptr_get_type(src); 1627 1628 switch (type) { 1629 case BPF_DYNPTR_TYPE_LOCAL: 1630 case BPF_DYNPTR_TYPE_RINGBUF: 1631 /* Source and destination may possibly overlap, hence use memmove to 1632 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1633 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1634 */ 1635 memmove(dst, src->data + src->offset + offset, len); 1636 return 0; 1637 case BPF_DYNPTR_TYPE_SKB: 1638 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len); 1639 case BPF_DYNPTR_TYPE_XDP: 1640 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len); 1641 default: 1642 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type); 1643 return -EFAULT; 1644 } 1645 } 1646 1647 static const struct bpf_func_proto bpf_dynptr_read_proto = { 1648 .func = bpf_dynptr_read, 1649 .gpl_only = false, 1650 .ret_type = RET_INTEGER, 1651 .arg1_type = ARG_PTR_TO_UNINIT_MEM, 1652 .arg2_type = ARG_CONST_SIZE_OR_ZERO, 1653 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1654 .arg4_type = ARG_ANYTHING, 1655 .arg5_type = ARG_ANYTHING, 1656 }; 1657 1658 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src, 1659 u32, len, u64, flags) 1660 { 1661 enum bpf_dynptr_type type; 1662 int err; 1663 1664 if (!dst->data || __bpf_dynptr_is_rdonly(dst)) 1665 return -EINVAL; 1666 1667 err = bpf_dynptr_check_off_len(dst, offset, len); 1668 if (err) 1669 return err; 1670 1671 type = bpf_dynptr_get_type(dst); 1672 1673 switch (type) { 1674 case BPF_DYNPTR_TYPE_LOCAL: 1675 case BPF_DYNPTR_TYPE_RINGBUF: 1676 if (flags) 1677 return -EINVAL; 1678 /* Source and destination may possibly overlap, hence use memmove to 1679 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr 1680 * pointing to overlapping PTR_TO_MAP_VALUE regions. 1681 */ 1682 memmove(dst->data + dst->offset + offset, src, len); 1683 return 0; 1684 case BPF_DYNPTR_TYPE_SKB: 1685 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len, 1686 flags); 1687 case BPF_DYNPTR_TYPE_XDP: 1688 if (flags) 1689 return -EINVAL; 1690 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len); 1691 default: 1692 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type); 1693 return -EFAULT; 1694 } 1695 } 1696 1697 static const struct bpf_func_proto bpf_dynptr_write_proto = { 1698 .func = bpf_dynptr_write, 1699 .gpl_only = false, 1700 .ret_type = RET_INTEGER, 1701 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1702 .arg2_type = ARG_ANYTHING, 1703 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY, 1704 .arg4_type = ARG_CONST_SIZE_OR_ZERO, 1705 .arg5_type = ARG_ANYTHING, 1706 }; 1707 1708 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len) 1709 { 1710 enum bpf_dynptr_type type; 1711 int err; 1712 1713 if (!ptr->data) 1714 return 0; 1715 1716 err = bpf_dynptr_check_off_len(ptr, offset, len); 1717 if (err) 1718 return 0; 1719 1720 if (__bpf_dynptr_is_rdonly(ptr)) 1721 return 0; 1722 1723 type = bpf_dynptr_get_type(ptr); 1724 1725 switch (type) { 1726 case BPF_DYNPTR_TYPE_LOCAL: 1727 case BPF_DYNPTR_TYPE_RINGBUF: 1728 return (unsigned long)(ptr->data + ptr->offset + offset); 1729 case BPF_DYNPTR_TYPE_SKB: 1730 case BPF_DYNPTR_TYPE_XDP: 1731 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */ 1732 return 0; 1733 default: 1734 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type); 1735 return 0; 1736 } 1737 } 1738 1739 static const struct bpf_func_proto bpf_dynptr_data_proto = { 1740 .func = bpf_dynptr_data, 1741 .gpl_only = false, 1742 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL, 1743 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY, 1744 .arg2_type = ARG_ANYTHING, 1745 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO, 1746 }; 1747 1748 const struct bpf_func_proto bpf_get_current_task_proto __weak; 1749 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak; 1750 const struct bpf_func_proto bpf_probe_read_user_proto __weak; 1751 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak; 1752 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak; 1753 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak; 1754 const struct