1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/jhash.h> 8 #include <linux/filter.h> 9 #include <linux/rculist_nulls.h> 10 #include <linux/random.h> 11 #include <uapi/linux/btf.h> 12 #include "percpu_freelist.h" 13 #include "bpf_lru_list.h" 14 #include "map_in_map.h" 15 16 #define HTAB_CREATE_FLAG_MASK \ 17 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \ 18 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED) 19 20 #define BATCH_OPS(_name) \ 21 .map_lookup_batch = \ 22 _name##_map_lookup_batch, \ 23 .map_lookup_and_delete_batch = \ 24 _name##_map_lookup_and_delete_batch, \ 25 .map_update_batch = \ 26 generic_map_update_batch, \ 27 .map_delete_batch = \ 28 generic_map_delete_batch 29 30 /* 31 * The bucket lock has two protection scopes: 32 * 33 * 1) Serializing concurrent operations from BPF programs on differrent 34 * CPUs 35 * 36 * 2) Serializing concurrent operations from BPF programs and sys_bpf() 37 * 38 * BPF programs can execute in any context including perf, kprobes and 39 * tracing. As there are almost no limits where perf, kprobes and tracing 40 * can be invoked from the lock operations need to be protected against 41 * deadlocks. Deadlocks can be caused by recursion and by an invocation in 42 * the lock held section when functions which acquire this lock are invoked 43 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU 44 * variable bpf_prog_active, which prevents BPF programs attached to perf 45 * events, kprobes and tracing to be invoked before the prior invocation 46 * from one of these contexts completed. sys_bpf() uses the same mechanism 47 * by pinning the task to the current CPU and incrementing the recursion 48 * protection accross the map operation. 49 * 50 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain 51 * operations like memory allocations (even with GFP_ATOMIC) from atomic 52 * contexts. This is required because even with GFP_ATOMIC the memory 53 * allocator calls into code pathes which acquire locks with long held lock 54 * sections. To ensure the deterministic behaviour these locks are regular 55 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only 56 * true atomic contexts on an RT kernel are the low level hardware 57 * handling, scheduling, low level interrupt handling, NMIs etc. None of 58 * these contexts should ever do memory allocations. 59 * 60 * As regular device interrupt handlers and soft interrupts are forced into 61 * thread context, the existing code which does 62 * spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*(); 63 * just works. 64 * 65 * In theory the BPF locks could be converted to regular spinlocks as well, 66 * but the bucket locks and percpu_freelist locks can be taken from 67 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be 68 * atomic contexts even on RT. These mechanisms require preallocated maps, 69 * so there is no need to invoke memory allocations within the lock held 70 * sections. 71 * 72 * BPF maps which need dynamic allocation are only used from (forced) 73 * thread context on RT and can therefore use regular spinlocks which in 74 * turn allows to invoke memory allocations from the lock held section. 75 * 76 * On a non RT kernel this distinction is neither possible nor required. 77 * spinlock maps to raw_spinlock and the extra code is optimized out by the 78 * compiler. 79 */ 80 struct bucket { 81 struct hlist_nulls_head head; 82 union { 83 raw_spinlock_t raw_lock; 84 spinlock_t lock; 85 }; 86 }; 87 88 struct bpf_htab { 89 struct bpf_map map; 90 struct bucket *buckets; 91 void *elems; 92 union { 93 struct pcpu_freelist freelist; 94 struct bpf_lru lru; 95 }; 96 struct htab_elem *__percpu *extra_elems; 97 atomic_t count; /* number of elements in this hashtable */ 98 u32 n_buckets; /* number of hash buckets */ 99 u32 elem_size; /* size of each element in bytes */ 100 u32 hashrnd; 101 }; 102 103 /* each htab element is struct htab_elem + key + value */ 104 struct htab_elem { 105 union { 106 struct hlist_nulls_node hash_node; 107 struct { 108 void *padding; 109 union { 110 struct bpf_htab *htab; 111 struct pcpu_freelist_node fnode; 112 struct htab_elem *batch_flink; 113 }; 114 }; 115 }; 116 union { 117 struct rcu_head rcu; 118 struct bpf_lru_node lru_node; 119 }; 120 u32 hash; 121 char key[] __aligned(8); 122 }; 123 124 static inline bool htab_is_prealloc(const struct bpf_htab *htab) 125 { 126 return !(htab->map.map_flags & BPF_F_NO_PREALLOC); 127 } 128 129 static inline bool htab_use_raw_lock(const struct bpf_htab *htab) 130 { 131 return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab)); 132 } 133 134 static void htab_init_buckets(struct bpf_htab *htab) 135 { 136 unsigned i; 137 138 for (i = 0; i < htab->n_buckets; i++) { 139 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i); 140 if (htab_use_raw_lock(htab)) 141 raw_spin_lock_init(&htab->buckets[i].raw_lock); 142 else 143 spin_lock_init(&htab->buckets[i].lock); 144 } 145 } 146 147 static inline unsigned long htab_lock_bucket(const struct bpf_htab *htab, 148 struct bucket *b) 149 { 150 unsigned long flags; 151 152 if (htab_use_raw_lock(htab)) 153 raw_spin_lock_irqsave(&b->raw_lock, flags); 154 else 155 spin_lock_irqsave(&b->lock, flags); 156 return flags; 157 } 158 159 static inline void htab_unlock_bucket(const struct bpf_htab *htab, 160 struct bucket *b, 161 unsigned long flags) 162 { 163 if (htab_use_raw_lock(htab)) 164 raw_spin_unlock_irqrestore(&b->raw_lock, flags); 165 else 166 spin_unlock_irqrestore(&b->lock, flags); 167 } 168 169 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node); 170 171 static bool htab_is_lru(const struct bpf_htab *htab) 172 { 173 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH || 174 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 175 } 176 177 static bool htab_is_percpu(const struct bpf_htab *htab) 178 { 179 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH || 180 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; 181 } 182 183 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, 184 void __percpu *pptr) 185 { 186 *(void __percpu **)(l->key + key_size) = pptr; 187 } 188 189 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size) 190 { 191 return *(void __percpu **)(l->key + key_size); 192 } 193 194 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l) 195 { 196 return *(void **)(l->key + roundup(map->key_size, 8)); 197 } 198 199 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i) 200 { 201 return (struct htab_elem *) (htab->elems + i * htab->elem_size); 202 } 203 204 static void htab_free_elems(struct bpf_htab *htab) 205 { 206 int i; 207 208 if (!htab_is_percpu(htab)) 209 goto free_elems; 210 211 for (i = 0; i < htab->map.max_entries; i++) { 212 void __percpu *pptr; 213 214 pptr = htab_elem_get_ptr(get_htab_elem(htab, i), 215 htab->map.key_size); 216 free_percpu(pptr); 217 cond_resched(); 218 } 219 free_elems: 220 bpf_map_area_free(htab->elems); 221 } 222 223 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock 224 * (bucket_lock). If both locks need to be acquired together, the lock 225 * order is always lru_lock -> bucket_lock and this only happens in 226 * bpf_lru_list.c logic. For example, certain code path of 227 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(), 228 * will acquire lru_lock first followed by acquiring bucket_lock. 229 * 230 * In hashtab.c, to avoid deadlock, lock acquisition of 231 * bucket_lock followed by lru_lock is not allowed. In such cases, 232 * bucket_lock needs to be released first