bpf_func_proto bpf_task_pt_regs_proto __weak; 1755 1756 const struct bpf_func_proto * 1757 bpf_base_func_proto(enum bpf_func_id func_id) 1758 { 1759 switch (func_id) { 1760 case BPF_FUNC_map_lookup_elem: 1761 return &bpf_map_lookup_elem_proto; 1762 case BPF_FUNC_map_update_elem: 1763 return &bpf_map_update_elem_proto; 1764 case BPF_FUNC_map_delete_elem: 1765 return &bpf_map_delete_elem_proto; 1766 case BPF_FUNC_map_push_elem: 1767 return &bpf_map_push_elem_proto; 1768 case BPF_FUNC_map_pop_elem: 1769 return &bpf_map_pop_elem_proto; 1770 case BPF_FUNC_map_peek_elem: 1771 return &bpf_map_peek_elem_proto; 1772 case BPF_FUNC_map_lookup_percpu_elem: 1773 return &bpf_map_lookup_percpu_elem_proto; 1774 case BPF_FUNC_get_prandom_u32: 1775 return &bpf_get_prandom_u32_proto; 1776 case BPF_FUNC_get_smp_processor_id: 1777 return &bpf_get_raw_smp_processor_id_proto; 1778 case BPF_FUNC_get_numa_node_id: 1779 return &bpf_get_numa_node_id_proto; 1780 case BPF_FUNC_tail_call: 1781 return &bpf_tail_call_proto; 1782 case BPF_FUNC_ktime_get_ns: 1783 return &bpf_ktime_get_ns_proto; 1784 case BPF_FUNC_ktime_get_boot_ns: 1785 return &bpf_ktime_get_boot_ns_proto; 1786 case BPF_FUNC_ktime_get_tai_ns: 1787 return &bpf_ktime_get_tai_ns_proto; 1788 case BPF_FUNC_ringbuf_output: 1789 return &bpf_ringbuf_output_proto; 1790 case BPF_FUNC_ringbuf_reserve: 1791 return &bpf_ringbuf_reserve_proto; 1792 case BPF_FUNC_ringbuf_submit: 1793 return &bpf_ringbuf_submit_proto; 1794 case BPF_FUNC_ringbuf_discard: 1795 return &bpf_ringbuf_discard_proto; 1796 case BPF_FUNC_ringbuf_query: 1797 return &bpf_ringbuf_query_proto; 1798 case BPF_FUNC_strncmp: 1799 return &bpf_strncmp_proto; 1800 case BPF_FUNC_strtol: 1801 return &bpf_strtol_proto; 1802 case BPF_FUNC_strtoul: 1803 return &bpf_strtoul_proto; 1804 default: 1805 break; 1806 } 1807 1808 if (!bpf_capable()) 1809 return NULL; 1810 1811 switch (func_id) { 1812 case BPF_FUNC_spin_lock: 1813 return &bpf_spin_lock_proto; 1814 case BPF_FUNC_spin_unlock: 1815 return &bpf_spin_unlock_proto; 1816 case BPF_FUNC_jiffies64: 1817 return &bpf_jiffies64_proto; 1818 case BPF_FUNC_per_cpu_ptr: 1819 return &bpf_per_cpu_ptr_proto; 1820 case BPF_FUNC_this_cpu_ptr: 1821 return &bpf_this_cpu_ptr_proto; 1822 case BPF_FUNC_timer_init: 1823 return &bpf_timer_init_proto; 1824 case BPF_FUNC_timer_set_callback: 1825 return &bpf_timer_set_callback_proto; 1826 case BPF_FUNC_timer_start: 1827 return &bpf_timer_start_proto; 1828 case BPF_FUNC_timer_cancel: 1829 return &bpf_timer_cancel_proto; 1830 case BPF_FUNC_kptr_xchg: 1831 return &bpf_kptr_xchg_proto; 1832 case BPF_FUNC_for_each_map_elem: 1833 return &bpf_for_each_map_elem_proto; 1834 case BPF_FUNC_loop: 1835 return &bpf_loop_proto; 1836 case BPF_FUNC_user_ringbuf_drain: 1837 return &bpf_user_ringbuf_drain_proto; 1838 case BPF_FUNC_ringbuf_reserve_dynptr: 1839 return &bpf_ringbuf_reserve_dynptr_proto; 1840 case BPF_FUNC_ringbuf_submit_dynptr: 1841 return &bpf_ringbuf_submit_dynptr_proto; 1842 case BPF_FUNC_ringbuf_discard_dynptr: 1843 return &bpf_ringbuf_discard_dynptr_proto; 1844 case BPF_FUNC_dynptr_from_mem: 1845 return &bpf_dynptr_from_mem_proto; 1846 case BPF_FUNC_dynptr_read: 1847 return &bpf_dynptr_read_proto; 1848 case BPF_FUNC_dynptr_write: 1849 return &bpf_dynptr_write_proto; 1850 case BPF_FUNC_dynptr_data: 1851 return &bpf_dynptr_data_proto; 1852 #ifdef CONFIG_CGROUPS 1853 case BPF_FUNC_cgrp_storage_get: 1854 return &bpf_cgrp_storage_get_proto; 1855 case BPF_FUNC_cgrp_storage_delete: 1856 return &bpf_cgrp_storage_delete_proto; 1857 case BPF_FUNC_get_current_cgroup_id: 1858 return &bpf_get_current_cgroup_id_proto; 1859 case BPF_FUNC_get_current_ancestor_cgroup_id: 1860 return &bpf_get_current_ancestor_cgroup_id_proto; 1861 #endif 1862 default: 1863 break; 1864 } 1865 1866 if (!perfmon_capable()) 1867 return NULL; 1868 1869 switch (func_id) { 1870 case BPF_FUNC_trace_printk: 1871 return bpf_get_trace_printk_proto(); 1872 case BPF_FUNC_get_current_task: 1873 return &bpf_get_current_task_proto; 1874 case BPF_FUNC_get_current_task_btf: 1875 return &bpf_get_current_task_btf_proto; 1876 case BPF_FUNC_probe_read_user: 1877 return &bpf_probe_read_user_proto; 1878 case BPF_FUNC_probe_read_kernel: 1879 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1880 NULL : &bpf_probe_read_kernel_proto; 1881 case BPF_FUNC_probe_read_user_str: 1882 return &bpf_probe_read_user_str_proto; 1883 case BPF_FUNC_probe_read_kernel_str: 1884 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ? 1885 NULL : &bpf_probe_read_kernel_str_proto; 1886 case BPF_FUNC_snprintf_btf: 1887 return &bpf_snprintf_btf_proto; 1888 case BPF_FUNC_snprintf: 1889 return &bpf_snprintf_proto; 1890 case BPF_FUNC_task_pt_regs: 1891 return &bpf_task_pt_regs_proto; 1892 case BPF_FUNC_trace_vprintk: 1893 return bpf_get_trace_vprintk_proto(); 1894 default: 1895 return NULL; 1896 } 1897 } 1898 1899 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec); 1900 1901 void bpf_list_head_free(const struct btf_field *field, void *list_head, 1902 struct bpf_spin_lock *spin_lock) 1903 { 1904 struct list_head *head = list_head, *orig_head = list_head; 1905 1906 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head)); 1907 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head)); 1908 1909 /* Do the actual list draining outside the lock to not hold the lock for 1910 * too long, and also prevent deadlocks if tracing programs end up 1911 * executing on entry/exit of functions called inside the critical 1912 * section, and end up doing map ops that call bpf_list_head_free for 1913 * the same map value again. 1914 */ 1915 __bpf_spin_lock_irqsave(spin_lock); 1916 if (!head->next || list_empty(head)) 1917 goto unlock; 1918 head = head->next; 1919 unlock: 1920 INIT_LIST_HEAD(orig_head); 1921 __bpf_spin_unlock_irqrestore(spin_lock); 1922 1923 while (head != orig_head) { 1924 void *obj = head; 1925 1926 obj -= field->graph_root.node_offset; 1927 head = head->next; 1928 /* The contained type can also have resources, including a 1929 * bpf_list_head which needs to be freed. 1930 */ 1931 migrate_disable(); 1932 __bpf_obj_drop_impl(obj, field->graph_root.value_rec); 1933 migrate_enable(); 1934 } 1935 } 1936 1937 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are 1938 * 'rb_node *', so field name of rb_node within containing struct is not 1939 * needed. 1940 * 1941 * Since bpf_rb_tree's node type has a corresponding struct btf_field with 1942 * graph_root.node_offset, it's not necessary to know field name 1943 * or type of node struct 1944 */ 1945 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \ 1946 for (pos = rb_first_postorder(root); \ 1947 pos && ({ n = rb_next_postorder(pos); 1; }); \ 1948 pos = n) 1949 1950 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 1951 struct bpf_spin_lock *spin_lock) 1952 { 1953 struct rb_root_cached orig_root, *root = rb_root; 1954 struct rb_node *pos, *n; 1955 void *obj; 1956 1957 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root)); 1958 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root)); 1959 1960 __bpf_spin_lock_irqsave(spin_lock); 1961 orig_root = *root; 1962 *root = RB_ROOT_CACHED; 1963 __bpf_spin_unlock_irqrestore(spin_lock); 1964 1965 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) { 1966 obj = pos; 1967 obj -= field->graph_root.node_offset; 1968 1969 1970 migrate_disable(); 1971 __bpf_obj_drop_impl(obj, field->graph_root.value_rec); 1972 migrate_enable(); 1973 } 1974 } 1975 1976 __diag_push(); 1977 __diag_ignore_all("-Wmissing-prototypes", 1978 "Global functions as their definitions will be in vmlinux BTF"); 1979 1980 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign) 1981 { 1982 struct btf_struct_meta *meta = meta__ign; 1983 u64 size = local_type_id__k; 1984 void *p; 1985 1986 p = bpf_mem_alloc(&bpf_global_ma, size); 1987 if (!p) 1988 return NULL; 1989 if (meta) 1990 bpf_obj_init(meta->record, p); 1991 return p; 1992 } 1993 1994 /* Must be called under migrate_disable(), as required by bpf_mem_free */ 1995 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec) 1996 { 1997 if (rec && rec->refcount_off >= 0 && 1998 