before acquiring lru_lock. 233 */ 234 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, 235 u32 hash) 236 { 237 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash); 238 struct htab_elem *l; 239 240 if (node) { 241 l = container_of(node, struct htab_elem, lru_node); 242 memcpy(l->key, key, htab->map.key_size); 243 return l; 244 } 245 246 return NULL; 247 } 248 249 static int prealloc_init(struct bpf_htab *htab) 250 { 251 u32 num_entries = htab->map.max_entries; 252 int err = -ENOMEM, i; 253 254 if (!htab_is_percpu(htab) && !htab_is_lru(htab)) 255 num_entries += num_possible_cpus(); 256 257 htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries, 258 htab->map.numa_node); 259 if (!htab->elems) 260 return -ENOMEM; 261 262 if (!htab_is_percpu(htab)) 263 goto skip_percpu_elems; 264 265 for (i = 0; i < num_entries; i++) { 266 u32 size = round_up(htab->map.value_size, 8); 267 void __percpu *pptr; 268 269 pptr = __alloc_percpu_gfp(size, 8, GFP_USER | __GFP_NOWARN); 270 if (!pptr) 271 goto free_elems; 272 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size, 273 pptr); 274 cond_resched(); 275 } 276 277 skip_percpu_elems: 278 if (htab_is_lru(htab)) 279 err = bpf_lru_init(&htab->lru, 280 htab->map.map_flags & BPF_F_NO_COMMON_LRU, 281 offsetof(struct htab_elem, hash) - 282 offsetof(struct htab_elem, lru_node), 283 htab_lru_map_delete_node, 284 htab); 285 else 286 err = pcpu_freelist_init(&htab->freelist); 287 288 if (err) 289 goto free_elems; 290 291 if (htab_is_lru(htab)) 292 bpf_lru_populate(&htab->lru, htab->elems, 293 offsetof(struct htab_elem, lru_node), 294 htab->elem_size, num_entries); 295 else 296 pcpu_freelist_populate(&htab->freelist, 297 htab->elems + offsetof(struct htab_elem, fnode), 298 htab->elem_size, num_entries); 299 300 return 0; 301 302 free_elems: 303 htab_free_elems(htab); 304 return err; 305 } 306 307 static void prealloc_destroy(struct bpf_htab *htab) 308 { 309 htab_free_elems(htab); 310 311 if (htab_is_lru(htab)) 312 bpf_lru_destroy(&htab->lru); 313 else 314 pcpu_freelist_destroy(&htab->freelist); 315 } 316 317 static int alloc_extra_elems(struct bpf_htab *htab) 318 { 319 struct htab_elem *__percpu *pptr, *l_new; 320 struct pcpu_freelist_node *l; 321 int cpu; 322 323 pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8, 324 GFP_USER | __GFP_NOWARN); 325 if (!pptr) 326 return -ENOMEM; 327 328 for_each_possible_cpu(cpu) { 329 l = pcpu_freelist_pop(&htab->freelist); 330 /* pop will succeed, since prealloc_init() 331 * preallocated extra num_possible_cpus elements 332 */ 333 l_new = container_of(l, struct htab_elem, fnode); 334 *per_cpu_ptr(pptr, cpu) = l_new; 335 } 336 htab->extra_elems = pptr; 337 return 0; 338 } 339 340 /* Called from syscall */ 341 static int htab_map_alloc_check(union bpf_attr *attr) 342 { 343 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 344 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 345 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 346 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 347 /* percpu_lru means each cpu has its own LRU list. 348 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 349 * the map's value itself is percpu. percpu_lru has 350 * nothing to do with the map's value. 351 */ 352 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 353 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 354 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED); 355 int numa_node = bpf_map_attr_numa_node(attr); 356 357 BUILD_BUG_ON(offsetof(struct htab_elem, htab) != 358 offsetof(struct htab_elem, hash_node.pprev)); 359 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) != 360 offsetof(struct htab_elem, hash_node.pprev)); 361 362 if (lru && !bpf_capable()) 363 /* LRU implementation is much complicated than other 364 * maps. Hence, limit to CAP_BPF. 365 */ 366 return -EPERM; 367 368 if (zero_seed && !capable(CAP_SYS_ADMIN)) 369 /* Guard against local DoS, and discourage production use. */ 370 return -EPERM; 371 372 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK || 373 !bpf_map_flags_access_ok(attr->map_flags)) 374 return -EINVAL; 375 376 if (!lru && percpu_lru) 377 return -EINVAL; 378 379 if (lru && !prealloc) 380 return -ENOTSUPP; 381 382 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru)) 383 return -EINVAL; 384 385 /* check sanity of attributes. 386 * value_size == 0 may be allowed in the future to use map as a set 387 */ 388 if (attr->max_entries == 0 || attr->key_size == 0 || 389 attr->value_size == 0) 390 return -EINVAL; 391 392 if (attr->key_size > MAX_BPF_STACK) 393 /* eBPF programs initialize keys on stack, so they cannot be 394 * larger than max stack size 395 */ 396 return -E2BIG; 397 398 if (attr->value_size >= KMALLOC_MAX_SIZE - 399 MAX_BPF_STACK - sizeof(struct htab_elem)) 400 /* if value_size is bigger, the user space won't be able to 401 * access the elements via bpf syscall. This check also makes 402 * sure that the elem_size doesn't overflow and it's 403 * kmalloc-able later in htab_map_update_elem() 404 */ 405 return -E2BIG; 406 407 return 0; 408 } 409 410 static struct bpf_map *htab_map_alloc(union bpf_attr *attr) 411 { 412 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH || 413 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 414 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH || 415 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH); 416 /* percpu_lru means each cpu has its own LRU list. 417 * it is different from BPF_MAP_TYPE_PERCPU_HASH where 418 * the map's value itself is percpu. percpu_lru has 419 * nothing to do with the map's value. 420 */ 421 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU); 422 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC); 423 struct bpf_htab *htab; 424 u64 cost; 425 int err; 426 427 htab = kzalloc(sizeof(*htab), GFP_USER); 428 if (!htab) 429 return ERR_PTR(-ENOMEM); 430 431 bpf_map_init_from_attr(&htab->map, attr); 432 433 if (percpu_lru) { 434 /* ensure each CPU's lru list has >=1 elements. 435 * since we are at it, make each lru list has the same 436 * number of elements. 437 */ 438 htab->map.max_entries = roundup(attr->max_entries, 439 num_possible_cpus()); 440 if (htab->map.max_entries < attr->max_entries) 441 htab->map.max_entries = rounddown(attr->max_entries, 442 num_possible_cpus()); 443 } 444 445 /* hash table size must be power of 2 */ 446 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries); 447 448 htab->elem_size = sizeof(struct htab_elem) + 449 round_up(htab->map.key_size, 8); 450 if (percpu) 451 htab->elem_size += sizeof(void *); 452 else 453 htab->elem_size += round_up(htab->map.value_size, 8); 454 455 err = -E2BIG; 456 /* prevent zero size kmalloc and check for u32 overflow */ 457 if (htab->n_buckets == 0 || 458 htab->n_buckets > U32_MAX / sizeof(struct bucket)) 459 goto free_htab; 460 461 cost = (u64) htab->n_buckets * sizeof(struct bucket) + 462 (u64) htab->elem_size * htab->map.max_entries; 463 464 if (percpu) 465 cost += (u64) round_up(htab->map.value_size, 8) * 466 num_possible_cpus() * htab->map.max_entries; 467 else 468 cost += (u64) htab->elem_size * num_possible_cpus(); 469 470 /* if map size is larger than memlock limit, reject it */ 471 err = bpf_map_charge_init(&htab->map.memory, cost); 472 if (err) 473 goto free_htab; 474 475 err = -ENOMEM; 476 htab->buckets = bpf_map_area_alloc(htab->n_buckets * 477 sizeof(struct bucket), 478 htab->map.numa_node); 479 if (!htab->buckets) 480 goto free_charge; 481 482 if (htab->map.map_flags & BPF_F_ZERO_SEED) 483 htab->hashrnd = 0; 484 else 485 htab->hashrnd = get_random_int(); 486 487 htab_init_buckets(htab); 488 489 if (prealloc) { 490 err = prealloc_init(htab); 491 if (err) 492 goto free_buckets; 493 494 if (!percpu && !lru) { 495 /* lru itself can remove the least used element, so 496 * there is no need for an extra elem during map_update. 