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) { 1999 /* Object is refcounted and refcount_dec didn't result in 0 2000 * refcount. Return without freeing the object 2001 */ 2002 return; 2003 } 2004 2005 if (rec) 2006 bpf_obj_free_fields(rec, p); 2007 2008 if (rec && rec->refcount_off >= 0) 2009 bpf_mem_free_rcu(&bpf_global_ma, p); 2010 else 2011 bpf_mem_free(&bpf_global_ma, p); 2012 } 2013 2014 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign) 2015 { 2016 struct btf_struct_meta *meta = meta__ign; 2017 void *p = p__alloc; 2018 2019 __bpf_obj_drop_impl(p, meta ? meta->record : NULL); 2020 } 2021 2022 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign) 2023 { 2024 struct btf_struct_meta *meta = meta__ign; 2025 struct bpf_refcount *ref; 2026 2027 /* Could just cast directly to refcount_t *, but need some code using 2028 * bpf_refcount type so that it is emitted in vmlinux BTF 2029 */ 2030 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off); 2031 if (!refcount_inc_not_zero((refcount_t *)ref)) 2032 return NULL; 2033 2034 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null 2035 * in verifier.c 2036 */ 2037 return (void *)p__refcounted_kptr; 2038 } 2039 2040 static int __bpf_list_add(struct bpf_list_node_kern *node, 2041 struct bpf_list_head *head, 2042 bool tail, struct btf_record *rec, u64 off) 2043 { 2044 struct list_head *n = &node->list_head, *h = (void *)head; 2045 2046 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2047 * called on its fields, so init here 2048 */ 2049 if (unlikely(!h->next)) 2050 INIT_LIST_HEAD(h); 2051 2052 /* node->owner != NULL implies !list_empty(n), no need to separately 2053 * check the latter 2054 */ 2055 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2056 /* Only called from BPF prog, no need to migrate_disable */ 2057 __bpf_obj_drop_impl((void *)n - off, rec); 2058 return -EINVAL; 2059 } 2060 2061 tail ? list_add_tail(n, h) : list_add(n, h); 2062 WRITE_ONCE(node->owner, head); 2063 2064 return 0; 2065 } 2066 2067 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head, 2068 struct bpf_list_node *node, 2069 void *meta__ign, u64 off) 2070 { 2071 struct bpf_list_node_kern *n = (void *)node; 2072 struct btf_struct_meta *meta = meta__ign; 2073 2074 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off); 2075 } 2076 2077 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head, 2078 struct bpf_list_node *node, 2079 void *meta__ign, u64 off) 2080 { 2081 struct bpf_list_node_kern *n = (void *)node; 2082 struct btf_struct_meta *meta = meta__ign; 2083 2084 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off); 2085 } 2086 2087 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail) 2088 { 2089 struct list_head *n, *h = (void *)head; 2090 struct bpf_list_node_kern *node; 2091 2092 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't 2093 * called on its fields, so init here 2094 */ 2095 if (unlikely(!h->next)) 2096 INIT_LIST_HEAD(h); 2097 if (list_empty(h)) 2098 return NULL; 2099 2100 n = tail ? h->prev : h->next; 2101 node = container_of(n, struct bpf_list_node_kern, list_head); 2102 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head)) 2103 return NULL; 2104 2105 list_del_init(n); 2106 WRITE_ONCE(node->owner, NULL); 2107 return (struct bpf_list_node *)n; 2108 } 2109 2110 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head) 2111 { 2112 return __bpf_list_del(head, false); 2113 } 2114 2115 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head) 2116 { 2117 return __bpf_list_del(head, true); 2118 } 2119 2120 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root, 2121 struct bpf_rb_node *node) 2122 { 2123 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node; 2124 struct rb_root_cached *r = (struct rb_root_cached *)root; 2125 struct rb_node *n = &node_internal->rb_node; 2126 2127 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or 2128 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n) 2129 */ 2130 if (READ_ONCE(node_internal->owner) != root) 2131 return NULL; 2132 2133 rb_erase_cached(n, r); 2134 RB_CLEAR_NODE(n); 