497 */ 498 err = alloc_extra_elems(htab); 499 if (err) 500 goto free_prealloc; 501 } 502 } 503 504 return &htab->map; 505 506 free_prealloc: 507 prealloc_destroy(htab); 508 free_buckets: 509 bpf_map_area_free(htab->buckets); 510 free_charge: 511 bpf_map_charge_finish(&htab->map.memory); 512 free_htab: 513 kfree(htab); 514 return ERR_PTR(err); 515 } 516 517 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd) 518 { 519 return jhash(key, key_len, hashrnd); 520 } 521 522 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash) 523 { 524 return &htab->buckets[hash & (htab->n_buckets - 1)]; 525 } 526 527 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash) 528 { 529 return &__select_bucket(htab, hash)->head; 530 } 531 532 /* this lookup function can only be called with bucket lock taken */ 533 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash, 534 void *key, u32 key_size) 535 { 536 struct hlist_nulls_node *n; 537 struct htab_elem *l; 538 539 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 540 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 541 return l; 542 543 return NULL; 544 } 545 546 /* can be called without bucket lock. it will repeat the loop in 547 * the unlikely event when elements moved from one bucket into another 548 * while link list is being walked 549 */ 550 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head, 551 u32 hash, void *key, 552 u32 key_size, u32 n_buckets) 553 { 554 struct hlist_nulls_node *n; 555 struct htab_elem *l; 556 557 again: 558 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 559 if (l->hash == hash && !memcmp(&l->key, key, key_size)) 560 return l; 561 562 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1)))) 563 goto again; 564 565 return NULL; 566 } 567 568 /* Called from syscall or from eBPF program directly, so 569 * arguments have to match bpf_map_lookup_elem() exactly. 570 * The return value is adjusted by BPF instructions 571 * in htab_map_gen_lookup(). 572 */ 573 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key) 574 { 575 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 576 struct hlist_nulls_head *head; 577 struct htab_elem *l; 578 u32 hash, key_size; 579 580 /* Must be called with rcu_read_lock. */ 581 WARN_ON_ONCE(!rcu_read_lock_held()); 582 583 key_size = map->key_size; 584 585 hash = htab_map_hash(key, key_size, htab->hashrnd); 586 587 head = select_bucket(htab, hash); 588 589 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 590 591 return l; 592 } 593 594 static void *htab_map_lookup_elem(struct bpf_map *map, void *key) 595 { 596 struct htab_elem *l = __htab_map_lookup_elem(map, key); 597 598 if (l) 599 return l->key + round_up(map->key_size, 8); 600 601 return NULL; 602 } 603 604 /* inline bpf_map_lookup_elem() call. 605 * Instead of: 606 * bpf_prog 607 * bpf_map_lookup_elem 608 * map->ops->map_lookup_elem 609 * htab_map_lookup_elem 610 * __htab_map_lookup_elem 611 * do: 612 * bpf_prog 613 * __htab_map_lookup_elem 614 */ 615 static u32 htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 616 { 617 struct bpf_insn *insn = insn_buf; 618 const int ret = BPF_REG_0; 619 620 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 621 (void *(*)(struct bpf_map *map, void *key))NULL)); 622 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 623 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 624 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 625 offsetof(struct htab_elem, key) + 626 round_up(map->key_size, 8)); 627 return insn - insn_buf; 628 } 629 630 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map, 631 void *key, const bool mark) 632 { 633 struct htab_elem *l = __htab_map_lookup_elem(map, key); 634 635 if (l) { 636 if (mark) 637 bpf_lru_node_set_ref(&l->lru_node); 638 return l->key + round_up(map->key_size, 8); 639 } 640 641 return NULL; 642 } 643 644 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key) 645 { 646 return __htab_lru_map_lookup_elem(map, key, true); 647 } 648 649 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key) 650 { 651 return __htab_lru_map_lookup_elem(map, key, false); 652 } 653 654 static u32 htab_lru_map_gen_lookup(struct bpf_map *map, 655 struct bpf_insn *insn_buf) 656 { 657 struct bpf_insn *insn = insn_buf; 658 const int ret = BPF_REG_0; 659 const int ref_reg = BPF_REG_1; 660 661 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 662 (void *(*)(struct bpf_map *map, void *key))NULL)); 663 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 664 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4); 665 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret, 666 offsetof(struct htab_elem, lru_node) + 667 offsetof(struct bpf_lru_node, ref)); 668 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1); 669 *insn++ = BPF_ST_MEM(BPF_B, ret, 670 offsetof(struct htab_elem, lru_node) + 671 offsetof(struct bpf_lru_node, ref), 672 1); 673 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 674 offsetof(struct htab_elem, key) + 675 round_up(map->key_size, 8)); 676 return insn - insn_buf; 677 } 678 679 /* It is called from the bpf_lru_list when the LRU needs to delete 680 * older elements from the htab. 681 */ 682 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node) 683 { 684 struct bpf_htab *htab = (struct bpf_htab *)arg; 685 struct htab_elem *l = NULL, *tgt_l; 686 struct hlist_nulls_head *head; 687 struct hlist_nulls_node *n; 688 unsigned long flags; 689 struct bucket *b; 690 691 tgt_l = container_of(node, struct htab_elem, lru_node); 692 b = __select_bucket(htab, tgt_l->hash); 693 head = &b->head; 694 695 flags = htab_lock_bucket(htab, b); 696 697 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 698 if (l == tgt_l) { 699 hlist_nulls_del_rcu(&l->hash_node); 700 break; 701 } 702 703 htab_unlock_bucket(htab, b, flags); 704 705 return l == tgt_l; 706 } 707 708 /* Called from syscall */ 709 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 710 { 711 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 712 struct hlist_nulls_head *head; 713 struct htab_elem *l, *next_l; 714 u32 hash, key_size; 715 int i = 0; 716 717 WARN_ON_ONCE(!rcu_read_lock_held()); 718 719 key_size = map->key_size; 720 721 if (!key) 722 goto find_first_elem; 723 724 hash = htab_map_hash(key, key_size, htab->hashrnd); 725 726 head = select_bucket(htab, hash); 727 728 /* lookup the key */ 729 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets); 730 731 if (!l) 732 goto find_first_elem; 733 734 /* key was found, get next key in the same bucket */ 735 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)), 736 struct htab_elem, hash_node); 737 738 if (next_l) { 739 /* if next elem in this hash list is non-zero, just return it */ 740 memcpy(next_key, next_l->key, key_size); 741 return 0; 742 } 743 744 /* no more elements in this hash list, go to the next bucket */ 745 i = hash & (htab->n_buckets - 1); 746 i++; 747 748 find_first_elem: 749 /* iterate over buckets */ 750 for (; i < htab->n_buckets; i++) { 751 head = select_bucket(htab, i); 752 753 /* pick first element in the bucket */ 754 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)), 755 struct