2135 WRITE_ONCE(node_internal->owner, NULL); 2136 return (struct bpf_rb_node *)n; 2137 } 2138 2139 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF 2140 * program 2141 */ 2142 static int __bpf_rbtree_add(struct bpf_rb_root *root, 2143 struct bpf_rb_node_kern *node, 2144 void *less, struct btf_record *rec, u64 off) 2145 { 2146 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node; 2147 struct rb_node *parent = NULL, *n = &node->rb_node; 2148 bpf_callback_t cb = (bpf_callback_t)less; 2149 bool leftmost = true; 2150 2151 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately 2152 * check the latter 2153 */ 2154 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) { 2155 /* Only called from BPF prog, no need to migrate_disable */ 2156 __bpf_obj_drop_impl((void *)n - off, rec); 2157 return -EINVAL; 2158 } 2159 2160 while (*link) { 2161 parent = *link; 2162 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) { 2163 link = &parent->rb_left; 2164 } else { 2165 link = &parent->rb_right; 2166 leftmost = false; 2167 } 2168 } 2169 2170 rb_link_node(n, parent, link); 2171 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost); 2172 WRITE_ONCE(node->owner, root); 2173 return 0; 2174 } 2175 2176 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 2177 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b), 2178 void *meta__ign, u64 off) 2179 { 2180 struct btf_struct_meta *meta = meta__ign; 2181 struct bpf_rb_node_kern *n = (void *)node; 2182 2183 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off); 2184 } 2185 2186 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root) 2187 { 2188 struct rb_root_cached *r = (struct rb_root_cached *)root; 2189 2190 return (struct bpf_rb_node *)rb_first_cached(r); 2191 } 2192 2193 /** 2194 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this 2195 * kfunc which is not stored in a map as a kptr, must be released by calling 2196 * bpf_task_release(). 2197 * @p: The task on which a reference is being acquired. 2198 */ 2199 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p) 2200 { 2201 if (refcount_inc_not_zero(&p->rcu_users)) 2202 return p; 2203 return NULL; 2204 } 2205 2206 /** 2207 * bpf_task_release - Release the reference acquired on a task. 2208 * @p: The task on which a reference is being released. 2209 */ 2210 __bpf_kfunc void bpf_task_release(struct task_struct *p) 2211 { 2212 put_task_struct_rcu_user(p); 2213 } 2214 2215 #ifdef CONFIG_CGROUPS 2216 /** 2217 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by 2218 * this kfunc which is not stored in a map as a kptr, must be released by 2219 * calling bpf_cgroup_release(). 2220 * @cgrp: The cgroup on which a reference is being acquired. 2221 */ 2222 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp) 2223 { 2224 return cgroup_tryget(cgrp) ? cgrp : NULL; 2225 } 2226 2227 /** 2228 * bpf_cgroup_release - Release the reference acquired on a cgroup. 2229 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to 2230 * not be freed until the current grace period has ended, even if its refcount 2231 * drops to 0. 2232 * @cgrp: The cgroup on which a reference is being released. 2233 */ 2234 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp) 2235 { 2236 cgroup_put(cgrp); 2237 } 2238 2239 /** 2240 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor 2241 * array. A cgroup returned by this kfunc which is not subsequently stored in a 2242 * map, must be released by calling bpf_cgroup_release(). 2243 * @cgrp: The cgroup for which we're performing a lookup. 2244 * @level: The level of ancestor to look up. 2245 */ 2246 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level) 2247 { 2248 struct cgroup *ancestor; 2249 2250 if (level > cgrp->level || level < 0) 2251 return NULL; 2252 2253 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */ 2254 ancestor = cgrp->ancestors[level]; 2255 if (!cgroup_tryget(ancestor)) 2256 return NULL; 2257 return ancestor; 2258 } 2259 2260 /** 2261 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this 2262 * kfunc which is not subsequently stored in a map, must be released by calling 2263 * bpf_cgroup_release(). 