htab_elem, hash_node); 756 if (next_l) { 757 /* if it's not empty, just return it */ 758 memcpy(next_key, next_l->key, key_size); 759 return 0; 760 } 761 } 762 763 /* iterated over all buckets and all elements */ 764 return -ENOENT; 765 } 766 767 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l) 768 { 769 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH) 770 free_percpu(htab_elem_get_ptr(l, htab->map.key_size)); 771 kfree(l); 772 } 773 774 static void htab_elem_free_rcu(struct rcu_head *head) 775 { 776 struct htab_elem *l = container_of(head, struct htab_elem, rcu); 777 struct bpf_htab *htab = l->htab; 778 779 htab_elem_free(htab, l); 780 } 781 782 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l) 783 { 784 struct bpf_map *map = &htab->map; 785 void *ptr; 786 787 if (map->ops->map_fd_put_ptr) { 788 ptr = fd_htab_map_get_ptr(map, l); 789 map->ops->map_fd_put_ptr(ptr); 790 } 791 } 792 793 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) 794 { 795 htab_put_fd_value(htab, l); 796 797 if (htab_is_prealloc(htab)) { 798 __pcpu_freelist_push(&htab->freelist, &l->fnode); 799 } else { 800 atomic_dec(&htab->count); 801 l->htab = htab; 802 call_rcu(&l->rcu, htab_elem_free_rcu); 803 } 804 } 805 806 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, 807 void *value, bool onallcpus) 808 { 809 if (!onallcpus) { 810 /* copy true value_size bytes */ 811 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size); 812 } else { 813 u32 size = round_up(htab->map.value_size, 8); 814 int off = 0, cpu; 815 816 for_each_possible_cpu(cpu) { 817 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), 818 value + off, size); 819 off += size; 820 } 821 } 822 } 823 824 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab) 825 { 826 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS && 827 BITS_PER_LONG == 64; 828 } 829 830 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, 831 void *value, u32 key_size, u32 hash, 832 bool percpu, bool onallcpus, 833 struct htab_elem *old_elem) 834 { 835 u32 size = htab->map.value_size; 836 bool prealloc = htab_is_prealloc(htab); 837 struct htab_elem *l_new, **pl_new; 838 void __percpu *pptr; 839 840 if (prealloc) { 841 if (old_elem) { 842 /* if we're updating the existing element, 843 * use per-cpu extra elems to avoid freelist_pop/push 844 */ 845 pl_new = this_cpu_ptr(htab->extra_elems); 846 l_new = *pl_new; 847 htab_put_fd_value(htab, old_elem); 848 *pl_new = old_elem; 849 } else { 850 struct pcpu_freelist_node *l; 851 852 l = __pcpu_freelist_pop(&htab->freelist); 853 if (!l) 854 return ERR_PTR(-E2BIG); 855 l_new = container_of(l, struct htab_elem, fnode); 856 } 857 } else { 858 if (atomic_inc_return(&htab->count) > htab->map.max_entries) 859 if (!old_elem) { 860 /* when map is full and update() is replacing 861 * old element, it's ok to allocate, since 862 * old element will be freed immediately. 863 * Otherwise return an error 864 */ 865 l_new = ERR_PTR(-E2BIG); 866 goto dec_count; 867 } 868 l_new = kmalloc_node(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN, 869 htab->map.numa_node); 870 if (!l_new) { 871 l_new = ERR_PTR(-ENOMEM); 872 goto dec_count; 873 } 874 check_and_init_map_lock(&htab->map, 875 l_new->key + round_up(key_size, 8)); 876 } 877 878 memcpy(l_new->key, key, key_size); 879 if (percpu) { 880 size = round_up(size, 8); 881 if (prealloc) { 882 pptr = htab_elem_get_ptr(l_new, key_size); 883 } else { 884 /* alloc_percpu zero-fills */ 885 pptr = __alloc_percpu_gfp(size, 8, 886 GFP_ATOMIC | __GFP_NOWARN); 887 if (!pptr) { 888 kfree(l_new); 889 l_new = ERR_PTR(-ENOMEM); 890 goto dec_count; 891 } 892 } 893 894 pcpu_copy_value(htab, pptr, value, onallcpus); 895 896 if (!prealloc) 897 htab_elem_set_ptr(l_new, key_size, pptr); 898 } else if (fd_htab_map_needs_adjust(htab)) { 899 size = round_up(size, 8); 900 memcpy(l_new->key + round_up(key_size, 8), value, size); 901 } else { 902 copy_map_value(&htab->map, 903 l_new->key + round_up(key_size, 8), 904 value); 905 } 906 907 l_new->hash = hash; 908 return l_new; 909 dec_count: 910 atomic_dec(&htab->count); 911 return l_new; 912 } 913 914 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old, 915 u64 map_flags) 916 { 917 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST) 918 /* elem already exists */ 919 return -EEXIST; 920 921 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST) 922 /* elem doesn't exist, cannot update it */ 923 return -ENOENT; 924 925 return 0; 926 } 927 928 /* Called from syscall or from eBPF program */ 929 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, 930 u64 map_flags) 931 { 932 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 933 struct htab_elem *l_new = NULL, *l_old; 934 struct hlist_nulls_head *head; 935 unsigned long flags; 936 struct bucket *b; 937 u32 key_size, hash; 938 int ret; 939 940 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 941 /* unknown flags */ 942 return -EINVAL; 943 944 WARN_ON_ONCE(!rcu_read_lock_held()); 945 946 key_size = map->key_size; 947 948 hash = htab_map_hash(key, key_size, htab->hashrnd); 949 950 b = __select_bucket(htab, hash); 951 head = &b->head; 952 953 if (unlikely(map_flags & BPF_F_LOCK)) { 954 if (unlikely(!map_value_has_spin_lock(map))) 955 return -EINVAL; 956 /* find an element without taking the bucket lock */ 957 l_old = lookup_nulls_elem_raw(head, hash, key, key_size, 958 htab->n_buckets); 959 ret = check_flags(htab, l_old, map_flags); 960 if (ret) 961 return ret; 962 if (l_old) { 963 /* grab the element lock and update value in place */ 964 copy_map_value_locked(map, 965 l_old->key + round_up(key_size, 8), 966 value, false); 967 return 0; 968 } 969 /* fall through, grab the bucket lock and lookup again. 970 * 99.9% chance that the element won't be found, 971 * but second lookup under lock has to be done. 972 */ 973 } 974 975 flags = htab_lock_bucket(htab, b); 976 977 l_old = lookup_elem_raw(head, hash, key, key_size); 978 979 ret = check_flags(htab, l_old, map_flags); 980 if (ret) 981 goto err; 982 983 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) { 984 /* first lookup without the bucket lock didn't find the element, 985 * but second lookup with the bucket lock found it. 986 * This case is highly unlikely, but has to be dealt with: 987 * grab the element lock in addition to the bucket lock 988 * and update element in place 989 */ 990 copy_map_value_locked(map, 991 l_old->key + round_up(key_size, 8), 992 value, false); 993 ret = 0; 994 goto err; 995 } 996 997 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, 998 l_old); 999 if (IS_ERR(l_new)) { 1000 /* all pre-allocated elements are in use or memory exhausted */ 1001 ret = PTR_ERR(l_new); 1002 goto err; 1003 } 1004 1005 /* add new element to the head of the list, so that 1006 * concurrent search will find it before old elem 1007 */ 1008 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1009 if (l_old) { 1010 hlist_nulls_del_rcu(&l_old->hash_node); 1011 if (!htab_is_prealloc(htab)) 1012 free_htab_elem(htab, l_old); 1013 } 1014 ret = 0; 1015 err: 1016 htab_unlock_bucket(htab, b, flags); 1017 return ret; 1018 } 1019 1020 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value, 1021 u64 map_flags) 1022 { 1023 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1024 struct htab_elem *l_new, *l_old = NULL; 1025 struct hlist_nulls_head *head; 1026 unsigned long flags; 1027 struct bucket *b; 1028 u32 key_size, hash; 1029 int ret; 1030 1031 if (unlikely(map_flags > BPF_EXIST)) 1032 /* unknown flags */ 1033 return -EINVAL; 1034 1035 WARN_ON_ONCE(!rcu_read_lock_held()); 1036 1037 key_size = map->key_size; 1038 1039 hash = htab_map_hash(key, key_size, htab->hashrnd); 1040 1041 b = __select_bucket(htab, hash); 1042 head = &b->head; 1043 1044 /* For LRU, we need to alloc before taking bucket's 1045 * spinlock because getting free nodes from LRU may need 1046 * to remove older elements from htab and this removal 1047 * operation will need a bucket lock. 1048 */ 1049 l_new = prealloc_lru_pop(htab, key, hash); 1050 if (!l_new) 1051 return -ENOMEM; 1052 memcpy(l_new->key + round_up(map->key_size, 8), value, map->value_size); 1053 1054 flags = htab_lock_bucket(htab, b); 1055 1056 l_old = lookup_elem_raw(head, hash, key, key_size); 1057 1058 ret = check_flags(htab, l_old, map_flags); 1059 if (ret) 1060 goto err; 1061 1062 /* add new element to the head of the list, so that 1063 * concurrent search will find it before old elem 1064 */ 1065 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1066 if (l_old) { 1067 bpf_lru_node_set_ref(&l_new->lru_node); 1068 hlist_nulls_del_rcu(&l_old->hash_node); 1069 } 1070 ret = 0; 1071 1072 err: 1073 htab_unlock_bucket(htab, b, flags); 1074 1075 if (ret) 1076 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1077 else if (l_old) 1078 bpf_lru_push_free(&htab->lru, &l_old->lru_node); 1079 1080 return ret; 1081 } 1082 1083 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1084 void *value, u64 map_flags, 1085 bool onallcpus) 1086 { 1087 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1088 struct htab_elem *l_new = NULL, *l_old; 1089 struct hlist_nulls_head *head; 1090 unsigned long flags; 1091 struct bucket *b; 1092 u32 key_size, hash; 1093 int ret; 1094 1095 if (unlikely(map_flags > BPF_EXIST)) 1096 /* unknown flags */ 1097 return -EINVAL; 1098 1099 WARN_ON_ONCE(!rcu_read_lock_held()); 1100 1101 key_size = map->key_size; 1102 1103 hash = htab_map_hash(key, key_size, htab->hashrnd); 1104 1105 b = __select_bucket(htab, hash); 1106 head = &b->head; 1107 1108 flags = htab_lock_bucket(htab, b); 1109 1110 l_old = lookup_elem_raw(head, hash, key, key_size); 1111 1112 ret = check_flags(htab, l_old, map_flags); 1113 if (ret) 1114 goto err; 1115 1116 if (l_old) { 1117 /* per-cpu hash map can update value in-place */ 1118 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1119 value, onallcpus); 1120 } else { 1121 l_new = alloc_htab_elem(htab, key, value, key_size, 1122 hash, true, onallcpus, NULL); 1123 if (IS_ERR(l_new)) { 1124 ret = PTR_ERR(l_new); 1125 goto err; 1126 } 1127 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1128 } 1129 ret = 0; 1130 err: 1131 htab_unlock_bucket(htab, b, flags); 1132 return ret; 1133 } 1134 1135 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1136 void *value, u64 map_flags, 1137 bool onallcpus) 1138 { 1139 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1140 struct htab_elem *l_new = NULL, *l_old; 1141 struct hlist_nulls_head *head; 1142 unsigned long flags; 1143 struct bucket *b; 1144 u32 key_size, hash; 1145 int ret; 1146 1147 if (unlikely(map_flags > BPF_EXIST)) 1148 /* unknown flags */ 1149 return -EINVAL; 1150 1151 WARN_ON_ONCE(!rcu_read_lock_held()); 1152 1153 key_size = map->key_size; 1154 1155 hash = htab_map_hash(key, key_size, htab->hashrnd); 1156 1157 b = __select_bucket(htab, hash); 1158 head = &b->head; 1159 1160 /* For LRU, we need to alloc before taking bucket's 1161 * spinlock because LRU's elem alloc may need 1162 * to remove older elem from htab and this removal 1163 * operation will need a bucket lock. 1164 */ 1165 if (map_flags != BPF_EXIST) { 1166 l_new = prealloc_lru_pop(htab, key, hash); 1167 if (!l_new) 1168 return -ENOMEM; 1169 } 1170 1171 flags = htab_lock_bucket(htab, b); 1172 1173 l_old = lookup_elem_raw(head, hash, key, key_size); 1174 1175 ret = check_flags(htab, l_old, map_flags); 1176 if (ret) 1177 goto err; 1178 1179 if (l_old) { 1180 bpf_lru_node_set_ref(&l_old->lru_node); 1181 1182 /* per-cpu hash map can update value in-place */ 1183 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size), 1184 value, onallcpus); 1185 } else { 1186 pcpu_copy_value(htab, htab_elem_get_ptr(l_new, key_size), 1187 value, onallcpus); 1188 hlist_nulls_add_head_rcu(&l_new->hash_node, head); 1189 l_new = NULL; 1190 } 1191 ret = 0; 1192 err: 1193 htab_unlock_bucket(htab, b, flags); 1194 if (l_new) 1195 bpf_lru_push_free(&htab->lru, &l_new->lru_node); 1196 return ret; 1197 } 1198 1199 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key, 1200 void *value, u64 map_flags) 1201 { 1202 return __htab_percpu_map_update_elem(map, key, value, map_flags, false); 1203 } 1204 1205 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key, 1206 void *value, u64 map_flags) 1207 { 1208 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags, 1209 false); 1210 } 1211 1212 /* Called from syscall or from eBPF program */ 1213 static int htab_map_delete_elem(struct bpf_map *map, void *key) 1214 { 1215 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1216 struct hlist_nulls_head *head; 1217 struct bucket *b; 1218 struct htab_elem *l; 1219 unsigned long flags; 1220 u32 hash, key_size; 1221 int ret = -ENOENT; 1222 1223 WARN_ON_ONCE(!rcu_read_lock_held()); 1224 1225 key_size = map->key_size; 1226 1227 hash = htab_map_hash(key, key_size, htab->hashrnd); 1228 b = __select_bucket(htab, hash); 1229 head = &b->head; 1230 1231 flags = htab_lock_bucket(htab, b); 1232 1233 l = lookup_elem_raw(head, hash, key, key_size); 1234 1235 if (l) { 1236 hlist_nulls_del_rcu(&l->hash_node); 1237 free_htab_elem(htab, l); 1238 ret = 0; 1239 } 1240 1241 htab_unlock_bucket(htab, b, flags); 1242 return ret; 1243 } 1244 1245 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key) 1246 { 1247 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1248 struct hlist_nulls_head *head; 1249 struct bucket *b; 1250 struct htab_elem *l; 1251 unsigned long flags; 1252 u32 hash, key_size; 1253 int ret = -ENOENT; 1254 1255 WARN_ON_ONCE(!rcu_read_lock_held()); 1256 1257 key_size = map->key_size; 1258 1259 hash = htab_map_hash(key, key_size, htab->hashrnd); 1260 b = __select_bucket(htab, hash); 1261 head = &b->head; 1262 1263 flags = htab_lock_bucket(htab, b); 1264 1265 l = lookup_elem_raw(head, hash, key, key_size); 1266 1267 if (l) { 1268 hlist_nulls_del_rcu(&l->hash_node); 1269 ret = 0; 1270 } 1271 1272 htab_unlock_bucket(htab, b, flags); 1273 if (l) 1274 bpf_lru_push_free(&htab->lru, &l->lru_node); 1275 return ret; 1276 } 1277 1278 static void delete_all_elements(struct bpf_htab *htab) 1279 { 1280 int i; 1281 1282 for (i = 0; i < htab->n_buckets; i++) { 1283 struct hlist_nulls_head *head = select_bucket(htab, i); 1284 struct hlist_nulls_node *n; 1285 struct htab_elem *l; 1286 1287 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1288 hlist_nulls_del_rcu(&l->hash_node); 1289 htab_elem_free(htab, l); 1290 } 1291 } 1292 } 1293 1294 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 1295 static void htab_map_free(struct bpf_map *map) 1296 { 1297 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1298 1299 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback. 1300 * bpf_free_used_maps() is called after bpf prog is no longer executing. 1301 * There is no need to synchronize_rcu() here to protect map elements. 1302 */ 1303 1304 /* some of free_htab_elem() callbacks for elements of this map may 1305 * not have executed. Wait for them. 1306 */ 1307 rcu_barrier(); 1308 if (!htab_is_prealloc(htab)) 1309 delete_all_elements(htab); 1310 else 1311 prealloc_destroy(htab); 1312 1313 free_percpu(htab->extra_elems); 1314 bpf_map_area_free(htab->buckets); 1315 kfree(htab); 1316 } 1317 1318 static void htab_map_seq_show_elem(struct bpf_map *map, void *key, 1319 struct seq_file *m) 1320 { 1321 void *value; 1322 1323 rcu_read_lock(); 1324 1325 value = htab_map_lookup_elem(map, key); 1326 if (!value) { 1327 rcu_read_unlock(); 1328 return; 1329 } 1330 1331 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1332 seq_puts(m, ": "); 1333 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 1334 seq_puts(m, "\n"); 1335 1336 rcu_read_unlock(); 1337 } 1338 1339 static int 1340 __htab_map_lookup_and_delete_batch(struct bpf_map *map, 1341 const union bpf_attr *attr, 1342 union bpf_attr __user *uattr, 1343 bool do_delete, bool is_lru_map, 1344 bool is_percpu) 1345 { 1346 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1347 u32 bucket_cnt, total, key_size, value_size, roundup_key_size; 1348 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val; 1349 void __user *uvalues = u64_to_user_ptr(attr->batch.values); 1350 void __user *ukeys = u64_to_user_ptr(attr->batch.keys); 1351 void *ubatch = u64_to_user_ptr(attr->batch.in_batch); 1352 u32 batch, max_count, size, bucket_size; 1353 struct htab_elem *node_to_free = NULL; 1354 u64 elem_map_flags, map_flags; 1355 struct hlist_nulls_head *head; 1356 struct hlist_nulls_node *n; 1357 unsigned long flags = 0; 1358 bool locked = false; 1359 struct htab_elem *l; 1360 struct bucket *b; 1361 int ret = 0; 1362 1363 elem_map_flags = attr->batch.elem_flags; 1364 if ((elem_map_flags & ~BPF_F_LOCK) || 1365 ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map))) 1366 return -EINVAL; 1367 1368 map_flags = attr->batch.flags; 1369 if (map_flags) 1370 return -EINVAL; 1371 1372 max_count = attr->batch.count; 1373 if (!max_count) 1374 return 0; 1375 1376 if (put_user(0, &uattr->batch.count)) 1377 return -EFAULT; 1378 1379 batch = 0; 1380 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch))) 1381 return -EFAULT; 1382 1383 if (batch >= htab->n_buckets) 1384 return -ENOENT; 1385 1386 key_size = htab->map.key_size; 1387 roundup_key_size = round_up(htab->map.key_size, 8); 1388 value_size = htab->map.value_size; 1389 size = round_up(value_size, 8); 1390 if (is_percpu) 1391 value_size = size * num_possible_cpus(); 1392 total = 0; 1393 /* while experimenting with hash tables with sizes ranging from 10 to 1394 * 1000, it was observed that a bucket can have upto 5 entries. 1395 */ 1396 bucket_size = 5; 1397 1398 alloc: 1399 /* We cannot do copy_from_user or copy_to_user inside 1400 * the rcu_read_lock. Allocate enough space here. 1401 */ 1402 keys = kvmalloc(key_size * bucket_size, GFP_USER | __GFP_NOWARN); 1403 values = kvmalloc(value_size * bucket_size, GFP_USER | __GFP_NOWARN); 1404 if (!keys || !values) { 1405 ret = -ENOMEM; 1406 goto after_loop; 1407 } 1408 1409 again: 1410 bpf_disable_instrumentation(); 1411 rcu_read_lock(); 1412 again_nocopy: 1413 dst_key = keys; 1414 dst_val = values; 1415 b = &htab->buckets[batch]; 1416 head = &b->head; 1417 /* do not grab the lock unless need it (bucket_cnt > 0). */ 1418 if (locked) 1419 flags = htab_lock_bucket(htab, b); 1420 1421 bucket_cnt = 0; 1422 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node) 1423 bucket_cnt++; 1424 1425 if (bucket_cnt && !locked) { 1426 locked = true; 1427 goto again_nocopy; 1428 } 1429 1430 if (bucket_cnt > (max_count - total)) { 1431 if (total == 0) 1432 ret = -ENOSPC; 1433 /* Note that since bucket_cnt > 0 here, it is implicit 1434 * that the locked was grabbed, so release it. 1435 */ 1436 htab_unlock_bucket(htab, b, flags); 1437 rcu_read_unlock(); 1438 bpf_enable_instrumentation(); 1439 goto after_loop; 1440 } 1441 1442 if (bucket_cnt > bucket_size) { 1443 bucket_size = bucket_cnt; 1444 /* Note that since bucket_cnt > 0 here, it is implicit 1445 * that the locked was grabbed, so release it. 1446 */ 1447 htab_unlock_bucket(htab, b, flags); 1448 rcu_read_unlock(); 1449 bpf_enable_instrumentation(); 1450 kvfree(keys); 1451 kvfree(values); 1452 goto alloc; 1453 } 1454 1455 /* Next block is only safe to run if you have grabbed the lock */ 1456 if (!locked) 1457 goto next_batch; 1458 1459 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1460 memcpy(dst_key, l->key, key_size); 1461 1462 if (is_percpu) { 1463 int off = 0, cpu; 1464 void __percpu *pptr; 1465 1466 pptr = htab_elem_get_ptr(l, map->key_size); 1467 for_each_possible_cpu(cpu) { 1468 bpf_long_memcpy(dst_val + off, 1469 per_cpu_ptr(pptr, cpu), size); 1470 off += size; 1471 } 1472 } else { 1473 value = l->key + roundup_key_size; 1474 if (elem_map_flags & BPF_F_LOCK) 1475 copy_map_value_locked(map, dst_val, value, 1476 true); 1477 else 1478 copy_map_value(map, dst_val, value); 1479 check_and_init_map_lock(map, dst_val); 1480 } 1481 if (do_delete) { 1482 hlist_nulls_del_rcu(&l->hash_node); 1483 1484 /* bpf_lru_push_free() will acquire lru_lock, which 1485 * may cause deadlock. See comments in function 1486 * prealloc_lru_pop(). Let us do bpf_lru_push_free() 1487 * after releasing the bucket lock. 1488 */ 1489 if (is_lru_map) { 1490 l->batch_flink = node_to_free; 1491 node_to_free = l; 1492 } else { 1493 free_htab_elem(htab, l); 1494 } 1495 } 1496 dst_key += key_size; 1497 dst_val += value_size; 1498 } 1499 1500 htab_unlock_bucket(htab, b, flags); 1501 locked = false; 1502 1503 while (node_to_free) { 1504 l = node_to_free; 1505 node_to_free = node_to_free->batch_flink; 1506 bpf_lru_push_free(&htab->lru, &l->lru_node); 1507 } 1508 1509 next_batch: 1510 /* If we are not copying data, we can go to next bucket and avoid 1511 * unlocking the rcu. 1512 */ 1513 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) { 1514 batch++; 1515 goto again_nocopy; 1516 } 1517 1518 rcu_read_unlock(); 1519 bpf_enable_instrumentation(); 1520 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys, 1521 key_size * bucket_cnt) || 1522 copy_to_user(uvalues + total * value_size, values, 1523 value_size * bucket_cnt))) { 1524 ret = -EFAULT; 1525 goto after_loop; 1526 } 1527 1528 total += bucket_cnt; 1529 batch++; 1530 if (batch >= htab->n_buckets) { 1531 ret = -ENOENT; 1532 goto after_loop; 1533 } 1534 goto again; 1535 1536 after_loop: 1537 if (ret == -EFAULT) 1538 goto out; 1539 1540 /* copy # of entries and next batch */ 1541 ubatch = u64_to_user_ptr(attr->batch.out_batch); 1542 if (copy_to_user(ubatch, &batch, sizeof(batch)) || 1543 put_user(total, &uattr->batch.count)) 1544 ret = -EFAULT; 1545 1546 out: 1547 kvfree(keys); 1548 kvfree(values); 1549 return ret; 1550 } 1551 1552 static int 1553 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1554 union bpf_attr __user *uattr) 1555 { 1556 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1557 false, true); 1558 } 1559 1560 static int 1561 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1562 const union bpf_attr *attr, 1563 union bpf_attr __user *uattr) 1564 { 1565 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1566 false, true); 1567 } 1568 1569 static int 1570 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1571 union bpf_attr __user *uattr) 1572 { 1573 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1574 false, false); 1575 } 1576 1577 static int 1578 htab_map_lookup_and_delete_batch(struct bpf_map *map, 1579 const union bpf_attr *attr, 1580 union bpf_attr __user *uattr) 1581 { 1582 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1583 false, false); 1584 } 1585 