2264 * @cgid: cgroup id. 2265 */ 2266 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid) 2267 { 2268 struct cgroup *cgrp; 2269 2270 cgrp = cgroup_get_from_id(cgid); 2271 if (IS_ERR(cgrp)) 2272 return NULL; 2273 return cgrp; 2274 } 2275 2276 /** 2277 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test 2278 * task's membership of cgroup ancestry. 2279 * @task: the task to be tested 2280 * @ancestor: possible ancestor of @task's cgroup 2281 * 2282 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor. 2283 * It follows all the same rules as cgroup_is_descendant, and only applies 2284 * to the default hierarchy. 2285 */ 2286 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task, 2287 struct cgroup *ancestor) 2288 { 2289 long ret; 2290 2291 rcu_read_lock(); 2292 ret = task_under_cgroup_hierarchy(task, ancestor); 2293 rcu_read_unlock(); 2294 return ret; 2295 } 2296 #endif /* CONFIG_CGROUPS */ 2297 2298 /** 2299 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up 2300 * in the root pid namespace idr. If a task is returned, it must either be 2301 * stored in a map, or released with bpf_task_release(). 2302 * @pid: The pid of the task being looked up. 2303 */ 2304 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid) 2305 { 2306 struct task_struct *p; 2307 2308 rcu_read_lock(); 2309 p = find_task_by_pid_ns(pid, &init_pid_ns); 2310 if (p) 2311 p = bpf_task_acquire(p); 2312 rcu_read_unlock(); 2313 2314 return p; 2315 } 2316 2317 /** 2318 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data. 2319 * @ptr: The dynptr whose data slice to retrieve 2320 * @offset: Offset into the dynptr 2321 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2322 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2323 * length of the requested slice. This must be a constant. 2324 * 2325 * For non-skb and non-xdp type dynptrs, there is no difference between 2326 * bpf_dynptr_slice and bpf_dynptr_data. 2327 * 2328 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2329 * 2330 * If the intention is to write to the data slice, please use 2331 * bpf_dynptr_slice_rdwr. 2332 * 2333 * The user must check that the returned pointer is not null before using it. 2334 * 2335 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice 2336 * does not change the underlying packet data pointers, so a call to 2337 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in 2338 * the bpf program. 2339 * 2340 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only 2341 * data slice (can be either direct pointer to the data or a pointer to the user 2342 * provided buffer, with its contents containing the data, if unable to obtain 2343 * direct pointer) 2344 */ 2345 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr_kern *ptr, u32 offset, 2346 void *buffer__opt, u32 buffer__szk) 2347 { 2348 enum bpf_dynptr_type type; 2349 u32 len = buffer__szk; 2350 int err; 2351 2352 if (!ptr->data) 2353 return NULL; 2354 2355 err = bpf_dynptr_check_off_len(ptr, offset, len); 2356 if (err) 2357 return NULL; 2358 2359 type = bpf_dynptr_get_type(ptr); 2360 2361 switch (type) { 2362 case BPF_DYNPTR_TYPE_LOCAL: 2363 case BPF_DYNPTR_TYPE_RINGBUF: 2364 return ptr->data + ptr->offset + offset; 2365 case BPF_DYNPTR_TYPE_SKB: 2366 if (buffer__opt) 2367 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt); 2368 else 2369 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len); 2370 case BPF_DYNPTR_TYPE_XDP: 2371 { 2372 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len); 2373 if (!IS_ERR_OR_NULL(xdp_ptr)) 2374 return xdp_ptr; 2375 2376 if (!buffer__opt) 2377 return NULL; 2378 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false); 2379 return buffer__opt; 2380 } 2381 default: 2382 WARN_ONCE(true, "unknown dynptr type %d\n", type); 2383 return NULL; 2384 } 2385 } 2386 2387 /** 2388 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data. 2389 * @ptr: The dynptr whose data slice to retrieve 2390 * @offset: Offset into the dynptr 2391 * @buffer__opt: User-provided buffer to copy contents into. May be NULL 2392 * @buffer__szk: Size (in bytes) of the buffer if present. This is the 2393 * length of the requested slice. This must be a constant. 