1586 static int 1587 htab_lru_percpu_map_lookup_batch(struct bpf_map *map, 1588 const union bpf_attr *attr, 1589 union bpf_attr __user *uattr) 1590 { 1591 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1592 true, true); 1593 } 1594 1595 static int 1596 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map, 1597 const union bpf_attr *attr, 1598 union bpf_attr __user *uattr) 1599 { 1600 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1601 true, true); 1602 } 1603 1604 static int 1605 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr, 1606 union bpf_attr __user *uattr) 1607 { 1608 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false, 1609 true, false); 1610 } 1611 1612 static int 1613 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map, 1614 const union bpf_attr *attr, 1615 union bpf_attr __user *uattr) 1616 { 1617 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true, 1618 true, false); 1619 } 1620 1621 struct bpf_iter_seq_hash_map_info { 1622 struct bpf_map *map; 1623 struct bpf_htab *htab; 1624 void *percpu_value_buf; // non-zero means percpu hash 1625 u32 bucket_id; 1626 u32 skip_elems; 1627 }; 1628 1629 static struct htab_elem * 1630 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info, 1631 struct htab_elem *prev_elem) 1632 { 1633 const struct bpf_htab *htab = info->htab; 1634 u32 skip_elems = info->skip_elems; 1635 u32 bucket_id = info->bucket_id; 1636 struct hlist_nulls_head *head; 1637 struct hlist_nulls_node *n; 1638 struct htab_elem *elem; 1639 struct bucket *b; 1640 u32 i, count; 1641 1642 if (bucket_id >= htab->n_buckets) 1643 return NULL; 1644 1645 /* try to find next elem in the same bucket */ 1646 if (prev_elem) { 1647 /* no update/deletion on this bucket, prev_elem should be still valid 1648 * and we won't skip elements. 1649 */ 1650 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node)); 1651 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node); 1652 if (elem) 1653 return elem; 1654 1655 /* not found, unlock and go to the next bucket */ 1656 b = &htab->buckets[bucket_id++]; 1657 rcu_read_unlock(); 1658 skip_elems = 0; 1659 } 1660 1661 for (i = bucket_id; i < htab->n_buckets; i++) { 1662 b = &htab->buckets[i]; 1663 rcu_read_lock(); 1664 1665 count = 0; 1666 head = &b->head; 1667 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) { 1668 if (count >= skip_elems) { 1669 info->bucket_id = i; 1670 info->skip_elems = count; 1671 return elem; 1672 } 1673 count++; 1674 } 1675 1676 rcu_read_unlock(); 1677 skip_elems = 0; 1678 } 1679 1680 info->bucket_id = i; 1681 info->skip_elems = 0; 1682 return NULL; 1683 } 1684 1685 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos) 1686 { 1687 struct bpf_iter_seq_hash_map_info *info = seq->private; 1688 struct htab_elem *elem; 1689 1690 elem = bpf_hash_map_seq_find_next(info, NULL); 1691 if (!elem) 1692 return NULL; 1693 1694 if (*pos == 0) 1695 ++*pos; 1696 return elem; 1697 } 1698 1699 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1700 { 1701 struct bpf_iter_seq_hash_map_info *info = seq->private; 1702 1703 ++*pos; 1704 ++info->skip_elems; 1705 return bpf_hash_map_seq_find_next(info, v); 1706 } 1707 1708 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem) 1709 { 1710 struct bpf_iter_seq_hash_map_info *info = seq->private; 1711 u32 roundup_key_size, roundup_value_size; 1712 struct bpf_iter__bpf_map_elem ctx = {}; 1713 struct bpf_map *map = info->map; 1714 struct bpf_iter_meta meta; 1715 int ret = 0, off = 0, cpu; 1716 struct bpf_prog *prog; 1717 void __percpu *pptr; 1718 1719 meta.seq = seq; 1720 prog = bpf_iter_get_info(&meta, elem == NULL); 1721 if (prog) { 1722 ctx.meta = &meta; 1723 ctx.map = info->map; 1724 if (elem) { 1725 roundup_key_size = round_up(map->key_size, 8); 1726 ctx.key = elem->key; 1727 if (!info->percpu_value_buf) { 1728 ctx.value = elem->key + roundup_key_size; 1729 } else { 1730 roundup_value_size = round_up(map->value_size, 8); 1731 pptr = htab_elem_get_ptr(elem, map->key_size); 1732 for_each_possible_cpu(cpu) { 1733 bpf_long_memcpy(info->percpu_value_buf + off, 1734 per_cpu_ptr(pptr, cpu), 1735 roundup_value_size); 1736 off += roundup_value_size; 1737 } 1738 ctx.value = info->percpu_value_buf; 1739 } 1740 } 1741 ret = bpf_iter_run_prog(prog, &ctx); 1742 } 1743 1744 return ret; 1745 } 1746 1747 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v) 1748 { 1749 return __bpf_hash_map_seq_show(seq, v); 1750 } 1751 1752 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v) 1753 { 1754 if (!v) 1755 (void)__bpf_hash_map_seq_show(seq, NULL); 1756 else 1757 rcu_read_unlock(); 1758 } 1759 1760 static int bpf_iter_init_hash_map(void *priv_data, 1761 struct bpf_iter_aux_info *aux) 1762 { 1763 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 1764 struct bpf_map *map = aux->map; 1765 void *value_buf; 1766 u32 buf_size; 1767 1768 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH || 1769 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) { 1770 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 1771 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 1772 if (!value_buf) 1773 return -ENOMEM; 1774 1775 seq_info->percpu_value_buf = value_buf; 1776 } 1777 1778 seq_info->map = map; 1779 seq_info->htab = container_of(map, struct bpf_htab, map); 1780 return 0; 1781 } 1782 1783 static void bpf_iter_fini_hash_map(void *priv_data) 1784 { 1785 struct bpf_iter_seq_hash_map_info *seq_info = priv_data; 1786 1787 kfree(seq_info->percpu_value_buf); 1788 } 1789 1790 static const struct seq_operations bpf_hash_map_seq_ops = { 1791 .start = bpf_hash_map_seq_start, 1792 .next = bpf_hash_map_seq_next, 1793 .stop = bpf_hash_map_seq_stop, 1794 .show = bpf_hash_map_seq_show, 1795 }; 1796 1797 static const struct bpf_iter_seq_info iter_seq_info = { 1798 .seq_ops = &bpf_hash_map_seq_ops, 1799 .init_seq_private = bpf_iter_init_hash_map, 1800 .fini_seq_private = bpf_iter_fini_hash_map, 1801 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info), 1802 }; 1803 1804 static int htab_map_btf_id; 1805 const struct bpf_map_ops htab_map_ops = { 1806 .map_alloc_check = htab_map_alloc_check, 1807 .map_alloc = htab_map_alloc, 1808 .map_free = htab_map_free, 1809 .map_get_next_key = htab_map_get_next_key, 1810 .map_lookup_elem = htab_map_lookup_elem, 1811 .map_update_elem = htab_map_update_elem, 1812 .map_delete_elem = htab_map_delete_elem, 1813 .map_gen_lookup = htab_map_gen_lookup, 1814 .map_seq_show_elem = htab_map_seq_show_elem, 1815 BATCH_OPS(htab), 1816 .map_btf_name = "bpf_htab", 1817 .map_btf_id = &htab_map_btf_id, 1818 .iter_seq_info = &iter_seq_info, 1819 }; 1820 1821 static int htab_lru_map_btf_id; 1822 const struct bpf_map_ops htab_lru_map_ops = { 1823 .map_alloc_check = htab_map_alloc_check, 1824 .map_alloc = htab_map_alloc, 1825 .map_free = htab_map_free, 1826 .map_get_next_key = htab_map_get_next_key, 1827 .map_lookup_elem = htab_lru_map_lookup_elem, 1828 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys, 1829 .map_update_elem = htab_lru_map_update_elem, 1830 .map_delete_elem = htab_lru_map_delete_elem, 1831 .map_gen_lookup = htab_lru_map_gen_lookup, 1832 .map_seq_show_elem = htab_map_seq_show_elem, 1833 BATCH_OPS(htab_lru), 1834 .map_btf_name = "bpf_htab", 1835 .map_btf_id = &htab_lru_map_btf_id, 1836 .iter_seq_info = &iter_seq_info, 1837 }; 1838 1839 /* Called from eBPF program */ 1840 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key) 1841 { 1842 struct htab_elem *l = __htab_map_lookup_elem(map, key); 1843 1844 if (l) 1845 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 1846 else 1847 return NULL; 1848 } 1849 1850 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key) 1851 { 1852 struct htab_elem *l = __htab_map_lookup_elem(map, key); 1853 1854 if (l) { 1855 bpf_lru_node_set_ref(&l->lru_node); 1856 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size)); 1857 } 1858 1859 return NULL; 1860 } 1861 1862 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value) 1863 { 1864 struct htab_elem *l; 1865 void __percpu *pptr; 1866 int ret = -ENOENT; 1867 int cpu, off = 0; 1868 u32 size; 1869 1870 /* per_cpu areas are zero-filled and bpf programs can only 1871 * access 'value_size' of them, so copying rounded areas 1872 * will not leak any kernel data 1873 */ 1874 size = round_up(map->value_size, 8); 1875 rcu_read_lock(); 1876 l = __htab_map_lookup_elem(map, key); 1877 if (!l) 1878 goto out; 1879 /* We do not mark LRU map element here in order to not mess up 1880 * eviction heuristics when user space does a map walk. 1881 */ 1882 pptr = htab_elem_get_ptr(l, map->key_size); 1883 for_each_possible_cpu(cpu) { 1884 bpf_long_memcpy(value + off, 1885 per_cpu_ptr(pptr, cpu), size); 1886 off += size; 1887 } 1888 ret = 0; 1889 out: 1890 rcu_read_unlock(); 1891 return ret; 1892 } 1893 1894 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 1895 u64 map_flags) 1896 { 1897 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1898 int ret; 1899 1900 rcu_read_lock(); 1901 if (htab_is_lru(htab)) 1902 ret = __htab_lru_percpu_map_update_elem(map, key, value, 1903 map_flags, true); 1904 else 1905 ret = __htab_percpu_map_update_elem(map, key, value, map_flags, 1906 true); 1907 rcu_read_unlock(); 1908 1909 return ret; 1910 } 1911 1912 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key, 1913 struct seq_file *m) 1914 { 1915 struct htab_elem *l; 1916 void __percpu *pptr; 1917 int cpu; 1918 1919 rcu_read_lock(); 1920 1921 l = __htab_map_lookup_elem(map, key); 1922 if (!l) { 1923 rcu_read_unlock(); 1924 return; 1925 } 1926 1927 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m); 1928 seq_puts(m, ": {\n"); 1929 pptr = htab_elem_get_ptr(l, map->key_size); 1930 for_each_possible_cpu(cpu) { 1931 seq_printf(m, "\tcpu%d: ", cpu); 1932 btf_type_seq_show(map->btf, map->btf_value_type_id, 1933 per_cpu_ptr(pptr, cpu), m); 1934 seq_puts(m, "\n"); 1935 } 1936 seq_puts(m, "}\n"); 1937 1938 rcu_read_unlock(); 1939 } 1940 1941 static int htab_percpu_map_btf_id; 1942 const struct bpf_map_ops htab_percpu_map_ops = { 1943 .map_alloc_check = htab_map_alloc_check, 1944 .map_alloc = htab_map_alloc, 1945 .map_free = htab_map_free, 1946 .map_get_next_key = htab_map_get_next_key, 1947 .map_lookup_elem = htab_percpu_map_lookup_elem, 1948 .map_update_elem = htab_percpu_map_update_elem, 1949 .map_delete_elem = htab_map_delete_elem, 1950 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 1951 BATCH_OPS(htab_percpu), 1952 .map_btf_name = "bpf_htab", 1953 .map_btf_id = &htab_percpu_map_btf_id, 1954 .iter_seq_info = &iter_seq_info, 1955 }; 1956 1957 static int htab_lru_percpu_map_btf_id; 1958 const struct bpf_map_ops htab_lru_percpu_map_ops = { 1959 .map_alloc_check = htab_map_alloc_check, 1960 .map_alloc = htab_map_alloc, 1961 .map_free = htab_map_free, 1962 .map_get_next_key = htab_map_get_next_key, 1963 .map_lookup_elem = htab_lru_percpu_map_lookup_elem, 1964 .map_update_elem = htab_lru_percpu_map_update_elem, 1965 .map_delete_elem = htab_lru_map_delete_elem, 1966 .map_seq_show_elem = htab_percpu_map_seq_show_elem, 1967 BATCH_OPS(htab_lru_percpu), 1968 .map_btf_name = "bpf_htab", 1969 .map_btf_id = &htab_lru_percpu_map_btf_id, 1970 .iter_seq_info = &iter_seq_info, 1971 }; 1972 1973 static int fd_htab_map_alloc_check(union bpf_attr *attr) 1974 { 1975 if (attr->value_size != sizeof(u32)) 1976 return -EINVAL; 1977 return htab_map_alloc_check(attr); 1978 } 1979 1980 static void fd_htab_map_free(struct bpf_map *map) 1981 { 1982 struct bpf_htab *htab = container_of(map, struct bpf_htab, map); 1983 struct hlist_nulls_node *n; 1984 struct hlist_nulls_head *head; 1985 struct htab_elem *l; 1986 int i; 1987 1988 for (i = 0; i < htab->n_buckets; i++) { 1989 head = select_bucket(htab, i); 1990 1991 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { 1992 void *ptr = fd_htab_map_get_ptr(map, l); 1993 1994 map->ops->map_fd_put_ptr(ptr); 1995 } 1996 } 1997 1998 htab_map_free(map); 1999 } 2000 2001 /* only called from syscall */ 2002 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 2003 { 2004 void **ptr; 2005 int ret = 0; 2006 2007 if (!map->ops->map_fd_sys_lookup_elem) 2008 return -ENOTSUPP; 2009 2010 rcu_read_lock(); 2011 ptr = htab_map_lookup_elem(map, key); 2012 if (ptr) 2013 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr)); 2014 else 2015 ret = -ENOENT; 2016 rcu_read_unlock(); 2017 2018 return ret; 2019 } 2020 2021 /* only called from syscall */ 2022 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2023 void *key, void *value, u64 map_flags) 2024 { 2025 void *ptr; 2026 int ret; 2027 u32 ufd = *(u32 *)value; 2028 2029 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 2030 if (IS_ERR(ptr)) 2031 return PTR_ERR(ptr); 2032 2033 ret = htab_map_update_elem(map, key, &ptr, map_flags); 2034 if (ret) 2035 map->ops->map_fd_put_ptr(ptr); 2036 2037 return ret; 2038 } 2039 2040 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr) 2041 { 2042 struct bpf_map *map, *inner_map_meta; 2043 2044 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 2045 if (IS_ERR(inner_map_meta)) 2046 return inner_map_meta; 2047 2048 map = htab_map_alloc(attr); 2049 if (IS_ERR(map)) { 2050 bpf_map_meta_free(inner_map_meta); 2051 return map; 2052 } 2053 2054 map->inner_map_meta = inner_map_meta; 2055 2056 return map; 2057 } 2058 2059 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key) 2060 { 2061 struct bpf_map **inner_map = htab_map_lookup_elem(map, key); 2062 2063 if (!inner_map) 2064 return NULL; 2065 2066 return READ_ONCE(*inner_map); 2067 } 2068 2069 static u32 htab_of_map_gen_lookup(struct bpf_map *map, 2070 struct bpf_insn *insn_buf) 2071 { 2072 struct bpf_insn *insn = insn_buf; 2073 const int ret = BPF_REG_0; 2074 2075 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem, 2076 (void *(*)(struct bpf_map *map, void *key))NULL)); 2077 *insn++ = BPF_EMIT_CALL(BPF_CAST_CALL(__htab_map_lookup_elem)); 2078 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2); 2079 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret, 2080 offsetof(struct htab_elem, key) + 2081 round_up(map->key_size, 8)); 2082 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 2083 2084 return insn - insn_buf; 2085 } 2086 2087 static void htab_of_map_free(struct bpf_map *map) 2088 { 2089 bpf_map_meta_free(map->inner_map_meta); 2090 fd_htab_map_free(map); 2091 } 2092 2093 static int htab_of_maps_map_btf_id; 2094 const struct bpf_map_ops htab_of_maps_map_ops = { 2095 .map_alloc_check = fd_htab_map_alloc_check, 2096 .map_alloc = htab_of_map_alloc, 2097 .map_free = htab_of_map_free, 2098 .map_get_next_key = htab_map_get_next_key, 2099 .map_lookup_elem = htab_of_map_lookup_elem, 2100 .map_delete_elem = htab_map_delete_elem, 2101 .map_fd_get_ptr = bpf_map_fd_get_ptr, 2102 .map_fd_put_ptr = bpf_map_fd_put_ptr, 2103 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 2104 .map_gen_lookup = htab_of_map_gen_lookup, 2105 .map_check_btf = map_check_no_btf, 2106 .map_btf_name = "bpf_htab", 2107 .map_btf_id = &htab_of_maps_map_btf_id, 2108 }; 2109