2394 * 2395 * For non-skb and non-xdp type dynptrs, there is no difference between 2396 * bpf_dynptr_slice and bpf_dynptr_data. 2397 * 2398 * If buffer__opt is NULL, the call will fail if buffer_opt was needed. 2399 * 2400 * The returned pointer is writable and may point to either directly the dynptr 2401 * data at the requested offset or to the buffer if unable to obtain a direct 2402 * data pointer to (example: the requested slice is to the paged area of an skb 2403 * packet). In the case where the returned pointer is to the buffer, the user 2404 * is responsible for persisting writes through calling bpf_dynptr_write(). This 2405 * usually looks something like this pattern: 2406 * 2407 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer)); 2408 * if (!eth) 2409 * return TC_ACT_SHOT; 2410 * 2411 * // mutate eth header // 2412 * 2413 * if (eth == buffer) 2414 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0); 2415 * 2416 * Please note that, as in the example above, the user must check that the 2417 * returned pointer is not null before using it. 2418 * 2419 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr 2420 * does not change the underlying packet data pointers, so a call to 2421 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in 2422 * the bpf program. 2423 * 2424 * Return: NULL if the call failed (eg invalid dynptr), pointer to a 2425 * data slice (can be either direct pointer to the data or a pointer to the user 2426 * provided buffer, with its contents containing the data, if unable to obtain 2427 * direct pointer) 2428 */ 2429 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr_kern *ptr, u32 offset, 2430 void *buffer__opt, u32 buffer__szk) 2431 { 2432 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr)) 2433 return NULL; 2434 2435 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice. 2436 * 2437 * For skb-type dynptrs, it is safe to write into the returned pointer 2438 * if the bpf program allows skb data writes. There are two possiblities 2439 * that may occur when calling bpf_dynptr_slice_rdwr: 2440 * 2441 * 1) The requested slice is in the head of the skb. In this case, the 2442 * returned pointer is directly to skb data, and if the skb is cloned, the 2443 * verifier will have uncloned it (see bpf_unclone_prologue()) already. 2444 * The pointer can be directly written into. 2445 * 2446 * 2) Some portion of the requested slice is in the paged buffer area. 2447 * In this case, the requested data will be copied out into the buffer 2448 * and the returned pointer will be a pointer to the buffer. The skb 2449 * will not be pulled. To persist the write, the user will need to call 2450 * bpf_dynptr_write(), which will pull the skb and commit the write. 2451 * 2452 * Similarly for xdp programs, if the requested slice is not across xdp 2453 * fragments, then a direct pointer will be returned, otherwise the data 2454 * will be copied out into the buffer and the user will need to call 2455 * bpf_dynptr_write() to commit changes. 2456 */ 2457 return bpf_dynptr_slice(ptr, offset, buffer__opt, buffer__szk); 2458 } 2459 2460 __bpf_kfunc int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end) 2461 { 2462 u32 size; 2463 2464 if (!ptr->data || start > end) 2465 return -EINVAL; 2466 2467 size = __bpf_dynptr_size(ptr); 2468 2469 if (start > size || end > size) 2470 return -ERANGE; 2471 2472 ptr->offset += start; 2473 bpf_dynptr_set_size(ptr, end - start); 2474 2475 return 0; 2476 } 2477 2478 __bpf_kfunc bool bpf_dynptr_is_null(struct bpf_dynptr_kern *ptr) 2479 { 2480 return !ptr->data; 2481 } 2482 2483 __bpf_kfunc bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr) 2484 { 2485 if (!ptr->data) 2486 return false; 2487 2488 return __bpf_dynptr_is_rdonly(ptr); 2489 } 2490 2491 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr_kern *ptr) 2492 { 2493 if (!ptr->data) 2494 return -EINVAL; 2495 2496 return __bpf_dynptr_size(ptr); 2497 } 2498 2499 __bpf_kfunc int bpf_dynptr_clone(struct bpf_dynptr_kern *ptr, 2500 struct bpf_dynptr_kern *clone__uninit) 2501 { 2502 if (!ptr->data) { 2503 bpf_dynptr_set_null(clone__uninit); 2504 return -EINVAL; 2505 } 2506 2507 *clone__uninit = *ptr; 2508 2509 return 0; 2510 } 2511 2512 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj) 2513 { 2514 return obj; 2515 } 2516 2517 __bpf_kfunc void *bpf_rdonly_cast(void *obj__ign, u32 btf_id__k) 2518 { 2519 return obj__ign; 2520 } 2521 2522 __bpf_kfunc void bpf_rcu_read_lock(void) 2523 { 2524 rcu_read_lock(); 2525 } 2526 2527 __bpf_kfunc void bpf_rcu_read_unlock(void) 2528 { 2529 rcu_read_unlock(); 2530 } 2531 2532 __diag_pop(); 2533 2534 BTF_SET8_START(generic_btf_ids) 2535 #ifdef CONFIG_KEXEC_CORE 2536 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE) 2537 #endif 2538 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL) 2539 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE) 2540 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL) 2541 BTF_ID_FLAGS(func, bpf_list_push_front_impl) 2542 BTF_ID_FLAGS(func, bpf_list_push_back_impl) 2543 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL) 2544 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL) 2545 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2546 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE) 2547 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL) 2548 BTF_ID_FLAGS(func, bpf_rbtree_add_impl) 2549 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL) 2550 2551 #ifdef CONFIG_CGROUPS 2552 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2553 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE) 2554 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL) 2555 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL) 2556 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU) 2557 #endif 2558 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL) 2559 BTF_SET8_END(generic_btf_ids) 2560 2561 static const struct btf_kfunc_id_set generic_kfunc_set = { 2562 .owner = THIS_MODULE, 2563 .set = &generic_btf_ids, 2564 }; 2565 2566 2567 BTF_ID_LIST(generic_dtor_ids) 2568 BTF_ID(struct, task_struct) 2569 BTF_ID(func, bpf_task_release) 2570 #ifdef CONFIG_CGROUPS 2571 BTF_ID(struct, cgroup) 2572 BTF_ID(func, bpf_cgroup_release) 2573 #endif 2574 2575 BTF_SET8_START(common_btf_ids) 2576 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx) 2577 BTF_ID_FLAGS(func, bpf_rdonly_cast) 2578 BTF_ID_FLAGS(func, bpf_rcu_read_lock) 2579 BTF_ID_FLAGS(func, bpf_rcu_read_unlock) 2580 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL) 2581 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL) 2582 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW) 2583 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL) 2584 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY) 2585 BTF_ID_FLAGS(func, bpf_dynptr_adjust) 2586 BTF_ID_FLAGS(func, bpf_dynptr_is_null) 2587 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly) 2588 BTF_ID_FLAGS(func, bpf_dynptr_size) 2589 BTF_ID_FLAGS(func, bpf_dynptr_clone) 2590 BTF_SET8_END(common_btf_ids) 2591 2592 static const struct btf_kfunc_id_set common_kfunc_set = { 2593 .owner = THIS_MODULE, 2594 .set = &common_btf_ids, 2595 }; 2596 2597 static int __init kfunc_init(void) 2598 { 2599 int ret; 2600 const struct btf_id_dtor_kfunc generic_dtors[] = { 2601 { 2602 .btf_id = generic_dtor_ids[0], 2603 .kfunc_btf_id = generic_dtor_ids[1] 2604 }, 2605 #ifdef CONFIG_CGROUPS 2606 { 2607 .btf_id = generic_dtor_ids[2], 2608 .kfunc_btf_id = generic_dtor_ids[3] 2609 }, 2610 #endif 2611 }; 2612 2613 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set); 2614 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set); 2615 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set); 2616 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors, 2617 ARRAY_SIZE(generic_dtors), 2618 THIS_MODULE); 2619 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set); 2620 } 2621 2622 late_initcall(kfunc_init); 2623